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ABSTRACT

Magnetic resonance imaging (MRI) is playing an increasingly important role in

image-guided radiotherapy. MRI provides excellent soft tissue contrast, and is flex-

ible in characterizing various tissue properties including relaxation, diffusion and

perfusion. This thesis aims at developing new image analysis and reconstruction al-

gorithms to optimize MRI in support of treatment planning, target delineation and

treatment response assessment for radiotherapy.

First, unlike Computed Tomography (CT) images, MRI cannot provide electron

density information necessary for radiation dose calculation. To address this, we de-

veloped a synthetic CT generation algorithm that generates pseudo CT images from

MRI, based on tissue classification results on MRI for female pelvic patients. To im-

prove tissue classification accuracy, we learnt a pelvic bone shape model from a train-

ing dataset, and integrated the shape model into an intensity-based fuzzy c-menas

classification scheme. The shape-regularized tissue classification algorithm is capable

of differentiating tissues that have significant overlap in MRI intensity distributions.

Treatment planning dose calculations using synthetic CT image volumes generated

from the tissue classification results show acceptably small variations as compared

to CT volumes. As MRI artifacts, such as B1 filed inhomogeneity (bias field) may

negatively impact the tissue classification accuracy, we also developed an algorithm

that integrates the correction of bias field into the tissue classification scheme. We

modified the fuzzy c-means classification by modeling the image intensity as the true

xii



intensity corrupted by the multiplicative bias field. A regularization term further

ensures the smoothness of the bias field. We solved the optimization problem using

a linearized alternating direction method of multipliers (ADMM) method, which is

more computational efficient over existing methods.

The second part of this thesis looks at a special MR imaging technique, diffusion-

weighted MRI (DWI). By acquiring a series of DWI images with a wide range of

b-values, high order diffusion analysis can be performed using the DWI image series

and new biomarkers for tumor grading, delineation and treatment response evalua-

tion may be extracted. However, DWI suffers from low signal-to-noise ratio at high

b-values, and the multi-b-value acquisition makes the total scan time impractical for

clinical use. In this thesis, we proposed an accelerated DWI scheme, that sparsely

samples k-space and reconstructs images using a model-based algorithm. Specifically,

we built a 3D block-Hankel tensor from k-space samples, and modeled both local and

global correlations of the high dimensional k-space data as a low-rank property of

the tensor. We also added a phase constraint to account for large phase variations

across different b-values, and to allow reconstruction from partial Fourier acquisition,

which further accelerates the image acquisition. We proposed an ADMM algorithm

to solve the constrained image reconstruction problem. Image reconstructions using

both simulated and patient data show improved signal-to-noise ratio. As compared

to clinically used parallel imaging scheme which achieves a 4-fold acceleration, our

method achieves an 8-fold acceleration. Reconstructed images show reduced recon-

struction errors as proved on simulated data and similar diffusion parameter mapping

results on patient data.
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CHAPTER 1

Introduction

1.1 Image-Guided Radiotherapy (IGRT)

Radiotherapy is the use of radiation, usually X-rays from linear accelerators to

treat illness. About 40% patients with cancer have radiotherapy as part of their

treatment [1].

Medical imaging provides important guidance to radiotherapy. For example, imag-

ing scans of patients before treatment show the size, shape and position of the cancer

as well as the surrounding tissues and bones. Doctors then plan the radiation treat-

ment to give a high dose to the cancer and try to give as low a dose as possible to the

surrounding healthy tissue to reduce the risk of side effects [2]. Besides treatment

planning, medical imaging has also been used for tumor evaluation, tumor tracking

during treatment, verification of radiation therapy delivery as well as treatment re-

sponse evaluation. To summarize, image-guided radiotherapy (IGRT) refers to the

use of imaging during a course of radiation therapy, with decisions made on the

basis of imaging [3]. Improving medical imaging techniques has a strong potential

in improving the efficacy of radiotherapy, and thus the survival rate and life quality

of cancer patients. This thesis develops new image processing techniques to extract

richer and more accurate information from medical images and reduce total image
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acquisition time, as an attempt to optimize medical imaging for radiotherapy.

1.2 Magnetic Resonance Imaging (MRI) in IGRT

Imaging for radiation therapy treatment planning has been largely based on Com-

puted Tomography (CT) imaging. Recently, Magnetic Resonance Imaging (MRI) is

gaining popularity. Comparing to CT scans, MRI scans provide superior soft tissue

and tumor contrast for more accurate delineation. Also, MRI is a very flexible imag-

ing modality. By varying imaging parameters, MRI can provide various information,

such as spin intensity, relaxation property and diffusitivity of tissues. Such informa-

tion helps better visualization of abnormalities and serves as potential biomarkers

for individual customization of radiation dose to patients as treatment progresses.

However, certain challenges exist in using MRI for IGRT. Firstly, MRI cannot

provide radiation attenuation information directly that is needed for radiation dose

calculation. As a result, CT scans might have to be acquired in addition to MRI

scans. Acquiring two scans would come at significant cost, in both scanning resources

and the need to reconcile geometric variations between two models of the patient

taken at different times. Such reconciling is usually challenging due to the change of

patient anatomy at different times, thus can introduce significant systematic errors in

radiotherapy treatment planning and reduce the efficacy of radiotherapy [4]. Besides,

certain MRI imaging techniques require long scan time, limiting their usefulness

for radiation therapy simulations of immobilized patients. Other challenges include

geometric distortion [5], intensity inhomogeneity [6] and other imaging artifacts that

may affect image quality and accurate information extraction from images.
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1.3 Contributions and Outline

In this work, we focus on improving MRI in two aspects of IGRT: treatment

planning and treatment evaluation response. To use MRI only for treatment planning

without CT imaging, radiation attenuation maps, commonly referred as “synthetic

CT”, have to be estimated from MRI images. This appears challenging due to both

imaging artifacts in MRI that corrupt true image intensity, and the lack of one to

one correspondence between MRI intensities and attenuation properties. To address

this challenge, we first developed an MRI intensity non-uniformity (“bias field”)

correction algorithm that jointly corrects bias field and classifies different tissue types

[7]. Next, we developed a bone shape model for female pelvic radiotherapy patients

[8][9], to address the intensity overlap between bone and air in MRI images, a major

challenge for synthetic CT generation. Then we presented a complete pelvic synthetic

CT generation algorithm [10][11] that incorporates the shape model and utilizes both

intensity and shape information from MRI data.

Diffusion-weighted MRI (DWI) is a promising imaging technique in treatment

response evaluation [12] and other aspects of cancer treatment. It has been shown

useful in assessing the tumor cellularity, grading tumors and differentiating recurrent

or progressive tumor growth from treatment-induced damage to brain parenchyma

in high-grade gliomas after radiation therapy [13]. Recent studies show diffusion-

weighted MRI with high b-value has potential use for the early detection of response

to therapy [14] and more precise tumor identification for full coverage of tumors in

radiotherapy [15]. However, high b-value diffusion-weighted imaging is time con-

suming due to the extended b-value range and the repeated acquisitions needed to

improve image quality. Furthermore, non-mono exponential decay behaviors of tis-
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sues have been demonstrated under high b-values [16], thus a new model other than

the conventional mono-exponential decay model may be important for extracting

more useful metric values. The second part of this work aims at reducing the acqui-

sition time for diffusion-weighted MRI by reconstructing DWI image from sparsely

sampled data, using model-based reconstruction algorithms. We built a low-rank

tensor model that allows us to exploit the local dependencies and global dependen-

cies of k-space samples simultaneously, and proposed an efficient algorithm to solve

the constrained image reconstruction problem [17][18].

The rest of this thesis organized as follows. Chapter 2 briefly reviews imaging prin-

ciples of CT and MR imaging. Chapter 3 presents the joint intensity non-uniformity

correction and tissue classification algorithm for whole brain MRI [7]. Chapter 4

describes the bone shape model for female pelvic radiotherapy patients [8][9] and

Chapter 5 describes the complete female pelvic synthetic CT generation algorithm

that integrates the bone shape model in Chapter 4 [10][11]. Chapter 6 presents the

low-rank tensor model with phase constraints for accelerated diffusion-weighted MRI

reconstruction [17][18]. Finally, Chapter 7 summarizes future work.
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CHAPTER 2

Background

2.1 CT Imaging Principles

As a stream of x-ray photons passes through an object, some of them will interact

with the object material, either get absorbed or scattered, while the remaining will

pass through. The change in the number of photons before and after passing the

object is determined by the properties of the object, represented by the attenuation

coefficient. Consider a x-ray beam travels through an object along a line at a distance

of x, the number of photons will change from N(0) to N(x):

N(x) = N(0) exp(−µx), (2.1)

where µ is the linear attenuation coefficient and has units (distance)−1.

Computed Tomography (CT) produces images that are characterized by the at-

tenuation properties of tissue. During the imaging process, the object is placed

between a source array and a detector array, where the source produces x-ray flux

and the detector records the photons that pass through the object [19]. Attenua-

tion coefficients are directly related with the electron density of tissues, therefore

CT images provide a precise mapping to Relative Electon Density (RED) for dose

calculation. Low density material such as air appears dark on the final image while

dense material such as bone appears bright. However, CT images are limited in the
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Figure 2.1: (a) Example CT and (b) MR images of one patient with brain tumor. Bone (green
arrow) is bright in CT and dark in MR images. Air (yellow arrow) is dark in both CT and MR
images. MRI shows better soft tissue contrast (red arrow). The window widths/window levels for
CT and MRI are 80/40 and 4099/2049 respectively.

ability of differentiating soft tissues (such as white matter and gray matter in the

brain) and tumors. Figure 2.1(a) shows a sample CT images of human brain with

tumor.

2.2 MR Imaging Principles

Magnetic Resonance Imaging (MRI) is another imaging methodology that charac-

terizes tissue properties different from CT images. A physical object can be broken

down into its constituent molecules, then to atoms, and then to nuclei and their

orbiting electrons [20]. Nucleus with odd atomic weights or numbers possess an an-

gular momentum and are referred as spins. In general, MRI images the magnetic

moments that result from the quantum mechanical property of nuclear spin. Among

all the spins in the body, Hydrogen (1H) is the most abundant and is imaged in most

of studies in human MRI [20]. To produce an MRI image, three magnetic fields are

needed: the main field ( ~B0) for signal preparation, the radio-frequency (RF) field

( ~B1) for signal excitation and the gradient field for spatial encoding (~G).
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2.2.1 Signal Preparation, Excitation and Relaxation

Without an external magnetic field, the spins in the body are randomly oriented

resulting in a net magnetic moment of zero. After applying the main field ~B0, the

object develops a distribution of magnetization, m0(x, y, z), that is part of what we

wish to image. This magnetization is aligned with ~B0 (by convention, the direction

of ~B0 is referred as the z direction).

The RF field ~B1 is then applied to tip the magnetization away from ~B0. When

the magnetization is tipped away from ~B0, by the Larmor relationship, it will precess

around the z-direction at the Larmor frequency

ω = γB0, (2.2)

where γ is the gyromagnetic ratio. For Hydrogen,γ/2π = 42.58 MHz/T [20]. This

precessing magnetization induces a current in a receive coil, which is acquired for

subsequent processing.

Following excitation (assuming the magnetization is tipped 90 degree away from

the main field), the magnetization in the transverse plane decays away with time

constant T2 :

mxy(t) = m0e
−t/T2. (2.3)

This process is called “T2 relaxation” or “spin-spin relaxation”, and the z component

recovers with time constant T1:

mz(t) = m0(1− e−t/T1). (2.4)

This process is called “T1 relaxation” or “spin-lattice relaxation”. The above excitation-

relaxation process is then repeated.

Since different biological tissues have different T1 and T2 values, by selecting the

repetition time TR (time between RF pulses) and echo time TE (observation time
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following the RF pulse), we will get “T1-weighted images”, where tissues with long

T1s appear dark and tissues with short T1s are bright, or “T2-weighted” image,

where tissues with long T2s appear bright while tissues with short T2s are dark.

Though soft tissues usually have similar electron density, their T1 and T2 values can

differ. MR images characterize such differences and provide better soft tissue contrast

than CT images. As shown in Figure 2.1(b), tumors are more easily identified from

MR images.

2.2.2 Spatial Encoding and k-space

The RF pulse tips the magnetization away from the main field and creates voltage

signals in receive coils. Assuming the magnetization is tipped to a plane perpendic-

ular to the ~B0, thus m(z) = 0, and considering the precessing process in a reference

frame that rotates around ~B0 at the Larmor frequency (usually referred as the ro-

tating frame), the received signal is related with the precessing magnetization as

S(t) =

∫
V

mxy,rot(~r, t)d~r. (2.5)

Since the main magnetic field is uniform, all spins in the object precess at the same

frequency. To establish one-to-one correspondence between spatial location and fre-

quency, gradient fields are applied in the direction of the main field.

The strength of gradient fields vary in space. For example, after applying two

gradient fields that vary along x and y direction with linear gradient Gx and Gy

respectively, the magnetic field along the main field direction becomes

Bz(x, y, z, t) = B0 +Gx(t)x+Gy(t)y, (2.6)

by the Larmor relationship in Eq(2.2), the precessing frequency at a spatial location

(x, y) is

ω(x, y, t) = γ(B0 +Gx(t)x+Gy(t)y), (2.7)
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which in the rotating frame is

∆ω(x, y, t) = γ(Gx(t)x+Gy(t)y), (2.8)

the magnetization mxy,rot(x, y, t) develops a spatially varying phase

mxy,rot(x, y, t) = m(x, y) exp(−iφ(x, y, t)), (2.9)

where

φ(x, y, t) =

∫ t

0

γ(Gx(τ)x+Gy(τ)y)dτ. (2.10)

Substituting this new magnetization into the signal equation (2.5), it can be shown

the received signal is

S(t) =

∫∫
mxy,rot(x, y, t)dxdy

=

∫∫
m(x, y) exp(−iφ(x, y, t))dxdy

=

∫∫
m(x, y) exp

(
− iγ

( ∫ t

0

Gx(τ)dτ · x+

∫ t

0

Gy(τ)dτ · y
))
dxdy. (2.11)

Denoting

kx(t) =
γ

2π

∫ t

0

Gx(τ)dτ (2.12a)

ky(t) =
γ

2π

∫ t

0

Gy(τ)dτ, (2.12b)

we rewrite Eq(2.11) as

S(t) =

∫∫
m(x, y) exp

(
− i2π

(
xkx(t) + yky(t)

))
dxdy

= F{m(x, y)}|kx(t),ky(t) = M(kx(t), ky(t)). (2.13)

From Eq(2.13), the signal received by the coil is the Fourier transform of the magne-

tization of the object. The Fourier transformed space, M(kx(t), ky(t)), is commonly

referred as the k-space.
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Figure 2.2: The most commonly used sampling pattern for 2D MRI.

The gradients, Gx(t) and Gy(t) control the trajectory on which the sample loca-

tions fall. It is also possible to apply gradients that vary along different trajectories

instead of x and y direction. Different gradient fields result in different sampling

patterns of the k-space. Figure 2.2 shows the most commonly used sampling pattern

for 2D imaging. In this case, the entire k-space is sampled line-by-line along x direc-

tion. Gx(t) remains constant during the acquisition to sample each line, while Gy(t)

is only turned on briefly before the acquisition of each line to move the sampling

location one line above/below. The x direction is known as the “gradient encoding

direction” while the y direction is known as the “phase encoding direction”.

2.2.3 Spatial Range and Resolution

By Nyquist’s sampling theorem, to recover the image of the object, we must

sample the k-space densely enough, otherwise aliasing will occur. Also, to recover

details of the image, we must acquire enough k-space samples to cover sufficiently

high frequency components.
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For 2D imaging, denote the sample spacing in k-space as ∆kx and ∆ky, and define

Wkx = Nx∆kx (2.14a)

Wky = Ny∆ky, (2.14b)

where Nx and Ny are the number of k-space samples along x and y direction respec-

tively. The field of view of an acquisition is

FOVx =
1

∆kx
(2.15a)

FOVy =
1

∆ky
. (2.15b)

The field of view gives the limits of the spatial range of the object to be imaged. If

the object is larger than the field of view, aliasing will occur.

The spatial resolution is determined by

∆x =
1

Wkx

(2.16a)

∆y =
1

Wky

. (2.16b)

Therefore, to image the object without aliasing and achieve high-resolution image,

we must sample k-space densely enough with sufficient number of samples. This

makes the scan time of MRI long in some applications.

