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ABSTRACT

Language conveys meaning, so natural language processing (NLP) requires rep-

resentations of meaning. This work addresses two broad questions: (1) What

meaning representation should we use? and (2) How can we transform text to our

chosen meaning representation? In the first part, we explore different meaning

representations (MRs) of short texts, ranging from surface forms to deep-learning-

based models. We show the advantages and disadvantages of a variety of MRs for

summarization, paraphrase detection, and clustering. In the second part, we use

SQL as a running example for an in-depth look at how we can parse text into

our chosen MR. We examine the text-to-SQL problem from three perspectives—

methodology, systems, and applications—and show how each contributes to a

fuller understanding of the task.
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CHAPTER 1

Introduction

Language is used to convey meaning, so of course many natural language processing (NLP)

applications depend on the meaning of text. For example, summarization can be thought

of as communicating the most important parts of a text’s meaning. Question answering

involves identifying a particular relationship between the meanings of two texts: one an-

swers the other. Text generation requires starting from some desired meaning and creating

a grammatically correct expression of that meaning in text. And machine translation can

be viewed as the task of expressing the meaning of a text from one language in another

language. Thus, the question of how to represent the meaning of text is an essential, under-

lying part of most of NLP. This thesis examines two aspects of that question.

The first is choosing meaning representations (MRs): What are our options? Should we

simply use the text as its own representation? Should we rely on traditional bag-of-words-

based representations? Should we parse sentences into lambda calculus or other structured

MRs? Or should we rely on neural networks to generate some powerful but uninterpretable

MR? And to what extent is our choice of MR determined by the NLP task?

The second is once we have selected a representation, how can we parse text into our

chosen MR? For some MRs, such as a word-count vector, this is almost trivial. However,

for more structured representations, it is anything but; semantic parsing has been an area

of research for decades and remains an open problem. Part of the difficulty is that natural

language can be ambiguous, so that the same literal string can mean different things in

1



different contexts: “She was admitted to the bar” might mean the bouncer allowed her into

the drinking establishment or the state regulatory board licensed her as an attorney. Another

challenge is the opposite: the same meaning may be expressed by different literal strings,

called paraphrases.

As the related work will show, both the choice of MR and the method of generating it

are extremely broad questions, and answering them in a single thesis is not possible. We

therefore narrow the scope by limiting our exploration to short texts—sentences, fragments,

and dialog snippets—leaving the wider world of lexical, paragraph-level, and document-

level semantics aside. In addition, we focus our discussion of how to parse text on a single

MR—in this case, SQL.

In this introduction, we begin with background information on how to represent mean-

ing. This includes an overview of MRs that the NLP community has explored, followed

by description of related work looking at the usefulness of MRs for a variety of tasks. We

then review related research into how to transform text into the desired MR. Finally, we

will describe how each of the subsequent chapters addresses the overarching questions:

How should we represent meaning? And how can we parse text to our chosen meaning

representation?

1.1 How to Represent Meaning

1.1.1 Overview of Existing MRs

Decades of NLP work have, implicitly or explicitly, required a way to represent the mean-

ing of text. In this subsection, we briefly describe the most common MRs.

2



1.1.1.1 Starting from Words

Language is made up of words, and words typically contribute to a text’s meaning. Thus,

an obvious way to represent the meaning of a text is to start from words.

Word Counts and TF-IDF An early, and still frequently used, approach is simply to

ignore syntax entirely and count the frequency of tokens1 in a text. The text can then be

represented as a word-count vector whose length is equal to the number of tokens in the

vocabulary (often with an “UNK” token to represent any out-of-vocabulary tokens). The

i-th value in the vector is the number of times the i-th token from the vocabulary appears

in the text.

One problem with this is that certain words are very common and thus not very in-

formative about the meaning of a particular sentence. For example, the word “the” is the

most common word in English, appearing about twice as often as even the second most

common word, yet knowing that the word “the” appears in a sentence tells us little about

the sentence’s meaning.

An alternative to word counts that takes this into account is term-frequency inverse-

document-frequency, or tf-idf. As the name implies, this measure has two components.

Term frequency is the same as the word counts above: how many times does each term in

the vocabulary appear in the text we wish to represent? Document frequency refers to how

often each term appears in the corpus as a whole. For words like “the,” document frequency

is a large number. Tf-idf is the term frequency times the inverse of the document frequency.

Thus, while the word “the” may appear many times in a given text, it appears so often in

most corpora that the tf-idf vector for the text will have a small value in the “the” slot of

the vector.

Both word count vectors and tf-idf vectors have several weaknesses as MRs. For one

thing, they are extremely sparse—that is, most of the values in the vector are zeros. The

1For simplicity, we focus on tokens, but this paragraph applies as well to bigrams, trigrams, and potentially
longer n-grams.
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number of words in a sentence is typically on the order of 101 or, for long sentences, 102,

whereas a vocabulary size on the order of 104 is common. Another problem is that they

represent sentences as a bag of words, which is to say they ignore syntax. “The dog chased

the cat” and “The cat chased the dog” have identical word count and tf-idf vectors. And

a third issue is that they ignore what words actually mean—e.g., that dogs and cats are

animals and that chasing is a type of movement.

Lexical semantics Lexical semantics moves beyond counting words and considers what

individual words mean. On its surface, this seems like it should be straightforward: simply

have a dictionary that lists the definition of each token in our vocabulary.

Yet this approach immediately encounters the problem of polysemous words, where the

same token can have more than one meaning. For instance, in the sentence, “After visit-

ing four bars in one night, John didn’t remember much when he woke up behind bars,”

the same string of letters refers to both drinking establishments and metal barriers to keep

prisoners in jail. Moreover, the second instance of bars may or may not be literal; “behind

bars” may be used idiomatically to mean “in jail,” even if the jail in question uses solid

metal doors instead of bars to contain its prisoners. NLP work in word sense disambigua-

tion and metaphor detection seek to address these issues.

A dictionary also has the problem of out-of-vocabulary (OOV) words. These may in-

clude infrequently used terms or neologisms—new words that did not exist when the dic-

tionary was compiled. The Oxford English Dictionary publishes four updates each year to

keep up with new words and new usages of old ones; their January 2018 update included

over 1000 words.2 In some cases, morphology—that is, the form of the word—can help.

New words may be coined by combining old ones—for instance, one of the OED’s new

entries this year is hangry, which combines “hungry” and “angry.” Affixes (in English,

usually prefixes and suffixes) change the meanings of their roots in predictable ways; undo,

unpack, and unhook bear similar relationships to do, pack, and hook, respectively. And
2http://public.oed.com/the-oed-today/recent-updates-to-the-oed/january-2018-update/
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some methods of addressing OOV proper names are described in Subsection 1.1.3. Never-

theless, OOV words do remain a difficulty for dictionary-based representations of meaning.

Despite these challenges, dictionary-like databases of words have had an important

role in NLP. In particular, WordNet (Fellbaum, 1998) is a widely used resource. It collects

nouns, verbs, adjectives, and adverbs. Each word belongs to at least one synset, or grouping

of words with the same or nearly the same meaning. Polysemous words appear in more

than one synset, reflecting their multiple meanings.

Synsets are connected in a primarily hierarchical network structure. The majority of

edges in the network represent hypernym/hyponym relations; the hypernym synset ex-

presses a broader concept, and the hyponym synset expresses a specific form of that con-

cept. For example, a synset containing “dog” is a direct hyponym of a synset containing

“canine,” which in turn is a direct hyponym of “carnivore.” That synset for “carnivore” is

hypernym not only to “canine,” but also to “feline,” which in turn is a hypernym to a synset

containing the word “cat.”

This network structure enables some measurement of the similarity between words.

One straightforward method is to count the number of steps in the shortest path between

two synsets; “dog” and “cat” are four steps apart. Other measures take into account other

features of the nodes’ location in the network, such as their depth (Leacock-Chodorow

Similarity) or the Least Common Subsumer (LCS)—the closest ancestor that the two share

(Wu-Palmer Similarity, Resnik Similarity).

For a (primarily) hand-curated resource, WordNet is enormous. Version 3.0 contains

nearly 150,000 unique strings in over 115,000 synsets, creating a total of over 200,000

word-sense pairs.3 It reflects decades of human effort. Alternative approaches that require

less effort and can thus afford to capture a longer tail of word usages are obviously desir-

able; distributional semantics is one answer to this.
3http://wordnet.princeton.edu/wordnet/man/wnstats.7WN.html
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Distributional Semantics Distributional semantics seeks to represent the meanings of

words based on how they are used. These techniques look at large corpora, and, based

on the contexts in which each word tends to appear, learn a large (typically 50-1000-

dimensional) vector representation of each word. These vectors have some interesting and

useful properties. Famously, if one starts with the vector for “king,” subtracts the vector

for “man,” and adds the vector for “woman,” the resulting vector is closer to the vector for

“queen” that to any other word vector (Mikolov et al., 2013b). Likewise, the difference

between the vectors for “Berlin” and “Germany” is quite similar to the difference between

the vectors for “Paris” and “France” (Mikolov et al., 2013a). Although distributional se-

mantics has been around for decades (Schütze, 1998), it has seen a rapid rise in popularity

in recent years, in part thanks to the work of Mikolov, the availability of pre-trained word

vectors (Mikolov et al., 2013a; Pennington et al., 2014), and the ability for word vectors to

be used with deep neural networks.

Composing word vectors remains a significant challenge, though. Adding word vec-

tors might seem like a reasonable place to start. Yet sentences and longer texts are often

more than the sum of their parts. That is, summing the vectors treats sentences as bags of

words without regard to syntax, just as word-count and tf-idf vectors do. Likewise, idioms

and multiword expressions may mean something very different from what the sum of their

vectors implies: one cannot simply add the vector for “cutting” to the vector for “corners”

and hope to have an accurate representation of the meaning of “cutting corners.” For some

applications, summed embeddings provide good-enough performance with low overhead

(Ritter et al., 2015); see also infra Chapter 4. But finding more accurate, distributionally

based representations of phrases and entire sentences remains an active area of research.

(Mitchell and Lapata, 2010) compared additive models with multiplicative ones for finding

similarities among adjective-noun, noun-noun, and verb-object phrases, and found multi-

plicative models significantly better. Mikolov et al. (2013a) identified words that appear

often together and learned vectors for entire phrases. Some researchers have used various
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neural networks to combine word vectors into phrase or sentence representations (Socher

et al., 2012; Tai et al., 2015). Others have tried to generate specialized word vectors with

a focus on compositionality (Kenter et al., 2016). Still others try to generalize techniques

from building word embeddings to building embeddings for entire sentences, paragraphs,

or documents (Kiros et al., 2015; Le and Mikolov, 2014).

1.1.2 Composing to Sentences

Shallow Semantics Sometimes, representing all of the semantic information in a sen-

tence may be overkill. Shallow semantics refers to efforts to represent just a small portion

of semantic information about the sentence. Semantic Role Labeling (SRL) has been a

major example of this area. SRL seeks to label constituents within a sentence with their

semantic roles—for instance, to identify the agent and patient of a verb (Gildea, 2002).

If we label “[John AGENT] ate [the fish PATIENT],” we see that John is the agent who did the

eating. Thus it is apparent that “[The fish AGENT] ate [John PATIENT],” means something quite

different—the fish did the eating—whereas the syntactically different “[The fish PATIENT]

was eaten by [John AGENT],” is a paraphrase of the first sentence.

Frame semantics is similar to SRL, but adds a word-sense disabmbiguation component

(Das et al., 2014). Frames take into account that different types of verbs will have different

types of roles for their arguments. For instance,4 “eat,” “dine,” and “devour” all signify

the ingestion frame, while “hike,” “lope,” and “mosey” all invoke the self motion frame.

Ingestion may have an ingestibles argument, which signifies the thing being eaten; obvi-

ously, self motion would not be expected to have such an argument. Likewise, although

self motion may have path and direction arguments, ingestion typically would not; one

may “mosey north” but not “eat north.” The task of frame-semantic parsing involves iden-

tifying predicates that evoke a frame, figuring out which frame the predicate evokes, and

4Example frames are from FrameNet, https://framenet.icsi.berkeley.edu/fndrupal/
framenet_search
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identifying which constituents fill which arguments in the frame. The task relies heavily

on hand-generated resources such as FrameNet (Fillmore et al., 2003).

While it is commonly viewed as an information extraction task, relation extraction can

also be construed as a form of shallow semantics; indeed, in some ways, it is simply the

other side of the frame-semantic parsing coin. Whereas frame semantics focuses on finding

a predicate and the arguments that fill its slots, relation extraction involves identifying enti-

ties and the relationships between them. Extracted relations may be used to build or expand

knowledge bases (Mitchell et al., 2015); other applications include question answering and

mining biomedical texts to identify interactions that may help in developing drugs (Bach

and Badaskar, 2007).

Representations in the Semantic Parsing Literature Semantic parsing is commonly

defined as the task of transforming natural language text into a complete, formal meaning

representation (Clarke et al., 2010). Different researchers in this field have used different

MRs. Some have focused on general-purpose MRs, such as lambda calculus, Prolog, and

AMR, while others aim for more task-specific MRs.

Lambda calculus represents meanings as functions applied to variables and constants

(Artzi et al., 2013). For example, the natural language sentence “what states border texas”

may be expressed as λx.state(x) ∧ borders(x, texas) (Zettlemoyer and Collins, 2005).

Here, x is an example of a variable, while state() is a function that applies to a single

entity and borders() is a function describing a relationship between two entities. Breaking

the entire expression down, we see that it represents each entity x such that x is a state

and x is in a borders relationship with texas. Lambda calculus may also use higher-order

functions, which are functions that take other functions as their input. It can incorporate

quantifiers and represent all of first order logic (Artzi et al., 2013).

Lambda calculus has been a popular MR and the target of many semantic parsing sys-

tems (Zettlemoyer and Collins, 2005; Wong and Mooney, 2007; Artzi and Zettlemoyer,
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2013; Reddy et al., 2016), perhaps because of its flexibility and expressiveness. Naviga-

tional instructions for a robot, questions about geography, and queries about flight informa-

tion can all be represented in this language. Yet it is not straightforward to write, making

the generation of anything more than toy datasets difficult (Liang et al., 2011; Iyer et al.,

2017).

Prolog is a declarative programming language based on first-order logic. Unlike pro-

cedural programming languages (such as Python and C++), declarative programming lan-

guages describe facts and rules. In Prolog, these facts and rules are represented by rela-

tions, and queries may be run over those relations. Prolog is thus not terribly dissimilar

from lambda calculus, and it has the added benefit of being a programming language.

Abstract Meaning Representation (AMR) is a recently-developed representation seek-

ing to unify the somewhat fragmented world of semantic annotations (Banarescu et al.,

2013). It represents sentences as rooted, directed, graphs, with labels for the edges and

leaf nodes. It incorporates PropBank frames, coreference, modality, negation, reification,

and other concepts from a variety of views on what is important in semantics. Much of

the research on AMR has been about how to parse English sentences to AMR, but recent

work also explores its usefulness to such diverse applications as summarization (Liu et al.,

2015), headline generation (Takase et al., 2016), biomedical event extraction (Rao et al.,

2017), machine comprehension (Sachan and Xing, 2016), and question answering (Mitra

and Baral, 2016).

Task-specific MRs are an alternative to general-purpose MRs. Task-specific represen-

tations are designed to be executed in order to achieve certain types of goals. For example,

CLANG is the coaching language used to advise “players” in the RoboCup soccer simu-

lation (Chen et al., 2003). It is effective at representing instructions and rules relevant to

soccer, such as “If our player 4 has the ball, then our player 6 should stay in the left side

of our half” (Wong and Mooney, 2006). It has no way of expressing “Who teaches discrete

mathematics?” because querying a relational database is irrelevant to the task of coaching
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a robot soccer team. Other formal languages represent navigational instructions for robots,

such as “Go left to the end of the hall” (Matuszek et al., 2013), but do not include the con-

cept of players or a ball. Similarly, SQL, which is designed to query relational databases,

can express the question about discrete mathematics (given a database schema that includes

courses and instructors); however, it can express neither where soccer players ought to be

based on the state of the game nor which hallway a robot ought to turn down. If-this-then-

that (IFTT) recipes (Quirk et al., 2015) are simple conditional programs that connect apps,

social media, smart-home devices, and so on using triggers and actions; an example recipe

could express the instruction “turn on my lights when I arrive home.”

1.1.3 Grounding

While a great deal of effort has gone into accurately representing sentence meanings, it is

important to realize a limitation: the forms themselves express relationships among sym-

bols, but they do not indicate what those symbols mean. Language describes things and

people and actions and concepts, many of which exist in the real world. Without some

grounding, there is no meaningful distinction between Eats(John, fish) and Eats(fish, John),

or between either of those and DancesWith(Kevin, wolves); each is simply a form of Pred-

icate(Arg0, Arg1). Grounding describes tying MRs to these real things.

Symbols may be grounded in a variety of ways: predicates may be relationships in a

knowledge base and arguments the entities in that base (Zelle and Mooney, 1996; Reddy

et al., 2014); the symbols might belong to a vocabulary of instructions that cause a robot

to execute certain behaviors (Kate et al., 2005); they can be tied to images or video; or

they can be based in distributional representations of words (Beltagy et al., 2014). In this

subsection, we focus on grounding entities and perceptual grounding.

Resolving Entities and Coreferences An important task in understanding the meaning

of a sentence is understanding the entities—people, places, things, ideas, organizations,
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and so on—in that sentence. One component of that is coreference resolution; that is, iden-

tifying which constituents in one or more sentences refer to the same entity. For example,

in the sentence “John ate the fish, and he found it delicious,” the entity doing the eating

(“John”) is the same as the one finding something delicious (“he”), even though the surface

forms of the words are different. Coreference may involve a pronoun and its antecedent,

as in that example, but it can also involve different noun phrases referring to the same en-

tity, as in, “When Barack and Michelle Obama arrived, the President waved as the First

Lady smiled at the crowd.” Here, “the President” and “Barack” refer to one entity, while

“Michelle Obama” and “the First Lady” refer to another.

Entity resolution is the related task of tying an entity in a sentence to some real-world

entity. For instance, in the real world, there is a person named Barack Obama, who is

the 44th President of the United States, the husband of Michelle, the father of Sasha and

Malia, owner of Bo and Sunny, and so on. We would like to somehow recognize that

both “Barack” and “the President” in our example sentence are referring to this real-world

person. While on its surface, this might seem like a simple enough task—just match the

names in the text to a database of names—it is far from trivial. For one thing, more than

one person may have the same name; “John Roberts” may refer to the Chief Justice of the

Supreme Court in one context and the actor who voices a character on the animated show

Bob’s Burgers in another. For another, entities may change roles over time: a 2003 article

referring to “the President” would likely mean George W. Bush, a 2016 article is probably

talking about Barack Obama, and one from 2017 probably means Donald Trump.

An alternative to resolving an entity to a specific real-world entity is to simply iden-

tify its type. Many named-entity recognition systems are designed to identify an entity

designated by a name as an instance of “Person,” “Organization,” “Location,” and similar

categories. The first step of this task may simply be to determine where an entity’s name

begins and ends. For example, in the sentence, “The story first appeared in the New York

Times,” a system must determine that “New,” “York,” and “Times” are all part of the same
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organization name, lest it accidentally label only “New York” as a location.

Perceptual Grounding Language may also be grounded in other modalities, such as

images, video, audio, or haptics. Human language acquisition remains a much-debated

area despite many years of research; however, no one who has ever seen a toddler point

at something in the world and announce “doggy” or “big boat” can doubt that grounding

in other senses is an important part of it. It should therefore be no surprise that NLP

researchers are interested in using other modalities as well.

Feng and Lapata (2010), Bruni et al. (2011), and Roller and Schulte im Walde (2013),

for example, learned semantic representations using corpora that included both text and im-

ages. Thomason et al. (2017) describe a method for learning verb meanings from videos;

for instance, generalizing from videos of overhand and underhand throwing that “throw-

ing” means a hand and an object move together, then the object moves away from the

hand. Multimodal grounding uses more than one modality. Thomason et al. (2016) found

that a robot was better at playing “I Spy” with a human when it had haptic, auditory, and

proprioceptive information in addition to the typically-available visual data.

1.1.4 Natural Language as Its Own MR

If we seek a representation that can completely capture the precise meaning of a piece of

natural language text, a reasonable question is, can we simply use natural language itself?

Natural language is, after all, the representation humans use to communicate meaning to

one another. It is by definition broad enough to represent the meaning of any sentence.

Unlike many representations, lay people can understand it. And it may save a great deal

of parsing effort (assuming the natural language representation is the same as the original

natural language text), as well as the opportunity for errors in the parsing stage to propegate

to downstream uses.

The obvious disadvantage is that natural languages are not designed for ease of com-
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putation. Unlike MRs such as Prolog or SQL, natural language is not directly executable.

Special programs must be written to operate on the NL strings.

Nevertheless, operating on the surface form of natural language strings is a valid option.

Natural logic, for example, is “a logic whose vehicle of inference is natural language”

(MacCartney and Manning, 2007); that is, it uses rules about the surface forms of language

to reason over text without converting it to first order logic or lambda calculus. In addition

to the inference and entailment problems for which it was first proposed, natural logic has

recently proven useful for question answering (Angeli et al., 2016). Likewise, rule-based

systems for text simplification, such as Siddharthan and Mandya (2014), may operate on

the surface form of the text.

1.1.5 Applications of Meaning Representations

While natural language understanding is far from a solved problem, work in semantics has

already shown promise for text summarization, question answering, reasoning over text,

and dialog systems. Moreover, sentence-level semantics representations are important for

understanding semantic relatedness and similarity of sentences; this includes entailment,

inference, paraphrase, and clustering. And as new problems, such as fake news detection,

emerge, meaning representations beyond the text itself may be essential to solving them.

Summarization is the task of conveying the most important information from one or

more documents in a shorter form. Summaries are an essential tool for addressing infor-

mation overload. They may help a human reader decide whether to spend time reading a

particular article, book, or report; or they may act as a substitute for reading the entire doc-

ument. A summary may convey information from a single document or multiple related

documents. Most summarization work is extractive—that is, it builds a summary from

sentences copied from the original document; only very recently have efforts at abstractive

summaries, which involve the generation of new sentences, seen a small amount of success.
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Any summarization system that uses the similarity of sentences to identify the important

concepts of a document (or group of documents) must rely on some sort of MR. Thus, for

example, LexRank (Erkan and Radev, 2004a) and TextRank (Mihalcea and Tarau, 2004),

which build weighted graphs of sentences and identify centroids to extract for a summary,

must use a meaning representation of those sentences in order to measure their similarity.

Traditionally, tf-idf has been used; however, Bawakid and Oussalah (2008) experimented

with a similarity metric that used the WordNet ontology.

Recent years have seen a rapid expansion of the use of different MRs for summariza-

tion. Khan et al. (2015) incorporated semantic role labeling, and Liu et al. (2015) assem-

bled AMR graphs for individual sentences into a single large summary graph, from which

summary text might be generated. MRs based in deep learning have surged in popularity

for summarization since Rush et al. (2015)’s introduction of an encoder-decoder model for

abstractive summarization. For example, Nema et al. (2017) creates a neural representa-

tion of both the text to be summarized and a query to perform query-based summarization,

and Ma et al. (2017) incorporates a semantic similarity evaluation component into their

encoder-decoder network to compare source texts and generated summaries, avoiding the

problem of summaries that are grammatical but lack “semantic relevance” to the text.

Question answering (QA) exists at the intersection of natural language processing and

information retrieval. The goal is to find information that answers a user’s question. Some

systems are designed to retrieve answers from a structured knowledge base; others attempt

to extract the information from a natural language corpus, sometimes even from the web.

Questions may cover many topics, and they come in many forms, which are often distin-

guished by the type of answer they require. Factoid questions, such as “When was Barack

Obama born?” can be answered in just a few words. Some questions require lists as an-

swers; a correct answer to “What do pigs eat?” should include numerous things. Still other

questions, such as “How can I declare a CS major?” seek a procedural answer. The right
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MR may be helpful in representing the question, recognizing relevant text that may answer

it, and, for non-factoid questions, in generating a readable answer.

Judging by the datasets commonly used for semantic parsing, answering questions

seems to be a major application of semantic parsers. The Air Travel Information Sys-

tem (ATIS) (Dahl et al., 1994) consists of spoken questions used to retrieve information

about airlines and flights from a relational database. GeoQuery (Zelle and Mooney, 1996)

is a set of questions about U.S. geography, paired with Prolog expressions that can be run

over the Geobase database of geography facts. The JOBS dataset (Tang and Mooney, 2001)

consists of questions related to a database of job opportunities, with first-order logic rep-

resentations. Some more recent work has sought to address wider domains. Free-917 (Cai

and Yates, 2013) consists of 917 questions that can be answered by Freebase and a lambda

calculus representation for each question, representing 81 domains and 635 distinct Free-

base relations. WebQuestions (Berant et al., 2013) was generated by collecting questions

from Google and the correct answers according to Amazon Mechanical Turk workers; only

the questions and their correct answers are part of the dataset, and the logical form is con-

sidered a latent variable. SpaceBook (Vlachos and Clark, 2014) includes both questions

and other dialog acts in discourses between a tourist and a guide.

But the use of MRs for question answering goes far beyond querying knowledge bases.

For example, a recent SemEval QA task focuses on community question answering (CQA)

(Nakov et al., 2017). On CQA forums, such as Yahoo!Answers and StackOverflow, users

post questions and community members post answers. Potential downsides include the

time it takes to sort through many answers to find the right one, as well as the risk of

wasting community members’ time answering the same question more than once. NLP can

help solve these problems. If a user is about to ask a question that is quite similar to one

that has already been asked, showing the user that question and its answers may obviate

a redundant posting; this is a semantic similarity task. A related task is answer-reranking

based on similarity between the question and the candidate answers, which may help in
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selecting the best answers to present to the user.

Text generation means starting with some information to be conveyed and turning it

into a natural language sentence; in some ways, it is like semantic parsing done in reverse.

It requires choosing the right words, then modifying and ordering them so that they fit

together in grammatical ways. For example, suppose we wish to generate a sentence where

the verb is “see,” the tense is past, the subject is “John,” and the object is “cat”; further

suppose we wish to modify the verb with the adverb “briefly” and the object with “grey,”

“little,” and “furry.” The appropriate sentence is easy for a human to think of: “John briefly

saw a furry little grey cat.” Interestingly, if the order of adjectives were changed to “a grey

little furry cat,” the sentence would sound peculiar to native English speakers. Notice also

that the article “a” is appropriate to the noun “cat” because cats are countable; a mass noun,

such as “sugar,” would not take the same article. Sometimes one sense of a word may be

countable and another may not, so the decision to use an article can subtly alter the meaning

of the generated sentence: a person who has “skin” is simply a normal human being, but

a person who has “a skin” apparently uses animal hides for decorating. Subtleties such

as this make transforming a meaning representation into a sentence a non-trivial task. In

addition, it may be possible to express the same MR in a number of different sentences; for

instance, the same AMR graph may correspond to several syntactically distinct sentences

(Flanigan et al., 2016).

Alternatively, the information to be conveyed may be in some other modality. In this

case, text generation requires first generating the desired MR from the information source,

then transforming that MR into the appropriate surface representation in natural language.

Examples include captioning images (Vinyals et al., 2015) and describing videos in text

(Venugopalan et al., 2015).

Dialog systems combine several applications of sentence semantics. A dialog system

is an agent that interacts with humans through speech. While this can include chat-bots,
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a more interesting case is goal-driven dialog agents. In that case, the human wishes to

accomplish something by talking with the agent. For instance, a user might ask a smart-

phone assistant what restaurants are nearby, then check if one of them is open, and finally

ask for directions to it. Dialog systems must have sufficient natural language understanding

capability to recognize and answer questions, as well as the ability to generate appropriate

natural language responses. The ability to recall conversational state can also be helpful; in

our smart-phone example, if the user asks “What other restaurants are nearby?” the assistant

needs to remember the previously-suggested restaurant to take the “other” constraint into

account.

Project Sapphire is a collaboration between researchers at IBM and University of Michi-

gan to build a task-oriented dialog system that can provide academic advising to undergrad-

uate computer science and engineering students. Such a system will need to understand stu-

dent statements and questions, ask for clarifications, retrieve relevant information, reason

over information from both the conversation and external knowledge bases, and generate

appropriate natural language responses, all in real time. Whereas conversational agents

today tend to be rule-based, Project Sapphire’s planned system is data-driven, requiring

collection and annotation of huge amounts of speech and text. This enormous undertak-

ing requires expertise from many specialists, in areas from natural language processing to

reinforcement learning to emotion recognition to crowdsourcing. A variety of meaning rep-

resentations, from SQL queries to Pyke to AMR, might help with portions of this project.

