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Abstract 

 

Exhibiting different rheological (viscoelastic) behaviors, micellar solutions and 

polymeric glasses are at the center of many applications.  

For micellar solutions, I have developed a mesoscopic simulation model, drawing from 

concepts developed for entangled polymer melts, to account for linear rheology of different 

micelle structures (linear and branched micelles). Through a “pointer” algorithm I developed, 

this new model tracks boundaries between relaxed and unrelaxed parts of micelles that are 

diffusing in entanglement tubes, and uses polymer-like mechanisms along with intermicellar 

reactions (breakage and reformation) to compute rheology, which allows, for the first time, not 

only quantitative prediction of flow behaviors but also estimation of important micelle properties 

from rheological measurement with much greater accuracy than ever before.  

For polymeric glasses, by treating the short glassy segments as “solvent” for the slow-

relaxing polymeric part, a hybrid model has been developed that combines a constitutive model 

of the glassy solvent with Brownian dynamics simulations of polymers, whose relaxation is 

coupled to the glassy dynamics through the drag coefficient. This hybrid model successfully 

captures numerous behaviors of polymeric glass (yielding, strain hardening, recovery, physical 

aging, and flow rejuvenation) under various types of deformations as well as the effects of 

polymer pre-orientation, whose results prove to be consistent with observations from both 

experiments and molecular level simulations. 
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Chapter 1: Introduction 

 

Known as fundamental building blocks for numerous soft materials, surfactants, more 

generally, amphiphiles which have both solvophilic and solvophobic groups, are at the center of 

many industrial formulations either as mixtures or as individual component. [Crothers, et al. 

(2016); Kunieda et al. (2001); Huang et al. (2016); Gao et al. (2016); Lin et al. (2001)] For 

instance, in most shampoos and body-washes, surfactants comprise about 90% dry mass of the 

products as cleaning agents. Above a critical concentration (i.e., the first CMC), these surfactant 

molecules aggregate to form a variety of self-assembled structures in the solution, referred to as 

micelles. As revealed by electron microscopy, such structures include small spheroids, ellipsoids, 

short rods or long worms, [Lequeux (1996)] bilayers, [Nagarajan (1989)], and ordered phases 

that depend on type and concentration of salt, [Candau et al. (1993); Wang and Larson (2009)] 

surfactant, [Hassan et al. (1998); Gomez et al. (2010)], temperature, and solvent. [Bruce et al. 

(2002); Jusufi et al. (2008)] The versatility in micellar morphologies is the result of the delicate 

balance on the incompatibility between the solvophilic and the solvophobic parts of the molecule 

under the presence of selective solvents, where a specific packing geometry, also known as 

spontaneous curvature, is favored. Given the relative facileness in tuning the non-covalent 

interactions between surfactant molecules, transitions between different types of micellar 

structures can be induced by the addition of simple electrolytes, cosurfactants, or strongly 

binding counterions (so-called hydrotropes). [Kaler et al. (1989); Villeneuve et al. (1999); Wang 

et al. (2016)] Such changes in micellar structure sometimes accompany with prominent gains in 

viscoelasticity indicating the existence of large micellar structure, in particular, the transient 

network of entangled wormlike micelles (WLMs), which have commonly been practiced in the 

realm of detergent-related industries. [Adamy (2016); Oelschlaeger et al. (2012); Zhao et al. 

(2015)]  

However, most of studies on micelles have simply focused on solutions containing a 

single species of surfactant at relatively low concentration along with one species of anionic 

hydrotrope or inorganic salt. [Cates and Fielding (2006); Lawrence (1994); Maitland (2000); 
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Rhein et al. (2006); Wheeler et al. (1996)] For example, sodium dodecyl sulfate (SDS), has been 

investigated extensively in the concentration range between the first CMC at 0.008 M and the 

second CMC at 0.069 M, and over this concentration range, the majority of the micelles are 

small spheres or ellipsoids. [Kodama et al. (1972); Yasunaga et al. (1967)] WLM solutions 

composed of anionic surfactants at concentrations far above the second CMC are studied less 

frequently, even though those concentration ranges are more relevant to practical applications, 

and in those ranges the micelle solutions exhibit viscoelastic properties. Thus, mixed surfactants 

are usually used in practice because of the lower cost of polydisperse mixtures and their 

improved performance over that of the single-surfactant solutions: [Scamehorn (1986)] The 

addition of the ionic surfactant sodium lauryl ether sulfate (SLES) to an SDS solution enhances 

the viscosity of the mixture at low total surfactant concentration;23 Superior interfacial tension 

reduction is obtained upon addition of the zwitterionic surfactant cocamidopropyl betaine 

(CAPB) to an SDS solution; [Danov et al. (2004); Galvan-Miyoshi et al. (2008); Hines et al. 

(1998)] Sharp drops in both the first and second CMCs are obtained in mixtures of CAPB and 

SLES, with one to three ethylene oxide (EO) monomers, compared to those seen in each of the 

individual surfactant components, as determined through experimental measurements using 

rheometry and SAXS. [Christov et al. (2004); Eguchi et al. (2007); Naruse et al. (2009)] 

Although the addition of cationic surfactants to anionic surfactants boosts viscosity enormously 

at low surfactant concentrations, the formation of an insoluble complex can limit the range of 

practicable formulations, and so it is often avoided. [Scamehorn (1986); Schurbert et al. (2003)] 

Besides the fundamental interest on detailed interactions among surfactants, great efforts 

have been made for WLM solutions over decades to better understand the coupling between their 

complex rheological properties and the microstructure as well as their topology at mesoscale 

level. It is now well-accepted that the interplay between structural energy and system entropy 

brings two types of topological defects to the cylindrical body: end-caps and junctions, resulting 

in micelles with finite length and formation of branched structures, respectively. [Dan and Safran 

(2006)] The latter is thought to enable percolation and phase separation with the emergence of an 

interconnected network when temperature is increased. [Zilman et al. (2004); Zilman and Safran 

(2002)] As directly visualized via cryo-TEM, [Clausen et al. (1992); Lin (1996)] these WLMs 

have a diameter of 3-5 nm whilst their contour length can reach a few micrometers in the semi-

dilute regime giving rise to the occurrence of entanglements and a transition to branched clusters 
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can eventually take place with high level of salt. [Padalkar et al. (2002); Yusof et al. (2012)] 

These structures and their size control the flow properties of the surfactant solution, which is 

crucial in applications, for example, in shampoos, for which careful design of the formulation is 

needed to achieve a product that is neither too runny nor too viscous. While much is known 

about their structures and flow behaviors, the complex dependencies of micellar structures on 

various types and concentrations of surfactant, salt, and additives (for instance, hydrotropes), 

make such solutions difficult to characterize and design for different applications. Such 

complexity can be simply illustrated by a so-called “salt curve” where, with increasing salt 

concentration, an increase in viscosity caused by the growth of long wormlike micelles and 

subsequent decrease caused by micelle branches are observed.  

Thus, to unveil the basic property-structure relationships behind different flow behaviors 

of WLMs, a rich variety of theories and models are therefore proposed, which generally falls into 

two categories: thermodynamic or rheological. The thermodynamic models can well predict the 

“inverted” micellar phase behavior on the basis of a complex balance between mixing entropy 

and enthalpic/curvature energy, where the spontaneous curvature, is introduced to explain the 

temperature induced evolution of micelle morphology. [Dan and Safran (2006); Tlusty and 

Safran (2000)] While for rheological models, the main concept relies on the analogy between 

cylindrical micelles and polymer chains with the “flow” of topological defects, i.e., the evolving 

spatial distribution of chain-ends and branched junctions, which resembles binary fluid in the 

sense that their competition corresponds to a shift of micellar connectivity. [Zilman and Safran 

(2002); Drye and Cates (1992)] However, WLMs are subjected to constantly breaking and 

reforming in thermal equilibrium with their surfactant “monomers”, [Kalur et al. (2005); Feng 

and Han (2016)]: they are capable to break, reform, and exchange materials, and hence display 

pronounced fluidity than conventional polymers, [Lequeux and Candau (1994); Waton and Zana 

(2007)] which prevents them from mechanical degradation and hence being a desirable candidate 

as heat-transfer fluids and fracturing liquids. [Barhoum et al. (2012)] However, when the applied 

flow rate is high enough to disturb the equilibrium WLM structures, which in turn modify the 

flow itself, a rich variety of nonlinear rheological features would appear including localization of 

stress, heterogeneous shear bands, and flow induced phase separation etc. [Gallor et al. (2013); 

Cardiel et al. (2014)] 
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As nourished by the continuing development of instrument science and technology, 

experimental characterization of micelle structure has significantly contributed to the 

development of the theory of WLM dynamics. The value of the persistence length was measured 

by Porte et al. (1980), who showed that elongated micelles should be thought of as semi-flexible 

polymerlike chains, rather than as rods. Since then, many important measurement methods have 

been applied to micellar solutions: SANS (small angle neutron scattering) [Marignan et al. 

(1989); Appell and Marignan (1991)], birefringence [Shikata et al. (1994); Decruppe and 

Lerouge (1999)], DLS/SLS (dynamic/static light scattering) [Brown et al. (1989); Nemoto et al. 

(1995)], cryo-TEM (cryogenic transmission electron microscopy) [Clausen et al. (1992)], NSE 

(neutron spin echo) [Nettesheim and Wagner (2007)], DWS (diffusing wave scattering), 

[Galvan-Miyoshi et al. (2008)] ultrasonic velocimetry, [Gallot et al. (2013)] and micro-

cantilevers. [Youssry et al. (2012)] Although these measurements supply vital inputs to micelle 

characterization, quantitative estimates and comparisons of the determined micellar characteristic 

lengths from those methods still remain challenging. The difficulties, to a large extent, rest on the 

gaps between individual methods in probing the structure beyond specific length scales or 

concentrations, which can hardly be overcome by a simple combination of several 

aforementioned characterization measurements. Since the rheology of WLM solutions appears to 

be rather sensitive to subtle changes in either length scales or lifetime of the microstructure, once 

coupled with an appropriate model, it can offer an indispensable route in micelle 

characterization. Remarkable efforts had thereafter been made to deduce characteristic 

information of the “living” behavior as well as micellar structure from experimental 

measurements on viscoelastic behaviors of WLMs, [Angelescu et al. (2003); Chellamuthu and 

Rothstein (2008); Ouchi et al. (2006)] among them, the model of Cates and coworkers was a 

great success in estimating micelle length which is otherwise inaccessible from non-rheological 

measurements. [Cates (1987); Candau and Cates (1990); Granek (1994)] 

Within the framework of polymer “tube model” [Doi and Edwards (1986)] and reptation 

theory [de Gennes (1979)], in 1987, Cates put forward a model to explain the unique Maxwellian 

(i.e., single-exponential) stress relaxation behavior observed for simple surfactants that form 

WLMs such as cetyltrimethylammonium (CTA) surfactants [Turner and Cates (1991); Lequeux 

(1992)] in which diffusion of WLMs is limited to “tube”-like region by entanglements. The 

original Cates model is based on the interplay of two mechanisms: i.e., breakage/rejoining and 
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reptation. Imposition of a small step strain on entangled WLMs takes their conformations out of 

equilibrium, producing a stress. In the absence of breakage, micelle segments can only relax the 

stress by diffusing curvilinearly, or “reptating,” out of the initial tube, which leads to a loss of 

original, oriented tube segments as the micelle vacates them. This reptation motion is now well 

understood for ordinary “dead” polymers [Doi and Edwards (1986); Likhtman and McLeish 

(2002)], where no breakage or rejoining exists. For living WLMs, micellar breakage accelerates 

the relaxation by creating new ends. To address this effect, a dimensionless breakage time is 

defined: [Cates (1987)] When this dimensionless time decreases below unity, which is usually 

the case for WLM solutions, the relaxation spectrum is narrowed, since for a high breakage rate 

the distance that a micelle segment must travel to diffuse out of its tube becomes independent of 

the tube length. As a result, the polydispersity in micelle length distribution has little effect on 

the relaxation: All tube segments are lost at the same rate and the stress relaxes mono-

exponentially. 

In summary, the original Cates model rests on several assumptions [Cates (1987); 

Candau et al. (1989)], namely, (i) Micelles break with a uniform probability per unit length. (ii) 

Successive breakage and rejoining events are uncorrelated, and breakage is unimicellar while 

rejoining is bimicellar. (iii) Micelle relaxation occurs through reptation. (iv) Tube rearrangement 

or constraint release (CR) is neglected. Although the above model limits relaxation mechanisms 

of micelles to reptation assisted by breakage and rejoining, the approximate single exponential 

relaxation behavior, which reveals itself in a nearly semicircular Cole-Cole plot (i.e., the cross-

plot of loss modulus G” against storage modulus G’), can be successfully reproduced. 

Nevertheless, in experiments, deviations from the semicircle are always observed after a 

minimum is reached on the high frequency side of the Cole-Cole plot [Granek (1994)], implying 

that some relaxation mechanisms are missing from the original theory. Cates and coworkers, 

therefore, added breathing fluctuations or CLFs, which describe time dependent changes in the 

length of the tube contour, as well as high frequency Rouse modes [Dealy and Larson (2005)], 

subsequently into the model. [Granek and Cates (1992); Granek (1994)] Using this modified 

model, the micelle length can be determined from the observed minimum in Cole-Cole plot at 

high frequency. [Granek (1994)] Besides adding high frequency relaxation dynamics into the 

original model, Granek and Cates (1992) also developed a simulation method based on the 
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“Poisson renewal process,” where correlations of micelle length between breakage and rejoining 

events are neglected and micelle lengths are assumed to follow a Poisson distribution.  

Since then, a lot of emphasis have been thrown on applying the Cates model to micellar 

systems composed of cationic, anionic, zwitterionic, or nonionic surfactants. [Barhoum et al. 

(2012)] Not surprisingly, shortcomings are found due to the lack of description on micelle 

rigidity, branches, as well as a complete spectrum of relaxation mechanism, all of which can be 

severely impacted by temperature, salt level, and the presence of hydrotropes, therefore resulting 

in discrepancies between theory and experiments. [Zhao et al. (2015); Feng and Han (2016); 

Lonetti et al. (2011); Cardiel et al. (2014)] For example, the micelle length extracted from 

rheological data using Cates model is usually a fraction of a micron, which is shorter than one 

would expect based on the rather high value of micelle scission energy (i.e., the free energy of 

creating two additional end caps) [Larson (2012)]. Hence, the accuracy of the model is 

questionable to estimate micellar parameters from rheological responses (G’ and G” curves) 

Moreover, different approximations that are made when using the predictive ability of Cates 

model further complicates the rigorous interpretation of the micellar structure. However, when 

compared to other models and simulations in this area, [Yan et al. (2016); Padding et al. (2009); 

Acharya et al. (2006); Aniansson and Wall (1974)] the concept underlying the Cates model 

maintains its attractiveness and by supplemented with an adequate amount of physics, I believe, 

a sophisticated method can be established for quantitative estimation of micellar properties from 

rheology which can hardly be obtained otherwise. 

Motivated by the work of Cates on unbranched WLMs, I developed a novel fast “pointer” 

simulation method that includes recent advances of polymer theories to describe relaxation of 

micelles, where “pointers” are used to track boundaries between relaxed and un-relaxed portions 

of wormlike micelles from time to time. This simulation model for the first time allows not only 

quantitative prediction of flow behaviors but also estimation of important micelle properties with 

much greater accuracy than ever before, which is now used by Procter and Gamble scientists to 

help them understand and eventually design improved surfactant formulations. In what follows, 

Chapter I focuses on both the theoretical and the computational development of the method, 

starting with descriptions of currently understood polymer relaxation mechanisms, followed by 

the novelty of the method in detail, including the pointer algorithm and the genetic algorithm 

(GA) that converts results from the time to the frequency domain. After introducing the two 
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experimental methods used to obtain rheological data from WLM solutions, Chapter II describes 

a detailed data-fitting procedure that yields properties of WLMs on the basis of empirical 

relationships between micellar parameters and local rheological behaviors. The sensitivity 

studies (i.e., analyses on the sensitivity of estimated parameters to error or noise), fitting results 

for various micellar solutions as well as the effect of different breakage mechanisms are also 

discussed there. In Chapter III, I report the success of the method in multiscale modeling of two 

types of commercial surfactant solutions and describe the effects of added salts and perfume raw 

materials (PRMs) on the viscoelastic properties through systematical studies on micellar 

properties inferred from rheology as well as through molecular simulations using dissipative 

particle dynamics (DPD) and molecular “packing parameter” concept. By connecting the 

surfactant packing at the molecular scale to micellar properties at the mesoscale, and these, in 

turn, to the rheological properties at the macroscopic scale, an approach for achieving a 

fundamental understanding of the structure−property relationships of commercial surfactant 

solutions is established. To extend the above success in modeling unbranched but well-entangled 

WLMs, Chapter IV contains the decisive progress being made on two more challenging topics: 

to include the effects of both micelle branches and unentangled micelle rods in the model. By 

simulating systems with different level of branched and unentangled micelles, this extended 

simulation method is capable to predict the change in rheology therefore to allow the 

characterization of solutions at various surfactant and salt concentrations.  

The accomplishments of these work enable, for the first time, modeling of the flow 

behaviors of micelle solutions across the whole range of surfactant and salt concentrations that is 

typically used in micelle-based industrial applications. The above simulation method 

demonstrates good accuracy of the estimations of micelle parameters from rheometric data 

compared to that from neutron scattering. This implies that instead of conducting expansive and 

time consuming experiments such as neutron scattering, it is possible to obtain accurate estimates 

of micelle characteristic parameters and therefore the flow properties of shampoos using much 

cheaper and faster rheometric measurements combined with this simulation model. A recent 

application of this simulation method to 120 different commercial shampoo formulations 

prepared by Procter and Gamble shows the great success of the method in analyzing 

quantitatively how surfactant chemistry affects micelle microstructure and how it manifests in 

solution macroscopic properties. To the best of my knowledge, no such model has ever before 
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been developed for wormlike micelle solutions, and as complemented by molecular dynamic 

simulations this method is now deployed at Procter and Gamble to guide the design of shampoo 

formulations. Hence, with the aforementioned novelty, robustness and success, this method, I 

believe, would eventually become a standard technique in characterization of micelle solutions.    

As a different research direction, I also worked on another topic, namely development of 

rheological model for mechanical response of polymeric glasses under deformation. Lacking 

long-range order, a glass is an amorphous solid conventionally formed by supercooling a liquid 

to the point of arresting molecular motion without crystallization, resulting in a non-equilibrium 

jammed state. [Debenedetti and Stillinger (2001)] This non-equilibrium, amorphous, structure of 

the glass is crucial to controlling the common characteristics of this type of material: hardness, 

brittleness, transparency, low conductivity, and soft magnetism. [Osborne and Lacks (2004); 

Greer (1995)] On the macroscopic scale, the transformation of the liquid to the glass appears 

within a narrow range of temperatures approximated by what is referred to as the glass transition 

temperature. Although the ability to form a glass is not restricted to a specific class of atoms or 

molecules, polymers, however, with a great diversity of local length scales and a broad range of 

characteristic times, can be easily cooled to form glasses with impact resistance and toughness 

[Lee et al. (2009)] that are significantly higher than that of colloidal or metallic glasses. Such 

advantages in mechanical properties make polymeric glasses widely-used in the manufacturing 

with applications being found in a variety of fields: printing and packaging, optics, surface 

protection and coatings, etc. 

Unlike WLM solutions, the rheological modelling of polymeric glasses are greatly 

challenged by their complex behaviors: Under deformation, polymeric glasses show a linear 

elastic response at small strain followed by yielding at larger strains where the energetic barriers 

to plastic flow are overcome. [Boyce et al. (1988); Hoy (2011)] After yielding, strain-softening, 

and a drop in stress with an increase of strain, may also occur, signaling inhomogeneous 

deformation and strain localization (crazing, necking, and shear banding etc.). [Fielding et al. 

(2012) and (2013)] The degree of softening and the magnitude of the yield stress are known to 

depend on the thermomechanical history of polymeric glasses. [Klompen et al. (2005); 

Wendlandt et al. (2005)] In many respects polymeric glasses are similar to other glasses: they 

show a slow evolution towards equilibrium known as physical ageing, and many show non-

Arrhenius temperature dependence of relaxation as well as the decoupling of translational and 
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rotational diffusion as the material is cooled deeply into the glass, indicating increasing local 

heterogeneity. [Schweizer and Saltzmann (2004); Chen et al. (2009)] However, it has been 

generally accepted that the long-chain feature of polymer molecular structure greatly alters the 

mechanical responses of polymeric glasses relative to non-polymer ones. [Wendlandt et al. 

(2005); Hoy and O’Hern (2010)] At very large strains, the polymeric glass enters the hardening 

regime, a phenomenon unique to polymeric glasses where strain localization is greatly 

suppressed. [Hoy and Robbins (2008)] 

Understanding the above behaviors is of great importance in the manufacturing of 

polymeric glass to achieve designed mechanical properties. [Arruda et al. (1993)] Through 

techniques such as neutron and X-ray scattering, [Hansen and McDonald (1986)] nuclear 

magnetic resonance (NMR), [Loo et al. (2000)] birefringence, [Arruda et al. (1993)] and optical 

photo-bleaching, [Lee et al. (2009)] it has been learned that stress can enhance local mobility in 

the glass by either deforming the potential energy landscape or by introducing mechanical 

disorder. [Debenedetti and Stillinger (2001); Chen and Schweizer (2010)] The resulting decrease 

in structural (or segmental) relaxation time is known as mechanical rejuvenation. [Lee et al. 

(2009)] However, when strain hardening begins, the local mobility of the polymeric glass 

decreases and the material becomes highly anisotropic due to the orientation of polymers under 

large deformation. [Wendlandt et al. (2005); Arruda et al. (1993)] A sophisticated model is 

thereof required to characterize the above complex, and non-monotonic behavior of deforming 

polymeric glasses. In general, most existing models of polymeric glasses fall into one of two 

generic categories, i.e., kinetic or thermodynamic. [Chen and Schweizer (2007)] For 

thermodynamic models, configurational entropy is the major concern: it drives local structure 

rearrangements within a cooperative region. Although it is hard to give a clear definition of the 

configurational entropy and the mapping to the real molecules, [Chen et al. (2009)] some of 

these models predict the observed decoupling of translational and rotational motion for different 

types of glasses. Kinetic models show much greater diversity: some relate molecular 

rearrangement to plastic deformation through excited small clusters of “defects” or of “free 

volume” whose concentration is controlled by the competition between ageing and rejuvenation. 

Others introduce a state variable carrying structural information which determines the structural 

relaxation of material functions. In these models, a polymeric glass is assumed to be a 
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continuously deformed material with the time evolution of the state variable controlled by ageing 

and rejuvenation. 

Since most of the aforementioned models are greatly challenged by the non-monotonic, 

complex dependence of the segmental relaxation time on the deformation of the polymeric glass, 

especially during strain hardening and strain reversal. [Lee et al. (2009); Hoy and O’Hern 

(2010)] Given the blurred boundaries between melts and glasses at the molecular level, the 

generic fluid point of view (i.e., that any liquid exhibits solid-like behavior on time scales much 

shorter than the material relaxation time) is favored for the characterization of ageing and 

rejuvenation: the polymeric glass becomes more solid-like through ageing, but fluidizes upon 

rejuvenation. Using this concept, a so-called “fluidity” equation [Moorcroft et al. (2011)] was 

used by Fielding, Cates and Larson [Fielding et al. (2012) and (2013)] to account for the time-

evolution of the segmental relaxation time for polymeric glasses under deformation. In this 

model, the dynamics follow a “two-time-scale” scenario: [Berthier et al. (2000)] the macroscopic 

behavior is controlled by both a local segmental mode and a separate larger-scale, slower, 

polymeric mode, where these two modes contribute additively to the overall stress with their 

relaxation times being coupled by a proportionality relationship. Since ageing and rejuvenation 

reflect local dynamics, and weakly depend on the type of glass, [Klompen et al. (2005); Chen et 

al. (2009); Thurau and Ediger (2002)] their effects on the segmental relaxation time are 

accounted for in an isotropic and additive fashion with a constant ageing rate and a deformation-

controlled rate of rejuvenation, respectively. Therefore, the non-monotonic dependence of 

structural relaxation time on deformation under creep (constant stress) conditions is explained by 

the competition between ageing and rejuvenation: in the post-yield regime, strain-induced 

rejuvenation dominates, causing relaxation time to decline. However, as massive deformation 

builds up rapidly with the onset of strain hardening, and rejuvenation thereafter is suppressed. As 

a result, relaxation time undergoes a rapid rise indicating the ‘‘victory’’ of ageing, even under a 

fixed load.  

To achieve even qualitative predictions from the above two mode model for the uniaxial 

creep experiment reported by Lee and coworkers, [Lee et al. (2009)] the value of polymeric 

modulus is required to be an order of magnitude larger than the experimentally determined 

rubbery modulus. However, during the unloading, this high value needs to be reduced back 

closer to the rubbery modulus by arbitrarily introducing a so-called “crinkle factor” in order to 
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capture the recoil behavior. Nonlinear elasticity [Wendlandt et al. (2005); Hoy and Robbins 

(2008); Larson (1990)] and the formation of ‘‘kinks’’ (i.e., the multiple-folded nearly fully 

stretched subsection of chains) [Fielding et al. (2012) and (2013); Larson (1990)] are thought to 

cause the above consequences. [Larson (1990)] Since the model represents the polymer as a 

simple two-bead dumbbell, does not naturally describe the effect of conformation change in 

polymers, an appropriate treatment that avoids both the artificially high polymer modulus and the 

“crinkle factor” requires a more realistic polymer model for local chain relaxation. Such model 

should also be able to account for intramolecular cooperativity, including chain connectivity, 

stiffness, and finite extensibility. Thus, in the last chapter of this dissertation, i.e., in Chapter V, I 

present a hybrid model for polymeric glasses under deformation that combines a minimal model 

of segmental dynamics, borrowed from the early work of Fielding et al., with a beads-and-

springs model of a polymer, solved by Brownian dynamics (BD) simulations. This coarse-

graining allows simulations that are much faster than molecular dynamics and successfully 

capture the entire range of mechanical response including yielding, plastic flow, strain-

hardening, and incomplete strain recovery. By representing polymers as bead-spring chains, this 

hybrid model improves upon the estimation of the small elastic recoil seen experimentally 

without the use of artificial parameters required previously. [Fielding et al. (2012)] With 

appropriate choice of parameters, predictions of creep, recovery, and segmental relaxation are 

found to be in good agreement with experimental data of a typical polymeric glass (i.e., poly-

methylmethacrylate, PMMA) under uniaxial extension. [Lee et al. (2009)] This new model 

shows dramatic differences in behavior of the segmental relaxation time between extensional 

creep and steady extension, and between extension and shear. The non-monotonic response of 

the segmental relaxation time to extensional creep and the small elastic recovery after removal of 

stress are shown to arise from sub-chains that are trapped between folds, and that become highly 

oriented and stretched at strains of order unity, connecting the behavior of polymeric glasses 

under creep to that of dilute polymer solutions under fast extensional flows. At last, this model is 

also capable to clarify the effects of a commonly used method in solid phase polymer processing, 

i.e., the effects of polymer pre-stress in the parallel or orthogonal direction on the subsequent 

response to extensional deformation by investigating the evolution of polymer conformation at 

mesoscale level.
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Chapter 2: A Mesoscopic Simulation Method for Predicting the Rheology of Semi-

dilute Wormlike Micellar Solutions 

 

I. Introduction  

Surfactant solutions with various self-assembled structures have been intensively studied 

in recent years. Such structures include small spheroidal micelles, long wormlike micelles 

[Lequeux (1996)], ellipsoids, bilayers [Nagarajan (1989)], and ordered phases, that depend on 

type and concentration of salt [Candau et al. (1993); Wang and Larson (2009)], surfactant 

[Hassan et al. (1998); Gomez et al. (2010)], temperature, and solvent [Bruce et al. (2002); Jusufi 

et al. (2008)]. Above the critical micelle concentration (CMC), surfactant molecules aggregate to 

form equilibrium spherical micelles. While changes in equilibrium structure are induced in a 

variety of ways [Michels and Waton (2003); Terech et al. (1992); Helgeson et al. (2010); 

Oelschlaeger et al. (2009)], a transition from spheroid to wormlike micelles often occurs with 

increasing salt concentration, and further increases can result in micelle branching and network 

formation [Ilgenfritz et al. (2004)]. With the widespread use of micelles and surfactant solutions 

[Rosen (1989); Siriwatwechakul et al. (2004)], extensively attention has been paid to 

determining the properties of micelle-solvent systems using computer simulations [Shang et al. 

(2009)], theoretical modeling [Cates and Candau (1990)] or advanced experimental techniques 

[Kuperkar et al. (2008)]. 

It has long been noted that the rheological properties of wormlike micellar solutions have 

similarities to those of long polymers [Candau et al. (1993); Cates and Candau (1990)]. A 

number of theories that exploit those similarities have been developed [Wittmer et al. (1998); 

Grmela et al. (2010); Rothstein (2003)] that treat wormlike micelles as living/equilibrium 

polymers, which incessantly break and rejoin in thermal equilibrium. Using the tube concept for 

entangled polymer, Cates and coworkers [Cates and Candau (1990); Cates (1987); Turner and 

Cates (1991)] developed a model that qualitatively or semi-quantitatively predicts the rheology 

of wormlike micellar solutions and allows properties of micelles, such as their length and rate of 

breakage, to be inferred from rheology. Despite its successes, there remain gaps [Lequeux 
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(1992); van der Schoot and Wittmer (1999); Larson (2011)] in the theory, as discussed in this 

paper. Meanwhile, over the past twenty years since the introduction of Cates’ model, many 

improvements have been developed for more accurate description of the rheology of entangled 

polymer solutions and melts [Dealy and Larson (2005)]. It is therefore time to consider if those 

new developments might be exploited to improve upon Cates’ model for wormlike micelles. 

In this paper, we describe a novel simulation method for extending Cates’ model by 

including additional physics known to be important in entangled polymer solutions but neglected 

in the earlier theories. In what follows, Section II defines needed terminology, Section III focus 

on the theoretical development of our method, starting with a brief review of Cates’ model, 

followed by descriptions of currently understood polymer relaxation mechanisms, and ending 

with the mathematics underlying our simulation method. Section IV describes the computational 

part of our method in detail, including the pointer algorithm, and the genetic algorithm that 

converts results from the time to the frequency domain. After several simulation tests in Section 

V, Section VI contains analyses and discussions of relaxation mechanisms, parameters, and 

compares results from our method with those from Cates’ model using two different procedures. 

At the end of Section VI, our simulation method is applied to experimental data to estimate 

characteristic parameters of some experimental semi-dilute micellar solutions. Conclusions and 

future work are presented in Section VII. 

II. Definitions    

To avoid confusion, we first present definitions of following parameters: 

  𝐿, 𝐿𝑡 , 〈𝐿〉 and 〈𝐿𝑡〉  

𝐿 is the (contour) length of a specific micelle, while 𝐿𝑡 is the corresponding tube length. 

The relationship between tube length and micelle (contour) length can be found in the next 

section. Here, 〈∙〉 denotes an ensemble average over the distribution of micelle lengths or tube 

lengths.   

 𝜏𝑟𝑒𝑝 and 𝜏𝑟̅𝑒𝑝 

Here, 𝜏𝑟𝑒𝑝 is the characteristic reptation time for a micelle of length 𝐿 and curvilinear 

diffusion coefficient 𝐷𝑐, given in Eq. (2.12). 𝜏𝑟̅𝑒𝑝 is the value of 𝜏𝑟𝑒𝑝 for a micelle of average 
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length 〈𝐿〉. In general, an overbar means that the given micelle parameter is evaluated for a 

micelle of length 〈𝐿〉. 

 𝑎 and 𝑑 

Here 𝑎 is the tube diameter, while 𝑑 is the micelle diameter. 

 𝑏𝐾 and 𝑙𝑝 

The Kuhn length (𝑏𝐾) is defined using:  

〈𝑅2〉0 = 𝑁𝐾𝑏𝐾
2 = 𝑏𝐾𝐿 = 𝑎𝐿𝑡                                                       (2.1) 

where 〈𝑅2〉0 is the mean-square end-to-end distance of a micelle and 𝑁𝐾 is the number of Kuhn 

steps in the micelle. Note that the persistence length (𝑙𝑝) is equal to 𝑏𝐾/2.  

 𝑍 and 𝑍𝑡  

𝑍 is the number of entanglements for a micelle with length 𝐿, while 𝑍𝑡  donates the ratio 

of micelle tube length to the entanglement length (𝑙𝑒): 

𝑍 ≡
𝐿

𝑙𝑒
,   𝑍𝑡 ≡

𝐿𝑡
𝑙𝑒
                                                                   (2.2) 

Here the entanglement length 𝑙𝑒 is the length of micelle per entanglement. We discuss later how 

to estimate this.  

 𝜉, 𝜍, 𝜁, and 𝜁𝐾  

Here 𝜉 is the excluded volume screening length (or blob/mesh size), which has units of 

length and in a good solvent is related to the persistence length and entanglement length by 

[Cates (1988); Granek and Cates (1992)]: 

𝜉 = 𝑙𝑝
0.4𝑙𝑒

0.6                                                                        (2.3) 

The dimensionless breakage rate 𝜍 is a ratio of two time constants, namely the breakage 

time to the reptation time, given in Eq. (2.6). The drag coefficient per unit micelle length 𝜁 is 

given by [Morse (1998)]: 

𝜁 =
2𝜋𝜂𝑠
𝑙𝑛 (𝜉/𝑑)

                                                                          (2.4) 

Finally, 𝜁𝐾 is the drag coefficient per micelle Kuhn step with units of force per unit 

velocity, which is related to 𝜁 by Eq. (2.5). Note that both of these drag coefficients are used in 

this paper. 
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𝑁𝐾𝜁𝐾 = 𝜁𝐿                                                                            (2.5) 

 𝜏𝑏̅𝑟 , 𝜏, 𝜏𝑅 and 𝜏𝑒 

Here, 𝜏𝑏̅𝑟 is the average micelle breakage time, and is related to the average micelle 

reptation time (𝜏𝑟̅𝑒𝑝) by the dimensionless breakage rate 𝜍: 

𝜍 ≡
𝜏̅𝑏𝑟
𝜏̅𝑟𝑒𝑝

                                                                             (2.6) 

We take 𝜏 to be the stress relaxation time, defined as the inverse of the crossover 

frequency (𝜔𝑐𝑟𝑜𝑠𝑠) of the storage modulus (𝐺′) with the loss modulus (𝐺"). 𝜏𝑅 is Rouse rotational 

time given by: 

𝜏𝑅 =
𝜁𝐾𝑁𝐾

2𝑏𝐾
2

3𝜋2𝑘𝐵𝑇
                                                                       (2.7) 

Here, again, 𝜁𝐾 is drag coefficient per Kuhn step; 𝑘𝐵 is Boltzmann’s constant; and 𝑇 is the 

temperature. The equilibration time (𝜏𝑒) is the Rouse time of a chain segment between 

entanglements. For monodisperse chains, the relationships [Larson et al. (2003)] 

among 𝜏𝑟𝑒𝑝, 𝜏𝑒 and 𝜏𝑅 are given by:  

𝜏𝑟𝑒𝑝 = 3𝑍𝜏𝑅 = 3𝑍
3𝜏𝑒                                                           (2.8) 

All these time constants will be used in this paper. 

 𝛼𝑒  

The semi-flexibility factor 𝛼𝑒 is defined as the ratio of entanglement length to persistence 

length:  

𝛼𝑒 ≡
𝑙𝑒
𝑙𝑝
                                                                          (2.9) 

Note in the early work of Cates [Cates (1987)], the parameter 𝛼 (≡ 𝑍̅−1) was introduced to 

approximate the influence of contour length fluctuations (CLFs), which were called “breathing 

fluctuations”. 

III. Theory 

Here we first briefly review the tube model and reptation theory. 
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 Tube model and reptation theory 

In the well-entangled regime, the motion of an individual chain-like molecule is confined 

to a “tube”-like region by topological constraints imposed by its neighbors [Dealy and Larson 

(2005); Doi and Edwards (1986)]. The tube length is no greater than the chain length and the so-

called tube diameter (𝑎) is the length of a tube segment or a “tube Kuhn length”. For the so-

called “loosely” and “tightly entangled” regimes (defined shortly), 𝑎 is determined by the 

entanglement length (𝑙𝑒): 

Loose entanglements: a2 = NebK
2 = 2lelp                                          (2.10a) 

Tight entanglements:  a = le                                                                  (2.10b) 

Here, 𝑁𝑒 is the number of Kuhn steps in a single tube segment. By combining Eq. (2.1) with Eq. 

(2.10a), we can obtain an important relationship involving tube length (𝐿𝑡) and chain length (𝐿) 

for the loosely entangled regime: 

𝑙𝑒𝐿𝑡 = 𝑎𝐿                                                                         (2.11) 

In the tube, a micelle “chain” can alter its conformation by diffusing along the curvilinear 

path of the tube, which is a process known as “reptation” [de Gennes (1979)]. Any part of the 

chain that diffuses out of the tube instantly achieves an equilibrium conformation. (While this is 

not strictly true in the tight entanglement limit, wormlike micelles are typically close enough to 

being loosely entangled, and are long enough, that this approximation is a reasonable one even 

for tightly entangled micelles.) The reptation time and curvilinear diffusion coefficient 𝐷𝑐 of a 

chain with length 𝐿 are given by 

𝜏𝑟𝑒𝑝 =
𝐿𝑡
2

𝜋2𝐷𝑐
,   𝐷𝑐 ≡

𝐷0
𝐿
,   𝐷0 =

𝑘𝐵𝑇

𝜁
                                                 (2.12) 

where 𝐷0 and 𝜁 are the diffusivity and drag coefficient per unit length of chain, respectively. 

With these parameters, the fraction of tube remaining occupied at a time 𝑡 after a small 

step deformation, which is proportional to the fraction of remaining stress (𝜇), for pure reptation, 

is: 

𝜇(𝑡) =
8

𝜋2
∑ 𝑝−2𝑒𝑥𝑝(

−𝑡𝑝2

𝜏𝑟𝑒𝑝
)

𝑝=𝑜𝑑𝑑

                                                   (2.13) 

The detailed derivation can be found in Doi and Edwards (1986). However, Eq. (2.13) is 

only accurate for monodisperse chains, and this formula assumes a fixed contour length and 

neglect of other high frequency motions [Likhtman and McLeish (2002)]. 
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 Cates’ model 

In 1987 Cates [Cates (1987)] put forward a model to address the “living” feature of 

micelle chains within the framework of tube model and reptation dynamics. The model 

successfully explained the nearly single-exponential shape of the stress relaxation 

function 𝜇(𝑡) for simple surfactants that form wormlike micelles such as 

cetyltrimethylammonium (CTA) surfactants [Turner and Cates (1991); Lequeux (1992)]. The 

original Cates’ model rests on several assumptions [Cates (1987); Candau et al. (1989)], namely: 

i. Micelles break with a uniform probability per unit length. The corresponding average breakage 

time (𝜏𝑏̅𝑟) is defined as the lifetime of a micelle with average length 〈𝐿〉 : 

𝜏̅𝑏𝑟 =
1

𝑘〈𝐿〉
                                                                          (2.14) 

where 𝑘 is the breakage rate per unit length. ii. Successive breakage and rejoining events are 

uncorrelated, and breakage is unimicellar while rejoining is bi-micellar. iii. Micelle relaxation 

occurs through reptation. iv. Tube rearrangement or constraint release (CR) is neglected.  

Consistent with the above assumptions, the equilibrium statistical mechanics, based on a 

free energy containing translational entropy, and an end-cap free energy that is independent of 

micelle length, yields the following micellar length distribution [Cates (1987)]:  

𝑁(𝐿) =
𝑘

𝑘′
𝑒𝑥𝑝 (

−𝐿

〈𝐿〉
),   

𝑘

𝑘′
=

𝜌

2〈𝐿〉2
                                              (2.15𝑎) 

 𝜌 = ∫ 𝐿𝑁(𝐿)𝑑𝐿
∞

0

                                                                           (2.15𝑏) 

Here 𝑁(𝐿)𝑑𝐿 is the number density of micelles with length 𝐿 ± 𝑑𝐿/2; 𝜌 is the contour length of 

micelles per unit volume of solution; 𝑘 is the rate constant for breakage; and 𝑘′ is the rate 

constant for rejoining. See the original paper of Cates [Cates (1987)] for details. 

According to assumptions iii and iv, the original Cates’ model limits relaxation 

mechanisms of micelles to reptation assisted by breakage and rejoining. Note that by breaking, 

new ends are created, which helps to accelerate relaxation by reptation. For 𝜏𝑏̅𝑟 ≫ 𝜏𝑟̅𝑒𝑝, breakage 

is slow compared to reptation, and the relaxation is dominated by reptation of polydisperse 

micelles; while for 𝜏𝑏̅𝑟 ≪ 𝜏𝑟̅𝑒𝑝, the relaxation is controlled by the interplay of breakage/rejoining 

with reptation, which yields a nearly mono-exponential decay with stress relaxation time (𝜏): 

𝜏~𝜏̅𝑟𝑒𝑝𝜍
0.5, 𝜍 =

𝜏̅𝑏𝑟
𝜏̅𝑟𝑒𝑝

≪ 1                                                          (2.16) 
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Thus, when Eq. (2.16) applies, the approximate single exponential relaxation produces a 

nearly semicircular “Cole-Cole” cross-plot of loss modulus (𝐺") against storage modulus (𝐺′). 

Nevertheless, in experiments, an increase of 𝐺" is always observed after a minimum is reached 

on the right side (i.e., the high frequency side) of the Cole-Cole plot [Granek (1994)], implying 

that additional relaxation mechanisms are present at high frequencies. Cates and co-workers 

therefore added “breathing fluctuations” or contour length fluctuations (CLFs), which describe 

time dependent changes in the length of the tube contour. 

The timescale of these “breathing fluctuations” relative to reptation is set by 𝑍̅, the 

number of entanglements for a micelle with average length 〈𝐿〉, according to  

𝜏̅𝑏𝑟𝑒𝑎𝑡ℎ~𝑍̅
−1𝜏̅𝑟𝑒𝑝                                                                 (2.17𝑎) 

The stress relaxation time, when “breathing” is able to relax the entire wormlike micelle before 

reptation can, is given by: 

𝜏~𝜏̅𝑟𝑒𝑝𝑍̅
−0.5𝜍0.5,   𝜍 ≤ 𝑍̅−3                                                     (2.17𝑏) 

An intermediate regime between breathing-dominated and reptation-dominated relaxation occurs 

when ς is comparable to 𝑍̅−1: 

𝜏~𝜏̅𝑟𝑒𝑝𝑍̅
0.25𝜍0.75,   𝑍̅−3 ≤ 𝜍 ≤ 𝑍̅−1                                             (2.17𝑐) 

To sum up, stress relaxation times under different conditions are given below: 

{
 
 

 
 

𝜏~𝜏̅𝑟𝑒𝑝,    𝜍 ≥ 1

𝜏~𝜏̅𝑟𝑒𝑝𝜍
0.5,    𝑍̅−1 ≤ 𝜍 ≤ 1

𝜏~𝜏̅𝑟𝑒𝑝𝑍̅
0.25𝜍0.75,    𝑍̅−3 ≤ 𝜍 ≤ 𝑍̅−1

𝜏~𝜏̅𝑟𝑒𝑝𝑍̅
−0.5𝜍0.5,    𝜍 ≤ 𝑍̅−3

 

Note that the above formulas can be found in reference [Cates (1987)] except that we have 

replaced 𝛼 by its equivalent, 𝑍̅−1. 

By incorporating “breathing” along with high-frequency Rouse modes [Granek and Cates 

(1992); Granek (1994)], the deviation from a perfect semicircle at high frequency can be used to 

estimate the ratio of micelle entanglement length (𝑙𝑒) to average length (〈𝐿〉):  

𝐺"𝑚𝑖𝑛
𝐺𝑁

= (
𝑙𝑒
〈𝐿〉
)
0.8

= 𝑍̅−0.8                                                      (2.18) 

Here, 𝐺𝑁 is the plateau modulus and 𝐺"𝑚𝑖𝑛 is the local minimum of 𝐺" in the Cole-Cole plot at 

high frequency. Note that for micelle solutions with 𝑍̅−3 ≤ ς ≤ 𝑍̅−1, as ς decreases, the 

minimum gets shallower [Cates (1987); Granek and Cates (1992); Granek (1994)] 
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until ς becomes comparable to  𝑍̅−3, which only occurs for micelles with a large number of 

entanglements (𝑍̅). 

Besides adding high frequency relaxation dynamics into the original model, Granek and 

Cates [Granek and Cates (1992)] also developed a simulation method based on the “Poisson 

renewal process.” By neglecting correlations of micelle length between breakage/rejoining 

events and assuming that micelle lengths follow a Poisson distribution (Eq. (2.15)), the 

relaxation modulus 𝐺(𝑡) for wormlike micellar solutions can be described by extending Eq. 

(2.13) to polydisperse lengths. Using numerical simulations, the following stress relaxation time 

was obtained [Granek and Cates (1992)]: 

𝜏 = 0.69𝜏̅𝑟𝑒𝑝(𝜍
1/2 + 𝐶𝜍2/3)                                                  (2.19) 

where 𝐶 is a correction coefficient accounting for effect of high frequency relaxation dynamics.  

 Experimental measurements and limitation of Cates’ model 

Experimental characterization of micelle structure has significantly contributed to the 

development of the theory of thread-like micelle dynamics. The value of the persistence length 

was measured by Porte and coworkers [Porte et al. (1980)], who showed that elongated micelles 

should be thought of as semi-flexible polymer-like chains, rather than as rods. Since then, many 

important measurement methods have been applied to micellar solutions: SANS (small angle 

neutron scattering) [Marignan et al. (1989); Appell and Marignan et al. (1991)], birefringence 

[Shikata et al. (1994); Decruppe and Lerouge (1999)], DLS/SLS (dynamic/static light scattering) 

[Brown et al. (1989); Nemoto et al. (1995)], cryo-TEM (cryogenic transmission electron 

microscopy) [Clausen et al. (1992)], NSE (neutron spin echo) [Nettesheim and Wagner (2007)] 

and DWS (diffusing wave scattering) [Galvan-Miyoshi et al. (2008)]. Table 1.1 shows that the 

measured persistence lengths are typically in the range 20-50 nm, and the micelle diameter is 

approximately 4 nm.  

Although these measurements supply inputs to Cates’ model, its predictive ability is 

limited by some shortcomings:   

A. The average micelle length is not readily obtained from the above methods, and the 

value extracted from rheological data using Cates’ model is usually a fraction of a micron, which 

is shorter than one would expect based on the rather high value of micelle scission energy 

[Larson (2011)]. B. The model does not account for the effects of the persistence length (𝑙𝑝), nor 
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allow it to be estimated from rheological properties [Oelschlaeger et al. (2010)]. C. The accuracy 

of rheological predictions is questionable for solutions in the crossover region between “loose” 

and “tight” entanglements, as discussed below. D. The treatment of high frequency relaxation 

mechanisms is over-simplified and lacks consideration of micelle bending modes. E. The 

correlation of micelle length after a breakage/rejoining with that before such an event is 

neglected. F. Constraint release or tube rearrangement is neglected.  

Table 2.1 Experimental values of 𝑙𝑝 and 𝑟𝑐𝑠 from the literature. 

Literature Method System 𝒍𝒑 (nm) 𝒅/𝟐 (nm) 

Marignan et al. (1989) SANS CPyBr/NaBr ~ 1.85-2.4 

Appell et al. (1991) SANS CPyClO3/NaBr 17±5 2±0.1 

Gamez-Corrales et al. (1999) SANS CTAT/NaCl 38±2 2.1±0.05 

Magid et al. (2000) SANS CTA26ClBz+CTAC/Na26ClBz+NaCl 17-34 1.76-2.25 

Croce et al. (2003) SANS EHAC/KCl ~ 2.1 

Schubert et al. (2003) SANS CTAT+SDBS/NaTosylate 20-85 2.12-2.16 

Kuperkar et al. (2008) SANS CTAB/NaNO3 ~ 2.28 

Porte et al. (1980) Birefringence CPyBr/NaBr 20 3 

Shikata et al. (1994) Birefringence CTAB/NaSal, 26 ~ 

Appell et al. (1982) SLS CPyBr/NaBr 20±5 ~ 

Imae et al. (1986) SLS CTAB/NaBr 42-53 2.3 

Brown et al. (1989) DLS CTAB/Naphthalenesulfonate 36 ~ 

Imae (1990) DLS C16TASal/NaSal 111-142 ~ 

Nettesheim et al. (2007) NSE CTAB/NaSal 24 ~ 

Willenbacher et al. (2007) DWS CPyCl/NaSal 31-34 ~ 

Galvan et al. (2008) DWS CTAB/NaSal 29-45 ~ 

Oelschlaeger et al. (2009) DWS CPyCl/NaSal 26-30 ~ 

Oelschlaeger et al. (2010) DWS CTAB/KBr, CTAB/NaNO3, CTAB/NaClO3 40, 34, 29 ~ 

 

Thus, an improved theory is desirable. In what follows, we present a more detailed 

description of micelle relaxation processes, and a simulation method that accounts for these 

details.  

 Relaxation theory 

A. Contour length fluctuations (CLFs) 

Contour length fluctuations (CLFs) are Rouse-like fluctuations that allow the chain to 

wrinkle and un-wrinkle in its tube, vacating ends of the tube and relaxing stress [Dealy and 
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Larson (2005)]. CLFs lead to a shortening of reptation time (𝜏𝑟𝑒𝑝
𝐹 ), as estimated by Doi and 

Edwards (1986): 

𝜏𝑟𝑒𝑝
𝐹 ≈ 𝜏𝑟𝑒𝑝

𝑁𝐹 (1 −
1.47

√𝑍
)
2

                                                                (2.20) 

In the above, the superscript “𝑁𝐹” denotes the pure reptation, while “𝐹” denotes the CLF-

affected reptation. We note here that a more accurate expression (Eq. (2.21)) was derived by 

Likhtman and McLeish (2002): 

𝜏𝑟𝑒𝑝
𝐹

𝜏𝑟𝑒𝑝
𝑁𝐹 = 1 −

2𝐶1

√𝑍
+
𝐶2
𝑍
+
𝐶3
𝑍1.5

                                                      (2.21) 

where 𝐶1 = 1.69, 𝐶2 = 4.17, 𝐶3 = −1.55. 

Beyond this simple correction of the reptation time, Milner and McLeish (1998) 

developed a mathematical expression that accounts for the time-dependent relaxation produced 

by CLFs. By treating a linear chain as a two-armed star with fixed center, they obtained the 

following relationship for the shrinkage of the un-relaxed tube as a function of time:  

〈𝑙𝑡
2〉 =

4𝑁𝐾𝑏𝐾
2

3𝜋1.5
(
𝑡

𝜏𝑅
)
0.5

                                                            (2.22) 

Here 𝑙𝑡 is the lost tube length at each end through fluctuations, and the brackets 〈∙〉 denote an 

ensemble average. However, this formula leaves out the shrinkage of tube due to reptation, 

which becomes ever more important as relaxation progresses. To include contributions from both 

reptation and CLFs, we first take a time derivative of both sides of Eq. (2.22), and then use Eq. 

(2.22) to replace time 𝑡 on the right side with 〈𝑙𝑡
2〉, giving:  

𝑑〈𝑙𝑡
2〉

𝑑𝑡
=
8𝑏𝐾

2𝑘𝐵𝑇

3𝜋𝜁𝐾〈𝑙𝑡
2〉
                                                                (2.23) 

where the definition of Rouse time (𝜏𝑅) (Eq. (2.7)) has been used in deriving the above equation. 

Substituting Eqs. (2.1), (2.5), and (2.12) into Eq. (2.23) yields: 

𝑑〈𝑙𝑡
2〉

𝑑𝑡
=
16𝐷0𝑙𝑝

3𝜋〈𝑙𝑡
2〉
                                                               (2.24) 

The advantage of Eq. (2.24) over Eq. (2.22) is that the former doesn’t contain time 𝑡 explicitly as 

Eq. (2.22) does, but instead describes the rate of loss of occupied tube due to CLFs. This allows 

us to add this rate to the rate of loss of tube length through reptation, as we describe later.  
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B. Constraint release (CR) 

In addition to the above mechanisms, chain relaxation can also occur due to motion of the 

surrounding chains, i.e., due to constraint release (CR). Because of its complexity, no general, 

rigorous theory has been developed for CR, especially for micelles or “living polymers” with 

breakage and rejoining kinetics. However, a simple model of CR, called double reptation [Dealy 

and Larson (2005)], has been found to capture much of its effect in ordinary polymers, especially 

when the length distribution is polydisperse, which is always the case for micellar solutions. 

Double reptation gives the following simple formula [Tuminello (1986); Tsenoglou (1987); des 

Cloizeaux (1988); Dealy and Larson (2005)] for CR effect on relaxation modulus (𝐺(𝑡)):  

𝐺(𝑡) = 𝐺𝑁𝜇
2(𝑡)                                                                    (2.25) 

where 𝜇(𝑡) is the relaxation function or the probability for a single chain to relax in a fixed 

entanglement matrix; i.e., in the absence of CR. Thus, as a simple but effective treatment of CR 

effects, double reptation is incorporated in our method.  

C. Rouse modes 

For entangled solutions, long-range Rouse motions for monomers are impeded by 

topological constraints; the contribution of Rouse motions is thereby confined to a distance of 

order 𝑙𝑒 along the chain. At such short length scales, its contribution is only significant at high 

frequencies. These high-frequency Rouse motions result in the following contributions 

to 𝐺′and 𝐺" [Wang et al. (2010)]: 

𝐺′(𝜔) = 𝐺𝑁
5(𝜔𝜏𝑒)

2

4
∑

𝜙𝑖
𝑍𝑖

𝑖

∑
1

(𝜔𝜏𝑒)
2 + 4(

𝑝
𝑍𝑖
)
4

𝑁𝑒𝑍𝑖

𝑝=𝑍𝑖

                           (2.26𝑎) 

𝐺"(𝜔) = 𝐺𝑁
5𝜔𝜏𝑒
4

∑
𝜙𝑖
𝑍𝑖

𝑖

∑
2(𝑝/𝑍𝑖)

2

(𝜔𝜏𝑒)
2 + 4(𝑝/𝑍𝑖)

4

𝑁𝑒𝑍𝑖

𝑝=𝑍𝑖

                             (2.26𝑏) 

where 𝜙𝑖  is the volume fraction of micelles with length 𝐿𝑖; 𝜔 is the frequency; 𝑁𝑒 is the number 

of Kuhn steps in a single tube segment (𝑙𝑒/𝑏𝐾), which is here made an integer by rounding 

down, and 𝜏𝑒 is the equilibration time. In the above, 𝑝 is the mode number of the Rouse motions. 

