
Acoustic Sensing: Mobile Applications and Frameworks

by

Yu-Chih Tung

A dissertation submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy
(Computer Science and Engineering)

in The University of Michigan
2018

Doctoral Committee:

Professor Kang G. Shin, Chair
Professor Jason Flinn
Professor Peter Honeyman
Associate Professor Mark Newman

Yu-Chih Tung

yctung@umich.edu

ORCID iD: 0000-0003-4217-6752

© Yu-Chih Tung 2018

All Rights Reserved

ACKNOWLEDGEMENTS

Completing the Ph.D. degree is a long long journey. I have enjoyed my 5 years at the

University of Michigan, but this thesis would not have been completed without the help and

support of my advisor, family, colleagues, and friends. I would like to thank all of them.

First, I want to thank my advisor, Kang G. Shin, the most professional person that I

have ever worked with. Thank you for working with me and giving me the freedom to

explore whatever research topic I liked. I will always remember what you told me on my

first day that you would not push me to pursue the degree, but instead, hold my hand and

lead me to gain the necessary experience to become a Ph.D.

Second, I would like to express my gratitude to my family, especially my wife, Yu-

Ting. Being a husband who knows nothing about cooking, I would not have survived even

a single day without your support. You have always been with me throughout the 5 years,

including my worst and best times. You also brought me the biggest gift during my study,

our lovely daughter, Alison.

Last, I am highly indebted to all the members of the Real-Time Computing Laboratory

and all of my friends at the University of Michigan. I not only appreciate every discussion

that we had but also every moment that we hung out together. I would especially like to

thank Kassem and Arun. You spent an enormous amount of time with me to shape my

ideas, clear my mind, and coach my English. I would also like to thank Dongyao for being

my best friend at Michigan. I will always remember our Saturday basketball game.

My thanks and appreciations also go to all the people who have willingly helped me out

over the last 5 years. I would also like to acknowledge the support of the National Science

Foundation under Grant No. CNS-1646130.

ii

TABLE OF CONTENTS

ACKNOWLEDGEMENTS . ii

LIST OF FIGURES . vii

LIST OF TABLES . xiii

ABSTRACT . xiv

CHAPTER

I. Introduction . 1

1.1 Acoustic Sensing . 1
1.2 Thesis Statement . 2
1.3 Why Not Dedicated Sensors? . 3
1.4 Why Acoustic? . 4
1.5 Challenges . 6
1.6 Contributions . 6

1.6.1 BumpAlert: Improving the safety of pedestrians only
by use of smartphones 6

1.6.2 EchoTag: Remembering the tagged location by using
environmental echoes 7

1.6.3 ForcePhone: Estimating touch force by structure-borne
sounds . 7

1.7 A Cross-Platform Sensing Framework for Acoustic Sensing 8

II. BumpAlert . 10

2.1 Introduction . 10
2.2 Related Work . 12
2.3 BumpAlert . 14

2.3.1 Acoustic Detector . 15
2.3.2 Visual Detector . 21
2.3.3 Motion Estimator . 25

iii

2.3.4 Fusion Algorithm . 26
2.4 Implementation . 28
2.5 Experimental Evaluation . 29

2.5.1 Accuracy in Different Environments 30
2.5.2 Accuracy among Different Participants 34
2.5.3 Processing Cost and Energy Consumption 35

2.6 Usability Study . 36
2.7 Limitations and Discussion . 39

2.7.1 Detection of Moving Objects 39
2.7.2 Liability of Missed Detections 40
2.7.3 Annoyance Caused By Audible Sound 41

2.8 BumpAlert+ . 42
2.9 Conclusion . 46

III. EchoTag . 48

3.1 Introduction . 48
3.2 Related Work . 51
3.3 System Overview . 55
3.4 Acoustic Signature . 55

3.4.1 Causes of Uneven Attenuation 56
3.4.2 Sound Selection . 58
3.4.3 Volume Control . 62
3.4.4 Acoustic Signature Enrichment 62
3.4.5 Modeling of Sensing Resolution 64

3.5 Classifier . 64
3.6 Performance Optimization . 65
3.7 Implementation . 66
3.8 Performance Evaluation . 66

3.8.1 Accuracy and Resolution 69
3.8.2 Uniqueness and Confidence of Acoustic Signature . . . 70
3.8.3 False Positives . 70
3.8.4 Temporal Variation . 71
3.8.5 Environmental Disturbances 73
3.8.6 Acoustic Feature Space 75
3.8.7 Tolerance Range . 76
3.8.8 Noise Robustness . 77

3.9 Usability Study . 79
3.10 Discussion and Limitations . 81

3.10.1 Potential Applications 81
3.10.2 Limitation of Tolerance Range 82

3.11 Conclusion . 84

IV. ForcePhone . 85

iv

4.1 Introduction . 85
4.2 Related Work . 88
4.3 Structure-Borne Propagation . 90
4.4 System Design . 95

4.4.1 Sound Selection . 95
4.4.2 Estimation of Applied Force 98
4.4.3 Squeeze Detection . 101

4.5 Implementation . 104
4.6 Evaluation . 105

4.6.1 Accuracy of Force Estimation 105
4.6.2 Noise and Interference 107
4.6.3 Power Consumption 110
4.6.4 Usability Test . 111
4.6.5 Users Study of Proposed Apps 114

4.7 Discussion . 116
4.7.1 Limitations . 117
4.7.2 Potential Applications 118

4.8 Conclusion . 119

V. LibAcousticSensing . 120

5.1 Introduction . 120
5.2 Related Work . 124
5.3 System Design . 126

5.3.1 Remote Mode . 127
5.3.2 Standalone Mode . 128
5.3.3 Expected Development Flow 129
5.3.4 Cross-platform Support 130

5.4 Implementation . 131
5.5 Demonstrative Applications . 132

5.5.1 Demo App: Sonar Sensing 133
5.5.2 Demo App: Inter-Device Movement Sensing 135
5.5.3 Demo App: GUI for Activity Fingerprinting 137

5.6 Evaluation . 139
5.6.1 Overhead . 139
5.6.2 Adaptability . 143

5.7 User Experience . 146
5.7.1 Why LibAS? . 147
5.7.2 Benefits of Using LibAS 148
5.7.3 Estimated Code Reduction 149

5.8 Discussion . 151
5.9 Conclusion . 151

VI. Conclusion and Future Works . 153

v

6.1 Acoustic Sensing Applications 153
6.2 Acoustic Sensing Frameworks . 154
6.3 Limitations and Future Work . 156
6.4 Conclusion . 157

BIBLIOGRAPHY . 158

vi

LIST OF FIGURES

Figure

1.1 Active acoustic sensing. Sounds sent from the device speakers are picked
up by the device microphones and analyzed to provide various functions. . 2

1.2 Dedicated sensor solutions. Adding dedicated sensors can easily realize
novel sensing applications, but also incurs several deployment issues. . . . 3

1.3 Potentially supported devices. Many devices already have microphones/s-
peakers installed, which might support acoustic sensing applications with
minimal deployment cost. 5

2.1 System blocks of BumpAlert. Multiple sensing components are utilized
to optimize the detection performance. 14

2.2 Example measurement of acoustic detection. Peaks of signals passing
the matched filter indicate the reception of reflections from objects. The
first and strongest peak represents the sound directly transmitted from
phone speakers. 16