Natural language understanding and generation will be essential to the project’s success.

Of particular relevance to the present work, the Sapphire Advisor has access to a rela-

tional database of courses, instructors, program requirements, and student histories. The

ability to parse student utterances into SQL queries would enable the system to answer

questions such as, “Who teaches EECS 482 in the fall semester?” Of course, SQL queries

return tables, not sentences, so text generation will also be important to turn those tables

into dialog.
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Moreover, a central dialog manager will need to maintain some representation of the

meaning of the conversation so far. Not every student utterance can or should be parsed to

SQL. As a simple example, a dialog manager ought to distinguish social utterances such as

“How are you?” from substantive questions. A more sophisticated system might be trained

to distinguish a question requiring a database search from one requiring reasoning, such as

“What courses do I need to take before EECS 482?”

1.1.6 Semantic Relationships between Sentences

Several interesting tasks involve understanding the relationship between the meaning of

one sentence and the meaning of another.

Semantic relatedness is the task of predicting how similar humans think two sentences

are (Marelli et al., 2014a).5 Two sentences that have essentially nothing to do with each

other should receive a score of 1; two sentences that mean exactly the same thing should

receive a 5.

Paraphrase detection is a similar, but binary, problem: do these two sentences mean

the same thing? Strictly, two sentences A and B are paraphrases if knowing A to be true

means B must be true, and knowing B to be true means A must be true. The task can be

more difficult than it seems. As we have seen repeatedly from the “John ate the fish” and

“The fish ate John” example, simply having the same words does not mean two sentences

mean the same thing. Issues such as negation scope may arise, as in “The boy who was

not wearing dark glasses could see the man” and “The boy who was wearing dark glasses

could not see the man.” Different words might express the same thing, as in “Jane spoke

with her uncle and his son” and “Jane talked to her cousin and his father.”
5We adopt the term “semantic relatedness” for this task because that is commonly used in the literature. In

reality, that phrase is perhaps overly broad for what is really a measure of semantic similarity only. Semantic
relatedness might reasonably be taken to encompass all of the relationships between sentences described in
this subsection; however, here we use it strictly to refer to this one task.
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Or one sentence may contain additional information, as in “Athena was the goddess

of wisdom, who sprang forth fully formed from her father’s head,” and “Athena was the

goddess of wisdom.” In this case, if sentence A is true, sentence B must be true, while

knowing sentence B to be true does not mean sentence A must be true. This example is

not, then, a paraphrase. It is, however, an entailment.

Recognizing textual entailment (RTE) is a task that takes as input a text, T, and a hy-

pothesis, H. If knowing T to be true means H must be true, then T is said to entail H.

Sometimes RTE tasks also ask about other relationships between T and H; for example, if

T’s truth means H must be false, then the pair is a contradiction.

Presuppositions are facts that a sentence assumes rather than asserts. For instance,

“Sasha’s brother enjoys mangoes,” presupposes that Sasha has a brother and asserts that

person’s enjoyment of mangoes. If a presupposition of a sentence is false, the sentence

is not true—philosophers debate whether it is false or demonstrates some third truth state.

Like entailment, recognizing presuppositions can give us more information about the world

than what the sentence directly asserts, making it potentially useful for tasks such as infor-

mation extraction. Unlike entailments, however, presuppositions survive many modifica-

tions to the original sentence, including negation (“Sasha’s brother does not enjoy man-

goes.”), changes to modality (“Sasha’s brother might enjoy mangoes if he would only try

them.”), and making the sentence a question (“Does Sasha’s brother enjoy mangoes?”).

1.2 Transforming Text to MRs

Once an appropriate MR has been selected, how can we transform natural language text into

that MR? It depends upon the MR. If we choose a simple representation such as word-count

vectors, the algorithm is straightforward. However, for more sophisticated representations,
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such as lambda calculus and SQL, the problem is far from solved. Related work has made

inroads, as described in this section, but significant room for improvement remains.

1.2.1 Semantic Parsing

Semantic parsing means taking as input a natural language sentence and generating as

output a meaning representation of that sentence. As we saw in Section 1.1.1, “mean-

ing representation” (MR) is a broad term, encompassing many possible embodiments of

the information in the sentence that enable a machine to operate on the information. Ex-

isting work covers a wide variety of MRs, including lambda calculus (Zettlemoyer and

Collins, 2005), dependency-based compositional semantics (Liang et al., 2011), Lambda

Dependency-Based Compositional Semantics (Liang, 2013), probabilistic logic (Beltagy

et al., 2014), Abstract Meaning Representation (AMR) (Banarescu et al., 2013), semantic

graphs (Reddy et al., 2014; Yih et al., 2015), frame semantic representations (Das et al.,

2010; Johannsen et al., 2015), a language incorporating both predicates and dialog acts

(Vlachos and Clark, 2014), SQL (Iyer et al., 2017), and logical forms to be executed on a

knowledge base (KB) (Berant and Liang, 2014).

Producing a high-quality meaning representation should facilitate applications that ben-

efit from some degree of natural language understanding. Berant and Liang (2014) demon-

strated improvements in question answering and information extraction using their seman-

tic parser; Beltagy et al. (2014)’s semantic parser improved recognition of textual similarity

and textual entailment. Vlachos and Clark (2014) developed a meaning representation for

a dialog system.

Many different techniques have been explored for semantic parsing. An exhaustive

review of all of them is beyond the scope of this introduction; rather, we identify a few of

the large trends.

One very popular and successful approach has featured combinatory categorial gram-

mars (CCGs) (Bos et al., 2004; Zettlemoyer and Collins, 2005; Zettlemoyer and Collins,
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2007; Kwiatkowski et al., 2010; Artzi and Zettlemoyer, 2011; Kwiatkowski et al., 2011;

Artzi and Zettlemoyer, 2013; Kwiatkowski et al., 2013; Reddy et al., 2014; Krishnamurthy

and Mitchell, 2014; Wang et al., 2014a; Artzi et al., 2015; Misra and Artzi, 2016). A CCG

has a lexicon of words and their syntactic types, and CCGs used for semantic parsing also

have a semantic component. For example, a simple grammar might include the lexicon in

Table 1.1.

dogs NP dogs
cats NP cats
like (S\NP)/NP λx.λy.like(x, y)
play S\NP λx.play(x)

Table 1.1: A simple CCG lexicon.

Syntactic types encode information about how different words combine. The syntactic

type S\NP for the word “play” means that when a word with the syntactic type NP is to the

left of “play,” they can combine to form a phrase with the syntactic type S. So “dogs play”

can be parsed to a sentence, S. The syntactic type (S\NP)/NP for “like” indicates that it can

be combined with an NP to its right to form a phrase with syntactic type S\NP, which can

in turn be combined with an NP to its left to form a sentence. So we can combine “like”

with “cats” to give us a phrase “like cats” with a type of S\NP, and we can then combine

“dogs” with that phrase to give us “dogs like cats” with a type of S.

CCG-based semantic parsers include a logical form component in each word’s lexicon

entry. Thus, when we combine “dogs” and “play,” we also combine their semantic compo-

nents, dogs and λx.play(x) to get play(dogs). When we combine “like” with “cats” we get

λx.like(x, cats), and when we combine that with dogs, we get like(dogs, cats).

One challenge of CCG-based semantic parsing is creation of resources. Lexicons are

frequently domain-specific; for example, the one for the GeoQuery domain will not contain

terms like “airport” and “fly” that are essential to the ATIS air travel domain. If a parser

requires a CCG lexicon, porting it to new domains may require a great deal of human effort

to build a lexicon for the new domain.
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Classical NLP methods based in parsing and grammars have had and continue to have

a large role in semantic parsing. Shift-reduce parsing was an early technique (Zelle and

Mooney, 1996) but remains relevant (Zhao and Huang, 2015; Misra and Artzi, 2016). Da-

monte et al. (2017) describe a transition-based semantic parser. Several researchers have

used synchronous context-free grammars (Wong and Mooney, 2007; Arthur et al., 2015;

Li et al., 2015), while others have used methods focused on the syntactic structure of the

sentence (Ge and Mooney, 2009) or dependency trees (Reddy et al., 2016).

Labeling training data is challenging for many NLP tasks, but this is particularly true

for labeling sentences with their meaning representations, as meaning representations are

rarely intuitive to human annotators. A number of approaches attempt to reduce reliance

on annotated examples, by treating the MR as a latent variable (Berant et al., 2013), or by

using distant supervision (Parikh et al., 2015) or unsupervised approaches (Goldwasser and

Reichart, 2011).

Some techniques make use of the fact that a single meaning representation might serve

for a number of sentences that express the same idea. If it can be determined that a new

sentence is sufficiently similar to a canonical sentence, the canonical sentence’s MR may

be applied to the new sentence. Paraphrase and sentence rewriting are thus being explored.

(Berant and Liang, 2014; Chen et al., 2016)

Andreas et al. (2013) described semantic parsing as a translation problem and suggested

applying machine translation techniques to solve it. Dong and Lapata (2016)’s neural net-

work approach also grows from machine translation techniques.

1.2.2 Deep Learning Approaches

Neural networks have lately become a very popular tool for NLP, and they have recently

been applied to semantic parsing (Grefenstette et al., 2014; Dong and Lapata, 2016; Jia and

Liang, 2016).

Most use of neural networks for semantic parsing have focused on sequence-to-sequence
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Figure 1.1: An example recurrent neural network for part-of-speech tagging.

(seq2seq) models (Sutskever et al., 2014). Developed for machine translation, seq2seq

models are typically made of two recurrent neural networks: an encoder and a decoder.

Recurrent neural networks (RNNs) are a deep learning architecture made of a sequence

of cells to reflect a sequence of inputs, as shown in Figure 1.1. In NLP, these inputs are

usually words. At each timestep in the sequence, the input to the cell comes from two

sources: the word at that timestep and the hidden state of the cell at the previous timestep.

The model applies one set of learned weights (wx in Fig. 1.1) to the input word vector

and another set (wh in Fig. 1.1) to the hidden state that is being passed forward, then

combines them and applies a nonlinear function, such as sigmoid or tanh. The hidden state

of each cell may be used to emit output at each timestep; in this example, we show still

another set of learned weights (wy) applied to the output at each timestep, and the result

being passed through a softmax classifier to predict the part of speech for each word in

the sentence. Alternatively or additionally, the hidden state of the final cell in the network

may be passed to a classifier.6 The final hidden state encodes information about the entire

sentence that has been passed forward through the sequence of cells. Long Short Term

Memory networks (LSTMs) (Hochreiter and Schmidhuber, 1997) are a form of RNN with

cells that use memory gates to avoid some difficulties that can arise in training RNNs on

long sequences.

In a seq2seq model (Sutskever et al., 2014), like the one shown in Figure 1.2, the first

6The baseline system in Chapter 5 illustrates an example of a model that emits output at each timestep
and at the end of the sequence.
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Figure 1.2: An example seq2seq model for machine translation. Blue circles are cells of
the encoder and orange are cells of the decoder.

sequence is encoded by one LSTM. The hidden state from that encoder is then passed for-

ward into the second LSTM, the decoder. The decoder emits a prediction at each timestep

for the most likely token in a sequence. For example, a seq2seq translation model might

read English text into the encoder and attempt to emit French from the decoder, as in Fig-

ure 1.2. Each cell of the decoder receives as input the hidden state of the previous cell and

the token that the previous cell predicted. The basic idea for use of seq2seq models for

semantic parsing is that, rather than learning to emit a French representation of an English

sentence, the model should be trained to emit an MR, such as Prolog, lambda calculus, or

SQL.

Such models require a great deal of training data. For the translation example, this

means aligned parallel text in English and French. For semantic parsing, it means pairs of

natural language sentences and their MRs.

Dong and Lapata (2016) used a seq2seq model with attention and a related sequence-

to-tree model for semantic parsing to logical forms. Kočiský et al. (2016) presented a

similar but semi-supervised model. Jia and Liang (2016) described a seq2seq attention-

based copying, which could copy words from the input English sentence to the output

logical form; they also used data recombination to overcome the limited supply of labeled

English/logical form pairs. Iyer et al. (2017) applied seq2seq models with some automatic

dataset augmentation to semantic parsing to SQL. Due to the larger number of people who

know SQL than logical forms, they were able to obtain user feedback, permitting them

to train a model in a new domain. Zhong et al. (2017) avoided the dataset bottleneck by

generating a new dataset of hundreds of thousands of questions and corresponding SQL
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queries; unfortunately, they are all very simple queries with no joins between tables or

nested subqueries.7 They also incorporate a representation of the database schema into

their network. Noord and Bos (2017) describes a method of neural semantic parsing to

AMR that helps deal with coreference.

Doubtless this area will grow rapidly, at least in the near term. A search of arxiv8 reveals

nearly four hundred preprints mentioning “neural semantic parsing” as of this writing. We

can hope to see changes in network architecture to better reflect the types of MR being

output, as well as more varied large datasets or improved ways of coping with limited

amounts of data.

1.3 The Present Work

The remainder of this thesis is divided into two parts. In the first, we consider ques-

tions of how we should represent meaning. In the second, we choose a fixed meaning

representation—here, we use SQL—and examine methods of parsing short texts from En-

glish into that representation.

1.3.1 What Meaning Representations Should We Use?

The first question to ask when choosing a meaning representation is, why bother changing

the text at all? Humans use natural language to represent meaning. Why not simply pro-

gram computers to work with the original, natural language text? Surely that is easier than

transforming the text into some other representation, performing the desired operations on

that representation, and then transforming the MR back into text.

Chapter 2 demonstrates this approach on an automatic summarization problem. As

noted above, most successful automatic summarization systems are extractive—they select

7See Chapter 5 for discussion of why these are important.
8https://arxiv.org/
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sentences from the original text and piece them together to create a summary. Yet the sen-

tences in a document are not written with an eye to being part of a summary. A single

sentence may contain both information that is important enough to belong in a summary

and extraneous facts that do little but take up valuable space. This is particularly true in

contexts where sentences tend to be long, containing many clauses, as is the case in so-

phisticated documents, such as legal cases. It would be nice to rewrite each long, complex

sentence as a few shorter, simpler sentences that retain the meaning of the original; then,

extractive summarization techniques can select only those of the shorter sentences that are

actually important. We compare three techniques that do this: sentence compression, sen-

tence simplification, and sentence disaggregation. We discover, though, that manipulating

the text itself according to a set of rules is problematic. This suggests the necessity of

representing sentence meaning in other ways.

Next, in Chapter 3, we explore neural MRs to help detect paraphrases. We compare the

performance of traditional, sequential LSTMs with two alternative architectures: siamese

LSTMs and siamese dependency tree LSTMs. A traditional LSTM takes a single sequence

as input; for paraphrase detection, this means inputting the first sentence, followed by a

delimiter token, followed by the second sentence; the final hidden state of the LSTM is

then fed into a softmax classifier to classify the pair of sentences as paraphrase or not. In a

siamese LSTM, two sequential LSTMs run, one on each sentence, using the same parame-

ters. These generate a hidden representation of each sentence, which can then be compared.

A dependency tree LSTM structures the LSTM cells according to the dependency parse of

a sentence, rather than sequentially. Surprisingly, we found no significant difference in

performance among these three approaches.

Then, in Chapter 4, we focus on choosing an MR for short text clustering. We show that,

in fact, there is not a single “right” MR for clustering, even though it sounds like a single

task. Interactions between characteristics of the corpus we wish to cluster and the cluster-

ing algorithm we choose to apply make selection of an MR a complex issue. We propose
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a measure for the creativity of a clustering corpus based on vocabulary width. Logically, it

seems that if authors try to express themselves in a variety of ways, word-count and tf-idf

representations will not be able to capture the similarity in meaning between different texts,

because they have no representation of the similarity between words. In either representa-

tion, “dog” and “canine” are as completely different as “dog” and “airplane.” Neural and

distributional MRs, in contrast, may incorporate information about word similarity. And,

indeed, when we use the common k-means clustering algorithm, we find a benefit to neural

and distributional MRs on the most creative dataset. However, when we vary the clustering

algorithm, the tf-idf and word-count MRs had a decided advantage: they produced tightly

clustered data, compared to the more loosely clustered neural and distributional options.

While cluster tightness had little effect on k-means, it had the ability to make or break

many powerful, graph-based clustering algorithms.

Thus, we show that choosing an MR is a complex problem. Answers that seem obvious—

using text as its own MR, or modifying neural architectures in ways that should lead to bet-

ter MRs—do not always work as expected. And the best MR for even a single task varies

depending on circumstances.

1.3.2 How Can We Transform Text to a Meaning Representation?

In Part II, we delve into how to generate a selected MR from text. For this section, we

use SQL as the MR. SQL (short for Structured Query Language) is a programming lan-

guage used to query relational databases. Relational databases are a popular method of

storing information, making SQL a very useful MR for certain types of information re-

trieval tasks. We explore the task of transforming English text to SQL queries from three

angles: methodological, system-building, and application.

We begin with methodology in Chapter 5 by taking a hard look at how the text-to-SQL

task has been evaluated in the past. There are two important decisions in how to evaluate a

text-to-SQL system: which datasets to use and how to divide them into train, development
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(dev), and test sets. We present a number of complexity measures for text-to-SQL datasets.

Using these measures, we compare several text-to-SQL datasets. We show how human-

written datasets reflect a type of complexity that automatically-generated datasets lack.

This suggests that either new methods for automatically generating datasets are needed,

or systems ought to be evaluated on a variety of datasets to ensure that they are capable

of handling complex queries. We introduce a new text-to-SQL dataset that incorporates

multiply nested queries and joins.

We then show how performance on traditional dataset splits fails to tell us about a

system’s generalizability to new meanings. Traditional splits treat each English question

and corresponding SQL query as an example. No example may appear in both the training

data and the test data, of course. However, many questions within datasets are paraphrases

of one another; for instance, the traditional split of the GeoQuery dataset includes “how big

is Texas” in the training data and “how large is Texas” in the test data. The SQL queries

for these two questions are identical. Other questions, such as “how large is Alaska,” are

identical but for the named entities in them. We refer to this traditional split as the question-

based split, since no English question may belong to both train and test sets. We introduce

a new query-based split, where no SQL query may belong to both train and test.

When the same query appears in training data and test data, we cannot say that a sys-

tem’s success in generating the correct output query indicates any ability to generate new

SQL. The model may instead be learning to classify new input questions according to

which previously-seen query they correspond to. If two queries that are the same but for

their named entities appear in the train and test respectively, the system’s success could

indicate that it has learned to classify query templates and fill the slots in those templates.

We show that a baseline model that does precisely this achieves near-state-of-the-art per-

formance on question-based splits across four datasets. On the query-based split, however,

such a baseline cannot get a single query correct. State-of-the-art models, too, struggle with

the query-based split; however, the instances where they do succeed help us to understand
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what might help future models generalize to new queries.

In Chapter 6, we propose a system for generating a SQL representation of an English

question. Building on previous work that has shown the effectiveness of seq2seq mod-

els using attention-based copying from the input sentence, we propose a method that also

pays attention to the database schema. SQL queries are specific to a particular database,

with particular tables, fields, and relationships among them. The same question can be

represented in different ways for databases with different schemas. Thus, any success-

ful text-to-SQL system must incorporate knowledge of the database schema. Typically, a

seq2seq model acquires this knowledge implicitly by learning from hundreds or preferably

thousands of training examples that share a schema. If the schema changes, though, such

a model will not work. Moreover, it means that a model for a new domain needs enor-

mous numbers of training examples within the new domain; it cannot learn about the SQL

language in the advising domain and generalize to the geography domain. Our proposed

system addresses this problem by providing the model with an explicit representation of the

database schema. Such a representation can be easily generated from the database itself.

We modify attention models previously used for attention to the input sentence so that they

enable attention to the schema representation as well. We report the results of experiments

with two such representations, and we propose alterations to both the representation and

the network architecture that hold promise for future work.

Finally, in Chapter 7, we investigate how a text-to-SQL model developed with single-

sentence English questions can be modified for incorporation into a dialog system. Previous

work on text-to-SQL has focused on transforming a single utterance—like “Who teaches

EECS 281?”—into a SQL query. In a dialog, the information required to generate a com-

plete SQL query may appear across several utterances. As a simple example, consider a

two-line dialog:

ADVISOR: You could take EECS 281.

STUDENT: Who teaches that?
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A text-to-SQL system could not be expected to generate correct SQL given only the stu-

dent’s utterance, since “that” refers to “EECS 281,” an entity that was only mentioned in

the advisor’s utterance. At the same time, merely feeding the entire conversation to the en-

coder of a seq2seq model may be problematic. The LSTM-based encoders typically used

in such models are not necessarily optimal for very long input sequences.

Even though research into text-to-SQL models has picked up rapidly in the past two

years, and dialog systems are a rapidly-expanding application for NLP, to our knowledge

no one has begun to explore how the two can fit together. We therefore present preliminary

work in this area. We describe the development of a new dataset for the task. We report on

a series of experiments aimed to answer the following questions:

• How does a model trained on single-sentence examples from the same domain per-

form on examples from dialogs?

• Does a dialog-to-SQL model benefit from including single-sentence examples in its

training set?

We present our findings as a baseline for this new task, and we propose directions for future

work.

By using SQL as an example meaning representation, this thesis is able to explore

three different views of the generation of MRs from text. The questions we address here,

though, are larger than text-to-SQL. Regardless of the MR selected—and as we saw in

Part I, there are many options—research needs to consider methodological questions: Are

the evaluations we use telling us what we need to know about the performance of systems

on this task? Or do evaluation techniques adapted from other representations overlook

factors unique to this task? Likewise, when we build systems, we need to consider whether

the representation should inform our system architecture. And we must remember that,

ultimately, these systems are meant to be used; we must not lose sight of how they will

need to be adapted for applications.
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Part I

Selecting a Meaning Representation
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CHAPTER 2

Sentence Compression, Simplification, and
Disaggregation for Sophisticated Texts

Most automatic summarizers are extractive; they select complete sentences from the origi-

nal document(s). (Mani and Maybury, 1999; Radev et al., 2002) However, sentences in an

original document are often not ideally suited to a summary. One problem is that a goal of

summaries is to convey information concisely, but sentences from the original document

were not written with this limitation in mind. Thus, an extracted sentence might contain

both essential and extraneous information. Several researchers have sought to address this

problem through sentence simplification and sentence compression. (Knight and Marcu,

2002; Siddharthan et al., 2004; Zajic et al., 2007)

These efforts have largely focused on deleting portions of sentences deemed unimpor-

tant. Even systems that implement forms of simplification and compression other than

deletion also use deletion as one of their operations. Although these systems have as their

goal the reduction of sentence length with minimal loss of meaning, deletion necessarily

entails some loss of meaning.

Naturally, a summary cannot include all of the meaning of the original document. Sum-

marization algorithms use information from the entire document to select important por-

tions of the meaning for inclusion in the summary. It makes little sense, then, to make

deletion a separate step from sentence selection, as this takes the decision about what mean-

ing is important away from the summarization algorithm. We might thus expect improved
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summarization if we divide the sentences into smaller units of meaning that the selection

algorithm can act upon.

Our approach to such division is to disaggregate sentences—that is, split one long sen-

tence into two or more shorter sentences—before running the sentence selection algorithm.

As an example, the sentence

The district court’s decision cannot be affirmed on the ground that the petition was
untimely, and we must take up the merits.

(1)

might be disaggregated to

The district court’s decision cannot be affirmed on the ground that the petition was
untimely.
We must take up the merits.

(2)

Disaggregating sentences thus allows extractive summarizers to act on shorter units.

Rather than deciding whether all 23 words of Example (1) should be included in the sum-

mary, the system can make separate decisions about the 15-word first sentence and the six-

word second sentence of Example (2), perhaps allowing it to include important information

in the summary while leaving out less important information. Unlike sentence compres-

sion, however, disaggregation only reorganizes meaning; it does not remove content.

Another problem with prior work on sentence compression for summarization is its

focus on newswire articles. While research has begun on summarizing documents such

as scientific journal articles, legal cases, and dissertations (Jha et al., 2015; Hachey and

Grover, 2005; Ou et al., 2007), research on sentence compression for summarization has

largely ignored such documents. These sophisticated documents—written for audiences

with years of specialized education, like lawyers, scientists, and doctors—are particularly

likely to include long, complex sentences, and thus particularly likely to benefit from a

procedure that allows the summarizer to choose from shorter units of meaning.

In addition, preserving as much meaning as possible is especially important in these

sophisticated domains. For example, while it might be safe to compress
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Sources say that the House is likely to vote on the issue tomorrow. (3)

in a newswire article into

The House is likely to vote on the issue tomorrow. (4)

we cannot compress

Plaintiffs say that we must find Defendant in contempt. (5)

in a legal case into

We must find Defendant in contempt. (6)

without significantly altering the meaning. Disaggregation thus seems likely to be particu-

larly useful in sophisticated domains.

We evaluate several alternative methods of summarizing two types of sophisticated

documents: legal cases and biomedical research articles. We compare the performance

of an extractive summarizer when it selects from unaltered sentences with its performance

on simplified, compressed, or disaggregated sentences.

The rest of this chapter is organized as follows. We first describe related work in sum-

marization and simplifying and compressing sentences. Second, we describe the task and

the documents we seek to summarize. Third, we describe the existing sentence compres-

sion and sentence simplification systems we test with our summarizer, as well as a sentence

disaggregation technique that uses 112 manually written rules to split sentences. Fourth,

we describe the extractive summarization algorithm used in all conditions of our experi-

ment. Next, we describe our experiment comparing the four systems. Finally, we discuss

possible reasons for the observed results, address future avenues of research, and present

our conclusions.
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2.1 Related Work

2.1.1 Summarization

From the earliest days of automatic text summarization through today, extraction of sen-

tences from the original document has been the preferred approach; see, e.g., (Luhn, 1958;

Barzilay and Elhadad, 1997; Hovy and Lin, 1998; Erkan and Radev, 2004b; Mihalcea and

Tarau, 2004; Yang and Wang, 2008; Haghighi and Vanderwende, 2009; Piwowarski et al.,

2012).

Evaluation of summaries may be intrinsic or extrinsic. Rath et al. (1961) began the

popular approach of intrinsic evaluation—that is, of evaluating summaries by determining

how similar they were to human-written summaries. Many modern automatic summary

evaluations use the ROUGE system (Lin, 2004), which measures the similarity of the auto-

matic summary to several human-written summaries. Similarly, for the pyramid method of

evaluation, human judges compare the target summary to several human-generated models.

(Nenkova et al., 2007)

An alternative approach is extrinsic (task-based) evaluation. Rather than asking, “How

similar is this summary to a human-written one?” we ask, “How well does this summary

enable its readers to complete a task?” Morris et al. (1992) evaluated summaries by having

subjects who read a condensed form complete a reading comprehension test to assess how

well they understood the content of the original document. Hand (1997) described how

well humans who read the summaries could categorize the document and decide whether

it was relevant to a query. McKeown et al. (2005) tested the ability of human readers to

complete a time-limited fact-gathering task using summaries. Otterbacher et al. (2008) used

comprehension questions to evaluate the usefulness of hierarchical summaries to readers

using mobile devices. Murray et al. (2009) evaluated summaries of meetings by asking

human readers about how and why a decision was made at the meetings. And Rastkar et

al. (2014) used task-based evaluation on summaries of software bug reports.
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2.1.2 Simplification, Compression, and Disaggregation

2.1.2.1 Background and Early Work

Work in shortening sentences falls into two main categories: sentence simplification and

sentence compression. Early simplification research was intended to benefit readability,

parsing, and summarization and to improve accessibility for people with disabilities. It

generally involved simplifying both structure and word choice. Carroll et al. (1998) de-

scribed a pipeline incorporating analysis, lexical simplification, and syntactic simplifica-

tion. Their syntactic simplifier was based on handwritten rules, such as replacing passive

constructions with active constructions. Chandrasekar and Srinivas (1997) learned simpli-

fication rules automatically. In the earliest work on pure sentence compression that we are

aware of, Grefenstette (1998) described “telegraphic text reduction” to allow blind people

using a reading machine to skim text; a user could choose, for example, to seee only proper

nouns; or only subjects, head verbs, and objects of the main clause; or only subjects and

object nouns including subclauses.

In the early 2000s, simplification work split in two directions. While some researchers

focused on simplification for readability, others began to work on sentence compression

for summarization. Confusingly, some work on sentence compression was still called sim-

plification. For consistency, we refer to efforts to shorten sentences by discarding some

content as compression, efforts to make text easier to read as simplification, and efforts to

split sentences as disaggregation.

