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ABSTRACT 

The development and deployment of grid-scale energy storage technologies have increased 

recently and are expected to grow due to technology improvements and supporting policies. While 

energy storage can help increase the penetration of renewables, reduce the consumption of fossil 

fuels, and increase the grid sustainability, its integration into the electric grid poses unique 

sustainability challenges that need to be investigated through systematic sustainability assessment 

frameworks. The main objective of this dissertation is to develop principles and models to assess 

the environmental and economic impacts of grid-scale energy storage and guide its development 

and deployment.  

The first study of this dissertation is an initial case study of energy storage to examine the role of 

cost-effective energy storage in supporting high penetration of wind energy and achieving 

emissions targets in an off-grid configuration. In this study, the micro-grid system includes wind 

energy integrated with vanadium redox flow battery (VRFB) as energy storage, and natural gas 

engine. Life cycle greenhouse gas (GHG) emissions and total cost of delivered electricity are 

evaluated and generation mixes are optimized to meet emissions targets at the minimum cost. The 

results demonstrate that while incorporating energy storage consistently reduces life cycle GHG 

emissions in the system by integrating more wind energy, its integration is cost-effective only 

under very ambitious emission targets. 

The insights from this case study and additional literature review led to the development of a set 

of twelve principles for green energy storage, presented in the second study. These principles are 

applicable to the wide range of energy storage technologies and grid applications, and are 

developed to guide the design, maintenance, and operation of energy storage systems for grid 

applications. The robustness of principles was tested through a comprehensive literature review 

and also through in-depth quantitative analyses of the VRFB off-grid system.  

An in-depth parametric analysis is developed in the third study to evaluate the impacts of six key 
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parameters (e.g. energy storage service-life) that influence the environmental performance of six 

energy storage technologies within three specific grid applications (including time-shifting, 

frequency regulation, and power reliability). This study reveals that round-trip efficiency and heat 

rate of charging and displaced generation technologies are dominant parameters in time-shifting 

and regulation applications, whereas energy storage service life and production burden dominate 

in power reliability. 

Finally, an optimization model is developed in the fourth study to examine the real-world 

application of energy storage in bulk energy time-shifting in California grid under varying 

renewable penetration levels. The objective was to find the optimal operation and size of energy 

storage in order to minimize the system total costs (including monetized GHG emissions), while 

meeting the electricity load and systems constraints. Simulations were run to investigate how the 

operation of nine distinct storage technologies impacted system cost, given each technology’s 

characteristics. The results show that increasing the renewable capacity and the emissions tax 

would make it more cost-effective for energy storage deployment. Among storage technologies, 

pumped-hydro and compressed-air energy storage with lower capital costs, are deployed in more 

scenarios.  

Overall, this research demonstrates how sustainability performance is influenced by storage 

technology characteristics and the electric grid conditions. The systematic principles, model 

equations, and optimizations developed in this dissertation provide specific guidance to industry 

stakeholders on design and deployment choices. The targeted audience ranges from energy storage 

designers and manufacturers to electric power utilities.  
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CHAPTER 1  
Introduction 

There has been a rapid development in grid-scale energy storage systems due to technology 

improvements and recent policies promoting their deployment such as California’s requirement of 

1,325 MW of storage by 2020 [1] and the Federal Energy Regulatory Agency Order 755 [2]. 

Figures 1-1 and 1-2 show how annual energy storage deployment and market size have changed 

in the U.S. recently and how they are projected to grow within the residential, non-residential, and 

utility segments [3]. Based on these figures, it is expected that the U.S. energy storage market will 

grow to roughly 2.5 GW in 2022, 11 times the size of the 2016 market (231 MW). Also, by 2022, 

the U.S. energy storage market is expected to be worth $3.1 billion, a nine-fold increase from 2016 

[3]. However, energy storage integration into the electric grid poses fundamentally unique 

challenges, and therefore there is a significant need to develop robust methods and frameworks to 

systematically understand the impacts of energy storage deployment, which is the focus of this 

dissertation.  

 

Fig. 1-1 U.S. Annual Energy Storage Deployment Forecast, 2012-2022E (MW) [3] 

 

Fig. 1-2 Annual Energy Storage Market Size, 2012-2022E (Million $) [3] 
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Energy storage can be a potential solution to the integration challenges of intermittent renewable 

energy such as wind energy and solar energy, reduce greenhouse gas (GHG) emissions, and 

enhance grid reliability and sustainability [4]. Other grid applications for energy storage systems 

include energy time-shifting (energy arbitrage), frequency regulation, and transmissions and 

distribution upgrade deferral, among others [5]. Types of energy storage technologies vary greatly 

from electrochemical technologies such as batteries; including flow battery and lithium-ion (Li-

ion) battery; to compressed air energy storage, flywheels, and pumped-storage technology [6]. 

Fig.1-3 shows the share of each non-pumped hydro storage technology in the total installed storage 

capacity of 2016 [7]. Each of these storage technologies has unique characteristics that determine 

which subset of energy storage technologies is suitable to meet the application’s performance 

requirements. 

 

Fig. 1-3 Installed non-pumped hydro storage in 2016 [7] 

Several studies have reviewed technical characteristics of energy storage technologies and 

identified the potential grid applications for each storage technology. These include 

comprehensive reports by Sandia National Laboratory and the Department of Energy (DOE) [5], 

[8], [9], [10]. In other reports, Electric Power Research Institute (EPRI) reviewed storage 

technologies performance characteristics such as service life, efficiency, response time, and 

compared the suitability of such systems for grid applications including peak shaving, serving in 

micro-grids, and wind integration [4], [11]. Additionally, Rahman et al. identified potential grid 

applications for each storage technology based on the technology’s main advantages and 

disadvantages [12]. Their results showed that vanadium redox flow and sodium-sulfur batteries 
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could be a promising technology for renewable energy integration, and flywheels were applicable 

for frequency regulation. In a comparison of technical characteristics of energy storage systems 

including power rating, discharge time, storage duration, and lifetime cycle life, Chen et al. 

identified a suitable application range for each technology [13]. These and other studies [14] - [17] 

show that deployment of an energy storage system for a specific grid application depends on the 

storage technology characteristics match with the performance requirements of the desired 

application. 

1.1. Sustainability challenges in deployment of grid-scale energy storage systems 

While energy storage supports different grid applications, its extensive adoption in the power grid 

is limited by high costs. The range for energy storage capital cost differs substantially from one 

technology to another and also within one storage technology itself. For instance, pumped-hydro 

storage capital cost (energy component) varies from $5/kWh to $100/kWh and Li-ion battery cost 

varies between $600/kWh-$2500/kWh [18].  

Several studies have identified the economic challenges in deployment of energy storage systems. 

As discussed by Sardi et al., the cost of energy storage systems; particularly batteries; is the major 

obstacle to their adoption. In this regard, the current deployment of energy storage is generally 

uneconomical, as the overall energy storage installment cost is higher than the total benefits 

obtained from its deployment [19]. Abeygunawardana et al. discuss that at the current market 

prices of energy storage devices, in most cases, it is not quite cost-effective to utilize energy storage 

for distribution upgrade deferral application alone [20]. However, combining benefits for one or 

more complementary storage applications may provide the extra value needed to justify the use of 

storage for distribution deferral alone. Zheng et al argue that despite the advances in material 

science and power electronic techniques that have facilitated the effective employment of new 

storage technologies, the high cost and control issues still limit the wide applications of energy 

storage systems [21]. Dunn et al. specified varying characteristics across sodium-sulfur (NaS), Li-

ion, and redox-flow batteries [22]. They concluded that a successful future for these technologies 

depended on using low cost materials in order to decrease the installed costs of batteries while 

improving their performance and durability. A report by DOE identified the cost-competitiveness 

of energy storage systems as one of the main challenges in the widespread use of energy storage 
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systems [6]. According to Mohd et al., decreasing the capital costs of energy storage systems would 

lead to dramatic changes in the design and operation of the electric grid [23].  

Besides economic issues, both the development and deployment of energy storage systems can 

lead to different environmental outcomes. Several studies have examined the environmental 

implications during the production of energy storage systems. In this regard, Tarascon emphasized 

that, regardless of storage technology, materials with minimum environmental footprint must be 

developed in an attempt towards green storage systems [24]. Larcher and Tarascon argued that the 

only feasible path towards greener and more sustainable batteries is rooted in designing electro-

active materials that release fewer CO2 emissions and cost less energy during production, while 

providing comparable performance to today’s electrodes [25]. In another study, McManus 

examined the environmental impacts of different types of batteries, concluding that Li-ion batteries 

had the highest contribution to GHG emissions and metal depletion, but nickel metal hybrid had a 

higher cumulative energy demand [26].   

With 29% of total US GHG emissions coming from burning fossil fuels for electricity generation 

in 2015 [27], renewables are rapidly expanding options to reduce the carbon intensity of power 

generation and achieve environmental improvements in the power sector. Large-scale integration 

of intermittent renewables into the electrical grid, however, poses critical challenges. While energy 

storage utilization can lead to higher penetration of renewable energy, its deployment may not 

always lead to environmental benefits. Indeed, environmental impacts of energy storage during its 

operation within the power grid depend on the grid application, the grid profile, and the existing 

generation mix. For example, Lin et al. showed that depending on the power grid configuration, 

the integration of energy storage for power systems reserves application may not necessarily lead 

to environmental improvements [28]. Their results emphasized the need for a more systematic 

approach in examining the environmental performance of energy storage deployment. In an 

examination of energy arbitrage application in Texas, Carson and Novan showed that energy 

storage integration would increase the average daily GHG emissions due to an increase in off-peak 

fossil fuel generation [29]. In another study, Hiremath et al. emphasized the significance of energy 

storage operation in the overall environmental performance of these technologies, especially when 

they had different characteristics parameters [30].   
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These examples show that the production, operation, and deployment of energy storage systems 

within a grid application have a significant impact on the environmental and economic outcomes 

of utilizing such systems. While previous studies have provided valuable insights into the 

economic and environmental implications of energy storage systems, there remains the need for 

systematic sustainability assessment tools that provide robust guidance on the development and 

deployment of these technologies. The central objective of this dissertation is to develop novel 

tools to evaluate the economic and environmental impacts of integrating energy storage systems 

within the electric grid and develop principles for guiding deployment of those technologies. A 

wide range of energy storage systems and their grid applications are studied in this dissertation to 

investigate how sustainability implications in terms of environmental and economic aspects 

change across storage technologies within different grid applications.  

1.2. Overview of chapters 

Table 1-1 provides an overview of chapters, outlining each chapter’s research aims and the energy 

system assumptions including the grid application, energy storage technology studied, and the 

impacts assessed. In Chapter 2, the role of VRFB energy storage is assessed in integrating wind 

energy and reaching emissions targets in an off-grid model. Life cycle GHG emissions and total 

cost of delivered electricity are evaluated and generation mixes are optimized to meet emissions 

targets at the minimum cost. The results demonstrate that while incorporating energy storage 

consistently reduces life cycle carbon emissions, it is not cost effective to reduce wind curtailment 

except under very low emission targets. 

A set of twelve principles for green energy storage systems is developed in Chapter 3, which is 

applicable to the wide range of energy storage technologies and grid applications. In this chapter, 

potential environmental impacts of energy storage systems development and operation are studied 

through a comprehensive literature review and through an in-depth quantitative analyses of the 

off-grid case study from Chapter 2.  

In Chapter 4, the impact of six parameters on environmental outcomes of integrating selected 

energy storage technologies is assessed using model equations, which are applied to time-shifting, 

frequency regulation, and power reliability applications. This chapter concludes that efficiency 
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and heat rates parameters dominate in time-shifting and regulation applications, whereas energy 

storage service life and production burden dominate in power reliability.  

Chapter 5 examines a real-world case study of energy storage application in time-shifting the peak 

load of California. An optimization model is developed to find the optimal state of charge and size 

of energy storage in order to minimize the system total costs (including GHG emissions), while 

meeting the electricity load and systems constraints. Simulations are run to investigate how the 

operation of seven distinct battery storage technologies along with pumped-hydro energy storage, 

adiabatic compressed energy storage, and diabatic compressed energy storage change given their 

energy storage characteristics. Scenarios with four emission taxes of 0, $50/ton of CO2, $100/ton 

of CO2, and $200/ton of CO2 are developed to test the operation of each energy storage system 

under different tax assumptions. The findings show that increasing the installed capacity of wind 

and solar energy would make it more cost-effective for the energy storage to be deployed and 

among storage technologies PHES and D-CAES are built in most scenarios due to their lower 

costs. 

Table 1-1 An overview of chapters 

 

Research Aims Grid Application Technology Studied Impacts Assessed 

Chapter 2 

An analysis of ESS* 

operation and its 

environmental and 

economic impacts, 

while emissions targets 

in an optimization 

model 

Wind integration VRFB* Life cycle GHG 

emissions and cost 

Chapter 3 

Universal principles for 

green energy storage- 

highlighting significant 

parameters 

Across applications 
Full range of energy 

storage technologies 

A full range of 

environmental impacts 

Chapter 4 

An in-depth analysis to 

determine the 

influential parameters 

on GHG emissions 

Time-shifting 

Frequency regulation 

Power reliability 

Batteries: VRFB, Li-

ion*, PbA*, NaS* 

CAES* 

PHES* 

Flywheels 

Life cycle GHG 

emissions 
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Chapter 5 

An in-depth analysis of 

emissions and costs 

across technologies 

with various parameters 

within an optimization 

model 

Time-shifting in 

CAISO* 

Batteries: VRFB, Li-

ion, PSB*, ZBB*, PbA, 

NaS 

D-CAES 

A-CAES 

PHES 

Operational GHG 

emissions and life cycle 

costs 

* (ESS= energy storage system, VRFB=vanadium redox flow battery, PbA= lead-acid battery, NaS= sodium-sulfur 

battery, Li-ion= lithium-ion battery, CAES= compressed air energy storage, PHES= pumped-hydro energy storage, 

CAISO= California Independent System Operator, D-CAES= diabatic compressed air energy storage, A-CAES= 

adiabatic compressed air energy storage, PSB=polysulfide bromide battery, ZBB= zinc Bromine Battery) 

1.2.1. Chapter 2- Vanadium redox flow batteries to reach greenhouse gas emissions 

targets in an off-grid configuration 

1.2.1.1. Research aims 

Negative environmental impacts and uncertain prices of fossil fuels are powerful drivers behind 

new research to understand how to improve technologies supporting renewables. Despite these 

sustainability opportunities, large-scale integration of variable and non-controllable renewables 

into the electrical grid poses critical challenges that may be overcome through the use of energy 

storage systems. In two separate studies of solar energy, Zahedi, and Denholm and Margolis 

reviewed the challenges in large-scale integration of solar systems and the impact of economically 

and technically viable energy storage systems in alleviating these challenges [31], [32]. In another 

study, Denholm and Hand found that storage equal to one day of average demand could enhance 

the penetration of solar and wind energy up to 80% in the Electric Reliability Council of Texas 

market [33]. Electric Power Research Institute (EPRI) examined the applications of various energy 

storage technologies to smooth the integration of grid-connected wind energy [11]. 

The second chapter of this dissertation investigates the operation of an energy storage system 

within an off-grid configuration to increase the wind penetration and analyzes the associated 

environmental and economic impacts. This micro-grid system includes wind energy integrated 

with energy storage besides natural gas as a back-up generation. The relationship between total 

system costs and life cycle emissions are used to optimize the generation mixes to achieve 

emissions targets at the least cost and determine when VRFBs are preferable over wind 

curtailment.  

Several studies have conducted optimization in an isolated system that include renewable energy, 

energy storage, and other sources of generation to achieve the minimum cost. For example, in an 
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optimization of a stand-alone hybrid system including PV panels, wind energy, and diesel 

generator, Merei et al. showed that the integration of batteries with renewables was economical 

and environmentally preferable. They also showed that using redox flow batteries specifically in 

combination with renewables and diesel was the best option in comparison to lead-acid and 

lithium-ion batteries integration [34]. In another study, Kaabeche et al. showed that a hybrid 

system including PV/wind/diesel/battery was more economically viable compared to a 

PV/wind/battery system and also a diesel generator only system [35]. In addition to batteries, 

several optimization studies examined hybrid configurations including other storage systems such 

as compressed air or pumped hydro energy storage [36], [37], [38], [39].  

As discussed earlier, while energy storage can help integrate more renewables and potentially 

increase the grid sustainability, it is critical to evaluate the life cycle environmental impacts 

associated with the production and operation of such systems. For example, in an analysis of life 

cycle energy requirements and emissions from large-scale storage systems coupled with 

renewables, Denholm and Kulcinsi showed that despite the added emissions and energy input, 

these systems offered lower emissions than fossil fuel based electricity [40]. Other studies also 

included emissions in their analysis of off-grid systems which included renewables integrated with 

energy storage [41], [42].  

While economic and environmental analyses have been conducted in these previous studies, there 

remains the need for further examination of the economic and environmental trade-offs between 

curtailment and energy storage. This chapter examines the trade-offs between environmental and 

economic metrics when utilizing vanadium redox flow batteries (VRFB) to integrate wind energy 

and explores the role of energy storage in achieving very low emissions targets. This study 

contributes to the literature through assessing the full life cycle GHG emissions of all system 

components and evaluates the total cost of the system. Based on these evaluations, it is determined 

when the value of large-scale energy storage outweighs the cost of wind curtailment, i.e. when 

energy storage is preferable over additional wind capacity. The results of this research are 

published in Applied Energy as “Vanadium redox flow batteries to reach greenhouse gas emissions 

targets in an off-grid configuration” [43].  
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1.2.1.2. Energy system studies and approach 

The case study is intended to represent an island with the same size as “Grosse Ile”, Michigan. The 

island system is an isolated grid and the generation options are assumed to be wind energy 

integrated with VRFB energy storage and natural gas as a back-up generation. VRFBs offer high 

round-trip efficiency and different grid applications [44]. By utilizing life cycle analysis, Rydh 

compared VRFB and PbA batteries, concluding that that former had a lower environmental impact, 

greater net energy storage efficiency, and longer cycle-life [45]. Joerissen et al. identified load 

leveling and seasonal energy storage in small grids and stand-alone PV systems applications for 

VRFB [46]. Stiel and Skyllas-Kazacos assessed the environmental and economic benefits of 

integrating VRFB with remote wind/diesel power systems, showing that such system had lower 

carbon emissions and net present cost compared to wind/diesel system [47]. These and other 

studies focus on economic and environmental aspects of integrating energy storage, without 

addressing emissions targets, which is a critical criterion especially for decision and policy-

makings. In this study, first total environmental GHG emissions of integrating VRFB with wind 

energy is assessed through a full LCA of all system components. Then the trade-offs between total 

emissions and total cost of the system are evaluated using an optimization model. In this model, 

optimal generation mixes comprised of VRFBs, wind turbines, and natural gas reciprocating 

engines (Fig. 1-4) are determined to minimize the delivered cost of electricity to the isolated load, 

while meeting progressively more challenging life cycle GHG emissions targets.  

 

Fig. 1-4 Model components for battery storage integration with wind energy 
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1.2.2. Chapter 3- Twelve principles for green energy storage in grid applications 

1.2.2.1. Research aims 

As mentioned earlier, the integration of energy storage systems into the electrical grid can lead to 

different environmental outcomes based on the grid application, the existing generation assets, and 

the electrical demand. While studies already cited in the previous sections [24], [25], [26], [28], 

[29], [30] provide important insights into the environmental impacts of grid-scale energy storage, 

those who design, maintain, and operate such systems lack a comprehensive and systematic set of 

principles that can yield improved environmental outcomes. This chapter fills a research gap by 

providing a transparent set of principles as a novel tool to guide integration, operation and 

maintenance, design, and material choices that influence environmental outcomes from developing 

and deploying energy storage systems. The objective is to guide designers, decision makers, and 

utility operators on design choices and deployment scenarios. These principles for green energy 

storage build upon the robust body of research that aims to improve environmental outcomes 

through better design and operation:  

Keoleian and Menerey introduced a guidance manual for life cycle design, emphasizing the 

importance of addressing environmental issues in designing sustainable systems, which led to 

evolvement of a variety of frameworks to support green design [48]. For example, two sets of 

twelve principles for green chemistry and twelve green engineering principles made important 

contributions to guide design of environmentally benign products and processes [49], [50]. In an 

examination of these principles, Krichhoff demonstrated that combining green chemistry with 

green engineering would lead to maximum efficiency and minimum waste [51].  In two other 

studies, McDonough et al. demonstrated the industrial application of green engineering principles 

[52] while Diwekar used the green engineering principles to develop an integrated computer-aided 

framework for designing chemical process [53].  

While other studies have successfully provided guidance and structure to green design and 

products, energy storage technologies pose unique assessment challenges that are not fully 

addressed by those approaches. Inspired by and building off the 12 engineering principles [49], 12 

principles for green energy storage are developed in this chapter to provide insights into and 

improve the environmental outcomes when integrating energy storage systems into power grid. 
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The principles for green energy storage are published in Environmental Science & Technology as 

“Twelve principles for green energy storage in grid applications” [54]. 

1.2.2.2. Energy system studied and approach 

These principles are broadly applicable to the wide range of energy storage technologies (e.g. 

batteries, flywheels) and grid applications (e.g. energy time-shifting, frequency regulation) for 

which they are being used or considered. Principles were developed through comprehensive 

literature review and were presented to diverse audiences including electrochemists, engineers, 

industrial ecologists, and sustainability scientists. The principles are grouped into three categories 

(Fig. 1-5): (1) system integration for grid applications, (2) the maintenance and operation of energy 

storage, and (3) the design of energy storage technologies. The first category of principles 

addresses the specific nature of the grid applications for which energy storage is considered. 

Existing grid infrastructure and electricity demand profiles influence environmental outcomes 

from the integration of energy storage systems. The second category addresses impacts associated 

with the operation phase and also the importance of efficient maintenance of energy storage system 

to provide the desired outcomes. The third category highlights the importance of performance 

characteristics of storage system such as efficiency and service life and addresses the impacts from 

materials and production phase. 

 

Fig. 1-5 Categories of principles for green energy storage systems [38] 
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1.2.3. Chapter 4- Parameters driving environmental performance of energy storage 

systems across grid applications 

1.2.3.1. Research aims 

The principles address the importance of the operational parameters of energy storage such as 

service life, round-trip efficiency, and degradation but do not address how their influence would 

vary across grid applications. Motivated and guided by this need, a universal set of equations is 

developed in this chapter to investigate the influence of selected parameters on the environmental 

outcomes of integrating energy storage for specific applications. Existing environmental 

assessments of energy storage systems have not systematically evaluated the influence of various 

parameters on environmental performance of these technologies. This chapter aims to fill this 

research gap by illustrating that across the full range of parameters, environmental outcomes could 

be positive or negative. The main focus is to understand the interaction between energy storage 

parameters (e.g., round-trip efficiency, degradation, service life, and production burden) and grid 

application parameters (e.g., generators’ heat rates). This parametric analysis indicates the relative 

importance of each parameter in determining the environmental performance of utilizing energy 

storage, and provides guidance to determine, systematically, when and how to choose storage 

systems to achieve positive environmental outcomes. 

In 2012, Hittinger et al. evaluated the impact of energy storage parameters on the economic cost 

of providing energy service across grid applications [55]. The study presented here is novel 

because it presents a parametric analysis tool to identify how selected parameters drive 

environmental outcomes in grid applications, providing new insights for the design and 

deployment of new technologies and the modification and improvement of existing ones.  

1.2.3.2. Energy system studied and approach 

Three case studies of energy storage applications—energy time-shifting, frequency regulation, and 

power reliability applications—are selected to demonstrate the impact of parameters on the 

environmental performance of energy storage. These grid applications were chosen to illustrate a 

wide range of performance requirements such as required energy storage power rating, capacity, 

and number of cycles. Suitable technologies were selected for each grid application through a 

comprehensive literature review.  To illustrate the range of outcomes for net emissions during the 
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operation of energy storage, a range of energy storage parameters and grid application parameters 

are assumed. A full literature review was conducted to find a feasible range for parameters of 

potential energy storage systems that were suitable for each application. 

The impacts of selected parameters on net emissions are summarized in Table 1-2 and published 

as “Parameters driving environmental performance of energy storage systems across grid 

applications” in Journal of Energy Storage. This table shows the relative differences of the 

parameters’ influence across time-shifting, frequency regulation, and power reliability 

applications based on our baseline assumptions [56]. The assumptions include energy storage 

sizing, discharge duration, and number of cycles per year, and are defined for each of the three 

applications. Given these assumptions, each application represents a generalized case study rather 

a specific grid example.  