2.3 Distances to objects estimated by acoustic/visual detectors when a
user walks toward/from a wall. A user is guided to walk towards (away)
a wall from a location 10m away (1m behind). The circles and crosses
represent the estimated distances to objects (including the wall) detected
by our acoustic/visual detectors. The dotted lines represent the real dis-
tance to the target wall, which is collected via timestamped traces when
users walk through pre-installed tags on the ground. 17

2.4 Assumed holding posture and its effect on detections. A wrong acous-
tic detection with a longer estimated distance happens due to multipath
reflections. The marked area of images taken in this posture includes the
ground texture with a high probability. 19

2.5 Visual detection. Images take by phone rear cameras are smoothed,
transferred to HSV color scheme, back projected, and then filtered out
blob detections. 21

2.6 Height estimation by the acoustic detector. The phone’s height can be
estimated by the sound reflections from the ground. 23

2.7 False detection by the visual detector. The visual detector might over/under-
estimate the distance to objects in different scenarios. 25

vii

2.8 Fusion algorithm. If necessary, the visual detector can be enabled to
check if the objects found by the acoustic detector do indeed exist. 26

2.9 Objects identified by the clutter filter. The clutter filter is a special case
of the proposed motion filter for finding objects with 0 relative speed to
users. It provides a hint for the fusion algorithm to trigger the visual
detector, when necessary. 27

2.10 Test setting. Ground truth markers are used to collect the real distances to
the test targets. The selected test targets are ordered by their size, which
is related to detection accuracy. 29

2.11 Stationary objects passing the clutter filter. Cluttered areas can be
identified by monitoring the number of stationary objects. 33

2.12 Survey settings. The demo version of BumpAlert processes the acous-
tic/visual detectors in real time. The separate tilt survey app records
phone tilt when participants walk and provide feedback when the phone
tilt is not in the selected range. 37

2.13 An example user interface for the business of app developers. BumpAlert
executes in the background with no disturbance to users and the warning
with third-party advertisements is shown only when dangerous obstacles
are detected. 40

2.14 Acoustic detection in BumpAlert+. Bright areas indicate the possible
existence of detected obstacles. 43

2.15 Performance of BumpAlert+. Various scenarios have been tested by
walking toward the obstacles from a position 10m away. 44

2.16 Device compatibility. Detect energy ratios are measured as the peak
received acoustic energy when the target is present versus the peak energy
in an open area without obstacles. 45

3.1 Candidate applications of EchoTag. Silent mode is automatically acti-
vated when the phone is placed on a drawn box, named (echo) tag, near
the bed. Favorite songs are streamed to speakers or a predefined timer is
automatically set when the phone is placed at other nearby tags. 49

3.2 Four steps of using EchoTag. The user first draws the contour of target
locations/areas with a pencil, then commands the phone to sense the en-
vironment. After sensing the environment, a combination of applications
and functions to be performed at this location is selected. Finally, the
user automatically activates the selected applications/functions by sim-
ply placing his phone back within the contoured area. The contoured
areas are thus called (echo) tags. 50

3.3 System overview. Locations are sensed based on acoustic reflections
while the tilt/WiFi readings are used to determine the time to trigger
acoustic sensing, thus reducing the energy consumption of the sensing
process. 54

3.4 An example of acoustic signatures. The received attenuation of a flat
frequency sweep is uneven over different frequencies. The result is an
average of 100 trials over 1 minute. 55

viii

3.5 Frequency responses at nearby locations. Responses varies with loca-
tion (i.e., the distribution of light and dark vertical lines) thus being used
as a feature for accurate location tagging. 56

3.6 Causes of uneven attenuation. During the recording of emitted sound,
hardware imperfection of microphones/speakers, absorption of touched
surface materials and multipath reflections from nearby objects incur dif-
ferent degradations at different frequencies. Only the degradation caused
by multipath reflections is a valid signature for sensing locations even in
the same surface. 57

3.7 Characteristics of reflections. A matched filter is used to identify the
reflections of a 100-sample chirp. Only first 200 samples after the largest
peak are kept as a feature in EchoTag, excluding reflections from objects
farther than 86cm away. 59

3.8 Selected sound signals at EchoTag. The leading pilot is used for
time synchronization between speakers and microphones. The follow-
ing chirps (repeated 4 times each) cover the frequency sweep from 11 to
22kHz. (This figure is scaled for visualization.) 60

3.9 Frequency responses at different volumes. Responses of full volume
are saturated by sound directly transmitted from speakers while responses
at 1% of the maximum volume are too weak to pick up valid features. . . 61

3.10 Frequency responses with delay at the right channel. When the emit-
ted sound is intentionally delayed at the right channel, different portions
of features are strengthened, which helps enrich the feature space for
sensing locations. 63

3.11 Experiments scenarios. Red circles represent the target location to draw
(echo) tags. 67

3.12 Tag systems. The first tag system consists of disjoint (echo) tags while
the second and third tag systems are composed of overlapped tags 1cm or
30� apart. 68

3.13 Result of 30min dataset. Confidence is defined as the prediction proba-
bility at the target location minus the largest prediction probability at the
other locations. 69

3.14 Accuracy variation over time/day. Prediction is based on 6 traces col-
lected during the first hour/day. 71

3.15 Performance of online SVM and providing multiple candidates in
the 1week home dataset. Online SVM classifiers are updated using the
traces collected in previous days while the traces collected on the same
day are excluded. 72

3.16 Test of environmental changes. EchoTag gets less confident when the
size of an added object is larger and its position is closer to the test locations. 73

3.17 Impact of acoustic feature space. Accuracy is higher than 95% when 5
traces with 4 delayed repetitions are collected. 75

ix

3.18 Tolerance test. Additional tags separated by 2(mm/�) are placed inside
the C tag. Test data at C are collected with errors ranging from -8 to
8(mm/�) for knowing the tolerance of EchoTag. Dataset of ABC and
1cm tags are combined, so the accuracy shown is the prediction among
14 locations. 76

3.19 Impact of background noise. Predefined noises (i.e., music and CNN
news) are played by Macbook Air with different volumes. EchoTag is
able to provide effective prediction even when the noise is played at 75%
of the full volume. 77

3.20 Usability study environments. The test location is selected near the a
cafe at a student center. Tags are drawn at memo pads since the table is
black. Passers by and students studying in this area are randomly selected
to test EchoTag. 78

3.21 Extension of tolerance range. The tolerance range can be extended by
sensing tags with lower-frequency signals. Building ‘NoTag’ classifiers
can also prevent EchoTag from incorrect classification of misplacements. 82

4.1 Structure-borne propagation and the applied force. When no force is
applied to the phone, the frame and internal components of the phone can
vibrate freely, and hence the played inaudible sound can easily propagate
through the phone’s body. 86

4.2 Demo apps of ForcePhone. Users can reach an option page when a but-
ton is pressed hard and can also surf the previous webpage by squeezing
the phone. 87

4.3 Structure-borne propagation in a phone. The sound received at a
phone is a combination of structure- and air-borne propagations as well
as the environments’ reflections (echo). ForcePhone uses 20 samples
before the strongest correlation peak as an indicator for a structure-borne
propagation. 91

4.4 Phone vibration model. Phone vibration is modeled as a forced and
damped mass–spring system where the phone vibrates with amplitude A0
due to the force Fv from the phone speaker. The vibration amplitude is
decreased to A and the effective system spring coefficient is increased to
K due to the applied force Fh. 92

4.5 Vibration measurement setting. Vibration is measured by Polytec OFV-
303 laser vibrometer when force is applied. 93

4.6 Phone vibration damped by force. The correlation between the damped
vibration and the applied force enables ForcePhone’s force-sensitive and
squeezable interfaces. 94