2.1.2.2 Sentence Compression for Summarization

Knight and Marcu (2002) presented two approaches to sentence compression for summa-

rization: a noisy-channel model and a decision-tree approach. In both cases, their goal was

to generate a grammatically correct compression that included the most important pieces

of information from the original sentence but deleted some subset of the words. Turner and
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Charniak (2005) created unsupervised and semi-supervised models to complement Knight

and Marcu’s supervised learning approach. Examining Knight and Marcu’s hypothesis

that sentence compression could improve summarization, Lin (2003) found that an oracle

method of compression—reranking candidate compressions using the manual summaries

of the same documents—did improve performance on a forerunner of the ROUGE evalua-

tion (Lin, 2004); however, Knight and Marcu’s noisy-channel compression model actually

worsened performance. Lin noted that even the oracle condition did not improve sum-

maries as much as expected and suggested that sentence compression “might drop some

important content.”

Siddharthan et al. (2004) compressed sentences for summaries by removing parentheti-

cals. They found that this improved clustering, in that it got rid of background information.

They extracted the desired sentences for the summary, then added the parenthetical infor-

mation back in where it was needed—the first time the entity it described was mentioned

in the summary.

Some groups permitted the sentence extraction module to choose from more than one

possible variation on the same sentence. Zajic et al. (2007) altered a parse-and-trim com-

pression approach so that it produced multiple compressions of a sentence, then used a

sentence selector to choose from the pool of candidate sentences based on a linear com-

bination of features. Similarly, Vanderwende et al. (2007) wrote manual rules to remove

certain syntactic units such as appositives, then provided their summarizer with both the

compressed sentence and the original sentence. They relied upon the sentence selection

algorithm’s ability to deal with redundancy to ensure that it did not select both versions of

a single sentence. On DUC 2006 data, over 40% of the sentences the selection component

chose to include were the simplified sentences, which resulted in the ability to add one

extra sentence to each summary on average.

Using Integer Linear Programming (ILP) for sentence compression (Clarke and Lap-

ata, 2007; Clarke and Lapata, 2008) led to improved results and a burst of related research.
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Clarke and Lapata’s model maximized a scoring function while adhering to sentence-level

constraints to ensure grammatical output. They later added the further step of consider-

ing the context surrounding the sentence to be compressed when choosing a compression.

(Clarke and Lapata, 2010). Martins and Smith (2009) improved summarization perfor-

mance by optimizing an objective function with a single set of constraints that incorpo-

rated both compression and extraction. Similarly, Berg-Kirkpatrick et al. (2011) found that

jointly learning a model for extraction and compression outperforms the model that only

learns extraction for multi-document summaries. One problem with their model, was that

solving the ILP for joint extraction and compression was an order of magnitude slower than

solving the ILP for extraction only; sometimes the process was prohibitively slow. Chali

and Hasan (2012) compared three methods of query-focused multi-document summariza-

tion using ILP-based compression and extraction: choosing sentence compressions and

then doing sentence extraction; doing extraction and then compressing the sentences; and

combining compression and extraction. Combined extraction and compression performed

the best, followed by first extracting and then compressing sentences. Li et al. (2013), not-

ing that joint compression and selection by ILP can be prohibitively expensive, proposed an

alternative: use summary-guided compression to get a set of good possible compressions,

apply a pre-selection step, then use the ILP selection framework to select the compressed

sentences.

The most recent work with ILP for sentence compression has been in Joint Structural

Inference (Thadani and McKeown, 2013). Whereas earlier ILP compression systems used

either a language model or edges in a dependency graph to represent text, this approach uses

both, providing performance gains without requiring hand-picked constraints. A follow-up

to that paper (Thadani, 2014) addressed the slowness of joint inference by solving the

two sub-problems separately and generating approximate solutions to the graph-based sub-

problem.

38



2.1.2.3 Simplification for Readability

Work on simplification for readability has continued in parallel. Siddharthan (2002; Sid-

dharthan (2006) proposed a manual-rule-based model with analysis, transformation, and

regeneration stages. He described handwritten rules to recognize and simplify adjecti-

val or relative clauses, adverbial clauses, coordinate clauses, subordinate clauses, corre-

lated clauses, participial phrases, appositive phrases, and passive voice based on chunking,

POS identification, and constituency parsing. Siddharthan (2010) incorporated handwrit-

ten rules that matched patterns in a typed dependency parse and that could make certain

lexico-syntactic substitutions so that the resulting sentences included the correct parts POS

tags.

Wubben et al. (2012) moved away from the handwritten rules model of simplifica-

tion and instead used a monolingual Phrase-Based Machine Translation (PBMT) model

trained using Wikipedia and Simple Wikipedia as parallel corpora. Noting that simplifica-

tion work was becoming divided between manual rules and statistical methods, Siddharthan

and Mandya (2014) introduced a method that used both manual rules and rules learned from

parallel English Wikipedia and Simple English Wikipedia texts.

2.1.2.4 Disaggregation

The only research that we are aware of that disaggregates sentences is Siddharthan (2002;

Siddharthan (2006) and Klebanov et al. (2004).1 While Siddharthan (2002) described a

wide range of syntactic constructs that could be simplified according to rules, the rules

actually implemented only split certain constructs into multiple sentences. Jonnalagadda

and Gonzalez (2010) successfully applied Siddharthan’s sentence splitting system to im-

prove recall without harming precision in information extraction from biomedical papers.

Klebanov et al. (2004) introduced the concept of an “Easy Access Sentence” (EAS) for

1Although termed “simplification” by their authors, these works actually broke long sentences into pieces
while preserving the meaning and thus are disaggregation as defined here.
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information extraction. An EAS should have one finite verb, make only claims that were

present in the original sentence, and include as many entity names as possible. To generate

EASes, they used a named entity recognizer and a parser, then constructed a sentence for

every verb in the original sentence.

2.2 Problem Definition and Algorithms

2.2.1 Task Definition

Our goal is to generate improved summaries of sophisticated documents by selecting from

shorter sentences than the original document contained. By sophisticated documents, we

mean documents written for a highly educated audience, which are likely to include long

or complicated sentences. For this study, we are considering legal cases and biomedical

articles.

In the United States legal system, when a court decides an issue of law, a judge writes

a document called an “opinion,” “decision,” or “case,” explaining the circumstances of the

case, the issues before the court, and what the court decided and why. Such legal opinions

are precedent that guide—and in some situations bind—courts that consider similar issues

in the future. Thus, legal professionals must know about opinions. Yet these professionals

face information overload, as tens of thousands of opinions are issued in the U.S. federal

courts alone each year. Summarization of cases is therefore essential. Unfortunately, legal

cases are quite challenging to summarize, in part because of the writing style they often

use, where long, complicated sentences are the norm. (Tiersma, 1999)

We assembled a corpus of 30 random legal cases from all thirteen U.S. Federal Circuit

Courts of Appeal (2009–2013). The cases include criminal, civil, and bankruptcy matters;

administrative agency appeals; and proceedings originating in the appellate courts. No

unpublished cases were included. We also collected manually written summaries of each
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of these cases from LexisNexis.2

Like legal cases, biomedical articles are a domain where there is “a pressing need for

distillation and management of complex information presented in vast amounts of text,”

according to the TAC 2014 Biomedical Summarization Track.3 We assembled 35 randomly

chosen articles from PubMed Central (PMC) (2009–2013).4. Topics range widely; our

corpus includes behavioral genetics, a thyroid cancer case study, evaluation of the safety of

a treatment for stroke, and mapping of a gene.

At first glance, sentence lengths in both the biomedical and the legal corpus appear

modest. The development (dev) set for legal cases had a mean sentence length of 24.01

words, while the biomedical articles dev set had a mean of 23.53. For comparison, the

corpus of newswire articles for Task 2 of DUC 2004 had a mean sentence length of 25.11.

However, the legal and biomedical corpora had much higher variance than the DUC exam-

ple. Table 2.1 shows the percentage of sentences from each corpus with more than 50 words

or more than 75 words. Such long sentences are rare in newswire articles, but common in

the sophisticated documents. illustrate, the legal cases and biomedical articles include an

unusually high number of extremely short sentences5 and a long tail of sentences over 100

words long, with maxima over 250 words. Clearly, including a single 250-word sentence

in a summary leaves little room for other sentences.

Sentences Over Length
Document Type 50 Words 75 Words
Legal 9.4% 2.0%
Biomedical 8.2% 1.4%
DUC 1.8% 0.1%

Table 2.1: Percentage of sentences from the legal and biomedical dev sets and the DUC
comparison corpus containing more than 50 or more than 75 words

The desired output for this task is a single-document summary of limited length for
2www.lexisnexis.com
3http://www.nist.gov/tac/2014/BiomedSumm/
4http://www.ncbi.nlm.nih.gov/pmc/
5The short sentences include headings, figure and table names, references to journals or legal authorities,

and the like.
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(a) DUC articles (max = 90 words)

(b) Legal cases (max = 261 words) (c) Biomedical articles (max = 297 words)

Figure 2.1: Distribution of sentence lengths in DUC data is nearly normal. Distribution
of sentence lengths in dev sets of legal cases and biomedical articles is noticeably skewed,
with a large number of very short sentences and a long tail of very long sentences. Maxi-
mum sentence lengths for both were over 250 words.
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each document. For biomedical articles, we limited summary length to 20% of the original

document, following Reeve et al. (2007) and Ou et al. (2007). For legal cases, we limited

summary length to the length of the human-generated summary for that case, which for this

study were on average 26% of the length of the input cases.

2.2.2 Existing Systems

To solve the problem of summarizing documents that include long, complicated sentences,

the current work tries to make the sentences shorter before running a summarization al-

gorithm. We compare three such methods: an existing compression method, an existing

simplification method, and our disaggregation method.

2.2.2.1 Compression System

For the compression system, we used Napoles’s implementation6 of the (Clarke and Lapata,

2008) Integer Linear Programming (ILP) algorithm for sentence compression. A complete

explanation of ILP is beyond the scope of this paper. Briefly, though, ILP seeks to identify

the values for decision variables that maximize a linear objective function.

In this case, the objective function combines a language model with a significance scor-

ing function. The language model, trained on the English Gigaword corpus (Graff and

Cieri, 2003), allows it to estimate the probability that each unigram, bigram, and trigram in

a proposed compression would occur in English. Thus, for example, given the sentence

The dogs barked at the hissing cats. (7)

the language model portion of the objective function would tend to prefer the compression

Dogs barked at cats. (8)

over
6https://github.com/cnap/sentence-compression
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The barked the hissing. (9)

The significance scoring portion of the function assigns words a weight representing their

significance, to ensure that the compression contains the most important words of the orig-

inal sentence.

The system also includes constraints. For example, a modifier will not be included in

the compression unless its headword is included. This prevents a compression that includes

“hissing” but excludes “cats.”

ILP-based compression for summarization generates improved output when the ILP

performs both compression and sentence selection jointly (Chali and Hasan, 2012), but

here we have taken a pipeline approach of compressing and then selecting sentences. The

pipeline is necessary to allow us to compare apples to apples: if we used a joint com-

pression and selection system, we would not be able to determine whether differences in

performance between that and the other systems was due to the method of shortening sen-

tences or due to the difference between sentence selection algorithms.

2.2.2.2 Simplification System

For sentence simplification, we use the hybrid rule-based and learned simplification model

of Siddharthan and Mandya (2014). The system combines handwritten rules for syntactic

simplification and rules learned by translation system trained on aligned English Wikipedia

and Simple English Wikipedia texts. The system recognizes patterns in dependency parses

of sentences, applies rewrite rules to the parse tree according to which pattern(s) it matched,

and generates the simplified sentence text from the altered parse tree. For example, the

paper describes a handwritten syntactic simplification rule to replace passive with active

voice, shown in Figure 2.2. Given a sentence

The cats were chased by a dog. (10)
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Figure 2.2: A rule from the simplification system for replacing passive voice with active
voice.

(modified from an example in the paper) with a dependency parse as shown in Figure 2.3a,

this rule would generate the new parse tree shown in Figure 2.3b, which in turn would gen-

erate the simplified sentence

A dog chased the cats. (11)

(a) Original Parse (b) Simplified Parse

Figure 2.3: The dependency parse of model sentence 10 before and after applying the
simplification rule in Figure 2.2.

The automatically generated rules work similarly but focus on lexical and lexico-syntactic

simplification. Thus, for example, there is a rule that, iff X1 is a word from the set “[ex-

tensive, large, massive, sizable, major, powerful, unprecedented, developed, giant],” will
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delete amod(X0, X1) and replace it with amod(X0, X2), where X2 is “big.” The rule will

also transfer any subtree rooted at X1 to instead have X2 as its root.

The simplifier permits five operations:

1. Delete: remove the specified dependency relations from the old sentence

2. Insert: add the specified dependency relations to the new sentence(s)

3. Order: process the daughters of a node of the dependency graph in the specified order

4. Move: delete the specified node (as opposed to just the relation) from the graph, and

attach its children to a specified other node or, if unspecified, to the parent of the

deleted node

5. Node Operations: make morphological changes to a specified word to ensure its

agreement with other words in the sentence

The explicit goal of this system is to make sentences easier to read, not simplification

for summarization. It is nevertheless well suited for comparison with the other systems, not

only because it is a state-of-the-art simplification system, but also because it has performed

particularly well on tests of meaning preservation, perhaps because it does not delete in-

formation through sentence compression. It therefore can be expected to be particularly

competitive with the disaggregation system in generating sentences that are shorter than

the source sentence but still retain all of the meaning.

2.2.3 Disaggregation System

We built the sentence disaggregator from a modified version of the (Siddharthan and Mandya,

2014) sentence simplifier. Our changes fell into two categories: changes to rules and

changes to the system that implements the rules.
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2.2.3.1 Modification of the Simplification System for Disaggregation

In addition to the five operations of the simplification system described above, we found a

sixth operation, copy, necessary for disaggregation for summarization, due to a difference

in the best way to handle duplicate subtrees. Sometimes when a sentence is split, the same

subject must be used in both sentences. For example, in the sentence

The blue and yellow balloons floated above the ground and drifted in the breeze. (12)

“balloons” is the subject of both “floated” and “drifted.” If the resulting split sentences will

be read together, it is redundant to say

The blue and yellow balloons floated above the ground.
The blue and yellow balloons drifted in the breeze.

(13)

and would instead be more desirable to simplify to

The blue and yellow balloons floated above the ground.
These balloons drifted in the breeze.

(14)

The simplifier therefore replaces the subtree that depends from this repeated subject with

the determiner “this” or “these” as appropriate.

In a summary, though, where one of the resulting sentences might be extracted without

the other, this substitution could cause confusion or inaccuracy. For example, the summary

could misleadingly say

The red balloons had not yet been inflated. These balloons drifted in the breeze. (15)

A better disaggregation for extractive summarization requires including the subtree that de-

scends from “balloons” instead of replacing it with a determiner. In other circumstances,

though, the flexibility to exclude some or all of the subtree may be desirable. For instance,

it is preferable to split
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The court held that community antenna television (“CATV”) systems, which retransmit-
ted signals, did not infringe.

(16)

into

The court held that community antenna television (“CATV”) systems did not infringe.
CATV systems retransmitted signals.

(17)

Disaggregation for summarization therefore benefits from the option to include the subtree

or not. Hence we modified the simplifier so that rules could specify that a word should be

copied without its subtree.

2.2.3.2 Disaggregation Rules

With the modified system in place, we identified disaggregation rules. First, we removed

all rules from the original system that involved lexical substitution, as well as rules for

converting passive to active voice and rules standardizing quotations. These are pure sim-

plification rules and are not a part of disaggregation. We retained most rules for splitting

appositions, relative clauses, subordination, and conjunction into separate sentences. Some

of these rules were not well suited for summarization, though. For example, the simplifier

included a rule that splits a sentence such as

The court reduced the term of imprisonment after considering the factors set forth in
section 3553(a).

(18)

into

The court reduced the term of imprisonment.
This happened after considering the factors set forth in section 3553 (a).

(19)

If the second sentence is included in a summary without the first, the reader will be left

wondering what happened after these factors were considered. We therefore disabled 21

such rules, leaving 94 of the original, handwritten syntactic simplification rules in place.

Preliminary testing showed that sentences in legal cases and biomedical articles of-

ten could not be split by these rules. We therefore wrote additional disaggregation rules
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designed for these complex sentence structures. But choosing what rules to write is a sub-

jective task. Therefore, to choose the best disaggregation, one of the authors prepared a

preliminary set of disaggregation instructions, and then the authors and a colleague from

the same lab individually disaggregated a set of ten sample sentences from the develop-

ment set using those instructions. The resulting disaggregations were compared. The re-

searchers discussed the best disaggregation of each sample sentence for the summarization

task. When consensus was reached, the result became the gold standard. Manual rules

were then written based on the gold standard models and variations on them.

For example, one original sentence in the gold standard was

Just before the passage of the 1976 Copyright Act, the Supreme Court held in Fort-
nightly Corp. v. United Artists Television, Inc. and Teleprompter Corp. v. Columbia
Broadcasting System, Inc. that community antenna television (“CATV”) systems—
which captured live television broadcasts with antennas set on hills and retransmitted
the signals to viewers unable to receive the original signals—did not infringe the public
performance right because they were not “performing” the copyrighted work.

(20)

The gold standard called for the relative clause set off by em-dashes (—) to be split off and

become two new sentences:

CATV systems captured live television broadcasts with antennas set on hills.
CATV systems retransmitted the signals to viewers unable to receive the original sig-
nals.

(21)

Although the underlying simplification system included rules to separate relative clauses

into their own sentences, such rules required the dependency parser to use the “rcmod” de-

pendency. The parser did not apply this relationship to relative clauses set off by em-dashes

rather than commas. We therefore needed a rule to recognize the actual dependency parse

of a relative clause without relying on the rcmod relationship to signal it. For this gold

standard sentence, the rule would need to make “systems” the subject of the new sentences

and keep the “CATV” abbreviation modifying it. Such a rule was therefore specific to sen-

tences with a token in an abbreviation relationship with the noun that would become the

new subject. But of course, we wanted the system to recognize relative clauses without an
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abbreviation, and this required a related rule.

In total, our disaggregation system applied 112 rules—94 from the simplifier, plus 18

that we developed using this approach. The difference in output between our disaggregator

and the original simplifier is illustrated in Table 2.2.

Original Sentence Disaggregated Sentence Simplified Sentence
Actinic keratosis, also known
as senile keratosis, results
from the proliferation of atyp-
ical keratinocytes as a con-
sequence of long exposition
to ultraviolet radiation and it
has been considered a pre-
malignant lesion which may
evove[sic] to squamous cell
carcinoma.

Actinic keratosis are also
known as senile keratosis.
Actinic keratosis results from
the proliferation of atypi-
cal keratinocytes as a conse-
quence of long exposition to
ultraviolet radiation.
It has been considered a pre-
malignant lesion.
This premalignant lesion may
evove[sic] to squamous cell
carcinoma.

Actinic keratosis, sometimes
called as senile keratosis , re-
sults from the proliferation
of atypical keratinocytes be-
cause of long exposition to ul-
traviolet radiation and it has
been thought a premalignant
lesion.
This lesion may evove[sic] to
squamous cell carcinoma.

Table 2.2: Examples of the difference in output of the disaggregation system and the
simplifier

2.2.4 Summarization System

For sentence selection, we use the graph-based LexRank summarizer (Erkan and Radev,

2004b). In the LexRank Only condition of our experiment, we run LexRank on the sen-

tences of the original document to sort its sentences in descending order of importance. In

the Simplified, Disaggregated, and Compressed conditions, we instead use the simplified,

disaggregated, or compressed sentences as input to LexRank.

LexRank represents sentences as nodes of a graph. The graph of the document includes

an edge between a pair of sentences if their cosine similarity exceeds a certain threshold.

Edges coming into a sentence indicate that it is important to the document, so sentences

“vote” for related sentences. However, a measure based purely on the degree of a node

would allow a group of outlier sentences that were closely related to each other, but not to
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the main thrust of the document, to create an illusion of centrality. To avoid this problem,

LexRank weights a node’s votes using the node’s centrality.

Starting with the most important sentence, we select sentences to add to the summary

until we encounter one that would cause our summary to exceed the maximum word count.

But because we are dealing with sophisticated documents containing long sentences, we

may have found a particularly long sentence that could not be split or compressed, and

there may in fact still be room in the summary for one or more normal-length sentences.

We therefore check at this point to see if one of the next three most important sentences

could be added to the summary without exceeding the word count. If so, we add it and

continue adding the sentences after it, following the same rule when we encounter another

sentence that would make the summary exceed the maximum word count. But if none of the

next three most important sentences is short enough to be added, we stop adding sentences

to the summary, to avoid adding a collection of unimportant but very short sentences simply

because they fit.

Once the system has identified the sentences to include in the summary, it puts them in

the order in which they appeared in the original document.

2.3 Experimental Evaluation

2.3.1 Evaluation Methodology

Human-judged evaluation is necessary, since automatic evaluation using ROUGE would

not be appropriate for this experiment. ROUGE uses n-gram overlap between the summary

and model summaries. That would bias the evaluation against the simplification system,

which substitutes simpler words for more complex ones. In addition, automatic evaluations

have not been shown to correlate with human evaluations of summaries when the sentences

included in the summary are not precise cut-and-paste extractions from the original docu-

ment. Thus, we use two types of human evaluation.
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The first is an intrinsic evaluation, where evaluators rate each summary on the DUC

quality questions.7 As noted by Ou et al. (2007), human participants can judge the a sum-

mary directly, rather than compare it to an “ideal” summary.

The second is an extrinsic evaluation. As Daumé and Marcu (2005) argue, extrinsic

evaluation has an advantage over intrinsic evaluation: it does not merely determine how

similar the output is to the way a human would do it, but determines how useful the output

is for the desired task. If we wish to generate summaries that convey important information

from a document, we should test whether someone who has read the summary has absorbed

that information. We therefore followed Otterbacher et al. (2008)’s approach, developing

comprehension questions and comparing evaluators’ ability to answer those questions using

summaries output by the different pipelines.

Specifically, we randomly selected three cases and three articles from the test set of

the corpus described above.8 For each document, one researcher wrote five comprehension

questions. Each question is multiple choice and can be answered based on the full text of

the original document with no outside knowledge. Example questions appear in Table 2.3.

Each evaluator was asked to answer the questions regarding the cases and articles.

For each biomedical article, the evaluator was assigned to one of four experimental

treatments, which determined what form of summary would be given to them:

1. “LexRank Only:” Summary of source document with no simplification, disaggrega-

tion, or compression of sentences

2. “Simplified:” Summary of document after sentence simplification

3. “Disaggregated:” Summary of document after sentence disaggregation

4. “Compressed:” Summary of document after sentence compression

7http://duc.nist.gov/duc2004/quality.questions.txt
8Since humans were evaluating the summaries, we began with a smaller number of summaries than we

could have evaluated with ROUGE. However, as discussed in Results and Discussion, infra, clear patterns
emerged even with only six documents, so it was unnecessary to test using a larger data set.
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What part of the lower court’s decision does Rodriguez-Ocampo appeal?
a. Denial of his motion to suppress statements made before he was advised to his right to
counsel
b. His conviction of two counts of illegal entry for a single offense
c. Allowance of the prosecution’s motion to admit portions of his juvenile record
d. A sixteen-level sentencing enhancement
e. I can’t answer this question using this summary.
What method did the researchers use to collect data?
a. Review of medical records
b. Pre- and post-operative interviews with patients and their families
c. fMRIs 3, 6, 9, and 12 months post-surgery, and annually thereafter
d. Self-report using a smart-phone app
e. I can’t answer this question using this summary.

Table 2.3: Examples of multiple choice comprehension questions used for extrinsic evalu-
ation

For legal cases, evaluators could be assigned to any of treatments one through four, or

a fifth condition:

5. “Human:” Human-generated summary.

Fourteen evaluators participated in the experiment. All were college graduates. Three

reported at least one year of law school. Two reported studying biology or medicine at the

college level or above for a year or more.

Each evaluator was randomly assigned to one condition per original document. We

then adjusted the assignments slightly so that each condition/document pairing received

approximately equal numbers of evaluations (either three or four). Finally, we ensured that

no evaluator saw the same document in more than one condition and that no evaluator saw

the same condition for more than two documents.

Evaluators were told that they would answer “opinion questions” asking about their im-

pressions of the quality of the summary and “information questions” to help the researchers

“understand how well the summary conveys information from the original document.” The

instructions acknowledged that summaries could contain grammatical errors or be missing

information. Since the goal of this extrinsic evaluation was to determine how useful output
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summaries are, and summaries that fail to convey information—either because they do not

contain it or because they are so ungrammatical that they are too difficult to read—are un-

likely to be useful, the instructions pointed out the availability of option E for questions the

evaluator could not answer. Evaluators were asked not to consult outside sources to answer

the questions.

As noted above, the word count upper bound for biomedical article summaries was 20%

of the word count of the original document, and for legal cases it was the word count in the

corresponding human-written summary. Actual word counts for the six test documents are

shown in Table 2.4.

Original Document Summaries (Mean)
2011 611
4110 632
9013 1701
7156 1416
4745 843
5594 1076

Table 2.4: Word count in the original document and mean word count across summaries
of that document.

2.3.2 Results

For each summary evaluation, we calculated a single comprehension score, which reflected

the number of comprehension questions about that summary that an evaluator answered

correctly. Since we asked five comprehension questions for each summary, these scores

could range from zero to five. Mean comprehension scores appear in Table 2.5 and Figure

2.4.

As expected, scores on comprehension questions were best when evaluators used human-

written summaries. Contrary to our expectation, however, the next highest performances

were those in the LexRank Only group, followed by the Simplification group, with the Dis-

aggregation and Compression groups lagging behind. A one-way ANOVA using Tukey’s
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Condition Mean
Simplified 3.11

Compressed 2.00
Disaggregated 2.26
LexRank Only 3.50

Human 3.75

Table 2.5: Mean comprehension scores for each condition.

Figure 2.4: A comparison of mean comprehension scores achieved by the different systems.

HSD revealed that the differences between LexRank and Compression, LexRank and Dis-

aggregation, and Human and Compression were significant at the p = .05 level; the other

differences were not significant. A two-way ANOVA to determine whether the document

type (legal case versus biomedical article) interacted with condition revealed no significant

effects.

Because the quality questions seek information about different aspects of summary

quality, we could not combine the seven quality questions as we could the comprehension

questions. Thus, each summary evaluation received seven different quality scores, Q.1

through Q.7. Each score ranged from 4 points for “a,” the most positive evaluation, to 0 for
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Figure 2.5: A comparison of scores of the different systems on the DUC quality questions.

“e,” the most negative evaluation.

Performance of the different systems on the quality questions is summarized in Figure

2.5. Although the ratios between the systems differ, the pattern for all questions except

for 3 and 5 is quite similar to the pattern seen in Figure 2.4. As expected, the human-

generated summaries usually scored best on the quality questions. On questions 3 and 5,

the LexRank Only summaries performed as well as or better than the human-generated

summaries; however, the differences were not significant. Generally, summaries from the

Simplified condition performed slightly worse on the quality questions than the LexRank

Only summaries, followed by Disaggregated, with Compression ranked last. Significance

of differences varied. On questions 3 and 5, there were no significant differences between

any of the conditions. LexRank Only and Human were never significantly different. Means

and significant differences for all seven quality questions in all five conditions are available

online at http://www-personal.umich.edu/˜cfdollak/sophisticated_

documents_paper/quality_questions_appendix.pdf.

Except for questions 3 and 7, all possible pairings of the quality question scores showed

a significant positive correlation using Pearson’s r. Scores on information questions were

significantly positively correlated with scores on all seven quality questions; these correla-
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tions appear in Table 2.6.

Quality Question 1 2 3 4 5 6 7
Pearson’s r 0.410 0.438 0.288 0.418 0.330 0.440 0.286

Table 2.6: Pearson’s r correlation coefficients between scores on comprehension questions
and quality questions. All are significant at the .01 level or better.

2.4 Discussion

2.4.1 Analysis of Results on Quality Questions

With the exception of question 3, the results on the quality questions followed a consistent

pattern of Human/LexRank performing best, followed by Simplification, Disaggregation,

and Compression, in that order. It is not surprising that the human-written summaries

perform well on this portion of the evaluation; if anything it is surprising that they did not

perform even better than they did.

The lack of a significant difference between LexRank and Human conditions on any

of the quality evaluations appears impressive, although we must be cautious not to read

too much into it. Because the Human condition applied only to the legal cases, not to the

biomedical articles, the sample size of the Human group was smaller than those of the

other conditions (NHuman = 8;NLexRank = 18). A larger study might find significant

results where this one did not. In addition, it is possible that by showing evaluators sum-

maries from the much lower quality Simplified, Compressed, or Disaggregated conditions

alongside LexRank and Human summaries, we may have distorted their perception of the

quality scale. A truly fair test of LexRank’s performance would require a larger number of

summaries and only the Human and LexRank conditions.

