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ABSTRACT

Limited Angle Ultrasound Tomography of the Compressed Breast

by

Rungroj Jintamethasawat

Co-Chairs: Oliver D. Kripfgans and Xueding Wang

X-ray mammography is widely accepted as the clinical standard for breast cancer

screening and diagnosis. However, reflection mode ultrasound has been known to

outperform x-ray in screening performance in dense breasts. With newer modes of

ultrasound, acoustic properties of breast tissue, such as the speed of sound and at-

tenuation coefficient distributions, can be extracted from captured ultrasound signals

and used to characterize breast tissue types and contribute to detection and diag-

nosis of malignancy. The same is possibly true for optical absorption via photoa-

coustic imaging. Recently, we have developed a dual-sided ultrasound scanner that

can be integrated with existing x-ray mammographic systems and acquire images in

the mammographic view and compression. Transmission imaging for speed of sound

and attenuation coefficient in this geometry is termed limited angle tomography, as

the beams at frequencies yielding high resolution cannot transit the long axis of the

compressed breast. This approach, ideally, should facilitate the co-registration and

comparisons between images from three modalities discussed here (x-ray, ultrasound

and photoacoustic) and increase diagnostic detection confidence. However, potential

limitations inherent in limited angle tomography have received minimal exploration
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up to this study, and existing imaging techniques developed for this approach are

based on overly optimistic assumptions that hinder achievement of the desired image

quality. This investigation of these problems should contribute valuable information

to the validation and translation of the mammographically-configured, dual-sided

ultrasound, or ultrasound and photoacoustic, scanner to the clinic.

This dissertation first aims to extensively identify possible sources of error re-

sulting from imaging in the limited angle tomography approach. Simulation findings

mapping parametric conditions reveal that image artifacts arising in reflection mode

(B-mode) can be modulated or mitigated by ultrasound gels with adequate acoustic

properties. In addition, sound speed imaging was performed determining the level of

significance for several key sources of error. Results suggest that imaging in transmis-

sion mode is the most sensitive to transducer misplacement in the signal propagation

direction. This misplacement, however, could be minimized easily by routinely cali-

brating transducer positions.

Next, this dissertation aims to advance speed of sound, attenuation, and photoa-

coustic image reconstruction algorithms for the limited angle tomography approach.

This was done by utilizing both structural information of the imaged objects/tissues

by means of the corresponding reflection mode images taken from the same imaging

location, and a full acoustic modeling framework to account for complex acoustic

interactions within the field of view. We have shown through simulations that both a

priori information from reflection mode images and full acoustic modeling contribute

to a noticeable improvement in the reconstructed images. Work done throughout the

course of this dissertation should provide a foundation and insight necessary for im-

provements upon the existing dual-sided ultrasound scanner towards breast imaging

in the clinic.
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CHAPTER I

Introduction

1.1 Significance

According to the latest cancer statistics in 2018 [1], breast cancer has reportedly

been the most frequently diagnosed incidence among all other diagnosed cancer types

in the female population in the United States. Although breast cancer mortality

rates have shown to decline in the last two decades, the latest statistics shows that

breast cancer mortality still accounts for 14% of the total cancer mortality. More

importantly, the recent statistics in 2015 [1] show that breast cancer is the most

prevalent cause of cancer deaths in the group of young-to-middle-aged (20-59 years

old) female adults. Such statistics represent significant loss of life and stress the

importance of having medical diagnostic tools that enable early diagnosis of breast

cancers.

Currently, x-ray mammography serves as the standard, non-invasive imaging so-

lution for breast cancer diagnosis and screening. Despite wide clinical acceptance,

x-ray mammography has crucial drawbacks. Its poor performance when imaging

dense beasts, mostly found in young female adults, where early-stage cancers de-

velop, hinders its ability to achieve early detection and screening. It furthermore

suffers from ionizing radiation, that could cause potential harm to patients who are

imaged repeatedly. However, alternative imaging modalities can be used to overcome
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these limitations, such as magnetic resonance imaging (MRI) and ultrasound. Al-

though MRI provides superior image quality and is less prone to the dense tissues

compared to the x-ray, the use of MRI in breast scanning is still not suitable for a

screening process, primarily due to its long scanning time and high operational cost.

On the other hand, ultrasound has become widespread and has been used as an ad-

junct to x-ray mammography, thanks to its ability to penetrate through dense breast

tissue better than x-ray, where glandular tissue in dense breast tends to provide little

contrast for x-ray photons as opposed to ultrasound signals [2]. Using ultrasound,

in adjunct with x-ray, has shown to increase the overall detection sensitivity [3]–[5].

In addition, ultrasound is highly portable and requires substantially less operational

cost compared to MRI and x-ray. Such advantages have encouraged several research

groups to develop affordable and safe ultrasound imaging techniques whose perfor-

mance are comparable to the existing x-ray mammography techniques. Our group has

also developed mammographically-configured, automated, and dual-sided ultrasonic

imaging, that is not only capable of acquiring the B-mode images in the same view

as x-ray mammogram, but also capable of performing other advanced transmission

mode imaging techniques [6]–[12].

The potential of using ultrasound in breast cancer detection and screening goes

beyond conventional B-mode imaging, the most commonly-used technique nowadays

to image breast tissue structures. The physics of propagating ultrasound waves,

such as reflection, refraction, diffusion, and scattering, are strongly dictated by the

underlying acoustic properties in the propagated media [13], [14]. As such, there have

several attempts to extract those acoustic properties from the information contained

in the received ultrasound signals. It has been shown by several studies that some

acoustic properties, such as sound speed [7], [15]–[22], acoustic attenuation [8], [17]–

[19], [21], [23]–[25], mass density [26], and mechanical elasticity [27]–[29], can be

used to characterize breast tissue types such as fibroglandular, fat, cyst, and cancer.
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Sound speed and acoustic attenuation are particularly of our interests, as they can be

obtained directly from our dual-sided ultrasound scanner by means of transmission

mode imaging, and these two properties provide attractive quantitative biomarkers

that can help in the classification of breast tissue types [30]. For example, fat has the

lowest sound speed, and cancer tends to have high sound speed and high attenuation.

More interestingly, even though there is overlap among sound speed and attenuation

of fibroadenoma, fibroglandular, and cyst, their distictive relationships between sound

speed and attenuation could help in identifying these tissues. See Figure 1.1 for further

illustration.

 
Cancer 

Cyst 

Fibro-
adenoma 

Figure 1.1: Distribution of speeds of sound and attenuation coefficients that can be
used to characterize different tissue types (figure from [30]).

Several existing ultrasound systems have been specifically designed for sound speed

and acoustic attenuation imaging and those systems have shown much success in

imaging under clinical circumstances [17], [19]–[22], [31]–[36]. Their signal acquisition

schemes are based on circular ultrasound arrays that transmit and receive signals

with the patient’s breast setup in a prone position. This is different from x-ray

mammograms that acquire images in the compressed position of the breast. Co-
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registrations of images obtained from prone (ultrasound) and those from compressed

(x-ray mammograms) cases, though possible, appear very challenging as they often

require heavy task-specific parameter tuning [37], [38]. The ability to bridge this gap

should make our cost-effective dual-sided scanner more preferable to clinicians who

are already familiar with x-ray mammography. Figure 1.2 further shows a schematic

representation of ultrasound scanner utilizing the circular ultrasound array geometry,

versus our dual-sided ultrasound scanner utilizing two commercial linear ultrasound

arrays, to demonstrate different breast compression levels.

 

Compression 
paddles 

Breast 

Variable 
separation 

X-Ray Source 

US Transducer 1 

X-Ray Detector 

US Transducer 2 

` 
Breast 

Water bath 

Source Detector 

(a) (b) 

X-Ray Source 

X-Ray Detector 

US Transducer 1 
(for B-mode imaging, can be 

flipped out for X-Ray imaging) 

(c) 

Figure 1.2: Schematic representation of (a) scanner in existing ultrasound systems
utilizing the circular ultrasound array geometry, and (b) our dual-sided ul-
trasound scanner utilizing two commercial linear ultrasound arrays. Panel
(c) shows the actual integration of ultrasound and x-ray tomosynthesis
units.
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For this reason, we have utilized our dual-sided ultrasound scanner for multi-

modality imaging in both transmission and reflection modes. The inherent limitation

of our dual-sided scanner, in its lack of freedom to transmit and receive signals in any

direction, has been overcome by the approach recently proposed by our former grad-

uate student Dr. Hooi [7], [8], the use of already-available B-mode or x-ray images

for guiding reconstructions. Still, our dual-sided ultrasound scanner has several areas

that are left uninvestigated. First, it has been observed that breast tissue B-mode

images, obtained in the mammographic or cranial-caudal view, are prone to artifacts

appearing as shadow areas, where signal intensity drops. These artifacts occur due

to the complex interactions between propagating ultrasound waves and intermedi-

ate tissues that distort the wave propagation patterns. Such aberrations not only

decrease the signal-to-noise ratio in the shadow areas but also degrade the image

reconstruction accuracy when segmentation is performed on those B-mode images.

Most commonly such segmentation is performed to generate a priori information for

later reconstructions of sound speed and acoustic attenuation images. Apart from

mis-segmentations that are caused by aberrations (not only limited to shadow areas),

the dual linear ultrasound arrays arranging, in the mammographic configuration, leads

to a non-rigid system, where transducer positions are misplaced by forces, exerted by

the compressed breast. Knowing the degrees of these effects on the reconstruction

accuracy can give us insight into design considerations of ultrasound scanners and

imaging couplants. Such insight then points to which factors are the most significant

with respect to their influence on image reconstruction accuracy. Further considera-

tions include the comparison of our existing ray-based reconstruction algorithms with

more sophisticated approaches, not only with respect to reconstruction accuracy but

also in terms for computational load and dataset size. Lastly, our existing dual-sided

breast ultrasound scanner has not been utilized to its fullest diagnostic potential yet.

By integrating additional imaging modalities with specialized processing algorithms,
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additional clinical information would potentially become available, thereby raising

the significance of medical ultrasound and this imaging geometry.

1.2 Dissertation Outline

Throughout the course of this dissertation, we have performed detailed investiga-

tions to our dual-sided ultrasound scanner and developed various imaging algorithms

suitable for this scanner to address the aforementioned issues. Such investigations

and the concurrently developed imaging algorithms are studied in extensive simula-

tion cases and datasets. We believe these will provide a solid foundation to in-vivo

and clinical breast imaging in the future. The body of this dissertation is organized

as follows:

Chapter II: We have demonstrated through simulations that shadow area arti-

facts, that manifest in B-mode images near the subareola region, can be minimized

by using ultrasound couplant (coupling gel) that reduces the effective number of

impedance mismatch layers within the image [39]. Our findings show that using a

couplant with acoustic properties close to the breast skin can reduce spatial arti-

facts by 57.1% and 96.7%, in low (1 MHz) and high (4 MHz) frequency imaging,

respectively.

Chapter III: We have investigated sources of inaccuracy that affect sound speed

imaging as performed on our dual-sided ultrasound scanner and reconstructed based

on bent-ray and limited angle transmission tomography developed in our group [6],

[7], [40]. Each source of inaccuracy is classified as either mis-segmentation on a priori

B-mode images or miscalibration due to non-rigid transducers. We have shown that

simulated mis-segmentation in object size and their lateral location produced maxi-

mum sound speed errors of 6.3% within a 10 mm diameter change and 9.1% within a 5

mm spatial shift, respectively. More interestingly, axial translational miscalibration,

which is the easiest type of inaccuracy to calibrate in most systems, happens to be

6



the most significant inaccuracy (57.3% within a 5 mm shift).

Chapter IV: We have developed a waveform inversion algorithm for sound speed

imaging on our dual-sided ultrasound scanner [9]. The algorithm can not only ac-

count for complex acoustic phenomena beyond the existing bent-ray based approach,

but can also utilize a priori information from B-mode images and cope with image

artifacts due to limited a priori constraints. Based on simulated reconstructions,

using a waveform inversion algorithm provides at least 0.5% accuracy for the recon-

struction of simple objects. In addition, when a priori information is not available,

the reconstruction algorithm can recover fine structural details with minimal artifacts

in both simple objects and more realistic, breast tissue-mimicking, phantoms.

Chapter V: We have developed an attenuation correction approach that takes

into account the energy loss due to wave signals propagating out-of-plane and therefor

missing the receiver [41]. This correction is suitable for attenuation imaging that em-

ploys bent-ray algorithms and commercial 1D ultrasound arrays. Three-dimensional

waveform inversion algorithms and 2D ultrasound arrays cannot currently be attained

due to limited resources. Simulation results show at least 30% more accuracy and 29%

less deviation in the attenuation coefficient distribution within the imaged objects.

Chapter VI: We have revisited the waveform inversion algorithm presented in

Chapter VI, and applied (modified) source encoding and compressed sensing tech-

niques, to drastically accelerate reconstruction time as well as reduce dataset size.

Given N as the number of active transducer elements, the improved reconstruction

algorithm can reduce the computation up to a factor of N and dataset size up to a fac-

tor of 10, while still providing images comparable to the original waveform inversion

algorithm.

Chapter VII: We have explored the possibility to combine algorithms developed

for our dual-sided ultrasound system with an optical modality, namely photoacoustic

tomography. Specifically, we have developed an image reconstruction algorithm that

7



utilizes a priori information from assumed B-mode or B-flow image models. Through

simulations, we have demonstrated, improved spatial accuracy as well as reduced

noise in the reconstructed phototacoustic images. This holds, even when only one

linear ultrasound array is used. Reconstructions on a realistically formed, simulated,

breast phantom also suggest the feasibility to translate this technique to the clinic.

Chapter VIII: We summarize the dissertation and suggest possible improve-

ments and future directions.

8



CHAPTER II

Acoustic Beam Anomalies in Automated Breast

Imaging1

2.1 Introduction

In 2016, approximately 246,660 women in the United States were diagnosed to

have breast cancer. Furthermore, out of all estimated new cancer cases, breast cancer

accounts for 29% [42]. In fact, breast cancer is the most frequently diagnosed cancer in

women. In the past decade, there has been great demand for ultrasound in the United

States for breast cancer screening as a supplement of x-ray mammography, since

ultrasound can detect unsuspected, mammographically occult cancer, especially in

radiographically dense breasts that have a higher risk of developing breast cancer [3],

[4], [43]. Also, several tissue acoustical properties obtained from received ultrasound

signals such as speed of sound [7], [15]–[22], attenuation [8], [17]–[19], [21], [23]–[25],

density [26], and elasticity [27]–[29] can be used for characterizing different tissue

types as they tend to have different acoustic properties. The ability of ultrasonic

imaging to characterize tissues, particularly the differentiation of malignant lesions

from benign tissues, shows promise in decreasing the number of breast biopsies needed

1This chapter is published in Journal of Medical Imaging : R. Jintamethasawat, X. Zhang, P. L.
Carlson, M. A. Roubidoux, and O. D. Kripfgans, “Acoustic Beam Anomalies in Automated Breast
Imaging,” Journal of Medical Imaging, vol. 4, pp. 4 -4 -10, 2017. doi: 10.1117/1.JMI.4.4.045001.
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for adequate diagnosis [44].

Compared with x-ray, ultrasound beams undergo much more complex interac-

tions with the tissues through which they propagate. In some cases, this interaction

can alter the propagation patterns substantially [13], [14], [45]–[48]. Several studies

have tried to extract tissue acoustic properties based on such interactions. To date,

however, full-wave calculations have not been performed to study how the imaging

anomalies at oblique incidence to the breast explored here arise and can be modified

by the choice of coupling agents. Recently, it has been observed that in breast imag-

ing, where images are acquired in the CC-view or in the mammographic view, the

anomalies occur as parts of areas that have limited insonification, i.e., signal dropout

areas, and are located close to the papilla and the curved skin layer, where many

malignant structures are found [49]–[51]. Figure 2.1 shows the signal dropout areas

presented in three different B-mode images, acquired from three different patients us-

ing our mammography-configured automated ultrasound scanner developed in-house

[6], [10], [11]. As can be seen, signal dropout areas occurring around the papilla could

negatively result in misinterpretations in breast cancer diagnosis and substantially

increasing further procedures for definitive diagnosis. Considering this, it is of partic-

ularly interest that automated ultrasonic imaging of the breast in the mammographic

geometry, where the ultrasound signal goes through couplant and penetrates the skin

at an angle (nonperpendicular direction), oftentimes misses much information of the

subareolar tissues due to bending of the acoustic beam by refraction and reflection,

leading to the low signal-to-noise ratio (SNR).

Here, we conduct finite-difference-time-domain (FDTD) simulations to investigate

artifacts of ultrasound wave propagation in a simulated breast geometry with a curved

skin layer under couplants with different acoustic impedances: commercial-gel-like,

skin-like, and adipose-like. In addition, we investigate the characteristics of anomalies

in the image as results of using the aforementioned couplants, as well as compare the
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Figure 2.1: Clinical images of compressed female breasts acquired using a GE Logiq
9 ultrasound scanner (GE Healthcare, Milwaukee, Wisconsin) at 10 MHz.
Each signal dropout area is enclosed by a manually segmented blue con-
tour. Note that the imaging array is located at the bottom of the images.

imaging performance of each couplant. The findings of our study will provide detailed

information about complex ultrasound signal interactions that occur during breast

imaging, which could potentially be helpful for designing a couplant that minimizes

these artifacts.

This paper is organized as follows: Section 2.2 describes the governing ultrasound

wave equations, how the simulation environments were setup, and how the simulation

datasets were acquired and processed. Section 2.3 demonstrates the characteristics

of the anomalies resulting from using different couplants and provides an in-depth

analysis of ultrasound wave interactions/propagation patterns under different cir-

cumstances. Finally, Section 2.4 provides a summary and possible future directions

of our study.

2.2 Materials and Methods

2.2.1 Breast Geometry

The simulation breast phantom used for all studies consists of ultrasound couplant,

skin, and adipose tissue, with their acoustical properties given in Table 2.1 and their

11



geometry diagrammed in Figure 2.2. The dimensions of the field of view in the axial

and lateral directions are 37.5 and 25 mm, respectively. The center of the field of

view is located at (lateral, axial) = (0, 21.25) mm. The skin layer with a thickness

of 2 mm [52], [53] corresponds to the enclosed boundaries that are defined as two

elliptical arcs cocentered at (-12.5 -∆x, 37.5) mm, where ∆x is the lateral shift of the

transducer, and with half major axes of 31 and 33 mm and half minor axes of 18 and

20 mm. By means of ∆x, lateral beams are simulated by varying ∆x from 0 to 8 mm.

The bottom of the numerical breast is bulged and supported by a transducer with an

aperture size of 16.74 mm, and surface curvature is defined as an arc of 30-mm radius

circle centered at (0, 31.3) mm, mimicking lateral focusing. Note that the curved

transducer represents the linear transducer with a focus at the center of curvature,

(0, 31.3) mm.
 

Adipose 

Couplant 

Skin 

Transducer 

Figure 2.2: Simulated breast geometry consisting of couplant, skin, and adipose tis-
sue.
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Table 2.1: Acoustical properties of simulated breast tissues and couplant.
Acoustical properties per tissue/material Skin Gel Adipose
Speed of sound (m/s) 1060 1490 1450
Density (kg/m3) 1060 1060 900
Dynamic Viscosity (Pa s) 0.5 0 0.5
Bulk viscosity (Pa s) 0.5 0 0.5

Table 2.2: Constants used for simulating wave propagation.
Governing constant Value
Initial pressure (p0) 101325 Pa
Pulse delay (t0) 3 µs
Maximum inward acceleration (a0) 10000 m/s2

2.2.2 Wave Propagation Theory

The wave propagation in lossy viscous media with respect to any given time t can

be described by the following equation [13]:

1

ρc2
∂2p

∂t2
+∇ ·

[
− 1

ρ
∇p+

1

ρc2

(
4µ

3
+ µB

)
∂∇p
∂t

]
= 0, (2.1)

where p is the total pressure that is dependent on the given speed of sound c, density

ρ, dynamic viscosity µ, and bulk viscosity µB. The initial conditions for Equation 2.1

are given as p = p0 and ∂p
∂p

= 0 at t = 0, where p0 is the initial pressure (see Table 2.2).

The transmitted pressure from the transducer can be modeled as the inward accel-

eration of the mesh element whose direction is normal to the transducer surface (red

curve in Figure 2.2) and points toward the simulation domain. This can be written

as:

n ·
(
− 1

ρ
∇p
)

= an (2.2)

where p is the transmitted pressure, n is the normal vector of the transducer surface,

and an is the inward acceleration. The inward acceleration pulse with respect to the

lateral location x is given by a sinusoidal acceleration tapered by a Gaussian function
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and transducer apodization window:

an(x) = a0H(x)e−[(t−t0)1.25f0]
2 sin(2πf0t), (2.3)

where f0 is the center frequency andH(x) is the Hamming window defining transducer

apodization. The additional parameters a0 and t0 are given in Table 2.2.

In addition, to minimize reflections from the simulation domain boundaries, the

following radiation boundary conditions are modeled:

−nb ·
(
− 1

ρ
∇pb

)
+

1

ρ

(
1

c

∂pb
∂t

)
= Qi (2.4a)

Qi =
1

ρ

(
1

c

∂pi
∂t

)
+ nb ·

1

ρ
∇pi (2.4b)

pi = e

(
t−x/c
0.01

)2
, (2.4c)

where pi is the incident pressure field, nb is the normal vector of the boundary, Qi is

the acceleration of incidence field in the direction of nb on the domain boundaries, x

is the lateral location, and pb is the pressure radiated out of the boundary to cancel

reflections caused by simulation domain boundaries.

2.2.3 Simulation Parameters and Assumed Properties

The simulation studies were conducted using center frequencies of 1 and 4 MHz,

each with three different choices of couplants. Such three couplants mimicked acous-

tical properties, i.e., speed of sound, density, and viscosity of commercial gel couplant

[54], [55] skin [56] and adipose tissue [21], [57], [58]. To achieve an attenuation coeffi-

cient of α = 0.6 dB/cm/MHz, the dynamic and bulk viscosity of 0.5 Pa s was applied

in skin and adipose studies.

The simulation domain was divided into meshes, where the mesh size was primarily
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determined by the medium’s speed of sound, the used imaging frequency, and a

factor that adjusts the mesh size in terms of a fraction of the local wavelength, called

spatial sampling rate (SSR). Such parameters are given in Table 2.3. The maximum

growth of neighboring meshes with respect to the given mesh is controlled by the

maximum element growth rate. Furthermore, the maximum mesh size is controlled

by the curvature factor: the mesh size must not exceed the curvature radius of the

given geometric boundary, multiplied by the curvature factor. The parameters that

constrain the change of mesh size and maximum mesh size allowed with respect to

the geometric boundary curvature are given in Table 2.4.

The simulation was performed using the COMSOL multiphysics program V4.2

(COMSOL, Inc., Burlington, Massachusetts), which models wave propagation via

the FDTD approach.

Table 2.3: Mesh properties used for 1 and 4 MHz simulation studies. Note that for
computational time feasibility at higher frequency, the SSR per wave cycle
was reduced to expand the maximum grid size limit.

Mesh property per center frequency f0 f0 = 1 MHz f0 = 4 MHz
Temporal sampling rate per wave cycle (TSR) 6 11
SSR per wave cycle 6 4
Maximum SSR per wave cycle (SSRmax) 11 11
Maximum element size c/(f0SSR)
Minimum element size c/(f0SSRmax)

Table 2.4: Mesh properties used for different materials. To avoid aliasing due to
spatial undersampling caused by higher speed of sound, note that the
maximum element growth rate and the curvature factor in regions repre-
senting skin-like material were set to have slightly lower values than those
in regions representing gel-like and adipose-like materials. Lowering these
properties for gel-like and adipose-like materials, however, does not yield
any accuracy improvement.

Mesh property per material Skin-like Gel-like Adipose-like
Maximum element growth rate 1.1 1.3 1.3
Curvature factor 0.2 0.3 0.3
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2.2.4 Simulations

2.2.4.1 Wavefront image generation

To visualize the beam patterns and progression across all simulation times (from

0 to 30 s with the step sizes of 0.25 s for 1 MHz studies and 0.0625 s for 4 MHz

studies), all wavefronts from all simulation times were superimposed on the same

simulation domain. Specifically, the superimposed image, i.e., the wavefront image,

was generated by the following: for any given grid point on the simulation domain, the

pressure value was set to the one with the highest absolute value among all simulation

times at the same grid point location, i.e., max-hold in time. Note that, from now on,

we will define this superimposing procedure as max-hold method. Note that, before

performing the max-hold operation, a median filter with a patch size of 0.75 mm 0.75

mm was applied as some (<0.1% by area) of the simulated signals were artifacts with

unusually high amplitude.

Twenty-one wavefront images were generated from 21 datasets corresponding to

21 different lateral beam positions. Specifically, the beam was moved laterally from

0 to 8 mm by 0.4 mm increments, thus simulating an image with a 400 µm lateral

beam spacing.

2.2.4.2 Determining imaging beam deflections

The imaging beam deflection, i.e., the directional change of the wave from the

original propagation direction due to an acoustic impedance mismatch at the interface

of two adjacent media, is determined by the wavefront by the most dominant beam

refracted after traversing the interface. The most dominant beam is defined as the

one with the highest spatial average positive peak pressure over the chosen positive

wave peaks on the beam. The following paragraph explains how this average positive

peak pressure is determined.
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Since it is difficult to determine the most dominant beam a priori, several beams

were initially considered. Then, for each such beam, the positive wave peaks were

localized and the average pressure amplitude of the positive wave peaks was assessed.

Only the peak locations from the beam with the highest average pressure amplitude

were used to determine the beam propagation direction. Simple linear regression

was employed to estimate the line-fitting lateral location of the particular peak given

its axial location, and the calculated slope was used for calculating the deflection

angle (see Figure 2.3 for illustration of the deflection angle). The same procedure was

repeated three times on the same beam, and the average of three deflection angles was

calculated. For each type of couplant, the average deflection angle was also calculated

as the average of all deflection angle magnitudes among all transducer lateral shifts.
 

𝜃 

+ - 
Dominant beam 

Deflection angle 

Initial beam 

𝜃 

Figure 2.3: Beam deflection caused by acoustic impedance mismatch at the inter-
face between two different media. The deflection angle θ can be obtained
by calculating the difference between the directions of the initially prop-
agated beam (solid line) and the deflected beam that has the highest
spatial average positive peak pressure (dashed line). Figure labels and
annotations are omitted for more clarity; see Figure 2.2 for annotations.

2.2.4.3 Determining signal dropout areas

To demonstrate the effects of signal dropout appearing over a wide range of imag-

ing locations, 21 wavefront images reflecting shifts of 0 to 8 mm were first converted
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to positive values by the absolute operation (|·|) and were then superimposed using

the max-hold method. The field-of-view range of the final image containing the sig-

nal dropout area was set to 4 to 12 mm laterally and 5 to 40 mm axially, with the

uniform resolution of 0.05 mm (see Figure 2.2 for dimension details). Since there

is a mismatch between the spatial distribution of pressure mesh point in wavefront

images and the signal dropout area image, the pressure mesh point in the 2-D plane

was interpolated onto a rectlinear grid via the scattered interpolation method.

The resulting image is the max-hold superimposed pressure distribution from all

lateral beam locations showing the signal dropout. The signal dropout area was

enclosed by an isocontour whose amplitude was measured by 3 dB down from the

minimum of two maximum signal pressures on the cross-section signal profile obtained

at the top of the image (greatest axial depth). These two maximum points correspond

to the maximum values on two signal profile segments separated by skin layers; see

Figure 2.4 for illustration. Once the isocontour of the signal dropout area was de-

termined, the enclosed area was calculated; the minimum, maximum, and average

values of all field points within the signal dropout area were also determined.

Note that the propagated signal was attenuated by α = 0.6 dB/cm/MHz. For

this reason, a time gain compensation (TGC) technique was applied to equalize the

attenuated signal with depth. Knowing that the assuming propagation medium has

a homogeneous speed of sound of c and a homogeneous linear attenuation of α, the

correction factor V at the time t is given as:

V (t) = e
tcαf0
8.686 (2.5)
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Figure 2.4: (a) Illustration of a signal profile corresponding to the horizontal cross
section of the signal dropout area image at the greatest axial depth (40
mm). Two maximum signal pressures on the profile are marked as blue
dots. The signal profile under the thick black dashed line represents
part of the signal dropout area. All contour points (red) constitute the
isocontour of the signal dropout area shown in (b) and Figure 2.7
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2.3 Results and Discussion

2.3.1 Deflections of the Transmitted Beams

Figure 2.5 shows examples of beam refraction patterns that occur when the beam

transverses the interface between couplant, skin, and breast tissue. Refraction is a

function of the local impedance mismatch, the boundary geometry (function of the

lateral beam position), and the center frequency. The refracted beam with the highest

average pressure amplitude, i.e., the most dominant beam, is marked by a red trace.

Figure 2.6 shows the corresponding deflection angle of the most dominant beam, with

respect to a vertical path, at both center frequencies, the three couplants, and the 21

beam positions. Note that, due to unresolved technical issues, the simulation at 6.4

mm lateral beam position and 4 MHz center frequency could not be accomplished.

The range of 0 to 8 mm was chosen because it is the range over which the artifacts

due to the beam deflections are noticeable for the typical breast shape commonly

found in clinical settings and chosen for the simulation. Also, the center frequencies

of 1 and 4 MHz were chosen because there is a major transition of beam propagation

behavior: between these two frequencies, increasing the center frequency from 1 to 4

MHz narrows the beam, which is then able to funnel within the skin layer. Positive

deflection angles denote the wave refraction toward the positive lateral direction (i.e.,

to the right side, see Figure 2.3 for illustration), and negative deflection angles denote

the wave refraction toward the negative lateral direction. In general, the deflection

curves generated from 1 and 4 MHz datasets (Figures 2.6(a) and 2.6(b), respectively)

have somewhat similar characteristics; in the beam shift range of 0 to 1.6 mm, the

beams deflect into the breast adipose tissue, and in the range of 4.4 to 8 mm, the

beams deflect away from the breast. However, the center frequency seems to play a

role in how beams are deflected outside the mentioned ranges. This effect can be seen

from both Figures 2.5 and 2.6(b) when commercial-gel-like or adipose-like couplant
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is used and the center frequency is set to 4 MHz. The beam appears to funnel within

the skin layer. This effect, however, does not appear with the lower, 1 MHz, center

frequency. This could be explained by the fact that the beam-focusing capability is

enhanced when a higher frequency is used, i.e., a narrower beam width is realized

and therefore most of its energy can be confined and funneled within the skin layer.
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Figure 2.5: Wave propagation pattern as a result of different couplants, beam lateral
positions, and two center frequencies. The resultant images are grouped
by center frequency and couplant name. For each group, four images from
left to right represent wave propagation patterns obtained at lateral beam
positions of 0.4, 2.0, 4.0, and 7.6 mm, respectively.