Note that the lowest mode number for each chain is equal to the number of entanglements 𝑍𝑖  in 

the chain, since we are only accounting for Rouse motions localized to within a tube segment, as 

discussed in reference [Wang et al. (2010)]. In both Eqs. (2.26a) and (2.26b), the outer sum is a 

sum over a discrete distribution of micelle species indexed by “𝑖”.  
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The volume fraction (𝜙𝑖) of micelles with length 𝐿𝑖  can be expressed in terms of the 

number density (𝑁(𝐿𝑖)), where this number density distribution is now taken to be discrete, 

summing to unity.  

𝜙𝑖 = 𝑁(𝐿𝑖)𝐿𝑖
𝜋𝑑2

4
                                                                (2.27) 

D. Semi-flexibility and bending modes 

1) Entanglement regimes and semi-flexibility 

For entangled chains, two different scenarios are depicted in Fig. 2.1 depending on the 

flexibility: case a) occurs when the chain can form a random-walk coil within a single tube 

segment of length 𝑎, while for case b) it can only bend slightly over this distance. The above two 

scenarios are called “loosely” and “tightly” entangled, respectively. Cates assumed that micellar 

solutions lie in the loosely entangled regime, which we are now finding to be inaccurate for some 

micellar solutions [Galvan-Miyoshi et al. (2008); Oelschlaeger et al. (2009); Oelschlaeher et al. 

(2010)].  

 

 
Figure 2.1 Loose and tight entanglement regimes [Reprinted with permission from Morse (1998a). 

Copyright 1998 American Chemical Society] 

Therefore, in this paper both loosely and tightly entanglements are handled more 

carefully by introducing the parameter (𝛼𝑒), which is the ratio of entanglement length to 

persistence length, as given by Eq. (2.9). Thus, in the loosely entangled regime (𝛼𝑒 > 2), the 

tube diameter (𝑎) is larger than the Kuhn length (𝑏𝐾). For the tightly entangled regime (𝛼𝑒 <

1), 𝑎 is less than the persistence length (𝑙𝑝). And we take the crossover between these regimes to 

occur within the range 1 ≤ 𝛼𝑒 ≤ 2. By applying Eqs. (2.10) and (2.11), the relationships 

between the micelle length (𝐿) and its corresponding tube length (𝐿𝑡) for these regimes are: 

𝐿𝑡 ≈ 𝐿,   𝛼𝑒 < 2                                                                     (2.28𝑎) 

𝐿𝑡 ≈ 𝐿 /√0.5𝛼𝑒 ,   𝛼𝑒 > 2                                                     (2.28𝑏) 
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Thus, in both the tight entanglement and crossover regimes (𝛼𝑒 < 2), the tube length is 

approximately equal to the micelle length. 

Although the plateau modulus (𝐺𝑁) is often determined empirically by doubling the value 

of measured modulus at the crossover of 𝐺′and 𝐺" [Couillet et al. (2004)], it can also be 

calculated theoretically. In the loosely entangled regime, 𝐺𝑁 can be derived from blob theory 

[Khatory et al. (1993); Heo et al. (2005)]: 

𝐺𝑁 = 𝐴
𝑘𝐵𝑇

𝜉3
                                                                          (2.29) 

where 𝜉 is the mesh size (See Eq. (2.3)). Here we introduce a prefactor 𝐴 which is absent from 

the original equation in Cates’ paper [Turner and Cates (1991)]. The theoretical derivation of its 

value 𝐴 = 9.75 from established correlations for loosely entangled polymers is given in 

Appendix A. 

On the other hand, in the tight entanglement regime 𝐺𝑁 is given by [Morse (1998)]: 

𝐺𝑁 =
7

5

𝜌𝑘𝐵𝑇

𝑙𝑒
                                                                      (2.30) 

where, as defined earlier, 𝜌 is the micelle contour length per unit volume, which is related to 

micelle diameter (𝑑) and surfactant volume fraction (𝜙) by: 

𝜌 =
4𝜙

𝜋𝑑2
                                                                          (2.31)  

Since in many cases, micellar solutions lie between the tight and loose entanglement 

regimes, we here present a crossover formula to obtain the plateau modulus for any ratio (𝛼𝑒) of  

entanglement length to persistence length, namely: 

𝐺𝑁 = 𝑓(𝛼𝑒) ⋅ 9.75
𝑘𝐵𝑇

𝛼𝑒
9/5
𝑙𝑝
3
+ [1 − 𝑓(𝛼𝑒)] ⋅

28

5𝜋

𝜙𝑘𝐵𝑇

𝑑2𝛼𝑒𝑙𝑝
                      (2.32𝑎) 

In the above, we take the weight function 𝑓(𝛼𝑒) to be: 

𝑓(𝛼𝑒) =
𝛼𝑒
𝑛

𝑛 + 𝛼𝑒
𝑛                                                              (2.32𝑏) 

where the value 𝑛 sets the steepness of the cross-over between the formulas for loose and tight 

entanglements (Eqs. (2.29) and (2.30)). Here, we set 𝑛 = 3 to give a relatively rapid, but smooth, 

crossover, as shown in Fig. 2.2 We note that at higher concentrations where one enters the tight 

entanglement regime, one might not expect the blob theory to be applicable. But the crossover 

formula, Eq. (2.32a), is designed to transition away from the prediction of the blob theory (Eq. 
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29) to that for tight entanglements (Eq. (2.30)) as the entanglements become tight, so the failings 

of the blob theory at high concentration should have negligible impact.     

 

 
Figure 2.2 Plateau modulus for loose and tight entanglement regimes and the crossover between them 

(for 𝑇 = 300K, 𝑙𝑝 = 25nm, and 𝑑 = 5nm). 

2) Bending modes 

The relaxation dynamics introduced in parts i through iii involve length scales larger than 

persistence length (𝑙𝑝), for which chains are flexible and high frequency relaxation dynamics is 

governed by Rouse modes. However, on length scales smaller than 𝑙𝑝, chain segments are 

effectively elastic rods [Morse (1998)], whose dynamics are governed by bending motions 

whose elastic modulus 𝐵(𝜔) [Morse (1998); Pasquali et al. (2001)] was given by Morse and 

Macintosh [Morse (1998); Gittes and MacKintosh]: 

𝐵(𝜔) =
23/4𝑘𝐵𝑇

𝑙𝑝
 (𝑖𝜔𝜏𝑝)

3/4,   𝜏𝑝 =
𝜁⊥𝑙𝑝

3

𝑘𝐵𝑇
                                        (2.33𝑎) 

where 𝜁⊥ is drag coefficient for perpendicular bending motion, given by Batchelor as [Batchelor 

(1971); Morse (1998)]: 

𝜁⊥ =
4𝜋𝜂𝑠

𝑙𝑛 (0.6𝜉/𝑑)
                                                                  (2.33𝑏) 

Due to the short length scales over which it contributes to the modulus, bending is only 

important at frequencies (𝜔 > 1/𝜏𝑝) higher than those for flexible Rouse motions. Thus, 

contributions to the storage and loss modulus from bending motions are: 
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𝐺′(𝜔) = 𝑅𝑒 [
𝐵(𝜔) ⋅ 𝜌

15
] ,   𝐺"(𝜔) = 𝐼𝑚 [

𝐵(𝜔) ⋅ 𝜌

15
] + 𝜔𝜂𝑠                            (2.34) 

where the definition of 𝜌 is given by Eq. (2.31). Equations (2.33) and (2.34) yield a three-quarter 

power law for 𝐺" at high frequency, which has been confirmed experimentally by both 

Oelschlaeger’s and Galvan’s groups [Oelschlaeger et al. (2009); Galvan-Miyoshi et al. (2008); 

Oelschlaeger et al. (2010)]. 

 Functional form of the modulus  

The aim of our simulation method described in the following section is to predict linear 

viscoelasticity from micelle parameters, and, inversely, to devise a method to determine those 

parameters from rheological data. The latter methodology is valuable because some parameters 

are difficult to obtain from non-rheological measurements [Nettesheim and Wagner (2007); 

Schubert et al. (2003); Galvan-Miyoshi et al. (2008); Clausen et al. (1992); Shikata et al. (1994); 

Brown et al. (1989); Nemoto et al. (1995); Oelschlaeger et al. (2010); Appell et al. (1982); 

Willenbacher et al. (2007); Croce et al. (2003); Magid et al. (2000); Imae (1990); Imae and 

Ikeda (1986)]. Based on the relaxation mechanisms introduced above, the rheology of wormlike 

micellar solutions is controlled by five independent micelle parameters which can be taken to be: 

plateau modulus (𝐺𝑁), dimensionless breakage rate (𝜍), average micelle length (〈𝐿〉), semi-

flexibility coefficient (𝛼𝑒), and micelle diameter (𝑑). Detailed information about them and how 

other parameters, such as time scales, are derived from them, can be found in previous sections. 

Thus, with the above five independent parameters the functional form of the complex 

modulus 𝐺∗can be expressed as: 

𝐺∗(𝜔) = ℱ[𝐺𝑁𝜇
2(𝑡, 𝜍, 〈𝐿〉, 𝛼𝑒 , 𝑑)] + 𝐺

𝐻(𝜔)                                       (2.35) 

Here the real and imaginary parts of 𝐺∗(𝜔) are the storage (𝐺′) and loss (𝐺") moduli, 

respectively. The dimensionless stress relaxation function 𝜇 (fraction of un-relaxed tube 

segments in the absence of CR) is squared to allow for constraint release according to the 

“double reptation” ansatz (Eq. (2.25)). 𝐺𝐻(𝜔) accounts for contributions from high frequency 

Rouse and bending modes (Eq. (2.26) and Eq. (2.34)), and also depends on the five parameters 

listed above. In practice, we only add these high frequency modes after we have Fourier 

transformed (denoted by operation ℱ[∙] in Eq. (2.35)) the time-dependent function into the 

frequency-dependent one. Note that the effect of experimental conditions (temperature 𝑇, 
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surfactant volume fraction 𝜙 and solvent or water viscosity 𝜂𝑠) are implicitly included among the 

model parameters, although we don’t count them among the five parameters listed above.     

For use in what follows, we define in Table 2.2 a set of “standard” values of parameters 

to be used in example simulations.  

Table 2.2 “Standard” values of parameters. 

 Experimental conditions Model parameters 

Section 𝑇 (K) 𝜙 𝜂𝑠 (cP) 𝑙𝑝 (nm) 𝜍 〈𝐿〉 (nm) 𝛼𝑒 𝑑 (nm) 

IV-3 300 0.1 0.891 15 0.005 80𝑙𝑝 3 3 

VI 300 0.1 0.891 25 0.05 80𝑙𝑝 2 5 

Note that persistence length (𝑙𝑝) can be used to obtain the plateau modulus (𝐺𝑁) once other micelle 

parameters (𝜍, 〈𝐿〉, 𝛼𝑒 and 𝑑) as well as temperature 𝑇 and surfactant volume fraction 𝜙 are known (see 

Eq. (2.32)). 

IV. Modeling 

 Polydispersity 

In thermal equilibrium, wormlike micelles are polydisperse in length. Two simple 

approaches, i.e.: A. mean-field theory (MFT) and B. scaling theory, give relationships between 

average micelle length (〈𝐿〉) and scission free energy (𝐸) [Cates (1988); Candau et al. (1989); 

Cates and Candau (1990)]:  

〈𝐿〉𝑀𝐹𝑇 = 𝜙
0.5𝑒𝑥𝑝(𝐸/2𝑘𝐵𝑇)                                                    (2.36𝑎) 

〈𝐿〉𝑠𝑐𝑎𝑙𝑖𝑛𝑔 ≅ 𝜙
0.6𝑒𝑥𝑝(𝐸/2𝑘𝐵𝑇)                                               (2.36𝑏) 

The scaling result differs from that for MFT because of its inclusion of the excluded volume 

repulsion. Unfortunately, the above two equations cannot readily be used to extract average 

micelle length, since 𝐸 is hard to determine from experiments.  

In our simulation method, the exponential micelle length distribution (see Eq. (2.15)) is 

discretized into segments with segment length ∆𝐿 ∼ 𝑂(𝑙𝑝). The discretized distribution function 

relates the micelle length (𝑚𝑖∆𝐿,with 𝑚𝑖 the number of segments in the micelle) to the 

corresponding number 𝑛𝑖 of micelles with this length:  

𝑛𝑖 = 𝐼𝑛𝑡[𝑛𝑢𝑚 ⋅ 𝑒𝑥𝑝(−𝑚𝑖/𝑀)]                                              (2.37) 

Here “𝐼𝑛𝑡” is the integer function which rounds the argument down to nearest integer, 𝑛𝑢𝑚 

(𝑛𝑢𝑚 = 10,000) is the total number of micelles in the simulation ensemble; 𝑀 is the number of 

segments for a micelle with average length, so that 𝑚𝑖 varies from 1 to several times 𝑀. 
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Note 𝑛𝑖 , 𝑀,𝑚𝑖, 𝑖 are all integers in our simulation method, with the value of 𝑚𝑖 determined by 

minimizing the error between continuous and discrete micelle length distributions. 

 Pointer algorithm 

A. Motivation 

Since breakage/rejoining of micelles accelerates relaxation by creating new un-relaxed 

micelle ends, an appropriate treatment of micellar breakage/rejoining is the key element for any 

model of wormlike micellar solutions. In 1987, Cates [Cates (1987)] developed a particle 

diffusing method coupled with random end-hop processes to describe breakage/rejoining of 

micelles (See Fig. 2.3). His method is efficient, if only the curvilinear diffusivity (reptation) is 

included. Further improvements are attained by adding other relaxation dynamics (CLF and 

Rouse motion). A more sophisticated method was developed by Granek and Cates [Granek and 

Cates (1992)] in their “Poisson renewal” process, where a survival time for individual micelles is 

introduced to describe the occurrence of breakage/rejoining events. However, their model does 

not account for chain length correlations across breakage/rejoining events, nor does it include 

constraint release, or the crossover to tight entanglements. Thus, improvements are still required. 

 

 
Figure 2.3 Diffusing method with end-hop process [Reprinted with permission from Cates (1987). 

Copyright 1987 American Chemical Society].  

B. Pointer algorithm 

Here, we account for both the “living” feature of micelles and their polymer-like 

relaxation mechanisms using a large ensemble of around 10,000 wormlike micelles. Rather than 

dealing with all Kuhn segments in these chains, it is more efficient to track only the locations of 

pointers that separate the un-relaxed from the relaxed segments along a discretized micelle, as 
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illustrated in Fig. 2.4. Then, by summing the fraction of un-relaxed segments between the 

pointers for all micelles, the linear stress relaxation function (𝜇) in the absence of CR can be 

calculated.  

 

 
Figure 2.4 Pointers along discretized micelles. The shaded segments are the unrelaxed ones.      

C. Breakage and rejoining with pointer algorithm 

With the above pointer algorithm, the breakage and rejoining of micelles can be 

described as creations and annihilations of pointers. When two chains fuse as shown in Fig. 2.5a, 

pointers do not disappear but are retained within the fused micelle to indicate the un-relaxed 

portions of the new, longer micelle. For micellar breakage (See Fig. 2.5b), a new pair of pointers 

is added, one at each new end created by the breakage. As the simulation proceeds, the number 

of pointers can increase, but eventually decreases due to the pointer annihilation process: when 

two pointers meet each other, both are removed, because the portion of the chain between them 

is completely relaxed. Since short chains relax very rapidly, the total number of pointers in the 

simulation is not enormous; it is comparable to the number of micelle ends (~10,000), which is 

much smaller than the total number of Kuhn segments (~1,000,000) in the micelle ensemble. 

 

 
Figure 2.5 Breakage and rejoining depicted by pointer algorithm (a) Rejoining (b) Breakage.  
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The detailed simulation procedure for breakage and rejoining can be found in Fig. 2.6, 

where the total number of micelles in the ensemble is allowed to fluctuate. During each time 

step, every segment is given an equal probability to break. Thus, longer chains are more likely to 

break. Since rejoining is independent of micelle length, any two chain ends have an equal 

probability to fuse. To maintain upper and lower bounds on the exponential length distribution 

during the simulation, the shortest micelles (one-segment chains) are not allowed to break, while 

the longest micelle is not allowed to fuse with any other micelles. And also no new micelle 

formed by rejoining is allowed to have length greater than the longest one allowed. The above 

criterion is sensible since the longest chain breaks very quickly and so is not able to retain its 

length for very long. Since two sequential breakage/rejoining events cannot be allowed to occur 

within one time step, the simulation time step should not be larger than the average time required 

for one micelle in the whole ensemble to break/rejoin, which is: 

∆𝑡 ≤
𝜏𝑏𝑟

2 ∙ 𝑛𝑢𝑚
=

𝜍𝜏𝑟𝑒𝑝

2 ∙ 𝑛𝑢𝑚
                                                     (2.38) 

where 𝑛𝑢𝑚 = 10,000 is the total number of micelles in our simulation ensemble.  

 

 
Figure 2.6 Procedure for multiple breakage/rejoining cycles.  

The above breakage mechanism is the reversible scission scheme assumed in Cates’ 

original model, as described in section III-2. However, additional “end-interchange” and “bond-

interchange” schemes were suggested later by Turner and Cates (1992), which involve “three-

arm” and “four-arm” intermediates. Although we do not consider these schemes in this paper, the 

pointer algorithm can readily be modified to include them as we hope to discuss in a future 

paper.   
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D. Relaxation with the pointer algorithm  

With a pointer on each end of each micelle, the relaxation process induced by reptation is 

equivalent to the random movement of both two pointers on a micelle in the same direction and 

by the same amount, whose direction is uncorrelated from one time step to the next (See Fig. 

2.7a). The distance (∆𝑙𝑅) of such a movement in a single time step is given by: 

∆𝑙𝑅 = √2𝐷𝑐∆𝑡                                                                      (2.39) 

Since the effect of contour length fluctuation (CLF) is significant at early times, we 

include its contribution by adding additional movement (∆𝑙𝐹) of the pointers (See Fig. 2.7b). 

However, Eq. (2.22) cannot be used throughout the simulation because it contains an explicit 

dependence on time 𝑡, and is not valid when reptation and breakage/rejoining are also occurring. 

Thus, we normally use Eq. (2.24), and deploy Eq. (2.22) only when Eq. (2.24) breaks down 

because a pointer reaches the end of a micelle. That is, we use 

∆𝑙𝐹
2 =

16𝐷0𝑙𝑝∆𝑡

3𝜋𝑙2
,   𝑙 ≥ 𝑙𝑝                                                     (2.40𝑎) 

∆𝑙𝐹
2 =

8𝐿𝑙𝑝
3𝜋1.5

(
∆𝑡

𝜏𝑅
)
0.5

,   𝑙 < 𝑙𝑝                                               (2.40𝑏) 

Here ∆𝑙𝐹 is the CLF-induced additional movement of a pointer, whose sign is chosen always to 

reduce the size of unrelaxed region of the tube; 𝑙 is the length of the relaxed end of a micelle 

during the current time step. Note that apart from making 𝑙 large enough to switch to Eq. (2.40a), 

equation (2.40b) acts as the initialization for CLF, which has negligible effect on the overall 

relaxation process. 

 

 
Figure 2.7 Reptation and CLF depicted by pointer algorithm (a) Reptation (b) CLFs. 

To increase the accuracy, we apply an iterative method to Eq. (2.40a): 

∆𝑙𝐹,𝑖+1
2 =

16𝐷0∆𝑡𝑙𝑝

3𝜋(𝑙𝑖 + ∆𝑙𝐹,𝑖/2)
2 ,     𝑙𝑖 ≥ ∆𝐿                                     (2.40𝑐) 
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To calculate ∆𝑙𝐹,𝑖+1, 5 iterations are used, which we found gives nearly converged results that are 

insensitive to the time step. 

E. Other relaxation mechanisms (CR, Rouse and bending relaxation modes) 

For constraint release (CR), double reptation is applied according to Eq. (2.25). Since a direct 

simulation of high frequency behavior would require a tiny time step and huge computational 

cost, we add analytic forms for the Rouse and bending motions (Eq. (2.26) and Eqs. (2.33), 

(2.34)) to simulation results after they have been transformed to the frequency domain.  

 Genetic algorithm 

To reduce the computational cost for post-simulation processing, the data is recorded in 

logarithmic time intervals, since the simulation data can span across several decades of time with 

typically millions of time steps. According to Eq. (2.38), the upper bound of the time step 

depends on the dimensionless breakage rate (𝜍). In addition, early-time (high-frequency) 

behavior needs to be determined precisely, because for micellar solutions the high-frequency 

regime strongly affects the estimates of important microstructural small-length-scale parameters 

(𝑙𝑒 , 𝑙𝑝 and 𝑑), which in turn affect estimates of other parameters. However, the transformation 

from the time to the frequency domain is a classic ill-posed problem. Here, results (Fig. 2.8) 

from two traditional methods (classical Fourier transform Eq. (2.41a) and integral smoothing Eq. 

(2.41b)) are used to illustrate the difficulties with these transformations. The “standard” values of 

parameters used in this section can be found in Table 2.2. 

𝐺′(𝜔) = 𝐺𝑁𝜔∫ 𝑠𝑖𝑛(𝜔𝑡) 𝜇(𝑡)𝑑𝑡
𝑇

0

,   𝐺"(𝜔) = 𝐺𝑁𝜔∫ 𝑐𝑜𝑠(𝜔𝑡) 𝜇(𝑡)𝑑𝑡
𝑇

0

              (2.41𝑎) 

𝐺′(𝜔) = 𝐺𝑁∫
𝜔2𝑡2

1 + 𝜔2𝑡2
𝑑𝜇(𝑡)

1

0

,   𝐺"(𝜔) = 𝐺𝑁∫
𝜔𝑡

1 + 𝜔2𝑡2
𝑑𝜇(𝑡)

1

0

                 (2.41𝑏) 

As shown by Fig. 2.8, the classical Fourier transformation gives good results only at low 

frequencies (𝜔 < 500rad/s), above which large oscillations occur as a result of the ill-posedness 

of simple integral transform in Eq. (2.41a). On the other hand, although the integral smoothing 

method works reasonably well for broad distributions of relaxation times [Dealy and Larson 

(2005)], the height of the 𝐺"/𝐺𝑁 versus 𝐺
′/𝐺𝑁 curves is underestimated when the distribution of 

relaxation times is narrow for small 𝜍. This can be seen by comparing the height of the 
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normalized Cole-Cole plot in Fig. 8, where 𝐺"/𝐺𝑁 remains below 0.4 for integral smoothing, 

with that for classical Fourier transformation, where the height exceeds 0.45. 

 

 
Figure 2.8 Results of two traditional transformation methods for the normalized Cole-Cole plot using 

standard values of parameters.  

Fortunately, there are standard methods for solving ill-posed problems of the kind faced 

here. Such methods include Monte Carlo methods, annealing algorithms, and genetic algorithms. 

Here, we choose to develop a genetic algorithm because of its stability, non-locality and 

insensitivity to initial guess. A more detailed description of our genetic algorithm is given in 

Appendix A, which also shows that our genetic algorithm avoids the problems discussed above. 

V. Simulation Testing 

We tested that the model gives the correct equilibrium distribution of micelle lengths, 

captures the relaxation dynamics of pure reptation and with added contour length fluctuations 

correctly, and converges with increasing simulation duration and ensemble size. Testing details 

are given in Appendix A. 

VI. Analysis and Discussion  

We now address the relationships between rheological predictions (𝐺′and 𝐺" curves) and 

the micelle parameters (𝐺𝑁 , 𝜍, 〈𝐿〉, 𝛼𝑒 and 𝑑). We will describe both the determination of linear 

rheology from micelle parameters, and, conversely, the extraction of micelle parameters from 

measured linear rheological properties. Standard values of parameters, given in Table 2.2, are 

used in this section. Note that the base of following logarithm functions (denoted as “log”) is 10. 
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 From micelle parameters to rheology 

A. Simulation procedure 

As described by Eq. (2.35), five important independent parameters (𝐺𝑁 , 𝜍, 〈𝐿〉, 𝛼𝑒 and 𝑑) 

are necessary to predict the rheology of wormlike micellar solutions over a wide frequency 

range. With these parameters as inputs, linear rheological behavior is obtained by simulating the 

time-dependent relaxation of a polydisperse micelle ensemble. A flowchart describing the 

sequence of calculations, and the flow of inputs and outputs for each calculation, is shown in Fig. 

2.9. 

 
Figure 2.9 Flowchart describing steps in the calculation.  

B. Relaxation mechanisms with breakage/rejoining  

By running simulations following the procedure depicted in Fig. 2.9, we can determine 

the effects of each relaxation mechanism on the rheology. Our simulations show that an increase 

in the parameter 𝛼𝑒 (ratio of micelle entanglement length to persistence length) speeds relaxation 

for fixed 𝜍 and 〈𝐿〉. The reason is that increase in 𝛼𝑒 allows micelles to form coils within 

individual tube segments, thus reducing tube length (〈𝐿𝑡〉) through Eq. (2.28), which speeds 

relaxation.  

Since the characteristic time (𝜏𝑅 , Eq. (2.7)) for contour length fluctuations (CLFs) is 

typically 1~2 orders of magnitude lower than that for reptation (Eq. (2.8)), inclusion of CLFs 

adds short relaxation times to the relaxation process. Thus, a larger deviation from the Maxwell 

model (mono-exponential relaxation or perfect semi-circle in Cole-Cole plot) is expected when 

CLFs are present than when only pure reptation occurs. Note that the effects of some parameters 

(〈𝐿〉 and 𝛼𝑒) cannot be observed in Cole-Cole plots, for these parameters mainly affect the 

overall relaxation rate, and the Cole-Cole plot contains no absolute frequency or time 

information. 
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Figure 2.10 Effect of double reptation on the normalized Cole-Cole plot.    

As with CLFs, double reptation increases deviations from the Maxwell model, in the 

latter case by squaring the stress relaxation function. The effect of double reptation can be easily 

seen in Fig. 2.10 by lowering height of the Cole-Cole semi–circle. Since fast local motions 

(Rouse and bending) are not affected by the slower relaxation dynamics discussed thus far, the 

contributions of Rouse and bending dynamics are simply added to the simulation results 

analytically. These high-frequency modes produce a “dip” in the Cole-Cole plot where 𝐺" goes 

through a minimum. Confirmed by simulations with large 𝛼𝑒 (for which micelle rigidity is 

insignificant), a smaller average number of entanglements (𝑍̅) yields a shallower “dip” and a 

shift of upturn towards lower frequency, which is leftward on a Cole-Cole plot [Granek (1994)] 

(Fig. 2.11). Note that, as shown by Fig. 2.11, local maxima are also observed at high frequencies 

(𝜔 > 1/𝜏𝑒) due to the truncation of the high frequency Rouse modes at the frequency at which 

micelle stiff cuts off these modes (Eq. 2.26b). However, this local maximum disappears when 

bending modes are added.  

 

 
Figure 2.11 “Dip” in the normalized Cole-Cole plot at high frequencies caused by Rouse modes as a 

function of the number 𝑍̅ of entanglements. The Rouse modes are cut off at a short time scale set by the 

stiffness of the micelles, as discussed in the text, but no bending modes are included.  
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C. Scaling laws 

Although our method is based on simulations, it is worthwhile to construct approximate 

scaling expressions for rheological features from the simulations and compare them with those 

obtained from Cates’ model [Cates (1987)] without/with “breathing fluctuations” (CLFs). A 

general expression (Eq. (2.42)) for the stress relaxation time (𝜏) can be found with prefactor 𝐶 

and power law exponents (𝛽, 𝛾, and 𝛿) either determined by analytical theory from [Cates 

(1987); Granek (1994)] or from fits to simulation results with parameters varied over 

experimentally realistic ranges: 

𝜏 = 𝐶𝜏̅𝑟𝑒𝑝
𝛽
𝜍𝛾𝑍̅𝛿                                                              (2.42) 

Here 𝜏 = 1/𝜔𝑐𝑟𝑜𝑠𝑠, as defined in Section II-7. Notice that the effect of 〈𝐿〉 and 𝛼𝑒  have been 

included implicitly in the above equation, since both 𝑍̅ and 𝜏̅𝑟𝑒𝑝 are functions of 〈𝐿〉 and 𝛼𝑒. The 

scaling laws are shown in Table 2.3 and 2.4 for relaxations without/with CLFs respectively. 

Table 2.3 Scaling laws for relaxation without CLFs. 

Cates’ model Pointer Simulations 

𝝉~𝝉̅𝒓𝒆𝒑 𝜍 > 1 𝜏~𝑓(𝜏𝑟̅𝑒𝑝) 𝜍 > 200 

𝝉~𝝉̅𝒓𝒆𝒑𝝇
𝟎.𝟓 𝜍 < 1 𝜏 ≅ 1.50(𝜏𝑟̅𝑒𝑝)

0.95𝜍0.56 𝜍 < 10 

Notice that the simulation results can be described by simple power law dependencies on the relevant 

parameters in the regime: 𝜍 < 10 (“living” micelles). For 𝜍 > 200, micelles are “dead”, whose 

rheological behavior (expressed as a functional dependence) is the same as in a classical polymer 

solution. Between these two regimes, we do not have a simple scaling formula. It is surprising that the 

Cates’ formula 𝜏~𝜏̅𝑟𝑒𝑝𝜍
0.5 persists to remarkably high values of 𝜍, apparently because the longer micelles 

in the ensemble are still able to break multiple times before relaxing, and these dominate the terminal 

relaxation time.  

Table 2.4 Scaling laws for relaxation with CLFs. 

Cates’ model Pointer Simulations  

𝜏~𝜏𝑟̅𝑒𝑝 𝜍 > 1 𝜏~𝑓(𝜏𝑟̅𝑒𝑝 , 𝑍̅) 𝜍 > 200 

𝜏~𝜏𝑟̅𝑒𝑝𝜍
0.5 𝑍̅−1 < 𝜍 < 1 𝜏 ≅ 1.39(𝜏𝑟̅𝑒𝑝)

1.03𝜍0.62 𝑍̅−1.5 < 𝜍 < 10 

𝜏~𝜏𝑟̅𝑒𝑝𝜍
0.75𝑍̅0.25 𝑍̅−3 < 𝜍 < 𝑍̅−1 𝜏 ≅ 2.11(𝜏𝑟̅𝑒𝑝)

1.03𝜍0.74𝑍̅0.19 𝜍 < 𝑍̅−1.5 

𝜏~𝜏𝑟̅𝑒𝑝𝜍
0.5𝑍̅−0.5 𝜍 < 𝑍̅−3 ~ 

Note that attainment of the fourth Cates regime (𝜍 < 𝑍̅−3) requires much smaller values of 

both 𝜍 (𝜍 ~10−3) and 𝑍̅ (𝑍̅~10) than are normally considered, and lies outside of the scope of our work 

here.  

 

After incorporating the high frequency Rouse and bending motions, in early literature 

Cates’ model has been used to obtain an estimation of the dimensionless average micelle 

length 𝑍̅ = 〈𝐿〉/𝑙𝑒 (Eq. (2.2)) from 𝐺"𝑚𝑖𝑛, the depth of the minimum in 𝐺" relative to the plateau 
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modulus (Eq. (2.18)). As described in more detail in the next section (Eq. (2.43b), Fig. 2.17), the 

corresponding correlation extracted from our simulations is shown here in Table 2.5. 

Table 2.5 Estimations for average micelle length.  

Cates’ model Pointer Simulations 

𝑮"𝒎𝒊𝒏
𝑮𝑵

~𝒁̅−𝟎.𝟖 
𝐺"𝑚𝑖𝑛
𝐺𝑁

≅ 𝐶𝑍̅𝑡
−0.61,   1 < 𝛼𝑒 < 3 

Note that 𝑍̅ is greater than or equal to 𝑍̅𝑡  (i.e., the micelle contour length is always equal to or larger than 

the tube length).  

 

Thus, while the scaling results from our simulations are qualitative similar to those from 

Cates’ model, they are quantitative significantly different.   

D. Parameter analysis 

In the above, we have assessed the effects of different relaxation mechanisms and 

parameters on stress relaxation time or on the depth of the minimum in 𝐺". However, their 

effects on the relaxation curve over the entire frequency region have not yet been considered. 

Thus, in what follows we will discuss their effects on the normalized Cole-Cole plot by varying 

one parameter at a time, leaving others set at their corresponding standard values.  

1) Persistence length 𝑙𝑝 

We note first that persistence length (𝑙𝑝) can be used to obtain the plateau modulus (𝐺𝑁) 

once other parameters (〈𝐿〉, 𝛼𝑒 , 𝜍, 𝑑 and 𝑇, 𝜙) are known. To eliminate the influence of 𝐺𝑁, Cole-

Cole plots normalized by 𝐺𝑁 are shown in Fig. 2.12a for different values of 𝑙𝑝. According to Eqs. 

(2.33) and (2.34), the value of 𝑙𝑝 affects the slope of the “upturn” in 𝐺" after it passes through a 

minimum and enters the high frequency region, as shown in Fig. 2.12a. 

2) Breakage time relative to reptation time 𝜍 

Figure 2.12b reveals that as 𝜍 decreases, the height of normalized Cole-Cole plot 

increases and, as expected, the plot becomes more semi-circular, approaching that for a Maxwell 

model. Thus, the parameter 𝜍 has a greater effect than any other parameter on the shape of 

normalized Cole-Cole plot before the upturn at high frequencies. Note in Fig. 2.12b that as long 

as 𝜍 is less than unity, its effect on the high-frequency upturn is small.  
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Figure 2.12 Effect of model parameters on normalized Cole-Cole plots (a) 𝑙𝑝 (b) 𝜍 (c) 〈𝐿〉 (d) 𝛼𝑒. 

3) Average micelle length 〈𝐿〉 and flexibility 𝛼𝑒 

The effects of average micelle length (〈𝐿〉) and flexibility coefficient (𝛼𝑒) on the 

normalized Cole-Cole plot are similar (see Figs. 2.12c and 2.12d). (The micelle length 〈𝐿〉 also 

has a large effect on the terminal relaxation time, but that effect does not show up in a Cole-Cole 

plot.) Both of them affect the minimum value of 𝐺" while holding the height of semicircle 

constant. A somewhat flat region around the minimum is also observed when the ratio 

of 〈𝐿〉 to 𝑙𝑝 exceeds 100 and 𝛼𝑒 is no larger than 2. The reason for the flat region for 𝛼𝑒 < 2 is 

that micelle stiffness suppresses Rouse modes which would otherwise cause a more gradual 

change in 𝐺" before the onset of bending modes. Thus, without Rouse modes, a deeper “dip” is 

expected and the upturn is postponed to higher frequency.  

Thus, a qualitative look at the shape of normalized Cole-Cole plot gives a rough 

indication of the magnitude of 𝜍 and of either 〈𝐿〉 or 𝛼𝑒. To determine these parameters more 

precisely, we turn next to development of a systematic method for inferring micelle parameters 

from rheological behavior.   
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 From rheology to micelle parameters 

A. Empirical formulas 

An iterative simulation procedure to estimate parameters from “global” rheological 

behavior is developed in this section. Since a proper starting point for further iterations can 

reduce the total number of iterations and improve the accuracy of final result significantly, we 

attempt to construct empirical formulas for good initial guesses of parameters through “local” 

features of rheological curves. Figures 2.13a and b give the same data but in different formats 

(frequency and Cole-Cole plot). The points (𝐺′𝑚𝑎𝑥, 𝐺"𝑚𝑎𝑥) and (𝐺′𝑚𝑖𝑛, 𝐺"𝑚𝑖𝑛) in Fig. 2.13b 

correspond to the same points donated as (𝜔𝑚𝑎𝑥, 𝐺′𝑚𝑎𝑥 , 𝐺"𝑚𝑎𝑥) and (𝜔𝑚𝑖𝑛, 𝐺′𝑚𝑖𝑛, 𝐺"𝑚𝑖𝑛) in Fig. 

2.13a. Note that the subscripts “𝑚𝑎𝑥” and “𝑚𝑖𝑛” represent the maximum and minimum in 𝐺".  

 

 
Figure 2.13 Definition of significant local rheological features in plots of (a) 𝐺′ and 𝐺" versus frequency, 

and (b) Cole-Cole plot.  

1) 𝐺𝑁 versus 𝜍 

As mentioned above, 𝜍 controls the height of the normalized Cole-Cole semicircle, which 

is negligibly affected by other parameters. A family of curves shown in Appendix A (Fig. A.7) 

obtained by varying 𝜍 alone, give heights plotted in Fig. 2.14. Semi-log fits to the relationships 

between 𝐺”𝑚𝑎𝑥/𝐺𝑁 vs. 𝜍, as well as 𝐺′𝑚𝑎𝑥/𝐺𝑁 vs. 𝜍 are obtained for 𝜍 between 0.001 and 2. As 

shown in Fig. 2.14, as 𝜍 increases, the difference between 𝐺′𝑚𝑎𝑥and 𝐺"𝑚𝑎𝑥  increases, as the 

Cole-Cole plot deviates more and more from a semi-circle.  
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Figure 2.14 Empirical correlations for the dependences of 𝐺′𝑚𝑎𝑥/𝐺𝑁 and 𝐺"𝑚𝑎𝑥/𝐺𝑁 on 𝜍 with other 

parameters fixed at standard values. 𝑅2 values of the semi-log fits are as follows: 0.988 for the dashed 

line; 0.991 for the dotted line. 

2) 𝐺𝑁 versus 𝑍̅𝑡 

Motived by an equation from Granek (1994) (Eq. (2.18)) that allows an estimation 

of 〈𝐿〉 from the ratio 𝐺"𝑚𝑖𝑛/𝐺𝑁, we now examine the effect of a related quantity, 𝑍̅𝑡 (Eq. (2.2)), 

on this “dip” (𝐺"𝑚𝑖𝑛/𝐺𝑁) in a normalized Cole-Cole plot. From the family of curves (Fig. A.8 in 

Appendix A), we have obtained the power-law correlation (𝐺”𝑚𝑖𝑛/𝐺𝑁 = 𝐶𝑍̅𝑡
−0.61) plotted in Fig. 

2.15 with the prefactor 𝐶 determined approximately in what follows: when 𝑍̅𝑡 > 30 the prefector 

is set to be unity, and then it increases linearly to 1.5 when 𝑍̅𝑡 = 10. The detailed expressions are 

given in Eq. (2.43b).  

 

 
Figure 2.15 Empirical correlation for the dependence of  𝐺"𝑚𝑖𝑛/𝐺𝑁 on dimensionless tube length 𝑍̅𝑡  with 

other parameters fixed at standard values. 𝑅2 value of log-log fit is 0.970.  
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3) 𝜏𝑟̅𝑒𝑝 versus 𝜍 

Since normalized Cole-Cole plots do not contain either frequency or time, they do not 

allow estimates of characteristic times such as 𝜏𝑟̅𝑒𝑝, which must instead be obtained from a 

frequency plot of 𝐺" by constructing an additional equation relating 𝜏𝑟̅𝑒𝑝 to the dimensionless 

breakage rate (𝜍) and specific frequency (𝜔𝑚𝑎𝑥). Our results are shown in Fig. 2.16, where a 

power-law formula, with exponent -0.63, for the dependence of (𝜔𝑚𝑎𝑥𝜏̅𝑟𝑒𝑝) on 𝜍 and 

prefactor 𝐵 is illustrated.  

 

 
Figure 2.16 Empirical correlation for the dependence of (𝜔𝑚𝑎𝑥 𝜏̅𝑟𝑒𝑝) on dimensionless breakage 

rate 𝜍  for various values of 𝑍̅𝑡  and other parameters set to standard values. The result can be 

approximated by Eq. (2.43c).   

The above results can be summarized by the following empirical formulas: 

𝐺′𝑚𝑎𝑥
𝐺𝑁

= −0.0557 𝑙𝑜𝑔(𝜍) + 0.298,   
𝐺"𝑚𝑎𝑥
𝐺𝑁

= −0.0657 𝑙𝑜𝑔(𝜍) + 0.265,   𝑍̅ > 10          (2.43𝑎) 

𝐺”𝑚𝑖𝑛
𝐺𝑁

= 𝐶𝑍̅𝑡
−0.61

,   1 < 𝛼𝑒 < 3,   {

𝐶 = 1, 𝑍̅𝑡 > 30

𝐶 =
7 − 0.1𝑍̅𝑡

4
, 30 > 𝑍̅𝑡 > 10 

                                     (2.43𝑏) 

𝜔𝑚𝑎𝑥𝜏̅𝑟𝑒𝑝 = 𝐵𝜍
−0.63,   𝐵 = 2.1 𝑓𝑜𝑟  1 < 𝛼𝑒 < 3                                                                        (2.43𝑐) 

Note that applications of the above correlations are limited to their stipulated regions, 

outside of which their accuracy cannot be guaranteed. The ranges considered are those needed 

for comparison to experiments described below. Extension of those correlations to a much wider 

range of  𝑍 ̅ and 𝛼𝑒 will be taken up in future work. However, as one example, we note that the 

scaling law in Eq. (2.43b) is invalid in the “loose” entanglement limit, where 𝛼𝑒 is large. 
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However, by replacing 𝑍̅𝑡 with 𝑍̅ in Eq. (2.43b), scaling laws for 𝐺”𝑚𝑎𝑥/𝐺𝑁 vs. 𝑍̅ valid over a 

wide range of 𝑍̅ and 𝛼𝑒 varying from 8 (loosely entangled) to 0.4 (tightly entangled) can be 

obtained, as shown in Fig. 2.17.  

 

 
Figure 2.17 Extended empirical correlation for the dependence of  𝐺"𝑚𝑖𝑛/𝐺𝑁 on average entanglement 

number 𝑍̅ by varying 〈𝐿〉 and 𝑙𝑒 (or equivalently 𝛼𝑒 = 𝑙𝑒/𝑙𝑝) with other parameters fixed at standard 

values. 

Now we try to sum up all the equations needed for an initial guess of micelle parameters. 

For simplicity, detailed expressions for each formula do not appear in this list, and we simply 

represent the functions by "𝐴", "𝐵",⋯ , "𝑄": 

{

𝑥𝐺′𝑚𝑎𝑥 + (1 − 𝑥)𝐺"𝑚𝑎𝑥 = 𝐴(𝐺𝑁, 𝜍)

𝐺"𝑚𝑖𝑛 = 𝐵(𝐺𝑁 , 𝑍̅𝑡)

𝜔𝑚𝑎𝑥 = 𝐶(𝜍, 𝜏̅𝑟𝑒𝑝)
                                              (2.44𝑎) 

{

𝑍̅𝑡 = 𝐹(〈𝐿〉, 𝛼𝑒 , 𝑙𝑝)

𝜏̅𝑟𝑒𝑝 = 𝐺(〈𝐿〉, 𝛼𝑒 , 𝑑, 𝑙𝑝)

𝐺𝑁 = 𝐻(𝛼𝑒 , 𝑑, 𝑙𝑝)

                                                                       (2.44𝑏) 

𝐺𝐻(𝜔) = 𝑄(𝑑, 𝑙𝑝, 𝜔)                                                                            (2.44𝑐) 

Equation group (2.44a) comes from empirical formulas in Eq. (2.43). The three equations 

in (2.44b) are derived theoretically by combining Eqs. (2.2), (2.9), (2.28); Eqs. (2.4), (2.12), 

(2.28); and Eq. (2.32); respectively, whose detailed expressions are given in Appendix A. The 

above two groups of equations are used to obtain initial guesses of parameters for the simulation 

procedure described below. Thus, Eqs. (2.44a) and (2.44b) consist of 6 equations involving 12 

parameters including 4 (𝜔𝑚𝑎𝑥 , 𝐺′𝑚𝑎𝑥, 𝐺”𝑚𝑎𝑥, 𝐺”𝑚𝑖𝑛) that can be extracted simply from 
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rheological curves, and 2 (micelle persistence length 𝑙𝑝 and diameter 𝑑) that are set to pre-

assigned values initially. This leaves 6 unknown parameters (𝐺𝑁 , 𝜍, 〈𝐿〉, 𝛼𝑒 and 𝜏𝑟̅𝑒𝑝, 𝑍̅𝑡) and 6 

equations so that a unique solution is possible. Note that 𝑙𝑝 and 𝑑 can be updated during the 

simulation based on fitting Eq. (2.44c) to the high-frequency data. If high-frequency data are not 

available or are not adequate to fit 𝑙𝑝 and 𝑑 unambiguously, then these two parameters must be 

assigned values from sources other than rheological data, as discussed below. Definitions for all 

the above parameters can be found in Section II. 

 

 
Figure 2.18 Dominant relaxation mechanisms and five parameters (𝐺𝑁 , 𝜍, 𝑑 and 𝜏̅𝑟𝑒𝑝, 𝑙𝑝) controlling the 

behavior in each of four different frequency ranges. Note that this set of five parameters differs from the 

set of “five independent parameters” described above in that they include 𝜏̅𝑟𝑒𝑝 and 𝑙𝑝 rather 

than 〈𝐿〉 and 𝛼𝑒. However, the set of five parameters extracted from this plot can be converted to our 

canonical five independent parameters using Eq. (2.44b). One should also note that a system dependent 

choice of 10𝜔𝑚𝑖𝑛 as the start frequency for bending regime is made here. 

B. Parameter estimation 

Although equation groups (Eqs. (2.44a) and (2.44b)) are applied to get the initial guess, 

these formulas have other uses. By dividing the frequency domain into four different ranges 

(low, transition 1, transition 2, and high frequency) with three specific frequencies (𝜔𝑚𝑎𝑥, 𝜔𝑚𝑖𝑛 

and 10𝜔𝑚𝑖𝑛), these formulas can tell us which parameters one can estimate by matching specific 

points or fitting data in each of these frequency ranges. The rheological parameters with their 

corresponding fitting features and the relaxation mechanisms that dominate in each frequency 

range are depicted in Fig. 2.18. An accurate estimate of a parameter can only be achieved by 
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fitting experimental data over a frequency range that contains the rheological features showing 

the greatest sensitivity to that parameter.    

C. Simulation procedure 

Based on the analysis in parts A and B, the simulation procedure to extract parameters 

from rheological behavior is laid out in Fig. 2.19: rheological plots (𝐺′ & 𝐺” versus frequency) 

immediately offer us values of (𝜔𝑚𝑎𝑥, 𝐺′𝑚𝑎𝑥 , 𝐺”𝑚𝑎𝑥, 𝐺”𝑚𝑖𝑛). With the initial guesses 

of 𝑙𝑝 and 𝑑 as inputs, equations in Eqs. (2.44a) and (2.44b) can be solved for 6 parameters (𝐺𝑁 , 𝜍, 

〈𝐿〉, 𝛼𝑒 and 𝜏̅𝑟𝑒𝑝, 𝑍̅𝑡). Of these, 5 independent parameters (𝐺𝑁 , 𝜍, 〈𝐿〉, 𝛼𝑒 and the guessed 𝑑) can be 

used to predict rheological curves based on the procedure in Fig. 2.9. The difference between 

simulated curves and the experimental ones (∆𝐺𝐻, ∆𝜔𝑚𝑎𝑥 , ∆𝐺′𝑚𝑎𝑥, ∆𝐺”𝑚𝑎𝑥, ∆𝜔𝑚𝑖𝑛, and ∆𝐺”𝑚𝑖𝑛) 

can then be used as feedback to modify the original guess of these parameters for next iteration. 

Through optimization, we can get excellent fits with reasonable values of the parameters (shown 

below). Note that entanglement length (𝑙𝑒) and persistence length (𝑙𝑝) are not independent 

parameters. Their values can be obtained once micelle parameters (𝐺𝑁 , 𝜍, 〈𝐿〉, 𝛼𝑒 and 𝑑) as well 

as temperature 𝑇 and surfactant volume fraction 𝜙 are known. Details of the iteration procedure 

and sensitivity of the fits to the parameter values will be addressed in a subsequent paper. 

 

 
Figure 2.19 Schematic of simulation procedure to obtain micelle parameters from rheological behavior.  

D. Results and discussion 

Finally, we present in Figs. 2.20 and 2.21 the results of the fitting (with 𝑅2 values of 0.97 

and 0.92, respectively, for Figs. 2.20 and 2.21) to experimental data (𝑐CTAB = 0.35mol/
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L, 𝑐NaClO3 = 0.6mol/L, 𝑇 = 303K) from Oelschlaeger et al. (2010) and (𝑐CTAB =

0.15mol/L, 𝑐KBr = 1.5mol/L, 𝑇 = 308K) from Khatory et al. (1993). Note that low frequency 

behaviors (ω < 100 rad/s) were measured by a mechanical rheometer in both cases, while 

diffusing wave spectroscopy (DWS) was used by Oelschlaeger et al. (2010) to obtain the high 

frequency data in Fig. 2.20.   

 

 
Figure 2.20 Simulation results of the Pointer Algorithm fitted to rheological data in Oelschlaeger et al. 

(2010). 

As shown in Figs. 2.20 and 2.21, our simulation results successfully match the 

rheological behavior of micellar solutions in the low and transition frequency ranges. (The 

deviation at low frequencies in Fig. 2.21 is likely due to transducer error, since the slope in this 

region is steeper than the expected terminal slope of 2 for 𝐺′.) At high frequencies, an 

unexpectedly early upturn occurs in the data of Khatory et al. (1993) (the upturn 

frequency 𝜔𝑚𝑖𝑛 is 10 times smaller than that for Oelschlaeger et al. (2010)), which makes our 

fitting much poorer in this region for the high-frequency mechanical data of Khatory et al. than 

for the high-frequency DWS data in Oelschlaeger et al. (2010). The high-frequency data in 

Khatory et al. can be better fit with the Pointer Algorithm, but only by using an unrealistically 

large value of the persistence length of around 200nm (In the simulation, the maximum value 

of 𝑙𝑝 is set to 120nm). The pre-mature upturn in 𝐺" in the data of Khatory et al. (1993) might be 

due to the large salt-surfactant concentration ratio (around 10). Or perhaps the mechanical data 
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are unreliable at these frequencies. But, we have chosen not to force a fitting of these high-

frequency data by using such an unrealistically high persistence length. 

 

 
Figure 2.21 Simulation results of the Pointer Algorithm fitted to rheological data in Khatory et al. (1993). 

The parameter values suggested by Oelschlaeger et al. (2010), Khatory et al. (1993) and 

obtained from our simulations with parameters either all freely fitted (in the case of Oelschlaeger 

et al. (2010)), or 𝑑 alone fixed (in both the case of Oelschlaeger et al. (2010) and of Khatory et 

al. (1993)), or both 𝑑 and 𝑙𝑝 fixed (in the case of Khatory et al. (1993)) to what we consider 

realistic values (𝑑 = 4.4nm [Nettesheim and Wagner (2007)], 𝑙𝑝 = 40nm) are shown in Table 

2.6.   

Table 2.6 Estimation of parameters for data from Oelschlaeger et al. (2010) and Khatory et al. (1993). 

 Oelschlaeger et al. (2010) Khatory et al. (1993) 

Parameters Literature 
Simulation 

Literature 
Simulation 

Freely-fitted 𝑑 fixed 𝑑 fixed 𝑑, 𝑙𝑝 fixed 

𝑮𝑵 (𝐏𝐚) 255 285 288 95 100 99 

𝝇 ~ 1.13E-2 1.0E-2 0.79~1.23 1.52E-2 4.95E-2 

〈𝑳〉 (𝛍𝐦) 0.24 5.35 5.15 0.66 6.88 5.77 

𝜶𝒆 0.76 2.23 1.76 4.2 1.2 3 

𝒅 (𝐧𝐦) 4.4 3.8 4.4 ~ 4.4 4.4 

𝒍𝒆 (𝐧𝐦) 22.6 87 86 63.1 144 120 

𝒍𝒑 (𝐧𝐦) 29.8 39 49 15 120 40 

Note that since high frequency zone is unreachable for data from Khatory et al. (1993), the micelle 

diameter cannot be estimated using our method. The value of 𝑑=4.4nm used in the simulation for this case 

is taken from SANS measurements [Nettesheim et al. (2007)]. 
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In Table 2.6, for both data sets, an order of magnitude difference in estimated values 

of 〈𝐿〉 is seen between the values reported in the literature and those we have extracted from our 

simulations. Some of this difference (around a factor of 2) arises because we take into account 

the effect of CR. However, the main reason lies in the different frequency ranges we used for 

predicting 〈𝐿〉: Cates [Cates and Candau (1990)] and Granek [Granek (1994)] rely on the 

transition region (i.e. the ratio 𝐺"𝑚𝑖𝑛/𝐺𝑁 used in Eq. (18)), while our estimate comes from the 

low frequency region which is more sensitive to the average micelle length than is the transition 

region. In addition, the longer micelle length obtained from our method leads to a smaller value 

of 𝜍 (the longer the micelle is, the faster it breaks and the smaller is the value of 𝜍). From the data 

of Oelschlaeger et al. (2010), by including bending modes in the simulation, the persistence 

length 𝑙𝑝 and micelle diameter 𝑑 can also be extracted from the high frequency behavior; the 

values we obtain are similar but not identical to the estimates obtained by Oelschlaeger et al. 

(2010). The difference might be the result of a larger predicted value of 𝐺𝑁 than that for 

Oelschlaeger et al. (2010). Note also that the ratio (𝛼𝑒) of 𝑙𝑒 to 𝑙𝑝 extracted from the data of 

Oelschlaeger et al. (2010) puts this solution close to, or in, the cross-over region (𝛼𝑒=2.23 and 

1.76) between tight and loose entanglements, showing that our cross-over formula may be 

important for modeling this solution. Note also that the estimated values for 𝑙𝑒 and 𝑙𝑝 for data 

from Khatory et al. (1993) in the second to last column in Table 2.6, when only the micelle 

diameter 𝑑 is held fixed, cannot be taken seriously since 𝑙𝑝 reaches the maximum value (𝑙𝑝 ≤

120nm) that our simulation allows, which is still not high enough to fit the upturn. 

By fixing the micelle diameter to an experimental value, rather than allowing it to be fit, 

the estimation of the persistence length for the data of Oelschlaeger et al. (2010) changes from 

39 to 49 nm, which allows a good fitting behavior at high frequencies to be maintained. The 

values of other parameters change only slightly, which shows the robustness of their fitted values 

using our method. However, if data in the high frequency region is poor or missing as is the case 

for the data of Khatory et al. (1993), estimation of other parameters will depend on the value of 

persistence length assumed, as shown in Table 2.6. Thus, the results from fitting the data of 

Oelschlaeger et al. (2010) indicate that if high frequency data are available, four of the five 

parameters can be extracted using our method. The fifth parameter, the micelle diameter 𝑑, must 

be supplied from non-rheological data, but its value is known a priori well enough that the other 

parameters can be robustly extracted from the model. However, if high frequency data are not 
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available, or are unreliable, as appears to be the case for the data of Khatory et al. (1993), the 

persistence length must be supplied from non-rheological considerations, or else the value 

of 𝜍 cannot be robustly determined, as indicated by its sensitivity to the value of the persistence 

length shown in the last two columns of Table 2.6. However, the micelle length 〈𝐿〉 and 

especially the plateau modulus 𝐺𝑁 are seen in Table 2.6 to be much less sensitive to an incorrect 

value of the persistence length 𝑙𝑝. A detailed analysis of the sensitivity of extracted parameter 

values to uncertainties in parameters or rheological data will be the focus of a later paper.     