 

Table 1-2 Influence of parameters on net CO2eq emissions in time-shifting, frequency regulation, and 

reliability applications [56] 

 Time-shifting Frequency Regulation Power Reliability 

Round-trip efficiency    

Annual degradation    

Heat rate charge    

Heat rate displace    

Service life    

Energy storage  

production burden 

   

Strong influence   Moderate influence Weak influence 
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1.2.4. Chapter 5- Energy storage for time-shifting and greenhouse gas reductions under 

varying renewable penetrations- A CAISO case study 

1.2.4.1. Research aims 

The environmental and economic impacts of energy storage integration depend on the energy 

system characteristics such as the generation mix, energy storage sizing, and energy storage 

operation within the power grid. Many studies have optimized the operation and size of an energy 

storage system for a given grid application from an economic point of view. For example, Ho et 

al. optimized the scheduling and capacity of an energy storage system to achieve minimum 

investment cost using integer linear programming in a distributed energy generation system [57]. 

Their results indicated that for renewable integration application, energy storage with high capital 

costs was advised to operate in daily cycles (vs. weekly cycles) due to intermittency of renewables. 

In another study, Parra et al. optimized the size of lead-acid (PbA) and Li-ion batteries for time-

shifting application in a 100-home community in cases of time-of-use or real-time-pricing tariffs 

[58]. Their results showed that the time-of-use tariff is much more attractive for demand-shifting 

in that community. In addition to economic analysis, few studies have included environmental 

emissions accounting in their optimizations. For example, Hemmati et al. developed a multistage 

generation expansion plan for a test system to minimize the total costs including the emissions cost 

[59]. Their results showed that adding energy storage into the test system would decrease the 

planning costs as well as environmental pollutions due to the reduced need for installing peak 

demand capacity. de Sidternes et al. modeled an electricity system with demand and renewable 

generation data from the Electricity Reliability Council of Texas to determine the optimal portfolio 

of generation capacities to meet the demand in 2035 at minimum cost, subject to system 

requirements, operational limits, and a mass-based CO2 limit [60]. In their analysis, energy storage 

capacity was defined exogenously, therefore, they did not consider the capital cost of the energy 

storage system. Also, they assumed two generic energy storage systems rather than a specific 

technology for the analysis.  

An optimization model is developed in Chapter 5 to evaluate the role of cost-effective energy 

storage in time-shifting the peak load of California Independent System Operator (CAISO), while 

accounting for the GHG emissions. The objective function in this optimization is to minimize the 
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total costs of the system, which include natural gas operating fuel costs, energy storage capital 

costs, and a GHG emissions cost as a tax imposed on the system. The goal is to find the optimal 

natural gas generator production level, optimal size, optimal operation of energy storage, and 

optimal level of wind and solar energy delivered to demand.  This novel approach contributes to 

literature through investigating which of the studied storage technologies is cost-effective for 

integration into CAISO, when the renewable energy generation and the emissions tax are increased 

exogenously. 

1.2.4.2. Energy system studied and approach 

The case study examined is the application of energy storage for bulk energy time-shifting in 

CAISO. Due to the great development of renewable energy and also the state recent actions 

towards advancing energy storage [1], [61], California has become an interesting case study to 

analyze the impact of energy storage integration. In this regard, Solomon et al. evaluated the 

opportunities for the higher utilization of renewable energy in California in scenarios with and 

without energy storage integration [62]. In another two comprehensive studies by National 

Renewable Energy Laboratory, value of energy storage was estimated in California with high 

penetration of renewable energy [63], [64].  

The load data as well as all the generation data including natural gas generator marginal cost and 

marginal emissions, nuclear, imports, hydro, and all renewable except for wind and solar resources 

are collected from EPA Clean Air Markets Program Data, U.S. Energy Information Administration 

(EIA), and CAISO online resources [65]- [68]. Wind and solar generations are assumed to change 

exogenously based on pre-defined hourly capacity factors and assumed installed capacities of 0, 

10, 20 GW for wind energy and 0, 20, 40 GW of solar energy. The wind and solar capacity factors 

across the state are estimated using NREL WIND Toolkit and NSRDB resources [69], [70]. In this 

optimization, natural gas generator production level, size and operation of energy storage, and the 

level of delivered wind and solar energy are optimized to minimize the total system costs. Total 

costs include the natural gas operating marginal costs, energy storage capital costs, and monetized 

GHG emissions cost. Total emissions of the system are calculated using the generators’ marginal 

emissions and monetizing them through an emissions tax rate. For the electric energy time-shifting 

application, several energy storage technologies offer the most suitable characteristics: pumped-

hydro storage, flow batteries, PbA batteries, Li-ion batteries, sodium-sulfur batteries, and 
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compressed-air energy storage [5], [56]. In this analysis, simulations are run for each of those 

particular technologies in various scenarios to investigate how the optimal results would change 

across technologies.  

Fig. 1-6 shows the relative size of the selected technologies that are deployed in different 

combinations of installed wind and solar capacity, assuming 0, $50/ton of CO2, $100/ton of CO2, 

and $200/ton of CO2 emissions tax. This figure shows that an expensive technology such as Li-

ion battery is deployed only in scenarios with high installed capacity of wind energy and high 

emissions tax of $200/ton of CO2. On the other hand, less costly technology such as PHES is 

deployed in more scenarios.  

 

Fig. 1-6 Optimal size of nine energy storage technologies in different combinations of installed wind and 

solar capacity in CAISO, assuming 0, $50/ton, $100/ton, and $200/ton of CO2 emissions taxes 

A summary of key findings of this dissertation and recommendations for future research are 

presented in Chapter 6. Areas for future research include examining other sustainability impacts 
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(beyond GHG emissions) associated with the production and deployment of grid-scale energy 

storage technologies, a comprehensive investigation of end-of-life strategies for energy storage 

technologies, and examining the robustness of twelve principles developed in Chapter 3 by 

applying them to other grid examples. Also, the optimization model developed in Chapter 5 can 

be applied to other electric grids with different characteristics from CAISO, which is assumed to 

have no coal generation.  Many other opportunities for future exploration are also highlighted 

throughout this dissertation. 
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CHAPTER 2  
Vanadium redox flow batteries to reach greenhouse gas emissions in an off-

grid configuration 

Abstract  

Energy storage may serve as a solution to the integration challenges of high penetrations of wind, 

helping to reduce curtailment, provide system balancing services, and reduce emissions. This study 

determines the minimum cost configuration of vanadium redox flow batteries (VRFB), wind 

turbines, and natural gas reciprocating engines in an off-grid model. A life cycle assessment (LCA) 

model is developed to determine the system configuration needed to achieve a variety of CO2-eq 

emissions targets. The relationship between total system costs and life cycle emissions are used to 

optimize the generation mixes to achieve emissions targets at the least cost and determine when 

VRFBs are preferable over wind curtailment. Different GHG emissions targets are defined for the 

off-grid system and the minimum cost resource configuration is determined to meet those targets. 

This approach determines when the use of VRFBs is more cost effective than wind curtailment in 

reaching GHG emissions targets. The research demonstrates that while incorporating energy storage 

consistently reduces life cycle carbon emissions, it is not cost effective to reduce curtailment except 

under very low emission targets (190 g of CO2-eq/kWh and less for the examined system). This 

suggests that “overbuilding” wind is a more viable option to reduce life cycle emissions for all but 

the most ambitious carbon mitigation targets. The findings show that adding VRFB as energy storage 

could be economically preferable only when wind curtailment exceeds 66% for the examined 

system. The results were most sensitive to VRFB costs, natural gas upstream emissions (e.g. methane 

leakage), and wind capital cost.  
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2.1. Introduction 

The development of renewable energy sources, such as wind and solar, is considered an important 

strategy to decrease both environmental impacts and energy price volatility. With 38% of US 

carbon dioxide emissions coming from burning fossil fuels for electricity generation in 2012 [1], 

wind power is an appealing option to decrease the carbon intensity of power generation. Despite 

these sustainability opportunities, large-scale integration of variable renewables into the electrical 

grid poses critical challenges that may be overcome through the use of energy storage systems.  

When the objective is to integrate variable renewables such as wind and solar, energy storage must 

compete with other solutions such as increased flexibility of firm generation or simply allowing 

some wind or solar curtailment. Understanding the total environmental impacts of using grid-scale 

energy storage requires the integration of LCA and energy systems analysis, as is done in this 

study. 

Many studies have assessed the role of energy storage in increasing the penetration of renewable 

energy. A major study by Electric Power Research Institute (EPRI) examined the applications of 

different energy storage systems for grid connected wind generation [2]. Denholm and Margolis 

considered energy storage to alleviate the challenges of introducing variable solar energy [3]. 

Denholm and Hand examined Electric Reliability Council of Texas (ERCOT) market and found 

that storage equal to one day of average demand could increase the wind and solar penetration up 

to 80% [4]. Zahedi reviewed the challenges in large-scale integration of solar photovoltaic (PV) 

systems and the utilization of economically and technically viable energy storage systems to solve 

these challenges [5].   

While energy storage holds the promise of integrating high penetrations of variable renewables, 

its adoption is limited by high costs. Several studies have optimized an isolated hybrid system 

consisting of renewable energy, energy storage, and other sources of electricity generation to 

achieve the minimum cost. For example, Merei et al. optimized a stand-alone hybrid system 

comprising of PV panels and wind turbines as renewable sources of energy, diesel generator as 

back-up generation and batteries as energy storage to minimize the overall costs. Their results 

showed that the integration of batteries with renewables was economical and environmentally 

preferable. Also their optimization results showed that using redox flow batteries in combination 
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with renewables and diesel was the best option in comparison to lead-acid and lithium-ion batteries 

integration [6]. Ma et al. also evaluated the techno-economic feasibility of a stand-alone hybrid 

solar wind energy system integrated with battery storage system as an electricity supplier for a 

remote island to achieve an optimal cost-effective configuration [7]. On the other hand, Kaabeche 

et al. showed that a stand-alone hybrid configuration consisting of PV/wind/diesel/battery was 

more economically viable compared to a PV/wind/battery system and also a diesel generator (DG) 

only system [8]. Besides batteries, other studies optimized hybrid configurations integrated with 

other energy storage systems such as compressed air or pumped storage systems [9], [10], [11], 

[12].  

In addition to economic issues, the lifecycle environmental impacts of energy storage systems from 

cradle-to-grave will influence their overall sustainability performance. Denholm and Kulcinski 

analyzed the life cycle energy requirements and emissions from large-scale energy storage systems 

coupled with renewables. Their results showed that despite the added emissions and energy input, 

these systems offered lower emissions than fossil fuel based electricity [13]. Sioshansi evaluated 

the impact of adding wind and energy storage to a market based electric power system [14]. In an 

examination of environmental impacts of different batteries, McManus concluded that lithium ion 

batteries had the most significant contribution to greenhouse gases and metal depletion, but nickel 

metal hydride batteries had a more significant cumulative energy demand [15]. Galvez et al. 

optimized an autonomous hybrid system consisting wind turbines, solar panels and hydrogen 

storage with the objective of minimizing net present cost and net avoided emissions in the system 

life cycle [16]. Bondesson introduced a comparative LCA model on renewable solutions integrated 

with batteries for off-grid base stations [17].  

Among various energy storage systems, vanadium redox flow batteries (VRFBs) offer high energy 

density and efficiency [18], suggesting the potential for cost competiveness in applications for 

variable renewable energy integration. Rydh compared VRFB and lead-acid batteries utilizing life 

cycle analysis and found that former had a lower environmental impact, greater net energy storage 

efficiency, and longer cycle-life [19]. Stiel and Skyllas-Kazacos also assessed the environmental 

and economic benefits of integrating vanadium redox battery with remote wind/diesel power 

systems using the HOMER model. Their results showed that the system comprised of wind, diesel 

and vanadium flow batteries had lower carbon emissions and net present cost compared to 
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wind/diesel system [20]. Our current study differs from this work by examining natural gas 

generation (at a far lower cost), including all life cycle impacts of the system components, and 

optimizing to meet life cycle emissions targets. Joerissen et al. showed the ability of VRFBs for 

load leveling and seasonal energy storage in small grids and stand-alone PV systems [21]. Zhang 

et al. showed the importance of the vanadium to the overall capital costs of all-vanadium redox 

flow batteries in a sensitivity analysis [22]. While those studies have done economic and 

environmental analyses, there remains the need for further examination of the economic and 

environmental trade-offs between curtailment and energy storage.  

2.1.1. Objectives and Energy System Assumptions  

This chapter examines the trade-offs between environmental and economic metrics when using 

energy storage to integrate wind energy and explores the role of energy storage in achieving very 

low emissions targets. In this study, optimal generation mixes comprised of VRFBs, wind turbines, 

and natural gas reciprocating engines are determined to minimize the delivered cost of electricity 

to an isolated load, while meeting progressively more challenging life cycle GHG emissions 

targets. This study is novel because it assesses the environmental emissions of integrating VRFB 

with wind energy through a full LCA of all system components and evaluates the total cost of the 

system. LCA methods are utilized to compare the GHG emissions associated with the system 

components, including upstream effects of fuel and material production and equipment 

manufacturing. The total cost of the off-grid system is calculated to determine when the value of 

large-scale energy storage outweighs the cost of wind curtailment, i.e. when energy storage is 

preferable over additional wind capacity. There are emissions associated with the production of 

batteries; this study examines if such emissions are compensated by the reduction in environmental 

impact due to less natural gas combustion. 

The case study is intended to represent an island with the same size as “Grosse Ile”, the largest 

island in the Detroit River, which has population of 10,894 [23]. Using MISO-wide per capita data, 

it is estimated that this system has annual demand of 10.6 MWh per capita, and annual peak and 

minimum demand of 22 MW and 8.7 MW respectively. The annual electrical load profile of State 

of Michigan is scaled down to create a load profile of the island. The distribution losses are 

assumed to be 3 percent and the load factor is 60%.  The island system is an isolated grid and the 

http://en.wikipedia.org/wiki/Detroit_River
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generation options are assumed to be wind energy integrated with energy storage and natural gas. 

Planning for reliability is achieved by maintaining a reserve margin of 20 percent [24], assuming 

that the system does not have any grid connection.  

In this model wind is treated as a must-take resource. Excess wind is stored in the battery (if 

available), and it is discharged when needed. If battery storage is not available, the excess wind is 

curtailed. Natural gas reciprocating engines are used to provide firm capacity, to meet the annual 

peak plus the reserve margin, and to meet all energy demand unmet by the wind and battery. Three 

scenarios are developed to assess the optimal system configurations to meet emission targets at 

minimum cost. The scenarios are described as follows: 

 Natural gas generation without any wind generation and energy storage  

 Wind energy, natural gas generation 

 Wind energy, energy storage, and natural gas generation 

2.2. Methods 

2.2.1. Life Cycle Assessment  

In this analysis, a full LCA is developed for the off-grid system to evaluate total GHG emissions. 

Fig. 2-1 shows the system boundary diagram for the LCA. The LCA is conducted using SimaPro© 

software, based on the material inventories for the wind turbine, VRFB, and natural gas engine 

and energy requirements for each stage during products lifespan from cradle-to-grave. IPCC 2007 

GWP 100a was selected as LCA method in SimaPro© for all components. The functional unit for 

the LCA study is one kilowatt-hour of delivered electrical energy. The study horizon matches the 

20-year lifetime of the system components. The system boundary for life cycle assessment is 

shown in Fig. 2-1.  

Regarding the recycling methodology, the recycled-content approach is used in this LCA. In this 

method, environmental credits are received for the incoming raw-materials used to manufacture 

the wind turbine, VRFB and natural gas reciprocating engine based upon the actual recycled 

material content of these components. Incoming raw material impacts are distinguished between 

recycled and primary materials.  
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2.2.2. Life Cycle Emissions Data  

2.2.2.1. Natural Gas Reciprocating Engine and Fuel 

Due to the small size of the island system, natural gas reciprocating engines (representative of 

Caterpillar G3616 LE, 3 MW) were selected to provide the natural gas generation when needed. 

The life cycle inventory for the engine includes the material requirements for the engine life cycle 

stages [25]. It is calculated that nine natural gas engines are required to provide firm capacity 

necessary to meet the annual peak plus the reserve margin and to meet all energy demand unmet 

by the wind and battery. The natural gas upstream and combustion emissions are calculated based 

on the engine performance parameters shown in Table 2-1. There are uncertainties associated with 

CH4 leakages during natural gas production and transmission [28], [29], [30], therefore an analysis 

is done to test the sensitivity of the emissions targets to different upstream emission factors and 

the results are presented in the sensitivity analysis section.  
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Fig. 2-1 LCA boundary for the off-grid system (The dashed lines show the electrical energy flow.) 



30 

 

 

Table 2-1 NG Reciprocating Engine Typical Performance Parameters 

 Variable Unit Value 

Nameplate Capacity [26] Peng kW 3000 

 Electric Heat Rate [27] HR MMBtu/MWh 9.5 

Natural Gas Upstream CO2-eq Emissions Factor [30] EFU lb/MMBtu 35 

Exhaust CO2 Emissions Factor  [27] EFO lb/MWh 1,110 

Total Installed Cost [27] Ceng $/kW 1,130 

NG Variable Fuel Cost  [31] Cf $/MMBtu 5.08 

Non-Fuel NG Engine O&M Variable Cost [27] VOM $/MWh 10 

Engine Weight  [26] M kg 29,891 

Lifetime  Y years 20 

Engine Manufacturing Emissions Factor [25] EFmfc,eng 
kg of CO2-eq/kg 

of engine 
2 

 

The total upstream emissions (Eu) are a function of the annual natural gas generation (NG) required 

in MWh, the engine heat rate (HR) in MMBtu/MWh, and the upstream emissions factor (EFu) in 

lb/MMBtu. It is calculated during the life span of the project (Y), which is 20 years and is shown 

in Eq. 1. Also, the engine operating emissions (Eo,eng) during the same lifetime are dependent on 

annual fuel consumption (NG) in MWh and the exhaust emissions factor (EFO) in lb/MWh, as 

shown in Eq. 2. β is the conversion factor to convert EU and EO units from pounds to grams of 

CO2-eq and is equal to 453.5.  

 𝐸𝑢 = 𝑌 ∗ 𝑁𝐺 ∗ 𝐻𝑅 ∗ 𝐸𝐹𝑢  ∗ 𝛽                     (𝐸𝑞. 1) 

   𝐸𝑜,𝑒𝑛𝑔 = 𝑌 ∗ 𝑁𝐺 ∗ 𝐸𝐹𝑜 ∗ 𝛽                            (𝐸𝑞. 2) 

The engine is constructed mainly from cast iron, steel and aluminum [25]. The recycled content 

(RC) of these metals and their primary and secondary GHG emissions factors are provided in 

Appendix B. The amount of primary (P) and secondary (S) materials for each component is 

calculated based on their RCs as shown in Eq.3 and Eq.4, where T is the metals’ total masses (T, 

S and P are all in kg).  

 

𝑆 = 𝑅𝐶 ∗ 𝑇                     (𝐸𝑞. 3) 
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𝑃 = 𝑇 − 𝑆                       (𝐸𝑞. 4) 

Total GHG emissions associated with the production for each of these materials (Et), using the 

recycled content approach, are calculated in Eq. 5 [32].  

 𝐸𝑡 = 𝑃 ∗ 𝐺𝐻𝐺𝑝 + 𝑆 ∗ 𝐺𝐻𝐺𝑠                     (𝐸𝑞. 5) 

where GHGp and GHGs are the primary and secondary emissions factors for each metal 

respectively, both in kg of CO2-eq per kg of metal. Natural gas engine life cycle inventory includes 

other materials requirement such as rubber, bronze, polypropylene [25]. This inventory is 

implemented in Simapro©, choosing EcoInvent database version 2.2 and IPCC 2007 GWP 100a 

methodology. Therefore, the total engine’s material production emissions are calculated in Eq.6.  

 𝐸𝑚𝑡𝑟𝑙,𝑒𝑛𝑔 = 𝐸𝑡 + 𝐸𝑜𝑡ℎ𝑒𝑟,𝑒𝑛𝑔                     (𝐸𝑞. 6) 

where Eother,eng is the emissions results from Simparo© in kg of CO2-eq. The manufacturing 

emissions are calculated per kg of engine, based on the life cycle inventory, therefore the total 

emissions associated with the manufacturing of the engine in terms of CO2-eq is calculated in Eq.7. 

𝐸𝑚𝑓𝑐,𝑒𝑛𝑔 = 𝑀 ∗ 𝐸𝐹𝑚𝑐𝑓,𝑒𝑛𝑔                          (𝐸𝑞. 7) 

where M is the engine’s total mass in kg and EFmcf,eng is the engine manufacturing emissions factor 

in kg of CO2-eq per kg of engine. 

2.2.2.2. Wind Turbine 

The wind turbine selected for this study is represented as a Vestas V90-3MW wind turbine. The 

wind speed data throughout the year 2013 is obtained from West Shore Estates weather station, 

which has the weather forecast and also historical data for Grosse Ile Township, MI for the past 

two decades [33]. The year 2013 is chosen as it represented the most recent year for which 

complete wind speed data was available at the time of the analysis. The wind speeds are calculated 

at the wind turbine hub height, which is 80 meters and it is assumed that Hellman coefficient for 

neutral air above human inhabited areas is 0.34 [34]. The annual wind generation of one turbine 

in the location is calculated using the wind turbine power curve [35] and is equal to 8585 MWh, 

yielding a capacity factor of approximately 33%.   
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The wind turbine life cycle inventory includes the material breakdown of Vestas V90-3 MW, 

foundation, cables, switch gears and transformers and energy requirement for manufacturing, 

transportation and end of life stages [36]. The life cycle inventory is utilized in SimaPro© (utilizing 

EcoInvent database version 2.2 and IPCC 2007 GWP 100a method) to quantify the total life cycle 

emissions of the wind turbine. The total life cycle emissions include the wind turbine and site parts 

material production (Emtrl,w), (Emtrl,site), wind power plant installment (Einst) and operation phase 

(Eo) emissions all in kg of CO2-eq. The environmental crediting for recycling is given at the material 

production stage based on the metals recycled contents and primary and secondary GHG emissions 

factors provided in Appendix B.  

2.2.2.3. Vanadium Redox Flow Battery 

In a flow battery, the electrolyte contains one or more dissolved electroactive species flowing 

through a power cell in which the chemical energy is converted to electricity. Additional 

electrolyte is stored externally, generally in tanks, and is usually pumped through the cell of the 

reactor. The power rating is independent of the storage capacity and is determined by the quantity 

of electrolyte used [19]. VRFB stores energy by employing vanadium redox couples V2+/V3+ in 

the negative and V4+/V5+ in the positive half-cells.  

In this study, it is assumed that the battery has a round-trip efficiency (𝜂) of 75% [19] and the 

battery’s ramp rate is sufficient enough to respond the changes in load and wind generation. The 

safe operating window for the battery is assumed to be 10 to 90 percent state of charge. The life 

cycle inventories include the material and energy requirements during different life cycle stages 

of VRFB [19], [37]. There are two groups of materials in the structure of a VRFB. The first group 

includes those materials that are used for the production of cell components such as electrodes, 

ion-exchange membrane and pumps. The amounts of these materials are dependent on the battery 

power rating (PB) in MW. On the other hand, the second group includes the materials that are used 

for the production of storage components such as electrolyte and storage tanks and are dependent 

on the storage capacity of the battery (S) in MWh. Therefore the material production emissions 

comprise two parts; storage-dependent materials emissions in grams of CO2-eq per kWh (Emtrl,S) 

and power-dependent materials emissions in kg of CO2-eq per kW (Emtrl,P). All materials are 

assumed to be primary material without any recycled content. The battery operation phase is 

modeled as the amounts of materials required to be replaced during the 20-year lifetime of the 
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battery and is included in the material inventory [19]. Other emissions include the battery 

production emissions (EP,B) and are dependent on the battery storage capacity based on the 

inventory and their units are in grams of CO2-eq per kWh of storage capacity. The inventory is 

implemented in SimParo© utilizing EcoInvent database version 2.2 and IPCC 2007 GWP 100a 

method.   

2.2.2.4. System of Equations  

The total environmental impact (E) of the off-grid system during 20-year lifetime (Y) is 

compromised of the life cycle emissions of the system components; wind turbine environmental 

impact (IW), VRFB environmental impact (IB), and natural gas reciprocating engine environmental 

impact (Ieng). All impacts are defined in grams of CO2-eq per kWh electricity delivered to the 

electrical demand (g CO2-eq /kWh). Eq. 8 shows that Ieng is a function of the annual required natural 

gas (NG) in MWh. Iw is also a function of number of wind turbines (T) and the annual delivered 

megawatt-hours of wind energy (W) (Eq. 9) and IB is dependent on storage capacity (S) in MWh 

(Eq. 10). The total GHG emissions of the integrated system (E) is calculated in Eq. 11 based on 

each components’ impact and the fraction of delivered electricity that is provided by wind (Dw), 

VRFB (DB) and the NG engine (DNG). 