2.3 Special MR Imaging Sequences Relevant to This Study

From section 2.2, MRI is a very flexible imaging modality with various imaging

parameters that can be adjusted, such as RF field, gradient field (sampling pattern),

echo time (TE) and repetition time (TR). Combining these imaging parameters

results in an imaging sequence and different imaging sequences can characterize dif-

ferent biological characteristics. In this section, we briefly review two special imaging

sequences that are relevant to our study.
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Figure 2.3: Example (a) T1-weighted and (b) UTE image of one patient. Bony tissues (red arrow)
show higher signal on UTE than on T1-weighted image.

2.3.1 Ultra-short TE Imaging

Although MRI presents superior soft tissue contrast over CT imaging, visualizing

bony tissue in MRI appears challenging. Bony tissues have very short T2 values. For

example, cortical bone has a mean T2 of 0.42 ms to 0.50 ms, while most clinically used

MRI systems use TE values ranging from 5 ms to 200 ms [21]. By Eq(2.3), signals

from tissues with such short T2 will decay away before detection. As a result, bony

tissues usually appear dark on MRI images, making them inseparable from tissues

with low spin density, such as air cavities.

Ultra-short TE imaging (UTE) is developed to visualize tissues with short T2,

such as bone. The echo time for a UTE sequence ranges from 0.05 ms to 0.50

ms [21], so that signals from tissues with short T2s can be detected before decaying

away. Figure 2.3 shows an example of UTE imaging, where bony tissues show higher

signals than conventional imaging.

Some additional care needs to be taken to design a sequence with such short TE.

For example, center-out radial sampling is used instead of Cartesian sampling shown

in Figure 2.2, with the aim of eliminating phase encoding and reducing TE. Besides,

the RF pulse is truncated. Slice selection is achieved in two halves with reversed
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gradients and data acquisition can begin as soon as each half of the slice selection is

completed [21].

Various UTE sequences have been proposed. Besides the UTE sequence with

radial sampling as mentioned above (referred as UTE in the rest of this work),

another UTE sequence that combines Cartesian sampling at the center of the k-

space with radial sampling at the outer, named pointwise encoding time reduction

with radial acquisition (PETRA) [22] was also used in this work.

2.3.2 Diffusion-Weighted Imaging (DWI)

Besides imaging the T1 and T2 properties of tissues, it is also possible to use MRI

to image the random movement of water molecules and learn about tissue properties

from water mobility.

The random movement of particles suspended in a fluid or gas is referred as

Brownian motion. The statistical relationship between the average distance that

particles move over an interval of time is established as [23]

< ∆r2 >= 6D∆t, (2.17)

where < ∆r2 > represents the average squared displacement of a particle, allowed

to diffuse freely over the time interval ∆t, and D is the diffusion coefficient that is

affected by both temperature and media properties. The diffusion coefficient D of

pure water at body temperature (37◦C) is approximately 3× 10−3mm2/s [24].

When water molecules move randomly in tissues, they will encounter many cellu-

lar and subcellular impediments, as well as impediment presented by the tortuosity

of cell packing in dense tissues [25]. As a result, water mobility is reduced by non-

water tissue constituents. By probing water mobility using MR imaging, we can learn

important information about such non-water constituents tissues, including physic-
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Figure 2.4: Waveform of the diffusion sensitizing gradient

ochemical properties of the tissue as well as its structural components [26]. Such

information is useful in detecting and analyzing abnormalities, for example, tumor

characterization. Water mobility in tumors is usually even more reduced than in nor-

mal tissues. Therefore tumors will present contrast different from normal tissues on

diffusion-sensitive MR imaging and tumor-related information can be learned from

such contrast.

Diffusion-weighted MRI incorporates diffusion-sensitization gradients into an imag-

ing sequence. The default diffusion sensitive sequence is the two-pulse gradient wave-

form shown in Figure 2.4. Define b-value [27] as

b = (γGδ)2[∆− δ

3
], (2.18)

signal attenuation due to random spin diffusion is given by

S(b) = S0 exp(−Db), (2.19)

where S0 is the signal without diffusion attenuation (b = 0). We can vary b-value

by changing the gradient amplitude G or gradient duration δ in Eq(2.18) and get a

series of diffusion signals as a function of b-value. Fitting the signal series to Eq(2.19)

gives the diffusion coefficient.

Eq (2.19) assumes isotropic diffusion, which dose not always hold for tissues [28].

For anisotropic diffusion, the single valued diffusion coefficient in Eq (2.19) is gener-
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alized to a diffusion tensor

D =


Dxx Dxy Dxz

Dyz Dyy Dyz

Dzx Dzy Dzz

 , (2.20)

and the b-value in Eq (2.18) is generalized to

bij = γ2

∫ TE

0

(∫ t

0

Gi(t
′
)dt

′
)(∫ t

0

Gj(t
′
)dt

′
)
dt, (2.21)

where Gi and Gj denote gradients along different directions. The diffusion signal

equation is

S(b) = S0 exp
(
−

3∑
i=1

3∑
j=1

bijDij

)
. (2.22)

One can improve the accuracy of diffusion tensor calculation by acquiring a large

number of non-colinear diffusion gradient directions, this is referred as diffusion ten-

sor imaging (DTI) [29]. For diffusion-weighted imaging (DWI), the diffusion tensor

is simplified to the mean diffusivity [24], Dave as

Dave =
Dxx +Dyy +Dzz

3
. (2.23)

Dave is important as it accurately summarizes water mobility and is rotationally

invariant [30]. Only three orthogonal gradient directions are needed to calculate Dave.

The b-values associated with the three gradient directions have the same amplitude,

thus we use the amplitude only to describe the b-value in DWI. The images acquired

using the three gradients, denoted as Ix, Iy, Iz are reconstructed separately first. The

final DWI image volume I is obtained by taking the geometric mean of the three

images

I = 3
√

IxIyIz. (2.24)
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After obtaining a series of DWI image volumes under different b-values, a linear fit-

ting will be performed to calculate the mean diffusivity using the mono-exponential

decay model in Eq(2.19). The calculated mean diffusivity is qualified as the “appar-

ent diffusion coefficient” (ADC).

Eq(2.19) and Eq(2.22) describe molecular mobility by simple diffusion coefficients,

while water movement through cellular tissues is very complicated and can be affected

by various factors, such as perfusion induced by blood flow and microcirculation [24].

The signal attenuation due to perfusion is most apparent at relatively low b-values

(approximately b ≤ 100s/mm2) [31]. Therefore in practice, besides the DWI image at

b = 0, at least 2 other DWI images with one at modest b-values (∼ 50− 200 s/mm2)

and another at a higher b-values (∼ 800 − 1000 s/mm2) are needed to reduce the

effect of perfusion in calculating ADC. Another factor that will influence the diffusion

measurement is motion. Even the modest bulk tissue motion can result in large phase

shifts. To address this, all spatial encoding is performed in a single shot (known as

echo planar imaging (EPI) [32]). The phase values of the reconstructed images can

then be discarded when analyzing DWI data.

16



CHAPTER 3

Joint MRI Bias Field Correction and Tissue Classification in
Support of Whole Brain Synthetic CT Generation for

Radiotherapy

3.1 Introduction

1 CT and MR images are typically used in radiotherapy today, as CT provides

direct radiation attenuation information needed for radiation dose calculation while

MR images provide superior soft tissue contrast for tumor and organ delineation.

MR images are aligned to CT images to transfer soft tissue contrast information

seen on MRI into the CT-based patient representation for treatment planning. In

addition to using significant resources, such a transfer could potentially introduce

systematic errors due to registration uncertainties [4].

Interest is emerging to use MRI without CT to support radiation dose calculation,

attenuation correction of positron emission tomography (PET) in a PET-MRI system

and some aspects of image guidance in radiation therapy. To support these roles,

radiation attenuation information, or synthetic CT (MRCT) volumes, need to be

generated from MRI scans.

Various techniques have been proposed for MRCT generation. These include

atlas based methods, where electron density maps are generated by aligning an atlas

1This chapter is based my work presented at the 2nd MR in RT symposium, St Louis, 2014 [7]
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derived from reference CT images with target MR images [33] [34] [35] [36]. However,

such methods are somewhat limited in their ability to adapt to patient anatomical

variations. Other algorithms apply a relation between the attenuation properties and

image intensities of one or more MRI scans to generate MRCT images [4] [37] [38].

The major challenge of such methods is the ambiguity in the correspondence between

attenuation properties and image intensities. For example, bony tissues have low

signal intensities in MR images due to their short T2 and air has low signal due

to extremely low electron density, yet the attenuation properties of bone and air

are significantly different. Imaging artifacts, partial volume effects and noise in

MRI further complicate the intensity distribution of different tissues, resulting in

misclassifications of tissue types, and thus wrong attenuation assignments in MRCT

images.

Ultrashort echo time scanning techniques, as described in section 2.3.1, are able

to yield signals from tissues with short T2 and have been used in MRCT generation

for the head to improve the separation of bone from air. For example, Hsu et al.

described an intensity-based classification scheme for generating synthetic CT image

volumes using multiple MR images, including UTE image, as input [4]. However,

there are a number of factors that influence the image intensity in MRI, including the

B1 field inhomogeneity that is impacted by RF transmit and receive variations across

the patient [6]. The image intensities corrupted by the B1 field inhomogeneity (also

referred as the bias field) may negatively impact intensity-driven quantitative image

analysis. It has been noted that bias field correction may be needed for accurate

synthetic CT generation [39].

Various bias field correction methods have been proposed, including prospective

ones that attempt to correct the bias field during the imaging procedure [6] [40] [41],
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by using specially designed imaging sequences or multiple coils. Retrospective meth-

ods have also been used that involve image processing after image reconstruction.

As compared to prospective methods, retrospective techniques are more general as

they do not make assumptions about the image acquisition process and are able

to further resolve patient-induced inhomogeneity [42]. One commonly used retro-

spective method estimates the bias field by sharpening the intensity histogram of

bias field-corrupted image volumes, without any prior knowledge of the underlying

patient-generated image signals [43] [44]. Other investigations have integrated bias

field estimation directly into classification solutions for segmentation of MR image

data. In these methods, a regularization scheme is usually needed to ensure that

the bias field is slow-varying. Example regularization schemes used include Gaussian

smoothing [45] [46], B-spline fitting [47] and a neighborhood constraint [48]. These

methods focus mainly on classification of brain tissue (white matter, gray matter,

fluid) only.

This chapter investigates a joint bias field correction algorithm for whole brain

(including bone and air cavities) data, with special focus on the potential for bias

field correction to improve the accuracy of synthetic CT generation while maintaining

computational efficiency.

3.2 Method and Materials

3.2.1 Image acquisition

6 patients were scanned on a 3T MRI scanner (Skyra, Siemens, Erlangen, Ger-

many) under an institution review board-approved protocol. T2-weighted image

volumes were acquired using a 3D Spin Echo (SPACE) sequence with TE/TR =

409/3200 ms, flip angle = 120◦, and voxel size =1×1×1 mm3. T1-weighted as

well as fat and water images were generated using a 3D ultrafast gradient echo se-
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quence (VIBE Dixon, initially designed for breath-held liver imaging) with TE/TR

=2.46/4.1 ms, flip angle 9◦, and voxel size≈1.27×1.27×1 mm3. Fat and water images

were computed from the in-phase (T1-weighted) and out-of-phase VIBE images. To

limit mis-classification of flowing blood as bone, a 2D time-of-flight sequence was

acquired with TE = 4 ms, TR = 8.6 ms and flip angle = 20◦. This sequence creates

brighter intensities on blood vessels than the brain tissue due to the time-of-flight

(TOF) effect. To limit misclassification of air as bone, PETRA images were acquired

with TE/TR = 0.07/4.69 ms, flip angle 6◦, and voxel size ≈ 1.71×1.71×1.71 mm3.

Patients were scanned immobilized in custom thermoplastic masks. An 18-channel

surface coil was suspended above the patient’s head using a plastic bridge, and used

in combination with a posterior spine coil for imaging. The vendor’s B1 field nor-

malization was applied to all image acquisitions and the configuration of the coils

and subjects was not modified between acquisitions, with the expectation of a com-

mon residual bias field across all images. All patients also had CT scans acquired

on a wide bore CT simulation system (Brilliance, Philips, Cleveland OH) with slice

thickness of 1-3 mm and in-plane pixel size ≈ 0.5×0.5 mm2. CT image volumes were

registered to T2-weighted image volumes using rigid alignment. All images were

reformatted to a common voxel size of 1×1×1mm3. Example MR and CT images

used from one subject are shown in Figure 3.1 and Figure 3.2 respectively.

3.2.2 Modified fuzzy c-means for joint bias field correction and classification

In the synthetic CT generation scheme investigated by [4], voxel classification is

achieved via fuzzy c-means (FCM) clustering with a spatial constraint. Given an

image dataset {xks}N,dk=1,s=1 from d MRI volumes of the same object, each containing

N voxels, as well as the total number of tissue classes presented c, standard fuzzy c-

means classification with a spatial constraint was performed to get the probabilistic
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Figure 3.1: Example MR images from one study subject. (a) T1-weighted, (b) T2-weighted, (c)
Fat, (d) Water, (e) PETRA and (f) TOF image.

Figure 3.2: Example reference CT image from a study subject
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membership uik of the kth voxel belonging to the ith tissue class, whose intensity

centroid on the sth MR image is denoted by vis:

û, v̂ = arg min
d∑
s=1

c∑
i=1

N∑
k=1

umik‖xks − vis‖2 + α
d∑
s=1

c∑
i=1

N∑
k=1

umik‖x̄ks − vis‖2

s.t.
c∑
i=1

uik = 1, ∀k = 1, · · · , N, (3.1)

where m is the fuzzy degree that takes the partial volume effect into consideration.

The first term is a simple fuzzy c-means clustering. The second term is a spatial

constraint to improve connectivity and suppress noise, where x̄ks denotes the median

of the neighbors within a kernel and α controls the weight for the spatial constraint.

3.2.2.1 Modeling the bias field

The observed voxel intensity xk is not the true intensity value but the true intensity

yk corrupted by a bias field that takes value bk at voxel location k. The bias field is

usually modeled as a slowly-varying multiplicative signal, and thus the relationship

between true and observed voxel intensities can be expressed as

xk = ykbk + wk, (3.2)

where wk is additive random noise.

One way to deal with the effect of bias fields on tissue classification is to perform

image processing using algorithms such as N4itk [44]. Fuzzy c-means classification

can then be performed on bias-corrected images. Previous studies showed that more

than one MRI volume (or contrast) may be required to achieve accurate classification

of the major tissue types in the head [4] [38]. Image processing methods such as

N4itk [44] typically estimate a bias field from each individual MR image volume,

and could yield inconsistent results across images of different contrasts. Another
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possible approach involves estimating the bias field jointly from images of multiple

contrasts. This methodology can be further integrated with synthetic CT generation

by modifying fuzzy c-means classification to incorporate bias field estimation and

correction. Considering that the bias field should be consistent across multiple image

volumes, the use of multiple (e.g., T1-weighted, T2-weighted) contrasts covering the

same scanned volume may improve the accuracy of estimation, as the impact of true

anatomic features will be less likely to influence erroneous estimations of the bias

field. The simultaneous estimation of a single bias field from multiple images during

classification may also be more computationally efficient than individual estimation

on each separate image followed by classification.

To decouple the bias field from true image voxel intensities, a log transform is

usually applied to convert the multiplicative interaction with the image to an additive

one [45] [47] [48]. However, log transforms are nonlinear and may degrade the original

contrast, resulting in inaccurate classification especially in poor contrast areas. On

the other hand, direct division to recover true signal is unstable due to the presence

of noise. Therefore, we choose to adjust the centroid of each prototype class for each

voxel k according to the estimated bias field in a method similar to a previously

published technique [46]. The resulting modified fuzzy c-means formulation for joint

classification and bias field correction can be expressed as

û, v̂, b̂ = arg min
d∑
s=1

c∑
i=1

N∑
k=1

umik‖xks − bkvis‖2 + α
d∑
s=1

c∑
i=1

N∑
k=1

umik‖x̄ks − bkvis‖2

s.t.
c∑
i=1

uik = 1, ∀k = 1, · · · , N. (3.3)
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3.2.2.2 Regularization scheme

The problem formulated above is an ill-posed one. The bias field computed di-

rectly from Eq(3.3) will be a residual image that compensates for classification error,

which violates the prior knowledge that the bias field is slowly varying. To encourage

smoothness, we introduce a quadratic penalty term into the objective function:

û, v̂, b̂ = arg min
d∑
s=1

c∑
i=1

N∑
k=1

umik‖xks − bkvis‖2 + α
d∑
s=1

c∑
i=1

N∑
k=1

umik‖x̄ks − bkvis‖2 + λ‖Rb‖2
2

s.t.
c∑
i=1

uik = 1, ∀k = 1, · · · , N, (3.4)

where R is the finite difference matrix that calculates the difference between neigh-

boring voxels along the axial, sagittal and coronal directions, b = [b1, b2, · · · , bN ]T is

the column vector that organizes voxel values of the bias field lexicographically.

