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ABSTRACT

Data in statistical signal processing problems is often inherently matrix-valued,

and a natural first step in working with such data is to impose a model with structure

that captures the distinctive features of the underlying data. Under the right model,

one can design algorithms that can reliably tease weak signals out of highly corrupted

data. In this thesis, we study two important classes of matrix structure: low-rankness

and sparsity. In particular, we focus on robust principal component analysis (PCA)

models that decompose data into the sum of low-rank and sparse (in an appropriate

sense) components. Robust PCA models are popular because they are useful models

for data in practice and because efficient algorithms exist for solving them.

This thesis focuses on developing new robust PCA algorithms that advance the

state-of-the-art in several key respects. First, we develop a theoretical understanding

of the effect of outliers on PCA and the extent to which one can reliably reject outliers

from corrupted data using thresholding schemes. We apply these insights and other

recent results from low-rank matrix estimation to design robust PCA algorithms with

improved low-rank models that are well-suited for processing highly corrupted data.

On the sparse modeling front, we use sparse signal models like spatial continuity and

dictionary learning to develop new methods with important adaptive representational

capabilities. We also propose efficient algorithms for implementing our methods, in-

cluding an extension of our dictionary learning algorithms to the online or sequential

data setting. The underlying theme of our work is to combine ideas from low-rank

and sparse modeling in novel ways to design robust algorithms that produce accurate

reconstructions from highly undersampled or corrupted data. We consider a variety

of application domains for our methods, including foreground-background separa-

tion, photometric stereo, and inverse problems such as video inpainting and dynamic

magnetic resonance imaging.

xxii



CHAPTER I

Introduction

Data in statistical signal processing problems is often inherently matrix-valued.

For example, in the canonical Netflix problem, one is interested in completing a

large, highly undersampled matrix whose rows represent users, columns represent

movies, and entries represent movie ratings. A natural first step in working with

matrix-valued data is to impose some structure to make the desired task (estimation,

detection, etc.) tractable. In this thesis, we focus on two important classes of matrix

structure: low-rankness and sparsity.

1.1 Low-Rank and Sparse Matrix Models

Low-rank matrices arise in statistical signal processing problems for many rea-

sons. In practice, low-rankness allows for dimensionality reduction, which is often an

essential preprocessing step when working with high dimensional data. Low-rankness

is also important from a theoretical perspective because it implies that the data has

some inherent redundancy that can be leveraged to reliably tease weak signals out of

highly corrupted data. Perhaps the most algorithm for low-rank models is principal

component analysis (PCA). In PCA, one estimates the latent low-rank structure of

a high-dimensional dataset by computing the subspace spanned by the first few sin-

gular vectors of the data. Obtaining an accurate estimate of the underlying subspace

is critically important to the success of subsequent inferential tasks. Although PCA

is stable in the presence of relatively small noise, it is well-known that even a few

large outliers in the data can cause PCA to breakdown completely. In this thesis, we

contribute both theoretical understanding of the breakdown of PCA in the presence

of outliers and algorithms to avoid this breakdown in practice.

Sparsity is another fundamental property of many datasets. Data may exhibit

sparsity in many forms. It may simply contain few non-zero elements, i.e., have
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sparse support; it may exhibit spatial or temporal continuity, i.e., be sparse in a total

variation sense;, or it may be sparse with respect to a more general fixed or adap-

tive transformation, i.e., as in dictionary learning. Each of these sparsity models will

play an important role in this thesis. Depending on the application, the sparsity of

a dataset can be an asset or a liability. For example, in conventional PCA, sparse

corruptions are a nuisance that conspire to destroy the subspace estimate. However,

in other applications—such as foreground-background separation and dynamic med-

ical imaging, which we will consider in this thesis—sparsity may capture the critical

dynamic features of the dataset that have physical meaning and importance.

Recently there has been great interest in methods that decompose data into low-

rank and sparse (in an appropriate sense) components. These so-called robust PCA

models are popular because they are useful models for data in practice and because

simple algorithms exist for solving them. The bulk of this thesis is dedicated to

developing new robust PCA algorithms that advance the state-of-the-art in several

key aspects. On the low-rank front, we apply theoretical results from low-rank matrix

estimation to design robust PCA algorithms with improved low-rank models. On the

sparsity front, we develop new methods that exploit sparse signal models like spatial

continuity and adaptive transform sparsity to achieve best-in-class results on practical

problems in computer vision and inverse problems. The underlying theme of this

work is to combine ideas from low-rank and sparse modeling in novel ways to design

robust algorithms that produce accurate reconstructions from highly undersampled

or corrupted data.

1.2 Contributions

The rest of this thesis is organized as follows. Chapter II briefly provides some

common groundwork and motivation for our investigation, but the subsequent chap-

ters are intended to be mostly self-contained.

In Chapter II, we present some background on the problem of estimating a low-

rank matrix corrupted by noise. This fundamental problem underlies all of the robust

PCA methods discussed in this thesis, because each algorithm uses an alternating

minimization scheme where one step of the problem can be thought of as a low-rank

matrix denoising step. We review the prevailing low-rank estimation methods in the

literature, and then we present some recent theoretical results from random matrix

theory on optimal low-rank matrix estimation that culminates in OptShrink, a recent

data-driven low-rank matrix estimator that we employ throughout this thesis.
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In Chapter III, we study the robust PCA problem of reliably recovering a low-rank

signal matrix from a signal-plus-noise-plus-outliers matrix. We begin by analytically

characterizing the effect of outliers on the data matrix, and we discuss why recent

classical robust PCA algorithms will produce suboptimal low-rank matrix estimates

in the presence of noise. Then we propose a new robust PCA algorithm that leverages

OptShrink to improve low-rank matrix estimation quality. We demonstrates the state-

of-the-art performance of our proposed method on a background subtraction task from

computer vision and highly accelerated dynamic magnetic resonance imaging (MRI)

reconstruction. This chapter is based on [6, 7].

In Chapter IV, we extend our work on background subtraction from Chapter III

to the general case of foreground-background separation on freely moving camera

video with dense and sparse corruptions. We propose a method that can produce

a panoramic background component that automatically stitches together corrupted

data from partially overlapping frames to reconstruct the full field of view, and we use

a weighted total variation framework that enables our method to reliably decouple the

true foreground of the video from sparse corruptions. We perform extensive numerical

experiments on both corrupted static and moving camera video that demonstrate the

state-of-the-art performance of our proposed method compared to existing methods

both in terms of foreground and background estimation accuracy. This chapter is

based on [8, 9].

Next, we take a theoretical aside and consider the problem of recovering a low-

rank matrix corrupted by random noise and outliers in Chapter V. Motivated by the

sparse estimation literature, we consider outlier rejection schemes that apply hard or

soft thresholding, respectively, to the elements of the data matrix. We analyze the

accuracy of the low-rank matrix estimated by applying PCA to the outlier-rejected

data by comparing it to an oracle estimator that replaces the known outlier-corrupted

entries of the data matrix with zeros. Our analysis reveals a surprising result: in the

dense outlier regime, the hard thresholding-based estimator achieves oracle accuracy

while the soft thresolding-based estimator breaks down completely. This is an in-

teresting result because in the context of sparse signal estimation, hard and soft

thresholding both exhibit similar performance. This chapter is based on [10,11].

In Chapter VI, we shift our focus to sparse signal models based on adaptive

dictionary learning. Traditional dictionary learning problems are non-convex and

NP-hard, and the usual alternating minimization approaches for learning are often

expensive and lack convergence guarantees. In this chapter, we investigate efficient

methods for learning synthesis dictionaries with low-rank atoms. We propose a block
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coordinate descent algorithm for our dictionary learning model that involves efficient

updates, and we provide a convergence analysis of the proposed method. Finally, we

provide numerical experiments that demonstrate the usefulness of our schemes for

highly accelerated dynamic MRI reconstruction and video inpainting. This chapter

is based on [12].

We extend our structured dictionary learning framework to the online setting

in Chapter VII. In particular, we adapt our model from Chapter VI to process

streaming images from a dynamic image sequence in minibathces. At each step, we

jointly estimate the underlying images, a dictionary that adapts to all previous data,

and the associated sparse coefficients of the model. Our proposed online algorithm

involves efficient memory usage and simple and efficient updates of the images, low-

rank atoms, and sparse coefficients. Our numerical experiments demonstrate the

compelling performance of our algorithm in inverse problem settings, including video

reconstruction from noisy, subsampled pixels and highly accelerated dynamic MRI

reconstruction. This chapter is based on [13–15].

In Chapter VIII, we integrate our previous work on robust PCA and dictionary

learning models into a single low-rank and adaptive sparse framework for highly ac-

celerated dynamic imaging applications. Our model decomposes the temporal image

sequence into a low-rank component and a component whose spatiotemporal (3D)

patches are sparse in an adaptive dictionary domain. We investigate various formu-

lations and efficient methods for jointly estimating the underlying dynamic signal

components and the spatiotemporal dictionary from limited measurements. Our nu-

merical experiments once again demonstrate the promising performance our proposed

methods for highly accelerated dynamic MRI reconstruction. This chapter is based

on [16,17].

We return to computer vision in Chapter IX, where we apply adaptive dictionary

learning models to the problem of robust photometric stereo. Photometric stereo is

a method for reconstructing the normal vectors of an object from a set of images of

the object under varying lighting conditions. Classical photometric stereo relies on a

diffuse surface model that cannot handle objects with complex reflectance patterns,

and it is sensitive to non-idealities in the images. In this chapter, we leverage our

dictionary learning models from Chapter VI to develop three new models for photo-

metric stereo that are robust to corruptions in the images. Specifically, we propose

a preprocessing step that utilizes dictionary learning to denoise the images. We also

present a model that applies dictionary learning to regularize and reconstruct the

normal vectors from the images under the classic Lambertian reflectance model. We
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then generalize the latter model to explicitly model non-Lambertian objects. This

chapter is based on [18,19].

Finally, in Chapter X, we apply our adaptive dictionary learning framework the

problem of robustly reconstructing a surface from imperfect estimates of its normal

vectors. Our model simultaneously integrates the gradient fields while sparsely rep-

resenting the spatial patches of the reconstructed surface in an adaptive dictionary

domain. We show that our formulation learns the underlying structure of the surface,

effectively acting as an adaptive regularizer that enforces a smoothness constraint on

the reconstructed surface. We revisit the photometric stereo problem from Chapter IX

by applying our algorithm to robustly reconstruct a surface from photometric stereo

normal vectors, which completes the story of performing robust surface reconstruction

from possibly corrupted images of an object. This chapter is based on [20].
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CHAPTER II

Background

This chapter provides a brief background on low-rank matrix models and intro-

duces some recent results on low-rank matrix estimation from the random matrix

theory literature that will play an important role throughout this thesis.1

2.1 Low-Rank Matrix Models

Suppose we have an arbitrary matrix X̃ that contains—in a vague sense for now—

a low-rank matrix L of known rank r. One of the most basic estimators of L is the

truncated singular value decomposition (TSVD) of X̃:

TSVDr(X̃) :=
r∑
i=1

σ̃iũiṽ
H
i , (2.1)

where X̃ = ŨΣ̃Ṽ H is the SVD of X̃ with singular values {σ̃i}. The TSVD has many

interpretations. For example, it is closely related to the ubiquitous principal compo-

nent analysis (PCA) [21, 22], where one computes the rank-r subspace in which the

data X̃ has maximum variance. Alternatively, the well-known Eckart-Young theo-

rem [23] asserts that TSVDr(X̃) is the closest rank-r matrix to X̃ in the Frobenius

norm sense. In other words, it is the solution to the rank-constrained optimization

problem

min
X
‖X̃ −X‖2

F

s.t. rank(X) ≤ r.
(2.2)

Thanks in part to the recent explosion of convex optimization, another popular

1Random matrix theory is a fascinating and deeply rooted area of mathematics. Here we present
a brief selection of results that are relevant to this thesis, but each topic merits considerable further
attention from an interested reader.
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tool for estimating L is the singular value thresholding (SVT) estimator [24]:

SVTτ (X̃) :=
∑
i

(σ̃i − τ)+ũiṽ
H
i , (2.3)

where τ > 0 is a chosen parameter and (y)+ := max(y, 0). The SVT estimator arises

as the solution to the convex optimization problem [25]:

arg min
X

1

2
‖X̃ −X‖2

F + τ‖X‖?, (2.4)

where ‖X‖? =
∑

i σi(X) is the nuclear norm (sum of singular values) of X. The

nuclear norm can be interpreted as the tightest convex relaxation of the rank penalty

rank(X), and this fact is often invoked when convex relaxations of a nonconvex

problem like (2.2) are proposed and solved in practice.

The TSVD and SVT estimators are two of the many possible methods for esti-

mating a low-rank matrix from noisy observations. However, a natural question to

ask is what is the quality of these estimators? And, in particular, is there an opti-

mal strategy for estimating a low-rank matrix buried in noise? In order to formulate

these questions as well-defined problems, one can adopt a random matrix theoretic

framework where the matrix X̃ is modeled as the sum of a deterministic low-rank

matrix L and a noise matrix X whose elements are random variables. It turns out

that, in this random matrix setting, one can in fact derive a provably optimal method

(OptShrink) [26] for estimating L from an observation X̃. We describe this estimator

in Section 2.3, but first we review some relevant results from random matrix theory

literature on the singular values and vectors of perturbations of low-rank matrices.

2.2 Random Perturbations of Low-Rank Matrices

Consider the random matrix model

X̃n = Ln +Xn, (2.5)

where X̃n is an m × n observed data matrix, Xn is additive random noise matrix,

and Ln =
∑r

i=1 θiuiv
H
i is a deterministic rank-r matrix with singular values θi and

singular vectors {ui, vi}, respectively. We denote by X̃n =
∑

k σ̃kũkṽ
H
k the SVD of

X̃n with singular values σ̃k and singular vectors {ũk, ṽk}, respectively.

Intuitively, if the noise Xn is relatively “weak”, one expects the leading r singular

values and vectors of X̃n to be relatively close to the corresponding components of L,
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while one expects the singular vectors to become uncorrelated as the relative strength

of the noise increases. Theorems II.1 and II.2 formalize this intuition in an asymptotic

regime as m,n→∞.

Theorem II.1. (Singular Value Phase Transition [27]). Fix a sequence of rank-r

matrices Ln with non-zero singular values θ1, . . . , θr, a constant c ∈ (0, 1], and suppose

that Xn is drawn from a random noise model whose empirical singular value density

µXn converges almost surely weakly as m,n → ∞ such that m/n → c ∈ (0, 1] to a

non-random probability measure µX supported on a single interval [a, b]. In addition,

suppose that the extreme singular values of Xn converge almost surely to the endpoints

of the spectral support. Then, the extreme singular values of X̃n exhibit the following

asymptotic behavior. For each 1 ≤ i ≤ r:

σ̃i
a.s.−−→

D
−1
µX

(1/θ2
i ) if θ2

i > 1/DµX (b+)

b otherwise,
(2.6)

where

DµX (z) :=

[∫
z

z2 − t2
dµX(t)

]
×
[

1− c
z

+ c

∫
z

z2 − t2
dµX(t)

]
(2.7)

is the D-transform of the measure µX , and

DµX (b+) := lim
z↘b

DµX (z). (2.8)

Theorem II.2. (Singular Vector Phase Transition [27]). Under the conditions of

Theorem II.1, the extreme singular vectors {ũi, ṽi} of X̃n drawn from the model (2.5)

exhibit the following behavior as m,n → ∞. For each 1 ≤ i ≤ r such that θ2
i >

1/DµX (b+), we have

|〈ũi, ui〉〈ṽi, vi〉|
a.s.−−→ −2

D
3/2
µX (ρi)

D′µX (ρi)
, (2.9)

where ρi := D−1
µX

(1/θ2
i ) is the limit of σ̃i from Theorem II.1.

Theorems II.1 and II.2 characterize the asymptotic behavior of the extreme singu-

lar values and vectors of X̃n drawn from the model (2.5) in terms of the D-transform

of the limiting noise singular value distribution. In particular, Theorem II.1 identi-

fies a phase transition phenomenon around a critical point κ := 1/
√
DµX (b+) that

depends only on the limiting singular value noise distribution, µX . If θi > κ, then

the ith singular value of X̃n will separate from the bulk noise spectrum and converge
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to a deterministic location ρi = D−1
µX

(1/θ2
i ) that depends only on the limiting noise

distribution µX and the signal strength θi. However, if θi ≤ κ, then the ith largest

singular value of X̃n remains in the bulk noise spectrum.

Associated with each leading singular value, Theorem II.2 asserts that the per-

turbed singular vectors ũi and ṽi contain a deterministic amount of information

about the latent singular vectors ui and vi. Indeed, one can interpret the quan-

tity αi := |〈ũi, ui〉〈ṽi, vi〉| ∈ [0, 1] as a measure of the accuracy of ũi and ṽi with

respect to ui and vi, since αi = 1 if and only if ũi = ui and ṽi = vi, and αi = 0 when

either pair of singular vectors are orthogonal.

Theorems II.1 and II.2 assume that the singular value spectrum of the noise matrix

Xn converges to a non-random probability measure µX . Importantly, this condition

is satisfied by a wide class of noise models [27–29]. For example, consider the setting

where [Xn]ij are i.i.d. with zero mean, variance τ 2/m, and bounded higher order

moments. It is known that the spectral density of Xn converges almost surely to the

Marcenko-Pastur law [30]

dµX(t) =

√
(b2 − t2)(t2 − a2)

πcτ 2t
, t ∈ [a, b], (2.10)

where a = τ(1 −
√
c) and b = τ(1 +

√
c). Figure 2.1 shows the empirical singular

value distributions of two i.i.d. random Gaussian matrices, one with n = 200 and the

other with n = 1000. Clearly the empirical singular value distribution is converging

to the Marcenko-Pastur law predicted by (2.10).

Figure 2.2 shows the singular value spectrum of a matrix X̃n drawn from the

model (2.5) with r = 3 and {θ1, θ2, θ3} = {4, 3, 2}. The noise Xn is drawn from the

Marcenko-Pastur law with τ = 1. In this case, one can show that the critical point

is κ = 1. All three signals are above the critical point, so Theorem II.1 predicts that

the leading 3 singular values of X̃n will separate from the bulk spectrum and converge

asymptotically to the locations ρi = D−1
µX

(1/θ2
i ), for i = 1, 2, 3. Figure 2.2 corroborates

this result. Conversely, Figure 2.3 shows a different realization of the same model

where the third signal is now θ3 = 0.95. In this case, θ3 < κ, so Theorem II.1 predicts

that σ̃3 will not separate from the bulk spectrum. Figure 2.3 again corroborates this

result.

Note that, although the theoretical results in this section are asymptotic in nature,

Figures 2.1-2.3 demonstrate an important observation: random matrices of even mod-

est sizes often closely follow their limiting behavior. This observation is important

in practice. Indeed, it suggests that it is reasonable to design algorithms for matrix
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Figure 2.1: Singular values of a cn×n matrix with i.i.d. Gaussian entries for two values
of n. Left: singular value scree plots. Right: empirical singular value historgrams.
The red curve denotes the limiting Marcenko-Pastur law (2.10).

models that are based on asymptotic results, which can be expected to reasonably

approximate the statistics of the empirical data. We now return to the problem of

optimally estimating a low-rank matrix corrupted by random noise.

2.3 Optimal Low-Rank Matrix Estimation

Recall the low-rank plus noise model from (2.5):

X̃n = Ln +Xn, (2.11)

where Ln =
∑r

i=1 θiuiv
H
i is an unknown low-rank matrix of (known) rank r with

singular values θi and singular vectors ui and vi, and Xn is an additive noise matrix.
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Figure 2.2: Singular value spectrum of X̃n drawn from the model (2.5) with r = 3
and {θ1, θ2, θ3} = {4, 3, 2}. The noise Xn is drawn from the Marcenko-Pastur law

with τ = 1. The blue X’s denote the singular values of X̃n, the blue curve denotes
their empirical histogram, and the red curve is the limiting spectrum predicted by
Theorem II.1. All three signals are above the critical point κ = 1, so the location of
the extreme singular values are asymptotically given by ρi = D−1

µX
(1/θ2

i ), for i = 1, 2, 3.
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Figure 2.3: Singular value spectrum of X̃n drawn from the model (2.5) with r = 3
and {θ1, θ2, θ3} = {4, 3, 0.95}. The noise Xn is drawn from the Marcenko-Pastur

law with τ = 1. The blue X’s denote the singular values of X̃n, the blue curve denotes
their empirical histogram, and the red curve is the limiting spectrum predicted by
Theorem II.1. The third signal θ3 = 0.95 is less than the critical point κ = 1, so it
does not separate from the bulk spectrum.

2.3.1 Oracle Denoising Problem

Suppose that we are interested in producing an estimate of Ln given an instance

of X̃n. One way to formulate this problem is the oracle denoising problem

w? = arg min
[w1, ..., wr]T∈Rr

∥∥∥ r∑
i=1

θiuiv
H
i −

r∑
i=1

wiũiṽ
H
i

∥∥∥
F
, (2.12)
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where σ̃i are the singular values and {ũi, ṽi} are the singular vectors of X̃n.

Problem (2.12) seeks the best approximation of the latent low-rank signal matrix

Ln by an optimally weighted combination of estimates of its left and right singular

vectors. We refer to (2.12) as an oracle problem because it implicitly depends on

the latent low-rank matrix Ln. Nonetheless, note that the TSVD of rank r and

SVT are both feasible points for (2.12). Indeed, the truncated SVD corresponds to

choosing weights wi = σ̃i1{i ≤ r} and SVT with parameter τ ≥ σ̃r+1 corresponds

to wi = (σ̃i − τ)+. However, (2.12) can be solved in closed-form [26], yielding the

expression

w?i =
r∑
j=1

θj(ũ
H
i uj)(ṽ

H
i vj), i = 1, . . . , r. (2.13)

Of course, (2.13) cannot be computed in practice because it depends on the la-

tent low-rank singular vectors ui and vi that we would like to estimate, but it gives

insight into the properties of the optimal weights w?. Indeed, when ũi and ṽi are

good estimates of ui and vi, respectively, we expect ũHi ui and ṽHi vi to be close to

1. Consequently, from (2.13), we expect w?i ≈ θi. Conversely, when ũi and ṽi are

poor estimates of ui and vi, respectively, we expect ũHi ui and vHi ṽi to be closer to 0

and w?i < θi. In other words, (2.13) shows that the optimal singular value shrinkage

is inversely proportional to the accuracy of the estimated principal subspaces. As a

special case, if θi →∞, then clearly ũHi ui → 1 and vHi ṽi → 1, so the optimal weights

w?i must have the property that the absolute shrinkage vanishes as θi → ∞. This

shows that, the SVT estimator, which applies a constant shrinkage to each singular

value of its input, will necessarily produce suboptimal low-rank estimates in general.

See [26] for more details.

Note that the constituent quantities {θj, ũHi uj, ṽHi vj} of the solution (2.13) to

(2.12) are exactly of the form analyzed in Section 2.2. Therefore, while we cannot

compute (2.13) in practice, we can obtain asymptotic expressions for them in the large

matrix limit when Xn is a suitable random matrix (e.g., an i.i.d. random matrix). The

following theorem [26] formalizes this observation.

Theorem II.3. (Optimal Low-Rank Matrix Estimation [26]). Suppose that (Xn)ij

are i.i.d. random variables with zero-mean, variance σ2, and bounded higher order

moments, and suppose that θ1 > θ2 > . . . > θr > σ. Then, as m,n → ∞ such that

m/n→ c ∈ (0,∞), we have that

w?i + 2
Dµ

X̃
(σ̃i)

D′µ
X̃

(σ̃i)

a.s.−→ 0 for i = 1, . . . , r, (2.14)
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where

µX̃(t) =
1

q − r

q∑
i=r+1

δ (t− σ̃i) , (2.15)

with q = min(m,n) is the empirical singular value density of X̃n and Dµ
X̃

is the

D-transform (2.7) of the measure µX̃ .

Theorem II.3 establishes that the weights w?i—the solution to the oracle denoising

problem (2.12)—converge in the large matrix limit to a certain non-random integral

transformation of the limiting noise distribution µX̃ .

2.3.2 Data-Driven OptShrink Estimator

In practice, Theorem II.3 suggests the following data-driven OptShrink estimator

[26], defined for a given matrix Y ∈ Cm×n and rank r as

OptShrinkr(Y ) =
r∑
i=1

(
−2

DµY (σi)

D′µY (σi)

)
uiv

H
i , (2.16)

where Y = UΣV H is the SVD of Y with singular values σi and

µY (t) =
1

q − r

q∑
i=r+1

δ (t− σi) (2.17)

is the empirical mass function of the noise-only singular values of Y with q =

min(m,n). Equation 2.16 approximates the optimal shrinkage from Theorem II.3

by plugging in the empirical distribution of the noise-only (non-leading) singular val-

ues, µY , in place of the limiting distribution, µX , to which the empirical distribution

is converging. By Theorem II.3, OptShrinkr(X̃) asymptotically solves the oracle

denoising problem (2.12).

OptShrink has a single parameter r ∈ N that directly specifies the rank of its

output matrix. Rather than applying a constant shrinkage to each singular value of

the input matrix as in SVT, the OptShrink estimator partitions the singular values

of its input matrix into signals {σ1, . . . , σr} and noise {σr+1, . . . , σq} and uses the

empirical mass function of the noise singular values to estimate the optimal (nonlinear,

in general) shrinkage (2.14) to apply to each signal singular value. See [26, 27] for

additional detail and intuition.
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2.3.3 Computational Cost

The computational cost of OptShrink is the cost of computing a full SVD2 plus

the O(r(m+n)) computations required to compute the D-transform terms in (2.16),

which reduce to summations for the choice of µY in (2.17).

2In practice, one need only compute the singular values σ1, . . . , σq and the leading r singular
vectors of Y .
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CHAPTER III

Improved Robust PCA Using Optimal

Data-Driven Singular Value Shrinkage

3.1 Introduction

Principal component analysis (PCA) is a powerful technique for uncovering latent

low-rank structure in high dimensional datasets. It is ubiquitous in statistical signal

processing theory and practice and is the first step in many inferential procedures

for detection, estimation and classification. It is well-known, however, that PCA is

brittle in the sense that relatively few outliers can severely degrade the quality of low-

rank components estimated from noisy data. This, in turn, degrades the performance

of inferential tasks that utilize these estimated low-rank components. Robust PCA

aims to mitigate such problems by producing the best (with respect to squared error)

low-rank estimates that are robust to outlier contamination.

Recent breakthroughs [1, 31–33] have established that one can reliably recover a

low-rank matrix in the presence of outliers by solving a convex optimization problem

of the form
min
L,S

‖L‖? + λ‖S‖1

s.t. Y = L+ S,
(3.1)

where Y is the observed data matrix, ‖L‖? is the the nuclear norm (sum of singular

values) of the low-rank component L, and ‖S‖1 is the elementwise `1 norm of the

sparse component S. Indeed, sufficient conditions on L and S are given in [31, 32]

to guarantee that the solution to (3.1) will exactly recover the low-rank and sparse

components of the noiseless model Y = L+S. However, much less is known about the

noisy setting—when Y is also corrupted by dense noise—except the unsurprising fact

that one cannot expect error-free recovery. There is no theoretical reason to expect

that a convex optimization-based model like (3.1) that was designed for the noiseless
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setting will also be optimal in the noisy setting.

In [26] it is shown that, in the noisy but outlier-free setting, the low-rank compo-

nents produced by solving any convex optimization problem are provably suboptimal.

Indeed, [26] shows that the OptShrink estimator (described in Chapter II of this the-

sis) provably outperforms convex optimization-based methods for low-rank matrix

denoising. In this chapter, our goal is to apply these insights from low-rank matrix

estimation in the context of performing robust PCA on noisy data.

3.1.1 Contributions

We first motivate the need for robust PCA algorithms by providing a first-principles

analysis of the effect of outliers on the singular vectors of a noisy low-rank plus sparse

matrix. Our analysis demonstrates that PCA is robust to noise but highly sensitive

to even relatively few outliers in the data matrix. We then propose a new alternating

minimization algorithm for robust PCA that uses the OptShrink estimator to improve

the quality of the estimated low-rank component. Our proposed method is suitable

for application in any inverse problem setting. Unlike existing methods, our algorithm

does not correspond to a convex objective; however, we observe that it behaves well in

practice. In particular, we demonstrate that our proposed method outperforms con-

ventional robust PCA methods both in terms of quantitative reconstruction accuracy

and qualitative interpretability of the components for two diverse applications: back-

ground subtraction and dynamic magnetic resonance imaging (MRI) reconstruction

from highly undersampled measurements.

3.1.2 Organization

This chapter is organized as follows. In Section 3.2, we formulate our robust PCA

problem, and, in Section 3.3, we analytically characterize the effect of outliers on

the singular vectors of the observed matrix. We describe the conventional convex

optimization-based approach to robust PCA in Section 3.4, and we propose an im-

proved algorithm in Section 3.5. In Section 3.6, we provide numerical experiments

that demonstrate the promising performance of our method compared to existing

robust PCA methods. Finally, we summarize our findings in Section 3.7.
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3.2 Problem Formulation

Consider the setting where anm×n observed signal-plus-noise-plus-outliers matrix

Y is modeled as

Y =
r∑
i=1

θiuiv
H
i︸ ︷︷ ︸

=:L

+S +X, (3.2)

where, without loss of generality, we assume m ≤ n. In (3.2), L represents the rank-r

low-rank signal matrix that we are interested in reliably recovering, where ui and vi

are the left and right singular vectors associated with singular value θi. The matrix

S is modeled as

Sij =

Qij with probability ps

0 with probability 1− ps,

where Qij are elements drawn from an unknown distribution q with zero-mean, vari-

ance σ2
q , and bounded higher order moments. The matrix S represents a sparse matrix

of outliers (relative to L). We assume that the outlier probability ps � log n/n to

avoid any pathologies related to the sparsity pattern of S interfering with the singular

vectors of Y [34]. The matrix X has elements that are independently and identically

distributed with zero mean, variance σ2/n, and bounded higher order moments. In

(3.2), we assume the outliers are sparse with respect to the standard Euclidean basis.

If they are sparse with respect to some other basis (e.g., Fourier or wavelet), we can,

without loss of generality, assume that (3.2) holds after an appropriate sparsifying

transformation has been applied to the vectorized elements of the observed matrix.

3.3 Motivation for Robust PCA

Our goal is to estimate, as accurately as possible, the low-rank component L from

the matrix Y under the model (3.2). This objective is complicated by the presence

of the outlier matrix S. Indeed, let

Y =
m∑
i=1

σ̃iũiṽ
H
i (3.3)

be the SVD of Y . The following theorem extends results from random matrix theory

[27] to quantify the degradation incurred when estimating the singular vectors of L

in the presence of outliers.
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Theorem III.1. Assume that the singular vectors of L satisfy a low-coherence con-

dition, i.e.,

max
i=1,...r

‖ui‖∞ ≤ Cu
logηum√

m
, max

i=1,...r
‖vi‖∞ ≤ Cv

logηv n√
n

for some universal constants Cu, Cv, ηu, ηv > 0, and suppose that θ1 > . . . > θr > 0 in

(3.2) for some fixed r > 0. Then, as m,n→∞ such that m/n→ c ∈ (0, 1], we have

|〈ui, ũi〉|2
a.s.−→

1−
c
(
1 + θ2

i

)
θ2
i

(
θ2
i + c

) if θi > c1/4

0 if θi ≤ c1/4,

(3.4)

and

|〈vi, ṽi〉|2
a.s.−→

1−
(
c+ θ2

i

)
θ2
i

(
θ2
i + 1

) if θi > c1/4

0 if θi ≤ c1/4,

(3.5)

where

θi = lim
n→∞

θi√
σ2 + n ps σ2

q

. (3.6)

Proof. Model (3.2) is equivalent to the low-rank plus noise model Y = L+ X̄, where

X̄ij = Sij + Xij are independent zero-mean random variables with variance σ̄2/n,

where σ̄2 := σ2 + n ps σ
2
q . The results follows from Theorem 2.9 and Section 3.1

of [27].

Theorem III.1 brings into sharp focus the detrimental effect of sparse outliers on

the estimation of low-rank components. For example, suppose that σ2
q = O(1) and

ps = O(1). Then, by (3.6), θi = 0 so that |〈ui, ũi〉|2 → 0 and |〈vi, ṽi〉|2 → 0 as n→∞,

irrespective of the magnitude of θi relative to the noise variance σ2. Consequently, the

singular vectors of Y will be poor estimates of the singular vectors of L. In contrast,

when ps = 0 so that we are in the outlier-free setting and θi/σ � c1/4, we can expect

the singular vectors of Y to be good estimates of the singular vectors of L.

More generally, from Theorem III.1 and (3.6), we conclude that the singular

vectors of Y will be very poor estimates of the singular vectors of L whenever

σ2
q = O(1) and nps →∞. The latter condition includes the few-outlier setting when

ps = O(log n/n), so that an average of just O(n log n) corrupted entries out of the

mn total entries will suffice to severely degrade the eigenstructure of the matrix Y .

This motivates the necessity of robust PCA methods for reliably extracting low-rank

structure in the presence of outliers.
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3.4 Convex Optimization-Based Robust PCA

The predominant approach for performing robust PCA has been to adopt a low-

rank regularization term involving the nuclear norm ‖ · ‖? and a sparse regularization

term involving the `1 norm ‖ · ‖1. One recently proposed [1] method for low-rank

plus sparse matrix decomposition in the presence of noise is to solve the convex

optimization problem

{L̂, Ŝ} = arg min
L,S

1

2
‖Y −A(L+ S)‖2

F + λL‖L‖? + λS‖TS‖1, (3.7)

where A is a linear operator, Y is the problem data, and T is a unitary sparsifying

transformation (e.g., wavelet/Fourier basis). Note that (3.7) is an extension of (3.2)

to the inverse problem setting that allows for the matrix S to be sparse in a trans-

formed domain (w.r.t. T ) and for the observations Y to be related to the underlying

components L and S through a sensing operator A.

One approach to solving (3.7) is the proximal gradient method [25,35], an iterative

algorithm where, at the kth iteration, one computes the updates

Lk+1 = SVTtkλL(Mk − Sk)

Sk+1 = THsofttkλS(T (Mk − Lk))

Mk+1 = Lk+1 + Sk+1 − tk(A?(A(Lk+1 + Sk+1)− Y )),

(3.8)

with step size tk, where A? denotes the adjoint of A. In (3.8), SVT(·) is the singular

value thresholding (SVT) operator [31], defined for a given τ > 0 as

SVTτ (Z) :=
∑
i

(σi − τ)+uiv
H
i , (3.9)

where Z = UΣV H is the SVD of Z, (·)+ = max(·, 0), and softλ(·) is the elementwise

soft thresholding operator, defined for a given λ > 0 as

softλ(z) := sign(z)(z − λ)+. (3.10)

The attractiveness of the updates (3.8) lies in the fact that the L and S updates

have simple closed-form expressions. Moreover, because ‖ · ‖? and ‖ · ‖1 are convex,

standard convergence results [35, 36] establish the convergence of (3.8) to a solution

of (3.7) provided one uses, for example, a constant step size t = tk that satisfies

t < 1/‖A‖2. However, despite these convergence guarantees, there is no theoretical
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reason to expect convex optimization-based algorithms for robust PCA to provide

optimal (in any sense) recovery of low-rank or sparse matrices in the noisy setting.

3.5 Proposed Algorithm

One can interpret the iterate Mk from (3.8) as the current estimate of the un-

derlying low-rank plus sparse matrix plus a residual (i.e., noise) term. As such, the

argument Mk − Sk of the SVT operator is approximately a low-rank plus noise ma-

trix of the type studied in Chapter II. Therefore, we propose to perform the modified

updates

Lk+1 = OptShrinkr(M
k − Sk)

Sk+1 = TH softtkλS(T (Mk − Lk))

Mk+1 = Lk+1 + Sk+1 − tk(A?(A(Lk+1 + Sk+1)− Y )),

(3.11)

where we have replaced SVT in the L-update of (3.8) with the OptShrink estimator

[26]. In (3.11), OptShrink(·) is the low-rank matrix estimator defined for a given

parameter r > 0 as

OptShrinkr(Z) =
r∑
i=1

(
−2

DµZ (σi)

D′µZ (σi)

)
uiv

H
i , (3.12)

where Z =
∑

i σiuiv
T
i is the SVD of Z ∈ Ra×b. In (3.12), the D-transform is defined

for a given probability measure µ as

Dµ(z) =

[∫
z

z2 − t2
dµ(t)

]
×

[
c

∫
z

z2 − t2
dµ(t) +

1− c
z

]
, (3.13)

where D′µ(z) is the derivative of Dµ(z) with respect to z, c = min(a, b)/max(a, b),

and µZ(t) = 1
q−r
∑q

i=r+1 δ(t − σi) is the empirical mass function of the noise-only

singular values of Z with q = min(a, b). Note that the integrals in the D-transform

terms in (3.12) reduce to summations for this choice of µZ , so they can be computed

efficiently.

The OptShrinkr(Z) operator computes the rank r truncated SVD of Z and then

applies the shrinkage function defined by the parenthesized term in (3.12) to the

leading singular values. We refer to the D-transform term as a shrinkage function

because it shrinks its argument towards zero [26]. In contrast, the SVTλ(Z) operator

(3.9) applies a constant shrinkage level λ to all singular values.

The OptShrink estimator provides two key benefits over SVT. First, it applies
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a data-driven shrinkage to the singular value spectrum of its argument, the form of

which is imputed from the non-leading (noise) singular values. Generically, a smaller

shrinkage is applied to larger—and hence more-informative—singular values and a

comparatively larger shrinkage to smaller singular values. The effect of this nonlinear

shrinkage is to produce an improved estimate of the underlying low-rank matrix

embedded in the data [26]. See Chapter II of this thesis for further details. Second,

OptShrink has a single parameter r that directly specifies the rank of the output

matrix. It is often very natural to set the rank parameter. For example, suppose the

columns of Y contain vectorized images of a scene with a static background. In this

case, the low-rank component L should ideally be a rank-1 matrix whose columns

are repeated (up to scaling) vectorized copies of the static background image. In

practice, the registered background may not be perfectly static, but it will still have

high temporal correlation, so a small rank (r = 2, 3, . . .) will often suffice. Thus it is

often easier to tune the rank parameter r than the analogous real-valued regularization

parameter λL in the SVT updates (3.7).

OptShrink is data-driven and thus does not correspond to the proximal operator of

a penalty function φ(L), so the updates (3.11) are not proximal gradient updates for

a cost function like (3.7). Nonetheless, our experiments in Section 3.6 show that the

proposed update scheme is numerically stable and yields convergent iterate sequences

in practice.

3.6 Numerical Experiments

In this section, we demonstrate the performance of the proposed update scheme

(3.11) in two applications: background subtraction and dynamic MRI reconstruction

from highly undersampled measurements.

3.6.1 Background Subtraction

We first demonstrate the performance of the proposed update scheme (3.11) by

performing background subtraction on an outlier-corrupted version of the Fountain

sequence.1 The dataset contains n = 523 images, each with resolution my × mx =

128× 160, of a scene with a fountain in the background and people walking intermit-

tently in the foreground. We arrange the data in an m × n matrix whose columns

contain the m = mymx vectorized pixels of each image. We then generate an ob-

1Obtained from perception.i2r.a-star.edu.sg/bk_model/bk_index.html.
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servation matrix Y by adding an outlier matrix S with elements drawn for a given

outlier probability ps as in (3.2) with Qij = ±K equiprobably for a given K > 0.

In the language of model (3.2), the low-rank component L should capture the

static background component of the scene (the fountain), and the sparse component

should capture the dynamic foreground and the sparse corruptions.2 Therefore, we

compare the quality of the background estimates (L) returned by SVT-based method

from (3.8) with the proposed updates from (3.11). Specificially, we package each

update scheme into an algorithm by initializing L0 = M0 = Y and S0 = 0 and

terminating the iterations when ‖Mk − Mk−1‖F < δ‖Mk−1‖F for a given stopping

tolerance δ > 0.

Figure 3.1 displays the algorithm outputs for two representative frames of the

reconstructions. Figure 3.1c shows that the SVT-based updates with small λL fail

to recover the low-rank background; indeed, L̂svt was full-rank. On the other hand,

Figure 3.1d shows that setting λL large enough to force the SVT-based updates to

return a background estimate L̂svt with rank-1 is also problematic. Indeed, the SVT-

based L-update in (3.8) uniformly shrinks all singular values, which, for large λL,

results in suboptimal degradation of large singular values. This effect manifests in

Figure 3.1d through the dimness of the low-rank components and the leakage of the

remaining background intensity into the sparse component. In contrast, the proposed

approach successfully isolates the fountain background in its low-rank component.

3.6.2 Dynamic MRI Reconstruction

Recent advances in dynamic contrast-enhanced MRI (DCE-MRI) algorithms have

employed low-rank plus sparse matrix decomposition for joint reconstruction of mul-

ticoil data. Such methods model DCE-MRI data as the superposition of low-rank

and sparse components because the high spatiotemporal correlations of the static

background image are inherently low-rank while the remaining dynamic contrast

component is often sparse with respect to an appropriate temporal transformation

(e.g., wavelet/Fourier basis).

Specifically, in multicoil DCE-MRI, one acquires data Y ∈ Cnd consisting of k-

space data from nc coils corresponding to nt frames of ny × nx images [37]. Given

data Y , [1] recently proposed to reconstruct the MR frames by solving (3.7), where

A : Cnp×nt → Cnd is the linear multicoil encoding operator, which, for Cartesian

sampling, incorporates coil sensitivities and performs temporal fast Fourier trans-

form (FFT) operations, and T is a unitary temporal sparsifying transformation

2We discuss how to separate sparse corruptions from the dynamic foreground in Chapter IV.
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(a) Top: ground truth data, Y.
Bottom: observed data, X̃.
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(b) Proposed approach with r = 1 and
λS = 0.0035. NRMSE = 9.5%.
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(c) SVT-based updates with λL = 6.5 and
λS = 0.0035. NRMSE = 38.4%.
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(d) SVT-based updates with λL = 300 and
λS = 0.0035. NRMSE = 42.3%.

Figure 3.1: Two representative frames from the decompositions produced by the
proposed method (3.11) and the SVT-based method (3.8) on the Fountain sequence
with parameters δ = 0.0025, τk = 0.5, ps = 0.15, and K = 0.5. The row labels
L and S denote the low-rank and sparse components, respectively, returned by each
algorithm. The column labels denote the frame number (i.e., column of L and S) that
is displayed. Each panel is displayed on the same intensity scale. NRMSE values are
reported for the low-rank components using output of the SVT-based updates with
ps = 0 as ground truth.

(e.g., wavelet/Fourier transform). Here np := nynx and the solutions L̂, Ŝ ∈ Cnp×nt to

(3.7) are matrices whose columns are vectorized images corresponding to the low-rank

and sparse, respectively, components of the frames. The output of the algorithm is

X̂ := L̂+ Ŝ, (3.14)
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Figure 3.2: Example coil sensitivities for the cardiac perfusion data from [1].

Figure 3.3: Example k-space sampling masks for the cardiac perfusion data from [1].

a matrix whose columns contain the vectorized reconstructed MR frames.

Having mapped the DCE-MRI reconstruction problem to the language of (3.7),

we can now compare our proposed approach from (3.11) with the standard SVT-

based formulation. We packaged each update scheme into an algorithm by initializing

L0 = M0 = Y and S0 = 0 and terminating when ‖Mk −Mk−1‖F < δ‖Mk−1‖F for a

given stopping tolerance δ > 0. In all simulations we set δ = 0.0025 and used constant

step size tk = 1. The updates (3.8) require tuning the low-rank penalty parameter λL

and the sparsity penalty parameter λS, while our proposed updates (3.11) requires

tuning the rank parameter r and the sparsity penalty parameter λS. In the sequel, all

reported results were obtained by tuning the parameters of each algorithm to yield

the best results with respect to the performance metric of interest during each test.

3.6.2.1 Cardiac Perfusion Dataset #1

We first consider the cardiac perfusion data from [1]. The data Y contains mul-

ticoil k-space data from nc = 12 coils and nt = 40 frames, each with resolution

ny × nx = 128 × 128. The data was acquired via Cartesian sampling and was ret-

rospectively downsampled by a factor of eight with variable density ky − t sampling.

The associated encoding operator A incorporates the coil sensitivities and performs

temporal FFT operations. See [1] for additional technical acquisition specifications.

Figure 3.2 shows four of the coil sensitivity maps embedded in A, and Figure 3.3
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(a) SVT-based updates (3.8).
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(b) Proposed updates (3.11).

Figure 3.4: Four representative frames from the reconstructions on the cardiac perfu-
sion dataset from [1]. The columns of each panel show the final reconstruction L̂+ Ŝ,
the low-rank component L̂, and the sparse component Ŝ, respectively, produced by
each method.

shows four of the random k-space sampling masks embedded in A.

Figure 3.4 compares the reconstructions produced by each method for a represen-

tative subset of the frames with parameters tuned to yield qualitatively good images.

In particular, we set r = 2. The proposed approach improves the clarity of the

myocardial wall, particularly in frames 2 and 40. Comparison of the sparse com-

ponents produced by the two algorithms suggests that the proposed approach more

fully exploits the spatiotemporal correlation of the frame backgrounds. Indeed, more

frame-independent body regions were absorbed in the low-rank component of the

proposed approach while the resulting sparse components primarily contain traces of

the contrast enhancement, which is intuitively pleasing.

A drawback of the SVT operator in the L-update of (3.8) is that it uniformly

shrinks all singular values. This results in unnecessary degradation of the large sin-

gular values of Mk−Sk, which contain high signal-to-noise ratio image features. The

L-update in the proposed updates (3.11) avoids this phenomenon by applying a non-

linear shrinkage that heavily penalizes small singular values while lightly penalizing
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Noise strength (C) 9 11 13 15 17 19 21 23

SVT-based updates 14.5 16.8 19.3 21.6 23.0 23.7 24.1 24.9
Proposed updates 14.1 16.5 18.1 18.9 20.0 20.9 21.7 22.5

Table 3.1: NRMSE values as percentages for reconstructions of the cardiac perfusion
data from [1] as a function of retrospective noise variance C/n2

p. The best NRMSE
for each trial is in bold.

large singular values. As a result, our proposed approach yields sharper low-rank im-

ages than the analogous SVT-based formulation without sacrificing compressibility,

i.e., without increasing the rank of L̂ (recall that we set r = 2).

To quantitatively compare the performance of the algorithms, we retrospectively

added Gaussian noise with variance C/n2
p over a range of C values to the k-space

data and measured the resulting normalized root mean squared error (NRMSE) of

each algorithm, defined as

NRMSE(X̂) =
‖X̂ −Xtrue‖F
‖Xtrue‖F

, (3.15)

where X̂ = L̂+ Ŝ are the reconstructed frames produced by each algorithm, and we

used the output of the algorithm for (3.8) on the original data as the ground truth,

Xtrue. Table 3.1 shows that the proposed approach produces lower NRMSE over the

range of noise variances tested.