VII. Conclusions and Final Comments 

We have developed an algorithm based on Cates’ model for wormlike micelles that we 

believe allows more accurate rheological predictions than before. We have included additional 

mechanisms beyond those of Cates’ model, including constraint release by double reptation, 

reptation in the tight entanglement regime as well as in the cross-over between loose and tight 

entanglements, and bending modes at high frequency. Based on the most up-to-date theories of 

polymer dynamics and innovations in modeling, fits to rheological data using our pointer 

algorithm allow more micelle parameters (including micelle persistence length) to be estimated, 

and more accurate estimates to be obtained than was possible from the earlier approaches using 

Cates’ method. The advantages of our simulation method are illustrated by obtaining micelle 

parameters from fits to 𝐺′ & 𝐺" data by Oelschlaeger et al. (2010) over six decades of frequency 

with an average deviation of only 6%. We find significant differences between the best-fit 

micelle parameters derived from our algorithm and those obtained by the traditional method of 

Cates and coworkers, especially in the average micelle length, which is an order of magnitude 

larger than inferred from the traditional method. Future work will focus on an analysis of 

parameter sensitivity, and the effect of CR and high frequency data on parameter estimation. It 

will also be worthwhile to study the effect of salt concentration, concentration of surfactant, and 

temperature on the parameter values extracted by our method and to compare parameter values 

extracted from our rheological method with those obtained more directly from electron 

microscopy, neutron scattering, or other methods. We note that our method is limited to linear 

micelles and to linear viscoelasticity. Extension to branched micelles and nonlinear rheology is 

also highly desirable, but these remain as future tasks. 
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Chapter 3: Determination of Characteristic Lengths and Times for Wormlike Micelle 

Solutions from Rheology using a Mesoscopic Simulation Method1 

I. Introduction  

Surfactant solutions containing self-assembled micelles and other structures are widely 

used in many applications, due to their various equilibrium aggregation states (oblate or prolate 

spheroids, short rods or long worms, disks) [Pérez et al. (2014)] and physicochemical properties 

(density, viscoelasticity, conductivity, solubility, surface tension) [Zdziennicka et al. (2012)]. 

Induced by changes in temperature, pH, type and concentration of surfactant and salt, 

morphology transitions between different structures have been extensively investigated 

[Bernheim-Groswasser et al. (2000); Baccile et al. (2012); Kusano et al. (2012); Yusof and Khan 

(2012)], leading, for example, to creation of micellar solutions whose rheological properties 

(viscoelasticity) are tunable by light [Ketner et al. (2007); Lu et al. (2013)], temperature [Kalur 

et al. (2005)], and additives [Sreejith et al. (2011); de Silva et al. (2013)]. When long wormlike 

micelles (WLMs) form, via reversible breaking and rejoining, the solution exhibits viscoelastic 

behavior through inter-micellar entanglements or networks [Cates and Candau (1990); Khatory 

and Kern et al. (1993)]. Applications of  WLM solutions are found in shampoo and detergent 

formulations, drag reduction [Shi et al. (2014)], rheology modification [Beaumont et al. (2013)], 

colloid stabilization [James and Walz (2014)], and templated synthesis of nano-particles 

[Romano and Kurlat (2000)] and molecular sieves [Beck et al. (1992)]. 

Combinations of different experimental methods including traditional temperature jump 

(T-jump) experiments [Waton and Zana (2007)], mechanical rheometry [Khatory and Lequeux et 

al. (1993)], birefringence [Shikata et al. (1994)], light and neutron scattering [Imae and Ikeda 

(1986); Marignan et al. (1989); Jensen et al. (2013)], turbidity [Razak and Khan (2013)], and 

more recently diffusing wave spectroscopy (DWS) [Galvan-Miyoshi et al. (2008)], neutron spin 

echo (NSE) [Nettesheim and Wagner (2007)], and nuclear Overhauser effect spectroscopy 

                                                 
1 The rheological measurements in this chapter are conducted by the former group member Xueming Tang as 

collaborated with Procter and Gamble scientists Mike Weaver and Peter Koenig.  
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(NOESY) [Padia et al. (2014)], are often needed to achieve a thorough characterization of 

micellar properties [Croce et al. (2003); Kuperkar et al. (2008)]. Theories have also been 

developed to extract information about micellar kinetics and thermodynamics from experimental 

data [Ilgenfritz et al. (2004); Babintsev et al. (2014)]. For WLMs, a particularly important theory 

is that of Cates and coworkers [Turner and Cates (1991)] which allows average micelle length 

and rate of breakage to be extracted from linear rheology. Although many improvements to the 

original Cates’ theory have been made [Granek and Cates (1992); Granek (1994)], shortcomings 

still exist, and continued efforts are required to make its predictions more quantitative [Larson 

(2012); Zou and Larson (2014)].  

Our recently developed “pointer” simulation method [Zou and Larson (2014)] is capable, 

we believe, of estimating micellar parameters more quantitatively than is possible using previous 

methods based on Cates’ theory [Turner and Cates (1991)]. In what follows, after reviewing both 

Cates’ theory and our simulation model in Section II, we present a brief description of 

experimental methods and surfactant solutions used to obtain rheological data in Section III. 

Using improved empirical relationships between micellar parameters and local rheological 

behaviors, Section IV presents a detailed data-fitting procedure that yields properties of WLMs 

from rheological data, and Section V contains the associated sensitivity studies as well as fitting 

results for several micellar solutions. The effect of different breakage mechanisms and the 

possibility of branched micelle detection through our simulation method are also discussed in 

Section V. Conclusions are presented in Section VI. 

II. Model Review    

 Cates’ theory 

Porte and coworkers [Porte et al. (1980)] suggested that WLMs be regarded as semi-

flexible chains rather than as rigid rods, after the micelle persistence length was first measured in 

1980. Since then, many similarities in rheology between WLM and polymer solutions have been 

noted [Candau et al. (1989); Cates and Candau (1990)]. However, a major difference between 

these two kinds of solutions is the “living” feature of micelles: i.e., their incessant and random 

breaking and rejoining at thermal equilibrium, which yields a Poisson exponential length 

distribution [Cates (1987)]:  

𝑁(𝐿)~𝑒𝑥𝑝(−𝐿/〈𝐿〉)                                                              (3.1) 
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where 𝐿 is the length of an individual micelle, and 〈𝐿〉 is the average micelle length.     

Using the polymer “tube model” [Doi and Edwards (1986)] and reptation theory [de 

Gennes (1979)], Cates in 1987 explained the unique Maxwellian (i.e., single-exponential) stress 

relaxation behavior observed for entangled WLM solutions in which diffusion of WLMs is 

limited to “tube”-like region by entanglements [Cates (1987)]. His theory is based on the 

interplay of two mechanisms: i.e., breakage/rejoining and reptation. Imposition of a small step 

strain on entangled WLMs takes their conformations out of equilibrium, producing a stress. In 

the absence of breakage, micelle segments can only relax the stress by diffusing curvilinearly, or 

“reptating,” out of the initial tube, which leads to a loss of original, oriented tube segments as the 

micelle vacates them. The characteristic time for reptation-induced relaxation depends on the 

curvilinear diffusivity (𝐷𝑐) of the micelle along the tube, and the length of the tube (𝐿𝑡, which is 

proportional to the length of the micelle 𝐿). For micelles with an average length 〈𝐿〉, the reptation 

time (𝜏𝑟̅𝑒𝑝) is given by: 

𝜏̅𝑟𝑒𝑝 =
〈𝐿𝑡〉

2

𝜋2𝐷𝑐
,   𝐷𝑐 ≡

𝑘𝐵𝑇

𝜁〈𝐿〉
                                                          (3.2) 

where 𝑘𝐵 and 𝜁 are Boltzmann’s constant and the longitudinal drag coefficient per unit length of 

the micelle, respectively. 

The above relaxation mechanism is well understood for ordinary “dead” polymers [Doi 

and Edwards (1986); Likhtman and McLeish (2002)], where no breakage or rejoining exists. For 

“living” WLMs, micellar breakage accelerates the relaxation by creating new ends. To address 

this effect, a dimensionless breakage rate (𝜍) is defined [Cates (1987)]:  

 𝜍 ≡
𝜏̅𝑏𝑟
𝜏̅𝑟𝑒𝑝

,   𝜏̅𝑏𝑟 =
1

𝑘〈𝐿〉
                                                              (3.3) 

where 𝜏𝑏̅𝑟, called the average breakage time, is the lifetime a micelle of average length survives 

before breakage, while 𝑘 is the breakage rate per unit length. 

When 𝜍 decreases below unity, the relaxation spectrum is narrowed, since for a high 

breakage rate the distance that a micelle segment must travel to diffuse out of its tube becomes 

independent of the tube length. For WLM solutions with 𝜍 ≪ 1, the polydispersity in length 

distribution therefore has little effect on the relaxation: all tube segments are lost at the same rate 

and the stress relaxes mono-exponentially. In that case, the stress relaxation time (which is 
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approximated as the reciprocal of crossover frequency 𝜔𝑐𝑟𝑜𝑠𝑠 of the storage or elastic modulus 𝐺′ 

with the loss or viscous modulus 𝐺") is given as [Cates (1987)]:   

𝜏 ≅ 1/𝜔𝑐𝑟𝑜𝑠𝑠~𝜏̅𝑟𝑒𝑝𝜍
0.5,   𝜍 ≪ 1                                                       (3.4) 

The ideal single exponential relaxation behavior, alluded to above, is captured by Cates’ 

original theory, and reveals itself in a perfect semicircular Cole-Cole plot (of 𝐺" versus 𝐺′) 

[Cates and Candau (1990)]. Deviations from the perfect semi-circle are observed experimentally 

[Turner and Cates (1991)], however, at high frequencies, implying that some relaxation 

mechanisms are missing from the original theory. Thus, “breathing” fluctuations, also called 

“contour length fluctuations” (CLFs) and high frequency Rouse modes [Dealy and Larson 

(2005)] were subsequently incorporated into the theory [Granek and Cates (1992); Granek 

(1994)]. Using the modified theory, the average micelle length 〈𝐿〉 can be estimated from the 

observed minimum in 𝐺" (𝐺"𝑚𝑖𝑛) at high frequency by [Granek (1994)]:  

𝐺"𝑚𝑖𝑛
𝐺𝑁

= (
𝑙𝑒
〈𝐿〉
)
0.8

= 𝑍̅−0.8                                                            (3.5) 

where, 𝑙𝑒 is the micelle entanglement length, and 𝑍̅ is the number of entanglements for micelles 

with average length 〈𝐿〉. 𝐺𝑁 is the plateau modulus, which can be calculated theoretically from 

[Cates (1988)]: 

𝐺𝑁 ≅
𝑘𝐵𝑇

𝑙𝑒
1.8𝑙𝑝

1.2                                                                              (3.6) 

where 𝑙𝑝 is the micelle persistence length. 

By assuming WLMs have a persistence length of 15 nm, a method [Turner and Cates 

(1991)] was developed to determine the average micelle length (〈𝐿〉) and dimensionless breakage 

rate (𝜍) indirectly from rheological data, since these quantities are essentially impossible to 

obtain directly from other experiments. However, as we discussed in our earlier work [Zou and 

Larson (2014)], the accuracy of the method is limited by the assumptions of both the theory and 

the approximations used to extract micelle parameters from individual features of the rheological 

curves (𝐺′ and 𝐺"), and by possible inaccuracy in the assumed valued of the persistence length. 

Hence, it is desirable to overcome these limitations, by developing a more advanced predictive 

model, discussed next. 
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 Simulation model  

We extended Cates’ theory by developing a simulation-based mesoscopic model [Zou 

and Larson (2014)] for entangled WLM solutions, allowing more quantitative estimates of 

multiple characteristic micellar parameters. The new model includes important physics neglected 

in the earlier Cates’ theories [Cates (1987); Cates (1988); Turner and Cates (1991); Granek and 

Cates (1992); Granek (1994)], i.e.: tube rearrangement, micelle semi-flexibility, and high-

frequency bending modes. Derived from the expression for CLF-induced relaxation of linear 

polymers [Milner and McLeish (1997); Milner and McLeish (1998)], the rate of loss of tube 

segments at the ends of tubes is represented in a time-implicit form in our model to facilitate the 

addition of contributions from reptation [Zou and Larson (2014)]. The effect of tube 

rearrangement (i.e., disentanglement-induced relaxation due to the motion of neighboring 

micelles) is accounted for using “double reptation” [Tuminello (1986); des Cloizeaux (1988)]. 

Unlike classical polymers, which are flexible enough to coil up within their tubes, WLMs are 

relatively rigid: they only bend slightly in thin tubes due to a large persistence length (10~300 

nm). The semi-flexibility of WLMs is characterized by the ratio of micelle entanglement length 

(𝑙𝑒) to persistence length (𝑙𝑝) as: 

𝛼𝑒 ≡
𝑙𝑒
𝑙𝑝
                                                                               (3.7) 

If 𝛼𝑒 > 2, micelles coil up in the tube, which implies that the micelle length is larger than its 

tube length (Eq. (3.8a)). Otherwise, the micelle length is approximately equal to its tube length 

(Eq. (3.8b)).  

𝐿 ≈ 𝐿𝑡 ∙ √0.5𝛼𝑒 ,   𝛼𝑒 > 2                                                      (3.8𝑎) 

𝐿 ≈ 𝐿𝑡,   𝛼𝑒 ≤ 2                                                                       (3.8𝑏) 

The former is called the loosely entangled regime, while the latter one, with 𝛼𝑒 < 1, is the 

tightly entangled regime. A crossover between these regimes occurs in the range 1 ≤ 𝛼𝑒 ≤ 2. 

Detailed information about these regimes can be found in references [Morse (1998a and 1998b)]. 

A formula to calculate the plateau modulus (𝐺𝑁) for any 𝛼𝑒 is [Zou and Larson (2014)]:  

𝐺𝑁 = 𝑓(𝛼𝑒) ⋅ 9.75
𝑘𝐵𝑇

𝛼𝑒
9/5
𝑙𝑝
3
+ [1 − 𝑓(𝛼𝑒)] ⋅

28

5𝜋

𝜙𝑘𝐵𝑇

𝑑2𝛼𝑒𝑙𝑝
                                 (3.9𝑎) 
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where 𝜙 is the volume fraction of surfactant, and 𝑑 is the micelle diameter. To get a smooth 

crossover from loosely (first term) to tightly (second term) entangled regimes, the weighting 

function 𝑓(𝛼𝑒) is taken to be [Zou and Larson (2014)]: 

𝑓(𝛼𝑒) =
𝛼𝑒
3

3 + 𝛼𝑒
3                                                                    (3.9𝑏) 

Note that while this functional form is arbitrary, in the middle of the cross-over the predictions 

for 𝐺𝑁 from each of the two regimes differ by a factor of less than two, and the cross-over 

formula (Eq. (3.9a)) gives a value roughly halfway between the two limits. Hence the exact 

functional form is unlikely to matter much. 

Bending motions, where micelle segments behave as bendable elastic rods, dominate on 

length scales smaller than the persistence length, as is revealed in rheological experiments by a 

three-quarters power law of modulus versus frequency at high frequencies (See Eq. (3.10a)) 

[Galvan-Miyoshi et al. (2008); Oelschlaeger et al. (2009)]. Like the high-frequency Rouse 

modes [Wang et al. (2010)], bending motions [Gittes and MacKintosh (1998)] are incorporated 

analytically by the following additive contributions to 𝐺′ and 𝐺" [Zou and Larson (2014)]: 

𝐺′(𝜔) = 𝑅𝑒 [𝑖
3
4]
𝜌

15

𝑘𝐵𝑇

𝑙𝑝
(2𝜔𝜏𝑝)

3
4,   𝐺"(𝜔) = 𝐼𝑚 [𝑖

3
4]
𝜌

15

𝑘𝐵𝑇

𝑙𝑝
(2𝜔𝜏𝑝)

3
4 +𝜔𝜂𝑠         (3.10𝑎) 

𝑤𝑖𝑡ℎ  𝜌 =
4𝜙

𝜋𝑑2
,   𝜏𝑝 =

𝜁⊥𝑙𝑝
3

𝑘𝐵𝑇
                                                           (3.10𝑏) 

In the above, “𝑅𝑒[∙]” and “𝐼𝑚[∙]” refer to real and imaginary parts, “𝑖” is the imaginary unit, and 

𝜌 is the micelle contour length per unit volume, which is related to the micelle diameter (𝑑) and 

surfactant volume fraction (𝜙) by Eq. (3.10b). Note that Eq. (3.10b) involves a constant 

𝜁⊥ describing the drag coefficient for perpendicular bending motions [Morse (1998b)], which 

should be distinguished from the longitudinal drag coefficient 𝜁 for reptation in Eq. (3.2), i.e.:  

𝜁 =
2𝜋𝜂𝑠

𝑙𝑛 (𝛼𝑒
0.6𝑙𝑝/𝑑)

,   𝜁⊥ =
4𝜋𝜂𝑠

𝑙𝑛 (0.6𝛼𝑒
0.6𝑙𝑝/𝑑)

                                           (3.11) 

where 𝜂𝑠 is the solvent viscosity. 

Apart from relaxation mechanisms, innovations in modeling breakage/rejoining and 

converting data from time to frequency enable fast simulations with an ensemble of 5000 WLMs 

by our mesoscopic method. Using pointers to track the locations of the ends of unrelaxed tube 

segments along discretized micellar chains, the number of pointers and their relative positions 

vary with time: pointers can be created by breakage, and moved and finally annihilated by chain 
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relaxation through reptation and CLFs. By summing the fraction of unrelaxed tube segments, the 

time-dependent stress relaxation function (𝜇(𝑡)) can be calculated and squared to incorporate 

constraint release using the double reptation ansatz. Although largely empirical, we use double 

reptation since it has proven to be accurate for polydisperse polymers, and because no general, 

rigorous theory has been developed for constraint release in micelles with incessant breakage and 

rejoining. A schematic of the above procedure (called the “pointer algorithm”) is shown in Fig. 

3.1, details of which can be found in our previous paper [Zou and Larson (2014)].    

 

 
Figure 3.1 Schematic of pointer algorithm, showing the creation and movement of pointers by breakage 

and rejoining (left), and reptation and CLFs (right). In the center panel, the hatched zones represent 

unrelaxed tube segments.   

Due to the failure of traditional Fourier transform methods as micellar parameters vary, a 

modified genetic algorithm (GA) is applied to facilitate the transformation of 𝜇2(𝑡) to the 

frequency domain with high frequency relaxation mechanisms added through an analytical 

function 𝐺𝐻 [Zou and Larson (2014)]. Hence, our simulation model can be expressed in the 

following functional form:  

𝐺∗(𝜔) = 𝐺𝑁ℱ[𝜇
2(𝑡, 𝜍, 〈𝐿〉, 𝛼𝑒 , 𝑑)] + 𝐺

𝐻(𝜔, 𝐺𝑁 , 〈𝐿〉, 𝛼𝑒 , 𝑑)                           (3.12) 

where 𝐺∗(𝜔) is the complex modulus, whose real and imaginary parts are 𝐺′(𝜔) and 𝐺"(𝜔), 

respectively. The operator ℱ[∙] denotes the time-to-frequency transformation through a modified 

GA. On the right side of the above equation, the first term accounts for contributions from low 

frequency relaxation mechanisms: reptation, CLFs, and tube re-arrangement; while the second 

term represents analytical expressions for high frequency Rouse and bending motions.   
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According to Eq. (3.12), five characteristic parameters are used to predict the rheological 

behavior of WLM solutions, i.e.: plateau modulus (𝐺𝑁), dimensionless breakage rate (𝜍), average 

micelle length (〈𝐿〉), semi-flexibility coefficient (𝛼𝑒), and micelle diameter (𝑑). Temperature (𝑇), 

surfactant volume fraction (𝜙), and solvent viscosity (𝜂𝑠), are known experimental parameters 

and not counted here as model parameters. Thus, by fitting rheological data with our simulation 

model, estimates for the five micellar parameters (𝐺𝑁 , 𝜍, 〈𝐿〉, 𝛼𝑒 , 𝑑) can be obtained.  

III. Experimental Section 

The WLM solutions used in this paper are aqueous solutions of SLE1S (sodium lauryl 

one ether sulfate, Fig. 3.2(a)) and a mixture of SLE1S and CAPB (cocamidopropyl betaine, Fig. 

3.2(b)) at 25℃. A simple salt (sodium chloride, NaCl) is added to both solutions, while the latter 

one also contains a 1 wt% perfume mixture. Due to the complexity of these commercial 

materials, a weight percentage instead of molar concentration is used here. An 11 wt% 

SLE1S/CAPB solution contains 9.85 wt% SLE1S and 1.15 wt% CAPB, where SLE1S is an 

abbreviation for commercial sodium lauryl ether sulfate with one ethoxyl group on average (but 

with polydispersity about this average); and CAPB is the co-surfactant. The perfume mixture 

consists of six organic components with their corresponding weight percentages i.e.: 1. 

synambran (CAS number: 6790-58-5, 10.7 wt%); 2. linalool (CAS number: 78-70-6, 23.3 wt%); 

3. allylamylglycolate (CAS number: 67634-00-8, 13.5 wt%); 4. beta-ionone (CAS number: 

14901-07-6, 11.5 wt%);  5. heliotropin (CAS number: 120-57-0, 15.4 wt%); and 6. undecavertol 

(CAS number: 81782-77-6, 25.6 wt%). The rheological properties of samples were measured by 

a TA Instruments DHR3 controlled-stress rheometer with TRIOS software using a 60mm 

Aluminum, 2 degree-cone. The cone geometry was inertially corrected prior to measurement, 

and the air bearing mapped in precision mode as prescribed in the TRIOS software. The 

frequency spectrum was collected using either 1% or 10% strain amplitude from 0.1 to 500 rad/s, 

but edited to include only data where the raw phase angle was below the 180 degree limit in 

TRIOS software. For these samples this usually limited the frequency spectrum to 250-316 rad/s, 

and abrupt changes in moduli (most easily indicated in tan delta) would be rejected. For the 

former solution, diffusing wave spectroscopy (DWS) is also applied to get the high frequency 

behavior (1~ 150,000 rad/s). The wavelength of light and the diameter of beads used in DWS are 

532 nm and 630 nm, respectively. The beads are made of IDC polystyrene latex from Life 
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Technologies (cat# S37495) with hydrophobic surface, which are stabilized with a low level of 

sulfate charges and surfactant free. The WLM solution samples for DWS measurement were 

mixed with 0.5 wt% beads before adding salt to ensure good mixing prior to thickening with salt. 

After 12 hours equilibration, samples were measured in 5 mm glass cells on LS Instruments 

RheoLab II system. The transport mean free path 𝑙∗ (= 580 μm) was determined from the 

control sample with the same-size beads in water. Details about DWS can be found in references 

[Buchanan et al. (2005); Galvan-Miyoshi et al. (2008); Oelschlaeger et al. (2009)]. Samples 

were both prepared and measured at the Procter & Gamble company. 

 

 
Figure 3.2 Molecular structure of (a) SLE1S and (b) CAPB. 

IV. Data Fitting Procedure 

 Empirical correlations 

As shown in our previous paper [Zou and Larson (2014)], empirical relationships 

between local rheological features and micellar parameters are constructed from simulation 

results using the pointer algorithm to obtain good initial guesses of WLM properties. These 

features are the local maximum and minimum values of 𝐺” along with the corresponding 

frequencies, denoted as (𝜔𝑚𝑎𝑥, 𝐺"𝑚𝑎𝑥) and (𝜔𝑚𝑖𝑛, 𝐺"𝑚𝑖𝑛), respectively. Motivated by the work 

Cates and coworkers [Turner and Cates (1991); Granek (1994)], 𝐺"𝑚𝑎𝑥/𝐺𝑁, or the height of the 

semi-circle on the normalized Cole-Cole plot, is related to the dimensionless breakage rate (𝜍), 

while the “dip” at high frequencies (i.e., 𝐺”𝑚𝑖𝑛/𝐺𝑁) is related to the dimensionless average tube 

length (𝑍̅𝑡, defined in Eq. (3.13b)). Instead of using the stress relaxation time (𝜏, Eq. (3.4)), 𝜔𝑚𝑎𝑥 

is introduced to extract the characteristic time (i.e., reptation time, 𝜏𝑟̅𝑒𝑝) from the frequency 

information. An illustration for these local features is shown in Fig. 3.3, along with empirical 

correlations for the above quantities, given in our previous paper [Zou and Larson (2014)], and 

repeated here as Eq. (3.13), given below.    

𝜔𝑚𝑎𝑥𝜏̅𝑟𝑒𝑝 = 𝐵 ∙ 𝜍
−0.63,   𝐵 = 2.1,   1 < 𝛼𝑒 < 3                                       (3.13𝑎) 

𝐺”𝑚𝑖𝑛
𝐺𝑁

= 𝐶𝑍̅𝑡
−0.61

,   𝑍̅𝑡 =
〈𝐿𝑡〉

𝑙𝑒
,   1 < 𝛼𝑒 < 3                                            (3.13𝑏) 
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𝐺"𝑚𝑎𝑥
𝐺𝑁

= −0.0657 𝑙𝑜𝑔(𝜍) + 0.265,   𝑍̅ =
〈𝐿〉

𝑙𝑒
> 10                                 (3.13𝑐) 

Since the above correlations are only accurate over a limited range of 𝛼𝑒 and 𝑍̅ (average 

entanglement number), their corresponding extensions are achieved by replacing the prefactor 𝐵 

with a function of 𝛼𝑒 for Eq. (3.13a) and 𝑍̅𝑡 with 𝑍̅ for Eq. (3.13b) in what follows. Note that 

“log” and “ln” denote the logarithmic base of 10 and e, respectively. 

 

 
Figure 3.3 Illustration of local rheological features. Inset: Cole-Cole plot.   

By fixing 𝜍 (= 0.05), a log-log plot of 𝜔𝑚𝑎𝑥𝜏𝑟̅𝑒𝑝 versus 𝛼𝑒 is obtained in Fig. 3.4(a), with 

a power law exponent of 3. From Fig. 3.4(b), the dependence of 𝜔𝑚𝑎𝑥𝜏𝑟̅𝑒𝑝𝛼𝑒
−3 on 𝜍 and the 

associated prefactor are obtained by the slope and intercept with log(𝜍) = 0, respectively, 

according to the linear fit on the log-log plot. The extended formula, covering the experimentally 

relevant range of 𝛼𝑒 (0.3~8) is given in Eq. (3.14a).  

By plotting 𝐺”𝑚𝑖𝑛/𝐺𝑁 against 𝑍̅ logarithmically in Fig. 3.5, the exponent of the power 

law correlation between these two quantities is obtained in each of three regions whose range 

depends on the specific value of 𝜍. When 𝑍̅ is small, WLMs are short and loosely entangled, and 

the exponent is -1 (denoted by the slope of solid lines in Fig. 3.5). Once 𝑍̅ becomes larger than a 

critical value (𝑍̅𝑐), the exponent changes to -3/4, shown by the slope of dashed lines in Fig. 3.5, 

which is close to the power-law prediction of Cates and coworkers (-0.8, Eq. (3.5)). Micelle 

semi-flexibility (𝛼𝑒) has no effect on this power law dependence: the data points for micelles 

with different 〈𝐿〉 and 𝛼𝑒 merge onto common curves (denoted by dashed lines in Fig. 3.5). 
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However, if WLMs are entangled tightly enough (𝛼𝑒 < 1.5), deviations from the above common 

curves appear as dash-dotted parallel lines with a slope of -1/5 in Fig. 3.5. Note that the range of 

the first region (𝑍̅ < 𝑍̅𝑐) varies with 𝜍: an increase of 𝜍 decreases 𝑍̅𝑐, thus limiting its range. The 

relationship between 𝑍̅𝑐 and 𝜍 is given in Eq. (3.14b).  

 

 
Figure 3.4 Extended empirical correlation for the dependence of 𝜔𝑚𝑎𝑥𝜏̅𝑟𝑒𝑝 on semi-flexibility coefficient 

𝛼𝑒 = 𝑙𝑒/𝑙𝑝 and dimensionless breakage rate 𝜍 with 𝑙𝑝 = 25 𝑛𝑚 and 𝑑 = 5 𝑛𝑚. (a) The linear fit (dashed 

line) on the log-log plot has a slope of 3 with 𝑅2 = 0.999 for fixed 𝜍 = 0.05; (b) The linear fit (dash-

dotted line) on the log-log plot has a slope of -2/3 and intercept of log2 when log(𝜍) = 0 with 𝑅2 =
0.995. Note that data in the above figures all come from simulations.  

The above-extended empirical correlations are summed up as: 

𝜔𝑚𝑎𝑥𝜏̅𝑟𝑒𝑝 = 2𝛼𝑒
3𝜍−2/3                                                               (3.14𝑎) 

𝐺”𝑚𝑖𝑛
𝐺𝑁

= 𝐶𝑍̅−𝑎 𝑤𝑖𝑡ℎ 𝑍̅𝑐 = 𝜍
−
3
4   

{
  
 

  
 𝑎 = 1,   𝐶 ≅ 𝜍

−
1
4,   ( 𝑍̅ ≤ 𝑍̅𝑐  𝑎𝑛𝑑 𝛼𝑒 > 1.5)

𝑎 =
3

4
,   𝐶 ≅ 𝜍−

1
16,   (𝑍̅ > 𝑍̅𝑐  𝑎𝑛𝑑 𝛼𝑒 > 1.5)

𝑎 =
1

5
,   𝐶 ≅ 𝜍−

1
16 (

2〈𝐿〉

3𝑙𝑝
)

−
11
20

,   (𝛼𝑒 ≤ 1.5)

            (3.14𝑏) 

𝐺"𝑚𝑎𝑥
𝐺𝑁

= −0.0657 𝑙𝑜𝑔(𝜍) + 0.265                                                 (3.14𝑐) 

Note that the above correlations (Eq. (3.14)) are all based on simulation results with 

10−3 < 𝜍 < 10, 0.3 < 𝛼𝑒 < 8 (these ranges encompass the values typical of actual WLM 

solutions), and well-defined local maximum and minimum 𝐺”𝑚𝑎𝑥 and 𝐺”𝑚𝑖𝑛, but are nearly 

independent of micelle persistence length 𝑙𝑝 and diameter 𝑑 which have only a small effect on 

data normalized by 𝐺𝑁 at frequencies below that at which 𝐺” has its minimum, 𝐺”𝑚𝑖𝑛 [Zou and 
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Larson (2014)]. If there is no well-defined maximum and minimum in 𝐺”, the crossover 

frequency (𝜔𝑐𝑟𝑜𝑠𝑠) and the corresponding 𝐺”(𝜔𝑐𝑟𝑜𝑠𝑠) will be treated as 𝜔𝑚𝑎𝑥 and 𝐺”𝑚𝑎𝑥(=

𝐺”𝑚𝑖𝑛), respectively. This situation usually occurs for WLM solutions with 𝑍̅ ≪ 𝑍̅𝑐. (Where 

there is a maximum in 𝐺”, the crossover point (𝐺”𝑐) is only about a few percent of the plateau 

modulus (𝐺𝑁), and we therefore don’t expect there to be a large difference in results obtained 

using the cross-over point, instead of the maximum in 𝐺”.)   

 

 
Figure 3.5 Extended empirical correlation for the dependence of 𝐺”𝑚𝑖𝑛/𝐺𝑁 on average entanglement 

number (𝑍̅) by varying average micelle length (〈𝐿〉) and semi-flexibility coefficient (𝛼𝑒) with 𝑙𝑝 = 25 𝑛𝑚 
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and 𝑑 = 5 𝑛𝑚. (a) 𝜍 = 0.01; (b) 𝜍 = 0.05; (c) 𝜍 = 0.1. Note in the above figures that the slope of solid 

lines, dashed lines, and dot-dashed lines are -1, -3/4, and -1/5 respectively, and all the data are from 

simulations.      

The empirical correlations in Eq. (3.14) are useful for inferring the properties of WLM 

solutions from rheological data (𝐺′ and 𝐺"). As an example, we consider the temperature-

dependent rheological data in Fig. 6 from reference [Siriwatwechakul et al. (2004)], which is for 

a 2 wt% erucyl bis (hydroxyethyl) methylammonium chloride (EHAC) surfactant solution with 

added 4 wt% potassium chloride (KCl) salt. From the lowest temperature (25℃, denoted by 

circles) to the highest one (45℃, denoted by squares), the value of 𝐺”𝑚𝑖𝑛 triples while 𝐺”𝑚𝑎𝑥 

and 𝐺𝑁 (plateau modulus, denoted by the magnitude of the plateau region for 𝐺′) remain 

constant. A frequency shift is also observed with around a 30-fold increase of 𝜔𝑚𝑎𝑥. 

Since 𝐺”𝑚𝑎𝑥 (≅ 2 Pa) and 𝐺𝑁 (≅ 5 Pa) remain unchanged, according to Eq. (3.14c), 𝜍 

can be taken as a constant, which is approximately equal to 0.01. Assuming the solution lies in 

the loosely entangled regime (𝛼𝑒 > 2), then 𝑍̅ <  0.5〈𝐿〉/𝑙𝑝, and if 𝜍 = 0.01, as shown by the 

solid line in Fig. 3.5(a), the power-law dependence of 𝐺”𝑚𝑖𝑛/𝐺𝑁 on 𝑍̅ (Eq. (3.14b)) is in the 

regime where the exponent is -1, which means:   

𝑍̅~1/𝐺”𝑚𝑖𝑛  

Based on Eqs. (3.2), (3.7), (3.8a) and the definition of 𝑍̅ given in Eq. (3.13c), we can also find:  

𝜏̅𝑟𝑒𝑝~〈𝐿〉〈𝐿𝑡〉
2~𝑍̅3𝑙𝑝

3𝛼𝑒
2

 

For a constant 𝐺𝑁, according to Eq. (3.9), for the loosely entangled regime (𝑓(𝛼𝑒) ≈ 1):  

𝛼𝑒~𝑙𝑝
−5/3

 

Then, substituting the above relationships for 𝑍̅, 𝜏𝑟̅𝑒𝑝, 𝛼𝑒 into Eq. (3.14a), yields: 

𝜔𝑚𝑎𝑥/𝐺”𝑚𝑖𝑛
3 ~𝑙𝑝

−14/3
 

With an approximate 30-fold and 3-fold increase in 𝜔𝑚𝑎𝑥 and 𝐺”𝑚𝑖𝑛, respectively, the above 

qualitative correlation implies that there is little change in micelle persistence length (𝑙𝑝) from 

25℃ to 45℃. Thus, in this case temperature has little effect on 𝑙𝑝, which is confirmed by the 

collapse of the data for 𝐺" at high frequencies (shown by the solid line in Fig. 3.6, which is a 

region influenced by persistence length, and would therefore show a shift with temperature if 𝑙𝑝 

were temperature dependent.) 
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Figure 3.6 Temperature-dependent rheological data from reference [Buchanan et al. (2005)], showing 

temperature shifts of 𝐺”𝑚𝑎𝑥 , 𝐺”𝑚𝑖𝑛 and 𝜔𝑚𝑎𝑥. Circles: 𝑇 = 25℃; triangles: 𝑇 = 35℃; diamonds: 𝑇 =
40℃; squares: 𝑇 = 45℃.  

 Data fitting procedure 

For quantitative analyses of WLM properties, we develop an iterative experimental data 

fitting procedure to achieve accurate estimates of micellar parameters with low fitting errors. The 

procedure relies heavily on empirical correlations (Eq. (3.14)) as well as theoretical equations 

(Eqs. (3.2), (3.8), (3.9)). Fitting deviations are calculated separately within each of the four 

frequency domains depicted in Fig. 3.7 (low frequency, transition 1, transition 2, and high 

frequency):   

𝜀𝑖 =
1

2𝑁𝑖
∑{𝑙𝑛 [

𝐺′
𝑓𝑖𝑡
(𝜔𝑖,𝑗

𝑒𝑥𝑝
)

𝐺′𝑒𝑥𝑝(𝜔𝑖,𝑗
𝑒𝑥𝑝
)
] + 𝑙𝑛 [

𝐺"𝑓𝑖𝑡(𝜔𝑖,𝑗
𝑒𝑥𝑝
)

𝐺"𝑒𝑥𝑝(𝜔𝑖,𝑗
𝑒𝑥𝑝
)
]}

𝑁𝑖

𝑗=1

, 𝑖 = 1,⋯ ,4             (3.15𝑎) 

𝑤𝑖𝑡ℎ 𝜔1,𝑁1
𝑒𝑥𝑝

= 𝜔𝑚𝑎𝑥
𝑒𝑥𝑝

, 𝜔2,𝑁2
𝑒𝑥𝑝

= 𝜔𝑚𝑖𝑛
𝑒𝑥𝑝

, 𝜔3,𝑁3
𝑒𝑥𝑝

= 10𝜔𝑚𝑖𝑛
𝑒𝑥𝑝

                                 (3.15𝑏) 

where superscripts exp and fit represent data points from experiment and simulation, 

respectively. 𝑁𝑖 is the number of data points in each frequency range. Note that the above error is 

not a least-squares error, but is a net deviation in the logarithmic ratio of fitted to experimental 

results, averaged over each frequency domain. We use this measure of error because it allows us 

to use the net deviation direction (positive or negative) in that domain to better determine how to 

adjust fitting parameters (See Appendix B for details) that are most important for that domain and 

hence quickly reach an optimal fit (i.e. within around 12 iterations). Such a rapidly converging 

method is needed because each iteration requires a separate simulation of the relaxation of 5000 

micelles and takes 2~3 hours on a single CPU. However, the method does require a separate 
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measure of error averaged over each of four separate domains to prevent positive deviations in 

one domain from cancelling negative ones in another. The key to the success of this method is 

the monotonic behavior of 𝐺" within each domain and the dominant effect of just one or two 

fitting parameters in each domain. 

 

 
Figure 3.7 Definition of frequency regions and associated fitting deviations. 

Besides the overall goodness of fit represented by the values of 𝜀𝑖 in Eq. (3.15), 

differences between experimental and predicted local features, i.e., the values of (𝜔𝑚𝑎𝑥, 𝐺”𝑚𝑎𝑥) 

and (𝜔𝑚𝑖𝑛, 𝐺”𝑚𝑖𝑛), can also help iterate to a better estimation of parameters, as alluded to above. 

Although they are not included in the set of five model fitting parameters (𝐺𝑁 , 𝜍, 〈𝐿〉, 𝛼𝑒 , 𝑑) listed 

in Eq. (3.12), other micellar parameters 𝜏̅𝑟𝑒𝑝, 𝑍̅ (defined in Eq. (3.2) and (3.13c)) as well as 

〈𝐿𝑡〉, 𝑙𝑒 , 𝑙𝑝, 𝜁 (Eqs. (3.7), (3.8), (3.11)) need to be determined during parameter modification. A 

“map” (Fig. 3.8) is established for that purpose, which shows how all the additional parameters 

(𝜏̅𝑟𝑒𝑝, 𝑍̅, 〈𝐿𝑡〉, 𝑙𝑒 , 𝑙𝑝, 𝜁) can be derived from the five independent model parameters 

(𝐺𝑁 , 𝜍, 〈𝐿〉, 𝛼𝑒 , 𝑑) along with theoretical relationships (Eqs. (3.2), (3.3), (3.7), (3.8), (3.9), and 

(3.11)) and known experimental parameters (𝑇, 𝜙, 𝜂𝑠). 

The flowchart of the data fitting procedure is laid out in Appendix B (Fig. B.1). At the end 

of each simulation (details of which can be found in our previous paper [Zou and Larson 

(2014)]), fitting deviations (𝜀1, 𝜀2, 𝜀3, 𝜀4) are calculated through Eq. (3.15) and predicted local 

feature-related points are obtained. Using the parameter “map” (See Fig. 3.8), the five 

independent model parameters (𝐺𝑁 , 𝜍, 〈𝐿〉, 𝛼𝑒 , 𝑑) from the last round of simulation are converted 
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into (𝐺𝑁 , 𝜍, 𝜏̅𝑟𝑒𝑝, 𝑍̅, 𝑙𝑝) for further modifications: two different routes are taken in alternating steps 

to minimize both the overall fitting deviations and the difference in local features between 

experimental points (𝜔𝑚𝑖𝑛
𝑒𝑥𝑝
, 𝐺”𝑚𝑖𝑛

𝑒𝑥𝑝
, 𝜔𝑚𝑖𝑛

𝑒𝑥𝑝
, 𝐺”𝑚𝑖𝑛

𝑒𝑥𝑝
) and simulated ones (𝜔𝑚𝑎𝑥

𝑓𝑖𝑡
, 𝐺”𝑚𝑎𝑥

𝑓𝑖𝑡
, 𝜔𝑚𝑖𝑛

𝑓𝑖𝑡
, 𝐺”𝑚𝑖𝑛

𝑓𝑖𝑡
), 

respectively. Detailed equations used to determine the values of five model parameters for the 

next round of simulation are also derived in Appendix A. The fitting deviations and differences 

in local features are also used to constrain the modified values of 𝜍, 𝜏𝑟̅𝑒𝑝, 𝑙𝑝 within ranges of 

limited width (Eq. (B.8), Fig. B.2 in Appendix B), leading to more stable convergence. The code 

and an example input file can be found under our website: 

http://cheresearch.engin.umich.edu/larson/software.html. 

 

 
Figure 3.8 Parameter map showing relationships between the five independent model parameters 

(𝐺𝑁, 𝜍, 〈𝐿〉, 𝛼𝑒 , 𝑑) and the additional parameters (𝜏̅𝑟𝑒𝑝, 𝑍̅, 〈𝐿𝑡〉, 𝑙𝑒 , 𝑙𝑝, 𝜁) derived from them. Arrows point 

towards quantities derived from the equations given. Dashed lines connect to the input parameters 

required by the given equation. 

After ~6-8 iterations, the simulated curves typically have average fitting deviations (Eq. 

(3.15)) around 10% for each frequency range. In general, 12 iterations are used to achieve the 

best fit with less than 10% average fitting deviations and the least difference of local-feature 

points. The computational time is around 6-12 hours for a single processor. Since the above 

procedure is based on the empirical correlations in Eq. (3.14), in case a well-defined local 

maximum and minimum are missing, the following substitutions are made: 𝜔𝑚𝑎𝑥 (= 𝜔𝑐𝑟𝑜𝑠𝑠), 

𝐺”𝑚𝑎𝑥 (= 𝐺”𝑐𝑟𝑜𝑠𝑠), 𝜔𝑚𝑖𝑛 (= 2𝜔𝑚𝑎𝑥), and 𝐺”𝑚𝑖𝑛 (= 𝐺”𝑚𝑎𝑥). As explained in our previous work 

[Zou and Larson (2014)], our method is incapable of determining micelle diameter (𝑑) from 

fitting rheological data, but a reasonably accurate value for 𝑑 can be supplied from other 

http://cheresearch.engin.umich.edu/larson/software.html
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measurements, for instance small angle neutron scattering (SANS) [Marignan et al. (1989)], or 

from molecular modeling.  

V. Results and Discussion 

 Fitting results 

Experimental data and the corresponding fits to mechanical rheometric data, DWS data, 

and a combination of these two data sets, i.e., mechanical data at low frequencies (<50 rad/s) and 

DWS data at high frequencies (>50 rad/s), for the same WLM solution (6.67 wt% SLE1S, 3.10 

wt% NaCl with solvent viscosity 𝜂𝑠=0.9 cP at 25℃) are given in Fig. 3.9 with resulting 

estimates of parameters shown in Table 3.1. The persistence length (𝑙𝑝) over 100 nm is obtained 

for these micelles formed by SLE1S, which is much greater than that for the classical CTAB or 

CPyCl [Chen et al. (2006)]. The reason for this greater value of 𝑙𝑝, we believe, is due to the 

larger micelle diameter resulting from the larger headgroup and the longer average tail length of 

SLE1S surfactant molecule, since the estimation of 𝑙𝑝 strongly depends on micelle diameter (See 

Table B.1 in Appendix B). We note that in classic beam theory, a solid cylinder has a bending 

modulus that scales as the fourth power of its diameter, and so a modest 20% increase in 

diameter can double the persistence length. While micelles are not solid cylinders, by analogy, a 

steep dependence of persistence length on micelle diameter might nevertheless be expected. 

Table 3.1 Estimation of parameters from fits in Fig. 3.9(b), (c), and (d). 

Parameters Mechanical data DWS data Combined data 

𝑮𝑵 (𝐏𝐚) 115 105 115 

𝝇 2.49 1.16 1.82 

〈𝑳〉 (𝛍𝐦) 1.45 1.60 1.59 

𝜶𝒆 1.35 1.41 1.36 

𝒅 (𝐧𝐦) 4 4 4 

𝒍𝒆 (𝐧𝐦) 155 161 153 

𝒍𝒑 (𝐧𝐦) 116 114 112 

Note: the value of 𝑑 = 4 𝑛𝑚 used in simulations for the WLM solution is taken from SANS measurement 

by our collaborators Karsten Vogtt and Gregory Beaucage at the University of Cincinnati. 

 

According to Fig. 3.9(a), mechanical rheometric data overlaps well with that for DWS in 

the frequency range from 10 rad/s to 50 rad/s. Mismatches at low and high frequencies are 

attributed to errors in DWS and mechanical rheometry, respectively, which lead to differences in 
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parameter estimates as shown in Table 3.1. For the parameters 𝐺𝑁 , 𝜍, and 𝛼𝑒, the values extracted 

from DWS data alone deviate more from the values obtained from the combined data than do the 

values from the mechanical data alone. This suggests a greater importance of low frequency 

behavior than of high frequency behavior on estimations of these parameters. The over six 

frequency-decade fit to the combined data (Fig. 3.9(d)) with less than 5% absolute average 

deviation between predicted and measured data points suggests that the viscoelastic behaviors of 

micelle solutions are well depicted by our simulation method. Although little difference is 

observed for estimates of all parameters obtained from mechanical and combined data sets (even 

the persistence length is hardly changed when the DWS data are included as shown by Table 1), 

the accuracies of estimations (i.e. insensitivity percentage discussed later) vary with parameters 

and availability of high-frequency data (i.e. the data beyond 𝜔𝑚𝑖𝑛). Thus, while fits using the 

mechanical data only were adequate for the data of Fig. 3.9, in general, high-frequency data are 

important to extract an accurate value of 𝑙𝑝, as is demonstrated in the following sensitivity study. 

 

 
Figure 3.9 Experimental data and fitting results with 𝑑 = 4 𝑛𝑚 for WLM solution (6.67 wt% SLE1S, 

3.10 wt% NaCl with solvent viscosity 𝜂𝑠 = 0.9 cP at 25℃). (a) Experimental data; (b) Fits for 

mechanical rheometric data; (c) Fits for DWS data; (d) Fits for combined data.  
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 Sensitivity study 

Here, the sensitivity of parameter determination to error or noise is assessed by a 

constrained fitting procedure. For this purpose, the combined (mechanical & DWS) experimental 

data (Fig. 3.9(d)) is used with its best-fit parameters shown in Table 3.1. Starting from these 

best-fit values, we take each parameter, one at a time, and artificially change its value to a new 

one that deviates from its best-fit value by a given percentage. Then, holding this one parameter 

value fixed, we adjust the other parameters to obtain constrained best fits to the rheological data. 

An exception is the value of 𝑑, which we hold at 4 nm according to SANS measurements, since 

its value cannot be accurately determined from rheology as discussed earlier. This inability of 

rheology to determine micelle diameter is illustrated by Fig. B.3 in Appendix B with the 

corresponding fitted parameters given in Table B.1, where no significant difference is observed 

among fitting curves for micelle diameter varying between 3 nm and 4.5 nm (the range 

encompass the values typical of actual WLM solutions). Based on this constrained fitting, the 

deviation between experimental and fitted curves is a measure of the sensitivity of the fit to the 

value of the constrained parameter. As an illustration, the effect of varying micelle persistence 

length (𝑙𝑝) is given below. 

Table 3.2 Sensitivity analysis, showing effect of variation in 𝑙𝑝 on best-fit values of other parameters for 

data of Fig. 3.9(d). 

Parameters 𝟕𝟎%𝒍𝒑 𝟖𝟎%𝒍𝒑 𝟗𝟎%𝒍𝒑 
Best-fit 

𝒍𝒑 
𝟏𝟏𝟎%𝒍𝒑 𝟏𝟐𝟎%𝒍𝒑 𝟏𝟑𝟎%𝒍𝒑 𝟏𝟒𝟎%𝒍𝒑 𝟏𝟓𝟎%𝒍𝒑 

𝑮𝑵 (𝐏𝐚) 138.5 121 114 115 108 104 97.5 95 92 

𝝇 15.58 2.06 1.10 1.82 1.53 0.96 0.76 0.93 0.69 

〈𝑳〉 (𝛍𝐦) 0.927 1.59 1.80 1.59 1.58 1.83 1.92 1.73 1.87 

𝜶𝒆 1.516 1.497 1.446 1.363 1.341 1.304 1.288 1.261 1.238 

𝒍𝒆 (𝐧𝐦) 119 134 146 153 165 176 188 198 208 

𝒍𝒑 (𝐧𝐦) 78.5 89.5 101 112 123 135 146 157 168 

𝜺𝒎𝒂𝒙 20.8% 16.2% 9.6% 4.1% 5.3% 5.6% 10.7% 14.8% 19.5% 

Note that the error (𝜀𝑚𝑎𝑥) is the absolute maximum from the four average fitting derivations (𝜀1, 𝜀2, 𝜀3, 𝜀4, 
defined in Eq. (3.15)). By varying 𝑙𝑝 from its unconstrained best-fit value, the maximum average fitting 

deviation occurs in the high frequency region, as shown by Fig. 3.10.   

 

As shown by Table 3.2 and Fig. 3.10, a variation of 𝑙𝑝 from its best-fit value drives all the 

other parameters (𝐺𝑁 , 𝜍, 〈𝐿〉, 𝛼𝑒 , 𝑙𝑒) away from their unconstrained best-fit values in order to 

optimize the goodness of the constrained fit. With an increase in variation of 𝑙𝑝 from its best-fit 

value, poorer fits are obtained at high frequencies (i.e., in the transition 2 and the high-frequency 
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regions; see Fig. 3.7). A similar analysis is performed for other parameters 𝐺𝑁 , 𝜍, 〈𝐿〉, 𝛼𝑒 , and 𝑙𝑒 

with their corresponding fits as given in Appendix B. We here define the “insensitivity 

percentage” for a given parameter to be the maximum percentage variation in that parameter 

which can be allowed, while retaining an absolute maximum average fitting error (𝜀𝑚𝑎𝑥, defined 

in the note of Table 3.2) of no more than 10% among all the four frequency regions. Note that a 

higher value of the “insensitivity percentage” implies a lower sensitivity of the fit to that 

parameter value. The “insensitivity percentage” can therefore be taken as an estimate of the 

“likely error” in that parameter value. We give the insensitivity percentages in Table 3.3.  

 

 
Figure 3.10 Sensitivity of fits to the value of 𝑙𝑝 for combined mechanical & DWS data in Fig. 3.9(d). 

Each curve results from a best fit of other parameters, with 𝑙𝑝 constrained at a given percentage of the 

unconstrained best-fit value. The inset shows an enlarged view of the high-frequency fitting. 

If high-frequency DWS data are not available, and fittings must be made to mechanical 

rheometric data alone, Fig. 3.11 shows that there is a larger insensitivity percentage 

(±20%~±30%) in persistence length 𝑙𝑝 than is the case when fits are made to combined 

mechanical & DWS data, as in Fig. 3.10. As shown by Fig. 3.10 and 3.11, a larger 𝑙𝑝 leads to a 

somewhat smaller 𝜔𝑚𝑖𝑛 causing the minimum in G” to shift to a lower frequency, due to a 

greater contribution of bending modes (Eq. (3.10)) with an increase of 𝑙𝑝. An analytical 

expression for 𝜔𝑚𝑖𝑛 can be found in reference [Granek (1994)]. This shift in 𝜔𝑚𝑖𝑛 and the 
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corresponding shift in 𝐺”𝑚𝑖𝑛, if available from mechanical data, are in principle adequate to 

determine the value of 𝑙𝑝 from mechanical data alone. However, compared to the large changes 

in the high-frequency data, to which the value of 𝑙𝑝 is most sensitive, the effect of varying 𝑙𝑝 on 

𝜔𝑚𝑖𝑛 is modest (Fig. 3.10 and 3.11). Thus, the greater uncertainty in predicting 𝑙𝑝 from 

mechanical data alone arises from the importance of the high frequency data in securing an 

accurate estimate of 𝑙𝑝 (See Fig. 3.10 at high frequencies). In addition, mechanical rheometric 

measurements are problematic at the upper range of their frequency, and fitting these data 

precisely sometimes require such a small 𝑙𝑝 that deviations occur in fits to the lower-frequency 

mechanical data, as shown by the line for 60%𝑙𝑝 in Fig. 3.11, which gives a best fit to the data 

near the minimum in 𝐺”, but fails at lower frequency. Thus, DWS data should, if possible, be 

combined with the mechanical data for a more accurate and confident estimation of 𝑙𝑝, especially 

when the mechanical data do not reach frequencies high enough to resolve the local minimum in 

𝐺”, or the highest-frequency mechanical data cannot be well fit without producing a poor fit at 

lower frequency.   

Table 3.3 The summary of insensitivity percentages for micellar parameters for combined mechanical & 

DWS data of Fig. 3.9(d). 

Parameter 
Insensitivity 

percentage 

Regions most sensitive to parameter 

G′(𝜔) G"(𝜔) 

𝑮𝑵 ±10% Transition 1 & 2 Transition 1 

𝝇 ±20% ~ ±30% Low frequency Low frequency 

〈𝑳〉 ±30% Low frequency, Transition 1 Low frequency, Transition 1 

𝜶𝒆 ±2.5% ~ ±5% Transition 1 & 2 Transition 1 

𝒍𝒆 ±5% ~ ±10% Transition 1& 2 Transition 1, High frequency 

𝒍𝒑 ±10% ~ ±20% High frequency Transition 2, High frequency 

 

While DWS data are very helpful to determine an accurate and trustworthy value of 𝑙𝑝, 

the data overlap between mechanical rheometry and DWS measurements becomes unsatisfactory 

in various cases, for instance, at low surfactant concentration. A vertical shift of the DWS data 

(which is typically high frequency data) is often made in the literature to line up the DWS data 

with the mechanical data [Willenbacher et al. (2007); Oelschlaeger et al. (2009); Oelschlaeger et 

al. (2010);], but the validity of this remains unclear. A detailed discussion of the relationship 

between mechanical rheometry (macro-rheology) and particle-related DWS (micro-rheology) 

can be found in Buchanan et al (2005). 
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Figure 3.11 The same as Fig. 3.10, except for mechanical data only shown in Fig. 3.9(b). The inset shows 

an enlarged view of the fitting near the minimum in 𝐺”. 