3.2.2.3 Minimization with respect to u and b

The objective function in Eq(3.4) can be minimized by updating u,b and v iter-

atively. In our investigation, the intensities of all MR images are normalized before

classification and the centroid of each class is fixed with a set of pre-determined

values, thus we only need to minimize with respect to u and b.

The update equation for uik is

uik =

∑d
s=1

(
‖xks − bkvis‖2 + α‖x̄ks − bkvis‖2

)−1/(m−1)∑d
s=1

∑c
j=1

(
‖xks − bkvjs‖2 + α‖x̄ks − bkvjs‖2

)−1/(m−1)
, (3.5)

to minimize the objective function with respect to b, we rearrange terms in Eq(3.4)

and write the regularized optimization problem in the matrix form:

b̂ = arg min
b
‖z−Db‖2

W + λ‖Rb‖2
2, (3.6)

where D = diag{dk} with dk =
√

(1 + α)
∑d

s=1

∑c
i=1 u

m
ikv

2
is. z = [z1, z2, · · · , zN ]T ,

with zk =
∑d

s=1

∑c
i=1 u

m
ikvis(xks+αx̄ks)

dk
, W = diag{wk} with wk ∈ {0, 1} to exclude

background voxels.
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Eq(3.6) has a closed-form solution b̂ = [DTWD+λRTR]−1DTWz. However, due

to the large size of medical data, it is not practical to compute this solution. Allison

et al [49] proposed to solve this problem using Augmented Lagrangian methods.

Firstly, the finite difference matrix R was factorized into a circulant matrix C and

a binary diagonal matrix B such that R = BC. Since C is a finite difference matrix

with periodic boundary conditions, it will penalize the difference between voxels on

opposing boundaries. A binary mask B is needed to eliminate this effect. For an

illustrative picture of R,C and B for 1D case, one can refer to the paper of the

augmented Lagrangian method [49]. A variable splitting scheme is next introduced

to convert the unconstrained problem into an equivalent constrained problem

b̂, û = arg min
b,u
‖h−Au‖2

2 s.t.u = Tb, (3.7)

where

u =

u1

u0

 , T =

 I

C

 , h =

W1/2z

0

 and A =

W1/2D 0

0
√
λB

 . (3.8)

An alternating direction method of multipliers (ADMM) algorithm was designed to

solve the constrained optimization problem in Eq(3.7) as shown in algorithm 1.

Both D2 and B2 in algorithm 1 are diagonal matrices, and thus the most compu-

tationally expensive part is computing Cb(j+1) and QHΦ−1
2 Q, which has a compu-

tational complexity of O(N logN) due to the circular convolution and fast Fourier

transform (FFT).

To further accelerate the algorithm, we used a linearized Augmented Largrangian

method as proposed by Nien et al [50]. To update b, the algorithm majorizes the

quadratic penalty term by its separable quadratic surrogate. Instead of updating b

as

b(j+1) = arg min
b

1

2
‖u(j) −Tb− η(j)‖2, (3.9)
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Algorithm 1 ADMM

Initialize u
(0)
1 = b(0),u

(0)
0 = Cb(0),η

(0)
0 = 0, η0

1 = 0 and j = 0

Set D−1
2 = [DHWD + I]−1, z2 = DHWz, B−1

2 = [λBHB + I]−1

Set Φ−1
2 = [I + Φ]−1, where Φ is the diagonal matrix containing the spectrum of CHC

Repeat until stop criterion is achieved:

1) b(j+1) = QHΦ−1
2 Q× [CH(u

(j)
0 − η

(j)
0 ) + (uj

1 − η
(j)
1 )]

where Q is the multidimensional discrete Fourier transform such that CHC = QHΦQ

2) u
(j+1)
1 = D−1

2 [DHWz + (b(j+1) + η
(j)
1 )]

u
(j+1)
0 = B−1

2 (Cb(j+1) + η
(j)
0 )

3) η
(j+1)
1 = η

(j)
1 − (u

(j+1)
1 − b(j+1))

η
(j+1)
0 = η

(j)
0 − (u

(j+1)
0 −Cb(j+1))

4) j = j + 1

we calculate

b(j+1) = arg min
b

1

2
‖u(j)−Tb−η(j)‖2+〈CH

(
Cb−(u

(j)
0 −η

(j)
0 )
)
,b−b(j)〉+L

2
‖b−b(j)‖2,

(3.10)

where L is the maximum eigenvalue of CHC. The problem in Eq(3.10) has a simple

closed-form solution

b(j+1) =
1

1 + L
(u

(j)
1 −η

(j)
1 )+

L

1 + L

(
b(j)−(1/L)CH

(
Cb(j)−(u

(j)
0 −η

(j)
0 )
))

. (3.11)

Furthermore, since we do not need to calculate the inverse of CHC using fast Fourier

transform, CHC does not have to be block circulant. Thus C can be a simple linear

convolution matrix with a small convolution kernel ([−1, 2,−1]) and without periodic

boundary conditions. Therefore we can calculate Cb(j) with a linear computational

complexity. Besides, for further computational efficiency gains, one can estimate b

from down sampled image data and extrapolate to full scale, while still effectively

removing bias field effects, a technique similar to that used in the N3 and N4itk

methods [43] [44].
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3.2.2.4 Evaluation and Validation

We evaluated the proposed algorithm on the 6 multicontrast MRI data sets. First,

we preprocessd the MR images using methods similar to those previously reported [4],

the skin surface was determined as the union of contours extracted from T1-weighted,

T2-weighted, fat, water and PETRA images with intensity thresholds of 20, 10, 10, 30

and 100 respectively. The extracted external skin surface was further processed

using morphologic operations (dilation and erosion) to clean up gaps and holes.

Vessel masks were generated from TOF images with an intensity threshold of 60. A

normalization factor was calculated as the averaged mean intensity of T1-weighted

and T2-weighted images within the skin surface. T1-weighted, T2-weighted, fat and

water images were normalized by multiplying voxel values by 1000 and then dividing

by this normalization factor. PETRA images were normalized independently to

have a mean voxel intensity of 1000. After normalization, air masks within the

skin surface were generated using the normalized PETRA and water images with

intensity thresholds of 200 and 400. The voxels outside the skin surface, as well as

those encompassed by the vessel and air masks, were excluded from classification.

After the above preprocessing steps, the probabilities of remaining voxels contain-

ing each of five classes of tissue/material (fat, fluid, white matter, grey matter and

bone) were determined using the proposed method, with m = 1.5, α = 3.8 and λ =

25. The pre-determined centroids of each class are shown in Table 3.1. By using the

pre-determined centroid as the solution for v, the initial estimates of membership u

are reasonably close to the optimum. Therefore instead of updating the membership

and the estimated bias field iteratively, the bias field was estimated in a single shot,

and the final classification result was calculated using Eq(3.5). For estimation of the

bias field, image data (z and D) were first down sampled from 256 × 256 × 176 to
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Table 3.1: Centroid of each tissue class and image contrast used for classification

T1-weighted T2-weighted Fat Water
White matter 1488 783 143 1339
Grey matter 1161 1418 118 1051

Fluid 714 2784 113 631
Fat 2385 936 2132 733

Bone 589 260 301 424

64 × 64 × 32. The 5 classes (fat, fluid, white matter, grey matter and bone) were

assigned CT attenuation values of −50, 0, 40, 40 and 800 HU respectively. Synthetic

CT image volumes were generated by multiplying the probability of each voxel be-

ing represented in each class with the attenuation value of that class and summing

the result across all classes. The synthetic CT images generated using the proposed

method were compared to synthetic CT images generated using the original fuzzy

c-means method under the same parameter settings. The mean absolute error be-

tween the synthetic CT and the reference CT image volumes within brain region was

calculated. The percentage of soft tissue voxels misclassified as bone within the brain

region was also calculated, where soft tissue voxels were determined as voxels with

intensity between 0 and 50 HU from the reference CT images, and misclassification

was defined as any brain tissue assigned a composite intensity above 50 HU. Finally,

the normalized bone probability, defined as the sum total of bone class membership

probability of all voxels within the brain divided by the total number of brain voxels,

was calculated.

3.3 Results

Figure 3.3 shows example synthetic CT images generated using the proposed

method and the original fuzzy c-means classification. The synthetic CT volumes

generated from the MR volumes without bias field correction show artifacts due to

the misclassification of some soft tissue as bone. Figure 3.4 shows example probability
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Figure 3.3: (a)Synthetic CT generated using the proposed modified fuzzy c-means classification
method with integrated bias field correction. (b) Synthetic CT generated using the original fuzzy
c-means classification method. (c) Bias field estimated using the proposed method (holes are due
to air masked out prior to processing).

Figure 3.4: (a) Bone probability map generated using the proposed modified fuzz c-means classifi-
cation method with integrated bias field correction, (b) Bone probability map generated using the
original fuzzy c-means classification method.

distribution of bone voxels using the two methods, where the misclassification using

the original fuzzy c-means method was obvious. Due to the bias field, intensities of

soft tissue voxels were decreased in some regions to the point where they overlapped

with bone voxel intensities. These artifacts were significantly reduced using the

proposed method.

The mean absolute error (MAE) of intensity in the brain between synthetic CT

images generated with and without bias field correction and the reference CT images

for each patient is shown in Table 3.2. The percentage of soft tissue voxels misclassi-
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Table 3.2: Quantitative analysis on MRCT images generated with and without bias field correction

Patient MAE MAE with Misclassification Misclassification Normalized Normalized
ID without bias rate without bias rate with bias summed summed

bias correction correction correction bone bone
correction probability probability

without bias with bias
correction correction

1 32 22 24% 9% 3% 2%
2 80 25 74% 12% 9% 2%
3 90 48 59% 13% 14% 5%
4 51 16 38% 7% 6% 1%
5 80 25 63% 14% 15% 2%
6 89 25 53% 14% 9% 2%

fied as bone is also shown. With the proposed method, the averaged mean absolute

error among 6 patients was reduced by 43.5 HU and the percentage of misclassified

brain voxels was reduced by 40%. Table 3.2 also shows the summed bone probability

map with in the soft tissue region, normalized by the total number of soft tissue

voxels. The proposed method decreased the normalized bone probability within soft

tissue by 7%.

3.4 Discussion

In this work, we investigated an integrated method for joint tissue classification

and bias field correction of multiple contrast MR images to support generation of

synthetic CT. The proposed method improves the quality of synthetic CT volumes

generated by reducing artifacts resulting from misclassification. Evaluation in terms

of classification accuracy and quality of the synthetic CT images validates the efficacy

of the proposed method. It should be noted that the misclassification constraint was

deliberately set to be very strict, hence the large number of misclassified voxels both

with and without bias correction. In addition, some vessels were still not covered

by the mask from the TOF images, leading to a constant number of voxels being

misclassified regardless of whether bias field correction was applied or not.
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Joint estimation takes advantage of multispectral images of different contrasts to

reduce error due to low signal regions present in one or more but not all images

studied. With intensity normalization and use of pre-determined cluster centroids,

the proposed method is able to remove bias field effects in a single shot, while most

existing methods require an iterative process. In addition, the quadratic penalty

term enforces a natural constraint on smoothness of the bias field, without making

underlying assumptions to model the bias field shape, such as a B-spline basis or

Gaussian kernel [43] [44] [47].

The linearized Augmented Largrangian method used to calculate the bias field was

run for 500 iterations to give satisfactory results. Each iteration requires linear con-

volution and simple addition. Thus the computational complexity for each iteration

is simply O(N). A commonly used bias field estimation algorithm N4itk [44], which

is publicly available in a medical image analysis software environment (SLICER,

Surgical Planning Laboratory, Brigham and Womens Hospital, Boston, MA), has

default values for iterations at each of three resolution levels of 500, 400 and 300.

The B-spline interpolation method used to smooth the estimated bias field in N4itk

has a computational complexity of O(N + n) [51], where n is the total number of

control points used for B-spline interpolation. Our proposed method does not need

to calculate and sharpen image histograms by deconvolution and produces classifi-

cation results simultaneously, thus reducing the computational effort in generating

synthetic CT volumes.

For future work, more thorough evaluation of the proposed method and its impact

on contouring, treatment planning, and dose calculation will be performed, including

a more extensive study on a larger patient dataset.
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3.5 Conclusion

A joint bias field correction and tissue classification method has been developed

and evaluated. Correcting bias field of MRI data reduces the error in tissue clas-

sification thus improving the accuracy of synthetic CT generation. By performing

intensity normalization and applying a linearized Augmented Largrangian method,

the computational efficiency was improved over existing bias field correction algo-

rithms.
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CHAPTER 4

Pelvic Bone Shape Model in Support of Pelvic Synthetic CT
Generation

4.1 Introduction

1While intensity thresholding of UTE image data to mask air out in support of

synthetic CT generation has been evaluated and validated for attenuation mapping

in the head [4], this process is challenging in the pelvis due to the mobility of air

over short time periods. Intra-session changes may lead to air regions estimated

from UTE imaging sequence not spatially matching the locations of air in other MR

volumes from the same scanning session, as shown in Figure 4.1. This potential

spatial mismatch could lead to misclassification of air as bone in the pelvis. Several

methods [52] [53] [54] [55] manually contoured the bony part in pelvis before synthetic

CT generation, which can be time-consuming and non-repeatable.

One approach to address this issue is to add bone shape information to assist the

air/bone separation process. As air is rarely in close contact with bone in the pelvis,

defining the space in which bone exists would allow for identifying air in remaining

low MR intensity regions outside of bone for exclusion from tissue classification,

and thus also remove the need for UTE imaging. Achieving this goal requires a

model that describes possible shape variance of the pelvic bone. Various methods

1This chapter is based on publications [8] [9]
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Figure 4.1: (a) The air regions (contoured in red) estimated from PETRA image overlaid on (b)
T1-weighted image of the same patient from the same scan session. The air regions estimated from
PETRA do not agree with the (c) air regions (contoured in red) presented on T1-weighted image.

have been proposed for shape model construction, including 1) active shape models

where shape variability is represented by the variance of coordinates of landmarks

placed on the object [56] [57]; 2) active contour models where shape variability is

represented by the variance of object contours [58] [59]; 3) statistical deformation

models where shape variability is represented by a series of deformation fields that

deform a reference image to match a group of training images [60] [61] [62]. As

compared to active shape models and active contour models, statistical deformation

models do not require explicit contouring of objects, and are thus less expensive in

terms of effort for model construction. In this study, a pelvic bone shape model is

developed and investigated based upon deformable alignment of pelvic CT image

volumes across a female population to assist bone identification in MRI as the first

step in the synthetic CT generation. As actual attenuation values will be determined

in a subsequent probabilistic tissue classification step that permits voxels to have

combinations of tissues, the goal here is to find a bulk space where air is unlikely

to exist instead of contouring bone tissues accurately. This reduced demand for

specificity in bone location labeling allows a trade-off between model accuracy versus

model complexity. As compared to deformable registration based methods [36], the

shape model has fewer parameters to be optimized and the search space appears to

be free of local minima, thus is more computationally efficient and robust.
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Figure 4.2: Flow chart showing the model construction and evaluation processes.