𝐼𝑒𝑛𝑔(
𝑔 𝐶𝑂2𝑒𝑞

𝑘𝑊ℎ𝑒
) =

𝐸𝑢 + 𝐸𝑚𝑡𝑟𝑙,𝑒𝑛𝑔 + 𝐸𝑚𝑓𝑐,𝑒𝑛𝑔 + 𝐸𝑜,𝑒𝑛𝑔

𝑁𝐺 ∗ 𝑌 
              (𝐸𝑞. 8) 

𝐼𝑤(
𝑔 𝐶𝑂2𝑒𝑞

𝑘𝑊ℎ𝑒
) =

𝐸𝑚𝑡𝑟𝑙,𝑠𝑖𝑡𝑒 + 𝑇 ∗ (𝐸𝑚𝑡𝑟𝑙,𝑤 + 𝐸𝑖𝑛𝑠𝑡,𝑤 + 𝐸𝑜,𝑤)

𝑊 ∗ 𝑇 ∗ 𝑌  
              (𝐸𝑞. 9) 

𝐼𝐵(
𝑔 𝐶𝑂2𝑒𝑞

𝑘𝑊ℎ𝑒
) =

𝐸𝑚𝑡𝑟𝑙,𝑆 ∗ 𝑆 + 𝐸𝑚𝑡𝑟𝑙,𝑃 ∗ 𝑃𝐵 + 𝐸𝑃,𝐵 ∗ 𝑆

𝑆 ∗ 𝑌 
              (𝐸𝑞. 10) 

𝐸 (
𝑔 𝐶𝑂2𝑒𝑞

𝑘𝑊ℎ𝑒
) = 𝐼𝑤 ∗ 𝐷𝑤 + 𝐼𝑒𝑛𝑔 ∗ 𝐷𝑁𝐺 + 𝐼𝐵 ∗ 𝐷𝐵      (𝐸𝑞. 11) 

The total cost of the off-grid system in terms of $/MWh delivered electricity is quantified based 

on each component costs. D is the total electrical demand that is supplied annually and is defined 

in megawatt-hours. The fixed cost (Cfixed,eng) and the annual variable costs (Cvar,eng) of natural gas 

are calculated in Eq. 12 and Eq. 13 assuming 16% carrying cost (CCeng) to cover return on equity, 



34 

 

debt, payments, fixed O&M, taxes, insurances and the values of any subsidies. The fixed cost is a 

function of the reciprocating engine installed cost (Ceng) in $/kW and its nameplate capacity (Peng) 

in kW, which is assumed to be 3 MW for each of the nine reciprocating engines. While, the variable 

cost is a function of natural gas fuel cost (Cf) in $/MMBtu, annual required natural gas generation 

(NG) in MWh, heat rate (HR) in MMBtu/MWh and variable operation and maintenance costs 

(VOM) in $/MWh.    

𝐶𝑓𝑖𝑥𝑒𝑑,𝑒𝑛𝑔($) = 𝐶𝑒𝑛𝑔 ∗ 𝑃𝑒𝑛𝑔 ∗ 𝐶𝐶𝑒𝑛𝑔                    (𝐸𝑞. 12) 

𝐶𝑣𝑎𝑟,𝑒𝑛𝑔($) = 𝑁𝐺 ∗ (𝐶𝑓 ∗ 𝐻𝑅 + 𝑉𝑂𝑀)    (𝐸𝑞. 13) 

To calculate the cost of wind energy, the total installed cost (Cw) of 2000 $/kW and 12% carrying 

cost (CCw) are assumed for the wind turbine [38], [43]. The Allowance for Funds During 

Construction (AFUDC) is equal to 3% of overnight costs [39]. The wind capacity is 3 MW for 

each wind turbine (Pw). Therefore, the annual total cost of the system is calculated as shown in Eq. 

14.  

𝐶𝑤𝑖𝑛𝑑($) = 𝑇 ∗ 𝐶𝑤 ∗ 𝑃𝑤 ∗ 𝐶𝐶𝑤               (𝐸𝑞. 14) 

Total cost of energy storage is calculated based on the battery components’ cost, segmented into 

costs driven by storage capacity (MWh) and costs driven by rated power (MW), both in $. The 

stack cell components’ costs (Cbattery/power) are dependent on the rated power of the battery and the 

storage components costs (Cbattery/storage) are based on the storage capacity of the battery. There are 

different values presented in the literature for the capital costs of VRFB [40], [41], [42], therefore 

a sensitivity analysis is done for different battery costs (section 3.4). It is assumed that the power-

related capital costs are $1,111/kW and energy-related costs are $215/kWh [41] and carrying cost 

(CCB) is 16% as shown in Eq. 15  

𝐶𝐵($) = 𝐶𝐶𝐵(𝐶𝑏𝑎𝑡𝑡𝑒𝑟𝑦/𝑝𝑜𝑤𝑒𝑟 + 𝐶𝑏𝑎𝑡𝑡𝑒𝑟𝑦/𝑠𝑡𝑜𝑟𝑎𝑔𝑒)          (𝐸𝑞. 15) 

Finally, the total cost of the off-grid system (C) in $/MWh comprises of the share of each 

component in the delivered cost as shown in Eq.16: 

𝐶(
$

𝑀𝑊ℎ
) =

(𝐶𝐵 + 𝐶𝑤𝑖𝑛𝑑 + 𝐶𝑓𝑖𝑥𝑒𝑑,𝑒𝑛𝑔 + 𝐶𝑣𝑎𝑟,𝑒𝑛𝑔)

𝐷
                              (𝐸𝑞. 16) 
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In the first scenario, the total electricity demand of the island grid is met by natural gas without 

any renewable energy generation or any stored energy in the battery. As mentioned earlier, the 

island’s annual total electricity demand is 115,523 MWh and in this scenario the only generation 

is natural gas. The environmental emissions are calculated based on the CO2-eq emitted in each 

stage utilizing the data provided in Table 2-1 and the life cycle inventory [25].   

In the second scenario, wind generation is a must-take resource and natural gas reciprocating 

engines are used to meet all electrical demand unmet by wind. Eq.17 and Eq. 18 show how hourly 

electrical demand, D (i) is met in this scenario and Eq.19 defines wind curtailment i.e. wind 

generation that cannot be delivered or stored.  

𝑊(𝑖) = {
𝑊𝐺(𝑖), 𝑊𝐺(𝑖) < 𝐷(𝑖)
𝐷(𝑖), 𝑊𝐺(𝑖) ≥ 𝐷(𝑖)

    (𝐸𝑞. 17) 

𝑁𝐺(𝑖) = {
𝐷(𝑖) −𝑊𝐺(𝑖), 𝑊𝐺(𝑖) < 𝐷(𝑖)

0, 𝑊𝐺(𝑖) ≥ 𝐷(𝑖) 
    (𝐸𝑞. 18) 

𝑊𝑐𝑢𝑟𝑡(𝑖) = {
𝑊𝐺(𝑖) − 𝐷(𝑖), 𝑊𝐺(𝑖) > 𝐷(𝑖)

0, 𝑊𝐺(𝑖) ≤ 𝐷(𝑖) 
    (𝐸𝑞. 19) 

where W(i) is the delivered wind energy at hour i, WG (i) is the amount of wind generation at hour 

i and NG(i) is the amount of required natural gas at hour i, and finally Wcurt(i) is wind curtailment 

at hour i; all in MW. In this scenario two components of natural gas engine and wind turbine are 

included in the system; therefore, the total environmental impact of the system (E) is estimated by 

adding the two components’ environmental impact based on their share in providing electricity to 

the demand (DNG and Dw).   

The last scenario includes all three components of wind generation and energy storage and natural 

gas reciprocating engine. In this case, wind is treated as a must-take resource as well. Excess wind 

is stored in the battery, and it is discharged (assuming 75% round-trip efficiency) when there is 

not enough wind generation. Natural gas generation is used to meet all energy demand unmet by 

the wind and battery, as shown in Eq. 20 to Eq. 23.  

𝑊(𝑖) = {
𝑊𝐺(𝑖), 𝑊𝐺(𝑖) < 𝐷(𝑖) 
𝐷(𝑖), 𝑊𝐺(𝑖) ≥ 𝐷(𝑖)

    (𝐸𝑞. 20) 
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𝐵𝑅(𝑖) = {

𝑊𝐺(𝑖) − 𝐷(𝑖), 𝑊𝐺(𝑖) > 𝐷(𝑖)

(
1

0.75
) ∗ (𝑊𝐺(𝑖) − 𝐷(𝑖)), 𝑊𝐺(𝑖) < 𝐷(𝑖)

     (𝐸𝑞. 21) 

𝑁𝐺(𝑖) = {
𝐷(𝑖) −𝑊𝐺(𝑖), 𝑊𝐺(𝑖) < 𝐷(𝑖), 𝑆𝑂𝐶(𝑖) = 10%      

0, 𝑊𝐺(𝑖) ≥ 𝐷(𝑖) 𝑜𝑟 𝑆𝑂𝐶(𝑖) > 10%
 (𝐸𝑞. 22) 

𝑊𝑐𝑢𝑟𝑡(𝑖) = {
𝑊𝐺(𝑖) − 𝐷(𝑖), 𝑊𝐺(𝑖) > 𝐷(𝑖), 𝑆𝑂𝐶(𝑖) = 10%

0, 𝑊𝐺(𝑖) ≤ 𝐷(𝑖) 
    (𝐸𝑞. 23) 

where BR(i) is the battery power rating at hour i in MW, and SOC(i) is battery’s state of charge as 

a percentage of the total storage capacity. 

Finally, different emissions targets are defined for the off-grid system to determine the 

combination of components at which adding energy storage to the system is more cost-effective 

than adding another wind turbine, considering the wind curtailment. Eq.24 shows how the design 

variables i.e. number of turbines (T) and battery capacity (B) in MWh are defined to meet the 

required target (in g of CO2-eq/kWh) at the least cost: 

𝐷𝑒𝑓𝑖𝑛𝑒 (𝑇, 𝐵) →  𝑠𝑜 𝑎𝑠 𝑡𝑜 𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝐶(𝑇, 𝐵)                     (𝐸𝑞. 24)  

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝐸(𝑇, 𝐵) < 𝑡𝑎𝑟𝑔𝑒𝑡 

2.3. Results  

2.3.1. Life Cycle Assessment Results  

The results of the LCA analysis over the 20-year lifetime of the system components are shown in 

Table 2-2 as GHG emissions by life cycle stage for the natural gas reciprocating engine, wind 

turbine, and VRFB. These values are used to determine the environmental impact of the system in 

each scenario.   
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Table 2-2 Life Cycle GHG Emissions Results 

Life Cycle Stage Variables Emissions 

E
n

g
in

e Material & Parts Production Emtrl,eng 
78*10^3 (kg of CO2-eq per 

engine) 

Manufacturing Emfc 
59*10^3 (kg of CO2-eq per 

engine) 

W
in

d
 T

u
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in
e 
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P
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Wind Turbine,  

Foundation and 

Switch Gear 

Emtrl,w 
7.3*10^5 (kg CO2-eq per 

turbine) 

Other Site parts Emtrl, site 23*10^5 (kg CO2-eq) 

Wind Plant Installment Einst 
34,172 (kg CO2-eq per 

turbine) 

Wind Plant Operation Eo 
68,300 (kg CO2-eq per 

turbine) 

V
R

F
B

 

M
at

er
ia

l 
&

 

P
ar

ts
 P

ro
d
u
ct
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n
 

Storage 

dependent 
Emtrl,s 34,800 (g of CO2-eq/kWh) 

Power rating 

dependent 
Emtrl,p 160,600 (g of CO2-eq/kW) 

Battery Production EP 55,000 (g of CO2-eq/kWh) 

 

2.3.2. Scenarios Analysis Results 

In the pure natural gas scenario, the total life cycle emissions of CO2-eq into the air are 650 g of 

CO2-eq/kWh. The total cost of the delivered electricity is $105/MWh, which includes fixed costs 

and variable fuel and maintenance costs. The results of other scenarios are shown in Fig. 2-2(a) 

and Fig. 2-2(b). In each case, the number of wind turbines is selected to be 0, 5, 10, 15, 20 and 25 

turbines. A full table of results, including number of turbines, storage capacity and wind 

curtailment in each scenario is provided in Appendix C. The results show that in the second 

scenario with combination of natural gas and wind generation, increasing wind penetration reduces 

the total emissions, while the environmental impact of the renewable energy is less than 2% of the 

whole impact of the off-grid system. On other hand, the cost of wind energy is the significant 

component in the total cost compared to fossil fuel. (Each component’s share in total emissions 

and total costs are presented in Appendix C).  
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The results of the last scenario, which includes all three components of renewable energy, fossil 

fuel combustion and energy storage are shown in Fig. 2-2(b). In this case, the size of the storage 

is held constant at 400 MWh to determine the effect of increasing wind penetration in total 

emissions and cost. The amount of wind curtailment is less than the scenario without energy 

storage (Appendix C).  

 

Fig. 2-2 (a) Total emissions and total costs of the system in scenario 2 with natural gas combustion and 

wind energy. (b) Total emissions and total costs of the system in scenario 3 with natural gas combustion 

and wind energy integrated with VRFB as energy storage. (The storage capacity is held constant at 

400MWh.) 

2.3.3. Optimization Results  

This section details the total environmental impact and total cost of the off-grid system for a range 

of wind turbines and VRFB storage capacity. Fig. 2-3 shows the total emissions and total costs of 

the off-grid system for different combinations of system components: wind generation, energy 

storage and natural gas. Under the cases where wind and/or VRFBs are added, life cycle CO2-eq 

emissions decrease, as compared to natural gas only case, which yielded 650 g of CO2-eq/ kWh. It 
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also shows that, while there are emissions associated with different life cycle stages of VRFBs, 

their integration promises decreasing total system life cycle emissions.  

Fig. 2-4 shows the total costs of the off-grid system also for different combinations of wind 

turbines, storage capacity and natural gas. All scenarios show an increase in cost over the pure 

natural gas case, which yielded delivered cost of $105/MWh. It is noticeable that adding renewable 

energy integrated with energy storage can reduce the environmental impact of the system 

significantly but at the same this adds more cost to the system. Fig. 2-5 shows this trade-off in the 

concept of cost of carbon mitigation. The costs and emissions in each combination of wind turbines 

and battery capacities are compared to the pure natural gas scenario to evaluate the cost of carbon 

mitigation, as calculated in Eq. 25.  

𝐶𝑐𝑎𝑟𝑏𝑜𝑛 (
$

𝑡𝑜𝑛𝑠 𝑜𝑓 𝐶𝑂2𝑒𝑞
) =

𝐶(𝑇, 𝐵) − 𝐶𝑁𝐺

(𝐸𝑁𝐺 − 𝐸(𝑇, 𝐵)) ∗ 𝛿
                  (𝐸𝑞. 25) 

where CNG is the total delivered costs in pure natural gas case in $/MWh and ENG is the total 

emissions in that case in g of CO2-eq/kWh, and 𝛿 is the conversion factor to convert grams into 

tons and is equal to 1.1 ∗ 10−6. 

 

Fig. 2-3 Total emissions of the system (in g of CO2-eq/kWh) in different system configuration 
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Fig. 2-4 Total costs of the system (in $/MWh) in different system configuration 

 

Fig. 2-5 Cost of carbon mitigation in different system configuration (minimum at T=1, B=0) 

Fig. 2-6. shows the wind curtailment in different combination of system components. The 

maximum wind curtailement occurs when the maxiumum number of wind turbines are available 

without any energy storage integration.  



41 

 

 

Fig. 2-6 Wind curtailment in different system configurations 

Next, emissions targets are defined in the range of 100 to 650 g of CO2-eq/kWh with increment of 

10 g/kWh to determine the combination of components at which adding energy storage to the 

system is more cost-effective than additional wind capacity. For each life cycle emissions target, 

the number of wind turbines and the amount of battery storage capacity are determined to meet the 

minimum cost configuration. The optimization results show that with emission targets equal to 

and less than 190 g/kWh, adding energy storage to the system is a more cost-effective solution 

than adding more wind energy. 

Table 2-3 Life cycle emissions target optimization results 

Emission Target            

(g of CO2-eq/kWh) 

Number of 

Wind Turbines 

Battery 

Capacity 

(MWh) 

Wind 

Curtailment 

(%) 

Delivered 

Energy Cost 

($/MWh) 

100 25 300 50.2 394.5 

110 23 290 46.6 370.9 

120 22 250 45.4 349.2 

130 21 220 44.1 330.4 

140 20 200 42.5 314.6 

150 19 180 40.9 298.9 

160 18 170 38.9 286 

170 17 160 36.8 273.1 

180 16 150 34.4 260.4 

190 15 150 31.2 250.5 

200 28 0 65.6 233.3 

210 24 0 61 208.1 

220 22 0 58.2 197.8 

230 20 0 55.1 186.3 
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240 18 0 51.5 174.8 

250 17 0 49.4 169.2 

 

Based on the results in Table 2-3, integrating energy storage is not cost-effective to achieve the 

emissions targets of 200 g of CO2-eq/kWh and higher. Also, the energy storage becomes 

economically viable when the wind curtailment reaches approximately 66%.  

2.3.4. Sensitivity Analysis  

A sensitivity analysis was conducted to test the results of the breakeven emissions target where 

VRFB are used against several assumptions. Results are most sensitive to battery cost, natural gas 

upstream emissions, wind price, and battery round-trip efficiency (𝜂). The assumptions for the 

base case are provided in Appendix D. The tornado chart in Fig. 2-7 represents the results of the 

analyses. The breakeven emissions target for the viability of energy changed in a range of 160-260 

g/kWh in different scenarios.  

It is clear that the natural gas upstream emissions and battery costs have the highest contributions 

to the uncertainty of the results. There are large uncertainties associated with the natural upstream 

emissions indicated by the wide range of values presented in the literature; and in addition to this 

uncertainty, there is also variability based on natural gas sources [28], [29], [30]. The main 

difference is in the amount of methane leakage during natural gas production. For instance, a range 

of 0.97% to 5.47% of NG produced is estimated for conventional NG and a range of 0.71% to 

5.23% is estimated for shale gas, while a range of 0.972 to 1.629 grams of CO2 per MJ of NG is 

estimated for both gases [30]. In this study, the global warming potential (100-year) of 21 is used 

for methane [44]. Therefore, a range of 10 to 60 lbs/MMBtu is assumed for the natural gas 

upstream emissions factor, and the mean value (35 lbs/MMBtu) is considered to be the base case 

value.  

To find the sensitivity of the result to the battery component costs, two cases were defined for the 

VRFB; the low cost battery and the high cost one. It is assumed that the most expensive battery 

costs $1,143/kW and $356/kWh, while the cheapest (optimistic) battery costs $382/kW and 

$78/kWh [40]. If the low cost battery becomes available, the energy storage outweighs the cost of 

wind curtailment at higher emissions target of 250 g/kWh.  
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The onshore wind overnight capital cost has fluctuated in the range of 1200 to 2600 $/kW in the 

past five years [43] and the results were tested for this range of wind price. For the round-trip 

efficiency of the VRFB, a range of 65% to 90% is assumed. The results show that emissions target 

does not change by decreasing the round-trip efficiency from 75% (base case) to 65%.   

The Michigan natural gas price sold to electric power consumers has changed between 

$3.37/MMBtu to $12.09/MMBtu from April 2013 to April 2014 [31]. The emissions target was 

tested to this range of fuel price. However, the result was not sensitive to the natural gas fuel cost, 

due to the high cost of the battery and the wind energy price compared to the fuel; and also wind 

and battery power exceeded natural gas cost. 

 

Fig. 2-7 Results of sensitivity analysis to wind price, battery cost, NG upstream emissions factor and 

round-trip efficiency 

2.4. Conclusions and Discussion  

Environmental and economic metrics of an off-grid electrical system are evaluated in different 

configurations to determine the effect of energy storage on total emissions and total system costs. 

Life cycle assessment is utilized to analyze the emissions associated with different life cycle stages 

of the system components: wind plant, vanadium redox flow battery, and natural gas reciprocating 

engine. The relationship between system life cycle emissions and total costs are utilized to 

determine emissions targets, for which VRFBs are lower cost option. The optimization results 

show that energy storage reduces the wind curtailment and life cycle emissions significantly, and 

at greenhouse gas emissions target of 190 g of CO2-eq/kWh and lower, energy storage can be a 
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lower cost alternative. The cost of the battery is still high and potentially volatile, and can change 

the results significantly. The results are also sensitive to natural gas upstream emissions and wind 

energy capital cost and battery round-trip efficiency.  

This research combines both environmental and economic sustainability metrics of large-scale 

integration of energy storage to define different GHG emissions targets in a cost-effective 

configuration comprising renewable energy, energy storage, and natural gas generation. Other 

studies focus on economic and environmental aspects of integrating energy storage, without 

addressing emissions targets which is a critical criterion especially for decision and policy 

makings.  

EPA has proposed CO2 emissions targets to cut carbon pollution from existing power plants under 

Clean Power Plan [45]. At the time this research was conducted, this plan aimed to help cut carbon 

emissions from the power sector across the country by 30 percent from 2005 levels by 2030[46]. 

For example, the final GHG emissions goal (2030 and thereafter) for the state of Michigan was 

proposed 526.6 g of CO2-eq/kWh at this time [47]. The state emissions goal reflects a composite 

emissions rate including fossil and zero emitting non-fossil technologies and vary in different 

states based on their pre-existing technologies and generations. Integration of variable renewable 

energies such as wind or solar into existing electrical grid can help reduce the carbon emissions 

from electricity generation and therefore help states achieve these emissions targets. This research 

suggests that energy storage integration shows promise for lowering the total life cycle emissions, 

for systems with high levels of wind curtailment. 

The case study is an isolated electrical load without any grid connection. Therefore, it is assumed 

that the isolated electrical demand can be supplied entirely by the off-grid system and the adjacent 

electrical grid infrastructure is not considered. However, the life cycle emissions associated with 

several life cycle stages of the system’s components will not change even if the system is connected 

to the electrical grid. The full LCA presented in this study could be extended to examine grid-

connected systems as well, with life cycle modeling of the battery storage systems and utility scale 

applications informing the optimal solution to reach low GHG targets sets depending on grid 

profiles (fuel mix, renewables and demand) and dispatch models for a specific region.   

The demand for battery energy storage has increased in line with growing attempts to integrate 
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renewable energies into the grid. From a policy perspective, California in 2010 passed legislation, 

requiring 1,325 MW of electricity storage by 2024 (excluding large-scale pumped storage) [48]. 

In practice, one of the largest utility-scale operational electricity storage is a 4 MW sodium-sulfur 

(NaS) battery system in Presidio, Texas. This energy storage facility was started in 2010 to provide 

rapid back up to voltage fluctuations and momentary fluctuations in the ERCOT grid due to its 

quick response [48]. Among battery storage technologies, VRFBs have potential applications such 

as renewables integration, ramping, electric supply capacity, renewables capacity firming, micro-

grid capability and load leveling [48]. VRFB technology can be a possible match to the needs of 

utility-scale wind farms. Wind energy charges the batteries and then storage system discharges to 

regulate the wind farm output to the grid requirements. When wind speed changes over the course 

of a few seconds, the storage system flattens the frequency fluctuations that would happen, 

maintaining the quality of power delivered to the consumers [42], [49]. 

This study helps to develop a set of guidelines for improving the early stage battery chemistry 

research and development that addresses the battery storage systems and their requirements for 

utility scale applications. Vanadium is the significant element in VRFB construction; future studies 

could consider whether the availability of vanadium is a constraint to large scale deployment of 

VRFB. Accordingly, a future study can be developed based on the results of this research to 

investigate how economic and environmental sustainability metrics shape the battery design 

process with the goal of reducing the components costs, so that energy storage integration becomes 

cost-effective at higher emissions targets. Finally, this research will advance the application of life 

cycle analysis methods to energy storage systems and provide a better understanding of the role of 

energy storage in achieving emissions goals.  
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Appendices  

Appendix A.  

Table 2-4 Definition of variables 

Total demand MWh D 

Annual natural gas generation kWh NG 

Heat rate Btu/kWh HR 

Upstream air emissions factor lb/MMBtu EFU 

Upstream emissions g/kWh EU 

Engine operating emissions factor lb/MWh EFO 

Engine manufacturing emissions factor kg of CO2-eq/kg of engine EFmfc,engine 

Operating emissions grams of CO2-eq EO 

Material production emissions grams of CO2-eq EMtl 

Manufacturing emissions grams of CO2-eq EM 

Installment emissions  grams of CO2-eq EIns 

End of life emissions grams of CO2-eq EEOL 

Natural gas engine fixed installed cost $/kW Ceng 

Natural gas engine fixed cost $ Cfixed,eng 

Natural gas engine variable cost $ Cvar,eng 

Natural gas engine rated power MW Peng 

Natural gas fuel cost $/MMBtu Cf 

Variable operations and maintenance costs $/MWh VOM 

Number of turbines - T 

Wind turbine installed cost $/MW Cw 

Installed wind capacity MW Pw 

Annual wind cost $/MWh Cwind 

Battery installed cost $/kW 

$/MW-h 

Cbattery,power 

Cbattery,storage 

Carrying cost % CC 

Natural gas engine environmental impact g CO2-eq/kWh Ieng 

Wind plant environmental impact g CO2-eq/kWh Iw 

Battery environmental impact g CO2-eq/kWh IB 

Total emissions of the system g CO2-eq/kWh E 

Total cost of the system $/MWh C 

Total wind delivered to demand kWh W 

Storage capacity kWh S 

Battery power rating kW PB 

Total cost of battery $ CB 

Total electricity generation of the battery kWh B 

Percentage of demand met by NG % DNG 

Percentage of demand met by battery % DB 

Percentage of demand met by wind  % DW 

Cost of carbon mitigation $/g of CO2 Ccarbon 
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Appendix B. The assumption for recycled content methodology 

Table 2-5 The assumption for recycled content methodology 

Material 
Recycled 
Content (%)  

Reference 

Emissions 

Factor of  
Primary 

Material 

Reference 

Emissions 

Factor of 
Secondary 

Material 

Reference 

Steel & Iron 41 [50] 1.5 [52] 0.1 [52] 

Cast Iron 90 [51] 2.08 [53] 1.4 [53] 

Aluminum 36 [50] 11.9 [53] 1.6 [53] 

Copper 30 [50] 1.9 [53] 0.9 [53] 

 

Appendix C. Scenario Analysis Details  

Appendix C.1.  