We can say with confidence, though, that the LexRank summaries outperformed the

Compressed and Disaggregated ones on all of the quality questions and the Simplified

system on most of them. On some quality questions, this is unsurprising. The extra step of
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simplifying, compressing, or disaggregating a sentence adds an opportunity for a previously

grammatical sentence to become ungrammatical. In addition, removing part of a sentence

increases the likelihood of having unclear referents.

However, our hypothesis suggested that on quality question 2, which asks how much

useless or confusing material ought to be removed from the summary, we could expect Sim-

plified, Compressed, and Disaggregated conditions to perform well. After all, their purpose

was to automatically remove useless material. Yet all three performed significantly worse

on this question than the Human condition, and Compressed also performed significantly

worse than LexRank.

One possible explanation is that the compound question has blurred the issue. Perhaps

the evaluators felt that they would need to edit a great deal of confusing material from the

Simplified, Compressed, and Disaggregated summaries, but were neutral or even positive

as to the amount of useless material. Another possibility is that the experimental systems

rendered some sentences so confusing as to be useless.

A review of the actual summaries supports this second view. Table 2.7 contains the first

hundred words from the LexRank, Simplified, Compressed, and Disaggregated versions

of the same summary.9 In the Compressed and Disaggregated summaries, and to a lesser

extent the Simplified summary, sentences have been altered and taken out of context in

ways that make them quite confusing. For instance, in the Simplified summary, the head-

ing “Austin Bank—Troup, Texas,” which in the original document introduced a recitation

of the facts regarding the robbery of that bank, was transformed into the rather bewilder-

ing sentence “Austin Bank is Troup, Texas.” This type of change explains why, even if

some useless material was excluded by the Simplified, Compressed, and Disaggregated

conditions, evaluators would still score these conditions as needing to have more useless or

confusing material trimmed.

Additionally, we note that question 3, which asks whether the summary is repetitive,

9The summaries in their entirety are available online at http://www-personal.umich.edu/
˜cfdollak/sophisticated_documents_paper/example_summaries.pdf.
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a: (2010) UNITED STATES of America, Plaintiff-Appellee, v. Paul Edward THOMAS;
Derrick Van Hodges, Defendants-Appellants. Each robbery was completed within two
minutes. The basis for the warrant was DNA evidence linking Hodges to a glove dropped
during a bank robbery in Henderson, Texas. Thomas and Hodges were named in an 18-
count indictment charging them with conspiracy, bank robbery, and weapons offenses re-
lated to the following bank robberies: 1. DISCUSSION I. Sufficiency of the Evidence
Thomas and Hodges argue the government presented insufficient evidence identifying them
as the bank robbers. Thomas claims the evidence against Hodges was much stronger and
implies that Thomas was found guilty by association.
b: Each robbery was completed within two minutes. Thomas and Hodges were named in an
18-count indictment charging them with conspiracy , bank robbery , and weapons offenses
related to the following bank robberies : 1. Austin Bank is Troup, Texas. DISCUSSION
I. Sufficiency of the proof Thomas and Hodges argue the government presented insuffi-
cient evidence identifying them as the bank robbers. Thomas claims and the proof against
Hodges implies that association found Thomas guilty. The proof was much stronger.
Hodges was ‘ weak in some instances. This happened after a bank robbery was also ‘
happenstance. United States v. Clayton . We apply this standard of review to direct and
circumstantial evidence.
c: (2010) UNITED STATES of America, Plaintiff-Appellee, v. Paul Edward THOMAS;
Derrick Van Hodges, Defendants-Appellants. Ireland, Carroll , Kelley for Thomas is P.C.
Ireland, Carroll , Kelley for Thomas is Tyler. Ireland, Carroll , Kelley for Thomas is TX.
Hodges had in his possession a $ 10 bait bill taken a week earlier during the robbery
of a bank in Crockett, Texas. At that time, arrested. America Henderson, is Texas ; 3.
Austin Bank is Troup, Texas. Thomas, Hodges , were jointly tried before a jury. Thomas
claims.the evidence against Hodges implies that Thomas was found guilty by association.
The evidence against Hodges was much stronger.
d: LESLIE SOUTHWICK Circuit Judge Paul Edward Thomas and Derrick Van Hodges
were convicted of counts of conspiracy bank robbery and weapons possession . Bank rob-
beries were executed in manner . Each robbery was completed within two minutes . Derrick
Van Hodges was arrested in Tyler Texas on state warrant . The basis for the warrant was
evidence linking Hodges to glove dropped during a bank robbery in Henderson Texas . Bait
bill was found in child ’s bedroom . DISCUSSION Sufficiency of Evidence Thomas and
Hodges argue government presented evidence identifying them as bank robbers . Thomas
claims the evidence against Hodges was stronger and implies that Thomas was found guilty
by association .

Table 2.7: Segments of summaries output by (a) LexRank Only, (b) Simplified, (c) Disag-
gregated, and (d) Compressed conditions.
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is the only quality question that does not follow the pattern of the others, as can be seen

in Figure 2.5. For question 3 only, the Simplification system performed approximately as

well as the LexRank Only and Human conditions. Because the differences in question 3

were not statistically significant, this apparent deviation from the pattern may be illusory.

But this result could also suggest that the simplifier’s use of determiners instead of repeated

noun phrases helped avoid overly repetitive summaries.

Another notable result was that Simplified and Disaggregated were not significantly

different on any quality measures except for question 6, which asks about ungrammat-

ical sentences. Given the engineering described above to avoid introducing ambiguous

determiners and to repeat modifiers in the split sentences, we had expected that the Dis-

aggregated system would perform better on question 4, which asks how difficult it was to

identify referents of noun phrases.

An important question is why Disaggregated summaries included more ungrammatical

sentences than Simplified summaries. The most likely cause seems to be overfitting. The

modifications and the additional rules described above were based on a small number of

gold standard sentences. Changes to the system intended only to allow modifiers to be

repeated generated some side effects in initial testing; for example, some disaggregated

sentences contained long strings of repeated conjunctions. These problems were fixed, in

that they no longer occurred when tested on the gold standard sentences and basic modifi-

cations to them, before the summaries in this study were generated. However, perhaps the

gold standard sentences and modifications to them did not expose a broad enough range of

possible problems, and other side effects remained that could only have been discovered by

a larger system test. Similarly, the new rules were developed to work on the sentences from

the gold standard collection and variations on those. It is possible broader testing might

reveal sentences that match the dependency patterns we found in those sentences, but are

grammatically different enough that the rule application no longer makes sense.

Perhaps the most surprising result on the quality questions was the poor performance
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of the Compression system. The Clarke and Lapata ILP-based sentence compression al-

gorithm that we used is widely considered state of the art in sentence compression. We

suspect that the problem may relate to the language model that the algorithm incorporates

in its objective function. Maybe the trigram model built from the LDC Gigaword corpus

of newswire articles does a poor job of representing n-grams that show up in legal cases

and biomedical articles. Biomedical articles in particular are likely to contain a great many

out-of-vocabulary terms. A simple follow-up study could test this hypothesis by building

a language model using a corpus of sophisticated documents and checking if performance

improved. It would not require evaluating entire summaries, but could be evaluated on a

sentence-by-sentence basis.

2.4.2 Analysis of Results on Comprehension Questions

The Compressed condition seems to have suffered from the predicted problem: the com-

pression algorithm does not know what information will be important to the summary over-

all, and so it sometimes omits words that are actually needed to make a sentence meaning-

ful. Given the paragraph

The mean time to loss of Engel Class II status after STL was 15.2 years (95% CI
13.2–17 years), and after mtg-SelAH it was 13.8 years (95% CI 11.9–16.2 years).
The difference was not significant (p = 0.536).
The mean time to loss of Engel Class I status after STL was 15.2 years (95% CI 13.2–
17 years), and after mtg-SelAH it was 13.1 years (95% CI 11.9–16.2 years).
The difference was not significant (p = 0.536).
The mean time to loss of Class IA status after STL was 14.6 years (95% CI 12.2–17
years), and after mtg-SelAH it was 7.9 (95% CI 6.1–9.7 years).
The difference was significant (p = 0.034) (Fig. 1).

(22)

the compression was
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The time to loss of Engel Class status was years years and it was years years .
The difference was not significant .
The time to loss of Engel Class I status was years years and it was years years .
The difference was not significant .
The time to loss of Class IA status was years years and it was 7.9 years .
The difference was .

(23)

The original paragraph might have allowed the reader to infer that the answer to the

comprehension question

Which of the following best describes the differences in seizure outcomes between the
group that underwent standard temporal lobectomy (STL) and the group that under-
went selective amygdalohippocampectomy (SelAH)?

(24)

is most likely b,

b. The groups showed no difference in time to loss of Engel Class I or II status; STL
performed better on time to loss of Engel Class IA status; and the SelAH group had
more seizures during attempted medication withdrawal.

(25)

since there was no significant difference between the groups on time to loss of Engel Class

II or Engel Class I status, but there was a significant difference in time to loss of Class

IA status. No such inference can be drawn from the compressed version of the paragraph,

since important information is missing.

Since the Disaggregation condition generated the second-worst performance of all sys-

tems, though, the results on the comprehension questions do not support the hypothesis

that the problem of compression removing important meaning will be solved by splitting,

rather than compressing, the sentences. Instead, the similarity between the performance of

Disaggregation and Compression suggests that they may suffer from similar problems.

There are two possible explanations for the poor performance of the Disaggregation

and Compression systems on the comprehension measure. The first is that the information

needed to answer the questions was simply not in the summaries, and the second is that the

poor quality of the summaries obscured answers that were in fact present.

If the information needed to answer the questions was simply not in the summaries, we
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need to understand why it was missing. The maximum word count for each summary was

fixed across conditions, so all summaries had the opportunity to include the same amount

of information. But the Disaggregation condition tended to generate repetitive sections of

text. The LexRank algorithm has a weakness for repetition of a phrase in multiple sen-

tences; it construes this as similarity between the sentences, and the sentences therefore

“vote” for each other to be included in the summary. Thus, when faced with a case that

listed counsel as

Laurel Franklin Coan, Jr., Asst. U.S. Atty. (argued), Robert James Middleton, Tyler,
TX, for U.S.
Deborah Johnson Race (argued), (Court-Appointed), Ireland, Carroll & Kelley, P.C.,
Tyler, TX, for Thomas.

(26)

the disaggregator mistakenly combined the fragments, then split them into

Laurel Franklin Coan, Jr. Asst.
U.S. Atty.
( argued ), Robert James Middleton , Tyler TX for U.S. Deborah Johnson Race ( ) , (
Court-Appointed ) , Ireland , Carroll , Kelley for Thomas ,.
Tyler TX for U.S. Deborah Johnson Race ( ), is argued.
Ireland, Carroll , Kelley for Thomas is P.C.
Ireland, Carroll , Kelley for Thomas is Tyler.
Ireland, Carroll , Kelley for Thomas is TX.

(27)

And LexRank, noticing the repetition, included the last three lines in the summary. Flaws

like this take up space that could be used to convey actually important information.

A second explanation is that, although the information is present, human readers could

not extract it, because the generated summaries were so difficult to read and comprehend

that they obscured the answers. Consider the comprehension question that was least often

answered correctly:
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What effect did surgery type have on psychiatric outcomes?
a. The STL group experienced increased depression
b. The STL group had increased paranoia, while the SelAH group had decreased
paranoia
c. The SelAH group had increased paranoia, while the STL group had increased
depression
d. The SelAH group had increased depression and anxiety
e. I can’t answer this question using this summary.

(28)

The correct answer is b. The only evaluator who answered it correctly had a summary from

the Compressed condition. The summary included the following relevant sentences:

Standard temporal was associated with higher scores on assessment of paranoia .
Our concern was that STL cause rates of de novo psychosis as have been associated
with it .9,25,27 not a patient in group was diagnosed psychosis .
Gyrus SelAH be procedure for patients with high levels of disease paranoia .

(29)

In this case, the information needed to answer the question—that STL was associated with

increased paranoia—was in the summary; however, an evaluator could easily misunder-

stand the second sentence to mean the researchers were concerned that STL would cause

psychosis, but not a single patient actually exhibited psychosis.

The significant, positive correlation between comprehension score and all of the quality

question scores lends some support to this last explanation: evaluators had more difficulty

correctly answering comprehension questions as the subjective quality of the summary de-

clined. Further study could ask annotators given a summary and a comprehension question

with the correct answer to try to mark in the summary where the answer can be found, or

indicate if the answer is not in the summary.

2.4.3 Qualitative Analysis of Shortened Sentences

While our quantitative results focus on the entire summarization pipeline, a brief qualitative

examination of the sentence shortening methods on their own is enlightening.

The sentence compression method sometimes removed unneeded phrases, as in a com-

pression that removed “On the other hand” from
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On the other hand, argument of counsel is not evidence and is not to be considered
as such by the jury.

(30)

However, some compressions were ungrammatical; for instance

The DNA evidence and bait bills constitute sufficient evidence against Thomas to sus-
tain convictions relating to the first and fifth bank robberies, and sufficient evidence
against Hodges to sustain convictions relating to the first, second, fourth, and fifth
bank robberies.

(31)

was compressed to

The evidence and bait bills constitute evidence against Thomas sustain convictions re-
lating to the first and bank robberies and evidence against Hodges sustain convictions
relating to bank robberies.

(32)

Additionally, the compressions often excluded words that were important to the meaning

of the sentence; for instance,

Thomas and Hodges argue the government presented insufficient evidence identifying
them as the bank robbers.

(33)

was compressed to

Thomas and Hodges argue government presented evidence identifying them as bank
robbers.

(34)

Thus, as predicted, compression may substantially alter sentences’ meaning.

Simplification, too, succeeded on some sentences; for instance, it neatly split

[W]e view the evidence and the inferences drawn therefrom in the light most favorable
to the verdict, and we determine whether a rational jury could have found the defendant
guilty beyond a reasonable doubt.

(35)

into

( W ) e view the proof and the inferences drawn therefrom in the light most favorable
to the verdict.
And we determine whether a rational jury could have found the defendant guilty beyond
a reasonable doubt.

(36)

Yet the simplified sentences also suffer from some of the predicted problems. For example,

sometimes lexical simplification changed the meaning, as when “challenging the lack of
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eyewitness identification” was simplified to “challenging the rarity of eyewitness identifi-

cation.” In addition, simplification from passive to active voice sometimes obscured mean-

ing; for instance, the simplification containing “association found Thomas guilty” could

confuse a reader, while the disaggregation of the same sentence maintained the clearer

statement that “Thomas was found guilty by association.” And as predicted, the simplifier

used “this” while the disaggregator kept entire noun phrases; for instance, where a simpli-

fication included

This eyewitness stepped outside of his office to observe traffic. (37)

the corresponding disaggregation included

Another eyewitness stepped outside of his office to observe traffic. (38)

as we hoped.

The disaggregation system still includes some simplification rules that should be changed

for summarization. For instance, the original sentence

Still, if a joint trial would prejudice a defendant, district courts may sever the defen-
dants’ trials.

(39)

should not have been disaggregated into

Suppose a joint trial would prejudice a defendant.
Then still district courts may sever the defendants’ trials.

(40)

Also, disaggregation occasionally caused some severe grammatical problems, particularly

involving missing conjunctions.

2.4.4 Strategies for Improvement

Determining the cause of the difficulty in answering the comprehension questions helps

determine the best way to improve future systems. If the problem is that valuable informa-
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tion is being omitted from the summary because some characteristic of the disaggregated

or compressed sentences causes suboptimal sentence selection, we might need to try using

a different sentence selection algorithm. For instance, C-LexRank is an algorithm designed

for multi-document summarization; it might handle the repetition that disaggregation adds

to a document better than LexRank does.

If the problems are due to confusing, ungrammatical output of the disaggregator, how-

ever, then the focus of future work should be on improving disaggregation as a stand-alone

function before doing further work on the summarization pipeline. Such future work could

go in two different directions: improving the existing disaggregation method within the

framework of the modified simplifier, or developing an entirely new method of disaggrega-

tion.

Certainly, there is room for improvement within the existing framework. Given that

disaggregation introduced grammatical problems that simplification did not, it is apparent

that testing of the disaggregation system on a broader collection of sentences is necessary

to identify the source(s) of the problems.

However, there are several significant problems with the existing framework that make

developing a new approach the better option. First, the disaggregator relies on a correct

dependency parse to allow it to correctly split a sentence. However, we observed an un-

usually high rate of incorrect parses of sentences from the sophisticated documents; there

were numerous problems with attachment, and some of the dependency relationships were

not applied consistently across similar sentences. The problem may well arise because of

the complexity of the sentences; the legal cases had a maximum parse tree depth of 47.

Whatever the cause, the potential inaccuracy of the parser limits the ability to correctly

disaggregate using this system.

Second, this framework cannot cope with a sentence structure that is very common to

the longest sentences in legal cases: a numbered list within the sentence. For instance, our

gold standard disaggregation transformed a sentence that began:
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The request for a hearing must: (i) Provide a specific statement of the issue of law or
fact to be raised or controverted ...; (ii) Provide a brief explanation of the basis for the
contention; (iii) Demonstrate that the issue raised in the contention is within the scope
of the proceeding;....

(41)

into a series of sentences:

The request for a hearing must provide a specific statement of the issue of law or fact
to be raised or controverted.
The request for a hearing must provide a brief explanation of the basis for the
contention.
The request for a hearing must demonstrate that the issue raised in the contention is
within the scope of the proceeding....

(42)

The current framework has no way to iterate through list items. Thus, disaggregating a six-

item list requires a rule for six-item lists, but that rule would not generalize to five-item

lists. Writing rules for each number of items that might be on a list does not solve the

problem, since each list item requires several variables, and the running time of the disag-

gregator becomes impractical when more than about ten variables are used. This system

thus cannot effectively disaggregate list sentences, yet ignoring them leaves intact many of

the longest sentences in legal cases.

Finally, the current framework is purely syntactic, but disaggregation is not a purely

syntactic task. Consider the sentence

Rather than argue explicitly about the findings of the NRC, as to whether the portions
of the contention met the reopening and/or the admissibility standards, in rejecting the
Commonwealth’s contention, Massachusetts devotes a substantial portion of its brief
to arguing that the NRC acted arbitrarily and capriciously.

(43)

Here, a purely syntactic approach cannot determine who rejected the Commonwealth’s

contention—the NRC or Massachusetts. Either semantic knowledge that “Massachusetts”

and “the Commonwealth” refer to the same entity or some form of coreference resolution

is necessary to know that a disaggregation containing

In rejecting the Commonwealth’s contention, Massachusetts did not argue explicitly
about the findings of the NRC.

(44)
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would not be accurate, while a disaggregation containing

Massachusetts does not argue explicitly about the findings of the NRC in rejecting the
Commonwealth’s contention.

(45)

would be.

For these reasons, future work should explore other ways of disaggregating sentences

involving the retention of semantic coherence, rather than continuing to rely on the modi-

fied simplification framework.

2.5 Conclusion

We have found that sentence simplification, compression, and disaggregation before extrac-

tive summarization of sophisticated documents did not improve performance on extrinsic

evaluations. The most likely reason is that, when applied to sentences from the legal and

biomedical domains, all three sentence-shortening techniques produced some confusing

or ungrammatical output. Future work should focus on improving the ability of sentence

shortening techniques to handle sentences from these domains.
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CHAPTER 3

Explorations of Paraphrase Detection

Two sentences are paraphrases of each other if both convey the same meaning. More for-

mally, S1 and S2 are paraphrases if each entails the other; that is, knowing that S1 is true

means that S2 must be true, and knowing S2 is true means that S1 must be true. Paraphrase

detection is the task of determining whether a pair of input sentences is a paraphrase. The

ability to identify paraphrases has numerous potential applications in natural language pro-

cessing, such as summarization, translation, and question answering. However, paraphrase

detection is not always straightforward, since the same information may be presented in

very different ways, or different information may be presented in superficially similar ways.

For instance, a human being can easily tell that

Russia’s military actions in Syria over the past several weeks were the subject

of a meeting between Barack Obama and Vladimir Putin on Monday.

and

At a meeting on Monday, the U.S. President and Russia’s President Putin spoke

about Russia’s recent military buildup in Syria.

mean the same thing, even though they have only a few words in common, and the syntactic

structures of the two sentences differ greatly. Similarly, humans are quite good at telling

that

John ate the fish.
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and

The fish ate John.

mean very different things, even though they share all of the same words. The rest of this

paper is organized as follows: In section 3.1, we discuss in more detail the previous work

on paraphrase detection, as well as related work in deep learning. Section 3.2 describes our

method. In section 3.3, we detail our experiments. We then present our results in section

3.4, and finally describe how future work might improve upon those results in section 3.5.

3.1 Related Work

3.1.1 Paraphrase Methods without Deep Learning

Early approaches to paraphrase detection emphasized lexical matching; for instance, Zhang

and Patrick (2005) used rules to transform input sentences into canonical forms, then ex-

tracted lexical matching features. However, it quickly became apparent that simple lexical

matching was not enough.

Mihalcea et al. (2006) described a semantic similarity method incorporating eight corpus-

and knowledge-based measures of word-level semantic similarity, ranging from PMI to

WordNet-based methods. The combination of these measures significantly outperformed

simple lexical matching. Numerous others followed similar knowledge- and corpus-based

approaches. Kozareva and Montoyo (2006) compared the performance of kNN, SVM,

and MaxEnt classifiers; their feature set included word overlap, longest common subse-

quence, and word similarity features based on WordNet. Fernando and Stevenson (2008)

used WordNet with a similarity matrix to recognize paraphrases that replaced words with

synonyms or near synonyms. Ramage et al. (2009) performed a random walk over a graph

that incorporated Wordnet and corpus statistics, with a bias towards the neighborhood of

the bag of words representation of the input sentence. Islam and Inkpen (2009) measured
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semantic similarity of sentences using the semantic similarity of the words (calculated with

a Pointwise Mutual Information method) and modified versions of Longest Common Sub-

sequence string matching. Ul-Qayyum and Altaf (2012) used LCS and bag of words to

identify lexical overlap, then added a number of semantic heuristic features, such as syn-

onymy and antonymy.

Others have emphasized the structure of sentences. Wan et al. (2006) used n-gram

overlap, dependency relation overlap, dependency tree-edit distances, and difference in

sentence lengths as features. Rus et al. (2008) combined lexical overlap enhanced with

synonymy and antonymy information and dependency graph matching. Das and Smith

(2009) combined a logistic regression model trained on lexical overlap features with a gen-

erative, quasi-synchronous grammar model that estimated whether the class paraphrase or

not paraphrase maximized the probability of seeing the two sentences. Their approach thus

took both lexical overlap and syntax into account. Heilman and Smith (2010) describe a

tree-edit distance measure for semantic similarity; if the dependency tree of one sentence

can be transformed into the other in relatively few steps, the sentences are more likely to be

paraphrases. Bu et al. (2012) used a string rewriting kernel to measure the lexical and struc-

tural similarity between pairs of strings without having to construct syntactic trees. Bach

et al. (2014) emphasizes that sentences are comprised of elementary discourse units and

computes the similarity of sentences based on the similarities of their component discourse

units.

Rather than attempting to detect sentence similarities, Qiu et al. (2006) sought to detect

dissimilarities and determine if they were important. Their two-step process identified

predicate argument tuples that could be aligned between the two sentences, then passed

tuples that could not be aligned to a classifier that determined if the dissimilarity mattered.

Some latent variable models have been developed for this task in recent years. Guo

and Diab (2012) use a latent variable model that builds a semantic profile of each sentence

based on both the observed words and missing words of each sentence. Their weighted
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matrix factorization approach is similar to SVD, except that it enables them to force the

representation of missing words in a sentence to be zero. Xu et al. (2014) sought to detect

tweets that are paraphrases using a joint word-sentence approach that assumes two tweets

that share a topic and at least one “anchor” word pair are paraphrases. Their latent variable

model is specific to the short context and unique wording that appears in tweets.

Several approaches have related paraphrase to machine translation. Wu (2005) used

inversion-transduction grammars, which had previously been applied to machine transla-

tion and alignment, to outperform the baseline without using a thesaurus, lexical similarity

model, or parameter training. Finch et al. (2005) used evaluation metrics developed for

machine translation to predict whether two sentences were paraphrases. More recently,

Madnani et al. (2012) was quite successful in training a meta-classifier using eight machine-

translation metrics as features.

Vector and matrix based approaches have seen recent successes as well. Blacoe and

Lapata (2012) compared shallow composition of word embeddings with deeper ones such

as recurrent neural networks, and found that the shallow approaches performed approxi-

mately as well while requiring less computation. Milajevs et al. (2014) compared a number

of types of word vectors using several compositional methods. For paraphrase, they found

unlemmatized neural word embeddings gave superior results compared to co-occurence

vectors.

Ji and Eisenstein (2013) invented a term-weighting scheme called TF-KLD, an alter-

native to the commonly used TF-IDF that takes advantage of paraphrase training data in

calculating a term’s weight. They built a matrix where each row represented an input sen-

tence using this scheme, then applied a matrix decomposition technique called nonnegative

matrix factorization to generate shorter vectors for each sentence. They compared sentence

pairs using an SVM on the elementwise sum of the two sentence vectors concatenated with

the absolute value of their elementwise difference. They also tested a simpler cosine sim-

ilarity measure, but found the SVM more effective. Yin and Schütze (2015b) built on Ji
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and Eisenstein (2013)’s method, modifying the TF-KLD scheme to TF-KLD-KNN, which

handled words and phrases not seen in the training data using k-nearest-neighbors. They

used embeddings not only for individual words, but also for both continuous and discontin-

uous phrases. Finally, they appended the eight machine translation metrics from Madnani

et al. (2012) to the vectors they input into the SVM, generating a slight improvement in

performance over previous methods.

3.1.2 Deep Learning

Hochreiter and Schmidhuber (1997) introduced the long short-term memory network (LSTM),

and Gers et al. (2000) modified it to the form that is generally used today. Sutskever et al.

(2014) describe a sequence to sequence learning structure that incorporates LSTMs.

Tai et al. (2015) introduced tree LSTMs for sentiment detection and semantic similarity;

we describe their work in detail in Section 3.2.2. The current work is, to our knowledge,

the first to apply their tree-LSTM to the problem of paraphrase detection. Moreover, we

add an additional component to incorporate the labels of dependency types.

Several other deep learning architectures have been used for paraphrase detection with

some success. Socher et al. (2011a) introduced unfolding recursive autoencoders for the

problem. These learned to represent phrases using feature vectors. They then constructed

a matrix that measured pairwise similarity between words and phrases of one sentence

and words and phrases of another. Since this matrix could be variably sized, they used

dynamic pooling to create a fixed-size matrix, to which they finally applied a classifier. Yin

and Schütze (2015a) explicitly recognized the same point as Socher et al. (2011a): since

it is not obvious which pieces of a pair of sentences might share the same meaning, it is

valuable to try to align words and phrases at various levels of granularity. They therefore

constructed a stacked convolutional neural network (CNN) with layers that generated a

similarity matrix comparing the unigrams of each sentence, another comparing short n-

grams, another comparing longer n-grams, and still another reflecting similarity for the
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whole sentence. They then used dynamic pooling to convert these matrices into a single

feature vector, to which they could apply logistic regression to classify the sentence pair as

a paraphrase or not. He et al. (2015) also used a CNN for paraphrase detection.

Cheng and Kartsaklis (2015) compare the performance of LSTMs with recursive neural

networks (RecNNs) for paraphrase. RecNNs are tree structured neural networks that have

been used in several natural language processing (NLP) applications to compose vectors

that represent the words of a sentence into a single vector by following the structure of the

sentence’s parse tree. (Irsoy and Cardie, 2014; Socher et al., 2013; Socher et al., 2011b)

Cheng and Kartsaklis (2015) pretrain syntax-aware word embeddings and parameters for

either an LSTM or a RecNN with a modification to do some word sense disambiguation.

They then use the pretrained parameters in a siamese architecture. (Bromley et al., 1993)

In the siamese architecture, two networks that share the same parameters generate a single

vector representing each of the two sentences. The model then compares the two vectors

using the L2 norm or the cosine similarity and predicts whether the sentences are para-

phrases. The present work differs from Cheng and Kartsaklis (2015) in several ways. First,

we use tree LSTMs rather than either traditional LSTMs or RecNNs. Second, our tree

LSTMs use the sentences’ dependency parses, not the syntactic parses used to construct

RecNNs in that work. Third, our model considers the dependency relation labels. And

fourth, instead of cosine similarity or L2 norm, our model uses the method described in

section 3.2.3 to determine, based on the vector representation of each sentence, whether

the pair is a paraphrase or not.
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3.2 Methods

3.2.1 Traditional LSTM

A long short-term memory network (LSTM) is a form of neural network that, like a recur-

rent neural network (RNN), is sequential: at each time step, it makes a prediction based on

the input at that time step and the state of the network at the end of the previous time step.