3.6.2.2 Cardiac Perfusion Dataset #2

We also consider the cardiac perfusion data from [2, 3]. In this case, we have ac-

cess to a reference reconstruction Xtrue computed from fully-sampled data containing

nt = 70 frames, each with resolution ny × nx = 190 × 90. We generated k-space

data Y corresponding to Xtrue via an encoding operator A that implements a single-

coil, radially sampled MR imaging system with eightfold acceleration. See [2, 3] for

additional details about the data acquisition procedure.

Figure 3.5 compares the reconstructions produced by each method for a repre-

sentative subset of the frames with parameters tuned to yield qualitatively superior

images. In particular, we again set r = 2. The reconstructed frames are quite similar,

but the sparse components recovered by the proposed approach contain more contrast

enhancement than those recovered by solving (3.7), which is qualitatively pleasing.

The approach based on solving (3.7) absorbed more contrast enhancement into the
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(a) SVT-based updates (3.8).
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(b) Proposed updates (3.11).

Figure 3.5: Four representative frames from the reconstructions on the cardiac per-
fusion dataset from [2, 3]. The columns of each panel show the final reconstruction
L̂+Ŝ, the low-rank component L̂, and the sparse component Ŝ, respectively, produced
by each method.

Noise strength (C) 0 1 2 3 4 5 10 15

SVT-based updates 16.5 16.6 16.9 17.5 18.3 19.2 23.8 27.3
Proposed updates 15.6 15.8 16.2 17.1 18.3 19.2 23.5 26.5

Table 3.2: NRMSE values in percent for reconstructions of the cardiac perfusion data
from [2, 3] as a function of retrospective noise variance C/n2

p. The best NRMSE for
each setting is in bold.

low-rank components. Table 3.2 compares the NRMSE with respect to Xtrue attained

by both approaches when Gaussian noise with variance C/n2
p is retrospectively added

to the k-space data. The proposed approach produces lower NRMSE over the range

of noise variances tested.

27



3.7 Conclusions

In this chapter, we proposed a new robust PCA algorithm that utilizes an optimal

low-rank matrix estimator (OptShrink) to estimate the low-rank model component,

and we demonstrated the application of our algorithm to background subtraction

and dynamic MRI reconstruction from highly undersampled measurements. Our

numerical experiments show that the proposed method compares favorably to exist-

ing methods in both qualitative reconstruction quality and quantitative robustness

to noise. Intuitively, our algorithm preserves the quality of high signal-to-noise ra-

tio components of the data without sacrificing compressibility, while also producing

sparse components with fewer temporally static elements than the existing methods.

Applying our proposed method to other inverse problem settings in which robust

PCA are suitable is an interesting area for future work.
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CHAPTER IV

Panoramic Robust PCA for

Foreground-Background Separation on Noisy,

Free-Motion Camera Video

4.1 Introduction

Principle component analysis (PCA) is an important method in signal processing

and statistics for uncovering latent low-rank structure in high dimensional datasets.

In turn, low-rank structure is an important model in computer vision because the high

temporal correlation of video naturally admits a low-rank representation. Although

PCA is stable in the presence of relatively small noise, it is well-known that even a

few large outliers in the data can cause PCA to breakdown completely.

To mitigate the breakdown of PCA, robust PCA algorithms have recently been

proposed that seek to decompose a data matrix into a low-rank component and a

sparse component. Recent works [31, 32, 38, 39] have established that one can ex-

actly recover the low-rank and sparse components of a matrix Y under some mild

assumptions in the noiseless setting by solving a convex optimization problem of the

form
min
L,S

‖L‖? + λ‖S‖1

s.t. Y = L+ S,
(4.1)

where ‖L‖? is the nuclear norm (sum of singular values) of the low-rank component

and ‖S‖1 is the elementwise `1 norm of the sparse component. Simple alternating

algorithms exist [31] for solving (4.1), which has lead to widespread adoption of robust

PCA methods in practice.

Robust PCA has found many applications in computer vision problems. For

example, in [40] a robust PCA-based method is developed to learn low-rank textures
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from corrupted two-dimensional (2D) images of a 3D scene. Or in [41] robust PCA is

used to align a batch of linearly correlated images in the presence of gross corruptions

such as occlusions. Other applications of robust PCA in vision applications include

subspace segmentation and feature extraction [42] and robust subspace clustering [43].

In this work, we focus on another key problem in computer vision: foreground-

background separation. Specifically, we consider robust foreground-background sep-

aration, where one decomposes a scene into a static background component and a

dynamic foreground component in the presence of corruptions. Such decompositions

are valuable in vision applications because the components contain useful information

for subsequent processing. For example, the foreground component is useful for mo-

tion detection [44], object recognition [45], moving object detection [46,47] and video

coding [48]. The background component can also be useful in applications such as

background subtraction [49, 50], where one estimates a background model of a scene

and then discriminates moving objects by subtracting the model from new frames.

The paper [46] provides an overview of robust PCA methods for video surveillance

applications.

4.1.1 Background

There has been substantial work on foreground-background separation. For exam-

ple, in [49] the authors propose a non-parametric model for background subtraction,

and a probabilistic background model for tracking applications is developed in [51].

Alternatively, supervised approaches like GMM [52] learn a model of the background

from labeled training data. Other lines of research have focused on performing back-

ground subtraction when the background is known to contain dynamic elements.

Examples include a motion-based model [53] that utilizes adaptive kernel density

estimation and an online autoregressive model [54] for modeling and subtracting dy-

namic backgrounds from scenes. In [55] a robust Kalman filter-based approach is

developed to segment foreground objects from dynamic textured backgrounds. The

paper [50] surveys classic background subtraction methods.

More recently, robust PCA methods have been proposed [31, 32, 56, 57] that de-

compose video into a low-rank component containing the background and a spatially

sparse component that captures the foreground of the scene. Typically the original

robust PCA problem (4.1) is extended to the noisy case by relaxing the equality

constraint to an inequality constraint, e.g., as in [33], or by adding a data fidelity

term and solving an unconstrained problem. Of particular interest in this work is

the robust PCA formulation proposed in [1], which, although it was presented for the

30



specific application of dynamic medical imaging, proposes a robust PCA framework

applicable for general inverse problems. We refer to this model as the RPCA method.

Although standard sparsity-based foreground models are effective in the noise-

less scenario, they are unable to distinguish foreground from sparse corruptions. In

this context, models employing total variation (TV) have been proposed to model

the spatial continuity of the foreground of a scene [56, 58]. Recently, the TVRPCA

method [59] was proposed to separate dynamic background from moving objects using

TV-based regularization, which demonstrates that TV-based models can effectively

distinguish foreground from sparse corruptions.

Another important class of foreground-background separation models are those

that can handle dynamic scenes arising, e.g., from moving camera video. In such

cases, the background of the raw video may not be low-rank, so care is required to

map the problem to an appropriate model that recovers low-rank structure. One

approach to moving camera video is to adopt an online learning framework where

batches of frames are sequentially processed and the foreground-background model is

sequentially updated based on the latest batch. One popular approach is GRASTA

[60, 61], which models the background as a subspace on the Grassmannian manifold

and develops an iterative algorithm for tracking the low-rank subspace. A recent

online method for low-rank and sparse decomposition is REProCS [62, 63]. Other

methods use parameteric models to estimate the transformations that describe the

motion in the scene. A robust PCA-based model was proposed in [64] that iteratively

estimates the decomposition along with the parameters of an affine transformation

model, but this approach considers only the intersection (common view) of the scene.

The state-of-the-art method in this area is DECOLOR [65], which employs a robust

PCA model with `0-based regularization and a Markov random field model to jointly

estimate the dynamic background and the support of the foreground.

4.1.2 Contributions

In this chapter, we propose a robust foreground-background separation method

based on the robust PCA framework that can decompose a corrupted video with

freely moving camera into a panoramic low-rank background component and a smooth

foreground component. Our algorithm proceeds by registering the frames of the raw

video to a common reference perspective and then minimizing a modified robust PCA

cost that accounts for the unobserved data resulting from the partially overlapping

views of the registered frames.

Our proposed method advances the state-of-the-art in several key aspects. First,
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our method produces a panoramic background component that spans the entire field

of view, whereas existing parametric models typically only estimate the subspace

spanning the intersection of the views. This panoramic property is useful because

it allows one to produce a denoised version of the entire moving camera video. Our

background model also employs an improved low-matrix estimator (OptShrink) [26]

that has been shown to yield superior subspace estimate in practice compared to

singular value thresholding-based approaches [6, 16]. Second, our method separates

the dynamic foreground of a scene from sparse corruptions using TV regularization;

our numerical experiments indicate that our formulation produces more accurate

foreground estimates compared to existing TV-based methods. We account for the

deforming view in the registered frames by considering a weighted total variation

penalty that omits differences involving unobserved pixels, and we propose an efficient

algorithm for minimizing this objective.

In this chapter, we perform extensive numerical experiments comparing our pro-

posed method to state-of-the art methods in both the static and moving camera

settings. In our numerical experiments, we consider multiple corruption models, in-

cluding dense noise, sparse outliers, and missing data. In the latter case, we extend

both our method and the state-of-the-art methods to model missing data to facili-

tate this numerical study. We also improve the computational efficiency of the total

variation-related components of our proposed method.

4.1.3 Organization

The chapter is organized as follows. In Section 4.2, we describe our video regis-

tration strategy. Section 4.3 formulates our proposed augmented robust PCA model,

and we present our algorithm for solving it in Section 4.4. In Section 4.5, we provide

extensive numerical experiments that demonstrate the state-of-the-art performance

of our method compared to existing methods on static and moving camera video

under a variety of corruption models. Finally, Section 4.6 concludes and discusses

opportunities for future work.

4.2 Video Registration

The vast majority of video data gathered today is captured by moving (e.g., hand-

held) cameras. To process this data in a robust PCA framework, our approach is to

register the raw video—i.e., map the frames to a common reference perspective—and

then jointly process the registered data. In this work, we adopt the standard perspec-
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Figure 4.1: The video registration process. The top row depicts raw video frames Fk
with SURF features annotated. The bottom row depicts the corresponding registered
frames F̃k computed via (4.5). The kth column of the mask matrix M ∈ {0, 1}mn×p
encodes the support of F̃k within the aggregate view; i.e., Mik = 0 for unobserved
pixels, which are represented by white space in the registered frames above.

tive projection model [66], which relates different views of a scene via homographic

transformations.

4.2.1 Registering Two Frames

Consider a point (x, y) in a frame that is known to correspond to a point (x̃, ỹ)

in another frame. Under a planar surface model, one can relate the points via the

projective transformation

κp̃ = HTp, (4.2)

where p̃ = [x̃, ỹ, 1]T , p = [x, y, 1]T , κ 6= 0 is an arbitrary scaling constant, and

H ∈ R3×3 with H33 = 1 is the unknown projective transformation matrix. Given

d > 3 correspondences {(xi, yi) 7→ (x̃i, ỹi)}di=1, one can estimate H in a least squares

sense by minimizing [66]

min
h
‖Ah‖2 s.t. h9 = 1, (4.3)

where h = vec(H) is the vectorized version of h formed by stacking the columns of

H into a vector, AT =
[
AT1 , . . . , A

T
d

]
, and

Ai =

[
0 pTi −ỹipTi
pTi 0 −x̃ipTi

]
∈ R2×9. (4.4)

The solution to (4.3) is the smallest right singular vector of A, scaled so that the last

element is 1.

To estimate H in practice, one must also generate correspondences (xi, yi) 7→
(x̃i, ỹi) between points in the frames. In this work, we adopt the standard procedure

[66] of computing SURF features [67] for each frame and then using the RANSAC [68]

algorithm to find a robust subset of the correspondences that produce a solution Ĥ
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to (4.3) with small cost. Importantly, this robust approach can generate accurate

transformations in the presence of corruptions in the raw video.

4.2.2 Registering a Video

One can readily extend the two-frame registration procedure from Section 4.2.1

to a video by iteratively constructing homographies Hk := Hk 7→k+1 between frames

k and k + 1 of the video and then composing the homographies to map all p frames

to an anchor frame k̃ ∈ {1, . . . , p}. Here, we choose the middle frame k̃ = bp/2c.
Consecutive frames of a video are highly correlated, so the homographies Hk can be

computed with high accuracy.

Let F1, . . . , Fp ∈ Ra×b denote the frames of a moving camera video, and denote by

Hk := Hk 7→k+1 the linear transformation that applies the projective transformation

(4.2) defined by Hk to each pixel of Fk. One can register the frames with respect to

anchor frame k̃ by computing

F̃k =


(Hk̃−1 ◦ Hk̃−2 ◦ · · · ◦ Hk)(Fk) k < k̃,

Fk k = k̃,

(H−1

k̃
◦ H−1

k̃+1
◦ · · · ◦ H−1

k−1)(Fk) k > k̃,

(4.5)

for each k = 1, . . . , p. The above procedure yields F̃1, . . . , F̃p ∈ Rm×n, a collection of

registered frames in a common perspective, where m and n are the height and width

of the region defined by the union of the registered frame extents. See Figure 4.1 for

a graphical depiction of this procedure applied to a moving camera video.

The registered frames F̃k form a static camera video in the sense that a given

coordinate (F̃k)ij now corresponds to the same spatial location for each frame k.

If the composite projective transformation mapping Fk to F̃k is not the identity

transformation, the matrix F̃k will contain some pixels that correspond to locations

outside the view of the original frame Fk. Without loss of generality, we set such

unobserved pixels to zero in F̃k.

4.3 Problem Formulation

In this section, we describe our proposed robust PCA framework for panoramic

foreground-background separation. We first describe our model, discuss our treatment

of total variation for moving camera video, and then we present our problem formu-

34



lation. We discuss our algorithm for solving the proposed problem in Section 4.4.

4.3.1 Data Model

Given the registered frames F̃1, . . . , F̃p ∈ Rm×n of a moving camera video com-

puted as in Section 4.2, we construct the data matrix Y ∈ Rmn×p

Y =
[
vec(F̃1) . . . vec(F̃p)

]
(4.6)

whose columns are the vectorized registered frames. Associated with Y , we also define

the mask matrix M ∈ {0, 1}mn×p whose columns encode the support of the registered

frames in the aggregate view. See Figure 4.1 for a graphical depiction.1

The representation (4.6) is useful because each row of Y corresponds to a fixed

point in space, so we have effectively reduced the moving camera foreground-background

separation problem to a static camera problem with incomplete observations (corre-

sponding to the zeros in M). Thus, with suitable modifications to account for the

missing data, we can readily apply ideas from standard static camera foreground-

background separation. In particular, our approach is to model the observed data Y

with a decomposition of the form

PM(Y ) = PM(L+ S + E +N), (4.7)

where PM denotes the orthogonal projection onto M :

[PM(X)]ij =

Xij Mij = 1

0 Mij = 0.
(4.8)

In (4.7), L represents the (registered) background of the video, and S represents the

foreground. Furthermore, the matrix E captures possible sparse corruptions in the

video, and N captures possible dense corruptions. Note that the projection operators

in (4.7) exclude unobserved pixels from our model, so we are not attempting to impute

the unobserved pixels of the scene; rather we are expressing the moving camera video

as a “static” space-time matrix where each row corresponds to a fixed point in space.

Since our data is registered, the background will have high temporal correlation

and thus can be well-modeled as a low-rank matrix [59]. In the standard robust PCA

1When processing video that is known (or modeled) to have a static camera, one can omit the
video registration step and directly construct the data matrix Y by vectorizing each frame of the
raw video. In this case, the corresponding mask matrix M is the all-ones matrix.
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model [31], the foreground component S is modeled as a sparse matrix. However, we

are interested in reliably estimating the foreground in the presence of sparse corrup-

tions, so a sparse model for S will be indistinguishable from the sparse corruptions.

Instead, we model S as a smoothly-varying matrix and, motivated by the recent TVR-

PCA method [59], use a total variation-based regularization framework to estimate

S. In the moving camera setting, we will consider a weighted total variation penalty

that avoids penalizing first differences involving unobserved pixels. Motivated by the

vast compressed sensing literature [69,70], we model E as a sparse matrix and employ

`1-based regularization to estimate it. Finally, we model N as a dense noise matrix,

and we estimate it by imposing the familiar least-squares-based regularization. We

explicitly describe the optimization problem that we employ to learn the model (4.7)

in Section 4.3.3.

4.3.2 Weighted Total Variation

Total variation regularization is a ubiquitous method in image and video process-

ing for reconstructing signals corrupted by noise [71–73]. In particular, in this work,

given a matrix X ∈ Rmn×p whose columns contain the vectorized m× n frames of a

video, we consider the weighted anisotropic TV of X:

TV(X) =
∑
ijk

(
wxijk|xi+1jk − xijk|+ wyijk|xij+1k − xijk|+ wzijk|xijk+1 − xijk|

)
. (4.9)

Here, we use a slight abuse of notation by implicitly referencing the vectorized video

x = vec(X) ∈ Rmnp in the definition and using xijk to denote the pixel (i, j) from

frame k of the video—i.e., the (i+m(j−1), k) entry of X. In (4.9), wxijk, w
y
ijk, and wzijk

are fixed {0, 1} weights that omit first differences involving the unobserved pixels that

lie outside the extent of the registered frames. These weights can be readily computed

from the mask matrix M (see Figure 4.1). We omit the summation indices in (4.9) for

brevity, but it should be understood that we are not considering the first differences

corresponding to circular boundary conditions in our model (e.g., x1jk − xmjk).
Smoothly varying objects with few sharp edges will have low TV, so (4.9) is a

good model for the foreground of a video [71–73]. Conversely, sparse corruptions will

have very high TV, so it is reasonable to expect that (4.9) will be able to distinguish

the foreground from sparse corruptions.

Subsequently, we will refer to (4.9) as three-dimensional (3D) TV because it pe-

nalizes both the spatial first differences between neighboring pixels in a given frame

and the temporal differences between a given pixel in consecutive frames. Such a
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model may be appropriate for datasets with high temporal correlation, e.g., due to

a slowly moving camera. However, in other cases, it may be preferable to omit the

temporal differences from (4.9) by setting wzijk = 0. We refer to this latter model as

2D TV.

4.3.2.1 Matrix-Vector Representation

When describing our proposed algorithm in Section 4.3.3, it will be convenient for

us to express the TV penalty (4.9) using matrix-vector operations.

In the 1D case, one can compute the first differences of z ∈ Rn with the matrix-

vector product Dnz, where Dn ∈ Rn×n is the circulant first differences matrix

Dn =



−1 1

−1 1

. . . . . .

−1 1

1 −1


. (4.10)

Note that we include the first difference [Dnz]n = z1 − zn corresponding to circular

boundary conditions in this computation, although we omit these circular differences

from our TV penalty (4.9). We do this because we will later leverage the fact that

Dn is a circulant matrix. Using this notation, we can write the 1D TV penalty as

TV(z) = ‖WDnz‖1, where W is the diagonal matrix with Wkk = 1 for k < n and

Wnn = 0, which omits the circular boundary difference. In general, one can omit

other first differences by setting the corresponding diagonal entry of W to zero.

In the 3D case when x ∈ Rmnp, one can compute the first differences along each

dimension of the vectorized m×n×p tensor by computing the matrix-vector product

Cx, where C ∈ R3mnp×mnp is the matrix

C =


Ip ⊗ In ⊗Dm

Ip ⊗Dn ⊗ Im
Dp ⊗ In ⊗ Im

 . (4.11)

In (4.11), In is the n×n identity matrix and ⊗ denotes the Kronecker product. Again,

we have included the first differences corresponding to circular boundary conditions

for mathematical convenience so that C is constructed from Kronecker products of
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circulant matrices. Using this definition, we can write

TV(X) = ‖WCx‖1, (4.12)

where W is the diagonal {0, 1}matrix that omits first differences involving unobserved

pixels and those corresponding to circular boundary conditions. Concretely, one has

W = diag(vec(wx),vec(wy),vec(wz)), (4.13)

where wx, wy, and wz are the m×n×p tensors containing the weights from (4.9) and

we set wxmjk = wyink = wzijp = 0 for all ijk to omit the circular boundaries. Here, vec(·)
converts an m×n×p tensor into a vector by stacking the columns of each frame into

length-mn vectors and then stacking these vectors to form a single length-mnp vector,

and diag(· · · ) constructs a diagonal matrix from the vector formed by concatenating

its vector arguments into a single vector. We will rely on the equivalent representation

(4.12) of (4.9) when presenting our proposed algorithm in Section 4.3.3.

4.3.3 Proposed Optimization Problem

To learn a decomposition of the form (4.7), we propose to solve the augmented

robust PCA problem

min
L,S,E,N

λL‖L‖? + λSTV(S) + λE‖E‖1 + 1
2
‖N‖2

F

s.t. PM(Y ) = PM(L+ S + E +N).

(4.14)

Equivalently, one can eliminate matrix N in (4.14) and instead consider the uncon-

strained problem

min
L,S,E

1
2
‖PM(Y − L− S − E)‖2

F + λL‖L‖? + λSTV(S) + λE‖E‖1. (4.15)

Here, TV(·) is the weighted TV penalty defined in (4.9) and the parameters λL, λS, λE ≥
0 are regularization parameters that control the relative contribution of each term to

the overall cost. It is well-known that each term in (4.15) is a convex function, so

(4.15) is a convex problem.

As discussed in Section 4.3.1, the L component of our model represents the back-

ground of the video, which we model as a low-rank matrix and thus regularize with

the nuclear norm. The S component represents the foreground, which we model as

a smoothly-varying matrix with sharp edges and regularize with the weighted TV

38



penalty. The E component represents sparse corruptions, which we model as a sparse

matrix and regularize with the familiar `1 penalty. The first term in (4.15) is a data

fidelity term that forces the decomposition L+S+E to approximately agree with the

data Y at the observed pixel locations encoded by the mask matrix M . The choice

of ‖·‖2
F for the data fidelty term captures residual dense corruptions in the data.

Our proposed problem (4.15) differs from the recent RPCA [31], TVRPCA [59],

and DECOLOR [65] methods in several key ways. First, in the moving camera set-

ting, our frame registration and masking strategy allows us to reconstruct the full

field of view of the scene, while DECOLOR only estimates the overlapping (intersec-

tion) view. Second, we regularize the foreground component of our model using TV

alone, while the TVRPCA method includes both `1 and TV-based regularization on

its foreground model, which is overly restrictive because the foreground need not be

spatially sparse. Finally, our model improves on the standard RPCA model by in-

cluding the TV-regularized component to disentangle the foreground S from possible

sparse corruptions, which are isolated in the E component.

4.4 Algorithm and Properties

In this section we derive our algorithm for solving (4.15), present an important

modification to the low-rank update, and discuss the properties of our algorithm.

4.4.1 Proximal Gradient Updates

We use the proximal gradient method [25] to minimize (4.15). The proximal gra-

dient method is an iterative algorithm for solving problems of the form f(X) + g(X),

where f is convex and differentiable and g is convex and has an easily computable

proximal operator

proxg(Y ) := arg min
X

1
2
‖Y −X‖2

F + g(X). (4.16)

The proximal gradient method prescribes updates of the form

Xk+1 = proxτkg(X
k − τ k∇f(Xk)), (4.17)

where ∇f denotes the gradient of f and τ k > 0 is a chosen step size. It is known [25]

that the proximal gradient method converges when a constant step size τ k = τ <

2/L∇f is used, where L∇f is the Lipschitz constant for ∇f . In fact, the iterates Xk

will monotonically decrease the cost when a constant step size τ ≤ 1/L∇f is used [25].
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To map (4.15) into a suitable form for proximal gradient, we identify f(L, S,E) =
1
2
‖PM(Y − L − S − E)‖2

F and g(L, S,E) = λL‖L‖? + λSTV(S) + λE‖E‖1, which

we regard as functions of the single variable X = [L S E]. Under these definitions,

a simple computation shows that ∇f = [∇fL ∇fS ∇fE], where ∇fL(L, S,E) =

∇fS(L, S,E) = ∇fE(L, S,E) = PM(L+S+E−Y ). Since g is the sum of three func-

tions, its proximal operator (4.16) can be computed separately for each component.

Thus our proximal update scheme for (4.15) can be written as

Uk+1 = PM(Lk + Sk + Ek − Y )

Lk+1 = proxτkλL‖·‖?(L
k − τ kUk+1)

Sk+1 = proxτkλSTV(Sk − τ kUk+1)

Ek+1 = proxτkλE‖·‖1(E
k − τ kUk+1),

(4.18)

where we have introduced the auxiliary variable U for notational convenience. It is

straightforward2 to show that L∇f = 3, so a constant step size τ < 2/3 suffices to

guarantee convergence.

The proximal operators for the L and E updates in (4.18) have simple, closed-form

solutions. Indeed, it is well-known that the solution to the nuclear-norm-regularized

problem

arg min
L

1
2
‖Z − L‖2

F + λ‖L‖? (4.19)

is given by the singular value thresholding operator [24,31]

SVTλ(Z) :=
∑
i

(σi − λ)+uiv
T
i , (4.20)

where Z =
∑

i σiuiv
T
i is the singular value decomposition (SVD) of Z, and (·)+ =

max(·, 0). The solution to the `1-regularized problem

arg min
E

1
2
‖Z − E‖2

F + λ‖E‖1 (4.21)

is given by the elementwise soft thresholding operator [31]

softλ(z) = sign(z)(|z| − λ)+. (4.22)

2One can write f(x) = ‖y− [A A A]x‖22, where y = vec(PM (Y )) are the vectorized observations,
x = [vec(L)T vec(S)T vec(E)T ]T is the concatenation of the vectorized model variables, and
A = diag(vec(M)) is the diagonal {0, 1} matrix that encodes the observation mask M . Therefore
L∇f = ‖[A A A]‖2 = 3‖A‖2 = 3.
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The proximal operator for the weighted TV penalty (4.9) does not have a closed-

form solution in general,3 so we instead refer to this proximal operator implicitly as

the solution to the (weighted) total variation denosing (TVDN) problem

TVDNλ(Z) := arg min
S

1
2
‖Z − S‖2

F + λTV(S). (4.23)

Using the above results and notation, we can express the proximal updates (4.18) as

Uk+1 = PM(Lk + Sk + Ek − Y )

Lk+1 = SVTτkλL(Lk − τ kUk+1)

Sk+1 = TVDNτkλS(Sk − τ kUk+1)

Ek+1 = softτkλE(Ek − τ kUk+1),

(4.24)

where it remains to describe how to compute Sk+1.

4.4.2 Total Variation Denoising Updates

Using the notation from Section 4.3.2, we can equivalently express the operator

TVDNλ(Z) as the solution to the vector-valued problem

min
s

1
2
‖z − s‖2

2 + λ‖WCs‖1, (4.25)

where z = vec(Z) and the matrices W and C are defined as in (4.12). We solve

(4.25) using the alternating direction method of multipliers (ADMM) [74], a powerful

general-purpose method for minimizing convex problems of the form f(x) + g(x)

subject to linear equality constraints. To apply ADMM, we perform the variable

split v = Cs and write (4.25) as the equivalent constrained problem

min
s

1
2
‖z − s‖2

2 + λ‖Wv‖1

s.t. Cs− v = 0,
(4.26)

3There is a closed-form solution in the special case of static camera video when circular boundary
conditions are allowed in the TV penalty. In this case, the W matrix in (4.13) is the identity matrix
and our proposed ADMM updates in Section 4.4.2 in fact converge in one iteration.
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which is in the standard form for ADMM.4 The ADMM updates for (4.26) are

sk+1 = arg min
s

1
2
‖z − s‖2

2 + ρ
2
‖Cs− vk + uk‖2

2

vk+1 = arg min
v

λ‖Wv‖1 + ρ
2
‖Csk+1 − v + uk‖2

2

uk+1 = uk + Csk+1 − vk+1

(4.27)

with parameter ρ > 0. The s update in (4.27) is a least squares problem with normal

equation

(I + ρCTC)sk+1 = z + ρCT (vk − uk), (4.28)

so the solution could in principal be obtained by computing the matrix inverse (I +

ρCTC)−1. However, this matrix has a special block-circulant structure that admits

a fast closed-form solution using fast Fourier transforms (FFTs). Indeed, the exact

solution can be computed [59,75] as

sk+1 = F−1
3

[
F3(z + ρCT (vk − uk))

1 + ρF3(c)

]
, (4.29)

where F3 : Rmnp → Rmnp denotes the operator that reshapes its input into an m×n×p
tensor, computes the 3D Fourier transform, and vectorizes the result; c is the first

column of CTC; and division is performed elementwise. The denominator of (4.29)

is a constant and can be precomputed.

The vector c ∈ Rmnp has special structure. Indeed, one can show that

c = vec(|F1(dm)|2 ◦ |F1(dn)|2 ◦ |F1(dp)|2), (4.30)

where F1(·) denotes the 1D Fourier transform of a vector; |·|2 denotes elementwise

squared-magnitude; the vector dn = [−1 0 . . . 0 1]T ∈ Rn is the first column of (4.10);

and T = a ◦ b ◦ c is the order three tensor sum of vectors a, b, and c—i.e., the tensor

with entries Tijk = ai + bj + ck.

The W matrix in the v-update of (4.27) is a diagonal matrix, so the v update

has a simple closed-form solution involving elementwise soft-thresholding with an

entry-dependent threshold, which we write as

vk+1 = soft(Cxk+1 + uk, (λ/ρ)w), (4.31)

4Note that we choose the split v = Cs rather than the split v = WCs because the resulting
ADMM updates in the former case have efficient closed-form solutions that leverage the block-
circulant structure of C (4.11).
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where soft(x, y) = sign(x)� (x− y)+ is interpreted elementwise for vectors and w is

the main diagonal of W .

4.4.3 Improved Low-Rank Update

Motivated by recent work [6,16], we propose to replace the SVT operator in the L

update of (4.24) with an improved low-rank matrix estimator (OptShrink) [26] that

has been shown to produce superior low-rank components in practice. Our proposed

(modified) update scheme thus becomes

Uk+1 = PM(Lk + Sk + Ek − Y )

Lk+1 = OptShrinkr
(
Lk − τ kUk+1

)
Sk+1 = TVDNτkλS(Sk − τ kUk+1)

Ek+1 = softτkλE(Ek − τ kUk+1).

(4.32)

In (4.32), OptShrink(·) is the low-rank matrix estimator defined for a given param-

eter r > 0 as

OptShrinkr(Z) =
r∑
i=1

(
−2

DµZ (σi)

D′µZ (σi)

)
uiv

H
i , (4.33)

where Z =
∑

i σiuiv
T
i is the SVD of Z ∈ Ra×b. In (4.33), the D-transform is defined

for a given probability measure µ as

Dµ(z) =

[∫
z

z2 − t2
dµ(t)

]
×

[
c

∫
z

z2 − t2
dµ(t) +

1− c
z

]
, (4.34)

where D′µ(z) is the derivative of Dµ(z) with respect to z, c = min(a, b)/max(a, b),

and µZ(t) = 1
q−r
∑q

i=r+1 δ(t − σi) is the empirical mass function of the noise-only

singular values of Z with q = min(a, b). Note that the integrals in the D-transform

terms in (4.33) reduce to summations for this choice of µZ , so they can be computed

efficiently.

The OptShrinkr(Z) operator computes the rank r truncated SVD of Z and then

applies the shrinkage function defined by the parenthesized term in (4.33) to the

leading singular values. We refer to the D-transform term as a shrinkage function

because it shrinks its argument towards zero [26]. In contrast, the SVTλ(Z) operator

(4.20) applies a constant shrinkage level λ to all singular values.

The OptShrink estimator provides two key benefits over SVT. First, it applies

a data-driven shrinkage to the singular value spectrum of its argument, the form of
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which is imputed from the non-leading (noise) singular values. Generically, a smaller

shrinkage is applied to larger—and hence more-informative—singular values and a

comparatively larger shrinkage to smaller singular values. The effect of this nonlinear

shrinkage is to produce an improved estimate of the underlying low-rank matrix

embedded in the data [26]. See Chapter II of this thesis for further details. Second,

OptShrink has a single parameter r that directly specifies the rank of the output

matrix. In the context of this work, it is very natural to set the rank parameter.

Indeed, since our data Y from (4.6) is registered, we can model the background

of the registered video as static. In this case, the low-rank component L of our

model (4.7) should ideally be a rank-1 matrix whose columns are repeated (up to

scaling) vectorized copies of the static background image. In practice, the registered

background may not be perfectly static, but it will still have high temporal correlation,

so a small rank (r = 2, 3, . . .) will often suffice. In fact, our numerical experiments in

Section 4.5 show that the OptShrink-based updates are robust to rank overestimation

in the sense that performance degrades slowly as r increases beyond its optimal value.

OptShrink is data-driven and thus does not correspond to the proximal operator

of a penalty function φ(L), so the updates (4.32) are not proximal gradient updates

for a cost function like (4.15). Nonetheless, recent alternating minimization schemes

involving OptShrink [6,16] have proven to be numerically stable and yield convergent

iterate sequences, and our numerical experiments in Section 4.5 corroborate these

findings.

4.4.4 Accelerated Proximal Gradient Updates

The proximal gradient-based updates (4.32) are perfectly suitable for use in prac-

tice. However, one can also consider various accelerated proximal gradient algorithms

that include an extrapolation step in (4.17) to improve the convergence rate of the

iterates. In this chapter, we adopt the accelerated proximal gradient algorithm due

to Nesterov [76] in place of the (standard) proximal gradient updates in (4.32), which

have the optimal worst-case convergence rate. Nesterov-accelerated proximal updates

have enjoyed fruitful use in practice, e.g., the well-known FISTA algorithm [36]. In

any case, we propose to use the following accelerated iterations with OptShrink-based
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low-rank updates:

tk+1 =
1

2

(
1 +

√
1 + 4(tk)2

)
Lk+1 = Lk +

tk − 1

tk+1

(
Lk − Lk−1

)
Sk+1 = Sk +

tk − 1

tk+1

(
Sk − Sk−1

)
Ek+1 = Ek +

tk − 1

tk+1

(
Ek − Ek−1

)
Uk+1 = PM(Lk+1 + Sk+1 + Ek+1 − Y )

Lk+1 = OptShrinkr
(
Lk+1 − τ kUk+1

)
Sk+1 = TVDNτkλS(Sk+1 − τ kUk+1)

Ek+1 = softτkλE(Ek+1 − τ kUk+1),

(4.35)

initialized with t0 = 0. If one uses the SVT-based L update from (4.24) instead of the

above OptShrink-based L update, then the accelerated proximal gradient updates are

guaranteed to minimize the cost (4.15) when a constant step size 0 < τ ≤ 1/L∇f =

1/3 is used [25]. The modified updates (4.35) do not correspond to proximal updates

for a fixed cost function, but we nonetheless observe that constant step sizes 0 < τ ≤
1/3 work well in practice.

Algorithm 4.2 summarizes the proposed algorithm with accelerated proximal gra-

dient steps and OptShrink-based low-rank updates. Henceforward, we refer to our

method as Panoramic Robust PCA (PRPCA).

4.4.5 Complexity Analysis

We now analyze the computational complexity of our PRPCA method from Algo-

rithm 4.2. For each outer iteration, the U and E updates require O(mnp) operations,

and the cost of computing the L update is O(m2n2p)—the cost of computing the SVD

of a tall mn× p matrix [77]. Finally, the cost of updating E using the ADMM-based

scheme (4.27) is O(Kmnp log(mnp)), where K is the number of ADMM iterations

applied and the per-iteration cost is determined by the cost of computing a 3D FFT

of an m× n× p tensor [78]. Therefore the overall per-iteration cost of our proposed

algorithm is dominated by the cost of computing the SVD of a mn× p matrix, which

is the same complexity as RPCA, TVRPCA, and most other robust PCA algorithms

involving rank penalties.

In practice, moving camera video magnifies the size of the registered data Y

45



PRPCA Algorithm
Inputs: Video frames F1, . . . , Fp and parameters r > 0, λS > 0, λE > 0,
τ ≤ 1/3, ρ > 0, and K > 0

Compute registered frames F̃1 . . . F̃p via (4.5)
Construct Y and M matrices via (4.6)
Initialization: U0 = L0 = Y , S0 = E0 = 0, t0 = 0, and k = 0
While not converged:

1. Compute tk, Lk, Sk, Ek and Uk according to (4.35)

2. Update Lk and Sk via (4.35)

3. Update Ek by performing K iterations of (4.27)

4. k = k + 1
End
Outputs: Decomposition {L, S, E}

Figure 4.2: Summary of the proposed PRPCA algorithm.

processed by our algorithm compared to the data matrices of the other methods.

Since the complexity is quadratic in the number of pixels, a twofold increase in pixels

(substantial camera motion) would make our algorithm roughly four-times slower

than the other methods.

4.5 Numerical Experiments

We evaluate the performance of our proposed PRPCA method by comparing to

the recent RPCA [31], TVRPCA [59], and DECOLOR [65] methods on corrupted

static camera videos. We then demonstrate the ability of our method to process

corrupted moving camera videos, a scenario that the other methods cannot handle.

All methods under comparison are foreground-background separation methods,

so they have components corresponding to the L (background) and S (foreground)

components of our model. To facilitate a direct comparison, we repeat the cost func-

tions of each method from their respective papers here and rename the optimization

variables so that the corresponding background and foreground components of each

method are denoted by L and S, respectively. In each case, we also use the matrix

Y to denote the matrix whose columns contain the vectorized frames of the (possibly

corrupted) video.5

5Note that the other methods do not employ our frame registration preprocessing step, so here
Y contains the vectorized raw video frames.
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Sequence
Proposed RPCA TVRPCA DECOLOR

f-PSNR b-PSNR F-measure f-PSNR b-PSNR F-measure f-PSNR b-PSNR F-measure f-PSNR b-PSNR F-measure

Hall 38.94 37.98 0.60 27.12 32.63 0.19 36.50 37.42 0.60 27.02 31.63 0.17
Fountain 39.73 35.48 0.74 26.99 32.06 0.21 36.87 35.48 0.72 26.89 30.69 0.15
Escalator 33.15 31.56 0.72 23.45 26.27 0.35 30.91 30.96 0.69 23.27 22.17 0.25

Water Surface 42.14 36.96 0.94 22.92 31.45 0.40 40.14 36.81 0.82 22.12 20.66 0.26
Shopping Mall 40.26 39.83 0.74 25.06 34.62 0.31 37.43 40.88 0.73 25.01 31.42 0.26

Average 38.84 36.36 0.75 25.11 31.41 0.29 36.37 36.31 0.71 24.86 27.31 0.22

Table 4.1: Performance metrics for each method on sequences from the I2R dataset
corrupted by 20% outliers.

The RPCA [1,31] method minimizes the cost

min
L,S

1
2
‖Y − L− S‖2

F + λL‖L‖? + λS‖S‖1, (4.36)

where L is the low-rank background component and S is the sparse foreground com-

ponent.

The TVRPCA method minimizes the cost from Equation (7) of [59], which, in

our notation, is

min
L,G,E,S

‖L‖? + λ1‖G‖1 + λ2‖E‖1 + λ3TV(S)

s.t. Y = L+G, G = E + S.

(4.37)

In (4.37), L is the low-rank background component and G is a residual matrix that

is further decomposed into a smooth foreground component S and a sparse error

term E. Here, we reuse TV(·) to denote the standard (unweighted) anisotropic total

variation penalty.

The DECOLOR method minimizes the cost from Equation (20) of [65], which, in

our notation, is

min
τ,L,S

1
2
‖PS⊥(Y ◦ τ − L)‖2

F + α‖L‖? + β‖S‖1 + γTV(S). (4.38)

In (4.38), L is the low-rank (registered) background, Sij ∈ {0, 1} is the (registered)

foreground mask, S⊥ is the orthogonal complement of S, τ are the 2D parameteric

transforms that register the input frames Y , and TV(·) is again the standard (un-

weighted) anisotropic total variation penalty. Note that the DECOLOR method

directly estimates the support of the foreground. Thus, to display a foreground com-

ponent for DECOLOR, we plot (Y −L◦τ−1)�S, the difference between the raw video

and the estimated background restricted to the support of the estimated foreground

mask.
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Sequence
Proposed RPCA TVRPCA DECOLOR

f-PSNR b-PSNR F-measure f-PSNR b-PSNR F-measure f-PSNR b-PSNR F-measure f-PSNR b-PSNR F-measure

Hall 36.66 32.72 0.58 31.80 30.14 0.30 34.64 21.83 0.59 31.65 25.14 0.56
Fountain 38.14 30.05 0.74 34.57 29.35 0.35 36.45 24.22 0.70 36.51 25.54 0.71
Escalator 32.83 26.60 0.72 29.87 25.07 0.49 31.15 22.35 0.68 25.67 23.54 0.72

Water Surface 38.46 31.08 0.94 30.19 28.71 0.57 33.83 23.88 0.81 29.35 20.88 0.84
Shopping Mall 37.31 35.29 0.71 32.34 31.54 0.34 35.13 24.31 0.71 32.39 30.93 0.71

Average 36.68 31.15 0.74 31.75 28.96 0.41 34.24 23.32 0.70 31.11 25.21 0.71

Table 4.2: Performance metrics for each method on sequences from the I2R dataset
corrupted by 30 dB Gaussian noise.

Sequence
Proposed RPCA TVRPCA DECOLOR

f-PSNR b-PSNR F-measure f-PSNR b-PSNR F-measure f-PSNR b-PSNR F-measure f-PSNR b-PSNR F-measure

Hall 37.25 36.58 0.58 27.64 30.75 0.27 31.02 32.58 0.35 29.69 33.17 0.65
Fountain 37.78 34.52 0.70 29.59 26.90 0.24 36.04 29.62 0.32 32.51 26.23 0.56
Escalator 30.87 28.95 0.70 21.85 23.05 0.30 24.09 24.89 0.38 23.53 24.99 0.41

Water Surface 40.00 34.99 0.93 31.93 29.50 0.33 33.57 30.03 0.70 28.79 18.42 0.17
Shopping Mall 37.70 39.87 0.73 28.03 32.62 0.35 31.70 34.09 0.46 29.65 34.05 0.76

Average 36.72 34.98 0.73 27.81 28.56 0.30 31.28 30.24 0.44 28.83 27.37 0.51

Table 4.3: Performance metrics for each method on sequences from the I2R dataset
corrupted by 70% missing data.

p
Proposed RPCA TVRPCA DECOLOR

f-PSNR b-PSNR F-measure f-PSNR b-PSNR F-measure f-PSNR b-PSNR F-measure f-PSNR b-PSNR F-measure
10% 41.48 39.37 0.60 30.35 32.67 0.27 38.38 38.98 0.60 30.28 31.54 0.29
20% 38.94 37.98 0.60 27.12 32.63 0.19 36.50 37.42 0.60 27.02 31.63 0.17
30% 37.69 36.21 0.59 25.40 32.39 0.15 34.94 36.08 0.58 30.27 31.54 0.29
40% 36.49 34.73 0.58 24.26 32.03 0.13 32.51 24.13 0.57 24.13 18.50 0.07
50% 35.84 33.73 0.57 23.57 31.49 0.12 29.85 18.11 0.49 23.47 14.61 0.07
60% 34.93 32.38 0.56 22.87 31.36 0.10 27.98 14.65 0.35 22.79 14.13 0.07

Table 4.4: Performance metrics for each method on the Hall sequence as a function
of outlier probability.

SNR
Proposed RPCA TVRPCA DECOLOR

f-PSNR b-PSNR F-measure f-PSNR b-PSNR F-measure f-PSNR b-PSNR F-measure f-PSNR b-PSNR F-measure
5 dB 31.78 26.15 0.52 20.85 18.55 0.07 25.20 11.29 0.08 27.98 14.30 0.07
10 dB 32.78 27.87 0.54 23.04 23.31 0.08 26.85 13.33 0.14 28.54 14.30 0.07
20 dB 34.73 30.73 0.56 27.42 28.73 0.14 30.20 16.89 0.34 30.13 14.30 0.07
30 dB 36.66 32.72 0.58 31.80 30.14 0.30 34.64 21.83 0.59 31.65 25.14 0.56
40 dB 39.64 33.90 0.60 36.20 31.27 0.46 37.96 25.70 0.58 36.27 31.51 0.59
50 dB 42.89 36.14 0.60 40.59 32.00 0.54 41.47 29.77 0.59 37.87 32.73 0.61

Table 4.5: Performance metrics for each method on the Hall sequence as a function
of SNR (Gaussian noise).

p
Proposed RPCA TVRPCA DECOLOR

f-PSNR b-PSNR F-measure f-PSNR b-PSNR F-measure f-PSNR b-PSNR F-measure f-PSNR b-PSNR F-measure
60% 39.01 37.79 0.59 28.33 31.19 0.33 35.44 36.01 0.50 30.35 32.57 0.64
70% 37.25 36.58 0.58 27.64 30.75 0.27 31.02 32.58 0.35 29.69 33.17 0.65
80% 35.69 35.43 0.58 27.13 30.00 0.20 30.32 33.06 0.07 28.26 31.47 0.23
90% 33.30 33.40 0.55 27.45 23.43 0.08 30.26 14.50 0.07 27.13 31.19 0.11

Table 4.6: Performance metrics for each method on the Hall sequence as a function
of missing data probability.

4.5.1 Static Camera Video

We work with the I2R dataset6 of static camera sequences. The sequences contain

between 523 and 3584 frames, each with a subset of 20 frames that have labeled

6See http://perception.i2r.a-star.edu.sg/bk model/bk index.html.
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Figure 4.3: A representative frame from the decompositions produced by each method
applied to the Hall sequence corrupted by 30 dB Gaussian noise. Left column: ob-
servations; L: reconstructed background; S: reconstructed foreground; L+S: recon-
structed scene; right column: Hall sequence.

Sequence
Proposed DECOLOR Baseline (Median Filter)

f-PSNR b-PSNR F-measure f-PSNR b-PSNR F-measure f-PSNR b-PSNR

Tennis 39.39 30.13 0.76 - - - 37.33 25.09
Paragliding 42.26 33.86 0.78 26.07 18.93 0.44 41.54 29.17
Rollerblade 41.65 28.81 0.83 28.10 19.47 0.82 38.71 23.96
Horsejump 36.16 26.54 0.76 22.86 17.64 0.80 34.51 23.19

Average 39.86 29.84 0.78 25.68* 18.68* 0.69* 38.02 25.35

Table 4.7: Performance metrics for each method on sequences from the DAVIS dataset
corrupted by 30% outliers. *DECOLOR raises an error when run on the Tennis
sequence due to the significant camera motion, so it is omitted.

(ground truth) foreground masks. We run each method on a subset of several hundred

(contiguous) frames from each sequence containing 10 labeled frames. To evaluate

the robustness of each method, we consider three corruption models: Gaussian noise

(dense), salt and pepper outliers (sparse), and missing data (inpainting).