 Effect of salt 

By effectively screening out the electrostatic interaction between surfactant charged 

headgroups, added salt greatly affects the rheological properties of micellar solutions, which is 

reflected in a sharp rise of the zero shear viscosity (𝜂0) with increasing salt concentration (𝑐𝑠) at 

low salt concentration, followed by a decrease in 𝜂0 at high salt concentration. This non-

monotonic dependence of 𝜂0 on 𝑐𝑠 is referred to as a “salt curve.” The growth of WLMs and 

formation of micelle branches is believed to cause the increase and the subsequent decrease in 

viscosity, respectively [Khatory and Kern et al. (1993)]. However, shifts of the salt curve are 

often observed when other additives (alcohols, perfumes, and organic solvents) are added to the 

surfactant-salt solutions because of their partial or complete incorporation into micelles [Fischer 

and Fieber (2009); Parker and Fieber (2013)].  

In what follows, using our data fitting procedure, we extract micellar parameters from the 

rheological data (𝐺′ and 𝐺") for SLE1S/CAPB surfactant solutions at 11 wt% of surfactants plus 

co-surfactants and 1 wt% perfume (detailed components are given in Section III), with added 

NaCl varying from 0.63 wt% to 2 wt%. The salt curve and salt concentration-dependent micellar 

properties are shown in Fig. 3.12 (where the positions of the zero shear viscosity maxima are 

indicated by arrows), while the measured mechanical data and the corresponding fitting curves 
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can be found in Fig. 3.13. These data sets do not include DWS measurements, which limits 

somewhat the accuracy of the parameters extracted as we discussed above. 

 

 
Figure 3.12 The dependence of characteristic micellar parameters on salt weight percentage through fits 

to the experimental data for SLE1S/CAPB/NaCl surfactant solutions with perfume. (a) Zero-shear 

viscosity, 𝜂0; (b) plateau modulus, 𝐺𝑁; (c) average micelle length, 〈𝐿〉; (d) average breakage time, 𝜏̅𝑏𝑟; (e) 

micelle entanglement length, 𝑙𝑒 and persistence length 𝑙𝑝. Notice the positions of zero shear viscosity 

maxima are indicated by arrows in all the above subfigures. 

According to Fig. 3.12, both the plateau modulus 𝐺𝑁 and the average breakage time 𝜏𝑏̅𝑟 

(= 𝜏𝑟̅𝑒𝑝𝜍, Eq. (3.3)) show monotonic dependences (Fig. 3.12(b) and (d)) on salt weight fraction: 

𝐺𝑁 increases with added salt while 𝜏𝑏̅𝑟 decreases. This monotonic decrease of 𝜏𝑏̅𝑟 with salt 

concentration has also been reported in the literature [Nakamura and Shikata (2006); Parker and 

Fieber (2013)]. According to our results, these solutions fall into the fast breakage regime with 

𝜏𝑏̅𝑟 ≪ 𝜏𝑟̅𝑒𝑝, and therefore 𝜍 ≪ 1 (Eq. (3.3)), when the salt fraction is greater than 0.75 wt%. An 

increase in average micelle length (〈𝐿〉) is also observed before the solution reaches the 

maximum on its salt curve, and beyond that, the apparent “length” 〈𝐿〉 decreases slightly (Fig. 

3.12(c)). Since our method does not distinguish branched from linear micelles, the “micelle 

length” 〈𝐿〉 at high salt concentration is only an apparent length, and its value more likely reflects 

the spacing between branch points as much or even more than the micelle length [Khatory and 

Kern et al. (1993)]. We are currently working on an extension of our simulation method to 
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branched micelles, which should help overcome this limitation and may provide a quantitative 

interpretation on the rheological scaling behavior for 𝐺𝑁 and other parameters as we did in Fig. 

3.12. With a larger surfactant fraction (11 wt%) than in the previous solution (6.67 wt%, Fig. 

3.9(a)), higher values of 𝜔𝑚𝑖𝑛 (the frequency where 𝐺" reaches a local minimum) are observed 

(Fig. 3.13(a)-(f)) causing poorer resolution of 𝜔𝑚𝑖𝑛, from which micelle entanglement length (𝑙𝑒) 

and persistence length (𝑙𝑝) are extracted. Therefore, the possible errors in 𝑙𝑒 and 𝑙𝑝 for these 

samples are likely greater than for the mechanical data for the 6.67% SLE1S solution in Section 

V.2, which we found had likely errors (or insensitivities) of 20%~30%. Thus, the non-monotonic 

dependences of 𝑙𝑒 and 𝑙𝑝 on salt concentration given in Fig. 3.12(e) might be spurious, especially 

since 𝑙𝑝 is expected to decrease monotonically with increasing salt concentration based on the 

predictions of Oelschlaeger et al. [Oelschlaeger et al. (2009) and (2010)]. The poorer model fits 

in Fig. 3.13(e) and (f), especially at high frequencies may be due to the presence of branching in 

those samples. 

 Breakage mechanisms 

Finally, in this section, the details of micellar breakage mechanisms and their effects on 

stress relaxation are discussed. As suggested by Turner and Cates (1992), three different micellar 

breakage schemes may occur in WLM solutions: reversible scission, end-interchange, and bond-

interchange, whose existence is studied by simulation and experimental work [Yamamoto and 

Hyodo (2005); Nakamura and Shikata (2006)]. Reversible scission is a uni-micellar, while the 

other two (end- and bond-interchange) are bi-micellar, and involve the formation of three- and 

four-arm intermediates, respectively. With the aid of pointer algorithm (Fig. 3.1), reversible 

scission can be modeled by three different sequences of breakage, rejoining and relaxation 

events, as shown in Fig. 3.14. 
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Figure 3.13 Experimental and fitting results for SLE1S/CAPB/NaCl surfactant solutions with perfume 

and various salt weight fractions. (a) 0.63 wt% NaCl; (b) 0.7 wt% NaCl; (c) 0.75 wt% NaCl; (d) 1.0 wt% 

NaCl; (e) 1.25 wt% NaCl; (f) 2.0 wt% NaCl. The fitting parameters are given in Fig. 3.12. 

From Fig. 3.14, sequence 1 allows the total number of WLMs to fluctuate by randomly 

choosing a breakage or rejoining event after the relaxation, while sequences 2 and 3 are based on 

a regular cycle of breakage and rejoining. With a large enough ensemble, the above three 

sequences should give the same relaxation behavior, which is indeed shown in Fig. 3.15. 
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Figure 3.14 Three different sequences in reversible scission scheme.  

 
Figure 3.15 Stress relaxation behaviors for reversible scission scheme with three different sequences, 

depicted in Fig. 3.14. (a) Reptation with CLFs; (b) Pure reptation (i.e., no CLFs). 

 
Figure 3.16 Pointer algorithm with end-interchange and bond-interchange schemes. 

By extending our pointer algorithm to accommodate end- and bond-interchange (Fig. 

3.16) with sequence 3, we find in Fig. 3.17 that pure end- and bond-interchange scheme only 
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produce a modest 10% and 30% increase, respectively, of the stress relaxation time (𝜏 defined in 

Eq. (3.4)) for a high breakage rate (𝜍 = 0.05) with fixed surfactant volume fraction (𝜙 = 0.1). 

Although the precise mechanism by which micelles break and rejoin should affect the 

dependence of micelle length and therefore viscoelasticity on surfactant concentration, for a 

fixed surfactant concentration considered here, such effects are not probed.   

 

 
Figure 3.17 Stress relaxation behaviors for different breakage schemes for fixed surfactant volume 

fraction with the sequence used as defined in the text. (a) Reptation with CLFs; (b) Pure reptation (i.e., no 

CLFs). 

VI. Conclusions 

We have established improved empirical relationships and an associated data-fitting 

procedure to allow quantitative estimation of micellar characteristic lengths (average micelle 

length 〈𝐿〉, entanglement length 𝑙𝑒, and persistence length 𝑙𝑝) and times (average breakage time 

𝜏𝑏̅𝑟, and reptation time 𝜏𝑟̅𝑒𝑝) to be extracted from rheological data using our recently developed 

simulation method for entangled WLM solutions. We were able to obtain fits to 𝐺′ & 𝐺" data 

with less than 5% absolute average deviation over a six-decade frequency range, including high 

frequency data obtained from diffusing wave spectroscopy (DWS). A comparison of fitted 

micellar parameters were made between DWS data and mechanical rheometric data for WLM 

solution, and this indicates the importance of low-frequency data in estimating the plateau 

modulus 𝐺𝑁, the dimensionless breakage rate 𝜍, and the semi-flexibility coefficient 𝛼𝑒. The 

accuracy of our simulation method was demonstrated by sensitivity studies for different micellar 

parameters. By applying our method to examine effects of added salt concentration, we observed 

monotonic and non-monotonic dependences of different micellar parameters on salt 
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concentration, as well as poorer fits at high salt weight fraction where branched micelles 

predominate. Finally, three different micellar breakage schemes (reversible scission, end-

interchange, and bond-interchange) and their rather modest effect on the stress relaxation for 

fixed surfactant concentration were discussed. 
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Chapter 4: Multi-Scale Modeling of the Effects of Salt and Perfume Raw Materials on 

the Rheological Properties of Commercial Thread-like Micellar Solutions2 

I. Introduction 

Surfactants are widely used in consumer products including detergents, health and 

personal care products, and foodstuffs, and in industrial applications including oil recovery and 

drug delivery. [Cates and Fielding (2006); Kralova and Sjoblom (2009); Lawrence (1994); 

Maitland (2000); Rehage and Hoffmann (1988); Rhein et al. (2006); Zana and Kaler (2007)] 

Many of these surfactant solutions contain elongated micelles and are viscoelastic, which is of 

great importance, especially in design of consumer products such as shampoos and body washes. 

Extensive studies of the rheology of micellar solutions have been carried out over the past three 

decades, both to satisfy scientific interest and in hopes of improving their design for applications. 

Many studies have focused on relatively simple solutions containing a single species of cationic 

surfactant along with one species of anionic hydrotrope or inorganic salt. [Cates and Fielding 

(2006); Zana and Kaler (2007); Candau et al. (1989); Cappelaere et al. (1994); Wheeler et al. 

(1996)]  

In most cleaning products, including personal-care products, anionic surfactants 

predominate. The simplest and most common of these, sodium dodecyl sulfate (SDS), has been 

investigated extensively in the concentration range between the first critical micelle 

concentration (CMC) at 0.008 M and the second CMC at 0.069 M, over which concentration 

range the majority of the micelles are small spheres or ellipsoids.20,21 Wormlike micelle 

solutions composed of anionic surfactants at concentrations far above the 2nd CMC are studied 

less frequently, even though those concentration ranges are more relevant to practical 

applications, and exhibit viscoelastic properties.  

In practical applications, mixed surfactants are usually used because of the lower cost of 

polydisperse mixtures and improved performance over that of the single-surfactant solutions. 

                                                 
2 This chapter results from the collaboration with the former group member Xueming Tang as well as Procter and 

Gamble scientists Peter Koenig, Shawn McConaughy, Mike Weaver, David Eike, and Michael Schmidt. These 

individuals contributed a lot to the molecular level simulations and rheological measurements shown in this chapter.     
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[Scamehorn (1986)] The addition of the ionic surfactant sodium lauryl ether sulfate (SLES) to an 

SDS solution enhances the viscosity of the mixture at low total surfactant concentration. 

[Acharya et al. (2006)] Superior interfacial tension reduction is obtained upon addition of the 

zwitterionic surfactant cocamidopropyl betaine (CAPB) to an SDS solution. [Danov et al. 

(2004); Galvan-Miyoshi et al. (2008); Hines et al. (1998); Sarmiento-Gomez et al. (2010)] Sharp 

drops of both the 1st and 2nd CMC are obtained in mixtures of CAPB and SLES having one to 

three ethylene oxide (EO) monomers over that seen in each of the individual surfactant 

components, as determined through experimental measurements using rheometry and SAXS. 

[Christov et al. (2004); Eguchi et al. (2007); Naruse et al. (2009)] Here the EO groups connect 

the alkane tails to the negatively charged sulfate head groups within an SLES molecule. 

Although the addition of cationic surfactant to anionic surfactants boost viscosity enormously at 

low surfactant concentrations, the formation of an insoluble complex can limit the range of 

practicable formulations, and so is often avoided. [Scamehorn (1986); Schubert et al. (2003)] 

Earlier studies of simple surfactant solutions containing at most two species of surfactants 

have provided insights into the structure-property relationships of wormlike micelle solutions. 

However, such systems are oversimplified relative to commercial surfactant mixtures, which 

contain many species, as well as polydispersity within individual species, such as in SLEnS. In 

addition, perfumes used in commercial mixtures contain a few dozen distinct small organic 

molecules, each named a “perfume raw material” (PRM). One of the main challenges in 

applications of complex fluids such as surfactant solutions is to measure accurately their 

microstructure at the molecular scale so that these microstructures can be designed for optimal 

performance of the product. To address this issue and accelerate formulation development, we 

here report our efforts at multiscale modeling and its use in the prediction of rheological 

properties of two commercial body wash formulations. Specifically, here we systematically 

study the effects of salts and PRMs on the viscoelastic properties of body washes, and estimate 

the corresponding micellar properties through application of the “Pointer Algorithm,” [Cates and 

Candau (1990); Larson (2012)] a simulation method that we use to infer micelle length, breakage 

time and other properties from their rheology, as well as through molecular simulations using 

Dissipative Particle Dynamics (DPD) and through application of the molecular “packing 

parameter” concept. [Israelachvili et al. (1976)] By connecting the surfactant packing at the 

molecular scale to micellar properties at the mesoscale, and these, in turn, to the rheological 
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properties at the macroscopic scale, we develop an approach for achieving a fundamental 

understanding of the structure-property relationships of commercial surfactant solutions.   

II. Multi-scale Modeling and Packing Argument 

 Micellar-scale model 

Cryo-TEM measurements of body washes verify the formation of entangled networks of 

wormlike micelles. The solutions are viscoelastic and their rheology is similar to that of 

entangled polymer solutions. One difference is that wormlike micelles break and recombine 

rapidly. By combining the theories considering polymer reptation and micellar fast reversible 

scission, Cates developed a reptation-reaction model to estimate linear micellar characteristic 

time and length parameters. [Cates and Fielding (2006); Cates and Candau (1990); Khatory et al. 

(1993); Cates (1987); Granek and Cates (1992)] The frequency-dependent linear rheological 

moduli predicted by the Cates model in the fast-breakage limit are given by a single-relaxation-

time Maxwell model. Zou and Larson (2014) extended the Cates model by including important 

physics neglected in the previous model and using “pointers” to track relaxation dynamics in 

ensembles containing thousands of micelles. This “Pointer Algorithm” allows estimates of 

multiple micellar parameters from fits of the predictions to the rheology of entangled wormlike 

micelles. [Español and Warren (1995)] We will use the Pointer Algorithm here to extract micelle 

parameters, including average micelle length, breakage time, etc. from rheological data we 

obtain for several commercial body washes. 

Once the average micelle length is obtained from such simulations, the scission free 

energy 𝐸𝑠 (i.e., the free energy of creating two additional end caps), can be determined from the 

dependence of the average micelle aggregation number 〈𝑛〉 on temperature as [Larson (1999)] 

〈𝑛〉 ≈
𝜌𝑠𝜋𝑑

2〈𝐿〉𝑁𝐴

4𝑀̅𝑠

≈ 2𝜒0.5𝑒𝑥𝑝 (
𝐸𝑠
2𝑘𝐵𝑇

)                                                (4.1𝑎) 

Here, 𝜒 is the mole fraction of the surfactant, and the exponent 0.5 is derived from the law of 

mass action, assuming activity coefficients of unity for individual surfactant molecules and 

micellar species. To derive the above expression, which is slightly more precise than the scaling 

law of Cates and Candau, [Cates and Candau (1990); Vogtt et al. (2017)] which uses surfactant 

volume fraction 𝜙 instead of mole fraction 𝜒, we note that for cylindrical micelles containing 

surfactant with surfactant density 𝜌𝑠 = 1.1 g/cm3 (which we take from the mass density of the 
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surfactant crystal) and diameter 𝑑 = 4 nm, 〈𝑛〉 can be expressed in terms of the average micelle 

length 〈𝐿〉 as: 

〈𝑛〉 =
𝜌𝑠𝑉𝑠

𝑀̅𝑠
𝑁𝐴 =

𝜋𝑑2〈𝐿〉𝑁𝐴

4𝑀̅𝑠
                                                          (4.1𝑏) 

Here 𝑁𝐴 is the Avogadro number and 𝑀̅𝑠 = 345 g/mol is the average molecular weight of the 

surfactant, which we take as the weight-averaged molecular weight of the components. SLE1S 

(molecular weight = 346 g/mol) and CAPB (molecular weight = 342 g/mol), with the weight 

fractions of these two being 9.85/11 and 1.15/11, respectively. We neglect the small 

contributions of salt and perfume molecules to the mole fraction of surfactant 𝜒. Substituting the 

above equation into Eq. (4.1a), yields: 

〈𝐿〉 ≈
8𝑀̅𝑠𝜒

0.5

𝜌𝑠𝜋𝑑
2𝑁𝐴

𝑒𝑥𝑝 (
𝐸𝑠
2𝑘𝐵𝑇

)                                                             (4.2) 

Here the mole fraction 𝜒 is obtained as 0.64 for 11 wt. % surfactant solutions (i.e., 𝜒 =

[𝑤𝑠/𝑀̅𝑠]/[𝑤𝑠/𝑀̅𝑠 + (1 − 𝑤𝑠)𝑀𝑤] = 0.64 with 𝑤𝑠 = 0.11). To limit our analyses to the regime 

of cylindrical micelles, we apply Eq. (4.2) only over a set of four temperatures separated by 

intervals of 1 or 2 degrees within a narrow range from 20.0 to 25.0 °C. We note that if the molar 

volume of the surfactant is set equal to that of water, the simpler expression of Cates is obtained. 

Similar to the scission energy, we express the temperature dependence of the terminal relaxation 

time 𝜏 and zero-shear viscosity 𝜂0 in Arrhenius forms involving terminal relaxation time and 

viscosity activation energies 𝐸𝑟 and 𝐸𝑣, respectively: [Cates and Candau (1990)] 

𝜏~𝜂𝑠𝑒𝑥𝑝 (
𝐸𝑟
𝑘𝐵𝑇

),   𝜂0~𝜂𝑠𝑒𝑥𝑝 (
𝐸𝑣
𝑘𝐵𝑇

)                                                    (4.3) 

where 𝜂𝑠 is the solvent viscosity which itself is a function of temperature. These activation 

energies can also be extracted from the corresponding rheological curves. 

 Dissipative particle dynamics (DPD) simulations  

To describe the structure of cylindrical micelles in a computationally efficient way, 

coarse-grained dissipative particle dynamics (DPD) simulations using a soft repulsive potential 

are applied here. [Español and Warren (1995); Groot and Warren (1997)] In the DPD 

simulations used here, three to five heavy atoms are lumped into one quasi-particle or bead, 

which interacts with other beads via pairwise forces, and obeys Newton’s equations of motion. 

The pairwise interparticle force contains three contributions,  
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 𝑓𝑖 = ∑ (𝐹𝑖𝑗
𝐶 + 𝐹𝑖𝑗

𝐷 + 𝐹𝑖𝑗
𝑅)𝑗≠𝑖                                                          (4.4) 

where 𝐹𝑖𝑗
𝐶 is a conservative force defined by a purely repulsive (harmonic) soft-core potential 

sensitive to chemical identity, 𝐹𝑖𝑗
𝐷 is a dissipative force and 𝐹𝑖𝑗

𝑅 is a random force. The latter two 

forces take into account the fluctuation and dissipation of energy and serve as the Langevin 

thermostat. The conservative force 𝐹𝑖𝑗
𝐶 determines the thermodynamics of the DPD system and 

the soft potential allows for larger time steps of picoseconds instead of the femtoseconds used in 

traditional MD simulations. 

𝐹𝑖𝑗
𝐶 = −𝑎𝑖𝑗𝜔

𝐶(𝑟𝑖𝑗)𝑟̂𝑖𝑗                   

𝐹𝑖𝑗
𝐷 = −𝛾𝜔𝐷(𝑟𝑖𝑗)(𝜐𝑖𝑗 ∙ 𝑟̂𝑖𝑗)𝑟̂𝑖𝑗    

𝐹𝑖𝑗
𝑅 = −𝜎𝜔𝑅(𝑟𝑖𝑗)𝜉𝑖𝑗∆𝑡

−1 2⁄ 𝑟̂𝑖𝑗   

                                                     (4.5) 

Here 𝑎𝑖𝑗, 𝛾 and 𝜎 are parameters that determine the strength of these forces. The parameters 𝜎, 𝛾 

are chosen such that they will obey the dissipation-fluctuation theorem with 𝜎2 = 2𝛾 and 𝜎 = 3. 

The repulsive parameters 𝑎𝑖𝑗 are dependant on the chemical identity of beads 𝑖, 𝑗. 𝑟̂𝑖𝑗 is a unit 

vector in the direction of 𝑟𝑖𝑗 and 𝑟𝑖𝑗 = |𝑟𝑖 − 𝑟𝑗|, while 𝜐𝑖𝑗 = 𝜐𝑖 − 𝜐𝑗 is the relative velocity 

between beads 𝑖 and 𝑗. 𝜉𝑖𝑗 is a Gaussian distributed random variable with zero mean and unit 

variance and ∆𝑡 is the integration time step. 𝜔𝐶 , 𝜔𝐷 and 𝜔𝑅 are the weight functions: 

𝜔𝐶(𝑟𝑖𝑗) = 𝜔
𝑅(𝑟𝑖𝑗) = {

  1 −
𝑟𝑖𝑗

𝑟𝑐𝑢𝑡
             𝑖𝑓 0 ≤ 𝑟𝑖𝑗 ≤ 𝑟𝑐𝑢𝑡

0                   𝑖𝑓 𝑟𝑖𝑗 > 𝑟𝑐𝑢𝑡

                           (4.6𝑎) 

𝜔𝐷 = (𝜔𝑅)2                                                                               (4.6𝑏) 

where 𝑟𝑐𝑢𝑡 is the truncation distance. 

Since its introduction by Hoogerbrugge and Koelman in 1992, [Hoogerbrugge and 

Koelman (1992)] DPD has been improved significantly by Español and Warren [Español and 

Warren (1995)] and then by Groot and Warren. [Groot and Warren (1997)] Recently, Liyana 

Arachchi et al., [Liyana-arachchi et al. (2015)] introduced a revision of the Groot and Warren 

DPD equation of state (rGW-EOS) that improves it for low bead number densities and allows for 

beads of different number densities to be used in a simulation. Different bead number densities 

correspond to different effective sizes of beads. This formalism does not change the cutoff 

distance 𝑟𝑐𝑢𝑡; however the conservative repulsion parameter 𝑎𝑖𝑖 for beads of the same type 𝑖 now 

depends on the chemical species associated with 𝑖. 
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Liyana Arachchi et al. [Liyana-arachchi et al. (2015)] also provide for a more systematic 

determination of parameters 𝑎𝑖𝑗 for distinct types 𝑖, 𝑗 determined from infinite dilution transfer 

free energies as determined for instance using COSMOtherm. 

In this Chapter, we used a water model lumping three water molecules into one bead with 

a volume of 90.05 Å3. We set the bead number density of water molecules to 5.0. This results in 

a definition of the DPD length scale of 𝑟𝑐𝑢𝑡 = 7.6 Å. We set the repulsion parameter between 

water molecules to 𝑎𝑖𝑖 = 15.0. The number densities of other beads are determined from 

comparing their molar volume to the molar volume of the water beads. Molar densities are 

computed using the empirical model implemented in COSMOtherm. [Klamt et al. (2010); Klamt 

(2011)] The repulsion parameters 𝑎𝑖𝑖 for like interactions are determined from the respective 

number density following the rGW-EOS. The repulsion parameters 𝑎𝑖𝑗 for unlike interactions are 

computed from the infinite dilution transfer free energy approach previously described. [Liyana-

arachchi et al. (2015)] 

To describe some of the more complex molecules in the simulations described here, 

multiple beads have to be used. The validity range of the rGW-EOS allows for beads comprising 

on the order of 3-5 heavy atoms (the definition of the beads used in this work is contained in 

Table C.1 in Appendix C). To determine the size of the beads, the molar volume is derived from 

related model compounds by subtracting the molar volume of terminating groups. For instance, 

the molar volume of a C3 bead describing a propylene functionality is obtained by subtracting 

the molar volume of ethane from the molar volume of pentane. As another example, some of the 

isomers found in dipropylene glycol are symmetric in nature. The volumes of the corresponding 

beads are determined as half of the molar volume of the parent compound. 

To determine the interaction parameters for these beads, the weights are assigned to the 

respective parent compound for COSMOtherm calculations, resulting in only the molecular 

surface that corresponds to the bead to be considered for the transfer free energies. 

For the parameterization of harmonic bond and angles potentials, ensemble distributions 

were matched to atomistic Monte-Carlo simulations using the COMPASS force field 

implemented in Biovia Materials Studio.  

To our knowledge, no systematic approach has been described for the parameterization of 

charged beads in DPD. Given that most ions in aqueous solutions possess a hydration shell, we 

make the strong assumption that the interactions aside from the electrostatic charge are 
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dominated by the hydration shell. We hence define the 𝜒𝑖𝑗 parameters describing the interactions 

of ions with other beads as identical with water interacting with said bead. An ionic bead 

interacting with another ionic bead would then have a 𝜒𝑖𝑗 parameter identical to that for a water 

bead with itself. In addition, integer electrostatic charges are assigned to the beads following 

their formal electrostatic charges. To prevent singularities in electrostatic forces and energies for 

the soft core potential, electrostatic charges are described as Gaussian charge clouds centered at 

the respective bead as suggested by Groot. [Groot (2003)] If the width of the charge distributions 

are identical for all beads, a standard particle-mesh Ewald scheme can be used to compute the 

interaction if the real-space cutoff is set to 0.0 (See Appendix C). For these simulations, we used 

a homogeneous relative dielectric constant of 𝜖0 = 80 and a standard deviation of 𝜎𝐸𝑆 = 0.8/√2 

for the Gaussian charge distributions. 

We used LAMMPS to apply this model in simulations of canonical ensembles at constant 

pressure and constant temperature with semi-isotropic pressure coupling (𝑝𝑟𝑒𝑓 = 41.9, 𝜏𝑝 =

15𝜏) with a time step of 𝜏 = 0.015 DPD units to study the effects on micelle properties of salts 

in the two formulations BW-1EO and BW-3EO (defined below) and the effects of four PRMs in 

BW-1EO. All DPD parameters used for the simulations are provided as supplementary materials. 

Using a combination of the Pointer Algorithm and the DPD molecular model, we seek to 

assess quantitatively the changes in rheological properties that result from the addition of salts 

and PRMs and thereby build a fundamental understanding of the structure-property relationships 

of surfactant formulations. We used LAMMPS to apply this model in simulations of canonical 

ensembles at constant pressure and constant temperature with semi-isotropic pressure coupling 

(𝑝𝑟𝑒𝑓 = 41.9, 𝜏𝑝 = 15𝜏) with a time step of 𝜏 = 0.015 DPD units to study the effects on micelle 

properties of salts in the two formulations BW-1EO and BW-3EO (defined below) and the 

effects of four PRMs in BW-1EO. Detailed DPD parameters and the molecular mapping are 

listed in Table C.1 in Supporting Information. Using a combination of the Pointer Algorithm and 

the DPD molecular model, we seek to assess quantitatively the changes in rheological properties 

that result from the addition of salts and PRMs and thereby build a fundamental understanding of 

the structure-property relationships of surfactant formulations. 
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 Packing argument and octanol/water partition coefficient.  

A. Packing arguments  

At concentrations above the 1st CMC in solution, surfactants self-assemble into diverse 

structures including spherical, global, and cylindrical micelles as well as ordered phases. [Zana 

and Kaler (2007); Imae et al. (1985); Larson (1999); Israelachvili et al. (1976); Groot (2003)] 

These self-assembled structures depend on the concentration and chemical structures of the 

surfactants, the nature of the counter ions, the presence of salts and/or other surfactants, pH, 

temperature and pressure. [Zana and Kaler (2007); Larson (1999)] Israelachvili and coworkers 

proposed a packing argument based on the dimensionless “packing parameter” 𝑝 to predict the 

shape of the micelles, which is defined as [Israelachvili et al. (1976)] 

 𝑝 =
𝑉

𝑙𝑐𝑎0
                                                                                 (4.7) 

where 𝑉 is the occupied volume of the hydrophobic tail, 𝑙𝑐 is the tail length, and 𝑎0 is the area 

occupied by the hydrophilic heads on the micelle surface.  

Generally, the hydrophobic tails are wrapped within the hydrophilic heads, giving them 

limited access to their environment. Therefore the tail volume 𝑉 and tail length 𝑙𝑐 are typically 

taken to be constant, while the head group area 𝑎0 can change, for example with ionic strength. 

Using the packing parameter 𝑝, the effects of salts and non-hydrophobic PRMs on micellar 

properties can be easily explained, at least qualitatively. For example, as salt is added into the 

micellar solution, the electrostatic repulsions between the surfactant heads are screened out, 

resulting in a decrease of 𝑎0 and an increase of 𝑝, which flattens the micelle surface, leading, for 

example, to a transition from spherical to elongated cylindrical micelles. Similarly, addition of a 

hydrophobic perfume that swells the tails increases 𝑉, also resulting in a similar transition. 

However, as we shall see, large, very hydrophobic, PRMs can penetrate deeply into the 

hydrophobic core of the micelle, segregated from the tails and swelling the micelle radius, 

effectively changing not only 𝑉 but also 𝑙𝑐, which can lead, perhaps surprisingly, to a decrease in 

𝑝, and a transition towards spherical micelles. 

B. Octanol/water partition coefficient  

PRMs are essential ingredients for fragrances in body washes formulated to meet 

consumers’ preferences. The effects of a single PRM are often studied and correlated with the 
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value of its octanol/water partition coefficient, 𝑃𝑂𝑊, which is the concentration ratio of the PRM 

in hydrophobic octanol to that in the hydrophilic water phase (See Eq. (4.8)). [Bradbury et al. 

(2013); Penfold et al. (2008); Saito et al. (2003); Suratkar and Mahapatra (2000); Tokuoka et al. 

(1994); Zhou and Zhu (2005)] The logarithm, log 𝑃𝑂𝑊, is often used as a hydrophobicity 

parameter. In this paper we use the logP values as computed by the Consensus algorithm 

implemented in ACD/Percepta version 14.02 by Advanced Chemistry Development, Inc. 

(ACD/Labs, Toronto, Canada). Approximating the hydrophobic surfactant tail region and the 

hydrophilic surfactant head region by the octanol phase and water phase, respectively, we obtain  

𝑙𝑜𝑔 𝑃𝑂𝑊 = 𝑙𝑜𝑔 (
[𝑃𝑅𝑀]𝑂𝑐𝑡𝑎𝑛𝑜𝑙
[𝑃𝑅𝑀]𝑊𝑎𝑡𝑒𝑟

)  ≅ 𝑙𝑜𝑔 (
[𝑃𝑅𝑀]𝑇𝑎𝑖𝑙 𝑟𝑒𝑔𝑖𝑜𝑛 

[𝑃𝑅𝑀]𝐻𝑒𝑎𝑑 𝑟𝑒𝑔𝑖𝑜𝑛 + [𝑃𝑅𝑀]𝑊𝑎𝑡𝑒𝑟
)          (4.8) 

However, the above approximation neglects geometric constraints, especially in the tightly 

packed surfactant tail region, which might restrict access of PRMs to the micelle core or cause a 

significant change of the surfactant packing within micelles. 

III. Experiments and Simulation Set Up 

 Materials  

Two body wash formulations, “BW-1EO” and “BW-3EO” with a simple salt (sodium 

chloride, NaCl) and PRM (if added), were tested. Raw industrial grade surfactants, analytical 

grade salts and PRMs, and Milli-Q water were used in both formulations. Due to the complexity 

of these commercial materials, weight percentage (wt. %) instead of molar concentration is used 

here. An 11 wt. % BW-1EO aqueous solution is a mixture of 9.85 wt. % SLE1S, 1.15 wt. % 

CAPB, where SLE1S (Fig. 4.1a) is an abbreviation for commercial sodium lauryl ether sulfate 

with one ethoxyl group (EO) on average (but with a distribution of the number of EOs ranging 

from 0 to 10); and CAPB (cocamidopropyl betaine, Fig. 4.1b) is a zwitterionic co-surfactant. The 

11 wt. % BW-3EO solutions is similar to that of BW-1EO except that the former contains 

SLE3S, which has three EOs on average, and the ratio of surfactants is different: SLE3S (6.95 

wt. %), SLS (i.e., SLEnS with n=0, 2.90 wt. %), CAPB (1.15 wt. %). SLE1S and SLE3S are 

commercially available from Stepan (Northfield, Ill) as 26% actives in H2O (pH ~11). The pH is 

adjusted to around 7 in the formulations. They both have an approximate chain length 

distribution of 65-68% C12, 25-27% C14 and 5-7% C16. The distribution of the ethoxylation 

was explicitly represented in the mixtures of molecules used in DPD to represent the respective 
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surfactants. A 1 wt. % “ACCORD” perfume mixture (which consists of six small organic 

perfume molecules as listed in Table 4.1) is also added to both BW-1EO and BW-3EO solutions 

to make the mixture more representative of commercial formulations. The” ACCORD” was a 

mixture that was created to span a range of octanol-H2O partitioning coefficients from 

hydrophillic (~ 1) to mildly hydrophobic (~ 4) (see Table 4.1).  Linalool was obtained from 

Renessenz LLC; heliotropin was from Ungerer; undecavertol and ambroxan were from 

Givaudan; beta-ionone was from Aldrich and allyl amyl glycolate was from O’Laughlin 

Industries Inc.  All PRMs were used as received. Note that the CAPB ingredient adds about 0.2 

wt % of salt to the formulations. The experimental work in this paper reports the added salt, not 

including the amount carried by the CAPB.  In the DPD simulation work the salt concentration 

reported (in Fig. 4.9 for example) represents the total salt in the formulation.  

Table 4.1 Composition of ACCORD. For each component, the CAS number, IUPAC name, common 

name, chemical structure, octanol/water partition coefficient, molecular weight, and its weight percentage 

in the mixture, are given. 

 

 

In additional to ACCORD, four additional PRMs (Fig. 4.1c-f, details below) were also 

added one at a time to the BW-1EO and BW-3EO formulations (each of which already contains 

the ACCORD). Molar concentration is used to specify the addition of each PRM to study their 
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individual effects on viscoelastic properties of body washes. These additional PRMs were added 

to the pre-existing mixture including ACCORD because screening experiments suggest that the 

impact of a single perfume compound may not translate in a simple linear and additive fashion to 

mixtures of additives. Nevertheless, we also present data in Appendix C, Fig. C.1, for surfactant 

mixtures containing only a single PRM (i.e., no ACCORD), and find that the effects on the zero-

shear viscosity of the single PRM added to the surfactant-only mixture are qualitatively similar 

to the effects of adding it to the mixture that also contains ACCORD. The PRMs chosen for one-

at-a-time addition are: A. dipropylene glycol, abbreviated as DPG {a mixture of four isomers: 1) 

1,1’-oxybis-2-propanol (CAS number 110-98-5); 2) 2,2’-oxybis-1-propanol (CAS number 108-

61-2); 3) 2-(2-hydroxypropoxy)-1-propanol (CAS number 106-62-7); 4) 3,3’-oxybis-1-propanol 

(CAS number 2396-61-4).}; B. isopropylbenzene, common name cumene (CAS number: 98-82-

8); C. 3,7-dimethylocta-1,6-dien-3ol, common name linalool (CAS number: 78-70-6); D. 

propan-2-yl-tetradecanoate, common name isopropyl myristate, abbreviated as IPM (CAS 

number: 110-27-0). Components were added in the following order: concentrated surfactant 

paste, ACCORD, water, additional PRM (if added), and salts. Samples were well mixed and 

centrifuged at least an hour for degassing prior to measurements.  

 

 

Figure 4.1 Structures of surfactants and perfume raw materials (PRMs) used in this study: (a) sodium 

lauryl ether sulfate (SLEnS) with number of EOs varying from 0 to 10; (b) cocamidopropyl betaine 

(CAPB); (c) dipropylene glycol modeled as a mixture of 1,1’-oxybis-2-propanol, 2,2’-oxybis-1-propanol, 

2-(2-hydroxypropoxy)-1-propanol, and 3,3’-oxybis-1-propanol, and abbreviated as DPG; (d) 



 88 

isopropylbenzene with common name cumene; (e) 3,7-dimethylocta-1,6-dien-3ol with common name 

linalool; f) propan-2-yl-tetradecanoate with common name isopropyl myristate and abbreviated as IPM.  

 Rheological experiments.  

An AR-G2 rotational rheometer with an acrylic cone and plate (to minimize inertial 

effects) was used to measure the zero shear viscosity at constant shear rate, and rheological 

moduli at constant shear stress but varying frequency. We sampled 25 data points per decade at 

high frequency and 10 data points per decade at low frequency to obtain enough information for 

model fitting in a reasonable time. Samples were freshly loaded each time and a solvent trap was 

used to prevent sample evaporation near the edge. All the rheological measurements were 

performed within the linear viscoelastic regime at room temperature of close to 25°C unless 

otherwise specified. Randomly selected samples were re-measured and the standard deviation of 

rheological measurements was found to be less than 3%. Diffusing wave spectroscopy (DWS) 

[Oelschlaeger et al. (2003); Galvan-Miyoshi et al. (2008)] is also applied to get the high-

frequency behavior (10–106 rad/s). The wavelength of light and the diameter of beads used in 

DWS are 532 and 630 nm, respectively. The beads are made of IDC polystyrene latex from Life 

Technologies (cat# S37495) with hydrophobic surface, which are stabilized with a low level of 

sulfate charges and surfactant free. The WLM solution samples for DWS measurement were 

mixed with 0.5 wt. % beads before adding salt to ensure good mixing prior to thickening with 

salt. After 12 h equilibration, samples were measured in 5mm glass cells on an LS Instruments 

RheoLab II system. The transport mean free path 𝑙∗ (=580 μm) was determined from the control 

sample with the same-size beads in water. 

 DPD simulation set up  

Initially straight periodic cylindrical micelles were oriented along the z direction of the 

simulation box, packed with surfactants with heads on the surface, enclosing the tails. All 

surfactants, ACCORD, and additional PRM if added, were packed randomly into the periodic 

micelle close to a common axis at the beginning of the simulations, followed by solvation with 

water and salts. The tail beads of the micelle were first constrained in an NVT ensemble briefly 

to equilibrate the surfactants with water followed by simulations at NPT with semi-isotropic 

pressure coupling. 
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Figure 4.2 Snapshot of an equilibrated periodic wormlike micelle in a DPD simulation. Salt and water are 

omitted for clarity. Shown are sulfate (yellow) and other head groups including ethylene oxide, amide, 

tetramethyl ammonium, and acetate (red), ACCORD (black), and alkyl carbon tail beads (blue). 

ACCORD and tail beads are nearly covered over by head beads. 

 The radial density profiles of equilibrated periodic wormlike micelles were then 

analyzed by slicing the simulation box with planes perpendicular to the z axis with 1 nm spacing. 

For each slice, the center of mass (COM) of surfactants, excluding counter-ions, were computed 

for each slice. The bead number counts in each slice were calculated within a narrow circular 

shell of thickness 0.1 Å centered at a given radial distance with respect to the COM of the 

micelle in that slice and was then averaged over time and over all slices. Normalizing the bead 

number counts by the shell volume gives the bead number densities. The “spine length” of the 

micelle is computed as the sum of the lengths of the segments connecting the micelle COMs of 

neighboring slices. For comparison between simulations, the radial distribution of the bead 

number count per frame and per average contour length is calculated. The “packing distance” 

(not to be confused with the dimensionless packing parameter in Section II.3) is then defined as 

the ratio of average micelle spine length to the number of surfactant molecules within the 

micelle. While we cannot at this point specify a quantitative relationship between “packing 

length” and the Israelachvili “packing parameter,” we expect the two to be inversely related to 

each other qualitatively. The simulations of DPD last for 700,000 time steps and the last 500,000 

time steps are used for the analysis. 

IV. Effect of Salt 

 Rheological features 

A.  Salt curve.  

Plots of the zero shear viscosity vs. the weight fraction of sodium chloride (NaCl), 

referred as “salt curves,” are shown in Fig. 4.3 for 11 wt. % solutions of two formulations (BW-
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1EO and BW-3EO) with/without 1 wt. % ACCORD. The salt curve for 9.5 wt. % BW-3EO 

solution containing 1 wt. % ACCORD is also shown. As shown by Fig 4.3, when ACCORD is 

present in the solution (solid lines with filled symbols), the zero shear viscosity (simply called 

“viscosity” in the following) increases with salt concentration and reaches a maximum, followed 

by a decrease at high salt concentration. For solutions without ACCORD (dashed lines with 

hollow symbols), viscosity maxima are also expected if the salt concentration is increased 

further. Note that for all the solutions shown in Fig 4.3, the concentration of SLEnS on its own is 

already higher than its 2nd CMC, at which the majority of the micelles change from spheres to 

polydisperse elongated rods. [Kodama et al. (1972); Ma et al. (1998); Mazer et al. (1976)] 

Therefore, even in the absence of salts, the micelles in body washes are already expected to be 

cylindrical, although the viscosities are still low. Based on Fig. 4.3, by adding ACCORD to the 

solution, the salt curve is shifted to lower salt concentration with a lower viscosity maximum, 

which implies easier formation of long micelles and micellar branches (The viscosity maximum 

is attributed to formation of micellar branches.).  

 

 

Figure 4.3 Salt curves for 11 wt. % and 9.5 wt. % formulations with 1 wt. % ACCORD (solid symbols) 

and without ACCORD (open symbols): diamonds – 11 wt. % BW-1EO, triangles – 11 wt. % BW-3EO, 

and circles – 9.5 wt. % BW-3EO. 

From the above figure, both BW-1EO and BW-3EO solutions containing ACCORD 

(dashed lines with filled symbols) show initially nearly exponential increases in viscosity at low 

salt concentration, then a linear dependence, and finally a concave-downward shape near the 

maximum. The salt curve for the ACCORD-containing BW-3EO solution shows a slower 

increase of viscosity with increasing salt, as well as a lower viscosity maximum and a broader 

regime of linear viscosity increase than for the ACCORD-containing BW-1EO with shorter EO 
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groups. In addition, decreasing the total concentration of surfactants in BW-3EO (from 11 wt. % 

to 9.5 wt. %) results in a reduction in the viscosity without shifting of the viscosity maximum. 

Since actual body washes have rheological properties similar to those of 11 wt. % BW-1EO and 

BW-3EO formulations containing ACCORD, we will discuss these solutions in detail. Note that 

in what follows, unless otherwise stated, we use the terms “BW-1EO” and “BW-3EO” to refer to 

the 11 wt. % solutions containing 1 wt. % ACCORD. 

B. Storage and loss moduli  

Storage (𝐺′) and loss moduli (𝐺") are shown in Fig. 4.4 for BW-1EO at various salt 

concentrations (Data for BW-3EO are qualitatively similar and are therefore not shown.). As the 

salt concentration increases, at low frequencies both 𝐺′ and 𝐺" shift leftward monotonically up to 

the maximum in the salt curve (i.e., the second highest salt concentration). This is accompanied 

by an increase of terminal relaxation time 𝜏 (which is approximated by the inverse of the 

crossover frequency of 𝐺′ and 𝐺") as shown by the inserted figure in Fig. 4.4b, which, as 

discussed below, indicates that micelles lengthen until reaching the salt peak. Once the 

concentration of salt passes the viscosity maximum (at 1.25 wt. % and 2.5 wt. % for BW-1EO 

and BW-3EO, respectively), branched micelles presumably proliferate, and a rightward shift of 

the 𝐺′ and 𝐺" curves occurs over most of the frequency range.  

 

 

Figure 4.4 (a) Storage and (b) loss moduli for BW-1EO at different salt weight fractions, each coded by a 

color also used in the inserted figures giving (a) zero-shear viscosities and (b) terminal relaxation time as 

functions of salt concentration.  

According to Fig. 4.4b, the loss moduli 𝐺" also shift downward monotonically at high 

frequencies, and this can be shown clearly in a “Cole-Cole” plot in which 𝐺" is plotted against 
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𝐺′. The normalized Cole-Cole plots (with 𝐺′ and 𝐺" divided by the loss modulus maximum, 

𝐺"𝑚𝑎𝑥) for BW-1EO and BW-3EO are shown in Fig. 4.5, where the local minimum in 𝐺" 

(𝐺"𝑚𝑖𝑛) decreases as the salt concentration increases until the peak in the salt curve is passed. 

The deviations from perfect semi-circles (i.e., single-relaxation-time Maxwell model, denoted by 

dashed lines in Fig. 4.5) at low salt concentration are greatest on the right side of the plot, 

corresponding to the highest frequencies, where up-turns of 𝐺" can also be observed. BW-3EO 

(Fig. 4.5b), with longer EO groups, shows less sensitivity to salt concentration with smaller 

changes in the rheological curves than does BW-1EO (Fig. 4.5a). 

 

 

Figure 4.5 Normalized Cole-Cole plots for (a) BW-1EO and (b) BW-3EO. The percentages in the legends 

are the salt concentrations.  

Time-temperature superposition (TTS) is performed for BW-1EO at each salt 

concentration. By shifting 𝐺′ and 𝐺" curves with shift factor 𝛼𝑇 ≡ 𝜂𝑇/𝜂𝑇0 for temperatures 

ranging from 20.0 to 25.0 °C, where 𝜂𝑇 and 𝜂𝑇0 are the viscosity of the solution at temperature 𝑇 

and 𝑇0 = 25 ℃, the storage moduli (𝐺′) overlap over the entire frequency domain (See Fig. 4.6a 

and b). TTS fails for loss moduli (𝐺"), however, at the highest frequencies before the salt peak is 

reached as shown by the small deviations among the 𝐺" curves at high frequency in Figure 6a. 

Interestingly, after passing the salt peak at which branched micelles begin to predominate, the 

superposition for 𝐺" again works perfectly (See Fig. 4.6b), which suggests that relaxation 

mechanisms of micelle branches are not temperature sensitive.  We also note that the rheological 

properties of these highly complex mixtures of surfactants and perfumes are remarkable similar, 

qualitatively, to those of simple single-component surfactant solutions. [Zana and Kaler (2007); 

Candau et al. (1989); Cappelaere et al. (1994); Cates and Candau (1990); Croce et al. (2003); 

Imae et al. (1985); Imae et al. (1987); Kern et al. (1991); Khatory et al. (1993)] This indicates 
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that theories for thread-like micelles composed of simple surfactants should be equally 

applicable to complex commercial surfactant mixtures such as those studied here. 

 

 

Figure 4.6 Master curves of frequency-dependent moduli obtained by time-temperature superposition 

(TTS), shifted to 25 °C at salt concentrations of  (a) 1.0 wt. %, and (b) 2.0 wt. % NaCl for BW-1EO. The 

values of the shift factors 𝛼𝑇 are 1.1, 1.4 and 2.0 at 1.0 wt. % NaCl and 1.1, 1.2, and 1.4 at 2.0 wt. % 

NaCl at 23.5 °C, 22.0 °C and 20.0 °C, respectively.  

 Effect of salt on micellar properties from micellar-scale model  

According to the Pointer Algorithm used here, [Zou and Larson (2014); Zou et al. 

(2015)] the rheological behaviors of entangled wormlike micelle solutions can be expressed by 

the following functional form:  

𝐺∗(𝜔) = 𝐺𝑁𝐹(𝜔, 𝐺𝑁 , 𝜍, 〈𝐿〉, 𝛼𝑒 , 𝑑)                                                      (4.9) 

where 𝐺∗(𝜔) is the complex modulus, whose real and imaginary parts are 𝐺′(𝜔) and 𝐺"(𝜔), 

respectively. In the above equation, the micelle diameter (𝑑) needs to be supplied from non-

rheological measurements (due to the inability of rheology to determine its value as discussed in 

Zou et al. (2015)), which we fix at a value of 4 nm based on small angle neutron scattering 

(SANS) data (not shown). Therefore, four micellar parameters can be directly extracted from 𝐺′ 

and 𝐺" data, i.e.: the plateau modulus (𝐺𝑁), the dimensionless breakage rate (𝜍), the average 

micelle length (〈𝐿〉), and the semi-flexibility coefficient (𝛼𝑒). The dimensionless breakage rate 𝜍, 

and the semi-flexibility coefficient 𝛼𝑒 are defined as 

𝜍 ≡
𝜏̅𝑏𝑟
𝜏̅𝑟𝑒𝑝

,   𝛼𝑒 ≡
𝑙𝑒
𝑙𝑝
                                                                     (4.10) 

Here 𝜏𝑏̅𝑟, called the average breakage time, is the lifetime a micelle of average length survives 

before breakage, while 𝜏𝑟̅𝑒𝑝 is the characteristic time for reptation. 𝑙𝑒 is the micelle entanglement 
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length, i.e., the average length of micelle between two entanglements; and 𝑙𝑝 is the micelle 

persistence length. Given the five micellar parameters listed in Eq. (4.9), other micellar 

characteristic lengths (𝑙𝑒 and 𝑙𝑝) and times (𝜏𝑏̅𝑟 and 𝜏𝑟̅𝑒𝑝) can also be obtained through 

theoretical derivations given elsewhere. [Zou and Larson (2014); Zou et al. (2015)]  

 

 

Figure 4.7 (a) Zero shear viscosity 𝜂0, (b) average micelle length 〈𝐿〉, (c) plateau modulus 𝐺𝑁, and (d) 

breakage time 𝜏̅𝑏𝑟 for various salt weight fractions for BW-1EO at 20.0, 22.0, 23.5, and 25.0°C.  The 

results in (a) are taken directly from the experiments with error bars much smaller than the size of the 

symbols, while the other results are obtained by fittings of the Pointer Algorithm whose error bars are 

estimated by the uncertainties when extracting parameters at different salt concentration. The procedure to 

determine the uncertainties (or so-called insensitivity) can be found in reference. [Zou et al. (2015)]  

Using the data fitting procedure described in Zou et al. (2015), we extract micellar 

properties from the experimental 𝐺′ and 𝐺" data for BW-1EO for various salt weight fractions at 

temperatures varying from 20.0 to 25.0 °C as shown in Fig. 4.7. Due to the limited upper range 

of frequency in 𝐺′ and 𝐺" curves measured from mechanical rheometry, and the uncertainty that 

this introduces into the value of the persistence length 𝑙𝑝 (which is especially difficult to extract 
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accurately in the absence of high frequency data), DWS was performed for solutions with 0.70 

wt. % and 1.25 wt. % salt at 25.0 °C to provide high frequency data up to 105 rad/s. By 

combining these high frequency DWS data with the corresponding mechanical data, best-fits to 

the above model are obtained with predicted 𝑙𝑝 in the range of 60-80 nm. Because we do not 

expect large changes in persistence length with small changes in temperature and because of the 

observed insensitivity of persistence length to salt concentration, the value, 70nm, is therefore 

used for all solutions to constrain the uncertainty in 𝑙𝑝 when DWS data is not available. An 

example of the combined mechanical and DWS data and the corresponding fitting curves are 

shown in Fig. C.4 in Appendix C.  

Figure 4.7a shows the salt dependence of zero shear viscosity (𝜂0) for different 

temperatures, where the maximum of 𝜂0 occurs at around 1.25 wt. % NaCl for 25.0 °C, but shifts 

to a lower salt weight fraction (1.00 wt. %) at 20.0 °C. In contrast to the non-monotonic 

dependencies of zero shear viscosity (Fig. 4.7a) and apparent micelle length 〈𝐿〉 (Fig. 4.7b) on 

salt concentration, both the plateau modulus 𝐺𝑁 (Fig. 4.7c) and the breakage time 𝜏𝑏̅𝑟 (Fig. 4.7d) 

show more nearly monotonic dependences (𝐺𝑁 increasing and 𝜏𝑏̅𝑟 decreasing) with salt 

concentration. Both 𝜂0 and 𝜏𝑏̅𝑟 decrease rapidly with increasing temperature, [Cates and Candau 

(1990); Helgeson et al. (2010)] while 〈𝐿〉 and 𝐺𝑁 show weaker sensitivities to temperature.  

Since the Pointer Algorithm does not distinguish branched from linear micelles, [Zou and 

Larson (2014); Zou et al. (2015)] the predicted 〈𝐿〉 at high salt concentration is more closely 

related to the length between branches, rather than the true micelle length. [Lequeux (1992)] 

Therefore, the non-monotonic dependence of 𝜂0 on salt concentration can be explained by the 

growth of micelles at low salt concentration and the increase of branching at high salt 

concentration, as observed by cryo-TEM. [Zana and Kaler (2007); Helgeson et al. (2010)] The 

relaxation of branched micelles is controlled by sliding of micellar material through the branch 

points, and the speed of this process increases with increasing branching even if the branched 

micelles become larger. [Lequeux (1992)] Thus, on the right side of the salt curve, as micelle 

branching increases with salt concentration, the “apparent micelle length,” which reflects that 

length between adjacent branch points, decreases, resulting in a sharp drop in viscosity.  

By applying Eq. (4.2), the scission free energy 𝐸𝑠 can be calculated from 〈𝐿〉, which 

consists of contributions from both enthalpy (∆𝐻𝑠) and entropy (∆𝑆𝑠) as shown in Fig. C.5 in 

Appendix C. Here we only compute the scission free energy for salt concentrations up to the 
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maximum in the salt curve (i.e., 1.25 wt. %), to avoid results dominated by branch formation. 

The apparent scission free energy 𝐸𝑠 in Fig. 4.8a is 23~27 𝑘𝐵𝑇 near room temperature, which is 

equivalent to 55-65 kJ/mol with uncertainty of our method of extracting scission energy. As 

shown in Fig 4.8a, 𝐸𝑠 decreases with temperature whereas it increases with salt concentration. In 

addition, the rapid decrease in breakage time 𝜏𝑏̅𝑟 with added salt, as shown in Fig. 4.7c, is 

presumably at least partly a consequence of the increasing micellar length, since longer micelles 

have more locations at which breakage can occur. 

 

 

Figure 4.8 (a) Scission free energy 𝐸𝑠 vs. T at various salt concentrations for BW-1EO. (b) Viscosity 

activation energy 𝐸𝑣, and terminal relaxation time activation energy 𝐸𝑟. The lines connecting the symbols 

are guides to the eye.  