Table 2-6 Life cycle emissions in different scenarios 

Scenario 
Number of 
Turbines 

Battery 

Energy 
Storage 

(MWh) 

Battery 

rating 

(MW) 

Wind 

Emissions 

(g/kWh) 

Battery 

Emissions 

(g/kWh) 

NG Engine 

Emissions 

(g/kWh) 

             

Total 

Emissions 
(g/kWh) 

2 

 

5 0 0 2.8 0 417.9 420.7 

10 0 0 4.6 0 308.1 312.7 

15 0 0 6.4 0 250.4 256.8 

20 0 0 8.2 0 216.8 225 

25 0 0 10 0 194.8 204.8 

3 

5 400 29.2 2.8 18 416.5 437.3 

10 400 29.2 4.6 18.1 228.7 251.4 

15 400 35.3 6.4 14.5 135.2 156.1 

20 400 50.3 8.2 19.5 89.9 117.6 

25 400 65.3 10 20.6 61 91.6 

 

Appendix C.2.  

Table 2-7 Contribution to total cost of delivered electricity in different scenarios 

Scenario 
Number of 
Turbines 

Battery 

Energy 
Storage 

(MWh) 

Battery 

rating 

(MW) 

Wind 

Costa 

($/MWh) 

Battery 

Costa 

($/MWh) 

NG 

Engine 
Costa 

($/MWh) 

            
Total 

Delivered 

Costa 
($/MWh) 

2 

 

5 0 0 31.1 0 79.6 110.7 

10 0 0 62.3 0 69.8 132.1 

15 0 0 93.4 0 64.6 158 

20 0 0 124.6 0 61.6 186.2 

25 0 0 155.8 0 59.6 215.4 

3 

5 400 29.2 31.1 164.1 79.3 274.5 

10 400 29.2 62.3 164.1 62.7 289.1 

15 400 35.3 93.4 173.5 54.3 321.2 

20 400 50.3 124.6 196.6 50.2 371.4 

25 400 65.3 155.8 219.7 47.7 423.2 

Note: a) per MWh of total delivered electricity. 
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Appendix C.3.  

Table 2-8 Electricity storage/generation cost by technology type 

Scenario 
Number of 

Turbines 

Battery 
Energy 

Storage 

(MWh) 

Battery 

rating 
(MW) 

Wind Cost 

b ($/MWh) 

Battery 

Cost c 
($/MWh) 

NG 
Engine 

Cost d 

($/MWh) 

2 

 

5 0 0 87.3 0 123.9 

10 0 0 118.4 0 147.3 

15 0 0 152 0 167.9 

20 0 0 186.9 0 184.9 

25 0 0 222.4 0 199.2 

3 

5 400 29.2 87.3 2.4*10^4 124.6 

10 400 29.2 118.4 1.3*10^3 178.3 

15 400 35.3 152 978.8 261.5 

20 400 50.3 186.9 1000 364.2 

25 400 65.3 222.4 1060 509.8 

Note: b) per MWh of Wind electricity delivered. Excludes wind electricity stored in battery. 

Note: c) per MWh of stored electricity delivered.  

Note: d) per MWh of NG electricity delivered.  

Appendix D.  

Table 2-9 Base case assumptions 

NG variable fuel cost [31] Cf 5.08 ($/MMBtu) 

Natural gas upstream CO2 emissions [30] EFU 35 (lb/MMBtu) 

wind overnight capital cost [43] Cw 2,000 ($/kW) 

Battery cost [41] Cbattery/power+Cbattery/storage $1,111/kW+$215/kWh 

Round-trip efficiency [19] 𝜂 75% 

 

Appendix E.  

Table 2-10 Life cycle inventory sources 

Technology Life Cycle Inventory Source 

Natural Gas Reciprocating Engine  V.M. Smith, G.A. Keoleian, “The value of remanufactured 

engines,” Industrial Ecology, vol. 8, issue 1-2, p. 193-221, 

2004.  
 

 Energy and Environmental Analysis, “Technology 

Characterization: Reciprocating Engines,” EPA: 

Washington, DC, 2008.  

 

 Burnham, J. Han, C. E. Clark, et al., “Life-cycle greenhouse 

gas emissions of shale gas, natural gas, coal and 
petroleum,” Environmental Science & Technology, vol. 

46, p. 619-627, 2012. 

 

Wind Turbine  P. Garret, K. Ronde, “Life cycle assessment of electricity 

production from an onshore V90-3MW wind plant,” 

Vestas Wind Systems, Denmark, 2012. 
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VRFB  C. Rydh, “Environmental assessment of vanadium redox and 

lead-acid batteries for stationary energy storage,” Journal 

of Power Sources, vol. 80, p. 21-29, 1999. 

 N. Jungbluth, R. Frischknecht, “Life cycle assessment for 

vanadium pentoxide from secondary resources,” ESU- 

Services (fair conducting in sustainability), Uster, 2001. 
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CHAPTER 3  
Twelve principles for green energy storage in grid applications 

Abstract  

Energy storage technologies represent a potential solution for several grid applications such as 

integration of renewables and deferring investments in transmission and distribution infrastructure. 

The integration of energy storage systems into the electrical grid can lead to different 

environmental outcomes based on the grid application, the existing generation mix, and the 

demand. Given this complexity, a framework is needed to systematically inform design and 

technology selection about the environmental impacts that emerge when considering energy 

storage options to improve sustainability performance of the grid. To achieve this, 12 fundamental 

principles specific to the design and grid application of green energy storage systems are developed 

to inform policy makers, designers, and operators. The principles are grouped into three categories: 

(1) system integration for grid applications, (2) the maintenance and operation of energy storage, 

and (3) the design of energy storage systems. We illustrate the application of each principle through 

examples published in academic literature, illustrative calculations, and a case study with an off-

grid application of vanadium redox flow batteries (VRFBs). In addition, trade-offs that can emerge 

between principles are highlighted. 

Abstract Art 

 

Fig. 3-1 Categories of principles for green energy storage systems. 
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3.1. Introduction 

Energy storage is expected to play an important role in the future of a sustainable electrical grid 

[1]. Energy storage may serve as a solution to the integration challenges of variable renewable 

energy, reduce greenhouse gas (GHG) emissions, and increase grid reliability [2]. Options for grid-

connected energy storage vary greatly, including flow batteries, Li-ion batteries, compressed air 

energy storage (CAES), flywsheels, and pumped-storage hydroelectricity. Each storage 

technology has specific operating characteristics such as response time, ramp rate, round-trip 

efficiency, service life, and discharge duration, which make it suitable for a particular grid 

application. Eyer and Corey reviewed energy storage technologies’ technical characteristics and 

identified their potential grid-scale applications and benefits [3]. Another study by Department of 

Energy examined the state of energy storage in the U.S. and abroad, describing grid applications 

for each storage system [4]. Recent policies have mandated the integration of energy storage (e.g., 

California’s requirement of 1,325 MW of storage by 2020 [5]) or created more favorable 

conditions for their integration (e.g., the Federal Energy Regulatory Agency Order 755 [6]). These 

developments suggest the potential for greater use of energy storage on the grid in coming years. 

Not only do the grid benefits vary greatly across technologies, the design, manufacturing, 

deployment, and operation of energy storage systems may lead to significantly different 

environmental impacts. Other researchers have considered and analyzed the environmental 

performance of energy storage systems. Larcher and Tarascon argued that the only viable path 

towards greener and more sustainable batteries is rooted in designing electroactive materials that 

cost less energy and release less CO2 emissions during production, while providing comparable 

performance to today’s electrodes [7]. In another study, Tarascon emphasized that, regardless of 

energy storage technology, materials with minimum environmental footprint must be integrated in 

new research towards greener storage systems [8]. Poizot and Dolhem highlighted that to improve 

the environmental footprint of rechargeable batteries and to sustain the benefits of using them, it 

is necessary to decrease the consumption of non-renewable resources, energy, and waste produced 

[9]. They also emphasized that “greenness” of a battery does not depend solely on the type of 

materials used in the battery, but also on how the battery is managed throughout its life. Indeed, 

the environmental outcomes of integrating energy storage within the power grid depend on the 

grid application, the existing generators, and the demand profile. Carson and Novan examined the 
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social benefits of integrating bulk energy storage in Texas electricity market, which has a large 

amount of renewable capacity [10]. Their results showed that energy storage for arbitrage would 

increase the average daily GHG emissions in Texas due to an increase in off-peak fossil fuels 

generation.  

Trends suggest that energy storage is poised to play an increasingly important role in power system 

operations, with the potential to greatly influence emissions. Denholm analyzed the environmental 

benefits of a biomass-based CAES integrated with wind energy in Midwestern US [11]. In this 

system, the natural gas fuel of the CAES is replaced by biomass fuel, leading to reduction in net 

CO2 emissions and the need for transmission expansion. In an overview of energy storage 

technologies for mitigating the fluctuations of renewable energy generations, both Beaudin et al. 

and Evans et al. examined the environmental benefits and challenges of such systems [12], [13]. 

In another study, Denholm and Kulcinski showed that the energy systems including renewables 

integrated with large-scale energy storage offer lower life cycle emissions [14]. 

These and other studies [15], [16], [17], show how design, development, and application of energy 

storage systems within the power grid influence environmental sustainability outcomes. They all 

provide valuable insights into the complexity associated with the environmental outcomes of 

integrating energy storage systems. However, those who design, maintain, and operate such 

systems lack a comprehensive and systematic set of principles that can yield improved 

environmental outcomes.  

This chapter provides a comprehensive set of principles specific to the design and grid applications 

of green energy storage systems to guide their research, development, and deployment. These 

principles for green energy storage build upon previous research that aims to improve 

environmental outcomes through better design and operation. 

In a guidance manual for life cycle design, Keoleian and Menerey emphasized the importance of 

addressing environmental issues in design in order to achieve a more sustainable system [18] and 

a variety of tools to support green design have evolved. Anastas and Zimmerman made an 

important contribution through their development of 12 engineering principles to guide design of 

environmentally benign products and processes [19].  McDonough et al. illustrated the industrial 

application of these principles [20] while Diwekar used the green engineering principles to develop 
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an integrated computer-aided framework for chemical process design [21]. Before the 

development of the green engineering principles, Anastas and Warner developed 12 principles for 

green chemistry [22]. Kirchhoff highlighted the impact of decisions made by chemists on the 

options available to engineers, as she defined green chemistry as a foundation on which to design 

the green engineering technologies needed to produce sustainable products, processes, and systems 

[23]. Krichhoff demonstrated that combining green chemistry with green engineering would lead 

to maximum efficiency and minimum waste.    

While these studies have successfully provided guidance and structure to green design and 

products, energy storage technologies pose unique assessment challenges that are not fully 

addressed by those approaches. Given the complexity of the grid, this study fills a research gap by 

providing a transparent set of principles to guide integration, operation and maintenance, design, 

and material choices that influence environmental impacts from integrating energy storage 

systems. The objective is to guide designers, decision makers, and utility operators on design 

options and deployment scenarios. Through analysis of expected outcomes based on application 

of these principles, one can assess the trade-offs that may emerge when faced with competing 

responses.  

Principles and frameworks are valuable as a guideline to develop sustainable solutions for 

environmental problems that continue to become more complex [24]. 12 green chemistry [22], 12 

green engineering [19], and EPA’s green engineering principles [25] have been used by industry 

and adopted in curricula, guiding effectively academic research and training future practitioners 

[26]. Inspired by and building off the 12 engineering principles [19], we propose 12 principles for 

green energy storage to provide insights into and improve the environmental outcomes when 

integrating energy storage systems into power grid. 

Interactive, participatory, and multi-disciplinary research is key in sustainability science to 

integrate the best available knowledge [27]. Therefore, to create the broad set of principles, we 

first convened a multi-disciplinary group of scholars including chemical engineers, industrial 

ecologists, chemists, and electrical engineers. Drawing on existing academic literature and 

conducting novel research, the group created an extensive list of potential principles. We 

recognized that for the principles to be widely deployed, the final list would need to be sufficiently 
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succinct and broadly applicable across energy storage technologies. Wide and effective application 

of green engineering and green chemistry principles has demonstrated that twelve principles have 

proven to be both sufficiently comprehensive, while still being manageable [19], [22]. This was a 

motivation for authors to consolidate similar concepts, resulting in a robust set of twelve principles 

specific to green energy storage systems. To solicit feedback, we presented these principles at 

several conferences with diverse audiences including electrochemists, engineers, industrial 

ecologists, and sustainability scientists [28], [29], [30], [31], [32]. Throughout this two-year 

process, we refined and finalized this set of principles presented in this chapter.  

3.1.1. Elements of Principles for Green Energy Storage  

The principles for green energy storage are grouped into three categories, which address impacts 

related to: (1) system integration for grid applications, (2) the maintenance and operation of energy 

storage, and (3) the design of energy storage systems including materials and production.  

The first category of principles addresses the impact of energy storage due to system integration 

for a variety of grid applications. The environmental impacts of integration of energy storage are 

greatly influenced by power system characteristics such as the existing grid infrastructure and 

electricity demand profiles. Also, the balance of rated power and the hours of storage capacity, as 

influenced by the application, have significant impact on the net environmental impact.  

There is a distinction between energy storage systems classified as those best suited for capacity 

applications and those best suited for energy applications [3]. For capacity applications, energy 

storage is used to displace or defer the need for installing new infrastructure such as transmission 

and distribution (T&D) lines or substations [3]. In such applications, a limited amount of energy 

storage discharge capacity may be needed for such applications. However, in energy-driven 

applications such as renewable curtailment reduction, the storage technology may require multiple 

hours of energy storage to achieve the desired results. The environmental impacts of integrating 

energy storage for each of these applications should be analyzed in the context of the application 

for which it serves.  

For example, applications of energy storage to reduce wind curtailment (which would nearly 

universally lead to improved environmental outcomes) must be evaluated in a manner different 
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than applications to defer T&D projects. In the first application, energy storage environmental 

burdens are compared with the displaced fossil fuel generation emissions. In the second 

application, energy storage provides the capacity needed to defer the construction of new T&D 

infrastructure. In this case, the energy storage burdens are compared with the displaced T&D 

infrastructure’s environmental footprint. 

The second category of principles addresses impacts associated with operation and the importance 

of effective maintenance of energy storage systems to achieve the desired outcomes. The principles 

included in the third category relate to the impacts associated with materials and production, which 

are also among the foci of the 12 engineering principles developed by Anastas and Zimmerman 

[19]. Targeting improvements in materials, device production, and also their end of life is critical 

in advancing clean and sustainable energy storage systems for grid applications. This category 

details the interventions that can occur during the design of the energy storage technology, 

highlighting the importance of performance characteristics such as efficiency and service life, 

while addressing the impacts from materials and manufacturing. 

We provide supporting examples for each principle to illustrate their application to a range of 

energy storage technologies such as, batteries, flywheels, pumped hydro, and compressed air 

energy storage (CAES). Examples are drawn from existing literature, as well as novel analysis of 

a case study. In this case study, we analyze a micro-grid to demonstrate the utility of several 

principles (Principles # 4, 6, and 11). 

Principles for Green Energy Storage in Grid Applications 

The three categories of principles are shown in Fig. 3-2 and they are explained in the next section.  
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Fig. 3-2 List of principles for green energy storage systems. 

 

3.2. The Principles  

Principle #1: Charge clean & displace dirty. 

This principle addresses use-phase emissions from generators on the grid. The net emissions 

during the operation of energy storage depend on three main factors: the emissions associated with 

the electricity that charges the energy storage system, the round-trip efficiency of the storage 

technology, and the emissions associated with the displaced generation resource. The generators 

that can be attributed with charging the energy storage system, as well as those determined to be 

displaced by the discharge of the energy storage system, are typically the marginal generators 

during the hours of charging and discharging. This means that, for many power systems, the 

generation that is increased or displaced will often vary by the time of day and season of the year. 

This also suggests that variable renewables such as wind and solar, which may be considered to 

have no dispatch costs, would typically not change their generation upon the introduction of an 
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energy storage system. A notable exception to this would be the reduction of curtailment of these 

resources.   

For many power systems, determination of the generators impacted by energy storage would 

require extensive modeling (e.g., deployment of unit commitment and economic dispatch models). 

However, a basic understanding of the system’s operations can inform one about the type of 

generator that is typically the marginal unit during off-peak and on-peak hours throughout the year. 

Using such information, we provide the following approach to estimate the net use-phase 

emissions.   

The emissions associated with fossil fuel based electricity generation technology are defined by 

the generator’s heat rate (HR) and its fuel’s upstream and combustion emissions factors (EFU, 

EFC). To illustrate the range of outcomes for net emissions, we examine several common plant and 

fuel types and a range of plant efficiencies. A range of annual heat rates for each technology is 

obtained from the annual electric utility data provided by the U.S. Energy Information 

Administration, and the net use-phase emissions are calculated for multiple combinations of 

charge-displace patterns using the 10%, 30%, 50%, 70%, and 90% percentiles for heat rates for 

each technology, excluding low-used generators and outliers [33].  

Net emissions (NE) during the operation of energy storage system in tons of CO2eq per MWh are 

calculated using Eq. 1, where EFC and EFU are the combustion and upstream emissions factors of 

coal and natural gas fuels. Their assumptions are provided in Supporting Information. In this 

example, the system boundary includes the use-phase emissions during operation of energy storage 

system, and also the upstream emissions of natural gas and coal fuels, excluding emissions 

associated with the power plants construction and energy storage production burden.  

𝑁𝐸 = {(
𝐸𝐹𝐶 ∗ 𝐻𝑅 + 𝐸𝐹𝑈

𝜂
)𝐶ℎ𝑎𝑟𝑔𝑒 − (𝐸𝐹𝐶 ∗ 𝐻𝑅 + 𝐸𝐹𝑈)𝐷𝑖𝑠𝑝𝑙𝑎𝑐𝑒} /1000                  (𝐸𝑞. 1) 

The net emissions in different charge-displace scenarios of an energy storage system are shown in 

Fig. 3-3, assuming 75% round-trip efficiency (η) [1]. As shown in Fig. 3-3, the green areas 

represent charge-displace combinations for which energy storage reduces net emissions from grid 

generation, while the energy storage increases net emissions for the red combinations. This figure 
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shows the importance of fuel type and generator efficiency on emissions for both the charging and 

displaced technologies.  

Therefore, it is very crucial to consider the marginal units that are dispatched to charge the energy 

storage system and the marginal units that are displaced by energy storage within an interconnected 

grid. For example, if a pumped-hydro storage facility is charged by coal during off-peak hours at 

night and its stored electricity is used to displace natural gas during the day, the net emissions 

would increase. On the other hand, when the battery is charged with CO2 free technology such as 

wind that would have otherwise been curtailed due to transmission constraint, the environmental 

benefits (green area) increase as the discharged electricity is used to displace more polluting fossil 

fuels, up to 1.2 t of CO2/MWh when used to displace an inefficient coal plant.  

 

Fig. 3-3 Net GHG emissions in different charge-displace scenarios for an energy storage system with 75% 

round-trip efficiency. (*Net Emissions include fuels’ combustion and upstream emissions for the fuel. 

Negative amounts are shown in parentheses.) 
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Principle #2: Energy storage should have lower environmental impact than displaced 

infrastructure.  

In capacity applications, energy storage can be used to displace or defer the need for other 

equipment and lead to both financial and environmental benefits [3]. For example, energy storage 

can be utilized to defer the need to buy new generation capacity (e.g. a simple cycle combustion 

turbine) to meet peak demand [3]. Energy storage systems can also be utilized to defer the need to 

build new T&D infrastructure [34], [35]. Growing electricity demand can strain T&D 

infrastructure as the peak power pushes the equipment’s limits and causes congestion. At locations 

where T&D resources are stretched, installing a small amount of energy storage capacity can defer 

upgrades of transmission systems, cables, or substations for several years depending on growth in 

demand [36]. The energy storage systems for grid applications typically have a service lifetime of 

at least five years [37], and when installed for infrastructure deferral, they are typically only used 

for that purpose a small percentage of the year, when the demand exceeds the infrastructure 

capacity at maximum peak times [36]. 

When assessing the environmental benefits of using energy storage for T&D upgrade deferral, it 

is essential to consider both the lifetime of the energy storage and the expected length of time the 

T&D can be deferred. Eyer et al. developed a method to calculate two key storage system 

parameters to defer T&D upgrade for one year: the power output and discharge duration (or the 

amount of energy that must be stored) [35]. They define the amount of power required from the 

storage system at a given T&D node as the portion of the peak electric demand, which exceeds the 

load carrying capacity at that node. Discharge duration is estimated based on the shape of the load 

profile expected when peak demand occurs and the amount of energy needed if the storage systems 

is to serve load. Deferral for additional years must consider impacts of load growth [35].  

There are environmental impacts associated with both the displaced equipment and the energy 

storage system life cycle. For example, Jorge et al., developed a life cycle environmental 

assessment of electricity T&D systems including power lines, cables, transformers, and substation 

equipment [38]. For such applications, energy storage life cycle environmental impact should be 

lower than the environmental impacts associated with the displaced infrastructure in order to 

improve the sustainability performance of the grid.   
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As an illustrative example, we compare a 375 kW energy storage system with 3.5 hours discharge 

duration to a substation upgrade. The energy storage defers the need for upgrading a 15 MW 

substation, for one year. The upgrade requires a 5 MVA additional capacity to meet 2% load 

growth per year [3], [36]. Using life cycle GHG emissions of a VRFB and a 10 MVA substation 

and matching their sizes with this example results in 9 tons of CO2-eq, per year for the scenario 

with energy storage, which is far less than 76.6 tons of CO2-eq per year for the additional capacity 

scenario [38], [39]. 

Principle #3: Match application to storage capabilities to prevent degradation. 

In general, all energy storage technologies experience fatigue and wear over their service lifetime 

[40]. For example, the degradation of batteries occurs gradually over time as manifested by 

declining capacity, increasing internal resistance, and elevated self-discharge [41], [42]. Different 

studies have evaluated the degradation of energy storage systems and the factors that affect it. A 

study by National Renewable Energy Laboratory reviewed models for predicting battery chemical 

degradation and mechanical stresses [43]. Chawla et al. presented a method to evaluate a batteries’ 

cycle degradation under dynamic cycle duty. They showed that selection of energy storage for a 

specific grid application depends on its size, power to energy ratio, discharge duration, ramp rates, 

and life cycle cost [42]. The degradation of energy storage systems over time, specifically batteries, 

depends on how they are used in the application. In general, every charge-discharge cycle results 

in some degradation [42].  

There are a variety of energy storage systems for grid applications. The features of each technology 

such as power rating, response time, or spacing requirements make it suitable for each application 

[44]. For example, flywheels have high charge/discharge rates for many cycles. However, their 

self-discharge rates are high, which leads to energy efficiency degradation when cycling is not 

continuous and energy is stored in the flywheel system for a period of time [45]. Therefore, these 

systems should not be a good match for grid applications that require long-term energy storage. 

Regarding their capabilities, one of the main applications of flywheels is to provide reliable 

standby power [45]. On the other hand, deep charges can shorten the cycle life of Li-ion batteries, 

because their capacity loss is dependent on temperature, rate, and depth of discharge [46]. Thus, 

they may not be utilized for back-up generation where they need to be discharged completely [45]. 
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Therefore, matching the grid application to storage capabilities such as discharge duration, and 

charge/discharge characteristics can reduce the storage system degradation.  

Principle #4: Avoid oversizing energy storage systems. 

Energy sizing in terms of rated power and the hours of storage capacity, as influenced by the 

application, is a significant driver for the net environmental impacts. Oversizing the storage system 

can lead to an unnecessary environmental impacts through increased material and manufacturing 

burdens, if the storage sizing does not appropriately match application requirements.  