Also, as expected, using the skin-like couplant results in the least amount of beam

deflection. However, if the most dominant beam lies inside the breast tissue, the skin
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 (b) – 4 MHz (a) – 1 MHz 

Figure 2.6: Deflection angle of the most dominant beam as a result of different cou-
plants and lateral beam positions. (a) and (b) correspond to the used
center frequencies of 1 and 4 MHz, respectively. Two important aspects
to note at a particular lateral transducer shift are (1) for beam posi-
tion not >4 mm, the skinlike couplant will cause the greatest negative
deflection, slightly greater than commercial-gel-like and adipose-like cou-
plants, the direction causing signal dropout in the breast. There is less
positive deflection for beam position >4 mm with the skin-like coupling,
but that angle is basically irrelevant and (2) using the higher center fre-
quency results in more complex beam deflection patterns, especially with
the commercial-gel-like and adipose-like couplants.
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like couplant will cause the greatest negative deflection compared with commercial-

gel-like and adipose-like couplants for both 1 and 4 MHz center frequencies, as can

be seen from Figure 2.6. This could be explained as the beam traveling through the

skin-like couplant will deflect only at the interface between the inner skin layer and

the adipose tissue in the breast, and, since the adipose tissue has a lower speed of

sound than the skin, this refraction will cause the beam to deflect to the left side

(negative angle). On the other hand, using either the commercial-gel-like or the

adipose-like couplant that has lower speed of sound than skin will initially cause the

beam to deflect to the right side when the beam is hitting the outer skin layer. Note

that this deflection, in turn, causes a greater incidence angle of the beam at the

interface between the inner skin layer and the adipose tissue than the same incidence

angle resulted from using the skin-like couplant, thus making the final beam bend less

toward the left side. On the other hand, when the adipose-like couplant is used, it is

important to note that the beam deflections in the breast seem to be greater toward

the positive direction than those resulted from using commercial-gel-like couplant.

The lower speed of sound of adipose tissue causes the greater positive deflection angle

of the beam at the outer skin layer. The greater the positive deflection angle at the

outer skin layer, the greater the positive incidence angle at the interface between the

inner skin layer and adipose tissue, and this greater incidence angle will cause the

final beam to bend more toward the right.

2.3.2 Areas of Signal Dropouts

Figure 2.7 shows the results of signal dropout area in the simulated breast using

various couplants. The signal dropout area characteristics (size, minimum, maximum,

and average of all pressure samples in the signal dropout area) are given in Table 5 and

the box plots in Figure 2.8. As can be seen from both Figures 2.7-2.8 and Table 2.5,

both the center frequency and the couplant affect the size and the signal intensity in
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(a) – 1 MHz, 40 dB range (b) – 4 MHz, 40 dB range 

(d) – 4 MHz, 72 dB range (c) – 1 MHz, 72 dB range 
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Figure 2.7: Clinical images of compressed female breasts acquired using a GE Logiq
9 ultrasound scanner (GE Healthcare, Milwaukee, Wisconsin) at 10 MHz.
Each signal dropout area is enclosed by a manually segmented blue con-
tour. Note that the imaging array is located at the bottom of the images.
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(a) – 1 MHz (b) – 4 MHz 

Figure 2.8: Box plots of signal intensity in dropout area, as results of using (a) 1 MHz
and (b) 4 MHz center frequencies.

the dropout area.

When using the higher imaging frequency (4 MHz), the propagated beam will

be narrower and allow for better spatial resolution, but higher attenuation due to

higher frequency can cause a weaker average signal intensity in the dropout area,

as suggested by Table 5 and Figure 2.8. Straightforward solutions to compensate

for the signal loss are to increase TGC or overall gain (see Section 2.2.4.3 for more

details) or to increase the dynamic range. Unfortunately, neither solution is capable

of mitigating the signal dropout area. The TGC technique is only able to recover

the signal loss due to the attenuation but not the refraction due to the impedance

mismatch at the interface between two media. Increasing the dynamic range helps

visualize the image regions with low intensity as demonstrated in Figure 2.7, but it

is impractical in situations of low SNR.

It is observed that, to decrease the size of the signal dropout area, it may be better

to choose an appropriate couplant instead of pursuing the aforementioned solutions.
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Couplants affect the signal dropout area characteristics due primarily to phase inter-

ference resulting from the speed of sound and acoustic impedance mismatches. As

can be seen, both Figure 2.7 and Table 2.5 suggest that the skin like couplant results

in the smallest signal dropout area, followed, in order, by the increasingly lower speed

of sound commercial ultrasound gel and adipose-like couplants. In addition, it is in-

teresting to note that the area of the signal dropout seems to be related to the average

absolute deflection angle obtained across all beam lateral shifts. As can be seen from

Table 2.5, the average absolute deflection angle with the three couplants follows the

same order as the area of the signal dropout. The reason for using skin-like couplant

resulting in the smallest signal dropout area is obviously not only the reduction of

one effective interface but also the reduction of absolute speed of sound difference

with the skin, which causes a more advantageous refraction result. Note that we have

not attempted to make an empirical or analytical fit to these results, as details of the

effects will vary in a complex way depending on the particular geometry and acoustic

properties of the tissues.

Furthermore, as can be seen from Table 2.5 and Figure 2.8, when a skin-like

couplant is used, the average signal intensity in the dropout area is greater and the

range of signal intensity in the dropout area is narrower than those obtained when

using a gellike or adipose-like couplant. This could be attributed to the reduction in

acoustic impedance mismatch that helps ablate overall beam deflection as a result of

using the skin-like couplant. Thus, it suggests that using the couplant that minimizes

the acoustic impedance mismatch not only improves the signal intensity within the

dropout area but also helps eliminate the circumstances where low and high intensity

areas appear closely to each other and might confuse radiologic interpretations. The

advantages of replacing the gel with a skin-like couplant will be more noticeable in

pulse-echo imaging, where round-trip wave propagation occurs as opposed to the

one-way wave propagation simulated in this paper.
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It is also expected that, for frequencies lower than 1 MHz, the signal intensity

within the dropout area will increase due to reduced attenuation; thus, the artifacts

will diminish. For frequencies higher than 4 MHz, the dropout areas should appear

similar to those of the 4 MHz case as beam deflection patterns will be similar for 4

MHz and above.

The use of relatively low frequencies in the range of transmission tomography sys-

tems, compared with the usual 8 to 15 MHz of manual breast imaging, was necessary

for computational efficiency. However, the results at frequencies differing by a factor

of three give some suggestions of trends at higher frequencies.

2.4 Conclusions

This paper has demonstrated how acoustic impedance mismatch between coupling

material, human skin, and subcutaneous breast tissues leads to some of the anomalies

seen in imaging, such as during automated whole breast ultrasound and transmission

tomography, where the transducers are not always directly in contact with the skin.

These anomalies manifest themselves as signal dropout areas, or shadows, inside the

breast when the imaging beam transverses the skin at a fairly steep angle (40 deg

to 60 deg). This would be particularly important in the subareolar region, where

cancer is relatively common near the skin [52], [53]. The simulations showed that

reducing the acoustic impedance mismatch between skin and couplant decreases the

area of and signal intensity loss in the signal dropout area. Even though only 1 and

4 MHz frequencies were used in the simulations, we expect that this main conclusion

will still hold for diagnostic frequencies, as we have seen similar types of artifacts in

clinical images, as shown in Figure 2.1. Despite that subcutaneous fat was always

assumed beneath the skin, in rare other cases, the subareolar region located close

to the skin might also have a speed of sound close to that of the skin. Therefore,

similar, possibly increased, artifacts could also be expected around that region, and
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using couplant with skin-like acoustic properties could then mitigate such artifacts.

Design of an ultrasound couplant with acoustic properties close to those of breast

skin might not be trivial. One of these possibilities might be to utilize an ethanolwater

mixture with a 17% concentration by weight, which has been shown to provide a

speed of sound close to that of breast skin (1605 to 1610 ms) and provide a negligible

temperature coefficient of speed of sound in the range of room to body temperatures.

However, control of the volatility of the ethanol might be needed. Modest reduction

in the temperature of the breast and couplant would also reduce the speed of sound

contrast in the breast and resulting artifacts, but there are clear limitations related

to patient comfort.

It was observed that using the skin-like couplant could cause slightly greater beam

deflection within the breast, but this increase in deflection is outweighed by the consid-

erable decrease in the signal dropout area compared with using commercial ultrasound

or adipose-like gel.

When performing compound imaging in a breast freely suspended in a coupling

medium, without having transmission data and doing three-dimensional (3-D) full-

wave migration, this type of analysis would potentially allow the exclusion of erro-

neous data from compound summations. One might also include some refracted wave

data after approximate corrections for the expected bending of wavefronts. The sur-

face of the skin should be tracked in 3-D in the images performed up to the image

being formed to make these corrections in, eventually, real-time interpolations of a

more extensive set of data than that provided here. This correction should result in

much improved image quality at distances of up to several centimeters from the skin.

Short of full-wave migration imaging, wave migration calculations in a limited vol-

ume might be performed to allow corrections around recognizable and segmentable

internal structures for which reasonable estimates of the speed of sound could be made

[59]–[61]. This could strongly reduce shadows at the edges of structures with smooth
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borders, such as suspensory ligaments, cysts, and fibroadenomas, revealing possible

diagnostic information about poorly seen distal borders and providing more infor-

mation about the attenuation properties of the tissues of the smooth-walled masses

themselves, independent of their speed of sound differences with the surrounding

material [8], [25]. Shadow reduction might be less with the majority of invasive car-

cinomas, those having very diffuse borders.
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CHAPTER III

Error Analysis of Speed of Sound Reconstruction

in Ultrasound Limited Angle Transmission

Tomography1

3.1 Introduction

A leading application of ultrasound transmission tomography (UTT) is breast

cancer screening and diagnosis [17], [21], [22], [62]–[68]. Our approach has been to

adapt UTT to work in the same geometry as x-ray mammography and the similar

digital breast tomosynthesis (DBT) to facilitate use of the dual modality information

that, in the dense breast, is highly complementary. MRI can also be used to distin-

guish normal and cancerous masses, but it is limited by high imaging cost and the

current necessity of intravenous contrast agent [3], [4].

Most successful ultrasound transmission tomography systems for breast imaging

involve suspending the breast in a water tank and using a rotating transducer array

or a ring-like transducer array. The latter allows the wave signal to be transmitted

from and received by elements in any direction in the image plane. While work has

1This chapter is published in Ultrasonics: R. Jintamethasawat, W.-M. Lee, P. L. Carson, F. M.
Hooi, J. B. Fowlkes, M. M. Goodsitt, R. Sampson, T. F. Wenisch, S. Wei, J. Zhou, C. Chakrabarti,
and O. D. Kripfgans, “Error Analysis of Speed of Sound Reconstruction in Ultrasound Limited
Angle Transmission Tomography,” In press.
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progressed on registering ultrasound with mammography acquired in a different ge-

ometry [37], in practice this registration is still quite difficult. Recently, Hooi and

Carson [7] showed that two stationary linear transducer arrays, configured for limited

angle transmission imaging, (Figure 3.1) have promise in delivering information simi-

lar to that of full-aperture ultrasound transmission tomography, by utilizing B-mode

image segmentation to define areas of relatively homogeneous tissues. This segmen-

tation information is necessary because otherwise, with just pulse transit time data

between two opposed linear arrays, there is minimal information on the location of

tissue boundaries lying parallel to the transducers. This lack of complete information

thus results in limited-angle vertical artifacts. The advantages of limited angle to-

mography include use of established clinical transducers, shorter path lengths, that in

turn allow higher frequency imaging, and potential combination with photoacoustics

or x-ray mammography or tomosynthesis [6], [10], [11], [37], [69].
 

Top 

transducer 

Bottom 

transducer 

Reference 

fluid 

Figure 3.1: Breast-mimicking phantom compressed between two mesh paddles, im-
aged by two axially opposing ultrasound transducers operating in reflec-
tion and transmission mode. Inside the lateral balloons on the sides is a
reference fluid for transducer position calibration. The system is named
the Breast Light and Ultrasound Combined Imaging (BLUCI) system.

SOS images of small lesions and larger structures in a challenging tissue-mimicking
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phantom (Madsen, Madison, WI), reconstructed by limited angle transmission to-

mography previously proposed in [7], are shown in Figure 3.2 along with their cor-

responding true SOS image (Figure 3.2(d)) and B-mode images (Figure 3.2(a)-(b)).

This phantom has the same geometry as the one shown in [7] but has different SOS

contrast. With help from segmentation information obtained from B-mode images

(Figure 3.2(c)), the reconstructed SOS image shown in Figure 3.2(f) appears more

accurate than that shown in Figure 3.2(e), where segmentation information was not

utilized. The greatest SOS error in Figure 3.2(f) was -1.4%, in the 5 mm, hypoechoic,

spherical simulated mass on the left hand side. Our generation of the research scanner

(Verasonics, Kirkland, WA) employed for individual RF channel data in the transmis-

sion measurements provided inferior B-mode images and algorithms. Thus, the main

homogeneous regions in Figure 3.2(b) were segmented by overlaying the corresponding

B-mode image from a separate scan in the same compression using a Logiq 9 scanner

(GE Healthcare, Milwaukee, WI) (Figure 3.2(a)). Other factors necessitating use of

the Logiq 9 scanner included the higher frequency of GE’s M12L transducer (9 MHz)

compared to the L7-4 (5 MHz) transmission imaging arrays (ATL/Philips, Bothell,

WI) used with the Verasonics scanner. The resulting manually-segmented regions are

shown in Figure 3.2(c), and note that advanced automated segmentation methods can

potentially be used to delineate tissue regions with reasonably homogeneous SOS.

Our earlier work in limited-angle SOS imaging [7] was performed with a rigid

system, without the possibility of flexible positioning, that is now offered in the

Breast Light and Ultrasound Combined Imaging (BLUCI) system. There are, how-

ever, strong spatial and weight constraints for transducers and translators that are

added to BLUCI and correspondingly to a commercial mammographic or DBT sys-

tem. When scanning in contact with the breast and flexible compression membrane,

forces and torque are exerted on the transducers. These make it difficult to meet

rigidity criteria imposed by the extreme sensitivity of SOS reconstructions to rela-
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tive positions of the two transducers. Moreover, as illustrated earlier in Figure 3.2,

B-mode images can be used to provide a priori information to aid the SOS recon-

struction and improve its accuracy. However, the SOS reconstruction does rely on

the given enclosing boundary and other segmentation information, thus it is crucial

to understand the effects of inaccurate mis-segmentation.

 (a) (b) (c) 

(d) (e) 

Cyst 

Hypoechoic 
region 

(f) 

Figure 3.2: (a) B-mode image of a tissue-mimicking phantom obtained from a com-
mercial ultrasound system, used mainly for guiding segmentation on (b).
(b) B-mode image of the same phantom obtained from a research ultra-
sound system. (c) Image of segmented regions. (d) Known, true speed
of sound image. (e) and (f) reconstructed speed of sound images without
and with guidance from segmentation, respectively. The speed of sound
of two enclosing wavy layers at the top and bottom was fixed at 1409 m/s
for the reconstruction.
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3.2 Materials and Methods

3.2.1 System Descriptions and Specifications

Our Breast Light and Ultrasound Combined Imaging (BLUCI) [6], [10] system con-

sists of two linear array transducers mounted above and below two mammographic-

style mesh compression paddles in positioning carriages, as illustrated in Figure 3.1.

The coupling between breast, paddles, and transducers is achieved by using bub-

ble free ultrasound gel (Sonotech, Bellingham, WA). The reference fluid in the side

balloons is used for transducer position calibration. The positioning carriages can

move the transducers in the lateral-elevational 2D space with 2 µm step size (Parker,

Rohnert Park, CA). Concurrently, in absence of external forces, arising from the com-

pression paddles and the transducer apertures touching the paddle/skin, the distance

between the transducers is kept constant.

The system is interfaced with a Verasonics V-1 (Verasonics, Kirkland, WA) re-

search ultrasound system (ATL/Philips, Bothell, WI, with two ATL L7-4 linear ar-

rays), to acquire raw radiofrequency (RF) data of regions shown in Figure 3.2. A

Logiq 9 scanner (GE Healthcare, Milwaukee, WI) with M12L transducers are used to

acquire high quality B-mode images.

For tomographic RF data acquisition, an ultrasound wave is transmitted from

one element in the transmit array and received by all elements of the opposite array.

Thus, for an L7-4 linear array with 128 elements, a total of 128× 128 RF traces are

collected, though signals from the most oblique angles are of poor signal-to-noise ratio

and cannot be used because of the limited directivity of the transducer elements. The

main lobe is up to ±17 deg from the central axis. B-mode images are also obtained

from the top and bottom transducers to allow boundary identification of objects and

background regions to merge with this M12L image for segmentation.

The SOS image reconstruction algorithm for limited angle ultrasound tomography
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as proposed by [7], adopts the inversion algorithm in [70] and the approaches in [17],

[71]. The proposed reconstruction problem can be formulated via minimizing the

following cost function S with respect to the given vectorized slowness (inverse SOS)

m:

2S(m) =
(
g(m)− d

)T
C−1D

(
g(m)− d

)
+
(
m−ma

)T
C−1M

(
m−ma

)
(3.1)

Vectors d and g(m) represent measured and simulated time of flight (TOF). The

operator g converts the given slowness vector m to the simulated TOF vector, which

can be accomplished by Multistencils Fast Marching Methods (MSFM) [72]. Vari-

ances of individual measured TOFs can be modeled via the diagonal matrix CD.

A priori information, usually from B-mode segmentation of regions of similar tissues,

is included in the second term on the right hand side of Equation 3.1, through as-

signing initial guesses of the slowness image ma and through defining the variances

of reconstructed slowness pixels and their correlations in CM. The initial estimate

of the slowness image, ma, can be assigned as a uniform slowness. CM can be de-

fined by the correlation coefficient ρk of region k and the standard deviation σ of the

reconstructed slowness. For pixels i and j, CM is more specifically defined as CMij
.

If i 6= j and i and j belong to the same region, then CMij
= ρkσ

2. If i = j, then

CMij
= σ2 and otherwise CMij

= 0.

The conjugate gradient method was employed to iteratively minimize the cost

function in Equation 3.1. For every image reconstruction done in this paper, the pixel

size was set to 0.25λ×0.25λ, where λ was the wavelength. Such pixel size was chosen to

ensure that it was well within the resolution limit [73] while keeping the computational

complexity tractable. The slowness distribution was assumed as Gaussian, whose

mean and standard deviation were set to the initial estimate of the slowness image

(ma) and 4.8 × 10−5 s/m, respectively. This definition allowed the slowness to vary
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from 6.19 × 10−4 to 7.15 × 10−4 s/m, corresponding to an approximated SOS range

of 1400 to 1615 m/s, which includes normal breast tissue, fatty tissue, fibroadenoma,

and cancer[17]. Similarly, the TOF distribution was assumed as Gaussian with its

mean centered at the measured TOF (d) and standard deviation of 50 ns, i.e. the

signal jitter at 20 MHz, which was also used to populate the diagonal entries of

CD. The initial slowness image (ma) was set to a homogeneous SOS map obtained

from averaging all rays normal to the transducer arrays. Intra region correlation

coefficients (ρk) were set to 0.01, based on previous studies [7], to allow enough

degree of freedom for the reconstructed slowness to recover object profiles along the

axial direction. For large homogeneous background, the correlation coefficient was

set to 0, as it was thought that its estimated initial SOS was likely close to the true

SOS. The reconstruction algorithm was run for up to five iterations and was stopped

earlier if the ratio of the residual (L1 norm of
(
g(m) − d

)
in Equation 3.1) of the

current iterations, to the 1st iteration was converging and was less than a pre-specified

threshold.

Investigations using simulations are described in Section 3.2.2 and some of those

results were validated by physical experiments that are described in Section 3.2.3.

All the simulations and image reconstruction were performed using MATLAB (Math-

Works, Natick, MA).

3.2.2 Simulations

Simulation studies were aimed to investigate misalignment effects under control-

lable settings and magnitudes. The simulation setup consisted of two artificial linear

array transducers (ATL L7-4, Table 3.1). Transducer elements were assumed to be

transmit/receive points rather than areas and have unlimited directivity. A SOS im-

age can be reconstructed from 1) the input TOF vector (d) consisting of first arrival

times of all transmit-receive element pairs, 2) the assumed positions of the receive
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transducer elements relative to the transmit transducer elements, and 3) the assumed

segmented regions-of-interest (ROI) of the B-mode image used for constructing CM.

The input TOF vector was generated by multistencils fast marching methods de-

scribed in [72], given the correct speed of sound image and the transmit element

location as the inputs. Unless stated otherwise, the input TOF vector d was noise-

free. All simulated misalignment magnitudes are shown in Table 3.2.

Table 3.1: Simulation control variables used for transducer modeling
Simulation Parameter Value
Number of transducer elements 128

Transducer center frequency
5 MHz center frequency

4 to 7 MHz nominal frequency
Transducer element spacing 300µm
Separation between the two transducers 60 mm

Table 3.2: Types and magnitudes of misalignments/miscalibrations for simulation
and experimental studies

Simulation Parameter Value

Segmentation size (r)
Scenario A: -10 to 10 mm with 2 mm step

Others: -5 to 5 mm with 1 mm step
Segmentation axial (d1) and

-5 to 5 mm with 1 mm step
lateral (d2) displacements
Transducer axial (d1), lateral (d2), -5 to 5 mm with 1 mm step
and elevational (d3) displacements
Transducer rotations about

-10 deg to 10 deg with 2 deg step
elevational (θ) and axial (α) axes

3.2.2.1 Pre-Study: effect of noise on measurements

In practice, noise in the acquired signals, besides mis-segmentations and miscali-

brations, may contribute to the errors in the reconstruction. As such, it is important

to investigate how much its effect is on the reconstruction errors before proceeding

to other studies. To do so, three background Gaussian noise levels were generated by

three Gaussian distributions with zero mean and following standard deviations: 1, 2,

and 3 percent of the average of TOF as obtained from all rays normal to the arrays.
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For each noise level, three noise realizations were generated, and the mean SOS errors,

within the background and object regions for each noise realization, were calculated.

The final SOS mean and standard deviation for each noise level were calculated.

3.2.2.2 Effects of segmentation inaccuracy

Segmentation inaccuracies can occur for either the objects of interest (i.e., masses)

or other tissues, and their effects on reconstructed SOS images were assessed. We

investigated segmentation inaccuracies on a single cylindrical target in the following

scenarios:

• Scenario A - Effects of segmentation errors due to incorrect size (r in Fig-

ure 3.3(a)) or location (d1 and d2 in Figure 3.3(b)) of the target ROI segment,

for a simulated cylindrical target placed at the center of the imaging field (refer

to Table 3.2 for misalignment magnitudes). The reconstruction was repeated

for cylinders of 6, 9, 12, and 15 mm diameter. Such sizes were chosen as they

represent early stage tumor size. The assigned cylinder and background SOS

were 1606 and 1492 m/s, respectively.

• Scenario B - Same as A but for six combinations of cylinder SOS of 1434, 1550,

and 1606 m/s and background SOS of 1492 and 1515 m/s. Note that the object

SOS of 1550 m/s and background SOS of 1515 m/s were assigned based on

those of tumors and fibroglandular tissue in the breasts of middle-aged women

[17], [59] and all other parameters were chosen to represent clinical imaging.

The cylinder was chosen to be 12 mm diameter.

• Scenario C - Effects of segmentation errors in a simulated 12-mm diameter cylin-

drical target placed off-center in the imaging field. The cylinder and background

SOSs were 1606 and 1492 m/s, respectively. The reconstruction was repeated

for four different cylinder positions placed at 4 and 8 mm from the center of the
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imaging field in the axial and lateral directions, respectively.

• Scenario D - Effects of segmentation errors due to incorrect size or location

of a nearby object (r in Figure 3.3(c)). The nearby object was a rod with

elliptical cross-section. Both cylinder (12 mm diameter) and rod were placed

11.25 mm axially from the center of the imaging field. Inaccurate segmentation

was simulated for the rod, whose SOS was set to 1434 and 1550 m/s for low

and high SOS contrast, and whose cross-sectional half major axis was set to 7

and 13 mm. Its half minor axis was fixed at 6 mm and the background had a

SOS of 1492 m/s. The rod’s SOS was computed as the mean SOS within the

rod’s misaligned ROI and the cylinder’s SOS was computed as the mean SOS

within the cylinder’s ROI.

3.2.2.3 Effects of array miscalibration

We simulated array miscalibration errors by displacing the receive and transmit

array centers in the axial, lateral, and elevational directions, and rotating the receive

array about elevational and axial axes (Figures 3.3(d) and (e), see Table 3.2). Studies

of array miscalibration were executed according to Scenarios A-C, respectively.

Elevational translations and axial rotations result in shifts of most element pairs in

the elevational direction and, thus violate the planar imaging assumption. To continue

considering this problem as planar in the simulations, we created new virtual image

planes that were not coplanar with the original image plane. For the axial rotations,

this virtual plane was where the misaligned receive array and the given transmit

element lay. This is possible as the transmit/receive elements are point sources and

receivers. The cylinder’s cross-section was projected into the imaging plane.
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Figure 3.3: (a)-(c) Studied error types in object segmentation. (a) r corresponds to a
diameter change in segmentation. d1 and d2 in (b) correspond to the ax-
ial and lateral shift in segmentation, respectively. (c) Mis-segmentation
of nearby object size. (d)-(e) Studied types of relative transducer mis-
calibration: d1, d2, in (d) and d3 in (e) correspond to axial, lateral and
elevational translation miscalibrations, respectively. θ in (d) and α in (e)
correspond to elevational and axial rotation miscalibrations. The image
plane origates at the transmit element.
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3.2.3 Physical Phantom Experiments

The experiments were performed on the BLUCI system as described in Sec-

tion 3.2.1. The paddles and scanning system were rotated 90 deg from a mam-

mographic cranial-caudal (CC) to a lateral view to facilitate placement of a 6 cm

thick polyethylene bag (69 µm wall thickness, Ziploc, SC Johnson, Racine, WI) filled

with deionized water and held between the two mesh paddles (Figure 3.4). The two

transducers were first aligned to be coplanar by pulse echo measurements from a flat

plate and then in transmission mode in the calibration liquid. Then, in-plane cali-

bration was performed according to [74] to correct all in-plane miscalibrations and

warrant the desired transducer separation.

Effects of segmentation inaccuracy (r in Figure 3.3(a) and d1, d2 in Figure 3.3(b))

were assessed paralleling Scenario A in Section 3.2.2.2. Similarly, effects of array

miscalibration were assessed paralleling translational miscalibrations (d1, d2 in Fig-

ure 3.3(d) and d3 in Figure 3.3(e)) as described in Section 3.2.2.3. The miscalibrations

in the elevational and lateral directions were achieved by moving both transducers

in opposite directions via the micro-positioning motors. Axial miscalibration was

adjusted manually and observed using an analog displacement gauge dial (±0.001

inches, Mitutoyo America, Aurora, Illinois 60502). Table 3.2 provides all relevant

mis-segmentation and miscalibration magnitudes. One cylindrical target with 13-mm

diameter was imaged with cylinder and background SOS of 1606 and 1492 m/s, re-

spectively. Simulation reconstructions of the same cylinder were performed for direct

comparison to the physical experiments.

The input TOF vector d was generated by extracting arrival times of all received

RF traces via the Akaike Information Criterion (AIC) picker [75] that is robust to

superpositions of direct and refracted waves. Since the experiments were performed

in a low attenuation medium (water), the limited directivity within ±17 deg from

the central axis was not taken into account, meaning all RF traces from all transmit-
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receive element pairs were acquired. The covariance matrix CM was generated from

dual-sided B-mode image segmentation. Top and bottom images were spliced using

cubic spline interpolation [10].

The cylindrical target (polyethylene wall) was filled within an ethanol-water so-

lution with a constant SOS in the range of 20-35 ◦C. Ethanol-water is an excellent

calibration liquid thanks to its ability to provide a wide range of SOS in human

biological tissues [76] when varying the ethanol concentration [77].
 

Tx Rx 

Cylinder’s cross-
section 

Mesh paddles  

Cylindrical 
target 

Syringe for 
solution 
injection 

(a) (b) 

Figure 3.4: (a) Horizontal cylindrical target filled with ethanol-water solution. It was
also contained in a Ziploc water bag. The transducers were positioned
between two compression paddles and transducers of the BLUCI scanning
system as illustrated in (b) and Figure 3.1.

The SOS of a given ethanol-water solution can be measured using a system de-

scribed by Selfridge [78] (Figure 3.5) and consisting of two single-element focused

transducers transmitting broadband pulses at 5 MHz center frequency, placed facing

each other inside a water tank and mounted on digital Vernier calipers with ±10µm

accuracy. The SOS of ethanol-water solutions was measured along the central axis of

a 10.3 mm thick PVC ring, whose windows were sealed with 10 µm thick Saran wrap

(Saran, SC Johnson, Racine, WI). The acquired RF traces were cross-correlated [79],

[80] to extract TOFs determined by the AIC picker method [75].

Water-ethanol solution SOS was measured for each concentration from 10% to
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Figure 3.5: (a) Setup for SOS data acquisition as described by Selfridge [78]. The SOS
of water (surrounding medium) was calculated from differences in TOFs
(∆t) and transducer separations (∆d). (b) Setup for SOS measurement of
the sample solution in a short PVC pipe with thickness w (10.3 mm) and
D ≈ 15− 20 mm. Two signal acquisitions, one without the sample in the
path and another with, allow the SOS calculation of varying percentage
water-ethanol solution.