4.7 System overview. Force applied to the phone damps the inaudible sound
sent from the phone’s speaker to its microphone. Accelerometer and gy-
roscope readings are used to avoid other audio signal noises caused by
movements. 95

x

4.8 Example of transmitted inaudible sound. The pilots are used to syn-
chronize the phone’s microphone and speaker. The subsequent chirps
stop for 25ms before playing the next chirp to avoid unexpected noises
from environmental reflections. (This figure is rescaled for easy visual-
ization) . 97

4.9 Responses of different amounts of applied force. Motion sensors only
capture the initial response of a touch, but the sound response can monitor
the subsequent applied force. 99

4.10 Touch calibration. The extent of signal changes caused by the applied
force varies with the touch location. Thus, a one-time touch calibration
is made at the 13 marked locations to compensate the estimated force at
different locations. 100

4.11 Response of movement and squeeze. Sound correlation changes when
the environment changes, such as moving the phone from the pocket to
hands, but it becomes stable quickly when people hold phones in their
hands. 101

4.12 Squeeze detection example. Received signal is first normalized by the
start and the end of signal amplitudes. Peak is identified when the cor-
rected signal passing the high threshold and the signal above the low
threshold is considered as part of the peak. 102

4.13 Implementation overview. ForcePhone has been implemented as a
standalone app on Android via Java Native Interface (JNI). Our iOS im-
plementation requires the force estimation done at a remote server. 104

4.14 Accuracy of force estimation. 12 touch events with different amounts of
applied force are plotted. The force estimated by ForcePhone provides
high correlation with the ground truth estimated by using our external
force sensors. 106

4.15 Resistance to background noise. Music (i.e., noise) played by a laptop
20cm away from the device under test has limited effect on the sound
correlation even if the noise level is increased to 20dB higher than the
used chirps. 108

4.16 Resistance to inter-device and self interferences. The variation of sound
correlation for each second is used to indicate the error when another de-
vice is running ForcePhone or a music is played on the same device. . . . 109

4.17 User interface for experiments. Users are requested to move a ball to
the marked red box by applying different amounts of force to the blue
button and squeeze the phone twice for surfing the previous web page.
Action requests are sent, and the results are recorded by the controller. . . 111

4.18 Result of controlling a ball with ForcePhone. Results are averaged over
6 participants. Delay is estimated as the time between the user presses/re-
leases the button. 112

4.19 Results of squeeze detection. The accuracy of the last three participants
is increased to more than 90% when the detection criterion is adjusted
after this test. 113

4.20 Potential usage of ForcePhone. 117

xi

5.1 Concept of LibAS. LibAS reduces the cross-platform development effort
for acoustic sensing apps by hiding laborious platform-dependent pro-
gramming details. 122

5.2 System overview. LibAS provides a universal interface/wrapper to com-
municate with the callback components. Thus, the platform control API
can be easily imported to support different devices/platforms while keep-
ing the developer’s essential sensing algorithm consistent. 126

5.3 Expected development flow. Developers can first use the published
LibAS DevApp (cross-platform supported) to realize their idea without
even installing platform development kits, like XCode or AndroidStudio. . 129

5.4 Movement sensing by Doppler shifts. The integrated area of ve-
locity indicates the movement shift. A demo video can be found at
https://goo.gl/AiJba9 [19] . 136

5.5 Graphical User Interface (GUI) for fingerprinting acoustic signa-
tures. Developers can easily classify different user-defined actions based
on acoustic signatures. A demo video of this GUI support can be found
at https://goo.gl/DqFFcA [18]. 138

5.6 Overheads. The minimal overhead incurred by LibAS can support most
real-time acoustic sensing apps. 140

5.7 Automatic gain control detections (AGC). LibAS detects if AGC is en-
abled by sending a signal with linearly increased volumes. 143

5.8 Frequency responses of various devices. The sensed frequency re-
sponses vary not only with devices but also with the microphone/speaker
used to sense. 145

xii

LIST OF TABLES

Table

2.1 Comparison of performance in different environments 31
2.2 Individual detection rate of the trace in lobby 34
2.3 Survey results (%). 37
2.4 Audible sound survey (%). 41
3.1 Existing indoor location sensing systems. 52
3.2 Usability survey results of 32 participants. 80
4.1 Existing touch interfaces to enrich input dimensions. 89
4.2 Power consumption (mW). The additional power consumption by ForcePhone

is about 304mW, which is small relative to that of normal phone usage. . . 110
4.3 Application study results. Survey questions are given after users try

the hard-pressed option, ball-moving game, and squeezable back appli-
cations for 10 to 15mins. 115

5.1 Acoustic sensing apps. Most ubiquitous acoustic sensing apps are only
implemented and tested on few devices and platforms. We categorize
these apps into three types and will demonstrate how to build sensing
apps of each type with LibAS. 124

5.2 Estimated code reductions. The significant reduction of code demon-
strates the capability of LibAS to save development time/effort. 149

xiii

ABSTRACT

Acoustic sensing has attracted significant attention from both academia and industry

due to its ubiquity. Since smartphones and many IoT devices are already equipped with

microphones and speakers, it requires nearly zero additional deployment cost. Acoustic

sensing is also versatile. For example, it can detect obstacles for distracted pedestrians

(BumpAlert), remember indoor locations through recorded echoes (EchoTag), and also

understand the touch force applied to mobile devices (ForcePhone).

In this dissertation, we first propose three acoustic sensing applications, BumpAlert,

EchoTag, and ForcePhone, and then introduce a cross-platform sensing framework called

LibAS. LibAS is designed to facilitate the development of acoustic sensing applications.

For example, LibAS can let developers prototype and validate their sensing ideas and apps

on commercial devices without the detailed knowledge of platform-dependent program-

ming. LibAS is shown to require less than 30 lines of code in Matlab to implement the

prototype of ForcePhone on Android/iOS/Tizen/Linux devices.

xiv

CHAPTER I

Introduction

Sensing with inaudible sounds, also known as acoustic sensing, has drawn considerable

attention from both academia and industry. Research has shown that it can identify hu-

man movements [58,62,63,79,93,124], augment device interactions [56,81,92,100,132],

or provide context-aware computation [88, 109, 116, 116]. With the support of acoustic

sensing, useful functions can be implemented to enhance the capability of users to inter-

act with their devices. Since most mobile devices already have microphones and speakers

installed, acoustic sensing applications are backward compatible and incur only minimal

cost to deploy. We first introduce three practical acoustic sensing applications that have

been implemented over different platforms. We then extract the core components from

the experience of building these three applications to design a general framework for the

development of future acoustic sensing applications.

1.1 Acoustic Sensing

While “acoustic sensing” often refers to a general concept of applications based on

sounds, in this dissertation, it refers to active acoustic sensing. As shown in Fig. 1.1, active

acoustic sensing utilizes the sound generated by the sensing device and then builds appli-

cations by processing the reception of this generated sound. In contrast, passive acoustic

sensing only utilizes background/environment sounds. Sometimes, a mixture of active and

1

Acous&c	Sensing	Now	

BumpAlert	

ForcePhone	

EchoTag	

Figure 1.1: Active acoustic sensing. Sounds sent from the device speakers are picked up
by the device microphones and analyzed to provide various functions.

passive acoustic sensing might be used. For example, we also utilize the background sounds

as a reference to remove unwanted interference in our active acoustic sensing projects. In

this thesis, we focus on active acoustic sensing because its capability to actively control

different sensing signals can provide a wider spectrum to support various applications. For

example, the passively recorded background noise (e.g., noise caused by heating or air

conditioning systems) might always be identical in the same room, but the actively played

sound and its echo in the same room will vary with location.