In the missing data case, it is trivial to incorporate the missing data locations

in our model: we simply encode them as zeros in the mask matrix M . The RPCA,

TVRPCA, and DECOLOR objectives as written in (4.36)-(4.38) do not directly sup-
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Figure 4.4: A representative frame from the decompositions produced by each method
applied to the Water Surface sequence corrupted by 20% outliers. Left column: ob-
servations; L: reconstructed background; S: reconstructed foreground; L+S: recon-
structed scene; fifth column: Water Surface sequence; F : estimated foreground mask;
right column: true mask.

Observations L S L + S Ground truth F Ground truth

P
ro

p
o
s
e
d

T
V

R
P

C
A

D
E

C
O

L
O

R
R

P
C

A

Figure 4.5: A representative frame from the decompositions produced by each method
applied to the Water Surface sequence with 70% missing data. Left column: obser-
vations; L: reconstructed background; S: reconstructed foreground; L + S: recon-
structed scene; Fifth column: original Water Surface sequence; F : foreground mask
estimated by optimally thresholding S; right column: true foreground mask.

port inpainting, but they can be easily modified to do so. See Appendix A for a

description of the modified versions of RPCA, TVRPCA, and DECOLOR that we
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Sequence
Proposed DECOLOR Baseline (Wiener Filter)

f-PSNR b-PSNR F-measure f-PSNR b-PSNR F-measure f-PSNR b-PSNR

Tennis 38.61 27.86 0.75 21.94 16.87 0.36 35.40 25.56
Paragliding 40.64 32.60 0.76 28.54 19.17 0.24 37.60 27.76
Rollerblade 38.10 28.65 0.82 28.18 17.63 0.77 37.86 23.60
Horsejump 34.38 26.98 0.74 23.10 16.64 0.76 33.23 23.34

Average 37.93 29.02 0.77 25.44 17.58 0.53 36.02 25.07

Table 4.8: Performance metrics for each method on sequences from the DAVIS dataset
corrupted by 10 dB Poisson noise.

Sequence
Proposed DECOLOR Baseline (Interpolation)

f-PSNR b-PSNR F-measure f-PSNR b-PSNR F-measure f-PSNR b-PSNR

Tennis 40.50 30.86 0.77 22.38 17.76 0.37 40.02 29.86
Paragliding 43.33 34.59 0.77 27.13 18.86 0.83 42.84 32.95
Rollerblade 42.48 29.65 0.83 24.98 19.68 0.78 41.90 27.87
Horsejump 36.49 27.70 0.76 23.28 17.83 0.29 36.19 25.93

Average 40.70 30.70 0.78 24.44 18.53 0.57 40.24 29.15

Table 4.9: Performance metrics for each method on sequences from the DAVIS dataset
corrupted by 70% missing data.

p
Proposed DECOLOR Baseline (Median Filter)

f-PSNR b-PSNR F-measure f-PSNR b-PSNR F-measure f-PSNR b-PSNR
10% 41.88 30.98 0.76 - - - 41.44 30.54
20% 41.04 30.46 0.76 - - - 40.55 29.61
30% 39.39 30.13 0.76 - - - 38.58 27.36
40% 38.21 29.82 0.75 - - - 35.76 24.21
50% 36.86 29.14 0.73 - - - 32.72 21.04

Table 4.10: Performance metrics for each method on the Tennis sequence as a function
of outlier probability. DECOLOR raises an error when run on the Tennis sequence
due to the significant camera motion, so it produces no decompositions.

SNR
Proposed DECOLOR Baseline (Wiener Filter)

f-PSNR b-PSNR F-measure f-PSNR b-PSNR F-measure f-PSNR b-PSNR
5 dB 35.10 27.00 0.74 22.78 18.38 0.10 35.05 23.93
10 dB 38.61 27.86 0.75 21.94 16.87 0.36 38.32 27.11
15 dB 40.45 30.54 0.76 21.70 17.14 0.42 41.02 29.18
20 dB 41.88 31.14 0.77 21.69 16.96 0.39 41.78 30.05

Table 4.11: Performance metrics for each method on the Tennis sequence as a function
of SNR (Poisson noise).

p
Proposed DECOLOR Baseline (Interpolation)

f-PSNR b-PSNR F-measure f-PSNR b-PSNR F-measure f-PSNR b-PSNR
60% 41.61 31.33 0.77 22.09 17.35 0.36 41.23 30.60
70% 40.50 30.86 0.77 22.38 17.76 0.37 40.02 29.86
80% 38.74 30.28 0.75 22.48 17.47 0.43 38.35 28.84
90% 35.78 29.22 0.74 22.95 17.54 0.38 35.67 27.18

Table 4.12: Performance metrics for each method on the Tennis sequence as a function
of missing data probability.
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used in our missing data experiments.

To evaluate the denoising capabilities of each method, we measure the peak signal-

to-noise ratio of the foreground (f-PSNR) and background (b-PSNR) pixels, respec-

tively, in decibels (dB), using the ground truth foreground masks to distinguish be-

tween foreground and background. We also measure the ability of each method to

isolate the true foreground by thresholding the foreground component and computing

the F-measure of these estimated masks with respect to the labeled masks.7 Here,

F-measure is defined in terms of the precision and recall of the estimated mask as

Fmeasure = 2× Precision× Recall

Precision + Recall
, (4.39)

where Fmeasure = 1 corresponds to perfect accuracy.

We run each method for 150 outer iterations, and we optimize the parameters of

each algorithm independently for each dataset and performance metric in our tables

to show the best possible performance of each method with respect to each metric.

For our proposed method, we use 3D TV.

Tables 4.1, 4.2 and 4.3 compare the performance of each method on the I2R

sequences corrupted by 20% salt and pepper outliers, Gaussian noise with 30 dB SNR,

and 70% missing data, respectively. Tables 4.4, 4.5 and 4.6 show the performance

of each method on the Hall sequence as a function of outlier probability, noise SNR,

and missing data probability, respectively. Clearly our proposed method performs

significantly better than the existing methods in nearly all cases.

Figures 4.3 and 4.4 illustrate the decompositions produced by each method on the

Hall sequence corrupted by 30 dB Gaussian noise and the Water Surface sequence

corrupted by 20% outliers. The foreground estimates of the RPCA and DECOLOR

methods degrade dramatically when outliers are added because they lack the ability

to distinguish outliers and other non-idealities from the underlying foreground com-

ponent. TVPRCA performs better than these methods in the presence of outliers,

but its estimated background component contains some residual dense corruptions

(cf. Figure 4.3) and foreground artifacts (cf. Figure 4.4) that are not present in the

proposed PRPCA method. These results show that our proposed method is better

able to uncover the true foreground and background components of corrupted video.

Figure 4.5 illustrates the decompositions produced by each method on the Water

Surface sequence corrupted by 70% missing data. The foreground estimates produced

by RPCA and DECOLOR are not able to impute the missing foreground pixels

7For DECOLOR, we use the foreground mask returned by the algorithm.
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Figure 4.6: Three representative frames from the decomposition produced by the
proposed PRPCA method applied to the Tennis sequence corrupted by 30% salt and
pepper outliers. Left column: registered observations; L: reconstructed registered
background; S: reconstructed registered foreground; L+ S: reconstructed registered
scene restricted to the current field of view; right column: registered Tennis sequence.
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Figure 4.7: The decompositions from Figure 4.6 mapped to the perspective of the
original video.

because their models lack a spatial continuity constraint. The TVRPCA method

produces a more accurate foreground component, but, as in Figure 4.4, its estimated

background component contains some foreground artifacts that are not present in the

proposed PRPCA method.

4.5.2 Moving Camera Video

We next demonstrate the performance of our proposed PRPCA method on the

moving camera sequences from the recent DAVIS benchmark dataset [79].

The RPCA and TVRPCA methods are not suitable for moving camera video,

so we only consider the DECOLOR method. As in the static camera case, we con-

sider multiple corruption models: salt and pepper outliers (sparse), Poisson noise

(dense), and missing data (inpainting). Although the video registration procedure in

Section 4.2 can handle corrupted data, we use the homographies computed from the

original videos to isolate the influence of our proposed model (4.7) on reconstruction
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Figure 4.8: Three representative frames from the decomposition produced by the pro-
posed PRPCA method applied to the Tennis sequence corrupted by 70% missing data.
Left column: registered observations; L: reconstructed registered background; S: re-
constructed registered foreground; L+S: reconstructed registered scene restricted to
the current field of view; right column: registered Tennis sequence.
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Figure 4.9: The decompositions from Figure 4.8 mapped to the perspective of the
original video

quality. We evaluate performance using the same error metrics and parameter tuning

strategies from Section 4.5.1. We use 2D TV in our proposed method because the

camera motion reduces the temporal continuity of the foreground. To provide an

additional benchmark for denoising quality, we also consider the PSNRs produced by

the following baseline per-frame denoising methods: median filtering (outlier corrup-

tions), Wiener filtering (Poisson noise corruptions), and cubic interpolation (missing

data). Note that these baseline methods are not foreground-background separation

strategies, so they have no associated F-measures.

Tables 4.7, 4.8 and 4.9 compare the performance of each method on DAVIS se-

quences corrupted by 30% salt and pepper outliers, Poisson noise with 10 dB SNR,

and 70% missing data, respectively. Tables 4.10, 4.11 and 4.12 show the performance

of each method on the Tennis sequence as a function of outlier probability, SNR,

and missing data probability, respectively. Our proposed method achieves consis-

tently higher f-PSNR, b-PSNR, and F-measure, which suggests it is well-suited for
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(a) Frame 10 of the Paragliding sequence.
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(b) Frame 34 of the Paragliding sequence.

Figure 4.10: Two representative frames from decompositions of the Paragliding se-
quence corrupted by 10 dB Poisson noise. Top row: decomposition produced by the
proposed PRPCA method mapped to the perspective of the original video; bottom
row: decomposition produced by DECOLOR. Left column: observations; L: recon-
structed background; S: reconstructed foreground; L+ S: reconstructed scene; right
column: Paragliding sequence.
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Figure 4.11: Per-iteration convergence of the L, E, and S components of the pro-
posed PRPCA method on the Fountain sequence corrupted by outliers at various
percentages.

processing a variety of corruptions.

Figure 4.6 depicts the decompositions produced by our proposed PRPCA method

on the Tennis sequence corrupted by 30% salt and pepper outliers. Note how our pro-

posed method gracefully aggregates the background information from the corrupted
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Figure 4.12: Foreground and background PSNRs as a function of OptShrink rank
parameter r on the Tennis sequence for various missing data percentages.

frames to produce a clean panoramic estimate (L) of the full field of view. Also, the

registered TV-regularized component (S) is able to accurately estimate the dynamic

foreground and decouple it from sparse corruptions. None of the methods considered

in Section 4.5.1 can produce comparable results. Figure 4.7 shows the decompositions

from Figure 4.6 mapped to the perspective of the original video by applying the in-

verse homographies computed during frame registration. These sequences constitute

a direct decomposition of the original moving camera video.

Figures 4.8 and 4.9 show the analogous reconstructions from Figures 4.6 and 4.7,

respectively, on the Tennis sequence for the case of 70% missing data. Again, the pro-

posed PRPCA method produces an accurate panoramic decomposition of the scene.

In Figure 4.9, the outline of the background text is faintly visible in Frames 9 and

33 of S. These artifacts arise from small mismatches in the frame registration pro-

cess due to violations of the underlying far-field assumption of the frame registration

model. This parallax effect captured by S arises so that the reconstructed scene L+S

remains faithful to the data Y .

Figure 4.10 compares the performance of PRPCA and DECOLOR on the Paraglid-

ing sequence corrupted by 10 dB Poisson noise. DECOLOR fails to accurately es-

timate L and S due to the significant camera motion, while our propsed method

consistently produces a high quality decomposition of the dynamic scene from the

corrupted video.

4.5.3 Algorithm Properties

In this section, we briefly investigate the properties of our PRPCA algorithm as

described in Algorithm 4.2. Although the update scheme (4.35) does not correspond

to the proximal gradient updates of an explicit cost function that we can track,
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Figure 4.11 demonstrates that the L, S, and E iterates exhibit stable convergence

behavior as the iterations progress.

Figure 4.12 plots the f-PSNRs and b-PSNRs produced by our proposed method

on the Tennis sequence as a function of rank parameter r at various missing data

percentages. This figure shows that our proposed method is quite robust to rank

overestimation in the sense that its performance degrades slowly as r increases be-

yond its optimal value. Intuitively, this behavior is observed because the OptShrink

estimator performs a data-driven shrinkage that minimizes the effect of superfluous

rank components in L.

4.6 Conclusions

We proposed a new panoramic robust PCA method for performing robust foreground-

background separation on possibly corrupted video with arbitrary camera motion.

Our proposed method registers the frames of the raw video, and it utilizes weighted

total variation regularization and an improved low-rank matrix estimator (OptShrink)

to jointly estimate the foreground and background components of the scene from the

registered frames. Our numerical experiments demonstrate that our proposed method

is robust to both dense and sparse corruptions of the raw video and produces superior

foreground-background separations compared to existing methods. In future work,

we plan to investigate the usefulness of the foreground components produced by our

method for computer vision tasks like object tracking and activity detection.
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CHAPTER V

Theoretical Analysis of Low-Rank Matrix

Estimation with Thresholding-Based Outlier

Rejection

5.1 Introduction

Principal component analysis (PCA) [21, 22] is an important tool in statistical

signal processing and is often used to tease low-dimensional signals out of high-

dimensional data. This dimensionality reduction is an essential first step in many

machine learning and inference tasks. Although PCA is inherently robust to noise, it

is well-known that outliers can severely corrupt the accuracy of its low-rank subspace

estimates, which, in turn, can degrade the performance of subsequent inferential tasks.

To remedy the situation, robust PCA algorithms have been recently proposed that

aim to jointly estimate the sparse outliers in the data and the underlying low-rank

signal.

Several recent results, e.g., [31–33, 38, 80], have shown that convex optimization-

based robust PCA algorithms can provably jointly estimate low-rank and sparse com-

ponents in the noise-free setting. In practice, these algorithms are typically imple-

mented in an alternating fashion where one estimates the sparse component of the

data, then estimates the low-rank component of the residual, and then repeats un-

til convergence [81, 82]. Although these optimization-based algorithms can be easily

generalized to handle noisy data, there is little theory in place to characterize the

low-rank estimation performance in the noisy setting.

Robust PCA algorithms typically use a form of thresholding to estimate outliers

in the data. For example, convex optimization-based algorithms typically use soft

thresholding

softτ (y) := sign(y) max(|y| − τ, 0), (5.1)
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which arises as the proximal operator [25] of the `1 norm. In turn, the `1 norm arises

(cf. compressed sensing [70,83–85]) as the tightest convex relaxation of the `0 norm,

whose proximal operator is hard thresholding

hardτ (y) := y 1{|y| ≥ τ}. (5.2)

The use of hard and soft thresholding for outlier estimation is justified by the seminal

work of Donoho and Johnstone [86–90], in which they show that both hard and soft

thresholding are within logarithimic factors of minimax optimality for estimating a

fixed signal (here, the outliers) corrupted by additive (Gaussian) noise.

5.1.1 Contributions

In this chapter, we adopt a first-principles approach to the analysis of robust

PCA in the presence of noise. In particular, we address the fundamental issue of

the accuracy of the singular vectors of a thresholded low-rank plus noise plus outliers

matrix with respect to the underlying low-rank subspace. This analysis is crucial

because it sheds light on the extent to which one can use thresholding to make the

singular value decomposition (SVD) - the heart of PCA - robust to outliers. Our main

contribution is identifying sufficient conditions under which soft or hard thresholding

the data and then applying PCA can match the performance of an oracle estimator

that replaces the outlier-corrupted data with zeros.

5.1.2 Organization

This chapter is organized as follows. In Section 5.2, we introduce our data model,

and in Section 5.4 we motivate the study of robust PCA algorithms by analytically

characterizing the fundamental limits of PCA in the presence of outliers. We present

our oracle and thresholding-based robust PCA estimators in Sections 5.5 and 5.6, and

in Section 5.7 we present our main result on sufficient conditions for equivalence of

oracle and thresholding-based robust PCA. Finally, we provide empirical validation

of our results in Section 5.8, and we connect our results to alternating minimization-

based robust PCA algorithms in Section 5.9. Appendices B - E contain the proofs of

our results.
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5.2 Data Model

Consider the setting where an observed low-rank plus noise plus outliers matrix

X̃ ∈ Rm×n is modeled as

X̃ =
r∑
i=1

θiuiv
T
i︸ ︷︷ ︸

=:L

+ G+ S. (5.3)

Here, L is a rank-r matrix that we are interested in reliably recovering with left and

right singular vectors ui and vi, respectively, and singular values θ1 > θ2 > . . . >

θr > 0. The matrix G is an additive noise matrix, where Gij are drawn i.i.d. from a

symmetric, zero-mean noise distribution g with Eg2 = σ2/n. The matrix S represents

a sparse matrix of outliers, modeled as

Sij =

Qij with probability ps

0 with probability 1− ps,

where ps denotes the outlier probability, and Qij are drawn i.i.d. and independent

of G from a symmetric, zero-mean distribution q with Eq2 = σ2
q . We assume that

the parameters {θi}, σ2, and σ2
q are fixed, and we allow ps = ps,n to depend on n,

although we suppress this dependence in our notation for convenience. The following

section introduces some technical assumptions that we impose on model (5.3) so that

the model is amenable to fruitful analysis.

5.3 Assumptions

There is an inherent ambiguity between low-rank and sparse matrices. For ex-

ample, the matrix L = e1e
T
1 , where e1 is the first canonical basis vector, is perfectly

low-rank and sparse: it has rank 1 and only 1 non-zero element. To resolve this

ambiguity, one needs to impose additional structure on the low-rank matrix L. In

this chapter, we make the following incoherence assumption.

Assumption V.1 (Incoherence). The singular vectors of L satisfy

max
i=1,...,r

||ui||∞ ≤ Cu
logηum√

m
, max

i=1,...,r
||vi||∞ ≤ Cv

logηv n√
n

(5.4)

for some universal constants Cu, Cv, ηu, ηv > 0.

Assumption V.1 guarantees that L is a dense matrix with o(1) entries.
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We also impose some mild technical conditions on the noise and outlier distri-

butions, which will be required in our analysis. Specifically, we assume that the

noise distribution g is subgaussian (Assumption V.2), and we assume that the outlier

distribution q is locally Lipschitz in the neighborhood of zero (Assumption V.3).

Assumption V.2 (Subgaussian noise). The noise distribution g is subgaussian. That

is, ∃γ > 0 such that

P(|g| ≥ τ) ≤ 2 exp(−γnτ 2) (5.5)

for all τ ≥ 0.

Assumption V.3 (Lipschitz outliers). The outlier distribution q is locally Lipschitz

in the neighborhood of zero. That is, ∃C, δ > 0 such that

P(q ∈ (x, y)) ≤ C(y − x) (5.6)

for all subintervals (x, y) ⊆ (−δ, δ).

Assumption V.2 rules out the possibility of heavy-tailed noise distributions, which

take large values with super-exponential probability. Intuitively, a heavy-tailed noise

distribution would produce corruptions that are indistinguishable from outliers; it is

therefore reasonable to limit our study to subgaussian noise distributions, so that

our model is identifiable. The class of subgaussian random variables is quite general,

including, for example, the Gaussian distribution and all bounded random variables,

such as the Rademacher distribution Gij = ±σ/
√
n. Analogously, Assumption V.3

precludes the possibility that the outlier distribution q can have pathological prob-

ability masses in the neighborhood of zero, which would correspond to an outlier

distribution with “noise like” properties. Our outlier assumption ensures that the

model (5.3) is identifiable.

We will also require a lower bound on the outlier probability ps to avoid any

pathological interactions between the sparsity pattern of S and the leading singular

vectors of X̃. Specifically, we assume that the following condition holds.

Assumption V.4 (The “not-too-sparse” conditon). Let U ∈ Rm×r and V ∈ Rn×r be

the matrices whose columns are the left and right singular vectors of L, respectively,

and define

X =
G+ S√
σ2 + npsσ2

q

, (5.7)

an i.i.d. random matrix with variance 1/n entries. We assume that ps is large enough
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such that

UT
(
z2Im −XX

T
)−1

U
a.s.−→

(∫
1

z2 − t2
dµ(t)

)
Ir

V T
(
z2In −X

T
X
)−1

V
a.s.−→

(∫
1

z2 − t2
dµ̃(t)

)
Ir

(5.8)

and

UT
(
z2Im −XX

T
)−1

XV
a.s.−→ 0

V TX
T
(
z2Im −XX

T
)−1

U
a.s.−→ 0

(5.9)

uniform in z, where µ is the Marchenko-Pastur distribution [30], and µ̃ := cµ+ (1−
c)δ0.

Remark V.5. A constant ps = p satisfies Assumption V.4, as does ps � logC n/n

for large enough C [34].

Under Assumptions V.1-V.4, the L component of model (5.3) is a low-rank matrix

with elements (roughly) of size |Lij| = O(log n factors/n), G is a dense noise matrix

with elements (roughly) of size |Gij| = O(1/
√
n), and S is a relatively sparse matrix

whose nonzero elements are (roughly) of size |Sij| = O(1). Thus the outliers are large

but infrequent, the noise is dense and moderately sized, and the low-rank matrix is

dwarfed by the other components. At the element level, the prospect of estimating the

low-rank matrix from such a model seems hopeless; however, the low-rank structure

of L implies that there is redundant information spread across the entire observation

matrix, and our results in this chapter show that one can indeed reliably estimate the

latent low-rank structure by computing the SVD of a carefully constructed outlier-

rejected matrix.

Our analysis in Section 5.7 shows that these relative component magnitudes are

in fact the most interesting regime under model (5.3). For example, if the low-rank

matrix has elements |Lij| � O(log n factors/n) or the noise has strength |Gij| �
O(1/

√
n), then it is trivial to reliably estimate L. Conversely, if the noise has strength

|Gij| � O(1/
√
n), it is impossible to reliably estimate L. Interestingly, if |Sij| �

O(1), the problem becomes harder, because it is more difficult to accurately reject

the outliers.

5.4 Fundamental Limits of PCA

In this section, we motivate the need for an outlier rejction scheme for model (5.3)

by theoretically analyzing the fundamental limits of PCA in the presence of outliers.
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The following theorem, based on the work of [27], characterizes the asymptotic sin-

gular vector accuracy of the raw data X̃.

Theorem V.6 (Raw accuracy). Let

X̃ =
m∑
i=1

θ̃iũiṽ
T
i (5.10)

be the SVD of X̃ drawn from model (5.3), and assume that Assumptions V.1-V.4

hold. Then, asymptotically as m,n→∞ such that m/n→ c ∈ (0, 1], we have

|〈ui, ũi〉|2
a.s.−→


1− c(1 + θ

2

i )

θ
2

i (θ
2

i + c)
if θi > c1/4

0 otherwise,

(5.11)

and

|〈vi, ṽi〉|2
a.s.−→


1− (c+ θ

2

i )

θ
2

i (θ
2

i + 1)
if θi > c1/4

0 otherwise,

(5.12)

for i = 1, . . . , r, where

θi = lim
n→∞

θi√
σ2 + npsσ2

q

(5.13)

is the effective signal-to-noise ratio (SNR) of the ith subspace component.

Proof. One can view model (5.3) as X̃ = L+X̄, where X̄ij = Gij+Sij are independent

zero-mean random variables with variance σ̄2/n, where σ̄2 := σ2 +npsσ
2
q . The results

follows from Theorem 2.9 and Section 3.1 of [27].

Theorem V.6 brings into sharp focus the detrimental effect of outliers on the sin-

gular values of X̃. Indeed, consider the dense outlier setting where ps = O(1) so that

a constant fraction of the entries of X̃ are corrupted by outliers. By Theorem V.6, we

have θi = 0 and thus the singular vectors of X̃ contain asymptotically zero informa-

tion about the singular vectors of L, as their corresponding principal components are

asymptotically orthogonal. Moreover, consider the relatively sparse outlier setting

where ps = O(log n/n) and so that a vanishing fraction of the entries in each row of

X̃ are corrupted by outliers. By Theorem V.6, we again have θi = 0, and so PCA

again breaks down completely. This result definitively motivates the need for robust

PCA algorithms to handle outliers.
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5.5 Oracle Robust PCA

Before considering data-driven methods to remove the outliers from model (5.3),

it is instructive to analyze the performance of an oracle outlier rejection scheme.

Towards this end, suppose an oracle supplies the outlier support set

S? = {(i, j) : Sij 6= 0}. (5.14)

In this setting, a natural approach is to replace the corrupted entries of X̃ with zeros,

yielding the estimator

X̃?
ij =

X̃ij if (i, j) /∈ S?

0 otherwise.
(5.15)

The oracle estimator X̃? deterministically removes every outlier from the data, so

the singular vector accuracy of X̃? depends only on the extent to which zeroing out

elements of X̃ with probability ps affects its SVD. The following theorem precisely

characterizes the singular vectors of X̃?. The proof is presented in Appendix C.

Theorem V.7 (Oracle accuarcy). Assume that Assumptions V.1-V.4 hold. Then,

as m,n → ∞ such that m/n → c ∈ (0, 1], the asymptotic accuracies of the left and

right singular vectors of X̃? are given by (5.11) and (5.12), respectively, with effective

SNR

θ
?

i = lim
n→∞

√
1− ps θi
σ

. (5.16)

Here, it is understood that we reuse ũi and ṽi in (5.11) and (5.12) to refer to the

singular vectors of the matrix X̃? in question, not X̃.

Theorem V.7 shows that X̃? is robust to outliers in the sense that its singular

vector accuracy degrades gracefully as the outlier probability ps increases. In fact,

when ps = o(1), the effective SNR of X̃? is θ
?

i = θi/σ, which is precisely the SNR of

the raw data X̃ predicted by Theorem V.6 with S = 0, i.e., no outliers.

The key insight of Theorems V.6 and V.7 is that the SVD is inherently robust to

missing data but breaks down completely in the presence of large outliers. Intuitively,

Assumption V.1 guarantees that |Lij| = o(1), so zeroing an element of X̃ causes an

o(1) corruption of L, while an outlier causes an O(1) corruption of L.
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5.6 Thresholding-Based Robust PCA

Now that we understand the performance of an oracle outlier rejection scheme,

we are ready to develop a data-driven algorithm. Motivated by the work of Donoho,

Johnstone, and others [86–98], we introduce two natural outlier rejection procedures

based on element-wise thresholding the elements of X̃. Specifically, for a given thresh-

old τ = τn > 0, we consider the hard and soft thresholding estimators, respectively,

of S, defined by

ŜHT
τ = hardτ (X̃)

ŜST
τ = softτ (X̃),

(5.17)

and the associated residual signal-plus-noise matrices

X̃HT
τ = X̃ − ŜHT

τ

X̃ST
τ = X̃ − ŜST

τ .
(5.18)

One can view X̃HT
τ and X̃ST

τ as data-driven approximations of the oracle estimator

X̃?. Indeed, if we define

Sτ = {(i, j) : |X̃ij| ≥ τ}, (5.19)

then we can express X̃HT
τ as

(X̃HT
τ )ij =

X̃ij if (i, j) /∈ Sτ

0 otherwise,
(5.20)

and X̃ST
τ as

(X̃ST
τ )ij =

X̃ij if (i, j) /∈ Sτ

τ sign(X̃ij) otherwise.
(5.21)

From (5.20) we see that X̃HT
τ is a copy of X̃ with zeros inserted at indices in Sτ , which

can be viewed as an approximation to the oracle outlier support set S? from (5.14).

The same holds for X̃ST
τ , except that ±τ values are inserted rather than zeros. Both

thresholding-based estimators will remove large outliers from X̃, so it is plausible to

expect that, for an appropriately chosen threshold τ , both X̃HT
τ and X̃ST

τ may achieve

near-oracle singular vector accuracy. We formalize this observation in Section 5.7.
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Sparse outliers
ps logη n→ 0

Dense outliers
ps logη n→∞

Hard
thresholding

θ
HT

i = θ
?

i θ
HT

i = θ
?

i

Soft
thresholding

θ
ST

i = θ
?

i θ
ST

i = 0

Table 5.1: Effective SNRs for Theorem V.8

5.7 Main Result

We now precisely characterize the leading singular vectors of X̃HT
τ and X̃ST

τ for

a particular choice of τ motivated by the thresholding literature. Towards this end,

consider a special case of (5.3) where L = 0 and our objective is to estimate the

sparse matrix S as accurately as possible from an instance X̃ of (5.3). In this setting,

Donoho and Johnstone [86–90] showed that the estimators ŜHT
τ and ŜST

τ are within

logarithmic factors of minimax (w.r.t. the distribution of S) mean-squared error

optimality for estimating S among all shrinkage estimators, i.e., those estimators Ŝ

for which |Ŝij| ≤ |X̃ij|, when the following threshold is used

τ ? = σ

√
2 log cn2

n
= O

(√
log n

n

)
. (5.22)

In the general setting, L 6= 0, but Assumption V.1 guarantees that |Lij| = o(1), so

one expects the estimators ŜHT
τ and ŜST

τ with thresholds τ ≈ τ ? to still produce good

estimates of S, which has O(1) entries. In turn, the residuals X̃ − ŜHT
τ and X̃ − ŜST

τ

should be approximately low-rank plus noise matrices whose singular vectors are good

estimates of the singular vectors of L.

The following theorem formalizes the above argument. The proof is presented in

Appendix D for the case of hard thresholding and Appendix E for the case of soft

thresholding.

Theorem V.8 (Accuracy after outlier rejection). Assume that Assumptions V.1-V.4

hold, and fix a threshold sequence τ = τn of the form

τ = C

√
logη n

n
(5.23)

for some constants C > 0 and η > 1. Then, as m,n → ∞ such that m/n → c ∈
(0, 1], the asymptotic accuracies of the left and right singular vectors of X̃HT

τ and
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Figure 5.1: Graphical depiction of shrinkτ,λ for various values of λ. Note that it
reduces to hard tresholding when λ = 0 and reduces to soft thresholding when λ = τ .

X̃ST
τ are given by (5.11) and (5.12) with effective SNRs given by Table 5.1. Here,

it is understood that we reuse ũi and ṽi in (5.11) and (5.12) to refer to the singular

vectors of the matrices X̃HT
τ and X̃ST

τ in question, not X̃.

Remark V.9. More specifically, Appendix D establishes that

θ
HT

i = lim
n→∞

√
1− ps θi
σ

= θ
?

i (5.24)

for any ps, and Appendix E establishes that

θ
ST

i = lim
n→∞

(1− ps)θi√
(1− ps)σ2 + psnτ 2

. (5.25)

Remark V.10. Our proof technique can allow η = 1 in Theorem V.8, but in this

case we require a lower bound on C of the form C > 1/2γ, where γ > 0 is a constant

arising from the analysis. Empirically, we observe that η > 0 is sufficient, but our

current bounding techniques are not sharp enough to establish this result.

Remark V.11. Although Theorem V.8 was formulated explicitly in terms of the

hard thresholding and soft thresholding-based estimators X̃HT
τ and X̃ST

τ , our proof

technique can be extended to the two-parameter shrinkage function

shrinkτ,λ(y) := sign(y)(|y| − λ)1{|y| ≥ τ}, (5.26)

with additional parameter λ ∈ [0, τ ]. Note that hardτ = shrinkτ,0 and softτ =
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shrinkτ,τ , so (5.26) is a generalization of hard and soft thresholding.1 Figure 5.1

depicts the shrink function for various values of λ ∈ [0, τ ]. Specifically, Theorem V.8

can be extended to show that the asymptotic accuracies of the left and right singular

vectors of the estimator

X̃λ
τ := X̃ − shrinkτ,λ(X̃) (5.27)

are given by (5.11) and (5.12) with effective SNR

θ
λ

i = lim
n→∞

(1− ps)θi√
(1− ps)σ2 + psnλ2

. (5.28)

Importantly, note from (5.28) that θ
λ

i is a decreasing function of λ, so hard thresh-

olding (λ = 0) is the optimal shrinkage function of the form (5.26) in the sense of

maximizing effective SNR. Intuitively, any λ > 0 makes a residual contribution of

psnλ
2 in the denominator of (5.28), which decreases the effective SNR of the outlier-

rejected matrix.

Theorem V.8 reveals two interesting phenomena. First, the hard thresholding

estimator X̃HT
τ asymptotically attains the performance of the oracle estimator X̃?,

regardless of outlier probability ps. Intuitively, this result says that hard thresholding

is able to reliably remove outliers from X̃ without degrading the spectrum of the

residual matrix.

On the other hand, Theorem V.8 identifies a phase transition in the behavior

of soft thresholding. In the sparse outlier regime where ps logη n → 0, the soft

thresholding estimator X̃ST
τ also asymptotically attains oracle performance. How-

ever, in the dense outlier regime where the outlier probability ps is large enough that

ps logη n→∞, soft thresholding breaks down completely. The dichotomy between the

performance of hard and soft thresholding for robust PCA in the dense outlier regime

is interesting because no such gap exists for estimating S: hard and soft thresholding

are both nearly optimal [86–90].

5.8 Numerical Validation

In this section, we empirically validate the conclusions of Theorem V.8 by gener-

ating synthetic instances of X̃ from model (5.3) with r = 1. We generate L = θuvT ∈
Rm×n by taking v to be a vectorized, unit-norm version of the 128 × 128 Peppers

image, setting θ = 2, and generating u uniformly at random from the unit sphere

1Perhaps 0 < λ < τ should be termed “medium” thresholding.
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Figure 5.2: Empirical validation of Theorem V.8. The left figure plots the first right
singular vector accuracy |〈v1, ṽ1〉|2 of the estimators X̃? (oracle), X̃HT

τ (hard), X̃ST
τ

(soft), and X̃ (PCA) as a function of outlier probability ps. The remaining figures

plot (from left to right) the first right singular vectors of X̃?, X̃HT
τ , and X̃ST

τ reshaped
into images for the particular choice of ps = 15% denoted by the solid markers in the
left figure.

with m = cn and c = 0.1. We then populate the noise matrix G with i.i.d. Gaussian

random variables with σ = 2, and we populate the sparse matrix S with i.i.d. Laplace

random variables with σq = 5 for a given outlier probability ps. In this setup, the

rows of X̃ contain noisy and outlier corrupted copies of the Peppers image, and we

estimate the underlying image by computing the first right singular vectors of the

robust PCA estimators from Sections 5.5 and 5.6.

Figure 5.2 compares the accuracy of the first right singular vectors of the three

robust PCA estimators X̃?, X̃HT
τ , and X̃ST

τ as a function of outlier probability ps with

threshold τ = τ ? suggested by (5.22). For reference, we also include the standard PCA

estimator that computes the principal components of the raw data X̃. Consistent with

Theorem V.6, standard PCA is highly sensitive to outliers and thus produces nearly

orthogonal estimates ṽ1 of v over the range of outlier probabilities ps tested.

As predicted by Theorem V.8, hard thresholding achieves oracle accuracy over

the range of ps tested while soft thresholding achieves oracle accuracy in the sparse

outlier regime and breaks down in the dense outlier regime. Indeed, the reconstructed

Peppers images in Figure 5.2 show that soft thresholding peforms significantly worse

in the presence of ps = 15% outliers.

Intuitively, soft thresholding breaks down in the dense outlier setting because,

rather than inserting zeros in the estimated outlier locations as in hard thresholding,

the soft thresholding function deposits ±τ entries. When there are relatively few

outliers, these residuals are not prolific enough to degrade the singular vectors of the

data. However, as the outlier density increases, these residual values conspire and

eventually dominate the signature of the underlying low-rank matrix.
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One might hope that the performance of soft thresholding can be salvaged by

choosing a smaller threshold τ . However, while this would decrease the residual

magnitudes in X̃ST
τ , the quality of the sparse estimate ŜST

τ would degrade as the

threshold τ deviates from its (approximately) optimal value τ ? from (5.22), and it

seems unlikely that intentionally producing a suboptimal sparse estimate ŜST
τ would

improve the singular vector accuracy of the residual matrix X̃ST
τ . Formalizing this

conjecture is an interesting future research direction.

5.9 Connection to Alternating Minimization

One can interpret the thresholding-based estimators from Section 5.6 as the first

iterations of alternating minimization algorithms for certain nonconvex optimization

problems. Indeed, consider the optimization problem

(P0) min
L,S

‖X̃ − L− S‖2
F + τ 2‖S‖0

s.t. rank(L) ≤ r.

One approach to solving (P0) is to adopt a block coordinate descent strategy where

one alternatively minimizes with respect to S and L with the other variable held

fixed. It is straightforward to show [23, 99] that this strategy yields updates of the

form:
Sk+1 = hardτ (X̃ − Lk)

Lk+1 = TSVDr(X̃ − Sk+1),
(5.29)

where TSVDr(Z) =
∑r

i=1 σiuiv
T
i is the rank-r truncated singular value decomposi-

tion. There is a close connection between the updates (5.29) and the thresholding-

based estimators from Section 5.6. Indeed, suppose one initializes L0 = 0. Then the

first iteration of (5.29) yields S1 = hardτ (X̃−0) = ŜHT
τ and L1 = TSVDr(X̃−S1) =

TSVDr(X̃
HT
τ ), which is precisely the hard thresholding-based estimation scheme that

we analyzed in Section 5.7. Although (P0) is nonconvex, the block coordinate de-

scent updates (5.29) are guaranteed to monotonically decrease the objective, so the

alternating scheme must converge to a critical point of the cost function.

Similarly, if one replaces the `0-based regularization in (P0) with `1-based regu-

larization, one obtains the related problem

(P1) min
L,S

‖X̃ − L− S‖2
F + 2τ‖S‖1

s.t. rank(L) ≤ r.

70



It is again straightforward to show that the resulting block coordinate descent updates

for (P1) take the form:

Sk+1 = softτ (X̃ − Lk)

Lk+1 = TSVDr(X̃ − Sk+1).
(5.30)

The first iteration of (5.30) yields S1 = ŜST
τ and L1 = TSVDr(X̃

ST
τ ), which is

precisely the soft thresholding-based estimation scheme from Section 5.7. Problem

(P1) is still nonconvex due to the rank constraint, but the block coordinate descent

updates (5.30) are again guaranteed to converge to a critical point of the cost function.

Theorem V.8 characterizes the asymptotic accuracies of the singular vectors of

the low-rank matrices produced after one iteration of the updates (5.29) and (5.30).

In particular, it predicts that the first soft thresholding-based update will produce a

poor estimate of the underlying low-rank matrix in the dense outlier regime. However,

one might expect the accuracy of one or both alternating schemes to improve after

subsequent iterations. In particular, one might expect that multiple iterations of

(5.30) can salvage the performance of the soft thresholding-based update scheme in

the dense outlier regime. However, our empirical experiments indicate that this is

not the case.

In our experiments, we generate synthetic rank-1 instances of model (5.3). Specif-

ically, we generate L = θuvT ∈ Rm×n with u and v random vectors on the unit

sphere with m = 128, n = 1280, and θ = 4. We populate the noise matrix G with

i.i.d. Gaussian random variables by setting σ = 2, and we populate the sparse matrix

S with i.i.d. Laplacian random variables with σq = 5 for a given outlier probability ps.

Given an instance X̃ of this model, we then perform 10 iterations of the alternating

updates (5.29) and (5.30) to estimate the underlying signals u and v. In each case,

we use the regularization parameter (threshold) τ = τ ? recommended by (5.22). For

reference, we also compare to the oracle alternating scheme that inserts zeros at the

known outlier locations during the S updates rather than data-driven thresholding.

Figure 5.3 plots the accuracy |〈uk, u〉|2 of the first left singular vector of Lk for each

update scheme as a function of iteration. The results are averaged over 50 random

realizations of the model. Figure 5.3 shows that the performance of each method is

determined by the accuracy after the first iteration—i.e., subsequent iterations do

not improve the accuracy of the estimated singular vectors.2 Thus, as predicted by

2In fact, for soft thresholding in the dense outlier regime, performance degrades after subsequent
iterations.
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Figure 5.3: Accuracy of the first left singular vector uk of the low-rank updates Lk

from (5.29) and (5.30) as a function of iteration. Each panel corresponds to a different
outlier probability ps. The three curves in each panel depict the performance of the
variations of alternating minimization where the S-updates are performed using hard
thesholding (Hard), soft thresholding (Soft), and the oracle sparse estimator (Oracle)
that inserts zeros at the known outlier locations.

Theorem V.8, all three update schemes perform equally well in the sparse outlier

regime, while the soft thresholding-based updates (5.30) break down in the dense

outlier regime.

5.10 Conclusions

In this chapter, we studied the problem of recovering a low-rank matrix corrupted

by random noise and outliers. In particular, motivated by the sparse estimation lit-

erature, we considered outlier rejection schemes that apply hard or soft thresholding,

respectively, to the elements of the data matrix. We analyzed the accuracy of the

low-rank matrix estimated by applying PCA to the outlier-rejected matrix produced

by each thresholding method by comparing it to an oracle estimator that replaces

the known outlier-corrupted entries of the data matrix with zeros. Our analysis

reveals a surprising result. In the sparse outlier regime, both hard and soft threshold-

ing asymptotically achieve oracle performance. However, in the dense outlier regime,

hard thresholding again achieves oracle performance, but soft thresholding does not—

in fact, the principal components produced by soft thresholding are asymptotically

orthogonal to the latent principal components.
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CHAPTER VI

Efficient Learning of Dictionaries with Low-Rank

Atoms

6.1 Introduction

The sparsity of signals and images in a transform domain or dictionary has been

extensively exploited in applications such as compression, denoising, and inverse prob-

lems in imaging and image processing. In particular, the data-driven adaptation of

sparse signal models such as the synthesis model has shown promise in numerous

applications [100–103]. Given a set of training signals {yi}Ni=1 that are represented

as columns of a training matrix Y ∈ Cn×N , the goal of dictionary learning (DL) is

to learn a dictionary D ∈ Cn×J and a matrix X ∈ CJ×N of sparse codes such that

Y ≈ DX. The DL problem is often formulated as follows [104]:

(P0) min
D,X

‖Y −DX‖2
F

s.t. ‖xi‖0 ≤ s ∀i, ‖dj‖2 = 1 ∀j,

where xi and dj denote the ith column of X and the jth column (or atom) of D respec-

tively, and s denotes a target sparsity level for each signal. The `0 “norm” measures

sparsity and counts the number of non-zero entries in a vector. The columns of D are

set to unit norm to avoid the scaling ambiguity [105]. Various alternative versions of

(P0) exist that replace the `0 “norm” with other sparsity-promoting functions, or en-

force additional properties on the dictionary [106–108], or enable dictionary learning

in an online manner [109].

Dictionary learning algorithms [104, 109–113] typically attempt to solve (P0) or

its variants in an alternating manner by performing a sparse coding step (updating

X) followed by a dictionary update step (updating D). Some algorithms also par-

73



tially update the coefficients in X in the dictionary update step, while a few recent

methods attempt to solve for the variables jointly and iteratively [114]. However,

(P0) is non-convex and NP-hard, and most popular algorithms such as K-SVD [104]

lack proven convergence guarantees, and tend to be computationally expensive. Some

recent works [115–118] have studied the convergence of specific DL algorithms (typi-

cally making restrictive assumptions such as noiseless data, etc., for their convergence

results), but these approaches have not been demonstrated to be advantageous in ap-

plications such as inverse problems. Bao et al. [117] find that their method, although

a fast proximal scheme, denoises less effectively than K-SVD.

In this chapter, we propose a novel framework for structured dictionary learning.

We model the atoms of the dictionary, after reshaping them into matrices, as low-rank.

Importantly, imposing the low-rank structure often leads to comparable or improved

performance over unstructured dictionary learning methods in practice. We also use

an `0 sparsity penalty for the coefficients. Although the proposed DL formulation

is highly nonconvex, we develop an efficient block coordinate descent algorithm for

it and present a convergence analysis for the approach. Our numerical experiments

demonstrate the suitability and usefulness of learning low-rank atom dictionaries in

applications (inverse problems) involving limited data.

6.2 Problem Formulation and Algorithm

This section presents our DL problem formulation with structured (low-rank)

atoms and an efficient algorithm for it.

6.2.1 Dictionary Learning Problem Formulation

We consider a dictionary learning formulation with a sparsity penalty in this chap-

ter. In particular, we define C , XH in (P0), and replace the `0 “norm” constraints

with an overall sparsity penalty ‖X‖0 ,
∑N

i=1 ‖xi‖0 = ‖C‖0 =
∑J

j=1 ‖cj‖0. In addi-

tion, we consider a form of structured dictionary learning for images or image patches,

wherein we model the columns dj ∈ Cn of the dictionary D, after reshaping them

into matrices, as low-rank. We refer to this as the DIctioNary with lOw-ranK AToms

(DINO-KAT) model. The low-rank model on the reshaped atoms is motivated by our

empirical observation that (unstructured) dictionaries learned from image patches of-

ten have quickly decaying singular values. When the training matrix Y consists of

vectorized versions of
√
n×
√
n (or rectangular) image patches, the dictionary atom

vectors are reshaped (by stacking column-wise the vector entries) into similarly sized

74



matrices. Denoting by R(·) the operator that reshapes an atom into a matrix, our

problem formulation for DL is as follows:

(P1) min
D,C

‖Y −DCH‖2
F + λ2‖C‖0

s.t. rank(R(dj)) ≤ r, ‖dj‖2 = 1, ‖cj‖∞ ≤ L, ∀j.

Here, λ2 with λ > 0, is a sparsity regularization parameter and r > 0 denotes the

maximum allowed rank for reshaped atoms.

The objective in (P1) is invariant to joint scaling of any pair (dj, cj) as (αdj, α
−1cj),

for α 6= 0. Therefore, similar to Problem (P0), the constraint ‖dj‖2 = 1 helps remove

this scaling ambiguity. The `∞ constraints in (P1) prevent pathologies that could

theoretically arise (e.g., unbounded algorithm iterates) due to the objective being

non-coercive [119].1 In practice, we set L very large, and the constraint is typically

inactive.

Unlike the sparsity constraints in (P0), Problem (P1) penalizes the number of

non-zeros in the (entire) coefficient matrix, allowing variable sparsity levels across

the training signals. For example, in imaging or image processing applications, the

dictionary is usually learned on (overlapping) image patches. Patches from different

regions of an image typically contain different amounts of information, and thus

enforcing a fixed or common sparsity for various patches does not reflect typical image

properties (i.e., is restrictive) and usually leads to poor performance in applications.

When r =
√
n for R(dj) ∈ C

√
n×
√
n, the rank constraints in (P1) are inactive,

and Problem (P1) corresponds to an unstructured DL formulation [119]. Structured

DINO-KAT models (i.e., with small rank r �
√
n) learned using (P1) may be less

prone to over-fitting problems in applications involving limited or corrupted data. We

demonstrate this through some applications in Section 6.3.

Formulation (P1) is by itself useful for adaptive sparse representation (and even-

tual compression) of data with structured dictionaries. Learning sparse approxima-

tions of the data can also be an effective way to denoise the data. (P1) can also

be used as a regularizer in inverse problems [120], where it can enable data-adaptive

image reconstructions. We investigate this application extensively in the rest of this

thesis.