Unlike an RNN, however, an LSTM is suited to handle long-term dependencies. When

faced with long sequences, RNNs often suffer from either a vanishing gradient problem or

an exploding gradient. LSTMs introduce several gates that control the flow of information

into and out of the “cell” at each time step. These gates have been shown to reduce the

problem of vanishing gradients. (Hochreiter and Schmidhuber, 1997; Gers et al., 2000)

Mathematically, an LSTM can be described with the following formulas:

it = σ(W (i)xt + U (i)ht−1 + b(i)) (3.1)

ft = σ(W (f)xt + U (f)ht−1 + b(f)) (3.2)

ot = σ(W (o)xt + U (o)ht−1 + b(o)) (3.3)

ut = tanh(W (u)xt + U (u)ht−1 + b(u)) (3.4)

ct = it � ut + ft � ct−1 (3.5)

ht = ot � tanh(ct) (3.6)

xt is the input at time step t; here, it is a word2vec embedding for the tth word of a sen-

tence. h0 and c0 are initialized to zero vectors; subsequent h and c values are calculated

according to equations (3.6) and (3.5). The W and U parameters are weight matrices, ini-

tialized to randomized orthogonal matrices and updated by subsequent training steps. The
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b bias vectors are initialized to zeros and similarly updated. � here represents element-wise

multiplication.

Our first LSTM method inputs to this architecture a single string comprised of two

sentences, separated by a delimiter, as a single sequence. For example we might input,

John ate the fish ::: The fish ate John

We then apply a final set of weights and bias to the hn, where n is the length of the input

sequence, and use a softmax to transform this output into a prediction of the class to which

the sentences belong: paraphrase or not.

Our second sequential LSTM method uses a siamese architecture, as described in 3.2.3.

3.2.2 Tree LSTMs

We construct tree LSTMs for each sentence following the child-sum tree approach of Tai et

al. (2015). As shown in figure , whereas an ordinary LSTM passes information sequentially

through the sentence from the first word through the last, a tree LSTM passes information

up the tree, so that the hidden vector hj at node j incorporates the input vector xj from that

node, as well as the hidden vector hk and memory cell ck of each child k of j. Specifically,

we calculate an intermediate h̃ that is the sum of the child hks:

h̃j =
∑
k∈C(j)

hk (3.7)

where C(j) is the set of all children of node j. We use this intermediate value in place of

ht−1 to calculate the i, o, and u values:

ij = σ(W (i)xj + U (i)h̃j + b(i)) (3.8)

oj = σ(W (o)xj + U (o)h̃j + b(o)) (3.9)
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uj = tanh(W (u)xj + U (u)h̃j + b(u)) (3.10)

Since the purpose of a forget gate f is to control the flow of information from a child node’s

memory cell ck, we need a forget gate for each child. Thus, we calculate

fjk = σ(W (f)xj + U (f)hk + b(f)) (3.11)

We then apply each child’s forget gate to its corresponding memory cell in calculating the

value of the current memory cell, cj:

cj = ic � uc +
∑
k∈C(j)

fjk � ck (3.12)

Finally, hj can be calculated from the output gate and the current memory cell as usual:

hj = oj � tanh(cj) (3.13)

Note from equations (3.7), (3.11), and (3.12) that this architecture does not require

knowing in advance the maximum number of children a node may have. This makes it

well suited for use with dependency parse trees. For leaf nodes, we assume a single child

with h0 and c0 set to zero vectors. Our input vector xj is a word embedding for the word at

node j.

Similar to Cheng and Kartsaklis (2015) and Yin and Schütze (2015a), we use a siamese

architecture (Bromley et al., 1993). However, our network structure is based on a depen-

dency parse of the sentence. We use clearnlp to obtain a dependency parse of each sentence.

We then construct a child-sum tree LSTM based on that dependency parse.

Intuitively, one would expect the child-sum tree LSTM to outperform the LSTM for

sentence pairs such as the one in figure 3.1, where the structure of the sentences affects
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the similarity of their meanings. Moreover, the results of Cheng and Kartsaklis (2015)

show that a tree-structured recursive neural network out-performs an LSTM at paraphrase

recognition.

3.2.3 Siamese Architecture

A Siamese architecture (Bromley et al., 1993) applies the network structure to two inputs

in parallel. In the Siamese LSTM, we input two sentences, S1 and S2 into the LSTM. We

apply the same parameters to each of them, generating a vector representation of each, hS1

and hS2. We then create a vector h′ that is the concatenation of hS1 + hS2, |hS1− hS2|, and

cosine similarity of hS1 and hS2. This concatenation is in keeping with Ji and Eisenstein

(2013), which found training an SVM on a concatenation of hS1+hS2 and |hS1−hS2|more

effective than setting a threshold cosine similarity, and Yin and Schütze (2015b), which

appended cosine similarity to the vector described in Ji and Eisenstein (2013); however,

neither of those works used the technique within a deep network. We apply a final set of

weights W ′ and a final bias b′ and take the softmax to generate our prediction. The method

is essentially the same for LSTMs and tree LSTMs.

3.2.4 Pretraining

LSTMs tend to have a large number of parameters. Our LSTMs include weights for the x

and h values at each timestep, as well as for the input, forget, and output gates. With this

many parameters, a great deal of training data is essential. The effort that would be required

for humans to label enough pairs of sentences as paraphrases or not would be herculean.

We therefore pretrain the LSTM parameters using unlabeled data before training it on our

more limited labeled data. Specifically, we modified our LSTM to act as a language model.

At each time step, the goal of the model is to predict the next word of the input sentence.

The cost function is the Euclidean distance from the predicted next word embedding to the
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(a) “The meeting will be held about 3 pm at the new building.”

held
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3

about

advmod
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building

newtheabout

case det amod

The

det nmod

nsubjpass aux auxpass dobj

(b) “The meeting about the new building will be held at 3 pm.”

Figure 3.1: Although these two sentences contain identical words, their meanings are no-
ticeably different. The dependency parse trees reflect that difference, and thus, child-sum
tree LSTMs should have an advantage.
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embedding of the actual next word. After pretraining, we import the pretrained parameter

matrices into our LSTM classifier model and continue supervised training as usual. This

is similar to the unsupervised pretraining technique in Yin and Schütze (2015a), but has a

few distinctions. First, the Yin and Schütze technique was pretraining convolutional neural

networks, not an LSTM. Second, their model was designed to predict the next word giving

the three that preceded it, whereas here we use all of the sentence so far to predict the

next word. Finally, they used noise contrastive estimation, whereas we use the Euclidean

distance and

3.3 Experiments

Our experiments use the Microsoft Research Paraphrase corpus (Dolan et al., 2004; Dolan

and Brockett, 2005). The corpus consists of 5801 sentence pairs, each hand-labeled as a

paraphrase or not. We use the standard 4076/1725 training/test split.

Because LSTMs have so many parameters, a training set of fewer than 5000 examples

is insufficient. We therefore follow Cheng and Kartsaklis (2015) and pretrain on examples

from the PPDB paraphrase database (Ganitkevitch et al., 2013). PPDB is an automati-

cally generated collection of lexical, phrasal, and syntactic identities and paraphrases. It

includes 68.4 million phrasal paraphrase pairs—continuous strings of words—and 93.6

million syntactic paraphrase pairs—expressions including both words and non-terminals.1

PPDB does not contain labeled negative examples, however. We generate negative exam-

ples by creating a similarity network of all phrases in the database and removing any edge

that corresponds to a positive example, then using the highest-weighted edge for each node

to create a pair.

To supplement our training data, we use the SICK data set (Marelli et al., 2014b). This

corpus contains 9840 English sentence pairs from the ImageFlickr data set and the SemEval

1In addition, PPDB includes 4.9 million phrasal identities and 46.5 million syntactic identities, which we
do not use.
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2012 MSR-Video Description data set. Each pair was hand-labeled with an entailment

relation between the two sentences (entailment, contradiction, or neutral) and a semantic

relatedness score on a 5-point scale. To use SICK as training data for the paraphrase task,

we gave each sentence pair a new binary label. Any pair that was labeled as entailment in

SICK we labeled as a positive example; any pair that was a contradiction we labeled as a

negative example; and for the remaining pairs, we used a cutoff relatedness score of 3.4. In

this way we found 4920 positive pairs and 4920 negative pairs in the SICK data.

We implement our LSTMs and tree LSTMs using the Theano library. (Bastien et al.,

2012).

3.3.1 Baselines

We consider several baselines. The simplest is a majority classifier: it determines whether

there are more positive or negative examples are in the training set, and assigns the majority

class to all test examples. The second baseline uses a bag-of-words (BoW) representation

of each sentence, finds the cosine similarity between the pairs of BoW vectors, and trains a

logistic regression or support vector machine (SVM) classifier that uses that cosine similar-

ity as its sole feature. Our third baseline is similar to the BoW baseline; however, instead

of a BoW vector, it represents each sentence by a vector that is the sum of the word em-

bedding vector for each word of the sentence. We use pre-trained word embeddings from

the GoogleNews-vectors-negative300 dataset (Mikolov et al. 2013). In some applications,

a sum of these vectors would need to be normalized before being used, so that sentence

length would not be a factor in vector size. Here, though, we are taking the cosine similar-

ity between two vectors, so the lengths of the vectors does not matter, only their directions.

Finally, we represent each sentence as a normalized sum of its component word vectors

and adopt Ji and Eisenstein (2013)’s alternative to cosine similarity, which concatenates

the sum of the two sentence vectors with the absolute value of their difference, then uses

this as a feature vector for an SVM.
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Method Acc. F1
Majority 68 ??
Summed Embed Cos 70.4 81.1
Summed Embed Concat 70.2 81.8
Cosine BoW 72 82
Sequence LSTM 68.7 79.8
Sequence LSTM pretrained 68.9 80.0
Siamese LSTM 68.3 79.4
Siamese LSTM pretrained 68.8 78.3
Siamese LSTM with SICK 69.8 80.8
Siamese LSTM with pretraining and SICK 69.3 79.9
Siamese Tree LSTM 68.8 78.0
Socher et al. (2011a) 76.8 83.6
Yin and Schütze (2015a) 78.1 84.4
Ji and Eisenstein (2013) (training data only) 78.6 85.6
He et al. (2015) 78.6 84.7
Yin and Schütze (2015b) 78.7 84.8
Cheng and Kartsaklis (2015) 78.7 85.3
Ji and Eisenstein (2013) (with test data) 80.4 85.9

Table 3.1: Results on the MSRP corpus.

3.4 Results

Our results and those of other researchers are summarized in Table 3.1.

Ji and Eisenstein (2013)’s best reported results used “transductive learning,” which in-

cluded performing matrix factorization on both training data and unlabeled test data. Yin

and Schütze (2015b) suggest that methods that do not use test data for training should be

compared only with other methods that do not use test data for training. Here, we note Ji

and Eisenstein’s results both with and without test data.
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det
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nsubj dobj

(a) “John ate the fish.”

ate

Johnfish

the

det

nsubj dobj

(b) “The fish ate John.”

Figure 3.2: In a child-sum LSTM, h̃ being passed into “ate” in both of these sentences will
be the sum of h representations of “John” and “the fish.” Yet the dependency labels clearly
indicate that these subtrees play different roles in the two sentences. Thus, a system that
uses the dependency labels has an advantage here.

3.5 Potential Future Work

3.5.1 Label-Sensitive Tree LSTM

The example in figure 3.1 shows how a tree LSTM might perform better than an LSTM for

certain sentences. However, consider the example sentences in figure 3.2. A simple child-

sum tree will calculate the sum of a node representing “John” and a node representing

“fish” with a dependent “the” for both sentences. Because sums are commutative, these

will be the same. Thus, the child-sum tree LSTM would not have an advantage over the

LSTM for that sentence pair. However, by looking at the dependency labels for the tree, it

is clear that “John” plays a different role in (a) than in (b). We therefore might see improved

performance by a new form of tree LSTM that takes dependency labels into account.

3.5.2 Additional Training Data

As noted above, an LSTM cannot reasonably be trained on 5000 example pairs; there are

simply too many parameters. However, as Table 3.1 reveals, the pretraining data used in

this study did not significantly improve performance. This may be because the SICK and
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PPDB datasets were simply too different from the MSRP data; having access to a very large

dataset that is similar to MSRP might improve performance.
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CHAPTER 4

Effects of Text Corpus Properties on Short Text
Clustering Performance

Corpora of collective discourse—texts generated by multiple authors in response to the

same stimulus—have varying properties depending on the stimulus and goals of the au-

thors. For instance, when multiple puzzle-composers write crossword puzzle clues for the

same word, they will try to write creative, unique clues to make the puzzle interesting and

challenging; clues for “star” could be “Paparazzi’s target” or “Sky light.” In contrast, people

writing a descriptive caption for a photograph can adopt a less creative style. Corpora may

also differ on how similar texts within a particular class are to one another, compared to

how similar they are to texts from other classes. For example, entries in a cartoon caption-

ing contest that all relate to the same cartoon may vary widely in subject, while crossword

clues for the same word would likely be more tightly clustered.

This paper studies how such text properties affect the best method of clustering short

texts. Choosing how to cluster texts involves two major decisions: choosing a similarity

metric to determine which texts are alike, and choosing a clustering method to group those

texts. We hypothesize that creativity may drive authors to express the same concept in

a wide variety of ways, leading to data that can benefit from different similarity metrics

than less creative texts. At the same time, we hypothesize that tightly clustered datasets

can be clustered by powerful graph-based methods such as Markov Clustering (MCL) and

Louvain, which may fail on more loosely clustered data. This paper explores the interaction
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of these effects.

Recently, distributional semantics has been popular and successful for measuring text

similarity (Socher et al., 2011a; Cheng and Kartsaklis, 2015; He et al., 2015; Kenter and de

Rijke, 2015; Kusner et al., 2015; Ma et al., 2015; Tai et al., 2015; Wang et al., 2015). Word

embeddings represent similar words in similar locations in vector space: “cat” is closer to

“feline” than to “bird.” It would be natural to expect such semantics-based approaches to

be useful for clustering, particularly for corpora where authors have tried to express similar

ideas in unique ways. And indeed, this paper will show that, depending on the choice of

clustering method, semantics-based similarity measures such as summed word embeddings

and deep neural networks can have an advantage over more traditional similarity metrics,

such as n-gram counts, n-gram tf-idf vectors, and dependency tree kernels, when applied

to creative texts.

However, unlike in most text similarity tasks, in clustering the choice of similarity

metric interacts with both the choice of clustering method and the properties of the text.

Graph-based clustering techniques can be quite effective in clustering short texts (Rangrej

et al., 2011), yet this paper will show that they are sensitive to how tightly clustered the data

is. Moreover, the tightness of clusters in a dataset is a property of both the underlying data

and the similarity metric. We show that when the underlying data can be clustered tightly

enough to use powerful graph-based clustering methods, using semantics-based similarity

metrics actually creates a disadvantage compared to methods that rely on the surface form

of the text, because semantic metrics reduce tightness.

The remainder of this paper is organized as follows. Section 4.1 summarizes related

work. Section 4.2 describes four datasets of short texts. In Section 4.3, we describe the

similarity metrics and clustering methods used in our experiments, as well as the evaluation

measures. Section 4.4 shows that semantics-based similarity metrics have some advantage

when clustering short texts from the most creative dataset, but ultimately do not perform

the best when graph-based clustering is an option. In Section 4.5, we demonstrate the
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powerful effect that tightness of clusters has on the best combination of similarity metric

and clustering method for a given dataset. Finally, Section 4.6 draws conclusions.

4.1 Related Work

The most similar work to the present paper is Shrestha et al. (2012), which acknowledged

that the similarity metric and the clustering method could both contribute to clustering re-

sults. It compared four similarity methods and also tested four clustering methods. Unlike

the present work, it did not consider distributional semantics-based similarity measures or

similarity measures that incorporated deep learning. In addition, it reported that the char-

acteristics of the corpora “overshadow[ed] the effect of the similarity measures,” making

it difficult to conclude that there were any significant differences between the similarity

measures.

Several papers address the choice of similarity metric for short text clustering without

varying the clustering method. Yan et al. (2012) proposed an alternative term weighting

scheme to use in place of tfidf when clustering using non-negative matrix factorization.

King et al. (2013) used the cosine similarity between feature vectors that included context

word and part-of-speech features and spelling features and applied Louvain clustering to

the resulting graph. Xu et al. (2015) used a convolutional neural network to represent short

texts and found that, when used with the k-means clustering algorithm, this deep seman-

tic representation outperformed tf-idf, Laplacian eigenmaps, and average embeddings for

clustering.

Other papers focused on choosing the best clustering method for short texts, but kept

the similarity metric constant. Rangrej et al. (2011) compared k-means, singular value

decomposition, and affinity propagation for tweets, finding affinity propagation the most

effective, using tf-idf with cosine similarity or Jaccard for a similarity measure. Errecalde

et al. (2010) describe an AntTree-based clustering method. They used the cosine similarity
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of tf-idf vectors as well. Yin (2013) also use the cosine similarity of tf-idf vectors for a

two-stage clustering algorithm for tweets.

One common strategy for short text clustering has been to take advantage of outside

sources of knowledge (Banerjee et al., 2007; Wang et al., 2009a; Petersen and Poon, 2011;

Rosa et al., 2011; Wang et al., 2014b). The present work relies only on the texts themselves,

not external information.

4.2 Datasets

Collective discourse (Qazvinian and Radev, 2011; King et al., 2013) involves multiple

writers generating texts in response to the same stimulus. In a corpus of texts relating to

several stimuli, it may be desirable to cluster according to which stimulus each text relates

to—for instance, grouping all of the news headlines about the same event together. Here,

we consider texts triggered by several types of stimuli: photographs that need descriptive

captions, cartoons that need humorous captions, and crossword answers that need original

clues. Each need shapes the properties of the texts.

Pascal and Flickr Captions. The Pascal Captions dataset (hereinafter PAS) and the 8K

ImageFlickr dataset (Rashtchian et al., 2010) are sets of captions solicited from Mechanical

Turkers for photographs from Flickr and from the Pattern Analysis, Statistical Modeling,

and Computational Learning (PASCAL) Visual Object Classes Challenge (Everingham et

al., 2010).

PAS includes twenty categories of images (e.g., dogs, as in Example (1)) and 4998

captions. Each category has fifty images with approximately five captions for each image.

We use the category as the gold standard cluster. The 8K ImageFlickr set includes 38,390

captions for 7663 photographs; we treat the image a caption is associated with as the gold

standard cluster. To keep dataset sizes comparable, we use a subset of 5000 captions (998

clusters) from ImageFlickr (hereinafter FLK).
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Figure 4.1: Image from PAS (Rashtchian et al., 2010)

(1) Captions for Figure 4.1:

“a man walking a small dog on a very wavy beach”

“A person in a large black coats walks a white dog on the beach through rough

waves.”

“Walking a dog on the edge of the ocean”

This task did not encourage creativity; instructions said to “describe the image in one

complete but simple sentence.” In addition, because photographs may contain overlapping

elements—for instance, a photograph in the “bus” category of PAS might also show cars,

while a photograph in the “cars” category could also contain a bus—these datasets should

not be very tightly clustered.

New Yorker Cartoon Captions. The New Yorker magazine has a weekly competition

in which readers submit possible captions for a captionless cartoon (Example (1)) (Radev

et al., 2015). We use the cartoon each caption is associated with as its gold standard cluster.

The complete dataset includes over 1.9 million captions for 366 cartoons. For this work,
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Figure 4.2: Image from New Yorker cartoon captioning contest (Radev et al., 2015)

we use a total of 5000 captions from 20 randomly selected cartoons as the “TOON” dataset.

(2) Captions for Figure 4.2:

“Objection, Your Honor! Alleged killer whale.”

“My client maintains that the penguin had a gun!”

“I demand a change of venue to a maritime court!”

Since caption writers seek to stand out from the crowd, we expect high creativity. This may

encourage a more varied vocabulary than the FLK and PAS captions that merely describe

the image. We also expect wide variation in the meanings of captions for the same cartoon,

due to the different joke senses submitted for each. We therefore do not expect TOON to

be tightly clustered.

Crossword Clues. A dataset of particularly creative texts is comprised of crossword
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clues.1 We use the clues as texts and the answer words as their gold standard cluster; all of

the clues in Example (3) belong to the “toe” cluster.

(3) Part of the foot

Little piggy

tic-tac-

The third O of OOO

The complete crossword clues dataset includes 1.7M different clues corresponding to

174,638 unique answers. The “CLUE” dataset includes 5000 clues corresponding to 20

unique answers selected by randomly choosing answers that have 250 or more unique clues,

and then randomly choosing 250 of those clues for each answer.

Since words repeat, crossword authors must be creative to come up with clues that

will not bore cruciverbalists. CLUE should thus contain many alternative phrasings for

essentially the same idea. At the same time, there is likely to be relatively little overlap

between clues for different answers, so CLUE should be tightly clustered.

4.3 Method

Here we describe the similarity metrics and clustering methods, as well as evaluation mea-

sures.

4.3.1 Similarity Metrics

We hypothesize that creative texts with wide vocabularies will benefit from similarity met-

rics based on semantic representation of the text, rather than its surface form. We there-

1Collected from http://crosswordgiant.com/
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fore compare three metrics that rely on surface forms of words—n-gram count vectors,

tf-idf vectors, and dependency tree segment counts—to three semantic ones—summed

Word2Vec embeddings, LSTM autoencoders, and skip-thought vectors. In each case, we

represent texts as vectors and find their cosine similarities; if cosine similarity can be neg-

ative, we add one and normalize by two to ensure similarity in the range [0, 1].

N -Gram Counts. First we consider n-gram count vectors. We use three variations: (1)

unigrams, (2) unigrams and bigrams, and (3) unigrams, bigrams, and trigrams. The cosine

similarity between u and v is given by Equation 4.1.

Cosine Similarity(u, v) =
u · v
||u|| ||v||

(4.1)

N -Gram Tfidf. We also consider weighting n-grams by tf-idf, as calculated by sklearn

(Pedregosa et al., 2011). Tf-idf is a common weighting scheme used in information re-

trieval that accounts for n-gram frequency, increasing the weight of words that are common

in a particular document, but decreasing the weight of words that are common in the corpus

as a whole. After weighting the vectors for sentences u and v, we again determine their

similarity using Equation 4.1.

Dependency Counts. Grammatical information has been found to be useful in text,

particularly short text, similarity. (Liu and Gildea, 2005; Zhang et al., 2005; Wang et al.,

2009b; Heilman and Smith, 2010; Tian et al., 2010; Šarić et al., 2012; Tai et al., 2015). To

leverage this information, previous work has used dependency kernels (Tian et al., 2010),

which measure similarity by the fraction of identical dependency parse segments between

two sentences. Here, we accomplish the same effect using a count vector for each sentence,

with the dependency parse segments as the vocabulary. We define the set of segments for

a dependency parse to consist of, for each word, the word, its parent, and the dependency

relation that connects them as shown in Example (4).
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(4) Part of shoe

a. Segment 1: (part, ROOT, nsubj)

b. Segment 2: (of, part, prep)

c. Segment 3: (shoe, of, pobj)

Word2Vec. For each word, we obtain, if possible, a vector learned via Word2Vec (Mikolov

et al., 2013a) from the Google News corpus.2 We represent a sentence as the normalized

sum of its word vectors. We use the slightly modified cosine similarity measure in Equation

4.2 to ensure similarity in the range [0, 1].

Modified Cosine Similarity(u, v) =

u·v
||u|| ||v|| + 1

2
(4.2)

LSTM Autoencoder. We use Long Short-Term Memory (LSTM) networks (Hochre-

iter and Schmidhuber, 1997) to build another semantics-based sentence representation. We

train an LSTM autoencoder consisting of an encoder network and a decoder network. The

encoder reads the input sentence and produces a single vector as the hidden state at the last

time step. The decoder takes this hidden state vector as input and attempts to reconstruct

the original sentence. The LSTM autoencoder is trained to minimize the reconstruction

loss. After training, we extract the hidden state at the last time step of encoder as the vector

representation for a sentence. Given the hidden state vectors for two sentences, again, the

similarity score is computed using Equation 4.2.

Skip-thoughts (Kiros et al., 2015) trains encoder-decoder Recurrent Neural Networks

(RNN) without supervision to predict the next and the previous sentences given the current

sentence. The pretrained skip-thought model computes vectors as sentence representations.

We then use Equation 4.2 to calculate the similarity between two sentences.

2https://code.google.com/archive/p/word2vec/
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4.3.2 Clustering Methods

We explore five clustering methods: k-means, spectral, affinity propagation, Louvain, and

MCL.

K-means is a popular and straightforward clustering algorithm (Berkhin, 2006) that

takes a parameter k, the number of clusters, and uses an expectation-maximization ap-

proach to find k centroids in the data. In the expectation phase points are assigned to their

nearest cluster centroid. In the maximization phase the centroids of are recomputed for

each cluster of assigned points. K-means is not a graph-based clustering algorithm, but

rather operates in a vector space.

Spectral clustering (Donath and Hoffman, 1973; Shi and Malik, 2000; Ng et al., 2001)

is a graph-based clustering approach that finds the graph Laplacian of a similarity matrix,

builds a matrix of the first k eigenvectors of the Laplacian, and then applies further clus-

tering to this matrix. The method can be viewed as an approximation of a normalized

min-cuts algorithm or of a random walks approach. We use the default implementation

provided by sklearn, which applies a Gaussian kernel to determine the graph Laplacian and

uses k-means for the subsequent clustering step.

Affinity propagation finds exemplars for each cluster and then assigns nodes to a clus-

ter based on these exemplars (Frey and Dueck, 2007). This involves updating two matrices

R and A, respectively representing the responsibility and availability of each node. A high

value for R(i,k) indicates that node xi would be a good exemplar for cluster k. A high

value for A(i,k) indicates that node xi is likely to belong to cluster k. We use the default

implementation provided by sklearn.

Louvain initializes each node to be its own cluster, then greedily maximizes modularity

(Section 4.5.1) by iteratively merging clusters that are highly interconnected (Blondel et al.,

2008).

Markov Cluster Algorithm (MCL) simulates flow on a network via random walk

(Van Dongen, 2000). The sequence of nodes is represented via a Markov chain. By
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applying inflation to the transition matrix, the algorithm can maintain the cluster structure

pronounced in the transition matrix of this random walk—a structure that would otherwise

disappear over time.3

4.3.3 Evaluation Methods

Adjusted Rand Index We use the sklearn implementation of the Adjusted Rand Index

(ARI)4 (Hubert and Arabie, 1985):

ARI =
RI − Expected RI

maxRI − Expected RI
(4.3)

where RI is the Rand Index,

RI =
TP + TN

TP + FP + FN + TN
(4.4)

TP is the number of true positives, TN is true negatives, and FP and FN are false posi-

tives and false negatives, respectively. The Rand Index ranges from 0 to 1. ARI adjusts the

Rand Index for chance, so that the score ranges from -1 to 1. Random labeling will achieve

an ARI score close to 0; perfect labeling achieves an ARI of 1.

Purity is a score in the [0, 1] range that indicates to what extent sentences in the same

predicted cluster actually belong to the same cluster. Given Ω = {ω1, ω2, ..., ωK}, the

predicted clusters, C = {c1, c2, ..., cJ}, the true clusters, and N , the number of examples,

purity is
Purity(Ω, C) =

1

N

∑
k∈K

max
j∈J
|ωk ∩ cj| (4.5)

Normalized Mutual Information (NMI). We use the sklearn implementation of NMI:

NMI(Ω, C) =
MI(Ω, C)√
H(C) ·H(Ω)

(4.6)

3We use the implementation from http://micans.org/mcl/ with inflation=2.0.
4Equivalent to Cohen’s Kappa (Warrens, 2008).
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The numerator is the mutual information (MI) of predicted cluster labels Ω and true clus-

ter labels C. MI describes how much knowing what the predicted clusters are increases

knowledge about what the actual classes are. Using marginal entropy (H(x)), NMI nor-

malizes MI so that it ranges from 0 to 1. If C and Ω are identical—that is, if the clusters

are perfect—NMI will be 1.

4.4 Vocabulary Width

4.4.1 Descriptive Statistics for Vocabulary Width

We predict that creative texts have a wider vocabulary than functional texts. We use two

measures to reflect this wide vocabulary: the type/token ratio in the dataset (TTR), and that

ratio normalized by the mean length of a text in the dataset.