A micro-grid model is analyzed in two scenarios to test the impact of VRFB sizing on total 

emissions of the system. In this micro-grid, electricity is provided for an off-grid system comprised 

of a VRFB for energy storage, wind energy, and natural gas generation. This system has an 

assumed annual demand of 10.6 MWh per capita and annual peak demand of 22 MW. The life 

cycle model developed by the authors for the case study is presented in greater detail in 

Arbabzadeh et al. [39]. In this off-grid system, wind energy is treated as a must-take resource; 

wind in excess of demand is stored in the battery. Natural gas reciprocating engines provide back-

up generation when there is not enough wind energy or stored electricity.  

In the first scenario, the off-grid system is comprised of five 3-MW wind turbines and in the second 

scenario it is comprised of 25 turbines. Total emissions include life cycle emissions associated 

with system components: wind turbines, VRFB, and natural gas engines [39]. As shown in Fig 3-

4, in case of five wind turbines, there is not enough wind energy that needs to be stored in the 

battery. Therefore, for higher than 50 MWh of battery capacity, there is no change in the amount 

of stored electricity delivered to demand and this oversizing of the battery results in increasing the 

total emissions of the system associated with the production burdens of the battery. However, in 

the other scenario with 25 wind turbines, there is enough wind energy to be stored in the battery 

that would have otherwise been curtailed. Therefore, a bigger battery leads to reducing more CO2-

eq emissions by reducing wind curtailment and offsetting more natural gas combustion. This 

demonstrates that the generator mix and load profile affect the environmental outcomes of 

integrating energy storage systems. 
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Fig. 3-4 The impact of battery sizing on emissions intensity of delivered electricity and stored electricity 

utilization in two scenarios with (a) 5 wind turbines and (b) 25 wind turbines. 

Principle #5: Maintain to limit degradation. 

In Principle #3, we discussed the importance of appropriate technology selection for a given 

application to mitigate energy storage degradation and ensure favorable environmental outcomes. 

A similar logic applies to the maintenance of energy storage systems to limit degradation. The 

regular preventative maintenance of energy storage systems lessens the likelihood of their 

degradation and failing and maximizes their performance and life expectancy [47], [48]. Some 

energy storage systems require routine and proper maintenance based on their characteristics. For 

example, a study by the U.S. Department of Bureau of Reclamation outlined the proper 

maintenance processed of batteries. The processes include readings of temperature, voltage, 

specific gravity and connection resistance, visual inspection, cleanliness, and neutralizing spilled 

electrolyte, among others [48]. EPRI has identified the operation and maintenance requirements 
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for pumped-storage hydro plants, which can limit the wear and tear imposed to mechanical and 

electrical equipment due to frequent operational mode changes and vibration during pumping [49]. 

As mentioned in Principle #3, maintaining the appropriate temperature for Li-ion batteries is 

necessary to avoid capacity fade, which can be increased by 14% when the temperature is increased 

from 10 °C to 46 °C [46]. In addition, a protection circuit is required to maintain safe operation 

for these fragile batteries to limit the battery overcharge and lithium plating [45]. Thus, it is 

necessary to maintain the energy storage systems effectively based on their requirements and 

specifications, to help limit system degradation and forced outages. 

Principle #6: Design and operate energy storage for optimal service life. 

Service life affects the materials and energy requirements for energy storage systems production 

and operation. Therefore, this principle is also relevant to design, since service life should be 

considered in both stages of energy storage design and also operation.  

From a life cycle perspective, replacing products causes additional environmental impacts 

associated with material production and processing [50]. To demonstrate this trade-off, two 

scenarios are considered for the micro-grid case study presented in Principle #4. In the first 

scenario, a 60% efficient VRFB is utilized for 20 years (only the necessary materials are replaced 

over this period of time). However, in the second scenario, a far more efficient (round-trip 

efficiency=95%) battery becomes available in Year 10, and the operators have the option to switch 

the old battery with the new one. It is assumed that the micro-grid model is comprised of 25 wind 

turbines, a 150 MWh (65 MW) VRFB, and natural gas reciprocating engines as back up generation. 

As shown in Fig. 3-5, if the battery is exchanged at Year 10, there is an increase in total GHG 

emissions of the system in that year associated with the production burden of the battery. However, 

there will be fewer emissions after 20 years if the battery is replaced with the more efficient one 

(the blue line). In this example, we assume an improvement to the technology offers the potential 

for markedly better round-trip efficiency in Year 10. For the given technology, we assume that the 

round-trip efficiency is optimized (and fixed) over the lifetime of the energy storage system for 

simplicity. 
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Fig. 3-5 Total GHG emissions of the off-grid configuration after 20 years in 2 scenarios: Replacing the 

battery (η=60%) with a more efficient one (η =95%) at Year 10 and no replacement scenario. 

Principle #7: Design and operate energy storage with maximum round-trip efficiency. 

Round-trip efficiency is one of the most important parameters for energy applications of energy 

storage systems, and needs to be considered in both the design and operation phases. It defines the 

ratio of energy input to energy retrieved from the storage system [37]. Higher round-trip efficiency 

means that less energy is lost during charge and discharge cycles. 

As discussed in Principle #1 and shown in Eq. 2, round-trip efficiency is one of the main three 

factors that affects the net use-phase emissions during the operation of energy storage systems. To 

demonstrate the impact of round-trip cycle efficiency, Fig. 3-3 is modified to assume three values 

for round-trip efficiency of the energy storage system to test the use-phase emissions results: 65%, 

75%, and 85%. Fig. 3-6 shows the impact of increasing battery round-trip efficiency on net use-

phase emissions during the operation of energy storage in different charge-displace scenarios. It is 

clear that increasing efficiency yields greater environmental benefits (green area) for a greater 

number of charge-displace combinations. The round-trip efficiency of an energy storage device is 

determined by intrinsic properties of the technology, as well as operational strategies once 

deployed. In the latter category, thermal management strategies can mitigate the heat produced 

during rapid charge and discharge cycles of Li-ion batteries, yielding improved efficiency [51], 

[52]. In this example, it is assumed that round-trip efficiency is fixed over the lifetime of the energy 

storage system for simplicity. 
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Fig. 3-6 Net use-phase GHG emissions in different charge-displace scenarios, assuming 3 values for the 

energy storage round-trip efficiency. (Net use-phase emissions include fuels’ combustion and upstream 

emissions for the fuel. Negative amounts are shown in pare 

Principle #8: Minimize consumptive use of non-renewable materials. 

The growing demand for energy storage systems requires the need for advanced materials research 

and development to address many challenges associated with storage systems economics, technical 

performance, and design. Consumptive use of non-renewable materials and resources changes 

their forms and contents in such a way that they are no longer available for their original use, 

reducing their availability and limiting the future generations’ access to these resources [53]. While 

energy storage systems can offer different grid applications, their design and production should 

minimize the consumptive use of non-renewable materials; otherwise depletion of materials can 

pose constraints on the continued deployment of these systems.  

Materials selection will also play an important role in making energy storage technologies 

affordable, efficient, and reliable [54]. Consumptive use of materials can be reduced either through 

end-of-life recovery or by substitution using renewable materials. There is considerable research 

interest in the latter category, with the aim of developing suitable material substitutes.  For 

example, renewable and organic biomass-derived materials are introduced for developing 

sustainable energy storage technologies such as battery’s electrodes [54], [55]. In another study, 

renewable synfuel derived from biomass gasification replaces non-renewable natural gas in CAES 

[11].  Huskinson et al. also indicated that wide-scale utilization of flow batteries is limited by the 

abundance and the cost of their materials [56]. They described a class of energy storage materials 
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utilized in a metal-free flow battery. The research on investigating materials with lower 

environmental implications is not limited to energy storage and includes other energy systems such 

as thin-film photovoltaic technologies [57]. 

Principle #9: Minimize use of critical materials.  

Energy storage systems can be material intensive and if they are to be widely deployed, their 

feedstock elements will be needed in large quantities [58]. A report by Sandia National Laboratory 

and Pacific Northwest National Laboratory presents a strategic material selection for energy 

storage systems [59]. This strategy emphasizes that while cost reduction of storage technologies 

is highly important and material costs have the biggest share in the cost of these technologies, it is 

critical that both abundant and low cost materials are used in storage devices. Another study 

identifies a class of chemical elements that are critical to energy sector and their shortage would 

significantly limit and transform the way energy is produced, transmitted, stored and conserved 

[59]. Risks to a material’s availability, whether that is absolute scarcity, vulnerable supply chains, 

or monopolistic suppliers, can be a potential constraint for rapid deployment of energy storage 

systems. For example, near criticality of tellurium [57], [60], [61], [62] may present a potential 

risk to its widespread use in batteries [63], [64]. On the other hand, magnesium is not typically 

considered a critical material [62], [65] and has promising performance for battery storage 

systems’ electrode [65], making it potentially more desirable than its more critical counterparts.   

The method adopted by the U.S. Department of Energy to assess the criticality of materials in 

energy sector, is framed in two dimensions: importance to clean energy and supply risk [60]. In 

another study, Graedel et al. characterized the criticality of metals and metalloids in three 

dimensions: supply risk, environmental implications, and vulnerability [62]. Considering these 

criticality dimensions in materials selection for energy storage systems that are used for grid 

applications can enhance sustainability performance.  

Principle #10: Substitute non-toxic and non-hazardous materials. 

Safety must be emphasized within energy storage systems at every level to enable the success of 

these technologies in increasing grid environmental performance. As described in a safety strategic 

plan by U.S. Department of Energy, detailed hazard analysis must be conducted for entire systems 
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to identify failure points caused by abuse conditions [66]. The possibility of cascading events 

should also be determined to prevent large-scale damage. There are different levels of toxicity or 

hazard associated with each energy storage system that needs to be understood to manage the 

trade-offs between safety and system performance. For example, in case of a CAES in depleted 

natural gas reservoirs, the risk of ignition and explosion exists [67]. In batteries, there are risks 

associated with their basic electrochemistry [66]. For example, the utilization of large-scale nickel-

cadmium batteries has been reduced due to cadmium toxicity and associated recycling complexity 

[68], [69]. Although Li-ion batteries are used widely in devices such as cell phones or laptops, 

their grid-scale usage needs to be examined from a safety point of view, since these grid 

applications require higher energy and power capacities [70]. When batteries are misused or facing 

abnormal environments, their inherent hazards cause accidental scenarios. In this case, if the active 

materials are highly energetic, their contact with flammable organic solvent-based electrolyte may 

cause dangerous situations, such as combustion of the electrolyte [70].  

The EPA describes the toxic effects of chemicals as adverse health effects they may cause and 

how the extent of these effects depends on dose, route and duration of exposure. The toxicity 

assessment is divided into two parts: (1) characterizing and quantifying the non-carcinogenic 

effects of a chemical, and (2) addressing the carcinogenic effects of a chemical [71].   

The EPA also describes hazard identification in two steps. The first step determines whether 

exposure to an agent can cause adverse health effect and whether this effect is likely to occur in 

human beings. The second step is called dose-response evaluation, which evaluates quantitatively 

the toxicity information and characterizes the relationship between the dose of received 

contaminant and the incidence of adverse health effects in the exposed population. From this 

quantitative analysis, toxicity values are determined and are used in the risk assessment to estimate 

the potential for adverse health occurring in humans at different exposure levels [72].  

Principle #11: Minimize the environmental impact per unit of energy service for material 

production and processing. 

Materials production and manufacturing phases have significant environmental burden among 

energy storage systems’ life cycle stages. To demonstrate this principle, the total emissions of the 

micro-grid system, first presented in Principle #4, are tested using three values for representing 
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VRFB production burden. The VRFB material production emissions comprise two parts: energy-

dependent materials emissions in grams of CO2-eq per kWh (Emtrl,S) and capacity-dependent 

materials emissions in kg of CO2-eq per kW (Emtrl,P) [39]. The detailed GHG emissions assumptions 

for VRFB materials production and manufacturing are provided in Supporting Information.  

Fig. 3-7 shows the total emissions of the micro-grid system, which is comprised of the system 

components’ greenhouse gas emissions. As shown in in this diagram, the total emissions of the 

micro-grid system decrease, as more battery capacity is available to offset more natural gas 

combustion. However, this reduction is steeper when the battery production burden is decreased.   

 

Fig. 3-7 The impact of decreasing battery production burden on total emissions in the micro-grid case 

study, which includes 25 wind turbines, natural gas, and VRFB. 

Principle #12: Design for end-of-life. 

Recently, increased attention has been paid toward environmental impacts of energy storage 

systems’ end of life [73]. Careful analysis of environmental burdens associated with disposal of 

storage systems is necessary to determine the best disassembly, recycling, remanufacturing, and 

reuse approaches.  

Herman et al. argues that due to the increasing demand for Li-ion batteries, economically beneficial 

and technically mature disassembly systems are necessary for the end-of-life of these systems [74]. 

End-of-life approaches such as, recycling and reuse can significantly reduce global demand for 
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extracted materials [60]. Designing energy storage systems such as batteries with recyclable 

materials leads to environmental improvements and cost reduction [75]. Wang et al. argues that 

eliminating landfilling as a result of recent disposal bans on rechargeable batteries increases the 

need for development of alternative end-of-life management strategies such as recycling valuable 

metals contained within the battery [76]. As opposed to traditional recycling of batteries, 

refunctionalization of cathodes is the remanufacturing of active materials to regain electrochemical 

performance at end-of-life, offering economic and environmental savings [77]. 

One example of battery reuse is the emerging trend of utilizing used batteries that first served in 

automotive applications, in grid-scale stationary applications [78]. Reuse of electric vehicle (EV) 

Li-ion batteries can offset the production burden of new batteries by extending battery service life 

[79]. One of the promising applications of second use batteries is to replace combustion turbine 

peak plant and provide peak-shaving grid application [80]. However, one of the critical 

methodological challenges is the allocation of environmental impacts of batteries across their 

mobile and stationary applications [79], [81]. The challenge is to take into account the allocated 

environmental impacts associated with the production of EV battery’s cells and module, end of 

life management, refurbishment, and efficiency losses into the overall environmental burden of 

the refurbished EV battery that will have a stationary application [79]. 

3.3. Discussion 

There has been a rapid development in energy storage technologies and the demand for energy 

storage is expected to grow due to recent policies such as California’s requirement of 1,325 MW 

of storage by 2020 [5] and the Federal Energy Regulatory Agency Order 755 [6]. Energy storage 

systems can be utilized for different grid applications such as renewable integration, load leveling, 

and T&D upgrade deferral. However, the deployment of energy storage systems within the 

electrical grid creates unique challenges for integration and can yield different environmental 

outcomes. These challenges and outcomes depend on grid characteristics, electricity demand, and 

existing generation assets; therefore, a framework is needed to systematically assess the 

environmental outcomes of energy storage systems integration. The primary objective of this 

chapter is to provide a robust set of principles specific to energy storage systems to inform decision 
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makers, utility operators, and energy storage designers about these challenges and environmental 

outcomes.  

This new set of principles for the design and application of green energy storage systems builds 

upon the 12 engineering principles developed by Anastas and Zimmerman [19], but departs from 

them in two key aspects. First, these principles are designed to directly address challenges and 

issues of integration that relate to unique aspects of the deployment of these technologies. 

Secondly, the principles are grouped into three categories that target different audiences: namely 

system operators, load serving entities, and energy storage systems designers.  

For each principle, we provided examples of improved environmental outcomes, using published 

studies, illustrative calculations, and a case study with an off-grid application of VRFB. These 

principles are designed to be universally applicable to all energy storage technologies such as 

various types of batteries, flywheels, pumped-storage hydroelectricity, and CAES. The grid 

applications for these energy storage systems can also span a broad range including reserve 

capacity, T&D upgrade deferral, and renewable integration, among others. Different 

environmental impact categories including GHG emissions, resource depletion, criticality, and 

toxicity were considered in these examples. 

These principles provide broad guidance for design considerations, operations, and grid integration 

that can yield sustainability improvements. When viewed in isolation, each of them achieves this 

stated goal. However, in real applications, the principles may conflict with each other and create 

the need to evaluate trade-offs. For example, Principle #7 seeks to increase round-trip efficiency. 

On the other hand, enhancing the efficiency may require additional materials or energy inputs, 

such as adding sulfuric acid to activate the graphite felt surface of VRFB and decrease its internal 

resistance and consequently increase the round-trip efficiency [82], [83]. This can increase the 

environmental impacts associated with the material production and conflict with Principle #11, 

which focuses on decreasing an energy storage system’s material production burden. Another 

example of such trade-offs relates to Principle #4, in which avoiding oversizing energy storage 

systems, yield to environmental benefits. However, the use-phase may dominate and displacing 

additional coal generation (Principle #1) may be well worth any material burdens associated with 
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oversizing. Limiting energy storage system’s size may also lead to degradation. This conflicts with 

Principle #5, which focuses on limiting degradation. 

In such instances when the principles conflict, a robust sustainability assessment is required to 

evaluate different options to find the most sustainable approach in energy storage systems’ design, 

deployment, and operation scenarios. The goal of this chapter is to present a robust framework to 

guide initial decisions, as well as identify such areas of conflict where further analysis is needed. 

In future work, we will apply the principles in a sustainability assessment algorithm based on LCA 

methods to evaluate the sustainability performance of different energy storage systems to meet 

specific grid applications, particularly for cases where the principles conflict.  
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Appendices 

Appendix A. Principle #1: Charge clean, displace dirty  

Table 3-1 Natural gas and coal emissions factors 

 
Upstream Emissions 

(kg of CO2eq/MWh) [84] 

Combustion Emissions  

(kg of CO2/MMBtu) [85] 

Natural Gas  15.8 53 

Coal  5.6 97 

 

Appendix B. Principle #11: Minimize the environmental impact per unit of energy service 

for material production and processing. 

Table 3-2 The detailed GHG emissions assumptions for VRFB materials production and manufacturing of 

the battery in the model 

 

a Rydh compared the environmental impacts of VRFB to lead-acid battery [86]. Rydh’s GHG results for VRFB 

are considered as the minimum value, the results provided by Arbabzadeh et al. [39] as base case and Rydh’s 

GHG results of a lead-acid battery as high value [86]. 

Clarifications: 

The case study and life cycle assessment results presented in Arbabzadeh et al. [39] are used in 

this study to develop new demonstrating examples for selected principles.  

The principles are designed to inform early decision-making and help steer choices to 

environmental improvements. The evaluation of full impacts will use a life cycle framework, in 

turn evaluating tradeoffs. 
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CHAPTER 4  
Parameters driving environmental performance of energy storage systems 

across grid applications 

Abstract 

Large-scale energy storage may effectively meet the needs of several grid applications. However, 

understanding the environmental impact of energy storage for these grid applications is challenging 

due to diversity in loads, grid mixes, and energy storage systems. Comprehensive sustainability 

assessments are necessary to yield the best environmental outcomes for grid-scale energy storage 

systems. To achieve this, we first developed fundamental principles for green energy storage, 

addressing key issues such as material sustainability, round-trip efficiency, service life, and 

degradation. In the current study, we couple the principles with a sustainability assessment model to 

investigate the impact of design and operational parameters on environmental outcomes of utilizing 

energy storage for grid applications. This model takes into account the service that the energy storage 

would provide (e.g., bulk energy time-shifting) as well as the energy storage parameters and grid 

application parameters that influence environmental outcomes. Parameters examined include energy 

storage round-trip efficiency, degradation, service life, upstream production burden, and heat rates 

of charging and displaced generation technologies. Environmental sustainability performance is 

evaluated using a universal set of equations that incorporates all the mentioned parameters. The 

relationships between these parameters are investigated to determine their influence on 

environmental performance of energy storage for three grid applications: energy time-shifting, 

frequency regulation, and power reliability. This model guides the design and operation of new and 

existing technologies, targeting audiences from energy storage designers to energy storage operators 

and power utilities. 
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  Table 4-1 Nomenclature  

Nomenclature 

𝜂 

𝑛 

𝑑𝑒𝑔 

𝐸𝑆𝐵𝑢𝑟𝑑𝑒𝑛𝑠  

𝐸𝑆𝐵𝑢𝑟𝑑𝑒𝑛𝑝  

𝐸𝑢𝑐ℎ  

𝐸𝐶𝑐ℎ  

𝐸𝑢𝑑𝑖𝑠  

𝐸𝐶𝑑𝑖𝑠  

𝐻𝑅𝑐ℎ  

𝐻𝑅𝑑𝑖𝑠  

𝑃 

𝑆 

𝑐𝑦𝑐𝑙𝑒 

𝑇 

 
 

energy storage round-trip efficiency  

energy storage service life   

annual degradation in energy storage round-trip efficiency and capacity   

energy storage production burden (storage dependent) 

energy storage production burden (power rating dependent) 

charging technology upstream emissions factor 

charging technology combustion emissions factor 

displaced technology upstream emissions factor 

displaced technology combustion emissions factor 

charging technology heat rate 

displaced technology heat rate 

energy storage power rating (MW) 

energy storage size (MWh) 

number of cycles 

study lifetime 

 

4.1. Introduction 

The integration of energy storage systems into the power grid may lead to a wide range of 

environmental impacts [1], [2]. Environmental sustainability assessments can guide both 

development and deployment of energy storage technologies to achieve better environmental 

outcomes. Many existing environmental assessments, however, have not systematically evaluated 

the influence of various parameters on these environmental impacts across grid applications. In this 

study, we address this gap by developing model equations to explore the key parameters that 

influence environmental outcomes of integrating energy storage systems. This parametric model 

shows how environmental impact of energy storage integration may be influenced by energy storage 

parameters and grid application parameters. Across the full range of parameters, environmental 

outcomes could be positive or negative. It can be used as a guideline to determine, systematically, 

when and how to choose storage systems to achieve positive environmental outcomes. 

Several studies have analyzed the environmental implications of energy storage systems [3], [4]. 

Argonne National Laboratory conducted life cycle assessments of different battery technologies, 
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examining emissions, energy requirements, water, and solid waste indicators [5]. Their results 

indicated that lead-acid batteries had the lowest production burden compared to other battery 

technologies. Chul et al. conducted life cycle analysis of lithium-ion battery electric vehicles from 

cradle-to-gate [6]. Their results demonstrated that cell manufacturing had the main contribution in 

upstream greenhouse gas emissions.  In a life cycle analysis of batteries, Bossche et al. concluded 

that the environmental impacts of assembly and production stages could be offset significantly when 

the collection and recycling of batteries was efficient and performed on a large scale [7]. Hou et al. 

and Larcher and Tarascon emphasized that the advancements for sustainable energy storage systems 

depended on the discovery of less expensive and environmentally benign materials [8], [9]. In a life 

cycle assessment of compressed air energy storage (CAES), Bouman et al. concluded that the design 

and processing of underground air storage had a large contribution in environmental impacts [10].  

Other studies have explored the integration of storage systems and the associated environmental 

outcomes. Arbabzadeh et al. showed that in an off-grid system, increasing vanadium redox flow 

battery capacity would have environmental benefits when reducing high wind curtailment [11]. 

Hiremath et al. showed that it would be misleading to exclude the use stage impacts and neglect the 

stationary application of battery technologies in an evaluation of their environmental performance, 

especially when they had different characteristic parameters [12]. They also demonstrated that 

increasing round-trip efficiency of batteries reduced their life cycle greenhouse gas (GHG) emissions 

significantly. Poizet and Dolhem emphasized that, besides reducing the consumption of non-

renewable materials in rechargeable batteries, managing the batteries during their lifetime would 

influence their sustainability performance [13].  

Other studies have demonstrated the importance of the grid mix [1], [14], [15], presence of 

renewables [16], [17], [18], and off-peak marginal generation [19] on environmental outcomes from 

integrating energy storage. Across all of these examples, we see that production, operation, and 

deployment of energy storage systems within a grid application can impact the environmental 

outcomes. Although these studies provide valuable insights into the environmental impacts of 

integrating energy storage systems, they do not systematically examine the role of energy storage 

parameters and grid application parameters in affecting these impacts. Our parametric analysis 

allows us to provide concrete recommendations which can be tailored to different grid applications 

and storage technologies, to influence the environmental impacts of integrating energy storage 
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systems. 

Each energy storage technology differs in operational parameters, longevity, and materials 

requirements. Several studies have identified and compared the characteristics of various energy 

storage systems that need to be evaluated when considering energy storage on the utility scale. These 

studies demonstrated that key energy storage parameters such as service life, efficiency, capacity, 

and number of cycles, among others, differed greatly across technologies [8], [20], [21], [22], [23], 

[24].  

Energy storage systems can be utilized for several distinct grid applications such as ancillary services 

and bulk storage for renewable integration [25] [26]. Each grid application has specific performance 

requirements that determine which energy storage technologies are suitable to meet the application’s 

performance requirements. Several studies have reviewed technical characteristics of energy storage 

technologies and identified their potential grid applications, including reports by the Department of 

Energy and the Sandia National Laboratory [27] [28] [29] [30] [31], and the Electric Power Research 

Institute [25] [32]. These and other studies [33] - [38] show that the fit of an energy storage system 

to a specific grid application depends on its match with the performance requirements of the desired 

application.  