1For example, consider a dictionary D that has a (low-rank) column dj that repeats. The

representation DCH =
∑J
k=1 dkc

H
k in (P1) in this case could contain both the terms djc

H
j and

−djcHj with cj that is highly sparse, and the objective would be invariant to (arbitrarily) large
scalings of cj . The infinity norm constraint precludes this eventuality.
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6.2.2 Algorithm and Computational Cost

We propose an iterative block coordinate descent method [121] for (P1) that up-

dates the coefficient columns cj (of C) and atoms dj (of D) sequentially. Specifically,

for each 1 ≤ j ≤ J , we first solve (P1) with respect to cj, keeping the other variables

fixed (the sparse coding step). Once cj is updated, we solve (P1) with respect to dj,

keeping all other variables fixed (the dictionary atom update step).

6.2.2.1 Sparse Coding Step

Here, we minimize (P1) with respect to cj. This leads to the following problem,

where the matrix Ej , Y −
∑

k 6=j dkc
H
k is computed using the most recent estimates

of other atoms and coefficients:

min
cj
‖Ej − djcHj ‖2

F + λ2‖cj‖0

s.t. ‖cj‖∞ ≤ L.
(6.1)

Assuming L > λ, it can be shown by following a proof strategy identical to Proposition

1 in [119] that a global minimizer of (6.1) is

ĉj = min(|Hλ(E
H
j dj)|, L1N) � ej∠E

H
j dj . (6.2)

In (6.2), the operator Hλ(·) is the elementwise hard thresholding operator

[Hλ(b)]i =

0 |bi| < λ

bi |bi| ≥ λ
(6.3)

that sets elements with magnitude less than λ to zero, 1N denotes a vector of ones of

length N , � denotes element-wise multiplication, and min(·, ·) denotes element-wise

minimum. The term ej∠c is computed element-wise for vector arguments c, with ∠

denoting the phase.

6.2.2.2 Dictionary Atom Update Step

In this step, we optimize (P1) with respect to the atom dj, holding other variables

fixed. This leads to the problem:

min
dj
‖Ej − djcHj ‖2

F

s.t. rank(R(dj)) ≤ r, ‖dj‖2 = 1.
(6.4)
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Proposition VI.1 provides the solution to Problem (6.4). It relies on the full singular

value decomposition (SVD) of an appropriate matrix. We assume R(dj) ∈ C
√
n×
√
n,

and let σi denote the ith diagonal entry of the diagonal matrix Σ.

Proposition VI.1. Given Ej ∈ Cn×N and cj ∈ CN , let UrΣrV
H
r denote an optimal

rank-r approximation to R(Ejcj) ∈ C
√
n×
√
n that is obtained using the r leading sin-

gular vectors and singular values of the full SVD R(Ejcj) , UΣV H . Then, a global

minimizer in Problem (6.4), upon reshaping, is

R(d̂j) =


UrΣrV

H
r

‖Σr‖F
, if cj 6= 0

v1, if cj = 0,

(6.5)

where v1 is the reshaped first column of the n × n identity matrix. The solution is

unique if and only if cj 6= 0, and σr > σr+1 or σr = 0.

Proof. First, because ‖dj‖2 = 1, we have

‖Ej − djcHj ‖2
F = ‖Ej‖2

F + ‖cj‖2
2 − 2 Re{dHj Ejcj}. (6.6)

Upon substituting (6.6) into (6.4), Problem (6.4) simplifies to

max
dj∈Cn

Re
{
tr(R(dj)

HR(Ejcj))
}

s.t. rank(R(dj)) ≤ r, ‖dj‖2 = 1.
(6.7)

Next, letR(dj) = AΓBH , andR(Ejcj) = UΣV H be full SVDs with γi and σi denoting

the diagonal entries of Γ and Σ, respectively. The problem then becomes

max
Γ

max
A,B

Re
{
tr(BΓAHUΣV H)

}
s.t. rank(Γ) ≤ r, ‖Γ‖F = 1, AHA = BHB = I.

(6.8)

For the inner maximization, we use Re{tr(BΓAHUΣV H)} ≤ tr(ΓΣ) [122], with the

upper bound attained when A = U and B = V . The remaining problem with respect

to (diagonal) Γ is then

max
{γi}

r∑
i=1

γiσi

s.t.
r∑
i=1

γ2
i = 1, γj = 0, r + 1 ≤ j ≤

√
n.

(6.9)
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Using the Cauchy-Schwarz inequality, γ̂i = σi/
√∑r

i=1 σ
2
i for 1 ≤ i ≤ r, and γ̂i = 0 for

r + 1 ≤ i ≤
√
n is clearly optimal. The derived solution for the optimal R(d̂j) then

simply corresponds to a normalized version of the rank-r approximation to R(Ejcj).

Clearly, the solution in (6.7) is unique if and only if Ejcj 6= 0, and σr > σr+1 or

σr = σr+1 = 0. Any d ∈ Cn satisfying the constraints in (6.7) is a (non-unique)

minimizer when Ejcj = 0. In particular R(d̂j) = v1 works.

Lastly, to complete the Proposition’s proof, we show that Ejcj = 0 in our algo-

rithm if and only if cj = 0. Since cj here was obtained as a minimizer in the preceding

sparse coding step (6.1), we have the following result ∀ c ∈ CN with ‖c‖∞ ≤ L and

d̃j denoting the jth atom in the preceding sparse coding step:

‖Ej − d̃jcHj ‖2
F + λ2‖cj‖0 ≤ ‖Ej − d̃jcH‖2

F + λ2‖c‖0. (6.10)

If Ejcj = 0, the left hand side above is ‖Ej‖2
F +‖cj‖2

2 +λ2‖cj‖0, which is clearly

minimal when cj = 0. Thus, when Ejcj = 0, we must have cj = 0.

6.2.2.3 Computational Cost

The overall block coordinate descent DINO-KAT algorithm involves J sparse cod-

ing and dictionary atom update steps in each outer iteration. Assuming J ∝ n

and N � J, n, the cost per iteration of the algorithm scales as O(Nn2). This cost

is dominated by various matrix-vector products. The costs of the truncated hard-

thresholding (6.2) and low-rank approximation (6.5) steps are negligible. The per-

iteration cost for our method is lower than that for learning an n × J dictionary D

in (P0) using K-SVD [104, 123], which scales (with s ∝ n and J ∝ n) as O(Nn3).

Our algorithms also converge quickly in practice and outperform K-SVD in applica-

tions [119].

6.2.3 Convergence of the DINO-KAT Learning Algorithm

We briefly present results on the convergence behavior of the proposed algorithm.

The proofs of the results in this section follow using similar arguments as in the proofs

of related results in [119].

The constraints rank(R(dj)) ≤ r, ‖dj‖2 = 1, and ‖cj‖∞ ≤ L in (P1) can instead

be added as penalties in the cost by using barrier functions φ(dj), χ(dj), and ψ(cj),

respectively, that take the value +∞ when the corresponding constraint is violated,

and are zero otherwise. Problem (P1) is then written in unconstrained form with
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objective

g(C,D) = g(c1, ..., cJ , d1, ..., dJ)

= ‖Y −DCH‖2
F +

J∑
j=1

(λ2‖cj‖0 + φ(dj) + χ(dj) + ψ(cj)).
(6.11)

Our convergence results are as follows. First, we have the following monotonicity and

limit consistency result.

Theorem VI.2. Let {Ct, Dt} denote the iterate sequence generated by the algorithm

with training data Y ∈ Cn×N and initial (C0, D0). Then, the objective sequence

{gt} with gt , g(Ct, Dt) is monotone decreasing and converges to a finite value, say

g∗ = g∗(C0, D0). Moreover, the iterate sequence {Ct, Dt} is bounded, and all its

accumulation points are equivalent in the sense that they achieve the same objective

value g∗.

Theorem VI.2 establishes that for each initialization, all the accumulation points

of the (bounded) iterate sequence of the algorithm achieve the same value g∗ of the

objective, and are equivalent. Because the distance between a bounded sequence

and its compact set of accumulation points converges to zero, we have the following

corollary.

Corollary VI.3. For each (C0, D0), the iterate sequence in the algorithm converges

to an equivalence class of accumulation points.

Finally, the following theorem establishes that the iterates in our algorithm con-

verge to the set of critical points [124] (or generalized stationary points) of g(C,D).

Here, σk denotes the kth singular value in the full SVD of a (square) matrix.

Theorem VI.4. Let {Ct, Dt} denote the bounded iterate sequence in the algorithm

with training data Y and initial (C0, D0). Suppose each accumulation point (C,D) of

the iterate sequence is such that for each 1 ≤ j ≤ J with Ej , Y −DCH + djc
H
j , the

vector EH
j dj has no entry with magnitude λ, and σr(R(Ejcj)) > σr+1(R(Ejcj)) or

σr(R(Ejcj)) = 0. Then, every accumulation point of the iterate sequence is a critical

point of g(C,D). Moreover, the sequences with terms ‖Dt−Dt−1‖F and ‖Ct−Ct−1‖F
respectively, both converge to zero.

Theorem VI.4 says that ‖Dt − Dt−1‖F → 0 and ‖Ct − Ct−1‖F → 0, which are

necessary but not sufficient conditions for the convergence of the sequences {Dt}
and {Ct}. Although Theorem VI.4 assumes simple conditions (e.g., nondegenerate
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Figure 6.1: Images: Barbara, Boat, Hill, and a Microscopy image.

singular values) on the accumulation points, we conjecture that these conditions hold

for each accumulation point with probability 1 when the training signals are drawn

i.i.d. from an absolutely continuous probability measure.

6.3 Numerical Experiments

This section presents numerical results illustrating the convergence of the proposed

DL method and its application to inverse problems.

6.3.1 Convergence Behavior

To study the practical convergence behavior of the proposed algorithm for (P1),

we extracted 3× 104 training patches of size 8× 8 from randomly chosen locations in

the images Barbara, Boat, and Hill shown in Figure 6.1. We used (P1) with λ = 69

to learn a 64× 256 dictionary for the data, with reshaped atoms of size 8× 8. We set

C0 = 0, and D0 to be the overcomplete DCT [100].

Figure 6.2 shows the behavior of the algorithm for various choices of atom rank

r. The objective in (P1) converged (Figure 6.2(a)) monotonically and quickly over

the iterations. The convergence was faster for smaller values of r. Figure 6.2(b)

shows the normalized sparse representation error (NSRE) ‖Y − DCH‖F/ ‖Y ‖F for

the training data. (The sparsity ‖C‖0/Nn stayed at about 3% during the algorithm

iterations for all choices of r.) The NSRE improved significantly beyond the first

iteration, indicating the success of the proposed DL scheme. Importantly, the NSRE

values achieved for small values of r (DINO-KAT cases) are very similar to the value

in the full-rank [119] (r = 8) case. This suggests that the low-rank model on reshaped

dictionary atoms, despite being a constrained model, can effectively model proper-

ties of natural images. Lastly, both ‖Dt −Dt−1‖F (Figure 6.2(c)) and ‖Ct − Ct−1‖F
(Figure 6.2(d)) converge towards 0, as predicted by Theorem VI.4, with quicker con-

vergence observed for the low-rank case.
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Figure 6.2: Algorithm behavior: Objective function (top left); NSRE (top right);
normalized changes between successive D iterates ‖Dt − Dt−1‖F/

√
J (bottom left);

and normalized changes between successive C iterates ‖Ct − Ct−1‖F/‖Y ‖F (bottom
right).

6.3.2 Inverse Problem: Blind Compressed Sensing

In compressed sensing (CS) [69], the goal is to recover an image x ∈ Cp from its

measurements y = Ax+ h, where A ∈ Cm×p with m� p is a known sensing matrix,

and h denotes noise. CS methods reconstruct the image (or video) by modeling it

(or its patches) as sparse in a known transform or dictionary. Here, we consider

blind compressed sensing (BCS) [120], where the sparse model is assumed unknown

a priori. The image and the model are jointly estimated in BCS. We propose the

following BCS problem based on (P1):

(P2) min
x,D,B

ν‖Ax− y‖2
2 +

N∑
k=1

‖Pkx−Dbk‖2
2 + λ2‖B‖0

s.t. ‖bi‖∞ ≤ L, rank(R(dj)) ≤ r, ‖dj‖2 = 1, ∀i, j.

Here, B is a matrix with sparse codes bi as its columns. We propose an algorithm

for (P2) that alternates between updating (D,B) and x. In the first step, x is fixed,
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Case Initial Cubic Fixed D r = 8 r = 3 r = 2 r = 1

50% 11.1 36.9 34.8 37.9 37.9 37.9 37.9
30% 9.7 34.9 31.9 35.6 35.9 36.0 35.9
20% 9.1 33.4 30.2 34.6 34.9 34.8 34.8
10% 8.6 31.0 27.8 32.3 32.3 32.4 32.6

Table 6.1: Inpainting PSNR values in decibels (dB) at various percentages of mea-
sured pixels for the initial image, the result with cubic interpolation, the results using
(P2) with r = 1, r = 2, r = 3, and r = 8, and for the reconstructions obtained with
fixed dictionary in our algorithm. Results are for the Microscopy image. The best
PSNRs are marked in bold.

and the problem reduces to DL using (P1). The second step involves a simple least

squares problem in x that can be solved either directly or using iterative solvers such

as the proximal gradient method.

Here, we study the usefulness of (P2) for dynamic MRI (dMRI) and for compres-

sive scanning electron microscopy (SEM) [125].

6.3.2.1 Compressive SEM

We consider the SEM image [126] in Figure 6.1 and simulate CS (inpainting) by

sampling a subset of image pixels. We used (P2) with a 64× 20 D learned on 8× 8

overlapping image patches using 100 alternations between (D,B) and x with ν = 107

and λ = 0.05. (We use larger λ values during initial alternations, which accelerates

convergence.) We update (D,B) using 1 iteration of the algorithm for (P1). We set

the initial x = A†y, the initial B = 0, and the initial D was a 64×20 DCT (generated

as in [127]).

Table 6.1 shows the PSNR values at various undersampling factors for recon-

structions obtained using our method, and with cubic interpolation (using Matlab’s

griddata function), and using the proposed method with fixed D (fixed to initializa-

tion). The proposed BCS scheme clearly achieves better reconstructions compared

to cubic interpolation or conventional CS (fixed D). Importantly, in cases involving

very limited data, enforcing the low-rank constraint (r = 1, 2, 3) on reshaped (8× 8)

dictionary atoms leads to considerably better PSNRs compared to the unstructured

(r = 8) case.
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Acceleration 4x 8x 12x 16x 20x 24x

NRMSE (L+S) % 10.93 14.00 15.80 18.87 21.33 23.36
NRMSE (Fixed D) % 11.29 13.76 15.33 18.31 20.77 22.82

NRMSE (r = 5) % 10.85 13.08 14.37 17.01 19.19 21.35
NRMSE (r = 1) % 10.57 12.90 14.20 16.77 18.74 20.91

Gain over L + S (dB) 0.29 0.71 0.92 1.03 1.13 0.96
Gain over r = 5 (dB) 0.23 0.12 0.10 0.13 0.21 0.18

Table 6.2: NRMSE values at several undersampling factors for the L+S method and
for the algorithm for (P2) with r = 5 (full rank), r = 1 (DINO-KAT MRI) and fixed
dictionary cases. The best NRMSE values for each undersampling are marked in
bold, and the improvements by DINO-KAT MRI are indicated in decibels (dB).

6.3.2.2 CS Dynamic MRI

We perform simulations with the multi-coil Cartesian-sampled cardiac perfusion

data used in prior work [1]. Fully-sampled data with an image matrix size of 128 ×
128 and 40 temporal frames were retrospectively undersampled (in k-t space) using

a different variable-density random Cartesian undersampling pattern for each time

frame. We use normalized root mean square error (NRMSE), defined as

NRMSE(xrecon) =
‖xrecon − xref‖2

‖xref‖2

, (6.12)

where xref is a reference reconstruction computed from the fully-sampled data and

xrecon the reconstruction from the undersampled data, as our performance metric.

We compare the performance of the proposed method to that of the recent L+S

method [1, 4], where the dynamic data is modeled as a sum of a low-rank (L) and

a sparse (S) (with respect to a temporal Fourier transform) component. For the

L+S method, the parameters λL and λS were tuned to obtain good NRMSE in our

experiments. For the proposed method for (P2), we use spatiotemporal patches of

size 8× 8× 5 with spatial and temporal patch overlap strides of 2 pixels, ν = 66.67,

λ = 0.025, and we initialize the algorithm by setting x to be the output of the L+S

method, D to be the 320× 320 DCT matrix, and B = 0.

Table 6.2 lists the NRMSE values for conventional L+S [1] and the proposed

DINO-KAT MRI (r = 1 and 64× 5 (space-time) reshaped atoms) method at various

undersampling factors. The NRMSEs achieved by the algorithm for (P2) with fixed D

(DCT) and for the adaptive r = 5 (full rank) case are also shown. DINO-KAT MRI

with rank-1 atoms provides the best reconstruction errors for each undersampling

factor tested. In particular, it provides improvements up to 1.13 dB over the L+S
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Figure 6.3: 8x undersampling: Frames 7 and 13 of the proposed DINO-KAT MRI
(r = 1) reconstruction along with the reference frames.

method and up to 0.23 dB over the full rank r = 5 case. Figure 6.3 shows two

representative frames of the DINO-KAT MRI reconstruction from 8x undersampled

data. The reconstructed frames are visually very close to the reference frames.

6.4 Conclusions

In this chapter, we investigated a novel framework for structured synthesis dictio-

nary learning. In particular, we considered the learning of dictionaries whose atoms

or columns, after reshaping, have low rank, and we used the `0 norm to measure

sparsity in our formulations. We adopted a highly efficient block coordinate de-

scent approach for dictionary learning in our algorithm, and we presented theoretical

convergence results for the highly non-convex problem. Importantly, the proposed

structured dictionary learning method converges faster in practice than unstructured

dictionary learning methods. Our experiments showed the promise and efficiency of

the proposed schemes for applications such as image denoising and inpainting.

84



CHAPTER VII

Online Data-Driven Image Reconstruction Using

Efficiently Learned Dictionaries

7.1 Introduction

Signal models involving sparsity, low-rank, and other properties have been widely

used in image and video processing. Such models are especially important in inverse

problem settings such as in denoising, deblurring, inpainting, etc., where often they

are used to construct regularizers that reflect known or assumed properties of data.

While sparsity in wavelet or discrete cosine transform (DCT) domains has been ex-

tensively used in image and video restoration [128,129], more recently the data-driven

adaptation of synthesis dictionary [104, 111] or sparsifying transform [130, 130, 131]

models has shown promise in numerous applications [101,103].

There has also been growing interest in dictionary learning-based dynamic image

reconstruction or restoration methods [12,132,133]. For example, in blind compressed

sensing [103, 133], the dictionary for the underlying image or video is assumed un-

known, and it is estimated together with the image from undersampled measurements.

Recently, the learning of a structured DIctioNary with lOw-ranK AToms (DINO-

KAT) was explored [12], where the dictionary atoms are constrained to be low-rank

upon reshaping the atoms into appropriate-sized matrices (e.g., space-time). Such

structured dictionaries are particularly useful in applications involving limited or cor-

rupted data, because they are less prone to over-fitting problems and provide better

reconstructions in scenarios such as blind compressed sensing compared to methods

such as L+S [12].

For inverse problems involving large-scale or streaming data—e.g., in interven-

tional imaging or inpainting large or streaming videos—it is often critical to ob-

tain reconstructions in an online or time-sequential manner to limit latency, because
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batch methods that process all the data at once are typically prohibitively expen-

sive in terms of time and memory usage. Methods for online or sequential learning

of dictionary or transform models from streaming measurements have been recently

proposed [109,134,135].

One important class of dynamic image reconstruction problems is dynamic mag-

netic resonance imaging (MRI). In dynamic MRI, measurements are collected in the

form of samples in k-space or Fourier space of the object, and the samples are ac-

quired sequentially over time of the dynamic object. MRI is a relatively slow imaging

modality due to the sequential nature of the measurements, and, as a result, there

has been much interest in accelerating MRI acquisition by sampling fewer k-space

locations. Methods to reconstruct MR images from limited measurements typically

assume that the image is sparse in some transform domain or dictionary [136] and

optimize problems with sparsity-based regularizers like the `0 and `1 norms.

Dynamic MRI data are inherently or naturally undersampled because the object

is changing as the data is collected. Various techniques have been proposed for recon-

structing dynamic MR image sequences from limited (randomly sampled) k-t space

measurements [1, 137,138]. Such methods may achieve improved spatial or temporal

resolution by using more explicit signal models rather than conventional k-space data

sharing approaches, where data is pooled in time to make sets of k-space data such as

in the form of a Casorati matrix [139], but they typically achieve increased accuracy

at the price of increased computation.

While sparse signal models have been popular [137], alternative models have also

been studied for dynamic MRI reconstruction in recent years including low-rank mod-

els [139–143]. The popular L+S method [1,31] models the image sequence as the sum

of a low-rank component (L) and a sparse component (S) and jointly estimates the

components from k-t space data. The S component may be directly sparse or sparse in

a known transform or dictionary. There has also been interest in dictionary learning-

based approaches for dynamic MRI reconstruction [16,133,144], which tend to often

involve expensive computation or memory use.

7.1.1 Contributions

In this chapter, we investigate a framework for online data-driven reconstruction

of dynamic image sequences from linear (typically undersampled) measurements. In

particular, we model the spatiotemporal patches of the underlying dynamic image

sequence as sparse in an (unknown) adaptive dictionary model, and we develop a

method to jointly estimate the dictionary, sparse codes, and images from streaming
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measurements. The proposed online data-driven reconstruction algorithm involves

simple and efficient updates and requires a small, fixed amount of data to be stored

in memory at a time, which greatly reduces the computation and memory demands

during processing compared to conventional batch methods that process all of the

data together.

We perform extensive numerical experiments that demonstrate the effectiveness

of the proposed online method for performing video inpainting from limted and noisy

pixels, as well as dynamic MRI reconstruction from highly undersampled measure-

ments. The experiments show that our proposed method is able to learn dictionaries

adaptively from corrupted measurements with important representational features

that improve the accuracy of the reconstructions produced. Importantly, the proposed

online method leads to lower reconstruction errors compared to an online method with

a fixed DCT dictionary.

We also present a variation on our proposed method where we impose a unitary

constraint on the learned dictionary, and we show that this modified problem can

be efficiently solved with no inner block coordinate descent updates. We evaluate

the low-rank atoms and unitary dictionary variations of our proposed method and

show that both are useful in practice. Finally, we investigate the properties of our

proposed online methods, including quantifying their ability to learn dictionaries from

corrupted data by comparing to an online scheme with oracle dictionary learned from

the patches of the true image sequence.

7.1.2 Organization

The chapter is organized as follows. In Section 7.2, we review the dictionary

learning problem and introduce our framework for efficiently learning dictionaries

with low-rank atoms. We formulate our proposed online dictionary learning method

in Section 7.3 and present our algorithm for solving it. In Section 7.4 we present

extensive numerical experiments that demonstrate the state-of-the-art performance

of our proposed method on inverse problems such as video reconstruction and dynamic

MRI. Finally, we conclude in Section 7.5 and discuss opportunities for future work.

7.2 Efficient Dictionary Learning

Given a set of signals (or vectorized image patches) that are represented as columns

of a matrix P ∈ Cn×M , the goal of dictionary learning (DL) is to learn a dictionary

D ∈ Cn×m and a matrix Z ∈ Cm×M of sparse codes such that P ≈ DZ. Traditionally,
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the DL problem is often formulated [104] as

min
D,Z

‖P −DZ‖2
F

s.t. ‖zi‖0 ≤ s, ‖dj‖2 = 1, ∀i, j,
(7.1)

where zi and dj denote the i-th column of Z and the j-th column of D, respectively,

and s denotes a target sparsity level for each signal. Here, the familiar `0 “norm”

counts the number of non-zero entries in a vector, and the columns of D are set to unit

norm to avoid scaling ambiguity between D and Z [105]. Various alternative versions

of (7.1) exist that replace the `0 “norm” with other sparsity-promoting functions,

or enforce additional properties on the dictionary [106–108], or enable dictionary

learning in an online manner [109].

Dictionary learning algorithms [104, 109–113] typically attempt to solve (7.1) or

its variants in an alternating manner by performing a sparse coding step (updating

Z) followed by a dictionary update step (updating D). Methods such as K-SVD [104]

also partially update the coefficients in Z in the dictionary update step, while a

few recent methods attempt to solve for the variables jointly and iteratively [114].

However, (7.1) is non-convex and NP-hard, and most popular algorithms lack proven

convergence guarantees and tend to be computationally expensive.

The DINO-KAT learning problem [12] is an alternative dictionary learning frame-

work that imposes a low-rank constraint on the dictionary atoms. The problem

formulation is

min
D,Z

‖P −DZ‖2
F + λ2‖Z‖0

s.t. rank(R(di)) ≤ r, ‖di‖2 = 1, ‖zl‖∞ ≤ L, ∀i, l,
(7.2)

where the `0 “norm” is applied elementwise to matrix arguments. The operator R(·)
reshapes dictionary atoms di ∈ Cn into matrices of size n1 × n2 for some n1 and

n2 such that n = n1n2, and r > 0 is the maximum allowed rank for each reshaped

atom. The dimensions of the reshaped atoms can be chosen on an application-specific

basis. For example, in the case where spatiotemporal (3D) patches are extracted

from dynamic data, the atoms could be reshaped into space-time (2D) matrices.

Spatiotemporal patches of videos typically have high temporal correlation, so they

may be well represented by a dictionary with low-rank space-time (reshaped) atoms

[12].

The parameter λ > 0 in (7.2) controls the overall sparsity of the matrix Z, and

enables variable sparsity levels across signals. The `∞ constraints for L > 0 prevent
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pathologies that could theoretically arise (e.g., unbounded algorithm iterates) due

to the objective being non-coercive [119]. In practice, we set L very large, and the

constraint is typically inactive.

Unlike the fixed-sparsity-per-patch constraints in (7.1), the adaptive dictionary

learning formulation (7.2) penalizes the number of non-zeros in the entire coefficient

matrix, which allows for variable sparsity levels across the patches. Variable sparsity

is a useful model for patch data in practice. For example, in imaging applications, the

dictionary is usually learned on (possibly-overlapping) image patches. Patches from

different regions of an image typically contain different amounts of information, and

thus enforcing a fixed or common sparsity level across patches is too restrictive and

does not reflect typical image properties, and thus it can lead to poor performance in

practice.

7.3 Problem Formulation and Algorithms

We now present our proposed problem formulation for online dictionary learning-

driven dynamic image reconstruction and our algorithm for solving it.

7.3.1 Problem Formulation

We propose an online image reconstruction framework based on an adaptive dic-

tionary regularizer as in (7.2). Let {gt ∈ CNx×Ny} denote the sequence of dynamic

image frames to be reconstructed. We assume that noisy, undersampled linear mea-

surements of these frames are observed, and we process the streaming measurements

in minibatches of M̃ ≤ 1 consecutive frames. Let xt denote the vectorized version of

the 3D tensor obtained by (temporally) concatenating the M̃ consecutive frames of

dynamic images. In practice, we construct {xt} using a sliding window (over time)

strategy, which may involve overlapping or non-overlapping minibatches. We model

the spatiotemporal (3D) patches of each xt as sparse with respect to a latent dic-

tionary D. Under this model, we propose to solve the following online dictionary
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learning-driven image reconstruction problem for each time t = 1, 2, 3, . . .

(P1)
{
x̂t, D̂t, Ẑt

}
= arg min

xt,D,Zt

1

Kt

t∑
j=1

ρt−j‖yj − Ajxj‖2
2

+
λS
Kt

t∑
j=1

ρt−j

(
M∑
l=1

‖Plxj −Dzjl ‖
2
2 + λ2

Z‖Zj‖0

)
s.t. ‖ztl‖∞ ≤ L, rank(R(di)) ≤ r, ‖di‖2 = 1, ∀i, l.

In (P1), j indexes time, and yt denotes the (typically undersampled) measure-

ments that are related to the underlying frames xt that we would like to reconstruct

through the linear sensing operator At. For example, in video inpainting, At samples

a subset of pixels in xt, or in dynamic MRI, it corresponds to an undersampled Fourier

encoding. The operator Pl is a patch extraction matrix that extracts an nx× ny × nt
spatiotemporal patch from xt as a vector. A total of M (possibly) overlapping 3D

patches are assumed. Matrix D ∈ Cn×m with n = nxnynt is the synthesis dictionary

to be learned and ztl ∈ Cm is the unknown sparse code for the l-th patch of xt, with

Plx
t ≈ Dztl . Matrix Zt has ztl as its columns. The weights λS, λZ ≥ 0 are regular-

ization parameters that control the relative adaptive dictionary regularization and

sparsity of Z, respectively, in the model.

Problem (P1) jointly estimates the adaptive dictionary model for the patches of

xt together with the underlying image frames. Note that, for each time index t, we

only solve (P1) for the latest group of frames xt and the latest sparse coefficients

Zt, while the previous images and sparse coefficients are set to their estimates from

previous minibatches (i.e., xj = x̂j and Zj = Ẑj for j < t). However, the dictionary

D is adapted to all spatiotemporal patches observed up to time t.1 An exponential

forgetting factor ρt−j with 0 < ρ < 1 is used for the terms in (P1), and Kt =
∑t

j=1 ρ
t−j

is a normalization constant for the objective. The forgetting factor ρ diminishes the

influence of “old” data on the dictionary adaptation process. When the dynamic

object or scene changes slowly over time, a large ρ (close to 1) is preferable so that

past information can be used effectively. As written in (P1), the dictionary D is

updated based on patches from all previous times; however, we do not store this

information. Indeed, our proposed algorithm in Section 7.3.2 computes only a few

constant-sized matrices that contain the necessary cumulative (over time) information

to solve (P1).

1We emphasize the global dependence of D on all previous data by using the optimization variable
D rather than a time-indexed variable Dt as for the variables xt and Zt.
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When minibatches xt and xt+1 do not overlap (i.e., no common frames), each

frame gt is reconstructed exactly once in its corresponding window in (P1). However,

it is often beneficial to construct the xt’s using an overlapping sliding window strategy

[135], in which case a frame gt may be reconstructed in multiple windows (minibatches

of frames). In this case, we independently produce estimates x̂t for each time index as

indicated in (P1), and then we produce a final estimate of the underlying frame gt by

computing a weighted average of the reconstructions of that frame from each window

in which it appeared. We empirically found that an exponentially ρ-weighted average

performed better than alternatives such as an unweighted average of the estimates

from each windows or using the most recent reconstruction from the latest window.

We propose a simple alternating minimization scheme for solving (P1). At each

time index t, we alternate a few times between updating (D,Zt) while holding xt

fixed (the dictionary learning step) and then updating xt with (D,Zt) held fixed

(the image update step). For each t, we initialize the dictionary D with the most

recent dictionary (D̂t−1). Frames of xt that were estimated in the previous (tem-

poral) windows are initialized with the most recent ρ-weighted reconstructions, and

new frames are initialized using simple approaches (e.g., interpolation in the case of

inpainting). Initializing the sparse coefficients Zt with the codes estimated in the

preceding window (Ẑt−1) worked well. All updates are performed efficiently and with

modest memory usage. Figure 7.1 provides a graphical flowchart depicting our pro-

posed alternating minimization scheme at a given time index. We derive the solutions

to the subproblems in the following sections.

7.3.2 Dictionary Learning Step

Let Ct := (Zt)H . Minimizing (P1) with respect to (D,Ct) yields the optimization

problem

min
D,Ct

t∑
j=1

ρt−j‖P j −D(Cj)H‖2
F + λ2

Z‖Ct‖0

s.t. ‖cti‖∞ ≤ L, rank(R(di)) ≤ r, ‖di‖2 = 1 ∀i,
(7.3)

where P j ∈ Cn×M is the matrix whose columns contain the patches Plx
j for 1 ≤ l ≤

M , and cti is the i-th column of Ct. We use a block coordinate descent approach to

update the sparse coefficients cti and atoms di (columns of D) sequentially. For each

1 ≤ i ≤ m, we first minimize (7.3) with respect to cti keeping the other variables fixed

(the sparse coding step), and then we update di keeping the other variables fixed (the

dictionary atom update step).
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Figure 7.1: Flowchart of the proposed online adaptive dictionary learning alternating
update scheme at time t. The input is a vector yt containing the streaming mea-
surements for the current minibatch, and xt denotes the corresponding reconstructed
frames. In the dictionary learning step, (D,Ct) are updated with xt held fixed by
performing block coordinate descent over the columns of Ct (the dictioanry atom up-
date) and the columns of D (the sparse coding step). Then, the frames xt are updated
(the image update step) with (D,Ct) held fixed. This process is repeated a few times,
and the final frame estimates x̂t are integrated into the streaming reconstruction, x̂.

7.3.2.1 Sparse Coding Step

Minimizing (7.3) with respect to cti leads to the problem:

min
cti∈CM

‖Et
i − di(cti)H‖2

F + λ2
Z‖cti‖0

s.t. ‖cti‖∞ ≤ L,
(7.4)

where the matrix

Et
i := P t −

∑
k 6=i

dk(c
t
k)
H (7.5)

is defined based on the most recent estimates of the other atoms and sparse coeffi-

cients. The solution to (7.4), assuming L > λZ , is given by [119]

ĉti = min
(
|HλZ ((Et

i )
Hdi)|, L1M

)
� ej∠(Eti )

Hdi , (7.6)

92



where HλZ (·) is the elementwise hard thresholding operator that sets entries with

(complex) magnitude less than λZ to zero and leaves other entries unaffected, 1M is

a vector of ones of length M , � denotes elementwise multiplication, min(·, ·) denotes

elementwise minimum, and ej∠· is computed elementwise, with ∠ denoting the phase.

We do not construct Et
i explicitly; rather we efficiently compute the matrix-vector

product (Et
i )
Hdi = (P t)Hdi−CtDHdi+ cti based on the most recent estimates of each

quantity using sparse matrix-vector operations [119].

7.3.2.2 Dictionary Atom Update Step

Here, we minimize (7.3) with respect to di. This update makes use of past infor-

mation via the forgetting factor ρ. Let P̃ j :=
√
ρt−jP j and C̃j :=

√
ρt−jCj denote the

ρ-weighted patches and sparse coefficients, respectively, and let P̃ 1:t and C̃1:t denote

the matrices formed by stacking the P̃ j’s horizontally and C̃j’s vertically, respec-

tively, for times 1 to t. Finally, define Ẽ1:t
i := P̃ 1:t −

∑
k 6=i dk(c̃

1:t
k )H using the most

recent estimates of all variables, with c̃1:t
k denoting the k-th column of C̃1:t. Using

this notation, we can write the minimization of (7.3) with respect to di as

min
di∈Cn

‖Ẽ1:t
i − di(c̃1:t

i )H‖2
F

s.t. rank(R(di)) ≤ r, ‖di‖2 = 1.
(7.7)

Let UrΣrV
H
r be the rank-r truncated singular value decomposition (SVD) of the

matrix R(Ẽ1:t
i c̃

1:t
i ) that is obtained by computing the r leading singular vectors and

singular values of the full SVD R(Ẽ1:t
i c̃

1:t
i ) := UΣV H . Then a solution to (7.7) is

given by [12]

R(d̂i) =


UrΣrV

H
r

‖Σr‖F
, if c̃1:t

i 6= 0

W, if c̃1:t
i = 0,

(7.8)

where W is any matrix of appropriate dimension with rank at most r such that

‖W‖F = 1.2

The main computation in (7.8) is computing Ẽ1:t
i c̃

1:t
i , since the SVD of the small

nynx × nt matrix R(Ẽ1:t
i c̃

1:t
i ) has negligible computational cost. In principal, the

matrix-vector multiplication Ẽ1:t
i c̃

1:t
i depends on all past information processed by the

streaming algorithm; however, it can be recursively computed using constant time

2We set W to be the reshaped first column of the n× n identity matrix.
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and memory. Indeed, observe that

Ẽ1:t
i c̃

1:t
i =

t∑
j=1

Ẽj
i c̃
j
i =

t∑
j=1

ρt−jEj
i c
j
i

=
t∑

j=1

ρt−j
(
P j −D(Cj)H + di(c

j
i )
H
)
cji

=

 t∑
j=1

ρt−jP jcji


︸ ︷︷ ︸

=:f ti

−D

 t∑
j=1

ρt−j(Cj)Hcji


︸ ︷︷ ︸

=:gti

+di

 t∑
j=1

ρt−j‖cji‖2


︸ ︷︷ ︸

=[gti ]i

,

(7.9)

where [z]i denotes the i-th element of vector z. The vectors f ti and gti depend on all

previous data, but they can be recursively computed as

f ti = ρf t−1
i + P tcti

gti = ρgt−1
i + (Ct)Hcti,

(7.10)

where, for each column index i, the matrix Ct is understood to contain the latest

versions of the sparse codes already updated during the dictionary learning step.

Using these recursive formulas, the product Ẽ1:t
i c̃

1:t
i can be readily computed in our

algorithm. Thus, the update in (7.8) can be performed in a fully online manner.

In practice, we collect the vectors f ti and gti as columns of matrices F t ∈ Cn×m

and Gt ∈ Cm×m, and we perform the following recursive update at the end of each

outer iteration of our algorithm:

F t = ρF t−1 + P tCt

Gt = ρGt−1 + (Ct)HCt.
(7.11)

Here, Ct denotes the final sparse codes after updating each column for the current

outer iteration. The matrices F t ∈ Cn×m and Gt ∈ Cm×m are small, constant-sized

matrices whose dimensions are independent of the time index t and the dimensions

of frame sequence, so they can be efficiently stored for use in the next minibatch.

Moreover, the matrix Ct is sparse, so the matrix-matrix multiplications in (7.11) can

be efficiently computed using sparse matrix operations.
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7.3.3 Image Update Step

Minimizing (P1) with respect to xt yields the sub-problem:

min
xt
‖Atxt − yt‖2

2 + λS

M∑
l=1

‖Plxt −Dztl‖2
2. (7.12)

Problem (7.12) is a least squares problem with normal equation(
(At)HAt + λS

M∑
l=1

PH
l Pl

)
xt = (At)Hyt + λS

M∑
l=1

PH
l Dz

t
l . (7.13)

In applications such as video denoising or inpainting, the matrix pre-multiplying xt in

(7.13) is a fixed diagonal matrix that can be efficiently inverted (and pre-computed).

More generally, in inverse problems where the matrix pre-multiplying xt in (7.13)

is not diagonal or readily diagonalizable (e.g., in dynamic MRI with multiple coils),

we instead solve (7.12) by applying a few iterations (indexed by k) of the proximal

gradient method [25,145], which prescribes updates of the form

xt,k+1 = proxτkh
(
xt,k − τk(At)H(Atxt,k − yt)

)
, (7.14)

where h(x) := λS
∑M

l=1 ‖Plx − Dztl‖2
2 and the proximal operator of a function f is

defined as

proxf (x) := arg min
z

1
2
‖x− z‖2

2 + f(z). (7.15)

The proximal operator in (7.14) is a simple least squares problem with diagonal nor-

mal equation, so it can be solved exactly and efficiently by inverting a fixed diagonal

matrix, which can be pre-computed. A constant step-size τk = τ < 2/‖At‖2
2 suffices

for the proximal gradient method to converge [145]. In fact, the iterations (7.14) will

monotonically decrease the objective (7.12) when a constant step size τ ≤ 1/‖At‖2
2 is

used [25].

7.3.4 Unitary Dictionary Variation

In (P1) we imposed a low-rank constraint on the dictionary atoms. In this section,

we instead constrain the dictionary to be a unitary matrix. The resulting problem
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thus becomes

(P2)
{
x̂t, D̂t, Ẑt

}
= arg min

xt,D,Zt

1

Kt

t∑
j=1

ρt−j‖yj − Ajxj‖2
2

+
λS
Kt

t∑
j=1

ρt−j

(
M∑
l=1

‖Plxj −Dzjl ‖
2
2 + λ2

Z‖Zj‖0

)
s.t. DHD = I,

where all terms are defined as in (P1). Note that we do not require the `∞-norm con-

straints on the sparse coefficients Zt in this formulation because the unitary constraint

on the dictionary precludes the possibility of repeated dictionary atoms, which was

the original motivation for including these constraints in (P1). As in Section 7.3.1,

we propose to solve (P2) by an alternating minimization scheme where we sequen-

tially minimize (P2) with respect to Zt, D, and xt with all other variables held fixed.

The image update step is identical to Section 7.3.3. However, unlike (P1), we do

not perform block coordinate descent over the columns of D and (Zt)H . Rather we

derive simple closed-form matrix-valued updates. The following subsections explicitly

describe the solutions to the Zt and D subproblems.

7.3.4.1 Sparse Coding Step

Minimizing (P2) with respect to Zt yields the subproblem

min
Zt
‖DHP t − Zt‖2

F + λ2
Z‖Z‖0, (7.16)

where P t is the matrix whose l-th column contains the image patch Plx
t and we have

used the fact that D is a unitary matrix and the unitary invariance of the Frobenius

norm to isolate Zt. The solution to (7.16) is the simple elementwise hard thresholding

operation

Ẑt = HλZ (DHP t). (7.17)
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7.3.4.2 Dictionary Update Step

Minimizing (P2) with respect to D yields the subproblem

min
D

t∑
j=1

ρt−j‖P j −D(Cj)H‖2
F

s.t. DHD = I,

(7.18)

where we have reintroduced the matrix Cj := (Zj)H for notational convenience.

Using the definitions of the matrices P̃ 1:t and C̃1:t from the dictionary atom updates

in Section 7.3.2, we can equivalently write (7.18) as

min
D
‖P̃ 1:t −D(C̃1:t)H‖2

F

s.t. DHD = I.
(7.19)

Problem (7.19) is a well-known Procrustes analysis problem [146]. The solution is

given by D̂ = UV T , where UΣV T is the SVD of P̃ 1:tC̃1:t = F t and F t is defined as

in (7.11). The matrix F t ∈ Cn×m can be recursively updated according to (7.11), so

the dictionary update step can be performed efficiently and fully online.

7.3.5 Computational Cost and Convergence

The computational cost for each time index t of the proposed algorithm for solving

the online image reconstruction problem (P1) scales as O(n2M), where D ∈ Cn×m,

we assume m ∝ n, and M is the number of (possibly overlapping) patches in each

temporal window. The cost is dominated by various matrix-vector multiplications.

Assuming the window length M̃ � n, the memory (storage) requirement for the

proposed algorithm scales as O(nM), which is the space required to store the image

patches of xt when performing the updates for (P1). Since the minibatch size M̃ is

typically small, the number of 3D patches in each window is also small, which ensures

modest memory usage for our proposed online method.

The computational cost and memory requirements for each time index t of the

proposed algorithm for solving the unitary variation in (P2) are identical to (P1).

However, the simple matrix-valued forms of the alternating updates result in a several-

fold decrease in runtimes in practice due to optimizations inherent to matrix-valued

computations in modern linear algebra libraries.

Each variable update in the proposed algorithms are either exact block coordinate
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% Missing Pixels
Coastguard Bus Flower Garden

50% 60% 70% 80% 90% 50% 60% 70% 80% 90% 50% 60% 70% 80% 90%

Online DINO-KAT 33.1 31.4 29.6 27.3 22.5 28.7 27.1 25.5 23.7 21.5 24.4 22.8 21.0 18.8 15.8
Online (unitary) 33.8 31.3 28.1 24.8 21.9 29.7 27.6 25.5 23.4 21.1 24.4 22.1 19.6 17.1 15.6
Online (DCT) 32.7 30.3 27.8 25.3 22.6 28.4 26.7 25.0 23.1 20.8 23.3 21.6 19.9 18.1 16.3

Batch DINO-KAT 33.1 31.2 29.1 26.3 22.8 27.8 26.3 24.7 22.9 20.9 23.5 21.8 20.1 18.2 16.1
Interpolation (3D) 29.8 28.5 27.3 25.9 24.1 27.3 25.7 24.0 22.1 20.0 20.6 19.6 18.5 17.5 16.4
Interpolation (2D) 28.2 26.5 24.9 23.1 21.1 26.0 24.8 23.7 22.5 21.1 20.1 18.8 17.5 16.2 14.8

Table 7.1: PSNR values in decibels (dB) for video inpainting on three videos from
the BM4D dataset at various percentages of missing pixels. The methods considered
are the proposed online DINO-KAT learning method with r = 5, the proposed online
method with unitary dictionary, online inpainting with a fixed DCT dictionary, the
batch DINO-KAT learning method with r = 5, 2D (frame-by-frame cubic) interpola-
tion, and 3D interpolation The best PSNR for each undersampling on each video is
in bold.

descent updates or, in the image update step with non-diagonalizable At, proximal

gradient iterations that can be guaranteed to monotonically decrease the objectives

in (P1) or (P2), respectively, with an appropriate choice of step size. Thus the overall

proposed algorithms are guaranteed to monotonically decrease their objectives. The

objectives are bounded below by zero, so the objectives must converge. Whether or

not the iterate sequences produced by each algorithm also converge is an interesting

open problem that we leave for future work.

7.4 Numerical Experiments

In this section we perform extensive numerical experiments to illustrate the use-

fulness of the proposed online adaptive dictionary learning methods. We consider two

inverse problem applications in this section: video reconstruction (inpainting) from

noisy and subsampled pixels, and dynamic MRI reconstruction from highly under-

sampled data.

7.4.1 Video Inpainting

7.4.1.1 Framework

First, we consider video inpainting from noisy and subsampled pixels. We work

with the publicly available videos3 provided by the authors of the BM4D method [147].

We process the first 150 frames of each video at native resolution. We measure a uni-

formly random subset of the pixels in each frame of the video, and in some experiments

3The data is available at http://www.cs.tut.fi/~foi/GCF-BM3D/.
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% Missing Pixels
Coastguard (25 dB PSNR)

50% 60% 70% 80% 90%

Online DINO-KAT 28.6 27.9 27.2 26.1 23.9
Online (unitary) 29.4 28.6 26.6 24.9 22.0
Online (DCT) 28.6 27.8 26.7 25.1 22.9

Batch DINO-KAT 28.6 27.8 26.6 25.1 22.5
Interpolation (3D) 26.2 25.9 25.4 24.6 23.4
Interpolation (2D) 24.7 24.0 23.0 21.9 20.2

Table 7.2: PSNR values in decibels (dB) for video inpainting on the Coastguard video
corrupted by Gaussian noise with 25dB PSNR at various percentages of missing pixels.
The methods considered are the proposed online DINO-KAT learning method with
r = 5, the proposed online method with unitary dictionary, the batch DINO-KAT
learning method with r = 5, online inpainting with a fixed DCT dictionary, 2D
(frame-by-frame cubic) interpolation, and 3D interpolation The best PSNR for each
undersampling is in bold.

we also add Gaussian noise to the measured pixels. The proposed online method is

then used to reconstruct the video from the corrupted (noisy and/or subsampled)

measurements.