TTR is an obvious estimate of the width of the vocabulary of a corpus. However, all

other things being equal, a corpus of many very short texts triggered by the same stimulus

would have more repeated words, proportional to the total number of tokens in the corpus,

than would a corpus of a smaller number of longer texts. We might therefore normalize the

ratio of types to tokens by dividing by the mean length of a text in the dataset, leading to

the normalized type-to-token ratio (NTTR) and TTR values shown in Table 4.1.

CLUE TOON PAS FLK
TTR 0.1680 0.1064 0.0625 0.0561
NTTR 0.0377 0.0086 0.0058 0.0047

Table 4.1: Vocabulary properties of each dataset

FLK, PAS, and CLUE conform to expectations. The creative CLUE has TTR more

than double that of the more functional PAS and FLK. The effect is more pronounced us-

ing NTTR. Surprisingly, TOON falls closer to the PAS and FLK end of the spectrum, sug-

gesting that vocabulary width does not capture the creativity in the captioning competition;

perhaps the creativity of cartoon captions is about expressing different ideas, rather than
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finding unique ways to express the same idea. For the experiments based on vocabulary

width, we therefore compare PAS and CLUE.

4.4.2 Experiments

We hypothesize that if a dataset uses a wide variety of words to express the same ideas,

similarity metrics that rely on the surface form of the sentence will be at a disadvantage

compared to similarity metrics based in distributional semantics. Thus, word2vec, LSTM

autoencoders, and skip-thoughts ought to perform better than the n-gram-based methods

and dependency count method when applied to CLUE, but should enjoy no advantage when

applied to PAS.

We begin by comparing the performance of all similarity metrics on PAS and CLUE,

using k-means for clustering. We then also examine their performance with MCL.

4.4.3 Results and Discussion

Table 4.2 compares the performance of all similarity metrics on PAS and CLUE using

k-means and MCL. Using k-means on PAS, the unigram tfidf similarity metric gives the

strongest performance for purity and NMI and came in a close second for ARI. LSTM

slightly outperformed the other similarity metrics on ARI, but had middle-of-the-road re-

sults on the other evaluations. Overall, the semantics-based similarity metrics gave rea-

sonable but not exceptional ARI and purity results, but were at the low end on NMI. For

k-means on CLUE, the picture is quite different: the semantics-based similarity metrics

markedly outperformed any other similarity metric on ARI. LSTM also provides the best

purity score, followed by skip-thought. The semantics-based metrics do not stand out for

NMI, though. Based on these results, we conclude that semantics-based measures pro-

vide a significant advantage over traditional similarity metrics when using k-means on the

wide-vocabulary, creative CLUE.
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k-Means
PAS CLUE

Metric ARI Purity NMI ARI Purity NMI
Unigram 0.0286 0.141 0.110 0.0137 0.173 0.153
Bigram 0.0230 0.143 0.111 0.0124 0.165 0.142
Trigram 0.0289 0.139 0.108 0.0148 0.178 0.156
Uni. tfidf 0.0445 0.189 0.169 0.0180 0.202 0.188
Bi. tfidf 0.0287 0.158 0.135 0.0156 0.205 0.205
Tri. tfidf 0.0345 0.176 0.142 0.0134 0.195 0.213
Dependency 0.0122 0.131 0.104 0.0071 0.169 0.207
Word2Vec 0.0274 0.142 0.103 0.0527 0.189 0.165
LSTM 0.0453 0.170 0.142 0.0837 0.240 0.202
Skipthought 0.0311 0.140 0.106 0.0691 0.215 0.180

MCL
PAS CLUE

Metric ARI Purity NMI ARI Purity NMI
Unigram 1.00E-05 0.058 0.051 0.0620 0.527 0.439
Bigram 2.50E-05 0.065 0.070 0.0835 0.585 0.465
Trigram 3.60E-05 0.069 0.081 0.1034 0.608 0.478
Uni. tfidf 2.20E-05 0.061 0.060 0.1482 0.643 0.506
Bi. tfidf 3.86E-04 0.104 0.135 0.1327 0.722 0.544
Tri. tfidf 6.49E-03 0.212 0.230 0.1280 0.751 0.561
Dependency 2.07E-02 0.280 0.264 0.0832 0.745 0.543
Word2Vec 0.000 0.050 0.000 0.0000 0.050 0.000
LSTM 0.000 0.050 0.000 0.0000 0.050 0.000
Skipthought 0.000 0.050 0.000 0.0000 0.050 0.0009

Table 4.2: A comparison of all similarity metrics on PAS and CLUE datasets, clustered
using k-means and MCL. For all evaluations, higher scores are better.
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When clustering with MCL, however, the semantics-based methods perform excep-

tionally poorly on both datasets. Interestingly, the n-gram-based similarity metrics per-

formed very well when paired with MCL on CLUE—outperforming the best of the k-means

scores—while the same metrics performed terribly with MCL on PAS.

We hypothesize that the semantics-based similarity metrics produce less tightly clus-

tered data than the surface-form-based metrics do, and that this may make clustering diffi-

cult for some graph-based clustering methods. The next section describes how we test this

hypothesis.

4.5 Tightness of Clusters

4.5.1 Descriptive Statistics for Tightness

Two pieces contribute to cluster tightness: the dataset itself and the choice of similarity

metric. To illustrate, we represent each text with the vector for its similarity metric—for

instance, the sum of its word2vec vectors or the unigram tfidf vector—and reduce it to two

dimensions using linear discriminant analysis. We plot five randomly selected gold stan-

dard clusters. Plots for unigram tfidf and word2vec representations of PAS and CLUE are

shown in Figures 4.3 and 4.4. These support the intuition that semantics-based similar-

ity metrics are not as tightly clustered as n-gram-based metrics. Note also that the CLUE

unigram tfidf clusters appear tighter than the PAS unigram tfidf clusters.

To quantify this, we compute modularity (Newman, 2004; Newman, 2006):5

Q =
1

2m

∑
ij

(
Aij −

kikj
2m

)
δ(ci, cj) (4.7)

Aij is the edge weight between nodes i and j. δ(ci, cj) indicates whether i and j belong
5Newman (2010) notes that modularity for even a perfectly mixed network generally cannot be 1 and

describes a normalized modularity formula. We calculated both normalized and non-normalized modularity
and found the pattern of results to be the same, so we report only modularity.
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Figure 4.3: Plots of unigram tfidf (left) and word2vec (right) vectors representing five
randomly selected clusters of CLUE: clues for words “ets,” “stay,” “yes,” “easel,” and “aha.”

Figure 4.4: Plots of unigram tfidf (left) and word2vec (right) vectors representing five ran-
domly selected clusters of PAS: images containing “bus,” “boat,” “car,” “bird,” and “mo-
torbike.”

to the same cluster. m is the number of edges. ki is the degree of vertex i, so kikj
2m

is the

expected number of edges between i and j in a random graph. Thus, modularity is highest

when nodes in a cluster are highly interconnected, but sparsely connected to nodes in dif-
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ferent clusters. We use this statistic in an unconventional way, determining the modularity

of the golden clusters.

Metric PAS Clues TOON FLK
Unigram 0.0254 0.1849 0.0214 0.0065
Trigram 0.0347 0.2447 0.0352 0.0135
Unigram tfidf 0.0587 0.3005 0.0519 0.0184
Trigram tfidf 0.0347 0.4339 0.1311 0.0618
Dependency 0.0799 0.4729 0.0451 0.0299
Word2Vec 0.0020 0.0036 0.0008 0.0004
Skipthought 0.0009 0.0028 0.0006 0.0003

Table 4.3: Modularity for all datasets

Table 4.3 shows the modularities for all four datasets using the unigram, trigram, un-

igram tfidf, trigram tfidf, dependency, word2vec, and skipthoughts similarity metrics. As

suggested by Figures 4.3 and 4.4, the CLUE n-gram-based similarities have the highest

modularity by far. The n-gram-based similarities for all datasets have much higher modu-

larity than any of the semantics-based similarities; indeed, the semantics-based similarities

rarely have modularity much higher than zero. Thus, we conclude both that CLUE is more

tightly clustered than the other datasets and that n-gram-based measures yield tighter clus-

ters than semantics-based measures.

To determine whether cluster tightness influences the best clustering method, we tested

all clustering methods on all four datasets using unigram, trigram, unigram tfidf, trigram

tfidf, word2vec, and skipthought similarity metrics.

4.5.2 Results and Discussion

As can be seen in Figure 4.5, the best ARI results by a large margin were those on the

tightly clustered CLUE. Louvain, which provides the best ARI for CLUE, and MCL, which

provides the second best, both performed most strongly when paired with the surface-

form-based similarity metrics (n-gram counts, tfidf, and dependency count), which had

high modularity relative to the semantics-based metrics. CLUE is also the only dataset
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where the semantics-based similarity metrics performed exceptionally well with any of the

clustering methods. As discussed earlier, this is likely due to the wider vocabulary in this

dataset.

FLK, which had the lowest modularity, cannot be clustered by the spectral, Louvain,

or MCL algorithms. K-means provides the strongest performance, followed by affinity

propagation.

TOON has the worst ARI results. Its best-performing clustering methods are the graph-

based Louvain and MCL methods. Both perform well only when paired with the most

modular similarity metrics. Louvain seems less sensitive to modularity than MCL does.

MCL’s best performance by far for TOON is when it is paired with trigram tfidf, which

also had the highest modularity; its performance when paired with the lower-modularity

similarity metrics rapidly falls away. In contrast, Louvain fares reasonably well with the

lower n-gram tfidfs, which also had lower modularity than trigram tfidf.

Louvain and MCL follow a similar pattern on PAS: both perform at their peak on the

most modular similarity metric (dependency), but Louvain handles slightly less modular

similarity metrics nearly as well as the most modular one, while MCL quickly falters.

K-means’ performance is not correlated with modularity. This makes sense, as k-means

is the only non-graph-based method. The fact that k-means nevertheless performs poorly

on TOON suggests that this dataset may be particularly difficult to cluster. An interesting

test would be to measure inter-annotator agreement on TOON.

4.6 Conclusions and Future Work

This work has shown that creativity can influence the best way to cluster text. When using

k-means to cluster a dataset where authors tried to be creative, similarity metrics utilizing

distributional semantics outperformed those that relied on surface forms. We also showed

that semantics-based methods do not provide a notable advantage when applying k-means
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to less creative datasets. Since traditional similarity metrics are often faster to calculate,

use of slower semantics-based methods should be limited to creative datasets.

Unlike most work on clustering short texts, we examined how the similarity metric in-

teracts with the clustering method. Even for a creative dataset, if the underlying data is

tightly clustered, the use of semantics-based similarity measures can actually hurt perfor-

mance. Traditional metrics applied to such tightly clustered data generate more modular

output that enables the use of sophisticated, graph-based clustering methods such as MCL

and Louvain. When either the underlying data or the similarity metrics applied to it pro-

duce loose clusters with low modularity, the sophisticated graph clustering algorithms fail,

and we must fall back on simpler methods.

Future work can manipulate datasets’ text properties to confirm that a specific property

is the cause of observed differences in clustering. A pilot effort to use word embeddings to

alter the variety of vocabulary in a dataset has so far not succeeded, but future experiments

that altered vocabulary width or modularity of a dataset and found that the modified dataset

behaved like natural datasets with the same properties could increase confidence in causal-

ity. Future work can also explore finer clusters within these datasets, such as clustering

CLUE by word sense of the answers and TOON by joke sense.

These results are a first step towards determining the best way to cluster a new dataset

based on properties of the text. Future work will explore further how the goals of short

text authors translate into measurable properties of the texts they write, and how measur-

ing those properties can help predict which similarity metrics and clustering methods will

combine to provide the best performance.
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Part II

From Text to Meaning Representation
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CHAPTER 5

Improving Text-to-SQL Evaluation Methodology

5.1 Introduction

Effective natural language interfaces to databases (NLIDB) would give lay people access to

vast amounts of data stored in relational databases. This chapter identifies key oversights

in current evaluation methodology for this task. In the process, we (1) introduce a new,

challenging dataset, (2) standardize and fix many errors in existing datasets, and (3) propose

a simple yet effective baseline system.1

First, we consider query complexity, showing that human-written questions require

more complex queries than automatically generated ones. To illustrate this challenge, we

introduce Advising, a dataset of questions from university students about courses that lead

to particularly complex queries.

Second, we identify an issue in the way examples are divided into training and test sets.

The standard approach, shown at the top of Fig. 5.1, divides examples based on the text of

each question. As a result, many of the queries in the test set are seen in training, albeit

with different entity names and with the question phrased differently. This means metrics

are mainly measuring robustness to the way a set of known SQL queries can be expressed

in English—still a difficult problem, but not a complete test of ability to compose new

queries in a familiar domain. We introduce a template-based slot-filling baseline that cannot

1Code and data is available at [for review see attachment].
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Figure 5.1: Traditional question-based splits allow queries to appear in both train and test.
Our query-based split ensures each query is in only one.

generalize to new queries, and yet is competitive with prior work on multiple datasets. To

measure robustness to new queries, we propose splitting based on the SQL query. We

show that state-of-the-art systems with excellent performance on traditional question-based

splits struggle on query-based splits. We also consider the common practice of variable

anonymization, which removes a challenging form of ambiguity from the task. In the

process, we apply extensive effort to standardize datasets and fix a range of errors.

Previous NLIDB work has led to impressive systems, but current evaluations provide an

incomplete picture of their strengths and weaknesses. In this chapter, we provide new and

improved data, a new baseline, and guidelines that complement existing metrics, supporting

future work.

5.2 Related Work

The task of generating SQL representations from English questions has been studied in the

NLP and DB communities since the 1970s (Androutsopoulos et al., 1995). Our observa-

tions about evaluation methodology apply broadly to the systems cited below.

Within the DB community, systems commonly use pattern matching, grammar-based
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techniques, or intermediate representations of the query (Pazos Rangel et al., 2013). Re-

cent work has explored incorporating user feedback to improve accuracy (Li and Jagadish,

2014). Unfortunately, none of these systems are publicly available and many rely on

domain-specific resources.

In the NLP community, there has been extensive work on semantic parsing to logical

representations that query a knowledge base (Zettlemoyer and Collins, 2005; Liang et al.,

2011; Beltagy et al., 2014; Berant and Liang, 2014), while work on mapping to SQL has

recently increased (Yih et al., 2015; Iyer et al., 2017; Zhong et al., 2017). One of the earliest

statistical models for mapping text to SQL was the PRECISE system (Popescu et al., 2003;

Popescu et al., 2004), which achieved high precision on queries that met constraints linking

tokens and database values, attributes, and relations, but did not attempt to generate SQL for

questions outside this class. Later work considered generating queries based on relations

extracted by a syntactic parser (Giordani and Moschitti, 2012) and applying techniques

from logical parsing research (Poon, 2013). However, none of these earlier systems are

publicly available, and some required extensive engineering effort for each domain, such

as the lexicon used by PRECISE.

More recent work has produced general purpose systems that are competitive with pre-

vious results and are also available, such as Iyer et al. (2017). We also adapt a logical form

parser with a sequence to tree approach that makes very few assumptions about the output

structure (Dong and Lapata, 2016).

One challenge for applying neural models to this task is annotating large enough datasets

of question-query pairs. Recent work (Cai et al., 2017; Zhong et al., 2017) has automati-

cally generated large datasets using templates to form random queries and corresponding

natural-language-like questions, and then having humans rephrase the question into En-

glish. Another option is to use feedback-based learning, where the system alternates be-

tween training and making predictions, which a user rates as correct or not (Iyer et al.,

2017). Other work seeks to avoid the data bottleneck by using end-to-end approaches (Yin
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et al., 2016; Neelakantan et al., 2017), which we do not consider here. One key contribu-

tion of this chapter is standardization of a range of datasets, to help address the challenge

of limited data resources.

5.3 Data

For our analysis, we modify a range of text-to-SQL datasets, standardizing them to have a

consistent SQL style.

ATIS (Price, 1990; Dahl et al., 1994) User questions for a flight-booking task, manually

annotated. We use the modified SQL from Iyer et al. (2017), which follows the data split

from the logical form version (Zettlemoyer and Collins, 2007).

GeoQuery (Zelle and Mooney, 1996) User questions about US geography, manually an-

notated with Prolog. We use the SQL version (Popescu et al., 2003; Giordani and Moschitti,

2012; Iyer et al., 2017), which follows the logical form data split (Zettlemoyer and Collins,

2005).

Restaurants (Tang and Mooney, 2000; Popescu et al., 2003) User questions about restau-

rants, their food types, and locations.

Scholar (Iyer et al., 2017) User questions about academic publications, with automati-

cally generated SQL that was checked by asking the user if the output was correct.

Academic (Li and Jagadish, 2014) Questions about the Microsoft Academic Search (MAS)

database, derived by enumerating every logical query that could be expressed using a single

page of the MAS website and writing sentences to match them. The domain is similar to

that of Scholar, but their schemas differ.
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Yelp and IMDB (Yaghmazadeh et al., 2017) Questions about the Yelp website and the

Internet Movie Database, collected from colleagues of the authors who knew the type of

information in each database, but not their schemas.

WikiSQL (Zhong et al., 2017) A large collection of automatically generated questions

about individual tables from Wikipedia, paraphrased by crowd workers to be fluent English.

Advising (This Work) Our dataset of questions over a database of course information

at an actual university, but with fictional student records. Some questions were collected

from the EECS department Facebook page and others were written by CS students with

knowledge of the database instructed to write questions they might ask in an academic

advising appointment.

The authors manually labeled the initial set of questions with SQL. To ensure high

quality, at least two annotators scored each question-query pair on a two-point scale for

accuracy—did the query generate an accurate answer to the question?—and a three-point

scale for helpfulness—did the answer provide the information the asker was probably seek-

ing? Cases with low scores were fixed or removed from the dataset.

We collected paraphrases using Jiang et al. (2017)’s method, with manual inspection

to ensure accuracy. For a given sentence, this produced paraphrases with the same named

entities (e.g. course number EECS 123). To add variation, we annotated entities in the ques-

tions and queries with their types—such as course name, department, or instructor—and

substituted randomly-selected values of each type into each paraphrase and its correspond-

ing query. This combination of paraphrasing and entity replacement means an original

question of “For next semester, who is teaching EECS 123?” can give rise to “Who teaches

MATH 456 next semester?” as well as “Who’s the professor for next semester’s CHEM

789?”
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5.3.1 SQL Canonicalization

SQL writing style varies. To enable consistent training and evaluation across datasets, we

canonicalized the queries: (1) we alphabetically ordered fields in SELECT, tables in FROM,

and constraints in WHERE; (2) we standardized table aliases in the form <TABLE NAME>alias<N>

for the Nth use of the same table in one query; and (3) we standardized capitalization and

spaces between symbols. We confirmed these changes do not alter the meaning of the

queries via unit tests of the canonicalization code and manual inspection of the output. We

also manually fixed some errors, such as ambiguous mixing of AND and OR (30 queries).

5.3.2 Variable Annotation

Existing SQL datasets do not explicitly identify which words in the question are used in the

SQL query. Automatic methods to identify these variables, as used in prior work, do not

account for ambiguities, such as words that could be either a city or an airport. To provide

accurate anonymization, we annotated query variables using a combination of automatic

and manual processing.

Our automatic process extracted terms from each side of comparison operations in SQL:

one side contains quoted text or numbers, and the other provides a type for those literals.

Often quoted text in the query is a direct copy from the question, while in some cases

we constructed dictionaries to map common acronyms, like ‘american airlines’:AA, and

times like ‘2pm’:1400. The process flagged cases with ambiguous mappings, which we

then manually processed. Often these were mistakes, which we corrected, such as missing

constraints (e.g., ‘papers in 2015’ with no date limit in the query), extra constraints (e.g.,

limiting to a single airline despite no mention in the question), inaccurate constraints (e.g.,

‘more than 5’ as > 4), and inconsistent use of ‘this year’ to mean different years in different

queries.

112



Sets Identified Affected Queries
ATIS 141 380
GeoQuery 17 39
Scholar 60 152

Table 5.1: Manually identified duplicate queries

5.3.3 Query Deduplication

Three of the datasets had many duplicate queries (i.e., semantically equivalent questions

with different SQL). To avoid this spurious ambiguity we manually grouped the data into

sets of equivalent questions (Table 5.1). A second person manually inspected every set and

ran the queries. Where multiple queries are valid, we kept them all, though only used the

first for the rest of this work.

5.4 Dataset Characteristics Show Evaluating on Multiple

Datasets Is Necessary

For evaluation to be informative it must use data that is representative of real-world queries.

If datasets have biases, robust comparisons of models will require evaluation on multiple

datasets. For example, some datasets, such as ATIS and Advising, were collected from

users and are task-oriented, while others, such as WikiSQL, were produced by automat-

ically generating queries and engaging people to express the query in language. If these

two types of datasets differ systematically, evaluation on one may not reflect performance

on the other. In this section, we provide descriptive statistics aimed at understanding how

several datasets differ, especially with respect to query redundancy and complexity.

113



SELECT <table-alias>.<field>
FROM <table> AS <table-alias>
WHERE <table-alias>.<field> = <literal>

SELECT RIVERalias0.RIVER NAME
FROM RIVER AS RIVERalias0
WHERE RIVERalias0.TRAVERSE = "florida";

SELECT CITYalias0.CITY NAME
FROM CITY AS CITYalias0
WHERE CITYalias0.STATE NAME = "alabama";

Figure 5.2: An SQL pattern and example queries.

5.4.1 Measures

We consider a range of measures that capture different aspects of data complexity and

diversity:

Question / Unique Query Counts We measure dataset size and how many distinct queries

there are when variables are anonymized. We also present the mean number of questions

per unique query; a larger mean indicates greater redundancy.

SQL Patterns Complexity can be described as the answer to the question, “How many

query-form patterns would be required to generate this dataset?” Fig. 5.2 shows an example

of a pattern, which essentially abstracts away from the specific table and field names. Some

datasets were generated from patterns similar to these, including WikiSQL and Cai et al.

(2017). This enables the generation of large numbers of queries, but limits the variation

between them to only that encompassed by their patterns. We count the number of patterns

needed to cover the full dataset, where larger numbers indicate greater diversity. We also

report mean queries per pattern; here, larger numbers indicate greater redundancy, showing

that many queries fit the same mold.

Counting Tables We consider the total number of tables and the number of unique tables

mentioned in a query. These numbers differ in the event of self-joins. In both cases, higher

values imply greater complexity.
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Unique Questions Queries
Question query per unique per pattern Pattern

count count query µ Max count
Advising 3898 208 18.7 15.6 41 188
ATIS 5280 947 5.6 7.0 870 751
GeoQuery 877 247 3.6 9.3 340 71
Restaurants 378 23 16.4 22.2 81 17
Scholar 817 193 4.2 5.6 71 146
Academic 196 185 1.1 2.1 12 92
IMDB 131 89 1.5 2.5 21 52
Yelp 128 110 1.2 1.4 11 89
WikiSQL 80,654 77,840 1.0 165.3 42,816 488

Table 5.2: Descriptive statistics for text-to-SQL dataset diversity. Datasets in the first group
are human-generated from the NLP community, in the second are human-generated from
the DB community, and in the third are automatically-generated.

Nesting A query with nested subqueries may be more complex than one without nesting.

We count SELECT statements within each query to determine the number of sub-queries.

We also report the depth of query nesting. In both cases, higher values imply greater

complexity.

BLEU We use BLEU scores as an approximation of how similar questions in the dataset

are, and how similar queries are. Higher scores would suggest less variation, and thus

lower complexity. However, we did not observe any informative patterns and so omit these

results.

5.4.2 Analysis

The statistics in Tables 5.3 and 5.2 show several patterns.

First, Table 5.2 shows that dataset size is not the best indicator of dataset diversity.

Although WikiSQL contains fifteen times as many question-query pairs as ATIS, ATIS

contains significantly more patterns than WikiSQL; moreover, WikiSQL’s queries are dom-

inated by one pattern that is more than half of the dataset (SELECT col AS result FROM
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Tables Unique tables SELECTs Nesting
per query per query per query Depth
µ Max µ Max µ Max µ Max

Advising 3.2 9 3 8 1.2 6 1.2 4
ATIS 6.4 32 3.8 12 1.79 8 1.39 8
GeoQuery 1.4 5 1.1 4 2.17 8 2.03 7
Restaurants 2.6 5 2.3 4 1.17 2 1.17 2
Scholar 3.3 6 3.2 6 1.02 2 1.02 2
Academic 3.2 10 3 6 1.04 3 1.04 2
IMDB 1.9 5 1.9 5 1.01 2 1.01 2
Yelp 2.2 4 2 4 1 1 1 1
WikiSQL 1 1 1 1 1 1 1 1

Table 5.3: Descriptive statistics for text-to-SQL dataset complexity. Datasets in the first
group are human-generated from the NLP community, in the second are human-generated
from the DB community, and in the third are automatically-generated.

table WHERE col = value). The small, hand-curated datasets developed by the database

community—Academic, IMDB, and Yelp—have noticeably less redundancy as measured

by questions per unique query and queries per pattern than the datasets the NLP community

typically evaluates on.

Second, Table 5.3 shows that human-generated datasets exhibit greater complexity than

automatically generated data. All of the human-generated datasets except Yelp demonstrate

at least some nesting. The average query from any of the human-generated datasets joins

more than one table.

In particular, task-oriented datasets require joins and nesting. ATIS and Advising,

which were developed with air-travel and student-advising tasks in mind, respectively, both

score in the top three for multiple complexity scores.

To accurately predict performance on human-generated or task-oriented questions, it

is thus necessary to evaluate on datasets that test the ability to handle nesting and joins.

Training and testing NLP systems, particularly deep learning-based methods, benefits from

large datasets. However, at present, the largest dataset available does not provide the desired

complexity.
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Takeaway: Evaluate on multiple datasets, some with nesting and joins, to provide a thor-

ough picture of a system’s strengths and weaknesses.

5.5 Current Data Splits Only Partially Probe Generaliz-

ability

It is standard best practice in machine learning to divide data into disjoint training, develop-

ment, and test sets. Otherwise, evaluation on the test set will not accurately measure how

well a model generalizes to new examples. The standard splits of GeoQuery, ATIS, and

Scholar treat each pair of a natural language question and its SQL as a single item. Thus,

as long as each question-query pair appears in only one set, the test set is not tainted with

training data. We call this a question-based split.

However, many English questions may correspond to the same SQL query. If at least

one copy of every SQL query appears in training, then the task evaluated is classification,

not true semantic parsing, of the English questions. We can increase the number of distinct

SQL queries by varying what entities our questions ask about; the queries for “what states

border Texas” and “what states border Massachusetts” are not identical. Adding this vari-

ation changes the task from pure classification to classification plus slot-filling. Does this

provide a true evaluation of the trained model’s performance on unseen inputs?

It depends on what we wish to evaluate. If we want a system that answers questions

within a particular domain, and we have a dataset that we are confident covers everything

a user might want to know about that domain, then evaluating on the traditional question-

based split tells us whether the system is robust to variation in how a request is expressed.

But compositionality is an essential part of language, and a system that has trained on

“What courses does Professor Smith teach?” and “What courses meet on Fridays?” should

be prepared for “What courses that Professor Smith teaches meet on Fridays?” Evaluation
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on the question split does not tell us about a model’s generalizable knowledge of SQL, or

even its generalizable knowledge within the present domain.

To evaluate the latter, we propose a complementary new division, where no SQL query

is allowed to appear in more than one set; we call this the query split. To generate a

query split, we substitute variables for entities in each query in the dataset, as described

in § 5.3.2. Queries that are identical when thus anonymized are treated as a single query

and randomly assigned—with all their accompanying questions—to train, dev, or test. We

include the original question split and the new query split labeling for the new Advising

dataset, as well as ATIS, GeoQuery, and Scholar. For the much smaller Academic, IMDB,

Restaurant, and Yelp datasets, we include question- and query- based buckets for cross

validation.

5.5.1 Systems

Recently, a great deal of work has used variations on the seq2seq model. We compare

performance of a basic seq2seq model (Sutskever et al., 2014), and seq2seq with attention

over the input (Bahdanau et al., 2015), implemented with TensorFlow seq2seq (Britz et al.,

2017). We also extend that model to include an attention-based copying option, similar

to Jia and Liang (2016). Our output vocabulary for the decoder includes a special token,

COPY. If COPY has the highest probability at step t, we replace it with the input token

with the max of the normalized attention scores. Our loss function is the sum of two terms.

First, the categorical cross entropy for the model’s probability distribution over the output

vocabulary tokens. Second, the loss for word copying. When the correct output token is

COPY, the second loss term is the categorical cross entropy of the distribution of attention

scores at time t. Otherwise it is zero.