Understanding the interaction between energy storage parameters (e.g., round-trip efficiency, 

degradation, service life, and production burden) and grid application parameters (e.g., generators’ 

heat rates) can inform the relative importance of each parameter in determining the environmental 

performance of utilizing energy storage, which is the focus of this study. In 2012, Hittinger et al. 

evaluated the impact of energy storage parameters on the economic cost of providing energy service 

across grid applications [39]. The study presented here is novel, however, because it identifies how 

these parameters drive environmental outcomes in grid applications, providing new insights for 

energy storage designers, operators, and utilities.  

This analysis is informed by the twelve principles for green energy storage systems, which detail 

key drivers for improving environmental performance when integrating energy storage systems in 

grid applications [2]. The principles address the importance of the operational parameters of energy 

storage such as service life, round-trip efficiency, and degradation but do not address how to deal 

with trade-offs and competing objectives. Motivated and guided by this framework, we have 
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developed universal equations to address the conflicts among the principles. In this model, the viable 

energy storage technologies for the given application are determined based on the required 

performance characteristics. The influence of parameters on the environmental outcomes is 

investigated using the universal equations, providing insights into the design and deployment of new 

technologies and the modification and improvement of existing ones. Three examples of energy 

storage applications—energy time-shifting, frequency regulation, and power reliability 

applications—are selected to demonstrate the impact of parameters on the results. These grid 

applications were chosen to illustrate a wide range of performance requirements such as required 

energy storage power rating, capacity, and number of cycles.  

4.2. Case studies: Energy Time-shifting, Frequency Regulation, and Power Reliability 

The first case study examined is the application of energy storage for bulk energy time-shifting. 

The minimum and maximum size range studied for energy storage in this application is 1 MW to 

3 GW, with discharge duration between 2 to 10 hours, operated at 300 to 400 cycles per year [25], 

[28], [40]. For the electric energy time-shifting application, several energy storage technologies 

offer the most suitable characteristics: pumped-hydro storage, flow batteries, lead-acid batteries, 

sodium-sulfur batteries, and compressed-air energy storage [25].  

In the second application, energy storage provides frequency regulation services. Frequency 

regulation involves managing the momentary variations between demand and supply in order to 

maintain grid frequency [41]. Frequency regulation has been typically provided by generation 

resources, which are online and are able to change their power output quickly. However, generators 

that are used for this application may not operate at partial/variable load efficiently, incurring more 

air emissions and wear and tear when not operating at constant load [28]. Several energy storage 

systems can be suitable alternatives for this application, due to their ability to change output rapidly 

(i.e., fast ramp rate) and efficiently. These technologies include flywheels, capacitors, Li-ion 

batteries, and advanced lead-acid batteries [28]. The size range studied for this application is 1 

MW to 100 MW with a short discharge duration of 15 minutes and 8,000 cycles per year [25], 

[28].  

The third application considered in this study is energy storage used for commercial and industrial 

power reliability. In case of a complete power failure that lasts more than a few seconds, the storage 
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technology provides enough energy to compensate for outages of extended duration, to complete 

an orderly shutdown of processes, and/or to transfer to on-site generation resources [28]. In this 

application, we explore minimum and maximum of 0.05 to 1 MW energy storage sizing with 4 to 

10 hours of discharge duration. Also, it is assumed that energy storage used for this application 

experiences 50 cycles per year, which are far fewer compared to the other two applications [25]. 

Advanced lead-acid, sodium-sulfur, Li-ion, and flow batteries have shown promising applicability 

for power reliability [25], [27].  

Table 4-2 summarizes the potential energy storage technologies for each grid application. 

Table 4-2 Selected Energy Storage System for Each Grid Application 

 Time-Shifting Frequency Regulation Power Reliability 

vanadium redox flow battery (VRFB)    

lead-acid batteries (PbA)    

sodium-sulfur batteries (NaS)    

compressed-air energy storage (CAES)    

pumped-hydro storage (PHES)    

Li-ion batteries (Li-ion)    

flywheels    

capacitors    

 

4.3. Methods 

A set of universal equations is developed to investigate the influence of various parameters on the 

environmental impact of using energy storage systems, which will be applied to time-shifting, 

frequency regulation, and power reliability applications. Although these equations can be applied 

to other grid applications, these three were selected to highlight a diverse set of applications that 

offer distinct differences in their charging patterns and technical requirements. Later, analysis is 

conducted to illustrate the interaction of parameters within the universal equations and highlight 

the importance of each parameter on environmental benefits.  
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4.3.1. Universal Model Equations  

Motivated by the twelve principles for green energy storage systems in grid applications [2], we 

developed a set of universal equations to evaluate the net emissions (NET) including upstream and 

use-phase emissions during the operation of an energy storage system. For example, one of the 

principles (Principle#1: Charge clean and displace dirty.) emphasizes charging energy storage 

with low emissions sources and using the stored electricity to displace higher emitting generation. 

The aim is to decrease the emissions during the use-phase of an energy storage system [2]. In other 

words, this principle considers the marginal units that are dispatched to charge the energy storage 

system as well as the marginal units that are displaced by energy storage within an interconnected 

grid [2]. Another principle (Principle#11: Minimize the environmental impact per unit of energy 

service for material production and processing.) highlights the necessity to minimize the 

production burden (upstream emissions) of energy storage systems. 

The net emissions (NET) during the development and deployment of an energy storage system are 

comprised of use-phase emissions (Eusephase) and energy storage upstream emissions (Eupstream) 

(Eq.1c). All emissions are defined in terms of kg of CO2eq/MWh. In this study, we investigate 

CO2eq impact factor; however, this model can be applied to other impact factors as well. Eq. 1a 

shows that Eusephase is a function of the following parameters: 

 round-trip efficiency of energy storage system (𝜂) 

 service life of energy storage system in years (n) 

 degradation as a yearly decrease in energy storage round-trip efficiency and capacity (deg) 

  energy required to achieve a full state of charge given the storage system operating 

constraints in MWh (Sch) 

 grid energy displaced by a fully discharged storage system given the storage system 

operating constraints in MWh (Sdis) 

 fuel upstream emissions (Euch, Eudis), and combustion emissions (ECch, ECdis) associated 

with the electricity that charges the energy storage system and the displaced generation 

resource in kg of CO2eq/MMBtu 

 the heat rates of charging and displaced generation in MMBtu/MWh (HRch, HRdis) 
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 number of annual full cycles that energy storage experiences during its operation within 

the application (cycle) 

 study lifetime in years (T)  

Eq. 1b shows that Eupstream is a function of the following parameters: 

 production burden of the energy storage system, storage dependent burden in kg of 

CO2eq/MWh (ESBurdens) 

 production burden of the energy storage system, power rating dependent in kg of 

CO2eq/MW (ESBurdenp) 

 sizing of energy storage in terms of power rating (P) and storage capacity (S) in MW and 

MWh  

 service life of energy storage system in years (n) 

 study lifetime in years (T) 

 

𝐸𝑢𝑝𝑠𝑡𝑟𝑒𝑎𝑚 = (𝐸𝑆𝐵𝑢𝑟𝑑𝑒𝑛𝑠 ∗ 𝑆 + 𝐸𝑆𝐵𝑢𝑟𝑑𝑒𝑛𝑝 ∗ 𝑃) ∗ (⌊
𝑇

𝑛
⌋ +

𝑇 − ⌊
𝑇
𝑛⌋ ∗ 𝑛

𝑛
)             (𝐸𝑞. 1𝑏) 

𝑁𝐸𝑇 = 𝐸𝑢𝑠𝑒𝑝ℎ𝑎𝑠𝑒 + 𝐸𝑢𝑝𝑠𝑡𝑟𝑒𝑎𝑚                (𝐸𝑞. 1𝑐) 

 

As shown in Equations 1a through 1c, NET in kg of CO2eq depends on two sets of parameters. The 

first group is related to the characteristics of energy storage technology, which are also addressed 
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in principles for green energy storage systems (Principles# 3, 4, 5, 6, 7, and 11) [2]. The second 

group of parameters is determined based on the grid application performance criteria. To illustrate 

the range of outcomes for net emissions during the operation of energy storage, a range of energy 

storage parameters and grid application parameters are assumed and provided in Tables 4-3 and 4-

4. A full literature review was conducted to find a feasible range for parameters of potential energy 

storage systems that were suitable for each application. 

In this model, the system boundary includes the use-phase emissions during operation of energy 

storage system, its production burden, and also the fuel upstream emissions of charging and 

displaced generation. It excludes emissions associated with the power plants construction. The 

replacement strategy of energy storage systems is also based on its service life (n) and study 

lifetime (T). For example, if an energy storage system is designed to have a service life of 6 years 

and the desired study lifetime is 20 years, then in this case three new storage systems are used for 

eighteen years, and the fourth system will be used for the remaining two years. The full production 

burden of the fourth system is allocated based on the ratio between the remaining project lifetime 

and the total service life of the energy storage system. Study lifetime (T) is assumed to be 20 years 

for all three applications and the index (i) is used to trace the drop in round-trip efficiency and 

storage capacity per year due to degradation. Two scenarios are assumed: 1) energy storage is 

charged with natural gas (NG) fuel and is used to displace coal based electricity generation to test 

the impact of parameters on net emissions through the lens of increasing the environmental 

performance, 2) energy storage is charged with coal based electricity generation and displaces NG 

to test the impact of parameters in a scenario that is closer to some real world applications. We 

assume that a safe operating window for the energy storage is 10-90 percent state of charge (i.e. 

Sch=0.9*S, Sdis=0.8*S).  

Table 4-3 Possible Ranges for Energy Storage Systems Parameters* 

Parameter Variable VRFB PbA NaS CAES PHES Li-ion 

Round-trip efficiency (%) [3] 

[33], [34] [40] [42] [43] [44] 

[45] [46] [47] [48] [49] 

𝜂0 70-95 70-90 71-90 45-89 75-85 70-90 

Service life (years) [42][43], 

[47], [50] 
𝑛 5-15 3-15 5-15 20-60 40-60 5-20 
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* Flywheel and capacitors are not included in the analysis due to the lack of availability of data for their production 

burden. A range could not be found for CAES and PHES production burdens in the literature. 
** This component of energy storage production burden is held constant due to the lack of availability of data. 

Table 4-4 Grid Application Assumptions 

Parameter Variable Value 

Natural Gas 

Emissions Factor  

Upstream (kg of 

CO2eq/MMBtu) [63] 
𝐸𝑢𝑐ℎ  13.63 

Combustion (kg of 

CO2eq/MMBtu) [64] 
𝐸𝐶𝑐ℎ  53 

Coal Emissions 

Factor 

Upstream (kg of 

CO2eq/MMBtu) [63] 
𝐸𝑢𝑑𝑖𝑠  5.6 

Combustion (kg of 

CO2eq/MMBtu) [64] 
𝐸𝐶𝑑𝑖𝑠  97 

Heat Rates 

(MMBtu/MWh) 

[65] 

 Natural Gas 

Generator 
𝐻𝑅𝑐ℎ 7-13 

 Coal Generator 𝐻𝑅𝑑𝑖𝑠 9-12 

Power Rating 

(MW) 

Time-Shifting 

𝑃 

1-3,000 

Frequency Regulation 1-100 

Power Reliability 0.05-1 

Size (MWh) 

Time-Shifting 

𝑆0 

2-30,000 

Frequency Regulation 0.25-25 

Power Reliability 0.2-10 

Number of Full 

Cycles (𝑦𝑒𝑎𝑟−1) 

[25] 

Time-Shifting 

𝑐𝑦𝑐𝑙𝑒 

350 

Frequency Regulation 8,000 

Power Reliability 50 

Annual Degradation (%/year) 

[51] [52] [53] [54] [55] [56] 
𝑑𝑒𝑔 0-3 0-3 0-3 0-3 0-3 0-3 

Energy 

Storage 

Production 

Burdens [3]  

[6] [7] [9] 

[11] [17] 

[57] [58] 

[59] [60] 

[61] [62]  

     Storage dependent   

(kg of 

CO2eq/MWh) 

𝐸𝑆𝐵𝑢𝑟𝑑𝑒𝑛𝑠  

47,400-

161,400 

18,000-

211,866 

7,200-

128,440 
19,400 35,700 

61,000-

487,000 

Power Rating 

dependent**            

(kg of CO2eq 

/MW) 

𝐸𝑆𝐵𝑢𝑟𝑑𝑒𝑛𝑝 160,000 160,000 160,000 
160,00

0 

160,00

0 
160,000 
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Study lifetime (year) 𝑇 20 

 

A set of two analyses, namely extreme parameter testing and Latin Hypercube Sampling, are 

conducted to investigate the impact of parameters on net emissions during operation of energy 

storage in each of the three applications, using model Equations 1a through 1c.  

4.3.2. Extreme Parameter Testing  

In this approach, net emissions are calculated using Equations 1a through 1c by holding all 

parameters constant at their average values (shown in Table 4-5) except for one parameter that is 

varied between minimum and maximum ranges. These calculations are repeated for the six 

parameters of each storage technology that is suitable for each of time-shifting, frequency 

regulation, and power reliability grid applications (Table 4-2). These parameters are round-trip 

efficiency, service life, annual degradation, production burdens, and heat rates of charging and 

displaced generations. The objective is to compare the dominance of each parameter over net, use-

phase, and upstream emissions. To illustrate the results, the net emissions results for lead-acid 

(PbA) battery technology are shown in Fig. 4-1 as spider diagrams. 

Table 4-5 Default Values for Spider Diagrams 

Energy Storage Parameter Variable VRFB PbA NaS CAES PHES Li-ion 

Round-trip efficiency (%)  𝜂 82.5 80 80.5 67 80 80 

Service life (years)  n 10 9 10 40 50 13 

Annual Degradation (%/year)  deg 1.5 1.5 1.5 1.5 1.5 1.5 

Energy Storage 

Production 

Burdens  

     Storage 

dependent   

(kg of CO2eq 

/MWh) 

ESBurdens 104,400 114,933 67,820 19,400 35,700 274,000 

Power Rating 

dependent             

(kg of CO2eq 

/MW) 

ESBurdenp 160,000 160,000 160,000 160,000 160,000 160,000 

Grid Application Parameter Variable Time-shifting 
Frequency 

Regulation 
Power Reliability 
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Heat Rates 

(MMBtu/MWh)  

 Natural Gas 

Generator  
HRch 10 10 10 

 Coal 

Generator 
HRdis 10.5 10.5 10.5 

Power Rating (MW) P 1,500 50 0.5 

Size (MWh) S 15,000 12.5 5 

Number of Cycles Cycle 350 8,000 50 

 

4.3.3. Latin Hypercube Sampling 

Latin Hypercube Sampling (LHS) is a statistical modeling technique to generate controlled random 

samples [66]. In this study, LHS is used to generate sample values for energy storage parameters 

and grid application parameters (round-trip efficiency, service life, annual degradation, production 

burdens, and heat rates) within their ranges provided in Table 4-3 and Table 4-4. Parameter sets 

were generated from 70,000 samples. Therefore, in each round, random values are created for each 

parameter within its lower and higher bound. The ranges are defined for each feasible storage 

system for each of time-shifting, frequency regulation, and power reliability applications. Based 

on the generated samples, the net emissions during the operation of energy storage are calculated 

using Equations 1a through 1c. This calculation is repeated 70,000 times with different sample 

parameter sets to provide an inclusive range of possibilities. The goal is to demonstrate the impact 

of each parameter on net emissions, for scenarios that span plausible outcomes for the other 

parameters. 

Since a range of storage sizing is assumed for each grid application, two scenarios are created—

minimum size scenario and maximum size scenario—and parameter sets are created in each 

scenario. The ranges studied for energy storage sizing are provided earlier for each application. 

The results of the minimum size scenario are presented in the Results section, and the results of 

the maximum size scenario are provided in Appendix A. 

4.4. Results  

Fig. 4-1 shows the comparison among the impact of each parameter on net emissions in case of 

lead acid (PbA) battery technology. The results of other technologies are provided in Appendix B. 

For each parameter, minimum, maximum, and average values are provided in Tables 4-3 through 
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4-5. In this figure, the influence of round-trip efficiency, energy storage service life, annual 

degradation, heat rates of charging and displacing technologies, and production burden of energy 

storage are demonstrated. For example, increasing round-trip efficiency leads to environmental 

improvement across all three applications. On the other hand, among the three applications, power 

reliability is the only one in which production burden dominates over the net emissions. Increasing 

energy storage service life reduces the net emissions in the reliability application significantly.  

Charge with NG-Displace Coal (tech=PbA) Charge with Coal-Displace NG (tech=PbA) 
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Fig. 4-1 Impacts of each parameter on CO2eq net emissions in three applications: time-shifting application, 

frequency regulation, and power reliability in case of PbA technology. Two scenarios are assumed: 1) 

energy storage is charged with natural gas, and displaces coal based electricity generation, 2) energy 

storage is charged with coal, and displaces natural gas generation. “ES Burden” stands for energy storage 

production burden. X-axis represents the minimum, average, and maximum values for each parameter. 

The results from the spider diagrams (Fig. 4-1) are elaborated in Fig. 4-2, which shows net, use-

phase, and upstream emissions in three values of minimum, average, and maximum for each 

parameter. As shown in this figure, use-phase and net emissions have similar patterns in time-

shifting and frequency regulation applications. They are influenced by round-trip efficiency and 

heat rates greatly due to the higher number of cycles in these applications.  

In power reliability, increasing service life would have major environmental benefits. The reason 

is that energy storage is not utilized frequently in this application and it does not experience severe 

degradation.  In this application, energy storage production burden (kg of CO2eq /MWh) has a large 

impact on upstream and net emissions. Overall, upstream emissions have a larger contribution in 

net emissions in the power reliability application. 
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Fig. 4-2 Dominance of parameters over upstream, use-phase, and net emissions in time-shifting, 

frequency regulation, and reliability applications in case of PbA technology. Two scenarios are assumed: 

1) energy storage is charged with natural gas, and displaces coal based electricity generation, 2) energy 

storage is charged with coal, and displaces natural gas generation. “ES Burden” stands for energy storage 

production burden. The color scales vary by application and charging pattern. 

Figures 4-3 to 4-5 show the results of LHS modeling for each parameter in the minimum energy 

storage size scenario in three applications: energy time-shifting, frequency regulation, and power 

reliability. The results of maximum size scenario are provided in Appendix A. As shown in these 

figures, round-trip efficiency has a significant impact on net emissions in time-shifting and 

frequency regulation applications, in which energy storage is used more frequently (higher number 

of cycles). Higher utilization of energy storage results in the dominance of use-phase emissions, 

which are greatly influenced by round-trip efficiency (as shown in Eq.1a). This is also applicable 

to generator heat rates, and related diagrams show a higher slope in energy time-shifting and 

frequency regulation applications.  

Increasing energy storage service life would reduce the emissions due to a lower energy storage 

utilization rate in the power reliability application (Fig. 4-5). One of the twelve principles for green 

Charge with NG-Displace Coal (tech=PbA) Efficiency Service Life Degradation Heat Rate(ch) Heat Rate (dis) ES Burden 
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Regulation NET Emissions 8.5E+09 1.6E+08 1.6E+06

Use-phase Emissions 3.0E+09 5.5E+07 1.1E+06
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-1.3E+10 -2.5E+08 -1.5E+05

Reliability NET Emissions -1.9E+10 -3.5E+08 -5.7E+05

Use-phase Emissions -2.4E+10 -4.6E+08 -1.0E+06

Upstream Emissions -3.0E+10 -5.6E+08 -1.4E+06

kg of     𝒒 kg of     𝒒 kg of     𝒒

Charge with Coal-Displace NG (tech=PbA) Efficiency Service Life Degradation Heat Rate(ch) Heat Rate (dis) ES Burden 
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Time-shifting NET Emissions
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Regulation NET Emissions 8.0E+10 1.5E+09 4.7E+06
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Upstream Emissions 5.8E+10 1.1E+09 3.6E+06

4.7E+10 8.9E+08 3.0E+06

3.5E+10 6.7E+08 2.4E+06

Reliability NET Emissions 2.4E+10 4.5E+08 1.8E+06
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energy storage is to operate such systems with optimal service life (Principle# 6) [2]. This 

comparison across applications gives insights to energy storage operators on substituting 

strategies.  

As shown in Fig. 4-5, the energy storage production burden (kg of CO2eq/MWh) has a significant 

impact in the power reliability application due to a low number of cycles (i.e., low utilization of 

energy storage during its lifetime). Therefore, in this application upstream emissions associated 

with the production of the energy storage system dominate. For a higher production burden of 

2.5*105 kg of CO2eq /MWh, integrating energy storage in this application would yield positive net 

emissions. Therefore, minimizing the environmental impact per unit of energy service for material 

production and processing, as listed in Principle#11, has a more significant influence on 

environmental performance in specific grid applications.  
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Fig. 4-3 Impacts on life cycle CO2eq emissions due to assumptions for energy storage round-trip 

efficiency, energy storage service life, energy storage production burden, annual degradation in energy 

storage capacity and round-trip efficiency, heat rate of charging technology, and heat rate of displaced 

technology in time-shifting application (minimum size scenario). Two scenarios are assumed: 1) energy 

storage is charged with natural gas, and displaces coal based electricity generation (left column), 2) 

energy storage is charged with coal, and displaces natural gas generation (right column) 
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Fig. 4-4 Impacts on life cycle CO2eq emissions due to assumptions for energy storage round-trip 

efficiency, energy storage service life, energy storage production burden, annual degradation in energy 

storage capacity and round-trip efficiency, heat rate of charging technology, and heat rate of displaced 

technology in frequency regulation application (minimum size scenario). Two scenarios are assumed: 1) 

energy storage is charged with natural gas, and displaces coal based electricity generation (left column), 

2) energy storage is charged with coal, and displaces natural gas generation (right column) 
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Fig. 4-5 Impacts on life cycle CO2eq emissions due to assumptions for energy storage round-trip 

efficiency, energy storage service life, energy storage production burden, annual degradation in energy 

storage capacity and round-trip efficiency, heat rate of charging technology, and heat rate of displaced 

technology in power reliability application (minimum size scenario). Two scenarios are assumed: 1) 

energy storage is charged with natural gas, and displaces coal based electricity generation (left column), 

2) energy storage is charged with coal, and displaces natural gas generation (right column) 
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the electric grid. The selected parameters represent key factors addressed in twelve principles for 

green energy storage in grid applications [2], including round-trip efficiency, energy storage 

service life, annual degradation in energy storage capacity and round-trip efficiency, heat rates of 

charging and displacing technologies, and production burden of energy storage. In this study, first 

the grid application and potential energy storage alternatives were determined. Next, motivated by 

twelve principles for green energy storage, two sets of parameters were identified: energy storage 

system parameters and grid application parameters. The interactions between these parameters 

were evaluated using a universal set of equations to analyze their dominance over environmental 

performance.  

The impacts of selected parameters on net emissions are summarized in Table 4-6. This table 

simplifies and clarifies the relative differences of the parameters’ influence across time-shifting, 

frequency regulation, and power reliability applications based on our baseline assumptions. As 

shown in this table, the energy storage round-trip efficiency, annual degradation, and generator 

heat rate have a moderate to strong influence over emissions in time-shifting and frequency 

regulation applications due to high utilization of energy storage.  

On the other hand, energy storage production burden and service life have a strong influence on 

net emissions in the power reliability application. In this application, upstream emissions dominate 

due to fewer cycles of energy storage during its operation in this application. Lower utilization of 

energy storage also leads to far fewer net emissions in this application compared to the other two 

case studies. 

Table 4-6 Influence of parameters on net CO2eq emissions in time-shifting, frequency regulation, and 

reliability applications 

 Time-shifting Frequency 

Regulation 

Power Reliability 

Round-trip efficiency    

Annual degradation    

Heat rate charge    

Heat rate displace    

Service life    
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Energy storage  

production burden 

   

Strong influence   Moderate influence Weak influence 

To evaluate the results of enhanced environmental performance of energy storage integration and 

also to analyze some real world applications, we have assumed two scenarios: In the first scenario, 

energy storage is charged with natural gas, and the stored electricity displaces coal based electricity 

generation. In many real world applications, this is not the standard practice, given that natural gas 

is often more expensive that coal. To charge the energy storage with natural gas and displace coal 

based generation, there would likely need to be an inversion of coal and gas prices (e.g. driven by 

a carbon tax or a CO2 cap) that could incentivize coal to gas switching. In the second scenario, 

energy storage is charged with a higher emitting generation such as coal and displaces natural gas. 

In this case, the relative influence of parameters is the same. However, this scenario leads to more 

net emissions during the operation of the energy storage system, fundamentally altering the 

approach for environmental pollution mitigation. 

There are major uncertainties associated with the upstream emissions of natural gas [67]- [71], 

particularly the amount of methane leakage during natural gas production. If the life cycle 

emissions of the charging generation prove to be higher than displaced generation due to these 

emissions, the results would change the energy storage integration strategy.   

In addition to environmental incentives, the economies of energy storage technologies are also a 

key driver in selecting the suitable technology for a specific application. The comparison among 

environmental and economic benefits of different storage technologies across grid applications is 

the focus of future research that will build upon our findings in this chapter.  