90% vol/vol at 23±0.3 ◦C (N = 12, 10% point steps, ±0.1 ◦C). Means and standard

deviations were compared to the literature [77], [81], [82]. Literature results not based

on volume concentrations were converted by using the Alcohol and Tobacco Tax and

Table Bureau (TTB) software [83], [84]. Linear interpolation was applied where

necessary. Furthermore, we measured solution SOS at five additional concentrations

of 16, 17, 18, 19, and 20% vol/vol and at four additional temperatures of 20, 25, 30,

and 35 ◦C, to confirm stability over these ranges (N = 12) [77].

3.3 Results

3.3.1 Speed of Sound Measurement of Ethanol-Water Solutions

The measured SOSs are plotted in Figure 3.6 in comparison to published results

[77], [81], [82]. The maximum measured standard deviation is 3.8 m/s at 10% vol/vol

concentration and hence small compared to the absolute scale with the published
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data, suggesting that it is acceptable to use our velocimetry apparatus.

Table 3.3 shows ethanol-water solution speed of sound at finer stepped ethanol

concentrations and ambient temperatures (N = 4 each). As shown, a volume con-

centration of 17%, corresponding to the SOS of 1606 m/s, has the smallest standard

deviation, suggesting that SOS is least dependent on temperature at this concentra-

tion. This finding is consistent with the results in the literature at 23 ◦C and 17%

vol/vol [77], [81], [82].
 

Figure 3.6: Comparison of our SOS measurements of a 23 ◦C ethanol-water solution
with published data. For each concentration, 12 measurements were used
to calculate the mean SOS. Note: Error bars on our data points are
smaller than the plot symbol.

Table 3.3: Measured speed of sound of ethanol-water solutions at different ethanol
concentrations and ambient temperatures (in m/s). Standard deviation of
measurements across different temperatures (N = 4) is also given.

Temperature Concentration (% vol/vol±0.5% vol/vol)
(◦C±0.1 ◦C) 16 17 18 19 20

20 1597 1608 1609 1630 1623
25 1605 1606 1604 1615 1624
30 1603 1606 1614 1610 1617
35 1600 1610 1608 1612 1615

Standard dev.
3.5 1.9 4.1 9.1 4.4

SOS (N = 4)
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3.3.2 Pre-Study: Effect of Noise on Measurements

The calculated regional (object, background) mean [standard deviation] SOS, for

1, 2, and 3 percent Gaussian noise levels, is (1575 [2.0], 1497 [1.4]), (1572 [3.9], 1496

[2.6]), and (1566 [5.5], 1496 [3.2]) m/s, respectively, corresponding to (-1.9, 0.4), (-2.1,

0.3), and (-2.5, 0.3) percent SOS error with respect to the correct SOS (N = 3).

3.3.3 Effects of Object Segmentation Inaccuracy

Figure 3.7 shows the calculated reconstruction error of an object in Scenario A,

i.e., SOS error of the simulated object (1606 m/s) mis-segmentation in background

(1492 m/s). Maximum object SOS errors from incorrect segmentation are 6.3% within

10 mm object diameter change and 9.1% within 5 mm lateral shift. By comparison,

an axial shift in the segmentation produces a 2.6% error within 5 mm shift.

 (a) (b) (c) 

Figure 3.7: SOS error in objects of +7.6% actual SOS contrast and four different
diameters, for mis-segmentations of (a) object size, (b) axial location,
and (c) lateral location.

The effects of segmentation errors in Scenario B, i.e., for different SOS contrast

between object and background (SOSobject-SOSbackground), are shown in Figure 3.8.

As can be seen, higher contrast magnitude leads to higher SOS error.
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 (b) (c) (a) 

Figure 3.8: SOS error in objects of 12 mm actual diameter with varying object (O)
to background (B) SOS contrasts. Shown are object mis-segmentations
in: (a) size, (b) axial location, and (c) lateral location.

 

Figure 3.9: SOS error in 12 mm diameter objects of +7.6% actual SOS contrast at
four actual locations laterally off the image center, as a function of lateral
mis-segmentation.
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According to studies performed in Scenario C, a lateral shift in segmentation was

the only case with a dependence between lateral object location and SOS error. Note

that the results obtained by varying the axial object location are not shown here

due to indistinguishable SOS errors. Beyond the -1.9% bias present in all shifts,

Figure 3.9 shows that the SOS error, for a reasonable 2 mm, or greater 5 mm, lateral

segmentation displacement, is about -1% and -3%, respectively. That is over the

range of cases studied where the actual object is placed within 8 mm laterally from

the center.
 

(a) (b) 

(d) (c) 

Figure 3.10: SOS errors in object of interest due to mis-segmentation of secondary
object in acoustic path (See Figure 3.3(c)) (a)-(c). Mis-segmentation of
the secondary object: (a) size, (b) axial location, and (c) lateral location.
(d) Errors in SOS of the secondary object due to mis-segmentation of
its size.

48



Effects of segmentation errors regarding a nearby object (Scenario D) are shown

in Figure 3.10. SOS errors in the mis-segmented ROI are greater than those induced

in the main object of interest. Comparison of Figures 3.10(a) and (d) shows the

difference in error between the object of interest and the nearby object, respectively.

Also, note that in panel (d) the SOS error trends similar to the blue curves (‘-x’) shown

in Figure 3.8(a), which possess the same SOS contrast with respect to background.

 (a) (b) (c) 

Figure 3.11: SOS error in objects obtained from reconstructions of simulated and
physical cylinders with 13 mm radius, shown for mis-segmentation of
object in (a) size, (b) axial location and (c) lateral location.

Experimental and paired simulation results are shown in Figure 3.11. Both results

show essentially the same changes in SOS error as a function of segmentation error.

3.3.4 Effects of Array Miscalibration

Simulated SOS errors due to translational and rotational array miscalibrations are

shown in Figures 3.12-3.14 for Scenarios A-C, respectively. Refer to the definition of

each scenario in Section 3.2.2.2 for more details.

Figure 3.12 indicates that the calculated object SOS is most sensitive to transducer

translational miscalibration in the axial direction (maximum error of 57.3% within 5
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mm shift), followed by rotational calibration about elevational axis (maximum error

of 8.4% within 10 deg change) and translational miscalibration in the lateral direction

(maximum error of 5.0% within 5 mm shift). Moreover, Figure 3.12(d) indicates that

the error resulting from axial rotational miscalibration is insignificant.

 

(a) (b) (c) 

(d) (e) 

Figure 3.12: SOS error in objects of +7.6% actual SOS contrast and four different
diameters, for transducer translational miscalibration along: (a) axial,
(b) lateral, and (c) elevational, and (d) for transducer rotational miscal-
ibration about the axial and (e) the elevational axes.

In addition, simulation results in Figure 3.13 show that SOS errors depend on

contrast. SOSs of negative contrast objects seem to be slightly more sensitive to

transducer array displacements than SOSs of positive contrast objects. Figure 3.14

further shows that reconstruction errors are dependent on the actual lateral object

50



location in the presence of elevational rotational miscalibration. Note that the results

obtained by varying the axial object location are not shown here due to indistinguish-

able SOS errors.

 (a) (b) (c) 

Figure 3.13: SOS error in objects of 12 mm actual diameter with varying object
(O) to background (B) SOS contrasts. Receive transducer translational
miscalibration in (a) axial and (b) lateral directions, and (c) transducer
rotational miscalibration about the elevational axis.

Comparison between experimental and simulation results are shown in Figure 3.15.

Both simulation and experimental error curves show a qualitatively similar change in

SOS error.

3.4 Discussion

3.4.1 Pre-Study: Effect of Noise on Measurements

The calculated object and background SOS and their statistics at different noise

levels suggest that our reconstruction algorithm is robust in the presence of bias-

free, noisy TOF input (means and standard deviations change insignificantly with

changing noise level). This robustness can be attributed to the correlation coefficient

that strengthens the SOS homogeneity within the same tissue region. Also, it is
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Figure 3.14: SOS error in 12 mm diameter objects of +7.6% actual SOS contrast at
four actual locations laterally off the image center, for rotational miscal-
ibration of the receive transducer about the elevational axis.

 (a) (b) (c) 

Figure 3.15: SOS error in objects obtained from reconstructions of simulated and
physical cylinders with 13 mm radius. Receive transducer translational
miscalibrations in: (a) axial, (b) lateral, and (c) elevational directions
are shown.
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important to note that the errors in the background region are small compared to the

object region. This is because the SOS value set to the initial estimate of the slowness

image ma is already close to the background’s true SOS. As the background region

is much bigger than the object region, its contribution to the cost S in Equation 3.1

is elevated. This is true even if the correlation coefficient of the background pixel is

set to a finite value. As such, it is much easier for the object pixel to update than

those of the background and thus being more prone to noise.

3.4.2 Effects of Object Segmentation Inaccuracy

Changing size or location (Scenario A) of a segmented ROI affects the amount

of signal penetrating its interior and therefore the cost S in Equation 3.1. The

SOS pixel (background and object) thereby need to be adjusted to keep the cost

S low. Therefore, reconstructions are more prone to incorrect object size and lateral

location than to axial location. The same holds for Scenario C (Figure 3.9). Changing

the lateral location of the actual object affects the amount of signal penetrating

the actual object far more noticeably than changing the axial location. Therefore,

different lateral object locations utilize different amounts of helpful TOF information

for reconstruction and lead to different SOS errors.

As explained in Section 3.4.1, it is much easier for object pixel to update than for

background pixel. Therefore we can see why the object’s SOS function (Figure 3.7(a))

is approximately hyperbolic, where the calculated SOS becomes more sensitive to ROI

shrinkage than expansion. Errors due to mis-segmentation of object size were mostly

transferred to the object’s segmented ROI, and the smaller diameter ROIs need to

change their SOS more to accommodate these errors. The same explanation applies

to the plot in Figure 3.7(c), which shows that the SOS reconstruction error is most

sensitive to errors in the segmentation of the smallest object (6 mm).

Nevertheless, in Figure 3.7(a), there is a deviation from a hyperbolic shape of the
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curves when the segmented ROI diameter is too small (e.g., <-3 mm for a 6 mm

diameter object). This is due to the too small ROI size, where the difference in the

SOS image from the initial guess causes a relatively small penalty in the data cost

term in Equation 3.1, i.e.,
(
g(m)−d

)T
C−1D

(
g(m)−d

)
, compared to the penalty in the

model cost term, i.e.,
(
m−ma

)T
C−1M

(
m−ma

)
, thereby preventing the reconstruction

algorithm from further updating the SOS image.

The reason that higher contrast magnitude leads to higher SOS error, as shown in

Figure 3.8, is similar to that already described above. Specifically, the reconstruction

needs to achieve a trade-off between calculating the SOS image, whose corresponding

simulated TOF vector is close to the measured TOF vector, and concurrently pre-

venting the final SOS image from diverging too much from the SOS image included

into the model cost term. The reconstructed object and background SOS image,

whose actual SOS contrast is high, makes the model cost term high and causes the

reconstruction to put more effort in decreasing the SOS contrast. The SOS contrast

decrease then in turn generates a larger SOS error.

Figure 3.10 shows that in the two-object imaging case, the SOS error tends to

appear more in the mis-segmented object than in the correctly-segmented object.

This occurs because forcibly inducing the SOS error in the correctly-segmented region

greatly changes the data cost term and the overall cost S. On the other hand, inducing

the SOS error in the mis-segmented region is easier because its SOS can be adapted

to maintain the average SOS across the image such that the data cost term is not

over-penalized. Therefore, introducing the SOS error within the mis-segmented region

seems to be the most effective way to decrease the overall cost term.

Note that in Figures 3.7-3.10, there is a DC offset of -1.9% in absence of any mis-

segmentation. In some cases this can be attributed to the reconstruction assumptions

for the initial SOS image as well as the geometries of structures of interest (see

Section 3.2.1). Due to the model cost term in Equation 3.1, approaching the correct
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SOS image, that is far from the initial image, can be challenging because doing so

would increase the model cost term. Using an average SOS as the initial SOS image,

however, could be too pessimistic because, in clinical or phantom applications, one

could quickly determine an initial SOS image based on any straight-ray reconstruction

approach [85], which yields better initial guesses that are closer to the true SOS image,

thus giving more accurate reconstruction results.

Figure 3.11 shows similar SOS error trends between the simulation and experi-

mental results. Since the same reconstruction algorithm was employed in both cases,

this provides confirmation of the experimental methods except for a larger bias in

the experimental results. The additional -3.0% SOS error bias in the experimental

results as seen in Figures 3.11 and 3.15 could be attributed to several reasons. First,

the alcohol concentration in the tube might decrease due to alcohol leaking out of

the tube when left in the water bag during temperature stabilization (≈ 3 hours).

The decreased alcohol concentration changes the SOS of the ethanol-water solution

as supported by Figure 3.6. Second, it might also be possible that the temperature of

the water in the Ziploc bag changed during the experiments. Third, the recorded RF

traces are compromised due to diffraction and scattering effects. The accuracy of ex-

tracted TOF using the AIC picker method is thus potentially degraded. Finally, it is

possible, although unlikely, that the transducer separation changed when the support

of the cylindrical tube was mounted to the compression paddles on the dual-sided

BLUCI scanner.

3.4.3 Effects of Array Miscalibration

Misplacing the transducer position and orientation mainly affects the data cost

term in Equation 3.1, i.e.,
(
g(m)−d

)T
C−1D

(
g(m)−d

)
. This occurs because transducer

miscalibrations induce change in the simulated TOF vector g(m), which can result in

greater SOS error, most dominantly in the axial direction. This similarly explains why
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reconstruction errors are most sensitive to the lateral object location in the presence

of rotational miscalibration about the elevational axis (see Figure 3.14). This rotation

creates laterally distributed axial shifts.

The reason that objects with negative contrast seem to be more sensitive to mis-

calibrations, than objects with positive contrast, as shown in Figure 3.13, could be

attributed to the wave refraction that occurs at the interface between two media

with different SOSs. There, the wave travels a longer distance in the negative con-

trast cylindrical object than in the positive contrast object, given the same angle of

incidence. This results in a greater SOS error.

As shown in Figures 3.12-3.15, the two factors resulting in the greatest SOS re-

construction errors are miscalibration in the axial direction and elevational rotational

miscalibration. Therefore, these need to be more carefully controlled to ensure an

acceptable level of reconstruction accuracy. For example, according to Figure 3.12, to

discriminate a 6-15 mm wide fat inclusion at 1440 m/s from background fibroglandu-

lar tissue at 1515 m/s in vivo [57], [58], [63], [67] (relative contrast of approximately

75 m/s), the allowable axial translational miscalibration to resolve the SOS contrast

is 0.43 mm. The allowable elevational rotational miscalibration is 5.9 deg. For dis-

criminating cancer and fibroadenomas, greater accuracy and maximum contrast are

desired, as the contrast is modest and there is some overlap of the SOS distributions.

Given SOSs of surrounding fibroadenomas and 6-15 mm wide cancer as 1515 and 1550

m/s, respectively [17], the allowable axial translational miscalibration and elevational

rotational miscalibration would instead be 0.20 mm and 2.8 deg, respectively. We

have not investigated the SOS errors due to miscalibrations happening in parallel

yet, however, it should be possible to obtain the worst-case SOS error by simply

summing up the SOS errors due to individual miscalibrations.
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3.5 Conclusions

This paper demonstrates the degree to which our previously proposed SOS recon-

struction algorithm for ultrasound limited angle tomography is dependent on a priori

information such as segmentation of structures in the B-mode images and calibration

of transducer placements relative to each other. Axial translational and elevational

rotational requirements are non-trivial but doable with careful calibrations. The cal-

culated SOS is most sensitive to mis-segmentations in size and lateral location of the

segmented ROI and will benefit from B-mode enhancements.

The SOS reconstruction of a complex tissue-mimicking phantom, shown in Fig-

ures 3.1-3.2, suggests that good discrimination of fairly complex tissues can be at-

tained given accurate segmentation and transducer alignment. There are several

possibilities suggesting that both mis-segmentations and miscalibrations can be min-

imized in imaging in the future. For example, with emerging ultrasound signal pro-

cessing and beamforming techniques, and advances in ultrasound image segmentation

[38], [59], [60], we expect it is possible to overcome difficulties in blurry tissue iden-

tification and obtain segmentation that farther improves SOS image reconstruction.

In addition, in a system with the transducers contacting a nonrigid paddle in con-

tact with the breast, the transducers should extend beyond the breast for real time

calibration, as shown in Figure 3.2.

All technical findings reported in this paper could be applicable to any future

design of a limited-angle transmission ultrasound system in the mammographic ge-

ometry utilizing two long transducers and a bent-ray SOS reconstruction algorithm.

Full wave inversion approaches, on the other hand, could be more sensitive to the mis-

alignments, as their reconstruction algorithms usually rely on the mismatch between

the whole simulated and measured signals rather than the less-fluctuating, smoother

mismatch between the simulated and measured pulse arrival times. Nonetheless, our

findings have demonstrated that with proper ultrasound system design, calibration,
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and good reflection mode images, SOS imaging with a limited-angle transmission

ultrasound system and a bent-ray SOS reconstruction algorithm appears feasible.
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CHAPTER IV

Waveform Inversion for Limited-Angle Breast

Ultrasound Tomography with Decoupled A Priori

Information and Artifact Suppression1

4.1 Introduction

Breast ultrasound tomography has shown promise in delivering similar informa-

tion as x-ray due to similar contrasts of breast tissues appearing in images from these

two imaging modalities [62]. In addition, thanks to complex interactions between

ultrasound and breast tissue, several acoustic properties, such as sound speed, atten-

uation, and elasticity can be extracted from the received ultrasound signals. Sound

speed has gained much attention in a past decade, as it can be used to characterize

breast tissue types such as fibroglandular, fat, cyst, and cancer [30].

Most image acquisition techniques for sound speed reconstruction image the breast,

suspended in a temperature-controlled water bath [15], [17], [20]–[22], [34], [63], [68],

[86]–[89]. The signal acquisition then begins by using opposed transducer elements in

array to sequentially transmit signals by one or more transducer elements and receive

1This chapter is published in Proceedings of SPIE : R. Jintamethasawat, Y. Zhu, O. D. Kripfgans,
J. Yuan, M. M. Goodsitt, and P. L. Carson, “Limited Angle Breast Ultrasound Tomography with A
Priori Information and Artifact Removal,” in Proc. SPIE, vol. 10139, 2017, pp. 10139 -10139 -12.
doi: 10.1117/12.2253911.
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signals using all transducer elements of the array. The arrays are often multiple lin-

ear, convex linear, or 2D planar arrays, or circular or cylindrical arrays. Even though

these techniques give reasonably accurate sound speed images due to the ability to

transmit and receive the signal in any direction within a coronal plane or the aperture

of a 2D receiver array, imaging in this prone position results in views that differ from

those obtained from mammography, the current x-ray reference-standard. This can

cause difficulties for radiologists to compare images from ultrasound and mammog-

raphy. There have been attempts that try to co-register ultrasound sound speed and

mammography images, but they often require heavy task-specific parameter tuning

[37], [38].

As such, we recently proposed a combined mammography scanner for x-ray and

ultrasound acquisition in the same view, location, and compression [6], [10]. How-

ever, acquiring the ultrasound signal in the mammographic geometry poses challenges

in tomographic image reconstruction as the signal can be obtained at the top and

bottom of the patient breast only, resulting in incomplete acquisition. This limited-

angle ultrasound tomography introduces dominant artifacts that can severely degrade

image clarity and accuracy. Fortunately, recent works have shown that by using also-

available B-mode images, one can improve the reconstruction accuracy and reduce

artifacts by including delineations of the tissues of interest via segmentation [7], [64].

Such delineations provide the homogeneity assumption that pixels in the same seg-

mented region belong to the same tissue type and should have similar characteristic

values, such as sound speed.

In the meantime, it has been shown that waveform inversion techniques are able

to realistically retrieve both acoustic tissue properties and their boundaries despite

their high computational burden [20], [22], [33], [90], suggesting that they could be

utilized when tissue delineation information is not available. The popularity of wave-

form inversion techniques has also increased in recent years thanks to the increase in
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computational capability. However, despite better reconstruction accuracy, waveform

inversion techniques still suffer from the limited-angle artifacts. Accuracy improve-

ment and artifact reduction are key factors for enhancing breast screening perfor-

mance [10], [91]–[94], yet none of the existing approaches utilize a priori B-mode

segmentation information and simultaneously suppress artifacts.

Here, we propose a sound speed imaging algorithm that both utilizes a priori

segmentation information from existing B-mode data and suppresses reconstruction

artifacts. This approach decouples the overall reconstruction into two sub-problems

that can be solved separately: (1) a priori information inclusion and (2) artifact

suppression [95], [96]. Each sub-problem can be solved individually, thereby decou-

pling the combined optimization scheme. The first sub-problem can, for example, be

solved by any standard gradient-descent method. The second can be accomplished

by total-variation (TV) regularization based on the fast split Bregman method that

overcomes non-differentiability [97]. The reconstructions are primarily based on a

waveform inversion approach.

Details about the related theory and reconstruction algorithm implementation

are described in the Materials and Methods section. Results and their analysis are

described in the Results and Discussion section, respectively. The Conclusions section

summarizes our study and provides future directions.

4.2 Materials and Methods

4.2.1 Dual-Sided Ultrasound Scanner

Figure 4.1(a) illustrates an idealized dual-sided research ultrasound scanner. It

consists of two linear transducer arrays imaging from top and bottom of the patient

breast, which is compressed by two polyethelyne mesh paddles. This is similar to our

experimental dual sided ultrasound scanner, which is built on a used mammography
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system, but no longer has the x-ray detector attached [69]. In the complete system

schematized in Figure 4.1(a), the x-ray and ultrasound image the breast in the same

view, location, and compression, allowing very good co-registration.

A schematic of the ultrasound system is given in Figure 4.1(b), showing the plane

for a coronal image of the breast. For each sound speed image reconstruction slice,

the signal acquisition sequentially transmits from each element and, on each transmit,

receives signal by all elements on both arrays. Note that all image reconstructions

performed in this paper are based on simulation studies using a simulated scanner as

diagrammed here.
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Figure 4.1: (a) Schematic representation of a combined dual-sided ultrasound and
x-ray scanner, allowing both x-ray and ultrasound images to be acquired
in the same view. (b) Schematic representation of simulated dual-sided
ultrasound scanner used in this work, imaging embedded objects.

4.2.2 Ultrasound Propagation Modeling

4.2.2.1 Time-of-flight-based modeling

The time-of-flight (TOF), or first-arrival time of a wave in heterogeneous sound

speed media m(r) : R2 → R+ can be modeled over space r ∈ R2 by solving the

following Eikonal equation:
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‖∇T(r)‖2m(r) = 1, T(r0) = 0, (4.1)

where m and T are the speed and first-arrival time of the wave as a function of

location r, and r0 is the wave propagation origin. The Multistencils Fast Marching

Method (MSFM) [72] was utilized to solve Equation 4.1 with high accuracy (negligible

in breast imaging application) and fast computation time.

4.2.2.2 Wave-based modeling

Wave propagation in lossless heterogeneous sound speed media m(r) : R2 → R+

can be modeled over time t ∈ [0, T ] and space r ∈ R2 by the following second-order

partial derivative equation [14]:

∇2p(r, t)− 1

m2(r)

∂2

∂t2
p(r, t) =

∂

∂t
s(r, t), (4.2)

where s(r, t) : R2 × R+
0 → R and p(r, t) : R2 × R+

0 → R are the time-and-space-

dependent source pulse and acoustic wave pressure, respectively. The initial condi-

tions are given by p(r, 0) = pt(r, 0) = 0.

With space-dependent attenuation α(r) : R2 → R+
0 included, wave propagation

can be equivalently expressed by the following three first-order coupled equations [14],

[98], [99]:

∂

∂t
u(r, t) = − 1

ρ0(r)
∇p(r, t) (4.3a)

∂

∂t
ρ(r, t) = ρ0(r)

(
−∇ · u(r, t) +

t∫
0

s(r, t′)dt′
)

(4.3b)

p(r, t) = m2(r)

[
1− τ(r)

∂(−∇2)
y
2
−1

∂t
− η(r(−∇2)

y+1
2
−1)

]
ρ(r, t), (4.3c)

where u(r, t) : R2 × R+
0 → R2 and ρ(r, t) : R2 × R+

0 → R are the time-and-space-
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dependent particle velocity and density, respectively. The initial conditions are given

by p(r, 0) = u(r, 0) = 0. The attenuation coefficient is included in terms τ(r) : R2 →

R+
0 and η(r) : R2 → R+

0 defined as:

τ(r) = −2α(r)m(r)y−1 (4.4a)

η(r) = 2α(r)m(r)y tan
(πy

2

)
, (4.4b)

where y denotes the acoustic attenuation power law exponent.

In this paper, wave propagation is computed by utilizing a k-space pseudospectral

method [100], [101] that benefits from low memory and time step requirements.

4.2.3 Image Reconstruction Theory

4.2.3.1 Basic reconstruction algorithm

The sound speed reconstruction problem can be considered as the least-square

minimization between the measured data vector d and simulated data vector g(m):

E(m) =
(
d− g(m)

)T
C−1D

(
d− g(m)

)
(4.5)

Given the number of elements in each linear array as N , the measured and simu-

lated data vectors can be either a collection of concatenated time-of-flights of all (2N)2

transmit-receive pairs (

[
t11 . . . t1(2N) t21 . . . t2(2N) . . . t(2N)1 . . . t(2N)(2N)

]T
where tij denotes the time-of-flight from ith transmit element to jth receive element)

or a collection of concatenated recorded pressure traces of all (2N)2 transmit-receive

pairs (

[
p11 . . . p1(2N) p21 . . . p2(2N) . . . p(2N)1 . . . p(2N)(2N)

]T
where pij de-

notes the time-domain pressure trace transmitted by ith element and recorded by

jth element). The data covariance matrix CD is used for adjusting contributions of

individual data or correlations between pairs of data. CD is set to an identity matrix
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if all data have equal contribution.

The reconstruction techniques utilizing time-of-flight data and assuming wave

propagation direction as a bent-ray are usually classified as bent-ray inversion ap-

proach, and those using pressure trace data are classified as the waveform inversion

approach.

4.2.3.2 Reconstruction using a priori information and artifact suppres-

sion

By adding two additive regularization terms to Equation 4.5 , the sound speed

reconstruction problem can account for a priori information and it can suppress

artifacts:

E(m) =
(
d− g(m)

)T
C−1D

(
d− g(m)

)
+
(
m−ma

)T
C−1M

(
m−ma

)
+λ‖Em‖TV (4.6)

The regularization term
(
m − ma

)T
C−1M

(
m − ma

)
allows us to include the a

priori segmentation data from corresponding B-mode and/or x-ray image [70]. The

correlated pixels within the same segmented region have similar sound speed. The

correlation strength can be set through the covariance matrix CM such that pixels

i and j correlate with the positive correlation coefficient ρk such that CMij = ρkσ
2.

Confidence in correlation scales with ρk. Note that CMij = 0 for any independent

pixels i and j and CMii = σ2. This term also allows us to set the initial sound speed

guess through the term ma. Usually, for bent-ray inversion approaches, ma is set to

a homogeneous background sound speed, and for waveform inversion approaches, ma

is set to the sound speed that results from a bent-ray inversion approach.

The regularization term λ‖Em‖TV includes the total-variation (TV) ‖m‖TV and

can be written as:
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‖m‖TV =
∑
i

∑
j

√(
∇xmij

)2
+
(
∇ymij

)2
, (4.7)

where ∇x and ∇y denote gradients in axial and lateral directions, and mij denotes

the sound speed of pixel at the ith axial and jth lateral location. Specifically, this

term measures the difference between two adjacent pixels, and thus increases with

artifacts. Inversely, artifacts can be suppressed by minimizing ‖m‖TV . However, note

that there is an abrupt change of pixel values around tissue boundaries. Those pixels

could contribute to high gradient magnitudes and are likely to be suppressed during

the minimization of Equation 4.7. For this reason, the diagonal weight matrix E is

introduced to keep track of boundary pixel. For any pixel mij in an image with size

M = M1 ×M2, we define E(i−1)M2+j,(i−1)M2+j as:

E(i−1)M2+j,(i−1)M2+j = exp

(
−
((
∇xmij

)2
+
(
∇ymij

)2)
/σe

)
, (4.8)

where σe scales inversely with the level of edge preservation in mij during the min-

imization of Equation 4.7 [102]. However, this method is a trade-off between edge

preservation and artifact suppression. The notation E here is made distinct from E

in Equations 4.5 and 4.6, by a subscript (i− 1)M2 + j, (i− 1)M2 + j that denotes the

element value at the ((i− 1)M2 + j)th row and column of E.

4.2.3.3 Solving the reconstruction problem

One of the difficulties in solving the reconstruction problem in Equation 4.6 is

that the objective function consists of both differentiable (the first two terms in

Equation 4.6) and non-differentiable (the TV term in Equation 4.6) terms with re-

spect to sound speed in the image m. We chose to avoid solving the TV-regularized

problem by directly applying a gradient-based optimization. Instead, we solved the

proposed reconstruction problem by decoupling the minimization problem into two
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sub-problems as mentioned above.

We first introduced the auxiliary variable u to the objective function in Equa-

tion 4.6 and replaced the term ma with u:

E(m,u) =
(
d− g(m)

)T
C−1D

(
d− g(m)

)
+
(
m− u

)T
C−1M

(
m− u

)
+ λ‖Eu‖TV (4.9)

Note that Equation 4.9 can be solved by alternately minimizing the objective

functions E1(m) and E2(u) with respect to individual variables m and u until the

solution converges or another desired end-point is reached [95], [96]:

E1(m) =
(
d− g(m)

)T
C−1D

(
d− g(m)

)
+
(
m− u

)T
C−1M

(
m− u

)
(4.10)

E2(u) =
(
m− u

)T
C−1M

(
m− u

)
+ λ‖Eu‖TV . (4.11)

Since Equation 4.10 contains just differentiable terms, it can be minimized by

any conventional (conjugate) gradient-based method [7], [64], [70]. Specifically, the

steepest descent vector γm evaluated at m (not the same as gradient, see [70] and

Section 4.3.1 for more details) is first calculated as:

γm = CMG∗m
[
C−1D

(
g(m)− d

)]
+ m− u, (4.12)

where Gm is the Fréchet derivative of g evaluated at m [103]. The adjoint of Gm,

G∗m, provides mapping from data space to model space.