For comparison, we include systems from two recent papers. Dong and Lapata (2016)

used an attention-based seq2tree model for semantic parsing of logical forms; we apply

their code here to SQL datasets. Iyer et al. (2017) use a seq2seq model with automatic
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Figure 5.3: Baseline: blue boxes are LSTM cells and the black box is a feed-forward
network. Outputs are the query template to use (right) and which tokens to fill it with (left).

dataset expansion through paraphrasing and SQL templates.2

We could not find publicly available code for the non-neural text-to-SQL systems dis-

cussed in Section 5.2. Also, most of those approaches require development of specialized

grammars or templates for each new dataset they are applied to, so we do not compare such

systems.

5.5.1.1 Template Baseline

In addition to the seq2seq models, we develop a new baseline system for text-to-SQL pars-

ing which exploits repetitiveness in data. First, we automatically generate SQL templates

from the training set. The system then makes two predictions: (1) which template to use,

and (2) which words in the sentence should fill slots in the template. This system is not

able to generalize beyond the queries in the training set, so it will fail completely on the

new query-split data setting.

Fig. 5.3 presents the overall architecture. A bidirectional LSTM provides a prediction

for each word, either O if the word is not used in the final query, or a symbol such as city1

to indicate that it fills a slot. The hidden states of the LSTM at each end of the sentence are

passed through a small feed-forward network to determine the SQL template to use. This

architecture is simple and enables a joint choice of the tags and the template, though we do

2 We enable Iyer et al. (2017)’s paraphrasing data augmentation, but not their template-based augmenta-
tion because templates do not exist for most of the datasets (though they also found it did not significantly
improve performance). Note, on ATIS and Geo their evaluation assumed no ambiguity in entity identification,
which is equivalent to our Oracle Entities condition (§5.5.2).
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Adv. ATIS Geo. Rest. Scholar Ac. IMDB Yelp
Model ? Q ? Q ? Q ? Q ? Q ? Q ? Q ? Q

No Variable Anonymization
Baseline 80 0 46 0 56 0 95 0 52 0 0 0 0 0 1 0
seq2seq 4 0 8 0 32 3 47 0 19 0 6 7 1 0 0 0

+ Attention 26 0 46 18 54 22 100 2 33 0 71 64 7 3 2 2
+ Copying 74 0 51 32 69 31 100 4 59 5 81 74 26 9 12 4

D&L seq2tree 42 0 46 23 62 28 100 11 44 6 63 54 6 2 1 2
Iyer et al. 37 0 45 17 65 37 100 8 44 3 76 70 10 4 6 6

With Oracle Entities
Baseline 90 0 56 0 58 0 95 0 66 0 0 0 7 0 8 0
seq2seq 18 0 14 0 56 4 71 6 23 0 10 9 6 0 12 9

+ Attention 90 0 57 23 71 29 100 32 71 4 77 74 44 17 33 28
D&L seq2tree 89 0 56 34 66 29 100 21 68 6 65 61 36 10 26 23
Iyer et al. 83 0 58 32 70 41 100 33 71 1 77 75 52 24 44 32
Baseline-Oracle 99 0 69 0 78 0 100 0 84 0 11 0 47 0 25 0

Table 5.4: Accuracy of neural text-to-SQL systems on English question splits (‘?’ columns)
and SQL query splits (‘Q’ columns). The vertical line separates datasets from the NLP (left)
and DB (right) communities. Results for Iyer et al. (2017) are slightly lower here than in
the original paper because we evaluate on SQL output, not the database response. [Abbre-
viations: Adv. = Advising, Geo. = GeoQuery, Rest. = Restaurants, Ac. = Academic]

not explicitly enforce agreement.

To train the model, we automatically construct a set of templates and slots. Slots are

determined based on the variables in the dataset, with each SQL variable that is explicitly

given in the question becoming a slot. We can construct these templates because our new

version of the data explicitly defines all variables, their values, and where they appear in

both question and query.

For completeness, we also report on an oracle version of the template-based system

(performance if it always chose the correct template from the train set and filled all slots

correctly).

5.5.2 Oracle Entity Condition

Some systems, such as Dong and Lapata’s model, are explicitly designed to work on

anonymized data (i.e., data where entity names are replaced with a variable indicating
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their type). Others, such as attention-based copying models, treat identification of entities

as an inextricable component of the text-to-SQL task. We therefore describe results on

both the actual datasets with entities in place and a version anonymized using the variables

described in § 5.3.2. We refer to the latter as the oracle entity condition.

5.5.3 Results and Analysis

Advising ATIS GeoQuery Scholar
? Q ? Q ? Q ? Q

Correct
Count 369 5 227 111 191 56 129 17
µ Length 83.8 165.8 55.1 69.2 19.6 21.5 38.0 30.2

Entity Count 10 0 1 6 5 0 5 0
problem µ Length 111.8 N/A 28.0 71.3 17.2 N/A 42.6 N/A
Different Count 43 675 94 68 53 84 40 94
template µ Length 69.8 68.4 85.8 72.1 25.6 18.0 43.9 39.8
No template Count 79 25 122 162 30 42 44 204
match µ Length 88.8 90.5 113.8 92.2 29.7 25.0 42.1 41.6

Table 5.5: Types of errors by the attention-based copying model for question and query
splits, with (Count)s of queries in each category, and the (µ Length) of gold queries in the
category.

We hypothesized that even a system unable to generalize can achieve good performance

on question-based splits of datasets, and the results in Table 5.4 substantiate that for the

NLP community’s datasets. The template-based, slot-filling baseline was competitive with

state-of-the-art systems for question split on the four datasets from the NLP community.

The template-based oracle performance indicates that anywhere from 70-100% accuracy

on question-based split could be obtained by selecting a template from train and filling in

the slots for these datasets.

For the three datasets developed by the databases community, the effect of question-

query split is far less pronounced. The small sizes of these datasets cannot account for

the difference, since even the oracle baseline did not have much success on these question

splits, and since the baseline was able to handle the small Restaurants dataset. Looking
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back at Section 5.4, however, we see that these are the datasets with the least redundancy

in Table 5.2. Because of their nearly 1:1 question:unique-query ratios, the question splits

and query splits of these datasets were quite similar.

Reducing redundancy does not improve performance on query split, though; at most, it

reduces the difference between performance on the two splits. IMDB and Yelp both show

weak results on query split despite their low redundancy. Experiments on a non-redundant

version of query split for Advising, ATIS, GeoQuery, and Restaurant that contained only

one question for each query confirmed this: in each case, accuracy remained the same or

declined relative to regular query split.

Having ruled out redundancy as a cause for the exceptional performance on Academic’s

query split, we suspect the simplicity of its questions and the compositionality of its queries

may be responsible. Every question in the dataset begins “return me,” followed by a phrase

indicating the desired field, optionally followed by one or more constraints; for instance,

“return me the papers by ‘author name0’” and “return me the papers by ‘author name0’

on journal name0.”

None of this, of course, is to suggest that question-based split is an easy problem, even

on the NLP community’s datasets. Except for the Advising and Restaurants datasets, even

the oracle version of the template-based system is far from perfect. Access to oracle enti-

ties helps performance of non-copying systems substantially, as we would expect. Entity

matching is thus a non-trivial component of the task.

But the query-based split is certainly more difficult than the question-based split. Across

datasets and systems, performance suffered on query split. Access to oracle entities did not

remove this effect.

Many of the seq2seq models do show some ability to generalize, though. Unlike the

template-based baseline, many were able to eek out some performance on query split.

On question split, ATIS is the most difficult of the NLP datasets, yet on query split, it is

among the easiest. To understand this apparent contradiction, we must consider what kinds
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of mistakes systems make and the contexts in which they appear. We therefore analyze the

output of the attention-based-copying model in greater detail.

We categorize each output as shown in column one of Table 5.5. The “Correct” category

is self-explanatory. “Entity problem only” means that the query would have been correct

but for a mistake in one or more entity names. “Different template” means that the system

output was the same as another query from the dataset but for the entity names; however,

it did not match the correct query for this question. “No template match” contains both

the most mundane and the most interesting errors. Here, the system output a query that is

not copied from training data. Sometimes, this is a simple error, such as inserting an extra

comma in the WHERE clause. Other times, it is recombining segments of queries it has seen

into new queries. This is necessary but not sufficient model behavior in order to do well on

the query split. In at least one case, this category includes a semantically equivalent query

marked as incorrect by the exact-match accuracy metric. Table 5.5 shows the number of

examples from the test set that fell into each category, as well as the mean length of gold

queries (“length”) for each category.

Short queries are easier than long ones in the question-based condition. In most cases,

length in “correct” is shorter than length in either “different template” or “no template

match” categories.

In addition, for short queries, the model seems to prefer to copy a query it has seen

before; for longer ones, it generates a new query. In every case but one, mean length in

“different template” is less than in “No template match.”

Interestingly, in ATIS and GeoQuery, where the model performs tolerably well on query

split, the length for correct queries in query split is higher than the length for correct queries

from the question split. Since, as noted above, recombination of template pieces (as we see

in “no template match”) is a necessary step for success on query split, it may be that longer

queries have a higher probability of recombination, and therefore a better chance of being

correct in query split. The data from Scholar does not support this position; however,
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note that only 17 queries were correct in Scholar query split, suggesting caution in making

generalizations from this set.

These results also seem to indicate that our copying mechanism effectively deals with

entity identification. Across all datasets, we see only a small number of entity-problem-

only examples. However, comparing the rows from Table 5.4 for seq2seq+Copy at the top

and seq2seq+Attention in the oracle condition, it is clear that having oracle entities provides

a useful signal, with consistent gains in performance.

Takeaways: Evaluate on both question-based and query-based dataset splits. Addition-

ally, variable anonymization noticeably decreases the difficulty of the task; thus, thorough

evaluations should include results on datasets without anonymization.

5.5.4 Logic Variants

To see if our observations on query and question split performance apply beyond SQL,

we also consider the logical form annotations for ATIS and GeoQuery (Zettlemoyer and

Collins, 2005; Zettlemoyer and Collins, 2007). We retrain Jia and Liang (2016)’s baseline

and full system. Interestingly, we find limited impact on performance, measured with either

logical forms or denotations. To understand why, we inspect the logical form datasets. In

both ATIS and GeoQuery, the logical form version has a larger set of queries after variable

identification. This seems to be because logic abstracts away from surface form less than

SQL does. For example, these questions get the same SQL, but different logical forms:

“what state has the largest capital”

(A, (state(A), loc(B, A), largest(B, capital(B))))

“which state ’s capital city is the largest”

(A, largest(B, (state(A), capital(A, B), city(B))))

By being closer to a syntactic representation, the queries end up being more composi-

tional, and forcing the model to learn more compositionality than the SQL systems do.
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5.6 Conclusion

In this work, we identify two issues in current datasets for mapping questions to SQL

queries. First, by analyzing question and query complexity we find that human-written

datasets require properties that have not yet been included in large-scale automatically

generated query sets. Second, we show that the generalizability of systems is overstated

by the traditional data splits. In the process we also identify and fix hundreds of mis-

takes across multiple datasets and homogenize the SQL query structures to enable effective

multi-domain experiments.

Our analysis has clear implications for future work. Evaluating on multiple datasets

is necessary to ensure coverage of the types of questions humans generate. Developers of

future large-scale datasets should incorporate joins and nesting to create more human-like

data. And new systems should be evaluated on both question- and query- based splits, guid-

ing the development of truly general systems for mapping natural language to structured

database queries.
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CHAPTER 6

Schema-Aware Text-to-SQL

6.1 Introduction

The ability to automatically transform English text to SQL queries could make a great

deal of information more readily available. It would enable lay-people to get answers

from relational databases without needing to learn SQL. It would also enable task-oriented

dialog systems to easily incorporate relational databases. Recent research into this area

(Iyer et al., 2017) has focused on sequence-to-sequence (seq2seq) models, which have

shown promise in other semantic parsing tasks (Dong and Lapata, 2016). In the present

work, we investigate modifications to the seq2seq model that incorporate knowledge of the

relational database schema.

SQL queries are run over databases with formal schemas, and the schema of a partic-

ular database determines which queries are valid for that database. For example, consider

CourseCourse ID

Department

Number

Name

Instructor

(a) Single Table Schema

CourseCourse ID

Department

Number

Name

Teaches Instructor

ID

first name

last name

uniqname

(b) Multi-Table Schema

Figure 6.1: Two possible schemas for a database that could answer, “Who teaches Discrete
Mathematics?”
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using a database of courses and instructors to answer the question, “Who teaches Discrete

Mathematics?” If we are querying a database with the schema in Figure 6.1a, an appropri-

ate query could be

SELECT instructor

FROM COURSE

WHERE name LIKE "Discrete Mathematics"

However, in a schema like that of Figure 6.1b, we would need the query to be

SELECT i.first name, i.last name

FROM INSTRUCTOR i, COURSE c

WHERE i.instructor id = c.instructor id

AND c.name LIKE "Discrete Mathematics"

In light of the importance of schema to queries, we hypothesize that a model that incor-

porates an explicit representation of a database’s schema will have an advantage over one

that must learn a hidden representation. We therefore introduce a semantic parsing model

that incorporates neural attention to the database schema. Moreover, a model that can learn

to copy field and table names from schemas into queries has the potential to learn about

SQL from domains where data is plentiful and, provided it is given a schema, generalize to

a new domain.

In the present work, we describe new neural architectures that incorporate explicit rep-

resentations of schemas. We introduce two schema representations. We report performance

of these models on both question-based and query-based splits (see Chapter 5) of the Ad-

vising, ATIS, GeoQuery, and Scholar datasets. In addition, unlike previous work, we report

results of cross-domain models; that is, we train a model using the training data from all

four of our datasets, and report its performance on the test data for each dataset. We con-

clude with proposals for future work building on our findings.
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6.2 Related Work

Transforming text to SQL has been a goal of both the databases community and the NLP

community for decades (Androutsopoulos et al., 1995; Pazos Rangel et al., 2013).

The PRECISE system (Popescu et al., 2003; Popescu et al., 2004) achieved, as the name

suggests, high precision, but only on a class of “semantically tractable” questions. Such

questions needed to obey detailed rules regarding correspondences between tokens repre-

senting database values, attributes, and relations. PRECISE did not attempt to generate for

questions outside this class, such as“List flights from Oakland to Salt Lake City leaving

after midnight Thursday.” In addition, the system required a large lexicon to be built for

every new database.

A number of systems use domain-specific resources. Giordani and Moschitti (2012)

used lexical dependencies from the question and metadata from the database to build plau-

sible SELECT, FROM, and WHERE clauses. They then combined the clauses using handwritten

rules and heuristics, giving ranked candidate queries, and used a tree-kernel SVM-reranker

to choose the best of these. Poon (2013) described an unsupervised semantic parser that

first translates from NL to a “semantic tree” MR, then deterministically converts that MR

to SQL. Rather than rely on an abundance of training examples, this system, too, required

domain-specific human effort, in the form of creating domain-dependent states. Li and Ja-

gadish (2014) described a system that interacts with the user to ensure proper interpretation

of the question. It used a parse tree node mapper to map nodes from the dependency parse

of the English sentence to SQL components, generating a “query tree.” It then showed the

query tree to the user, allowing the user to verify that the interpretation is correct. Mapping

the parse tree to SQL components required enumerated sets of phrases for types of nodes;

to map names and values from the input question to the database, they used a similarity

function incorporating WordNet and spelling similarity. Saha et al. (2016) used domain-

specific ontologies to describe the semantic entities within the domain and their relation-

ships, as well as an ontology-to-database mapping that describes how ontology elements
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map to database elements. Thus, the system first generates a query in an intermediate query

language over the ontology, and then generates SQL from that. For domains in which they

have built ontologies, they achieve perfect or near-perfect precision and recall of over 85%.

Neural systems generally try to avoid requiring human-written domain-specific re-

sources, relying instead on access to a large number of training examples.

The most similar related work is Zhong et al. (2017)’s seq2SQL system, which uses

an augmented pointer network, enabling it to perform reasonably well on simple queries

across domains. The system is designed to work only on single table queries with no nest-

ing. Input to its encoder is a concatenation of all column names in that single table, the

question, and a limited vocabulary of SQL keywords such as SELECT and COUNT. The de-

coder is comprised of three parts. A classifier selects an aggregation operator (or null). A

second classifier chooses one of the column names from the input sequence to go into the

SELECT clause. And a pointer network generates the WHERE clause by copying from the in-

put sequence. The two classifiers use cross entropy as a loss function, but the WHERE clause

network uses a policy gradient, since the order of conditions can vary without altering the

query’s meaning.

Our work differs from seq2SQL in several important ways in order to permit queries

that join multiple tables and queries with nesting. As noted in Chapter 5, joins and nesting

are essential parts of human-generated SQL datasets. This has several implications for our

network. First, the network needs to have access to table names, not just column names,

from the schema. Second, the three-part structure of the seq2SQL decoder cannot apply,

since it does not include a component for the FROM clause. Simply adding a fourth com-

ponent to output the FROM clause would not fix the problem, since the network still would

not have a way to handle nested queries. We therefore output the query as a sequence of

tokens. We also handle the permitted variation in WHERE clause ordering differently. Rather

than using a reinforcement-learning approach, we canonicalize queries. Specifically, we

order the components of the WHERE clause alphabetically for all training inputs.
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Iyer et al. (2017) also used seq2seq models for the text-to-SQL task. However, their

approach did not take the database schema into account. Nor did they use copying from

either input or schema.

Cai et al. (2017) use logic external to the seq2seq network to provide additional infor-

mation to the network. In the encoder phase, they append a few new bits into the LSTM

indicating whether the word is likely to be a table name or a string value. In the decoder

network, they add a hidden state that they call the grammatical state that guarantees gram-

matical correctness of output. They report results on two datasets that they developed,

which are not publicly available. The queries include zero or one table joins and one con-

straint in the WHERE clause.

Several systems have bypassed SQL as a representation, focusing instead on an end-

to-end approach. This includes Neural Enquirer (NE) (Yin et al., 2016), neural network

designed to execute natural language queries over a knowledge base. It represents the

knowledge base as a table and learns embeddings, where each embedding represents a

value in the table. Although NE uses word embeddings for field names in the table, it differs

from the present work in several ways. First, NE does not generate SQL queries. Rather,

its architecture incorporates a number of “executor” layers, each of which represents an

operation, such as select or max, which returns intermediate results. Each executor operates

on each row of the table. Second, NE requires an embedding for every value in the KB.

Thus, the synthetic task on which it was evaluated used a table size of 10 by 10; the present

work does not limit table size. In addition, NE is designed to work with one table. When

required to join two tables, its accuracy declined by more than 18% (Yin et al., 2015).

6.3 Methods

Our systems are modified versions of seq2seq models that incorporate attention to schema.
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Figure 6.2: Schema embedding for COURSE.COURSE ID.

6.3.1 Schema Representations

In order to pay attention to schema, we require a matrix representation of a database

schema. We experiment with two such representations: schema embeddings and schema

maps.

For schema embeddings, we generate fixed embeddings to represent each table and field

in the schema. For each field, we first collect the table name, field name, and variable type,

as well as whether it is a primary key and/or a foreign key. We use 50-dimensional GloVe

word embeddings pre-trained on Wikipedia and Gigaword1 to represent the table name and

field name. We represent names that are more than one word, such as “COURSE ID,” as

the mean of their word vectors. For out-of-vocabulary names, we use the vector for the

“UNK” token. Whether a field is a primary key is represented with a single bit; the same

is true for whether it is a foreign key. We represent its type using a one-hot vector. We

concatenate all of these to form a single vector representing the field, as shown in Figure

6.2. We represent each table in the schema using a similar vector, except that the field name

section is zeroed out. We then stack these vectors to generate a matrix representation of the

entire schema.

A potential disadvantage of these schema embeddings is that they do not encode infor-

mation about the relationships between fields in different tables. To remedy this, we also

1https://nlp.stanford.edu/projects/glove/
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Figure 6.3: Schema map embedding for relationship of
COURSE OFFERING.COURSE ID and COURSE.COURSE ID.

create a schema map to represent foreign key constraints between tables. A foreign key con-

straint has four major components: the table name and field name of the foreign key, and the

table name and field name of the field it references. For example, in the advising schema,

COURSE OFFERING.COURSE ID refers to COURSE.COURSE ID. This information

might be useful as the model seeks to connect information in the COURSE OFFERING

and COURSE tables. Thus, for each foreign key constraint, we concatenate the word em-

beddings of these four components, as shown in Figure 6.3. We stack these vectors to form

a matrix map of the schema.

6.3.2 Seq2Seq Model

A seq2seq model (Sutskever et al., 2014) is comprised of two recurrent neural networks

(here, LSTMs), an encoder and a decoder. At each time step t, an LSTM cell processes the

hidden vector from the previous step, ht−1, and an input vector from the current time step,

xt. That is,

ht = LSTM(ht−1, xt) (6.1)

where LSTM is the LSTM function of Hochreiter and Schmidhuber (1997). In the encoder,

xt is an embedding representing the t-th token of the input question; in the decoder, the

embedding is the t− 1-th output token for the query.2

We calculate attention to the input sequence (i.e., the question) in a similar way to Bah-

2Multi-layer LSTMs function slightly differently, but we use only single-layer LSTMs for the present
work.
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danau et al. (2015). Let |q| be the number of tokens in the input question. Then h1, ...h|q|

are the hidden vectors emitted by the encoder. Attention scores used by the decoder at

timestep t are a vector st. Each scalar stk represents the normalized attention score for hk,

the encoder’s k-th hidden vector. We first calculate the non-normalized attention score

αtk = vatt tanh(W0hk + W1ht) (6.2)

where W0, W1, and vatt are learned parameters. We then normalize using softmax:

stk =
exp{αtk}∑|q|
j=1 exp{αtj}

(6.3)

Using the attention scores as weights for the hidden vectors, we calculate a context vector

for timestep t:

ct =

|q|∑
k=1

stkhk (6.4)

In addition, our model incorporates an explicit representation of the database schema,

as described in Section 6.3.1. Let M be the schema embedding matrix; it is comprised of

rows m0,m1, ...mr, where r is the number of elements in the schema, and u represents the

length of each vector. We calculate a scalar attention score atn for the n-th field or table in

the schema, similar to the attention score of Eqn. 6.2:

βtn = vβatt tanh(W3mn + W4ht) (6.5)

atn =
exp{βtn}∑r
l=1 exp{βtl}

(6.6)
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From those scores, we generate the attention vector for the schema:

vt =
r∑
j=1

atjmj (6.7)

We then concatenate the current hidden vector, input context vector, and schema attention

vector to get hattt . This vector is the input hidden vector for timestep t + 1, and it is also

used to predict the output at time t, such that

p(yt|y<t, q) = softmax(tanh(W4(h
att
t ))ᵀe(yt) (6.8)

Here, e(yt) is simply a one-hot vector, enabling Eqn. 6.8 to specify the probability for yt.

6.3.3 Attention-Based Copying

Attention-based copying from input sequences has been helpful in neural semantic parsing

of English to logical forms (Jia and Liang, 2016). Here, we incorporate attention-based

copying of both the input and the schema elements.

Specifically, our attention-based copying system has a vocabulary consisting of tokens

that are part of the SQL language in general (e.g., “SELECT”, “FROM”, “=”, “LIKE”),

as well as two special tokens, COPY WORD and COPY SCHEMA. When the LSTM cell

output predicts a token from the SQL language, the model emits that token as usual. When

the cell predicts COPY WORD, the model emits the token from the input sequence with

the highest attention score, as calculated by Eqn. 6.3.

When the cell predicts COPY SCHEMA, the model determines the schema element to

copy by considering the hidden state, the encoder context, the schema attention score, and

weighted schema embeddings. To do this, we concatenate the hidden vector ht and the

context vector ct from Eqn. 6.4. We apply a set of learned weights, W5 ∈ Ru×v+w, where

u is the length of a schema embedding, v is the length of h, and w is the length of c, to the
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schema embeddings. The schema attention copy score for the n-th schema element at time

t is then

rtn = βtn ∗ ([ht, ct] ·W5mn) (6.9)

Note that calculating the expression within parentheses does not depend on the number of

elements in the schema.

If the decoder emits any non-COPY token at t − 1, then the input to the decoder at

timestep t, xt, is the word embedding for that token, as it would be in a normal seq2seq

model. If it emits COPY WORD, then xt = hk̂, where

k̂ = arg max
k

st−1k (6.10)

Similarly, if it emits COPY SCHEMA, xt = W0mn̂, where n̂ maximizes at−1n .

Loss is the sum of three components:

loss = ltoken + lw + ls (6.11)

ltoken is the categorical cross entropy for the model’s probability distribution over the output

vocabulary tokens; in other words, the same loss as used in the model without attention-

based copying.

lw is the loss for word copying, and ls is the loss for schema copying. Each is zero

when the model should not copy from the specified source; otherwise, it is the categorical

cross entropy of the distribution of scores over the tokens that might be copied. That is, if

H(p, q) is the categorical cross entropy of a distribution q and the true distribution p,

lw =


H(ŝt, st) if ŷt = COPY WORD

0 otherwise
(6.12)
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Number of Questions Number of Unique Queries
Advising 3898 208
ATIS 5280 947
GeoQuery 877 247
Scholar 817 193

Table 6.1: Text-to-SQL dataset sizes

where ŷt is the correct token from output vocabulary at time t, ŝt is a one-hot vector indi-

cating the correct word from the input sequence to copy, and st is the vector of stk values

from Eqn. 6.3. Likewise,

ls =


H(r̂t, rt) if ŷt = COPY SCHEMA

0 otherwise
(6.13)

where r̂t is a one-hot vector indicating the correct token from the schema to copy, and rt is

actual vector of schema attention copy scores.

6.4 Datasets

As shown in Chapter 5, best practices for evaluating text-to-SQL systems call for evaluation

on multiple datasets and multiple splits.

We evaluate using four datasets, each comprised of English questions and correspond-

ing SQL queries. Advising (Chapter 5) is in the student-advising task domain. ATIS (Price,

1990; Dahl et al., 1994; Iyer et al., 2017) relates to a flight-booking task. GeoQuery (Zelle

and Mooney, 1996; Popescu et al., 2003; Giordani and Moschitti, 2012; Iyer et al., 2017)

contains questions and queries about United States geography. And Scholar (Iyer et al.,

2017) is made of questions about academic papers, authors, and venues. All four datasets

include at least some joins and nesting. Dataset sizes are described in Table 6.1. We use

the standardized versions as described in Chapter 5.
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Also in accordance with Chapter 5, we evaluate on both question-based splits, where

no English question may appear in both train and test sets, and query-based splits, where

no anonymized SQL query may appear in both train and test sets. As we have shown,

query-based splits are far more difficult than traditional question-based splits.

We use the datasets in two different ways. In one, we train each model on the train set of

one dataset and test it on the test set of the same dataset. This is the standard approach, and

the only one reported on in all work we are aware of. In the other, we train one model on

train sets from all four datasets and test on each dataset’s test set. This give some indication

of the ability of a model to generalize across domains. In one sense, it is a harder problem,

since the model needs to learn not only how to generate SQL from text, but also how to

classify which domain it is in. In another sense, however, it has the potential to make the

problem easier, if the model can be taught to use what it learns about SQL in one domain

to improve its performance in another. A model that can do this would be extraordinarily

useful because it could be ported to domains that do not have much training data.

6.5 Experiments

We report on two sets of experiments.

For the first, we ask whether attention to schema embeddings and attention-based copy-

ing from schema can improve performance of a state-of-the-art system. We begin with

a seq2seq model with attention-based copying from the input question, which was the

strongest system in our experiments in Chapter 5. In the first condition, we add attention

to schema. In the second, we add both attention to schema and attention-based copying

from schema. We hypothesize that attention alone will have a small effect, and copying

will have a larger effect. We expect the strongest improvement to be in the cross-domain

model. There, schema attention should provide a strong signal of which domain a question

comes from. Moreover, copying from schema should enable the model to generalize from
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one schema to another.

For the second set of experiments, we investigate two representations of schemas. We

report the results of a seq2seq model with attention to input and attention to schema em-

beddings. We compare this to the same model with attention to input, schema embeddings,

and the schema map. We hypothesize that the additional information about relationships in

the schema that the schema map provides should improve performance.

For both experiments, our metric is exact-match query accuracy. A query is correct if it

is identical to the gold query; otherwise, it is counted as incorrect.

6.6 Results and Analysis

6.6.1 Schema Attention and Copying

Advising ATIS GeoQuery Scholar
Ques. Query Ques. Query Ques. Query Ques. Query

Attn. Copying from Input 70 3 68 2 76 26 58 11
+ Trained on all 67 3 71 7 67 16 45 11

Attn to schema 67 2 73 2 67 30 59 7
+ Trained on all 63 3 68 12 71 14 50 7

Copying from both 71 3 62 2 63 20 3 3
+ Trained on all 63 3 64 0 47 13 3 0

Table 6.2: Accuracy of a seq2seq attention-to-input copying model with no schema input,
with attention to schema, and with attention-based copying from schema on question and
query splits of dev sets for the four datasets.