The more rapid dynamics with increased salt concentration is reflected in decreased 

activation energies for viscosity (𝐸𝑣, Eq. (4.3)) and terminal relaxation time (𝐸𝑟, Eq. (4.3)), also 

shown in Figure 8b. Not surprisingly, the activation energies for viscosity and relaxation time are 

nearly equal to each other over the whole range of salt concentration, since the modulus, which is 

roughly the ratio of viscosity to relaxation time, is relatively insensitive to salt. The decrease in 

activation energies with increased salt presumably reflect the reduced electrostatic energy barrier 

to micelle fusion and breakage at increased salt, and hence their faster dynamics. For 

CTAC/NaSal micelles, Kern et al. (1991) reported a value of around 37 kcal/mol = 63 𝑘𝐵𝑇 for 

both 𝐸𝑣 and 𝐸𝑟 and 27 kcal/mol = 45 𝑘𝐵𝑇 for 𝐸𝑠. These values are significantly higher than we 

find for BW-1EO. We note here that without our Pointer Algorithm, which gives us the length of 

the micelles as a function of temperature, the value of 𝐸𝑠 would need to be obtained by neutron 
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scattering [Vogtt et al. (2017)] or from a combination of temperature-jump experiments and 

temperature-dependent rheological data. [Kern et al. (1991)]  

 Effect of salt on micellar structure from DPD simulations 

Surfactant packing at the molecular scale determines the micellar-scale properties, and, 

through this, the rheological properties at the macroscopic scale. Here we investigate surfactant 

packing through DPD simulations of preassembled periodic wormlike micelles at various 

concentrations of surfactant and salt. A snapshot of one periodic cylindrical micelle at 

equilibrium is shown in Fig. 4.2. Figures 4.9a-c compare the bead number density distributions 

of surfactant tail, head and water as functions of radial distance from the micelle radial COM 

(the center of mass) for BW-1EO and BW-3EO with different surfactant concentrations and 

added NaCl. (The method of determining the COM at each axial position along the micelle was 

described in Section III.3.) Figure 4.9d shows the corresponding surfactant packing distances, 

defined in Section III as the micelle “spine length” per surfactant molecule.  
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Figure 4.9 Normalized DPD bead number density radial distributions of head, tail, and water as functions 

of radial distance from COM; (a) for 11.0 wt. % BW-1EO at salt concentrations spanning the peak of the 

salt curve; (b) for 11.0 wt. % BW-1EO at 0.70 wt. % NaCl and 11.0 wt. % BW-3EO at 2.13 wt. % NaCl, 

which have the same experimental viscosity of 11.0 Pa ∙ s; and (c) for BW-1EO solutions of three 

different surfactant concentrations at 0.7 wt. % NaCl. (d) Surfactant packing distance defined as the ratio 

of the micelle spine length (defined in Section III.3) to the number of surfactants in the micelle in all of 

the above systems. The bead number density is calculated by dividing the DPD bead number count by the 

shell volume.  

In the packing parameter model, the impact of salt addition to linear micelles can be 

explained by shielding the Coulomb repulsion between neighboring head groups. By reducing 

the area per surfactant 𝑎0, while keeping 𝑙𝑐 and 𝑉 constant, the packing parameter 𝑝 (Eq. (4.7)) is 

increased, favoring areas of lower curvature. This implies making end-caps less favorable, 

increasing the scission energies and leading to longer micelles and higher viscosity. 

In analyzing the packing of surfactants in cylindrical micelles using the packing distance, 

we can assess two different changes: a decrease in the proximity of the surfactants through 

screening and a change in the radius of the cylinder which is also reflected in the number of 

surfactants per unit length of the cylindrical micelle. The addition of salt induces a lower packing 

distance (Fig. 4.9d), while the cross-sectional structure of the micelle is affected by only a slight 

radial expansion at the higher salt concentration of 1.75% (Fig. 4.10a). Hence, the addition of 

salt makes a smaller area per head group more favorable at the same effective length and volume 

of the tail group corresponding to a higher packing parameter in the Israelachvili model. 

As shown in Fig. 4.9b, BW-3EO, which has surfactants with longer EOs, has a thicker 

head layer than does BW-1EO. The thicker EO layer (which is electrostatically neutral) is less 

sensitive to the addition of salts and leads to smaller changes in viscoelasticity on addition of 

salt. The longer EO group in BW-3EO also decreases 𝑝 because of its larger area per head group, 

which leads to a greater packing distance as shown in Fig. 4.9d, and thereby shortens the micelle 

relative to BW-1EO. The shift in the radial density profiles in Fig. 4.9b is only about 1 

Angstrom, however. The even smaller increase in packing distance in Fig. 4.9d would be 

difficult to quantify experimentally, even though it may be enough to produce differences in 

rheological properties. This illustrates the importance of supplementing experimental 

characterization of micellar solutions with simulation data.  
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V. Effect of PRM Addition 

 Effect of PRM described through log𝑃𝑜𝑤 

To understand how different PRMs modify the packing of the wormlike micelles and 

result in changes of the rheological properties of surfactant solutions, 15 PRMs (whose names, 

values of log 𝑃𝑂𝑊, and detailed chemical structures are listed in Table C.2 in Supporting 

Information), with a broad distribution of  log 𝑃𝑂𝑊 varying from -0.6 to 7.4, were added 

individually to BW-1EO formulations with and without the ACCORD (perfume mixture, defined 

in Section III.1) as noted earlier. Note that PRMs with similar values of  log 𝑃𝑂𝑊 but different 

chemical structures are among the 15 considered. Figure 4.10 plots the zero shear viscosities 𝜂0 

of BW-1EO with ACCORD upon addition of each of these additional PRMs at a concentration 

of 15 mM against log 𝑃𝑂𝑊.  

 

 

Figure 4.10 Zero shear viscosities 𝜂0 of BW-1EO in the presence of ACCORD and 0.7% NaCl on 

addition of each of 15 PRMs at 15 mM plotted against log 𝑃𝑂𝑊, of the added PRM. The dot-dashed line 

shows 𝜂0 of BW-1EO without any additional PRM beyond the six ACCORD components present in BW-

1EO. Some data, if not available at 15 mM, are interpolated from the best linear or polynomial fit of 𝜂0 of 

BW-1EO vs. PRMs at different concentrations.  

Compared to the viscosity without additional PRMs (i.e., the dashed line in Fig. 4.10), 𝜂0 

is reduced significantly by adding PRMs with very low or very high values of log 𝑃𝑂𝑊. While for 

most PRMs with intermediate values of log 𝑃𝑂𝑊, 𝜂0 is modified only slightly, an increase of 𝜂0 

can be found for a few PRMs with intermediate log 𝑃𝑂𝑊, leading to a local maximum in the 
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vicinity of log 𝑃𝑂𝑊 around 2-4. A maximum in this range is also seen in Fig. C.1 in Appendix C, 

for surfactant solutions with each of 25 individual PRMs added, i.e., without the presence of the 

ACCORD mixture of PRMs. The compounds in Fig. 4.10 that cause the largest increase in 

viscosity are benzyl benzoate and cumene. 

These overall trends are consistent with findings by Fischer et al. (2008), who plotted the 

hydrodynamic radius 𝑅𝐻 of the micelle (taken from the diffusion coefficient using the Stokes-

Einstein equation) against log 𝑃𝑂𝑊 for 22 PRMs and thereby also showed a maximum at log 𝑃𝑂𝑊 

around 2-4. Since 𝑅𝐻 should increase monotonically with micelle length, and hence with 𝜂0, the 

overall trends should be comparable.  

The overall overlap of compounds between the data sets by Fischer and the data shown in 

this paper is small; the commonality is that compounds with a log 𝑃𝑂𝑊 of 2-4 have the best 

potential to boost viscosity. It is remarkable however that the detailed trends do not match up as 

well. The data by Fischer et al. (2009) suggest that alcohols and aldehydes with a log 𝑃𝑂𝑊 2-4 

show the largest viscosity increases. In our data set the alcohol linalool only increases viscosity 

slightly, and the apolar cumene molecular increases viscosity more significantly. 

The log 𝑃𝑂𝑊 model is very crude in predicting the location of the probe molecule in the 

micelle. Consider the molecules cumene (log 𝑃𝑂𝑊 = 3.7) and linalool (log 𝑃𝑂𝑊 = 3.3) with very 

similar log 𝑃𝑂𝑊 values. Based on their chemical structure, one would expect for the hydrophobic 

cumene to sit in the core of a micelle, while the alcoholic group of linalool would take a more 

water-exposed position at the surface of the micelle. 

Also, the three esters maltyl isobutyrate, benzyl acetoacetate, and triethyl citrate, 

(detailed structures listed in Table C.2 in Appendix C) have values of log 𝑃𝑂𝑊 between 1 and 2. 

However, triethyl citrate has the least compact structure and reduces the viscosity the most, while 

the other two PRMs in this range of log 𝑃𝑂𝑊 have relatively more compact structures and fewer 

branches and reduce the viscosity only moderately. 

The COSMOmic [Ingram et al. (2013)] model can provide predictions of the location of 

small solutes in micelles and bilayers under the assumption of infinite dilution of the solute and 

can provide a more differentiated analysis. Molecular simulations can provide not only a picture 

of where the solute partitions in to the micelle but also provide information on how the micelle 

structure is altered upon addition of the solute. In the following, we will compare micellar and 

molecular scale models for a limited set of compounds. 
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 Effect of PRM on micellar properties from the micellar-scale model 

To study the relationship between rheological behavior and micellar structure, we choose 

four PRMs among the 15 for a detailed analysis of their effect on BW-1EO. The four PRMs, 

shown in Fig. 4.1c-f, span a broad range of log 𝑃𝑂𝑊 from -0.7 (for DPG) to 7.4 (for IPM). Zero 

shear viscosities 𝜂0 as functions of concentration of each of these four PRMs added to BW-1EO 

are shown in Fig. 4.11a. Addition of DPG, with the lowest value of log 𝑃𝑂𝑊, decreases 𝜂0 

roughly linearly; linalool with a moderately low value of log 𝑃𝑂𝑊 = 3.3 reduces 𝜂0 only 

marginally; cumene with a higher value of log 𝑃𝑂𝑊 = 3.7 increases 𝜂0 modestly; and IPM, with 

the highest value of log 𝑃𝑂𝑊, reduces 𝜂0 very significantly.  

 

 

Figure 4.11 (a) Dependence of 𝜂0 on concentration of diproplylene glycol (DPG), cumene, linalool, and 

isopropyl myristate (IPM) in BW-1EO containing ACCORD and 0.7 wt. % NaCl. (b) Estimated average 

micelle length 〈𝐿〉, (c) scission free energy 𝐸𝑠, and (d) average breakage time 𝜏̅𝑏𝑟, inferred from the 

Pointer Algorithm, vs. PRM concentration. Note that 〈𝐿〉 of IPM is too short to be estimated by the 

Pointer Algorithm. Same as Fig. 4.7, the results in (a) are taken directly from the experiments with error 

bars much smaller than the size of the symbols, while the other results are obtained by fittings of the 

Pointer Algorithm whose error bars are estimated by the uncertainties when extracting parameters at 
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different salt concentration. The procedure to determine the uncertainties (or so-called insensitivity) can 

be found in reference. [Zou et al. (2015)] 

We now follow the same procedure used in Section IV.2 to extract the average micelle 

length 〈𝐿〉 and the scission free energy 𝐸𝑠 from the rheological data, giving the results shown in 

Fig. 4.11b and c: For DPG having an extremely low value of log 𝑃𝑂𝑊, 〈𝐿〉 and 𝐸𝑠 decrease 

slowly with added PRM, while for linalool and cumene with intermediate values of log 𝑃𝑂𝑊, 〈𝐿〉 

and 𝐸𝑠 initially increases with added PRM with some oscillations that may reflect the uncertainty 

in obtaining these values from rheological data. Other micellar parameters, i.e., breakage time 

𝜏𝑏̅𝑟 (See Fig. 4.11d) and plateau modulus 𝐺𝑁 (data for 𝐺𝑁 not shown here), remain nearly 

constant with the addition of PRM (within uncertainties), except for linalool whose 𝜏𝑏̅𝑟 decreases 

before an abrupt rise occurs at high concentration as shown by Fig. 4.11d. For constant 𝐺𝑁, the 

zero-shear viscosity 𝜂0 of a micelle solution is proportional to the terminal relaxation 𝜏, which is 

a function of both 〈𝐿〉3 and 𝜏𝑏̅𝑟. Therefore, a decrease of 〈𝐿〉 with a nearly constant 𝜏𝑏̅𝑟 leads to a 

decrease in 𝜂0, as is the case for DPG according to Fig. 4.11. Note that the drop of 〈𝐿〉 and jump 

of 𝜏𝑏̅𝑟 at the highest concentration of linalool as shown in Fig. 4.11b and d is due, we believe, to 

a change of micelle structure from linear to branched. Changes in micellar properties upon 

addition of the above four different PRMs presumably result from different PRM partitioning 

within the micelles, which is related to molecular-scale surfactant packing, which is assessed 

using DPD simulations in next section.  

In addition, we examine the effect of one of these four PRMs, linalool, on the rheology of 

BW-3EO, which when compared to the effects of linalool addition to BW-1EO, allows us to 

investigate the additional effect of average EO length on micellar properties. Linalool is chosen 

since its effects have been modeled before. [Fischer et al. (2009); Parker and Fieber (2013)] 

Adding the same amount of linalool to BW-1EO and BW-3EO results in very different changes 

in viscoelastic properties as shown in Figure 12. The addition of linalool modifies the rheology 

of BW-1EO only slightly, as shown by the near overlap of loss moduli 𝐺" at low frequency in 

Fig. 4.13a. This indicates a moderate change of 〈𝐿〉 as discussed earlier. On the other hand, 

addition of linalool to BW-3EO decreases 𝜂0 significantly (data not shown here) resulting in 

considerably larger shifts of both 𝐺′ and 𝐺" (Fig. 4.12b) than for BW-1EO.  
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Figure 4.12 Storage 𝐺′ and loss moduli 𝐺" vs. frequency for (a) BW-1EO and (b) BW-3EO, at various 

linalool concentrations, each coded by a color also used in the inserted figures giving zero-shear 

viscosities as functions of PRM concentration. 

 Effect of PRM on surfactant packing from DPD simulations 

We carried out DPD simulations of 11 wt. % BW-1EO and 0.7 wt. % NaCl in the 

presence of each of the four additional PRMs (i.e., DPG, linalool, cumene, and IPM) to study the 

relationship between surfactant packing and micellar properties. Our analysis shows that the 

radial distribution of ACCORD (perfume mixture, defined in Section III.1) present in these 

formulations is not modified significantly upon addition of DPG, linalool, or cumene (Fig. C.3 in 

Appendix C). The following figure (Fig. 4.13) shows zero shear viscosities 𝜂0 (colored filled 

diamonds) and surfactant packing distances (colored open triangles) upon addition of 15 mM 

PRM to BW-1EO vs. their values of log 𝑃𝑂𝑊.  

We would expect dipropylene glycol (DPG) with its extremely low value of log 𝑃𝑂𝑊 -0.6 

to partition mainly into water and to some extent into the surfactant head group region, as is in 

fact seen in the first cartoon at the lower left of Fig. 4.13. This is also consistent with the analysis 

of locations of the compound as shown in Fig. 4.14a: The near-perfect overlap of tail, head, and 

water distribution with those in the absence of DPG indicates that the partitioning of DPG does 

not modify the radial distribution of surfactants within the micelle, and maintains the micelle 

radius and surfactant tail length 𝑙𝑐 constant. Although small in size, DPG molecules are branched 

(Fig. 4.1c), so that they take a relatively larger volume within the micelle when partitioning into 

it than do other PRMs. As expected, the packing distance increases significantly (as shown by 

the open cyan triangle in Fig. 4.13). This indicates that the partitioning of DPG into the head 

group region increases the surfactant head group surface area 𝑎0, leading to a larger packing 
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distance. This corresponds to a decrease in the packing parameter 𝑝 (Eq. (4.7)), and results in a 

shorter 〈𝐿〉, smaller 𝐸𝑠, and lower 𝜂0 (as shown by the circles in Fig. 4.11a, b, and c).  

 

 

Figure 4.13 Plot of 𝜂0 (colored open diamonds connected by dash-dotted line, left axis) and surfactant 

packing distance (colored open triangles connected by dashed line, right axis) for BW-1EO upon addition 

of 15 mM dipropylene glycol (DPG), cumene, linalool, and isopropyl myristate (IPM) vs. their log𝑃𝑂𝑊 

for 11 wt. % BW-1EO in 0.7 wt. % NaCl. The dotted line gives the viscosity and packing distance in the 

absence of the added PRM. Each of the four PRMs is given a color used consistently in symbols and text, 

as well as in the PRM molecules contained in snapshots of 15 nm-long sections of the periodic wormlike 

micelles. The snapshots show the tail beads in blue; for the right half of each micelle, the blue tail beads 

are rendered translucent to show the positioning of PRMs deep within the micelles. Head and water beads 

are omitted for clarity. The schematic cartoons at the right side of each micelle show the location of the 

PRMs (colored bullets) in the cross section of the wormlike micelles at the corresponding log 𝑃𝑂𝑊 range.  

Linalool, with a moderately low value of log 𝑃𝑂𝑊, partitions into both the tail region and 

into the interfacial region between the surfactant tail and the head groups as shown at the upper 

left of Fig. 4.13 by the second cartoon with orange beads representing linalool. Similar to DPG, 

partitioning of linalool does not much modify the radial distribution of surfactants within the 

micelle as shown in Fig. 4.14b. Thus, micelle radius and surfactant tail length 𝑙𝑐 remain the same 

on addition of linalool. From Fig. 4.1e, linalool has two branches at or near the ends of the 

molecule. Because of its partitioning into both head and tail regions, it is expected to crowd both 

regions, and result in increases in both 𝑎0 and 𝑉. This is consistent with the increased packing 

distances as shown in Fig. 4.13. Interestingly, 〈𝐿〉 and 𝐸𝑠 increase initially and then stay nearly 

constant upon addition of linalool (Fig. 4.11b and c) indicates a possible competition between 
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changes of 𝑎0 and 𝑉 in determining the packing parameter 𝑝, leading to nearly constant 𝜂0 at 

macroscopic scale (Fig. 4.11a).  

 

 

Figure 4.14 Bead number count within a shell of 0.1 nm width as a function of radial distance to the spine 

of the micelle of tail, head, water and an additional PRM, namely (a) DPG, (b) linalool, (c) cumene, and 

(d) IPM as functions of radial distance to the COM. The dashed lines represent the distributions in the 

presence of 15 mM of the added PRM and the solid lines correspond to the absence of the added PRM. In 

all solutions, with or without the single added PRM, ACCORD was present.   

Cumene, with a moderately high log 𝑃𝑂𝑊, partitions mainly within the surfactant tail 

region in the micelle core, while only a small amount enters the interface between tail and head 

groups as shown in the third cartoon at the upper right of Fig. 4.13. This is consistent with the 

snapshots showing many fewer cumene purple dots protruding from the left half of the micelle in 

the third cartoon than orange linalool dots from the left half of the micelle in the second cartoon 

in Fig. 4.13. Similar to DPG and linalool, the nearly perfect overlap of the radial distributions of 

tail, head, and water with those in the absence of cumene, as shown in Fig. 4.14c, indicates a 

constant micelle radius and surfactant tail length 𝑙𝑐 before and after the addition of cumene. The 

packing distance, instead of increasing as occurred on addition of DPG and linalool, decreases 
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slightly on addition of cumene. To fit cumene into the tightly packed surfactant tail region while 

keeping the micellar radius constant without increasing the packing distance, the packing of the 

surfactant tails has to be modified. Possibly the planar structure of cumene (Fig. 4.1d) both 

pushes tails away and condenses head groups so that the micelle radius has no significant net 

change. Thus, cumene mixes with the tails, increasing their effective volume 𝑉 without 

increasing 𝑙𝑐 and 𝑎0, which should lead to an increase of packing parameter 𝑝, leading to longer 

〈𝐿〉, larger 𝐸𝑠, and higher 𝜂0, as is observed in Fig. 4.11.  

DPG is miscible with water. There is some enrichment at the micelle-water interface 

(Fig. 4.14, cartoon in Fig. 4.13). A tentative interpretation of the impact of DPG on the viscosity 

is that the micelle endcaps show a higher curvature and hence larger hydrophobic-hydrophilic 

interface. DPG partitioning to this interface will reduce the interfacial tension and end cap 

energy. In terms of the packing parameter framework, DPG can be conceptualized as a surfactant 

head group without the tail, decreasing the packing parameter. In addition to the interfacial 

mechanism described, DPG could also lower the dielectric constant at the micelle water 

interface, increasing the repulsion between head groups, favoring higher curvature and smaller 

micelles. This effect is not described in the simulation model and could further increase the 

packing distance. Simulations of the scission energy (manuscript in preparation) suggests that the 

impact of DPG on the interface is sufficient for explaining the decrease in viscosity.  

IPM has a very high log 𝑃𝑂𝑊, and therefore partitions predominantly within the surfactant 

tail region as shown in the last cartoon at the lower right of Fig. 4.13. Although the molecule is 

large in size, it buries itself almost completely within the tail region. The presence of IPM causes 

the packing distance to decrease (as shown by the open green triangle in Fig. 4.13), implying 

greater crowding of micelle head groups. One might expect this to lead to a lengthening of the 

micelles. However, DPD simulations show that at a higher concentration of 100 mM, IPM the 

periodic wormlike micelles start to break into shorter rodlike micelles. Previous studies have 

shown that large oils that partition almost entirely within the tail region can swell the micelle 

radius and induce a transition towards spherical shape, [Afifi et al. (2012)] which is consistent 

with our rheological data showing that 𝜂0 is reduced significantly at high IPM concentration 

(Fig. 4.11a). This transition likely occurs because the PRM is too large to mix well with the 

surfactant tails, and so instead segregates into the center of the micelle, pushing tails outward and 

increasing micellar radius as shown in Fig. 4.14d. This acts to effectively increase the tail length 
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𝑙𝑐 without increasing much the tail volume 𝑉, therefore decreasing the packing parameter 𝑝, 

shortening the micelle length, and inducing a transition towards a spherical surfactant-coated oil 

droplet at high PRM concentration. The above effect on the packing parameter 𝑝 is opposite to 

that of smaller hydrophobic molecules, like cumene, which mix with the tails, increasing their 

effective volume 𝑉 without increasing their length 𝑙𝑐. Thus, small hydrophobic molecules should 

increase the packing parameter 𝑝, causing micelles to increase in length, while large hydrophobic 

molecules are expected have the reverse effect.  

 

 

Figure 4.15 Normalized DPD bead number count of tail, head, and additional linalool within a shell of 0.1 

nm width as a function of radial distance to the COM of the wormlike micelles. The dashed lines 

represent the distributions in BW-1EO and the solid lines in BW-3EO. In all solutions, ACCORD was 

present.  

Finally, we study the effect of average EO length upon the addition of linalool, on 

micellar structure by carrying out DPD simulations on BW-3EO.  As with BW-1EO, the 

distributions of head, tail and water upon linalool addition to BW-3EO remain constant (data not 

shown here), resulting in the same radius of the wormlike micelles. The packing distance 

increases due to the branched structure of linalool. However, the distributions of linalool within 

the two formulations are different as shown in Fig. 4.15: there is more partitioning of linalool 

into the head region of BW-3EO than of BW-1EO due to longer averaged EOs in BW-3EO. 

Therefore, 𝑎0 increases more upon linalool addition to BW-3EO than it does on addition of 

linalool to BW-1EO, leading to a decrease of packing parameter 𝑝, shorter micelles, and lower 

𝜂0 in BW-3EO, in contrast to its more negligible effect on BW-1EO.    
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To sum up this section, we find that, except at intermediate values of log 𝑃𝑂𝑊 in the range 

2-4, the PRMs shorten micelles, either because they partition to the head group region (at low 

log 𝑃𝑂𝑊), leading to a decreased packing parameter, or they segregate into the center of the 

micelle (at high log 𝑃𝑂𝑊), acting to increase micelle radius, leading to micelle breakup and 

eventually spherical droplets at high concentrations of PRM.       

VI. Conclusions 

We have combined linear rheology and multi-scale modeling to connect macroscopic 

viscoelastic properties to surfactant packing structures at the molecular scale. Specifically, we 

studied the rheological property changes in two body wash formulations, namely BW-1EO and 

BW-3EO, upon addition of NaCl salt and perfume raw materials (PRMs) at various 

concentrations and temperatures. We fit the linear rheology to predictions of a micelle-level 

model, the “Pointer Algorithm,” which is an advanced implementation of the Cates model. We 

thereby obtained micelle-level properties such as micelle length, breakage time, and scission free 

energy. To complement this information, we determined the surfactant packing structure at the 

molecular scale within the micelle using dissipative particle dynamics (DPD) simulations and 

traditional surfactant packing arguments. 

Although the qualitative effect of salt on the viscosity of a micelle solution is well 

understood, our DPD simulations confirm and quantify the effect of salt on head group packing, 

through use of a “packing distance” defined as the length of wormlike micelle per surfactant 

molecule, which decreases as salt concentration increases in the two body wash formulations we 

studied here. If the radius of the wormlike micelle remains constant, this should result in a higher 

Israelachvili packing parameter 𝑝. This, in turn, should produce longer micelles, larger scission 

free energy, and shorter micellar breakage time, all of which agrees with our quantitative 

estimates of these parameters from application of the micellar-scale model to our linear 

viscoelastic data. Thus, while our analysis of the effects of salt on micelle properties is consistent 

with current understanding, we have been able to quantify this connection more thoroughly than 

before, through use of the Pointer Algorithm to extract quantitative measures of micelle 

properties from rheology and the use of DPD molecular simulations to connect this to the 

detailed surfactant packing within the micelle. In fact, the changes in surfactant packing 

quantified by our simulations are often too subtle to be obtained from experimental probes, such 
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as neutron scattering, and yet these small changes have significant effects on rheological 

properties.  

By measuring linear rheology over a 5 °C range of temperature, and using the Pointer 

Algorithm to infer the temperature dependence of the micellar length, we have also been able to 

estimate the micellar end cap free energy, which is found to be around 23~27 𝑘𝐵𝑇 for our 

solutions, which is significantly less than that reported earlier for CTAC/NaSal micelles (around 

50 𝑘𝐵𝑇) while the activation energies for viscosity and relaxation time both drop from around 

50 𝑘𝐵𝑇 to 25 𝑘𝐵𝑇 as salt concentration increases up to salt concentration that maximizes 

viscosity, with the larger value being similar to that in CTAC/NaSal micelles. By using the 

Pointer Algorithm, we also inferred that the micellar breakage time decreases with salt 

concentration almost monotonically from around 0.15 s to around 0.05 s, at 25 °C. PRMs modify 

the viscoelastic properties of body washes by partitioning within the micelles at different 

locations according to their values of log 𝑃𝑂𝑊 and their chemical structures. We find through 

micellar-scale modeling and DPD simulations that PRMs having a very low or a very high 

log 𝑃𝑂𝑊 reduce the average micelle length 〈𝐿〉, scission free energy 𝐸𝑠, and zero shear viscosity 

𝜂0 significantly. PRMs with low values of log 𝑃𝑂𝑊 mainly partition within the head group region 

of the micelle, increase the head group surface area 𝑎0 at constant micellar radius, decrease the 

packing parameter 𝑝 and result in shorter micelles and lower 𝜂0. Large, hydrophobic, PRMs with 

very high log 𝑃𝑂𝑊 mainly partition into the center of the micelle, and rather than mixing with the 

tails, and push them radially outwards, which increases the effective tail length 𝑙𝑐 which favors 

shorter micelles. PRMs with moderately large log 𝑃𝑂𝑊 values can induce some growth of micelle 

length 〈𝐿〉, but does not change the viscosity 𝜂0 or the scission energy 𝐸𝑠 of the solutions much 

or at most increases them slightly, relative to the viscosity in the absence of the added PRM. 

Partitioning of PRMs depends on the composition of the surfactant solution as well as on the 

PRM. The use of the packing distance in cylinders as a tool to describe the impact of the PRMs 

on the structure and viscosity is insufficient as it lacks a description of the packing of the 

surfactant in the endcaps. To even qualitatively describe the impact of molecules with different 

polarities, a parameter needs to capture the impact on both the cylindrical and the end caps needs 

to be captured. 

In summary, multi-scale modeling and rheological measurements were used to determine 

the structure-property relationships of surfactant formulations. Consistent results were obtained 
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at different length scales, from molecular, to micellar, to bulk rheological. The development of 

molecular parameters for simulating more complex PRMs, for use in both DPD and atomistic 

molecular dynamics simulations are needed. Application of similar methods to determine the 

synergistic effects of two or more PRMs are also needed.  
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Chapter 5: Mesoscopic Modeling on the Rheology of Partially Unentangled and 

Branched Micelle Solutions 

I. Introduction 

Surfactant micelles, known for their versatile in self-assembled structure and flow 

behaviors, have extensively been served as carriers, [Crothers et al. (2005)] templates, [Kunieda 

et al. (2001)] solubilizer, [Huang et al. (2016)] extractants, [Gao et al. (2016)] and rheology 

modifiers, [Lin et al. (2001)] among industrial formulations either as mixtures or as individual 

components. Given the relative facileness in tuning the non-covalent interactions between 

surfactant molecules, a wide range of micellar morphologies, such as ellipsoids, worms, vesicles, 

lamellae, can be achieved through the addition of simple electrolytes, cosurfactants, or strongly 

binding counterions (so-called hydrotropes) into the solutions. [Kaler et al. (1989); Villeneuve et 

al. (1999); Wang et al. (2016)] Such mixed surfactant systems sometimes exhibit prominent 

gains in viscoelasticity indicating the existence of large surfactant aggregates, in particular, the 

transient network of entangled wormlike micelles (WLMs), which have commonly been 

practiced in the realm of detergent-related industries. [Adamy (2016); Oelschlaeger and 

Willenbacher (2012); Zhao et al. (2015)] The formation of these long WLMs is attributed to the 

favor of a specific molecular packing, also known as the spontaneous curvature of the micelles. 

[Adamy (2016); Lonetti et al. (2011)] Because of the various ways the additives can tailor the 

micellar curvature, for instance, through electrostatic screening, hydrophobic binding, etc.; [Dai 

et al. (2016); da Silva et al. (2011); Padalkar et al. (2009); Padalkar et al. (2012)] there exist 

great opportunities in the synthesis of new functional materials: recent years have witnessed a 

growing attention on stimuli-responsive WLMs. [Hideki et al. (2005); Lu et al. (2016)] 

However, the interplay between structural energy and system entropy brings two types of 

topological defects to the cylindrical body: end-caps and junctions, resulting in micelles with 

finite length and formation of branched structures, respectively. [Dan and Safran (2006)] The 

latter is thought to enable percolation and phase separation with the emergence of an 

interconnected network when temperature is increased. [Zilman et al. (2004); Zilman and Safran 
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(2002)] Since the local packing geometry is subject to physicochemical subtleties of the system, 

the dimension, topology, and flexibility of the micellar aggregates can thereof be manipulated 

progressively to achieve the transition between linear and branched micelles. [Danino et al. 

(2000); Angelescu et al. (2003); Chellamuthu and Rothstein (2008); Ouchi et al. (2006)] Such 

transitions have been shown to dramatically impact the thermodynamic and viscoelastic 

behaviors of the surfactants as studied extensively by various approaches. [Zhang and Wei 

(2013); Helgeson et al. (2010); Decruppe and Ponton (2003); Fischer et al. (1997); Danino et al. 

(2000)] 

Besides the fundamental interest on molecular interactions among surfactants, intense 

efforts have been made for WLM solutions over decades to better understand the coupling 

between their complex rheological properties and the microstructure as well as their topology at 

mesoscale level. As directly visualized by cryo-TEM, [Clausen et al. (1992); Lin (1996)] these 

WLMs have a diameter of 3-5 nm whilst their contour length can reach a few micrometers in the 

semi-dilute regime giving rise to the occurrence of entanglements and eventually an enhanced 

viscoelasticity. [Padalkar et al. (2012); Yusof et al. (2012)] In this regard, WLMs are much 

similar to polymers except that they are subjected to constantly breaking and reforming in 

thermal equilibrium with their surfactant “monomers”, [Kalur et al. (2005); Feng and Han 

(2016)] which prevents them from mechanical degradation and hence being a desirable candidate 

as heat-transfer fluids and fracturing liquids. [Barhoum et al. (2012)] However, when the applied 

flow rate is high enough to disturb the equilibrium WLM structures, which in turn modify the 

flow itself, a rich variety of nonlinear rheological features would appear including localization of 

stress, heterogeneous shear bands, and flow induced phase separation etc. [Gallot et al. (2013); 

Cardiel et al. (2014)] 

Although they exhibit distinct flow properties and phase behaviors, the quantitative 

differentiation of branched structures from linear ones turns out to be a conundrum over decades. 

Part of this difficulty is associated with the hierarchical length and time scales for micelles under 

equilibrium, over which comprehensive characterizations through scattering or visualization 

techniques can hardly be fulfilled due to their limited accessible range. [Helgeson et al. (2010); 

Danino et al. (2000)] A rich variety of theories and models are therefore proposed to enhance the 

understanding of micellar branching, which generally falls into two categories: thermodynamic-

topological or statistical-mechanical. The thermodynamic-topological models can well predict 
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the “inverted” micellar phase behavior on the basis of a complex balance between mixing 

entropy and enthalpic/curvature energy, where a coarse-grained local packing parameter, called 

spontaneous curvature, is introduced to explain the temperature induced evolution of micelle 

morphology. [Dan and Safran (2006); Tlusty and Safran (2000)] While for statistical-mechanical 

models, the main concept relies on the analogy between cylindrical micelles and polymer chains 

with behaviors of topological defects, i.e., chain-ends and junctions, reminiscent of binary fluid 

in the sense that their competition corresponds to a shift of micellar connectivity. [Zilman and 

Safran (2002); Drye and Cates (1992)] 

Thus, to unveil the basic property-structure relationships behind different flow behaviors 

of WLMs, methods that allows for monitoring the dynamics of micelles are in need. Nourished 

by the continuing development of instrument science and technology, micelle characterization 

sustains its prosperity which involves an increasing number of advanced techniques from 

conventional flow birefringence, light and neutron scattering to more recent ultrasonic 

velocimetry, [Gallot et al. (2013)] and micro-cantilevers. [Youssry et al. (2012)] However, 

quantitative estimates and comparisons of the determined micellar characteristic lengths from 

those methods still remain challenging. The difficulties, to a large extent, rest on the gaps 

between individual methods in probing the structure beyond specific length scales or 

concentrations, which can hardly be overcome by a simple combination of several 

aforementioned characterization measurements. Since the rheology of WLM solutions appears to 

be rather sensitive to subtle changes in either length scales or lifetime of the microstructure, once 

coupled with an appropriate model, it can offer an indispensable route in micelle 

characterization. For entangled WLM solutions, as confirmed by Cates in his well-recognized 

theory, micellar properties such as micelle length and micellar breakage and reformation time 

can be withdraw from the linear rheological responses, namely, the storage (G’) and the loss 

(G”) modulus. [Cates (1987); Turner and Cates (1991); Khatory et al. (1993)] 

Nevertheless, it was found that the Cates model failed to account for the sensitivity of 

scaling exponents to the electrostatic and synergistic effects of salts, and 〈L〉 tend to be 

considerably underestimated [Angelescu et al. (2003); Keohler et al. (2000); Raghavan et al. 

(2015); Larson (2012); Zou and Larson (2014); Zou et al. (2015)] Moreover, different 

approximations applied on the model further complicates the rigorous interpretation of the 

micellar structure. For instance, in the absence of well-defined local features in G”, the Cates 
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model is known to be inapplicable on capturing the rheological behaviors for solutions with low 

surfactant concentration, where micelles can be too short to form entanglements, therefore carry 

extra freedom resulting in a much faster relaxation. While on the experimental side, two most 

notable techniques, namely cryo-TEM and extensional flow measurements, both of which claim 

to offer unambiguous identification for micellar branches, are very much likely to be plagued by 

specimen preparation related artifacts and nonlinear flow induced structure formation, 

respectively. [Danino et al. (2000); Chellamuthu and Rothstein (2008); Sachsenheimer et al. 

(2014); Fischer et al. (1997); Ouchi et al. (2006)] Consequently, lacking quantitative connections 

between microstructural mechanisms and large scale micellar properties, some basic questions 

on behaviors of micelle solutions still remain elusive. Such generic structure-property 

relationship is of great importance in tailoring micelle solutions with desired viscoelasticity and 

had been partially explored in a series of work by Zou, Larson and coworkers [Larson (2012); 

Zou and Larson (2014); Zou et al. (2015); Xueming et al. (2016)], where a computer simulation 

aided mesoscopic model was established for entangled micelles. The model has been currently 

applied to commercial surfactant systems and yields semi-quantitative estimations on micelle 

length as well as reasonable explanations on the effect of salts and additives. [Xueming et al. 

(2016)] Unlike the Cates model, the evolution of the potions between unrelaxed tube ends, 

representing the relaxation of micelles, is introduced in a coarse-grained mean-field fashion as a 

set of “pointers”, named pointer algorithm. In this way, it is possible to consider relaxation 

mechanisms of micellar chains under different length scales. [Zou and Larson (2014); Zou et al. 

(2015)] Since it is computationally less prohibitive to track those pointers instead of to include a 

delicate disentanglement kinetics, the model manifest itself with notable advantage when 

handling branched structure as well as unentangled micelles. 

In what follows, the original simulation model is briefly reviewed with the detailed 

consideration when applying it to both branched and partially unentangled WLM solutions. 

Since macro-rheology by itself is insufficient to indicate the local structure, diffusing wave 

spectroscopy (DWS) is thereby employed in order to fully characterize WLMs over six decades 

of oscillation frequency. A number of important physics for WLMs including the effects of 

entanglements and branch associated kinetics on rheology, as well as the possibility of micellar 

self-recombination were also elaborated in this work. 
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II. Experimental Section  

 Materials 

Two types of surfactants, “SLE1S” and “CAPB”, with a simple salt (sodium chloride, 

NaCl), were used. SLE1S (Fig. 5.1a) is an abbreviation for commercial SLES (sodium lauryl 

ethylene glycol sulfate, industrial grade) with one ethoxyl group (EO) on average; (but with a 

distribution of the number of Eos ranging from 0 to 10) and CAPB (Fig. 5.1b, cocoamidopropyl 

betaine, industrial grade) is a zwitterionic co-surfactant. The weight ratio of SLE1S/CAPB in the 

solution is fixed at 8.57. The activity of the SLE1S paste was verified using the potentiometric 

anionic surfactant titration ASTM D4251 procedure. (99-96%, analytical grade, from Cambridge 

Isotrope Laboratories, Inc.) D2O was used as the solvent of WLM solutions to facilitate the 

comparison of characterized micellar properties from rheology and from SANS. Sulfate latex 

particles (8.2 wt. %, analytical grade, from life technology) with a bead size of 600 nm were 

added in the solutions as molecular probes for DWS measurements. Because of the complexity 

of these materials, weight percentage (wt. %) instead of molar concentration, is generally chosen 

to represent the composition. Samples were prepared by mixing the above individual 

components with the following orders: concentrated surfactant pastes, D2O, beads solution, and 

salt solution (20 wt. % in D2O, analytical grade). All the samples were then well mixed and 

waited overnight for degassing prior to measurements.  

 

 
Figure 5.1 The chemical structure for (a) SLE1S (b) CAPB. 

 Macro-rheology 

MCR-702 TwinDrive rheometer (Anton Paar) with a 50mm steel, 0.5° cone and plate 

was used to measure the zero shear viscosity at constant shear rate, and rheological moduli at 

constant shear stress but varying frequency. The counter-rotation mode is applied to minimize 

inertial effects at high frequencies. The geometry was inertially corrected prior to measurement, 

and the air bearing was mapped and coded in precision mode as prescribed in the RheoCompass 

software. The frequency spectrum was collected from 0.1 to 600 rad/s with strain amplitude 

varying logarithmically from 13% to 0.05%, but only data where the ratio of torque to lower 
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drive electric torque > 2% was included. For the samples we measured, the above criteria usually 

limited the frequency spectrum to 10–100 rad/s, and data points with abrupt changes in moduli 

would also be rejected. We sampled 10 data points per decade of frequency to obtain enough 

information in a reasonable time. Samples were freshly loaded each time and a solvent trap was 

used to prevent sample evaporation near the edge. All rheological measurements were performed 

within the linear viscoelastic regime at 25 °C, unless otherwise specified. Each sample were 

remeasured and the standard deviation of rheological measurements was found to be less than 

5%.  

 DWS  

An optical micro-rheology approach, diffusing wave spectroscopy (DWS) was also 

applied to observe the high-frequency behavior (10−105 rad/s) of WLM solutions. Details about 

DWS can be found in references. [Buchanan et al. (2005); Oelschlaeger et al. (2009)] The 

wavelength of light and the diameter of the beads used in DWS are 532 and 600 nm, 

respectively. The beads, made of IDC polystyrene latex with a hydrophobic surface, are 

stabilized with a low level of sulfate charges, and are surfactant free. The samples for DWS 

measurement were mixed with 0.5 wt % beads before adding salt to ensure good mixing prior to 

thickening with salt. After 12 h of equilibration, samples were measured in 5 mm glass cells on 

an LS Instruments RheoLab 7.1.0 system. The transport mean free path l* (=437 μm) was 

determined from the control sample with the same-size beads in water.   

III. Modeling and Simulation  

For the linear rheology of entangled WLMs, Cates theory turns out to be a notable 

success in explaining the single Maxwellian relaxation behavior through the context of tube and 

the associated dynamics. As refined later by many coworkers, this theory assumes the successive 

breakage and reformation events are uncorrelated as well as blind to local length scales. Lack of 

descriptions on micelle rigidity, unentangled micelles, as well as a complete spectrum of 

relaxation mechanisms, drawbacks and limitations are found when applying the theory to a rich 

variety of surfactant systems with different composites, temperature, salt level, and additives. 

[Oelschlaeger and Willenbacher (2012); Lonetti et al. (2011), Feng and Han (2016); Cardiel et 

al. (2014); Youssry et al. (2012); Shikata et al. (1988); Messager et al. (1988)] However, when 

compared to other models and simulations in this area, [Padalkar et al. (2012); 4.38-4.41] the 
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concept underlying the Cates model maintains its attractiveness and by supplemented with an 

adequate amount of physics, we believe, a sophisticated model can be established for 

quantitative estimation of micellar properties from rheology which can hardly be obtained 

otherwise. Such model shall be able to accommodate the relaxation mechanisms over all relevant 

length scales with the living feature of WLMs. Therefore, a novel fast “pointer” simulation 

model was developed for entangled WLMs, where “pointers” are used to track the unrelaxed 

portions of WLMs from not only their original tube ends but also the internal breakage points. 

[Zou and Larson (2014); Zou et al. (2015)] A modified “Genetic computer algorithm,” which 

mimics biological evolution of optimized structures was also incorporated into the model to 

make the transformation of simulation results from time to frequency domain, thereby allowing 

direct comparison to experimental G’ and G” data. [Zou and Larson (2014)] A recent application 

of this model to commercial surfactant solutions [Xueming et al. (2017)] yields predictions 

regarding average micelle length 〈𝐿〉:1~3 μm; mesh size  𝜉:80~100 nm; persistence length 

𝑙𝑝:60~70 nm; as well as intermicellar reaction time 𝜏𝑟̅𝑐:0.05~0.15 s, and these estimated values 

have shown to be in good accordance with those reported in literatures; i.e., ~1 μm for 〈𝐿〉, 

[Barhoum et al. (2012)] 50~100 nm for 𝜉, [Sarmiento-Gomez et al. (2010)] 30~125 nm for 𝑙𝑝, 

[Oelschlaeger and Willenbacher (2012)] 0.01~0.1 s for 𝜏𝑟̅𝑐. [Waton and Zana (2007)]   

To extend the above success in modeling unbranched but well-entangled WLMs for the 

whole range of surfactant and salt concentrations, additional relaxation dynamics, besides those 

have already included in the original model, [Zou and Larson (2014)] are required to account for 

the effects of unentangled micelle rods and micelle branches. The former effect usually takes 

place at low surfactant concentration, where aggregates with large curvature are energetically 

favored, giving way to a low end-cap energy and short rods. Different from the entangled long 

WLMs, the diffusion of these unentangled micelle rods is not restricted within the tube so that 

the stress imposed on them can be relaxed in a much faster way by rotation. This rotary 

relaxation mechanism, as shown in Eq. (5.1), [Larson (1999)] is now incorporated to enable both 

the characterization of WLM solutions at low surfactant concentration and the comparison with 

micellar parameters from SANS as discussed later.    

𝐺′(𝜔) =∑𝐺𝑖
(𝜔/𝐷𝑟,𝑖)

2

1 + (𝜔/𝐷𝑟,𝑖)
2

𝑖

,   𝐺"(𝜔) =∑𝐺𝑖
(𝜔/𝐷𝑟,𝑖)

1 + (𝜔/𝐷𝑟,𝑖)
2

𝑖

                           (5.1𝑎) 
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𝐷𝑟,𝑖 =
3𝑘𝐵𝑇

𝜋𝜂𝑠𝐿𝑖
3
[𝑙𝑛(𝐿𝑖/𝑑) − 0.8],   𝐺𝑖 = 𝜈(𝐿𝑖)𝑘𝐵𝑇                                            (5.1𝑏) 

In the above equation, 𝐺𝑖 and 𝐷𝑟,𝑖 are the modulus and the rotary diffusivity for WLM with 

length of 𝐿𝑖, respectively. 𝑘𝐵 is the Boltzmann constant, 𝑇 is the temperature, 𝜂𝑠 is the solvent 

viscosity, and 𝑑 is the micelle diameter. 𝜈(𝐿𝑖) is the number of micelles with length of 𝐿𝑖 per 

unit volume. Note that Eq. (5.1) is only applicable to micelles with length smaller than the 

entanglement length 𝑙𝑒. 

Because of the polydispersity in micelle length distribution, it is reasonable to believe 

there always exist a certain amount of micelles which remain unentangled (𝐿𝑖 < 𝑙𝑒) with their 

contributions to the viscoelasticity only being noticeable as the solution becomes sufficiently 

dilute. Depending on the ratio of 〈𝐿〉 to 𝑙𝑒, i.e., the average entanglement number (𝑍̅), the 

percentage of entangled vs unentangled WLMs varies, and the micelle within these two 

subpopulations would experience distinct relaxation mechanisms as illustrated in Table 5.1. 

Table 5.1 A comparative list of relaxation mechanisms and the associated characteristic times between 

entangled and unentangled micelles 

Length 

scales 

Unentangled 
Entangled 

𝐿𝑖 < 𝑙𝑝 𝑙𝑝 < 𝐿𝑖 < 𝑙𝑒 

𝑑 ~ 𝑙𝑝 
Bending motion 

with 𝜏𝑝,𝑖(𝐿𝑖) 
Bending motion 

with 𝜏𝑝(𝑙𝑝) 
Bending motion 

with 𝜏𝑝(𝑙𝑝) 

𝑙𝑝 ~ 𝑙𝑒  
Rouse motion 

with 𝜏𝑅,𝑖(𝐿𝑖)/𝑝
2, 𝑝 = 1,⋯ ,𝑁𝐾,𝑖 

Local Rouse motion 

with 𝜏𝑅,𝑖(𝐿𝑖)/𝑝
2, 𝑝 = 𝑍𝑖 , ⋯ , 𝑁𝐾,𝑖 

𝑙𝑒  ~ 𝐿𝑖 
Rotation 

with 𝐷𝑟,𝑖(𝐿𝑖) 
Rotation 

with 𝐷𝑟,𝑖(𝐿𝑖) 
Reptation, contour length 

fluctuation, constraint release 

Note that 𝜏𝑝 and 𝜏𝑅 are the characteristic times for bending and Rouse motions. 𝑍 and 𝑁𝐾 are the number 

of entanglements and Kuhn steps, respectively. The subscript 𝑖 represents the micelles of length 𝐿𝑖. The 

detailed expression for the above relaxation dynamics can be found either in the supplementary material 

or our previous work. [Zou and Larson (2014); Zou et al. (2015)] 

 

Reminiscent of the modeling on high frequency Rouse and bending modes, the dynamics 

of unentangled micelles are incorporated separately, therefore only indicated as relaxed ones 

(i.e., without any pointers on them) during the intermicellar reaction, in contrast to those 

entangled micelles where loss of tube segments would cause pointers to move along their 

backbone as the relaxation process continues. A flowchart with detailed information about the 

above simulation procedure can be found in the supplementary material. 

In the absence of closed rings and intra-loops, architectures for any branched micelles are 

built up by linear strands jointed through branch junctions and terminated with free end-caps. 
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Because in a branched micelle the surfactant molecules can diffuse rapidly through cross-linking 

junctions causing individual branch to grow, and shrink, the presence of these intermicellar 

connections provide extra paths allowing micelles to slide quickly from their entanglements, thus 

reduce viscosity. [Berret et al. (1993); Khatory et al. (1993)] Albeit indirectly surmised, it is 

widely accepted that branch junctions can be formed or destroyed via specific mechanisms. 

[Turner and Cates (1992); Drye and Cates (1992); Tlusty et al. (2000); Yamamoto and Hyodo 

(2005)] Mostly appeared as “Y” shape under cryo-TEM, [Danino et al. (1995); Dan and Safran 

(2006)] the detailed geometry, thermodynamics, and stability of these junctions are well studied, 

and we shall not be concerned with them here. [Andreev and Victorov (2006); May et al. (1997); 

Tang and Carter (2013)] Thus, to account for the above branching-associated kinetics on the 

micellar relaxation behaviors, a “constrained” diffusion model as well as a mechanism to create 

new branches are developed, and then these mechanisms are incorporated into the evolution of 

“pointers”. Originated from the work of Lequeux (1992), the “constrained” diffusion model draw 

heavily on the idea that micellar materials in each strands undergo a reptation-like slipping 

motion with constraint forces imposed at branch junctions to balance the flux. The resulting 

displacement of certain strand is written as a Langevin equation: 

∆𝑥𝑖𝑗 = √
2𝑘𝐵𝑇∆𝑡

𝜁𝑖𝑗
𝑛𝑖𝑗 +

𝐹𝑖 − 𝐹𝑗

𝜁𝑖𝑗
∆𝑡                                                         (5.2) 

In the above equation, ∆𝑥𝑖𝑗 is the displacement of strand 𝑖𝑗 from terminus 𝑖 towards 𝑗, ∆𝑡 is the 

time step. The first term on the right of Eq. (5.2) is the 1D diffusion term due to Brownian 

motion, where 𝜁𝑖𝑗 is the drag coefficient of strand 𝑖𝑗 and 𝑛𝑖𝑗 is a uniformly distributed random 

number between -1 and 1. While 𝐹𝑖 and 𝐹𝑗  are “constraint forces” imposed to allow satisfaction 

of the mass conservation for all the displacement at each junctions.  

In virtue of thermal fluctuation on local curvature, a Y junction can be generated by 

sprouting a tiny branch, so-called a “bud,” along the micelle randomly as implied by experiments 

and simulations. [Dan and Safran (2006); Jain and Bates (2003); Tang and Carter (2013)] Such 

sprouting process resembles the nucleation step during crystallization in which buds act similarly 

as excitation sites: Once formed, they enable full-fledged branches to grow through either end-

cap fusion or “constrained” diffusion otherwise disappear in a very short time. Doubtless both 

the size and the time scale at which the buds are introduced control the branching level of the 

system, the linear to branch transition in micelle morphology is thereof explained by an increase 
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of bud size or sprouting rate as temperature or salt concentration varies. More detailed 

information on the above mechanisms can be found in the supplementary material. Due to the 

complexities in these mechanisms, the linear rheological response of a micellar solution can 

therefore be expressed schematically by the mathematical formula given below: 

𝐺∗(𝜔) = 𝐺𝑈(𝜔) + ℱ[𝐺𝑁𝜇
𝛼(𝑡, 〈𝑀〉, 𝛼𝑒 , 𝜍, 𝛽)] + 𝐺

𝐻(𝜔)                                     (5.3) 

Here, 𝐺∗(𝜔) is the complex modulus whose real and imaginary part are storage and loss moduli, 

i.e., 𝐺′ and 𝐺", respectively. ℱ[∙] stands for the time-frequency transformation. 𝐺𝑁 is the elastic 

modulus as a result of transit network formed by entanglements. The exponent 𝛼 accounts for the 

effect of constraint release. By assuming the topological entanglement as a binary event, 𝛼 is set 

to be 2, known as double reptation. According to the tube theory, the time-dependent stress 

relaxation 𝜇(∙) is a function of the length and the diameter of tube, whereas for micellar systems 

the above two parameters are replaced by average micelle size 〈𝑀〉 (which is the sum of total 

strand length in a micelle, the ensemble average 〈∙〉 is needed here due to the polydispersity of 

micelle size distribution) and flexibility 𝛼𝑒 (i.e., the ratio of micelle entanglement length 𝑙𝑒 to 

persistence length 𝑙𝑝). However, unlike the conventional tube theory, 𝜇(∙) contains two 

additional parameters, 𝜍 and 𝛽, which signifies the living feature and the branching level of the 

micelles, respectively: 𝜍 is the time scale ratio of the breakage/reformation to the reptation 

relaxation, i.e., 𝜍 =  𝜏𝑏̅𝑟/𝜏̅𝑟𝑒𝑝, while 𝛽 is defined as the average number of branched junctions 

per micron of micellar material. Thus, with 𝜍 ≫ 1 the model recovers the behavior of 

unbreakable polymer solution strikingly in contrast to the single-mode Maxwellian relaxation at  

𝜍 ≪ 1. [Berret et al. (1993); Koshy et al. (2011)] 𝐺𝑈(𝜔) and 𝐺𝐻(𝜔) represents all the fast 

relaxation dynamics, the superscript 𝑈 and 𝐻 denote the contributions from unentangled micellar 

subpopulation and high frequency Rouse and bending motions, respectively. Since these 

dynamics take place on the length scale smaller than tube diameter, their contributions are 

thought to be independent of 𝜇(∙), therefore added analytically at high frequencies.  

Before moving onto the next section, it is noteworthy that in our simulations both the 

intermicellar reaction and the entanglements are depicted in a mean-field (MF) manner in the 

sense that the reaction and the entanglement details are merely important for the overall 

relaxation behavior of WLMs. However, there are always some concerns revolving the MF 

treatment on intermicellar reactions: the intermediate states (three-/four-arm branched structure) 

[Turner and Cates (1992)] and non-uniform breakage (shedding/end evaporation). [Waton and 
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Zana (2007); Cates (1988)] Their existence, as inferred from theories and simulations, can alter 

the concentration dependencies of micellar properties, however, for linear rheology the effects 

remain marginal unless the system undergoes the morphology change or phase transition. 