In the bent-ray inversion reconstruction, Gm is defined as a pathlength matrix,

where Gm2(i−1)N+j,k
represents the path length fraction in the kth pixel, of the wave

that is transmitted by the ith element and received by the jth element (N denotes

the number of elements on each linear array). G∗m then be written as the Hermitian

67



transpose of Gm.

In the full-wave inversion, G∗m can be first computed analytically in the continuous

domain through the adjoint-state method [103]–[105]. It can be shown that for single-

transmit event:

G∗m,sin[h]

∣∣∣∣
r′

=
2

m3(r′)

T∫
0

q(r′, T − t) ∂
2

∂t2
p(r′, t)dt, (4.13)

for any continuous pressure h(r, t) and location r′. p(r, t) and q(r, t) denote the

simulated pressure field and the corresponding adjoint field. The adjoint field can be

computed using the same wave propagation equation as Equation 4.2 or 4.3 for lossless

and lossy media, except for the source term, s(r, t), is replaced by its timed-reversed

version h(r, T − t).

Suppose that di(r, t) and pi(r, t) are the measured and simulated pressure fields

transmitted by ith element. Also, assume that the acquired pressure samples are

independent and have equal variance σ2
D, that is, CD can be expressed as CD = σ2

DI,

where I is an identity matrix. Now, if the adjoint field qi(r, t) is simulated by the

source given as hi(r, t) = σ2
D

∑2N
j=1

(
pi(rRj, t) − di(rRj, t))

)
, where rRj denotes the

location of the jth receiver, it can be easily seen that:

G∗m,mul[h1, h2, ..., h2N ] =
2N∑
i=1

G∗m,sin[hi] (4.14)

gives rise to the adjoint operator for multi-transmit event and is equivalent to G∗m
[
C−1D

(
g(m)−

d
)]

in discrete domain, calculated as:

G∗m
[
C−1D

(
g(m)− d

)]∣∣∣∣
rd

=
2σ2

D

m3(rd)

2N∑
i=1

K−1∑
k=2

(
qi(rd, T − k∆t)(pi(rd, (k + 1)∆t)

−2pi(rd, k∆t) + pi(rd, (k − 1)∆t))
)
/∆t2

(4.15)
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for an image with pixels r1, r2, ..., rM. T = K∆t is the time duration of simulation.

Note that another scaling factor ∆t in Equation 4.15 is needed to convert from unit

of time in continuous domain to unit of sample in discrete domain.

The sound speed image at the (n+ 1)th iteration, mn+1 is then given by:

mn+1 = mn − αn+1v
n+1 (4.16a)

vn+1 = γnm − βn+1v
n. (4.16b)

The vectors vi, i = 1, 2, ..., (n + 1) are chosen to form conjugate bases for Krylov

subspaces [106]. This can be achieved by choosing the parameter βn according to the

Polak and Ribiére formula:

βn+1 =
< C−1M (γn+1

m − γnm), γn+1
m >

< C−1M γnm, γ
n
m >

. (4.17)

The step length αn that minimizes the objective function at the nth iteration is

given by [70], [74]:

αn+1 =
(vn+1)TC−1M γn+1

m

(Gmvn+1)TC−1D (Gmvn+1) + (vn+1)TC−1M vn+1
. (4.18)

Equation 4.11 that consists of a convex, differentiable term (m−u)TC−1M (m−u)

and non-differentiable term λ‖Em‖TV can be solved by the fast-split Bregman method

[97]. Specifically, the objective function in Equation 4.11 can be equivalently ex-

pressed by two additional auxiliary variables and two additional equality constraints:

arg min
u,dx,dy

{
λ‖(dx,dy)‖2 +

(
m− u

)T
C−1M

(
m− u

)}
subject to dx = E∇xu and dy = E∇yu,

(4.19)

where ‖(dx,dy)‖2 =
∑

i

∑
j

√(
dxij
)2

+
(
dyij
)2

and i, j denote pixels i and j in the

image. Note that from Equation 4.8, E depends on m, and this dependency makes
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the optimization unnecessarily complicated. Varying E in every iteration shows an

insignificant difference compared to operating with a fixed E. To simplify the compu-

tation, E was precomputed based on the most current image m from Equation 4.10

and treated as a constant matrix throughout the subsequent optimization of Equa-

tion 4.11.

Rewriting from Equation 4.19 as unconstrained problem yields:

arg min
u,dx,dy

{
λ‖(dx,dy)‖2 +

(
m− u

)T
C−1M

(
m− u

)
+

α‖dx − E∇xu− bx‖22 + α‖dy − E∇yu− by‖22
}
.

(4.20)

Choosing λ → ∞ enforces stronger equality constraints in Equation 4.20, but

this will prevent the Bregman iteration from converging properly due to increasing

likelihood of ill-posedness [97]. For this reason, we set α = λ/2. Furthermore, the

proof in [97] shows that any arbitrary value of λ > 0 can lead to convergence.

Additional terms, bx and by are updated at each minimization iteration based on

the following Bregman iterations scheme [97]:

bj+1
x = bjx + (E∇xu

j+1 − dj+1
x )

bj+1
y = bjy + (E∇yu

j+1 − dj+1
y ).

(4.21)

Solving Equation 4.20 then can be accomplished by further decomposing it into

two sub-problems:

uj+1 = arg min
u

{(
m−u

)T
C−1M

(
m−u

)
+α‖djx−E∇xu−bjx‖22+α‖djy−E∇yu−bjy‖22

}
(4.22)
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(
dj+1
x ,dj+1

y

)
= arg min

dx,dy

{
λ‖dx,dy‖2+‖dx−E∇xu

j+1−bjx‖22+‖dy−E∇yu
j+1−bjy‖22

}
.

(4.23)

Note that all terms in the objective function in Equation 4.22 are differentiable

and we employed the simple steepest-descent method to solve Equation 4.22, i.e.:

uj+1,n+1 = uj+1,n − µγJ(u)
∣∣
uj+1,n , (4.24)

where J(u) and ∇J(u) can be written as:

J(u) =
(
m− u

)T
C−1M

(
m− u

)
+ α‖djx − E∇xu− bjx‖22 + α‖djy − E∇yu− bjy‖22

γJ(u) = 2
(
m− u

)
− 2αCME∇T

x (djx − bjx − E∇xu)− 2αCME∇T
y (djy − bjy − E∇yu).

(4.25)

dx and dy in Equation 4.23 can also be solved using a generalized shrinkage

formula [107]:

dk+1
x = max

(
sk − λ

2α
, 0

)
E∇xu

k + bkx
sk

dk+1
y = max

(
sk − λ

2α
, 0

)
E∇yu

k + bky
sk

,

where sk =
√
‖E∇xuk + bkx‖22 + ‖E∇yuk + bky‖22.

(4.26)

The whole reconstruction algorithm utilizing a priori information and artifact

suppression is summarized in Table 4.1.
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Table 4.1: Algorithmic description of the proposed reconstruction algorithm.
Initialize: u0 = m0 = ma and k = 0

Output: mk+1

1 while (k < K)
2 Solve Equation 4.10 to get mk+1

3 if ‖mk+1 −mk‖2 > TOL1
4 return mk+1

5 end
6 Assign d0

x = d0
y = b0

x = b0
y = 0

7 Assign j = 0 and uk,0 = uk

8 while(true)
9 Solve Equation 4.22 to get uk,j+1

10 Solve Equation 4.23 to get dj+1
x and dj+1

y

11 Update bj+1
x and bj+1

y using Equation 4.21
12 if ‖uk,j+1 − uk,j‖2 > TOL2
13 break; // breaks when j = q
14 end
15 j ← j + 1
16 end
17 uk+1 = uk,q

18 k ← k + 1
19 end
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4.2.4 Simulated Experiments

4.2.4.1 Field-of-view simulation configurations

The simulated field-of-view had a physical size of 6 cm in the axial direction and

4 cm in the lateral direction and was discretized by a square grid of h = 312.5 µm

spacing. Two transducers with 40 point-like elements were placed within the field-

of-view (top and bottom sides), with the inner padding of 1.5 grid spacings on all

sides. Also, the first and last 6 columns in the image where transducer elements

were located were excluded from the analysis due to lack of stability. The acoustic

attenuation was set to 0.75 dB/cm/MHz-y with the power law exponent of y = 1.5,

representing average frequency dependence of attenuation in breast tissue [108].

4.2.4.2 Input data generation

Input pressure datasets were generated using the k-Wave toolbox [109], with inputs

given as true sound speed, mass density, and source pulse, where the latter was

modeled as a 0.5 MHz sinusoidal waveform tapered by a Gaussian envelope centered

at 13.7 µs and a 2 times standard deviation width of 2µs. The peak amplitude of the

input pressure was 1 a.u. The pressure traces were sampled at 17.1 MHz for 110 µs,

resulting in 1,878 samples for each trace. Therefore, given the one-transmit-all-receive

scheme, the resulting pressure dataset had a size of 80 × 80 × 1,878 samples.

4.2.4.3 Reconstruction settings

For the image reconstruction with a priori information algorithm (subproblem

(1)), instead of leaving the algorithm to run until the incremental sound speed changed

by a specified threshold (TOL1 in Table 4.1), we found it more desirable to fix the

maximum number of iterations allowed and inspect the resulting values. By our

observation, the maximum numbers of iterations for converging reconstruction were
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15 and 20 for bent-ray and waveform inversion approaches, respectively. Running

reconstruction algorithms for more than the given maximum numbers of iterations

did not make any significant difference (the magnitude of the steepest descent in

Equation 4.12 at the 20th iteration is within 5% of the magnitude of the steepest

descent at the 1st iteration. However, if the the artifact suppression algorithm was

activated, the maximum number of iterations was set to 5 instead and K in the

outermost loop (line 1 in Table 4.1) was set to 3 so that the image was updated 20

times in total. For the artifact suppression algorithm (subproblem (2)), TOL2 was

set to 0.0001 and the maximum number of iterations was set to 100.

The correlation coefficient ρk, was applied for all reconstructions, and was set to

0 if a priori segmentation information was not utilized. The default positive TV

regularization parameter λ in Equation 4.6 was set to 10-8. The parameter σe in

Equation 4.8 was set to 1,024 s-2. CD was set to σ2
DI where σD = 50 ns for bent-ray

inversion and 10-2 a.u. for waveform inversion, respectively. The sound speed pixel

standard deviation σ was set to 10,000 m/s to allow large variation of pixel values,

and was constrained to R+. The initial sound speed was set to u and for the bent-

ray inversion approach, u was set to be homogeneous at background sound speed.

Subsequently, the bent-ray inversion result was then used as the initial image u for

waveform inversion.

4.2.4.4 Simulation studies

The following studies were conducted to investigate accuracy, convergence behav-

ior, and tolerance to noise and a priori segmentation uncertainty:

1. Noiseless reconstructions

Sound speed images of several numerical phantoms were reconstructed from

noiseless input datasets, using different reconstruction configurations. Those

phantoms were basic cylinders (Figures 4.3- 4.4), two numerical breast phantoms
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similar to the Karmanos Cancer Institutes physical breast phantom (Figure 4.8)

(Detroit, MI), and a numerical breast phantom similar to the physical Madsinh

breast phantom (Figure 4.9) (Madsen, Madison, WI). For the basic cylinders

in Figure 4.3, reconstruction accuracy and contrast-to-noise ratio (CNR) were

also assessed. CNR between region R and background B is defined as:

CNRR = |µR − µB|/(
√
σ2
R + σ2

B), (4.27)

where µ and σ denote sound speed mean and standard deviation.

2. Noisy reconstructions

True sound speed and density distributions of the numerical Madsinh breast

phantom were corrupted by a zero-mean Gaussian noise with 2 times standard

deviation width equal to 4% of the maximum absolute amplitude of the received

pressure signal. A waveform inversion approach without a priori information

was employed.

3. Effects of regularization parameter λ on artifact suppression

The regularization parameter λ in Equation 4.6 was varied in 7 logarithmic

steps from 10−9 to 10−7 and applied to reconstructed images of basic cylinders

obtained from the waveform inversion approach without a priori information.

Images were obtained at 20th iteration from the image reconstruction with a

priori information sub-problem. The CNR of each region was calculated for

each value of λ.

4. Effects of uncertain segmentation on reconstruction error

Segmentation of real tissues could be prone to uncertainty of tissue boundaries,

especially near distal borders of fibrous invasive cancers, these could be blurry

or distorted due to aberration, speckle and electronic noise. The segmentation
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uncertainty was investigated in the reconstructions of a single cylinder (42 grid

points diameter), placed in the center of a field of view. The uncertainty was

defined as a finite-thickness zone centered around the circumference of the cylin-

der with the correlation coefficient ρk set to 0, as shown in Figure 4.2. Three

different zone thicknesses, 2h, 4h, and 6h, were assigned (h denotes grid spac-

ing) and two sets of reconstructions utilizing different correlation coefficients

(ρk = 0.0005 and ρk = 0.005) were performed for each. The sound speed error

was calculated within the actual object region for each reconstruction case.

 

 

 

Certain Background 

Zone (𝜌𝑘 > 0) 

Certain Object 

Zone (𝜌𝑘 > 0) 

4 cm 

6 cm 

Uncertain Zone 

Thickness (𝜌𝑘 = 0) 

Figure 4.2: Demonstration of how segmentation uncertainty can be handled by defin-
ing a circular border with correlation coefficient ρk = 0 for uncertain
boundaries. All other regions whose segmentation is known to be accu-
rate (zones of certain background and object) can have ρk > 0.

4.3 Results and Discussion

4.3.1 Noiseless Reconstructions

Figure 4.3(a) shows the actual, assumed sound speed image of two, 1 cm diameter

cylinders placed diagonally. Figures 4.3(b)-(e) show the corresponding reconstruction

results obtained from different reconstruction techniques and correlation coefficients,

ρk, as labeled in the figure. True sound speed and density are given in Table 4.2.

Calculated sound speed and CNR are given in Table 4.3.
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1 

2 

3 

(a) Actual 

(d) Waveform Inversion without TV 

(e) Waveform Inversion with TV (c) Bent-Ray Inversion with TV 

(b) Bent-Ray Inversion without TV 

𝜌𝑘 = 0 𝜌𝑘 = .0005 𝜌𝑘 = .005 𝜌𝑘 = 0 𝜌𝑘 = .0005 𝜌𝑘 = .005 

𝜌𝑘 = 0 𝜌𝑘 = .0005 𝜌𝑘 = .005 𝜌𝑘 = 0 𝜌𝑘 = .0005 𝜌𝑘 = .005 

Figure 4.3: Sound speed reconstructions of two cylinders placed diagonally in the
image. The true configuration is shown in (a). Bent-ray inversion results
are shown in the left column (a, c) and waveform inversion results are
shown in the right column (d, e). The bottom row (c, e) includes total-
variation (TV) to suppress artifacts, whereas the top row (b, d) does not.
Three correlation coefficients ρk are used for three levels of use of a priori
spatial information: 0, 0.0005, and 0.005.

Table 4.2: Assumed acoustic properties for imaged structures shown in Figure 4.3.
Region 1, 2, and 3, are top left cylinder, bottom right cylinder and back-
ground, respectively.

Region 1 2 3
Sound Speed (m/s) 1460 1570 1515
Mass Density (kg/m3) 900 1200 1000
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Table 4.3: Calculated sound speed (top row) and CNR (bottom row) of regions 1
and 2 shown in Figure 4.3, obtained using the reconstruction techniques
as listed in Figure 4.3. Each row value corresponds to the respective cor-
relation coefficient ρk.

Reconstruction method
Region

1 2

BR without TV
(2.72, 2.21, 1.06) (-2.92, -2.23, -1.06)
(1.6, 3.6, 13.0) (0.7, 2.0, 8.1)

BR with TV
(2.73, 2.27, 1.06) (-2.84, -2.32, -1.00)
(1.6, 3.0, 11.3) (0.8, 1.6, 5.4)

WI without TV
(2.18, 1.63, 0.55) (-1.98, -1.42, -0.44)
(1.4, 3.0, 12.7) (1.1, 2.6, 12.7)

WI with TV
(2.24, 1.70, 0.66) (-2.10, -1.60, -0.58)
(1.9, 3.9, 12.2) (1.6, 3.8, 12.7)

As can be seen from Figure 4.3 and Table 4.3, calculated sound speed accuracy and

distinct, accurate object borders scale with the correlation coefficient ρk. This applies

to all reconstruction techniques shown in the figure and is not surprising since larger ρk

enforces stronger correlation and thus homogeneity of speed of sound values within

the delineated regions. As such, if segmented regions are strongly homogeneous,

applying high ρk should result in substantial improvement in calculated sound speed

distributions as well as mean values.

Waveform inversion also improves sound speed accuracy and object geometry fea-

tures as it can address higher order effects such as diffraction and multiple reflections.

Without TV regularization sound speed errors in regions 1 and 2 were reduced by

(0.54, 0.58, 0.51)%, and (0.94, 0.81, 0.62)% for correlation coefficients of ρk = (0,

0.0005, 0.005), respectively, compared to those of bent-ray inversion approach (see

Table 4.3).

Moreover, for small or zero ρk, the waveform inversion approach unveils geometric

features much better than bent-ray (Figure 4.3 and Table 4.3). This suggests that

the waveform inversion approach could potentially help to overcome situations with

the limited a priori information, as is the case when confidence in segmentation
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homogeneity is low. Despite this clear advantage of the waveform inversion approach,

limited angle artifacts arise in conjunction with small ρk. In this circumstance, the

TV regularization term in Equation 4.6 will have a large value, and the reconstruction

algorithm will attempt to minimize this term. This effect can be seen as the increase

of CNR in Table 4.3 when applying TV regularization to the waveform inversion

approach. As a result, TV regularization is most effective when ρk is low, as higher

ρk inherently reduces artifacts. In addition, note that changes in calculated sound

speed due to artifact suppression are negligible although artifact suppression does

alter sound speed variation.

The reconstruction of the presented two cylinders was investigated further by

changing their orientation and one’s size. Two cylinders were placed in the lateral

center of the field of view and one of them was enlarged so that the larger cylinder

acoustically shadowed the smaller cylinder. Two reconstruction cases were performed

for two configurations: larger cylinder with positive sound speed contrast relative to

background and bottom cylinder (Figure 4.4(a)), and larger cylinder with negative

sound speed contrast (Figure 4.4(b)).

Reconstruction results are shown in panels (c)-(f). Shadowing effects can be ob-

served by intrusion of high sound speed values at the side of cylindrical wall facing the

high contrast cylinder. With no a priori information, ρk = 0 (Figures 4.4(c) and (d)

left), the bent ray reconstructions are almost unrecognizable and in the waveform in-

version image (e), vertical ambiguity artifacts intrude noticeably from the high speed

cylinder into the low speed one. At zero and low ρk, waveform inversion is, again

superior to bent ray reconstruction. Use of the nonzero correlation coefficient values,

as well as TV, improve the waveform inversion results. Artifact suppression becomes

crucial in reducing noise and improving CNR in low ρk settings. Specifically, for

ρk = 0 and no TV, the CNRs of regions (1, 2) are (1.0, 0.6) and (1.2, 0.5) for cases

1 and 2, respectively. By applying TV regularization, the CNRs of these regions
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2 

3 

(b) Actual 

2 

1 

3 

(a) Actual 

𝜌𝑘 = 0 𝜌𝑘 = .005 𝜌𝑘 = 0 𝜌𝑘 = 0,  TV 𝜌𝑘 = .0005 𝜌𝑘 = .0005,  TV 

(e) Waveform Inversion (c) Bent-Ray Inversion 

Case 1 

Case 2 

𝜌𝑘 = 0 𝜌𝑘 = .005 𝜌𝑘 = 0 𝜌𝑘 = 0,  TV 𝜌𝑘 = .0005 𝜌𝑘 = .0005,  TV 

(f) Waveform Inversion (d) Bent-Ray Inversion 

Figure 4.4: Sound speed reconstructions of two cylinders with different sizes placed
vertically. (a) and (b) Assumed objects with the sound speed contrast
of (a) reversed in (b), i.e., case 1 and case 2, respectively. Results from
each reconstruction technique are shown in (c)(f) with the names of the
technique given in the group titles. (c), (e) were obtained from recon-
structions of (a), and (d), (f) from reconstructions of (b). The correlation
coefficient ρk and use of TV are overlaid on the images.
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increase to (1.4, 0.7) and (1.5, 0.7), which reflects an improvement of (40, 16.7)%

and (25, 40)% for cases 1 and 2, respectively. This is further demonstrated visually

by the corresponding line graph cross-sections for the waveform inversion approach

(ρk = 0), shown in Figure 4.5. High sound speed fluctuations around the boarder of

the objects are visible and likely result from an ill-posed reconstruction setting.

 (b) Case 2 

 

(a) Case 1 

Figure 4.5: Line graph cross-sections (a and b) of the reconstructed sound speed for
cylinder contrasts as defined in Figure 4.4 (a and b), obtained with and
without TV regularization. The reconstructions are based on waveform
inversion with no a priori information, i.e. ρk = 0.

However, as described earlier, for large ρk, it is unnecessary to utilize waveform

inversion reconstruction and TV regularization for artifact suppression. Figures 4.4(c)

and (d) and cross-section plot in Figure 4.6 show that when ρk = 0.005 is applied, not

only the reconstruction accuracy is improved, but also the artifacts are significantly

reduced. The accuracy of bent-ray inversion using large ρk (e.g. 0.005) could surpass

that of waveform inversion using low ρk (e.g. 0.0005 or 0) (Figure 4.4), in situations

in which the segmentation of homogeneous regions is accurate. The reconstruction

results using the waveform inversion approach with ρk = 0.005 are not shown in

Figure 4.4 as they provide very similar results as those of bent-ray inversion approach

with the same ρk (Figures 4.4(c) and (d) right).

Reconstruction convergence can be verified by monitoring the magnitude of the

steepest descent (SD) vector (γm in Equation 4.12), which should decrease for increas-
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 (b) Case 2 

 

(a) Case 1 

Figure 4.6: Line graph cross-section plots (a and b) of reconstructed sound speed
with a priori information for cylinders as defined in Figure 4.4 (a and b).
The reconstructions utilize bent-ray and waveform inversion but no TV
regularization. The correlation coefficient ρk is set to 0.005.

ing iterations. The normalized SD is shown in Figure 4.7(a). Note that nonzero corre-

lation coefficients lead to variations of the SD at approximately the first 10 iterations.

In contrast, the normalized magnitude of the data term gradient (G∗m
[
C−1D

(
g(m)−d

)]
in Equation 4.15) these variations are less noticeable (Figure 4.7(b)). This is at-

tributed to the SD vector, whose direction is not necessarily the same as direction

of the gradient. Specifically, altering ρk induces directional change of the SD vec-

tor due to structural change of the covariance matrix CM. Note that this process

is also necessary because it allows the sound speed image to be updated according

to the a priori constraints. This is not the case for the gradient direction, which is

independent from the covariance matrix CM.

More complex phantom reconstructions are shown in Figure 4.8 and Figure 4.9.

The first one is based on the numerical Karmanos Cancer Institute breast phantom

with reduced breast size and sound speed of glandular tissue (region 2) replaced by

the sound speed of coupling gel (region 7). The latter one is based on the physical

Madsinh breast phantom [6]. The corresponding true sound speed and mass density

for each region are given in Tables 4.4 and 4.5. Note that in all reconstructions of

the second phantom, the fatty layer sound speed was fixed to avoid sound speed
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 (a) (b) 

Figure 4.7: Magnitude of two possible measures of convergence: (a) Normalized steep-
est descent of total cost term (SD) and (b) normalized gradient of data
cost term (grad). Both are plotted versus iteration number and for three
correlation coefficients.

reconstruction ambiguity that arises in horizontal layers. This is a limitation of

limited angle reconstructions without use of a priori information.

Table 4.4: Assumed acoustic properties of each region in numerical Karmanos Cancer
Institute breast phantom.

Region 1 2 3, 4 5, 6
Speed of sound (m/s) 1600 1515 1470 1550
Density (kg/m3) 1000 1000 1000 1000

Table 4.5: Assumed acoustic properties of each region in numerical Madsinh breast
phantom.
Region 1 2 3 4 5 6
Speed of sound (m/s) 1409 1461 1421 1537 1552 1452
Density (kg/m3) 1000 1000 1000 1200 1200 1000

Similar to the simple phantom studies, reconstruction accuracy and object geom-

etry is enhanced by including a priori segmentation data or replacing the bent-ray

inversion approach with waveform inversion. As can be seen from Figures 4.8 and 4.9,

accurate segmentation reduces sound speed error and limited angle artifacts for both

approaches. However, the bent-ray resolution limit (the first Fresnel zone) is larger

than that of waveform inversion, which allows waveform inversion to better recover
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(a) Actual 

(d) Waveform Inversion without TV 

(e) Waveform Inversion with TV (c) Bent-Ray Inversion with TV 

(b) Bent-Ray Inversion without TV 

𝜌𝑘 = 0 𝜌𝑘 = .0005 𝜌𝑘 = .005 𝜌𝑘 = 0 𝜌𝑘 = .0005 𝜌𝑘 = .005 

𝜌𝑘 = 0 𝜌𝑘 = .0005 𝜌𝑘 = .005 𝜌𝑘 = 0 𝜌𝑘 = .0005 𝜌𝑘 = .005 
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Figure 4.8: Sound speed reconstructions using the numerical Karmanos Cancer In-
stitute breast phantom. Initial, assumed, configuration is shown in (a).
Results are shown in image groups (b) (e). Different reconstruction tech-
niques are labeled. TV denotes total-variation used for artifact suppres-
sion. Use of a priori information, by means of the correlation coefficient
ρk, is labeled on each image. Regions 1-7 are: skin layer (1), glandular
tissue (2), large (3) and small (4) fat nodules, large (5) and small (6)
tumors, and gel couplant (7).
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small object geometries even for low segmentation homogeneity. This is demonstrated

as the high-contrast cancer nodule (region 6) appears more like a low-contrast ob-

ject bent-ray inversion results (Figure 4.8, ρk = 0 or 0.0005). Still, even if waveform

inversion approach is employed, small features could be smoothed out by the TV regu-

larization, making them look more blurry. The effects of using different regularization

parameters on the reconstructed images will be further discussed in Section 4.3.3.

Note that even though TV regularization has shown to suppress granular limited

angle artifacts due to low ρk, as demonstrated in Figures 4.8 and 4.9, its performance

in suppressing large artifacts is limited. Figures 4.9(b)-(e) show an example of a large

negative contrast artifact located in the middle of the image. This becomes more

noticeable for lower ρk. Such negative contrast artifacts can arise from high-contrast

streaking artifacts extending out of two lesions (region 5 and 6) diagonally. These

streaking artifacts can reduce the sound speed around the center of the image, thus

causing a large negative contrast artifact. However, if the segmentation confidence is

high enough, one could still apply high ρk to suppress this artifact.

4.3.2 Noisy Reconstructions

Figure 4.10 shows the waveform inversion reconstruction results of the numeri-

cal Madsinh breast phantom, using input pressure traces containing Gaussian noise.

Images from Figure 4.10(a) and CNR values show that applying higher ρk results

in both accuracy improvement and artifact reduction. However, for low or zero ρk,

segmentation homogeneity is not enforced strongly, thus Gaussian noise in the input

pressure traces is noticeably manifested as grainy artifacts in the images. Applying

TV regularization therefore leads to effective artifact suppression for low or zero ρk,

e.g. ρk = 0 (panel b).

85



 (d) Waveform Inversion without TV 

(e) Waveform Inversion with TV (c) Bent-Ray Inversion with TV 

(b) Bent-Ray Inversion without TV 

𝜌𝑘 = 0 𝜌𝑘 = .0005 𝜌𝑘 = .005 𝜌𝑘 = 0 𝜌𝑘 = .0005 𝜌𝑘 = .005 

𝜌𝑘 = 0 𝜌𝑘 = .0005 𝜌𝑘 = .005 𝜌𝑘 = 0 𝜌𝑘 = .0005 𝜌𝑘 = .005 

4 5 

6 
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2 3 

1 

(a) Actual 

Figure 4.9: Sound speed reconstructions of the numerical Madsinh breast phantom.
The initial, assumed, configuration is shown in (a). Results are shown
in groups (b) (e) with reconstruction techniques as labeled. TV denotes
total-variation and is used for artifact suppression. Use of a priori in-
formation, by means of the correlation coefficient ρk, is labeled on each
image. Regions 1-6 are: skin layers (1), high-speed glandular tissue (2),
high-speed fat (3), cysts (4)-(5), and medium-speed glandular tissue (6).
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𝜌𝑘 = 0 𝜌𝑘 = .0005 𝜌𝑘 = .005 

𝜌𝑘 = 0 𝜌𝑘 = .0005 𝜌𝑘 = .005 
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Figure 4.10: Waveform inversion based sound speed reconstructions using the nu-
merical Madsinh breast phantom (Figure 4.9(a)) with added Gaussian
noise. Results without and with total variation (TV) are shown in image
groups (a) and (b), respectively. TV denotes total-variation used for ar-
tifact and noise suppression. The correlation coefficient ρk implementing
a priori information and the CNR value are labeled on top and bottom
of each image, respectively.
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4.3.3 Effects of Regularization Parameter λ on Artifact Suppression

Figure 4.11 shows waveform inversion results of the numerical Madsinh breast

phantom without a priori information (ρk = 0) and with different TV regularization

parameters (λ > 0). The corresponding CNRs for each λ are given in Figure 4.12.

Increasing λ tends to decrease artifacts and improve CNR. Higher λ yields a higher

penalty term λE‖m‖TV in Equation 4.6. However, in order to keep the total cost

value E(m) low, the artifacts in the image need to be further suppressed such that the

value of ‖m‖TV will decrease. Note that large λ can cause noticeable image blurring.

Therefore the choice of λ is a trade-off between CNR improvement and blurring.