4.2 Method and Materials

We built the model from CT images where bone structure can be easily defined,

and applied it to MR images for model evaluation. To exclude individual differences

that are not due to shape variance, all images were first (rigidly plus scale) aligned

into the same coordinate system. The reference CT was deformably aligned to the

resulting images, and Principal Component Analysis (PCA) of the population of

deformations was used to assemble the shape model. The shape model was then

used to guide the deformation of the reference MR image with labeled bone regions

to match the target MR image. Dilation was further introduced to improve the

coverage of bone voxels. Figure 4.2 shows a flow chart of the model construction and

application/evaluation processes.
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4.2.1 Image data for shape model construction

Under institution review board approval, CT image volumes acquired from 30

female patients who underwent simulation for external beam radiotherapy were in-

vestigated. Of these patients, 17 also had corresponding MR scans. CT scans were

acquired with slice thickness of 3 mm and in-plane pixel size of 1×1 mm2. MR scans

consisted of multi-contrast MRI images including T1-weighted images generated us-

ing a 3D gradient echo sequence (VIBE Dixon, initially designed for breath-hold liver

imaging) with TE (in/out-of-phase) equals 2.46/1.23 ms, TR equals 4.1 ms, flip angle

90◦, and voxel size of 1.5×1.5×1.5 mm3. Fat and water images were computed from

the in-phase (T1-weighted) and out-of-phase VIBE images. All MR and CT images

were acquired using a 3T MR scanner (Skyra, Siemens Medical Systems, Erlangen,

Germany) and CT simulator (Philips Healthcare, Cleveland, OH), respectively. All

scans were acquired with patients lightly immobilized in vacuum-formed bean bags,

and with no other controls on physiological movement. Intensity inhomogeneity cor-

rection was applied to MR images using the N4ITK algorithm [44], implemented in

a publicly available image analysis software environment (SLICER, surgical process-

ing laboratory, Brigham and Womens Hospital, Boston, MA). All MR images were

aligned to their corresponding CT images through rigid registration implemented in

SLICER, with the aim of aligning bony structures accurately without considering

soft tissues, as soft tissues can deform across scanning sessions. All image volumes

were reformatted in axial orientation with voxel sizes interpolated to 1×1×1 mm3.

Example images used from one subject are shown in Figure 4.3. Variations in subject

body composition as well as internal motion during scans were present in the study

population. Figure 4.4 shows one sample image from the dataset that shows motion

artifacts as well as one sample image that has relatively high quality.
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Figure 4.3: Example MR and CT images from one study subject. (a) T1-weighted (in-phase), (b)
Fat, (c) Water and (d) CT image.

Figure 4.4: Example T1-weighted MR images used for this study with different image qualities.
Left: image that shows motion artifacts (lines indicated by red arrows). Right: image of relatively
high quality.

4.2.2 Model construction

4.2.2.1 Alignment of training images

Since we were interested in bone identification only, irrelevant structures were

first excluded to reduce alignment complexity. Bony surfaces were identified on CT

images using an intensity threshold of 150 Hounsfield units (HU). These surfaces were

dilated by 3mm to include contrast with adjacent surrounding soft tissues. Using an

in-house Functional Imaging Analysis Tool (FIAT), morphological operations (3 mm

dilation, filling holes and 3 mm erosion) were subsequently applied to clean up holes

and gaps. Non-pelvic bones, such as vertebrae and femurs, were manually removed.

Example CT images before and after preprocessing are shown in Figure 4.5.

After the above preprocessing steps, one CT image volume was selected randomly

from the dataset as the reference. To exclude individual differences that were not due

to shape variance, the remaining training images in the dataset were first aligned to
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Figure 4.5: CT image (a) before and (b) after preprocessing.

Figure 4.6: Landmarks placed on CT image volumes to assist alignment.

the reference image using rigid registration plus global scaling. Then the reference

image was deformed to match each of the training images, using a multilevel B-

spline deformable registration with subsampling rates of [10 10 5], [4 4 2] and [2 2 1]

voxels and B-spline grid sizes of 50, 30 and 15 mm respectively. The regularization

parameter for smoothness was 0.005 and the maximal number of iterations was 50

for each level. The mean square error between the target and reference image was

chosen as the similarity metric for both rigid and B-spline deformable registration

processes. Four anatomic landmarks were identified at the top and the bottom and

the left and the right of the pelvis, as shown in Figure 4.6, to initialize the rigid plus

scaling alignment. All alignments were performed using SLICER. Figure 4.7 shows

the reference image as well as an example deformation field that warps the reference

image to match a training image.
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Figure 4.7: (a) Reference image. (b) Target image with deformation vectors. (c) Deformed reference
image.

4.2.2.2 Principal component analysis of B-spline coefficients

To extract representative modes of shape variance, PCA is usually performed on

a matrix composed of deformation fields obtained from the non-rigid alignment pro-

cess. The deformation fields in our method were calculated from B-spline coefficients

at control points through simple interpolation, and thus the high dimensional defor-

mation fields were mapped from the low dimensional B-spline coefficients through

a linear transformation matrix. Therefore the information encoded in deformation

vectors and B-spline coefficients is equivalent. PCA was performed on the B-spline

coefficients instead of the deformation vectors to yield more compact descriptions of

shape variance and save computational effort by reducing the matrix size.

The B-spline coefficients of the ith deformation field were organized into a vector

vi and PCA was performed on the matrix

V = [v1,v2, · · · ,vN ]. (4.1)

PCA of V yields N orthogonal principal modes m1,m2, · · · ,mN . This gives the

shape model where the possible shape variance s of pelvic bone is described by a linear

combination of the leading k principal modes plus the mean B-spline coefficients v̄

s = v̄ + α1m1 + α2m2 + · · ·+ αkmk. (4.2)
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As the deformation fields are obtained by aligning real pelvic bone structures, no

further constraints are needed during PCA to ensure the principals modes represent

anatomically reasonable shape variation. This is validated by deforming the refer-

ence image with deformation fields generated by multiplying principal modes with

different mode coefficients. The first principal mode is found to be mainly changing

the angle of the pelvis.

4.2.3 Application of model to identify pelvic bone in MR images

4.2.3.1 Deformable alignment guided by shape model

To identify pelvic bone on MR images, we deformed the corresponding MR data of

a reference image A to match a target image M. The bone regions on the reference

MR image were identified and labeled according to the corresponding CT image.

The deformation process was guided by the shape model developed in section 4.2.2

by constraining the search space to be within the space spanned by principal modes.

The problem can be formulated as

α̂ = arg min
α

D
(
T(A),M

)
s.t.T = B(v),v = v̄ + α1m1 + α2m2 + · · ·+ αkmk, (4.3)

where D is the similarity metric between the target and reference images and T is the

deformation field that is calculated from B-spline coefficients v at control points using

the cubic B-spline interpolator B. By using the subspace model Eq(4.2), we only need

to optimize over the k model coefficients (α1, · · · , αk). As compared to deformable

registration, our model has far fewer parameters involved in the optimization process.

In our approach, we chose the mean square intensity error between the reference

and the target water images as the similarity metric D. The images were first

normalized based on the mean intensity of the T1-weighted images from the same
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acquisition that yielded the water images. Since we were interested in pelvic bone

only, the value of the similarity metric was evaluated only in the regions where the

deformed reference image indicated the existence of bone (i.e., fell within the labeled

bone space on the reference image). The optimization problem was thus

α̂ = arg min
αlower≤α≤αupper

∑
T
(
A(x)
)
∈bone

(
T
(
A(x)

)
−M(x)

)2

s.t.T = B(v),v = v̄ + α1m1 + α2m2 + · · ·+ αkmk, (4.4)

with the binary operator introduced by the masked bone space, the optimization

problem in Eq(4.4) is not differentiable. Given the small number of parameters, we

may simply traverse a grid of parameter values to find the optimal solution. In this

work, we determine the search range αlower and αupper based on the square-root of

the sum of eigenvalues from PCA of B-spline coefficients, denoted as λ. The search

grid is defined as −100λ to 100λ, with a grid spacing of 100. Furthermore, if we

assume the uniqueness of minimum of the search space, a binary search scheme may

be used to find the optimal coefficients efficiently. Algorithm 2 shows an illustrative

example of using the binary search scheme to find the optimal coefficient, where the

shape model consists of the first leading principal mode only.

4.2.4 Evaluation and validation

We evaluated the shape model by calculating the percentage of correctly identified

bone voxels as well as the percentage of air being misclassified as bone, where air

voxels were defined on corresponding CT images at a threshold of -400 HU. For each

of the 17 patients that had both MR and CT scans, we constructed the shape model

from the remaining 29 CT scans and applied the model to identify pelvic bone on

the MR image of the patient whose CT was not used in the model development.
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Algorithm 2 Binary Search

Initialize α = [α(1),α(2)], convergence threshold ε, maximum number of iteration N .
Set j = 1. Set mean square error D0 and difference between iterations d to be sufficiently large.

while d > ε and j < N
v1 = v̄ + α(1)m1, v2 = v̄ + α(2)m1, T1 = B(v1), T2 = B(v2)

if D(T1(A),M) > D(T2(A),M)
α = [

(
α(1) + α(2)

)
/2,α(2)]

else
α = [α(1),

(
α(1) + α(2)

)
/2]

end

d = D0 −min
(
D
(
T1(A),M

)
, D
(
T2(A),M

))
D0 = min

(
D
(
T1(A),M

)
, D
(
T2(A),M

))
j = j + 1

end

if D
(
T1(A),M

)
> D

(
T2(A),M

)
output α(2)

else
output α(1)

end

To evaluate the complexity of the search space, we calculated the objective function

values by brute force sampling of coefficients of the first three principal modes. To

validate the choice of similarity metric, the model was fitted to CT data by directly

maximizing the percentage of identified bone voxels, as the bone label map was

already defined on CT images, and compared to the result when applying the model

to MR images. Finally, the effect of dilation on the identified space was studied by

evaluating both the percentage of correctly identified bone voxels and the percentage

of air voxels mislabeled as bone.

4.3 Results

The B-spline coefficients within pelvic bone area ranged from -41.27 to 49.71,

with a mean of -0.24, standard deviation of 8.33 and a mean absolute of 6.35. The

percentage of total variance of deformations (B-spline coefficients) across patients

explained by each mode is shown in Figure 4.8. The first leading mode accounts for

42



Figure 4.8: Percentage of variance explained by each mode.

14% of the total variance. Figure 4.9 shows the deformation field corresponding to

the first principal mode and Figure 4.10 shows the reference image deformed by the

first principal mode by varying the coefficients between 5 (red contour) and -15 (green

contour) of the standard deviation of the population. We explored the properties

of the search space by plotting the objective function values under various model

coefficients, as shown in Figure 4.11. The objective function was observed to be free

of local minima, thus justifying adoption of a binary search scheme (Algorithm 2) to

find the optimal model coefficients more efficiently than brute force or more complex

searching schemes.

Using the first leading principal mode only, the leave-one-out cross validation

process achieved an averaged bone identification rate of 87% across 17 patients. The

lowest coverage was 79% and the highest coverage was 94%. The standard deviation

across the 17 patients was 6%. The averaged total volumes of unidentified bone were

118.33 cm3 the standard deviation of unidentified bone volumes was 70.77 cm3. The
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Figure 4.9: Deformation field corresponding to the first principal mode with the reference image in
the (a) axial plane and (b) coronal plane.

Figure 4.10: Contours of two deformation samples (red and green) using the first principal mode
with the respective coefficients of 5 and -15 of the standard deviation of the population, with the
reference CT images (grey) in the axial (left) and coronal plane (right).

Figure 4.11: Plot of the objective function values with a) the coefficients of the 2nd versus 3rd

principal mode at the optimal value for the coefficient of the 1st principal mode, b) the coefficients
of the 1st versus 3rd principal mode at the optimal value for the coefficient of the 2nd principal mode,
and c) the coefficients of the 1st versus 2nd principal mode at the optimal value for the coefficient
of the 3rd principal mode.

44



averaged percentage of air voxels misclassified as bone was 0.02% and the standard

deviation across patients was 0.08%. The averaged total volumes of misclassified

air were 0.23 cm3 and the standard deviation of misclassified air volumes was 0.70

cm3. For most patients, the largest portions of missing bone voxels were located at

the bottom (femoral head) and top of the segmented pelvis. Figure 4.12 shows the

averaged portion of missing bone voxels of the total amount of missing bone voxels in

each slice (axial plane). The peaks appear around slice 81 and slice 175. Figure 4.12

also shows the two axial slices of the reference image as well as a coronal view with

yellow lines indicating the position corresponding to the specific axial slice. This

trend could be due to the bias introduced by the selected reference image and (in

the case of the femoral heads) somewhat arbitrary means of cutting off the more

distal bone from the segmentation. Future work might improve the model accuracy

by iterative boosting of the reference image [62] or using multi-atlas fusion [60]. The

spinal elements attached to the pelvis further contributed to misclassified bone voxels

(20% of the total misclassified bone voxels) as the model was initially developed

to describe pelvic bone shape only. Figure 4.13 shows the identified bone voxels

overlapped with the ground truth CT images for 4 patients where the model achieves

the best performance, average performance and worst performance.

The optimal model coefficient found for each of the 17 patients ranged from 87 to

-350, with a mean of -28 and a standard deviation σ = 211. The averaged maximal

decreases (when compared to individual optimizations) in bone coverage when vary-

ing the model parameter by ±1.5σ and ±1σ around the mean were 9.7% and 6.3%

across these 17 patients, respectively. These added errors are large compared to the

coverage with the first mode, and suggest that the variation across individuals war-

rants the use of some deformation to achieve a reasonable tradeoff of sensitivity and
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Figure 4.12: Analysis of the location of missing bone voxels. Left: Percentage of missing bone
voxels in each axial slice, two peaks appear at slice 81 and slice 175. Right: (a) Axial slice 81 of the
reference image. (b) Coronal plane with yellow line corresponding to axial slice 81. (c) Axial slice
175 of the reference image. (d) Coronal plane with yellow line corresponding to axial slice 175.

Figure 4.13: Example pelvic CT images with color wash indicating bone voxels identified by the
deformed reference image for 4 patients that have different model performances: (a) patient that
has bone coverage of 93%. (b) Patient that has bone coverage of 94%. (c) Patient that has bone
coverage of 85%. (d) Patient that has bone coverage of 79%.
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specificity in bone/air separation. On the other hand, varying the model parameter

by ±0.5σ around the optimal model parameter found for each patient decreased the

model performance by 1.6% only, indicating the model is robust to small deviations

from the true optimum. It is possible in the future to use this added knowledge to

permit an even faster search for the optimal combination of deformation model and

marginal expansion.

Fitting the model to CT data using the first leading mode, the leave-one-out cross

validation achieved an average bone identification rate of 88%, which is similar to the

result obtained from MRI data, thus validating our choice of the mean square error

as the optimization criterion. Figure 4.14 shows the averaged percentage of correctly

identified bone voxels by fitting the model to MRI data as well as the percentage of

mislabeled air voxels versus radius of dilation of the identified bone space, with error

bars specifying the standard deviation across the population. Dilating the space by

5mm improved the overlap with true bone to 96%, while the percentage of air voxels

mislabeled as bone remained below 0.4%. Figure 4.15 shows an example of the bone

label of the reference image overlapped with one target image, before and after the

model-guided deformation. The coverage of bone voxels in the target image was

improved after the deformation and dilation further improved the bone coverage.

With the bone spaces identified by the shape model, the remaining dark spaces in

MR images can be labeled as air and excluded from the following tissue classification

process. The air spaces were identified by thresholding the MR images in non-bone

spaces at intensity cutoffs of 300, 150 and 300 for the T1-weighted, water and fat

images respectively. All images were normalized by the mean intensity of the T1-

weighted images before thresholding. Examples of the thresholded MR images with

and without the bone mask are shown in Figure 4.16. Without the bone identification
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Figure 4.14: Left: fraction of correctly identified bone voxels under various radii of dilation. Right:
fraction of air voxels mislabeled as bone under various radius of dilation. The length of the error
bar corresponds to the standard deviation across the population.

Figure 4.15: Labeled regions (green) of the reference image overlapped with the target image (with
red contours for bone region) (a) before deformation (b) after deformation and (c) applying a 5 mm
dilation of the labeled region after deformation.
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Figure 4.16: (a)-(b) Thresholded fat, T1-weighted and water image without bone mask. Threholded
regions were contoured by red lines. (d)-(f) Thresholded fat, T1-weighted and water image after
bone identification. Thresholded regions were contoured by green lines.

step, intensities of bone voxels and air voxels both fall below the threshold, resulting

in mixture of air and bone. After the bone identification step, bone area was first

masked out before thresholding and air regions were identified without mislabeling

bone as air.