[Waton and Zana (2007); Turner and Cates (1992)] 

IV. Result and Analysis 

 

Figure 5.2 The combined rheological response (from mechanical rheometry at low frequencies and DWS 

at high frequencies) for WLM solutions with constant surfactant (SLE1S+CAPB) concentrations: (a) 1.5 

wt. %, (b) 4.0 wt. % , and various salt concentrations at 25 C, each coded by a color also used in the 

inserted figures give zero shear viscosities.   

Since our aim is to understand both the slow and fast dynamic-microstructure 

relationships for   WLM solutions through a combination of macro- and micro-rheology, two 

surfactant concentrations, i.e., 1.5 wt. % and 4.0 wt. %, were chosen for the rheological 

investigation of partially unentangled and branched systems respectively. Overcoming the 

mechanical limitations, micro-rheology, including diffusing wave spectroscopy (DWS), video 

and laser particle tracking techniques, has the capability to access much higher frequencies 

(10~105 rad/s) with the upper limit corresponds to the Brownian motion of the probe particles. 

The rheological modulus are calculated based on the use of fluctuation-dissipation theorem, 

where the thermal motion of probe particles is monitored and directly related to the 

viscoelasticity of the medium. [Cardiel et al. (2014); Youssry et al. (2012); Oelschlaeger et al. 

(2009)] Thus, by combining with macro-rheological data at low frequencies (0.1~500 rad/s), an 

over six decade frequency range can be attained as a prerequisite for a complete description on 

micelle characteristic lengths through our simulation model. However, precautions are needed 

when handling the above two sets of data, since discrepancies are always observed possibly due 
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to the inertia of the rheometer and the probe-micelle interaction. [Cardiel et al. (2014); Rafati 

and Safatian (2008)] Therefore a data merging procedure is developed here, (details can be found 

in the supplementary material) the resulting combined rheological data for WLM solutions with 

different salt concentrations are given in Fig. 5.2.           

According to Fig. 5.2a, prior to the maximum viscosity, by increasing the salt 

concentration, the terminal regime, where G’ and G” have power laws of -2 and -1 respectively, 

shift to lower frequencies while the difference between G’ and G” at intermediate frequencies 

becomes more prominent. These behaviors come along with an S-shaped upswing of zero shear 

viscosity 𝜂0 with the addition of salt (See the inserted plot of Fig. 5.2a) indicating different 

mechanisms for micellar growth at low and high salt concentrations. However, an exactly 

opposite trend can be observed in Fig. 5.2b, where branched micelles are thought to predominate 

as the solutions reach the right side of the salt curve. From both Fig. 5.2a and b, in the high 

frequency limit, another asymptotic crossover between G’ and G” can be found, whose values 

are nearly independent of salt level. Such high frequency crossover 𝜔2𝑐, signaling a change from 

elastic response dominated by collective dynamics among entangled micelles to a viscous-

dominant short-range intramicellar bending motion, [Morse (1998); Gittes and MacKintosh 

(1998)] is known to reflect the rigidity of WLMs and can only be captured by DWS. Since 𝜔2𝑐 is 

free from the ambiguities related to the data merging process, this specific frequency can 

therefore be used to estimate the value of 𝑙𝑝 as inspired by our previous sensitivity studies. [Zou 

et al. (2015)] 

Quantitatively, the study of salt effects on micellar structures from experiment alone is a 

challenge, since there is no independent control of each characteristic lengths or times as varying 

the salt level.  The addition of salt would, in general, cause micelle to grow as a result of a higher 

energy penalty for creating end-caps, but it may as well affect the intermicellar reaction time 𝜏𝑏̅𝑟 

or cause micelle to form branches. Therefore, it is difficult to determine whether a decrease of 

viscosity is due to a smaller 〈𝐿〉, the consequence of faster breakage and reformation or the 

formation of the branched structure. The above complications are embodied by the nontrivial 

changes in the predicted G’ and G” curves (See Fig. 5.3 and 5.6) when using the micellar 

parameters as input for the simulation approach described previously. Since our interest here is 

to understand how the different length and time scales are manifested in the linear rheology of 

partially unentangled and branched WLM solutions, the parameters are either fixed at their 
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typical standard values (See Table 5.2 and 5.3) or allowed to vary within a range exemplified 

such system.   

 

 

Figure 5.3 Effect of micellar parameters on normalized storage and loss modulus for partially unentangled 

micelles: (a) 𝜍𝑟𝑐, (b) 𝑍̅, (c) 𝑙𝑝, (d) 𝛼𝑒 

Table 5.2 Standard values of micellar parameters for simulation predictions in Fig. 5.3 

Micellar parameters Solution conditions 

𝜍𝑟𝑐 𝑍̅ 𝛼𝑒 𝑙𝑝(nm) 𝑑 (nm) 𝑇 (K) 𝜙 𝜂𝑠 (mPa.s) 

100 3 3 80 4 300 2 % 0.89 

 

As shown in Fig. 5.3, the rheology of partially unentangled micelle systems are strongly 

affected by the following parameters: 𝜍, associated with the relatively slow intermicellar 

reaction, has its greatest influence on behaviors at the terminal regime: a larger 𝜍 would cause the 

terminal regime shift to lower frequencies. For 𝑍̅, since its value governs the transition between 

entangled and unentangled systems, at a small value of 𝑍̅, micelles are barely entangled, the 

predicted rheological response is similar as that for dilute solution of rigid rods; [Roitman and 

Zimm (1984); Carriere et al. (1985); Amis et al. (1985)] However, by increasing 𝑍̅ (with 𝛼𝑒 and 
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𝑙𝑝 fixed), the terminal regime of G’ and G” evolves to lower frequencies giving rise to a wider 

frequency window where elastic response is dominant, which clearly indicates the emergence of 

transient networks formed by entangled WLMs. While in order to understand the complicated 

effects of 𝛼𝑒 and 𝑙𝑝, one would need to think of a micelle as a thread of ‘blobs’, [de Gennes 

(1979)] whose size is govern by 𝛼𝑒 ∙ 𝑙𝑝, and inside the blob, a micelle don’t “feel” the existence 

of entanglements so that the solution is effectively dilute. Thus, for micelles containing a certain 

number of blobs (i.e., 𝑍̅ is fixed), the consequences of a larger blob size are two-fold: increase 

the micelle length on one hand, tend to excite high frequency dynamics including Rouse and 

bending motions (manifested by a scaling law of 0.5 and 0.75 at high frequencies) at larger 

length scale therefore later times on the other hand. A combination of the above two effects can 

thus be identified by shifts in both magnitudes and frequencies for G’ and G” curves.   

Prior to detailed discussions on the effects of branching, it is noteworthy that although the 

abundance of branch junctions is of thermodynamic origin, the model here is purely topological, 

i.e. no delicate balance between entropic and enthalpic contributions nor possible singularities of 

the thermodynamic functions are involved. As outlined by a spontaneous budding process, where 

branch junctions are formed irrespective of strand orientation, therefore under equilibrium, the 

strand length would obey the Poisson distribution. In fact, this simplified treatment on junction 

properties remains adequate as long as strong interactions (exclude volume, electrostatic and 

hydrodynamic interactions) among micelles are effectively screened out and the structure of 

branched clusters is far away from saturation where the strand length has the order of the 

entanglement length. Thus, without any kinetic or thermodynamic subtleties on branching, our 

model offers a generic pathway to understand the viscoelasticity of branched “living” chain 

systems on the basis of polymer physics, which shall allow for predictions in a wide range of 

rheological behaviors among different self-assembled aggregates [Dan and Safran (2006); 

Zilman et al. (2004); Zilman and Safran (2002)] through appropriate reinterpretation of obtained 

parameters while extending the model to depict other amphiphile systems. [Jain and Bates 

(2003)] However, unfortunately, at this moment, the questions concerning whether the gelation 

(i.e., the transition from disconnected, branched clusters to a macroscopic, connected network) is 

a structure transition or a thermodynamic one [Zilman and Safran (2002)] as well as whether the 

micellar branches are truly equilibrium structures or metastable intermediates resulting from 

intermicellar reactions (for example, ghost-like crossing) [Koshy et al. (2011); May et al. (1991)] 
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cannot be answered solely from our model unless sophisticated description on thermo-statistics 

of micelle structure is available.    

 

 

Figure 5.4 The evolution of micelle ensemble showing the equilibrate composition with average strand 

length ⟨𝐿𝑠𝑡⟩ = 2.2 𝜇𝑚 and branching level 𝛽 = 0. 09 per μm by the end of the simulation. Note that the 

simulation starts with 2500 linear micelles with micellar parameters given in Table 5.3. 

Table 5.3 Values of micellar parameters for simulation predictions in Fig. 5.4 

Micellar parameters Solution conditions 

𝜍 〈𝑀〉 (μm) 𝛼𝑒 𝑙𝑝(nm) 𝑑 (nm) 𝑇 (K) 𝜙 𝜂𝑠 (mPa.s) 

0.03 4 2 50 4 300 10 % 0.89 

 

 

Figure 5.5 (a) The micelle size distribution and number of branched junctions contained in micelles with 

different sizes, (b) strand length distributions for equilibrated ensemble shown in Fig. 5.4.   
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As shown by Fig. 5.4, through the aforementioned constraint diffusion and budding 

process, a branched micelle system can be generated from a linear ensemble with micellar 

parameters given in Table 5.3. Such system would eventually evolves into a mixed micelle 

ensemble containing linear micelles, lightly branched structures (i.e., micelles contains no more 

than 4 branched junctions) as well as few giant micelle clusters indicated by both the long tail of 

micelle size distribution and the large number of branched junctions they contain (See Fig. 5.5a). 

However, according to Fig. 5.5b, under equilibrium the length distributions for three different 

types of micelle strands: linear micelles, dangling strand, and backbone, (whose definitions are 

based on whether termini are free end-caps or branched junctions) overlap and obey a single 

exponential function with the averaged strand length ⟨𝐿𝑠𝑡⟩ = 2.2 𝜇𝑚. This is the consequence of 

the randomness when branched junctions are introduced by the budding process. Since the level 

of the branching 𝛽 can be tuned by the dimensionless budding time 𝜍𝑏𝑢𝑑: a smaller budding time 

would result in a highly branched micelle system, the effect of branching on the rheology of 

micellar solutions is illustrated by Fig. 5.6. 

 

 

Figure 5.6 The predicted rheological behaviors for micelle systems with same micellar parameters except 

for branching levels. A rightward shift of both G’ and G” implies a noticeable decrease of zero shear 

viscosity as the system becomes highly branched.      

In Fig. 5.6, both G’ and G” shift to higher frequencies and the difference between the two 

modulus decreases as more branches has been added to the system, which is consistent with the 

observed trend for micelle solutions upon the addition of salt. (See Fig. 5.2b) Since both the 
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average micelle size 〈𝑀〉 and the dimensionless intermicellar reaction time 𝜍 are hold constant, 

the above change in linear rheology can only be explained by the sliding motion of the branched 

arms, which induce extra freedom to the individual micelle therefore accelerate the relaxation. 

While for the fixed average micelle size 〈𝑀〉, an increase in branching level would inevitably 

result in a shorter strand length, therefore a decrease in the number of entanglements that 

correspond to a less difference between G’ and G”.   

V. Discussion  

As mentioned previously in this paper, the use of a single parameter, i.e., 𝜏𝑏̅𝑟, to describe 

the intermicellar reaction is restricted by the validity of a MF picture, which becomes susceptible 

as the solution falls under the partially unentangled regime. Since the transport of one micelle to 

fuse with another surely depends on the statistics and dynamics of WLMs, the fundamental 

question must be answered as to which of the following two situations: reaction controlled and 

diffusion controlled (DC), actually governs the rheological properties of the given system.56 In 

well-entangled WLM solutions, the current understanding for intermicellar reaction relies on the 

“universality” of blobs (same as the tube diameter or the mesh size), which is the screening 

length for hydrodynamic interactions and excluded volume repulsion. Thus, for sufficiently long 

WLMs in a “melt” of blob chains, the dependence on the local kinetics disappears altogether, 

and 𝜏𝑏̅𝑟 would be an only function of micelle length. In other words, MF theory is obeyed for 

well-entangled WLM solutions. In the dilute solution, on the contrary, a generalized MF 

treatment could be inadequate, one might expect the intermicellar reactions are DC, as whenever 

diffusion brings a pair of micellar coils to overlap the fusion is inevitable via a quick collision 

between two end-caps. Under this circumstance, a newly-created chain end is more likely to 

recombine with its original partner from the preceding breakage than with its surrounding 

neighbors. Such phenomenon is the so-called “self-recombination” which reflects the finite 

memory of WLM chains: the initial chain length can only be forgotten on a time-scale much 

greater than the diffusion time of that length after several sequences of breakage and reformation 

events. As a result, a typical WLM would be contaminated with fragments of relaxed tube at 

locations, where fresh tube ends were firstly created by breakage, then relaxed by fluctuation, 

and finally annihilated by self-recombination, leading to the anomalous short-time behavior and 

fat-tailed late time relaxation. [O’Shaughnessy (1993); O’Shaughnessy and Yu (1995)] 
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However, the above logic is presumably based on a constant 𝜏𝑏̅𝑟, which is exactly 

opposite for WLM solutions as evidenced by a decrease of 𝜏𝑏̅𝑟 with salt concentration, [Tang et 

al. (2017)] owing to a lower potential barrier for breakage/reformation. Given this depression of 

tendency in reaction, it becomes less obvious and intuitive to find out the extent to which a 

partially unentangled WLM solution is MF or DC. Since at present, there is no rigid theory 

available for reaction kinetics in WLM solutions, “first principle” scaling arguments are thereby 

postulated in what follows.     

The essence of DC kinetics is embodied by a much longer diffusion time between 

adjacent micelles than that required by reaction. According to Shaughnessy and Yu (1995), this 

can be represented by a dimensionless time ratio 𝜍𝐷𝐶 ≡ 𝜏𝐷̅/𝜏𝑏̅𝑟 with 𝜍𝐷𝐶 ≫ 1. Here 𝜏𝐷̅ is the 

diffusion time for a micelle of average length 〈𝐿〉, i.e., 

𝜏̅𝐷 ≡
〈ℎ〉2

𝐷
,   〈ℎ〉 ≡ √

〈𝐿〉𝜋𝑑2

4𝜙

3

                                                          (5.4) 

where 𝐷~1/〈𝐿〉 is the diffusivity, and 〈ℎ〉 is the average distance between any two micelles, 

which depends on the volume fraction 𝜙 of the solution. Given 𝜍 ≡ 𝜏𝑏̅𝑟/𝜏̅𝑟𝑒𝑝 and 𝜏𝑟̅𝑒𝑝 ≡

〈𝐿𝑡〉
2/𝐷, (〈𝐿𝑡〉~〈𝐿〉 is the average micellar tube length, the detailed relationship between 〈𝐿〉 and 

〈𝐿𝑡〉 can be found in our previous work. [Zou and Larson (2014)]) 𝜍𝐷𝐶 can therefore be expressed 

as  

𝜍𝐷𝐶 =
〈ℎ〉2

〈𝐿𝑡〉
2
∙ 𝜍−1                                                                      (5.5) 

By assuming 𝜏𝑟̅𝑐~〈𝐿〉
𝛼, (𝛼 < 0 due to the decrease of 𝜏𝑟̅𝑐 with the growth of 〈𝐿〉, and 

according to Cates theory, [Cates (1987)] 𝛼 = −1) and 〈𝐿〉~𝜙𝜈, (𝜈 = 0.6 predicted by Cates 

(1987) for nonionic surfactant solutions with a constant 𝐸𝑠𝑐, which seems to be much smaller 

than those reported from other literatures, possibly arising from the dependence of 𝐸𝑠𝑐 on 𝜙. 

[Cates (1988)]) it yields the following scaling law of 𝜍𝐷𝐶 vs 𝜙: 

𝜍𝐷𝐶~〈𝐿〉
4
3
−𝛼~𝜙𝜈(

4
3
−𝛼)                                                                (5.6) 

As demonstrated by Eq. (5.6) (with 𝛼 < 0 and 𝜈 > 0),  the validity of MF shall pertain 

even if a solution is further diluted since the decrease in concentration drives the system towards 

MF behavior. Hence one never truly reaches the DC regime before the onset of entanglements, in 

another word, the WLM solution is a “weakly reactive” system, which at first appears to be 
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counter-intuitive but actually consist with the trend predicted by Shaughnessy and Yu (1995) for 

dilute polymers in good solvent. 

VI. Conclusion  

A recently developed simulation method for characterization of unbranched but well-

entangled WLMs has been extended to provide a practical pathway to study the effects of both 

micelle branches and unentangled micelle rods in micellar solutions. Since in a branched micelle 

the surfactant molecules can diffuse rapidly through branch points causing micelle branch to 

grow, and shrink, the presence of these branches provide extra paths allowing micelles to slide 

quickly from their entanglements, however, few studies are available to explain these dynamics 

in detail. To account for the branching-associated kinetics on the micellar relaxation behaviors, a 

“constrained” diffusion model as well as a mechanism to create new branches are developed, 

where constraint forces are imposed to balance the flux of micellar materials at each branch 

junctions and a branch junction can be generated by sprouting a tiny branch, so-called a “bud,” 

along the micelle randomly. Thus, the linear to branch transition in micelle morphology can be 

represented by an increase of bud size or sprouting rate as temperature or salt concentration 

varies. By generating micelle systems with different level of branching, this extended simulation 

method is capable to predict a decrease in viscosity as more branches are introduced into the 

solutions, which consist with the well-known phenomenon for surfactant solutions at high salt 

concentration. On the contrary, for the unentangled micelle rods, their effects on the viscosity of 

solutions are only significant when surfactant concentration is low. Unlike those entangled long 

micelles, micelle rods are free to rotate therefore resulting in a much faster relaxation of the 

stress imposed on them and a lower viscosity. This additional rotary mechanism is now included 

in the model to enable characterization of micelle solutions at low surfactant concentration. By 

investigating the transition between entangled and unentangled micelle systems, the evolution of 

micellar structure can be predicted with the above extended simulation method. “First principle” 

scaling arguments are also postulated to conclude that WLM solutions is a “weakly reactive” 

system, i.e., the solution never truly reaches the diffusion controlled regime before the onset of 

entanglements, whose trend is similar as that for dilute polymers in good solvent. The 

accomplishments of the above progress allow, for the first time, modeling of the flow behaviors 
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of micelle solutions across the whole range of salt concentrations that is typically used in most 

WLM-related applications. 
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Chapter 6: A Hybrid Brownian Dynamics/constitutive Model for Yielding, Aging, and 

Rejuvenation in Deforming Polymeric Glasses 

I. Introduction  

Lacking long-range order, a glass is an amorphous solid conventionally formed by 

supercooling a liquid to the point of arresting molecular motion without crystallization, resulting 

in a non-equilibrium jammed state. [Debenedetti and Stillinger (2001)] On the macroscopic 

scale, the transformation of the liquid to the glass appears within a narrow range of temperatures 

approximated by what is referred to as the glass transition temperature 𝑇𝑔. The non-equilibrium, 

amorphous, structure of the glass is crucial to controlling the common characteristics of this type 

of material: hardness, brittleness, transparency, low conductivity, and soft magnetism. 

[Debenedetti and Stillinger (2001); Osborne and Lacks (2004); Greer (1995)] Applications of 

glasses can be found in a variety of fields: pharmaceuticals, food preservation, metallurgy, 

optics, and other applications going back as far as ancient Egypt in 12,000 B.C. [Dyre (2006)] 

Although the ability to form a glass is not restricted to a specific class of atoms or molecules, a 

fast cooling rate is required for many liquids. Polymers, however, with a great diversity of local 

length scales and a broad range of characteristic times, can be easily cooled to form glasses with 

impact resistance and toughness [Lee et al. (2009)] that are significantly higher than that of 

colloidal or metallic glasses.    

Under deformation, polymeric glasses show a linear elastic response at small strain 

followed by yielding at larger strains where the energetic barriers to plastic flow are overcome. 

[Boyce et al. (1988); Hoy (2011)] After yielding, strain-softening, and a drop in stress with an 

increase of strain, may also occur, signaling inhomogeneous deformation and strain localization 

(crazing, necking, and shear banding etc.). [Fielding et al. (2012) and (2013)] The degree of 

softening and the magnitude of the yield stress are known to depend on the thermomechanical 

history of polymeric glasses. [Klompen et al. (2005); Wendlandt et al. (2005)] In many respects 

polymeric glasses are similar to other glasses: they show a slow evolution towards equilibrium 

known as physical ageing, and many show non-Arrhenius temperature dependence of relaxation 



 132 

called dynamic fragility, an every greater bifurcation of slower “alpha” from faster “beta” modes 

of relaxation as well as the decoupling of translational and rotational diffusion as the material is 

cooled deeply into the glass, indicating increasing local heterogeneity. [Schweizer and 

Saltzmann (2004); Chen et al. (2009)] However, it has been generally accepted that the long-

chain feature of polymer molecular structure greatly alters the mechanical responses of 

polymeric glasses relative to non-polymer ones. [Wendlandt et al. (2005); Hoy and O’Hern 

(2010)] At very large strains, the polymeric glass enters the hardening regime, a phenomenon 

unique to polymeric glasses where strain localization is greatly suppressed. [Hoy and Robbins 

(2008)]  

Understanding the above behaviors is of great importance in the manufacturing of 

polymeric glass to achieve designed mechanical properties. [Arruda et al. (1993)] Through 

techniques such as neutron and x-ray scattering, [Hansen and McDonald (1986)] nuclear 

magnetic resonance (NMR), [Loo et al. (2000)] birefringence, [Arruda et al. (1993)] and optical 

photo-bleaching, [Lee et al. (2009)] it has been learned that stress can enhance local mobility in 

the glass by either deforming the potential energy landscape or by introducing mechanical 

disorder. [Debenedetti and Stillinger (2001); Chen and Schweizer (2010)] The resulting decrease 

in structural (or segmental) relaxation time is known as mechanical rejuvenation. [Lee et al. 

(2009)] However, when strain hardening begins, the local mobility of the polymeric glass 

decreases [Lee et al. (2009)] and the material becomes highly anisotropic due to the orientation 

of polymers under large deformation. [Wendlandt et al. (2005); Arruda et al. (1993)] A 

sophisticated approach is required to characterize the above complex, and non-monotonic 

behavior of deforming polymeric glasses. Such an approach should be able to account for 

intramolecular cooperativity, including chain connectivity, stiffness, and finite extensibility. In 

what follows, after a brief review of existing models for polymeric glasses, we present our 

hybrid model, which allows Brownian dynamics (BD) simulations to be applied to polymeric 

glasses. The simulation results for mechanical behaviors, including strain hardening, strain 

recovery, and orientation of chain segments in either uniaxial extension or steady shear, are 

discussed in detail. Conclusions are given at the end of this Chapter. 
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II. Model Review  

Most models of polymeric glasses fall into one of two generic categories, i.e., kinetic or 

thermodynamic. [Chen and Schweizer (2007)] For thermodynamic models (Adams-Gibbs 

model, [Adam and Gibbs (1965)] random first order transition model, [Garrahan and Chandler 

(2003)] lattice cluster entropy model, [Lubchenko and Wolynes (2004)] etc.), configurational 

entropy is the major concern: it drives local structure rearrangements within a cooperative 

region, known as an “entropic droplet” in some of these models. Although it is hard to give a 

clear definition of the configurational entropy and the mapping between the “droplet” and the 

molecules, [Chen et al. (2009)] some of these models predict the observed decoupling of 

translational and rotational motion as well as the range of dynamic fragilities for different types 

of glasses. Kinetic models show much greater diversity: Some relate molecular rearrangement to 

plastic deformation through excited small clusters of “defects” or of “free volume” whose 

concentration is controlled by the competition between ageing and rejuvenation. Examples 

include Eyring’s model, [Eyring (1936); Halsey et al. (1945)] dislocation-based metallurgical 

models, [Escaig (1984)] percolated free volume models, [Merabia et al. (2004)] elastic 

“shoving” models, [Greer (1995)] and shear-transformation zone models. [Langer (2008)] Others 

introduce a state variable carrying structural information or “memory” which determines the 

structural relaxation of material functions. Examples include the Eindhoven glassy model, 

[Klompen et al. (2005)] the stress-clock model, [Bernstein and Shokooh (1980)] and the Boyce, 

Park, and Argon (BPA) model. [Boyce et al. (1988)] In these models, a polymeric glass is 

assumed to be a continuously deformed material with the time evolution of the state variable 

controlled by ageing and rejuvenation.  

Many other sophisticated approaches have also been applied to describe various 

dynamics of polymeric glasses: phenomenological models, [Sollich et al. (1997)] density 

functional theories, [Xia and Wolynes (2000)] mode coupling theories, [Chong and Fuchs 

(2002)] nonlinear Langevin equations, [Schweizer and Saltzmann (2004)] molecular dynamics 

(MD) simulations, [Riggleman et al. (2007)] and the potential energy landscape (PEL) paradigm. 

[Debenedetti and Stillinger (2001)] However, most of the models are greatly challenged by the 

non-monotonic, complex dependence of the segmental (alpha) relaxation time on the 

deformation of the polymeric glass, especially during strain hardening and strain reversal, as 

revealed by recent studies. [Lee et al. (2009); Hoy and O’Hern (2010)] Given the blurred 
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boundaries between melts and glasses at the molecular level, the generic fluid point of view (i.e., 

that any liquid exhibits solid-like behavior on time scales much shorter than the material 

relaxation time) is favored for the characterization of ageing and rejuvenation: the polymeric 

glass becomes more solid-like through ageing, but fluidizes upon rejuvenation. Using this 

concept, a so-called “fluidity” equation [Moorcroft et al. (2011)] (Eq. (6.1e)) was used by 

Fielding, Cates and Larson [Fielding et al. (2012) and (2013)] to account for the time-evolution 

of the segmental relaxation time for polymeric glasses under deformation. In this “toy” model of 

Fielding et al., the dynamics follow a “two-time-scale” scenario: [Berthier et al. (2000)] the 

macroscopic behavior is controlled by both a local segmental mode (Eq. (6.1b)) and a separate 

larger-scale, slower, polymeric mode (Eq. (6.1a)). A mathematical description of the model is 

given by Eq. (6.1) below: 

𝝈̇𝒑 + 𝒗 ∙ 𝜵𝝈𝒑 = 𝝈𝒑 ∙ 𝜵𝒗 + (𝜵𝒗)𝑇 ∙ 𝝈𝒑 − (𝝈𝒑 − 𝑰)/𝜏𝑝                            (6.1𝑎) 

𝝈̇𝒔 + 𝒗 ∙ 𝜵𝝈𝒔 = 𝝈𝒔 ∙ 𝜵𝒗 + (𝜵𝒗)𝑇 ∙ 𝝈𝒔 − (𝝈𝒔 − 𝑰)/𝜏𝑠                              (6.1𝑏) 

𝜮 = 𝜮𝒑 + 𝜮𝒔 = 𝐺𝑝(𝝈𝒑 − 𝑰) + 𝐺𝑠(𝝈𝒔 − 𝑰)                                                (6.1𝑐) 

𝜏𝑝/𝜏𝑠 = 𝛼                                                                                                         (6.1𝑑) 

𝜏̇𝑠 = 1 − 𝜆(𝜏𝑠 − 𝜏0
𝑠),   𝜆 = 𝜇√2𝑡𝑟(𝑫 ∙ 𝑫),   𝑫 = [𝜵𝒗 + (𝜵𝒗)𝑇]/2      (6.1𝑒) 

In the above equations, polymeric and segmental modes are each described by an upper-

convected Maxwell model with dimensionless configuration tensors and relaxation times 

denoted as 𝝈𝒑,𝒔 and 𝜏𝑝,𝑠, respectively, where the superscript “𝑝” or “𝑠” represents “polymeric” or 

“segmental” mode, respectively. Although these two modes contribute additively to the overall 

stress 𝚺 through their moduli 𝐺𝑝 and 𝐺𝑠, their relaxation times are coupled by a proportionality 

relationship, with coefficient 𝛼. Since ageing and rejuvenation reflect local dynamics, and 

weakly depend on the type of glass, [Klompen et al. (2005); Chen et al. (2009); Thurau and 

Ediger (2002)] the effects of the segmental relaxation time 𝜏𝑠 (shown by Eq. (6.1e)) are 

accounted for in an isotropic and additive fashion with a constant ageing (or solidification) rate, 

which is consistent with observations that at temperatures sufficient below 𝑇𝑔 the ageing rate 

approaches unity. [Chen et al. (2009)] We also include a deformation-controlled rate of 

rejuvenation (or fluidization) as inferred from recent findings. [Hoy and O’Hern (2010); Chen 

and Schweizer (2010)] Although such choices are highly over-simplified, the focus of the present 

work is on the contributions of the polymeric mode to nonlinear deformations of glassy 

polymers, and keeping the segmental mode highly schematic allows us to maintain this focus 
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without introducing the added complexities of a realistic treatment of the segmental mode. In 

future work, improvement of the description of the segmental mode, to include for example 

multiple relaxation times and more realistic aging and rejuvenation expressions, would be highly 

desirable. In Eq. (6.1e),  𝜏0
𝑠 is the fully rejuvenated relaxation time, 𝜇 is the rejuvenation 

coefficient, 𝑫 is the deformation rate tensor, and 𝛁𝐯 is the velocity gradient. According to Eq. 

(6.1e), the non-monotonic dependence of 𝜏𝑠 on deformation under creep (constant stress) 

conditions is explained by the competition between ageing and rejuvenation: in the post-yield 

regime, strain-induced rejuvenation dominates, causing 𝜏𝑠 to decline and the stress carried by the 

polymeric part (𝚺𝒑) to grow. However, as massive deformation builds up under constant stress, 

𝚺𝒑 saturates with the onset of strain hardening, and rejuvenation is suppressed by the small 

deformation rate that results under creep. As a result, 𝜏𝑠 undergoes a rapid rise indicating the 

“victory” of ageing, even under a fixed load.   

To achieve even qualitative predictions from this simple two-mode model for the uniaxial 

creep experiment reported by Lee and coworkers, [Lee et al. (2009)] the value of 𝐺𝑝  is required 

to be an order of magnitude larger than the experimentally determined rubbery modulus. During 

elastic recoil, this high value needs to be reduced back closer to the rubbery modulus by 

arbitrarily introducing a so-called “crinkle factor” which is the degree of reduction of 𝐺𝑝 

required to capture the recoil behavior. Nonlinear elasticity [Wendlandt et al. (2005); Hoy and 

Robbins (2008); Larson (1990)] and the formation of “kinks” (i.e., the multiple-folded nearly 

fully stretched subsection of chains) [Fielding et al. (2012) and (2013); Larson (1990)] are 

thought to cause the above consequences, since such folded states occur in fast flows of dilute 

polymer solutions. [Larson (1990)] Since the upper-convected Maxwell model, which represents 

the polymer as a simple two-bead dumbbell, does not naturally describe the effect of these folded 

polymer states, the ad hoc “crinkle factor” is introduced to represent their effects artificially. An 

appropriate treatment that avoids both the artificially high polymer modulus and the “crinkle 

factor” requires a more realistic polymer model for local chain relaxation. As one of the most 

widely used models for polymers, the “bead-spring” model with multiple springs is a coarse-

grained approximation of a freely-jointed chain whose equilibrium conformation is a random 

walk. In this model, the beads represent drag centers, and the springs represent the coarse-

grained elasticity of sub-chains. Individual beads are therefore connected into chains by springs 

that each exert a spring force onto beads to account for chain connectivity and finite 
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extensibility. The movement of beads is controlled by an over-damped stochastic Langevin 

equation given by Eq. (6.2). Detailed discussion of the “bead-springs” model can be found in 

references. [Doi and Edwards (1986); Larson (1988); Bird et al. (1987)] 

𝜁𝑏𝒓̇ = 𝜁𝑏(𝜵𝒗)
𝑇 ∙ 𝒓 −

𝜕𝑈(𝒓)

𝜕𝒓
+ 𝑭𝑹,   𝑭𝑹 = √

6𝑘𝐵𝑇𝜁𝑏
∆𝑡

𝒏                             (6.2) 

Here, 𝒓 is the position vector of the bead, 𝜁𝑏 is the viscous bead drag coefficient, 𝑈(𝒓) is 

the intra-molecular potential, whose derivative with respect to 𝒓 is the spring force, and 𝑭𝑹 is the 

Brownian force representing the effect of thermal noise. An explicit expression for 𝑭𝑹 is also 

given in Eq. (6.2), which is obtained by averaging thermal forces over a short time interval ∆𝑡. 

[Larson (2005)] 𝑘𝐵 is the Boltzmann constant, 𝒏 is a random vector with the magnitude of each 

component uniformly distributed between -1 and 1. Thus, for a large ensemble of chains 

containing multiple beads, the above Langevin equations need to be solved by Brownian 

dynamics (BD) simulations as discussed in what follows.  

We note that our model for the polymeric mode ignores the effects of entanglements, and 

any interactions of polymers other than those mediated through the segmental mode. In that 

sense, the model is analogous to the Rouse model for molten polymers, which also neglects 

entanglement effects, and accounts for interactions with other polymer chains only through the 

drag coefficient representing local viscous friction exerted on the polymer beads.  Thus, our 

model may be most appropriate for low molecular weight, unentangled, glassy polymers, but 

since in glassy polymers the longest polymer relaxation times are not accessed on experimental 

relaxation time scales, the molecular weight of the polymer chains, and perhaps even their 

entanglements, may play a smaller role in the nonlinear rheology of glassy polymers than it does 

in melts. We will see in what follows that chain length plays only a secondary role in the 

predictions of our model. Inclusion of entanglement effects is left to future work.  

III. Brownian Dynamic Simulations 

To achieve a realistic description of the dynamics of a polymeric glass, we combine the 

fast segmental relaxation borrowed from the work of Fielding et al. (2012) and (2013) (Eqs. 

(6.1b) and (6.1e)), with BD simulations of a “bead-spring” model of a polymer whose relaxation 

is controlled by the segmental relaxation through the drag coefficient of beads (𝜁𝑏 in Eq. (6.2)) as 

if the beads were suspended in a glassy “solvent.” The corresponding polymeric stress and 
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conformation are thereby determined from an ensemble of finitely extensible bead-spring chains 

under deformation. Hence, this “hybrid” BD simulation model can be expressed as the following 

three sets of equations: 

 Polymeric part: [Larson (2005)] 

{
𝜁𝑏𝒓𝒊̇ = 𝜁𝑏(𝜵𝒗)

𝑻 ∙ 𝒓𝒊 + 𝑭𝒊
𝒔𝒑,𝒕

+ 𝑭𝒊
𝑹 

𝜮𝒑 = 𝜈 〈𝛴
𝑗

𝑁𝑠𝑝𝑹𝒋𝑭𝒋
𝒔𝒑〉,   𝑹𝒋 = 𝒓𝒋 − 𝒓𝒋−𝟏

                                          (6.3𝑎) 

In the above equation set, 𝑭𝒊
𝒔𝒑,𝒕

 is the total spring force (which is the sum of two spring forces for 

interior beads and only one for end beads) exerted on bead 𝑖, 𝜈 is the number of polymer 

molecules per unit volume, 𝑹𝒋 is the connector vector of spring 𝑗 between two neighboring beads 

𝑗 and 𝑗 − 1, 𝑁𝑠𝑝 is the total number of springs in a bead-spring chain, and 𝑭𝒋
𝒔𝒑

 is the spring force 

on spring 𝑗, 𝑭𝑹 is the Brownian force defined in Eq. (6.2). Here, we use FENE (finitely 

extensible nonlinear elastic) springs to account for the finite extensibility of chains, which yields: 

[Larson (1988)] 

𝑭𝒋
𝒔𝒑
=

𝐻𝐹𝐸𝑁𝐸 ∙ 𝑹𝒋

1 − (|𝑹𝒋| 𝑅0⁄ )
2 ,   𝐻𝐹𝐸𝑁𝐸 =

3𝑘𝐵𝑇

𝑁𝐾,𝑠𝑝𝑏𝐾
2 ,   𝑅0 = 𝑁𝐾,𝑠𝑝𝑏𝐾 ,   𝑁𝐾,𝑠𝑝 =

𝑁𝐾
𝑁𝑠𝑝

       (6.3𝑏) 

𝐻𝐹𝐸𝑁𝐸 is the spring constant, 𝑁𝐾 and 𝑏𝐾 are the number and length of Kuhn steps in a polymer, 

𝑁𝐾,𝑠𝑝 is the number of Kuhn steps per spring, and 𝑅0 is the fully extended length of a single 

spring. Therefore, the polymeric stress tensor 𝚺𝒑 in Eq. (6.3a) can be determined from an 

ensemble average (denoted as 〈∙〉 in Eq. (6.3a)) over the contributions from all the springs in each 

chain. The above two equations yield a coarse-grained description of polymers with certain 

number of Kuhn steps represented by a spring. If the level of coarse-graining (𝑁𝐾,𝑠𝑝) is well 

above the length scale for detailed interchain mechanisms as well as finite size effects, the 

segmental dynamics can thereof be sufficiently depicted in a mean field manner as the novel 

glassy “solvent.”  

Substituting the formulas for both 𝑭𝒊
𝑹 and 𝑭𝒋

𝒔𝒑
 into Eq. (6.3a) (See Appendix E), we 

rewrite Eq. (6.3a) into a dimensionless and discretized form, i.e.,      
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{
  
 

  
 
𝜟𝑹̃𝒋 = (𝜵𝒗)

𝑇 ∙ 𝑹̃𝒋𝛥𝑡 +
3𝛥𝑡

𝜏𝑠𝑝
[
𝑹̃𝒋+1

𝑓(𝑹̃𝒋+𝟏)
+

𝑹̃𝒋−1

𝑓(𝑹̃𝒋−𝟏)
−

2𝑹̃𝒋

𝑓(𝑹̃𝒋)
] + √

6𝛥𝑡

𝜏𝑠𝑝
(𝒏𝒋 − 𝒏𝒋−1)

𝜮𝒑 = 𝐺𝑝 {
〈𝛴
𝑗

𝑁𝑠𝑝[𝑹̃𝒋 𝑹̃𝒋 𝑓⁄ (𝑹̃𝒋)]〉

〈𝛴
𝑗

𝑁𝑠𝑝
[𝑹̃𝒋 𝑹̃𝒋 𝑓⁄ (𝑹̃𝒋)]〉𝑒𝑞

− 𝑰} ,   𝑓(𝑹̃𝒋) = 1 − (|𝑹̃𝒋| 𝑅̃0⁄ )
2

        (6.4𝑎) 

 

Here, 𝑹̃𝒋 and 𝑅̃0 are the dimensionless connector vector of spring 𝑗 and the fully extended length, 

𝛥𝑡 is the simulation time step, 𝜏𝑠𝑝 is the relaxation time associated with a single spring, 𝑰 is the 

unit tensor, and 〈∙〉𝑒𝑞 is the equilibrium ensemble average. Detailed expressions for 𝑹̃𝒋, 𝑅̃0, 𝜏𝑠𝑝, 

and 𝐺𝑝 are given below: 

𝑹̃𝒋 =
𝑹𝒊

√𝑁𝐾,𝑠𝑝𝑏𝐾
,   𝑅̃0 = √𝑁𝐾,𝑠𝑝,   𝜏𝑠𝑝 =

𝑁𝐾,𝑠𝑝𝑏𝐾
2

𝑘𝐵 𝑇 𝜁𝑏⁄
,   𝐺𝑝 = 3𝜈𝑘𝐵𝑇                   (6.4𝑏) 

The relationship between 𝜏𝑝 and 𝜏𝑠𝑝 is given as: [Larson (1988)] 

𝜏𝑝 =
(𝑁𝑠𝑝 + 1)

2𝑁𝐾,𝑠𝑝𝑏𝐾
2

6𝜋2𝑘𝐵 𝑇 𝜁𝑏⁄
=
(𝑁𝑠𝑝 + 1)

2

6𝜋2
𝜏𝑠𝑝                                          (6.4𝑐) 

 Segmental part: 

{

𝝈̇𝒔 + 𝒗 ∙ 𝜵𝝈𝒔 = 𝝈𝒔 ∙ 𝜵𝒗 + (𝜵𝒗)𝑇 ∙ 𝝈𝒔 − (𝝈𝒔 − 𝑰)/𝜏𝑠

𝜏̇𝑠 = 1 − 𝜆(𝜏𝑠 − 𝜏0
𝑠),   𝜆 = 𝜇√2𝑡𝑟(𝑫 ∙ 𝑫) 

𝜮𝒔 = 𝐺𝑠(𝝈𝒔 − 𝑰),   𝜏𝑠|𝑡=0 = 𝑡𝑊

                           (6.5) 

 Coupling relationships: 

{𝜮
𝒆𝒙𝒕 = 𝜮𝒑 + 𝜮𝒔

𝜏𝑝 = 𝛼 ∙ 𝜏𝑠
                                                                 (6.6) 

 

Thus, from Eqs. (6.4c) and (6.6), the bead drag coefficient 𝜁𝑏 can be expressed as: 

𝜁𝑏 =
𝛼 ∙ 6𝜋2𝑘𝐵𝑇

(𝑁𝑠𝑝 + 1)
2𝑁𝐾,𝑠𝑝𝑏𝑘

2 𝜏
𝑠                                                     (6.7) 

which turns out to be proportional to the segmental relaxation time 𝜏𝑠 and coefficient 𝛼. For 

unentangled polymers, the coefficient 𝛼 is proportional to 𝑁𝐾
2 =  (𝑁𝑠𝑝𝑁𝐾,𝑠𝑝)

2, and 𝜁𝑏 would be 

proportional to 𝑁𝐾,𝑠𝑝 (where the difference between 𝑁𝑠𝑝 and 𝑁𝑠𝑝 + 1 is neglected).  This is 

reasonable, since the bead drag coefficient should be proportional to the number of Kuhn steps in 

a single spring, whose drag is represented by 𝜁𝑏. For the lightly cross-linked polymer to which 
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we will apply our model, there is no particular reason to assume that 𝛼 is proportional to 𝑁𝐾
2, and 

it what follows we will take it to be an adjustable parameter.  

To sum up, from Eqs. (6.4a), (6.5), and (6.6), the parameters needed for our simulation 

are the following: A. 𝐺𝑝 and 𝐺𝑠, the moduli for polymeric and segmental modes. A high value of 

𝐺𝑠 is expected due to the significance of interchain forces with 𝐺𝑝 < 𝐺𝑠 as a result of the much 

larger number of local “glassy” modes than of entropic “polymeric,” or “rubbery” modes. 

[Fielding et al. (2012)] B. 𝑁𝐾 and 𝑁𝑠𝑝, the number of Kuhn steps per polymer and the number of 

springs per chain, respectively. The ratio of 𝑁𝐾 to 𝑁𝑠𝑝, i.e., 𝑁𝐾,𝑠𝑝 determines the level of coarse-

graining, and according to Eq. (6.4b), this ratio also affects the finite extensibility of the sub-

chains. C. 𝜏0
𝑠, the segmental relaxation time for the fully rejuvenated state, which would 

hypothetically be attained under fast enough strain rates to render the glassy mode as a viscous 

Newtonian liquid, and sets a lower bound on the segmental relaxation time. [Coussot et al. 

(2002)] Here, we use the same value of 𝜏0
𝑠 (= 6 s) as in the work of Fielding et al. (2012) and 

(2013) D. 𝜇, the rejuvenation-associated coefficient. With a constant deformation rate 𝑫, a larger 

𝜇 implies faster rejuvenation. E. 𝑡𝑊, the “waiting time”  which sets the initial value of segmental 

relaxation time in our simulations, and is controlled by how long the sample has been aged since 

the last deformation. F. 𝚺𝒆𝒙𝒕, the external stress imposed on the material, which is set by the 

experiment. G 𝛼, the ratio of polymeric to segmental relaxation time. In principle, 𝛼 should be 

sensitive to polymer molecular weight, but our comparisons will be with a lightly cross-linked 

PMMA, and, as discussed below, changes in this parameter can be offset by changes in other 

parameters in our model. Here we treat 𝛼 as a fitting parameter and discuss its value and that of 

other parameters in what follows.  

Thus, starting with an equilibrated ensemble containing 500 chains, the simulations are 

carried out by solving the corresponding three sets of equations numerically, using a semi-

implicit method developed by Somasi et al. (2002) to track the deformation of the polymer and a 

standard finite difference method to solve for the segmental stress and to update the strain or 

overall stress. The time step 𝛥𝑡 is chosen to be 𝛿𝑡 = min[10−3𝜏𝑠 , 10−3/(𝜇|𝜀̇|), 10−2] s, which 

ensures both the convergence and the efficiency of the simulations during rapid and slow 

deformation, respectively (See Fig. E.2b in Appendix E). To complete a simulation capturing 5 

hours’ of material behavior, it takes a day of computation for a single Intel® CoreTM i5 CPU with 

2.27 GHz clock speed. These simulations represent the first time that BD simulations have been 
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applied to the dynamics of polymers in the glassy regime, where the effects of strong 

intermolecular interactions and local rearrangements are accounted for by a separate “glassy” 

segmental mode. The relaxation of this glassy mode is phenomenologically depicted as a 

“solvent”, which sets the elementary time scale for BD simulation via the drag coefficient 𝜁𝑏. In 

so doing, we are taking 𝜁𝑏 to be a Stokes-Einstein drag coefficient for a polymer bead in a 

viscous liquid assumed to be homogeneous, isotropic, and Newtonian. While this assumption is 

not valid at small length scales for a polymeric glass, we believe that with a relatively slow 

polymeric relaxation (i.e., 𝛼 ≫ 1), the glassy solvent can still be viewed as Newtonian liquid on 

time scales much longer than the segmental relaxation time, and that the level of coarse-graining 

in our model is large enough (i.e., 𝑁𝐾,𝑠𝑝 ≫ 1) for the dynamic heterogeneity to be averaged out. 

We also note here that it is well known that not only does the polymeric mode need to be 

described by a multi-mode model (here the bead-spring model), but that on shorter time scales 

the segmental relaxation itself is also governed by detailed microscopic physics with a 

distribution of relaxation times, often represented phenomenologically by the Kohrausch-

Williams-Watts (KWW) relaxation function. [Dyre (2006); Lee et al. (2009); Chen et al. (2008)] 

For this paper, however, we will be content to replace only the single-mode dumbbell of the 

Fielding et al. model (Eq. (6.1a)) with a multi-mode bead-spring chain, leaving refinement of the 

solvent mode to future work.   

IV. Results and Discussion  

 Uniaxial creep  

Our simulation model is first tested by fitting data of Lee et al. (2009) for lightly cross-

linked PMMA undergoing uniaxial creep, where in our model the specimen is assumed to 

deform homogenously. A detailed procedure (See Appendix E) is therefore needed to convert the 

general equations of the model into a discretized form for numerical computation for a given 

type of deformation. For uniaxial creep under the experimentally imposed stress of Σ𝑧
𝑒𝑥𝑡 =

16 MPa (with the sample deformed along 𝑧 direction) and  𝜏0
𝑠 = 6 s (the same value in Fielding 

et al. (2012) and (2013)), simulation results as well as the corresponding values of model 

parameters are given in Fig. 6.1a and Table 6.1, respectively. From Fig. 6.1a, it is striking that 

important features of the experimental data, i.e., the initial drop and subsequent non-monotonic 
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change of 𝜏𝑠, yielding, strain-hardening, and incomplete strain recovery after removal of load are 

all well captured by our simulation model, without use of the ad hoc “crinkle factor” that was 

needed when the polymer was described as a dumbbell. As shown in Table 6.1, the value we 

obtained for 𝐺𝑝 (≅ 0.12 MPa) is close to the rubbery modulus (0.1 ~ 0.3 MPa) of PMMA above 

𝑇𝑔. The values of 𝐺𝑠 and 𝑡𝑊 from our simulations are 500 MPa and 9.5 × 104 s, respectively, as 

compared with those from experiments 1 GPa and 104 s for typical polymeric glasses near 𝑇𝑔. 

[Chen and Schweizer (2009); Ngai and Plazek (1995)] The effect of some model parameters on 

the predicted evolution of strain and 𝜏𝑠 can be found in Figs. 6.1b-d. As will be discussed later, 

similar fits can be obtained for different sets of parameter values. Hence the fit shown in Fig. 

6.1a is not unique to a particular parameter set. Although this redundancy might be broken by 

obtaining some of the parameters from experimental conditions, (for example the “waiting time,” 

𝑡𝑊), as discussed in more detail below, neither the experimental conditions nor the model are 

sufficiently well defined to make such an exercise meaningful at this point.  The agreement 

shown in Fig. 6.1a is not, however, a mere exercise in data fitting; the dumbbell model for the 

polymer mode used in the model of Fielding et al. (2012) and (2013) contains a similar number 

of parameters, and yet is completely unable for any set of parameters to predict the small strain 

recovery seen experimentally without the introduction of the arbitrary “crinkle factor.” Thus, 

while further experimental and theoretical work will be required to obtain a model that can 

predict experimental results using parameters derived from experiment, the work presented here 

represents real progress towards a more realistic molecular model of the rheology of polymer 

glasses.  

Table 6.1 Values of model parameters for simulation predictions in Fig. 6.1a.  

Parameters 𝑮𝒑 (𝐌𝐏𝐚) 𝑮𝒔 (𝐌𝐏𝐚) 𝒕𝒘 (𝐬) 𝝁 𝜶 𝑵𝑲 𝑵𝒔𝒑 

 0.117 500 9.5×104 143 5×104 400 10 
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Figure 6.1 Simulation fits to experimental data from Lee et al. (2009) (a) and the effects of 𝐺𝑠 (b), 𝑡𝑊 (c), 

and 𝜇 (d) on the evolution of strain and segmental relaxation time 𝜏𝑠 for uniaxial extension with constant 

load (Σ𝑧
𝑒𝑥𝑡 = 16 MPa), which is removed at time 𝑡 = 9375 s. The inset shows an enlarged view of strain 

at early times. Note that in the experiments, the strain measured was in a local region of the sample, to 

avoid artifacts due to inhomogeneous global strain. In the simulations, the strain is taken to be uniform 

and defined as exp(𝜀) − 1.  

Since most of the stress is carried by the segmental mode (Eq. (6.5)) before the onset of 

flow, the yielding behavior of the material depends on the value of 𝐺𝑠 as illustrated by Fig. 6.1b: 

A smaller 𝐺𝑠 leads to a larger jump/drop of initial strain/𝜏𝑠 and an earlier occurrence of plastic 

flow. As we mentioned before, 𝑡𝑊 is the pre-deformation segmental relaxation time, and is 

controlled experimentally by the length of the aging time experienced by the sample. In the 

experiments of Lee et al. (2009), the sample was cooled into the glass over a period of 30 

minutes and then aged for a further period of 30 minutes. Given the gradual cooling, the sample 

is presumably much better aged than would be case had the sample been aged at low temperature 

for only one hour or 3600 s, but our chosen aging time in Table 6.1 is obviously no better than a 

guess.  However, according to Fig. 6.1c and d, both 𝑡𝑊 and 𝜇 affect how fast the material 

approaches a highly rejuvenated state, where 𝜏𝑠 has a sharp minimum, and so an erroneous value 

of 𝑡𝑊 can be offset by the choice of the parameter 𝜇. The magnitude of the strain necessary to 

induce yielding (Eq. (6.5)) is roughly 1/𝜇; the value given here (𝜇 = 143) implies that yielding 

occurs at a strain of around 0.01 for the aging time chosen. It can also be seen from Fig. 6.1d that 

by decreasing 𝜇, both the dip and the initial drop of 𝜏𝑠 decrease. Since moderate changes in the 

above parameters (𝐺𝑠, 𝑡𝑊, and 𝜇) have some effects on the hardening-associated strain plateau 

and the incomplete strain recovery, further analyses are required to understand these behaviors, 

which is of practical importance in polymer cold processing. It would also be of considerable 

value to have experimental data (including segmental relaxation times) on additional polymer 

samples, with different molecular weights, different polymer types, and different temperatures 

and ageing times, to determine how our best-fit parameters depend on material and experimental 

parameters. 

Note in Fig. 6.1a that the predicted strain history in regions near the beginning and the 

end of the rapid flow yielding region shows more abrupt changes than observed in the 

experiment. This is likely due to the use of a minimal segmental relaxation dynamics in our 

model. As shown by Chen et al. (2008) to include detailed segmental-level physics could be of 
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importance for a comprehensive understanding of pre-yielding and recovery behaviors, which 

would likely lead to much better agreement with experimental data in these zones. In addition, 

use of a multi-mode segmental relaxation model, consistent with KWW relaxation as a result of 

dynamic heterogeneity, may also lead to better prediction of the recovery of the segmental 

relaxation time. Inclusion of those is left to future work, however.  

 Sub-chain orientation and stretch in uniaxial creep  

 

Figure 6.2 Plots of the ensemble averaged extension 〈𝜆𝑒〉 (a, left axis) and orientation angle 〈𝜃〉 (a, right 

axis) of chain segments, represented by individual springs of the bead-spring model, as well as the 

number percentage (b, left axis) and the corresponding averaged orientation angle (b, right axis) of nearly 

fully extended springs for the simulation results shown in Fig. 6.1a.   

Due to the uniqueness of strain-hardening for polymeric glass, classical theories attribute 

this rapid rise of resistance to deformation to an increase of the entropic elasticity of rubber 

networks, quantified by a so-called hardening modulus 𝐺𝑅. The value of 𝐺𝑅 required to fit the 

strain hardening, however, is orders of magnitude higher than the rubbery modulus of typical 

polymer melts, while no significant change in entanglement or crosslink density is detected 

during the glass transition. [Wendlandt et al. (2005); Hoy and Robbins (2008); Chen and 

Schweizer (2009)] Based on recent findings from both experiments and simulations, it is now 

widely accepted that strain hardening does not arise primarily from linear elastic networks, 

[Wendlandt et al. (2005); Chen and Schweizer (2009); Hoy and Robbins (2009)] and instead has 

been attributed to finite extensibility, chain orientation, microscopic sub-affine deformation, as 

well as segmental scale intermolecular dynamics. [Chen et al. (2009); Hoy and Robbins (2008); 

Arruda et al. (1993); Chen and Schweizer (2009); Hoy and Robbins (2009)] For strain recovery, 
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a general understanding is derived from the entropic network model, where a chain-conformation 

dependent stress, known as “back stress” is thought to drive the strain reversal. [Boyce et al. 

(1988); Boyce and Arruda (1990)] Although entanglements and entropic chain orientation might 

be responsible for the incomplete strain recovery as suggested by MD simulations,16 the sudden 

loss of stress with only modest strain reversal can also result from the rapid disappearance of 

nonlinear contributions to stress during the unloading. Specifically, Fielding et al. (2012) and 

(2013) suggested that the rapid loss of stress during recoil results from highly stretched, and 

quickly relaxing, short polymer segments produced by the formation of folded configurations 

during extensional flow. The effect of these folded conformations was accounted for by the 

inclusion of ad hoc “crinkle factor” in a previous dumbbell model for glassy polymers. [Fielding 

et al. (2012) and (2013); Larson (1990)]  

The more detailed bead-spring description of the polymer chain introduced here, for the 

first time in a mesoscopic model of a glassy polymer, explicitly accounts for the folded states 

that arise in strong extensional flows of polymers. We investigate both the extension and the 

orientation of chain segments (represented by the springs in our BD simulations) in Fig. 6.2. 