1.2 Thesis Statement

Acoustic sensing enables backward-compatible and cross-platform ap-

plications on off-the-shelf hardware, thus introducing new sensing tech-

nology to users with minimal deployment cost.

We have implemented three such acoustic sensing applications. As shown in Fig. 1.1,

BumpAlert [9, 120] identifies obstacles in front of distracted pedestrians through acoustic

2

(a)	Obstacle	detec-on	 (b)	Loca-on	sensing	 (c)	Force	sensing	

Figure 1.2: Dedicated sensor solutions. Adding dedicated sensors can easily realize novel
sensing applications, but also incurs several deployment issues.

signals reflected by nearby objects. EchoTag [118] remembers a device’s locations by lis-

tening to and analyzing environmental echoes. A location-based service can be triggered

automatically when the phone is placed back at the pre-defined echo tag. ForcePhone [14,

119] creates a touch-force sensing interface based only on structure-borne propagated

sounds, thus enriching human-computer interactions with minimal deployment cost.

1.3 Why Not Dedicated Sensors?

Adding dedicated sensors is the most straightforward way to build new sensing applica-

tions. For example, as shown in Fig. 1.2, an augmented sonar case can easily detect nearby

obstacles, an NFC/RFID tag can remember tagged locations, and a proprietary Apple 3D

Touch sensor can accurately estimate touch force. In general, these specially-designed

sensors can achieve better system performance, like higher detection accuracy and fewer

estimation errors. However, dedicated sensors also raise several practical issues in design-

ing/deploying novel sensing applications:

• Hardware cost. Innovative new sensors are usually considered expensive. For ex-

ample, Apple’s 3D Touch Sensors (a thin layer connected by numerous force sensors

underneath the screen) is estimated to cost around $7 to $9 in the iPhone7, which

represents an 18% additional display cost [6]. This cost is estimated to be doubled in

the new iPhone 8 due to design conflicts with the new OLED display [7].

3

• Backward-compatibility. Since most mobile devices are unable to add new hard-

ware after they are manufactured, new dedicated sensors are usually only available

in the latest flagship devices. Thus, it requires a relatively long time before users

experience the novel sensing functions, which might reduce the chance to penetrate/-

dominate the market.

• Fragmented developing ecosystems. The lack of new dedicated sensors on the

devices that people already does not only delay the deployment of new sensing func-

tions, but also fragments the market and incurs additional maintenance costs. For

example, consider the fact that only some iPhones (and nearly 0% Android devices)

have the force-sensing capability. How should app developers design a unified user

interface by integrating the touch force?

Thus, this dissertation aims to answer the following three key questions:

1. Is it possible to build functionally equivalent novel sensing applications without

adding new hardware?

2. How reliable would applications based on only acoustic signals and built-in sensors

be, and what are their limits?

3. Could we have a framework to facilitate the development of such acoustic sensing

applications?

1.4 Why Acoustic?

Other alternative signals could also be used to realize similar sensing functions. For

example, WiFi (2.4GHz) signals have been widely studied to support various gesture de-

tection or environment sensing systems [33,34,104,128,130]. Radio signals, like WiFi, are

also more reliable and have less interference than acoustic signals due to their wider band-

width and higher carrier frequency. Even though the WiFi chips have already been installed

on many devices, these novel WiFi sensing systems are currently available only on special

platforms, such as USRP [12], WARP [73], or even customized antenna systems [34]. Con-

4

Figure 1.3: Potentially supported devices. Many devices already have microphones/s-
peakers installed, which might support acoustic sensing applications with minimal deploy-
ment cost.

sumer devices usually cannot support such WiFi sensing systems due to the lack of API to

access/manipulate low-level signals from WiFi chips and also due to the lack of necessary

computation resources to process wide-band WiFi signals in real time. To the best of our

knowledge, only a few systems utilizing high-level information, such as received signal

strength indication (RSSI) or channel state information (CSI), can be ported in commercial

devices with a modified firmware [60]. Some sensing systems might not be integrated into

handheld or IoT devices even in the near future due to the required displacement between

sensing antennas [34].

On the other hand, sound is a natural interface for human conversations. Thus, devices

like laptops, smartphones, watches, cams, and many IoT devices already have microphones

and speakers. Moreover, real-time and low-level audio APIs are available for most op-

erating systems, including Linux, Android, iOS, and Tizen, in order to support existing

applications like VoIP, music streaming, or voice recognition. Fig. 1.3 shows the poten-

tial devices/platforms to which we might apply acoustic sensing applications easily. This

5

property enables the augmentation of new sensing technology by repurposing the built-in

microphones and speakers, thus significantly reducing the deployment cost.

1.5 Challenges

Building sensing applications based on acoustic signals is challenging because built-

in microphones/speakers are not designed for these purposes. Most microphones and

speakers are usually optimized to send/receive high fidelity sounds only in the human-

speakable/hearable range. For example, the frequency responses of microphones are not

flat over all frequencies and the received signal strength at 20kHz can be even 30dB weaker

than the sounds of 500Hz [81]. Imperfect hardware design also causes frequency leakage,

thus making a noticeable noise at the start and end of supposedly “inaudible” signals. Many

of these issues in our acoustic sensing applications are mitigated by utilizing signal process-

ing techniques, integrating other built-in sensors, or tuning the device setting. Note that the

solutions to these issues are usually platform-dependent, so realizing “ubiquitous” acoustic

sensing applications on different platforms is even more challenging.

1.6 Contributions

In this dissertation, we propose the following three acoustic sensing applications which

not only solve users’ unmet needs but also help us understand the practicality of building

novel applications based on sounds. Based on our experience of building these three appli-

cations, we propose a novel framework called LibAS which facilitates the prototyping and

deploying of acoustic sensing designs on different platforms.

1.6.1 BumpAlert: Improving the safety of pedestrians only by use of smartphones

With the increasing emergency room visits of distracted pedestrians, BumpAlert is de-

signed to reduce the risk of collision with dangerous objects when users walk around while

6

using smartphones. Specifically, BumpAlert utilizes the phone’s built-in microphones/s-

peakers to build a sonar-like system for detecting nearby obstacles. Since the built-in micro-

phones/speakers are omni-directional, BumpAlert integrates the inertial sensors and also

the camera, if necessary, to further improve the detection accuracy. In our measurements,

BumpAlert enables smartphones to identify various objects 1–4m in front of users with

higher than 90% accuracy and minimal false positives.

1.6.2 EchoTag: Remembering the tagged location by using environmental echoes

Unlike BumpAlert which aims to identify obstacles several meters away from the users,

EchoTag listens to the echoes from the contacted surface and close-by objects to remem-

ber the phone’s locations without any pre-installed infrastructure. Based on the profile of

echoes reflected by cups, monitors, or tables, EchoTag can remember the tagged location

accurately over time and then turn on specific functions/applications based on the tagged

locations. For example, phone calls can be automatically turned off when the phone is

placed at a tag near the bed or the user’s behavior of taking medicine can be monitored by

setting a tag near the medicine cabinet.