Including the 2nd and 3rd principal modes into the model resulted in an averaged

improvement in coverage of bone of less than 2% prior to dilation. After the 5mm

dilation was applied, the difference between the model with 3 modes and the model

with 1 mode was only 0.06%. On the other hand, the model with 3 modes resulted

in an air misclassification rate slightly higher than the model with 1 mode. The

difference was 0.2% without dilation and 0.3% after the 5mm dilation. This result

suggests that using the 1st leading mode may achieve a sufficiently accurate model for

separation of bone and air while maintaining simplicity and computational efficiency.
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4.4 Discussion

In this study, we investigated a female bone shape model to facilitate bone identi-

fication as the first step in the workflow of synthetic CT generation from pelvic MR

data. By identifying a space that contains the pelvic bones plus a small expansion, a

simple intensity threshold can be applied to the remainder of voxels within the pelvis

to exclude air voxels from the tissue classification process, without mislabeling bone

as air. This permits classification of bone without the use of ultrashort TE imaging

in the pelvis.

While previous investigations of pelvic shape model [60] [61] [62] aimed at contour-

ing bone structure accurately and evaluated the resulting models by surface distance,

we focused on a simpler problem of identifying a region that contains bone and ex-

cludes air. Therefore we evaluated the model in terms of the coverage of bone and

the overlap with air. Under this evaluation criterion, a single principal mode was

observed to achieve sufficient accuracy, which reduced the model complexity as com-

pared to most existing methods where more than 10 modes were typically involved.

In comparison to results reported in existing work, our method gains computational

efficiency where one segmentation takes 69 seconds on average on a shared 2.8 GHz

CPU with 40 cores (i.e. we do not specifically allocate all cores as other jobs run

with equal priority), as compared to 2.5 hours on an 8-core machine with a 3.2 GHz

CPU as reported in [60]. Spatial dilation was further introduced to improve the cov-

erage of bone, while the overlap with air remained reasonably small even with a 5mm

dilation that covered 96% of pelvic bone voxels. By performing PCA on B-spline

coefficients instead of deformation vectors, we were able to produce a more compact

shape model that reduced computational burden for alignment with MR images.
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With the constraint enforced by the shape model, local minima in the search space

were removed effectively thus allowing an efficient binary search scheme to be used

to find the optimal solution. The proposed method achieved reasonable accuracy on

a heterogeneous dataset with variations in image quality, suggesting the model may

be robust to potential imaging artifacts.

Our investigation used a randomly selected sample from the dataset as the refer-

ence image, which may introduce bias and systematical error in bone identification,

such as the missing bone voxels at the top of pelvis, as shown in Figure 4.12. In the

future, more sophisticated model construction schemes, such as multi-atlas fusion [60]

or iterative boosting [62] may be explored to remove the potential bias and improve

model performance and a larger training dataset may be investigated to construct a

more representative shape model. The next chapter will incorporate this model into

the entire workflow of synthetic CT generation and further validate its sufficiency in

supporting treatment planning by comparing the final bone classification result on

MR images to results on CT images as well as the dose calculated from synthetic

CT images to the ones calculated from CT images.

4.5 Conclusion

This chapter described a female pelvic bone shape model for air/bone separation in

support of pelvic synthetic CT generation for radiotherapy. Using the first principal

component of shape variance learned from a training population, plus a 5mm dilation

results in simple model that covers bone and excludes air with sufficient accuracy.

This model can be incorporated into synthetic CT generation process to support

MRI-only radiotherapy.

51



CHAPTER 5

Female Pelvic Synthetic CT Generation Based on Joint
Intensity and Shape Analysis

5.1 Introduction

1 Chapter 4, we developed a pelvic bone shape model to assist bone identification

in MRI, as the first step towards pelvic synthetic CT (MRCT) generation. In this

study, we first extend the pelvic bone shape model to cover spinal and femoral bones

attached to the pelvis. Then we present a complete MRCT generation algorithm that

incorporates this shape model for female pelvic radiotherapy patients, and evaluate

its efficacy in supporting external beam radiation therapy treatment planning. By

jointly analyzing intensity and shape features, our method is able to generate MRCT

images using a single MR imaging sequence, which reduces the scanning time and

avoids problems induced by tissue mobility in the pelvis confounding correspondence

across successive scans.

5.2 Methods and Materials

5.2.1 Image acquisition

The dataset the same as the one in Chapter 4 was used for pelvic MRCT genera-

tion. Including the 30 CT image volumes for pelvic bone shape model construction

and the 17 corresponding multi-contrast MRI dataset for MRCT generation. 7 of
1This chapter is based on publication [10] and [11].
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the MR dataset were excluded from this investigation due to incomplete coverage of

patient volumes in the axial plane.

We preprocessed MR and CT image volumes using previously described methods

in Chapter 4. Here we briefly review the preprocessing steps. First we applied

intensity inhomogeneity correction to MR images using the N4ITK algorithm [44].

Then we rigidly aligned MR images to CT images with the aim of aligning bone

structures accurately without considering soft tissues, as soft tissues can deform

across scanning sessions. All image volumes were reformatted to axial cuts with

voxel size interpolated to 1×1×1 mm3. Finally we normalized the intensity of each

MRI dataset with a scale factor that sets the mean intensity of the corresponding

T1-weighted image volume to 1000.

5.2.2 Shape model construction for bone identification

To separate bone from air without using ultra-short TE imaging, we used the

fact that bones have a somewhat predictable shape and built a bone shape model to

facilitate bone identification. We extended the shape model presented in Chapter 4

to cover the spinal processes superior to the pelvis as well as to include a femur model

based on connected component analysis. Figure 5.1 labels various bony structures

that are of interest in this study. Figure 5.2 shows the flow chart for applying the

bone shape model for bone identification and Figure 5.3 shows the corresponding

example image of each step. First a rough mask (referred as the threshold mask)

was generated by intensity thresholding, as described in Section 5.2.2.1. The pelvic

bone shape model was next applied to separate pelvic bone and lumbar spine from

other voxels that fall below the threshold, as described in Section 5.2.2.2. Finally,

in Section 5.2.2.3 we incorporated a femur identification model to separate different

tissues in the thighs. Each of these steps is detailed next.
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Figure 5.1: Bony structures of interest for female pelvic radiotherapy. The previous pelvic bone
(cyan) model was extended to cover femoral bones (yellow) and vertebrae (red) in this work

Figure 5.2: Overall scheme of separating bone, air and soft tissue
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Figure 5.3: Example of applying the bone separation scheme on MRI data. Left: mask generated
by thresholding (red contours) consists of a mixture of air and bone in the pelvis (a) as well as
a mixture of bone, vaginal marker and soft tissue in the thighs (b). Middle: pelvic bone mask
generated by the pelvic bone shape model (green) separates bone from air in the pelvis (c) but
fails to cover femoral bones in the thighs (d). Right: applying the femur model separates vaginal
markers (red contours in (e)), femoral bones (red contours in (f)) and soft tissue (magenta contours
in (f)).

5.2.2.1 Generate the initial mask by thresholding

First, we applied intensity thresholds to the multi-contrast MRI data. Exper-

imentally determined thresholds of 300, 300, and 150 were applied to normalized

T1-weighted, fat and water images respectively. The intersection of masks from the

three image volumes yielded a “threshold mask” (Figure 5.3(a) and Figure 5.3(b)).

Both bone and air voxels were selected by this thresholding process as they both

appear dark on MRI images, as shown in Figure 5.3(a). In addition, some soft tissue

voxels in the thighs were also found to fall below the threshold due to imaging arti-

facts (e.g. image noise, peripheral signal loss), as shown in Figure 5.3(b). A vaginal

marker used on some patients for clinical care was also selected by this thresholding

process due to low image intensity.
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Figure 5.4: Mask (contoured in red) generated by deforming the atlas image with lower lumbar
vertebrae maintained (a) overlapped with a target image (b). The coverage of the lumbar spine by
the atlas image is limited cranially to roughly the upper third of the L4 vertebral level (a).

5.2.2.2 Apply pelvic bone model to the threshold mask

Next, a pelvic bone shape model was constructed from the CT scans of the 30

subjects, using the algorithm described in Chapter 4. The algorithm was primarily

developed for localizing pelvic bone without considering attached lumbar vertebrae

and femurs. To generate MRCT data suitable for treatment planning, we need also to

classify such non-pelvic bones correctly. It is possible to build a separate shape model

for those anatomical structures. However, experiments demonstrated that deforming

the reference image with lumbar vertebrae maintained (Figure 5.4(a)) with the same

parameters as in Chapter 4, plus the suggested 5mm dilation, was sufficient to cover

the lower lumbar vertebrae in MR images with reasonable specificity (Figure 5.4(b)).

Figure 5.3(c) shows an example of applying the bone mask to separate bone from

air in the pelvis.

5.2.2.3 Identification of femoral bones

While applying the bone shape model covered the majority of pelvic bone and

lower lumbar spine voxels, a significant volume of femoral voxels in the scanned

volumes remained uncovered (referred as the residual mask) and would be mislabeled
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Figure 5.5: Landmark points (F-1 and F-2) placed on the femoral heads in the atlas CT image.

as air voxels, as shown in Figure 5.3(d). Extension of the shape model to cover

femurs was not considered practicable as the position variations of femurs are large

across patients. To address this, we extended the model based on the fact that air

does not exist in the thighs. Landmark points were placed on each of the femoral

heads in the atlas CT image, as shown in Figure 5.5 with positions tracked during

the deformation process. Image volumes inferior to the deformed landmarks were

considered as candidate space that contains potential femoral bones.

As air does not exist in the thighs, a search was done across the candidate space of

the residual mask, where voxels outside the pelvis were excluded from being identified

as air. A voxel was defined as inside the pelvis if there were both voxels on its

left and right that belonged to the pelvic bone mask and were in the same axial

slice. Figure 5.3(e) shows an example of such voxels that are inside the pelvis. The

remaining voxels in the residual mask are a mixture of femur bone voxels and soft

tissue voxels with low intensities. As soft tissue voxels in the residual mask appear

as scattered noise while femur bone voxels have a regular pattern, we separated

femur bones from soft tissues by performing 3D connected component analysis on

voxels in the residual mask and identified the left/right femurs as the 2 largest
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connected components, as shown by red contours in Figure 5.3(f). The remaining

small connected components were treated as soft tissue voxels, as shown by magenta

contours in Figure 5.3(f).

5.2.3 Fuzzy c-means classification with a shape prior

The intensity-based fuzzy c-means classification used for whole brain MRCT gen-

eration, as described in Chapter 3, is formulated as

û, v̂ = arg min
d∑
s=1

c∑
i=1

N∑
k=1

umik‖xks − vis‖2 + α
d∑
s=1

c∑
i=1

N∑
k=1

umik‖x̄ks − vis‖2

s.t.
c∑
i=1

uik = 1, ∀k = 1, · · · , N, (5.1)

where {xks}N,dk=1,s=1 is the acquired d MRI volumes from the same object, N is the

number of voxels in each image and c is the pre-determined total number of tissue

classes presented. By minimizing the objective function in Eq(5.1), we get the prob-

abilistic membership uik of the kth voxel belonging to the ith tissue class as well as

the intensity centroid of the ith class on the sth image, vis.

The intensity distributions of pelvic MRI data however, present challenges for this

classification scheme. Firstly, volumes of different tissue types are highly unbalanced

in the pelvis. For example, the volume of fat far exceeds that of pelvic bone. Standard

fuzzy c-means will favor large clusters over small clusters [63]. The estimation of the

bone class will be negatively affected by the soft tissue class, resulting in inaccurate

bone classification. Secondly, the limited spatial resolution and large field of view

lead to significant partial volume effects that cause the intensity distributions at the

interface between fat and other soft tissues to be different from soft tissues, and

overlapped significantly with bone marrow. Figure 5.6 shows example ROIs of fat

interface and bone marrow as well as their intensity histograms (normalized to have

the same peak). The intensities of the fat interface and bone marrow appear to be
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Figure 5.6: Intensity overlap between fat and soft tissues interface and bone marrow. Top: Example
ROIs of interfaces between fat and other soft tissues (red) and bone marrow (green) on a fat image.
Bottom: Normalized intensity histograms of fat interfaces (red) and bone marrow (blue) on T1-
weighted (right), water (middle) and fat (left) images from an example patient.

non-separable. Therefore, intensity information alone will not suffice to accurately

classify different tissue types from pelvic MRI data, and standard fuzzy c-means

classification needs to be modified to incorporate shape information.

We added shape information to the standard fuzzy c-means classification for-

mula by introducing a regularization term based on the pelvic bone shape model we

constructed. As our bone shape model covers the majority of bone voxels [8], we dis-

couraged voxels outside the bone mask generated by the model from being classified

as bone. Mathematically, assuming the bone class is the lth class, we regularized the

classification on bony tissue ulk, k = 1, · · · , N with the binary bone mask b as

L(u,b) =
N∑
k=1

1(ukl > 0 & bk = 0), (5.2)

where bk = 0 indicates voxel k is not covered by the bone mask and we modified the
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fuzzy c-means classification with the regularization term as

û, v̂ = arg min
d∑
s=1

c∑
i=1

N∑
k=1

umik‖xks − vis‖2 + α

d∑
s=1

c∑
i=1

N∑
k=1

umik‖x̄ks − vis‖2 + λL(u,b)

s.t.

c∑
i=1

uik = 1, ∀k = 1, · · · , N, (5.3)

where λ controls the impact of the regularization term on the entire classification

process. Basically, the regularization term penalizes voxels to have membership in

the bone class (ulk > 0) outside the bone mask (bk = 0). Since our bone mask

covers a major portion of bony tissues, we set λ = +∞. In this way, we enforced a

hard constraint on the classification scheme where any voxel outside the bone mask

will have zero probability of belonging to the bone class, which will also prevent the

estimation of the intensity centroid of bone class from being affected by non-bone

voxels.

To solve for Eq(5.3), we first initialized a rough estimation of intensity centroids

of each class vis. The corresponding optimal estimation of uik, without the regular-

ization term, is given by

uik =

∑d
s=1

(
‖xks − vis‖2 + α‖x̄ks − vis‖2

)−1/(m−1)∑d
s=1

∑c
j=1

(
‖xks − vjs‖2 + α‖x̄ks − vjs‖2

)−1/(m−1)
, (5.4)

with the hard constraint on the bone class, the bony membership ulk is adjusted by

ũlk =


ulk if bk > 0

0 otherwise

. (5.5)

To make sure u is a valid probability distribution, we need
∑c

i=1 uik = 1, ∀k =

1, · · · , N . Here we do not assume any prior knowledge on other tissue classes and

distribute the residual probability (ulk − ũlk) evenly to all remaining tissue classes

ũik = uik +
ulk − ũlk
c− 1

, ∀i = 1, · · · , c, i 6= l. (5.6)
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Figure 5.7: Updates of objective function value.

After calculating ũik, we updated the centroid of each tissue class by

vis =

∑N
k=1 ũ

m
ik(xks + αx̄ks)

(1 + α)
∑N

k=1 ũ
m
ik

. (5.7)

We performed the above calculations Eq(5.4) through Eq(5.7) iteratively until a

convergence criteria was met. In our implementation, we terminated iterations when

the decrease of the objective function Eq(5.3) value was below a threshold. Roughly

100 iterations were needed for convergence across patients, which took about 18

minutes on a shared 2.5 GHz CPU with 12 cores. Figure 5.7 plots the change of

objective function values during iterations.

5.2.4 MRCT generation

We generated MRCT image volumes for 9 of the 10 patients who had MRI scans

(except for the one whose CT-extracted data was used as the reference image for

bone model construction). First, the skin surface was extracted by thresholding

the normalized T1-weighted images at 300. This surface was then cleaned up using

morphologic operations (3mm dilation, filling holes and 3mm erosion). Next, air

masks and bone masks were generated using the thresholding scheme together with

the shape model and the identified air voxels were excluded from tissue classification.