For the proposed method, we used sliding (temporal) windows of length M̃ = 5 to

construct minibatches of frames with a temporal stride of 1 frame. In each window,

we extracted 8 × 8 × 5 overlapping spatiotemporal patches with a spatial stride of

2 pixels. We learned a square 320 × 320 dictionary, and the operator R(·) reshaped

dictionary atoms into 64×5 space-time matrices. We ran the algorithm for (P1) for 7

iterations in each temporal window, with 1 inner iteration of block coordinate descent

for updating (D,Zt), and we chose forgetting factor ρ = 0.9. We ran the algorithm

for more (50) iterations for the first temporal window to warm start the algorithm.

We initialized D to the discrete cosine transform (DCT) matrix, set the initial sparse

codes to zero, and initialized the frames with 2D (per-frame) cubic interpolation. We

simulated various levels of subsampling of the video (with and without noise), and we

chose r = 5 (full-rank) atoms. The weights λS and λZ were tuned at an intermediate

undersampling factor (70% missing pixels) for each video.

Note that we still refer to the proposed method here as the online DINO-KAT

method even when full-rank atoms are used, because the variable patch sparsity and

other properties of the DINO-KAT learning model (7.2) are still important charac-

teristics in (P1). The videos considered in this section have substantial temporal

motion, so allowing full-rank atoms enabled the algorithm to learn useful dynamic

temporal features of the data. We demonstrate the performance of low-rank atoms

in Section 7.4.2.
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Figure 7.2: Two representative frames from the reconstructions produced by each
method on the Coastguard video with 80% missing pixels (top) and 80% pixels with
25 dB Gaussian noise added (bottom). The methods considered are the proposed
online DINO-KAT learning method (r = 5), the online method with fixed DCT
dictionary, the batch DINO-KAT learning method, and 3D interpolation. Top: the
proposed method method achieves PSNR improvements of 2.0 dB, 1.0 dB, and 1.4
dB, respectively, compared to the other methods. Bottom: the proposed method
achieves PSNR improvements of 1.0 dB, 1.0 dB, and 1.5 dB, respectively, compared
to the other methods.

We compare the performance of the proposed online DINO-KAT method, the pro-

posed method with a (learned) unitary dictionary, and the proposed online method

with a fixed DCT dictionary. We also produce reconstructions using the batch DINO-

KAT method with r = 5 [12] that processes all frames jointly.4 For each method,

we used the same patch dimensions, initializations, etc. (if applicable for the batch

scheme), and we tuned the parameters of each method individually. The one excep-

tion is that we used a spatial stride of 4 pixels for the batch method rather than the

2 pixel strides used for the online methods. The batch method is memory intensive

as it requires extracting image patches from the entire video concurrently, so it was

4The batch DINO-KAT method is equivalent to the proposed online method with M̃ set to the
number of frames in the video.
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Figure 7.3: Two representative frames from the reconstructions produced by each
method on the Flower Garden video with 80% missing pixels. The methods considered
are the proposed online DINO-KAT learning method (r = 5), the online method with
fixed DCT dictionary, the batch DINO-KAT learning method, and 3D interpolation.
The proposed method achieves PSNR improvements of 0.7 dB, 0.6 dB, and 1.3 dB,
respectively, compared to the other methods.
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Figure 7.4: Per-frame PSNR for the reconstructions produced by each method on
the Coastguard video with 70% missing pixels (left) and the Bus video with 50%
missing pixels (right). The methods considered are the proposed online DINO-KAT
learning method (r = 5), the proposed online method with unitary dictionary, the
online method with fixed DCT dictionary, the batch DINO-KAT learning method,
and 3D interpolation.
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Initial (1st slice) Initial (y-t)

Learned (1st slice) Learned (y-t)

Figure 7.5: Dictionaries for the Bus video with 50% missing pixels. Top: the initial
DCT dictoinary; bottom: the learned dictionary produced by the proposed online
DINO-KAT learning method with r = 5. Left: the first 8 × 8 slice of each atom;
right: the y − t profiles of a vertical cross-section through each 8× 8× 5 tensor.

necessary to process fewer patches to make the computation feasible. We ran the

batch method for 20 iterations. Finally, we compute baseline reconstructions pro-

duced by 2D interpolation (frame-by-frame cubic) and 3D interpolation (using the

natural neighbor method in MATLAB).

7.4.1.2 Reconstructions

Table 7.1 lists the peak signal to noise ratio (PSNR) values in decibels (dB) for the

various reconstruction methods at different levels of subsampling (from 50% to 90%

missing pixels) on three videos from the BM4D dataset. Table 7.2 shows the analo-

goous results on the Coastguard video when Gaussian noise with 25 dB PSNR was

added before sampling. The proposed online DINO-KAT method typically provides

the best PSNRs at higher undersampling rates, and the proposed unitary method

typically performs better at lower undersampling rates. Both variations consistently
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outperform the online method with fixed DCT dictionary, suggesting that the dic-

tionaries learned by the proposed methods are successfully adapting to underlying

features of the videos.

Figures 7.2 and 7.3 show the original and reconstructed frames for a few rep-

resentative frames for each method on the Coastguard and Flower Garden videos.

Figure 7.2 shows that the proposed online DINO-KAT method produces visually

more accurate reconstructions of the texture in the waves and produces fewer arti-

facts near the boats in the water and the rocks on the shore. From Figure 7.3 we see

that the proposed method produces a sharper reconstruction with less smoothing ar-

tifacts than the online method with fixed DCT dictionary and the batch DINO-KAT

method, and it is less noisy than the interpolation-based reconstruction.

7.4.1.3 Properties

Figure 7.4 shows the frame-by-frame PSNRs for the inpainted Coastguard and

Bus videos using the various methods. Clearly the proposed online method achieves

consistently higher PSNRs across frames on the Coastguard video, and the proposed

online method with unitary dictionary achieves consistently higher PSNRs on the Bus

video. The overall trends in PSNR are similar across each method and are due to

motion in the original videos, with more motion generally resulting in lower PSNRs.

Finally, Figure 7.5 shows a representative example of a learned dictionary pro-

duced by the proposed online DINO-KAT method on the Bus video compared to the

initial DCT dictionary. The learned dictionary contains 320 atoms, each of which are

8×8×5 space-time tensors. We visualize each atom by plotting the first 8×8 slice of

each atom and the plotting the y− t profiles of the atoms for a vertical slice through

the middle of each atom. The first slice images show that the learned dictionary has

adapted to both smooth and sharp gradients in the image, and the dynamic nature

of the y− t profiles shows that the dictionary atoms have adapted to temporal trends

in the data.

7.4.2 Dynamic MRI

7.4.2.1 Framework

We next demonstrate the usefulness of the proposed online DINO-KAT method for

reconstructing dynamic MRI data from highly undersampled measurements. We work

with the multi-coil (12-element coil array) cardiac perfusion data [1] and the PINCAT

data [133, 148] from prior works. For the cardiac perfusion data, we retrospectively
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undersampled the k-t space using variable-density random Cartesian undersampling

with a different undersampling pattern for each time frame, and for the PINCAT

data we used pseudo-radial sampling with a random rotation of radial lines between

frames. For each dataset, we obtained reconstructions using the proposed online

DINO-KAT method, the online method with fixed DCT dictionary, and the batch

DINO-KAT method [12]. We also ran the recent L+S [1] and k-t SLR [2] methods,

two sophisticated batch methods for dynamic MRI that process all frames jointly.

Finally, we also computed a baseline reconstruction for each dataset by performing

zeroth order interpolation across time at non-sampled k-t space locations and then

backpropagating the filled k-t space to image space by pre-multiplying with the AH

corresponding to fully sampled data.

For the online schemes, we used 8 × 8 × 5 spatiotemporal patches with M̃ = 5

frames per temporal window and a temporal stride of 1. We extracted overlapping

patches using a spatial stride of 2 along each dimension. We chose forgetting factor

ρ = 0.9, and we learned a square 320 × 320 dictionary with rank r = 1 atoms when

reshaped into 64×5 space-time matrices. We ran the online scheme at each time index

t for 10 outer iterations, with 1 block coordinate descent pass in the dictionary update

step and 10 proximal gradient steps in the image update step, respectively. We used

50 outer iterations for the first temporal window to warm start the algorithm. The

dictionary and image frames were not updated during the first 3 outer iterations to

allow the sparse coefficients to adapt to new patches. The dictionary was initialized

to the DCT matrix, and the sparse codes were set to zero. New frames—those not

appearing in any preceding windows—were initialized by filling the non-sampled k-t

space locations with the synthesized k-space data from the latest reconstructed frame

and then backpropagating the filled k-t space to image space. After one complete pass

over the frames, we performed another pass over the frames, using the reconstructed

frames and learned dictionary from the first pass to initialize the second pass.

For the batch DINO-KAT method, we used the same patch dimensions, strides,

and initializations (where applicable) as for the online methods. We ran the batch

method for 50 iterations. For the L+S methods, we used the publicly available MAT-

LAB implementations from [4] and [5], respectively, and we ran each method to con-

vergence. The regularization parameters for all methods were obtained by sweeping

over a range of values and selecting values that achieved good reconstruction quality

at intermediate undersampling factors. We measured reconstruction quality using the
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Acceleration
Cardiac Perfusion PINCAT

4x 8x 12x 16x 20x 24x 5x 6x 7x 9x 14x 27x

Online DINO-KAT 10.1% 12.8% 14.8% 16.7% 18.1% 18.0% 8.9% 9.7% 11.0% 12.4% 15.5% 21.8%
Online (DCT) 10.8% 13.7% 15.8% 18.2% 20.7% 20.8% 9.5% 10.2% 11.5% 13.2% 16.4% 22.5%

Batch DINO-KAT 10.7% 13.7% 15.9% 18.2% 22.0% 23.9% 10.0% 10.7% 11.8% 13.2% 15.9% 20.9%
L+S 11.0% 13.8% 16.1% 18.4% 21.5% 22.5% 11.8% 12.9% 14.4% 16.6% 20.0% 25.9%

k-t SLR 11.2% 15.7% 18.4% 21.3% 24.3% 26.5% 9.8% 10.9% 12.4% 14.7% 18.2% 24.2%
Baseline 12.8% 15.9% 18.9% 21.1% 24.5% 28.1% 22.3% 24.7% 27.5% 31.3% 36.6% 44.5%

Table 7.3: Left: NRMSE values as percentages for the cardiac perfusion data at
several undersampling factors with Cartesian sampling. Right: NRMSE values as
percentages for the PINCAT data at several undersampling factors with pseudo-radial
sampling. The methods considered are the proposed online DINO-KAT learning
method with r = 1, the online scheme with fixed DCT dictionary, the batch DINO-
KAT learning method with r = 1, the L+S method, the k-t SLR method, and a
baseline reconstruction. The best NRMSE for each undersampling on each dataset is
in bold.
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Figure 7.6: Two representative frames from a reference (fully sampled) reconstruction
along with the corresponding frames from the proposed online DINO-KAT learning-
based reconstruction on the cardiac perfusion data with 12x undersampling (Cartesian
sampling). The right four columns depict the corresponding reconstruction error maps
(w.r.t. reference) for the proposed online DINO-KAT learning method, the online
method with fixed DCT dictionary, the k-t SLR method, and the L+S method,
respectively. The proposed online method achieves NRMSE improvements of 0.6 dB,
1.9 dB, and 0.7 dB, respectively, compared to the other methods.

normalized root mean square error (NRMSE) metric that is computed as

NRMSE(x̂) =
‖x̂− xref‖2

‖xref‖2

× 100%, (7.20)

where x̂ is a candidate reconstruction and xref is a reference reconstruction computed

from “fully” sampled data.
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Reference Online DINO-KAT Online DINO-KAT Online (DCT) k-t SLR L+S
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Figure 7.7: Two representative frames from a reference (fully sampled) reconstruction
along with the corresponding frames from the proposed online DINO-KAT learning-
based reconstruction on the PINCAT data with 7x undersampling (pseudo-radial
sampling). The right four columns depict the corresponding reconstruction error
maps (w.r.t. reference) for the proposed online DINO-KAT learning method, the
online method with fixed DCT dictionary, the k-t SLR method, and the L+S method,
respectively. The proposed online method achieves NRMSE improvements of 0.4 dB,
1.0 dB, and 2.3 dB, respectively, compared to the other methods.
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Figure 7.8: Per-frame PSNR for the reconstructions produced by each method on the
PINCAT data with 9x undersampling (pseudo-radial sampling). The methods shown
are the proposed online DINO-KAT learning method, the online method with fixed
DCT dictionary, the k-t SLR method, and the L+S method.

7.4.2.2 Reconstructions

Table 7.3 shows the reconstruction NRMSE values obtained using each method as

a function of undersampling factor on the cardiac perfusion and PINCAT datasets.
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Reference Online DINO-KAT Online (DCT) k-t SLR L+S

Figure 7.9: Temporal (y − t) profiles of a spatial vertical line cross section for the
reference PINCAT reconstruction, the proposed online DINO-KAT learning method,
the online method with fixed DCT dictionary, the k-t SLR method, and the L+S
method for 14x undersampling (pseudo-radial sampling).

Acceleration 4x 8x 12x 16x 20x 24x

Online (oracle) 10.2% 12.4% 14.4% 16.4% 17.8% 17.9%
Online DINO-KAT (2 passes) 10.2% 12.8% 14.8% 16.7% 18.1% 18.0%
Online DINO-KAT (1 pass) 10.2% 12.9% 14.8% 16.6% 18.3% 18.1%

Online (unitary) 10.5% 13.6% 15.7% 17.8% 20.4% 20.1%
Online (DCT) 10.8% 13.7% 15.8% 18.2% 20.7% 20.8%

Table 7.4: NRMSE values as percentages for the cardiac perfusion data at seversal
undersampling factors with Cartesian sampling. The methods considered are the on-
line scheme with a fixed dictionary learned from patches of a reference reconstruction,
the proposed online DINO-KAT learning method with two passes over the frames,
the proposed online DINO-KAT learning method with a single pass over the frames,
the proposed online method with unitary dictionary, and the online scheme with fixed
DCT dictionary. The best NRMSE for each undersampling is in bold.

The proposed online DINO-KAT method achieves lower NRMSE values in almost

every case, despite the fact that the online scheme only processes and stores data

corresponding to 5 frames (in xt) at any time while the L+S, k-t SLR, and batch

DINO-KAT methods process all data jointly. These results show that the proposed

online method is well-suited for processing streaming data.

Figures 7.6 and 7.7 show reconstructions and reconstruction error maps (mag-

nitudes displayed) for some representative frames from the cardiac perfusion and

PINCAT datasets, respectively. The error maps indicate that the proposed online
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Initial Learned (real) Learned (imaginary)

Figure 7.10: Dictionaries for the PINCAT data with 9x undersampling. Left: the
atoms of the initial DCT dictionary. Right: the real and imaginary parts of the
learned dictionary produced by the proposed online DINO-KAT learning method
with r = 1. The dictionary atoms are 8 × 8 × 5 tensors, so only the first 8 × 8 slice
of each atom is displayed.

method produces fewer artifacts compared to the existing methods.

7.4.2.3 Properties

Figure 7.8 shows that the online DINO-KAT scheme typically provides better

frame-by-frame NRMSE compared to the other methods. Finally, Figure 7.9 shows

y − t profiles for each method obtained by extracting the same vertical line segment

from each reconstructed frame for the PINCAT data. The online DCT-based and

batch methods show line-like or additional smoothing artifacts that are not produced

by the proposed online DINO-KAT method.

Table 7.4 investigates the properties of the proposed online method in more detail

on the cardiac perfusion data. Specifically, it compares the NRMSE values produced

by the proposed online DINO-KAT method with one and two passes over the data,

the proposed online method with (learned) unitary dictionary, and the online method

with a fixed DCT dictionary. In addition, we ran the online method with an “oracle”

dictionary learned from patches of the reference reconstructions by solving the DINO-

KAT learning problem (7.2). The oracle dictionary was computed based on the fully-

sampled data, so it can be viewed as the “best” dictionary that one could learn from

the undersampled data. From Table 7.4 we see that the NRMSE values achieved

by the online method with two passes are within 0.0% - 0.5% of the oracle NRMSE

values, which suggests that the proposed scheme is able to learn dictionaries with

good representational qualities from highly undersampled data.

Figure 7.10 shows an example of a learned dictionary produced by the proposed
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online DINO-KAT method on the PINCAT dataset compared to the initial DCT

dictionary. The learned dictionary contains 320 atoms, each of which are 8 × 8 × 5

complex-valued space-time tensors with rank r = 1 when reshaped into 64× 5 space-

time matrices. Therefore, we display the real and imaginary parts of the first 8 × 8

slice of each atom. The figures show that the learned dictionaries have significantly

evolved from the initial atoms and have adapted to certain smooth and sharp textures

at various orientations. Recall that we chose full-rank (r = 5) atoms in the video

inpainting experiments, while here we chose low-rank (r = 1) atoms. Intuitively, low-

rank atoms are a better model for the dynamic MRI data because the videos have

high temporal correlation and rank-1 atoms are necessarily constant across time.

Conversely, the videos from Section 7.4.1 contained significant camera motion and

thus dictionary atoms with more temporal variation (i.e., higher rank) enabled more

accurate reconstructions.

7.5 Conclusion

In this chapter, we presented a novel framework for online estimation of dynamic

image sequences by learning dictionaries with low-rank (upon reshaping) atoms. The

proposed algorithm sequentially and efficiently updates the images, dictionary, and

sparse coefficients for each image patch from streaming measurements. We also pro-

posed a variation of our method that enforces a unitary constraint on the learned dic-

tionary. Importantly, our algorithms are fully-online and thus can process arbitrarily

long video sequences without scaling memory usage over time. Our numerical exper-

iments demonstrate that the proposed methods produce accurate reconstructions on

both video inpainting and dynamic MRI reconstructions tasks. These results suggest

that our methods may also be suitable for other inverse problems, including medical

imaging applications such as interventional imaging and other video-processing tasks

from computer vision. We hope to investigate these application domains in future

work.
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CHAPTER VIII

Low-Rank and Adaptive Sparse Signal Models for

Highly Accelerated Dynamic Imaging

8.1 Introduction

Sparsity-based techniques are popular in many applications in image processing

and imaging. Sparsity in either a fixed or data-adaptive dictionary or transform is

fundamental to the success of popular techniques such as compressed sensing that

aim to reconstruct images from limited sensor measurements. In this chapter, we

focus on low-rank and adaptive dictionary-sparse models for dynamic imaging data

and exploit such models to perform image reconstruction from limited (compressive)

measurements. In the following, we briefly review compressed sensing (CS), CS-based

magnetic resonance imaging (MRI), and dynamic data modeling. We then outline

the contributions of this chapter.

8.1.1 Background

CS [69, 70, 149, 150] is a popular technique that enables recovery of signals or

images from far fewer measurements (or at a lower rate) than the number of unknowns

or than required by Nyquist sampling conditions. CS assumes that the underlying

signal is sparse in some transform domain or dictionary and that the measurement

acquisition procedure is incoherent in an appropriate sense with the dictionary. CS

has been shown to be very useful for MRI [136,137]. MRI is a relatively slow modality

because the data, which are samples in the Fourier space (or k-space) of the object,

are acquired sequentially in time. In spite of advances in scanner hardware and pulse

sequences, the rate at which MR data are acquired is limited by MR physics and

physiological constraints [136].
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CS has been applied to a variety of MR techniques such as static MRI [136, 151,

152], dynamic MRI (dMRI) [137,138,153,154], parallel imaging (pMRI) [155–158], and

perfusion imaging and diffusion tensor imaging (DTI) [159]. For static MR imaging,

CS-based MRI (CSMRI) involves undersampling the k-space data (e.g., collecting

fewer phase encodes) using random sampling techniques to accelerate data acquisition.

However, in dynamic MRI the data is inherently undersampled because the object is

changing as the data is being collected, so in a sense all dynamic MRI scans (of k-t

space) involve some form of CS because one must reconstruct the dynamic images

from under-sampled data. The traditional approach to this problem in MRI is to use

“data sharing” where data is pooled in time to make sets of k-space data (e.g., in

the form of a Casorati matrix [139]) that appear to have sufficient samples, but these

methods do not fully model the temporal changes in the object. CS-based dMRI

can achieve improved temporal (or spatial) resolution by using more explicit signal

models rather than only implicit k-space data sharing, albeit at the price of increased

computation.

CSMRI reconstructions with fixed, non-adaptive signal models (e.g., wavelets or

total variation sparsity) typically suffer from artifacts at high undersampling fac-

tors [103]. Thus, there has been growing interest in image reconstruction methods

where the dictionary is adapted to provide highly sparse representations of data.

Recent research has shown benefits for such data-driven adaptation of dictionar-

ies [104, 109, 110, 160] in many applications [100, 101, 103, 161]. For example, the

DLMRI method [103] jointly estimates the image and a synthesis dictionary for

the image patches from undersampled k-space measurements. The model there is

that the unknown (vectorized) image patches can be well approximated by a sparse

linear combination of the columns or atoms of a learned (a priori unknown) dic-

tionary D. This idea of joint dictionary learning and signal reconstruction from

undersampled measurements [103], known as (dictionary) blind compressed sensing

(BCS) [162], has been the focus of several recent works (including for dMRI recon-

struction) [103, 133, 144, 163–170]. The BCS problem is harder than conventional

(non-adaptive) compressed sensing. However, the dictionaries learned in BCS typi-

cally reflect the underlying image properties better than pre-determined models, thus

improving image reconstructions.

While CS methods use sparse signal models, various alternative models have been

explored for dynamic data in recent years. Several works have demonstrated the

efficacy of low-rank models (e.g., by constraining the Casorati data matrix to have low-

rank) for dynamic MRI reconstruction [139–142]. A recent work [143] also considered
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a low-rank property for local space-time image patches. For data such as videos (or

collections of related images [171]), there has been growing interest in decomposing

the data into the sum of a low-rank (L) and a sparse (S) component [31, 32, 63]. In

this L+S (or equivalently Robust Principal Component Analysis (RPCA) [31]) model,

the L component may capture the background of the video, while the S component

captures the sparse (dynamic) foreground. The L+S model has been recently shown

to be promising for CS-based dynamic MRI [1, 172]. The S component of the L+S

decomposition could either be sparse by itself or sparse in some known dictionary or

transform domain. Some works alternatively consider modeling the dynamic image

sequence as both low-rank and sparse (L & S) [2, 173], with a recent work [174]

learning dictionaries for the S part of L & S. In practice, which model provides better

image reconstructions may depend on the specific properties of the underlying data.

When employing the L+S model, the CS reconstruction problem can be formu-

lated as follows:

(P0) min
xL,xS

1

2
‖A(xL + xS)− d‖2

2 + λL‖R1(xL)‖∗ + λS‖TxS‖1.

In (P0), the underlying unknown dynamic object is x = xL+xS ∈ CNxNyNt , where xL

and xS are vectorized versions of space-time (3D) tensors corresponding to Nt tempo-

ral frames, each an image1 of size Nx×Ny. The operator A is the sensing or encoding

operator and d denotes the (undersampled) measurements. For parallel imaging with

Nc receiver coils, applying the operator A involves frame-by-frame multiplication by

coil sensitivities followed by applying an undersampled Fourier encoding (i.e., the

SENSE method) [37]. The operation R1(xL) reshapes xL into an NxNy ×Nt matrix,

and ‖ · ‖∗ denotes the nuclear norm that sums the singular values of a matrix. The

nuclear norm serves as a convex surrogate for matrix rank in (P0). Traditionally,

the operator T in (P0) is a known sparsifying transform for xS, and λL and λS are

non-negative weights.

8.1.2 Contributions

This chapter investigates in detail the extension of the L+S model for dynamic

data to a Low-rank + Adaptive Sparse SIgnal (LASSI) model. In particular, we

decompose the underlying temporal image sequence into a low-rank component and

a component whose overlapping spatiotemporal (3D) patches are assumed sparse in

1We focus on 2D + time for simplicity but the concepts generalize readily to 3D + time.
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some adaptive dictionary domain.2 We propose a framework to jointly estimate the

underlying signal components and the spatiotemporal dictionary from limited mea-

surements. We compare using `0 and `1 penalties for sparsity in our formulations, and

also investigate adapting structured dictionaries, where the atoms of the dictionary,

after being reshaped into space-time matrices are low-rank. The proposed iterative

LASSI reconstruction algorithms involve efficient block coordinate descent-type up-

dates of the dictionary and sparse coefficients of patches, and an efficient proximal

gradient-based update of the signal components. We also obtain novel sparsity pe-

nalized dictionary-blind compressed sensing methods as special cases of our LASSI

approaches.

Our experiments demonstrate the promising performance of the proposed data-

driven schemes for dMRI reconstruction from limited k-t space data. In particular, we

show that the LASSI methods give much improved reconstructions compared to the

recent L+S method and methods involving joint L & S modeling [2]. We also show

improvements with LASSI compared to the proposed spatiotemporal dictionary-BCS

methods (that are special cases of LASSI). Moreover, learning structured dictionaries

and using the `0 sparsity “norm” in LASSI are shown to be advantageous in practice.

Finally, in our experiments, we compare the use of conventional singular value thresh-

olding (SVT) for updating the low-rank signal component in the LASSI algorithms

to alternative approaches including the recent OptShrink method [6, 7, 26].

8.1.3 Organization

The rest of this chapter is organized as follows. Section 8.2 describes our models

and problem formulations for dynamic image reconstruction. Section 8.3 presents ef-

ficient algorithms for the proposed problems and discusses the algorithms’ properties.

Section 8.4 presents experimental results demonstrating the convergence behavior and

performance of the proposed schemes for the dynamic MRI application. Section 8.5

concludes with proposals for future work.

2The LASSI method differs from the scheme in [175] that is not (overlapping) patch-based and
involves only a 2D (spatial) dictionary. The model in [175] is that R1(xS) = DZ with sparse Z
and the atoms of D have size NxNy (typically very large). Since often Nt < NxNy, one can easily
construct trivial (degenerate) sparsifying dictionaries (e.g., D = R1(xS)) in this case. On the other
hand, in our framework, the dictionaries are for small spatiotemporal patches, and there are many
such overlapping patches for a dynamic image sequence to enable the learning of rich models that
capture local spatiotemporal properties.
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8.2 Models and Problem Formulations

8.2.1 LASSI Formulations

We model the dynamic image data as x = xL + xS, where xL is low-rank when

reshaped into a (space-time) matrix, and we assume that the spatiotemporal (3D)

patches in the vectorized tensor xS are sparse in some adaptive dictionary domain.

We replace the regularizer ζ(xs) = ‖TxS‖1 with weight λS in (P0) with the following

patch-based dictionary learning regularizer

ζ(xs) = min
D,Z

M∑
j=1

‖PjxS −Dzj‖2
2 + λ2

Z‖Z‖0

s.t. ‖Z‖∞ ≤ a, rank(R2(di)) ≤ r, ‖di‖2 = 1, ∀i
(8.1)

to arrive at the following problem for joint image sequence reconstruction and dictio-

nary estimation:

(P1) min
D,Z,xL,xS

1

2
‖A(xL + xS)− d‖2

2 + λL‖R1(xL)‖∗

+ λS

(
M∑
j=1

‖PjxS −Dzj‖2
2 + λ2

Z‖Z‖0

)
s.t. ‖Z‖∞ ≤ a, rank(R2(di)) ≤ r, ‖di‖2 = 1, ∀i.

Here, Pj is a patch extraction matrix that extracts an mx ×my ×mt spatiotemporal

patch from xS as a vector. A total of M (spatially and temporally) overlapping

3D patches are assumed. Matrix D ∈ Cm×K with m = mxmymt is the synthesis

dictionary to be learned and zj ∈ CK is the unknown sparse code for the jth patch,

with PjxS ≈ Dzj.

We use Z ∈ CK×M to denote the matrix that has the sparse codes zj as its columns,

‖Z‖0 (based on the `0 “norm”) counts the number of nonzeros in the matrix Z, and

λZ ≥ 0. Problem (P1) penalizes the number of nonzeros in the (entire) coefficient

matrix Z, allowing variable sparsity levels across patches. This is a general and flexible

model for image patches (e.g., patches from different regions in the dynamic image

sequence may contain different amounts of information and therefore all patches may

not be well represented at the same sparsity) and leads to promising performance in

our experiments. The constraint ‖Z‖∞ , maxj ‖zj‖∞ ≤ a with a > 0 is used in (P1)

because the objective (specifically the regularizer (8.1)) is non-coercive with respect
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to Z [119].3 The `∞ constraint prevents pathologies that could theoretically arise

(e.g., unbounded algorithm iterates) due to the non-coercive objective. In practice,

we set a very large, and the constraint is typically inactive.

The atoms or columns of D, denoted by di, are constrained to have unit norm

in (P1) to avoid scaling ambiguity between D and Z [105, 119]. We also model the

reshaped dictionary atoms R2(di) as having rank at most r > 0, where the operator

R2(·) reshapes di into a mxmy × mt space-time matrix. Imposing low-rank (small

r) structure on reshaped dictionary atoms is motivated by our empirical observation

that the dictionaries learned on image patches (without such a constraint) tend to

have reshaped atoms with only a few dominant singular values. Our numerical results

in Section 8.4 show that dictionaries learned on dynamic image patches with low-rank

atom constraints tend to represent such data as well as learned dictionaries with full-

rank atoms. Importantly, such structured dictionary learning may be less prone to

over-fitting in scenarios involving limited or corrupted data. We illustrate this for the

dynamic MRI application in Section 8.4.

When zj is highly sparse (with ‖zj‖0 � min(mt,mxmy)) and R2(di) has low rank

(say rank-1), the model PjxS ≈ Dzj corresponds to approximating the space-time

patch matrix as a sum of a few reshaped low-rank (rank-1) atoms. This special (ex-

treme) case would correspond to approximating the patch itself as low-rank. However,

in general the decomposition Dzj could involve numerous (> min(mt,mxmy)) active

atoms, corresponding to a rich, not necessarily low-rank, patch model. Experimental

results in Section 8.4 illustrate the benefits of such rich models.

Problem (P1) jointly learns a decomposition x = xL+xS and a dictionary D along

with the sparse coefficients Z (of spatiotemporal patches) from the measurements d.

Unlike (P0), the fully-adaptive Problem (P1) is nonconvex. An alternative to (P1)

involves replacing the `0 “norm” with the convex `1 norm (with ‖Z‖1 =
∑M

j=1 ‖zj‖1)

as follows:

(P2) min
D,Z,xL,xS

1

2
‖A(xL + xS)− d‖2

2 + λL‖R1(xL)‖∗

+ λS

(
M∑
j=1

‖PjxS −Dzj‖2
2 + λZ‖Z‖1

)
s.t. ‖Z‖∞ ≤ a, rank(R2(di)) ≤ r, ‖di‖2 = 1,∀i.

3Such a non-coercive function remains finite even in cases when ‖Z‖ → ∞. For example, consider
a dictionary D that has a column di that repeats. Then, in this case, the patch coefficient vector
zj in (P1) could have entries α and −α respectively, corresponding to the two repeated atoms in D,
and the objective would be invariant to arbitrarily large scaling of |α| (i.e., non-coercive).
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Problem (P2) is also nonconvex due to the product Dzj (and the nonconvex con-

straints), so the question of choosing (P2) or (P1) is one of image quality, not con-

vexity.

Finally, the convex nuclear norm penalty ‖R1(xL)‖∗ in (P1) or (P2) could be

alternatively replaced with a nonconvex penalty on the rank ofR1(xL), or the function

‖·‖pp for p < 1 (based on the Schatten p-norm) that is applied to the vector of singular

values of R1(xL) [2]. While we focus mainly on the popular nuclear norm penalty in

our investigations, we also briefly study some of the alternatives in Section 8.3 and

Section 8.4.5.

8.2.2 Special Case of LASSI Formulations: Dictionary-Blind Image Re-

construction

When λL →∞ in (P1) or (P2), the optimal low-rank component of the dynamic

image sequence becomes inactive (zero). The problems then become pure spatiotem-

poral dictionary-blind image reconstruction problems (with xL = 0 and x = xS)

involving `0 or `1 overall sparsity [119] penalties. For example, Problem (P1) reduces

to

min
D,Z,x

1

2
‖Ax− d‖2

2 + λS

(
M∑
j=1

‖Pjx−Dzj‖2
2 + λ2

Z‖Z‖0

)
s.t. ‖Z‖∞ ≤ a, rank(R2(di)) ≤ r, ‖di‖2 = 1,∀i,

(8.2)

which is exactly the DINO-KAT (DIctioNary with lOw-ranK AToms) blind image

reconstruction problem from Chapter VI. A similar formulation is obtained from

(P2) but with an `1 penalty. These formulations differ from the ones proposed for

dynamic image reconstruction in prior works such as [133, 144], [166]. In [144], dy-

namic image reconstruction is performed by learning a common real-valued dictionary

for the spatiotemporal patches of the real and imaginary parts of the dynamic im-

age sequence. The algorithm therein involves dictionary learning using K-SVD [104],

where sparse coding is performed using the approximate and expensive orthogonal

matching pursuit method [176]. In contrast, the algorithms in this chapter (cf. Sec-

tion 8.3) for the overall sparsity penalized DINO-KAT blind image reconstruction

problems involve simple and efficient updating of the complex-valued spatiotemporal

dictionary (for complex-valued 3D patches) and sparse coefficients (by simple thresh-

olding) in the formulations. The advantages of employing sparsity penalized dictio-

nary learning over conventional approaches like K-SVD are discussed in more detail

elsewhere [119]. In [166], a spatiotemporal dictionary is learned for the complex-
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valued 3D patches of the dynamic image sequence (a total variation penalty is also

used), but the method again involves dictionary learning using K-SVD. In the blind

compressed sensing method of [133], the time-profiles of individual image pixels were

modeled as sparse in a learned dictionary. The 1D voxel time-profiles are a special

case of general overlapping 3D (spatiotemporal) patches. Spatiotemporal dictionaries

as used here may help capture redundancies in both spatial and temporal dimensions

in the data. Finally, unlike the prior works, the DINO-KAT schemes in this chapter

involve structured dictionary learning with low-rank reshaped atoms.

8.3 Algorithms and Properties

8.3.1 Algorithms

We propose efficient block coordinate descent-type algorithms for (P1) and (P2),

where, in one step, we update (D,Z) keeping (xL, xS) fixed (the dictionary learning

step), and then we update (xL, xS) keeping (D,Z) fixed (the image reconstruction

step). We repeat these alternating steps in an iterative manner. The algorithm for

the DINO-KAT blind image reconstruction problem (8.2) (or its `1 version) is similar,

except that xL = 0 during the update steps. Therefore, we focus on the algorithms

for (P1) and (P2) in the following.

8.3.1.1 Dictionary Learning Step

Here, we optimize (P1) or (P2) with respect to (D,Z). We first describe the

update procedure for (P1). Denoting by P the matrix that has the patches PjxS for

1 ≤ j ≤M as its columns, and with C , ZH , the optimization problem with respect

to (D,Z) in the case of (P1) can be rewritten as follows:

(P3) min
D,C

‖P −DCH‖2
F + λ2

Z‖C‖0

s.t. ‖C‖∞ ≤ a, rank(R2(di)) ≤ r, ‖di‖2 = 1, ∀i.

Here, we express the matrix DCH as a Sum of OUter Products (SOUP)
∑K

i=1 dic
H
i .

We then employ an iterative block coordinate descent method for (P3), where the

columns ci of C and atoms di of D are updated sequentially by cycling over all i

values [119]. Specifically, for each 1 ≤ i ≤ K, we solve (P3) first with respect to ci

(sparse coding) and then with respect to di (dictionary atom update).

For the minimization with respect to ci, we have the following subproblem, where
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Ei , P −
∑

k 6=i dkc
H
k is computed using the most recent estimates of the other vari-

ables:
min
ci∈CM

‖Ei − dicHi ‖2
F + λ2

Z‖ci‖0

s.t. ‖ci‖∞ ≤ a.
(8.3)

The minimizer ĉi of (8.3) is given by [119]

ĉi = min(|HλZ (EH
i di)|, a1M) � ej∠E

H
i di , (8.4)

where the hard thresholding operator HλZ (·) zeros out vector entries with magnitude

less than λZ and leaves the other entries (with magnitude ≥ λZ) unaffected. Here,

| · | computes the magnitude of vector entries, 1M denotes a vector of ones of length

M , � denotes element-wise multiplication, min(·, ·) denotes element-wise minimum,

and we choose a such that a > λZ . For a vector c ∈ CM , ej∠c ∈ CM is computed

element-wise, with ∠ denoting the phase.

Optimizing (P3) with respect to the atom di while holding all other variables fixed

yields the following subproblem:

min
di∈Cm

‖Ei − dicHi ‖2
F

s.t. rank(R2(di)) ≤ r, ‖di‖2 = 1.
(8.5)

Let UrΣrV
H
r denote an optimal rank-r approximation to R2(Eici) ∈ Cmxmy×mt

that is obtained using the r leading singular vectors and singular values of the full

singular value decomposition (SVD) R2(Eici) , UΣV H . Then a global minimizer of

(8.5), upon reshaping, is

R2(d̂i) =


UrΣrV

H
r

‖Σr‖F
if ci 6= 0

W if ci = 0,

(8.6)

where W is any normalized matrix with rank at most r, of appropriate dimensions

(e.g., we use the reshaped first column of the m×m identity matrix). See Chapter VI

for the proof of (8.6). If r = min(mxmy,mt), then no SVD is needed and the solution

is [119]

d̂i =


Eici
‖Eici‖2

if ci 6= 0

w if ci = 0,

(8.7)

where w is any vector on the m-dimensional unit sphere (e.g., we use the first column
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of the m×m identity).

In the case of (P2), when minimizing with respect to (D,Z), we again set C =

ZH , which yields an `1 penalized dictionary learning problem (a simple variant of

(P3)). The dictionary and sparse coefficients are then updated using a similar block

coordinate descent method as for (P3). In particular, the coefficients ci are updated

using soft thresholding:

ĉi = max

(
|EH

i di| −
λZ
2

1M , 0

)
� ej∠E

H
i di . (8.8)

8.3.1.2 Image Reconstruction Step

Minimizing (P1) or (P2) with respect to xL and xS yields the following subprob-

lem:

(P4) min
xL,xS

1

2
‖A(xL + xS)− d‖2

2 + λL‖R1(xL)‖∗ + λS

M∑
j=1

‖PjxS −Dzj‖2
2.

Problem (P4) is convex but nonsmooth, and its objective has the form f(xL, xS) +

g1(xL) + g2(xS), with f(xL, xS) , 0.5‖A(xL + xS)− d‖2
2, g1(xL) , λL‖R1(xL)‖∗, and

g2(xS) , λS
∑M

j=1 ‖PjxS − Dzj‖2
2. We employ the proximal gradient method [1] for

(P4), whose iterates, denoted by superscript k, take the following form:

xkL = proxtkg1(x
k−1
L − tk∇xLf(xk−1

L , xk−1
S )), (8.9)

xkS = proxtkg2(x
k−1
S − tk∇xSf(xk−1

L , xk−1
S )), (8.10)

where the proximity function is defined as

proxtkg(y) , arg min
z

1

2
‖y − z‖2

2 + tk g(z), (8.11)

and the gradients of f are given by

∇xLf(xL, xS) = ∇xSf(xL, xS) = AHA(xL + xS)− AHd.

The update in (8.9) corresponds to the singular value thresholding (SVT) oper-

ation [24]. Indeed, defining x̃k−1
L , xk−1

L − tk∇xLf(xk−1
L , xk−1

S ), it follows from (8.9)

and (8.11) [24] that

R1(xkL) = SVTtkλL(R1(x̃k−1
L )). (8.12)
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Here, the SVT operator for a given threshold τ > 0 is

SVTτ (Y ) =
∑
i

(σi − τ)+uiv
H
i , (8.13)

where UΣV H is the SVD of Y with σi denoting the ith largest singular value and

ui and vi denoting the ith columns of U and V , and (·)+ = max(·, 0) sets negative

values to zero.

Let x̃k−1
S , xk−1

S − tk∇xSf(xk−1
L , xk−1

S ). Then (8.10) and (8.11) imply that xkS
satisfies the following normal equation:(

I + 2tkλS

M∑
j=1

P T
j Pj

)
xkS = x̃k−1

S + 2tkλS

M∑
j=1

P T
j Dzj. (8.14)

Solving (8.14) for xkS is straightforward because the matrix pre-multiplying xkS is

diagonal, and thus its inverse can be computed cheaply. The term 2tkλS
∑M

j=1 P
T
j Dzj

in (8.14) can also be computed cheaply using patch-based operations.

The proximal gradient method for (P4) converges [145] for a constant step-size

tk = t < 2/`, where ` is the Lipschitz constant of∇f(xL, xS). For (P4), ` = 2‖A‖2
2. In

practice, ` can be precomputed using standard techniques such as the power iteration

method. In our dMRI experiments in Section 8.4, we normalize the encoding operator

A so that ‖A‖2 = 1 for fully-sampled measurements (cf. [1,4]) to ensure that ‖A‖2
2 ≤ 1

in undersampled (k-t space) scenarios.

When the nuclear norm penalty in (P4) is replaced with a rank penalty, i.e., g1(xL) ,

λL rank(R1(xL)), the proximity function is a modified form of the SVT operation in

(8.12) (or (8.13)), where the singular values smaller than
√

2tkλL are set to zero and

the other singular values are left unaffected (i.e., hard-thresholding the singular val-

ues). Alternatively, when the nuclear norm penalty is replaced with ‖ · ‖pp (for p < 1)

applied to the vector of singular values of R1(xL) [2], the proximity function can still

be computed cheaply when p = 1/2 or p = 2/3, for which the soft thresholding of

singular values in (8.13) is replaced with the solution of an appropriate polynomial

equation (see [177]). For general p, the xL update could be performed using strategies

such as in [2].

The nuclear norm-based low-rank regularizer ‖R1(xL)‖? is popular because it is

the tightest convex relaxation of the (nonconvex) matrix rank penalty. However, this

does not guarantee that the nuclear norm (or its alternatives) is the optimal (in any

sense) low-rank regularizer in practice. Indeed, the argument R1(x̃k−1
L ) of the SVT

120



operator in (8.12) can be interpreted as an estimate of the underlying (true) low-

rank matrix R1(xL) plus a residual (noise) matrix. In [26], the low-rank denoising

problem was studied from a random-matrix-theoretic perspective and an algorithm –

OptShrink – was derived that asymptotically achieves minimum squared error among

all estimators that shrink the singular values of their argument. We leverage this

result for dMRI by proposing the following modification of (8.12):

R1(xkL) = OptShrinkrL(R1(x̃k−1
L )). (8.15)

Here, OptShrinkrL(.) is the data-driven OptShrink estimator from Algorithm 1 of

[26].4 In this variation, the regularization parameter λL is replaced by a parameter

rL ∈ N that directly specifies the rank ofR1(xkL), and the (optimal) shrinkage for each

of the leading rL singular values is implicitly estimated based on the distribution of the

remaining singular values. Intuitively, we expect this variation of the aforementioned

(SVT-based) proximal gradient scheme to yield better estimates of the underlying

low-rank component of the reconstruction because, at each iteration k (in (8.9)), the

OptShrink-based update (8.15) should produce an estimate of the underlying low-

rank matrix R1(xL) with smaller squared error than the corresponding SVT-based

update (8.12). Similar OptShrink-based schemes have shown promise in practice [6,7].

In particular, in [7] it is shown that replacing the SVT-based low-rank updates in the

algorithm [1] for (P0) with OptShrink updates can improve dMRI reconstruction

quality. In practice, small rL values perform well due to the high spatiotemporal

correlation of the background in dMRI.

Figure 8.1 shows the LASSI reconstruction algorithms for Problems (P1) and

(P2), respectively. As discussed, we can obtain variants of these proposed LASSI

algorithms by replacing the SVT-based xL update (8.12) in the image reconstruction

step with an OptShrink-based update (8.15), or with the update arising from the

rank penalty or from the Schatten p-norm (p < 1) penalty. The proposed LASSI

algorithms start with an initial (x0
L, x

0
S, D

0, Z0). For example, D0 can be set to an

analytical dictionary, Z0 = 0, and x0
L and x0

S could be (for example) set based on some

iterations of the recent L+S method [1]. In the case of Problem (8.2), the proposed

algorithm is an efficient SOUP-based image reconstruction algorithm. We refer to it

as the DINO-KAT image reconstruction algorithm in this case.

4See Chapter II for more details and discussion of OptShrink.
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Algorithms for (P1) and (P2)
Inputs: Measurements d, weights λL, λS, and λZ , rank r, upper bound a, number
of dictionary learning iterations J , number of proximal gradient iterations J̃ , and
number of outer iterations Ĵ .

Outputs: Reconstructed dynamic image sequence components xĴL and xĴS,

learned dictionary DĴ , and learned coefficients of patches Z Ĵ .
Initial Estimates: (x0

L, x
0
S, D

0, Z0), with C0 = (Z0)H .

For t = 1 : Ĵ repeat
1. Form P t−1 = [P1x

t−1
S | P2x

t−1
S | ... | PMxt−1

S ].

2. Dictionary Learning: With training data P t−1 and initialization
(Dt−1, Ct−1), update (ci, di) sequentially for 1 ≤ i ≤ K using (8.4) (or
(8.8)) and (8.6). Set (Dt, Ct) to be the output after J cycles of such up-
dates, and Zt = (Ct)H .

3. Image Reconstruction: Update xtL and xtS using J̃ iterations of the
proximal gradient scheme using (8.9) and (8.10), and with initialization
(xt−1

L , xt−1
S ).

End

Figure 8.1: The LASSI reconstruction algorithms for Problems (P1) and (P2), re-
spectively. Superscript t denotes the iterates in the algorithm.

8.3.2 Convergence and Computational Cost

The proposed LASSI algorithms for (P1) and (P2) alternate between updating

(D,Z) and (xL, xS). Since we update the dictionary atoms and sparse coefficients

using an exact block coordinate descent approach, the objectives in our formulations

only decrease in this step. When the (xL, xS) update is performed using proximal

gradients (which is guaranteed to converge to the global minimizer of (P4)), by ap-

propriate choice of the constant-step size [25], the objective functions can be ensured

to be monotone (non-increasing) in this step. Thus, the costs in our algorithms are

monotone decreasing, and because they are lower-bounded (by 0), they must converge.

Whether the iterates in the LASSI algorithms converge to the critical points [124] in

(P1) or (P2) [119] is an interesting question that we leave for future work.

In practice, the computational cost per outer iteration of the proposed algorithms

is dominated by the cost of the dictionary learning step, which scales (assuming

K ∝ m and M � K,m) as O(m2MJ), where J is the number of times the matrix

D is updated in the dictionary learning step. The SOUP dictionary learning cost is

itself dominated by various matrix-vector products, whereas the costs of the truncated

hard-thresholding (8.4) and low-rank approximation (8.6) steps are negligible. On the
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other hand, when dictionary learning is performed using methods like K-SVD [104]

(e.g., in [103,165]), the associated cost (assuming per-patch sparsity ∝ m) may scale

worse5 as O(m3MJ). Section 8.4 illustrates that our algorithms converge quickly in

practice.