As can be seen in Table 6.2, experiments on whether attention to schema and copying

from schema are helpful remain inconclusive. No model consistently outperformed other

models. No model consistently outperformed other models on one split but not the other.

In light of these results, we cannot reject the null hypothesis (i.e., that attention to schema

and copying from schema do not affect model performance).

Copying from both on Scholar is an obvious outlier. Error analysis reveals that the
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Advising ATIS GeoQuery Scholar
Schema attn. 73 90 69 85
Schema copying 81 79 50 43

Table 6.3: Percent overlap in incorrect questions between experimental systems and base-
line. Wrong question overlap is the number of questions for which both the experimental
and baseline system generated incorrect SQL divided by the total number of questions for
which the experimental system generated incorrect SQL.

schema-copying model frequently copied the wrong table and field names. Omitting these

errors, the model’s performance would be comparable to the schema attention model. In-

terestingly, in Advising and ATIS, all table and field names are either a single word or

multiple words separated by underscores (e.g., COURSE ID). In GeoQuery, the same is

true except for the HIGHLOW table. In Scholar, however, many table and field names are

made of multiple words strung together with no delimiter between them, like PAPERID and

PAPERKEYPHRASE. Such table and field names were not tokenized, meaning the word

embedding portions of their schema embeddings were “UNK.” The poor performance of

the schema-copying model may thus be due to the number of UNK-based embeddings in

the Scholar; the model has no way to tell the difference between the embedding for the

PAPERDATASET table and that for the PAPERKEYPHRASE table.

Must we conclude that attention to schema and copying from schema make no differ-

ence, aside from the exceptional case of Scholar? By one measure, this seems to be true.

The first two rows of Table 6.3 show the percentage of overlap between questions that the

experimental models got wrong and questions that the baseline model got wrong. High

numbers indicate that the experimental models primarily got the same questions wrong as

the baseline model. Setting aside Scholar, we see that the same questions were generally

difficult for all models.

Cross-domain training was neither consistently helpful nor consistently harmful. As

expected, the baseline model does not seem to have the ability to generalize what it learns

in one domain to another. Unfortunately, the experimental models also do no appear to

generalize across domains. Models trained on all domains successfully classified unseen
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Advising ATIS GeoQuery Scholar
Ques. Query Ques. Query Ques. Query Ques. Query

Attn. to Input & Schema 33 3 67 2 57 28 32 3
+ Schema Map 29 2 65 2 53 23 28 4

Table 6.4: Accuracy of non-copying model with attention to input and schema embeddings,
with and without attention to a schema map. Note: These results are currently trained on
the train set and evaluated on the dev set.

questions into the correct domain; that is, we did not encounter errors where the model at-

tempted to query the Advising database when the question came from Scholar. The models

even appear able to distinguish the somewhat related ATIS and GeoQuery domains; even

though both include references to cities and states, models trained on all datasets distin-

guish GeoQuery’s STATE ID field from ATIS’s STATE CODE field.

6.6.2 Schema Maps

Table 6.4 compares a model that pays attention to input and schema embeddings with one

that pays attention to input, schema embeddings, and a schema map. The model without

the schema map is more accurate. The differences are small, but the consistency of their

direction indicates that use of a schema map hinders performance.

One would expect the schema map to have either a positive effect or none. After all,

if it does not provide useful information, the model should learn to ignore its signal. The

problem may be that the schema map makes the model larger, and the amount of training

data we have cannot support a larger model.

6.7 Conclusions and Future Work

The proposed representations of schema and architectures that incorporate those represen-

tations have not proven helpful for the text-to-SQL task. However, the observation that

SQL queries depend on the database schema remains true. Thus, additional work on incor-
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porating schema information into neural networks for text-to-SQL could still be fruitful.

One option is to make changes to the architecture. Perhaps the attention-to-schema

model could be improved with some form of gating. Or perhaps adjusting the structure to

more closely resemble a pointer network would help.

The problem might lie with the schema representation. We use word embeddings to

build these representations, but there is no reason to believe that these embeddings occupy

the same space as the embeddings the model learns for the encoder or decoder vocabularies.

We might address this by initializing all three with word embeddings from the same space

and changing the schema embeddings from their current, static state to dynamically learned

embeddings like those of the encoder.

None of these changes address the larger problem, however: text-to-SQL models are

not learning to generalize. Within domains, models are failing to generalize to previously

unseen queries. Across domains, models are not able to use information gleaned about

SQL from one dataset to improve their performance on another dataset.

The most important future work will need to fix this. Encoding more knowledge of

SQL into the network could help. This might be done through pre-training the parameters

of the decoder as a SQL language model, perhaps on a dataset like that of Iyer et al. (2016).

Such a model, it is to be hoped, would learn general rules of SQL, which could then be

honed for particular domains. Alternatively (or additionally), we could explicitly provide

the network with information about the structure of SQL. Zhong et al. (2017)’s seq2SQL

architecture and Dong and Lapata (2016)’s seq2tree architecture are examples of this type

of idea; however, to date no one has built an architecture that is both specific to SQL

and general enough to cover a variety of queries. Other changes to both architecture and

input data should focus on how to train the network to recognize and use compositionality.

These are the areas most likely to generate true breakthroughs, rather than incremental

improvements over the state of the art.
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CHAPTER 7

Text-to-SQL in Dialog Context

7.1 Introduction

Text-to-SQL work to date has focused on transforming a single question—such as “Who

teaches Discrete Mathematics?”—to a query (Popescu et al., 2003; Popescu et al., 2004;

Giordani and Moschitti, 2012; Poon, 2013; Li and Jagadish, 2014; Saha et al., 2016; Zhong

et al., 2017; Iyer et al., 2017; Cai et al., 2017). One potential use for parsing English to

SQL is as a component of a dialog system. In a dialog system, an agent typically holds a

multi-turn conversation with a user. Thus, the meaning of a given question may be affected

by the conversational context.

An obvious example is coreference. Suppose a student and an advisor are having a

conversation about what courses the student should take the following semester. Their con-

versation might include the following exchange:

ADVISOR: You should consider taking Discrete Mathematics.

STUDENT: Who teaches that class?

Notice that the student’s question is semantically equivalent to “Who teaches Discrete

Mathematics” when viewed in the context of the conversation; it can be answered using

the same SQL query. However, the single utterance “Who teaches that class?” does not

contain enough information to generate the SQL.

Conversational state may also be important. Suppose our student and advisor had the
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following interaction:

STUDENT: I’m looking for an easy class.

ADVISOR: Have you considered EECS 484?

STUDENT: When does that meet?

ADVISORS: Monday mornings.

STUDENT: I can’t do morning classes. Can you suggest something else?

“Can you suggest something else?” does not make its constraints explicit, but a human

would know that the student wants easy classes that do not meet in the afternoon. A dialog

system would need to maintain some representation of the conversation’s state to remember

that it needs to generate an easiness constraint.

In this chapter, we therefore take the first steps towards transforming the one-to-one

text-to-SQL systems of Chapters 5 and 6 into text-to-SQL components for dialog systems.

We describe the Flex-to-SQL dataset, version 0.1. We report the performance baseline

systems on this dataset. And we describe future work that is promising for this task.

7.2 Dataset

Since no prior work has considered the dialog-snippet-to-SQL task, we describe a new

dataset, Flex-to-SQL dataset, version 0.1, for the task. It combines data from the Flex

Dialog dataset with the Advising SQL dataset.

The Flex Dialog dataset (Jiang et al., 2018 forthcoming) consists of dialogs between

two university students role-playing an undergraduate student and academic advisor. The

“student” received a made-up student profile, and the “advisor” received a set of courses

recommended for the student, along with information about each course. The participants

then interacted through a chat interface, holding a conversation with the goal of helping the

“student” select courses for the following semester.

The Advising SQL dataset (Chapter 5) includes over 200 unique SQL queries corre-
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sponding to questions an undergraduate computer science student might ask an advisor.

7.2.1 Preliminary Annotation

To develop the Flex-to-SQL dataset, researchers spent one day annotating Flex dialogs.

After a training session on shared dialogs to ensure annotators understood the task, one

annotator reviewed each dialog. Annotators highlighted each student utterance that repre-

sented a query that might be answered by a database. For each highlighted utterance, the

annotator selected a label from a searchable list. Labels comprised either a question and

the tag “CLOSEST” or “EXACTLY”, or just the choice “OTHER.”

Questions that could be used for the labels initially came from the Advising SQL

dataset, with one representative question for each SQL query. Annotators also contributed

to a shared list of questions that occurred often in the dialogs, and the searchable list was

updated to include items on the list approximately once an hour.

Annotators labeled each highlighted utterance with a question from the dropdown that

was as semantically similar to the utterance as possible. If the selected question was an

exact paraphrase of the highlighted utterance (but for entity names), the “EXACTLY” tag

was used; if it was not an exact match, but rather the closest match available in the list,

the “CLOSEST” tag was used. If no question from the list was close in meaning to the

highlighted utterance, annotators applied the “OTHER” label.

To keep the questions as broad as possible, named entities in the labels were replaced

with variables. The label “Who teaches department0 number0 next semester?” thus applied

equally to “Who teaches EECS 280 next semester?” and “Who teaches EECS 203 next

semester?”

This annotation scheme had multiple goals. First, it enabled annotators who might not

be familiar with SQL to quickly indicate whether an utterance was semantically equivalent

to a SQL query already in the Advising SQL dataset. Second, for questions that did not

already have SQL queries, it allowed rough clustering based on the nearest query.
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Agree The label is exactly right.
Closest The label is close, but needs to be part of the “closest” review.
Unclear The question is unclear and shouldn’t generate SQL.
Data The question asks for data that isn’t in the database and shouldn’t generate SQL.
Not a query Annotator mistake; this was not a query at all.
Other Explain in comments.

Table 7.1: Labels used in the second-level review of questions tagged “EXACTLY.”

7.2.2 Subsequent Annotation of “Exact” Utterances

Two native English speakers familiar with the database schema performed a second level

of review for every utterance tagged “EXACTLY.” They were shown the dialog up to and

including the tagged utterance (the “utterance in context”). They labeled each utterance

with one of the options in Table 7.1. A comment field was available for all labels and

required for any question labeled “Other.”

After the second-level review, 408 utterances in context had been identified as semanti-

cally equivalent to a question in the Advising dataset. The remainder were either identified

as exactly matching a question for which there was no SQL query yet, removed as either

unclear or requesting data that was not available from the database, or transferred to the

“CLOSEST” bucket for further review.

For the 408 utterances that exactly matched a question in the Advising dataset, we

were able to create a dataset largely automatically. Each English question input was the

entire utterance in context. That is, the “question” consists of the entire conversation up

to and including the labeled utterance. Each query was the SQL query from Advising

corresponding to the exact-match question. However, this still left the identification of

variables in the utterance to be done manually.

As noted above, label questions included variables; for instance, “Who’s the EECS

280 instructor next semester?” would be labeled “Who teaches department0 number0 next

semester? EXACTLY” To run against the database and get correct results, we must replace

“department0” with “EECS” and “number0” with “280” in the SQL. For these utterances,
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we manually identified the variables.

The resulting dataset is Flex-to-SQL v.0.1. It contains 41 distinct SQL queries corre-

sponding to the 408 utterances. We created a question-based split and a query-based split,

though for the pilot work we report only experiments on the question-based split. Since

the dataset is relatively small, we use cross validation. For the query-based split, we use

leave-one-query-out cross-validation. For the question-based split, we randomly assigned

each question to one of ten buckets.

7.3 Pilot Experiments

In light of Chapters 5 and 6, an obvious baseline for this task is the sequence-to-sequence

(seq2seq) with attention-based copying model.

Our initial plan was to provide the utterance in context as the input to the encoder.

However, due to the length of the context, this created an exploding or vanishing gradient

problem.1 For these pilot experiments, we therefore limited the length of context to at most

150 characters. We used the last 150 characters of each context, to ensure that the target

utterance was included, and on the assumption that context closer to the target utterance

would be more important than context earlier in the conversation.

In addition to training an input-copying seq2seq model on Flex-to-SQL itself, we report

the performance of a model trained on the Advising dataset’s question split, evaluated on

all examples in Flex-to-SQL v.0.1. Since all of the queries in Flex-to-SQL v.0.1 appear in

Advising, the model will not need to generalize to a new domain, nor even to new queries

1Although LSTMs are designed to reduce the exploding and vanishing gradient problem seen in RNNs,
very long input sequences can still create this problem for LSTM encoders, as it did in this case. The
loss quickly became too large or too small, generating NaN (not a number) errors and making any training
impossible.

We first attempted to address the problem by adjusting hyperparameters. We decreased the learning rate
from 1e− 3, which had shown the best performance across single-utterance text-to-SQL datasets. We gradu-
ally decreased it to 1e− 12, but this did not remedy the problem. In addition, we tried a smaller network (50
hidden units for encoder and decoder, compared to 200 typically used for other datasets). We also tried using
a simple stochastic gradient descent (SGD) optmizer in place of the Adam optimizer that had performed well
on other datasets. None of these adjustments solved the problem.
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Model trained on Accuracy
Advising 0
Flex-to-SQL 39

Table 7.2: Results of pilot experiments on a new dialog-to-SQL task

within the same domain, in order to be successful.

7.4 Results

A model that acheived over 70% accuracy on the Advising dataset was unable to generate

a single correct output for dialogs in the same domain that use the same queries. This is

strong evidence that text-to-SQL in dialog is a distinct problem that will not be solved even

by perfecting performance on single-utterance text-to-SQL datasets.

Preliminary results training on dialogs show that the task is not entirely impossible, but

will be difficult.

One factor that makes this task more difficult is that it requires the model to filter out

extraneous information. For example, in the Advising dataset, any course number men-

tioned in the question is likely to appear in the query as well. In Flex-to-SQL, though, the

context often includes many course numbers, and the model will need to learn which are

irrelevant. Consider the following dialog:

STUDENT : are there any other courses i should take

ADVISOR : Taking EECS 370 with EECS 281 is a good choice .

STUDENT : what is EECS 370 ?

The gold query is

SELECT COURSEalias0.DEPARTMENT, COURSEalias0.NAME, COURSEalias0.NUMBER

FROM COURSE AS COURSEalias0

WHERE COURSEalias0.DEPARTMENT = "EECS" AND COURSEalias0.NUMBER = 370 ;

but the system outputs
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SELECT COURSEalias0.DESCRIPTION, COURSEalias0.NAME

FROM COURSE AS COURSEalias0

WHERE COURSEalias0.DEPARTMENT = "EECS" AND COURSEalias0.NUMBER = 281 ;

7.5 Future Work

This is pilot work, and there is obviously room for a great deal of improvement. As the

current errors show, exploring improved copying-from-input may be important.

Another problem to overcome is the length limitation. If the problem is in fact vanishing

and not exploding gradients, a larger epsilon value might address it. Intelligent initialization

of weights for the model might help with exploding gradients. If the weights are random,

then costs at the beginning of training will be high. However, if the weights are initialized

to something close to what we expect will work, the initial costs may be low enough to

avoid this problem. One method of intelligent initialization to try would be training on

only the shortest examples first before gradually permitting longer and longer examples in

the training data.

Experimenting with other architectures would probably also be worthwhile. For exam-

ple, instead of an LSTM encoder, what would happen if we used a convolutional neural

network (CNN)? Or perhaps a combination would be helpful, with an LSTM over a small

portion of the text and a CNN over a larger portion.

Alternatively, we can investigate other ways of providing information early in the con-

versation to the model without passing the entire context into the encoder. For instance,

would a simple coreference resolver help to label entities in the target utterance, so that

less context is needed?

On the data side, we intend to expand the available data for this task. First, we will

annotate additional dialogs, generating new SQL queries for questions labeled “closest” in

the first round of annotation. Second, many paraphrases of the dialogs already exist. We
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can therefore compare a model trained on a dataset augmented with paraphrases without

the need to annotate new dialogs.

7.6 Conclusion

In this chapter, we have taken the first steps on a new and important task, applying text-

to-SQL methods to dialogs. We have shown that generalizing from single-utterances to

dialogs is non-trivial. We have described the first version of a new dataset for this task. We

have established baseline results and proposed a number of methods of improving perfor-

mance.
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CHAPTER 8

Conclusion

This work has studied computational meaning representations (MRs) for NLP from two

perspectives: What MRs are appropriate for what tasks, and how should we generate our

selected MR from text?

An enormous number of options for MRs exist, ranging from simple word counts to

lambda calculus to SQL to neural networks. We can even choose to use natural language

as its own representation. The lesson of Part I is about the tradeoffs between different MRs

for different tasks.

Natural language as its own MR has a number of advantages: It’s interpretable even by

lay-people. It is guaranteed to be expressive enough to cover anything that was expressed

in natural language. And it saves us the trouble of generating an MR. This is not just

convenient; it removes a step in the pipeline for any NLP task where things can go wrong.

Extractive summarization is one of the most marked success stories for natural language

as its own MR. While it uses other MRs (such as tf*idf) to determine which sentences to

extract, it retains the sentences from the original document as their own MR when gen-

erating the output summary. However, when we change the task a little, we see a major

downside of natural language as its own MR; namely, it is very difficult to manipulate. We

used two state-of-the-art methods as well as our own set of hand-engineered rules to try

to shorten long sentences, and we found that this introduced so many grammatical errors

as to make the text unreadable. In essence, the effort that is saved by not converting text
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to a different MR is made up for by the effort required to manipulate the text directly; the

possible errors that we seek to avoid by skipping the MR-generation step are not avoided,

but shifted to a different step in the pipeline.

Neural networks have shown incredible promise for NLP tasks. Looking at recent NLP

conference proceedings, it is difficult to avoid concluding that LSTMs are a magical MR

that will solve all of the open problems in the field; one need only tweak the architecture

just so for the task at hand. In Chapter 3, however, we saw that neural networks are not

always the answer. We tried three LSTM network structures, and none of them performed

as well as a state-of-the-art system that uses an SVM. Neural networks may be an effective

hammer for NLP, but not every application is a nail.

One lesson to take from these two chapters is that choice of MR is important, and

deciding what MR to use for a particular purpose is a worthwhile subject of research in

itself. Chapter 4 reflects this lesson: we set out to compare two types of representations for

short text clustering. Our hypothesis that distributional-semantics-based MRs would have

an advantage on texts that express creativity through a wider vocabulary acknowledges that

MRs are not one-size-fits-all. And, indeed, this work makes that point twice: once by

showing which MRs worked best for creative and not-so-creative datasets, and a second

time by showing the unexpected interaction between the choice of MR and the choice of

clustering algorithm.

What, then, can we conclude about selecting MRs for short texts? Simply that it is a

complex issue. Properties of the dataset, the task, and other stages of the pipeline it will be

used in all play a role in choosing the right tool for the job.

In Part II, we assumed that, after taking all of this into account, SQL was the right MR

for the job. We then asked questions about generating SQL from text. While we approached

this problem from three different angles—methodological, systems, and applications—a

single recurring theme emerged from all three: generalization.

When we looked at the text-to-SQL task from a methodological point of view, we asked
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whether there was room for improvement in evaluation methods. We found two such areas.

The first is in our choice of datasets: if we want to determine whether text-to-SQL systems

perform well on human-generated questions over real relational databases, then we need to

evaluate on datasets that include joins and nesting.

The second area where text-to-SQL evaluation methods can be improved is in how

datasets are split. The traditional split, based on English questions, allows a classifier with

a slot-filler to achieve performance on par with state-of-the-art systems. The fact that such

a system, with no ability to generalize to new queries, can succeed on the task suggests that

our measure of success does not include a measure of generalizability. Splitting the data

based on SQL queries instead makes the problem much more difficult, but also enables us

to study systems’ ability to generalize to previously unseen queries.

In Chapter 6, we set out to improve a seq2seq model for text-to-SQL. We sought to

provide explicit information about the schema of the database being queried, to allow our

system to learn a general model of text-to-SQL and consult the schema for details of a

specific database. Our hope was that this would not only improve performance on a single

dataset, but also improve the ability to generalize across domains. Unfortunately, our model

did not benefit from attention to the schema representation we used for these experiments.

More work will be needed to determine how schema representations can be used for this

task. There are, of course, plenty of areas for further experimentation. We can change the

architecture of the network, including incorporation of gates or a more pointer-network-like

structure. We can tweak our schema representation and our embedding space. However,

rather than random experimentation, we should make sure we focus on what will enable

us to learn a general model of SQL and use the schema embeddings to apply that model

to specific domains. This could mean structuring the network in ways that force the model

to output valid SQL, or pretraining a decoder on a large corpus of SQL, or any number of

other techniques, provided they are guided by our goal of generalizability.

Finally, we discovered that text-to-SQL techniques for single-utterance questions do
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not generalize well to dialog. All previous text-to-SQL work has focused on improving

performance on single-sentence questions. When we take a system trained on such data,

however, and apply it to snippets of dialog in the same domain, it is incapable of generating

correct output. Moreover, when a state-of-the-art text-to-SQL system is trained instead on a

dialog-to-SQL dataset, its accuracy is cut in half. Dialog-to-SQL is thus a new task. Future

work will need to acknowledge this, either by using different methods than single-utterance

text-to-SQL or by improving the generalizability of single-utterance systems.

Part II thus reveals a difficult but important goal for text-to-SQL research: building

systems that generalize. Whatever angle we approach the problem from, this stands out as

an area ripe for improvement.

In summary, the contributions of this thesis are

• Exposure of the difficulty even state-of-the-art sentence-shortening methods when

applied in a summarization pipeline for sophisticated documents;

• Experimental results for three LSTM architectures applied to paraphrase detection;

• Guidelines for choosing MRs and clustering algorithms for short text clustering;

• Best practices for evaluating text-to-SQL systems, as well as identification of prop-

erties future datasets for this task should include;

• Experimental results for seq2seq models with attention to two different representa-

tions of schemas on the text-to-SQL task; and

• Discovery of the distinction between single-utterance text-to-SQL and text-to-SQL

in a dialog context.

And the most relevant future directions identified in this work are

• For sentence-shortening in sophisticated document summaries, a seq2seq model trained

on Wikipedia and Simple English Wikipedia is an obvious next step. Before using it
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for summarization, pilot work should check for grammatical output that still captures

the original meaning of the sentence.

• For paraphrase detection using tree-LSTMs, incorporating dependency labels might

improve performance.

• Schema-attention models for text-to-SQL might benefit from

– Modifications to network architecture, such as use of additional gating, trees

in place of sequences for encoder input, or decoder networks built around the

grammar of SQL.

– Improvements in schema representations, such as dynamically updating schema

embeddings, or encoder embeddings in the same vector space as the schema

embeddings.

– Incorporating greater knowledge of SQL grammar into the decoder, either ex-

pressly or by pretraining a language model on a large SQL dataset.

• Dialog-to-SQL is a new problem that will benefit from expansion of available re-

sources.

• Future work on dialog-to-SQL should also compare an end-to-end system against

systems that attempt to summarize relevant points of the dialog into a single utter-

ance, as well as measure how much context before the question ought to be included

for end-to-end models.

154



References

Jacob Andreas, Andreas Vlachos, and Stephen Clark. 2013. Semantic Parsing as Machine
Translation. Proceedings of the 51st Annual Meeting of the Association for Computa-
tional Linguistics (Volume 2: Short Papers), pages 47–52.

I. Androutsopoulos, G. D. Ritchie, and P. Thanisch. 1995. Natural Language Interfaces to
Databases - An Introduction. Natural Language Engineering, 1(709):29–81.

Gabor Angeli, Neha Nayak, and Christopher D Manning. 2016. Combining Natural Logic
and Shallow Reasoning for Question Answering. In ACL, pages 442–452.

Philip Arthur, Graham Neubig, Sakriani Sakti, Tomoki Toda, and Satoshi Nakamura. 2015.
Semantic Parsing of Ambiguous Input through Paraphrasing and Verification. In Trans-
actions of the Association for Computational Linguistics, volume 3, pages 571–584.

Yoav Artzi and Luke S Zettlemoyer. 2011. Bootstrapping Semantic Parsers from Conver-
sations. Computational Linguistics, pages 421–432.

Yoav Artzi and Luke Zettlemoyer. 2013. Weakly Supervised Learning of Semantic Parsers
for Mapping Instructions to Actions. Tacl, 1:49–62.

Yoav Artzi, Nicholas FitzGerald, and Luke Zettlemoyer. 2013. Semantic Parsing with
Combinatory Categorial Grammars. In Proceedings of the 51st Annual Meeting of the
Association for Computational Linguistics (Tutorials), page 2.

Yoav Artzi, Kenton Lee, and Luke Zettlemoyer. 2015. Broad-coverage CCG Semantic
Parsing with AMR. Proceedings of the 2015 Conference on Empirical Methods in
Natural Language Processing, pages 1699–1710.

Nguyen Bach and Sameer Badaskar. 2007. A review of relation extraction. Literature
review for Language and Statistics II.

Ngo Xuan Bach, Nguyen Le Minh, and Akira Shimazu. 2014. Exploiting discourse infor-
mation to identify paraphrases. Expert Systems with Applications, 41(6):2832–2841.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. 2015. Neural machine transla-
tion by jointly learning to align and translate. In Proceedings of the ICLR, pages 1–15,
San Diego, California.

155



Laura Banarescu, Claire Bonial, Shu Cai, Madalina Georgescu, Kira Griffitt, Ulf Herm-
jakob, Kevin Knight, Philipp Koehn, Martha Palmer, and Nathan Schneider. 2013.
Abstract meaning representation for sembanking. Proceedings of the 7th Linguistic
Annotation Workshop and Interoperability with Discourse, pages 178–186.

Somnath Banerjee, Krishnan Ramanathan, and Ajay Gupta. 2007. Clustering short texts
using wikipedia. In Proceedings of the 30th annual international ACM SIGIR confer-
ence on Research and development in information retrieval, pages 787–788. ACM.

Regina Barzilay and Michael Elhadad. 1997. Using lexical chains for text summariza-
tion. In Proceedings of the ACL Workshop on Intelligent Scalable Text Summarization,
volume 17. Association for Computational Linguistics.

Frédéric Bastien, Pascal Lamblin, Razvan Pascanu, James Bergstra, Ian J. Goodfellow,
Arnaud Bergeron, Nicolas Bouchard, and Yoshua Bengio. 2012. Theano: new features
and speed improvements. Deep Learning and Unsupervised Feature Learning NIPS
2012 Workshop.

Abdullah Bawakid and Mourad Oussalah. 2008. A semantic summarization system: Uni-
versity of Birmingham at TAC 2008. Tac.

Islam Beltagy, Katrin Erk, and Raymond Mooney. 2014. Semantic parsing using distri-
butional semantics and probabilistic logic. Proceedings of the ACL 2014 Workshop on
Semantic Parsing, pages 7–11.

Jonathan Berant and Percy Liang. 2014. Semantic parsing via paraphrasing. In Pro-
ceedings of the 52nd Annual Meeting of the Association for Computational Linguistics,
pages 1415–1425.

Jonathan Berant, Andrew Chou, Roy Frostig, and Percy Liang. 2013. Semantic Parsing on
Freebase from Question-Answer Pairs. Proceedings of EMNLP, pages 1533–1544.

Taylor Berg-Kirkpatrick, Dan Gillick, and Dan Klein. 2011. Jointly learning to extract and
compress. In Proceedings of the 49th Annual Meeting of the Association for Computa-
tional Linguistics: Human Language Technologies-Volume 1, pages 481–490. Associ-
ation for Computational Linguistics.

Pavel Berkhin. 2006. A survey of clustering data mining techniques. In Grouping multidi-
mensional data, pages 25–71. Springer.

William Blacoe and Mirella Lapata. 2012. A comparison of vector-based representations
for semantic composition. In Proceedings of the 2012 Joint Conference on Empiri-
cal Methods in Natural Language Processing and Computational Natural Language
Learning, pages 546–556. Association for Computational Linguistics.

Vincent D Blondel, Jean-Loup Guillaume, Renaud Lambiotte, and Etienne Lefebvre. 2008.
Fast unfolding of communities in large networks. Journal of statistical mechanics:
theory and experiment, 2008(10):P10008.

156



Johan Bos, Stephen Clark, Mark Steedman, James R Curran, and Julia Hockenmaier. 2004.
Wide-Coverage Semantic Representations from a CCG Parser. In Proceedings of the
20th International Conference on Computational Linguistics (COLING ’04), pages
1240–1246.

Denny Britz, Anna Goldie, Minh-thang Luong, and Quoc Le. 2017. Massive exploration
of neural machine translation architectures. ArXiv e-prints.
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