Figure 6.2a shows the averaged fractional extension 〈𝜆𝑒〉 (= 〈|𝑹̃𝒋| 𝑅̃0⁄ 〉) over the entire ensemble, 

where a sharp rise of 〈𝜆𝑒〉 appears followed by a plateau (〈𝜆𝑒〉 ≅ 0.4), which coincides with the 

emergence of strain hardening, before a sudden drop when the material is unloaded. A similar, 

but opposite, trend is also observed in Fig. 6.2a for the orientation angle of chain segments 〈𝜃〉 

(defined as the ensemble-averaged angle between the extension axis and the spring orientation). 

A detailed analysis of the hardening response also shows that during the hardening a significant 

fraction of chain segments (≅ 10%) are in a state of nearly full extension (|𝑹̃𝒋| 𝑅̃0⁄ > 0.9) and 

highly oriented (〈𝜃〉 < 3°) along the extension direction (𝑧 axis) as illustrated by Fig. 6.2b. 

However, the above nearly fully extended spring states are only retained over the strain-

hardening regime, and they quickly disappear upon removal of the load. It is important to note 

that this high stretch and orientation of individual springs is produced by a modest macroscopic 

strain, around 1.5 Hencky units, which is far too small to stretch and orient the entire polymer 

chain. We believe that these backfolds are the most likely explanation of the arrest of yielding in 

Fig. 6.1, as well as the strain hardening observed in glassy polymers, since such hardening is 

absent in non-polymeric glasses, and hardening (or arrest of yielding) occurs at strains much 

lower than needed to stretch the entire polymer molecule.  
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The above simulation results are thus explained by the coupling between nonlinear 

polymeric stress and segmental relaxation. The polymer segments are stretched in startup of flow 

much faster than they can relax by Brownian forces. This stretching continues until further 

deformation is impeded by the rapid rise of resistance due to the spring force nonlinearity as the 

polymer segment approaches nearly full extension. The resulting high resistance leads to strain 

hardening, which transfers ever more of the imposed constant stress from the segmental mode to 

the polymer mode. Because the time scale of polymeric relaxation is much larger than that of 

deformation, the stress carried by these tightly pulled chain segments can hardly relax until the 

removal of the load. When the load is removed, the stress accumulated in the material triggers a 

sudden reverse straining, which quickly reduces 𝜏𝑠 (similar to drop of 𝜏𝑠 when the material is 

loaded initially as shown in Fig. 6.1a) leading to relaxation of glassy segmental stress. However, 

this unloading also quickly and drastically reduces the huge nonlinear stresses in the tightly 

pulled polymer segments. This loss of the polymeric elastic driving force causes a slowdown in 

recoil, allowing the glassy segmental mode to age and re-vitrify. This prevents further relaxation 

of the strain, therefore leading to incomplete strain recovery. We note that the effects of sample 

temperature on strain hardening might be roughly explained within our model by varying the 

dynamic coupling parameter 𝛼: Cooling a polymeric glass to lower temperatures would enlarge 

the time scale gap between the polymeric and segmental relaxation modes, which should lead to 

an  increase of 𝛼. As discussed later, with the same extensional stress a larger 𝛼 would result in a 

lower strain “plateau” before removal of the stress, implying a greater hardening modulus. 

However, an alternative explanation of hardening and recoil based on segmental level physics 

can be found in references. [Chen and Schweizer (2009) and (2010); Chen et al. (2008)]  

Based on the above explanations, as shown in Fig. 6.3a, a larger extensional stress (Σ𝑧
𝑒𝑥𝑡) 

results in an earlier yielding response and a larger strain due to the higher deformation rate. A 

lower stiffness of chain segments, which is quantified by a smaller value of 𝐺𝑝 (Eqs. (6.4)) in 

our model, allows easier extension leading to a higher strain plateau as illustrated by Fig. 6.3b. 

By increasing 𝛼, defined as the ratio of 𝜏𝑝 to 𝜏𝑠, polymers become more reluctant to relax, 

therefore resisting deformation more strongly, and therefore show a lower strain-plateau and less 

strain recovery in Fig. 6.3c. However, if the degree of stress nonlinearity is reduced by 

increasing 𝑅̃0 (Eq. (6.4b)), chain segments will be stretched more before they achieve strain 

hardening and must recover more strain before they lose most of their stress. This leads to a 
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higher strain-plateau and a larger recovery (See Fig. 6.3d), which explains both the uncommonly 

large value of 𝐺𝑅 obtained from the entropic models and the necessity of introducing a “crinkle 

factor” for the incomplete strain recovery in Fielding et al. (2012) and (2013). As 𝑅̃0 → ∞, a 

much greater stiffness (𝐺𝑝) is required for a finite increase of the strain, and during strain 

recovery its value needs to be reduced again (through multiplication by a “crinkle factor”) to 

account for the rapid loss of nonlinear stress during the strain reversal. Since 𝑅̃0 is roughly the 

ratio of the fully extended length of a spring to its equilibrium length, it follows that ln 𝑅̃0 is 

roughly the strain at which strain hardening occurs.   

 

 

Figure 6.3 Effects of Σ𝑧
𝑒𝑥𝑡 (a), 𝐺𝑝 (b), 𝛼 (c), and 𝑅̃0 (d) on the hardening associated strain-plateau and 

incomplete strain recovery. Note that the definition of local strain is the same as Fig. 6.1.  

 Sensitivity to parameters  

As mentioned in Section IV. A, 𝐺𝑠 controls the yielding of the material. By varying 𝐺𝑠, 

both the initial strain and the evolution of 𝜏𝑠 change as shown by Fig. 6.1b. The latter effect can 
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be compensated by adjusting 𝜇 and 𝑡𝑤. (See Figs. 6.1c and d). Therefore, if the evolution of 𝜏𝑠 

and the yield strain are specified, the values of 𝐺𝑠, 𝜇, and 𝑡𝑤 needed to match the experiments 

are unique. However, the amount of recovered strain is affected by both 𝛼 and 𝑅̃0. From Figs. 

6.3c and d, a larger 𝑅̃0 leads to a greater recovery as well as a higher hardening associated strain 

plateau, both of which can be reduced by enlarging 𝛼 and adjusting 𝐺𝑝 slightly. Since 𝑅̃0 is 

defined via 𝑁𝐾 and 𝑁𝑠𝑝, by setting 𝑁𝐾 and 𝑁𝑠𝑝, respectively, to values other than those in Table 

6.1, the slight sensitivities of our simulation results to the values of 𝑁𝐾 and 𝑁𝑠𝑝 are shown by 

Fig. 6.4 with the corresponding values of parameters given in Table 6.2. According to Fig. 6.4a, 

the effect of using the same number of springs to represent a longer chain on the simulation 

result can be offset if the value of 𝐺𝑝 is adjusted slightly and 𝛼 is allowed to increase linearly 

with 𝑁𝐾, while, according to Fig. 6.4b, if the same degree of coarse-graining is used for larger 

𝑁𝐾 (i.e., the value of 𝑁𝐾,𝑠𝑝 is fixed), to maintain both the strain plateau and the recovery requires 

a larger 𝛼 but the same polymeric modulus (𝐺𝑝 = 0.117 MPa). Based on these results, our 

simulation model has some redundancy in the number of parameters, and so the exact values of 

𝑁𝐾 and 𝛼 cannot be obtained solely by fitting to the experimental data unless a correlation 

between 𝑁𝐾 and 𝛼 is known. Of course, in principal 𝑁𝐾 and 𝛼 should be set by the polymer 

molecular weight, and not be free parameters.  However, since the data of Lee et al. (2009) are 

for weakly cross-linked PMMA, there is no value of 𝑁𝐾 that matches the experimental 

conditions. The value of 𝛼, which is the ratio of the longest polymer relaxation time to the 

segmental time, should be proportional to molecular weight to a power between 2 and 3.4 

(depending on whether the polymers are entangled or not), and thus its value is also 

indeterminate for the data of Lee et al. (2009) Even for un-cross-linked polymers, 𝛼 would be 

hard to determine a priori, because our model uses a single segmental relaxation time, which is 

not realistic, and so the ratio of polymer relaxation time to segmental time is uncertain, except 

for its scaling with molecular weight. These issues would be clarified through experimental 

studies of polymeric glasses with different molecular weights. In addition, the use of a more 

refined model for the glassy modes that contains a spectrum of relaxation times should allow the 

parameter 𝛼 to be pinned down by fitting the linear viscoelasticity of the real polymer by the 

distribution of polymer and glassy relaxation times of the model. We note that the number of 

springs 𝑁𝑠𝑝 used to represent the chain is not a physical parameter, but reflects the degree of 
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coarse-graining in the model. Increasing 𝑁𝑠𝑝 in principle increases the resolution of the model; 

however, the FENE model (Eq. (6.3b)) begins to fail as the number of Kuhn steps per spring 

𝑁𝐾,𝑠𝑝 gets small. Refinements that bring 𝑁𝑠𝑝 near 𝑁𝐾 would presumably require inclusion of 

torsional and bending potentials into the polymer model, and these begin to overlap with glassy 

modes, thus violating the separation of glassy and polymer modes needed for our basic approach 

to hold. Thus, the parameters of our model likely cannot be obtained entirely from fundamental 

molecular physics, but will remain phenomenological to some degree even after refinement of 

the model for the segmental stress. 

Table 6.2 Values of model parameters for simulation predictions in Fig. 6.4.  

Parameters 𝑮𝒑 (𝐌𝐏𝐚) 𝑮𝒔 (𝐌𝐏𝐚) 𝒕𝒘 (𝐬) 𝝁 𝜶 𝑵𝑲,𝒔𝒑 𝑵𝑲 𝑵𝒔𝒑 

Standard 0.117 500 9.5×104 143 5×104 40 400 10 

𝑵𝑲=200 0.146 500 9.5×104 143 2×104 20 200 10 

𝑵𝑲=800 0.13 500 9.5×104 143 1.4×105 80 800 10 

𝑵𝑲=800, 𝑵𝒔𝒑=20 0.117 500 9.5×104 143 1.8×105 40 800 20 

𝑵𝑲=1200, 𝑵𝒔𝒑=30 0.117 500 9.5×104 143 3.7×105 40 1200 30 
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Figure 6.4 Sensitivities of simulation results to 𝑁𝐾 with 𝑁𝑠𝑝 fixed and 𝐺𝑝 and 𝛼 adjusted to keep the 

predictions nearly the same (a), and 𝑁𝑠𝑝 with 𝑁𝐾,𝑠𝑝 fixed and 𝛼 adjusted to keep the predictions nearly the 

same (b). The dashed lines are the results for the standard parameter values listed in Table 6.1. In each 

figure, the parameters not given in the legend are the standard values in the first row of Table 6.2. Notice 

the same definition of local strain is used here as in Fig. 6.1.  

 Startup of uniaxial extension  

So far, all of our analyses and discussions have dealt with uniaxial creep, with a constant 

stress imposed on the material. However, our model can predict the mechanical behavior for 

polymeric glasses under other types of deformations. Here, we only consider two additional 

cases: uniaxial extension with a constant strain rate, and simple shear deformation with a 

constant shear stress. The same values of parameters listed in Table 6.1 are used in the 

simulations. A detailed procedure to account for the above two types of deformations can be 

found in Supplementary Information. For the uniaxial extension with a constant rate, both the 

stress and 𝜏𝑠 are plotted against the Hencky strain (𝜀) in Fig. 6.5. 

 

 

Figure 6.5 Mechanical response of polymeric glass under uniaxial extension with constant strain rates (𝜀̇): 
Stress (a) and 𝜏𝑠/𝑡𝑤 (b). The stress at the same strain rates is replotted against 𝑔(𝜆) (defined in the main 

text) in the inset of Fig. 6.5a, and the dependences of stress overshoot (𝜎𝑦) and hardening modulus (𝐺𝑅) 

on logarithm of strain rates are shown in the inset of Fig. 6.5b.  

Figure 6.5a shows the entire range of mechanical response predicted by our simulation 

model, which successfully captures a rate-dependent stress overshoot at small strain, a plastic 

flow region with a nearly constant stress at intermediate strain, a hardening response at large 

strain, and a rapid loss of stress as the deformation ceases. The evolution of 𝜏𝑠 in Fig. 6.5b under 

a constant rate differs from that in uniaxial extension under a constant stress (see Fig. 6.1a). 
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Instead of an initial abrupt change in strain/stress or a local minimum, 𝜏𝑠 decreases to a specific 

value which depends on the strain rate, and remains constant until the end of the deformation. 

When the material starts to deform at a constant rate, the stress initially builds up quickly 

because of the large initial value of 𝜏𝑠. However, deformation-associated rejuvenation causes 𝜏𝑠 

to decline, and, under constant strain rate, the accumulated total stress can partially relax, which 

is not possible under a constant imposed stress. As a result, there is a local stress maximum 𝜎𝑦 

(i.e., the overshoot in Fig. 6.5a) which depends logarithmically on strain rate (see inset of Fig. 

6.5b), in agreement with experiments. This yielding behavior arises from the segmental fluidity 

model (Eq. (6.1e)) employed here. Since the physics underlying Eq. (6.1e) implies the segmental 

relaxation is affected by the competition between ageing (with a constant rate) and the 

deformation-rate-dependent rejuvenation, as long as the strain rate remains unchanged, the 

balance between ageing and rejuvenation would result in a constant 𝜏𝑠 (see Fig. 6.5b). This 

prediction seems to be supported by recent experimental work from Bending and Ediger (2014); 

however, the relatively large error bars associated with their data do not eliminate other 

possibilities, for example the slight increase of segmental relaxation time predicted by Chen and 

Schweizer (2009). Hence more precise experimental measurements are still in need to elucidate 

this matter. As the polymer segments are stretched to nearly full extension at strains approaching 

unity, the polymeric stress continues to accumulate and becomes nonlinear (see Fig. 6.5a). The 

stress, when plotted against the ideal rubber elasticity factor, i.e., 𝑔(𝜆) = 𝜆2 − 𝜆−1 (here 𝜆 is the 

stretch ratio, i.e., exp (𝜀)), grows nearly linearly with 𝑔(𝜆) in the hardening regime (see the inset 

of Fig. 6.5a for 𝑔(𝜆) ≫ 1) with slope corresponding to the hardening modulus 𝐺𝑅, which is of 

the same order as the stress overshoot (20~60 MPa) and increases with strain rate as shown by 

the inset of Fig. 6.5b. Experimentally, 𝐺𝑅 is also known to increase during cooling; however, a 

better model for the segmental dynamics is needed in our model before we could address the 

effect of temperature, which is therefore left to future work.   

 Simple shear deformation 

Results for simple shear creep with a constant stress (see Figs. 6.6a and b) are similar in 

many respects to the results shown in Fig. 6.1a for uniaxial creep. For example, both show 

similar yielding responses (i.e., the jump/drop of strain/𝜏𝑠), leading to accelerated deformation. 

However, unlike extension, in shear there is no strain-hardening, or re-vitrification under 
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constant load. (After the rapid increase in strain during yielding, the bending over of the curves 

at larger times in Fig. 6.6 is a result of the semi-log plot.) Instead, if the added shear stress Σ𝑥𝑧
𝑒𝑥𝑡 is 

higher than a critical value (i.e., Σ𝑥𝑧,𝑐
𝑒𝑥𝑡 = 7.6 MPa), the glass melts into a “liquid” (with a value of 

𝜏𝑠 ≅ 𝜏0
𝑠) and flows relatively rapidly before the stress is removed (see dashed and dash-dotted 

lines in Fig. 6.6b). From Fig. 6.6b, the higher Σ𝑥𝑧
𝑒𝑥𝑡 is, the earlier melting occurs, the less strain 

recovers during the unloading. As commonly been seen among yield stress fluids and soft 

glasses, the unbounded yielding in shear is caused by the flow-induced breakdown of the 

microstructure of the material. [Coussot et al. (2002)] Under shear polymer molecules rarely 

align along the flow direction, and when they do, they quickly tumble through the flow direction 

and recoil rather than stretch as they would in an extension. They cannot therefore induce a large 

polymer stress nonlinearity at large strain. As a result, in shear, unlike extension, there is not 

enough polymer stress to take sufficient load from the segmental mode to allow re-vitrification, 

and the deformation never slows down once the rejuvenation wins. Therefore, with a shear stress 

(8 and 9 MPa as shown in Fig. 6.6b) even smaller than that of extension (16 MPa), polymeric 

glass can maintain a nearly fully rejuvenated state with a small 𝜏𝑠, which leads to a fast 

relaxation of non-polymeric stress without any strain reversal.  

 Steady uniaxial extension in pre-oriented samples 

As we mentioned in Section III, our simulations start with an equilibrated polymer 

ensemble, which, however, could be unrealistic if the as-received polymeric glass is anisotropic 

after processes like rolling, forging, and stamping, etc. [Arruda et al. (1993)] Also, we assume 

that the segmental mode is initially aged, but not at equilibrium, which in our fluidity model is 

never attained. Hence, it is inconsistent to assume that the slower polymer mode has somehow 

attained equilibration when the segmental mode can never do so. Furthermore, it is well known 

that an anisotropic material exhibits work hardening (i.e., an increase of flow strength) along the 

pre-deformation direction and Bauschinger effect (i.e., a decrease of flow strength and an 

increase of extensibility) along the corresponding perpendicular direction. [Arruda et al. (1993); 

Boyce and Arruda (1990)] Although it requires enough pre-strain to exploit the above effects, 

such methods are widely applied in solid phase polymer processing to achieve a material with 

desired mechanical properties. To analyze the behavior of an anisotropic polymeric glass under 

deformation, we generate an anisotropic “pre-deformed” polymer ensemble through a uniaxial 
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extension at a constant rate (= 10−4 s−1), up to a Hencky strain of 0.5, and then relaxation for a 

time period same as 𝑡𝑤 = 9.5 × 10
4 s before the final simulations are carried out. With the same 

extensional strain rate as in the pre-deformation (= 10−4 s−1), and assuming that the strain rates 

in the directions perpendicular to the extension are equal to negative one half of the strain rate in 

the direction of the extension, the simulation results are shown in Fig. 6.7. 

 

 

Figure 6.6 Mechanical response of polymeric glass under simple shear with constant shear stress (Σ𝑥𝑧
𝑒𝑥𝑡) 

with stress removed at time 𝑡 = 9375 s: Σ𝑥𝑧
𝑒𝑥𝑡 ≤ Σ𝑥𝑧,𝑐

𝑒𝑥𝑡  (a) and Σ𝑥𝑧
𝑒𝑥𝑡 ≥ Σ𝑥𝑧,𝑐

𝑒𝑥𝑡  (b).  

Figure 6.7a shows a pre-deformation of the polymeric glass up to a strain of 0.5, and a 

relaxation period after which the stress relaxes, and then the glass is deformed again along either 

its pre-deformation direction, or an orthogonal direction. Note that the stress grows more rapidly 

if the deformation is in same direction as the first deformation period, rather than orthogonal to 

it. Hence in the former case a greater suppression of the plastic flow is observed in the second 

deformation, as the material more quickly approaches the strain-hardening regime than it does in 

the first deformation. This results from the significant number of chain segments aligned along 
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the deformation axis during the pre-deformation. However, as seen in Fig. 6.7a, if the 

deformation axis is perpendicular to the direction of pre-strain, a greater period of plastic flow is 

needed to reorient the chain segments along the new deformation axis before the onset of 

hardening response. This leads to an increase of macroscopic extensibility and weak flow 

strength in that direction. The above predictions are consistent with the experiments and 

simulations in this field. [Arruda et al. (1993); Boyce and Arruda (1990); Rottler and Robbins 

(2003)] 

 

 

Figure 6.7 Mechanical response of polymeric glass under two successive uniaxial extensions, both at a 

constant rate (= 10−4 s−1). In the initial period shown above, the sample is pre-stretched to a Hencky 

strain of 0.5, and then relaxed for 9 × 104 s to create an anisotropic material. Then it is stretched further 

at the same constant strain rate but along either the same (𝑧) axis or along an orthogonal (𝑥) axis: Stress 

(a) and 𝜏𝑠/𝑡𝑤 (b). Note that the stress in Fig. 6.7a is defined as Σ𝑧𝑧 − Σ𝑥𝑥 and Σ𝑥𝑥 − Σ𝑧𝑧 for uniaxial 

extension in 𝑧 and 𝑥 direction, respectively. Following the second stretching period, the sample is allowed 

to relax, as shown by the drop in stress at the end of the deformation.  

The results and discussions in this section show that our simulation model is successful in 

capturing and explaining numerous behaviors of polymeric glass under various types of 

deformations even without an explicit treatment of entanglements or crosslinks, which would 

lead to additional stress nonlinearities as chain segments between two entangled/crosslinked 

points are pulled tightly. The existence of entanglements/crosslinks could be critical in 

constraining the movement of chain segments causing strain hardening, but are not included in 

our model. In addition, the effect of local polymeric molecular structure such as side groups and 

chain stiffness, detailed segmental relaxation mechanisms, dynamic heterogeneity, and other 

monomer-level phenomena [Escaig (1984); Riggleman et al. (2007); Thurau and Ediger (2002)] 

are not addressed accurately by the minimal model (Eq. (6.5)) for segmental relaxation, although 
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some of these effects might be captured phenomenologically if Eq. (6.5) is replaced by a multi-

mode segmental relaxation model.  

The novel predictions above for the behavior of the glassy polymer in start-up of steady 

extension and shear and extension of pre-oriented samples could and should be compared with 

experimental data to determine if our model is basically correct. The success of such 

comparisons might justify further refinement of the model, as well as comparisons with 

experiments in which polymer molecular weight, aging time, and other experimental parameters 

are varied. Refinement of the model might be aided by taking advantage of other existing work 

in this field, referenced above.   

V. Conclusions  

We have modeled a polymeric glass as an ensemble of bead-spring chains, which 

represent slow “polymer” relaxation modes, suspended in a glassy “solvent,” representing faster 

segmental dynamics, whose ageing and rejuvenation are modeled using a simple one-mode 

fluidity model. Our model extends the earlier work of Fielding and coworkers [Fielding et al. 

(2012) and (2013)] by replacing their simple one-mode dumbbell model for the polymeric mode 

with an ensemble of multi-mode bead-spring chains whose dynamics are solved by Brownian 

dynamics simulations. This new model yields good fits to experimental strain and segmental 

relaxation times of glassy PMMA under creep, [Lee et al. (2009)] and describes well the 

observed yielding, plastic flow, strain-hardening, and incomplete strain recovery, with an 

appropriate value of rubbery modulus for the polymeric mode. The new model is able to 

eliminate the artificial “crinkle factor” needed to fit the earlier polymer dumbbell model of 

Fielding et al. (2012) to the creep and recovery data, and to confirm that the small elastic 

recovery observed in experiments is due to the large nonlinear stress resulting from highly 

stretched, folded, polymer segments produced by extensional flow. A detailed analysis of the 

extension and orientation of the polymer springs shows that strain hardening sets in at strains 

near unity, which are much lower than that needed to fully extend the polymer, because even 

modest strains are able to fully extend a subset of relatively short strands that are trapped 

between folds. This also explains the small recoil; the stress disappears as soon as these highly 

stretched sub-chains recoil slightly. We predict that the increase in the segmental relaxation time 

after yielding that is seen in extensional creep is absent both in steady extensional straining and 
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in shear creep.  In steady extension, there is no chance for re-vitrification of the segmental mode 

due to slow-down in straining that occurs in creep when most of the stress is transferred to the 

polymer mode.  In shear, on the other hand, highly extended sub-chains do not appear because of 

tumbling. We also show that extensional deformation imposed on pre-oriented glassy polymer 

produces stress growth that is sensitive to the orientation of the pre-stressed polymer. These 

predictions remain to be tested in detail but appear to be consistent with observations reported in 

the literature. Future experimental work would be needed to relate some of the model’s 

parameters to material properties and experimental conditions.    
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Chapter 7: Conclusion 

 

In this dissertation, a fast “pointer” simulation method that extends the model of Cates 

and coworkers for the rheology of entangled WLMs is presented, which I believe allows more 

accurate rheological predictions than before. This new method includes not only reptation, 

breakage and rejoining, contour length fluctuations, and Rouse modes, which had been 

previously considered, but also constraint release by double reptation, bending modes, and the 

cross-over between loose and tight entanglement regime, which are beyond those of Cates 

model. This method also contains correlations in micelle length across multiple breakage and 

rejoining cycles, not accounted for via previous approaches. Since the method uses “pointers” 

that track the ends of unrelaxed regions along each micelle, thereby allowing efficient 

simulations of relaxation dynamics for ensembles containing thousands of micelles, it is capable 

to obtain accurate results without preaveraging or neglecting correlations. A modified genetic 

algorithm is applied to transform the simulation data from the time to the frequency domain. 

Based on the aforementioned most up-to-date theories of polymer dynamics and innovations in 

modeling, this simulation method can span several regimes of behavior depending on the relative 

rates of reptation, contour length fluctuations, breakage/rejoining, and high frequency modes and 

is suitable for predicting the rheological behavior of experimental solutions for wormlike 

micelles. 

Thus, fits to rheological data using the above method allow multiple micelle parameters 

to be estimated, and more accurate estimates to be obtained than was possible from the earlier 

approaches using Cates model. The advantages of this simulation method are illustrated by 

obtaining micelle parameters from fits to storage and loss modulus, i.e., G’ and G” data by 

Oelschlaeger et al. (2010) over six decades of frequency with an average deviation of only 6%. 

However, significant differences are found between the micelle parameters derived from the new 

method and those obtained by the traditional approach of Cates and coworkers (estimates are 

made on the basis of “local” frequency dependencies predicted by Cates model), especially in 

average micelle length and breakage time, which are an order of magnitude different from 



 158 

previous. These differences are due to more complete physics included in the method and the 

fitting of rheological data across the entire frequency range. The method can also give forward 

predictions thereby provide quantitative relationships between these micellar parameters and 

rheological behaviors that improve on previous simple scaling results. 

Generally, a comprehensive characterization of micelle properties require combinations 

of different experimental methods such as light and neutron scattering, electron microscopy, etc. 

While based on the improved empirical relationships and an associated data-fitting procedure, 

the above new method allow quantitative estimation of micellar characteristic lengths and time 

constants: i.e., average micelle length, breakage and reptation time, and entanglement and 

persistence lengths, to be extracted from linear rheological measurements include both 

mechanical rheometry and diffusing wave spectroscopy, the latter providing the high-frequency 

data needed to determine micelle persistence length accurately. A comparison of fitted micellar 

parameters was made between DWS data and mechanical rheometric data for WLM solution, 

and this indicates the importance of low-frequency data in estimating the plateau modulus, the 

breakage time, and the semiflexibility. The accuracy of the simulation method was demonstrated 

by sensitivity studies i.e., analyses on the sensitivity of estimated parameters to error or noise. 

For different micellar breakage mechanisms (reversible scission, end-interchange, and bond-

interchange), their effects on the stress relaxation of WLM solutions for fixed surfactant 

concentration are found to be rather modest. By applying this method on commercial surfactant 

solutions, one containing sodium lauryl one ether sulfate (SLE1S), and the other containing both 

SLE1S and cocoamidopropyl betaine to examine effects of added salt concentration, the method 

is shown to be of practical use in predicting monotonic and nonmonotonic dependences of 

different micellar parameters on salt concentration, which are difficult to obtain from other 

theoretical or experimental methods. 

Combined with molecular simulations, the multiscale modeling of WLM solutions is 

achieved by using the aforementioned micellar-scale simulation method to connect macroscopic 

viscoelastic properties to surfactant packing structures at the molecular scale. Specifically, the 

changes of linear rheology in two body-wash formulations upon addition of NaCl salt and 

perfume raw materials (PRMs) are investigated at various concentrations and temperatures. 

Micelle-level properties, such as micelle length, breakage time, and scission free energy are 

thereby obtained with the surfactant packing structure determined through dissipative particle 
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dynamics (DPD) simulations and traditional surfactant packing arguments. Thus, the 

structure−property relationships of surfactant formulations can be explored with consistent 

results obtained at different length scales, from molecular, to micellar, to bulk rheological.  

While much is known about the effect of salt on the viscosity of a micelle solution, the 

molecular-level DPD simulations confirm and quantify this effect on head group packing, 

through use of a “packing distance” defined as the length of WLM per surfactant molecule, 

which decreases as salt concentration increases in the two body-wash formulations. If the radius 

of the WLM remains constant, this should result in a higher Israelachvili packing parameter. 

This, in turn, should produce longer micelles, a larger scission free energy, and shorter micellar 

breakage time, all of which agrees with the quantitative estimates of these parameters from 

application of the micellar-scale simulation method to the linear viscoelastic data. Thus, 

consistent with current understanding on the effect of salt, the above findings make the 

connection between micelle properties extracted from rheology and the detailed surfactant 

packing inferred from DPD molecular simulations more thorough than before. In fact, the 

changes in surfactant packing quantified by our simulations are often too subtle to be obtained 

from experimental probes, such as neutron scattering, and yet, these small changes have 

significant effects on rheological properties.  

By measuring linear rheology over a small range of temperature, and using the micellar-

scale simulation method to infer the temperature dependence of the micellar length, the micellar 

end-cap free energy can also be estimated, which is significantly less than values reported earlier 

for CTAC/NaSal micelles. Further, both the activation energies for viscosity and relaxation time 

drop as salt concentration increases up to the salt concentration that maximizes viscosity, similar 

to that for CTAC/NaSal micelles. Using the above simulation method, the obtained micellar 

breakage time is found to decrease with salt concentration almost monotonically at constant 

temperature. PRMs modify the viscoelastic properties of body washes by partitioning within the 

micelles at different locations according to their hydrophobicity and their chemical structures. 

Through the multiscale modeling, we found that PRMs with a very low or a very high 

hydrophobicity reduce the average micelle length, scission free energy, and zero shear viscosity 

significantly. PRMs with low hydrophobicity mainly partition within the head group region of 

the micelle, increase the head group surface area at constant micellar radius, decrease the 

packing parameter therefore resulting in shorter micelles and lower viscosity. While for large, 
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highly hydrophobic PRMs, they mainly partition into the center of the micelle, and rather than 

mixing with the tails, push them radially outward, which favors shorter micelles. PRMs with 

moderately hydrophobicity can induce some growth in micelle length, but this does not change 

the viscosity or the scission energy of the solutions much, or at most increases them slightly, 

relative to the viscosity in the absence of the added PRM. Partitioning of PRMs depends on the 

composition of the surfactant solution, as well as on the PRM. The use of the packing distance in 

cylindrical part of micelle as a tool to describe the impact of the PRMs on structure and viscosity 

is insufficient as it lacks a description of the packing of the surfactant in the endcaps. To even 

qualitatively describe the impact of molecules with different polarities, such a parameter needs to 

capture the impact on both the cylindrical part and the end caps of the micelle. 

Since this new simulation method manifest itself with notable advantage when handling 

unbranched but well-entangled WLMs, it provides a practical pathway to study the effects of 

both micelle branches and unentangled micelle rods in micellar solutions. Because in a branched 

micelle the surfactant molecules can diffuse rapidly through branch points causing micelle 

branch to grow, and shrink, the presence of these branches provide extra paths allowing micelles 

to slide quickly from their entanglements, however, few studies are available to explain these 

dynamics in detail. To account for the branching-associated kinetics on the micellar relaxation 

behaviors, a “constrained” diffusion model as well as a mechanism to create new branches are 

developed, where constraint forces are imposed to balance the flux of micellar materials at each 

branch junctions and a branch junction can be generated by sprouting a tiny branch, so-called a 

“bud,” along the micelle randomly. Thus, the linear to branch transition in micelle morphology 

can be represented by an increase of bud size or sprouting rate as temperature or salt 

concentration varies. By generating micelle systems with different level of branching, this 

extended simulation method is capable to predict a decrease in viscosity as more branches are 

introduced into the solutions, which consist with the well-known phenomenon for surfactant 

solutions at high salt concentration. On the contrary, for the unentangled micelle rods, their 

effects on the viscosity of solutions are only significant when surfactant concentration is low. 

Unlike those entangled long micelles, micelle rods are free to rotate therefore resulting in a much 

faster relaxation of the stress imposed on them and a lower viscosity. This additional rotary 

mechanism is now included in the model to enable characterization of micelle solutions at low 

surfactant concentration. By investigating the transition between entangled and unentangled 
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micelle systems, the evolution of micellar structure can be predicted with the above extended 

simulation method. “First principle” scaling arguments are also postulated to conclude that 

WLM solutions is a “weakly reactive” system, i.e., the solution never truly reaches the diffusion 

controlled regime before the onset of entanglements, whose trend is similar as that for dilute 

polymers in good solvent.  

For the last part of this dissertation, polymeric glasses are modeled as an ensemble of 

bead-spring chains, which represent slow “polymer” relaxation modes, suspended in a glassy 

“solvent,” representing faster segmental dynamics, whose ageing and rejuvenation are modeled 

using a simple one-mode fluidity model. This new model extends the earlier work of Fielding 

and coworkers [Fielding et al. (2012) and (2013)] by replacing their simple one-mode dumbbell 

model for the polymeric mode with an ensemble of multi-mode bead-spring chains whose 

dynamics are solved by Brownian dynamics simulations. The model yields good fits to 

experimental strain and segmental relaxation times of glassy PMMA under creep, [Lee et al. 

(2009)] and describes well the observed yielding, plastic flow, strain-hardening, and incomplete 

strain recovery, with an appropriate value of rubbery modulus for the polymeric mode. The new 

model is able to eliminate the artificial “crinkle factor” needed to fit the earlier polymer 

dumbbell model of Fielding et al. (2012) to the creep and recovery data, and to confirm that the 

small elastic recovery observed in experiments is due to the large nonlinear stress resulting from 

highly stretched, folded, polymer segments produced by extensional flow. A detailed analysis of 

the extension and orientation of the polymer springs shows that strain hardening sets in at strains 

near unity, which are much lower than that needed to fully extend the polymer, because even 

modest strains are able to fully extend a subset of relatively short strands that are trapped 

between folds. This also explains the small recoil; the stress disappears as soon as these highly 

stretched sub-chains recoil slightly. While the model also predicts that the increase in the 

segmental relaxation time after yielding that is seen in extensional creep is absent both in steady 

extensional straining and in shear creep. In steady extension, there is no chance for re-

vitrification of the segmental mode due to slow-down in straining that occurs in creep when most 

of the stress is transferred to the polymer mode. In shear, on the other hand, highly extended sub-

chains do not appear because of tumbling. It is found that extensional deformation imposed on 

pre-oriented glassy polymer produces stress growth that is sensitive to the orientation of the pre-

stressed polymer.  
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Further improvements of this new model would still be in need to clarify some of the 

issues including the degree of coarse-graining for polymers with different molecular weights as 

well as a broad spectrum of glassy relaxation times. These improvements, for example, should 

include the use of a more refined description for both the polymer chains and the glassy 

dynamics, and should allow some of parameters in the model to be pinned down physically as 

reflected by the properties of real polymers. Thus, in its current state, the parameters of this 

model remain phenomenological to some degree, but we believe, once combined with molecular 

level simulations, this model would provide a practical path for the multi-scale modelling of 

polymeric glass under deformation. 
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Appendix A: Genetic Algorithm and Simulation Details 

I. Pre-factor for Modulus in Loose-entanglement Regimes 

For wormlike micelles in water, the plateau modulus (𝐺𝑁) has been given by Milner 

(2005), which is valid for polymer chains in a good solvent: 

𝐺𝑁 ≅
216𝑘𝐵𝑇

𝑛2𝑝𝑀𝑖𝑙
3 𝜙

9
4                                                                    (𝐴. 1) 

where 𝜙 is the volume fraction of polymer; n is a constant determined empirically with a value of 

around 22.4; and 𝑝𝑀𝑖𝑙 is the “packing length” as defined by Milner for polymer melts as:  

𝑝𝑀𝑖𝑙 =
6𝑣𝑏

𝑏𝐾
2 , 𝑤𝑖𝑡ℎ 𝑣𝑏 =

𝜋

4
𝑑2𝑏𝐾                                                 (𝐴. 2) 

Here 𝑣𝑏 is the volume of a single Kuhn step for a micelle, and 𝑑 is the micelle diameter. Note 

there is another definition of packing length, given by Fetters et al. (1999), which we do not use 

here but differs from that of Milner by a factor of 6. 

Combining Eq. (A.1) and Eq. (A.2), yields: 

𝐺𝑁 ≅
512𝑙𝑝

3

𝜋3𝑛2𝑑6
𝑘𝐵𝑇𝜙

9
4                                                           (𝐴. 3) 

The tube diameter (𝑎) is related to the packing length (𝑝𝑀𝑖𝑙) [Milner (2005)] for flexible 

polymers in the melt by:  

𝑎 =
𝑛𝑝𝑀𝑖𝑙
6

=
𝑛𝜋

8

𝑑2

𝑙𝑝
                                                              (𝐴. 4) 

In a solution with a good solvent, Eq. (A.4) must be modified to: 

𝑎 =
𝑛𝜋

8

𝑑2

𝑙𝑝
𝜙−3/4                                                               (𝐴. 5) 

For loose entanglements in good solvents, the formula for 𝑑 is therefore: 

𝑑2 = 22/5
8

𝑛𝜋
𝑙𝑒
3/5
𝑙𝑝
7/5
𝜙3/4                                                     (𝐴. 6) 

Combining the above equation with Eq. (A.3) gives: 

𝐺𝑁 ≅ 9.75
𝑘𝐵𝑇

(𝑙𝑝
0.4𝑙𝑒

0.6)
3 = 9.75

𝑘𝐵𝑇

𝜉3
                                              (𝐴. 7) 
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which yields the value of pre-factor 𝐴 = 9.75 used in the main text of Chapter 2. 

II. Genetic Algorithm for Converting to Frequency Domain  

The Genetic Algorithm (GA) belongs to the family of evolutionary algorithms that 

provide useful solutions to multi-variable optimization and searching problems [Melanie (1996)]. 

By mimicking the phenomenon of evolution in nature, a genetic algorithm evolves an ensemble 

of solutions gradually toward better ones. A standard genetic algorithm involves “selection”, 

“inheritance”, “crossover”, and “mutation” steps. During each generation, every individual 

solution (which in our case is an independent set of fitting parameters) will pass through the 

above steps with a possibility of thereby forming a better solution. Meanwhile, some solutions 

will be eliminated from the ensemble because of their weak fitness (large fitting error). A 

detailed description of genetic algorithm applied to our problem is detailed in what follows. 

1. Problem set up 

We first express the stress relaxation function (𝜇) as a summation of finite exponential 

functions with time constants (𝜏𝑖) and weights (𝜇𝑖):  

𝜇(𝑡) =∑𝜇𝑖𝑒𝑥𝑝 (−𝑡/𝜏𝑖)

20

𝑖=1

,   𝜇𝑖 > 0                                                  (𝐴. 8) 

Here, 20 terms are used as a compromise between computational cost and accuracy. Equation 

(A.8) can be transformed into the frequency domain analytically as: 

𝐺′(𝜔) = 𝐺𝑁∑𝜇𝑖
𝜔2𝜏𝑖

2

1 + 𝜔2𝜏𝑖
2

20

𝑖=1

,   𝐺"(𝜔) = 𝐺𝑁∑𝜇𝑖
𝜔𝜏𝑖

1 + 𝜔2𝜏𝑖
2

20

𝑖=1

                      (𝐴. 9) 

Thus, the transformation problem has been converted into a nonlinear fitting problem with 

multiple (40) variables, and the genetic algorithm yields an optimized solution for the set of 

constants (𝜇𝑖 , 𝜏𝑖), whose detailed procedure is shown below: 

2. Initialization 

In a genetic algorithm, the initial guess is generated by randomly choosing parameter 

values within established ranges. For our problem, the frequency typically spans 0.01~106 rad/s, 

and 𝜇(𝑡) is no greater than 1, which yields ranges for the parameters of: 

𝜇𝑖: 10
−5~100, 𝜏𝑖: 10

−8~103                                                        (𝐴. 10) 
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An outline of the initialization for our genetic algorithm is presented in Fig. A.1, 

where 𝑁 = 20 is the number of exponential terms (Eq. (A.8)) and 𝑀 is the size of the solution 

ensemble. 

 

 
Figure A.1 The initialization of genetic algorithm.  

According to the above routine, the genetic algorithm is initiated by an ensemble 

consisting of: an 𝑀 × 𝑁 matrix with 𝑀 rows of 𝑁 pairs of entries (𝜇𝑖, 𝜏𝑖). Each row is an 

independent parameter set ordered so that the larger 𝜏𝑖 is placed at the left side of the matrix, 

while each row is ordered by the fitness 𝜀 (fitting error) calculated by Eq. (A.11), with smaller 

errors towards the top: 

𝜀 =
∑ |𝜇(𝑡𝑗) − ∑ 𝜇𝑖𝑒𝑥𝑝(−𝑡𝑗/𝜏𝑖)

𝑁
𝑖=1 |𝑛

𝑗=1

∑ 𝜇(𝑡𝑗)
𝑛
𝑗=1

                                            (𝐴. 11) 

where, 𝑛 is the total number of simulation data points in time domain. 

After initialization, the ensemble will be truncated to half of its original size (𝑀/2) for 

further manipulation. The truncated ensemble is called “father” generation.  

3. Evolution 

As illustrated in Fig. A.2, after two important steps (crossover and mutation), the “father” 

generation will evolve to a “son” generation: a better ensemble with size (𝑀) at the end of 

evolutionary step 𝑘. As a starting ensemble for next iteration, the “son” generation contains the 
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top 𝑀/4 rows of the “father” generation with the least fitting error, and 𝑀/2 rows resulting from 

crossover and mutation (described below). The remaining 𝑀/4 rows are generated from the 

same random process used to create the initial sets of parameters. A more detailed description for 

crossover and mutation is given below. 

 

 
Figure A.2 Flowchart of genetic algorithm. 

a) Crossover 

Comparisons are made between computer-generated random numbers and an 

“inheritance probability” (𝑃𝑐), whose value is the probability that “crossover” occurs. In our case, 

a one-point crossover technique is used: all parameter pairs beyond a randomly selected pair are 

switched with the corresponding values of the neighboring row. This allows for parameters with 

high “fitness” in one row to be transmitted to another row, with the possibility that a superior 

overall fitness might arise. 
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b) Mutation 

Similarly to crossover, we set a mutation probability (𝑃𝑚), but this time for replacing a 

single randomly chosen parameter pair with random numbers generated from the range given by 

Eq. (A.10). Note that crossover acts on a portion of a row, while mutation acts on a single 

parameter pair.   

The algorithm is continued for enough generations to find a parameter set with acceptable 

fitting error, which we take to be an average error of 1% per point. The transformed results are 

shown in Fig. A.3. Based on simulation performance, we find that the optimal choices 

for 𝑀, 𝑃𝑐  and 𝑃𝑚 are 40, 0.5 and 0.05 respectively. The CPU time of a single processor (on Intel® 

CoreTM i5 CPU with 2.27GHz) for fitting 500 rheological data points is around 0.5 hours for 

15000 generations, which is the number of generations typically needed for convergence. 

 

 
Figure A.3 Normalized Cole-Cole plot for standard values of parameters obtained from genetic algorithm-

aided Fourier transform. 

4. Constraint method 

However, as 𝜍 increases, and the distribution of relaxation times becomes broader, even 

small fitting deviations for 𝜇(𝑡) at early times cause obvious “wiggles” at high frequencies in the 

normalized Cole-Cole plot (Fig. A.4). We find that this high sensitivity to early-time fitting 

results from very unevenly distributed 𝜏𝑖  and magnitudes of 𝜇𝑖  that can change by one or two 

orders with increasing mode number 𝑖, where 𝑖 is numbered sequentially from slowest to fastest 

mode. Thus, modifications are needed to achieve better high-frequency behavior. 

We fix the above problem using an artificial constraint that confines the ratios of 

neighboring 𝜇𝑖 values to the range 0.01 to 100. Although this method slightly increases the 

computational time, the “fitness” (See Eq. (A.9)) is still minimized within this constraint. Since 
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spacing values of 𝜏𝑖  logarithmically only works well for a wide distribution of relaxation times 

(large 𝜍), a more general approach is to make each 𝜏𝑖 movable within an interval satisfying: 

𝐼𝑚𝑖𝑛 +
𝐼𝑚𝑎𝑥 − 𝐼𝑚𝑖𝑛

𝑁
(𝑖 − 1) < 𝑙𝑜𝑔(𝜏𝑖) < 𝐼𝑚𝑖𝑛 +

𝐼𝑚𝑎𝑥 − 𝐼𝑚𝑖𝑛
𝑁

𝑖                          (𝐴. 12) 

where 𝐼𝑚𝑎𝑥  and 𝐼𝑚𝑖𝑛 are the maximum and minimum values for log(𝜏𝑖), respectively. 𝑁 = 20 is 

the total number of modes. For our case (𝜏𝑖: 10
−8 − 103s, see Eq. (A.8)), we have 𝐼𝑚𝑎𝑥 =

3, 𝐼𝑚𝑖𝑛 = −8. 

 

 
Figure A.4 The same as Fig. A.3, except with 𝜍 = 0.05. 

The advantage of setting boundaries for each 𝜏𝑖  is that for different values of 𝜍 each 𝜏𝑖 can 

slide within its interval to obtain the best fit for the stress relaxation function 𝜇(𝑡). Using 

standard values of parameters except for 𝜍 = 0.05, transformation results with the constraint 

method are given in Fig. A.5. 

 

 
Figure A.5 The same as Fig. A.4, except that a constraint method is used. 
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III. Simulation Testing Details 

1. Equilibrium distribution 

The random breakage/rejoining within the pointer algorithm produces a simulated micelle 

length distribution that matches the theoretical equilibrium one (Eq. (2.15)) after fluctuations are 

averaged out (𝑅2 = 0.97) over a simulation time of duration ten times the terminal relaxation, 

10𝜏̅ ~10𝜏𝑟̅𝑒𝑝𝜍
0.62 (See Table IV for the scaling of relaxation time with 𝜍 ), which in computer 

time is typically half a day for a single Intel® CoreTM i5 CPU with 2.27GHz. Checks using 

different run lengths established the adequacy of this run duration. 

2. Pure reptation  

To test that the simulation correctly accounts for reptation, we turn off all the other 

mechanisms, and simulate a set of chains with the same length. The results of simulation 

compare favorably (𝑅2 = 0.98) with the theoretical ones from the Doi-Edwards theory (Eq. 

(2.13)), indicating that our simulation method captures reptation properly. 

3. Reptation and contour length fluctuations (CLFs) 

Next, we add contour length fluctuations to pure reptation, again simulating with a 

monodisperse ensemble of chains. We find that our simulation results are close to (𝑅2 = 0.96) 

the theoretical prediction for a single-mode relaxation, whose reptation time is corrected by 

CLFs, according to Eq. (2.21) from Likhtman and McLeish (2002). As shown in Fig. A.6, the 

rather small deviations are concentrated at early times, where the single-mode description of 

CLFs given by Eq. (2.21) is not expected to work perfectly, and relaxation is somewhat faster 

than predicted by Eq. (2.21). Thus, since CLFs introduce additional fast modes, the deviation 

between this theory and the simulations seen at early times is expected and does not necessarily 

reflect inaccuracy in the simulations. In addition, at very long times where the un-relaxed 

fraction 𝜇 falls below 0.1%, our treatment on CLFs (Eq. (2.40)) overestimates the rate of 

relaxation. Thus, when relaxation is nearly complete and 𝜇 reaches 0.1%, we simply switch off 

CLFs, which is reasonable since its effect is negligible at such late times. 

4. Convergence  

To obtain convergence with time step, we need to modify the simulation time step from that 

given in Eq. (2.38), to:   
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∆𝑡 = 𝑚𝑖𝑛 [
𝜏̅𝑏𝑟

2 ∙ 𝑛𝑢𝑚
, ∆𝑡𝐿],   ∆𝑡𝐿~𝑂 (

𝜏̅𝑟𝑒𝑝
〈𝐿〉3

)                                     (𝐴. 13) 

where ∆𝑡𝐿 is a time constant with units of seconds. The reason for preventing the time step from 

becoming larger than ∆𝑡𝐿 lies in the convergence requirement when other mechanisms (reptation, 

CLFs) become important, as 𝜍 (and thus 𝜏𝑏̅𝑟) becomes larger. We find empirically that ∆𝑡𝐿 =

10−6𝑠 fits most of our convergence requirements. This criterion no doubt depends on our 

simulation of aqueous systems, and is likely set by the shortest relaxation time of micelles in the 

ensemble.  

 

 
Figure A.6 Relaxation function with CLFs and reptation for monodisperse ensemble for 𝑍 = 33.5, 𝜏𝑟𝑒𝑝 =

1𝑠, 𝛼𝑒 = 2, 𝑙𝑝 = 30nm and 𝑑 = 3nm. The “Theory” here is the single-mode relaxation expression given 

by Eq. (2.21). 

In addition, we compare results obtained from averaging over three different run 

durations (𝐶𝜏𝑟̅𝑒𝑝𝜍
0.62, 5𝐶𝜏𝑟̅𝑒𝑝𝜍

0.62 and 10𝐶𝜏𝑟̅𝑒𝑝𝜍
0.62, which are, respectively, roughly equal 

to 𝐶, 5𝐶 and 10𝐶 times the terminal relaxation time 𝜏̅~𝜏𝑟̅𝑒𝑝𝜍
0.62; where this formula is given in 

Table 2.4, 𝐶 is system dependent constant). We find that simulations are insensitive to 

fluctuations in length distribution for the ensemble size we have chosen (10,000 micelles), and 

only the shortest of these durations, 𝐶𝜏𝑟̅𝑒𝑝𝜍
0.62 (1~3 hours on a single processor of Intel® CoreTM 

i5 CPU with 2.27GHz), is needed to obtain reproducible rheological properties. Thus, our pointer 

algorithm simulation successfully captures the “living” feature of wormlike micelles with 

convergence with respect to time step, run duration, and size of ensemble.  
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IV. Cole-Cole Plots for a Wide Range of 𝝇 and 𝒁̅𝒕 

As described in the text, we obtain normalized Cole-Cole plots for a range of 𝜍 and 𝑍̅𝑡, which 

are presented below, in Figs. A.7 and A.8. These plots were used to obtain the correlations 

discussed in the text.  

 

 
Figure A.7 Family of normalized Cole-Cole plots for different values of 𝜍 with standard values of other 

parameters.  

V. Functional Forms for Micelle Parameters 

The detailed functional forms for Eq. (2.44b) are: 

For the average number of entanglements per tube, by combining Eqs. (2.2), (2.9) and 

(2.28), we obtain 

𝑍̅𝑡 =
〈𝐿〉

𝛼𝑒𝑙𝑝 ∙ 𝑚𝑎𝑥 [√0.5𝛼𝑒 , 1]
                                                    (𝐴. 14)

To obtain 𝜏𝑟̅𝑒𝑝, combining Eqs. (2.4), (2.12) and (2.28), gives: 

𝜏̅𝑟𝑒𝑝 =
2

𝜋

𝜂𝑠

𝑘𝐵𝑇𝑙𝑛 (𝛼𝑒
0.6𝑙𝑝/𝑑)

〈𝐿〉3

{𝑚𝑎𝑥 [√0.5𝛼𝑒 , 1]}
2                             (𝐴. 15) 

For 𝐺𝑁, we use Eq. (2.32): 

𝐺𝑁 =
𝛼𝑒
3

𝛼𝑒
3 + 3

⋅ 9.75
𝑘𝐵𝑇

𝛼𝑒
9/5
𝑙𝑝
3
+

3

𝛼𝑒
3 + 3

⋅
28

5𝜋

𝜙𝑘𝐵𝑇

𝑑2𝛼𝑒𝑙𝑝
                              (𝐴. 16) 
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Finally, according to Eqs. (2.33) and (2.34), a detailed expression for Eq. (2.44c) is also 

given here  

𝐺𝐻(𝜔) =
4(2𝑖)3/4

15𝜋
(𝑘𝐵𝑇)

1/4𝜙 [
4𝜋𝜂𝑠

𝑙𝑛 (0.6𝛼𝑒
0.6𝑙𝑝/𝑑)

]

3/4

∙
𝑙𝑝
5/4
𝜔3/4

𝑑2
  + 𝑖𝜔𝜂𝑠           (𝐴. 17) 

The definitions of all above parameters are the same as in the main text of Chapter 2.   

 

 
Figure A.8 Family of normalized Cole-Cole plots for different values of 𝑍̅𝑡  with standard values of other 

parameters. 
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Appendix B: Data Fitting Procedure and Sensitivity Study 

I. Detailed Data Fitting Procedure 

The data fitting flowchart (Fig. B.1) as well as equations used to update the parameters 

(𝐺𝑁 , 𝜍, 𝜏̅𝑟𝑒𝑝, 𝑍̅, 𝑙𝑝) from one iteration to the next are given in this Appendix.   

1. 𝑙𝑝  

According to Eq. (3.10), 𝑙𝑝 relates to the high-frequency rheological behavior of WLM 

solutions through its scaling effect on both the magnitudes of 𝐺′(𝜔) & 𝐺”(𝜔) and the “upturn” 

frequency (𝜔𝑚𝑖𝑛), i.e.: 𝐺′(𝜔) & 𝐺"(𝜔)~𝑙𝑝
1.25 and 𝜔𝑚𝑖𝑛~𝜏𝑝

−1~𝑙𝑝
−3. The former scaling implies that 

if the fitted high-frequency modulus is higher than the experimental one (which means that the 

average deviation for region 3 and 4 in Eq. (3.15) is positive), then one needs to reduce 𝑙𝑝. The 

latter scaling implies that if the fitted upturn frequency is higher than the experimental value, one 

needs to increase 𝑙𝑝. From these scaling rules given above, we specify the following two ways, 

one “regional” (i.e., tuning specific micellar parameters based on the average deviations over a 

particular frequency region in Fig. 3.7) and the other “local,” (i.e., tuning micellar parameters 

based on the difference between experimental and simulation results for specific frequencies in 

Fig. 3.3) to update 𝑙𝑝 at iteration 𝑘:  

𝑙𝑝
𝑘+1 = 𝑙𝑝

𝑘 𝑒𝑥𝑝(−0.8𝜀𝑎𝑣𝑔
𝑘 ),   {

𝐼𝑓 𝑁4 ≠ 0,   𝜀𝑎𝑣𝑔
𝑘 = (𝜀3

𝑘 + 𝜀4
𝑘)/2

𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,   𝜀𝑎𝑣𝑔
𝑘 = 𝜀3

𝑘                    (𝐵. 1) 

 𝑙𝑝
𝑘+1 = 𝑙𝑝

𝑘  √𝜔𝑚𝑖𝑛
𝑘,𝑓𝑖𝑡

𝜔𝑚𝑖𝑛
𝑒𝑥𝑝

⁄
3

                                                         (𝐵. 2) 

As depicted in Fig. B.1, Eq. (B.1) is used is used in odd-numbered iteration steps, and Eq. (B.2) 

in even-numbered steps. 