 

0 1 × 10−9 2 × 10−9 5 × 10−9 

1 × 10−8 2 × 10−8 5 × 10−8 1 × 10−7 

Figure 4.11: Waveform inversion based sound speed reconstructions in a cylinder
phantom as shown in Figure 4.3(a). While no a priori information is
used (ρk = 0), the TV regularization parameter λ for artifact suppression
is logarithmically increased.

4.3.4 Effects of Uncertain Segmentation on Reconstruction Results

Figure 4.13 shows calculated sound speeds obtained from different uncertainty

zone (zone with ρk = 0) thicknesses and a priori correlation coefficients ρk. Note

that using higher confidence of segmentation homogeneity (higher ρk) can help reduce
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Figure 4.12: CNR as a function of the TV regularization parameter λ in the cylinder
phantom shown in Figure 4.11. The region number is equivalent to that
in Figure 4.3(a), i.e. top left and bottom right are 1 and 2, respectively.

the speed of sound error. However, the uncertain segmentation around the object

boundary induces the modest object’s speed of sound error as shown in Figures 4.13(a)

and (b), and the speed of sound error increases when the uncertainty zone thickness

increases. The positive contrast object in general brings down the calculated object’s

speed of sound as seen from Figure 4.13(a) and vice versa as seen from Figure 4.13(b).

This could be explained by the fact that most sources or the error due to segmentation

uncertainly are transferred and absorbed by the uncertainty zone. Such errors can

be observed when the object’s speed of sound is calculated from all pixels within the

combined certain object zone and uncertainty zone (see Figure 4.13(c) for positive

contrast object and Figure 4.13(d) for negative contrast object). The reason that the

uncertainty zone can absorb most errors is because of its correlation coefficient ρk

that is set to 0, thus allowing the most flexibility and heterogeneity of pixels within

that uncertainty zone.
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 (a) (c) 

(b) (d) 

Figure 4.13: Sound speed estimation errors due to uncertainly zone (zone with ρk = 0)
representing segmentation uncertainty, obtained from different uncer-
tainty zone thicknesses and correlation coefficients ρk of 0.0005 and
0.005. The sound speeds of positive and negative contrast objects, calcu-
lated within the certain object zone only, are shown in (a) and (b). The
sound speeds of positive and negative contrast objects, calculated within
the combined certain object zone and uncertainty zone, are shown in (c)
and (d).
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4.4 Conclusions

Spatially reconstructing ultrasound tissue sound speed in the limited-angle to-

mography setting results in significant image artifacts and degrades speed of sound

accuracy, as the limited information in the acquired signals introduces strong ill-

posedness in the reconstruction problem.

This work has shown that both a priori segmentation data and waveform inversion

are capable of providing the structural boundary information around heterogeneous

interfaces, thus are able to resolve object geometry features and improve reconstruc-

tion accuracy. In addition, in most clinical imaging cases wherea priori segmentation

data is not available or ambiguous, waveform inversion could potentially be employed

together with artifact suppression to reduce the heterogeneities introduced by the

limited angle imaging geometry.

Despite the extensive simulation results presented in this work, it is worthwhile

to note that the reconstructions could have been performed more realistically by the

following approaches: First, the imaging probe impulse response should be modeled

with bandwidth limitations. Second, cross-talk between adjacent transducer elements

should be modeled and thus removed by trimming the beginning of each rf-signal.

Third, given adequate computational resources, physical experiments should be per-

formed to validate the feasibility in clinical imaging within complicated geometries

and using higher imaging frequencies (as high as 10 MHz for current clinical breast

scanning).

The proposed reconstruction algorithm demonstrates that applying a priori seg-

mentation and waveform inversion, or both, show promise in using ultrasound to

image breast in the same view as x-ray mammography that is currently considered

as the clinical standard. This allows easier comparison of images from two modalities

and thus delivering better breast cancer detection and screening performance.
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CHAPTER V

3D Corrections for Reconstruction of Bulk Tissue

Attenuation Coefficients1

5.1 Introduction

Ultrasound attenuation imaging has recently received much attention in breast

imaging for cancer detection, as the localized attenuation coefficient has shown to be

a good discriminator among various breast tissue types [23], [24], [30], [57], [110]–

[112]. Despite the fact that shadows in B-mode images can be caused by ultra-

sound reflectors dispersing the beam, the full history of ultrasound breast imaging

has recommended scrutinizing tissues causing shadows as possible cancers [113]–[115].

Several studies suggest that tissue regions with high attenuation coefficients and high

sound speed are more likely to be cancer [16], [17], [19], [21], [30]–[32], [57], [110],

[111], [116]. However, obtaining accurate attenuation coefficient images can be more

challenging than obtaining sound speed images [36], [117]–[119]. This results from

the several overlapping factors, such as geometric spreading, refraction, diffraction,

and scattering, that deflect the energy away from the receivers, usually by amounts

dependent on the angle of incidence to a sound speed gradient. This, usually coher-

ent, scattering depends on a tissues properties relative to that of its surroundings, as

1This chapter is submitted: R. Jintamethasawat, O. D. Kripfgans, J. B. Fowlkes, and P. L.
Carson, “3D Corrections for Reconstruction of Bulk Tissue Attenuation Coefficients.”
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opposed to attenuation caused by interactions in the tissue itself. We call the measure

of this attenuation that is representative of a given tissue, the bulk attenuation coef-

ficient. This is distinguished from absorption coefficient of that tissue, representing

only the energy absorbed locally in the tissue, but not the local scatter.

Existing breast attenuation coefficient image reconstruction algorithms can be

divided into 2 categories: (a) bent-ray based approaches that approximate the ultra-

sound signal propagation path as a ray whose bending represents refraction [8], [16],

[17], [31], [118]; and (b) waveform based approaches that utilize the received signal

within a larger context [18], [19], [21], [30], [32], [35], [111], [120]–[122]. Even though

bent-ray based approaches do not offer the detailed image resolution and fidelity of

waveform based approaches, they are still attractive as they demand less computa-

tional power and are more robust with respect to ill-conditioned reconstructions [21],

[32], [36], [117]–[119]. Unfortunately, most of the bent-ray based approaches only

remove the geometric spreading effect by acquiring an additional non-attenuating

water dataset and determining the received signal energy (or amplitude, spectrum,

etc.) difference between it and the tissue dataset [8], [16], [17], [25], [31], [116]–[118].

Other effects, such as acoustic impedance mismatch between adjacent tissue types,

i.e., boundary effects, still remain, thus resulting in received energy and reconstruc-

tions dependent on the differences between tissues as well as the desired attenuation

as a property of each individual tissue type. Such effects become more severe when

boundary scattering is directed out of the imaging plane. Note that even though

waveform based approaches can eliminate geometric spreading and boundary effects,

the forward solvers need to be able to capture all of the wave propagation physics.

Thus, 3D full-wave propagation modeling is required to simulate signals that travel

in 3D space. Failure to comply with such requirements will lead to inaccurate attenu-

ation coefficient image reconstructions and yield severe artifacts [32], [35], [36], [118],

[119].
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To compromise between the clinical demand for rapid and cost-efficient breast

cancer diagnosis and that of superior image quality, we propose a hybrid attenuation

coefficient image reconstruction algorithm that utilizes a waveform propagation sim-

ulation for 3D attenuation correction and a subsequent bent-ray scheme for 2D image

reconstruction.

Two-dimensional bent-ray based reconstruction is fast compared to its waveform-

based counterpart. Three-dimensional attenuation correction (i.e. the removal of

geometric spreading and boundary effects) is obtained by only 2 forward solver runs

(total) for signal propagation computation in lossless media. In contrast, the majority

of iterative waveform inversion algorithms require at least 2 forward solver runs (per

iteration), namely one for the wave fields and another one for adjoint fields.

The proposed attenuation correction is done under the assumption that a good

sound speed distribution of the imaged volume has been reconstructed. Similar atten-

uation correction techniques have been proposed previously for pulse-echo imaging in

the spectral domain [123], [124]. However, those techniques only account for refrac-

tion. Other attenuation coefficient image reconstruction algorithms [8], [25] account

for refraction and diffraction and are more closely related to our 3D work. The im-

portance of this extension is to account for possible beam refraction or scattering out

of the detector apertures at major boundaries. This paper is organized as follows:

Section 5.2 explains the related acoustic theory, the proposed attenuation correction

method and the proposed image reconstruction method. A series of simulation study

parameters and techniques is also given in this section. The associated results and

their analyses are given in Section 5.3. Section 5.4 provides a summary, conclusions,

and future directions of study.
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5.2 Materials and Methods

5.2.1 Signal Acquisition

Scanning systems typically utilize either ring arrays or opposed linear arrays. The

signal acquisition is accomplished by sequentially transmitting from a single or virtual

transducer element and receiving signal by all transducer elements on the ring array

if a ring array is used, or on all elements of the opposing linear array, if two opposed

linear arrays are used. Regardless of the transducer type, note that the transmitted

signal can be refracted and diffracted both in-plane and out-of-plane primarily due

to the sound speed mismatch between two media as shown in Figure 5.1 [13], [14].

 

(a): In-Plane, Positive (b): In-Plane, Negative (c): Out-of-Plane, Positive 

Tx 

Rx 2 Rx 1 Rx 1 Rx 2 

Tx 

Transducer 
Element 

Scanned 
Plane 

Figure 5.1: Refracted acoustic ray path (blue solid bold arrow) and reflected ray path
(red dashed bold arrow) due to sound speed and impedance differences,
respectively, at the interface between two media, occurring in-plane (a),
(b) and out-of-plane (c). Changes in beam propagation direction from
the assumed directions (black thin dashed arrow) are illustrated for cases
where the imaged object has positive (a), (c) or negative (b) sound speed
contrast relative to the background. Tx and Rx 1 denote active transmit
element and opposed receive element, respectively, and Rx 2 denotes a
neighboring receive element.
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5.2.2 Wave Propagation Modeling

5.2.2.1 Full-wave modeling

Acoustic wave propagation in a 3D medium with heterogeneous sound speed c(r) :

R3 → R+ and attenuation coefficient α(r) : R3 → R+
0 can be modeled over time

t ∈ [0, T ] and space r ∈ R3 by the following three first-order coupled equations [14],

[98], [99]:

∂

∂t
u(r, t) = − 1

ρ0(r)
∇p(r, t) (5.1a)

∂

∂t
ρ(r, t) = ρ0(r)

(
−∇ · u(r, t) +

t∫
0

s(r, t′)dt′
)

(5.1b)

p(r, t) = c2(r)

[
1− τ(r)

∂(−∇2)
y
2
−1

∂t
− η(r(−∇2)

y+1
2
−1)

]
ρ(r, t), (5.1c)

where s(r, t) : R3 × R+
0 → R is the source pressure, u(r, t) : R3 × R+

0 → R3 is the

particle velocity, p(r, t) : R3 × R+
0 → R is the acoustic wave pressure or pressure

trace, and ρ(r, t) : R3 × R+
0 → R+ and ρ0(r) : R3 → R+

0 are the object density and

background density, respectively. The terms τ(r) and η(r) include the attenuation

coefficient as:

τ(r) = −2α(r)c(r)y−1 (5.2a)

η(r) = 2α(r)c(r)y tan
(πy

2

)
, (5.2b)

where y denotes the power law exponent for the attenuation coefficient. In this

paper, the three first-order coupled acoustic equations were solved via a k-space

pseudospectral method for the sake of low memory usage and adequate numerical

stability [109].

This paper utilizes full-wave modeling for simulating non-attenuating signals for
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energy correction (Section 5.2.3) as well as for generating simulated tissue datasets

used as input pressure traces used for bent-ray based reconstructions (Section 5.2.5).

5.2.2.2 Bent-ray modeling

An alternative and simpler wave propagation modeling approach is based on ray

theory [46], [125]. It models the propagation of a single point on the wavefront as a

bent-ray, rather than a continuous wavefront. All points on the same wavefront are

assumed to have the same phase.

The first-arrival time, i.e., time-of-flight (TOF), of the wavefront at the location

r0 can be calculated by solving the following Eikonal equation:

‖∇T(r)‖2c(r) = 1, T(r0) = 0, (5.3)

where T represents the calculated TOF map, whose gradient direction ∇T (i.e.

receiver towards source) resembles the propagation path. While employing a 3D

full-wave forward model for attenuation correction, this paper utilizes the bent-ray

modeling for the inverse, 2D sound speed and attenuation image reconstructions.

5.2.3 Attenuation Correction

Receive signal attenuation (absorption and scattering effects), denoted as a, can

be obtained from energy loss of a received signal propagating through the hetero-

geneous attenuation and sound speed distribution consisting of simulated object(s)

and surrounding background Eo, compared to the non-absorbing and homogeneous

background medium Eb. The attenuation is given as:

a = 10log10(Eb)− 10log10(Eo) = 10log10(
Eb
Eo

). (5.4)

The energy of a given signal s(t), acquired from time t1 to t2, can be obtained
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from the time integral of the Hilbert transform of s(t):

E =

t2∫
t1

|H(s(t))|2dt, (5.5)

where E denotes the total signal energy of the signal s(t) and H denotes the Hilbert

transformation operator.

Note that Equation 5.4 only allows for correcting signal energy loss due to geomet-

ric spreading resulting from the unknown actual path lengths. Thus, the calculated

attenuation does not accurately represent the actual energy loss, due to refraction or

diffraction effects that usually occur in media with heterogeneous sound speed and

on oblique interfaces between media.

As illustrated in Figure 5.1, refraction and scattering can occur both in-plane

(a)-(b) and out-of-plane (c), often causing energy to miss or inappropriately hit the

detectors compared to that in propagating through homogeneous sound speed media

[25]. Figures 5.1(a) and (b) specifically illustrate in-plane positive and negative sound

speed contrast refraction effects. The object with positive sound speed contrast (a)

causes the beam to diverge away from the object, here as an energy shift from Rx 1

to Rx 2, thus changing the resulting recorded attenuation. Similarly, the object with

negative sound speed contrast (b) causes the beam to refract towards the inside of

the object. Note that elevational spreading can lead to out-of-plane refraction and

diffraction effects, as shown in Figure 5.1(c), and thus signal energy loss.

Fortunately, it is possible to account for the signal loss that is due to a tissues

impedance and speed of sound differences with its surroundings, resulting in the

loss that is a property of the tissue itself. Similar to Equation 5.4, the corrected

attenuation is written as:

ac = a− as, (5.6)
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where a is the overall attenuation. ac is the corrected attenuation due only to the

tissue absorption and scattering within bodies of relatively homogeneous tissue. as is

the attenuation due to refraction, reflection and diffraction at macroscopic gradients

in sound speed or acoustic impedance. Given that the object delineations and their

corresponding sound speed distributions are known a priori, it is possible to calculate

as from two simulated pressure datasets: one from full-wave propagation simulation

in a homogeneous background medium, and another from full-wave propagation sim-

ulation in non-absorbing media with heterogeneous a priori sound speed distribution.

Specifically, as is calculated as:

as = 10log10(Eb,s)− 10log10(Eo,s) = 10log10(
Eb,s
Eo,s

), (5.7)

where Eo,s is the simulated 3D receive signal energy that includes out-of-plane signal

loss due to heterogeneous a priori sound speed. It is computed as a wave that is

propagating through the non-absorbing object(s), thereby yielding relative signal loss

due to out-of-plane refraction and diffraction. Eb,s is the simulated receive signal

energy propagating through the homogeneous background medium. Equations 5.1a-

5.1c can be utilized to compute as, with the background attenuation α(r) = 0 for all

r ∈ R3.

5.2.4 Reconstruction of Attenuation Coefficient Images

Radiofrequency pressure trace datasets acquired from ultrasound scanners can be

used for reconstructing both sound speed and attenuation coefficient images. Image

reconstruction can be regarded as the minimization of an objective function shown

in Equation 5.8 with respect to the vectorized slowness s (inverse of sound speed c)

and attenuation coefficient α:
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(s,α) = arg min
s,α

{(
dsos − gsos(s)

)T
C−1D,sos

(
dsos − gsos(s)

)
+
(
datt(s)− gatt(α, s)

)T
C−1D,att

(
datt(s)− gatt(α, s)

)
+
(
s− s0

)T
C−1M,sos

(
s− s0

)
+
(
α−α0

)T
C−1M,att

(
α−α0

)}
.

(5.8)

Let N be the number of data from all transmit-receive element pairs, dsos and

gsos(s) denote the measured and simulated time-of-flight vectors of all these pairs,

such that dsos = [t1, t2, . . . , tN ]T , where ti denotes the ith pair time-of-flight. datt(s)

and gatt(s,α) denote the measured and simulated transmit-receive element pair at-

tenuation vectors, such that datt(s) = [a1(s), a2(s), . . . , aN(s)]T , where ai(s) denotes

the attenuation associated with the ith pair and also depends on slowness s if attenua-

tion correction is applied according to Equation 5.7. The measured attenuation datt,

obtained from the input pressure dataset, can be calculated either from Equation 5.4

to obtain the uncorrected attenuation or from Equation 5.6 to obtain the corrected

attenuation.

In this paper, we utilize the computationally efficient bent-ray modeling for 2D

image reconstructions. Simulated time-of-flight can be first calculated via the Eikonal

equation in Equation 5.3, with inputs s and T. Bilinear interpolation is performed to

approximate T for receive elements whose locations do not coincide with the simula-

tion grid. Solving Equation 5.3 for all transmit locations, we get gsos(s). In addition,

the propagation path lsr from a transmit element s to the receive element r can be

calculated by ray tracing along the TOF map gradient, ∇T, i.e. from r to s. Once

lsr is computed, the simulated attenuation can be computed by integrating the local

attenuation along the propagation path:

∫
l∈lsr

α(l)dl. (5.9)
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One can also write Equation 5.9 in a discrete matrix form as:

gatt(α, s) = L(s)α, (5.10)

where L(s) is the N ×M path length matrix whose ith row corresponds to the path

length distribution in all image pixels for the ith transmit-receive element pair. Note,

that the path length matrix L also on the vectorized slowness s depends.

In addition, Equation 5.8 allows us to introduce noise in TOF and attenuation

measurements through the covariance matrices CD,sos and CD,att [70]. Similarly,

the slowness and attenuation coefficient covariance can be set through the matrices

CM,att and CM,att. Initial guesses can be set through the terms s0 and α0. A priori

geometric object features are included by weighting solutions with correlated values

in the objects pixels. Specifically, suppose ρM is the assumed (a priori) correlation

between two pixels from the same object type, for any given pixels i and j, CMij
=

ρMσ
2, if pixels i and j are within the same object type but CMij

= 0, if they are not.

Note that CMii
= σ2 for any pixel i, where the assumed variance of the individual

pixels is σ2.

Assuming that dispersion can be neglected and sound speed does not depend on

the attenuation coefficient, we can obtain the slowness s first from Equation 5.11 and

then the attenuation coefficient α0 from Equation 5.12:

s = arg min
θ

{(
dsos − gsos(θ)

)T
C−1D,sos

(
dsos − gsos(θ)

)
+
(
θ − s0

)T
C−1M,sos

(
θ − s0

)}
(5.11)
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α = arg min
θ

{(
datt(s)− gatt(θ, s)

)T
C−1D,att

(
datt(s)− gatt(θ, s)

)
+
(
θ −α0

)T
C−1M,att

(
θ −α0

)}
.

(5.12)

Note that the minimizer of Equation 5.12, , is calculated analytically as:

α = α0 + CM,attL(s)T
(
L(s)CM,attL(s)T + CD,att

)−1(
datt(s)− gatt(α0, s)

)
. (5.13)

However, we found empirically that updating the attenuation coefficient image

at every iteration, after the path length matrix L is computed, results in an image

with less artifacts. For this reason, we chose to reconstruct the attenuation coefficient

image based on an iterative approach. Specifically, for each iteration, the attenua-

tion coefficient image is updated based on the current path length matrix L that is

concurrently obtained from the TOF map T, and T is simulated from the current

slowness image.

The minimization problem is facilitated by the conjugate gradient method, similar

to the approaches described in [8], [64], [70]. To do so, the steepest descent vectors

for slowness and attenuation coefficient images, γs and γα, are first derived as:

γs = CM,sosL(s)T
[
C−1D,sos

(
gsos(s)− dsos

)]
+ s− s0

γα = CM,attL(s)T
[
C−1D,att

(
gatt(s,α)− datt(s)

)]
+ α−α0.

(5.14)

The slowness and attenuation coefficient images at the (n + 1)th, sn+1 and αn+1,

are then given by:
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sn+1 = sn − ps,n+1v
n+1
s and αn+1 = αn − pα,n+1v

n+1
α

where vn+1
s = γns − βs,n+1v

n
s and vn+1

α = γnα − βα,n+1v
n
α.

(5.15)

Parameters βs and βα, are chosen according to Polak and Ribière’s formula such

that the vectors in the sets
{
vis
}n+1

i=1
and

{
viα
}n+1

i=1
form conjugate bases for the Krylov

subspaces [106]:

βs,n+1 =
< C−1M,sos(γ

n+1
s − γns ), γn+1

s >

< C−1M,sosγ
n
s , γ

n
s >

and βα,n+1 =
< C−1M,att(γ

n+1
α − γnα), γn+1 >

< C−1attγ
n
α, γ

n
α >

.

(5.16)

The optimal step length can be obtained analytically by the following equations:

ps,n+1 =
(vn+1

s )TC−1M,sosγ
n+1
s

(Lnvn+1
s )TC−1D,sos(L

nvn+1
s ) + (vn+1

s )TC−1M,sosv
n+1
s

pα,n+1 =
(vn+1
α )TC−1M,attγ

n+1
α

(Lnvn+1
α )TC−1D,att(L

nvn+1
α ) + (vn+1

α )TC−1M,attv
n+1
α

.

(5.17)

The reconstruction algorithm for sound speed and attenuation coefficient images

are summarized in Table 5.1. Note that this algorithm also can be used to reconstruct

sound speed images separately.

5.2.5 Simulation Studies

Attenuation coefficient image reconstructions using both uncorrected and cor-

rected attenuation maps were performed on 3 different numerical 3D phantoms. Both

ring and linear arrays with finite-aperture line sources, shown in Figures 5.2(a) and

(b)-(d), were utilized for reconstructions. The phantoms, where each is imaged by a

pair of linear arrays, are illustrated in Figures 5.2(b)-(d). The transducer and imaging
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Table 5.1: Algorithmic description of the proposed reconstruction algorithm.
Inputs: dsos, datt, k = 0, βs,0 = βα,0 = 0, v0

s = v0
α = 0

1 while (k < K)
2 Solve Equation 5.3 to get TOF map Tk and gsos(s

k)
3 Obtain Lk from ∇Tk

4 Obtain γks and γkα from Equation 5.14
5 if (k > 0) obtain βs,k+1 and βα,k+1 from Equation 5.16
6 if (k > 0) obtain vs,k+1 and vα,k+1 from Equation 5.15
7 Obtain ps,k+1 and pα,k+1 from Equation 5.17
8 Sound speed and attenuation coefficient images
9 Obtain sk+1 and αk+1 from Equation 5.15
10 Enforce 0 to negative-valued pixels
11 k ← k + 1
12 end
13 Return (sK)−1 and αK

configurations are given in Table 5.2. In this paper, the k-Wave Toolbox [109] was

utilized for 3D full-wave propagation modeling, i.e., for generating input datasets

and non-attenuating datasets described shortly. Input wave traces were generated

with known sound speed, attenuation, and density distributions. Time-of-flight was

extracted for each trace using the Akaike information criterion (AIC) as described in

[75] and then used to reconstruct the 2D sound speed image. In addition, input wave

traces were used to obtain the attenuation map (vectorized as datt) that was later

used as the input for reconstruction of the 2D attenuation images. If attenuation

correction was applied, an additional non-attenuating (zero attenuation coefficient)

dataset was also simulated given a priori volumes with sound speed and density.

The uncorrected and corrected attenuation datasets were calculated based on Equa-

tions 5.4 and 5.6, respectively. Note that the wave propagation modeling done here

assumed the correct, heterogeneous density distribution, but even without this knowl-

edge, only modest reflection and scattering should be present due to the low-contrast

density.

Two-dimensional sound speed and attenuation reconstructions utilized bent-ray

modeling and assumed point-like transducer elements. The 2D TOF map T and the
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(a) (b) (c) (d) 

Figure 5.2: The geometries of ring (a) and linear (b)-(d) transducer arrays, and three
different 3D numerical objects (b)-(c), shown in isometric view. For com-
pactness, only axis labels for ring array and only phantoms imaged by
linear arrays are shown. Objects shown in (b), (c), and (d) are sin-
gle sphere, two spheres, and breast-mimicking phantom. The arrows on
spherical objects indicate their directions away from the image plane. The
acoustic properties of all regions within the field-of-view for single sphere,
two spheres, and breast-mimicking phantom imaging cases are given in
Tables 5.4, 5.5, and 5.6, respectively.

corresponding ray geometries encoded in the path length matrix L can be accurately

obtained using Multistencils Fast Marching Methods (MSFM) [72]. The reconstruc-

tion parameters are given in Table 5.3. In addition, after the attenuation coefficient

image was updated at each iteration, zero was assigned to all image pixels whose

values were negative to enforce the non-negativity constraint on the attenuation co-

efficient.

Note that even though the correlation coefficient of the background region can be

positive since all pixels within the background region should have very similar acoustic

properties, we chose to assign zero because of two reasons: First, we initialized both

sound speed and attenuation coefficient image guesses with the actual sound speed

and attenuation coefficient of background, thus pixels in the background region should

be updated very slightly, resulting in background homogeneity and little correlation

with the coefficient value. In practice, with known locations of transducer elements,

the background sound speed estimate can be obtained through signal travel times for
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Table 5.3: Simulation geometry for 2D image reconstruction. Note that the field-of-
view size was automatically determined during the reconstruction based
on the array geometry in Table 5.2, thus resulting in different field-of-view
sizes for ring and linear arrays.

Parameter Value
Total number of Ring array: 80
array elements Linear array: 40 each

Field-of-view size
Ring array: 302×302 grids

Linear array: 306×249 grids
Number of iterations (K in Table 5.1) 5

CM,sos
Correlation coefficient (ρM) 0.005 (except 0 for the background)
Standard deviation (σ) 0.048µs/mm

CM,att
Correlation coefficient (ρM) 0.005 (except 0 for the background)
Standard deviation (σ) 11 dB/cm

CD,sos
Correlation coefficient (ρM) 0
Standard deviation (σ) 0.05µs

CD,att
Correlation coefficient (ρM) 0
Standard deviation (σ) 0.1 dB

all transmit-receive element pairs, and the estimate of the background attenuation

can be obtained through signal amplitude decreases for all transmit-receive element

pairs. Second, the steepest vectors in Equation 5.14 are only optimal for very small

update steps and performing updates with steps that are too big could sometimes

result in divergence rather than convergence [70]. Setting the correlation coefficient

to zero makes CM,sos and CM,att more like a scaled identity matrix. This in turn

makes the steepest descent vectors in Equation 5.14 more like gradient vectors. We

also found empirically that this results in faster convergence. Although it is not the

scope of this paper, using a preconditioning matrix in the optimization problem might

also result in faster convergence [70].

Four studies were performed to reconstruct 2D attenuation coefficient images, one

each for the three single slice cases of: a single sphere, two spheres, and the numerical

breast-mimicking phantom, as well as one single sphere multi slice case. Their details

are provided as follows:
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5.2.5.1 Single slice reconstructions of a single sphere

The 4.2-mm radius spherical object of Figure 5.2(b) is placed at (x, y, z) = (4.2,

33.4, 2.4) mm, i.e., it is also placed out of the axial-lateral image plane 1/2 radius

(2.4 mm) elevationally. The actual acoustic properties (sound speed, density, and

attenuation) are given in Table 5.4. Note that there are two sets of actual sound

speed and density assigned to the object, as we would like to investigate the effects of

sound speed contrast (the difference between object and background) on the efficiency

of attenuation correction.

Beam patterns (whose value at a given location is equal to the maximum pressure

amplitude at that location over the propagation time) and attenuation maps are

presented prior to the reconstruction results to illustrate the beam distortion due to

sound speed heterogeneity and image object geometries, as well as to illustrate how

the effects on estimated attenuation can be corrected. The beam propagation patterns

transmitted from a single finite-aperture line source element are shown for positive

and negative sound speed relative to background and 2 different views (axial-lateral

and axial-elevational). The beam was transmitted by element 16 (the element index

starts from x = 2 cm) on the linear array that was located at y = 5 cm and passed

through the center of the sphere. For attenuation maps, note that only maps of wave

traces in the positive direction are presented for the sake of brevity, i.e. transmitted

from y = 0 cm and received by y = 5 cm. The indices of transmit and receive arrays

start at x = −2 cm and x = 2 cm, respectively.

Table 5.4: Acoustic properties (sound speed, density, and attenuation) of all regions
shown in Figure 5.2(b). Two sound speed and density sets were used for
generating positive- and negative-contrast sound speed datasets.

Region (Sound Speed, Density) Attenuation Coefficient
Red (1460 m/s, 900 kg/m3) or (1570 m/s, 1200 kg/m3) 3.5 dB/cm/MHz
Background (1515 m/s, 1000 kg/m3) 0 dB/cm/MHz

All reconstructed images along with their corresponding cross-sectional plots are
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presented. The bias for each reconstructed slice was also computed by subtracting

the mean reconstructed object attenuation coefficient in that slice from the actual

object attenuation coefficient. The corresponding root-mean-square deviation from

the mean (RMSD) of the pixel attenuation coefficient was also computed after the

bias was subtracted from all pixels. The decrease of absolute bias and RMSD, as a

result of applying attenuation correction, was calculated for all object regions and is

presented in Section 5.3.

In addition, radial plots of the actual and the reconstructed attenuation coefficient

images were generated and compared. A radial plot shows the average attenuation

coefficient over a given radial profile averaged across all radial angles. The radial

profile of a given radius r is defined by the mean reconstructed image values along

the perimeter of a circle with said radius r, and whose center coincides with the center

of the spherical object. The attenuation coefficients along the given perimeter were

uniformly sampled with 0.2 grid spacing steps (41.7 µm), and bilinear interpolation

was performed where necessary.