1.6.3 ForcePhone: Estimating touch force by structure-borne sounds

Unlike sensing through the reflected sounds, ForcePhone provides a force-sensing in-

terface by listening to the sounds sent through the device body. We have utilized ForcePhone

to build several high-level user interfaces, such as a hard-pressed option menu or a squeez-

able go-back navigation, which was previously built by adding proprietary sensors like

Apple 3D Touch [5] or HTC squeezable frame [15]. We have shown that participants in

our user study can easily accomplish simple tasks such as triggering the hidden option

menu by applying touch force with ForcePhone.

7

1.7 A Cross-Platform Sensing Framework for Acoustic Sensing

During our development of acoustic sensing projects, we found many platform-dependent

issues that are not directly related to the sensing algorithms but play a critical role in their

deployment in real devices. For example, in Android, Automatic Gain Control (AGC) of-

ten prevents microphone from receiving stable acoustic responses and making the signal

easily saturated. We could not turn off this AGC directly by using the default AGC API [1]

in most devices (e.g., “false” is returned, indicating which is not implemented by the phone

manufacturers). According to our experimental results, AGC should be disabled by tuning

an argument named AudioSource to the recording API. iOS also has the similar hidden but

crucial audio development settings. For instance, we need to change specific AudioSession

settings to allow iOS devices to record and play audio at the same time.

Besides the aforementioned tweaks, different platforms also need different program-

ming languages (e.g., Obj-C, Java, C) and programming paradigms (e.g., dedicated threads

or callbacks for handling low-level audio ring buffers) to record audio in real time. These

platform-dependent implementation details can be a roadblock for most researchers/engi-

neers in developing acoustic sensing applications. In particular, this might happen to some-

one who is familiar with designing new computer-human interfaces or sensing functions but

does not have experience in handling real-time acoustic sensing signals in commercial de-

vices. For example, questions we often received about acoustic sensing include “why is the

audio not recorded in real time?”, “why is my 22kHz sensing sound audible?”, or “how

can I debug my sensing algorithm on Android?”. Thus, we extract/assemble the essential

components and tools used in our implemented projects to build LibAS [17], which is an

open-source framework to facilitate acoustic sensing developments.

LibAS has two major key features. First, it is cross-platform, i.e., Linux, iOS, Android,

and Tizen. So, it can easily prototype and deploy the acoustic sensing applications on off-

the-shelf smartphones, wearables, or IoT devices. Second, it has a remote testing mode

that allows developers to focus on the design of key components like the sensing signals

8

and the processing of each received signal in Matlab. Specifically, developers can install

our pre-built developing apps (called LibAS DevApp [20, 21]), which will receive sensing

configurations and stream the sensed signals to a remote Matlab server in real time. In this

“remote” mode, developers can quickly prototype their applications on real devices with

zero knowledge of platform-dependent programming details.

Once developers are satisfied with the outcome/performance of their applications in re-

mote mode, they can move the core processing logic (currently being handled in a Matlab

callback function) to C/C++ for building standalone applications. Since LibAS provides

a unified wrapper to connect this C/C++ callback function over platforms, developers can

easily swap their sensing apps from remote mode to standalone mode. It is also possible to

validate the C/C++ callback design in the Matlab remote mode by connecting our Matlab

MEX wrapper [8]. Anytime developers find a bug or decide to add a new sensing function,

they can easily swap back to the remote mode and enjoy the development with Matlab’s

strong analysis/visualization support. We choose this design pattern because we find it

extremely difficult to manipulate and test acoustic signals directly on handheld devices,

especially with system programming languages, like Java or Obj-C. This design choice is

akin to the well-known WARP wireless testbeds [73], where the signal processing algo-

rithm can be validated in a remote Matlab mode before it is integrated into the final FPGA

implementation.

9

CHAPTER II

BumpAlert

2.1 Introduction

The risk of injury is reported to increase significantly when pedestrians are distracted by

their use of smartphones while walking, i.e., distracted walking. Pedestrians are reported to

notice 50% less environmental changes when they text on their phone while walking [85].

According to the number of emergency room visits reported in the United States in 2010,

the rate of accidents due to pedestrians’ smartphone uses has grown 10x in 5 years [95].

This accident rate is likely to be increasing rapidly with the increase of distracted smart-

phone users. Such accidents can also be severe; for example, people may walk distracted

into the middle of the road and get knocked down by an oncoming car, or may bump into

electric poles/trees causing head injuries. Recognizing this growing risk of cellphone users,

in Chongqing, a sprawling city in central China, authorities have even set up a “cellphone

lane” where people focusing on their phones can stroll without running into anyone or ob-

ject not holding/using a phone [10]. Also, Taiwan government is about to establish a law

to fine distracted pedestrians $10 to reduce the accident rate [13].

Reducing this risk by using the phone itself without requiring any additional sensors or

infrastructural support has been drawing significant attention from both research and indus-

try communities, but has not yet produced a complete solution. Some systems can identify

cars by building an image classifier with the images of frontal cars, but cannot detect any

10

object beyond the cars [126]. Some others focus on preventing people from losing steps

when they walk through the transitions between pathway and road [70]. While existing

approaches address various specific aspects, their reliance on strong assumptions, like the

shape or color of objects, prevent them from detecting general obstacles in the user’s path.

To fill this gap, we propose BumpAlert, which addresses an important but unexplored prob-

lem: “can commodity phones determine if the user is walking toward (dangerous) obstacles

without assuming any prior knowledge of the objects?” Guaranteeing the elimination of all

dangerous incidents is the ultimate goal of all safety systems but very hard, if not impossi-

ble, to achieve. Like most existing approaches, BumpAlert is an add-on phone function to

enhance the safety of distracted pedestrians that aims to reduce the accident rate as much

as possible at reasonable cost/overhead.

It is challenging to detect obstacles by utilizing only the built-in sensors in commod-

ity phones. To achieve high detection accuracy at low computation and energy costs, we

exploit several phone sensors. BumpAlert uses the phone’s speakers and microphones

to estimate the distance between the user and nearby objects, and also uses the phone’s

rear camera to validate the detected objects, only when necessary. Several novel algo-

rithms are developed and implemented by exploiting these sensor inputs. For example, the

false detections caused by omnidirectional phone speakers/microphones are removed by

a novel motion filter that tracks the user’s trajectory using inertial sensors. Also, the dis-

tances to obstacles can be estimated by a single camera without depth perception since the

phone’s height has already been determined by the BumpAlert’s acoustic detector. This

paper makes several contributions in that BumpAlert

• is the first phone-based app to “actively” monitor the environment and alert distracted

walkers in real time;

• relies only on sensors available in commodity smartphones, without requiring any

specialized sensors;

• doesn’t rely on any a priori knowledge of obstacles, thus offering a generic solution

11

applicable to a broad range of situations/environments; and

• consumes only a small fraction of resources, thus unaffecting users’ experience in

using their phones.

BumpAlert is implemented on the Android platform as an app using the OpenCV li-

brary and the Java Native Interface. Our evaluation results demonstrate its capability to

detect objects with higher than 95% accuracy in typical outdoor/indoor environments and

consume around 8% of battery power per hour while running as a mobile app.

We have evaluated BumpAlert with participants in a controlled environment. Al-

though BumpAlert does not guarantee safety for all possible dangerous scenarios that

distracted walkers might encounter, our user study shows that 71% of the participants

agree that BumpAlert’s detection accuracy is useful and 86% of them are willing to ac-

cept BumpAlert’s energy cost for detecting dangerous obstacles with a high probability. A

user-interface study based on Microsoft Kinect [65] also corroborates that a system display-

ing frontal obstacles can make distracted walkers feel safer and more confident. Moreover,

43% of the participants in this study have experienced bumping into objects during dis-

tracted walking, and 86% of them have heard others collided with obstacles. These results

are consistent with studies done by others indicating the real danger of distracted walking.