8.4 Numerical Experiments

8.4.1 Framework

The proposed LASSI framework can be used for inverse problems involving dy-

namic data, such as in dMRI, interventional imaging, video processing, etc. Here, we

illustrate the convergence behavior and performance of our methods for dMRI recon-

struction from limited k-t space data. Section 8.4.2 focuses on empirical convergence

and learning behavior of the methods. Section 8.4.3 compares the image reconstruc-

tion quality obtained with LASSI to that obtained with recent techniques. Section

8.4.5 investigates and compares the various LASSI models and methods in detail. We

compare using the `0 “norm” (i.e., (P1)) to the `1 norm (i.e., (P2)), structured (with

low-rank atoms) dictionary learning to the learning of unstructured (with full-rank

atoms) dictionaries, and singular value thresholding-based xL update to OptShrink-

based or other alternative xL updates in LASSI. We also investigate the effects of the

sparsity level (i.e., number of nonzeros) of the learned Z and the overcompleteness

of D in LASSI, and demonstrate the advantages of adapting the patch-based LASSI

dictionary compared to using fixed dictionary models in the LASSI algorithms. The

LASSI methods are also shown to perform well for various initializations of xL and

xS.

We work with several dMRI datasets from prior works [1, 2]: 1) the Cartesian

cardiac perfusion data [1, 4], 2) a 2D cross section of the physiologically improved

nonuniform cardiac torso (PINCAT) [178] phantom data (see [2, 5]), and 3) the in

vivo myocardial perfusion MRI data in [2,5]. The cardiac perfusion data were acquired

with a modified TurboFLASH sequence on a 3T scanner using a 12-element coil array.

The fully sampled data with an image matrix size of 128×128 (128 phase encode lines)

and 40 temporal frames was acquired with FOV = 320 × 320 mm2, slice thickness

= 8 mm, spatial resolution = 3.2 mm2, and temporal resolution of 307 ms [1]. The

coil sensitivity maps are provided in [4]. The (single coil) PINCAT data (as in [5])

had image matrix size of 128 × 128 and 50 temporal frames. The single coil in vivo

5In [119], we have shown that efficient SOUP learning-based image reconstruction methods out-
perform methods based on K-SVD in practice.
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myocardial perfusion data was acquired on a 3T scanner using a saturation recovery

FLASH sequence with Cartesian sampling (TR/TE = 2.5/1 ms, saturation recovery

time = 100 ms), and had a image matrix size of 90×190 (phase encodes × frequency

encodes) and 70 temporal frames [2].

Fully sampled data (PINCAT and in vivo data were normalized to unit peak

image intensity, and the cardiac perfusion data [1] had a peak image intensity of

1.27) were retrospectively undersampled in our experiments. We used Cartesian and

pseudo-radial undersampling patterns. In the case of Cartesian sampling, we used

a different variable-density random Cartesian undersampling pattern for each time

frame. The pseudo-radial (sampling radially at uniformly spaced angles for each time

frame and with a small random rotation of the radial lines between frames) sampling

patterns were obtained by subsampling on a Cartesian grid for each time frame. We

simulate several undersampling factors of k-t space in our experiments. We measure

the quality of the dMRI reconstructions using the normalized root mean square error

(NRMSE) metric defined as

NRMSE(xrecon) =
‖xrecon − xref‖2

‖xref‖2

, (8.16)

where xref is a reference reconstruction from fully sampled data, and xrecon is the

reconstruction from undersampled data.

We compare the quality of reconstructions obtained with the proposed LASSI

methods to those obtained with the recent L+S method [1] and the k-t SLR method

involving joint L & S modeling [2]. For the L+S and k-t SLR methods, we used

the publicly available MATLAB implementations [4,5]. We chose the parameters for

both methods (e.g., λL and λS for L+S in (P0) or λ1, λ2, etc. for k-t SLR [2, 5]) by

sweeping over a range of values and choosing the settings that achieved good NRMSE

in our experiments. We optimized parameters separately for each dataset to achieve

the lowest NRMSE at some intermediate undersampling factors, and observed that

these settings also worked well at other undersampling factors. The L+S method was

simulated for 250 iterations and k-t SLR was also simulated for sufficient iterations

to ensure convergence. The operator T (in (P0)) for L+S was set to a temporal

Fourier transform, and a total variation sparsifying penalty (together with a nuclear

norm penalty for enforcing low-rankness) was used in k-t SLR. The dynamic image

sequence in both methods was initialized with a baseline reconstruction (for the L+S

method, L was initialized with this baseline and S with zero) that was obtained by

first performing zeroth order interpolation at the non-sampled k-t space locations (by
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filling in with the nearest non-zero entry along time) and then backpropagating the

filled k-t space to image space (i.e., pre-multiplying by the AH corresponding to fully

sampled data).

For the LASSI method, we extracted spatiotemporal patches of size 8×8×5 from

xS in (P1) with spatial and temporal patch overlap strides of 2 pixels.6 The dictionary

atoms were reshaped into 64× 5 space-time matrices, and we set the rank parameter

r = 1, except for the invivo dataset [2, 5], where we set r = 5. We ran LASSI for

50 outer iterations with 1 and 5 inner iterations in the (D,Z) and (xL, xS) updates,

respectively. Since Problem (P1) is nonconvex, the proposed algorithm needs to be

initialized appropriately. We set the initial Z = 0, and the initial xL and xS were

typically set based on the outputs of either the L+S or k-t SLR methods. When

learning a square dictionary, we initialized D with a 320 × 320 DCT, and, in the

overcomplete (K > m) case, we concatenated the square DCT initialization with

normalized and vectorized patches that were selected from random locations of the

initial reconstruction. We empirically show in Section 8.4.5 that the proposed LASSI

algorithms typically improve image reconstruction quality compared to that achieved

by their initializations. We selected the weights λL, λS, and λZ for the LASSI methods

separately for each dataset by sweeping over a range (3D grid) of values and picking

the settings that achieved the lowest NRMSE at intermediate undersampling factors

(as for L+S and k-t SLR) in our experiments. These tuned parameters also worked

well at other undersampling factors (e.g., see Figure 8.9(h)).

We also evaluate the proposed variant of LASSI involving only spatiotemporal dic-

tionary learning (i.e., dictionary blind compressed sensing). We refer to this method

as DINO-KAT dMRI, with r = 1. We use an `0 sparsity penalty for DINO-KAT

dMRI (i.e., we solve Problem (8.2)) in our experiments, and the other parameters are

set or optimized similarly as described above for LASSI.

The LASSI and DINO-KAT dMRI implementations were coded in Matlab R2016a.

Our current Matlab implementations are not optimized for efficiency. Hence, here we

perform our comparisons to recent methods based on reconstruction quality (NRMSE)

rather than runtimes, since the latter are highly implementation dependant.
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Figure 8.2: Behavior of the LASSI algorithms with Cartesian sampling and 8x under-
sampling. The algorithms are labeled according to the method used for xL update,
i.e., SVT or OptShrink (OPT), and according to the type of sparsity penalty employed
for the patch coefficients (`0 or `1 corresponding to (P1) or (P2)). (a) Objectives,
shown only for the algorithms for (P1) and (P2) with SVT-based updates, since the
OptShrink-based updates do not correspond to minimizing a formal cost function);
(b) NRMSE; (c) Sparsity fraction of Z (i.e., ‖Z‖0/mM) expressed as a percentage; (d)
normalized changes between successive dMRI reconstructions ‖xtL+xtS−xt−1

L −x
t−1
S ‖2/

‖xref‖2; (e) real and (f) imaginary parts of the atoms of the learned dictionaries in
LASSI (using `0 sparsity penalty and OptShrink-based xL update) shown as patches
– only the 8× 8 patches corresponding to the first time-point (column) of the rank-1
reshaped (64× 5) atoms are shown; and frames 7 and 13 of the (g) conventional L+S
reconstruction [1] and (h) the proposed LASSI (with `0 penalty and OptShrink-based
xL update) reconstruction shown along with the corresponding reference frames. The
low-rank (L) and (transform or dictionary) sparse (S) components of each recon-
structed frame are also individually shown. Only image magnitudes are displayed in
(g) and (h).
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8.4.2 LASSI Convergence and Learning Behavior

Here, we consider the fully sampled cardiac perfusion data in [1, 4] and perform

eight fold Cartesian undersampling of k-t space. We study the behavior of the pro-

posed LASSI algorithms for reconstructing the dMRI data from (multi-coil) under-

sampled measurements. We consider four different LASSI algorithms in our study

here: the algorithms for (P1) (with `0 “norm”) and (P2) (with `1 norm) with SVT-

based xL update; and the variants of these two algorithms where the SVT update

step is replaced with an OptShrink (OPT)-type update. The other variants of the

SVT update including hard thresholding of singular values or updating based on the

Schatten p-norm are studied later in Section 8.4.5. We learned 320× 320 dictionaries

(with atoms reshaped by the operator R2(·) into 64× 5 space-time matrices) for the

patches of xS with r = 1, and xL and xS were initialized using the corresponding

components of the L+S method with λL = 1.2 and λS = 0.01 in (P0) [1]. Here, we

jointly tuned λL, λS, and λZ for each LASSI variation, to achieve the best NRMSE.

Figure 8.2 shows the behavior of the proposed LASSI reconstruction methods. The

objective function values (Figure 8.2(a)) in (P1) and (P2) decreased monotonically

and quickly for the algorithms with SVT-based xL update. The OptShrink-based

xL update does not correspond to minimizing a formal cost function, so the OPT-

based algorithms are omitted in Figure 8.2(a). All four LASSI methods improved

the NRMSE over iterations compared to the initialization. The NRMSE converged

(Figure 8.2(b)) in all four cases, with the `0 “norm”-based methods outperforming

the `1 penalty methods. Moreover, when employing the `0 sparsity penalty, the OPT-

based method (rL = 1) outperformed the SVT-based one for the dataset. The sparsity

fraction (‖Z‖0/mM) for the learned coefficients matrix (Figure 8.2(c)) converged to

small values (about 10-20 %) in all cases indicating that highly sparse representations

are obtained in the LASSI models. Lastly, the difference between successive dMRI

reconstructions (Figure 8.2(d)) quickly decreased to small values, suggesting iterate

convergence.

Figures 8.2(g) and (h) show the reconstructions7 and xL and xS components of

two representative frames produced by the L+S [1] (with parameters optimized to

achieve best NRMSE) and LASSI (OPT update and `0 sparsity) methods, respec-

tively. The LASSI reconstructions are sharper and a better approximation of the ref-

6While we used a stride of 2 pixels, a spatial and temporal patch overlap stride of 1 pixel would
further enhance the reconstruction performance of LASSI in our experiments, but at the cost of
substantially more computation.

7Gamma correction was used to better display the images.
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Undersampling 4x 8x 12x 16x 20x 24x

NRMSE (k-t SLR) % 11.1 15.4 18.8 21.7 24.3 27.0

NRMSE (L+S) % 10.9 13.9 15.8 17.8 20.1 23.0

NRMSE (DINO-KAT) % 10.4 12.6 14.5 16.7 18.8 22.1

NRMSE (LASSI) % 10.0 12.6 14.3 16.1 17.6 20.2

Gain over k-t SLR (dB) 0.9 1.7 2.4 2.6 2.8 2.5

Gain over L+S (dB) 0.7 0.8 0.9 0.9 1.2 1.2

Gain over DINO-KAT (dB) 0.3 0.0 0.1 0.3 0.6 0.8

Table 8.1: NRMSE values expressed as percentages for the L+S [1], k-t SLR [2], and
the proposed DINO-KAT dMRI and LASSI methods at several undersampling factors
for the cardiac perfusion data [1, 4] with Cartesian sampling. The NRMSE gain (in
decibels (dB)) achieved by LASSI over the other methods is also shown. The best
NRMSE for each undersampling factor is in bold.

erence frames (fully sampled reconstructions) shown. In particular, the xL component

of the LASSI reconstruction is clearly low-rank, and the xS component captures the

changes in contrast and other dynamic features in the data. On the other hand, the

xL component of the conventional L+S reconstruction varies more over time (i.e., it

has higher rank), and the xS component contains relatively little information. The

richer (xL, xS) decomposition produced by LASSI suggests that both the low-rank

and adaptive dictionary-sparse components of the model are well-suited for dMRI.

Figs. 8.2(e) and (f) show the real and imaginary parts of the atoms of the learned

D in LASSI with OptShrink-based xL updating and `0 sparsity. Only the first columns

(time-point) of the (rank-1) reshaped 64× 5 atoms are shown as 8× 8 patches. The

learned atoms contain rich geometric and frequency-like structures that were jointly

learned with the dynamic signal components from limited k-t space measurements.

8.4.3 Dynamic MRI Results and Comparisons

Here, we consider the fully sampled cardiac perfusion data [1,4], PINCAT data [2,

5], and in vivo myocardial perfusion data [2,5], and simulate k-t space undersampling

at various acceleration factors. Cartesian sampling was used for the first dataset, and

pseudo-radial sampling was employed for the other two. The performance of LASSI

and DINO-KAT dMRI is compared to that of L+S [1] and k-t SLR [2]. The LASSI

and DINO-KAT dMRI algorithms were simulated with an `0 sparsity penalty and a

320 × 320 dictionary. OptShrink-based xL updates were employed in LASSI for the

cardiac perfusion data, and SVT-based updates were used in the other cases. For the

cardiac perfusion data, the initial xL and xS in LASSI were from the L+S framework
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Undersampling 5x 6x 7x 9x 14x 27x

NRMSE (k-t SLR) % 9.7 10.7 12.2 14.5 18.0 23.7

NRMSE (L+S) % 11.7 12.8 14.2 16.3 19.6 25.4

NRMSE (DINO-KAT) % 8.6 9.5 10.7 12.6 15.9 21.8

NRMSE (LASSI) % 8.4 9.1 10.1 11.4 13.6 18.3

Gain over k-t SLR (dB) 1.2 1.4 1.7 2.1 2.4 2.2

Gain over L+S (dB) 2.8 2.9 3.0 3.1 3.2 2.8

Gain over DINO-KAT (dB) 0.2 0.3 0.6 0.9 1.4 1.5

Table 8.2: NRMSE values expressed as percentages for the L+S [1], k-t SLR [2], and
the proposed DINO-KAT dMRI and LASSI methods at several undersampling factors
for the PINCAT data [2,5] with pseudo-radial sampling. The best NRMSE values for
each undersampling factor are marked in bold.

[1] (and the initial x in DINO-KAT dMRI was an L+S dMRI reconstruction). For

the PINCAT and in vivo myocardial perfusion data, the initial xS in LASSI (or x in

DINO-KAT dMRI) was the (better) k-t SLR reconstruction and the initial xL was

zero. All other settings are as discussed in Section 8.4.1.

Tables 8.1, 8.2 and 8.3 list the reconstruction NRMSE values for LASSI, DINO-

KAT dMRI, L+S [1] and k-t SLR [2] for the cardiac perfusion, PINCAT, and in vivo

datasets, respectively. The LASSI method provides the best NRMSE values, and

the proposed DINO-KAT dMRI method also outperforms the prior L+S and k-t SLR

methods. The NRMSE gains achieved by LASSI over the other methods are indicated

in the tables for each dataset and undersampling factor. The LASSI framework

provides an average improvement of 1.9 dB, 1.5 dB, and 0.5 dB respectively, over

the L+S, k-t SLR, and (proposed) DINO-KAT dMRI methods. This suggests the

suitability of the richer LASSI model for dynamic image sequences compared to the

jointly low-rank and sparse (k-t SLR), low-rank plus non-adaptive sparse (L+S), and

purely adaptive dictionary-sparse (DINO-KAT dMRI) signal models.

Figure 8.3 shows the NRMSE values computed between each reconstructed and

reference frame for the LASSI, L+S, and k-t SLR outputs for two datasets. The

proposed LASSI scheme clearly outperforms the previous L+S and k-t SLR methods

across frames (time). Figure 8.4 shows the LASSI reconstructions of some representa-

tive frames for each dataset in Tables 8.1-8.3. The reconstructed frames are visually

similar to the reference frames (fully sampled reconstructions) shown. Figure 8.4 also

shows the reconstruction error maps (i.e., the magnitude of the difference between

the magnitudes of the reconstructed and reference frames) for LASSI, L+S, and k-t

SLR for the representative frames of each dataset. The error maps for LASSI show
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Undersampling 4x 5x 6x 8x 12x 23x

NRMSE (k-t SLR) % 10.7 11.6 12.7 14.0 16.7 22.1

NRMSE (L+S) % 12.5 13.4 14.6 16.1 18.8 24.2

NRMSE (DINO-KAT) % 10.2 11.0 12.1 13.5 16.4 21.9

NRMSE (LASSI) % 9.9 10.7 11.8 13.2 16.2 21.9

Gain over k-t SLR (dB) 0.7 0.7 0.6 0.5 0.3 0.1

Gain over L+S (dB) 2.1 2.0 1.8 1.7 1.3 0.9

Gain over DINO-KAT (dB) 0.3 0.3 0.2 0.2 0.1 0.0

Table 8.3: NRMSE values expressed as percentages for the L+S [1], k-t SLR [2], and
the proposed DINO-KAT dMRI and LASSI methods at several undersampling factors
for the myocardial perfusion MRI data in [2, 5], using pseudo-radial sampling. The
best NRMSE values for each undersampling factor are marked in bold.
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Figure 8.3: NRMSE values computed between each reconstructed and reference frame
for LASSI, L+S, and k-t SLR for (a) the cardiac perfusion data [1, 4] at 8x under-
sampling, and (b) the PINCAT data at 9x undersampling.

fewer artifacts and smaller distortions than the other methods.

Figure 8.5 shows reconstruction results for the PINCAT data [2, 5] with pseudo-

radial sampling and nine fold undersampling. The time series (x − t) plots, which

correspond to the line marked in green on a reference PINCAT frame (Figure 8.5),

are shown for the reference, LASSI, DINO-KAT dMRI, L+S [1], and k-t SLR [2]

reconstructions. The NRMSE values computed between the reconstructed and refer-

ence x− t slices are also shown. The reconstruction for LASSI has lower NRMSE and

clearly shows fewer artifacts and distortions (with respect to the reference) compared

to the L+S and k-t SLR results. The LASSI result is also better than the DINO-KAT

dMRI reconstruction that shows more smoothing (blur) effects (particularly in the
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Figure 8.4: LASSI reconstructions and the error maps (clipped for viewing) for LASSI,
L+S, and k-t SLR for frames of the cardiac perfusion data [1,4] (first row), PINCAT
data [2, 5] (second row), and in vivo myocardial perfusion data [2, 5] (third row),
shown along with the reference reconstruction frames. Undersampling factors (top to
bottom): 8x, 9x, and 8x. The frame numbers and method names are indicated on
the images.
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Reference Reference LASSI DINO−KAT L+S k−t SLR

Figure 8.5: A frame of the reference PINCAT [2, 5] reconstruction is shown (left)
with a spatial line cross section marked in green. The temporal (x − t) profiles of
that line are shown for the reference, LASSI, DINO-KAT dMRI, L+S [1], and k-
t SLR [2] reconstructions for pseudo-radial sampling and nine fold undersampling.
The NRMSE values computed between the reconstructed and reference x− t profiles
are 0.107, 0.116 , 0.153, and 0.131 respectively, for LASSI, DINO-KAT dMRI, L+S,
and k-t SLR.

Reference Reference LASSI 5x LASSI 9x LASSI 27x

Figure 8.6: A frame of the reference PINCAT [2,5] reconstruction is shown (left) with
a spatial line cross section marked in green. The temporal (x − t) profiles of that
line are shown for the reference, and the LASSI reconstructions at 5x, 9x, and 27x
undersampling and pseudo-radial sampling.

top and bottom portions of the x− t map).

Figure 8.6 shows time series (x − t) plots for the LASSI reconstructions of the

PINCAT data at several undersampling factors. At an undersampling factor of 27x,

the LASSI result shows temporal smoothing. Nevertheless, LASSI still reconstructs

many features well, despite the high undersampling. Figure 8.7 shows the LASSI

reconstructions and reconstruction error maps for some representative frames of the

cardiac perfusion data [1,4], at several undersampling factors. Notably, even at high
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Figure 8.7: LASSI reconstructions and error maps (clipped for viewing) for frames
of the cardiac perfusion data [1, 4] at 4x, 12x, and 20x undersampling (Cartesian
sampling), shown along with the reference reconstruction frames. The images are
labeled with the frame numbers and undersampling factors.

(a) (b) (c)

Figure 8.8: Regions of interest containing the heart shown using green bounding boxes
for a frame of (a) the cardiac perfusion data [1], (b) PINCAT data [2, 5], and (c) in
vivo myocardial perfusion MRI data [2, 5], respectively.

undersampling factors, LASSI still accurately reconstructs many image features.

8.4.4 Dynamic MRI Results over Heart ROIs

We also report the NRMSE of the dynamic MRI reconstructions from Section 8.4.3

computed over specific regions of interest (ROIs) containing the heart. Figure 8.8

shows the ROIs (as a rectangular box in a frame) for the cardiac perfusion data [1,4],

PINCAT data [2,5], and in vivo myocardial perfusion MRI data [2,5]. Tables 8.4, 8.5,

and 8.6 list the NRMSE values computed over these ROIs for the LASSI, DINO-KAT

dMRI, L+S [1], and k-t SLR [2] reconstructions at several undersampling factors. The

various methods tend to provide even better reconstruction quality (i.e., NRMSE)

within the specific ROIs than over the entire images (cf. Section 8.4.3). Tables 8.4-
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Undersampling 4x 8x 12x 16x 20x 24x

NRMSE (k-t SLR) % 10.4 14.2 17.2 19.5 22.4 24.2

NRMSE (L+S) % 10.7 14.0 16.3 18.8 22.2 24.1

NRMSE (DINO-KAT) % 9.8 12.5 14.2 16.4 19.1 21.2

NRMSE (LASSI) % 9.7 12.7 14.4 16.7 18.3 20.1

Gain over k-t SLR (dB) 0.6 0.9 1.5 1.4 1.8 1.6

Gain over L+S (dB) 0.8 0.9 1.1 1.1 1.6 1.6

Gain over DINO-KAT (dB) 0.1 -0.1 -0.1 -0.1 0.4 0.5

Table 8.4: NRMSE values for an ROI (Figure 8.8(a)) in the cardiac perfusion data [1]
expressed as percentages for the L+S [1], k-t SLR [2], and the proposed DINO-KAT
dMRI and LASSI methods at several undersampling factors and Cartesian sampling.
The best NRMSE value at each undersampling factor is indicated in bold.

Undersampling 5x 6x 7x 9x 14x 27x

NRMSE (k-t SLR) % 8.7 9.6 11.1 13.2 16.7 22.8

NRMSE (L+S) % 11.1 12.0 13.2 15.0 18.1 23.9

NRMSE (DINO-KAT) % 8.2 8.9 10.1 11.6 14.6 20.6

NRMSE (LASSI) % 8.0 8.7 9.6 10.9 13.2 18.3

Gain over k-t SLR (dB) 0.7 0.9 1.2 1.6 2.1 1.9

Gain over L+S (dB) 2.9 2.8 2.8 2.8 2.8 2.3

Gain over DINO-KAT (dB) 0.2 0.3 0.4 0.5 0.9 1.0

Table 8.5: NRMSE values for an ROI (Figure 8.8(b)) in the PINCAT data [2, 5]
expressed as percentages for the L+S [1], k-t SLR [2], and the proposed DINO-
KAT dMRI and LASSI methods at several undersampling factors and pseudo-radial
sampling. The best NRMSE value at each undersampling factor is indicated in bold.

Undersampling 4x 5x 6x 8x 12x 23x

NRMSE (k-t SLR) % 7.6 8.3 9.2 10.4 12.4 17.1

NRMSE (L+S) % 9.2 10.0 11.0 12.3 14.5 18.9

NRMSE (DINO-KAT) % 7.1 7.8 8.7 10.0 12.0 16.8

NRMSE (LASSI) % 6.8 7.5 8.4 9.7 11.8 16.8

Gain over k-t SLR (dB) 0.9 0.9 0.8 0.6 0.4 0.2

Gain over L+S (dB) 2.6 2.5 2.3 2.1 1.8 1.0

Gain over DINO-KAT (dB) 0.4 0.4 0.3 0.2 0.1 0.0

Table 8.6: NRMSE values for an ROI (Figure 8.8(c)) in the myocardial perfusion MRI
data [2, 5] expressed as percentages for the L+S [1], k-t SLR [2], and the proposed
DINO-KAT dMRI and LASSI methods at several undersampling factors and pseudo-
radial sampling. The best NRMSE value at each undersampling factor is indicated
in bold.
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8.6 also indicate the NRMSE gains achieved by LASSI over the other methods for

each dataset and undersampling factor. The proposed LASSI and DINO-KAT dMRI

methods provide much lower NRMSE in the heart ROIs compared to the previous

L+S and k-t SLR methods. The LASSI scheme also outperforms DINO-KAT dMRI

in most cases, and provides an average improvement within the ROIs of 2.0 dB, 1.1

dB, and 0.3 dB respectively, over the L+S, k-t SLR, and the proposed DINO-KAT

dMRI methods.

8.4.5 A Study of Various LASSI Models and Methods

Here, we investigate the various LASSI models and methods in detail. We work

with the cardiac perfusion data [1] and simulate the reconstruction performance of

LASSI for Cartesian sampling at various undersampling factors. Unless otherwise

stated, we simulate LASSI here with the `0 sparsity penalty, the SVT-based xL up-

date, r = 1, an initial 320 × 320 (1D) DCT dictionary, and xS initialized with the

dMRI reconstruction from the L+S method [1] and xL initialized to zero. In the fol-

lowing, we first compare SVT-based updating of xL to alternatives in the algorithms

and the use of `0 versus `1 sparsity penalties. The weights λL, λS, and λZ were tuned

for each LASSI variation. Second, we study the behavior of LASSI for different ini-

tializations of the underlying signal components or dictionary. Third, we study the

effect of the number of atoms of D on LASSI performance. Fourth, we study the

effect of the sparsity level of the learned Z on the reconstruction quality in LASSI.

Lastly, we study the effect of the atom rank parameter r in LASSI.

8.4.5.1 SVT vs. Alternatives and `0 vs. `1 patch sparsity

Figs. 8.9(a) and (b) show the behavior of the LASSI algorithms using `0 and

`1 sparsity penalties, respectively. In each case, the results obtained with xL up-

dates based on SVT, OptShrink (OPT), or based on the Schatten p-norm (p = 0.5),

and rank penalty are shown. The OptShrink-based singular value shrinkage (with

rL = 1) and Schatten p-norm-based shrinkage typically outperform the conventional

SVT (based on nuclear norm penalty) as well as the hard thresholding of singular

values (for rank penalty) for the cardiac perfusion data. The OptShrink and Schat-

ten p-norm-based xL updates also perform quite similarly at lower undersampling

factors, but OptShrink outperforms the latter approach at higher undersampling fac-

tors. Moreover, the `0 “norm”-based methods outperformed the corresponding `1

norm methods in many cases (with SVT or alternative approaches). These results
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Figure 8.9: Study of LASSI models, methods, and initializations at various under-
sampling factors for the cardiac perfusion data in [1,4] with Cartesian sampling: (a)
NRMSE for LASSI with `0 “norm” for sparsity and with xL updates based on SVT
(p = 1), OptShrink (OPT), or based on the Schatten p-norm (p = 0.5) or rank
penalty (p = 0); (b) NRMSE for LASSI with `1 sparsity and with xL updates based
on SVT (p = 1), OptShrink (OPT), or based on the Schatten p-norm (p = 0.5) or
rank penalty (p = 0); (c) NRMSE for LASSI when initialized with the output of the
L+S method [1] (used to initialize xS with x0

L = 0) together with the NRMSE for
the L+S method; (d) NRMSE for LASSI when initialized with the output of the k-t
SLR method [2] or with the baseline reconstruction (performing zeroth order inter-
polation at the nonsampled k-t space locations and then backpropagating to image
space) mentioned in Section 8.4.1 (these are used to initialize xS with x0

L = 0), to-
gether with the NRMSE values for k-t SLR; (e) NRMSE versus dictionary size at
different acceleration factors; (f) NRMSE improvement (in dB) achieved with r = 1
compared to the r = 5 case in LASSI; (g) NRMSE for LASSI with different dictionary
initializations (a random dictionary, a 320 × 320 1D DCT and a separable 3D DCT
of the same size) together with the NRMSEs achieved in LASSI when the dictionary
is fixed to its initial value; and (h) NRMSE versus the fraction of nonzero coefficients
(expressed as percentage) in the learned Z at different acceleration factors.

demonstrate the benefits of appropriate nonconvex regularizers in practice.

8.4.5.2 Effect of Initializations

Here, we explore the behavior of LASSI for different initializations of the dictio-

nary and the dynamic signal components. First, we consider the LASSI algorithm

initialized by the L+S and k-t SLR methods as well as with the baseline reconstruc-
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tion (obtained by performing zeroth order interpolation at the nonsampled k-t space

locations and then backpropagating to image space) mentioned in Section 8.4.1 (all

other parameters fixed). The reconstructions from the prior methods are used to

initialize xS in LASSI with x0
L = 08. Figs. 8.9(c) and (d) show that LASSI signif-

icantly improves the dMRI reconstruction quality compared to the initializations at

all undersampling factors tested. The baseline reconstructions had high NRMSE val-

ues (not shown in Figure 8.9) of about 0.5. Importantly, the reconstruction NRMSE

for LASSI with the simple baseline initialization (Figure 8.9(d)) is comparable to

the NRMSE obtained with the more sophisticated k-t SLR initialization. In general,

better initializations (for xL, xS) in LASSI may lead to a better final NRMSE in

practice.

Next, we consider initializing the LASSI method with the following types of dictio-

naries (all other parameters fixed): a random i.i.d. gaussian matrix with normalized

columns, the 320× 320 1D DCT, and the separable 3D DCT of size 320× 320. Fig-

ure 8.9(g) shows that LASSI performs well for each choice of initialization. We also

simulated the LASSI algorithm by keeping the dictionary D fixed (but still updating

Z) to each of the aforementioned initializations. Importantly, the NRMSE values

achieved by the adaptive-dictionary LASSI variations are substantially better than

the values achieved by the fixed-dictionary schemes.

8.4.5.3 Effect of Overcompleteness of D

Figure 8.9(e) shows the performance (NRMSE) of LASSI for various choices of

the number of atoms (K) in D at several acceleration factors. The weights in (P1)

were tuned for each K. As K is increased, the NRMSE initially shows significant im-

provements (decrease) of more than 1 dB. This is because LASSI learns richer models

that provide sparser representations of patches and, hence, better reconstructions.

However, for very large K values, the NRMSE saturates or begins to degrade, since

it is harder to learn very rich models using limited imaging measurements (without

overfitting artifacts).

8.4.5.4 Effect of the Sparsity Level in LASSI

While Section 8.4.5.1 compared the various ways of updating the low-rank signal

component in LASSI, here we study the effect of the sparsity level of the learned

8We have also observed that LASSI improves the reconstruction quality over other alternative
initializations such as initializing xL and xS using corresponding outputs of the L+S framework.
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Z on LASSI performance. In particular, we simulate LASSI at various values of

the parameter λZ that controls sparsity (all other parameters fixed). Figure 8.9(h)

shows the NRMSE of LASSI at various sparsity levels of the learned Z and at several

acceleration factors. The weight λZ decreases from left to right in the plot and the

same set of λZ values were selected (for the simulation) at the various acceleration

factors. Clearly, the best NRMSE values occur around 10-20% sparsity (when 32-64

dictionary atoms are used on the average to represent the reshaped 64× 5 space-time

patches of xS), and the NRMSE degrades when the number of nonzeros in Z is either

too high (non-sparse) or too low (when the dictionary model reduces to a low-rank

approximation of space-time patches in xS). This illustrates the effectiveness of the

rich sparsity-driven modeling in LASSI9.

8.4.5.5 Effect of Rank of Reshaped Atoms

Here, we simulate LASSI with (reshaped) atom ranks r = 1 (low-rank) and r = 5

(full-rank). Figure 8.9(f) shows that LASSI with r = 1 provides somewhat improved

NRMSE values over the r = 5 case at several undersampling factors, with larger

improvements at higher accelerations. This result suggests that structured (fewer

degrees of freedom) dictionary adaptation may be useful in scenarios involving very

limited measurements. In practice, the effectiveness of the low-rank model for re-

shaped dictionary atoms also depends on the properties of the underlying data.

8.4.6 Dictionary Learning for Representing Dynamic Image Patches

Here, we present results on the effectiveness of learned (SOUP) dictionaries for

representing dynamic image data. In particular, we compare dictionary learning

with low-rank atom constraints to learning without such constraints. We extract the

8 × 8 × 5 overlapping spatiotemporal patches of the fully sampled cardiac perfusion

data [1], with a spatial and temporal patch overlap stride of 2 pixels. The vectorized

3D patches are then stacked as columns of the training matrix P , and we solve

Problem (P3) to learn the approximation DCH for P . Dictionaries of size 320× 320

(with atoms reshaped into 64 × 5 matrices) were learned for various values of the

`0 sparsity penalty parameter λZ and for r = 1, 2, 3, 4, and 5. The block coordinate

9Figure 8.9(h) shows that the same λZ value is optimal at various accelerations. An intuitive
explanation for this is that as the undersampling factor increases, the weighting of the (first) data-
fidelity term in (P1) or (P2) decreases (fewer k-t space samples, or rows of the sensing matrix are
selected). Thus, even with fixed λZ , the relative weighting of the sparsity penalty would increase,
creating a stronger sparsity regularization at higher undersampling factors.

138



10 20 30

0.06

0.08

0.1

0.12

0.14

0.16

Nonzero coefficients (%)

R
e

p
re

s
e

n
ta

ti
o

n
 e

rr
o

r

Training DINO−KATs

 

 
r = 1

r = 2

r = 3

r = 4

r = 5

Figure 8.10: The normalized sparse representation error (NSRE) ‖Y −DCH‖F/‖Y ‖F
for the 320 × 320 dictionaries learned on the 8 × 8 × 5 overlapping spatiotemporal
patches of the fully sampled cardiac perfusion data [1]. The results are shown for
various choices of the `0 sparsity penalty parameter λZ corresponding to different
fractions of nonzero coefficients in the learned C and for various choices of the atom
rank parameter r.

descent learning method ran for 50 iterations and was initialized with C = 0 and a

320× 320 DCT.

The quality of the learned data approximations was measured using the normalized

sparse representation error (NSRE) given as ‖Y −DCH‖F/‖Y ‖F . Figure 8.10 shows

the NSRE for various choices of λZ corresponding to different fractions of nonzero

coefficients in the learned C and for various choices of the reshaped atom rank r. The

learned dictionaries achieved small NSRE values together with sparse coefficients

C. Importantly, the learned dictionaries with low-rank (r < 5) reshaped atoms

represented the spatiotemporal patches about as well as the learned dictionaries with

full-rank (r = 5) atoms. Thus, the low-rank model on reshaped dictionary atoms,

although a constrained model, effectively captures the properties of dynamic image

patches.

8.5 Conclusions

In this chapter, we investigated a novel framework for reconstructing spatiotem-

poral data from limited measurements. The proposed LASSI framework jointly learns
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a low-rank and dictionary-sparse decomposition of the underlying dynamic image se-

quence together with a spatiotemporal dictionary. The proposed algorithms involve

simple updates. Our experimental results showed the superior performance of LASSI

methods for dynamic MR image reconstruction from limited k-t space data compared

to recent works such as L+S and k-t SLR. The LASSI framework also outperformed

the proposed efficient dictionary-blind compressed sensing framework (a special case

of LASSI) called DINO-KAT dMRI. We also studied and compared various LASSI

methods and formulations such as with `0 or `1 sparsity penalties, or with low-rank

or full-rank reshaped dictionary atoms, or involving singular value thresholding-based

optimization versus some alternatives including OptShrink-based optimization. The

usefulness of LASSI-based schemes in other inverse problems and image processing

applications merits further study. The LASSI schemes involve parameters (like in

most regularization-based methods) that need to be set (or tuned) in practice. We

also leave the study of automating the parameter selection process to future work.
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CHAPTER IX

Robust Photometric Stereo via Dictionary

Learning

9.1 Introduction

Photometric stereo [179] is a method that seeks to reconstruct the normal vectors

of an object from a set of images of the object illuminated under different light

sources. Concretely, we have images I1, . . . , Id of the three-dimensional object and, in

each image, the object is illuminated by a (distant) light source with light incident on

the object in directions `1, . . . , `d ∈ R3. Given I1, . . . , Id and `1, . . . , `d, the goal is to

estimate the normal vector map of the object, which can be numerically integrated to

obtain a three-dimensional representation of the object. The appeal of photometric

stereo is its simplicity: it requires only a camera and a movable light source to generate

a three-dimensional representation of an object.

9.1.1 Background

Since its introduction by Woodham [179], significant work has been performed to

increase the generality and robustness of photometric stereo [180–193]. This body

of work typically seeks to weaken one of two underlying assumptions in Woodham’s

original model: that the position of the object relative to the position of the light

source is known or that the object follows the Lambertian reflectance model. Works

addressing the first assumption are solving the so-called uncalibrated photometric

stereo problem, and they generally attempt to estimate the normal vectors of the

object without any knowledge of the lighting directions [194–203]. Works addressing

the latter assumption generally attempt to either reconstruct the normal vectors of

objects whose reflectance properties deviate from the Lambertian model, or they try

to develop methods that are robust to corruptions in the observed images. In this
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chapter, our focus is primarily on the design of robust photometric stereo algorithms,

but we also incorporate a non-Lambertian model for increased generality.

The Lambertian reflectance model holds that the intensity of light reflected by

a point on a surface is linearly proportional to the inner product of the direction of

illumination and the normal vector of the surface at that point [179]. Given a set of

images of a Lambertian object illuminated under several (known) lighting directions,

a simple system of equations can be solved to determine the normal vector at each

point on the surface. In practice, while this is a reasonable model for some objects,

the reflectance properties of many real-world objects differ significantly from the

Lambertian model. Furthermore, shadows, specularities, and other non-idealities can

cause additional deviations from linear reflectance. Performing classical photometric

stereo on such non-Lambertian data typically yields large errors in the estimated

normal vectors. As such, developing photometric stereo methods for objects that are

inherently non-Lambertian and improving robustness to other imperfections in the

data are essential to extending the applicability and accuracy of photometric stereo.

Two primary approaches have found success addressing these problems. Several

works assume the Lambertian model is fundamentally correct and seek to account

for deviations from the model through explicit outlier removal [186, 189]—often as-

suming that non-idealities are sparse. While achieving some level of success, these

approaches can place overly restrictive assumptions on the data, which may result

in falsely rejecting useful data as outliers, and they make no attempt to model the

true reflectance properties of objects. In turn, other works propose more complex

reflectance models that enable non-Lambertian photometric stereo [191–193]. Ap-

proaches in this class are able to accurately model a wider range of objects, but they

still break down when their modeling assumptions fail. Furthermore, they often fail

when the data contains corruptions not accounted for by their reflectance models.

In addition to the aforementioned difficulties, state-of-the-art methods in both cate-

gories typically rely on a large number of images to accurately estimate the normal

vectors, which may be infeasible to gather in practice.

9.1.2 Contributions

In this chapter, we propose a novel approach to photometric stereo that relies

on dictionary learning [100, 104] to robustly handle a wide range of non-idealities in

the data. Dictionary learning seeks to represent local patches of the data as sparse

with respect to a learned collection of atoms. Such models effectively act as dy-

namic regularization that adapts to the underlying structure of the data and removes
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spurious corruptions. Inspired by recent successes applying dictionary learning to a

variety of imaging problems [12, 16, 17, 103], we adopt this methodology to improve

the robustness of photometric stereo. Our approach is data-driven and adapts to

the underlying structure of the data without imposing additional explicit constraints.

Furthermore, we incorporate an existing non-Lambertian reflectance model into our

method to better handle non-Lambertian surfaces. In total we present three dictio-

nary learning-based formulations of robust photometric stereo. We investigate the

performance of each method in a variety of different scenarios. In particular, we eval-

uate their performance on the benchmark DiLiGenT dataset [204] and their ability

to handle general, non-sparse corruptions.

9.1.3 Organization

The remainder of this chapter is organized as follows. In Section 9.2, we provide

a brief overview of related works on photometric stereo. In Section 9.3, we carefully

define the photometric stereo problem and the non-Lambertian reflectance model

we will incorporate into our method. We present our proposed dictionary learning-

based methods in Section 9.4, and in Section 9.5 we present the associated algorithms

for solving them. Finally, Section 9.6 provides an extensive numerical study of the

performance of our proposed methods compared to state-of-the-art methods.

9.2 Related Work

Lambertian photometric stereo was originally proposed by Woodham [179] in 1980.

Since then, much work has been done extending it to more general settings where the

Lambertian model does not hold exactly. This body of work has generally proceeded

by either treating non-Lambertian effects as outliers or directly accounting for non-

Lambertian effects in the reflectance model.

A variety of approaches have been proposed that perform robust photometric

stereo via outlier rejection. In general, these methods assume that the data is in-

herently Lambertian, seek to isolate non-Lambertian effects as outliers, and then

reject the outliers to increase the accuracy of the computed normal vectors. Early

works in robust photometric stereo—typically referred to as four source photometric

stereo—utilized four images to identify and reject specularities [180, 205, 206]. Re-

cently, more complex methods have been developed that rely on maximum likelihood

estimation [207], expectation maximization [184], and a maximum feasible subsystem

framework [208]. Other approaches include a graph cuts-based algorithm to identify
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shadows [209], a method that seeks to map color images into a two-dimensional sub-

space invariant to specularities [210], and several methods that utilize RANSAC-based

algorithms [211,212] to detect and reject outliers.

The most recent works on robust photometric stereo via outlier rejection—and

the current state-of-the-art in this area—are those by Wu et al. [186] and Ikehata

et al. [189]. These works rely on the observation that images of a Lambertian ob-

ject lie in a three-dimensional subspace. This observation, together with modeling

non-Lambertian effects as sparse corruptions to the underlying Lambertian data, mo-

tivates the authors to propose rank minimization-based approaches, which are shown

to effectively separate the Lambertian portion of the data from non-Lambertian ef-

fects.

Regardless of their robustness to outliers, approaches that rely on the Lambertian

reflection model as the underlying model of the data are inherently limited in scope

due to the wide variety of non-Lambertian surfaces that exist in the real world. As a

result, another body of work has been incorporating more general reflectance models

into photometric stereo [213]. For example, uncalibrated photometric stereo based

on the Torrance and Sparrow reflectance model has been proposed [197] as well as

calibrated photometric stereo based on the Ward reflectance model [183,187,214].

A large amount of work has also been done developing photometric stereo algo-

rithms that incorporate reflectance models based on general reflectance properties

exhibited by materials. In particular, the property of isotropy has been successfully

utilized in a variety of works [188, 190, 215–217]. The current state-of-the-art in this

category are the works of Shi et al. [193] and Ikehata et al. [192]. Ikehata et al.

models the reflectance function using a sum-of-lobes representation [185], utilizing

Bernstein polynomials as a basis for the inverse reflectance function and performing

bivariate regression to determine the normal vectors. Shi et al. instead models the

low-frequency reflectance component using polynomials of up to order three while

discarding the high-frequency reflectance components. Of particular interest in this

chapter is another work by Ikehata et al. [191] that models the reflectance function

as piecewise-linear. We explore this method in more detail in the following section.

In addition to the aforementioned approaches, a variety of other robust photo-

metric stereo methods have been proposed [181, 182, 218, 219]. The recent work of

Shi et al. [204] seeks to standardize future work in photometric stereo by introducing

an extensive dataset to facilitate future testing and evaluation. Furthermore, they

compare a variety of existing approaches on this dataset, providing a benchmark for

future work.
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9.3 Problem Formulation

9.3.1 Basis of Photometric Stereo

The Lambertian reflectance model states that, to an observer, the brightness of a

point on a Lambertian surface is independent of the observer’s viewing angle. Surfaces

that follow this model are matte in appearance. Indeed, consider an image taken of a

Lambertian object. The light intensity measured at pixel (x, y) of the image satisfies

the relationship

Ixy = ρxy`
Tnxy, (9.1)

where Ixy is the image intensity at pixel (x, y), ` ∈ R3 is the direction of the light

source incident on the surface of the object, ‖`‖2 is the light source intensity, nxy ∈ R3

is the (unit) normal vector of the surface at (x, y), and ρxy ∈ R is the surface albedo

at (x, y)—a measure of the reflectivity of the surface.

Suppose we fix the position of a camera facing the surface and vary the position

of the light source over d unique locations. Then we can write d equations of the

form (9.1) and stack them into the matrix equation


I1
xy

...

Idxy

 =


`T1
...

`Td

 ρxynxy, (9.2)

where Ikxy denotes the image intensity at (x, y) in the kth image. Assuming each of

our d images has dimension m1 ×m2, (9.2) can be solved m1m2 times to obtain the

normal vector of the object at each point on the surface. We may also combine these

m1m2 equations into a single matrix equation. Indeed, define the observation matrix

Y ,
[
vec(I1) . . . vec(Id)

]
∈ Rm1m2×d, (9.3)

where vec(Ik) is the vector formed by stacking the columns of Ik. Then, assuming the

light sources are ideal (i.e., the incident light rays are parallel and of equal intensity

at each point on the surface), we can collect (9.2) into the single equation

Y = NL, (9.4)

where N = [ρ11n11 . . . ρm1m2nm1m2 ]
T ∈ Rm1m2×3 and L = [`1 . . . `d] ∈ R3×d. To

avoid scaling ambiguity, we assume all light sources have intensity ‖`k‖2 = 1.
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Each normal vector nxy contains three unknown components. Thus, given d ≥ 3

images and the corresponding light directions, we can solve (9.4) to obtain the normal

vector at each point on the object. Once computed, we can integrate the normal

vectors to produce a full three-dimensional model of our surface [220].

9.3.2 Deviations From the Lambertian Model

While the Lambertian reflectance model is a good approximation of the reflectance

properties of some surfaces, it is a poor approximation for many real-world objects.

Lambertian objects are matte in appearance and thus any non-matte objects neces-

sarily deviate from the Lambertian reflectance model. The latter class includes any

object that exhibits specularities—bright points observed when light reflects off a

shiny surface. Furthermore, even if an object is Lambertian, shadows (both self-cast

and those produced by other objects) can cause the Lambertian model to break down.

One approach to modeling these effects is to modify (9.4) to

Y = NL+ E, (9.5)

where E is an additive error matrix accounting for non-Lambertian effects. Under

this model, a simple, naive approach for estimating N is to solve the least squares

problem

min
N
‖Y −NL‖2

F , (9.6)

which has solution N̂ = Y L†, where † denotes the Moore-Penrose pseudoinverse. In

this setting, one typically gathers d > 3 images so that the problem is overdetermined

and thus provides some robustness to the non-Lambertian effects.