5.2.5.2 Single slice reconstructions of two spheres

Figure 5.2(c) shows two 4.2-mm radius spherical objects imaged by linear arrays.

The red and orange spherical objects are placed at (x, y, z) = (-3.2, 21.8. -2.4) mm

and (3.2, 28.2. 2.4) mm, respectively. Note that both spherical objects are placed at

1/2 radius (2.4 mm) away from the axial-lateral image plane but on the opposite sides

of the image plane. Both spheres have different attenuation coefficients yet the same

sound speed. Their actual acoustic properties as well as those of background are given

in Table 5.5. For the same reason as mentioned earlier, there are two sets of actual

sound speed and density assigned to the object. All reconstructed images along with

their corresponding projection plots are presented. The decrease of absolute bias and

RMSD, as a result of the attenuation correction, was calculated for all object regions
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and is presented in Section 5.3.

Table 5.5: Acoustic properties (sound speed, density, and attenuation) of all regions
shown in Figure 5.2(c). Two sound speed and density sets were used for
generating positive- and negative-contrast sound speed datasets.

Region (Sound Speed, Density) Attenuation Coefficient
Red (1460 m/s, 900 kg/m3) or (1570 m/s, 1200 kg/m3) 3.5 dB/cm/MHz
Orange (1460 m/s, 900 kg/m3) or (1570 m/s, 1200 kg/m3) 1.5 dB/cm/MHz
Background (1515 m/s, 1000 kg/m3) 0 dB/cm/MHz

5.2.5.3 Single slice reconstructions in the numerical breast-mimicking

phantom

Figure 5.2(d) shows the 3D numerical breast-mimicking phantom imaged by linear

arrays. The breast phantom consists of a 2.1-mm think skin enclosing the 4.2-mm

radius spherical cancer and a 6.3-mm radius spherical cyst. Masses are located away

from the image plane by half their radius, such that the axial-lateral image plane lies

between the two masses and is 2.4 mm away from the cancer (z = 2.4 mm) and 3.15

mm away from the cyst (z = −3.15 mm). The curved skin layer is defined by all

voxels in S1 ∩ S2, where sets S1 and S2 are defined as:

S1 =

{
(x, y, z) ∈ R3 :

(
x− 25

22.9

)2

+

(
y − 28.3

64.6

)2

+

(
z − 53.3

85.4

)2

≤ 1

}
S2 =

{
(x, y, z) ∈ R3 :

(
x− 25

20.8

)2

+

(
y − 28.3

62.5

)2

+

(
z − 53.3

83.3

)2

≤ 1

}
.

(5.18)

All actual acoustic properties are given in Table 5.6. All reconstructed images

along with their corresponding cross-section plots are presented. The decreas of

absolute bias and RMSD, as a result of the attenuation correction, was calculated

for all object regions and is presented in Section 5.3.
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Table 5.6: Acoustic properties (sound speed, density, and attenuation) of all tissues
in the numerical breast-mimicking phantom shown in Figure 5.2(d). Note
that the exponent term of 1.5 will be used as the power law exponent in
Equation 5.2.

Region (Sound Speed, Density) Attenuation Coefficient
Red (cancer) (1570 m/s, 1200 kg/m3) 2.8 dB/cm/MHz1.5

Orange (cyst) (1540 m/s, 1200 kg/m3) 0.5 dB/cm/MHz1.5

Blue (skin) (1600 m/s, 1200 kg/m3) 2.5 dB/cm/MHz1.5

Background (1515 m/s, 1200 kg/m3) 0.75 dB/cm/MHz1.5

5.2.5.4 Multi slice reconstructions of a single sphere: performance eval-

uation

The single sphere shown in Figure 5.2(b) was imaged again by both linear and

ring arrays, but the transducer(s) were moved elevationally with four increments of

one (0.833 mm) grid spacing to acquire multiple 2D image slices comprising the 3D

attenuation coefficient image of the top half of the sphere. In addition, the effects of

imperfect a priori sound speed distribution used for the attenuation correction on the

reconstruction accuracy were evaluated and compared to those obtained via attenu-

ation correction using the actual (accurate) a priori sound speed distribution. The

sound speed bias b was computed for each slice by subtracting the mean reconstructed

object sound speed in that slice from the actual object sound speed. Then this bias

was used to create two imperfect a priori sound speeds, specifically a 1x biased (b)

as well as 2x biased (2b) sound speed. Generally, object sound speed reconstruction

biases towards the background sound speed, i.e. it underestimates the contrast. See

Table 5.1 for more details about sound speed image reconstruction.
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5.3 Results

5.3.1 Single Slice Reconstructions of a Single Sphere

Figures 5.3(a)-(d) show the beam patterns transmitted from a single finite-aperture

line source element and propagating laterally but not elevationally through the cen-

ter of the spherical object. The beam patterns were investigated for positive and

negative object sound speed contrast and refraction effects are visible. Figure 5.3(a)

(positive contrast) shows signals deflecting away from the spheres surface, and the

opposite occurs in Figure 5.3(b) (negative contrast). These effects result in signal

distortion at the receive array elements. Effects of out-of-plane refraction, are shown

in Figures 5.3(c) and (d).

 

Axial –  
Elevational  

Axial –  
Lateral  

(a): Positive, Y – X View 

(c): Positive, Y – Z View 

(b): Negative, Y – X View 

(d): Negative, Y – Z View 

Figure 5.3: Beam patterns for positive and negative contrast of sphere in the axial-
lateral (a), (b) and axial-elevational (c), (d) planes, illuminating the
sphere shown in Figure 5.2(b). The sound source is a single element
at approximately (x, z) = (0.4, 0) cm. Images are shown on a [-40, 0] dB
scale.

Figure 5.4 shows that for the case of imaging a sphere of positive sound speed

contrast, its penumbra displays higher attenuation in the uncorrected attenuation

map (Figure 5.4(a)) than in the corrected attenuation map (Figure 5.4(c)). For

negative sound speed contrast, the beam tends to deflect towards the center of the
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sphere as shown in Figure 5.3(b). This contributes to the signal loss around the object

border, Figure 5.4(d). The calculated boundary attenuation map (Figures 5.4(b) and

(e)) is subtracted from the full effects map (Figures 5.4(a) and (d)) to produce the

corrected attenuation maps (Figures 5.4(c) and (f)).
 

(a): Positive, 
Uncorrected 

(b): Positive, 
Boundary 

(c): Positive, 
Corrected 

(d): Negative, 
Uncorrected 

(e): Negative, 
Boundary 

(f): Negative, 
Corrected 

Figure 5.4: Attenuation maps of all transmit-receive element pairs obtained from sim-
ulated imaging a single sphere arranged as shown in Figure 5.2(b), with
different sound speed contrasts. Attenuation of the ith transmit and jth

receive pair can be obtained from the value at the jth row and ith column
of the map. (a), (d) are attenuation maps affected by all acoustic effects.
(b), (e) Attenuation maps affected by refraction and scattering around
the object boundary. (c), (f) Attenuation maps with boundary effects
removed. All images are windowed to [-2, 13] dB.

Corresponding 2D reconstruction slices for opposed linear arrays are shown in

Figure 5.5. The effects of sound speed contrast seen around the object border are

partially corrected in Figures 5.5(b) and (c) in the positive and negative contrast

cases, respectively. For the sake of compactness, note that the corresponding 2D

reconstruction slices for the ring array are presented here only as thumbnails, but

their improved bias and RMSD are shown in Table 5.7 with values normalized by the

center frequency, given in Table 5.2.

The horizontal cross-sections and radial plots of all reconstruction scenarios, shown

in the top and bottom rows of Figures 5.6(a)-(d) and 5.6 (e)-(h), illustrate the spatial

character of the attenuation correction. As can be seen from Figure 5.6, horizontal

cross-sections and radial plots show less object edge artifacts and overall bias if at-

tenuation correction is applied to obtain the bulk tissue attenuation coefficient. In
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(b): Positive (c): Negative (a): Actual 

Uncorrected Corrected Uncorrected Corrected 

Figure 5.5: Attenuation coefficient reconstruction in 2D, of a single sphere (Fig-
ure 5.2(b)), displayed on a [0, 8] dB/MHz/cm dynamic range. Full-size
images (top row) were reconstructed with opposed linear arrays and their
corresponding thumbnails (bottom row) were reconstructed with ring ar-
ray. The actual attenuation coefficient distribution is shown in (a) and
Table 5.4. Reconstructed images in (b) and (c) correspond to the sphere
with sound speed of 1570 and 1460 m/s, respectively. The yellow dashed
line in (a) represents the location of cross-sections shown in Figure 5.5.

addition, for radial plots, note the more frequent overshoots for data obtained using

uncorrected attenuation maps.

5.3.2 Single Slice Reconstructions of Two Spheres

Figure 5.7 shows the reconstructed attenuation coefficients of two spherical ob-

jects, when imaged using two linear arrays (Figure 5.2(c)). The corresponding ring

array results are shown as thumbnails. This challenging imaging situation with multi-

ple objects, broken symmetry, and uncorrected attenuation maps leads to even more

noticeable errors. The observed distortions can be explained with reasoning similar to

the previous cases, i.e. refracted waves due to positive and negative sound speed con-

trast. Using attenuation map correction, the reconstruction results show significant

accuracy improvement and artifact reduction in all cases of sound speed contrast and

array geometries. Such improvements can also be seen in diagonal projections shown
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(a): Linear, Positive (b): Linear, Negative 

(e): Linear, Positive (f): Linear, Negative 

(c): Ring, Positive (d): Ring, Negative 

(g): Ring, Positive (h): Ring, Negative 

Figure 5.6: Horizontal cross-sections of 2D reconstructed attenuation coefficient im-
ages of spherical object shown in Figure 5.5. (e)-(h) Radial plots of 2D
reconstructed attenuation coefficient images of spherical object with re-
spect to normalized radius (the ratio of perimeter radius to the spherical
radius). Horizontal cross-sections and radial plots are obtained from re-
constructions with various scenarios indicated in the figure legends and
the group titles, and are compared to those of the actual 2D attenuation
coefficient image.
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in Figure 5.8. Calculated bias and RMSD values are given in Table 5.8. Note that the

negative sound speed contrast, low attenuation coefficient (orange) sphere, using the

uncorrected attenuation map, results in zero-valued pixels almost everywhere in the

spherical region. This occurs because those pixels are forced by the non-negativity

constraint to have zero values (see Line 10 of Table 5.1), thus leading to larger ho-

mogeneity and therefore lower RMSDs than those obtained from the corresponding

reconstructions using the corrected attenuation map.

 

(b): Positive (c): Negative (a): Actual 

Uncorrected Corrected Uncorrected Corrected 

Figure 5.7: Attenuation coefficient reconstruction in 2D, of two spheres (Fig-
ure 5.2(c)), displayed on a [0, 8] dB/MHz/cm dynamic range. Full-size
images (top row) were reconstructed with opposed linear arrays. Their
corresponding thumbnails (bottom row) were reconstructed using the ring
array geometry. Actual attenuation coefficients are shown in (a) and Ta-
ble 5.5. Reconstructed images in (b) and (c) correspond to the spheres
with sound speeds of 1570 and 1460 m/s, respectively. The diagonal
dashed line in (a) represents the location of projections shown in Fig-
ure 5.8.

5.3.3 Single Slice Reconstructions in a Numerical Breast-Mimicking Phan-

tom

Figure 5.9 shows a reconstructed 2D center slice, i.e. z = 0, of the attenua-

tion coefficients in the numerical breast-mimicking phantom using opposed linear
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(a): Linear, Positive (b): Linear, Negative  (c): Ring, Positive (d): Ring, Negative 

Figure 5.8: (a)-(d) Diagonal projections of 2D reconstructed attenuation coefficient
images of spherical objects shown in Figure 5.7. They were obtained from
reconstructions with various scenarios indicated in the figure legends and
the group titles, and are compared to the actual 2D attenuation coefficient
distribution.

arrays, under positive and negative sound speed contrast and attenuation map in-

put (corrected and uncorrected). The values of calculated bias and RMSD are given

in Table 5.9. Not surprising, using corrected attenuation maps, one improves the

reconstruction accuracy and reduces artifacts, for the same reasons presented in Sec-

tions 5.3.1 and 5.3.2 and [25].
 

Uncorrected Corrected 

(b): Reconstructed (a): Actual 

Figure 5.9: Attenuation coefficient reconstruction in 2D using a numerical breast-
mimicking phantom (Figure 5.2(d)), imaged with opposed linear arrays.
Images are shown for a dynamic range of [0, 5] dB/cm/MHz1.5. The
actual attenuation coefficient distribution is shown in (a) and Table 5.6.
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Table 5.9: Numbers outside parentheses: Calculated bias and RMSD
(dB/cm/MHz1.5) within three tissue types, obtained from 2D recon-
structions with corrected attenuation maps for positive and negative
sound speed contrast objects relative to background. Numbers insides
parentheses: Corresponding percent decreases of the absolute bias and
RMSD with respect to uncorrected reconstructions. Note: Refer to
Figure 5.2(d) for color coding.

Region Bias RMSD
Red (Cancer) -0.58 (51) 0.19 (47)
Orange (Cyst) 0.13 (76) 0.02 (80)
Orange (Cyst) -0.28 (81) 0.02 (80)

5.3.4 Multi Slice Reconstructions of a Single Sphere: Performance Eval-

uation

Figure 5.10 shows the calculated attenuation coefficients of a single sphere, ob-

tained from linear and ring array 2D reconstructions at 5 elevational slice positions.

Object sound speed was given a priori. Sound speed results and biases are shown in

Table 5.10.

 

(a): Linear, Positive (b): Linear, Negative (c): Ring. Positive (d): Ring, Negative 

Figure 5.10: Calculated attenuation coefficients of a single sphere as a function of
normalized slice position (i.e. absolute elevational coordinate divided by
the sphere radius) obtained under 4 combined conditions of transducer
type and sound speed contrast. The types of input attenuation maps
and a priori sound speed are indicated in the legends. For comparison,
the actual attenuation coefficient is shown as a black dashed line.
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Table 5.10: Calculated sound speed (m/s) of a single sphere, obtained from linear
and ring array 2D reconstructions at 5 elevational slices. The absolute
slice position is in units of the sphere radius. Positive and negative refer
to the sound speed contrast with respect to the background sound speed.
Sound speed bias (m/s) is given in parentheses.

Normalized Slice Position
Linear Transducer Ring Transducer

Positive Negative Positive Negative
0.1 1541 (-29) 1467 (7) 1568 (-2) 1468 (8)
0.3 1539 (-31) 1475 (15) 1567 (-3) 1475 (15)
0.5 1534 (-36) 1479 (19) 1563 (-7) 1480 (20)
0.7 1522 (-48) 1482 (22) 1546 (-24) 1472 (12)
0.9 1517 (-53) 1485 (25) 1533 (-37) 1480 (20)

The corrected attenuation coefficient, as obtained by either perfect (no bias, solid

line, ‘o’ of Figure 5.10) or by realistic (1x) bias (solid line, ‘*’) a priori sound speed

distribution, is more accurate than that obtained from the uncorrected attenuation

data (dashed line, ‘o’). However, this is not generally the case.

It is true for both contrasts and all slice reconstruction for normalized elevational

displacements less than 0.7 (Figures 5.10(a) and (c)). For objects of negative contrast,

increasing a priori sound speed bias is as detrimental to the calculated attenuation

coefficient profile as the loss of proper attenuation correction. However, the same

trend does not apply to positive-contrast reconstructions using linear arrays and an

attenuation map corrected by a priori sound speed with 2x bias (solid line, 1‘x’).

This occurs because adding large bias flips the objects sound speed contrast from

positive to negative, and thus leading to the wrong a priori assumption. Note that

bias is always towards the background speed. Therefore, 1x bias will still result in

the same contrast type, but 2x bias will flip for example from positive to negative

contrast.

Note that for normalized slice positions greater than 0.5, there might be circum-

stances where applying attenuation correction yields a lower than actual attenuation

coefficient. This could be attributed to following two reasons.

First, when the object is imaged at an oblique angle, it is important to note
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that the transmitted beam will have an elevational beam profile that interacts asym-

metrically with the object boundary. Appropriate modelling requires the use of a

finite-aperture line source, which we did not do here, as we used point sources. This

effect becomes more dominant when the incidence angle increases, even when using

corrected attenuation maps.

Second, when the sphere is imaged farther from its center, the sphere’s cross-

section becomes too small for the bent-ray reconstruction algorithm to handle. This

limitation is caused by the width of the first Fresnel zone in the bent-ray scheme

that dictates the image resolution limit [73]. Specifically, features smaller than the

width of the first Fresnel zone cannot be accurately reconstructed by bent-ray algo-

rithms. This limitation is further demonstrated in Table 5.10 where the sound speed

bias is observed to be more fluctuating (ring array and negative-contrast sphere) or

increasing (for all other cases) with increasing slice position off center.

From the analysis above, it is suggested that the attenuation correction perfor-

mance is optimum when the elevational incidence angle between beam and the normal

to the object surface is 30 degrees or less, which corresponds here to a normalized

slice position of 0.5 and less. Moreover, using realistic values as a priori object sound

speeds (1x bias and less) seems to be sufficient for the attenuation correction approach

as presented here.

5.4 Conclusions

We proposed a reconstruction algorithm for imaging bulk tissue attenuation co-

efficients that utilizes bent-ray inversion for fast 2D image reconstructions and 3D

full-wave simulation for signal energy correction. The results show improved accu-

racy thanks to an attenuation correction that only requires 2 sets of 3D simulated

full-wave pressure datasets (and only 1 set, if a pressure wave propagation dataset in

the assumed homogeneous background medium is simulated beforehand). Although
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the reconstruction results with attenuation correction might not be as accurate as

those from 3D waveform inversion algorithms, they should be more accurate than

those from 2D waveform inversion algorithms that lack the ability to account for out-

of-plane and other missed detector acoustic effects. The reconstruction time should

be much less than 3D and even 2D waveform inversion algorithms as well, which

positions our method as a promising tool for clinical use.

If the mass density distribution of the imaged region is known, or can be estimated

a priori, it can be incorporated into the attenuation correction to better model the

acoustic impedance mismatch between adjacent interfaces. Alternatively, one can

estimate the density by assuming that it is approximately proportional to the sound

speed. Nonetheless, note that both accurate density and sound speed might not be

required, as density inhomogeneity affects the wave propagation pattern much less

than sound speed changes. It was demonstrated in the Results and Discussion section

that the attenuation correction should still be able to provide robust and acceptable

results if (a) the error of a priori sound speed is modestly biased (1x or less) due to

inaccurate sound speed reconstructions and (b) the beam incidence angle is finite but

smaller than 30 degrees.

The degree to which the true attenuation coefficient can be recovered depends on

the quality of sound speed and impedance imaging.

Future directions include 3D bent-ray image reconstructions to account for out-

of-plane wave propagation effects and physical experiments using clinical arrays and

a physical breast-mimicking phantom. In addition, our simulation studies currently

do not account for the transducer responses (frequency response, spatial response,

directivity, etc.) that exist in clinical arrays [74]. In practice, those responses could

alter the received signal and negatively affect the reconstructions, thus it is worthwhile

to model those responses in future experiments as well.

123



CHAPTER VI

Acceleration and Data Reduction Methods for

Full-Wave Ultrasound Tomography

6.1 Introduction

The ability to image dense breasts non-radiatively and high portability are the

striking advantages that has led ultrasound to become the complementary imaging

modality for the clinical standard x-ray mammography. Sound speed is one of the

useful acoustic properties that not only correlates well with tissue mass density [62],

but can also be used to characterize different breast tissue types, therefore allowing

for detection of potential malignancies [30].

Recently, waveform inversion approaches have received much attention in the field

of sound speed imaging of breast tissues. This is due to the fact that waveform inver-

sion approaches [20]–[22], [36], [126] can take into account complex acoustic phenom-

ena that occur in the tissues, such as diffraction and scattering effects, as opposed

to the bent-ray based approaches [17], [63], [89] that can only account for acoustic

refraction. Since waveform inversion approaches are usually much more computa-

tionally demanding as opposed to bent-ray based approaches, several research groups

have been proposing alternative reconstruction methods, such as source encoding [22],

[127]–[129] and dataset batching approaches [122], [130], to drastically decrease the
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computational demand (usually between 1 and 2 orders of magnitude).

Apart from the attempts to accelerate waveform inversion algorithms, other re-

search groups have explored possibilities to reduce the input data size required for

image reconstruction, especially for B-mode imaging with 2D transducer arrays. [131],

[132] However, to our surprise, data reduction in breast ultrasound sound speed to-

mography is still left unexplored, and there are only a few attempts in seismology

for this [133], [134] based on the compressed sensing technique. To our belief, de-

creasing the acquired dataset size is crucial as it could potentially help in reducing

the required storage, simplifying the designs of acquisition components, and most

importantly, streamlining the acquisition and image reconstruction processes towards

real-time imaging in the future.

Here, we develop a waveform inversion approach that utilizes both source encoding

and compressed sensing techniques, thereby enabling significant reduction in both

reconstruction time and dataset size. Compressed sensing [135], though recently

discovered, has been proven to be highly successful in various fields, including image

reconstructions such as in magnetic resonance imaging (MRI) [136] and seismology

with sparse (reduced) datasets [133], [134]. We have applied compressed sensing in

this work, through a sparse regularization technique, that could help to mitigate

image artifacts arising from the limited dataset size. In addition, the source encoding

algorithm was modified according to [130] to allow for multiple encoding vectors to

be used at once. This modification results in a slight computational increase but

has shown to reduce the cross-talk artifacts due to source encoding and improve the

overall image quality, especially when the dataset size is large enough, i.e. contains

sufficient information.

This work is organized as follows: Section 6.2 reviews the related background and

provides details on how the simulation studies were implemented. Simulation findings

and their corresponding discussion are given in Section 7.3. Section 7.4 provides a
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summary of this paper and introduces potential future directions.

6.2 Materials and Methods

6.2.1 Dual-Sided Breast Ultrasound Scanner

Figure 6.1 shows a schematic representation of the simulated breast ultrasound

scanner. It consists of two transducer arrays placed on the opposite side of each

other, where each array has N transmit-receive elements. Each scanning acquisition

is accomplished by transmitting the signal from one element and then receiving the

signal by all elements from both the same and the opposite sides. Note that the

transducers here cannot be rotated freely, thus the signal acquisition direction is

limited.
 

4 cm 

  

US Trans 2 

6 cm 

Objects 

US Trans 1 

Transmitter 

Figure 6.1: Schematic representation of the dual-sided ultrasound scanner simulated
in this work. Unlike other tomographic systems, this system is a limited
angle tomography system as transmit and receive apertures are available
for less than 2π angle.

Given that all transmit elements are used for signal acquisition, we can see that the

total number of pressure traces is (2N)2, i.e. scales up quadratically with increasing
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N . This can be problematic especially when the number of transmit elements N is

large, since both more storage and computational power are required. Please refer to

Section 6.3.1 for analysis of storage and computational requirements.

6.2.2 Image Reconstruction

6.2.2.1 General least-square optimization problem

Given N as the number of transducer elements, sound speed image reconstructions

can, in the simplest form, be regarded as minimizing the L2-norm of the difference

between the recorded pressure traces and simulated pressure traces, denoted as E,

with respect to the sound speed [70], [104], [105], i.e.:

E(m) =
2N∑
i=1

‖g(m; si)− di‖22, (6.1)

where di and g(m; si) denote the recorded and simulated vectors of pressure traces

with respect to the vectorized sound speed m and source si, written as

[
pi1 . . . pi(2N)

]T
.

pij denotes the time-domain pressure trace transmitted by the ith element and received

by the jth element. The operator g represents the acoustic wave propagation model-

ing, with a source pulse originated at the location of the transmit element, and initial

conditions defined as p(r, t) = 0 and ∂/∂tp(r, t) = 0, for p(r, t) being the modeled

pressure field. The source pulse was designated to be the same as the actual source

pulse excited from an actual physical transducer element.

Typically, minimizing Equation 6.1 can be achieved by iteratively updating m

using a gradient-based optimization method, i.e. for iteration j, m is updated by the

following scheme:

mj+1 = mj − α∇E(mj) (6.2a)
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∇E(mj) =
2N∑
i=1

G∗
(
g(mj; si)− di

)
, (6.2b)

where ∇E(mj) denotes the gradient evaluated at mj. αj > 0 denotes the step

length that can be determined by either trial and error or line-search techniques. G

represents the linearized operator of g, and G∗ is the corresponding adjoint operator

of G. It has been shown in several work that G∗ can be solved efficiency by a

technique called adjoint-state method [104]. Specifically, suppose that ∆t and L are

the simulation time step and the number of simulation steps, G∗
(
g(mj; si)−di

)
, i.e.

∇E(mj), can be calculated for any location rd as:

G∗
(
g(mj; si)− di

)∣∣∣∣
rd

=
2

m3
j(rd)

2N∑
i=1

L−1∑
l=2

(
qi(rd, T − l∆t)(pi(rd, (l + 1)∆t)

−2pi(rd, l∆t) + pi(rd, (l − 1)∆t))
)
/∆t2,

(6.3)

where T = L∆t is the time duration of the simulation. pi(r, t) is the simulated

pressure field obtained from the acoustic wave propagation modeling operator g, at

location r, time t, and the ith transmit element. qi(r, t) is the adjoint pressure field

obtained by the same underlying acoustic wave propagation modeling for g, except

the source is replaced by the “time-reversed” version of
(
g(mj; si) − di

)
and initial

conditions qi(r, t) = 0 and ∂/∂tqi(r, t) = 0. Note that for the adjoint field computa-

tion, waves propagate out of all receive transducer elements instead of one transmit

transducer element, by the same underlying acoustic wave propagation modeling for

g, except the source is replaced by the
(
g(mj; si)− di

)
.

It is important to note that for each iteration, at least 2 wavefield simulations

are needed for each transmit element (or 3 if the line-search algorithm is used to

determine the step length α): one for the calculation of g(m) and another for the

adjoint wavefield simulation. As a result, the image reconstruction problem based
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on the general least-square optimization requires 2(2N) wavefield simulations per

iteration. It can be seen that this reconstruction approach is very time consuming

and may prevent its current use in the clinic.

6.2.2.2 Least-square optimization problem with source encoding

Instead of directly minimizing the objective function in Equation 6.1, it is possible

to minimize the expectation of the objective function [22], [127]–[129]. To illustrate

why this is possible, consider the following objective function [130]:

EW(m) =
1

K

K∑
k=1

‖
(
g(m; swk

)− dwk

)
‖22, (6.4)

where

dwk
=

2N∑
i=1

wikdi, g(m; swk
) = g(m;

2N∑
i=1

wiksi) =
2N∑
i=1

wikg(m; si) (6.5)

and W =

[
w1,w2, . . . ,wK

]
denotes the 2N × K matrix consisting of K column

vectors, whose elements are drawn from the distribution that has zero mean and unit

variance, i.e. E[wik] = 0 and Var[wik] = 1. swk
and dwk

are called encoded source and

encoded recorded pressure field, with respect to the encoding vector wk. Throughout

all studies performed in this work, the elements in the encoding vector were drawn

from the Rademacher distribution, where +1 and -1 are drawn with equally 50%

chance.

To simplify the expression in Equation 6.4, we combine all the simulated and

recorded pressure fields into 2 separate matrices as:
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P =



g11 g21 . . . g(2N)1

g12 g22 . . . g(2N)2

...
...

. . .
...

g1(2N) g2(2N) . . . g(2N)(2N)


, D =



d11 d21 . . . d(2N)1

d12 d22 . . . d(2N)2

...
...

. . .
...

d1(2N) d2(2N) . . . d(2N)(2N)


,

where gij and dij are the L × 1 vectors of simulated and recorded pressure traces,

transmitted by the ith element and received by the jth element. Applying matrices

P, D, W to Equation 6.5, we can rewrite Equation 6.4 as:

EW(m) =
1

K

K∑
k=1

‖(Pwk −Dwk)‖22

=
1

K

K∑
k=1

‖(P−D)wk‖22

=
1

K

K∑
k=1

[(P−D)wk]T [(P−D)wk]

=
1

K

K∑
k=1

wT
k (P−D)T (P−D)wk.

(6.6)

Now, if we compute the expectation of Ew(m) with respect to W, we can see

that:

E[EW(m)] = E
[

1

K

K∑
k=1

wT
k (P−D)T (P−D)wk

]

=
1

K

K∑
k=1

E[wT
k (P−D)T (P−D)wk].

(6.7)

If we define hj =

[
g1j − d1j g2j − d2j . . . g(2N)j − d(2N)j

]
and use it to replace

P−D, then, from Equation 6.6, we have:
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E[EW(m)] =
1

K

K∑
k=1

E
[
wT

k

( 2N∑
j=1

hTj hj

)
wk

]

=
1

K

K∑
k=1

E
[ 2N∑
j=1

(wT
khTj hjwk)

]
.

(6.8)

Using the fact that the elements in wk are all independent, we have E[wikwjk] = 0

for i 6= j. Also, E[w2
ik] = Var[wik]− E[wik]E[wik] = 1− 0 = 1. Finally, we have:

E[EW(m)] =
1

K

K∑
k=1

E
[ 2N∑
j=1

2N∑
i=1

wik‖gij − dij‖22wik
]

=
1

K

K∑
k=1

2N∑
j=1

2N∑
i=1

(
‖gij − dij‖22E[w2

ik]
)

=
1

K

K∑
k=1

2N∑
j=1

2N∑
i=1

(
‖gij − dij‖22

)
=

2N∑
j=1

2N∑
i=1

(
‖gij − dij‖22

)
=

2N∑
i=1

(
‖gi1 − di1‖22 + · · ·+ ‖gi(2N) − di(2N)‖22

)
=

2N∑
i=1

‖g(m; si)− di‖22

= E(m),

(6.9)

which is equivalent to Equation 6.1, meaning that EW(m) can be used as the esti-

mator of E(m). Therefore, one can use K encoding vectors w1,w2, . . . ,wk to obtain

K differently encoded sources and recorded pressure fields based on Equation 6.5.

Because minimizing EW(m) is done on K encoded sources, it requires 2K wavefield

simulations per iteration as opposed to 2(2N) when minimizing E(m). In addition,

since K can be any positive integer from 1 to 2N , it is possible to choose a small
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K to reduce the computational demand. However, using greater K will lead to the

greater estimate of E(m).