As shown in this study, the integration of energy storage systems in different grid applications may 

not necessarily lead to environmental improvements. The environmental outcomes depend on the 

grid application and storage technology parameters. Understanding the interaction among such 

parameters, as analyzed here, can guide different stakeholders, who develop and manage energy 

storage systems. They include energy storage designers, operators, and utilities. This analysis can 

help them more systematically improve environmental performance by focusing on the most 

influential parameters in the development and deployment of energy storage systems. 
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Appendix A. The results of LHS modeling in maximum case scenario 
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Fig. 4-6 Impacts on life cycle CO2eq emissions due to assumptions for energy storage round-trip 

efficiency, energy storage service life, energy storage production burden, annual degradation in energy 

storage capacity and round-trip efficiency, heat rate of charging technology, and heat rate of displaced 

technology in time-shifting application (maximum size scenario). Two scenarios are assumed: 1) energy 

storage is charged with natural gas, and displaces coal based electricity generation (left column), 2) 

energy storage is charged with coal, and displaces natural gas generation (right column) 
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Fig. 4-7 Impacts on life cycle CO2eq emissions due to assumptions for energy storage round-trip 

efficiency, energy storage service life, energy storage production burden, annual degradation in energy 

storage capacity and round-trip efficiency, heat rate of charging technology, and heat rate of displaced 

technology in frequency regulation application (maximum size scenario). Two scenarios are assumed: 1) 

energy storage is charged with natural gas, and displaces coal based electricity generation (left column), 

2) energy storage is charged with coal, and displaces natural gas generation (right column) 
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Fig. 4-8 Impacts on life cycle CO2eq emissions due to assumptions for energy storage round-trip 

efficiency, energy storage service life, energy storage production burden, annual degradation in energy 

storage capacity and round-trip efficiency, heat rate of charging technology, and heat rate of displaced 

technology in power reliability application (maximum size scenario). Two scenarios are assumed: 1) 

energy storage is charged with natural gas, and displaces coal based electricity generation (left column), 

2) energy storage is charged with coal, and displaces natural gas generation (right column) 
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Appendix B. Spider diagrams for net, use-phase, and upstream emissions 
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Fig. 4-9 Impacts of each parameter on net, use-phase, and upstream emissions in time-shifting 

application. “ES Burden” stands for energy storage production burden. It is assumed that energy storage 

is charged with natural gas and displaces coal based electricity generation. X-axis represents the 

minimum, average, and maximum values for each parameter. (VRFB=vanadium redox flow battery, 

PbA= lead-acid battery, NaS= sodium-sulfur battery, CAES= compressed air energy storage, PHES= 

pumped-hydro energy storage) 
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Fig. 4-10 Impacts of each parameter on net, use-phase, and upstream emissions in time-shifting 

application. “ES Burden” stands for energy storage production burden. It is assumed that energy storage 

is charged with coal based electricity generation and displaces natural gas. X-axis represents the 

minimum, average, and maximum values for each parameter. (VRFB=vanadium redox flow battery, 

PbA= lead-acid battery, NaS= sodium-sulfur battery, CAES= compressed air energy storage, PHES= 

pumped-hydro energy storage) 
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Fig. 4-11 Impacts of each parameter on net, use-phase, and upstream emissions in frequency regulation 

application. “ES Burden” stands for energy storage production burden. It is assumed that energy storage 

is charged with natural gas and displaces coal based electricity generation. X-axis represents the 

minimum, average, and maximum values for each parameter. (PbA= lead-acid battery, Li-ion= lithium-

ion battery) 
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Fig. 4-12 Impacts of each parameter on net, use-phase, and upstream emissions in frequency regulation 

application. “ES Burden” stands for energy storage production burden. It is assumed that energy storage 

is charged with coal based electricity generation and displaces natural gas. X-axis represents the 

minimum, average, and maximum values for each parameter. (PbA= lead-acid battery, Li-ion= lithium-

ion battery) 
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Fig. 4-13 Impacts of each parameter on net, use-phase, and upstream emissions in power reliability 

application. “ES Burden” stands for energy storage production burden. It is assumed that energy storage 

is charged with natural gas and displaces coal based electricity generation. X-axis represents the 

minimum, average, and maximum values for each parameter. (VRFB=vanadium redox flow battery, 

PbA= lead-acid battery, NaS= sodium-sulfur battery, Li-ion= lithium-ion battery) 
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Fig. 4-14 Impacts of each parameter on net, use-phase, and upstream emissions in power reliability 

application. “ES Burden” stands for energy storage production burden. It is assumed that energy storage 

is charged with coal based electricity generation and displaces natural gas. X-axis represents the 

minimum, average, and maximum values for each parameter. (VRFB=vanadium redox flow battery, 

PbA= lead-acid battery, NaS= sodium-sulfur battery, Li-ion= lithium-ion battery) 

 

Appendix C. List of twelve principles for green energy storage systems in grid applications 

1. Charge clean and displace dirty. 

2. Energy storage should have lower environmental impact than displaced infrastructure. 

3. Match application to storage capabilities to prevent degradation. 

4. Avoid oversizing energy storage systems. 

5. Maintain to limit degradation. 

6. Design and operate energy storage for optimal service life, 

7. Design and operate energy storage with maximum round-trip efficiency. 

8. Minimize consumptive use of non-renewable materials. 

9. Minimize use of critical materials. 

10. Substitute non-toxic and non-hazardous materials. 

11. Minimize the environmental impact per unit of energy service for material production and 

processing. 

12. Design for end-of-life. 
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CHAPTER 5  
Energy storage for time-shifting and greenhouse gas reductions under varying 

renewable penetrations- A CAISO case study 

Abstract 

Given the complex nature of power systems, the integration of large-scale energy storage for grid 

applications such as energy time-shifting may lead to a wide range of environmental and economic 

outcomes. In this study, we present an optimization model to examine the role of cost-effective 

energy storage in bulk energy time-shifting in California Independent System Operator (CAISO), 

while accounting for greenhouse gas (GHG) emissions. In this model, we consider renewable 

penetrations of 0, 10 GW, and 20 GW of wind energy, and 0, 20 GW, and 40 GW of solar energy. 

Natural gas generation, level of solar and wind energy delivered to demand, energy storage sizing, 

and energy storage operation are optimized to find the minimum total system costs, while subject to 

energy storage technical requirements and the load balance constraints. Total system costs include 

the fuel operating costs, energy storage capital costs, and GHG emissions costs. By assuming four 

emissions taxes of 0, $50/ton of CO2, $100/ton of CO2, and $200/ton of CO2, we investigate how 

monetizing the generators marginal emissions with an emission tax would influence optimal results. 

We analyze nine energy storage technologies including pumped-hydro energy storage (PHES), 

compressed air energy storage (CAES), and six battery technologies (including lead-acid, lithium-

ion, sodium-sulfur, and flow batteries). These technologies are characterized by their round-trip 

efficiency, service life, and capital costs. Simulations are run for each technology to show at each 

level of emissions tax and installed capacity of wind and solar, how much energy storage is deployed. 

The findings show that the size, operation, and curtailment reduction are very dependent on the 

capital cost of energy storage technologies. Increasing the installed renewable capacity and the 

emissions tax would make energy storage more cost-effective. Among storage technologies, PHES 

and diabetic compressed air energy storage (DCAES) with assumed lower capital costs, are deployed 

in more scenarios and renewables curtailment reduces significantly after integrating these 

technologies. We also investigate how much the capital cost of relatively expensive technology such 
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as lithium-ion (Li-ion) needs to be reduced to achieve widespread deployment for this application.  

Table 5-1 Nomenclature  

Nomenclature  

𝑨. 𝑺 𝒕𝒔 𝒂𝒏𝒅 𝑷𝒂𝒓𝒂𝒎 𝒕𝒓𝒔  

Problem-size Parameters 𝐼 set of generators 

𝑇 set of hours 

Storage Parameters 

 

𝜂𝑐  charging efficiency of storage  

𝑁𝐺𝑝𝑟𝑖𝑐𝑒  price of natural gas [$/mmBtu]  

𝑁𝐺𝑒𝑚 emissions rate of natural gas [t/mmBtu]  

𝑁𝐺𝑢𝑠𝑒  natural gas use by storage system [mmBtu/MWh]  

𝐶𝑄  cost of storage power capacity [$/MW] 

𝐶𝑆
 cost of storage energy capacity [$/MWh] 

𝑅 rate to annualize capital cost 

𝑅 discount rate 

𝑛 energy storage service life 

System Parameters 𝑐𝑡,𝑖 hour-𝑡 marginal cost of generator 𝑖 [$/MWh] 

𝑒𝑡,𝑖 hour-𝑡 marginal emission of generator 𝑖 [ton/MWh] 

𝛽 emission tax ($/ton) 

𝐾𝑡,𝑖  hour-𝑡 capacity of generator 𝑖 [MW] 

𝐿𝑡  hour-𝑡 load [MW] 

𝑚𝑖𝑛𝑙𝑜𝑎𝑑 minimum dispatchable load level [MW] 

𝑛𝑢𝑐𝑙𝑒𝑎𝑟𝑡 hour- 𝑡 nuclear output [MW] 

𝑖𝑚𝑝𝑜𝑟𝑡𝑡 hour- 𝑡 imported power [MW] 

𝑔𝑒𝑜𝑡ℎ𝑒𝑟𝑚𝑎𝑙𝑡  hour- 𝑡 geothermal output [MW] 

𝑏𝑖𝑜𝑚𝑎𝑠𝑠𝑡  hour- 𝑡 biomass output [MW] 

𝑏𝑖𝑜𝑔𝑎𝑠𝑡  hour- 𝑡 biogas output [MW] 

ℎ𝑦𝑑𝑟𝑜𝑡 hour- 𝑡 hydroelectric output [MW] 

𝑤𝑖𝑛𝑑𝐶𝑎𝑝 installed wind capacity [MW] 

𝑠𝑜𝑙𝑎𝑟𝐶𝑎𝑝 installed solar capacity [MW] 

𝑤𝑖𝑛𝑑𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒𝑡  hour-𝑡 wind capacity factor 

𝑠𝑜𝑙𝑎𝑟𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒𝑡 hour-𝑡 solar capacity factor 

𝑩. 𝑽𝒂𝒓𝒊𝒂𝒃𝒍 𝒔  

𝑔𝑡,𝑖 hour-𝑡 production level of generator 𝑖 [MW] 

�̅� ≥ 0 storage power capacity [MW] 

𝑆̅ ≥ 0 storage energy capacity [MWh] 

𝑞𝑡
𝑐 MW charged into storage in hour 𝑡 

𝑞𝑡
𝑑 MW discharged from storage in hour 𝑡 

𝑠𝑡 ending hour-𝑡 state of charge of storage device 

𝑠𝑡𝑜𝑙𝑜𝑎𝑑𝑙𝑒𝑣𝑒𝑙𝑡 ≥ 0 hour-𝑡 storage load level [MW] 

𝑤𝑖𝑛𝑑𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛𝑡 hour-𝑡 delivered wind capacity [MW] 

𝑠𝑜𝑙𝑎𝑟𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛𝑡  hour-𝑡 delivered solar capacity [MW] 
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5.1. Introduction 

The development and deployment of grid-scale energy storage systems have improved substantially 

due to technology improvements and policies such as California’s energy storage mandate [1], [2]. 

These technologies can be utilized for different grid applications such as time-shifting the peak load 

to avoid investments in new generator capacity and the emissions associated with the peak generators 

[3]. Several studies have optimized the size and operation of an energy storage within a specific grid 

system to achieve the best economic and environmental. However, they have not systematically 

investigated how imposing an emissions tax would change these optimal results across technologies. 

As Denholm et al. discuss, analysis is required to estimate the impact of high renewable penetration 

on the value of energy storage [4]. In this study, we address these topics by comparing the operation 

of nine specific energy storage technologies to minimize the total system costs of California 

Independent System Operator (CAISO), under varying penetrations of solar and wind power 

generation, while assuming four CO2 emissions tax levels on the system.  

Extensive work has been done to highlight different characteristics of energy storage technologies 

and identify their potential grid applications. For example, Aneke and Wang, and Kyriakopoulos 

and Arabatzis provided a comprehensive review of the specifications and performance 

characteristics of several energy storage technologies and highlighted their potential grid 

applications [5], [6]. They showed how parameters such as round-trip efficiency and service-life 

would range substantially across technologies. For example, based on their reviews, the round-trip 

efficiency can vary between 50% (the lower bound for CAES) to 98% (the upper bound for lithium-

ion battery). In a detailed review of battery choices, Dunn et al. specified varying characteristics 

across sodium-sulfur (NaS), lithium-ion (Li-ion), and redox-flow batteries [7]. They concluded that 

a successful future for these technologies depended on using low cost materials in order to decrease 

the installed costs of batteries while improving their performance and durability. Gallo et al. 

provided a comprehensive review of energy storage technologies, while arguing that no single 

energy storage excels in all technical parameters and therefore selection should be done on a case-

by-case analysis [8]. Also, they highlighted the economic feasibility and a required regulatory 

environment as the two main barriers for the development of these technologies.       

The integration of energy storage systems into the grid can have different environmental and 
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economic impacts [9], [10]. These impacts depend on the grid performance requirements, location, 

and energy storage characteristics such as sizing and operation within the power grid. As discussed 

by Sardi et al., the cost of energy storage systems, particularly batteries, is the major obstacle to their 

adoption. In this regard, the current deployment of energy storage is generally uneconomical, as the 

overall energy storage installment cost is higher than the total benefits obtained from its deployment 

[11]. In another study, Abeygunawardana et al. discuss that at the current market prices of energy 

storage devices, in most cases, it is not quite cost-effective to utilize energy storage for distribution 

upgrade deferral application alone [12]. However, combining benefits for one or more 

complementary storage applications may provide the extra value needed to justify the use of storage 

for distribution deferral alone. In two separate studies, Hittinger and Azevedo show that energy 

storage is not fundamentally a green technology, the emissions effect of utilizing energy storage to 

penetrate more renewable energy varies by location [13], [14]. In an examination of energy arbitrage 

application in Texas, Carson and Novan showed that energy storage integration would increase the 

average daily greenhouse gas (GHG) emissions due to an increase in off-peak fossil fuel generation 

[15]. In another study, Hiremath et al. emphasized the significance of energy storage operation in 

the overall environmental performance of these technologies, especially when they had different 

characteristics parameters [16].     

These examples demonstrate the need for optimizing the operation of an energy storage to achieve 

the desired economic and environmental outcomes. In this regards, many studies have optimized the 

operation and also size of an energy storage system for a given grid application from an economic 

point of view. For example, Ho et al. optimized the scheduling and capacity of an energy storage 

system to achieve minimum investment cost using integer linear programming in a distributed 

energy generation system [17]. Their results indicated that for renewable integration application, 

energy storage with high capital costs was advised to operate in daily cycles (vs. weekly cycles) due 

to their size limits. In another study, Parra et al. optimized the size of lead-acid (PbA) and Li-ion 

batteries for time-shifting application in a 100-home community in cases of time-of-use or real-time-

pricing tariffs [18]. Their results showed that time-of-use tariff is much more attractive for demand-

shifting in that community. Similarly, several other studies have proposed optimization model for 

the size and operation of energy storage systems to minimize total electricity cost or maximize the 

investor’s profits [19], [20], [21], [22]. Their case studies range from a micro-grid to electricity 

markets such as Alberta or European grids, taking into account market uncertainties as well as 
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operational and transmission constraints. 

Several studies have also optimized the siting of energy storage technologies within a power grid. 

For example, Blanco et al. identified the optimal location of an energy storage system in western 

electricity coordinating council to achieve the minimum operating and investment costs [23]. 

Pandzic et al. proposed a near-optimal method to find the optimal siting of distributed storage 

systems, considering economic and technical aspects [24]. They concluded that the benefits of 

storage investments are correlated with the volatility Localized Marginal Prices in the systems. 

Dvorkin et al. determined the optimal size and location of an energy storage to minimize the total 

system operating and investment costs, indicating that these optimal choices were sensitive to the 

investors’ profits constraints [25].    

In addition to economic analyses, several studies have included environmental emissions accounting 

in their optimizations. For example, Hemmati et al. developed a multistage generation expansion 

plan for a test system to minimize the total costs including the emissions cost [26]. Their results 

showed that adding energy storage into the test system would decrease the planning costs as well as 

environmental pollution due to the reduced need for installing peak demand capacity. In another 

optimization, Fisher and Apt minimized the energy costs and maximized the revenue, taking into 

account the marginal emissions for behind the meter energy storage [27]. They found that the most 

negative environmental impacts of the system could be related to the internal energy losses in the 

storage system, rather than timing of charging and discharging.  J. de Sisternes et al. modeled Texas 

electric grid to determine the optimal portfolio of generation capacities including energy storage 

operation to meet the demand in 2035 at the minimum cost, subject to system requirements, 

operational limits, and a mass-based CO2 limit [28]. In their analysis, the capacity of two generic 

energy storage technologies was defined exogenously, therefore, they did not consider the capital 

cost of the energy storage system. In a linear programming mode, Arciniegas and Hittinger 

optimized the operation and location of an energy storage to maximize revenue and reduce CO2 

emissions across 22 eGrid locations [29]. Their results showed that adding CO2 emissions in the 

objective function would result in a great reduction in the storage related emissions at a minimal 

expense to the owner.  

This study contributes to the literature by developing an optimization model to evaluate the role of 



131 

 

nine energy storage technologies with varying parameters in minimizing total system costs of 

CAISO, while accounting for the GHG emissions. These technologies are differentiated by their 

round-trip efficiency, service life, and capital costs. This novel approach investigates which storage 

technology is cost-effective to be integrated into the CAISO when the renewable energy generation 

and the emissions tax are increased exogenously. Wind and solar installed capacity are examined at 

installed capacities of 0 GW, 10 GW, and 20 GW of wind energy, and 0 GW, 20 GW, and 40 GW 

of solar energy. Emissions tax is examined at $0/ton of CO2, $50/ton of CO2, $100/ton of CO2, and 

$200/ton of CO2. In this optimization, natural gas generators’ output, the amount of solar and wind 

energy delivered to demand (after curtailment), energy storage sizing, and energy storage operation 

are optimized to minimize the total system costs. Total costs include the natural gas operating fuel 

costs, energy storage capital costs, and GHG emissions cost as a tax imposed on the system. 

Simulations are run for each technology to investigate how the optimal results would change across 

technologies. In this linear program model, in case of zero deployment of energy storage, the 

breakeven capital costs (energy or power related components) are calculated to estimate the cost 

reductions needed for economic deployment. We also analyze wind and solar curtailment to offer 

new understanding on the ability to achieve high penetrations of renewables using specific energy 

storage technology.  

5.1.1. Case study: Energy Time-shifting in CAISO 

Throughout this case study, we examine the application of energy storage for bulk energy time-

shifting in CAISO. Due to the rapid increase in renewable energy and also the state’s recent actions 

towards advancing energy storage [1], [30], California has become an interesting case study to 

analyze the impact of energy storage integration. In this regard, Solomon et al. evaluated the 

opportunities for the higher utilization of renewable energy in California in scenarios with and 

without energy storage integration [31]. In another two comprehensive studies by National 

Renewable Energy Laboratory (NREL), value of energy storage was estimated in California with 

high penetration of renewable energy [32], [33]. This study is novel, however, because we compare 

the operation and size of nine specific energy storage technologies to minimize the total system 

costs of CAISO, under varying penetrations of renewable penetration. 

For the electric energy time-shifting, we examine nine energy storage technologies that offer the 
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most suitable characteristics for this application: adiabatic compressed air energy storage 

(ADCAES), diabatic compressed air energy storage (DCAES), pumped-hydro energy storage 

(PHES), lead-acid battery (PbA), Li-ion battery, NaS battery, vanadium redox flow battery 

(VRFB), polysulfide bromide battery (PSB), and zinc–bromine battery (ZBB) [3], [34]. Table 5-2 

summarizes the potential energy storage technologies and their assumed characteristics. For the 

purpose of this study and in order to create the ideal case for the energy storage systems, the 

maximum round-trip efficiency, the maximum service life, and the minimum capital costs possible 

for each technology are assumed. The assumptions are provided through a comprehensive 

literature review of storage systems parameters [3], [5], [6], [7], [8], [19], [34], [35], [36], [37], 

[38], [39].  

Table 5-2 Selected energy storage systems and their parameters assumptions 

 High round-trip 

efficiency (%) 

High service life 

(year) 

Low capital cost 

($/MW) 

Low capital cost 

($/MWh) 

pumped-hydro storage 

(PHES) [5], [6], [8], [34], 

[35], [37] 

85 60 441,000 5,000 

adiabatic compressed-air 

energy storage (ACAES) 

[5], [6], [8], [34] 

95 60 700,000 40,000 

diabatic compressed-air 

energy storage (DCAES) 

[5], [6], [8], [34] 

60 60 400,000 2,000 

lead-acid (PbA) battery 

[6], [7], [8], [34], [35] 
90 15 222,000 200,000 

vanadium redox flow 

battery (VRFB) [6], [8], 

[34], [35] 

95 15 398,000 150,000 

Li-ion battery [6], [34], 

[39] 
98 20 400,000 600,000 

sodium-sulfur batteries 

(NaS) [5], [6], [8], [34], 

[35], [39] 

90 15 350,000 350,000 

polysulfide bromide 

battery (PSB) [8], [35] 
85 15 330,000 120,000 

zinc–bromine battery 

(ZBB) [5], [8], [35] 
75 10 178,000 150,000 
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5.2. Methodology 

5.2.1. Energy System Assumptions 

This chapter examines the operation of specific energy storage systems, when utilized for bulk 

energy time-shifting in CAISO across one year. Specific parameters of natural gas generator in 

CAISO including hourly load (MW), operating time (hour), fuel consumptions (MMBtu), CO2 

emissions rate (t), and rated capacity (MW) are obtained from EPA Clean Air Markets Program 

Data and U.S. Energy Information Administration (EIA) forms 886 and 923 [40], [41], [42]. Based 

on these data reports, marginal costs and marginal emissions are calculated for each natural gas 

generator. In addition, hourly nuclear, imports, hydro, biomass, biogas generation, imports, and 

load data for the year 2012 are collected from CAISO online resources [43]. In this model, we 

assume the minimum dispatchable load level (𝑚𝑖𝑛𝑙𝑜𝑎𝑑) to be 12,600 MW [44]. Wind and solar 

generations is changed exogenously based on pre-defined hourly generation profiles and assumed 

total installed capacities of 0, 100 GW, and 20 GW for wind energy, and 0, 20 GW, and 40 GW 

for solar energy [45], [46]. The wind generation is based on NREL WIND Toolkit, which includes 

meteorological conditions and turbine power for more than 126,000 sites in the U.S. for the years 

2007–2013 [45]. At the time of this study, the most recent available data in NREL WIND Toolkit 

was for 2012, therefore the studied year in this study is assumed to be 2012.  All wind sites 

production data across the state of California is collected from the toolkit. For each hour, we 

summed up the total wind production across all the wind sites and calculated the wind capacity 

factor (𝑤𝑖𝑛𝑑𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒(𝑡)) as follows: 

𝑤𝑖𝑛𝑑𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒(𝑡) =
𝑡𝑜𝑡𝑎𝑙 𝑤𝑖𝑛𝑑 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛 𝑖𝑛 ℎ𝑜𝑢𝑟 𝑡

𝑠𝑢𝑚 𝑜𝑓𝑚𝑎𝑥 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 𝑜𝑓𝑒𝑎𝑐ℎ 𝑠𝑖𝑡𝑒
      (𝐸𝑞. 1) 

This ratio gives the average state-wide capacity factor for the given hour.  

To estimate the state-wide solar capacity factor, we used available NREL meta data. This data set 

included 5636 points (with specific latitude and longitude), assuming an annual solar generation 

profile of a fixed tilt mount type with maximum power capacity of 4 MW per location [46]. The 

hourly state-wide solar capacity factor (𝑠𝑜𝑙𝑎𝑟𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒(𝑡)) is calculated as follows: 
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𝑠𝑜𝑙𝑎𝑟𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒(𝑡) =
𝑡𝑜𝑡𝑎𝑙 𝑠𝑜𝑙𝑎𝑟  𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛 𝑖𝑛 ℎ𝑜𝑢𝑟 𝑡

4 ∗ 5636
      (𝐸𝑞. 2) 

5.2.2. Optimization  

In this optimization, hourly natural gas generator production level (𝑔𝑡,𝑖), storage power and energy 

capacities  (𝑆̅, �̅�), hourly operation of energy storage (𝑞𝑡
𝑐, 𝑞𝑡

𝑑, 𝑠𝑡), and the hourly delivered wind 

and solar energy (𝑤𝑖𝑛𝑑𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛𝑡, 𝑠𝑜𝑙𝑎𝑟𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛𝑡) are optimized to minimize the total 

system costs (Eq. 3). Total costs include the natural gas marginal costs, monetized GHG emissions 

cost, and annualized energy storage capital costs. We model 237 natural gas generators of CAISO 

(𝐼=237), and assume that their marginal costs (𝐶𝑡,𝑖) in $/MWh, marginal emissions (𝑒𝑡,𝑖) in ton of 

CO2/MWh, and rated capacity (𝐾𝑡,𝑖) in MW stay constant across the entire hours of the year 

(𝑇=8760 hours). As mentioned earlier, we assume four values of emissions tax (𝛽) in $/ton of CO2 

to monetize the natural gas marginal emissions. Each energy storage capital cost has two 

components: costs driven by storage capacity ($/MWh) and costs driven by rated power ($/MW). 