Next, the fuzzy c-means classification with a shape prior was performed on the multi-
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contrast MRI data. Optimization was performed over 5 classes including compact

bone, fat, muscle and the combination of fat interfaces and bone marrow (which

were assigned two classes during optimization). Bone marrow and fat interfaces were

separated retrospectively after the fuzzy c-means classification using the shape model,

where voxels presenting bone marrow/fat interfaces were treated as bone marrow if

inside the bone mask and fat interfaces otherwise. The fuzzy degree m was 1.5 and

the weight for the spatial constraint term α was 3.8, the same as used previously in

the head [4]. After the fuzzy c-means classification, MRCT volumes were generated

by assigning each tissue class a CT number, multiplying the probability of each voxel

belonging to each tissue class (uik) with the assigned CT number of that class and

summing over all classes. To decide CT numbers of each tissue class, we drew ROIs

that contained primarily the corresponding tissue on the reference atlas CT image.

Rounding the mean intensity of each ROI to the nearest ten yielded the CT number

of the class. The CT numbers assigned to fat, muscle, bone marrow and bone were

-100 HU, 30 HU, 150 HU and 800 HU respectively. Fat interfaces were assigned the

same CT number as fat. The CT number assigned to the identified air regions was

-1000 HU.

5.2.5 MRCT evaluation

To evaluate the usefulness of the MRCT volumes for treatment planning, both

their intensity correlations with corresponding CT image volumes as well as accu-

racy for supporting treatment planning dose calculations were evaluated. The mean

absolute error (MAE) in intensity between MRCT and CT images was calculated

on various ROIs drawn at different locations of the pelvis. ROIs encompassing solid

bone and marrow were generated from CT images by first thresholding the images at

150 HU, followed by morphologic operations (3mm dilation, filling holes and 3 mm
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Figure 5.8: Example ROIs on MRCT (top) and CT (bottom) images. Left: ROIs for solid bone
(green) and bone marrow (red). Middle: ROIs for muscle (magenta) and external fat (blue). Right:
ROIs for intra-pelvic soft tissues (cyan).

erosion). Bone voxels were defined as voxels within the ROIs whose intensities were

above 250 HU and marrow voxels were defined as those below 250 HU. Before evalu-

ating MAEs for soft tissues, deformable registration was performed using commercial

software (Velocity) to align the MRCT with CT images, to attempt to resolve the

natural variations in patient position and internal anatomic configuration between

CT and MR imaging sessions. ROIs for soft tissues (muscle, external fat and intra-

pelvic soft tissues) were then manually drawn on regions where the overlap between

MRCT and CT image volumes was reasonably sufficient through visual evaluation.

Figure 5.8 shows example ROIs.

Both the deformably aligned MRCT and their corresponding CT image volumes

were imported into a commercial treatment planning system (Eclipse 11.0, Varian,

Palo Alto CA). Each patient’s clinically defined structures from their actual treat-

ment plans were used for treatment planning. Volumetric modulated arc therapy

(VMAT) plans were then optimized using density grids derived from each MRCT

image set. Similar to previous investigations [64], beam fluences from each of the
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Figure 5.9: Comparison of classification results of bones (a) without and (b) with a shape prior.
Probability maps of voxels belonging to the bone class (colorwash) are overlaid in their correspond-
ing T1-weighted image.

MRCT-optimized plans were transferred to the associated CT-derived density grids,

and the dose subsequently recalculated. These transposed MRCT (tMRCT) dose

distributions were used to more directly evaluate the impact of density grid selection

on dose calculation. For each patient, calculated dose and volume metrics were com-

pared between MRCT optimizations and tMRCT calculations for planning target

volumes (PTVs) and comparable structures including bowel, pelvis, rectum, sacrum

and femur.

5.3 Results

5.3.1 Tissue classification with a shape prior

Figure 5.9 compares probability maps of voxels belonging to the bone class from

fuzzy c-means without and with a shape prior, overlapped with the corresponding

T1-weighted image. Without the bone mask, not only were air voxels classified as

bone, certain soft tissue voxels were also assigned bone memberships, which would

have caused large errors in MRCT images generated.
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Figure 5.10: Axial (a), coronal (b) and sagittal (c) images of a MRCT image volume and corre-
sponding cuts through the same patient’s CT image volume (d), (e) and (f).

5.3.2 MRCT generation and accuracy evaluation

Figure 5.10 shows example MRCT images and their corresponding CT images.

MRCT image volumes present contrast similar with CT image volumes with the

exception of the superior region of the lumbar spine, which was classified as soft

tissue. This is due to the limited coverage of the atlas image, as has been discussed

in 5.2.2.2. Table 5.1 summarizes the statistics of MAE of the 9 patients. The

average/standard deviation of MAE across 9 patients was 13.7/1.8 HU for muscle,

15.9/2.8 HU for fat, 49.1/17.8 HU for intra-pelvic soft tissues, 129.1/29.2 HU for

marrow and 274.4/26.9 HU for bones.

Table 5.2 presents the mean and standard deviation of differences between treat-

ment planning objectives evaluated using doses calculated on MRCT and tMRCT

plans across all patients. Figure 5.11 shows statistics of dose differences of PTVs

and organs at risk (OARs) across patients. Both absolute and relative dose differ-

65



Table 5.1: Mean absolute HU difference between MRCT and CT images across patients

Mean Standard deviation Range
Muscle 13.7 1.8 9.8 to 17.4

External fat 15.9 2.8 12.0 to 19.8
Intra-pelvic soft tissue 49.1 17.8 25.5 to 75.3

Bone marrow 129.1 29.2 92.8 to 170.0
Solid bone 274.4 26.9 226.4 to 314.3

ences between MRCT and tMRCT calculations are small compared to the prescribed

doses (45-58.25 Gy), with a maximal mean difference smaller than 0.3Gy/0.5%. Fig-

ure 5.12 shows statistics of volume differences of OARs for clinically relevant dose

values. The volume differences are small for all OARs with a noted exception of the

rectum (V45Gy), where the mean volume difference is 2.5%. From the box plot in

Figure 5.12, there are outliers in the comparison of rectum V45Gy. Two patients

were found to have much larger volume differences than others (9.3% and 3.9 % re-

spectively). After excluding these two patients, the mean differences/variances drop

from to 2.5%/3.3% to 0.4%/0.2%. The large difference is mostly due to the mobility

of air in the rectum between MR and CT scans of these two patients which could

not be fully resolved using deformable alignment, as shown in Figure 5.13. The CT

image volumes show larger air pockets in the rectum while little air presents in the

MR image volumes. The dose volume histograms however are very similar between

MRCT and tMRCT for both outlier patients, as shown in Figure 5.14. Volume dif-

ferences of rectum at other dose levels (V20Gy, V35Gy and V50Gy) are marginal

(less than 0.6%) for these two outlier patients.

5.4 Discussion

This study investigated an algorithm for pelvic MRCT generation using joint

shape and intensity features to differentiate and classify tissues in MR images. The
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Table 5.2: Mean and standard deviation of differences between extracted dose metrics

Dose to location Mean differences Standard deviation
of differences

PTV
D0.5cc (Gy) 0.21 0.42
D0.5cc (% of prescribed dose) 0.4 0.8
D99% (Gy) 0.29 0.33
D99% (% of prescribed dose) 0.5 0.6

Femur
V30 Gy(%) 0.4 0.4

Pelvis
Mean dose (Gy) 0.10 0.10
Mean dose (% of prescribed dose) 0.2 0.2
V10 Gy(%) 0.0 0.1
V20 Gy(%) 0.1 0.1

Rectum
Mean dose (Gy) -0.03 0.15
Mean dose (% of prescribed dose) -0.1 0.3
V45 Gy(%) 2.5 3.3

0.4 with outliers removed 0.2 with outliers removed
Sacrum

V10 Gy(%) -0.2 0.3
V20 Gy(%) 0.0 0.1

Bowel
D1cc (Gy) 0.18 0.40
D1cc (% of prescribed dose) 0.3 0.7
D5cc (Gy) 0.18 0.35
D5cc (% of prescribed dose) 0.3 0.6
V55Gy(cc) 0.22 0.64

Figure 5.11: Box plot of absolute (left) and relative (right) dose differences of PTV and OARs. Red
line indicates the median. Bars indicate the maximum and minimum.
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Figure 5.12: Box plot of volume difference of OARs. Red line indicates the median. Bars indicate
the maximum and minimum and red crosses indicate outliers. (Data points are defined as outliers
if they are greater than q3 + 1.5(q3 − q1) or less than q3 − 1.5(q3 − q1), q3 and q1 are the 75th and
25th percentiles of the sample data, respectively.)

Figure 5.13: Mobility of air in the rectum (white contours) between CT scans and MR scans. (a)
The CT image shows a larger air pocket in the rectum as compared to (b) the MR image (T1-
weighted image after applying the deformable transformation that aligned the MRCT image to the
CT image).
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Figure 5.14: Dose volume histograms of rectum show similar results between MRCT and tMRCT
plans for the two patients with larger rectum V45Gy variations.

shape patterns of pelvic bones were combined with a femoral bone extraction method

to assist the separation of bone from other tissues. A regularization term was formu-

lated using the bone shape model and added to an intensity-based fuzzy classification

scheme. Regularized classification was found to reduce the misclassification of non-

bone tissues effectively. The resulting MRCT images presented contrast sufficiently

close to CT images to support treatment planning in radiotherapy, as validated by

both direct intensity comparison and by performing treatment planning using MRCT

image volumes and comparing the dose distributions on MRCT image volumes and

CT image volumes. The idea of generating MRCT using both shape and intensity

information is not only applicable to pelvis, but also other body parts, as has been

evaluated and validated in abdominal MRCT generation [65].

The presented method differs from previous studies [33] [34] [35] [36] in that it

classifies each patients data individually and assigns each voxel attenuation values

based on the probability membership of the voxel belonging to a specific tissue class,

rather than relying on a fixed intensity atlas. By introducing a bone shape model

to the intensity-based classification scheme, our method is able to classify tissues
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accurately without manual contouring of bones [52] [53] [54] [55]. The MRCT images

were generated from MRI data using a single imaging sequence without ultra-short

TE imaging [4] [37] [38], thus the total scan time is much shorter and the problem

of patient motion, which is more significant in the pelvis than in the head, is largely

avoided. Compared to Bayesian approaches based on deformable alignment between

MR images [66] and exact bone segmentation through deformable registration [67],

our method incorporates the shape information by simply defining a binary space that

covers bone and excludes air, which can be found by a binary search algorithm [8],

and thus is simpler and more efficient for clinical implementation.

Both image intensity, as well as calculated dose comparisons between MRCT and

CT image volumes, show acceptably small variations. Although the MAE values for

bone and marrow appear somewhat large, the dose calculation studies demonstrated

that these differences did not impact dose calculation significantly. This is easily

understood due to the relatively short pathlengths over which such intensity differ-

ences are sampled for beams traversing the pelvis for treatment planning. Future

investigations will include possible recalibration of baseline intensity assignments to

the bone and marrow classes to further improve agreement. Uncertainty in aligning

MR images to CT images, which can be challenging in the pelvis due to the large

deformation of soft tissues, variations in air distribution, and different filling status

of organs such as bladder and rectum, complicates the direct evaluation of differences

in intensity and dose. Also, the MRI scans used for this study had a shorter longi-

tudinal field of view (FoV) than CT scans and the coverage of lumbar spine by the

reference MR images was limited, and thus the bone model was not extended far su-

perior to the pelvis. Further research will extend the FoV of MR scans as well as the

coverage of lumbar spines by the bone shape model, as well as evaluate the usefulness
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of MRCT image volumes as references for image-guided patient positioning.

5.5 Conclusion

A method that generates pelvic MRCT using joint shape and intensity features

from MR images has been presented and evaluated. Adding shape information to the

intensity based fuzzy c-means classification scheme was shown to improve the classi-

fication accuracy effectively and eliminate the need for multiple imaging sequences,

including the ultra-short TE sequence previously used for air identification in the

head. The presented method has the potential to provide an accurate estimation of

CT information and support MRI-only radiotherapy.
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CHAPTER 6

Accelerated High b-value DWI for Higher-order Diffusion
Analysis via a Phase-constrained Low-rank Tensor Model

6.1 Introduction

1 Diffusion-weighted MRI (DWI) and the parameters derived from it are useful

in various aspects of cancer treatment, including tumor evaluation and grading [68],

target volume delineation for treatment planning [12] and treatment response eval-

uation [14] [28]. This chapter describes our work on improving DWI reconstruction

techniques to extract information useful for radiotherapy, while maintaining a clini-

cally feasible scan time.

Conventionally, the “Apparent Diffusion Coefficient” (ADC), as described in 2.3.2

is the most commonly used parameter derived from DWI [14] [28] [68]. ADC is

usually extracted from DWI images acquired under a b-value of 1000 s/mm2. Recent

interest however, is emerging in high b-value (> 1000 s/mm2) DWI. Various studies

show the advantage of using b-values higher than conventional b-values, including

better differentiation of tumor from benign tissues in prostate [69] and more accurate

grading and delineation of cerebral gliomas [15] [70]. However, the signal-to-noise

ratio (SNR) of high b-value DWI is very poor. Repeated acquisition and signal

averaging are performed in practice to improve SNR at the price of a longer scan

1This chapter is based on publication [17] and [18].
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time. Besides, the calculation of ADC assumes mono-exponential decay behavior

while tissues actually exhibit multi-exponential decay behavior [71]. When extending

the range of b-values (from b = 0 s/mm2 to b > 3000 s/mm2) in high b-value

DWI, multi-exponential decay behavior has been reliably demonstrated [16]. To

model such multi-exponential decay behavior, higher-oder diffusion models, such as

bi-exponential model [72] and stretched model [73] have been proposed. Such higher-

order diffusion models require more data points for accurate fitting, which will further

prolongate the image acquisition time.

Most work in accelerated DWI acquisition focuses on undersmapling the k-q space

[74, 75, 76, 77, 78], where images are acquired using multiple diffusion directions and

two b-values. While in cancer imaging, such as in studies of brain glioma [79, 80, 15],

usually only 3 orthogonal directions are sampled using a range of b-values. Besides,

most existing work uses a moderate b-value at around 1000 s/mm2, while in high

b-value DWI, the extension of b-values to 2000 s/mm2 and higher, plus the limited

sampling of diffusion directions, significantly degrades the SNR and poses challenges

for image reconstruction. Although [75] presents reconstruction results using b =

2000 s/mm2 and 64 diffusion directions, that method was reported to fail at an

acceleration factor of 8 when undersampling k-space only.

Low-rank tensor models have been applied to accelerated MRI and the results are

promising [81, 82, 83, 84]. However, most methods do not consider the coil dimension,

yet multichannel acquisition plays a key role in clinically used acceleration schemes

such as parallel imaging. Although [84] builds a tensor of the form space×coil×time

and exploits the dependencies between coils, acceleration using multi-channel acqui-

sition can use not only the dependencies between coils, but also the dependencies

between neighboring k-space samples. Therefore, exploiting coil dependencies only
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may not fully utilize the benefits of multichannel acquisition. In [85], the authors

studied tensor models for parallel imaging, but with single image acquisition instead

of image series acquisition.

This chapter proposes a new low-rank tensor model that exploits both the global

low-rank structure of DWI that results from the strong dependencies between dif-

fusion signals of voxels and the local low-rank structure that results from the de-

pendencies between neighboring k-space samples. The method also includes a phase

constraint to account for the large phase variations between b-values and handles

partial Fourier acquisition naturally. We evaluate our method using both patient

and simulated data and compare our method to the clinically used parallel imag-

ing only method, as well as another low-rank tensor model-based method [84]. The

proposed method achieves an acceleration factor of 8 and shows reduced noise and

aliasing, as proved on both simulated and patient data.

6.2 Theory

6.2.1 Low-rank tensor model construction

In high b-value DWI, a series of 2D DWI images are acquired using Nb different b-

values. Each b-value image is acquired using Nc coils. Denoting the size of the imag-

ing matrix as Nx×Ny, we record a collection of k-space samples D ∈ CNx×Ny×Nc×Nb .

We propose to build a 3D tensor from D that will allow us to exploit both local and

global dependencies of this high dimensional dataset.

6.2.1.1 Block-Hankel matrix construction for local low-rankness

First, we model the dependencies between neighboring k-space samples across

coils. For each b-value, we have the multi-coil k-space signals received by coils as
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Ab ∈ CNx×Ny×Nc , b = 1, · · · , Nb. Ab is a 3D tensor, with

A(c)
b =



a1,1 a1,2 · · · a1,Nx

a2,1 a2,2 · · · a2,Nx

...
...