There has also been another technique similar to source encoding, called sketching,

that appears in recent literature and allows the objective function to be approximated

by the dimensionally-reduced data space. This dimensionality reduction in turn helps

in reducing the computational burden in calculating the update direction. Interested

readers should refer to [137] and [138] for example of uses of the sketching approach.

6.2.2.3 Compressed sensing

We described the source encoding technique in Section 6.2.2.2 to drastically reduce

the computational demand. However, source encoding has 2 major drawbacks. First,

since the encoded source and recorded pressure field are results of linear combinations

of individual original sources and recorded pressure fields with different weights, the

encoded source is prone to interference among signals transmitted from multiple orig-

inal sources. This later results in strong image artifacts. Second, the source encoding

technique does not reduce the size of the acquired signal dataset. The dataset size in

both general and source encoding techniques is (2N)2, which could require enormous

storage when the number of elements on each transducer array increases. It is possi-

ble to use only a subset of the acquired signal dataset to reconstruct the image, but

this might also result in the image artifacts due to the limited input dataset.

For this reason, the compressed sensing technique is applied in this work to reduce

image artifacts resulting from both speeding up the image reconstruction using source

encoding and by reducing the size of the dataset [133], [134], [139], [140]. The objective

function in Equation 6.4 that incorporates compressed sensing penalty terms is then

modified as [97], [135], [136]:
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EW(m) =
1

K

K∑
k=1

‖
(
g(m; swk

)− dwk

)
‖22 + α‖∇m‖1 + β‖Wm‖1, (6.10)

where ‖∇m‖1 is called the total-variation regularizer and W is the Haar wavelet reg-

ularizer. ‖∇m‖1 and ‖Wm‖1 should be sparse in general, but sensitive to the image

artifacts. Both penalty terms are likely to increase when image artifacts increase. As

such, this optimization problem will choose m such that it balances the contribution

between the data term (the term with the L2 norm) and the penalty terms. α and

β control the strength of penalization, and the greater those values are, the stronger

the enforcement on artifact suppression is. However, note that if those values are too

high, they will also remove desirable image features.

With compressed sensing techniques, one can use only a subset of elements for

signal transmission to acquire a smaller signal dataset and still achieve reconstruction

quality comparable to that obtained from a full dataset. Let M be the subset con-

sisting of indices of elements used for transmission. The encoded source and recorded

pressure field are now written as:

swk
=
∑
i∈M

wiksi, dwk
=
∑
i∈M

wikdi (6.11)

and the dataset size is reduced to |M|(2N).

To minimize the objective function in Equation 6.10 without directly computing

the gradients of the L1 regularizers, we first add the auxiliary variable u and another

convex L2 regularizer λ‖m − u‖22 to the objective function and then modify the

objective function as follow:

EW(m,u) =
1

K

K∑
k=1

‖
(
g(m; swk

)−dwk

)
‖22 +λ‖m−u‖22 +α‖∇u‖1 +β‖Wu‖1 (6.12)
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and decouple the objective function into two sub-problems [9], [95], [96]

EW,1(m) =
1

K

K∑
k=1

‖
(
g(m; swk

)− dwk

)
‖22 + λ‖m− u‖22 (6.13a)

EW,2(u) = λ‖m− u‖22 + α‖∇u‖1 + β‖Wu‖1 (6.13b)

Equation 6.13a minimizes EW,1(m) with respect to m and treats u as the con-

stant. A conjugate-gradient method was employed to minimize EW,1(m). Similarly,

Equation 6.13b minimizes EW,2(u) with respect to u and treats m as the constant.

These two sub-problems are solved alternatively until they converge. Note that, since

EW,2(u) is in the form of Φ(u) + α‖H1(u)‖1 + β‖H2(u)‖1, where Φ(u) is convex,

the Split-Bregman method can be employed to minimize EW,2(u) without directly

computing the gradient of α‖∇u‖1 + β‖Wu‖1 [97].

In theory, the regularization parameter λ should be large because m → u as

λ → ∞, making Equation 6.12 resemble Equation 6.10. However, after splitting the

objective function into 2 sub-problems, we found empirically that setting too large λ

will induce a large penalty on the L2 regularizer and thus oversmooth the image. In

fact, a small value of λ helps both decoupled sub-problems converge to the desired

solution more easily. In addition, since m in Equation 6.13a is reinitialized by u from

Equation 6.13b before minimization begins, and since the least square data term in

Equation 6.13a is highly non-convex, it is likely that the resultant m will still preserve

the features in u.

6.2.3 Simulation Studies

6.2.3.1 Numerical phantoms

Image reconstructions are investigated on two phantoms with different complex-

ities. The phantom size is 6 cm × 4 cm with a simulation grid spacing of 0.3125

mm. The first phantom shown in Figure 6.2(a) consisted of two cylinders with differ-
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ent sizes, where the larger cylinder acoustically shadowed the smaller cylinder. The

second phantom shown in Figure 6.7(a) consisted of the breast tissue-mimicking struc-

tures (Madsen, Madison, WI) whose acoustic properties are similar to those found in

the female breast. Acoustic properties of all regions in the first and second phantoms

are given in Table 6.1 and 6.2, respectively. In addition, the attenuation coefficient

of both phantoms is set to 0.75 dB/cm/MHz1.5.

Table 6.1: Acoustic properties for individual regions in cylindrical phantom shown in
Figure 6.1. Refer to the same figure for region number.

Region 1 2 3
Sound Speed (m/s) 1460 1570 1515
Mass Density (kg/m3) 900 1200 1000

Table 6.2: Acoustic properties for individual regions in breast tissue-mimicking phan-
tom shown in Figure 6.1. Refer to the same figure for region number.
Region 1 2 3 4 5 6
Sound speed (m/s) 1409 1461 1421 1537 1552 1452
Mass density (kg/m3) 1000 1000 1000 1200 1200 1000

6.2.3.2 Input data generation

Input pressure traces were generated as if they were acquired from the ultrasound

scanner described in Section 6.2.1. Two linear transducers with 4-cm wide apertures,

40 point-like elements on each, and 0.5 MHz center frequency, were modeled for the

ultrasound scanner to enable imaging in transmission and reflection modes. The

k-Wave toolbox [109] was utilized in this work to simulate the input pressure traces

based on the k-space pseudospectral method [100], [101]. Each pressure trace consists

of 1,878 pressure samples, reflecting a 17.1 MHz sampling rate. Numerical phantoms

with true acoustic distribution (sound speed, mass density, and attenuation) maps

were also used for generating the input pressure traces.
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6.2.3.3 Reconstruction settings

The input pressure traces generated according to Section 6.2.3.2 will be used as

the input for the image reconstruction algorithm. The reconstruction was initialized

by the sound speed image, obtained from a bent-ray inversion technique described in

[7], via the u term in Equation 6.13a.

The overall reconstruction algorithm was configured so that the vectorized sound

speed image m was updated 20 times in total, as it was observed that at 20th itera-

tions, the magnitude of the gradient in Equation 6.2b was within 5% of the magnitude

of the gradient at the first iteration. If compressed sensing was disabled, minimiz-

ing EW,1(m) was just executed for 20 iterations. Otherwise, minimizing EW,1(m)

and EW,2(u) were performed alternately for 4 times, where minimizing EW,1(m) was

executed for 5 iterations before subsequently minimizing EW,2(u).

The same k-Wave toolbox in Section 6.2.3.2 was utilized for acoustic wave prop-

agation modeling to compute the simulated pressure field and the adjoint pressure

field in each reconstruction iteration, as described by Equation 6.3. The medium mass

density and attenuation coefficient were set to 1000 kg/m3 and 0.75 dB/cm/MHz1.5,

respectively.

Parameters α and β were both set to 10-4. λ was set to 10-12. Note that changing

these parameters will affect the reconstruction results, and this might be worthwhile

to investigate in the future.

6.2.3.4 Case studies

1. Study 1: Performance comparison between original technique and source en-

coding technique with single randomization. Images of the cylinder phantom

were reconstructed with a full dataset (size 2N = 80) using the bent-ray in-

version technique outlined in [7], the original waveform inversion technique via

minimizing the objective function in Equation 6.1, and the waveform inversion
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with source encoding via minimizing the objective function in Equation 6.4. K

was set to 1 to represent single randomization of the encoding vector, and this

was equivalent to a source encoding technique presented in various preliminary

studies [22], [127]–[129].

2. Study 2: Comparison of images reconstructed by the source encoding technique

with different randomization numbers and dataset sizes. Images of the cylin-

der phantom were reconstructed using the source encoding technique with dif-

ferent combinations of K ∈ {1, 2, . . . , 8} and N ∈ {1, 2, 4, 5, 8, 10, 20, 40} (or

2, 4, 8, . . . , 80 active transmit elements). Both reconstructions, with and with-

out compressed sensing, were obtained. For each reconstruction case, the root-

mean-square-error (RMSE) was calculated for both cylindrical regions, and the

standard deviation (STD) was calculated for the background region. Then, two

types of plots were generated: 1) plots showing average RMSE and STD val-

ues across different number of randomizations for a given number of transmit

elements, and 2) plots showing average RMSE and STD values across different

number of transmit elements for a given number of randomizations.

A subset of the active transmit elements was chosen based on the bin-based ap-

proach described in [141]. Specifically, to activate M active transmit elements,

all 2N element indices were divided into M equal-sized bins, and one element

index was chosen for each bin as a representative of all transmit elements in

that bin. Note that reconstruction results also depend on the chosen set of

active transmit elements. As such, to obtain more precise RMSE and STD

values, the whole reconstruction process (with different randomization numbers

and dataset sizes, and compressed sensing enabled) were repeated for 4 more

times, and the averages of RMSE and STD values across 5 different realizations

were calculated and displayed on 3D surface plots as functions of number of

randomizations and transmit elements.
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3. Study 3: Image reconstructions of the breast tissue-mimicking phantom. Images

of the breast tissue phantom were reconstructed using the original waveform

inversion technique with a full dataset (size 2N = 80) and total-variation reg-

ularization, as well as the waveform inversion with the K = 1 source encoding

technique, using a partial dataset (size 2N = 8), and compressed sensing. Note

that the sound speed of fatty layers in region 1 was fixed to 1409 m/s, as ultra-

sound limited-angle tomography systems typically cannot resolve sound speed

distributions in layers that are parallel to the transducer apertures.

6.3 Results and Discussion

6.3.1 Analysis of Computational Complexity and Dataset Size

Table 6.3 summarizes the computational complexity and dataset size of each re-

construction approach, as a function of number of active transmit elements (M ≤ N)

and number of randomizations (K ≤ N). Note that for simplicity, the total number

of transducer elements for these analyses is denoted by N instead of 2N that was

used previously.

Table 6.3: Computational complexity and dataset size of each reconstruction ap-
proach, as a function of number of active transmit elements (M) and
number of randomizations (K). Note that here N is the total number
of physical transmit-receive elements, previously written as 2N .

Reconstruction approach WI SE SE + CS
Computational complexity O(N) O(K) O(K)
Dataset size O(N2) O(MN) O(MN)

The reason that the source encoding technique decreases the computation from

O(N) to O(K) is because the optimization is done on K pairs of encoded source

and encoded recorded pressure, rather than N pairs of original source and original

recorded pressure, and the computational demand scales linearly with the number of

pairs. It is straightforward to see that the dataset size also scales linearly with the
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number of active transmit elements. Compressed sensing can be done in negligible

time with the Split-Bregman method [97], and it does not require any additional

dataset either.

6.3.2 Study 1: Original and Source Encoding Techniques

Figure 6.2 shows the reconstruction results of the simple cylindrical phantom using

different reconstruction techniques. Although the bent-ray approach is much faster

than the original waveform inversion counterpart (≈ 160x), it fails to recover the

cylindrical structures from the signals acquired by the dual-sided ultrasound scanner

with limited acquisition direction as it lacks the ability to account for diffraction

and scattering effects. The waveform inversion technique with single randomization

source encoding (K = 1) achieves a 80x speedup compared to the original waveform

inversion. However, the image reconstructed by this technique clearly shows stronger

artifacts, as the encoded source and recorded pressure field are calculated as linear

combinations of weighted individual original sources and recorded pressure fields.

This process can therefore lead to the signal cross-talk.

In the next two studies, we will demonstrate that by breaking the K = 1 rule in

most of the existing source encoding techniques, and applying the compressed sensing

technique, we can obtain reconstructed images that are very close to the ground truth

(i.e., close to the original waveform inversion approach).

6.3.3 Study 2: Source Encoding Technique with Compressed Sensing

Figure 6.3 shows images reconstructed by employing source encoding technique

with different numbers of randomizations and active transmit elements. Reconstruc-

tion results without (panel (a)) and with (panel (b)) compressed sensing are compared

side-by-side. As can be seen, applying compressed sensing techniques by adding total-

variation and Harr wavelet regularizers to the original least-square objective function,
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 (a): Actual (b): BR, 20 min (c): WI, 52 hr (d): SE, 39 min 

2 

1 

3 

Figure 6.2: (a) Actual sound speed distribution of a phantom with two simple cylin-
ders. (b)-(d) Corresponding reconstructed images using bent-ray, original
waveform inversion, and waveform inversion with source encoding (with
K = 1) approaches, respectively. All images were reconstructed with a
full dataset size and without any regularizer embedded in the objective
function. The single-thread runtimes for bent-ray (BR), original wave-
form inversion (WI), and waveform inversion with source encoding (SE)
are approximately 20 minutes, 52 hours, and 39 minutes, respectively.

helps to reduce artifacts. Increasing the number of randomizations (K) from 1 to 2

further helps in artifact reduction too, even though the improvements of using higher

K on the reconstructed images are less clear once compressed sensing has already been

applied. However, using more than 2 randomizations for source encoding (K > 2)

does not seem to give any further improvement, suggesting that K = 2 is sufficient to

achieve a reconstruction quality comparable to that of the original waveform inversion

approach.

To explain why increasing the number of randomizations helps improve the recon-

struction quality, at the expense of computational increase, we have constructed two

types of maps shown in Figure 6.4. They measure the completeness of the dataset and

the energy leak due to cross-talk arising from the source encoding technique. This

representation is adopted from [130]. Maps in panel (a) are for the original wave-

form inversion using the dataset generated by K active transmit elements (requires

K acquisitions to acquire the dataset). These are constructed by assigning ones to

the diagonal elements, whose indices correspond to the indices of active transmit ele-
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(b): Source Encoding + Compressed Sensing (a): Source Encoding 

Figure 6.3: Reconstructed images of the phantom shown in Figure 6.2(a), using differ-
ent reconstruction techniques, randomization numbers, and active trans-
mit elements. Panels (a) and (b) show images reconstructed by source
encoding technique without and with compressed sensing, respectively.
Red dots in the images represent the chosen active elements. Note that
the listed number of elements encompasses both apertures.
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(b): Source Encoding with 80 Active Transmit Elements and 𝐾 Randomizations 

(a): Original Reconstruction with 𝐾 Active Transmit Elements 

𝑲 = 80 𝑲 = 40 𝑲 = 20 𝑲 = 10 

𝑲 = 80 𝑲 = 40 𝑲 = 20 𝑲 = 10 

Figure 6.4: (a) Map of WWT , where W is a 2N×K matrix whose kth column vector
dictates an index of the transmit element at the kth signal acquisition.
The row vector has an element value of 1 at the transmit element index
and 0 elsewhere. (b) Map of 1

K
WWT , where W is a 2N × K matrix

whose kth column vector corresponds to the wk encoding vector for kth

randomization. Both (a) and (b) require the same computation. Note
that in theory, E[WWT ] = Cov[WWT ] + E[W]E[WT ] = I + 0 = I, so
the closer WWT to the identity matrix, the more complete the image
reconstruction process and the less interference.

142



ments, on a zero-valued matrix. Maps in panel (b) are for the waveform inversion with

source encoding and K randomizations on a full-size dataset. These are calculated

as WWT , where W consists of K columns of encoding vectors. The resulting map

that is close to the identity matrix is likely to yield a good quality reconstruction.

Note that both reconstruction methods require the same amount of computation, but

their behaviors toward the final results are different. As can be seen from the maps,

using only a subset of active transmit elements and the original waveform inversion

approach does not cause the energy to leak, but causes some diagonal elements to be-

come zero. On the other hand, the source encoding approach with a full-size dataset

is more prone to diagonal elements being zero, but suffers from the energy leak out-

side the diagonal as the randomization number decreases. This suggests that it could

be worthwhile to spend slightly more computation, i.e. by increasing the number of

randomizations, to eliminate more cross-talk, especially when the dataset size is large.

Such would achieve comparable results to the original waveform inversion approach

while maintaining superior performance.

Referring back to Figure 6.3, it is also interesting to see that reducing the number

of active transmit elements by up to a factor of 10 (from 80 elements down to 8)

affects the reconstruction results only slightly. This suggests that there is a lot of

redundant information contained in the full-size dataset. This phenomenon has also

been reported in [142]. When only 8 elements are activated, the artifacts near the

transducer aperture start to appear in the images reconstructed without compressed

sensing. However, if compressed sensing is applied, those artifacts are barely visible

and the final results look remarkably similar to those reconstructed with the full-size

dataset. Further reducing the number of active transmit elements from 8 to 4 will

cause distortions in the cylindrical structures that cannot be corrected by applying

more regularization. This is the case since the regularizers used here do not constraint

the geometrical structures of the imaged region. Preliminary studies in [7], [9], [64]
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utilize the covariance-based regularization technique that can account for geometrical

information, but it requires segmentation on images from other modalities and thus

is not considered here.

Figure 6.5 shows the average values of RMSE and STD, calculated across different

number of (a) randomizations and (b) active transmit elements (smaller values indi-

cate better reconstruction quality). It appears that the averaged root-mean-square

error is more sensitive to the number of active transmit elements than the STD. A

similar trend can be seen in for the STD, though less pronounced. A more detailed

RMSE of the object regions and STD of the background region, as a function of num-

ber of randomizations and number of active transmit elements, is shown in Figure 6.6.

Note that, as mentioned earlier in Section 6.2.3.4, the RMSE and STD values shown

in this figure are averages of 5 different RMSEs and STDs corresponding to 5 different

sets of active transmit elements.

It is interesting to mention that there is a trade-off between the RMSE and the

STD when it comes to choosing the optimal number of active transmit elements.

This is also observed in Figure 6.6, where the optimal RMSEs are achieved when the

number of transmit elements is at least 8, but the optimal STD is achieved when the

least number of transmit elements is used. Even though using less transmit elements

can lower down the STD, it also lowers down the root-mean-square errors, meaning

that the calculated sound speed is less accurate. This happens because of the cross-

talk artifact, caused by source encoding, is more likely to occur when the number of

transmit elements increases, and it subsequently overwhelms the artifacts due to the

limited dataset size that increases ill-posedness of the reconstruction problem.

Furthermore, note that with compressed sensing applied, the RMSE does not

seem to be more accurate, but the STD noticeably is. This is expected because ap-

plying compressed sensing should help in reducing the artifact level, but this does not

necessarily mean that the inherent bias in the sound speed image is also eliminated.
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 (a): Average Across Different Number of Randomizations 

(b): Average Across Different Number of Transmit Elements 

Figure 6.5: Average of RMSE and STD across (a) different number of randomizations
K and (b) different number of transmit elements. RMSE and STD are
calculated for cylindrical and background regions, respectively, for both
reconstructions with and without compressed sensing. Smaller values
indicate better performance. Note: SE = waveform inversion with source
encoding and CS = compressed sensing (total-variation + Haar wavelet
regularizers).
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 (b): Object 2 (a): Object 1 

(c): Background 

Figure 6.6: RMSE and STD as a function of number of randomizations K and number
of transmit elements, for (a) object 1 and (b) object 2. Compressed
sensing was applied to all reconstructions. The RMSE and STD shown
here are averages of 5 different RMSEs and STDs corresponding to 5
different sets of active transmit elements. Reconstruction cases that yield
the lowest RMSE or STD are marked in red.
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According to Figures 6.5 and 6.6, although increasing the number of randomiza-

tions K might not help much in improving root-mean-square error, it should help in

reducing image artifacts. This is especially obvious when increasing K from 1 to 2,

as the STD at K = 2 in the top-right panel of Figure 6.5 appears to be less than the

STD at K = 1 for the non-compressed sensing case, even though this becomes less

obvious if compressed sensing is applied. Still, the artifact reduction can be observed

directly in the reconstructed image, and such findings are also in agreement with

Figure 6.3.

6.3.4 Study 3: Reconstructions of the Breast Tissue-Mimicking Phantom

Figure 6.7 shows reconstruction results of the breast tissue-mimicking phantom

using different waveform inversion approaches. The original waveform inversion ap-

proach utilizes only total-variation regularization, as including an additional Haar

wavelet regularizer otherwise does not result in any observable change. As can be

seen, the reconstructed image with K = 2 source encoding, 8 transmit elements, and

compressed sensing, appears remarkably similar to the image reconstructed using the

original approach. This, together with other previous studies, suggests that it is pos-

sible to decrease both dataset size and the amount of computation, while maintaining

a similar reconstruction quality compared to the original approach.

6.4 Conclusions

The original waveform inversion approach, which requires a huge amount of com-

putation and memory resources, has been drastically optimized in this work via the

use of source encoding and compressed sensing techniques. Source encoding allows

for the image reconstruction to perform on one single encoded source as well as on

one recorded pressure field instead of multiple original sources and multiple recorded

pressure fields. The required computational amount is thus as little as that for a

147



 (a): Actual (b): WI + TV (c): SE + CS 
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Figure 6.7: (a) Actual sound speed distribution within the breast-tissue mimicking
phantom. (b) Corresponding reconstructed image using a waveform inver-
sion approach using total-variation regularization and a full-size dataset.
(c) Corresponding reconstructed image using a waveform inversion ap-
proach with K = 2 source encoding, partial dataset size, and compressed
sensing. Red dots in the image represent the chosen active elements. The
single-thread runtimes for original waveform inversion with total-variation
regularization (WI + TV) and waveform inversion with source encoding
and compressed sensing (SE + CS) are approximately 52 hours and 78
minutes, respectively. Note: WI = waveform inversion, SE = waveform
inversion with source encoding, TV = total-variation regularizer, and CS
= compressed sensing (TV + Haar wavelet regularizers).
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single transmit element. It has been also demonstrated that using one additional

encoding vector per iteration, i.e., two randomizations, yields reconstruction results

comparable to those of the original waveform inversion approach, particularly on large

pressure datasets that are prone to cross-talk artifacts caused by the source encoding

technique. In addition, the applied compressed sensing technique, through the use of

total-variation and Haar wave regularizers, allows for the mitigation of various arti-

fact types, including those related to the limited number of active transmit elements.

As a result, the dataset size can be reduced by up to one order of magnitude without

noticeable image degradation. However, further dataset size decrease will result in

structural distortions in the image that exceed the ability of compressed sensing.

Although this work has demonstrated striking performance improvements in terms

of computational and memory aspects as well as showed great promise in efficiently

handing the huge amount of clinical datasets, further investigations are still encour-

aged. First, the dataset batching approach described in [122], [130] does not result in

the cross-talk artifacts but still helps in reducing the computational demand (though

not as much as source encoding). It would be worthwhile to compare the perfor-

mance of this approach to the source encoding technique. Second, while numerical

investigations show that compressed sensing can help reducing the dataset size, a for-

mal mathematical proof still needs to be done for further performance improvements.

One of the possible ways to do so is to measure the coherence of the operator that

maps the designed sparse space (e.g., total-regularization or Haar wavelet space), to

the data space (pressure field). Such coherence measurement allows us to come up

with the most effective set of regularizers that extract the most information out of

the pressure field dataset. Most importantly, the proposed acceleration and data re-

duction approach needs to be validated experimentally on either physical phantoms

or human subjects to ensure seamless clinical translation.
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CHAPTER VII

Full-Wave Photoacoustic Tomography with

Handheld Ultrasound and A Priori Information

7.1 Introduction

Photoacoustic imaging combines the benefits of high optical contrast from optical

imaging and deep penetration from ultrasound imaging (≈ 3− 30 mm) [143]–[146].

Pure optical imaging techniques while achieving microscopic resolution (0.1-100µm),

typically suffer from strong light scattering when imaging regions deeper than 1

mm. One of the potential photoacoustic applications that directly take advantage

of absorption-based contrast is breast cancer detection. Angiogenesis increases tumor

vascularization to support its growth [147]. Intra tumor hemoglobin concentration is

likely to be higher than in benign regions (≈ 1.5− 2x) and will thus increase light

absorbtion. This appealing feature provides imaging contrast between malignant and

benign tissues and has been previously demonstrated.[148]–[154]

The sensitivity of photoacoustics with respect to breast density changes [155]

and the lack of ionizing radiation have drawn much attention to the development

of clinical photoacoustic breast scanners. Three-D breast scanning systems for the

prone and compressed breast have been proposed in [156], [157] and [148], [158],

respectively. Similarly, Kitai et al. [159] and Xie et al. [12] designed a photoacoustic
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breast scanner in the mammographic geometry. Despite their promising results, they

require the use of dedicated equipment, which hinders portability, cost-effectiveness,

and most importantly, clinical potential. Such limitations could be overcome by using

a handheld ultrasound transducer.

Commercial handheld ultrasound transducers are alternative solutions to facilitate

portability and affortability, thus enabling clinical translation. Preliminary studies

with regard to breast imaging exist [160], [161]. However, these techniques recon-

struct optical absorption images by using back-projection or delay-and-sum beam-

forming techniques that neglect tissue acoustic heterogeneities that inturn affect the

photoacoustic signals. Recently, several research groups have proposed photoacoustic

tomography approaches based on circular or curved ultrasound arrays that aim to

overcome artifacts caused by acoustic heterogeneities. Specifically, Deán-Ben, et al.,

Jose et al., Zhang et al., and Jin et al. [162]–[165] consider the time-of-flight change

due to sound speed heterogeneity, and Huang et al., Arridge et al., and Javaherian

et al. [166]–[168] utilize full-wave propagation modeling to accurately take acoustic

heterogeneities into account. However, implementing those sophisticated algorithms

for linear ultrasound arrays with limited directionality is non-trivial as the acquired

photoacoustic signals are highly incomplete, and this will lead to undesirable limited-

angle artifacts.

It is still possible to employ these techniques for handheld ultrasound, if the un-

derlying reconstruction algorithm is well-constrained. Here, we present a full-wave

photoacoustic tomography approach for the handheld ultrasound that allows inclu-

sion of a priori information. Such information limits the reconstruction to a specific,

informed, regions of interest (ROI). Note that in the clinic, the ROI location could

be obtained from B-mode or B-flow segmentation. Intra-tissue regions should be

moderately homogeneous. Therefore, a covariance-based probabilistic model can be

setup to incorporate that homogeneity assumption into the reconstruction algorithm.
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In addition, segmentation data could potentially also served to separate and miti-

gate heterogeneous tissue structures that would cause structural distortions in the

reconstructed image. In summary, the added segmentation information will directly

improve photoacoustic tomography imaging by means of the underlying full-wave

modeling that offers superior reconstruction quality.

This work is organized as follows: Related background and details of the simula-

tion studies are given in Section 7.2. Results, analyses and interpretation are given

in Section 7.3. Section 7.4 provides summary of this work as well as potential future

directions.

7.2 Materials and Methods

7.2.1 Photoacoustic Theory

Figure 7.1(a) shows the graphical representation of a typical photoacoustic scan-

ning system. A short laser pulse is used to excite hemoglobin, an iron-containing

metalloprotein, found in red blood cells to facilitate oxygen transport. Note that for

the sake of generality, there is no exact location of the laser source, but in practice

the laser source is setup in such a way that the light fluence is appreciably uniform

across the imaged tissue region. Upon illumination, hemoglobin absorbs the photon

energy and converts it to heat. This process is called thermalization and results in a

sudden local physical expansion of the surrounding fluid. This in turn, induces the

local initial broadband pressure p0, which is linearly related to the optical absorption

as described by the following equation [144]:

p0 = Γ̂Φµa, (7.1)

where Γ̂ is the photoacoustic efficiency that is linearly related to the Grüneisen param-

eter, Φ is the laser fluence, and µa is the optical absorption coefficient. The Grüneisen
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parameter depends on the tissue type as different tissue types have different thermal

coefficients of volume expansion, specific heats, and speeds of sound. However, for

simplicity, most photoacoustic imaging applications treat it as constant [143], [145].

 4 cm 

  

High optical absorption 

regions 

US Trans 

Laser  

pulse 

6 cm 

Figure 7.1: Graphical representation of a typical photoacoustic scanning system with
a handheld ultrasound transducer capturing the acoustic signals emitted
from the high optical absorption regions due to laser excitation.

The initial sudden expansion pressure rise will induce the then observable acoustic

wave expanding from the site of illumination. The propagating wave pressure can be

recorded by an ultrasound detector [143], [144] as p(r, t). Given p(r, t), the goal of

the photoacoustic tomography is to recover p0. Since p0 is linearly proportional to

µa, recovering p0 is sufficient.

7.2.2 Modeling Acoustic Propagation

Given p(r, t) : R2 × R+
0 → [0, T ] the recorded pressure field, where [0, T ] is the

recorded time interval, and p0(r) : R2 → R+
0 the initial pressure rise, the photoacoustic

signal propagation in an acoustically heterogeneous tissue can be described by the

following first-order coupled equations [14], [98], [99]:

∂

∂t
u(r, t) = − 1

ρ0(r)
∇p(r, t) (7.2a)
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∂

∂t
ρ(r, t) = −ρ0(r)∇ · u(r, t) (7.2b)

p(r, t) = c2(r)

[
1− τ(r)

∂(−∇2)
y
2
−1

∂t
− η(r(−∇2)

y+1
2
−1)

]
ρ(r, t), (7.2c)

with initial conditions p(r, 0) = p0(r) and u(r, 0) = 0. Particle velocity and acous-

tic density are represented as u(r, t) and ρ(r, t), respectively. Ambient density and

sound speed are given by ρ0(r) and c(r), respectively. The terms τ and η, called ab-

sorption and dispersion proportionality coefficients, are defined through the acoustic

attenuation coefficient α(r) and the power law exponent y by the following equations:

τ(r) = 2α(r)c(r)y−1 and η(r) = 2α(r)c(r)y tan
(πy

2

)
. (7.3)

7.2.3 Image Reconstruction

The reconstruction problem can be derived as minimizing the following objective

function with respect to the vector of concatenated initial pressure values at all pixel

locations, p0 [70]:

E(p0) =
(
d− g(p0)

)T
C−1D

(
d− g(p0)

)
+
(
p0 − pa

)T
C−1M

(
p0 − pa

)
. (7.4)

The recorded and simulated received pressure fields, d and g(p0), are represented

by a collection of concatenated received pressure traces

[
p1 p2 . . . pN

]T
by N

transducer elements. Note that the operator g denotes the wave propagation modeling

described in Equation 7.3. The data covariance matrix CD can be used to adjust the

contributions of individual pressure data samples. For simplicity, we assume that all

pressure samples are independent and have equal variance σ2
D, thus CD = σ2

DI, with

I being the identity matrix.