Several works apply further constraints to (9.5)—such as constraining E to be

sparse—allowing them to (in cases where their assumptions hold) derive more accu-

rate estimates of N than those obtained by (9.6) [186,189]. In Section 9.4, we propose

two novel approaches that apply dictionary learning to the model (9.5).

9.3.3 Piecewise Linear Reflectance Model

Regardless of the constraints imposed on the additive error E, the model (9.5)

fundamentally relies on the Lambertian reflectance model, thus limiting its generality.

Recent works have sought to move beyond the Lambertian assumption and utilize

more general reflectance models that can accurately model the normal vectors of a

wider range of objects [191–193]. In this chapter, we are particularly interested in
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the model presented in [191], which we briefly summarize here.

A simple extension to the Lambertian model is to assume that the image intensity

is related to the inner product of ` and n through a nonlinear function. In other words,

we modify (9.1) to read

Ixy = fxy(`
Tnxy) (9.7)

for some nonlinear function fxy. Assuming the reflectance function at each pixel, fxy,

is monotonically increasing, a unique inverse is guaranteed to exist. We can thus

invert (9.7) and write

f−1
xy (Ixy) = gxy(Ixy) = `Tnxy. (9.8)

Given a set of lighting vectors and corresponding images, our task is then to jointly

estimate gxy(.) and nxy for each pixel. This is a highly underdetermined problem and

so, to solve it in practice, further constraints must be imposed. A natural possibility

is to assume gxy is piecewise linear. That is, we let

gxy(t) =

p∑
k=1

akxyg
k
xy(t), (9.9)

where

gkxy(t) =


0 if t < bk−1

xy ,

t− bk−1
xy if bk−1

xy ≤ t ≤ bkxy,

bkxy − bk−1
xy if t > bkxy.

(9.10)

Here, p is a design parameter that determines the number of piecewise segments in

gxy, b
k
xy are the inflection points of gxy (a strictly increasing sequence), and akxy > 0

is the slope of each segment. For simplicity, we set b0
xy = 0 and choose the remaining

values of bkxy to be equally spaced along the range of intensity values among the d

images at pixel (x, y). Under these assumptions, model (9.8) reduces to the problem

of estimating the slopes a1
xy, . . . , a

p
xy and the normal vector nxy at each pixel. Note

that the case a1
xy = . . . = apxy reduces to the Lambertian model (9.1).

To simplify notation, let

axy = [a1
xy . . . a

p
xy]

T ∈ Rp (9.11)

and

ḡxy(t) = [g1
xy(t) . . . gpxy(t)]

T ∈ Rp (9.12)

147



and rewrite (9.9) as the vector product

gxy(t) = ḡxy(t)
Taxy. (9.13)

Similarly, (9.8) can be written as

ḡxy(Ixy)
Taxy = `Tnxy. (9.14)

Given d images, let Cxy ∈ Rd×p be the matrix whose jth row is ḡxy(I
j
xy)

T . Then we

can collect the data from the d images at pixel (x, y) into the single equation

Cxyaxy = LTnxy, (9.15)

which is the analogue of (9.2) for the Lambertian model. Equation (9.15) can be

solved for nxy and axy to determine the normal vector and the corresponding nonlinear

reflectance function at (x, y). To avoid scaling ambiguity, one can constrain 1Taxy = 1

and then normalize nxy to unit norm after solving (9.15).

As in the Lambertian case, the model (9.8) only accounts for the reflectance prop-

erties of the object. While significantly more general than the Lambertian model, non-

idealities present in the images that do not conform to these reflectance properties—

or, more explicitly, that do not follow a piecewise linear relationship between Ixy and

`Tnxy—will prevent (9.15) from holding exactly. Thus, analogous to (9.5), we modify

(9.15) to yield the model

Cxyaxy = LTnxy + e, (9.16)

where e ∈ Rd accounts for any corruptions in the data not captured by the piecewise

reflectance model. A simple approach to fiting model (9.16) to data is to solve the

constrained least squares problem1

min
nxy , axy

‖Cxyaxy − LTnxy‖2
2

s.t. 1Taxy = 1.
(9.17)

In practice, one can improve robustness by applying some regularization to the model-

ing error e from (9.16). In particular, [191] utilizes this reflectance model and assumes

the corruptions to the data are sparse. In the next section we propose an alternative

model based on dictionary learning to robustly solve (9.17).

1Note that we do not explicitly constrain values of axy to be positive, although this is strictly
required to interpret gxy(.) as the inverse of a reflectance model fxy(.).
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9.4 Dictionary Learning Approaches

Dictionary learning refers to a class of algorithms that seek to sparsely represent

some data of interest with respect to a learned “dictionary”—a collection of basis

or atom elements. Intuitively, dictionary learning methods allow one to uncover

structure present in data without a priori knowledge of the form of the structure. In

this section, we propose three adaptive dictionary learning algorithms for photometric

stereo.

9.4.1 Preprocessing of Images through Dictionary Learning (DLPI)

We first propose applying dictionary learning to our data in a preprocessing step

performed on the images before reconstructing the normal vectors. Our formulation

utilizes a dictionary learning regularization term to represent local patches of the data

matrix Y from (9.3) as sparse in an adaptive (learned) dictionary, thereby removing

certain non-idealities from the data that are not represented by the dictionary. This

approach can be thought of as applying a denoising step to the raw images. Specifi-

cally, we propose to solve the optimization problem:

min
v,B,D

‖y − v‖2
2 + λ

( c∑
j=1

‖Pjv −Dbj‖2
2 + µ2 ‖B‖0

)
s.t. ‖B‖∞ ≤ q, ‖di‖2 = 1, ∀i.

(9.18)

Here, y = vec(Y ) ∈ Rm1m2d and Pj ∈ Rcxcycz×m1m2d is a diagonal {0, 1} matrix

that extracts vectorized patches of dimensions cx × cy × cz from v, where cx and

cy correspond to the dimensions of the patches extracted from each image and cz

corresponds to the number of consecutive images these patches are extracted from.

In practice, we extract patches from v using a simple sliding window strategy. D ∈
Rcxcycz×K is the learned dictionary with atoms (columns) di. Note that, while each

atom is stored as a vector, it can be interpreted upon reshaping as an cx×cy×cz tensor.

B ∈ RK×c is a sparse coding matrix whose columns bj define the (usually sparse)

linear combinations of dictionary atoms used to represent each patch. Also, ‖.‖0 is

the familiar `0 (pseudo-)norm, and λ ≥ 0 and µ ≥ 0 are regularization parameters.

The parameter K specifies the number of atoms in our dictionary D, and c is the

number of patches extracted from v—the denoised images.

We impose the constraint ||B||∞ , maxj||bj||∞ ≤ q, where q is typically very

large, to prevent any instability that could theoretically arise due to (9.18) being
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non-coercive with respect to B, but the constraint is inactive in practice [16, 120].

Without loss of generality, we also constrain the dictionary atoms di to unit-norm to

avoid scaling ambiguity between D and B [105].

After obtaining an (approximate) solution v̂ to (9.18), we reshape v̂ into anm1m2×
d matrix V̂ and estimate the associated normal vectors using the standard least-

squares model (9.6) with the denoised images V̂ in place of the original images Y .2

Henceforth, we refer to this approach as the Dictionary Learning with Preprocessed

Images (DLPI) method, and we present our algorithm for solving (9.18) in Section 9.5.

9.4.2 Normal Vectors through Dictionary Learning

We next propose modifying (9.6) by adding an adaptive dictionary learning regu-

larization term applied to the normal vectors. Under this approach, we seek a normal

map that agrees with the Lambertian model (9.6) while also having a locally sparse

representation with respect to a learned dictionary—resulting in a smoother normal

map that is robust to non-idealities in the data. Specifically, we propose to solve the

optimization problem:

min
n,B,D

‖y − An‖2
2 + λ

( w∑
j=1

‖Pjn−Dbj‖2
2 + µ2‖B‖0

)
s.t. ‖B‖∞ ≤ q, ‖di‖2 = 1 ∀i.

(9.19)

Here, y = vec(Y ) ∈ Rm1m2d and A = LT ⊗ I ∈ Rm1m2d×3m1m2 , where ⊗ denotes

the Kronecker product and I is the m1m2 × m1m2 identity matrix. Furthermore,

n = vec(N) ∈ R3m1m3 are the vectorized normal vectors. As in the DLPI formulation,

Pj denotes a patch extraction matrix that extracts vectorized patches from n of

dimensions wx×wy×wz, where n is treated as an m1×m2×3 tensor during extraction.

In practice, we extract patches from N using a simple sliding window strategy. Also,

D ∈ Rwxwywz×K denotes the learned dictionary whose columns (atoms) di can be

thought of as vectorized wx×wy×wz tensors, and B ∈ RK×w are the sparse coefficients

needed to represent each patch of normal vectors as a linear combination of dictionary

atoms. We impose the same constraints on B and D from the DLPI formulation

(9.18).

Intuitively, the adaptive dictionary learning regularization in (9.19) is able to

uncover underlying local structure in N that the least squares formulation (9.6) alone

2Although we do not investigate this here, one could use a more sophisticated method in place
of the least-squares model (9.6), e.g. one that incorporates a non-Lambertain model.
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cannot deduce from the images. This results in normal vectors that are “smooth” and

free from noise and other non-idealities that may otherwise corrupt them. Henceforth,

we refer to this approach as the Dictionary Learning on Normal Vectors (DLNV)

method, and we present our algorithm for solving (9.19) in Section 9.5.

9.4.3 Non-Lambertian Normal Vectors through Dictionary Learning

Finally, we present a method that is based on the non-Lambertian reflectance

model from Section 9.3.3. Using (9.17) as the baseline, our approach is to incorpo-

rate a dictionary learning term to increase robustness to corruptions. In particular,

we again apply dictionary learning regularization to the normal vectors, thus con-

straining them to agree with the non-Lambertian model (9.17) while also admitting a

sparse representation in the learned dictionary. Specifically, we propose to solve the

optimization problem:

min
n,B,D,a

∑
x,y

(
‖Cxyaxy − LTnxy‖2

2 + γ‖1Taxy − 1‖2
2

)
+ λ

( w∑
j=1

‖Pjn−Dbj‖2
2 + µ2‖B‖0

)
s.t. ‖B‖∞ ≤ q, ‖di‖2 = 1, ∀i.

(9.20)

Here, all terms here are defined analogously as in Sections 9.3.3 and 9.4.2. Note that

we include the constraint 1Taxy = 1 from (9.17) in penalty form, where we typically

set parameter γ ≥ 0 to be very large.

The problem (9.20) can be thought of as a generalization of DLNV. Indeed, if we

set p = 1 and γ =∞, then (9.20) reduces to (9.19). However, we present both models

as distinct methods in this chapter to highlight the differences between models that

rely on the Lambertian assumption versus models that incorporate more complex

reflectance models. We investigate the performance of both approaches in detail

in Section 9.6. Henceforth, we refer to this approach as the Dictionary Learning on

Normal Vectors with Piecewise-Linear Reflectance (PDLNV) method, and we present

our algorithm for solving (9.20) in Section 9.5.

9.5 Algorithms and Properties

We propose solving (9.18), (9.19), and (9.20) via block coordinate descent-type

algorithms. Specifically, for (9.18) and (9.19) we alternate between updating v and n,

respectively, with (D,B) fixed and updating (D,B) with v or n fixed. For (9.20) we

151



use a similar strategy where we alternate between updating n, (D,B), and a with all

other variables held fixed. For each subproblem, we now derive simple and efficient

schemes for minimizing the associated cost.

9.5.1 Updating (D,B)

The (D,B) update is identical for all three methods. Here we present the update

using the notation from (9.18). For notational convenience, we define G , BT and

denote by P the matrix whose jth column is Pjv. With v fixed, the optimization

with respect to (D,B) can be written as

min
G,D

‖P −DGT‖2
F + µ2‖G‖0

s.t. ‖G‖∞ ≤ a, ‖di‖2 = 1 ∀i.
(9.21)

We (approximately) solve (9.21) by applying a few iterations of block coordinate

descent, where we iterate over the columns gi of G and columns di of D sequentially.

For each 1 ≤ i ≤ K, we minimize (9.21) first with respect to gi and then with respect

to di, holding all other variables fixed.

We first consider the minimization of (9.21) with respect to gi. Define Ei ,

P −
∑

k 6=i dkg
T
k , where Ei is computed using the most recent values of the dictionary

atoms and coefficients. Then we can write the gi subproblem as

min
gi

∥∥Ei − digTi ∥∥2

F
+ µ2 ‖gi‖0

s.t. ||gi||∞ ≤ q.
(9.22)

The solution to (9.22) is given by [119]

ĝi = min
(
|Hµ(ET

i di)|, q1w
)
� sign

(
Hµ(ET

i di)
)
, (9.23)

where 1w ∈ Rw is a vector of ones, min(., .) is applied element-wise to vector argu-

ments, and � denotes element-wise multiplication. Furthermore, Hµ(.) denotes the

element-wise hard thresholding function, defined as

Hµ(y) =

0 if |y| < µ

y if |y| ≥ µ.
(9.24)
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Minimizing (9.21) with respect to di can be written as

min
di
‖Ei − digTi ‖2

F

s.t. ‖di‖2 = 1.
(9.25)

The solution to (9.25) is given by [119]

d̂i =


Eigi
‖Eigi‖2

, if gi 6= 0

u, if gi = 0,

(9.26)

where u ∈ Rcxcycz is an arbitrary unit-norm vector (e.g., the first column of the

cxcycz × cxcycz identity matrix).

9.5.2 Updating v

Minimizing (9.18) with respect to v yields the problem

min
v
‖y − v‖2

2 + λ
c∑
j=1

‖Pjv −Dbj‖2
2, (9.27)

which is a least-squares problem with normal equation

(
I + 2λ

c∑
j=1

P T
j Pj

)
v = y + 2λ

c∑
j=1

P T
j Dbj. (9.28)

The matrix pre-multiplying v in (9.28) is diagonal, so its inverse can be cheaply

computed and hence v can be updated efficiently.

9.5.3 Updating n

Minimizing (9.19) with respect to n yields the problem

min
n
‖y − An‖2

2 + λ
w∑
j=1

‖Pjn−Dbj‖2
2. (9.29)

Although (9.29) is a least-squares problem, its normal equation cannot be easily

inverted due to the presence of the A matrix. Instead, we perform a few iterations

153



of proximal gradient [25] to (approximately) solve (9.29).3 The cost function can be

written in the form f(n) + g(n) where f(n) = ‖y − An‖2
2 and g(n) = λ

∑w
j=1 ‖Pjn−

Dbj‖2
2, so we perform the proximal steps

nk+1 = proxτg(n
k − τ∇f(nk)), (9.30)

where

proxτg(y) := arg min
x

1

2
‖y − x‖2

2 + τg(x) (9.31)

is the proximal operator of g and τ > 0 is a chosen step size. The updates (9.30) are

guaranteed to converge to a solution of (9.29) when τ < 1/‖A‖2 = 1/‖L‖2, and in

fact the cost will monotonically decrease when τ ≤ 1/2‖L‖2 is used [25].

Define ñk , nk− τ∇f(nk) = nk− 2τAT (Ank− y). Then, after substituting (9.31)

into (9.30) and simplifying, one can show that nk+1 satisfies the normal equation

(
I + 2τλ

w∑
j=1

P T
j Pj

)
nk+1 = ñk + 2τλ

w∑
j=1

P T
j Dbj. (9.32)

As in (9.28), the matrix multiplying nk+1 in (9.32) is diagonal and thus can be effi-

ciently inverted to compute nk+1.

In the case of PDLNV, the n update for (9.20) can be solved in an identical

manner, where the analogous data matrix y is constructed as

y = vec([C11a11 . . . Cm1m2am1m2 ]) (9.33)

from the most recent values of axy.

9.5.4 Updating a

Minimizing (9.20) with respect to axy yields m1m2 problems of the form

min
axy

∑
x,y

∥∥Cxyaxy − LTnxy∥∥2

2
+ γ

∥∥1Taxy − 1
∥∥2

2
. (9.34)

3Proximal gradient is one of many possible iterative schemes for minimizing the quadratic objec-
tive (9.29); one could also employ a different algorithm, such as preconditioned conjugate gradient.
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These are simple least squares problems with d + 1 equations and p unknowns that

can be solved exactly and in parallel. Indeed, the solution to (9.34) is

âxy =

[
Cxy

γ1T

]† [
LTnxy

γ

]
. (9.35)

The pseudoinverse in (9.35) is a constant that can be pre-computed from the raw

images, so axy can be updated efficiently.

9.5.5 Convergence

The proposed algorithms for solving (9.18), (9.19), and (9.20) alternate between

updating (D,B), v or n, and a (PDLNV only) with the other variables held fixed.

Except for the n updates of DLNV and PDLNV, all update schemes are either exact

block coordinate descent updates or composed of inner iterations of exact block coor-

dinate descent updates, so the objectives in our formulations must be monotonically

decreasing (non-increasing) during these updates. Moreover, the proximal gradient

step size for the n update can be chosen to guarantee that these iterations also mono-

tonically decrease their objectives. Thus, the cost functions for all three proposed

algorithms are monotonically decreasing and bounded below by zero, so they must

converge. Whether the algorithm iterates themselves converge to critical points of

the (non-convex) costs is an interesting theoretical question for future work.

9.6 Numerical Experiments

We now investigate the performance of our proposed dictionary learning-based

methods experimentally. To obtain quantitative results, we rely primarily on the

recent DiLiGenT benchmark dataset [204]. This dataset contains images of a variety

of surfaces of different materials and provides the true normal vectors of each object,

allowing us to measure the accuracy of the normal vectors produced by each method.

We quantify the error in each estimated normal vector by measuring the angular

difference between it and the correponding true normal vector.

We evaluate our methods in a variety of settings. For each experiment, we compare

the results of our methods to the robust PCA (RPCA) approach of Wu et al [186], the

sparse regression (SR) method of Ikehata et al [189], and the constrained bivariate

regression (CBR) approach of Ikehata et al [192]. In addition, we compare with the

baseline least squares (LS) model defined by (9.6).
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Dataset
Mean Angular Error (degrees)

PDNLV DLPI DLNV CBR SR RPCA LS

Ball 3.60 3.99 3.82 6.78 2.08 3.20 4.10
Cat 6.40 8.39 8.10 8.05 6.73 7.96 8.41
Pot1 6.99 8.88 8.67 8.57 7.24 8.81 8.89
Bear 8.51 8.31 8.32 9.77 6.01 7.89 8.39
Pot2 10.37 14.57 13.88 10.56 11.98 11.94 14.65

Buddha 13.56 14.91 14.72 14.90 11.11 13.88 14.92
Goblet 15.49 18.43 17.69 15.10 15.53 15.14 18.50

Reading 20.28 19.66 19.58 19.39 12.56 17.42 19.80
Cow 21.80 25.48 17.58 15.68 22.42 11.96 25.60

Harvest 20.89 30.55 27.07 26.93 26.80 25.50 30.62

Table 9.1: Mean angular errors of the estimated normal vectors for the full, uncor-
rupted DiLiGenT datasets.

With the exception of LS, each method contains one or more regularization pa-

rameters. For each method, we sweep the parameters across a wide range of values

and select the optimal parameters for each trial. For existing methods, we include

any recommended parameters from the respective papers in our sweep. We run all

iterative algorithms to convergence, and we repeat each experiment with additive

noise over multiple realizations and average the results.

The majority of the photometric stereo literature has focused primarily on the

problem of reconstructing normal vectors from uncorrupted and generally large datasets

(many images of each object), such as the DiLiGenT dataset. In cases where addi-

tional corruptions were added, the corruptions were typically sparse to better align

with the modeling assumptions of each method. In our experiments, we endeavor

to fully investigate the robustness of our proposed methods and existing methods to

general non-sparse corruptions. Specifically, we corrupt the raw images with Poisson

noise, which is a realistic model for noise in real images [221]. This model is applica-

ble, for example, when performing photometric stereo in low-light conditions, where

noise levels can be significant.

Many existing photometric stereo algorithms apply a pixel-wise mask as a prepro-

cessing step to remove shadows from the images. Such masks are typically computed

by performing a simple thresholding operation on the data and excluding any pixels

below a chosen threshold from subsequent computations. While this strategy can

improve results in some cases, it does not capture the complexity of shadows present

in the image and often results in useful data being rejected. This is of particular

importance when working with small or heavily corrupted datasets, where it is im-
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portant that the reconstruction method has access to as much data as possible to

uncover the relevant information. Such robust methods should have the capacity to

adapt to shadows in images without the use of a shadow mask. As such, all of the

experiments we present here are performed without the use of shadow masks.

9.6.1 Evaluation on Uncorrupted DiLiGenT Dataset

We first investigate the performance of our proposed methods on the DiLiGenT

dataset [204]. For each object, we use all 96 images present in the dataset and do

not add any additional corruptions to the images. For PDLNV, we set p = 2 for each

dataset except Harvest, where we set p = 3.

Table 9.1 presents the mean angular errors of the reconstructed normal vectors for

each method on each dataset. PDLNV outperforms all existing approaches on 4 of

the 10 objects. In cases where our methods do not outperform existing approaches,

with the exception of the Reading and Cow datasets, we achieve comparable angular

errors to the best performer. As we will demonstrate, the primary strength of our

proposed methods is constructing normal vectors from images that are less pristine

than the DiLiGenT datasets. However, Table 9.1 shows that PDLNV is still able to

perform better or comparable to methods specifically designed to operate on large,

clean datasets.

In practice, it may be infeasible to collect 96 images of an object under varying

lighting conditions. As such, it is important to develop methods that can accurately

estimate normal vectors from smaller datasets. Figures 9.1 and 9.2 illustrate the

angular errors of the normal vectors estimated by each method on the uncorrupted

DiLiGenT Cat and Harvest datasets as a function of the number of images used. In

these experiments, we randomly selected images from among the original 96 images

and averaged the results across 10 trials. From both figures, it is clear that PDLNV

significantly outperforms all other methods for most dataset sizes.

9.6.2 Evaluation on Corrupted DiLiGenT Dataset

We next compare the performance of our proposed methods to existing methods

on images corrupted with Poisson noise. Specifically, we subsample the DiLiGenT

Pot2 dataset to 20 images and then corrupt these images with Poisson noise of a given

signal-to-noise-ratio (SNR).

Figure 9.3 plots the angular errors of the estimated normal vectors for each algo-

rithm as a function of SNR. It is clear that our proposed dictionary learning-based

157



Number of Images
0 20 40 60 80 100

M
ea
n
A
n
gu

la
r
E
rr
or

(d
eg
re
es
)

6

6.5

7

7.5

8

8.5

9

9.5

10

10.5
LS
DLPI

RPCA
DLNV

CBR
SR
PDLNV

Figure 9.1: Mean angular errors (in
degrees) of the estimated normal vec-
tors for the DiLiGenT Cat dataset as
a function of number of images used
during reconstruction.

Number of Images
0 20 40 60 80 100

M
ea
n
A
n
g
u
la
r
E
rr
or

(d
eg
re
es
)

20

22

24

26

28

30

32

34
LS
DLPI

CBR
SR
DLNV

RPCA
PDLNV

Figure 9.2: Mean angular errors (in
degrees) of the estimated normal vec-
tors for the DiLiGenT Harvest dataset
as a function of number of images used
during reconstruction.
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Figure 9.3: Mean angular errors (in degrees) of the estimated normal vectors for the
DiLiGenT Pot2 dataset with 20 images versus SNR.

approaches are significantly more robust to high levels of non-sparse corruptions than

existing methods. In particular, for SNR values below 10 dB, our methods outper-

form the existing methods by up to 10 degrees. Furthermore, the angular errors

produced by our dictionary learning-based methods vary significantly less than ex-

isting approaches, indicating that the normal vector reconstructions are much more

stable and robust to these corruptions.

Figures 9.4 and 9.5 show the normal vector reconstructions and the corresponding

error maps produced by each method on the Pot2 dataset with 20 images at a noise

level of 5 dB. As these figures illustrate, the dictionary learning-based reconstruc-

tions are significantly more accurate and robust to noise than the existing methods.

Figure 9.6 shows the error maps for the normal vectors produced by PDLNV on
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(a) Truth (b) PDLNV (c) DLNV (d) DLPI

(e) CBR (f) SR (g) RPCA (h) LS

Figure 9.4: Normal vector reconstructions for the DiLiGenT Pot2 dataset with 20
images and 5 dB Poisson noise.
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(d) CBR (e) SR (f) RPCA (g) LS

Figure 9.5: Normal vector error maps (in degrees) for the DiLiGenT Pot2 dataset
with 20 images and 5 dB Poisson noise.

the DiLiGenT Cat dataset for different SNR levels. As this figure shows, the error

maps are quite uniform across the noise levels, indicating that PDLNV is surprisingly

insensitive to noise strength.

9.6.3 Evaluation on non-DiLiGenT Datasets

In addition to the DiLiGenT dataset, we also consider the dataset4 from [222].

This dataset contains images of several real objects with no corresponding normal

vectors. To obtain reference (ground truth) normal vectors for this dataset, we assume

the objects are Lambertian. While this assumption does not hold exactly, the objects

4The data can be found at http://vision.seas.harvard.edu/qsfs/Data.html.
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(a) SNR=10 dB (b) SNR=20 dB (c) SNR=30 dB (d) SNR=40 dB

(e) SNR=50 dB (f) SNR=60 dB
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Figure 9.6: Normal vector error maps (in degrees) computed with PDLNV for the
DiLiGenT Cat dataset with 20 images and varying SNR.

are matte in appearance and thus nearly Lambertian. We compute the reference

normal vectors by applying the standard least squares method (9.6) to the raw images.

Our motivation for considering this (approximately) Lambertian dataset is as fol-

lows. Even when additional noise is added, the primary challenge with the DiLiGenT

datasets is dealing with the fundamentally non-Lambertian properites of the data

(specularities, shadows, etc.) As such, our experiments thus far do not necessarily

evaluate the ability of each method to estimate a Lambertian surface in the presence

of noise, despite the fact that the majority of the methods we are investigating are

based on a Lambertian model. Therefore, in this section we assume our data is Lam-

bertian, add corruptions, and then evaluate the ability of each method to reject the

corruptions and produce normal vectors that agree with the underlying Lambertian

model.

Figure 9.7 plots the mean angular errors of the estimated normal vectors for

the Hippo dataset as a function of SNR. For high SNR, the errors approach zero, as

expected since the uncorrupted data is Lambertian. However, in the high SNR regime,

the proposed dictionary learning-based approaches are significantly more robust to

imperfections compared to existing approaches. Unlike in the DiLiGenT experiments,

the DLPI method now outperforms both DLNV and PDLNV. This suggests that the

dictionary learning-based preprocessing step is able to robustly remove corruptions

from Lambertian data.

We also evaluate the qualitative performance of each method. Figure 9.8 shows

the reference normal vectors for the Cat dataset (computed from the uncorrupted
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Figure 9.7: Mean angular errors (in degrees) of estimated normal vectors for the
Hippo dataset with 20 images versus SNR.

data using the least squares method) together with the normal vectors estimated

by each method from data corrupted by Poisson noise with 5 dB SNR. Figure 9.9

shows the error maps for the estimated normal vectors with respect to the reference

normal vectors. Clearly the proposed dictionary learning-based methods produce

much more accurate normal vectors compared to the existing methods. Note that

the DLPI method achieves particularly small errors on the smooth portions of the

surface, where the normal vectors are slowly varying.

Figure 9.10 plots the surfaces computed for the normal vectors from Figure 9.8

using the method outlined in [220]. Qualitatively, we see that the surfaces computed

from the dictionary learning-based methods are much smoother and more accurate

representations of the actual surface. In contrast, the surfaces obtained from the ex-

isting methods, though they preserve the general shape of the surface, are quite rough

and/or contain significant spike artifacts. Note that the DLNV method does exhibit

some flattening artifacts on the side of the head, and the DLPI method produces

an extremely smooth surface at the cost of some loss of definition near sharp edges.

PDLNV, though slightly less smooth than DLNV, retains many of the sharp edges of

the reference surface.

9.6.4 Algorithm Properties

Finally, we investigate the properties of our proposed dictionary learning-based

methods and how the various model parameters affect the results. In addition to

regularization parameters, which were directly optimized for each method in our

experiments, there are multiple model parameters that can be tuned. The dimensions

of the dictionary atoms—which correspond to the patch sizes that are extracted from
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(a) Reference (b) PDLNV (c) DLNV (d) DLPI
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Figure 9.8: Normal vector reconstructions for the Cat dataset with 20 images and 5
dB Poisson noise.
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Figure 9.9: Normal vector error maps (in degrees) for the Cat dataset with 20 images
and 5 dB Poisson noise.
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(a) Reference (b) PDLNV (c) DLNV (d) DLPI

(e) SR (f) RPCA (g) LS (h) CBR

Figure 9.10: Surfaces computed from the estimated normal vectors of the Cat dataset
with 20 images and 5 dB Poisson noise.

the images or normal vectors—can be changed, the patch extraction strategy—e.g.,

non-overlapping patches or overlapping patches with a given spatial stride—can be

changed, and one must choose how to initialize the dictionary. Another interesting

parameter is the number of atoms (columns) in the dictionary, where we are free to

choose between tall (undercomplete), square, or wide (overcomplete) dictionaries. In

the case of PDNLV, we can also choose the parameter p that controls the number of

piecewise segments in the non-Lambertian model; the optimal value may depend on

the properties of a given surface.

In the preceding experiments, we used 8× 8 atoms for DLPI, which is a standard

choice for dictionary learning methods. For PDNLV, we choose 8×8×3 atoms, where
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the third dimension corresponds to the (x, y, z) coordinates of each normal vector.

In each case, we used a sliding window strategy with a spatial stride of 4 pixels in

each direction to extract overlapping patches from the images or normal vectors. We

used square dictionaries for our experiments (containing 64 atoms for DLPI and 192

atoms for DLNV and PDLNV), and we initialized each dictionary to the discrete

cosine transform (DCT) matrix of appropriate size. For the n updates of DLNV

and PDLNV, we used the step size τ = 1/2‖L‖2 to guarantee that the updates will

monotonically decrease their objectives.

Figure 9.11 shows the per-iteration properties of the PDLNV method with p = 2

from a representative trial on the DiLiGenT Cat dataset. Figure 9.11a plots the cost

function at each iteration, and Figure 9.11b shows the corresponding mean angular

error of the normal vector estimates. While the cost is guaranteed to decrease at

each iteration, angular error can increase. Empirically we have found, however, that

angular error typically decreases with iteration. Figure 9.11c plots the sparsity (per-

centage of nonzero elements) of the sparse coding matrix B at each iteration. The

sparsity of B can be changed by varying the regularization parameter µ. Empirically,

we have found that sparsity values around 10% often yield good results. Each plot

in Figure 9.11 includes multiple curves for several different dictionary sizes (number

of columns). Of particular interest is how the size of the dictionary affects mean

angular error. As Figure 9.11b illustrates, larger dictionaries typically perform better

than smaller, undercomplete dictionaries. However, we do not observe a significant

boost in performance when the dictionary becomes overcomplete. Note that 8×8×3

dictionary atoms were used for PDLNV, so a size of 192 corresponds to a square

dictionary.

In practice, for the trials included in this chapter, we terminated PDNLV after

50 iterations and terminated both DLNV and DLPI after 20 iterations. At every

iteration, we would iterate once over the columns of (D,B) and take 25 proximal

gradient steps updating n or v.

We next illustrate the effect of varying parameter p on the performance of PDLNV.

Figure 9.12 shows the angular error of the estimated normal vectors when varying

the number of images in the DiLiGenT Pot1 dataset for several values of p. As

illustrated, for this dataset p = 2 is the optimal choice. In general, we have found

that p = 2 typically produces good results, but in some cases (e.g., the DiLiGenT

Harvest dataset) p = 3 does perform better.

Figure 9.13 illustrates the initial (DCT) and final (learned) dictionaries produced

by PDLNV on the full DiLiGenT Pot1 dataset. Each dictionary atom is an 8× 8× 3
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Figure 9.11: Cost function, normal vector angular errors (in degrees), and sparsity
of the sparse coding matrix B for the PDLNV method with p = 2 applied to the
DiLiGenT Cat dataset with 20 images and 20 dB Poisson noise for several different
dictionary sizes.
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Figure 9.12: Mean angular error (in degrees) of the estimated normal vectors for
PDLNV with multiple values of p on the DiLiGenT Pot1 dataset as a function of
number of images used.

tensor, so we visualize each atom as three 8 × 8 images arranged horizontally. The

learned dictionary exhibits interesting structure. Some atoms have learned structure

across all three normal vector dimensions, while other atoms have learned structure

in one or two dimensions and are trivial (constant) in the other dimension(s). Note

that this behavior has emerged organically—the dictionary learning methods auto-

matically adapt to the underlying structure on a per-dataset basis.

9.7 Conclusion

In this chapter, we proposed three methods for applying dictionary learning to

photometric stereo. Each method seeks to represent some form of the data—either

the original images or the reconstructed normal vectors—as sparse with respect to
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(a) Initial DCT dictionary. (b) Final learned dictionary.

Figure 9.13: Initial and final learned dictionaries for the PDLNV method with p = 2
applied to the full DiLiGenT Pot1 dataset.

an adaptive dictionary. We showed through extensive numerical studies that our

proposed methods are significantly more robust than existing methods in the high-

noise regime while preserving accuracy in the low-noise regime. Dictionary learning

is a general purpose adaptive regularization framework, and, as such, it could be

coupled with more complex reflectance models from the photometric stereo literature

to further improve reconstruction quality. We plan to investigate this line of inquiry

in future work.
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CHAPTER X

Robust Surface Reconstruction via Dictionary

Learning

10.1 Introduction

Imaging techniques such as photometric stereo [179] allow one to efficiently es-

timate the normal vector map of an object. The primary goal of such methods is

to ultimately derive a three-dimensional representation of the object, a task which

requires some flavor of numerical integration of the gradient fields defined by the nor-

mal vector map. Robust photometric stereo—the problem of accurately determining

the normal map of a non-ideal surface or from noisy data—has attracted consider-

able attention in recent years [186, 189, 192]. In this chapter, we seek to develop a

robust approach to the problem of reconstructing surfaces from gradient fields that

can accurately estimate the depth map of an object in the presence of noise.

The problem of reconstructing a surface from estimates of its photometric stereo

gradient fields has been investigated since the late 1980s. The seminal works of Sim-

chony et al. [220] and Frankot and Chellappa [223] seek to solve the problem through

a least squares approach, utilizing efficient Discrete Fourier Transform or Discrete

Cosine Transform based solvers—essentially attempting to project the surface onto

Fourier basis functions or the DCT basis. Harker and O’Leary [224] propose a mod-

ified “global” least squares problem and extend this method to incorporate regular-

ization [225], solving a Sylvester equation to obtain the solution. Recently, Quéau

and Durou [226] introduced a weighted-least squares formulation as well as formula-

tions minimizing total-variation and incorporating the `1 norm to promote sparsity.

Further attempts at applying a regularization term while integrating the gradients

have also been proposed at the expense of computation time [227, 228]. Additional

approaches include line-integral based methods [229, 230] and reconstructions based
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on the calculus of variations [231–233]. A range of other possible methods have also

been proposed with mixed results [234–239].

Our work builds on these previous works, specifically those that utilize a least

squares-type formulation to relate the underlying surface and its gradient fields. In

particular, we propose a novel adaptive dictionary learning based regularizer that

enables the robust estimation of surfaces from noisy gradients. Dictionary learn-

ing [100, 104, 240] has, in recent years, been successfully applied to many imaging

applications, e.g., [16, 17, 103]. In dictionary learning models, one typically seeks to

learn sparse representations of the local patches of the data. These models often

induce a type of smoothness constraint on the underlying data that, in the case of

surface reconstruction, we show leads to robust reconstructions with desirable noise

rejection properties. Our framework is general and can be easily combined with any

existing method that utilizes a least squares-type objective to estimate the underlying

surface.

10.2 Surface Reconstruction from Gradient Fields

Let n(x, y) ∈ R3 denote the normal vector of a differentiable surface z(x, y) at

position (x, y), and let n1(x, y), n2(x, y), and n3(x, y) denote the x, y, and z compo-

nents of this vector, respectively. Under this ideal model, one can relate the x and y

derivatives of the surface z to its normal vectors via the relation

∂z(x, y)

∂x
= −p(x, y),

∂z(x, y)

∂y
= q(x, y), (10.1)

where we have defined p(x, y) := n1(x, y)/n3(x, y) and q(x, y) := n2(x, y)/n3(x, y). In

practice, the estimated (e.g., by photometric stereo) normal vectors of a surface and

its gradient fields will not exactly satisfy (10.1), so one must instead find a function

z(x, y) with derivatives close to p(x, y) and q(x, y) in an appropriate sense, often by

minimizing a variational problem of the form∫∫
Ω

(
∂z(x, y)

∂x
− p(x, y)

)2

+

(
∂z(x, y)

∂y
− q(x, y)

)2

dx dy. (10.2)

When our data is instead sampled on a discrete grid, we will not have access to

a continuous normal map n(x, y) but will instead have some matrix N ∈ Rm×n×3

containing the normal vectors of the object on the grid. Following (10.1), we can

compute matrices P ∈ Rm×n and Q ∈ Rm×n containing the measured gradients, and
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our goal then becomes to estimate the matrix Z ∈ Rm×n containing the values of

the surface z(x, y) sampled on the grid. The discrete analogue of (10.2) is commonly

expressed [220,223,224] as a standard least squares problem of the form

z∗ = arg min
z
‖Az − v‖2

2, (10.3)

where z = vec(Z) ∈ Rmn is the vectorized version of Z, A is a numerical differentia-

tion operator, and the vector v is an appropriate function of the measured gradients,

P and Q. Solving this problem yields a representation of our surface optimal in the

least squares sense.

Note that the specific form of A and v can vary. One possible formulation is

A =

[
Dn ⊗ Im
In ⊗Dm

]
, v =

[
vec(P )

vec(Q)

]
, (10.4)

where Dn is the discrete first differences matrix, and ⊗ denotes the Kronecker prod-

uct. However, multiple models are possible, each yielding reconstructed surfaces with

different properties. Importantly, the dictionary learning based approach that we will

introduce in Section 10.3 can be coupled with any least squares model of the form

(10.3), so our proposed approach is quite flexible.

10.3 Adaptive Dictionary Learning Regularization

Given normal vectors corrupted by noise or other non-idealities, solving (10.3)

directly generally produces a rough, bumpy surface, even when the underlying true

surface is smooth. Thus, in this chapter, we propose an adaptive dictionary regularizer

that can be combined with the least squares model (10.3) to more accurately estimate

the underlying surface. In particular, we propose to solve the following dictionary

learning problem

{z∗, B∗, D∗} = arg min
z,B,D

1

2
‖Az − v‖2

2 + λ

(
c∑
j=1

‖Pjz −Dbj‖2
2 + µ2‖B‖0

)
s.t. ‖B‖∞ ≤ a, ‖di‖2 = 1, ∀i.

(10.5)

In (10.5), Pj is a patch extraction operator that extracts a vectorized cx × cy spatial

patch from z, D ∈ Rcxcy×K is a dictionary matrix whose columns di are vectorized

cx × cy atoms, and B ∈ RK×c is a matrix of sparse codes, where the columns bj of B

169



define the (usually sparse) linear combination of atoms used to represent the patch

Pjz of z. Also, ‖ · ‖0 is the familiar `0 (pseudo-)norm and λ ≥ 0 and µ ≥ 0 are

regularization parameters.

We include the constraint ‖B‖∞ , maxj‖bj‖∞ ≤ a, where a is typically very large,

since (10.5) is non-coercive with respect to B, although the constraint is inactive in

practice [120]. In addition, we constrain the columns D to be unit-norm to avoid

scaling ambiguity between D and B [105]. Note that (10.5) is a non-convex problem.

By solving (10.5), we are attempting to estimate our surface z by numerically

integrating it through a least squares functional while simultaneously enforcing that

local patches of the reconstructed surface should have sparse representations with

respect to the dictionary D. As D itself is learned, our proposed algorithm can

automatically adapt to the underlying properties of the surface and its gradients.

10.3.1 Dictionary Learning on Surfaces (DLS) Algorithm

We propose to solve (10.5) via a block coordinate descent-type algorithm where

we alternate between updating z with (D,B) fixed and updating (D,B) with z fixed.

Henceforward, we refer to this algorithm as the Dictionary Learning on Surfaces

(DLS) method.

10.3.1.1 (D, B) updates

Let P be the matrix with columns Pjz. With z fixed, the minimization of (10.5)

with respect to (D,B) is

min
B,D

‖P −DB‖2
F + µ2‖B‖0

s.t. ‖B‖∞ ≤ a, ‖di‖2 = 1,∀i.
(10.6)

We solve (10.6) via a block coordinate descent method where we iteratively minimize

the cost with respect to the ith column, gi, of G := BT and the ith column, di, of D

for every 1 ≤ i ≤ K with all other variables held fixed.

For a given i, define Ei , P −
∑

k 6=i dkg
T
k computed using the most recent values

of the other dictionary atoms and coefficients. Then the minimizer of (10.6) with

respect to gi is given by [120]

ĝi = min
(
|Hµ(ET

i di)|, a1C
)
� sign(Hµ(ET

i di)), (10.7)

where 1C is a vector of ones of length C, min(·, ·) is the element-wise minimum
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operator, � denotes element-wise multiplication, and Hµ(·) is the element-wise hard

thresholding operator

Hµ(y) =

y if |y| ≥ µ

0 if |y| < µ.
(10.8)

On the other hand, the minimizer of (10.6) with respect to di with all other variables

held fixed is given by [120]

d̂i =


Eigi
‖Eigi‖2

if gi 6= 0

u if gi = 0,

(10.9)

where u is any unit norm vector, e.g., the first column of the identity matrix.

10.3.1.2 z update

With D and B fixed, our problem becomes

min
z

1

2
‖Az − v‖2

2 + λ
c∑
j=1

‖Pjz −Dbj‖2
2. (10.10)

The cost function in (10.10) can be written in the form f(z) + g(z) where f(z) =
1
2
‖Az−v‖2

2, and g(z) = λ
∑c

j=1 ‖Pjz−Dbj‖2
2. We utilize a proximal gradient strategy

to solve (10.10) [25], iteratively updating z according to

zk+1 = proxτg(z
k − τ∇f(zk)), (10.11)

where

proxτg(y) := arg min
x

1

2
‖y − x‖2

2 + τg(x) (10.12)

is the proximal operator of g(x). If we define z̃k , zk − τ∇f(zk), we see that (10.11)

and (10.12) imply that zk+1 satisfies the normal equation

(
I + 2τλ

c∑
j=1

P T
j Pj

)
zk+1 = z̃k + 2τλ

c∑
j=1

P T
j Dbj. (10.13)

The matrix on the left hand side of (10.13) is diagonal, so its inverse can be cheaply

computed to solve for zk+1. Note that (10.10) is a simple least squares problem and,

as such, could be minimized by a variety of iterative schemes.
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(a) Truth (b) DLS (c) SR (d) TV (e) DCTLS

Figure 10.1: Reconstructions of the Tent surface with SNR = 20 dB.

(a) Truth (b) DLS (c) SR (d) TV (e) DCTLS

Figure 10.2: Reconstructions of the Vase surface with SNR = 30 dB.

10.4 Results

In this section, we numerically evaluate our proposed DLS method on several

example datasets. In each case we compare our method against the spectral regu-

larization method (SR) [225], the isotropic total variation (TV) approach [226], and

DCT based least squares (DCTLS) [220]. For methods that include tunable weight

parameters, we sweep over a wide range of values, reporting the best results obtained

over this parameter sweep. As we have noted, the dictionary learning approach can

incorporate any least squares based solver by simply defining A and v in (10.5) ac-

cordingly. For all results given here, we have used the least squares cost found in [220].

In order to evaluate the robustness of our approach, we add Gaussian noise to the

data.

For our proposed DLS method, we used dictionary atoms of size 8× 8 pixels and

a square 64× 64 dictionary D, initialized with a DCT matrix. We extracted patches

from z using a spatial stride of two pixels in each direction, allowing adjacent patches

to overlap. Finally, we initialized z as the vectorized surface produced by solving the

stand-alone least squares problem in [220], and initialized B = 0.

10.4.1 Synthetic Surface Reconstructions

To quantitatively evaluate our method, we first considered two synthetic datasets,

which we call Tent and Vase, for which we have analytic expressions for the surface

z = f(x, y). Given f(x, y), we can differentiate to obtain the gradients, ∂f(x, y)/∂x

and ∂f(x, y)/∂y, and sample on a discrete grid. By reconstructing the surface from

these gradients subject to additive noise, the integrity of the reconstructions can then
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SNR
Tent Vase

DLS SR TV DCTLS DLS SR TV DCTLS

1 dB 0.969 0.944 0.918 0.924 0.958 0.930 0.889 0.894
5 dB 0.971 0.950 0.938 0.944 0.966 0.934 0.911 0.915
10 dB 0.976 0.956 0.957 0.962 0.971 0.942 0.933 0.936
20 dB 0.988 0.969 0.979 0.983 0.977 0.961 0.965 0.966
30 dB 0.995 0.978 0.989 0.992 0.982 0.975 0.981 0.981
40 dB 0.997 0.985 0.994 0.996 0.990 0.982 0.990 0.989
50 dB 0.998 0.988 0.996 0.998 0.993 0.984 0.993 0.992
60 dB 0.999 0.989 0.997 0.998 0.995 0.985 0.995 0.993

Table 10.1: Quality of Tent (left) and Vase (right) surface reconstructions in SSIM
as a function of SNR.

be evaluated against a ground truth, f(x, y). We utilize the SSIM error metric [241]

to evaluate the quality of the computed surfaces against this ground truth. For these

experiments, noise is added directly to the gradient fields.

Figures 10.1 and 10.2 show images of the reconstructed surfaces produced by each

algorithm. As these images illustrate, the proposed DLS method produces much

smoother surfaces from noisy data compared to the existing methods. Intuitively, the

locally sparse model imposed by the dictionary regularization denoises the surfaces,

while the adaptive nature of the dictionary allows DLS to represent and reconstruct

both sharp edges and smooth regions in a data-dependent basis.

The surfaces obtained by SR, TV, and DCTLS are much more sensitive to the

noisy gradients. Indeed, while they retain the general shape of the surface, they ex-

hibit significantly more corruption. In particular, the spectral regularization method,

which attempts to represent the surface in a low-dimensional subspace, seems to

introduce a systematic error into the reconstructions.

Table 10.1 numerically corroborates the qualitative results illustrated by Fig-

ures 10.1 and 10.2. The low signal-to-noise-ratio (SNR) regime, DLS significantly

outperforms other approaches. As SNR increases, this gap decreases. When the data

is essentially noiseless, DLS, TV, and DCTLS are all able to reconstruct the surfaces

with nearly zero error, yielding comparable reconstruction quality.