A demo video of BumpAlert can be found from [9].

The remainder of this paper is organized as follows. Section 2.2 summarizes the re-

lated work in accident prevention systems. Section 2.3 gives an overview of BumpAlert

and Section 2.4 describes the implementation details. Sections 2.5 and 2.6 provide our

experimental evaluation and user study, respectively. The paper concludes with Section

2.9.

2.2 Related Work

Obstacle detection and avoidance have been an active area of research [40,91,101,114]

in the field of intelligent vehicles and robotics. Of particular interest is the active safety

12

systems deployed in automobiles to protect pedestrians. However, most of these systems

require expensive devices such as RADAR, LIDAR, SONAR, and multiple cameras for

detection of pedestrians and prediction of their movement. These solutions are not easily

wearable by people as they are usually heavy or require advanced sensors, but they can

be used as a basis for signal processing, especially for camera imaging and SONAR pro-

cessing. Note some robots might use cheap sensors to detect obstacles, but these sensors

are still specially designed for this purpose. For example, sonar sensors in robots are di-

rectional while phone speaker/microphone are not. Another direction of study focuses on

detection of pedestrian(s) with the help of infrastructure, such as pre-deployed cameras at

intersections [123]. However, the same cannot be assumed in mobile phone environments.

Instead of using advanced/expensive sensors, one can find and exploit various built-in

sensors of smartphones. These include accelerometers which sense the phone’s movement,

gyroscopes which detect the phone’s orientation, cameras and microphones which capture

images and record sound in the surrounding environment. These sensors have prompted the

development of various apps, such as indoor phone localization [86, 116], context-aware

computing [96, 118], and human–computer interfaces [119, 124].

Although there exist a myriad of apps that exploit sensors to perform various functions

on the phone, little has been done on distracted walkers’ safety, despite its rapidly growing

importance. A passive approach using the phone’s rear camera was proposed in [2, 29] to

take and display the frontal image as the background of apps. Since it is a passive solution,

the user still has to be responsible for identifying and avoiding the obstacles shown on the

screen of his phone. However, users usually focus on the task (e.g., playing a game) at hand

and may not pay attention to the changes in the background of the app they are running.

Moreover, there are also apps, such as games, that do not allow the change of background.

There are also other mobile apps that sense environments and provide active feedbacks.

WalkSafe [126] is able to identify the frontal view of an (approaching) vehicle by using

the phone’s rear camera when pedestrians are making telephone calls while crossing the

13

rear camera
speakers

µphones

accelerometer vibration
motor

Motion Estimator

Acoustic Detector Visual Detector

Fusion Algorithm

detection range detection range

camera height

moving speed

moving status

camera tilt

Figure 2.1: System blocks of BumpAlert. Multiple sensing components are utilized to
optimize the detection performance.

road/street. LookUp [70] monitors the road transitions, such as the height change from a

sidewalk to a street, by connecting inertial sensors mounted in shoes. Both apps target the

scenarios parallel to BumpAlert, and it is possible to integrate BumpAlert with them to

enhance pedestrians’ safety. CrashAlert [65] targets the same scenario as ours, detecting

obstacles when users are distracted walking. However, it mainly focuses on the design

of walking user interface (WUI). The functionality of obstacle detection in CrashAlert is

delegated to Microsoft Kinect, which is not available in commodity phones. In this pa-

per, we explore how to detect and avoid objects in front of a distracted walker by using

only the phone’s built-in sensors and building and evaluating a mobile application called

BumpAlert. Even though BumpAlert is unable to detect all dangerous situations (see Sec-

tion 2.7), it has been shown to be able to detect most dangerous objects for distracted

pedestrians, ranging from glass doors, sign boards, to a small parapet wall.

2.3 BumpAlert

As shown in Fig. 2.1, BumpAlert consists of four main components that interact with

each other: (1) acoustic detector that uses sound to estimate the distances between the

user and nearby objects; (2) visual detector that determines the presence of dangerous

objects using the rear camera; (3) motion estimator that determines the user’s walking

14

Algorithm 1 Acoustic Detection
Input: acoustic signal array at the n-th detection: Sn,

peak window: winpeak, walking speed: w, threshold coefficient: a
Output: detection result: Dsucc

1: S matched filter(bandpass filter(Sn))
2: noise estimate noise(S) & thr a(noisemean+noisestd)
3: Pn,Dn f & peakMax, peakO f f set 0
4: for i from winpeak/2 to len(S)�winpeak/2�1 do
5: isPeak True
6: for j from i�winpeak/2 to i+winpeak/2 do
7: if S[j]> S[i] then
8: isPeak False
9: break

10: if isPeak and S[i]> thr then
11: Pn Pn[i
12: if S[i]> peakMax then
13: peakO f f set i
14: peakMax S[i]
15: for p 2 Pn do
16: d = speedsound(p� peakO f f set)/(2ratesample)
17: Dn Dn[d
18: Dsucc motion filter(Dn,Dn�1, . . . ,Dn�d ,d ,w)
19: return Dsucc

speed; and (4) fusion algorithm that combines information from all the other components

and generates an alert for the user when a dangerous object is detected nearby.

2.3.1 Acoustic Detector

The acoustic detector borrows ideas from sonar sensors for object detection. The

speaker sends 10 periods of a sine wave at a frequency of 11,025Hz and picks up its re-

flections through the phone’s microphones. In order to make BumpAlert compatible with

most commodity smartphones, the signal sent is sampled at 44.1kHz and two consecu-

tive signals are transmitted with a 100ms separation to differentiate their reflections at the

microphones/receivers. Note that this setting is designed to be widely supported by com-

modity phones and can be adopted widely as phone hardware improves. For example,

Section 2.8 describes the extended setting designed for Galaxy Note4, which can provide

reasonably good detection accuracy with inaudible sound.

15

Figure 2.2: Example measurement of acoustic detection. Peaks of signals passing the
matched filter indicate the reception of reflections from objects. The first and strongest
peak represents the sound directly transmitted from phone speakers.

To identify the signals reflected from objects, the recorded signal is first passed through

a bandpass FIR (Finite Impulse Response) filter and then through the corresponding matched

filter as shown in Algorithm 1. At the n-th record, the highest-amplitude samples within

a moving window are marked as peaks, Pn, if the signal’s amplitude exceeds a thresh-

old, thr. Due to the automatic gain control (AGC) in microphones and the different lev-

els of environmental noise, thr is adjusted to the received noise level. The noise is ob-

served from 600 samples before the sent signal is received, with the threshold set to a

(mean(noise)+std(noise)) where a is set to 4 in BumpAlert. The width of the moving

window, winpeak, is set to 40 samples, which is equal to the number of samples in the trans-

mitted signal. The maximum resolution that can be discerned with these chosen parameters

is about 15cm, which is equal to the product of the signal’s duration and the speed of sound,

so objects within 15cm of each other will be classified as a single object. Fig. 2.2 shows an

instance of acoustic detection. The first peak indicates the sound sent out of the speaker,

while the second peak is the reflection from the human body 28cm away, and the third peak

is the reflection from the floor 142cm below the speaker. According to the ground truth,

the error is less than 5cm in this case.