The capital charge rate (𝑅) is estimated using Eq. 3 for each storage technology to annualize its 

capital costs, assuming 10% discount rate (DR): 

𝑅 =
𝐷𝑅

1 − (1 + 𝐷𝑅) 𝑛
        (𝐸𝑞. 3) 

For the specific case of DCAES, additional natural gas use in the storage system and its associated 

fuel and emissions cost are added to the objective function. In this case, we make the following 

assumptions: heat rate of natural gas (𝑁𝐺𝑢𝑠𝑒) is 4.2 MMBtu/MWh, natural gas emissions rate 

(𝑁𝐺𝑒𝑚) is 0.058 ton of CO2/MMBtu, and finally natural gas fuel price (𝑁𝐺𝑝𝑟𝑖𝑐𝑒) is $3.68/MMBtu 

(equal to the price of the fuel in 2012) [47], [48], [49]. In case of other storage technologies, 

𝑁𝐺𝑢𝑠𝑒 = 𝑁𝐺𝑒𝑚 = 0.  

Eq. 4 shows the objective function, which is to minimize the total system costs, estimated as 

follows: 



135 

 

min     𝑅 ∗ (𝐶𝑄�̅� + 𝐶𝑆𝑆̅) +∑𝑁𝐺𝑢𝑠𝑒 ∗ (𝑁𝐺𝑒𝑚 ∗ 𝛽 + 𝑁𝐺𝑝𝑟𝑖𝑐𝑒) ∗ 𝑞𝑡
𝑑

𝑡∈𝑇

+∑∑(𝑐𝑡,𝑖 + 𝑒𝑡,𝑖 ∗ 𝛽) ∗ 𝑔𝑡,𝑖
𝑖∈𝐼𝑡∈𝑇

          (𝐸𝑞. 4) 

In this optimization, the constraints are load balance, dispatchable minimum load, natural gas 

generator maximum capacity, energy storage state of charge (𝑠𝑡), energy storage state of charge 

limit (𝑆̅), energy storage charging (𝑞𝑡
𝑐) and discharging (𝑞𝑡

𝑑) limits, energy storage load level, and 

wind and solar production limits. These constraints are shown in Equations 5 to 15 respectively:  

     s. t.  ∑𝑔𝑡,𝑖 + 𝑞𝑡
𝑑

𝑖∈𝐼

= 𝐿𝑡 − 𝑛𝑢𝑐𝑙𝑒𝑎𝑟𝑡 − 𝑖𝑚𝑝𝑜𝑟𝑡𝑡 − 𝑔𝑒𝑜𝑡ℎ𝑒𝑟𝑚𝑎𝑙𝑡 − 𝑏𝑖𝑜𝑚𝑎𝑠𝑠𝑡 − 𝑏𝑖𝑜𝑔𝑎𝑠𝑡 − ℎ𝑦𝑑𝑟𝑜𝑡

+𝑞𝑡
𝑐;             ∀𝑡 ∈ 𝑇;    (𝐸𝑞. 5)  

       ∑𝑔𝑡,𝑖 + 𝑛𝑢𝑐𝑙𝑒𝑎𝑟𝑡 + 𝑔𝑒𝑜𝑡ℎ𝑒𝑟𝑚𝑎𝑙𝑡 + 𝑏𝑖𝑜𝑚𝑎𝑠𝑠𝑡 + 𝑏𝑖𝑜𝑔𝑎𝑠𝑡 + ℎ𝑦𝑑𝑟𝑜𝑡 + 𝑠𝑡𝑜𝑙𝑜𝑎𝑑𝑙𝑒𝑣𝑒𝑙𝑡
𝑖∈𝐼

≥𝑚𝑖𝑛𝑙𝑜𝑎𝑑;     ∀𝑡 ∈ 𝑇;    (𝐸𝑞. 6)  

               s. t    0 ≤ 𝑔𝑡,𝑖 ≤ 𝐾𝑡,𝑖;                                        ∀𝑡 ∈ 𝑇, 𝑖 ∈ 𝐼;               (𝐸𝑞. 7) 

                  𝑠𝑡 = (𝑖𝑓 𝑡 ≥ 2   𝑠𝑡−1  𝑒𝑙𝑠𝑒 0) + 𝜂𝑐𝑞𝑡
𝑐 − 𝑞𝑡

𝑑;                     ∀𝑡 ∈ 𝑇;       (𝐸𝑞. 8) 

                   0 ≤ 𝑠𝑡 ≤ 𝑆̅;                                               ∀𝑡 ∈ 𝑇;                         (𝐸𝑞. 9) 

                   0 ≤ 𝑞𝑡
𝑐 ≤ �̅�;                                             ∀𝑡 ∈ 𝑇;                         (𝐸𝑞. 10) 

                   0 ≤ 𝑞𝑡
𝑑 ≤ �̅�;                                             ∀𝑡 ∈ 𝑇;                         (𝐸𝑞. 11) 

                   0 ≤ 𝑠𝑡𝑜𝑙𝑜𝑎𝑑𝑙𝑒𝑣𝑒𝑙𝑡 ≤ (𝑖𝑓 𝑡 ≥ 2   𝑠𝑡−1  𝑒𝑙𝑠𝑒 0);                      ∀𝑡 ∈ 𝑇;             (𝐸𝑞. 12) 

                   0 ≤ 𝑠𝑡𝑜𝑙𝑜𝑎𝑑𝑙𝑒𝑣𝑒𝑙𝑡 ≤ �̅�;                                                               ∀𝑡 ∈ 𝑇;               (𝐸𝑞. 13) 

                   0 ≤ 𝑤𝑖𝑛𝑑𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛𝑡 ≤ 𝑤𝑖𝑛𝑑𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒𝑡 ∗ 𝑤𝑖𝑛𝑑𝑐𝑎𝑝;             ∀𝑡

∈ 𝑇;            (𝐸𝑞. 14) 
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                   0 ≤ 𝑠𝑜𝑙𝑎𝑟𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛𝑡 ≤ 𝑠𝑜𝑙𝑎𝑟𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒𝑡 ∗ 𝑠𝑜𝑙𝑎𝑟𝑐𝑎𝑝;          ∀𝑡 ∈ 𝑇;            (𝐸𝑞. 15) 

In this analysis, we only assume the efficiency losses during the charging of energy storage system. 

Therefore, discharging efficiency of storage technology is assumed to be one across technologies, 

and the charging efficiency (𝜂𝑐) is assumed to be equal to the round-trip efficiency of each 

technology (shown in Table 5-2), as is done in another study by Sioshansi et al. [50].  

5.2.3 Scenarios 

In this model, installed wind and solar capacities are increased exogenously from 0 to 10 and 20 

GW of wind energy, and 0 to 20 and 40 GW of solar energy. It is also assumed that the imposed 

emission tax on the system could be 0, $50/ton of CO2, $100/ton of CO2, or $200/ton of CO2. Fig. 

5-1 shows the matrix of thirty-six scenarios developed by these assumptions:  

 

Fig. 5-1 Scenarios for the optimization model 

Thirty-six simulations are run for each technology including ADCAES, DCAES, PHES, PbA, Li-

ion, NaS, VRFB, PSB, and ZBB to investigate how the optimal results would change across 

technologies, carbon tax levels, and renewable penetration.   

5.3 Results  

Fig. 5-2 shows the relative size of the selected technologies that are deployed in different 

combinations of installed wind and solar capacity, assuming 0, $50/ton of CO2, $100/ton of CO2, 

and $200/ton of CO2 emissions tax. As shown in this figure, increasing the wind and solar 

capacities as well as the emissions tax make the deployment of energy storage more cost-effective. 

Among technologies, PHES technology with $441/kW and $5/kWh capital costs is deployed in 
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almost all combinations, and its optimal size in relatively larger compared to other technologies. 

On the other hand, an expensive technology such as Li-ion battery (with highest round-trip 

efficiency compared to other technologies) is deployed only in scenarios with high level of 

installed wind and solar capacities and high emissions tax of $200/ton of CO2. In scenarios with 

no wind and solar capacity, the integration of none of the storage technologies is cost-effective for 

this application even when an ambitious emissions tax of $200/ton of CO2 is imposed. The latest 

update of renewable energy progress report by California Energy Commission indicates that as of 

October 2017, the share of wind capacity in California was 5.6 GW and the share of solar capacity 

was 16.2 GW [51].  Given these renewable penetration levels, the results of this optimization 

model (in case of 20 GW of solar and 10 GW of wind penetrations) show that there needs to be an 

emission tax of $50/ton of CO2 imposed on the system to make the deployment of energy storage 

cost-effective for this application.   
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Fig. 5-2 Optimal size (in MW) of nine energy storage technologies in different combinations of installed 

wind and solar capacity in CAISO, assuming 0, $50/ton, $100/ton, and $200/ton of CO2 emissions taxes 

The optimal operation of each storage technology, net load (load minus variable wind and solar) 

in MW, and marginal clearing price (MCP) in $/MWh (computed as the dual variable of the 

constraint load balance in Eq.5) are displayed in Fig. 5-3. The results are for the first day of March. 

It is assumed that the total wind and solar capacity equals 20 GW each, and the emissions tax is 

$100/ton of CO2. The peak of energy storage charging occurs during the day hours with the 

minimum net load, making the valley smaller. These results show that storage technologies with 
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lower energy capital cost ($/kWh) such as PHES and CAES are charged for a longer period of 

time due to their larger capacity which allows for more charging capability of these technologies. 

However, expensive battery technologies such as PbA tends to charge during shorter periods.   

 

Fig. 5-3 Optimal operation of six storage technologies on March 1st in CAISO, assuming 20 GW of wind 

capacity, 20 GW of solar capacity, and $100/ton of CO2 emissions tax. MCP ($/MWh), ES charged (𝒒𝒕
𝒄 in 

MW), and ES discharged (𝒒𝒕
𝒅 in MW) are shown in the secondary vertical axis. (NaS, Li-ion, and ZBB are 

not deployed under this level of renewables penetration) 

Next, renewable (wind and solar) curtailment between the scenarios without and with energy 

storage is analyzed and the results are presented in Fig. 5-4. This figure is consistent with previous 

results as increasing the emissions tax leads to less curtailment through making the energy storage 

deployment more cost-effective. After integrating energy storage within the system, curtailment 

decreases much more substantially in case of cheaper technologies such as PHES and CAES.  
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Fig. 5-4 Renewable (wind and solar) curtailment before and after deploying specific technologies in 

CAISO, assuming 0, $50/ton of CO2, $100/ton of CO2, and $200/ton of CO2 emissions tax (“W” stands 

for wind, “S” stands for solar, and the numbers on top of bars show the emissions tax level)  
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Fig. 5-5 shows the hourly, daily, seasonal, and annual curtailment patterns in a scenario that PHES 

technology is deployed in CAISO. Two renewable penetration levels of middle (10 GW of wind, 

20 GW of solar) and maximum (20 GW of wind, 40 GW of solar) are shown in this figure along 

with assuming minimum and maximum emissions tax levels of 0 and $200/ton of CO2. The 

curtailment rate is much higher in the spring season, when the electricity demand is lower. The 

minimum curtailment is during the fall season. Increasing the emissions tax to its maximum value 

reduces the daily, hourly, seasonal, and annual curtailment significantly (which is also consistent 

with Fig. 5-4).  

 

Fig. 5-5 Renewable (wind and solar) curtailment in case of PHES deployment with middle and maximum 

renewable penetration level, assuming 0 and $200/ton of CO2 emissions tax 

Fig. 5-6 shows the reduced cost of Li-ion battery ($/kWh), assuming 20 GW of solar penetration 

and 10 GW of wind penetration, across four emissions tax levels. For example, in order to deploy 

cost-effective Li-ion battery in the case of zero emissions tax, its energy related capital cost needs 

to be reduced around $70/kWh from its $600/kWh value. With increasing the emissions tax level, 
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this breakeven cost is decreased. 

 

Fig. 5-6 Li-ion energy capacity reduced cost, assuming 20 GW of solar penetration and 10 GW of wind 

penetration 

5.4 Discussion 

We present an optimization model to investigate the role of cost-effective energy storage in bulk 

energy time-shifting in California grid. For this application, we examine nine specific energy 

storage technologies including PHES, two types of CAES, and six battery systems. Our results 

determine the optimal size and operation of each technology to achieve the minimum systems cost, 

while accounting for GHG emissions, under high renewable penetrations with different CO2 tax 

levels. As results show, the capital cost of energy storage systems is the main obstacle to the wide 

deployment of such technologies. Even in the case of a high emissions tax, and high wind and 

solar capacities, the deployment of an expensive but efficient technology such as Li-ion is limited. 

This technology specific study can guide different stakeholders such as energy storage operators 

and electric utilities about their technology choices. As mentioned, the results of this study 

demonstrate that increasing the emissions tax makes the integration of energy storage more cost-

effective. In another study, Yong and Macdonald showed that an emissions tax regime set by the 

government and the willingness to commit to it, has a positive influence on the size and the 

direction of firm level investment in clean technologies [52]. Therefore, adding an emissions tax 

to the already established energy storage mandate of California could have beneficial economic 

and policy implications [1].  
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There are some limitations in this study that can be examined in future research. One of these 

limitations is that we only investigate GHG emissions; however, there are other environmental 

impacts that need to be considered. For example, while our results show the promising application 

of PHES due to its low costs, there are some concerns regarding other environmental impacts 

(beyond GHG emissions) of such technology. These impacts could include causing changes in 

landscape, increasing the risk for spreading or causing mortality of species, and impacts on 

biological production, among others [53]. In addition to these controversial environmental 

impacts, PHES is location dependent and requires sites with specific topological and/or geological 

characteristics [6], [54]. The deployment of CAES is also limited due to the lack of suitable 

spacious locations or underground formations [6], [55]. Further examination of these limitations 

gives a more comprehensive understanding of deployment potential of PHES and CAES. 

The optimization model developed in this study could also be expanded to other grid examples, 

which have higher share of fossil fuel generation in contrast with CAISO, which we assume has 

no coal generation. We have assumed no degradation of energy storage throughout its operation. 

While Arbabzadeh et al. has shown that annual degradation in round-trip efficiency and capacity 

of energy storage do not have significant impact on environmental impact of integrating energy 

storage for time-shifting application [34], a future study can examine the impact of degradation in 

capacity and round-trip efficiency on the cost-effective operation of energy storage in the specific 

case of CAISO.  
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CHAPTER 6  
Conclusions 

 

Energy storage systems represent a rapidly evolving technology that can address grid challenges 

such as integrating variable renewable energy into the grid or balancing the difference between the 

electricity demand and supply [1]. While energy storage can help reduce the consumption of fossil 

fuels, reduce the greenhouse gas emissions (GHG), and therefore increase the grid sustainability, 

its adoption poses unique sustainability challenges that need to be studied through systematic 

sustainability assessment. The main focus of this dissertation is to develop robust sustainability 

frameworks to assess the environmental and economic impacts of utilizing grid-scale energy 

storage systems.  

The first study of this dissertation was an initial case study of energy storage for wind integration 

in an off-grid configuration. The insights from this case study and additional literature review led 

to the development of principles for green energy storage in the second study. An in-depth analysis 

of key parameters of energy storage and the electric grid, which were highlighted in principles, 

was conducted in the third study. And finally, an optimization model of energy storage operation 

was developed and applied in a case study of the California grid. Throughout these studies, it is 

demonstrated that environmental and economic impacts of energy storage development and 

deployment depend heavily on the technology characteristics, the grid application performance 

requirements, and the electric grid profile. 

6.1. A case study of energy storage integration within an off-grid configuration (Chapter 

2) 

One of the promising applications of energy storage is to increase the penetration of variable 

renewable energy such as wind or solar energy into the grid. A substantial body of research has 

studied the application of energy storage for renewable integration within both an electric grid or 

an isolated micro-grid [2]- [12]. However, these studies have not examined the economic and 
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environmental trade-offs between renewable curtailment and energy storage utilization and they 

do not address emissions target, which is an important decision-making criterion. Also, among 

energy storage technologies, vanadium redox flow battery (VRFB) offers high energy density and 

efficiency [13]. However, there is not a comprehensive life cycle GHG emissions assessment of 

VRFB development and deployment.   

The second chapter of this dissertation addressed these gaps by examining the trade-offs between 

environmental and economic impacts when utilizing VRFB to integrate wind energy and exploring 

the role of energy storage in achieving very low emissions targets. This study contributes to the 

literature by assessing the total life cycle GHG emissions and total cost of the system’s components 

including VRFB. Generation mixes are optimized to meet emissions targets at the minimum cost 

and to determine at which target the value of energy storage outweighs the cost of wind 

curtailment, i.e. when energy storage is preferable over additional wind capacity. The results 

demonstrate that while adding VRFB reduces GHG emissions, its integration is economical to 

reach only very low emissions targets. 

6.2. Principles for green energy storage in grid applications (Chapter 3) 

Twelve principles of green chemistry and twelve principles of green engineering have made 

significant contributions in addressing valuable strategies for the green design of chemical 

materials and engineering products [14], [15]. While these and other studies [16]- [19] have 

successfully provided guidance and structure for green design, energy storage technologies pose 

unique environmental challenges that are not fully addressed by those approaches. Due to this gap, 

those who design, maintain, and operate energy storage systems lack a systematic set of principles 

that can lead to improved environmental outcomes. 

Inspired by and building off the twelve engineering principles, a novel set of principles were 

developed in this chapter to fill the research gap and guides integration, operation and maintenance, 

and design of energy storage systems. Indeed, the development and operation of energy storage 

systems may lead to either positive or negative environmental impact. This robust set of principles 

shows how material and design choices in addition to operation and integration strategies influence 

environmental outcomes from developing and deploying of energy storage systems. By providing 

insights into and improve the environmental outcomes when integrating energy storage systems, 
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these principles for green energy storage guide various designers, decision makers, and utility 

operators on design choices and deployment scenarios. 

6.3. Key parameters for driving environmental performance of grid-scale energy storage 

(Chapter 4) 

We demonstrated that the integration of energy storage systems leads to different and sometimes 

unfavorable environmental outcomes. These outcomes depend on the energy storage parameters 

and the characteristics of the electric grid. While other studies have examined the environmental 

impacts of energy storage integration [20]- [27], these existing assessments have not systematically 

evaluated the influence of various parameters on environmental performance of energy storage 

technologies. This chapter contributes to the literature by illustrating how the environmental 

outcomes of integrating energy storage could change across the full range of six parameters. This 

novel parametric analysis was applied to time-shifting, frequency regulation, and power reliability 

applications due to their distinct characteristics. This framework can be used as a guideline to 

determine, systematically, when and how to choose storage systems to achieve positive 

environmental outcomes. Key findings of this study show that among selected parameters, energy 

storage round-trip efficiency and charging and displaced generator heat rates dominate in time-

shifting and regulation applications, whereas energy storage service life and production burden 

dominate in power reliability. 

6.4. Optimization model for deployment of energy storage within CAISO (Chapter 5) 

An extensive body of research has optimized the size and operation of an energy storage to reach 

the minimum costs within an electric system [28]- [31]. However, there still remains a gap in the 

literature in examining different energy storage technologies with varying capital costs to 

investigate which technology is built within specific system constraints to reach the minimum total 

costs. This chapter contributes to the literature by developing an optimization model for utilizing 

selected energy storage technologies to time-shift the peak load of CAISO, while accounting for 

GHG emissions accounting.  This model determines the optimal state of charge, optimal size of 

each energy storage, optimal amount of wind and solar delivered to demand, and the optimal 

natural gas generators output in order to minimize the system total costs (including GHG emissions 

costs), while meeting the electric grid system constraints. This study is novel because it 
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investigates how the optimal results would change across technologies and it develops scenarios 

with different combinations of emissions tax and total installed capacity of the renewable energy 

(i.e. wind and solar). It is determined which storage technology is built in each scenario. The 

findings show that increasing the installed capacity of wind and solar energy would make it more 

economic for the energy storage to be built and among nine technologies determined, PHES and 

D-CAES are the ones that are built in most scenarios.  

6.5. Recommendations for Future Research   

While different environmental impacts such as toxicity, scarcity, and criticality are examined 

qualitatively in the twelve principles chapter, the main focus of the studies conducted in this 

dissertation was on the GHG emissions indicator as it is widely used to assess the sustainability of 

the grid. However, future research can examine other sustainability impacts associated with the 

production and deployment of grid-scale energy storage technologies in more details. For example, 

James et al. used a water consumption indicator along with CO2 and NOx emissions to evaluate the 

sustainability of combined cooling, heating, and power systems [32]. They argue that energy-water 

nexus is one of the critical issues in provisions of urban utilities. It takes water to create energy 

and energy to treat and distribute water and traditional energy generation systems usually have 

higher water footprints [32]. Therefore, a future examination of water use can determine how 

integrating energy storage into the power grid can change water consumption rates. In the U.S. as 

a whole, anthropogenic SO2 emissions come mainly from power plants and other coal combustion 

facilities [33]. Sulfate aerosols from SO2 account for 50%-60% of the ground level particulate 

matter (PM2.5) [33].  Comparing electricity produced from shale gas and coal, Chun et al. showed 

that human toxicity impacts (dominated by particulate matter) of coal are lower [34]. Therefore, 

future research can investigate local air pollutant and human toxicity impacts when integrating 

energy storage into the grid particularly when coal is being substituted with cleaner generation.  

There has been increased attention toward the end-of-life strategies for energy storage systems 

such as batteries. These end-of-life approaches include reusing, reassembling, and recycling 

energy storage systems [35]. Careful analysis of environmental outcomes and economic impacts 

is necessary to select the best end-of-life approach which represents another area for future 

research. One of the promising re-use applications is the second use of vehicle batteries in 
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stationary applications. A future study can examine the optimal service life of energy storage 

systems along with a comprehensive comparison between the environmental impacts associated 

with the use of a degraded old battery and the environmental burdens associated with the 

production and deployment of a new battery.  

In future studies, the robustness of twelve principles developed in Chapter 3 can be examined 

further by applying them to additional models of grid applications and by considering new 

operation and maintenance conditions. For example, Principle #6 is about designing and operating 

energy storage for optimal service-life in order to guide replacement strategies and reduce 

environmental burdens. However, given growing technology improvements and efficient 

maintenance, only selected components of an energy storage system might need to be replaced 

after the system reaches its service-life. This would alter the environmental outcomes, compared 

to a case, in which the entire energy storage system is replaced. Therefore, it becomes important 

to identify which components are being replaced in order to estimate the optimal service-life and 

the total life cycle environmental impacts.  

List of principles can be extended to include the principles for mobile applications of energy 

storage in addition to the stationary applications. There has been a tremendous growth in the 

application of batteries in electric vehicles [36]. However, there are important concerns regarding 

mobile applications of energy storage systems that need to be addressed when expanding the 

principles. For example, weight of the energy storage technology is a key design parameter that 

influences the fuel economy and has to be studied carefully [36].  

Chapter 5 optimization model can be tested with other grid examples that have different grid 

characteristics from CAISO. CAISO represents a clean grid profile with natural gas as the main 

fossil fuel generation resource. Therefore, another grid example which has a higher share of coal 

generation is expected to change the results substantially. The reason is that the difference in 

marginal emissions and marginal costs between off-peak and peak generators would be larger, 

making the integration of energy storage more attractive. The optimization model can also be 

tested with future cost trends for energy storage technologies in order to analyze how the optimal 

results would change with potentially lower energy storage capital costs. Lower costs are expected 

to make deployment of energy storage economic under lower emissions tax. 
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Investigating how the models and results of this dissertation can be used to guide the development 

of effective policy and decision strategies, may be a potential future policy analysis. For example, 

as shown in Chapter 5, increasing the emissions tax makes the integration of energy storage more 

cost-effective. In another study, Yong and Macdonald showed that an emissions tax regime set by 

the government and the willingness to commit to it, has a positive influence on the size and the 

direction of firm level investment in clean technologies [37]. A future policy analysis can 

investigate the economic implications of various emissions tax policies combined with the already 

established energy storage mandate of California, which requires 1.3. GW of energy storage by 

2020 [38].  

Principles for green energy storage as well as sustainability assessment frameworks including 

parametric analysis and optimization models are developed in this dissertation. The goal is to 

systematically guide the environmental and economic performance of grid-scale energy storage 

systems. This research provides the robust foundation for the future research on energy storage 

systems.  
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