2. 𝐺𝑁 and 𝛼𝑒 

Since 𝐺𝑁 can be treated as the scaling factor for the low frequency behavior, as shown in 

Eq. (3.14c), it can therefore be updated by comparing the simulated value of 𝐺”𝑚𝑎𝑥
𝑘,𝑓𝑖𝑡

 with the 

experimental one, 𝐺”𝑚𝑎𝑥
𝑒𝑥𝑝

:  
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𝐺𝑁
𝑘+1 =

𝐺"𝑚𝑎𝑥
𝑒𝑥𝑝

 

𝐺"𝑚𝑎𝑥
𝑘,𝑓𝑖𝑡

/𝐺𝑁
𝑘 − 0.0657𝑙𝑜𝑔 (𝜍𝑘/𝜍𝑘+1)

                                       (𝐵. 3) 

where, 𝜍𝑘+1 is determined iteratively with its value updated by Eq. (B.6) or (B.7) after 

modifications for all the other parameters. We need to account for the value of 𝜍 when adjusting 

𝐺𝑁, because 𝐺"𝑚𝑎𝑥 shifts with the logarithm of 𝜍as we noted earlier (Eq. (14c)). With the prior 

knowledge of the micelle diameter (𝑑) and with the updated parameters (𝐺𝑁
𝑘+1, 𝑙𝑝

𝑘+1) from 

previous steps, the semi-flexibility coefficient 𝛼𝑒
𝑘+1 for the next round of iteration can be 

obtained from Eq. (3.9), and is used in the next step of the simulation. As shown in Fig. B.1, Eq. 

(B.3) is used in both odd- and even-number iteration steps. 

 

 

Figure B.1 Flowchart showing data fitting procedure. 

3. 𝑍̅, 〈𝐿〉, 〈𝐿𝑡〉 and 𝜏𝑟̅𝑒𝑝 

Based on Eq. (14b), which gives the dependence of 𝐺"𝑚𝑎𝑥/𝐺𝑁 on 𝑍̅, with known 𝛼𝑒
𝑘+1 

and 𝐺𝑁
𝑘+1, regardless of prefactors that weakly depend on 𝜍, 𝑍̅ can be corrected as follows: 
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𝐼𝑓 𝛼𝑒
𝑘+1 > 1.5 𝑎𝑛𝑑 𝑍̅𝑘+1 ≤ 𝑍̅𝑐(𝜍

𝑘+1),   𝑍̅𝑘+1 = 𝑍̅𝑘
𝐺”𝑚𝑖𝑛

𝑘,𝑓𝑖𝑡
𝐺𝑁
𝑘+1

𝐺”𝑚𝑖𝑛
𝑒𝑥𝑝

𝐺𝑁
𝑘

𝐼𝑓 𝛼𝑒
𝑘+1 > 1.5 𝑎𝑛𝑑 𝑍̅𝑘+1 > 𝑍̅𝑐(𝜍

𝑘+1),   𝑍̅𝑘+1 = 𝑍̅𝑘 (
𝐺”𝑚𝑖𝑛

𝑘,𝑓𝑖𝑡
𝐺𝑁
𝑘+1

𝐺”𝑚𝑖𝑛
𝑒𝑥𝑝

𝐺𝑁
𝑘
)

4/3

𝐼𝑓 𝛼𝑒
𝑘+1 < 1.5 ,   𝑍̅𝑘+1 = 𝑍̅𝑘 (

𝐺”𝑚𝑖𝑛
𝑘,𝑓𝑖𝑡

𝐺𝑁
𝑘+1

𝐺”𝑚𝑖𝑛
𝑒𝑥𝑝

𝐺𝑁
𝑘
)

5

                 (𝐵. 4) 

Instead of using the ratio of simulated to experimental modulus at the specific frequency 

where 𝐺” is minimum, the overall fit in the transition 1 region (See Fig. 3.7) can also be used to 

modify 𝑍̅. To do this, we simply replace 𝐺”𝑚𝑖𝑛
𝑘,𝑓𝑖𝑡

/𝐺”𝑚𝑖𝑛
𝑒𝑥𝑝

 with exp (𝜀2
𝑘) in the above equation, 

which yields:  
 

𝐼𝑓 𝛼𝑒
𝑘+1 > 1.5 𝑎𝑛𝑑 𝑍̅𝑘+1 ≤ 𝑍̅𝑐(𝜍

𝑘+1),   𝑍̅𝑘+1 = 𝑍̅𝑘𝑒𝑥𝑝 (𝜀2
𝑘)
𝐺𝑁
𝑘+1

𝐺𝑁
𝑘

𝐼𝑓 𝛼𝑒
𝑘+1 > 1.5 𝑎𝑛𝑑 𝑍̅𝑘+1 > 𝑍̅𝑐(𝜍

𝑘+1),   𝑍̅𝑘+1 = 𝑍̅𝑘𝑒𝑥𝑝 (
4

3
𝜀2
𝑘) (

𝐺𝑁
𝑘+1

𝐺𝑁
𝑘 )

4/3

𝐼𝑓 𝛼𝑒
𝑘+1 < 1.5 ,   𝑍̅𝑘+1 = 𝑍̅𝑘𝑒𝑥𝑝 (

4

3
𝜀2
𝑘) (

𝐺𝑁
𝑘+1

𝐺𝑁
𝑘 )

5

              (𝐵. 5) 

Equation (B.4) and (B.5) is used in even- and odd- numbered iteration steps, respectively, 

according to Fig. B.1. According to Fig. 3.8, with known 𝑙𝑝, 𝛼𝑒 and 𝑑, 𝜏̅𝑟𝑒𝑝 is related to 𝑍̅ through 

〈𝐿〉 and 〈𝐿𝑡〉. Thus, once 𝑍̅ is updated, 〈𝐿〉𝑘+1, 〈𝐿𝑡〉
𝑘+1, 𝜏̅𝑟𝑒𝑝

𝑘+1 can be calculated from Eqs. (3.2), 

(3.7), (3.8), (3.11). 

4. 𝜍 

According to Eq. (3.14a), corrections of 𝜍 can be made by 𝜀1
𝑘 or 𝜔𝑚𝑎𝑥

𝑘,𝑓𝑖𝑡
/𝜔𝑚𝑎𝑥

𝑒𝑥𝑝
with known 

𝛼𝑒
𝑘+1 and 𝜏̅𝑟𝑒𝑝

𝑘+1:   

𝜍𝑘+1 = 𝜍𝑘 [
𝜔𝑚𝑎𝑥
𝑘,𝑓𝑖𝑡

𝜏̅𝑟𝑒𝑝
𝑘

𝜔𝑚𝑎𝑥
𝑒𝑥𝑝

𝜏̅𝑟𝑒𝑝
𝑘+1

(
𝛼𝑒
𝑘+1

𝛼𝑒
𝑘 )

3

]

3/2

                                              (𝐵. 6) 

Again, if we wish to update 𝜍 using fitting deviation over a range of frequencies, we can 

replace 𝜔𝑚𝑎𝑥
𝑘,𝑓𝑖𝑡

/𝜔𝑚𝑎𝑥
𝑒𝑥𝑝

 with exp (2/3𝜀1
𝑘),  giving:  

𝜍𝑘+1 = 𝜍𝑘𝑒𝑥𝑝 (𝜀1
𝑘) [

𝜏̅𝑟𝑒𝑝
𝑘

𝜏̅𝑟𝑒𝑝
𝑘+1 (

𝛼𝑒
𝑘+1

𝛼𝑒
𝑘 )

3

]

3/2

                                        (𝐵. 7) 

Equation (B.6) is used in even-numbered iterations and (B.7) in odd-numbered ones. 
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5. Limits of parameter modification 

To avoid instability during the iteration, we limit the extent to which parameters 

(𝑙𝑝, 𝜏𝑟̅𝑒𝑝, 𝜍) can change in a single iteration. The upper and lower bound for modifications are 

given in Eq. (B.8). As an example, the evolution of the allowed modification range for 𝑙𝑝 is 

illustrated below:  

𝑙𝑝
𝑘,𝑢𝑝

= 𝑙𝑝
𝑘 𝑒𝑥𝑝(0.8|𝜀𝑎𝑣𝑔

𝑘 |),   𝑙𝑝
𝑘,𝑙𝑜𝑤 = 𝑙𝑝

𝑘 𝑒𝑥𝑝(−0.8|𝜀𝑎𝑣𝑔
𝑘 |)                                (𝐵. 8𝑎) 

𝜏̅𝑟𝑒𝑝
𝑘,𝑢𝑝

= 𝜏̅𝑟𝑒𝑝
𝑘 𝑒𝑥𝑝 (

2

3
|𝜀1
𝑘|),   𝜏̅𝑟𝑒𝑝

𝑘,𝑙𝑜𝑤 = 𝜏̅𝑟𝑒𝑝
𝑘 𝑒𝑥𝑝 (−

2

3
|𝜀1
𝑘|)                                (𝐵. 8𝑏) 

𝐼𝑓 𝜔𝑚𝑎𝑥
𝑘,𝑓𝑖𝑡

> 𝜔𝑚𝑎𝑥
𝑒𝑥𝑝

,   𝜍𝑘,𝑢𝑝 = 𝜍𝑘 (
𝜔𝑚𝑎𝑥
𝑘,𝑓𝑖𝑡

𝜔𝑚𝑎𝑥
𝑒𝑥𝑝 )

3/2

,   𝜍𝑘,𝑙𝑜𝑤 = 𝜍𝑘 (
𝜔𝑚𝑎𝑥
𝑘,𝑓𝑖𝑡

𝜔𝑚𝑎𝑥
𝑒𝑥𝑝 )

−3/2

    

𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,   𝜍𝑘,𝑢𝑝 = 𝜍𝑘 (
𝜔𝑚𝑎𝑥
𝑒𝑥𝑝

𝜔𝑚𝑎𝑥
𝑘,𝑓𝑖𝑡

)

3/2

,   𝜍𝑘,𝑙𝑜𝑤 = 𝜍𝑘 (
𝜔𝑚𝑎𝑥
𝑒𝑥𝑝

𝜔𝑚𝑎𝑥
𝑘,𝑓𝑖𝑡

)

−3/2
              (𝐵. 8𝑐) 

 

 
Figure B.2 Evolution of the allowed modification range for 𝑙𝑝 represented by gray regions. 

II. Sensitivity Studies for Micelle Parameters  

The estimates of parameters and associated fitting curves for sensitivity studies to 

parameters 𝑑, 𝐺𝑁 , 𝜍, 〈𝐿〉, 𝛼𝑒 , 𝑙𝑒 are shown in Tables B.1 to B.6 and Figs. B.3 to B.8 below: 
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Table B.1 Estimated parameters from best fits in Fig. B.3 with different imposed values of 𝑑. 

Parameters 𝒅 = 𝟑 𝒏𝒎 𝒅 = 𝟑. 𝟓 𝒏𝒎 𝒅 = 𝟒 𝒏𝒎 𝒅 = 𝟒. 𝟓 𝒏𝒎 

𝑮𝑵 (𝐏𝐚) 108 104 115 108 

𝝇 0.65 0.63 1.82 1.8 

〈𝑳〉 (𝛍𝐦) 2.2 2.03 1.59 1.36 

𝜶𝒆 2.162 1.682 1.363 1.182 

𝒍𝒆 (𝐧𝐦) 147 164 153 156 

𝒍𝒑 (𝐧𝐦) 68 98 112 132 

 

 
Figure B.3 Best fits for WLM solution (6.67 wt% SLE1S, 3.10 wt% NaCl with solvent viscosity 𝜂𝑠=0.9 

cP at 25℃) with different imposed values of 𝑑 showing the inability of rheology to determine micelle 

diameter. 

Table B.2 Parameter values obtained by best fitting rheological data, for imposed values of 𝐺𝑁. 

Parameters 𝟖𝟎%𝑮𝑵 𝟖𝟓%𝑮𝑵 𝟗𝟎%𝑮𝑵 𝟗𝟓%𝑮𝑵 
Best-fit 

𝑮𝑵 
𝟏𝟎𝟓%𝑮𝑵 𝟏𝟏𝟎%𝑮𝑵 𝟏𝟏𝟓%𝑮𝑵 𝟏𝟐𝟎%𝑮𝑵 

𝑮𝑵 (𝐏𝐚) 92 97.75 103.5 109.25 115 120.75 126.5 132.25 138 

𝝇 1.74 1.71 1.99 2.18 1.82 1.71 1.23 1.70 1.48 

〈𝑳〉 (𝛍𝐦) 1.64 1.64 1.59 1.54 1.59 1.59 1.72 1.61 1.60 

𝜶𝒆 1.421 1.375 1.387 1.371 1.363 1.361 1.333 1.347 1.365 

𝒍𝒆 (𝐧𝐦) 179 176 165 159 153 147 144 136 131 

𝒍𝒑 (𝐧𝐦) 126 128 119 116 112 108 108 101 96 

𝜺𝒎𝒂𝒙 19.1% 13% 9.4% 5.8% 4.1% 4.5% 9.6% 11.8% 16.8% 

Note that by varying 𝐺𝑁 from its unconstrained best-fit value, the maximum average fitting error (𝜀𝑚𝑎𝑥, 

defined in the notes of Table 3.2) occurs in transition 1 region (See Fig. 3.7), as shown by Fig. B.4.   
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Figure B.4 Fitting results showing sensitivity of best fits to imposed values of 𝐺𝑁 with 𝑑 = 4 𝑛𝑚 for 

WLM solution (6.67 wt% SLE1S, 3.10 wt% NaCl with solvent viscosity 𝜂𝑠=0.9 cP at 25℃). 

Table B.3 The same as Table B.2, except for imposed values of 𝜍. 

Parameters 𝟐𝟎%𝝇 𝟒𝟎%𝝇 𝟔𝟎%𝝇 𝟖𝟎%𝝇 
Best-fit 

𝝇 
𝟏𝟐𝟎%𝝇 𝟏𝟒𝟎%𝝇 𝟏𝟔𝟎%𝝇 𝟏𝟖𝟎%𝝇 

𝑮𝑵 (𝐏𝐚) 86.8 91.4 97.1 112.8 115 117 119.4 118 122.1 

𝝇 0.36 0.73 1.1 1.46 1.82 2.18 2.55 2.91 3.28 

〈𝑳〉 (𝛍𝐦) 1.33 1.39 1.42 1.63 1.59 1.53 1.59 1.59 1.62 

𝜶𝒆 1.418 1.372 1.372 1.375 1.363 1.404 1.37 1.38 1.352 

𝒍𝒆 (𝐧𝐦) 190 188 177 154 153 146 148 149 149 

𝒍𝒑 (𝐧𝐦) 134 137 129 112 112 104 108 108 108 

𝜺𝒎𝒂𝒙 >100% 90% 58% 4.9% 4.1% 8.6% 25% 29.3% 36.6% 

Note that for imposed values of 𝜍, 𝜀𝑚𝑎𝑥 occurs in the low frequency region, as shown by Fig. B.5.  

Table B.4 The same as Table B2, except for imposed values of 〈𝐿〉. 

Parameters 𝟒𝟎%〈𝑳〉 𝟓𝟓%〈𝑳〉 𝟕𝟎%〈𝑳〉 𝟖𝟓%〈𝑳〉 
Best-fit 

〈𝑳〉 
𝟏𝟏𝟓%〈𝑳〉 𝟏𝟑𝟎%〈𝑳〉 𝟏𝟒𝟓%〈𝑳〉 𝟏𝟔𝟎%〈𝑳〉 

𝑮𝑵 (𝐏𝐚) 80 111.5 116 112 115 108 104.5 100 95.5 

𝝇 13.03 9.42 5.95 3.17 1.82 1.04 0.60 0.43 0.28 

〈𝑳〉 (𝛍𝐦) 0.636 0.875 1.11 1.35 1.59 1.83 2.07 2.31 2.54 

𝜶𝒆 1.626 1.396 1.413 1.391 1.363 1.402 1.378 1.39 1.391 

𝒍𝒆 (𝐧𝐦) 174 155 147 153 153 157 164 171 178 

𝒍𝒑 (𝐧𝐦) 107 111 104 110 112 112 119 123 128 

𝜺𝒎𝒂𝒙 32.6% 26.3% 9.8% 6.7% 4.1% 6.4% 7.8% 11.4% 15.8% 

Note that for imposed values of 〈𝐿〉, 𝜀𝑚𝑎𝑥 occurs in low frequency and transition 1 region, as shown by 

Fig. B.6.   
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Figure B.5 The same as Fig. B.4, except that variation is made in 𝜍. 

 
Figure B.6 The same as Fig. B.4, except that variation is made in 〈𝐿〉. 
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Table B.5 The same as Table B.2, except for imposed values of 𝛼𝑒. 

Parameters 𝟗𝟎%𝜶𝒆 𝟗𝟐. 𝟓%𝜶𝒆 𝟗𝟓%𝜶𝒆 𝟗𝟕. 𝟓%𝜶𝒆 
Best-fit 

𝜶𝒆 
𝟏𝟎𝟐. 𝟓%𝜶𝒆 𝟏𝟎𝟓%𝜶𝒆 𝟏𝟎𝟕. 𝟓%𝜶𝒆 𝟏𝟏𝟎%𝜶𝒆 

𝑮𝑵 (𝐏𝐚) 163.5 145 135 127 115 115.5 110.5 106.5 102 

𝝇 1.11 2.47 2.49 1.24 1.82 1.94 1.9 2.08 2.24 

〈𝑳〉 (𝛍𝐦) 1.75 1.57 1.62 1.7 1.59 1.58 1.59 1.58 1.57 

𝜶𝒆 1.227 1.261 1.295 1.329 1.363 1.397 1.431 1.465 1.499 

𝒍𝒆 (𝐧𝐦) 123 130 140 144 153 149 150 152 154 

𝒍𝒑 (𝐧𝐦) 100 103 108 108 112 107 105 104 103 

𝜺𝒎𝒂𝒙 43.9% 40.7% 38.4% 9.8% 4.1% 7.3% 9.7% 12.1% 15% 

Note that for imposed values of 𝛼𝑒, there is no specific frequency region where 𝜀𝑚𝑎𝑥 always occurs, as 

shown by Fig. B.7.   

 

 
Figure B.7 The same as Fig. B.4, except that variation is made in 𝛼𝑒. 

Table B.6 The same as Table B.2, except for imposed values of 𝑙𝑒. 

Parameters 𝟕𝟎%𝒍𝒆 𝟖𝟎%𝒍𝒆 𝟗𝟎%𝒍𝒆 
Best-fit 

𝒍𝒆 
𝟏𝟏𝟎%𝒍𝒆 𝟏𝟐𝟎%𝒍𝒆 𝟏𝟑𝟎%𝒍𝒆 𝟏𝟒𝟎%𝒍𝒆 𝟏𝟓𝟎%𝒍𝒆 

𝑮𝑵 (𝐏𝐚) 180 150 132 115 107.5 98.5 90 82 75.5 

𝝇 0.63 2.09 1.51 1.82 2.11 1.86 2.16 2.1 2.04 

〈𝑳〉 (𝛍𝐦) 2 1.81 1.64 1.59 1.45 1.49 1.4 1.27 1.17 

𝜶𝒆 1.342 1.36 1.343 1.363 1.325 1.319 1.32 1.331 1.349 

𝒍𝒆 (𝐧𝐦) 106 122 137 153 167 182 198 213 228 

𝒍𝒑 (𝐧𝐦) 79 90 102 112 126 138 150 160 169 

𝜺𝒎𝒂𝒙 48.1% 23.6% 12.1% 4.1% 6.4% 9.9% 15.1% 18.2% 21% 

Note that for imposed values of 𝑙𝑒, there is no specific frequency region where 𝜀𝑚𝑎𝑥 always occurs, as 

shown by Fig. B.8.   
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Figure B.8 The same as Fig. B.4, except that variation is made in 𝑙𝑒. 
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Appendix C: DPD parameters, Effect of Individual PRMs, Scission Enthalpy and 

Entropy 

 

I. DPD Forcefield Parameters and Molecular Mapping 

Parameters were derived using the revised Groot and Warren-equation of state (rGW-EO) 

[Español and Warren (1995); Groot and Warren (1997); Liyana-arachchi et al. (2015)] and listed 

in the Ph.D. thesis of Tang (2015). The revised equation of state for a single-bead DPD fluid is 

as:  

𝑃𝑟𝐺𝑊(𝜌, 𝑇) = 𝜌𝑘𝐵𝑇 + [𝑓𝐵2(𝜌)𝐵2(𝑎𝑖𝑖) + 𝑓𝑎(𝜌)𝑎𝑖𝑖]𝜌
2                                  (𝐶. 1) 

where 𝑃 is the pressure measured in Monte Carlo simulations, parameter 𝑎𝑖𝑖 is a positive number 

(in units of energy) that governs the strength of the repulsive interaction between DPD particles, 

and 𝜌 is the particle number density given as the number of DPD particles in a unit volume 

(𝑟𝑐𝑢𝑡
3 ). 𝑟𝑐𝑢𝑡 = √𝜐𝑟𝑒𝑓𝜌𝑟𝑒𝑓

3 = 7.66Å at reference molecular volume  𝜐𝑟𝑒𝑓 = 90.0 Å3 (which is the 

volume of three water molecules at ambient conditions), and reference number density 𝜌𝑟𝑒𝑓 = 5. 

𝑇 is the absolute temperature, 𝑘𝐵 is Boltzmann’s constant, and 𝑘𝐵𝑇 is set to unity in 

dimensionless DPD units. 𝐵2(𝑎𝑖𝑖) is a fifth-order polynomial for 𝑎𝑖𝑖, namely𝐵2(𝑎𝑖𝑖) = 1.705 ×

10−8𝑎𝑖𝑖
5 − 2.585 × 10−8𝑎𝑖𝑖

4 + 1.566 × 10−4𝑎𝑖𝑖
3 − 4.912 × 10−3𝑎𝑖𝑖

2 + 9.755 × 10−2𝑎𝑖𝑖. The two 

density-dependent “switching” functions, 𝑓𝐵2(𝜌) and 𝑓𝑎(𝜌) are solved using two empirical 

fittings as shown below: 

 𝑓𝐵2(𝜌) =
1

1 + 𝜌3
,   𝑓𝑎(𝜌) =

𝑐1𝜌
2

1 + 𝑐2𝜌
3
                                                (𝐶. 2) 

Here 𝑐1 = 0.0802, and 𝑐2 = 0.7787. Thus, from the Monte Carlo simulations that give the 

pressure, the pure-component values of 𝑎𝑖𝑖 are obtained. 

The cross-component terms 𝑎𝑖𝑗 are obtained from the interaction parameters 𝜒, which can 

be expressed as  

𝜒 =
𝜐𝑟𝑒𝑓

2𝑅𝑇
(
𝛥𝐺𝑖,𝑗(𝑇)

𝜐𝑖
+
𝛥𝐺𝑗,𝑖(𝑇)

𝜐𝑗
)                                                     (𝐶. 3) 
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where ∆𝐺𝑖,𝑗 is the transfer free energy change for transferring an 𝑖-type bead from its pure phase 

into a pure phase of 𝑗-type bead at absolute temperature 𝑇. 𝜐𝑖 is the molecular volume of the 𝑖-

type bead. By inputting these 𝜒 values into Eqs. (4.19) and (4.20) from Liyana-Arachchi et al. 

(2015), the values of the 𝑎𝑖𝑗 can be obtained, as tabulated in the Ph.D. thesis of Tang (2015). The 

revised rGW-EO method improves the accuracy of the 𝑎𝑖𝑗 parameters for a larger range of 

densities than in the traditional GW-EO method. 

Table C.1 Coarse-grained DPD molecular mapping of surfactants and PRMs.   

 

 

For the case of Gaussian charge clouds, it is possible to show that the general expression 

for the real-space Ewald contribution is: 

𝑈𝑖𝑗
𝑅𝑒𝑎𝑙 =

𝑞𝑖𝑞𝑗

4𝜋𝜀𝜀0𝑟𝑖𝑗
𝑒𝑟𝑓

[
 
 
 

𝑟𝑖𝑗

√2(𝜎𝑖
2 + 𝜎𝑗

2)
]
 
 
 

−
𝑞𝑖𝑞𝑗

4𝜋𝜀𝜀0𝑟𝑖𝑗
𝑒𝑟𝑓 [

𝑟𝑖𝑗

√2𝜎𝐸𝑤𝑎𝑙𝑑
]                        (𝐶. 4) 

where 𝜎𝑖 represents the standard deviation for the Gaussian charge cloud 𝑖 and 𝜎𝐸𝑤𝑎𝑙𝑑 represents 

the standard deviation for the Ewald Gaussian smearing parameter and all other terms are as 

expected. As the standard deviations of the charge clouds approach zero, the common real-space 

Ewald term for point charges is recovered. In the restricted case where all charge clouds are 
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given the same standard deviation, it is possible to choose the Ewald smearing parameter such 

that the real-space term disappears: 

𝜎𝑖 = 𝜎𝑗 =
𝜎𝐸𝑤𝑎𝑙𝑑

√2
       ⟹       𝑈𝑖𝑗

𝑅𝑒𝑎𝑙 = 0 

In this case, it is possible to use standard Ewald solvers to calculate electrostatic energies and 

forces for Gaussian charge clouds. It is only necessary to tune the smearing parameter based on 

the common charge cloud standard deviation and only calculate the Fourier space contribution 

along with the common self-interaction corrections. 

II. Additional PRMs and Their Effects on Viscosity  

Detailed information is listed in Table C.2 regarding the 15 added PRMs considered in 

Fig. 4.10 in the main text of Chapter 4. Figure 4.10 plots the zero-shear viscosity 𝜂0 of BW-1EO 

(containing ACCORD) vs. log 𝑃𝑂𝑊 for these 15 added PRMS. In this Supporting Information we 

also present data for BW-1EO containing only one each of 25 single PRMs (i.e., with no 

ACCORD). The results for these 25 PRMs in Fig. C.1 are qualitatively similar to those in Figure 

10, where ACCORD is present. Details regarding the 25 PRMs are given in Table C.3. 

 

 

Figure C.1 Viscosities of 8.0 wt. % BW-1EO in the absence of ACCORD at 1.0 wt. % NaCl on addition 

of each of 25 PRMs (from Table C.3) at 15 mM plotted against log𝑃𝑂𝑊, of the PRM.  

Table C.2 15 PRMs added separately to BW-1EO at 15 mM, resulting in zero shear viscosities 𝜂0 plotted 

in Fig. 4.10 and tabulated in Table C.3. The corresponding values of log 𝑃𝑂𝑊, the molecular structures, 

and resulting 𝜂0  (in Pa ∙ s) are tabulated. Some data, if not available at 15 mM, are computed from the 

best linear or polynomial fit of the viscosities of BW-1EO vs. PRMs at different concentrations. 
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Table C.3 Names of 25 PRMs, viscosities 𝜂0 (in Pa ∙ s) upon addition of each of the 25 PRMs at 15 mM 

to BW-1EO in the absence of ACCORD at 1.0 wt. % NaCl, and the corresponding log𝑃𝑂𝑊. 

Common names of Fragrances Viscosity 𝐥𝐨𝐠 𝑷𝑶𝑾 

Maltol 20.59 -0.31 

p-Anisaldehyde 0.01 1.53 

p-Hydroxy phenyl butanone 0.28 1.58 

Acetophenone 10.88 1.63 

Benzyl acetate 5.19 1.70 

trans-Geraniol 0.56 1.95 

Methyl salicylate 36.09 2.08 

Fenchyl alcohol 54.72 2.32 

Benzyl-tert-butanol 15.37 2.44 

Linalool 6.93 2.44 

Citronellol 46.78 2.49 

p-Cresyl methyl ether 53.73 2.52 

Ethyl methylphenylglycidate 19.68 2.60 

Citronellyl nitrile 6.19 2.65 

Caprylic aldehyde 0.12 2.75 

Allyl amyl glycolate 0.01 2.81 

Methyl beta-naphthyl ketone 21.34 2.97 

Isopentyl butyrate 2.93 3.05 

2-Methoxy-naphthalene 16.42 3.21 

Hivernal 0.23 3.29 

Alpha-terpinyl acetate 9.01 3.48 

Pomarose 9.67 3.51 

Alpha-pinene 0.04 4.46 

Lauronitrile 7.11 4.84 

Helvetolide 0.16 5.56 
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Appendix D: Simulation Procedure for Unentangled Micelles and Branching-associated 

Kinetics 

I. Simulation Procedure.  

As we discussed briefly in the main text of Chapter 5, the specific types of relaxation 

dynamics a micelle would go through are strongly affected by its length. According to Table 5.1, 

due to the exponential length distribution, micelles in a sufficiently large ensemble can be 

classified into three subpopulations, namely, unentangled micelle rods (𝐿𝑖 ≤ 𝑙𝑝), unentangled 

short WLMs (𝑙𝑝 < 𝐿𝑖 < 𝑙𝑒), and entangled long WLMs (𝐿𝑖 ≥ 𝑙𝑒). Since the former two groups 

of micelles relax quickly through rotary, Rouse, and bending motions, whose contributions are 

only significant at high frequencies, to simulate these dynamics require lengthy and costly 

computational process, which can hardly be scaled up to account for the fact that the overall 

relaxation behavior is dominated by the much slower reptation of those long entangled WLMs. 

Therefore, the dynamics of these relatively short micelles are treated in an analytic form (See Eq. 

(5.1), Eq. (D.1) and (D.2)) and added directly to the predicted G’ and G” curves.        

{
  
 

  
 
𝐺′(𝜔) =∑𝐺𝑖

𝑖

∑
(𝜔𝜏𝑅,𝑖/2𝑝

2)
2

1 + (𝜔𝜏𝑅,𝑖/2𝑝
2)
2

𝑁𝐾,𝑖

𝑝=1

𝐺"(𝜔) =∑𝐺𝑖
𝑖

∑
2(𝜔𝜏𝑅,𝑖/2𝑝

2)

1 + (𝜔𝜏𝑅,𝑖/2𝑝
2)
2

𝑁𝐾,𝑖

𝑝=1

,   𝜏𝑅,𝑖 =
4𝜂𝑠𝐿𝑖

2𝑙𝑝

3𝜋𝑘𝐵𝑇𝑙𝑛(𝐿𝑖/𝑑)
,   𝑓𝑜𝑟 𝑙𝑝 < 𝐿𝑖 < 𝑙𝑒      (𝐷. 1) 

𝐺∗(𝜔) =
𝜌

15

23 4⁄ 𝑘𝐵𝑇

𝑙𝑝
 (𝑖𝜔𝜏𝑝)

3 4⁄
+ 𝑖𝜔𝜂𝑠,   𝜌 =

4𝜙

𝜋𝑑2
,   𝜏𝑝 = 

{
 
 

 
 𝜁⊥𝐿𝑖

4

𝑘𝐵𝑇𝑙𝑝
,   𝑓𝑜𝑟 𝐿𝑖 < 𝑙𝑝 

𝜁⊥𝑙𝑝
3

𝑘𝐵𝑇
,   𝑓𝑜𝑟 𝐿𝑖 ≥ 𝑙𝑝

      (𝐷. 2) 

In the above equations, 𝜂𝑠 is the solvent viscosity, 𝜌 is the micelle contour length per unit 

volume, 𝜙 is the surfactant volume fraction, and 𝜁⊥is the perpendicular drag coefficient for 

bending motions. The definition of other parameters can be found in the main text of Chapter 5. 

While for the partially unentangled WLM system, pointers are assigned to track the loss 

of tube segments accompanied with the intermicellar reactions so that the evolution of the 

pointers would be the same as that for well-entangled system. [Zou and Larson (2014); Zou et al. 
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(2015)] The only difference is that part of the ensemble containing unentangled short micelles 

always stays as relaxed from the beginning to the end of the simulation. No pointers are thereby 

associated with those micelles, and they only participate in the intermicellar reactions. Finally, 

the stress relaxation function 𝜇2(𝑡) (The square here takes into account for the effect of tube 

rearrangement.) can be calculated through summarizing unrelaxed tube segments between 

neighboring pointers, which is further transformed into G’ and G” curves with low frequency 

behaviors dominated by entangled WLM subpopulations. [Zou and Larson (2014); Zou et al. 

(2015)] The above simulation scheme is illustrated in the following flow chart:     

  

       
Figure D.1 The simulation flow chart for generating the linear rheological behaviors 

II. Data Merging 

When combing the rheological measurements from DWS with that of mechanical 

rheometer, ideally, the two sets of G’ and G” data are expected to overlap with at intermediate 

frequencies (10~100 rad/s). However, pronounced discrepancies are always found for WLM 

solutions with high surfactant or salt concentrations. [Zou et al. (2015)] It is now well-accept that 

the micro-rheology would underestimate the elastic modulus due to the slip condition and 

compression effects on the probe particles as well as the formation of probe-micelle aggregation. 

[Cardiel et al. (2014); Rafati and Safatian (2008)] In consequence, to merge with the mechanical 

rheometric data at low frequencies the magnitudes of G’ and G” from DWS are usually shifted 

by a factor whose value depends on the specific frequency range where the two data sets overlap. 

The following procedure is therefore used to obtain a combined G’ and G” curve: As shown in 

Fig. D.2, mechanical rheometric data is firstly truncated giving rise to a frequency window of 

0.5-100 rad/s beyond which the data is either subject to the effect of inertia or low signal-to-

noise ratio. High frequency DWS data is then calibrated to allow for the best overlap with those 
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from mechanical rheometry at frequencies between 50 to 150 rad/s. However, if the solutions 

become sufficiently dilute, the above frequency range narrows and would finally disappear, 

which force us to rely on non-rheological methods, for example SANS, to determine local 

micellar length scales such as 𝑙𝑝 while extracting the other micellar parameters from our 

simulation model.    

 

 

Figure D.2 A flow chart illustrating the procedure to merge the mechanical rheometrical data with those 

from DWS  

III. Branching-associated Kinetics 

Here a thorough description on the practical pathway to unify branching-associated 

kinetics with living nature of micelles as well as advanced tube theories in the picture of pointer 

algorithm is shown. This is followed by presentation of some complementary materials 

mentioned in the main text of Chapter 5.  
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1. Constrained Diffusion and Micelle Architecture  

Because of their self-assembling nature, branched micelles are not geometrically fixed, 

both the length and the number of the strands between termini (i.e., end-caps or junctions) are 

momentary. This structure lability for individual branched micelle can be depicted by the 

constrained Brownian dynamics (BD): The Brownian motion of each strand creates a current in a 

random direction equivalent to the reptation as strands are confined in their tubes. For the 

simplest 3-arm micelle stars, one needs to solve the following set of equations to determine the 

currents in each arm: 

{
 
 

 
 
∆𝑥𝑖 = √

2𝑘𝐵𝑇∆𝑡

𝜁𝑖
𝑛𝑖 +

𝐹

𝜁𝑖
∆𝑡,   𝜁𝑖 = 𝜁0𝐿𝑖 

∑ ∆𝑥𝑖
3

𝑖=1
= 0

                                           (𝐷. 3) 

 

 

Figure D.3 (a) The 3-arm branched architecture of micelles and (b) the corresponding analogy to the 

Kirchhoff circuit system.  

In the above, the subscript 𝑖 stands for the 𝑖th arm, 𝐿𝑖 is the length of arm 𝑖, and  𝜁0 is the 

drag coefficient per unit length of strand. The role of non-zero constrained force 𝐹 at the only 

junction for a 3-arm star can be understood simply as fluctuating “potential” arise from 

imbalances in currents of each strands if the forces were absent: When an inward current were to 

occur, a high potential is then produced which would be just large enough to push back against 

the inflow. Since the microscopic topology of termini has little effect on the overall relaxation 

behavior, it is sufficient to label each of them as point-like objects (with functionality 𝑧) 

numerically in order (𝑖 =  1, 2, …). Assuming there is no restriction on the angles with which the 

strands meet at a junction, any strands can be thereof denoted simply by the two labels of the 

termini it connected with, for example (𝑖, 𝑗). Such labelling results in a bidirectional linked list to 

represent all the connectivity relationships among individual strands contained in a micelle 



 192 

cluster regardless of its complexity, named connectivity list, its use simplifies the mapping 

between the specific cluster configurations and the dynamic property of the above constrained 

diffusion. Thus, Eq. (D.3) can be rewritten in a matrix form corresponding to its labelled 

architecture (See Fig. D.3a) given as: 

[
 
 
 
 
 
 
1
0
0
0
0
0
−1

     

0
1
0
0
0
0
−1

     

0
0
1
0
0
0
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0
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0
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0
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∆x42
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F2
F3
F4 ]

 
 
 
 
 
 

=

[
 
 
 
 
 
 
b41
b42
b43
0
0
0
0 ]
 
 
 
 
 
 

                         (D. 4) 

   where,  

𝑎𝑖𝑗 =
∆𝑡

𝜁𝑖𝑗
,   𝑏𝑖𝑗 = √

2𝑘𝐵𝑇∆𝑡

𝜁𝑖𝑗
𝑛𝑖𝑗  

Note that the forth to the sixth rows in the above matrices correspond to the constrained forces 

(i.e., 𝐹1, 𝐹2 and 𝐹3 = 0) at the free end-caps. From Eq. (D.4), the above constrained diffusion 

problem for a micelle cluster is very much similar to the Kirchhoff’s circuit problem (See Fig. 

D.3b), both of which are linear systems and can be solved by the same numerical tools, for 

example, LU decomposition with the increase of system complexity. 

2. Intermicellar reaction and sprouting process  

However, the above constrained diffusion is not efficient to release the stress: the 

relaxation turns out to be rather slow since the strands located in the treelike cluster can 

disentangle only if one of its ends is free. Instead of waiting all branch junctions on one side of a 

strand to disappear, this process can be easily accelerated by intermicellar reactions, i.e., 

breakage and reformation of micelles, which are modelled to occur on a time scale of 𝜏𝑏̅𝑟 with 

equal probability per strand length for breakage and per micelle free ends for reformation. It is 

evident that these intermicellar reactions affect configurations of micelle clusters and hence their 

relaxation by constantly creating free ends, exchanging micelle pieces, and varying cluster 

connectivity as illustrated in Fig. D.4. Since “pointers” are used to track the boundaries between 

relaxed and unrelaxed potion of micelles, over time each strand in a micelle would be 

contaminated by pointers that are created during the breakage and reformations, and eventually 

all parts of all micelle clusters are relaxed. 
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Figure D.4 The intermicellar reactions between branched clusters: (a) breakage (b) recombination. 

To mimic local curvature perturbation triggered creation of new branch junctions, 

sprouting of a nearly infinitesimal bud (i.e., 𝑙𝑏/𝑙𝑠 ≈ 𝑟/𝑙𝑝 ≪ 1, where 𝑙𝑠 is the segmental length 

and 𝑟 is the micelle radius) at an arbitrary location along a micelle strand is carried out with 

equal probability per strand length on the time scale 𝜏𝑏̅𝑢𝑑. Due to its perturbation nature, these 

buds survive no more than a single time step (∆𝑡~1 μs) before smeared out by constrained 

diffusion. In fact, this sprouting process is the only mechanism for adding branch junctions to 

compensate their destruction in thermal equilibrium. Since a newly sprouted bud is free to fuse 

with any dangling arms through breakage and reformation, which makes us believe that such 

sprouting is practically indistinguishable from other branching mechanisms, and thus to include 

it with characteristic time 𝜏𝑏̅𝑢𝑑 should be adequate for the investigation of relaxation behaviors 

among branched micelle systems.    

3. Evolution of pointers and relaxation mechanisms  

Given the involvement of all the above mechanisms, one can finally envisage the 

relaxation of branched micelles through the evolution of pointers. Because of the polydispersity 

in micelle size distribution, each stands are discretized into a sequence of basic units called 

“segments.” Physically, these segments do not occupy any real space, they have a length 𝑙𝑠 ≅ 𝑙𝑝 

and are interpreted as the minimal structure that attribute to the viscoelasticity of the micelle 

solution. Between neighboring segments in a strand, pointers are assumed to travel along the 

straight lines despite their microscopic details, whose effects can only be depicted by dynamics 



 194 

at shorter time and length scales than tube theory where micelle topology and entanglements do 

not matter. As a result, these fast relaxation dynamics (i.e., 𝐺𝐻(𝜔) in Eq. (5.2) of the main text 

of Chapter 5), including Rouse and bending motions, are excluded from the simulation of 

pointers, but added later in an analytic form at high frequencies to avoid any unnecessary 

computational cost. Representing the unrelaxed tube ends, the strand potions bounded by a pair 

of neighboring pointers are used to calculate the stress relaxation function 𝜇(𝑡) (See Eq. (5.2) in 

the main text of Chapter 5) for long time relaxation behaviors, given as 

𝜇(𝑡) =
1

𝑀
∑

1

𝑆𝑖
{∑∑[𝜉𝑘+1(𝑡) − 𝜉𝑘(𝑡)]

𝑁𝑗

𝑘=1

𝑆𝑖

𝑗=1

}

𝑀

𝑖=1

                                                      (𝐷. 5) 

where, 𝑁𝑗, 𝑆𝑖, and 𝑀 is the numbers of pointers, strands, and micelles contained in strand 𝑗, 

micelle 𝑖, and the simulation ensemble, respectively. 𝜉𝑘 is the location of pointer 𝑘 at tube 

coordinates, which varies according to different relaxation mechanisms. For the constrained 

diffusion, as illustrated in Fig. D.5, the shrinkage of a dangling arm results in a corresponding 

inward movement of pointers on that arm. Whereas the pointers on a growing arm or inner 

backbone (i.e., a strand terminated by branch junctions at both ends) are not allowed to move, 

since the unrelaxed portions between these pointers remain unrelaxed even if micellar material is 

flowing into or through the strand.  

   

 

Figure D.5 The relaxation of branched micelles represented by the evolutions of pointers in the presence 

of sprouting and constrained diffusion.  
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Similar to a linear micelle, a dangling arm within a micelle cluster also undergoes end 

fluctuations, known as the contour length fluctuations (CLFs) in polymer physics. Thus, to 

account for its effects, only the nearest pointers to the free ends are moved inward. Since the new 

branches formed by sprouting process represent exploration of different configurations, and 

hence cannot increase the amount of unrelaxed segments, their further growth would actually 

induce relaxation due to the sacrifice made by other unrelaxed materials to feed the growth of 

those branches. (See Fig. D.5) In addition, each new dangling arms created by a breakage event 

can relax with both constrained diffusion and CLFs. Inner backbones can also be reformed by 

these arms, and when this occurs, the pointers on the arms are retained. Now these pointers are 

inside a backbone and remain stationary until the strand breaks again, which creates new free 

ends and makes the pointers mobile. Thus, a table is kept for each strand to record the above 

changes in number and positions of the pointers. Over time, the unrelaxed portions between 

neighboring pointers decrease. When the two pointers pass through each other, they will be 

removed from the table indicating the completeness of the relaxation for that portion.     
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Appendix E: Brownian Dynamics Simulation for Bead-spring Chains  

I. Equations of Bead-spring Chain 

In this Appendix, the dimensionless governing equation of bead motion, i.e., Eq. (6.4a) in 

the main text of Chapter 6, are derived in details as below: 

The movement of beads 𝑗 and 𝑗 − 1 of a bead-spring chain shown in Fig. E.1 are given 

by Eq. (6.3a): 

{
𝜁𝑏𝒓̇𝒋 = 𝜁𝑏(𝜵𝒗)

𝑻 ∙ 𝒓𝒋 + 𝑭𝒋
𝒔𝒑,𝒕

+ 𝑭𝒋
𝑹 

𝜁𝑏𝒓̇𝒋−𝟏 = 𝜁𝑏(𝜵𝒗)
𝑻 ∙ 𝒓𝒋−𝟏 + 𝑭𝒋−𝟏

𝒔𝒑,𝒕
+ 𝑭𝒋−𝟏

𝑹  
                                  (𝐸. 1) 

 

  
Figure E.1 Illustration of bead-spring chain and the forces exerted on beads 𝑗 and 𝑗 − 1. Note that 𝑭𝒋

𝒇
 is 

the friction force defined as 𝑭𝒋
𝒇
= 𝜁𝑏(𝛁𝐯)

𝑻 ∙ 𝒓𝒋 

From Fig. S1, we have 𝑹𝒋 = 𝒓𝒋 − 𝒓𝒋−𝟏 and 𝑭𝒋
𝒔𝒑,𝒕

= 𝑭𝒋+𝟏
𝒔𝒑

− 𝑭𝒋
𝒔𝒑

; thus 

𝜁𝑏(𝒓̇𝒋 − 𝒓̇𝒋−𝟏) = 𝜁𝑏(𝜵𝒗)
𝑻 ∙ (𝒓𝒋 − 𝒓𝒋−𝟏) + (𝑭𝒋

𝒔𝒑,𝒕
− 𝑭𝒋−𝟏

𝒔𝒑,𝒕
) + (𝑭𝒋

𝑹 − 𝑭𝒋−𝟏
𝑹 )

𝜁𝑏𝑹̇𝒋 = 𝜁𝑏(𝜵𝒗)
𝑻 ∙ 𝑹𝒋 + (𝑭𝒋+𝟏

𝒔𝒑
+ 𝑭𝒋−𝟏

𝒔𝒑
− 2𝑭𝒋

𝒔𝒑
) + (𝑭𝒋

𝑹 − 𝑭𝒋−𝟏
𝑹 )   

             (𝐸. 2) 

According to Eqs. (2) and (3b): 
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𝑭𝒋
𝒔𝒑
=

3𝑘𝐵𝑇

𝑁𝐾,𝑠𝑝𝑏𝐾
2

𝑹𝒋

1 − (|𝑹𝒋| 𝑅0⁄ )
2 ,   𝑅0 = 𝑁𝐾,𝑠𝑝𝑏𝐾 ,   𝑁𝐾,𝑠𝑝 =

𝑁𝐾
𝑁𝑠𝑝

,   𝑭𝒋
𝑹 = √

6𝑘𝐵𝑇𝜁𝑏
∆𝑡

𝒏𝒋 

We substitute the above expressions into Eq. (E.2), yielding: 

𝜁𝑏
𝛥𝑹𝒋

𝛥𝑡
= 𝜁𝑏(𝜵𝒗)

𝑇 ∙ 𝑹𝒋 +
3𝑘𝐵𝑇

𝑁𝐾,𝑠𝑝𝑏𝐾
2 [

𝑹𝒋+𝟏

𝑓(𝑹𝒋+𝟏)
+

𝑹𝒋−𝟏

𝑓(𝑹𝒋−𝟏)
−

2𝑹𝒋

𝑓(𝑹𝒋)
] + √

6𝑘𝐵𝑇𝜁𝑏
∆𝑡

(𝒏𝒋 − 𝒏𝒋−1)   (𝐸. 3) 

where 𝑓(𝑹𝒋) = 1 − (|𝑹𝒋| 𝑅0⁄ )
2
. 

And for the polymeric stress, 

𝜮𝒑 = 𝜈 〈𝛴
𝑗

𝑁𝑠𝑝𝑹𝒋𝑭𝒋
𝒔〉 =

3𝜈𝑘𝐵𝑇

𝑁𝐾,𝑠𝑝𝑏𝐾
2
〈𝛴
𝑗

𝑁𝑠𝑝𝑹𝒋𝑹𝒋/𝑓(𝑹𝒋)〉                                 (𝐸. 4) 

Replacing 𝑹𝒋 with the corresponding dimensionless variable 𝑹̃𝒋 = 𝑹𝒊/√𝑁𝐾,𝑠𝑝𝑏𝐾, Eqs. (E) 

and (E.4) can be rewritten as: 

{
 
 

 
 
𝛥𝑹̃𝒋 = (𝜵𝒗)

𝑇 ∙ 𝑹̃𝒋𝛥𝑡 +
3𝛥𝑡

𝜏𝑠𝑝
[
𝑹̃𝒋+𝟏

𝑓(𝑹̃𝒋+𝟏)
+

𝑹̃𝒋−𝟏

𝑓(𝑹̃𝒋−𝟏)
−

2𝑹̃𝒋

𝑓(𝑹̃𝒋)
] + √

6𝛥𝑡

𝜏𝑠𝑝
(𝒏𝒋 − 𝒏𝒋−1)

𝜮𝒑 = 3𝜈𝑘𝐵𝑇 〈𝛴𝑗
𝑁𝑠𝑝𝑹̃𝒋𝑹̃𝒋/𝑓(𝑹̃𝒋)〉

      (𝐸. 5) 

where 𝑓(𝑹̃𝒋) = 1 − (|𝑹̃𝒋| 𝑅̃0⁄ )
2
, 𝑅̃0 = √𝑁𝐾,𝑠𝑝, and 𝜏𝑠𝑝 = 𝜁𝑏𝑁𝐾,𝑠𝑝𝑏𝐾

2/𝑘𝐵𝑇. 

Since for chains in equilibrium, 𝚺𝒑 = 𝟎, and otherwise 𝚺𝒑 = 𝐺𝑝(𝝈𝒑 − 𝑰), we have  

𝜮𝒑 = 𝐺𝑝 {
〈𝛴𝑗

𝑁𝑠[𝑹̃𝒋 𝑹̃𝒋 𝑓⁄ (𝑹̃𝒋)]〉

〈𝛴𝑗
𝑁𝑠[𝑹̃𝒋 𝑹̃𝒋 𝑓⁄ (𝑹̃𝒋)]〉𝑒𝑞

− 𝑰},   𝐺𝑝 = 3𝜈𝑘𝐵𝑇                           (𝐸. 6) 

II. Simulation Algorithm 

Here we describe our procedure for combining our bead-spring Brownian dynamics 

simulation results into specific types of deformation, i.e., uniaxial extension and simple shear, in 

either steady deformation or creep.   

Under homogeneous deformation, 𝛁 ∙ 𝝈 = 𝟎, the original upper-convective Maxwell 

equation for segmental dynamics (Eq. (6.5)) can be simplified as: 

{

𝝈̇𝒔 = 𝝈𝒔 ∙ 𝜵𝒗 + (𝜵𝒗)𝑇 ∙ 𝝈𝒔 − (𝝈𝒔 − 𝑰)/𝜏𝑠

𝜏̇𝑠 = 1 − 𝜆(𝜏𝑠 − 𝜏0
𝑠),   𝜆 = 𝜇√2𝑡𝑟(𝑫 ∙ 𝑫) 

𝜮𝒔 = 𝐺𝑠(𝝈𝒔 − 𝑰),   𝜏𝑠|𝑡=0 = 𝑡𝑊

                                       (𝐸. 7) 

If we assume the external stress is applied along the 𝑧 direction, then the detailed form of 

deformation rate tensor 𝑫 is given as: [Larson (1988)] 
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For uniaxial extension: 

𝑫 = 𝜵𝒗 = [

𝜀𝑥̇ 0 0
0 𝜀𝑦̇ 0

0 0 𝜀𝑧̇

]                                                     (𝐸. 8𝑎) 

For simple shear: 

𝜵𝒗 = [
0 0 𝛾̇𝑥𝑧
0 0 0
0 0 0

] ,   𝑫 = [
0 0 𝛾̇𝑥𝑧/2
0 0 0

𝛾̇𝑥𝑧/2 0 0
]                               (𝐸. 8𝑏) 

where 𝜀𝑥̇, 𝜀𝑦̇, and 𝜀𝑧̇ are the extension rates in 𝑥, 𝑦, 𝑧 directions, and 𝛾̇𝑥𝑧 is the simple shear rate 

in 𝑥𝑧 plane. 

The condition of incompressibility, i.e., tr(𝛁𝐯) = 0, implies 

For uniaxial extension: 

𝜀𝑥̇ = 𝜀𝑦̇ = −𝜀𝑧̇/2 = 𝜀̇                                                   (𝐸. 9𝑎) 

For simple shear: 

𝛾̇𝑥𝑧 = 𝛾̇                                                                 (𝐸. 9𝑏) 

Therefore, application of our simulation model to the above two types of deformations is 

accomplished by substituting the above expressions into Eqs. (6.4a) and (E.7). Since for both 

cases, the deformation in the 𝑦 direction is the same as in the 𝑥 direction, Eq. (E.7) can be 

rewritten in a scalar form with only 𝑥 and 𝑧 components, i.e.,  

For uniaxial extension: 

{

𝜎̇𝑧𝑧
𝑠 = 2𝜀̇𝜎𝑧𝑧

𝑠 − (𝜎𝑧𝑧
𝑠 − 1)/𝜏𝑠

𝜎̇𝑥𝑥
𝑠 = −𝜀̇𝜎𝑥𝑥

𝑠 − (𝜎𝑥𝑥
𝑠 − 1)/𝜏𝑠

𝜏̇𝑠 = 1 − 𝜇(𝜏𝑠 − 𝜏0
𝑠)√3|𝜀̇|

                                          (𝐸. 10𝑎) 

For simple shear: 

{

𝜎̇𝑥𝑧
𝑠 = 𝛾̇𝜎𝑥𝑥

𝑠 − 𝜎𝑥𝑧
𝑠 /𝜏𝑠

𝜎̇𝑥𝑥
𝑠 = −(𝜎𝑥𝑥

𝑠 − 1)/𝜏𝑠

𝜏̇𝑠 = 1 − 𝜇(𝜏𝑠 − 𝜏0
𝑠)|𝛾̇|

                                                  (𝐸. 10𝑏) 

Equations (S10) are now ready for numerical analysis if a constant deformation rate is 

imposed. For the imposition of a constant stress, a general force balance can be established as:  

𝜵 ∙ (𝜮 + 2𝜂𝑫) = 𝟎                                                         (𝐸. 11𝑎) 

For uniaxial extension: 

   
𝛴𝑧
𝑒𝑥𝑡 ≡ 𝐴/𝐴0(𝛴𝑧𝑧 − 𝛴𝑥𝑥 + 3𝜂𝜀̇)

𝛴𝑧
𝑒𝑥𝑡 ≡ 𝑒−𝜀(𝛴𝑧𝑧 − 𝛴𝑥𝑥 + 3𝜂𝜀̇)

                                      (𝐸. 11𝑏) 

For simple shear: 
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𝜵𝒙𝒛 ∙ (𝜮 + 2𝜂𝑫) = 0

𝛴𝑥𝑧
𝑒𝑥𝑡 ≡ 𝛴𝑥𝑧 + 𝜂𝛾̇

                                                     (𝐸. 11𝑐) 

where 𝜂 is a small artificial viscosity (= 0.33%𝐺𝑝𝜏0
𝑠), which is added to ease numerical 

simulation, and results are insensitive to this small value as shown by Fig. E.2. 𝚺 is the overall 

stress with contributions from both polymeric (Eq. (E.6)) and segmental parts.  

 

 

Figure E.2 Illustration of the insensitivity of simulation results to the value of 𝜂 and simulation time step 

∆𝑡. The parameters are the standard values listed in Table 6.1. 
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