. . .
...

aNy ,1 aNy ,2 · · · aNy ,Nx


, c = 1, · · · , Nc (6.1)

Parallel imaging techniques such as GRAPPA [86] suggest that a k-space sample

ax,y,c can be estimated as a linear combination of its neighbors across coils:

ax,y,c = gTax,y, (6.2)

where ax,y = [ax−w,y−w,1, · · · , ax+w,y+w,1, ax−w,y−w,2, · · · , ax+w,y+w,Nc ] ∈ C(2w+1)2Nc , g

is the GRAPPA kernel and w is the kernel size.

The model in Eq(6.2) implies a linear dependency between neighboring k-space

samples. To model such linear dependency into a rank-deficient matrix, we construct

a block-Hankel matrix Ab from Ab, following the SAKE [87] method:

Ab = [aw,w, aw+1,w, · · · , aNx−w,Ny−w] ∈ C(2w+1)2Nc×(Nx−2w+1)(Ny−2w+1). (6.3)

An illustration of Ab is shown in Figure 6.1. Ab is constructed by sliding a window of

size (2w+1)×(2w+1) across the k-space samples, and vectorizing the k-space samples

selected by the window into one column of Ab. Consider one column of Ab, denoted

as a, from Eq(6.2), each element ax,y,c in a can be expressed as ax,y,c = gTax,y, ax,y

is another column in Ab. Therefore, a can be expressed as a linear combination of

other columns in Ab so Ab is rank-deficient. Like the SAKE [87] method, our method

exploits this low-rank property of Ab to improve image reconstruction results.

6.2.1.2 3D tensor construction for global low-rankness

The block-Hankel matrix above helps exploit the low-rank property locally within

a k-space neighborhood. There are further redundancies we can exploit. When we
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Figure 6.1: Illustration of the block-Hankel matrix construction

acquire multiple diffusion-weighted images of the same object, each spatial location

(x, y) will have a signal decay curve d ∈ CNb×1 induced by diffusion. Putting all

signal decay curves together forms a high-dimensional matrix

D = [d1, · · · ,dNxNy ] ∈ CNb×NxNy (6.4)

A limited number of tissue types are present in the object. The number of tissue types

is much smaller than the number of voxels. Assuming each tissue has a signature

signal decay curve due to its own diffusion property, the signal decay at each voxel

can be viewed as a linear combination of these signature decay curves, depending on

the tissue composition of that voxel. Therefore, the high dimensional matrix D has

a low-rank structure.

Multiplying the signal decays with coil sensitivity maps will only change the abso-

lute magnitude of the signal, but not the decay rate. Therefore multi-coil diffusion-

weighted images should still have the low-rank structure. Further more, applying

Fourier transform to D to get the corresponding k-space data matrix will not change

the low-rank property due to the orthogonality of Fourier transform. Therefore, if

we put the block-Hankel matrix in section 6.2.1.1 at each b-value together and stack

them into a 3D tensor X ∈ C(2w+1)2Nc×(Nx−2w+1)(Ny−2w+1)×Nb , with X (b) = Ab, X will

be a low-rank tensor.
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6.2.1.3 Phase constraint and partial Fourier reconstruction

The above discussion assumes image phases remain the same between acquisitions,

which holds in some cases, such as T2 mapping that acquires images with varying

TEs [88]. However, DWI sequence is very sensitive to motion, and phase variations

are large between different b-values [24]. If uncorrected, such phase variations would

invalidate the assumption of global low-rankness. As phase maps are slow-varying

spatially, we can estimate phase information using the center of the k-space only,

and use the estimated phase maps to remove or model phase variations.

Consider one coil image and denote the phase maps estimated under different

b-values of that coil image as P1, · · · ,PNb
. To correct for phase variations of the

k-space data M1, · · · ,MNb
∈ CNx×Ny , we may calculate the phase difference between

different b-values as Pdiff
b = P1P

∗
b , b = 1, · · · , Nb, and correct the phase variation as

Mcorrect
b = FPdiff

b F∗Mb, (6.5)

where F and F∗ are FFT and IFFT operators respectively. In this way, images at

all b-values will have a consistent phase map, namely P1.

Equivalently, we can also define xb = mag(F∗Mb) ∈ RNx×Ny , and calculate

Mcorrect
b as

Mcorrect
b = FP1Xb, (6.6)

The advantage of using Eq(6.6) for phase correction is that it can also fill up missing

k-space data when partial Fourier acquisition is applied. By constraining X to be

real, we can simply multiply the phase maps back with X and perform FFT to fill up

the unacquired k-space due to partial Fourier sampling, which is exactly the POCS

algorithm [89] for partial Fourier reconstruction.
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6.2.1.4 Problem formulation

Combining the low-rank tensor model with the phase constraint scheme, we for-

mulate a model-based image reconstruction algorithm for DWI as

ŷ, x̂, X̂ = arg min
y,x,X

‖d− Ωy‖2
2 + λR(X )

s.t. y = FPx, X = HFP1x, x ∈ RNxNyNcNb , (6.7)

where d is the vectorization of sampled k-space data, Ω is the k-space sampling

operator, F is the (full) Fourier transform operator and H is the operator that

constructs block-Hankel tensor as described in section 6.2.1.1 and section 6.2.1.2. The

tensor X is constructed from phase corrected k-space data FP1x, and is a 3D tensor

of the size (2w+ 1)2Nc× (Nx− 2w+ 1)(Ny− 2w+ 1)×Nb. P ∈ CNxNyNcNb×NxNyNcNb

is a diagonal matrix that contains the phase information estimated for each coil/b-

value image. P1 is of the same size of P, and is the coil phase information, estimated

from the phase maps at b = 0 s/mm2, but replicated Nb times.

The regularizor R encourages the low-rank structure of tensor X . Low-rank tensor

decomposition is an N-P hard problem. In this work we chose the regularizor R to

be a hard constraint on the n-rank [90] of the tensor X such that

(rank(X(1)), rank(X(2)), rank(X(3))) ≤ (r1, r2, r3), (6.8)

where X(i) denotes the ith order matrix unfolding of tensor X . We enforce this hard

constraint efficiently by performing truncated multilinear singular value decompo-

sition (SVD)[91][92] that reduces the problem size significantly, which is beneficial

given the large size of the tensor X .
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6.2.2 Algorithm

We propose an ADMM algorithm to solve problem(6.7) efficiently. All subprob-

lems have closed-form solutions. The augmented Lagrangian function can be written

as

L(y,x,X ,u1,u2) = ‖d− Ωy‖2
2 + λR(X ) + µ1(‖y −FPx + u1‖2

2 − ‖u1‖2
2)

+ µ2(‖vec(X −HFP1x + u2)‖2
2 − ‖vec(u2)‖2

2),

(6.9)

where vec denotes vectorization. We minimize (6.9) by updating splitting variables

iteratively.

The update of y is

yk+1 = (Ω∗Ω + µ1I)−1
(
Ω∗d + µ1(FPxk − uk1)

)
, (6.10)

by matrix inversion lemma

(Ω∗Ω + µ1I)−1 =
I

µ1

− 1

µ1

Ω∗(I +
ΩΩ∗

µ1

)−1Ω
1

µ1

=
1

µ1

(
I− Ω∗Ω

1 + µ1

)
, (6.11)

as ΩΩ∗ = I. Putting (6.11) back into (6.10), after some simplifications, we can show

yk+1 =
Ω∗d + µk1Ω∗Ω(FPxk − uk1)

1 + µ1

+ (I− Ω∗Ω)(FPxk − uk1), (6.12)

which can be calculated easily by updating sampled locations of y using the weighted-

average of k-space samples and (FPxk−uk1), and unsampled locations using (FPxk−

uk1). The update of x is

xk+1 = Real
(
µ1P

∗F∗(yk+1 + uk1) + µ2P
∗
1F∗H∗(X k + uk2)

)
/(µ1 + µ2), (6.13)
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whereH∗ is an operator that averages antidiagonal entries in the block-Hankel matrix

(which are replicates of the same k-space samples) and puts the average back into

appropriate locations [87]. By construction,H∗H is an identity operator. The update

of the low-rank tensor is calculated as

X k+1 = mlsvd(HFP1x
k+1 − uk2), (6.14)

where mlsvd is the truncated multilinear singular value decomposition, as described

in section 6.2.1.4, with a core tensor size of (r1, r2, r3). The code is available online

[93]. The updates of auxiliary variables are

uk+1
1 = uk1 + (yk+1 −FPxk+1) (6.15)

uk+1
2 = uk2 + (X k+1 −HFP1x

k+1) (6.16)

The above process was iterated until the gap between the two splitting variables y

and FPx is below a threshold. Experimentally we observed that after 20 iterations

the gap between the two variables stabilizes. We ran the algorithm 50 iterations to

guarantee convergence.

6.3 Methods and Materials

6.3.1 Image acquisition

Under institution review board approval, one brain glioma patient was scanned

with a Diffusion-weighted Echo Planar Imaging (EPI) sequence on a Siemens 3T

scanner with 20-channel coil arrays and 3 orthogonal diffusion directions. Eleven

b-values ranging from 0 to 2500 s/mm2 were used with an increment of 250 s/mm2.

The voxel size was 1.25 × 1.25 × 5.2 mm3, with flip angle 90◦, TE = 93 ms and

TR = 9300 ms. The total number of slices was 34 and the imaging matrix size was

192× 192.
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Figure 6.2: DWI images for different b-values: (a) b = 0 s/mm2, (b) b = 250 s/mm2, (c) b = 1000
s/mm2, (d) b = 2500 s/mm2. Fluid (red arrows in (b)) signals decay fast and are undetectable for
a b-value of 250 s/mm2 while tumor (red arrows in (d)) signals decay slowly and are still visible for
a b-value of 2500 s/mm2.

As the echo planar imaging sequence is prone to geometric distortion, especially

for a long acquisition time, parallel imaging (GRAPPA) was used during the acqui-

sition with a subsampling rate of 4 to ensure reasonable geometric accuracy as well

as total scan time. The center of the k-space (81 lines) at b-value equals zero was

fully sampled to calculate the GRAPPA interpolation kernel. Partial Fourier acqui-

sition was also applied with 25% of k-space not sampled. Figure 6.2 shows example

images for different b-values. It can be seen that different tissues have very different

diffusivities. Signals of fluid decay very fast and are undetectable for a b-value of 250

s/mm2 while signals from tumor decay very slowly and are still visible for a b-value of

2500 s/mm2. Also, without repeated acquisition and signal averaging, high b-value

images show very poor SNR. Figure 6.3 compares the DWI image for a b-value of

2000 s/mm2, without and with signal averaging.

6.3.2 Simulation setup

To maintain a reasonable total scan time for patients, no repeated acquisition was

done. As a result, the dataset is very noisy at high b-values, as shown in Figure 6.3.

To provide noise-free ground truth for quantitative reconstruction error analysis,

we simulated a DWI dataset using imaging parameters the same as the clinical
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Figure 6.3: DWI image for a b-value of 2000 s/mm2, with (left) and without (right) signal averaging.
By repeating the acquisition 4 times and averaging the acquired image, the image on the left shows
improved SNR than the one on the left.

scan. Using the BrainWeb [94] phantom, we considered three tissue types: white

matter (WM), gray matter (GM) and CSF. Table 6.1 shows relaxation and diffusion

properties of each tissue type. The relaxation properties were from BrainWeb. To

simulate diffusion properties, we referred to [95] and used a bi-exponential decay

model. The imaging parameters were flip angle 90◦, TE = 93 ms, TR = 9300

ms with eleven evenly spaced b-values from 0 to 2500 s/mm2. The phantom was

reformatted to a voxel size of 1× 1× 5 mm3, for consistency with the clinical scan.

Figure 6.4 shows example simulated images under different b-values.

Proton density T1(ms) T2(ms) D1(10−3mm2/s) D2(10−3mm2/s) f
WM 770 500 70 0.17(0.01) 1.3(0.08) 0.43(0.02)
GM 860 833 83 0.33(0.04) 1.74(0.18) 0.32(0.03)
CSF 1000 2569 329 NA 2(0.01) NA

Table 6.1: Relaxation and diffusion parameters used for simulation. D1 and D2 are the diffusion
coefficients of the two compartments in the bi-exponential model. f denotes the fraction of the slow
compartment. The diffusion parameters for each voxel were generated from a Gaussian distribution,
with mean and variance (in the parentheses) specified in the table.

To generate multi-coil k-space data, we scanned a uniform water phantom. Coil

sensitivity maps were estimated from the center of the k-space from the uniform water

phantom scan. The brain phantom was scaled to be smaller than the water phantom

so that we can have a reliable coil sensitivity estimation at each location within
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Figure 6.4: Example simulated images at left: b = 0 s/mm2; middle: b = 1000 s/mm2; right: b =
2500 s/mm2.

the brain region. We further simulated the motion-induced phase variations across

different b-values. Following [96], we assumed a rigid body motion and linear phase

variations. We then added complex Gaussian white noise to the multi-coil k-space

data. We estimated covariance matrix of noise distribution from noise calibration

data from the clinical scan. Figure 6.5 shows the signal-to-noise ratio of images

reconstructed using sum of square reconstruction from the simulated multi-coil k-

space data, estimated as the mean signal within the brain region, divided by the

standard deviation of the background. Figure 6.5 also plots the signal-to-noise ratio

of one patient image, reconstructed using 4-fold GRAPPA [86]. To compensate for

the noise amplification due to parallel imaging, the signal-to-noise ratio of the patient

data was scaled by
√

4 = 2. The simulated data and the scaled clinical data exhibit

similar signal-to-noise ratios.

6.3.3 Ghosting correction, k-space sampling and phase estimation

EPI sequence is very sensitive to eddy currents, due to its zig-zag trajectory of

k-space sampling. Eddy currents will result in a shift in the center of the k-space.

In EPI acquisition, as even and odd acquisition lines are traversed in the opposite

direction, the shift is not uniform across k-space samples and will result in the “N/2”

ghosting artifacts in the reconstructed images. Before image reconstructions, we first
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Figure 6.5: Signal-to-Noise ratio (SNR) of the simulated and clinical data, under different b-values.
The simulated data shows SNR similar with the clinical data.

corrected for eddy currents. Three calibration lines l1, l2, l3 ∈ CNx were acquired.

Among them l1, l3 traversed k-space in the same direction, and l2 in the opposite

direction.

We first calculated lodd = (l1+l3)/2 and leven = l2. We reversed leven and calculated

the phase difference as g = angle(F∗lodd�conj
(
F∗leven)

)
, where � denotes point-wise

production. Figure 6.6 plots example phase shift g. We fitted a linear model to g,

using the central part (61 data points) of g with good signal-to-noise ratio only. The

estimated phase shift due to eddy currents is ĝ(x) = a+ bx, for −Nx/2 < x ≤ Nx/2.

Figure 6.6 also plots the estimated phase shift. We corrected an even acquisition line

l by first reverting it as lrev. The corrected k-space sample is lcorrect = F
(

exp(iĝ)�

F∗lrev

)
We retrospectively undersampled the k-space of both datasets, where we fully

sampled the center of the k-space, and randomly undersampled the peripheral part

of k-space, along the phase-encoding direction only. Note that the patient dataset

was undersampled by 4 with a quarter plane of k-space not acquired. Our sam-
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Figure 6.6: Calculated phase difference and estimated phase shift for ghost correction.

pling scheme further undersamples this dataset. For consistency in comparison, we

undersampled the simulated dataset the same way as the patient dataset. Define

the acceleration factor as M/P , where M is the total number of data points of the

k-space and P is the number of sampled k-space data points, both undersamplings

of patient and simulated dataset achieve an acceleration factor of 8.0. Figure 6.7

shows example sampling scheme of the patient data.

The sampling scheme above does not fully sample the k-space center at b-values

greater than 0 mm2/s. To estimate phase information at each b-value, which is nec-

essary for correcting motion-induced phase variations, we first calculated a GRAPPA

[86] kernel from the auto-calibration region at b = 0 s/mm2 and used it to fill up the

regularly undersampled k-space center for other b-values. The phase map was then

calculated from the GRAPPA-filled center (21 lines) of k-space. To avoid Gibbs

ringing, we applied a Hanning window along both frequency and phase encoding

directions, before estimating the phase map. Figure 6.8 shows example phase esti-

mations from the center of the k-space.
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Figure 6.7: Sampling scheme of patient data. White lines indicate sampled readouts.