The second term of the objective function,
(
p0 − pa

)T
C−1M

(
p0 − pa

)
, acts as a
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regularizer that constraints the reconstruction algorithm to converge to the desired

solution. Note that by manipulating this term, a priori information can be incorpo-

rated. Specifically, the matrix CM adjusts the variations of individual initial pressure

pixels, as well as the assumed correlation strengths for all possible pixel pairs. Given

σ as standard deviation of all pixels, CMii
= σ2 for any pixel i, CMij

= ρσ2 for pixels

i and j that are in the same tissue type and are assumed to correlate by a correlation

coefficient 0 ≤ ρ ≤ 1, and CMij
= 0 otherwise. Segmentation data originating from

B-mode or B-flow can be used to provide a grouping mechanism for pixels from the

same region, i.e.correlated pixels. The initial guess for a reconstructed image can be

assigned through the term pa.

In this work, minimization of the objective function in Equation 7.4 is achieved

by the conjugate gradient method. The minimization process starts with a steepest

descent (γm) computation which can be done analytically as [70]:

γm = CMG∗
[
C−1D

(
g(p0)− d

)]
+
(
p0 − pa

)
, (7.5)

where G is the Fréchet derivative of g. In the continuous domain, it has been shown

that the adjoint of G, i.e. G∗, is calculated as [167], [168]:

G∗[h]

∣∣∣∣
r′

= ρ̂(r′, T ) (7.6)

for any pressure trace h(r, t) acting as the adjoint source that induces the adjoint

density ρ̂(r, t). The adjoint density can be simulated using exactly the same set of

coupled-equations listed in Equation 7.2, except Equation 7.2b is replaced by Equa-

tion 7.7 below, where the adjoint source term h(r, t) is injected to Equation 7.2b as

a time-reversed additive mass source term, namely:

∂

∂t
ρ̂(r, t) = −ρ0(r)∇ · û(r, t) + h(r, T − t), (7.7)
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with the initial conditions p̂(r, 0) = û(r, 0) = 0. The accentˆdenotes the result from

the adjoint acoustic propagation equations.

Now, if we take h(r, t) =
∑N

j=1 σ
2
D

(
p(rRj, t) − d(rRj, t)

)
, where p(r, t) and d(r, t)

are the simulated and recorded received pressure traces and rRj denotes the location

of the jth ultrasound receiver, one can show that:

G∗
[
C−1D

(
g(p0)− d

)]∣∣∣∣
r′

= ρ̂(r′, T )/∆t, (7.8)

where ∆t denotes the simulation step size, which is necessary to scale from the

unit of time in the continuous domain to the unit of sample in the discrete domain.

After the steepest descent is computed, one can apply the conjugate gradient

algorithm as follows to obtain the initial pressure image at the (n + 1)th iteration,

pn+1
0 :

pn+1
0 = pn0 − αn+1v

n+1 (7.9a)

vn+1 = γnm − βn+1v
n. (7.9b)

The parameter βn is chosen according to the Polak and Ribiére formula such that

vectors vi, i = 1, 2, ..., (n+ 1) form conjugate bases [106]:

βn+1 =
< C−1M (γn+1

m − γnm), γn+1
m >

< C−1M γnm, γ
n
m >

. (7.10)

The step length αn is determined by the optimal line search method that yields

the greatest objective function decrease along the direction vn+1:

αn+1 =
(vn+1)TC−1M γn+1

m

(Gmvn+1)TC−1D (Gmvn+1) + (vn+1)TC−1M vn+1
. (7.11)
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7.2.4 Simulation Setup Details

7.2.4.1 Input Data Generation

Figures 7.2(a) and 7.2(b) show the initial pressure (column 1), sound speed (col-

umn 2), and mass density (column 3) distributions of two numerical phantoms used in

the simulation studies. The image of segmented regions used for generating a priori

information is displayed in column 4. The phantom image size and pixel size are 6

cm × 4 cm and 0.0781 mm, respectively.

 (a): Numerical Disc-Shaped Objects 

(b): Numerical Compressed Dense Breast 

Figure 7.2: Two numerical phantoms used in this work, shown as (a) disc-shaped
objects and (b) an anatomically realistic, compressed dense breast. Im-
ages on the columns 1, 2, 3, and 4 represent initial pressure, sound speed
distribution, mass density distribution, and numbers labeling segmented
regions, respectively.

The phantom shown in Figure 7.2(a) consists of 4 varying diameter disc-shaped
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Table 7.1: The assigned initial pressure and acoustic properties of each region of the
here employed numerical compressed dense breast. Sound speed and mass
density values were obtained from [169]. The initial pressure was calculated
by scaling down the optical absorption coefficient by a factor of 2/9. Refer
to Figure 7.2(b), column 4 for region number.

Region
Initial pressure Sound speed Mass density

(a.u.) (m/s) (kg/m3)
Fibroglandular (1) 0.0089 1,515 1,040
Fat (2) 0.011 1,470 937
Skin (3) 0.018 1,650 1,150
Blood vessel(4) 2 1,584 1,040
Background (5) 0 1,500 1,000
Cancer (6) 0.009 1,570 1,100

objects. No acoustic attenuation was ascribed to this phantom. The disc-shaped

structures were chosen as they resemble the cross-sections of spherical breast masses

and cancers found in the clinic. The more complex phantom shown in Figure 7.2(b)

was a 2D slice taken from an anatomically realistic, extremely dense 3D breast phan-

tom [169]. The acoustic attenuation of this phantom was set to 0.75 dB/cm/MHz1.5.

Properties listed in Table 7.1 also apply to this phantom. The original breast phantom

dimensions are 495, 615, and 752 voxels along the x, y, and z directions, respectively.

However, in this work, we assumed that the breast was fixed and compressed along the

axial (y) direction to mimic the compressed breast as found in x-ray mammography

[6], [10]. Therefore, the original breast phantom was scaled by 0.55x and 1.2x along y

and z directions, yielding the new dimensions of 495, 338, and 902 voxels along x, y,

and z directions, respectively. One 2D slice was extracted along the y-axis from the

compressed breast phantom at x = 400 and z = 200 to 452, and the extracted slice is

shown in Figure 7.2(b). Note that since there is no cancer region in the original breast

phantom, the cancer and its surrounding angiogenesis were generated artifically. This

phantom should provide insight on the reconstruction performance in a more realistic

case, and more importantly, in the case where regions of optical absorption are small

and sparse.
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The input pressure traces were generated with the actual initial pressure map, dis-

played in Figure 7.2. Such pressure traces were simulated based on Equation 7.2 using

the k-Wave toolbox [109] that solves acoustic wave propagation based on a memory-

efficient scheme called k-space pseudospectral method [100], [101]. The pressure trace

was 75 µs long with 14 ns time step that corresponds to a 70.4 MHz sampling fre-

quency.

The simulated transducer mimics the characteristics of a L7-4 linear array trans-

ducer (ATL/Philips, Bothell, WI). It has 128 elements on its approximately 4 cm

wide aperture, and its frequency response was tapered using a Gaussian window with

center frequency of 5 MHz and 70% bandwidth.

7.2.4.2 Reconstruction Settings

The reconstruction was accomplished by iteratively minimizing the objective func-

tion shown in Equation 7.4 and updating p0. The covariance matrix CD was set to

σ2
DI, where σD = 0.01 and I is the identity matrix. A priori information was setup by

assigning the initial guess (pa) to zero-valued map, a non-negative correlation coeffi-

cient (ρk) and the standard deviation (σ) to 10 to allow a wide range of reconstructed

pixel values. The reconstruction was run for 30 iterations. If ρ > 0 was used, the

value of ρ will increase linearly, from 0 in the first iteration to the assigned value in

the last iteration, as the iteration progresses.

Due to the band-limited transducer frequency response, the transducer receivers

cannot accommodate all the frequency information from the broadband photoacoustic

signals. Therefore, it is crucial to note that the received signals need to be first “re-

covered” before being entered into the reconstruction algorithm. The signal recovery

process is called deconvolution that is achieved by the following relations [170]:

F{p(r, t)} = H(f)F{p̃(r, t)} (7.12a)
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p̃(r, t) ≈ F−1
{
F{p(r, t)}
H(f) + ε

W (f)

}
, (7.12b)

where p(r, t) and p̃(r, t) represent the band-limited received signal and recovered

signal, respectively, and H(f) refers to the transducer frequency response. W (f)

denotes the low-pass filter that suppresses the noise arising from deconvolution. Here,

a Blackman filter with a frequency cutoff of 7.04 MHz was employed. The small

positive parameter ε ensures that the denominator does not approach zero.

7.2.5 Simulation Studies

Three studies were performed on the two numerical phantoms shown in Figure 7.2:

1. Noiseless reconstructions

Noiseless reconstructions were performed on both phantoms. Hereby we investi-

gated the reconstruction accuracy obtained from 2 sets of sound speed and mass

density distributions and 3 different correlation coefficients. The applied corre-

lation coefficients ρk were 0, 0.0005, and 0.005. For each correlation coefficient

value, initial pressure images were reconstructed based on heterogeneous (true)

and homogeneous cases of sound speed and mass density distributions. The

homogeneous acoustic distributions here represent the unknown sound speed

and mass density maps, whose values were simply assigned by sound speed and

mass density of the background. For reconstructions of the disc-shaped objects,

the absolute percent errors of the reconstructed initial pressure value within

each region was also calculated.

Given the fact that it is difficult to segment small blood vessels in practice,

additional reconstructions of numerical compressed dense breast phantom were

also performed, where blood vessels are assumed as not identifiable. In these

cases, blood vessels are lumped into the same segmented region as fat or cancer.

2. Noisy reconstructions
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In this study, the amplitude and phase of the received signal was corrupted by

Gaussian noise. The standard deviation of the Gaussian noise amplitude was

calculates as 3% of the maximum absolute amplitude of all recovered pressure

signals (p̃(r, t) in Equation 7.12b). The standard deviation of the Gaussian

phase noise was calculated in units of the number of samples that corresponds

to a 3% of the bandwidth of the transducer, i.e. ≈ 0.4 µs phase shift in the time

domain. Effects of the received amplitude and phase errors on the reconstruc-

tion accuracy were investigated separately for each correlation coefficient ρk (0,

0.0005, and 0.005).

3. Effects of segmentation uncertainty on the reconstruction accuracy

Performing segmentation on clinical B-mode or B-flow images can be much more

challenging than the one performed here on simple disc-shaped phantoms, as

aberration and low signal-to-noise ratio can cause ambiguous tissue boundaries

and artifacts. For this reason, segmentation uncertainty was studied on a sin-

gle 1-cm diameter disc placed in the center of the imaging field by imposing

a boundary with zero correlation coefficient (uncertainty zone with ρk = 0)

over the object boundary to generate the ambiguous boundary, as shown in

Figure 7.3. The boundary thinkness was varied from 2 to 6 mm with 2 mm

increments. Images were reconstructed with correlation coefficients ρk of 0.0005

and 0.005 in background and object regions, respectively. True sound speed and

density distributions were utilized during the reconstruction. The true density

was set to 1000 kg/m3 throughout the image. The background’s sound speed

was set to 1515 m/s, and the object’s sound speed was set to 1460 or 1570 m/s

to reflect the negative and positive object’s sound speed. For each reconstruc-

tion case, mean initial pressures were calculated from all the initial pressure

pixels in the object region without uncertainty zone, and in the object region

with uncertainty zone.
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Thickness (𝜌𝑘 = 0) 

Figure 7.3: Inclusion of a segmentation uncertainty zone (zone with ρk = 0) between
the certain object and background regions assigned with positive correla-
tion coefficients.

7.3 Results and Discussion

7.3.1 Noiseless Reconstructions

7.3.1.1 Numerical Disc-Shaped Objects

Figure 7.4(a) shows the initial pressure reconstructions obtained with different cor-

relation coefficients (ρk). Sound speed and mass density distributions were assumed

to be heterogeneous and known. The calculated absolute percent errors of recon-

structed initial pressure values of all discs are given in Table 7.2. As can be seen,

using segmentation data as a priori information through applying positive correlation

coefficients improves the reconstruction quality. Specifically, using higher correlation

coefficients leads to more accurate reconstruction results and less limited-angle arti-

facts. This happens because, for any given set of pixels assumed to be correlated,

CM will promote the homogeneity across the corresponding elements in the steepest

descent vector (Equation 7.5) that will be used later for updating that pixel group.

Figure 7.4(b) shows the reconstruction results equivalent to Figure 7.4(a), but with

the unknown sound speed and mass density distributions, i.e. both were assigned to

be homogeneous. For calculated absolute percent errors of reconstructed initial pres-
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 (b): Homogeneous (a): Heterogeneous 

𝜌𝑘 = 0 𝜌𝑘 = 0.0005 𝜌𝑘 = 0.005 𝜌𝑘 = 0 𝜌𝑘 = 0.0005 𝜌𝑘 = 0.005 

Figure 7.4: Reconstructed images of the numerical phantom containing disc-shaped
objects, obtained from the indicated correlation coefficients (ρk) and
sound speed distribution types (heterogeneous and homogeneous). The
correlation coefficient value was increased linearly from 0 to the applied
value as the reconstruction proceeds. Images are displayed in [0, 2]
grayscale range.

sure values, see Table 7.2. It can be seen from both Figure 7.4(b) and Table 7.2

that using a priori information by enforcing a positive correlation coefficient helps in

both, improving reconstruction accuracy and suppressing artifacts. However, unlike

the reconstructions with heterogeneous distribution maps, the artifacts appearing in

Figure 7.4(b) are the combined results of limited-angle artifacts and artifacts due to

the wrong sound speed and mass density distribution assumption. Both types of arti-

facts start appearing during the early reconstruction iterations, where the correlation

coefficient is low. However, when the correlation coefficient increases as the iteration

proceeds, limited-angle artifacts can be suppressed effectively with a slight change

of the objective value in Equation 7.4. This can be explained as suppressing the

artifacts due to the wrong distribution assumption that will violate the homogeneity

assumption made for the reconstruction algorithm and in turn detrimentally affect

the objective value.

One can suppress the artifacts due to the wrong distribution assumption by setting

fixed correlation coefficients to consistently enforce homogeneity within the groups

of correlated pixels. However, this might lead to inaccurately reconstructed initial
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pressures in some other cases. For example, Figure 7.5 shows a comparison between

(a) adaptive and (b) fixed correlation coefficients. The imaged phantom has true

homogeneous (sound speed and mass density) distributions, but a truly heterogeneous

optical absorption distribution. As can be seen from the reconstructions with fixed

ρk, using higher ρk results in less accurate image, which is unexpected and opposite to

the reconstructions with adaptive ρk. One of the possible reasons for this inaccuracy

is because the steepest descent, shown in Equation 7.5, is a scaled version of the

gradient by CM. The non-zero elements in the off-diagonal entries of CM, as a

result of applying positive correlation coefficient, will cause the steepest descent vector

pointing into a different direction than the original gradient vector. This directional

difference could potentially add another complication when using the steepest descent

vector to update the image that is farther from the true solution.

 (a): Adaptive (b): Fixed 

𝜌𝑘 = 0.0005 𝜌𝑘 = 0.005 𝜌𝑘 = 0.0005 𝜌𝑘 = 0.005 

Figure 7.5: Reconstructed images of the numerical phantom for (a) adaptive and (b)
fixed correlation coefficients (ρk). The sound speed and mass density
distributions were assumed as homogeneous. Images are displayed on a
[0, 2] grayscale range.

7.3.1.2 Numerical Compressed Dense Breast

Figures 7.6(a) and (b) show numerical compressed dense breast phantom im-

ages, reconstructed with heterogeneous and homogeneous sound speed and mass

density, respectively. The attenuation coefficient was set as uniform and to 0.75
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Table 7.2: Calculated percent error of the reconstructed initial pressure value (p0)
within each region, obtained from reconstructions with different correlation
coefficients (ρk). Refer to Figure 7.2(a), column 4 for region number.
Correlation
(ρk)
coefficient

Region number
Heterogeneous Homogeneous

1 2 3 1 2 3
0 26.7 42.2 46.5 26.3 40.9 45.0
0.0005 20.1 34.9 28.0 20.3 36.1 29.0
0.005 3.65 19.8 3.36 4.97 32.4 9.65

dB/cm/MHz1.5. It appears that when only small regions with high optical absorp-

tion are reconstructed, the original results with ρk = 0 are already similar to the

true initial pressure given in Figure 7.2, structurally and quantitatively. In addition,

using a priori information by applying positive correlation coefficient does not seem

to give noticeable improvement. A similar effect is also demonstrated through the

reconstructed images shown in Figures 7.6(c) and (d), obtained with the assumption

that blood vessels are visually indistinguishable from fat and cancer regions and thus

considered as parts of those surrounding tissues. This effect could be explained by

the following facts. First, the smaller regions tend to generate less limited-angle ar-

tifacts than the larger ones. Second, from a mathematical point of view, adding a

priori information, or in general, regularizing the optimization problem, will reduce

an ill-posedness of the objective function [171]. Since the data term in Equation 7.4,(
d − g(p0)

)T
C−1D

(
d − g(p0)

)
, is convex with respect to p0, this is already likely to

facilitate convergence towards the true solution. Moreover, the regularization term(
p0−pa

)T
C−1M

(
p0−pa

)
does little help in reducing the ill-posedness when enforcing

homogeneity in the small, high optical absorption regions. Nonetheless, for the same

reason given to Figure 7.4, taking into account the heterogeneities of sound speed

and mass density seems to slightly help in decreasing the reconstruction errors and

artifacts. This suggests that small or granular regions can be omitted during seg-

mentation for a priori information generation, and using the accurate distributions
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might be a more strict requirement to obtain accurate reconstructions.

 (a): Heterogeneous, Vessels Segmented (b): Homogeneous, Vessels Segmented 

(c): Heterogeneous, Vessels Not Segmented (d): Homogeneous, Vessels Not Segmented 

Figure 7.6: Reconstructed images of the numerical compressed dense breast phantom,
obtained for different correlation coefficients ρk, distribution types, and
segmentation structures. The correlation coefficient was increased linearly
from 0 to the applied value as the reconstruction proceeds. Images are
displayed on a [0, 2] grayscale range.

7.3.2 Noisy Reconstructions

Figures 7.7(a) and (b) show the reconstructed images obtained through repeating

the noiseless reconstructions (Figure 7.4(a)) with heterogeneous sound speed and

mass density distributions, except that here noisy received pressure traces were used

as reconstruction inputs. The noiseless and corrupted signals received by the 100th

transducer element (at 1.12 cm lateral position) are plotted in Figures 7.8(a) and

(b)-(c), respectively. The calculated absolute percent errors of the reconstructed

initial pressure values of all discs are given in Table 7.3 for all reconstruction cases.

Visually, the zero-mean Gaussian phase noise induces amplitude variations in a lesser
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extent than compared to the zero-mean Gaussian amplitude noise that plays a more

direct role in the amplitude variations. Therefore, the reconstruction results from the

amplitude noise pressure dataset (ρ = 0 and 0.0005) look more grainy, than those

from the phase noise.

 (a): Noiseless (b): 3% Amplitude Noise (c): 3% Phase Noise 

Figure 7.7: The (a) noiseless signal, (b) signal corrupted by 3% Gaussian amplitude
noise, and (c) signal corrupted by 3% Gaussian phase noise, received by
the 100th transducer element (at 1.12 cm lateral position). These signals
are emitted from the numerical disc-shaped objects with a high optical
absorption coefficient.

Nonetheless, it is clear that using a priori information does not only improve

reconstruction accuracy, but also simultaneously suppresses limited-angle artifacts

and noise. Also, as seen earlier in Section 7.3.1.1, applying higher spatial correlation

enforces stronger homogeneity and thus reduces noise. This is because applying a

positive correlation coefficient enforces the homogeneity within the pixels that belong

to the same tissue type, i.e. same segmented group.

7.3.3 Effects of segmentation uncertainty on the reconstruction accuracy

Figure 7.9 shows the calculated initial pressure within the reconstructed object

of interest, obtained at different uncertainty zone thicknesses, correlation coefficients,

and types of sound speed contrast. According to Figures 7.9(a) and (c), it appears

that the initial pressure calculated from pixels within the certain object region only
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 (b): 3% Phase Noise (a): 3% Amplitude Noise 

𝜌𝑘 = 0 𝜌𝑘 = 0.0005 𝜌𝑘 = 0.005 𝜌𝑘 = 0 𝜌𝑘 = 0.0005 𝜌𝑘 = 0.005 

Figure 7.8: Reconstructed images of the numerical phantom containing numerical
disc-shaped objects, obtained for different correlation coefficients (ρk) and
received pressure input signals, corrupted by different types of transducer
response noise. True (heterogeneous) sound speed and mass density dis-
tributions were used for reconstructions and the correlation coefficient was
increased linearly from 0 to the indicated as the reconstruction proceeds.
Images are displayed on a [0, 2] grayscale range.

Table 7.3: Calculated absolute percent error of the reconstructed initial pressure value
(p0) within each region, obtained from reconstructions with different types
of Gaussian noise. Refer to Figure 7.2(a), column 4 for region number.
Correlation
(ρk)
coefficient

Region number
3% amplitude noise 3% phase noise

1 2 3 1 2 3
0 45.5 54.7 58.1 26.7 42.2 46.5
0.0005 27.7 35.1 29.2 20.1 34.9 28.0
0.005 5.40 22.9 5.24 3.65 19.8 3.36
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(uncertainty zone excluded) tends to be insensitive to the presence of the uncertainty

zone. This could be attributed to the fact that zero correlation is assigned to the

uncertainty zone that allows the pixels in that zone to variate easily, thus being able to

absorb most of the reconstruction error. The reconstruction error in the uncertainty

zone is further illustrated in Figures 7.9(b) and (d) that show the initial pressure

calculated from pixels within the certain object region and the uncertainty zone.

This suggests that it is still possible to utilize a priori information from segmentation

data even though accurate segmentation cannot be achieved.

7.4 Conclusions

We have developed a full-wave photoacoustic tomography reconstruction, that al-

lows inclusion of a priori information defined, for example, through segmentation of

similar tissue types. Such segmentation can be done on images that are already avail-

able from other existing modes or modalities, such as B-mode and B-flow imaging

techniques. We have shown that the use of a priori information can help in both im-

proving reconstruction accuracy and reducing limited-angle artifacts as the additional

a priori information will guide the reconstruction algorithm to approach the correct

solution. This is especially helpful when handheld ultrasound arrays are used as they

acquire less photoacoustic signal information compared to the ring ultrasound arrays.

We have also demonstrated that, with deconvolution algorithms utilized, omitting

the a priori information without degrading the reconstructed image quality is possi-

ble for small object sizes (Figure 7.6). However, this becomes more challenging for

larger objects (approximately ≥ 5 mm diameter) as the limited-angle artifacts will

show up more noticeably. So, even in the presence of recent deconvolution techniques,

this is an example of the severe limitation of photoacoustics in the presence of limited

bandwidth of sensitive ultrasound transducers. In addition, applying a positive corre-

lation coefficient throughout all pixels belonging to the same tissue type will enforce

169



 

𝜌𝑘 = 0 𝜌𝑘 = 0.0005 𝜌𝑘 = 0.005 𝜌𝑘 = 0 𝜌𝑘 = 0.0005 𝜌𝑘 = 0.005 

(a): Positive, Exclude  
Uncertainty Zone 

(b): Positive, Include  
Uncertainty Zone 

(c): Negative, Exclude  
Uncertainty Zone 

(b): Negative, Include  
Uncertainty Zone 

Figure 7.9: Initial pressure of a reconstructed disc-shaped object calculated from (a),
(c) the initial pressure pixels within the certain object region only, and
(b), (d) from the initial pressure pixels within the certain object region
and uncertainty zone. Both positive and negative sound speed contrast
objects were reconstructed under different correlation coefficient settings
and uncertainty zone thicknesses.
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more homogeneity within the segmented regions, and thus automatically reducing

noise from the limited transducer response signal-to-noise ratio (SNR) (Figure 7.7)

as well as some of the artifacts arising from the wrong sound speed and mass density

distribution assumption (Figure 7.4).

Constructing a priori information based on segmentation and correlation coeffi-

cient assignment suggests several benefits. First, the segmentation process can be

superficial, meaning that segmentation on small regions can be skipped to avoid an

unnecessary and time-consuming task. For segmentation of larger regions, this can be

successfully automated in many cases thanks to advances in segmentation techniques

in the ultrasound field during the last decade [38], [60]. Second, the requirement of

homogeneity within the segmented regions is flexible. Specifically, one can choose to

apply a low correlation coefficient to segmented regions with ambiguous knowledge

of optical heterogeneity. Third, noises from imperfect transducer response as well as

artifacts due to the wrong acoustic distribution assumption can be suppressed via the

heterogeneity constraint enforced by the positive correlation coefficient.

Even though the developed approach provides a proof-of-concept for a full-wave

photoacoustic tomography reconstruction for handheld ultrasound arrays, it is still

worthwhile for future work to investigate its performance on real datasets, for several

reasons. Since real breast tissues are more heterogeneous and complex than the phan-

toms used in this work, segmentation can become difficult, and segmented regions may

turn out to be acoustically and optically heterogeneous. Enforcing the homogeneity

constraint on those regions thus no longer becomes effective. Furthermore, the noise

models utilized in our simulation studies might not be realistic representations of

all the actual noise types/sources found in physical experiments, such as laser light,

imaged tissues, and signal acquisition hardware components. Most importantly, our

simulation studies assume uniform laser fluence, which is mostly not the case in phys-

ical experiments. Both laser specifications and its placement play important role in
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the fluence, and accurate light transport modeling may be required to compensate any

distorted fluence. Still, the developed photoacoustic image reconstruction approach

and presented results shows potential clinical feasibility.
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CHAPTER VIII

Conclusions

This dissertation primarily focuses on 1) investigating the accuracy and perfor-

mance of our existing dual-sided ultrasound scanner, and 2) proposing various image

reconstruction algorithms that can account for and correct complex acoustic phenom-

ena. The latter utilizes pulse echo images as a priori information, but require a fair

amount of computational resources and data storage.

Potential sources of error, which exist in the dual-sided ultrasound scanner and

affect the accuracy of reconstructed images, were investigated in Chapters II and III.

It has been shown that the most dominant error due to the transducer misplaced in the

axial direction can be simply calibrated through a homogeneous transmission dataset.

Less dominant mis-segmentations, which induce inaccuracies in a priori information

of the reconstruction process, could potentially be minimized by using an appropriate

ultrasound couplant or more advanced segmentation approaches specifically designed

for breast images. Moreover, using an ultrasound couplant with acoustic properties

similar to those of breast skin can help to reduce shadow area artifacts in B-mode

imaging and potentially reveal important hidden structures.

Investigated image reconstruction approaches intended for dual-sided imaging,

including sound speed, acoustic attenuation, and photoacoustic tomography. They

are fully or partially based on full-wave modeling. This allows complex acoustic
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effects, such as reflection, diffraction, and scattering, to be modeled during data pre-

processing (attenuation correction in Chapter V) or a reconstruction process (sound

speed and photoacoustic tomography in Chapters IV, VI and VII). The ability to ac-

count for complex physics results in substantial improvements in image details. The

original version of our sound speed waveform inversion algorithm, the most compu-

tationally and memory demanding, was also further optimized for drastic reduction

in both computational and memory requirements. Moreover, the developed recon-

struction algorithm is able to take advantage of existing pulse echo images as a priori

information, allowing for further accuracy improvements. Also, note that photoa-

coustic tomography algorithms developed in this dissertation further demonstrate

the potential combination of our dual-sided scanner to other modalities, at least to

the optical imaging.

We believe that the rigorous investigations of the existing dual-sided ultrasound

scanner as well as the development of advanced reconstruction algorithms suitable

for this system could ultimately help improve the overall breast screening process in

the clinic and bridge the gap between ultrasound and x-ray. However, there are some

areas that still need to be considered in order to facilitate clinical translation in the

future. Firstly, several simulation and reconstruction parameters do not accurately

reflect imaging in realistic situations. Modeling the employed ultrasound transducer

to have a low center frequency, an infinite-band frequency response, and a small

number of point-like elements with omnidirectional sensitivity, is too optimistic. Such

simplifications were done for reason of limited computing resources. Most of the

simulation studies performed in Chapters III-VII also used the same grid spacing and

acoustic propagation model for both input signal generation and image reconstruction

procedures, making them susceptible to “inverse crime” [172] and perhaps leading to

overly optimistic results.

Secondly, most of the investigated objects are based on a simple geometry. Even
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though they were modeled to mimic breast tissue or breast masses, their actual in

vivo structure and acoustic properties can be much more complicated. Modeling a

priori information, through segmentation of homogeneous regions in actual breast

tissue on coresponding images (e.g., B-mode, B-flow, or x-ray), will be challenging

and prone to segmentation errors in many cases. This is very likely to occur due to the

nature of breast tissue often being highly heterogeneous and due to ambiguous tissue

boundaries. The compression force acting on the physical breast could also alter the

acoustic distributions too, making it more difficult to evaluate the performance to

preliminary techniques. With these two points in mind, applying the investigated

findings and the developed reconstruction algorithms directly to the real scanning

system and datasets can be extremely challenging. Nonetheless, all the work done in

this dissertation should provide significant insight for further developments towards

breast imaging in the clinic.
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