16

(a) Walking towards a wall (b) Walking away from a wall (c) Walking towards a wall in an aisle

Figure 2.3: Distances to objects estimated by acoustic/visual detectors when a user
walks toward/from a wall. A user is guided to walk towards (away) a wall from a location
10m away (1m behind). The circles and crosses represent the estimated distances to objects
(including the wall) detected by our acoustic/visual detectors. The dotted lines represent
the real distance to the target wall, which is collected via timestamped traces when users
walk through pre-installed tags on the ground.

The signal used should be lower than a half of the sampling frequency for its accurate

recovery. Ideally, a higher frequency is preferred because the sound of such a frequency

will be less audible (hence less annoying) to the user, but the sent and reflected signals also

degrade more at higher frequencies. On the other hand, decreasing the signal frequency

will increase the time necessary to send a sufficient number of periods of the signal, which

will lower the detection resolution. Note that there is no need to use a lower frequency

signal. A lower frequency signal might incur less decay during its propagation, and can

thus receive the reflections from farther-away objects. However, it also increases the time

to wait for all reflections before sending the next sensing signal. There are also more en-

vironmental noises in the lower frequency band. According to our experimental results,

the signal frequency of 11025Hz suffices to capture reflections within 2–4m, and reflec-

tions from objects more than 10m away are too weak to be detected for most devices we

tested. This is what BumpAlert needs, enabling detection of nearby obstacles, and ensuring

that all significant reflections are received within 100ms. Note that the current design of

BumpAlert does not cope with the interference caused by multiple nearby devices. How-

ever, this problem can be avoided by utilizing existing multiple wireless access protocols.

17

For example, different devices can emit different frequencies of sound (FDMA) or differ-

ent kinds of sound (CDMA) to ensure the emitted signals to have minimal correlation with

each other. Testing such advanced settings is part of our future work.

The distance between the user and each object is computed as 1/2 the traveling time of

the signal reflected from the object⇥the speed of sound (331m/s). The performance of this

scheme depends strongly on the ability to accurately record the time when signals are sent

and their reflections are received. Errors of a few milliseconds will cause an estimation

error of several meters due to the high speed of sound. Thus, any error between times-

tamps caused by non-real-time phone operating systems is unacceptable. We circumvent

this problem by recording the time when the (reflected) signal is sent (received) and then

computing the time difference between the sent and the reflected signals in terms of the

number of consecutive samples [100]. As shown in Fig. 2.2, the signal identified with the

largest magnitude, peakMax, is regarded as the sent signal, i.e., the signal directly going

to the microphone. In Algorithm 1, this is used as the reference, peakO f f set, for comput-

ing the time difference between the sent and the reflected signals. As the detection results

shown in Fig. 2.3(a), when a user walks toward a wall (obstacle) from a 10m-away position,

our acoustic detector is able to identify the reflection (as the diagonal green hollow circles)

from the wall when the users are 5m away (as marked with the dotted line) at time 5. In

this figure, the constantly appearing objects (two prominent vertical green hollow circles)

estimated to be 30cm and 150cm away are, respectively, the human body and the floor.

One limitation of acoustic detection is that phone speakers and microphones are omni-

directional, and hence the direction of the obstacle cannot be resolved. Another related

problem is reception of multi-path reflections. The signal received by a microphone is ac-

tually a combination of the sent signal and multiple reflections of the same signal. Thus, an

object actually 50cm away may cause a false detection as 150cm away due to multi-path re-

flections as shown in Fig. 2.4(a). This effect is severe, especially in an indoor environment

where objects like walls and pillars cause multi-path reflections.

18

1m

Ground truth markers

Direct path

Indirect path

(a) Example posture and multipath reflections (b) Average of taken images

Single
image

Average
image

Reference area

144 px

96 px

32 px

32 px

Figure 2.4: Assumed holding posture and its effect on detections. A wrong acoustic de-
tection with a longer estimated distance happens due to multipath reflections. The marked
area of images taken in this posture includes the ground texture with a high probability.

However, these two problems are greatly reduced by the BumpAlert’s need to detect

only the closest object, i.e., the shortest-path reflection. Most reflections from objects

behind the user are also absorbed/blocked by the user’s body which is akin to the property

of WiFi signals being blocked by the mobile users [113,133]. As shown in Fig. 2.3(b) where

the user is walking away from a wall, the acoustic detector doesn’t detect any prominent

peaks of reflections even if the wall is just 1m behind the user at time 0. This feature helps

the acoustic detector prevent from making wrong estimations when the object is actually

behind the user. However, the detection results will still be affected by reflections from the

side objects, such as walls and pillars. As shown in Fig. 2.3(c), the same experiment of a

user walking toward a wall from 10m away is repeated but in a narrow (5m-wide) aisle.

False detections are made due to side walls (vertical green hollow circles within a 2 – 6m

range), making it difficult for BumpAlert to identify the real obstacle, i.e., the wall in front

of the user.

To improve the detection results further, we introduce a motion filter that eliminates the

detected reflections with 0 relative speed to the user. This filter is inspired by the results

shown in Fig. 2.3, where all detected objects showing a constant distance to the users over

time (vertically aligned circles) are unnecessary for the functionality of BumpAlert since

19

Algorithm 2 : Motion Filter
Input: detection distance of the n-th detection: Dn,

previous d detections Dn�1, . . . ,Dn�d , depth: d , walking speed: w
Output: results passing motion filter: Dsucc

1: Dsucc f
2: for d 2 Dn do
3: r 0
4: for i from 1 to d do
5: dest d + i⇥w⇥ perioddetection
6: for dhistory 2 Dn�i do
7: if |dest �dhistory|< winerror then
8: r r+1/d
9: if r > rsucc then

10: Dsucc D[d
11: return Dsucc

it is impossible for the users to bump into those objects without any relative speed to them.

The user’s walking speed is estimated by the phone’s accelerometer as described later. The

high-level goal of this motion filter is to remove detections with relative speeds unmatched

with the user’s walking speed. Thus, given the user’s walking speed, w, and a history of

d previous detection results, Dn�1 ⇠ Dn�d , only those reflections from objects moving at

similar walking speeds are classified as the true obstacles toward which the user is walking.

As shown in Algorithm 2, the current detection, d 2 Dn, is projected backward based

on the user’s walking speed, i⇥w⇥ perioddetection, yielding dest . This is compared with

the previously detected position of the object, dhistory, and the probability of the presence

of an object increases if the history matches the projection, i.e., |dest�dhistory|< winderror.

Yielding a probability, r, higher than a given ratio, rsucc, is said to pass the motion filter

and identified as a positive detection. With this additional filtering, the reflections caused

by objects without any matching relative speed, such as floor or side walls, can be filtered

out as shown in Fig. 2.3(a). In this figure, detections passing a motion filter (marked as red

solid circles) represent only the signals from target obstacles (i.e., the wall users walking

towards) while the detections caused by human body, floor, and multi-path reflections in-

side the wall are excluded. A similar effect can also be found in Fig. 2.3(c), where most

20

(a) Blurred image (b) HSV transformation (c) Backprojection (d) Detection result
Figure 2.5: Visual detection. Images take by phone rear cameras are smoothed, trans-
ferred to HSV color scheme, back projected, and then filtered out blob detections.

reflections from side walls are also filtered out. However, the noisy detections in a cluttered

environment cannot be completely eliminated by the motion filter. As shown in the same

figure, more than 10 false detections caused by side objects pass our motion filter since

those objects are too close to each other, resulting in a significant number of false positives

which might annoy users. These false positives are reduced/removed by using the visual

detector to ensure the detected object being in front of the user.