10.4.2 Photometric Stereo

We now return to the problem of reconstructing a depth map of an object from

normal vectors obtained through photometric stereo. We consider a dataset contain-
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(a) DLS (b) SR (c) TV (d) DCTLS

Figure 10.4: Surface reconstructions for the Frog dataset with SNR = 17 dB.

ing 10 images, each taken under a unique, known lighting direction, and we corrupt

the images with Gaussian noise. The normal vectors are computed from the noisy

images using the standard least squares approach [186]. Once we have obtained the

normal vectors, we utilize them to determine the gradient fields, as discussed in Sec-

tion 2, and reconstruct a depth map of the object from these gradient fields. The

results of this procedure performed on the Frog dataset 1 [222] are illustrated in

Figure 10.4.

The reconstructions displayed in Figure 10.4 again illustrate the ability of the

proposed DLS approach to effectively denoise the gradients and produce a smooth

surface. Indeed, the surface produced by DLS is considerably smoother and less

corrupted than those produced by the existing methods. The denoising capability of

DLS may prove valuable when running photometric stereo on real-world data, where

noise and other non-idealities are inevitable.

10.5 Conclusion

In this chapter, we explored the use of adaptive dictionary learning based regu-

larization for the estimation of surfaces from their gradient fields. We showed that

our proposed dictionary learning approach is able to effectively reject the addition

of noise to gradient fields/images and produce more accurate and smooth represen-

tations of the underlying surfaces compared to existing methods. Our dictionary

learning framework is very general and would be straightforward to combine with

many existing algorithms. In future work, we hope to investigate these combinations

and also perform a more thorough study of the influence of the various parameters of

our dictionary learning model on the computed surfaces.

1This dataset can be found at http://vision.seas.harvard.edu/qsfs/Data.html
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CHAPTER XI

Conclusions and Future Work

In the first half of this thesis, we studied robust algorithms for decomposing data

into the sum of low-rank and sparse matrices. Such robust PCA models are use-

ful in practice because the low-rank component captures static or highly correlated

features of the data—e.g., the background of a video whose vectorized frames are ar-

ranged as columns of a data matrix—and the sparse component captures dynamic or

ephemeral features of the data—e.g., the foreground of a video—while disentangling

these features from dense corruptions.

We began in Chapter III by arguing that conventional convex optimization-based

robust PCA algorithms can lead to suboptimal low-rank components in practice, and

we proposed a new robust PCA algorithm based on an optimal low-rank matrix esti-

mator (OptShrink) to overcome these shortcomings. Our background subtraction and

dynamic MRI reconstruction experiments showed that the proposed method produces

more accurate and physically meaningful low-rank components compared to conven-

tional robust PCA methods. Our proposed alternating minimization algorithm is

data-driven in the sense that the low-rank update does not correspond to minimizing

a particular fixed cost function. Empirically, our proposed method behaves well, but

it would be interesting to study the algorithm from a theoretical perspective and

establish some guarantees on the convergence of the iterates. It may also be fruitful

to apply our proposed method in other inverse problem settings where conventional

robust PCA methods have shown promise. We hope that this work motivates further

study of non-convex low-rank matrix regularizers for applications with noisy data.

In Chapter IV, we studied the problem of robust foreground-background separa-

tion in more detail. In particular, we modified our robust PCA method from Chap-

ter III to handle videos with freely moving cameras and arbitrary dense and sparse

corruptions. The key contributions of our method are a pre-processing step that reg-

isters the frames of a video to a common (reference) perspective and a two-component
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sparsity model that relies on a weighted total-variation framework to capture the fore-

ground of the scene and a typical `1-based term to isolate sparse corruptions from the

foreground. Our proposed method produces impressive foreground-background de-

compositions on videos with substantial camera motion and corruption—cases where

state-of-the-art methods fail. In future work, we plan to improve our model by inte-

grating the frame registration procedure as an additional alternating update in the

model, which should improve the accuracy of the registration process on severely cor-

rupted videos. We hope that this work will enable foreground-background separation

in challenging real-world scenarios such as handheld camera video with significant

motion and low-light applications such as nighttime surveillance, where poor lighting

leads to significant noise in the video.

A common theme of our work is designing robust PCA algorithms that can pro-

duce accurate reconstructions from noisy data. In the noiseless setting, it is known

that convex optimization-based robust PCA algorithms can provably decompose a

low-rank plus sparse matrix into its constituent components. Much less is known,

however, about the noisy setting, except the unsurprising fact that one cannot ex-

pect perfect recovery. We partially bridge this gap in Chapter V by providing a new

analysis of the singular vectors of a thresholded low-rank plus sparse plus noise ma-

trix. Our results show that one can reliably detect and remove outliers from a data

matrix by applying hard thresholding and then estimating the underlying low-rank

subspace to a certain (known) accuracy by computing the leading singular vectors of

the outlier-rejected matrix. Our results can be viewed as a first-principles analysis

of the first iteration of an alternating minimization algorithm for robust PCA, and,

as such, they may be useful in establishing some theoretical convergence results for

robust PCA in the noisy setting. We do not have a concrete recommendation in this

direction, but perhaps our asymptotic results can be used to bound the distance from

the low-rank and sparse iterates from their respective ground truth values after a

single iteration. Such initialization bounds are often required to establish recovery

results for optimization problems.

In the second half of this thesis, we turned our attention to sparse signal mod-

els based on adaptive dictionary learning. The overarching motivation of our work

was that dictionary learning models possess important data representational capabil-

ities that allow one to reconstruct signals from highly undersampled measurements.

In particular, our focus was on proposing adaptive dictionary learning models with

structured (e.g., low-rank) atoms and deriving efficient updates for solving them.

In Chapter VI, we proposed an adaptive dictionary learning framework (DINO-
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KAT) for learning synthesis dictionaries with atoms that are low-rank upon appro-

priate reshaping into matrices. We proposed an efficient method for learning models

of this form, and we demonstrated their suitability for inverse problems such as video

inpainting and highly accelerated dynamic MRI reconstruction. We extended our

(batch) method to the online setting in Chapter VII, which enables the processing

of streaming measurements with efficient memory usage and computation. The pro-

posed problems are highly non-convex, but we showed that the cost function values

of our batch update scheme converge. In future work, it would be interesting to prove

a similar convergence result for the online version of the algorithm; additionally, it

would be valuable to strengthen these results to show that the iterate sequences them-

selves converge. We hope that this work will spur further research into dictionary

learning methods with structured atoms, which may uncover local structure from

highly contaminated data more effectively than unstructured dictionary models.

In Chapter VIII, we combined our work on improved low-rank updates for robust

PCA from Chapter III and our adaptive dictionary learning-based methods from

Chapter VI to form the LASSI algorithm. We focused on highly accelerated dynamic

MRI reconstruction in this chapter, although it would be an interesting line of inquiry

to apply LASSI in other inverse problem settings where robust PCA models are

popular. We performed an extensive numerical study comparing LASSI variations

such as conventional SVT-based (convex) low-rank updates versus OptShrink-based

updates, `0 versus `1-based sparsity regularization, and low-rank versus unstructured

dictionary atoms. Our analysis suggests that our proposed OptShrink-based updates

and low-rank dictionary atoms are useful models for highly corrupted or undersampled

data that may lead to more accurate reconstructions in practice. We hope that this

work will impact clinical medical imaging systems and find fruitful use in other inverse

problem settings.

Finally, in Chapters IX and X, we applied our adaptive dictionary learning models

to photometric stereo. Specifically, we showed that dictionary learning-based regu-

larization can be incorporated in various models and efficiently solved to generate

accurate estimates of the normal vectors and surfaces of objects from a small number

of corrupted images. Our dictionary learning strategy is quite general and could be

combined with other state-of-the-art methods for robust photometric stereo to yield

further improvements in reconstruction accuracy. Investigating these adaptations

is an interesting future research direction. We hope that this work can be applied

in practice to generate accurate 3D models of real objects with shiny surfaces, sharp

edges, and other complex reflectance properties that current methods cannot handle.
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APPENDIX A

Incorporating Missing Data into Existing

Foreground-Background Separation Algorithms

In this appendix, we describe how we adapt the RPCA [1,31], DECOLOR [65], and

TVRPCA [59] algorithms for our inpainting experiments in Chapter IV. Throughout,

we use Y ∈ Rmn×p to denote the matrix whose columns contain the vectorized frames

of the input video with missing data.

A.1 RPCA

The standard robust PCA [1,31] method minimizes the cost

min
L,S

1
2
‖Y − L− S‖2

F + λL‖L‖? + λS‖S‖1, (A.1)

where L is the low-rank background component and S is the sparse foreground com-

ponent. We incorporate a missing data mask into (A.1) analogously to our approach

in our proposed PRPCA method; that is, we solve the modified RPCA problem

min
L,S

1
2
‖PM(Y − L− S)‖2

F + λL‖L‖? + λS‖S‖1, (A.2)

where the missing data mask M ∈ {0, 1}mn×d with entries

Mij =

0 Yij is missing

1 Yij is observed
(A.3)

omits unobserved pixels from the data fidelity term in (A.1). Applying the same
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proximal gradient strategy to (A.2) as for the standard RPCA problem (A.1) leads

to the updates

Zk+1 = PM(Lk + Sk − Y )

Lk+1 = SVTτλL(Lk − τZk+1)

Sk+1 = softτλS(Sk − τZk+1),

(A.4)

with constant step size τ k = τ < 1 sufficing to guarantee convergence [25]. One can

view the updates (A.4) as a special case of our proposed PRPCA updates when the

camera is static (so that no frame registration is performed) and the TV regulariza-

tion parameter tends to infinity.

A.2 DECOLOR

The DECOLOR method minimizes the cost from Equation (20) of [65], which, in

our notation, is

min
τ,L,S

1
2
‖PS⊥(Y ◦ τ − L)‖2

F + α‖L‖? + β‖S‖1 + γTV(S), (A.5)

where L is the low-rank (registered) background, Sij ∈ {0, 1} is the (registered) fore-

ground mask, S⊥ is the orthogonal complement of S, τ are the 2D parameteric trans-

forms that register the input frames Y , and TV(·) denotes unweighted anisotropic

total variation.

The DECOLOR algorithm proceeds by alternating between updating τ , L, and S

sequentially with all other variables held fixed. The τ subproblem is approximately

solved using an iterative strategy where one linearizes (A.5) with respect to τ , solves

the resulting weight least-squares problem, and then repeats the process to refine τ .

The L subproblem for (A.5) is a missing data version of the proximal operator for

the nuclear norm and can be approximately solved by performing a few iterations of

the SOFT-IMPUTE algorithm [242]. Finally, the S subproblem is a Markov random

field problem that is solved exactly via graph cuts [65].

At any given step of the DECOLOR algorithm, the matrix Y ◦ τ denotes the

current estimate of the registered frames, so the appropriate missing data mask to

consider is

Mij =

0 if [Y ◦ τ ]ij is missing

1 if [Y ◦ τ ]ij is observed,
(A.6)

which implicitly depends on the current value of the parameteric transformations τ .
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Thus, to incorporate this mask into (A.5), we solve the modified problem

min
τ,L,S

1
2
‖PS⊥�M(Y ◦ τ − L))‖2

F + α‖L‖? + β‖S‖1 + γTV(S), (A.7)

where � denotes elementwise multiplication. Our modified problem (A.7) omits un-

observed data in the registered perspective defined by τ from the data fidelity term.

Note that we have the relation PS⊥�M(·) = PS⊥(PM(·)) = PM(PS⊥(·)), which can

be used to appropriately isolate S in the projection operators when minimizing (A.7)

with respect to S.

The same alternating minimization algorithm proposed in Algorithm 1 of [65]

can be extended to solve (A.7). Indeed, after linearizing (A.7) around τ , the inner

iterations for updating τ can be written as

τ k+1 = τ k + arg min
∆τ
‖PS⊥�M(Y ◦ τ − L+ Jτk∆τ)‖2

F , (A.8)

where Jτ denotes the Jacobian matrix of (A.7) with respect to τ . The iteration (A.8)

is still a weighted least squares problem that can be solved in closed-form. The L

subproblem can be approximately solved by performing a few inner iterations of the

SOFT-IMPUTE updates

Lk+1 = SVTα

(
PS⊥�M(Y ◦ τ) + P(S⊥�M)⊥(Lk)

)
. (A.9)

Finally, the S subproblem can be written as

min
S

∑
ij

(
β − 1

2
[PM(Y ◦ τ − L)]2ij

)
Sij + γTV(S), (A.10)

which can be solved using the same graph cuts algorithm from [65] with residual

matrix PM(Y ◦ τ − L) in place of Y ◦ τ − L.

Aside from the modified subproblem updates in (A.8)-(A.10), we retain all other

features of the DECOLOR method as outlined in Algorithm 1 of [65]. Note that the

above updates reduce to the original DECOLOR algorithm when M is the all-ones

matrix (no missing data).

A.3 TVRPCA

The TVRPCA method minimizes the cost from Equation (7) of [59], which, in
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our notation, is

min
L,G,E,S

‖L‖? + λ1‖G‖1 + λ2‖E‖1 + λ3TV(S)

s.t. Y = L+G, G = E + S.

(A.11)

In (A.11), L is the low-rank background component and G is a residual component,

which is further decomposed into a smooth foreground component S and a sparse error

term E. The authors propose to solve (A.11) by applying an alternating minimization

scheme to the augmented Lagrangian of (A.11):

Lµ(L,G,E, S,X, Z) =

‖L‖? + λ1‖G‖1 + λ2‖E‖1 + λ3TV(S)

+µ
2
‖Y − L−G‖2

F + 〈X, Y − L−G〉

+µ
2
‖G− E − S‖2

F + 〈Z, G− E − S〉.

(A.12)

In particular, in [59] one sequentially updates each component {L,G,E, S,X, Z} by

minimizing (A.12) with all other components held fixed.

We incorporate a missing data mask into (A.11) by solving the related problem

min
L,G,E,S

‖L‖? + λ1‖G‖1 + λ2‖E‖1 + λ3TV(S)

s.t. PM(Y ) = PM(L+G), G = E + S,
(A.13)

which omits equality constraints involving unobserved pixels from (A.13). The aug-

mented Lagrangian for (A.13) is

Lµ(L,G,E, S,X, Z) =

‖L‖? + λ1‖G‖1 + λ2‖E‖1 + λ3TV(S)

+µ
2
‖PM(Y − L−G)‖2

F + 〈X, PM(Y − L−G)〉

+µ
2
‖G− E − S‖2

F + 〈Z, G− E − S〉,

(A.14)

and we solve (A.13) by applying the same alternating minimization strategy to (A.14)

from the TVRPCA method. The subproblem updates for minimizing (A.14) are the

same as those derived in Section III-C of [59] for the original cost (A.11), with the

following modifications.1 Fist, the L subproblem for (A.14) can be written in the

form of a SOFT-IMPUTE problem [242], so it can be approximately solved using a

1In the modified L and G updates, we assume that the initial X0 satisfies PM⊥(X0) = 0, which
is true when one chooses X0 = 0.
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few inner iterations of the updates

Lk+1 = SVT 1
µ
(PM(Y −G+ 1

µ
X) + PM⊥(Lk)). (A.15)

After suitable manipulation, the G subproblem for (A.14) can be written as two

disjoint soft-thresholding problems with different shrinkage parameters. Indeed, the

minimizer Ĝ of (A.14) with respect to G can be written as

PM(Ĝ) = PM

[
softλ1

2µ

(
1
2
(Y − L+ E + S) + 1

2µ
(X − Z))

)]
PM⊥(Ĝ) = PM⊥

[
softλ1

µ

(
E + S − 1

µ
Z
)]
.

(A.16)

Finally, the X subproblem for (A.14) can be solved exactly using the simple update

X ← X + µPM(Y − L−G). (A.17)

All other subproblems for (A.13) are identical to the method outlined in Section III-C

of [59] for the original cost (A.11). Note that the above updates reduce to the original

TVRPCA algorithm when M is the all-ones matrix (no missing data).
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APPENDIX B

Useful Results for Appendices C, D, and E

This appendix collects two useful results that we use in the proofs of Appendices C,

D, and E. We use C, γ > 0 to denote arbitrary absolute constants whose values may

change from line to line.

Proposition B.1 (Latala). Suppose X ∈ Rm×n is a random matrix with m = O(n)

and independent zero-mean entries such that EX2
ij ≤ A2 and EX4

ij ≤ B4. Then

Eσ1(X) ≤ C
√
nmax(A,B). (B.1)

Proof. Applying Theorem 2 of [243], we have

Eσ1(X) ≤ C
[
maxi

√∑
j EX2

ij + maxj
√∑

i EX2
ij + 4

√∑
ij EX4

ij

]
≤ C

[√
nA2 +

√
mA2 +

4
√
mnB4

]
≤ C
√
nmax(A,B).

(B.2)

Proposition B.2 (Talagrand). Fix K > 0 and suppose that Xij are independent

random variables such that |Xij| ≤ K for all 1 ≤ i ≤ m and 1 ≤ j ≤ n. Then, for

any ε > 0, one has

P(|σ1(X)− Eσ1(X)| ≥ ε) ≤ C exp(−γε2/K2). (B.3)

Proof. Follows from [244] and the observation that σ1 : Rm×n → R is a convex 1-

Lipschitz function.
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APPENDIX C

Proof of Theorem V.7

Throughout this appendix, we use C, γ > 0 to denote arbitrary absolute constants

whose values may change from line to line. By construction of X̃? from (5.15), the

non-zero elements of S are deterministically canceled, so we can write

X̃? d
= (L+G)�M

= L�M +G�M

= E[L�M ] +G�M︸ ︷︷ ︸
=:G?

+ (L�M − E[L�M ]) ,︸ ︷︷ ︸
=:∆?

L

(C.1)

where

Mij =

0 with probability ps,

1 with probability 1− ps.
(C.2)

From the definition of M ,

E[L�M ] = (1− ps)L, (C.3)

and the elements of G? are independent zero-mean random variables with variance

(1− ps)σ2/n. Therefore, provided that σ1(∆?
L)

a.s.−→ 0, we can apply Theorem 2.9 and

Section 3.1 of [27] to conclude that the asymptotic accuracies of the left and right

singular vectors of X̃? by given by (5.11) and (5.12), respectively, with effective SNR

θ
?

i = lim
n→∞

(1− ps)θi√
(1− ps)σ2

= lim
n→∞

√
1− ps θi
σ

. (C.4)
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To establish σ1(∆?
L)

a.s.−→ 0, observe that

(∆?
L)ij =

psLij with probability 1− ps

−(1− ps)Lij with probability ps,
(C.5)

and therefore that E(∆?
L)ij = 0. Now, let us define

` = `n := max
ij
|Lij|, (C.6)

so that, by definition of ∆?
L, we have

E|(∆?
L)ij|α ≤ `α (C.7)

for any α > 0. Moreover, by Assumption V.1, we have

` ≤ log n factors

n
, (C.8)

so we can apply Proposition B.1 to conclude

Eσ1(∆?
L) ≤ C

√
n`

≤ C
log n factors√

n
.

(C.9)

Also, since |(∆?
L)ij| ≤ `, we can apply Proposition B.2 to conclude

P(|σ1(∆?
L)− Eσ1(∆?

L)| ≥ ε) ≤ C exp(−γε2/`2)

≤ C exp

(
−γε2n2

log n factors

)
.

(C.10)

The result follows by the Borel-Cantelli lemma. �
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APPENDIX D

Proof of Theorem V.8 for Hard Thresholding

In this appendix, we prove Theorem V.8 for the hard thresholding estimator X̃HT
τ

defined by (5.20). That is, we prove the first row of Table 5.1. The proof is organized

as follows. In Section D, we introduce common notation that will be used throughout

this appendix. In Sections D - D, we derive some preliminary results, and in Section D

we combine the preliminary results to complete the proof.

D.1 Notation

We use C, γ, N > 0 to denote arbitrary absolute constants whose values may

change from line to line. Also, let us define

` = `n := max
ij
|Lij|, (D.1)

for which, by Assumption V.1, we have the element-wise incoherence condition

` ≤ log n factors

n
. (D.2)

Define the random variable

g̃ = g + q (D.3)

that we henceforth refer to as the outlier-noise distribution. Also, define the tail

probabilities

pτ := P(|g| ≥ τ),

p̃τ := P(|g̃| ≥ τ).
(D.4)
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(a) Gaussian noise and Laplacian outliers. (b) Gaussian noise and Rademacher outliers.

Figure D.1: Illustration of the notation defined in Section D for two possible outlier
distributions.

Let gτ and g̃τ be the random variables formed by restricting g and g̃, respectively, to

the interval [−τ, τ ]. By symmetry, we have Egτ = Eg̃τ = 0, and we define

σ2
τ := Eg2

τ ,

σ̃2
τ := Eg̃2

τ .
(D.5)

Finally, we define the tail mixture probability

p := (1− ps)pτ + psp̃τ . (D.6)

Figure D.1 illustrates the notation introduced in this section for two possible outlier

distributions.

D.2 Hard Thresholding Estimator

Note that we can explicitly write the entries of X̃HT
τ as

(X̃HT
τ )ij =


Lij +Gij if Sij = 0 and |Lij +Gij| ≤ τ,

Lij +Gij + Sij if Sij 6= 0 and |Lij +Gij + Sij| ≤ τ,

0 if |Lij +Gij + Sij| > τ.

(D.7)

The statistics of the matrix X̃HT
τ are complicated by the presence of Lij in the con-
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dition statements of (D.7), which make the probability of each case occurring entry-

dependent. Removing Lij from the condition statements of (D.7) yields a closely-

related random matrix X
HT

τ with elements

(X
HT

τ )ij :=


Lij +Gij if Sij = 0 and |Gij| ≤ τ,

Lij +Gij + Sij if Sij 6= 0 and |Gij + Sij| ≤ τ,

0 if |Gij + Sij| > τ

(D.8)

that is easier to analyze because the case statements in (D.8) occur with fixed prob-

abilities independent of i and j. In Section D, we establish that the modeling error1

∆HT
X := X̃HT

τ −XHT

τ (D.9)

is small in the sense that σ1(∆HT
X )

a.s.−→ 0. Therefore, we can determine the asymp-

totic performance of the estimator X̃HT
τ by analyzing the asymptotics of the random

matrix X
HT

τ . We analyze X
HT

τ in Section D, and then we revisit the modeling error

∆HT
X in Section D.

D.3 Equivalent Random Matrix Model

In this section, we analyze the random matrix model X
HT

τ defined by (D.8). Using

the notation from Section D, we have

P(Sij = 0 and |Gij| ≤ τ) = (1− ps)(1− pτ ),

P(Sij 6= 0 and |Gij + Sij| ≤ τ) = ps(1− p̃τ ),

P(|Gij + Sij| > τ) = p,

(D.10)

and so the distributions of the elements of X
HT

τ from (D.8) are

(X
HT

τ )ij
d
=


Lij + (Gτ )ij with probability (1− ps)(1− pτ ),

Lij + (G̃τ )ij with probability ps(1− p̃τ ),

0 with probability p,

(D.11)

1The quantity ∆HT
X is a random matrix defined implicitly by the random matrices in Section 5.2

and the thresholding schemes defined by X̃HT
τ and X

HT

τ .
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where (Gτ )ij are drawn i.i.d. from gτ and (G̃τ )ij are drawn i.i.d. from g̃τ . From (D.11),

we have

EXHT

τ = (1− p)L, (D.12)

and so
X

HT

τ = EXHT

τ + (X
HT

τ − EXHT

τ )

= (1− p)L+GHT
τ + ∆L,

(D.13)

where

(GHT
τ )ij =


(Gτ )ij with probability (1− ps)(1− pτ ),

(G̃τ )ij with probability ps(1− p̃τ ),

0 with probability p,

(D.14)

and

(∆L)ij =

pLij with probability 1− p,

−(1− p)Lij with probability p.
(D.15)

Theorem D.1 establishes almost sure convergence of the spectral norm of the error

matrix ∆L to zero.

Theorem D.1. We have

Eσ1(∆L)→ 0, (D.16)

and, consequently, σ1(∆L)
a.s.−→ 0.

Proof. From (D.15), we have E(∆L)ij = 0, and, by Assumption V.1, we have

E|(∆L)ij|α ≤ |Lij|α ≤ `α (D.17)

for any α > 0. Thus, applying Proposition B.1 gives

Eσ1(∆L) ≤ C
√
n`

≤ C
log n factors√

n
,

(D.18)

where in the second inequality we have applied the incoherence bound (D.2). This

establishes (D.16). Moreover, since |(∆L)ij| ≤ |Lij| ≤ `, we can apply Proposition B.2

to conclude that

P(|σ1(∆L)− Eσ1(∆L)| ≥ ε) ≤ C exp(−γε2/`2)

≤ C exp

(
−γε2n2

log n factors

)
(D.19)

190



Figure D.2: Graphical depiction of (∆HT
X )ij as a function of Gij + Sij for two fixed

values of Lij.

for all ε > 0. The result follows by the Borel-Cantelli lemma.

D.4 Modeling Error Bounds

In this section, we analyze the modeling error ∆HT
X defined by (D.9). Towards this

end, observe that one can explicitly describe the entries of ∆HT
X as

(
∆HT
X

)
ij

=



−(Lij +Gij) if Sij = 0, |Gij| ≤ τ, and |Lij +Gij| > τ,

Lij +Gij if Sij = 0, |Gij| > τ, and |Lij +Gij| ≤ τ,

−(Lij +Gij + Sij) if Sij 6= 0, |Gij + Sij| ≤ τ, and |Lij +Gij + Sij| > τ,

Lij +Gij + Sij if Sij 6= 0, |Gij + Sij| > τ, and |Lij +Gij + Sij| ≤ τ,

0 otherwise.

(D.20)

Intuitively, ∆HT
X captures the cases when an entry of X̃HT

τ triggers the hard threshold-

ing function but the corresponding entry of X
HT

τ does not, and vice versa. Figure D.2

plots (∆HT
X )ij as a function of the underlying random variable Gij + Sij.

The following lemma establishes a bound on the expected magnitude of the ele-
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ments of ∆HT
X , using the following notation:

I = [τ − `, τ + `] ,

a = P(|g| ∈ I),

b = P(|g̃| ∈ I).

(D.21)

Lemma D.2. We have

E|(∆HT
X )ij|α ≤ [(1− ps)a+ psb](τ + `)α (D.22)

for any α > 0 and n ≥ N .

Proof. Choose N large enough that τn ≥ `n for all n ≥ N , which, comparing (5.23)

and (D.2), must be possible. Note that this implies that the interval I is nonnegative.

Upon inspection of (D.20) and Figure D.2, we see that (∆HT
X )ij 6= 0 only when

|Lij + Gij + Sij| and |Gij + Sij| lie on opposite sides of τ . Moreover, since |Lij| ≤ `,

in such cases we have either |X̃HT
τ |ij ∈ I and |XHT

τ |ij = 0 or vice versa. Therefore,

|(∆HT
X )ij| ≤ τ + `, and a sufficient condition for (∆HT

X )ij 6= 0 is |Gij + Sij| ∈ I. In

other words, we have that

|∆HT
X |ij ≤


τ + ` with probability (1− ps)a,

τ + ` with probability psb,

0 otherwise.

(D.23)

for n ≥ N . Computing the α-moments of (D.23) yields the desired result.

The following corollary refines the bound from Lemma D.2 using the properties

of our model parameters.

Corollary D.3. We have

E|(∆HT
X )ij|α ≤ Cατα

(
`+ exp(−γnτ 2)

)
(D.24)

for any α > 0 and n ≥ N .

Proof. Choose N large enough that τn ≥ 2`n for all n ≥ N , which, comparing (5.23)
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and (D.2), must be possible. Then, continuing from Lemma D.2, we have

E|(∆HT
X )ij|α ≤ [(1− ps)a+ psb](τ + `)α

≤ (a+ b)(τ + `)α

≤ (3/2)α(a+ b)τα, ∀n ≥ N.

(D.25)

We also have
a = P(|g| ∈ I)

≤ P(|g| ≥ τ − `)

since τ ≥ 2`→ ≤ P(|g| ≥ τ/2) , ∀n ≥ N

Assumption V.2→ ≤ 2 exp(−γnτ 2) , ∀n ≥ N.

(D.26)

Also, by the symmetry of g and q, we have

b/2 = P(q + g ∈ I)

= P(q + g ∈ I | |g| ≤ τ)P(|g| ≤ τ) + P(q + g ∈ I | |g| > τ)P(|g| > τ)

≤ P(q + g ∈ I | |g| ≤ τ) + P(|g| ≥ τ),

(D.27)

where, by Assumption V.2, we have

P(|g| ≥ τ) ≤ 2 exp(−γnτ 2). (D.28)

By the independence of g and q, we have

P(q + g ∈ I | |g| ≤ τ) = P(q + gτ ∈ I)

= E
[
1{q+gτ∈I}

]
= E

[
E
[
1{q∈I−gτ} | gτ

]]
= E [P(q ∈ I − gτ )] ,

(D.29)

where I−x denotes shifting the interval I by x ∈ R. Since τ → 0, the shifted interval

I − gτ will lie in the neighborhood of zero for all sufficiently large n uniformly over

all realizations of gτ . Thus, since I − gτ has width 2`, we can apply Lemma V.3 to

conclude that

P(q ∈ I − gτ ) ≤ C`, ∀n ≥ N, (D.30)

and so

P(q + g ∈ I | |g| ≤ τ) = E [P(q ∈ I − gτ )] ≤ C`, ∀n ≥ N. (D.31)
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Combining (D.25)-(D.31) gives the desired result.

The following proposition applies Corollary D.3 to bound the spectral norm of

E∆HT
X .

Proposition D.4. We have

σ1

(
E∆HT

X

)
≤ Cnτ

(
`+ exp(−γnτ 2)

)
(D.32)

for n ≥ N .

Proof. Applying Corollary D.3 with α = 1 yields

|E(∆HT
X )ij| ≤ E|(∆HT

X )ij|

≤ Dn := Cτ (`+ exp(−γnτ 2)) , ∀n ≥ N.
(D.33)

Therefore we have the bound

σ1

(
E∆HT

X

)
≤
√
‖E∆HT

X ‖1‖E∆HT
X ‖∞

≤
√

(Dnm)(Dnn) , ∀n ≥ N

≤ CDnn , ∀n ≥ N,

(D.34)

where the last inequality follows from the fact that m/n→ c ∈ (0, 1].

The following proposition bounds the deviation of ∆HT
X from its mean.

Proposition D.5. We have

(i) Eσ1(∆HT
X − E∆HT

X ) ≤ C
√
nτ
(√

`+ exp(−γnτ 2)
)
, ∀n ≥ N, (D.35)

and for all ε > 0:

(ii) P(|σ1(∆HT
X − E∆HT

X )− Eσ1(∆HT
X − E∆HT

X )| ≥ ε) ≤ C exp(−γε2τ−2), ∀n ≥ N.

(D.36)

194



Proof. For any β ∈ N, we have

E
[(

(∆HT
X )ij − E(∆HT

X )ij
)β] ≤ E

[
β∑
k=0

(
β

k

)
|(∆HT

X )ij|k|E(∆HT
X )ij|β−k

]

≤
β∑
k=0

(
β

k

)
E|(∆HT

X )ij|kE|(∆HT
X )ij|β−k

Corollary D.3→ ≤

[
β∑
k=0

(
β

k

)]
Cβτβ(`+ exp(−γnτ 2))2 , ∀n ≥ N.

= Cβτβ(`+ exp(−γnτ 2))2 , ∀n ≥ N.

(D.37)

Now, applying Proposition B.1 with the parameters A := Cτ(` + exp(−γnτ 2)) and

B := Cτ
√
`+ exp(−γnτ 2) as suggested by (D.37) yields

Eσ1(∆HT
X − E∆HT

X ) ≤ C
√
nτ max

(
`+ exp(−γnτ 2),

√
`+ exp(−γnτ 2)

)
, ∀n ≥ N,

≤ C
√
nτ
√
`+ exp(−γnτ 2) , ∀n ≥ N,

≤ C
√
nτ
(√

`+ exp(−γnτ 2)
)

, ∀n ≥ N,

(D.38)

where the last two inequalities follow from the facts that `→ 0 and nτ 2 →∞. This

establishes (D.35). Equation (D.36) follows from Proposition B.2 and the observation

that, by (D.23), we have

|(∆HT
X )ij − E(∆HT

X )ij| ≤ |(∆HT
X )ij|+ |E(∆HT

X )ij|

≤ 2(τ + `)

≤ 4τ, ∀n ≥ N,

(D.39)

where we choose N large enough that τn ≥ `n for all n ≥ N .

The following theorem combines Propositions D.4 and D.5 to establish the targeted

result of this section: control of the modeling error ∆HT
X .

Theorem D.6. We have

Eσ1(∆HT
X )→ 0, (D.40)

and, consequently, σ1(∆HT
X )

a.s.−→ 0.
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Proof. We have

Eσ1(∆HT
X ) ≤ E

[
σ1(∆HT

X − E∆HT
X ) + σ1(E∆HT

X )
]

= Eσ1(∆HT
X − E∆HT

X ) + σ1(E∆HT
X ).

(D.41)

Applying Propositions D.4 and D.5, we obtain the bounds

Eσ1(∆HT
X − E∆HT

X ) ≤ An := C
√
nτ
(√

`+ exp(−γnτ 2
)
, ∀n ≥ N,

σ1

(
E∆HT

X

)
≤ Bn := Cnτ (`+ exp(−γnτ 2)) , ∀n ≥ N.

(D.42)

For the particular choice of τ in (5.23) and the incoherence bound (D.2) on `, simple

computations show that

An, Bn ≤
log n factors√

n
+

log n factors

nlogn factors
→ 0. (D.43)

This establishes (D.40). We also have
∑

n exp(−γτ−2) <∞ for all γ > 0, so the result

follows by Equation (D.36) of Proposition D.5 and the Borel-Cantelli lemma.

D.5 Effective SNR

In this section, we combine the results of Sections D through D to complete the

proof of Theorem V.8 for the case of hard thresholding. Combining (D.9) and (D.13),

we have that

X̃HT
τ = (1− p)L+GHT

τ + ∆L + ∆HT
X , (D.44)

where Theorems D.1 and D.6 establish that σ1(∆HT
X )

a.s.−→ 0 and σ1(∆L)
a.s.−→ 0. Thus,

asymptotically, X̃HT
τ is a low-rank plus noise matrix, where the elements of the noise

matrix GHT
τ are i.i.d. with variance (σHT

τ )2/n with

(σHT
τ )2 := (1− ps)

[
n(1− pτ )σ2

τ

]
+ ps

[
n(1− p̃τ )σ̃2

τ

]
. (D.45)

We can therefore complete the proof of Theorem V.8 by applying Theorem 2.9 and

Section 3.1 of [27] to conclude that the asymptotic accuracies of the left and right

singular vectors of X̃HT
τ are given by (5.11) and (5.12), respectively, with effective

SNRs

θ
HT

i = lim
n→∞

(1− p)θi
σHT
τ

, (D.46)
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where it remains only to show that

lim
n→∞

(1− p)θi
σHT
τ

= lim
n→∞

√
1− ps θi
σ

= θ
?

i . (D.47)

The following theorem establishes the limit (D.47) and thus completes the proof.

Theorem D.7. We have

lim
n→∞

1− p
σHT
τ

= lim
n→∞

√
1− ps
σ

. (D.48)

Proof. Applying Chebyshev’s inequality yields

pτ = P(|g| ≥ τ) ≤ σ2

nτ 2
, (D.49)

and so pτ → 0 since nτ 2 →∞. We also have

p̃τ = P(|g̃| ≥ τ)

= P(|q + g| ≥ τ)

≥ P(|q| ≥ |g|+ τ)

≥ P(|q| ≥ |g|+ τ | |g| ≤ τ)P(|g| ≤ τ)

≥ P(|q| ≥ 2τ)(1− pτ ).

(D.50)

We can assume without loss of generality (by redefining ps if necessary) that q has

no point mass at zero. Thus, since τ → 0, we have P(|q| ≥ 2τ) → 1 as n → ∞.

Therefore

lim
n→∞

p̃τ = lim
n→∞

(1− pτ ) = 1. (D.51)

Combining these results, we have

lim
n→∞

(1− p) = 1−
[

lim
n→∞

(1− ps)
]

︸ ︷︷ ︸
≤1

[
lim
n→∞

pτ

]
︸ ︷︷ ︸

=0

−
[

lim
n→∞

ps

] [
lim
n→∞

p̃τ

]
︸ ︷︷ ︸

=1

= lim
n→∞

(1− ps).
(D.52)
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Next, observe that

n(1− pτ )σ2
τ = n(1− pτ )E [|g|2 | |g| ≤ τ ]

= n(1− pτ )
E
[
|g|21{|g|≤τ}

]
P(|g| ≤ τ)

= nE
[
|g|21{|g|≤τ}

]
= σ2E

[∣∣∣√ngσ ∣∣∣2 1{|√ng/σ|≤√nτ/σ}] ,
(D.53)

where g :=
√
ng/σ is a zero-mean unit variance random variable.2 Therefore, since

nτ 2 →∞, we have

lim
n→∞

n(1− pτ )σ2
τ = lim

n→∞
σ2E

[
|g|21{|g|≤√nτ/σ}

]
= σ2E[|g|2]

= σ2.

(D.54)

We also have

σ̃2
τ = E[g̃2 | |g̃| ≤ τ ] ≤ τ 2, (D.55)

and so, combining (D.50) and (D.55),

n(1− p̃τ )σ̃2
τ ≤ nτ 2(1− p̃τ )

≤ nτ 2 [1− P(|q| ≥ 2τ)(1− pτ )]

≤ nτ 2P(|q| ≤ 2τ)︸ ︷︷ ︸
=:T1

+ pτnτ
2︸ ︷︷ ︸

=:T2

.

(D.56)

Now, since τ → 0, τ will eventually fall in a neighborhood of zero, so we can apply

Assumption V.3 to conclude that

P(|q| ≤ 2τ) ≤ Cτ, ∀n ≥ N. (D.57)

Thus, eventually T1 ≤ Cnτ 3, and therefore T1 → 0 for the particular choice of τ in

(5.23). Also, by Assumption V.2, we have

pτ ≤ 2 exp(−γnτ 2), (D.58)

2The random variable g does not depend on n and σ, which appeared in g only through its
variance.
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and so T2 → 0. Combining (D.54) and (D.56), we have

lim
n→∞

(σHT
τ )2 =

[
lim
n→∞

(1− ps)
] [

lim
n→∞

n(1− pτ )σ2
τ

]
︸ ︷︷ ︸

=σ2

+
[

lim
n→∞

ps

] [
lim
n→∞

n(1− p̃τ )σ̃2
τ

]
︸ ︷︷ ︸

=0

= lim
n→∞

(1− ps)σ2.

(D.59)

Taking the ratio of (D.52) and (D.59) gives the desired result.
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APPENDIX E

Proof of Theorem V.8 for Soft Thresholding

In this appendix we prove Theorem V.8 for the soft thresholding estimator X̃ST
τ

defined by (5.21). That is, we prove the second row of Table 5.1. The proof is

organized as follows. In Sections E through E, we derive some preliminary results, and

in Section E we combine the preliminary results to complete the proof. Throughout

the proof, we adopt the notation from Section D. The proof for the soft thresholding

case is very similar to the hard thresholding proof from Appendix D, so we omit

redundant proofs when possible.

E.1 Soft Thresholding Estimator

Note that we can explicitly write the entries of X̃ST
τ as

(X̃ST
τ )ij =



Lij +Gij if Sij = 0 and |Lij +Gij| ≤ τ,

Lij + Sij +Gij if Sij 6= 0 and |Lij + Sij +Gij| ≤ τ,

τ if Lij + Sij +Gij > τ,

−τ if Lij + Sij +Gij < −τ.

(E.1)

The statistics of the matrix X̃ST
τ are complicated by the presence of Lij in the con-

dition statements of (E.1), which make the probability of each case occurring entry-

dependent. Removing Lij from the condition statements of (E.1) yields a closely-
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related matrix X
ST

τ with elements

(X
ST

τ )ij =



Lij +Gij if Sij = 0 and |Gij| ≤ τ,

Lij + Sij +Gij if Sij 6= 0 and |Sij +Gij| ≤ τ,

τ if Sij +Gij > τ,

−τ if Sij +Gij < −τ

(E.2)

that is easier to analyze because the case statements in (E.2) occur with fixed prob-

abilities independent of i and j. In Section E, we establish that the modeling error1

∆ST
X := X̃ST

τ −X
ST

τ (E.3)

is small in the sense that σ1(∆ST
X )

a.s.−→ 0. Therefore, we can determine the asymptotic

performance of the estimator X̃ST
τ by analyzing the asymptotics of the random matrix

X
ST

τ . We analyze X
ST

τ in Section E, and then we revisit the modeling error ∆ST
X in

Section E.

E.2 Equivalent Random Matrix Model

In this section we analyze the random matrix model X
ST

τ defined by (D.8). By

construction, we have

P(Sij = 0 and |Gij| ≤ τ) = (1− ps)(1− pτ ),

P(Sij 6= 0 and |Sij +Gij| ≤ τ) = ps(1− p̃τ ),

P(Sij +Gij > τ) = p/2,

P(Sij +Gij < −τ) = p/2,

(E.4)

and so the distributions of the elements of X
ST

τ from (E.2) are

(X
ST

τ )ij
d
=



Lij + (Gτ )ij with probability (1− ps)(1− pτ ),

Lij + (G̃τ )ij with probability ps(1− p̃τ ),

τ with probability p/2,

−τ with probability p/2,

(E.5)

1The quantity ∆ST
X is a random matrix defined implicitly by the random matrices in Section 5.2

and the thresholding schemes defined by X̃ST
τ and X

ST

τ .
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where (Gτ )ij are drawn i.i.d. from gτ and (G̃τ )ij are drawn i.i.d. from g̃τ . From (E.5),

we have

EXST

τ = (1− p)L, (E.6)

and so
X

ST

τ = EXST

τ + (X
ST

τ − EXST

τ )

= (1− p)L+GST
τ + ∆L,

(E.7)

where

(GST
τ )ij =



(Gτ )ij with probability (1− ps)(1− pτ ),

(G̃τ )ij with probability ps(1− p̃τ ),

τ with probability p/2,

−τ with probability p/2,

(E.8)

and ∆L is the same matrix (D.15) that appeared in the analogous hard thresholding

result (D.13).

E.3 Modeling Error Bounds

In this section we analyze the modeling error ∆ST
X defined by (E.3). We reuse

the definitions (D.21) from Section D. Comparing (D.7)-(D.8) and (E.1)-(E.2), we

see that the modeling errors ∆HT
X and ∆ST

X have similar properties. In particular,

assuming without loss of generality that τ ≥ `, we have (∆ST
X )ij 6= 0 if any only

if (∆HT
X )ij 6= 0. Furthermore, when (∆ST

X )ij 6= 0, we have either |X̃ST
τ |ij ∈ I and

|XHT

τ |ij = τ or vice versa. As a result, |(∆ST
X )ij| ≤ `. Figure E.1 plots (∆ST

X )ij as a

function of the underlying random variable Gij + Sij.

The following results are the soft thresholding analogs of the hard thresholding

results from Section D. The proofs are identical to those from Section D with the

bound |(∆ST
X )ij| ≤ ` in place of the bound |(∆HT

X )ij| ≤ τ + `, so we omit the details

here.

Lemma E.1. We have

E|(∆ST
X )ij|α ≤ [(1− ps)a+ psb]`

α. (E.9)

for any α > 0 and n ≥ N .

202



Figure E.1: Graphical depiction of (∆ST
X )ij as a function of Gij + Sij for two fixed

values of Lij.

Corollary E.2. We have

E|(∆ST
X )ij|α ≤ Cα`α

(
`+ exp(−γnτ 2)

)
. (E.10)

for any α > 0 and n ≥ N .

Proposition E.3. We have

σ1

(
E∆ST

X

)
≤ Cn`

(
`+ exp(−γnτ 2)

)
(E.11)

for n ≥ N .

Proposition E.4. We have

(i) Eσ1(∆ST
X − E∆ST

X ) ≤ C
√
n`
(√

`+ exp(−γnτ 2)
)
, ∀n ≥ N (E.12)

and for all ε > 0:

(ii) P(|σ1(∆ST
X − E∆ST

X )− Eσ1(∆ST
X − E∆ST

X )| ≥ ε) ≤ C exp(−γε2`−2), ∀n ≥ N.

(E.13)
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Theorem E.5. We have

Eσ1(∆ST
X )→ 0, (E.14)

and, consequently, σ1(∆ST
X )

a.s.−→ 0.

E.4 Effective SNR

In this section, we combine the results of Sections E through E to complete the

proof of Theorem V.8 for the case of soft thresholding. Combining (E.3) and (E.7),

we have that

X̃ST
τ = (1− p)L+GST

τ + ∆L + ∆ST
X , (E.15)

where Theorems D.1 and E.5 establish that σ1(∆L)
a.s.−→ 0 and σ1(∆ST

X )
a.s.−→ 0. Thus,

asymptotically, X̃ST
τ is a low-rank plus noise matrix, where the elements of the noise

matrix GST
τ are i.i.d. with variance (σST

τ )2/n with

(σST
τ )2 := (σHT

τ )2 + pnτ 2. (E.16)

Here, (σHT
τ )2 is the effective variance of the hard thresholding model defined by (D.45).

We can therefore complete the proof of Theorem V.8 by applying Theorem 2.9 and

Section 3.1 of [27] to conclude that the asymptotic accuracies of the left and right

singular vectors of X̃ST
τ are given by (5.11) and (5.12), respectively, with effective

SNRs

θ
ST

i = lim
n→∞

(1− p)θi
σST
τ

, (E.17)

where it remains only to show that

lim
n→∞

(1− p)θi
σST
τ

=


lim
n→∞

√
1− ps θi
σ

= θ
?

i if ps logη n→ 0

0 if ps logη n→∞.
(E.18)

The following theorem establishes the limit (E.18) and thus completes the proof.

Theorem E.6. We have

lim
n→∞

1− p
σST
τ

= lim
n→∞

1− ps√
(1− ps)σ2 + psnτ 2

. (E.19)

Proof. By (D.52) and (D.59) of Theorem D.7, it suffices to show that

lim
n→∞

pnτ 2 = lim
n→∞

psnτ
2, (E.20)
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because psnτ
2 = Cps logη n. To establish (E.20), observe that, by (D.51) of Theo-

rem D.7 and the definition of p from (D.6), we have

lim
n→∞

pnτ 2 =
[

lim
n→∞

(1− ps)pτnτ 2
]

+
[

lim
n→∞

p̃τ

]
︸ ︷︷ ︸

=1

[
lim
n→∞

psnτ
2
]
. (E.21)

Furthermore, by Assumption V.2, we have

pτ ≤ 2 exp(−γnτ 2), (E.22)

and so
lim
n→∞

(1− ps)pτnτ 2 ≤ lim
n→∞

pτnτ
2

≤ lim
n→∞

2nτ 2 exp(−γnτ 2)

= 0.

(E.23)

This completes the proof.
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