Figure 6.8: Phase map estimated from the center of the k-space of the same coil at different b-values.
Phase maps vary between b-values as the DWI sequence is very sensitive to motion.
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6.3.4 Evaluation

We compared our proposed method with another low-rank tensor model-based

algorithm, denoted as the LRT algorithm, originally developed for accelerated dy-

namic MRI [84]. This algorithm dose not consider the local low-rankness within

k-space neighborhoods, and constructs the tensor by reshaping the 4D k-space data

D ∈ CNx×Ny×Nc×Nb into a 3D tensor of size NxNy ×Nc ×Nb. To account for phase

variations in diffusion-weighted MRI, we added phase constraints, as described in

section 6.3.3 into this algorithm,

For the simulated dataset, we calculated reconstruction errors for different al-

gorithms, defined as ‖ŷ − y‖/‖y‖, where ŷ and y are reconstruction and noise-free

groundtruth respectively. We also evaluated different algorithms in support of higher-

order diffusion analysis. We fitted a bi-exponential decay model

S(b)/S(0) = f × (exp(−bD1) + (1− f)× (exp(−bD2), (6.17)

where S(b) and S(0) are the signal magnitude at b-values equal b and 0 mm2/s

respectively, to each voxel using both reconstructed and ground truth images.

Eq(6.17) is a nonlinear equation and fitting can be challenging with the presence of

noise. To improve fitting accuracy, we assume that some side information is available

to us. First, we assume that we have Regions of Interest (ROI) drawn for each tissue

types. In the clinic, physicians will usually contour different tissues before treatment

planning. The contours can be drawn by combining diffusion-weighted images with

other images (for example, T1-weighted images or T2-FLAIR) to improve contouring

accuracy. Second, we assume the average diffusion properties of different tissues are

known to us. With this prior knowledge, we initialize the non-linear least-square

fitting with mean D1, D2 and f , as provided in table 6.1, according to the major
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tissue classes presented in each voxel. We also set the lower and upper bounds for the

three parameters as [0mm2/s, 0mm2/s, 0] and [3mm2/s, 3mm2/s, 1]. The constrained

nonlinear least-square fitting problem is solved using an interior-point method [97].

For the clinical dataset, due to the noise amplification of parallel imaging, it is

not clear whether the difference between model-based reconstructions and GRAPPA

reconstructions is due to reconstruction errors or noise reductions. The low signal-to-

noise ratio and the more complicated diffusion properties with the presence of brain

tumor also make voxel-wise comparison of diffusion parameters infeasible. Instead,

we used physician drawn contours of normal tissues (white matter and gray matter),

and fitted the bi-exponential model to signals averaged within the drawn ROIs. By

averaging signals over a large number of voxels, we hope to reduce noise and evaluate

if our algorithm introduces systematic differences in reconstruction when compared

to GRAPPA reconstruction.

6.4 Results

6.4.1 Validation of the low-rank structure and the choice of rank

Figure 6.9 and figure 6.10 plot the singular value distributions of the unfolded

tensors constructed from 8-fold undersampled k-space data, using both the proposed

method and the LRT algorithm [84]. Comparing to the LRT algorithm, the proposed

block-Hankel tensor exhibits sharper drop in singular values when unfolded along the

coil dimension. The hard constraint on the rank number, (r1, r2, r3) is determined

by visually inspecting the singular value distributions. The singular value truncation

points are marked on Figure 6.9 and figure 6.10. The hard constraints for the pro-

posed algorithm and the LRT algorithm are (35, 75, 4) and (13, 30, 4), corresponding

to coil, spatial and b-value dimensions respectively.

To evaluate if the low-rank structure changes during iterations, we also plotted
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Figure 6.9: Singular value distributions of the proposed tensor, unfolded along coil, spatial and
b-value dimensions respectively. Black dots mark the singular value truncation point.

Figure 6.10: Singular value distributions of the tensor constructed using the LRT algorithm, un-
folded along coil, spatial and b-value dimensions respectively. Black dots mark the singular value
truncation point.

the singular value distributions of the unfolded tensor constructed from the final esti-

mated k-space data, as shown in Figure 6.11. The distributions of singular values do

not change significantly, while the magnitude of singular values after the truncation

points appear smaller, as compared to Figure 6.9.

We also looked at the structure of the core tensor S ∈ Cr1×r2×r3 . Figure 6.12

shows (magnitude) frontal slices of S constructed from 8-fold undersampled k-space

data with r1 = 35, r2 = 75, r3 = 4. We observed a nearly diagonal structure in the

Figure 6.11: Singular value distributions of the proposed tensor constructed from the final estima-
tion of k-space data, unfolded along coil, spatial and b-value dimensions respectively. Black dots
mark the singular value truncation point.
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Figure 6.12: Frontal slices of the core tensor S.

first slice of the core tensor, which combines the strongest components calculated

from tensor decomposition. We also tested a sparsity constraint on the core tensor,

by adding a penalty term ‖vec(S)‖1 to the objective function in Eq(6.9), but no

significant difference is observed in the image reconstruction results with and without

this sparsity constraint.

Figure 6.13 visualizes the spatial basis vectors estimated from the final filled-up

k-space samples, by reshaping the vectors into 2D matrices and performing inverse

Fourier transform on the matrices. It is clear that the first few components represent

most of the image information. On the other hand, as we change the spatial rank

constraint from 75, which is the “cut-off” point in truncated SVD to 80, and visualize

the 76th to 80th basis vectors, we do not observe a clear change from anatomical

structures to random noise, as shown in figure 6.13b and figure 6.13c. This suggests

that a more comprehensive study on the choice of low-rank constraint may be needed

instead of visual inspection of singular value distributions.
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(a) The 1st to the 5th spatial basis

(b) The 71st to the 75th spatial basis

(c) The 76th to the 80th spatial basis

Figure 6.13: Visualization of selected spatial basis
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6.4.2 Results on the simulated dataset

Figure 6.14 shows example reconstructed images (b-value equals 2500 mm2/s),

using 4-fold GRAPPA (denoted as the PI method), the LRT algorithm with 8-fold

acceleration, and our proposed algorithm with 8-fold acceleration. Reconstruction

error maps, as compared to the groundtruth are also included. Although both the

LRT algorithm and our method show improved signal-to-noise ratio as compared

to the GRAPPA reconstruction, the reconstruction error maps reveal that the LRT

reconstruction has more aliasing than our method. Such aliasing implies the need to

exploit additional model constraints, such as local low-rankness. Figure 6.15 plots

the reconstruction errors of different methods. The proposed method achieves the

lowest reconstruction errors for all b-values.

Figure 6.16 shows the diffusion parameter mapping results, by fitting the bi-

exponential model described by Eq(6.17) to reconstructed images. Although the

aliasing artifacts in LRT reconstructions are not obvious visually, they have an impact

on higher order diffusion analysis, which is very sensitive to reconstruction errors due

to the non-linear fitting process, as indicated by the red arrow in Figure 6.16.

6.4.3 Results on the patient dataset

Figure 6.17 shows example reconstruction images using the clinical data. All

three methods produce good reconstruction images at b = 0 s/mm2, possibly due

to the high SNR and the fully sampled auto-calibration region. However, at a high

b-value (b = 2500 s/mm2), GRAPPA reconstruction results in poor SNR, and the

LRT method shows aliasing (indicated by the red arrow), which is consistent with the

results using the simulated data, while our method produces clean reconstruction.

Figure 6.18 shows example ROIs of white matter (magenta) and gray matter
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Figure 6.14: Upper: Reconstructed images (b = 2500 mm2/s). Lower: reconstruction errors as
compared to the groundtruth, using GRAPPA reconstruction (PI method); low-rank tensor model
without local low-rankness (LRT method) and the proposed method.

Figure 6.15: Plot of reconstruction errors of different methods for each b-value.
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Figure 6.16: Parameter mapping results, using groundtruth, LRT reconstruction and proposed
reconstruction. Aliasing artifacts (red arrow) are presented in parameter maps estimated using
LRT reconstruction, and are reduced using the proposed reconstruction.

Figure 6.17: Reconstruction results from different methods using the clinical data.

94



Figure 6.18: Example ROIs of white matter (magenta) and gray matter (yellow) contoured by
physicians.

(yellow) contoured by physicians, overlapped with our reconstruction result. We

fitted the bi-exponential model to averaged signals within the white matter and

gray matter ROIs respectively. Table 6.2 summarizes the parameter mapping results

using the GRAPPA reconstruction and the proposed reconstruction. The difference

between the two sets of parameters is very small, which suggests that our method

does not introduce systematic errors into reconstructed images.

D1(10−3mm2/s) D2(10−3mm2/s) f
PI 0.39 2.09 0.48

Proposed 0.41 2.04 0.49

Table 6.2: Parameter mapping results for white matter and gray matter, using the GRAPPA
reconstruction and the proposed reconstruction.

6.5 Discussion

In this chapter, we described a low-rank tensor model for accelerated high b-value

diffusion-weighted MRI. The proposed model exploits both local low-rank structure

and global low-rank structure simultaneously through a block-Hankel tensor. Phase

constraint is further applied to correct phase variations across acquisitions and to

accommodate partial Fourier acquisition.

The proposed method achieves an acceleration factor of 8, as compared to full
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k-space sampling. Both reconstruction results using simulated data and patient data

show improved SNR as compared to parallel imaging method and reduced aliasing as

compared to other low-rank tensor based algorithms. Higher-order diffusion analysis

using our reconstruction results validates the efficacy of our method in reducing

aliasing.

Our method differs from previous studies using low-rank tensor model [81, 82, 83,

84] in that it proposes a new data structure that allows us to utilize dependencies

across both k-space samples in a small neighborhood and all voxels across the imaging

object. Therefore our method is a more natural combination of multi-coil and multi-

parameter acquisition. We chose the SAKE [87] method to model local low-rankness,

as it models dependencies between neighboring k-space samples from multiple coils,

as compared to other local low-rank models, such as LORAKS [98]. By constructing

a block-Hankel tensor, we can enforce both local and global low-rankness simultane-

ously, without the need to calculate a calibration kernel explicitly, which is required

in other reconstruction algorithms such as SPIRiT [99]. Comparing to existing work

in accelerated diffusion-weighted MRI [74, 75, 76, 77, 78], we look at a special prob-

lem of high b-value DWI for cancer imaging. The number of diffusion directions is

much smaller (3 orthogonal directions only), as compared to most work in diffusion

tensor imaging where more that 10 diffusion directions may be sampled. The limited

diffusion directions sampled reduces the data redundancy, thus making accelerated

imaging more challenging. The extended b-value range and the degraded SNR at

high b-values further present challenges for accurate image reconstruction.

Future work will perform a more systematic evaluation of rank constraint selec-

tion. Different rank constraints will be tested on the simulated data to decide the

optimal rank constraint for the problem. Other forms of tensor decomposition, such
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as CANDECOMP decomposition [100], may also be evaluated. Decomposition of

large sized tensor can be time consuming, so parallel computing [101] may be used

to make the algorithm more efficient for clinical use. More complete evaluation of

the method in support of higher-order diffusion analysis will also be performed. We

will evaluate the proposed method on a multiple patient datasets to better determine

if there is a systematic difference between the proposed reconstruction and parallel

imaging-based reconstruction. The low SNR and long acquisition time make it dif-

ficult to get clinical data that is clean enough to serve as a ground truth. Phantom

study may be an alternative choice for evaluation.

6.6 Conclusion

A low-rank tensor model-based image reconstruction algorithm is proposed for ac-

celerated high b-valued DWI, that reconstructs images from sparsely sampled k-space

data. By enforcing local and global low-rankness simultaneously, reconstruction re-

sults show improved signal-to-noise ratio and reduced aliasing. Higher-order diffusion

analysis using the reconstructed images show accuracy comparable to the one used

clinically.
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CHAPTER 7

Future Work

MRI is playing an increasingly important role in radiotherapy, and MRI-guided

linear accelerator (MRI-Linac) is being introduced at various medical centers. To

make MRI more suitable for radiotherapy, various aspects remain to be improved,

which present interesting signal processing problems to be solved.

7.1 Extended synthetic CT model for pelvic patients

MRI volumes used in our synthetic CT study were acquired for tumor and organ

contouring initially and did not cover the entire treatment region. For most female

pelvic patients, their treatment fields go up to thoracic spine (T9). Acquiring MRI

with such a large field of view is challenging. We are currently experimenting a

method called ”stitching” that acquires the upper part and the lower part of the

scanning volume separately with an overlap in the middle of the target. The overlap

region serves as an reference for combining the upper and lower scans together.

Figure 7.1 shows an example image using the stitching method. We are currently

evaluating our synthetic CT generation algorithm on the new MRI dataset. With an

extended scan range, the intensity distributions of tissues may be more complicated

and require further investigation. Also, as we move upwards, respiratory motion

may cause imaging artifacts (red arrow) and present challenges to accurate tissue
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Figure 7.1: MRI volumes acquired using stitching (right) have a field of view comparable to the
CT scans (left). Red arrow indicates imaging artifacts that are possibly due to respiratory motion.

classification.

We are also applying the idea of joint intensity and shape analysis for synthetic

CT generation to male prostate patient. Initial results, as shown in Figure 7.2 are

promising. Dosimetric analysis using the synthetic CT will further evaluate its use-

fulness in support of MRI-based treatment planning. Other aspects of MRI-guided

treatment planning, such as prostate targeting also require future study. Prostate po-

sition is usually determined on CT images by inserting gold seeds into the prostate.

Gold seeds will cause unique artifacts on CT images which can be used to locate

the prostate. However, gold seeds on MRI are mostly dark and difficult to be dis-

tinguished from air pockets. Shape information of the gold seeds may be used to

improve its identification on MRI [102]. Other fiducial markers, other than gold

seeds that are more easily identified on MRI may be an alternative solution.

Current synthetic CT generation algorithm requires identifying several landmarks

manually on the pelvic bone, to initialize the alignment of the atlas image to a target

image. To make the algorithm more suitable for clinical use, we want to minimize

the amount of manual input. Automatic landmark detection, such as femur heads
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Figure 7.2: Synthetic CT generated for male prostate patients

identification, may be an interesting problem to look at.

7.2 Improve low-rank tensor model for high b-value DWI reconstruction

Tensor decomposition is an area of active research, and various algorithms have

been proposed. For example, [103] proposed a robust tensor decomposition algorithm

that may be of interest to our problem, given the low SNR at high b-values. The

algorithm is designed based on the assumptions of linear dependencies between k-

space samples, future work will explore if non-linear embedding will help to improve

results. Parallelizing the algorithm [101] will also be of interest given the large size

of the tensor we built. The proposed algorithm corrects phase variations between

acquisitions, which is a key component in multi-shot EPI [104]. Multi-shot EPI

divides the k-space trajectory into several segments (shots) along the readout direc-

tion. In this way, TE can be reduced, which reduces geometric distortion and allows

acquisitions of high-resolution DWI volumes. Future work will test this algorithm on

multi-shot EPI data. A 2D navigator signal is acquired in multi-shot EPI for phase

correction [105]. Phase maps estimated from the navigator signal can be easily in-

corporated into our problem formulation for image reconstruction. With single-shot

EPI, random sampling is only feasible along the phase-encoding direction. With

multi-shot EPI, random sampling can be performed along two dimensions, and sam-
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pling patterns between different shots may also vary, thus allowing a more incoherent

sampling, which may provide additional space for acceleration.

7.3 Direct diffusion parameter mapping from sparsely sampled k-space
data

Skipping the image reconstruction step and directly estimating parameter maps

from k-space samples is a potentially attractive alternative formulation. It will also

allow the use of signal models as a prior knowledge to regularize the iterative process

of estimating missing k-space samples. The major challenge for this approach is the

complexity of the signal model. Firstly, the phase variations between acquisitions are

due to random motions and are difficult to model. Secondly, the diffusion properties

of tissues under high b-values remains an open problem. It is commonly acknowl-

edged that a multi-exponential decay is demonstrated, yet different exponential decay

curves are not linearly independent, making accurate fitting to a multi-exponential

model challenging. In [106], the author proposed to regularize the fitting procedure

with a neighborhood constraint. However, the neighborhood constraint only enforces

the smoothness over fractions of different exponential decay components, and over-

looks the smoothness of maps of diffusion coefficients, while neighboring voxels are

likely to have similar diffusion coefficients. Our initial studies suggest that better

regularization is needed for accurate multi-exponential fitting, given the low SNR

and limited resolution of high b-value DWI.
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