2.3.2 Visual Detector

To overcome the inherent limitation of acoustic detection, an additional sensing layer

is added using the phone’s rear camera. This removes the false positives and provides

information of the object’s direction. In BumpAlert, we assume that users will hold their

phones in a typical position as shown in Fig. 2.4, and the rear camera’s line of sight will be

clear to capture objects in front of the user. BumpAlert can send the users texts or generate

vibrations so as to maintain their phone tilt in its operational range. We have conducted a

detailed survey of users’ willingness to maintain their average phone tilt required for the

functionality of BumpAlert. See the details of this users study in Sections 2.5 and 2.6.

There are two main challenges to detect objects in the rear camera view. The first is

to determine the presence of objects and the second is to determine the distance between

21

the user and the objects due to the lack of depth perception in the images taken by only a

single camera. BumpAlert does not use any a priori information, such as the shape and

color, to identify the presence of objects. Having no prior knowledge makes BumpAlert

more general, enabling detection of any type of dangerous objects and preventing collision

with them. Detecting objects without any prior knowledge is difficult, though. The goal

of BumpAlert is, however, not to identify every object in the scene but to know if there is

any nearby object in front of the user. Specifically, BumpAlert adopts the back-projection

technique in [48, 121] to identify the objects that are different from the ground/floor. Its

idea is to use the texture of the ground surface where the user is walking on and to compare

it with the rest of the image, looking for textural similarities and dissimilarities. As shown

in Fig. 2.5, a 10⇥10 blurring filter is used first to reduce the noise from the image, and the

image is then transformed into the HSV space. The back-projection algorithm is applied

to determine which parts of the image are not related to the ground/floor texture. The

last step is to apply an erosion filter to remove any residual error from the back-projection

algorithm. After completing these steps, blobs with areas larger than a predefined threshold

are identified as obstacles and the point closest to the bottom of the image is returned as the

closest obstacle.

Some astute readers might observe that the key assumption in the back projection is the

knowledge of ground/floor texture. In case an object is erroneously included in the region

as a reference of ground/floor, the object won’t be seen by our visual detector because the

back projection classifies the object as a part of ground/floor. Identifying the ground/floor

in an arbitrary image is difficult, but does not cause problems to BumpAlert. Images are

only taken when users are walking and using their phones at an assumed position as shown

in Fig. 2.4. Under this assumption, we can ensure that a specific area in the image can

represent the information of the ground/floor with a high probability. In order to determine

this area, we conducted an experiment with 10 participants. They were requested to take

pictures while using their phones at a comfortable position 2m away from a door. The

22

Figure 2.6: Height estimation by the acoustic detector. The phone’s height can be esti-
mated by the sound reflections from the ground.

average of all the pictures taken is shown in Fig. 2.4(b), where the dark area indicates the

area consisting of ground/floor. The size of that area we choose is 96 pixels⇥144 pixels

located 32 pixels above the bottom of a 240⇥320 image. The area is chosen above the

bottom of the image since it is possible to include the user’s feet in the bottom area.

After the closest point of objects in the image is identified, a pixel difference from

the detection point to the bottom of the image is defined as p, and the pixel-to-real-world

distance transform is computed as d = pixel to distance(p,hp, tp), where d is the real-

world distance to the detected object, hp and tp represent the height and the tilt of the user’s

phone with respect to the ground. A detailed derivation of this transform based on a camera

projection model can be found in [53]. This computation is possible only if the height and

tilt of the phone are known. As these two parameters are not fixed when people are walking,

a method is needed to estimate them online. The phone’s tilt can be directly acquired from

the accelerometers as tp = cos�1(accz/accmag), where accz is the acceleration orthogonal

to the phone’s surface and accmag is the magnitude of overall acceleration caused by the

user’s motion or the earth gravity. In contrast to derivation of the tilt from the accelerometer

readings, the phone’s height is unknown when the user is walking. BumpAlert utilizes the

results of the acoustic detector to estimate the phone’s height. This design is novel since

existing image-based detections simply assume the height of a camera is known. This

parameter might be easy to acquire in certain scenarios, such as installing the camera at a

23

fixed location inside a car, but not in our scenario, since the height of a phone vary with

users depending on their height and ways to hold the phone.

The histogram of objects detected by the acoustic detector with different estimated

distances are plotted in Fig. 2.6. This data were collected for two participants of different

heights. The maximum peak at distance 0 is the receipt of the transmitted signal. Detections

within [10, 60]cm are reflections from the human body. There are also relatively fewer

detections in the region [70, 180]cm. The main reason for this phenomenon is that people

need a space in front to move forward, resulting in a low probability that there is an object in

this range while people are walking. Thus, the highest peaks within this range are actually

the reflections off from the floor. As shown in the figure, this is approximately 120 to

140cm for participant 1 and ranges from 100 to 120cm for participant 2. By tracking the

distance in this range, we can estimate the phone’s height with an error of less than 20cm.

Although the visual detector can determine both the direction and distance of objects in

front of the users, it is not desirable for constant/frequent use for the following reasons:

• computational cost of image processing is much higher than acoustic detection, thus

consuming more battery;

• distance measured is less accurate than acoustic detection due to the changing tilt and

height estimations;

• back projection may be inaccurate for complex floor patterns; and

• falsely identifying pattern transitions on the ground/floor as obstacles.

From our experiments, we found the false positives of visual detection caused by the

following three factors as shown in Fig. 2.7. First, shadows cast on the ground will cause the

color of the ground/floor to be different from its surroundings, hence flagging as a different

texture area. Second, overhanging obstacles cause the estimated distance to be farther

away than the actual position because their bodies are not fully connected to the floor.

Third, changing patterns of the ground/floor also cause false detections and are mistaken as

an obstacle as they are different from the identified ground/floor texture. A representative

24

(a) Shadow (b) Overhang (c) Patterns

Figure 2.7: False detection by the visual detector. The visual detector might over/under-
estimate the distance to objects in different scenarios.

error pattern of visual detection can also be found as the purple crosses shown in Fig. 2.3.

For example, there is a burst of false positives between 3 and 5 seconds in Fig. 2.3(b), even

though there weren’t any objects ahead. The detection is also less accurate than the acoustic

detector. As shown in Fig. 2.3(a), the estimation errors of the visual detectors between 5

and 8 seconds are about 10–100cm while the acoustic detector has errors less than 15cm.

BumpAlert overcame the above challenges by combining the acoustic and visual detectors

as described in Section 2.3.4.

2.3.3 Motion Estimator

As mentioned in the previous section, the tilt of a phone’s camera is directly related to

its accelerometer. Similarly, the acoustic detector needs feedback from the phones’ sensors

that provide information about the user’s walking speed to improve the detection accuracy.

Using the accelerometer readings, the steps that a person takes can be detected as there

exist periods of high and low accelerations. Each peak-to-peak cycle indicates if a step

has been taken and the walking speed can be estimated as the product of step frequency

and average step size. In BumpAlert, the step size can be either entered by the user or

set to the default average step size. This coarse estimation of walking speed is adopted

in various applications, such as dead-reckoning systems [137]. The acceleration can also

25

is moving?

speakers
& microphone

Idle

Acoustic
Detection

Visual
Detection

any obstacle
in 1~4m?

any obstacle
in 2~4m? is moving?

is cluttered?

Visual
Detection

any obstacle
in 1~4m?

is cluttered?

Acoustic
Detection

any obstacle
in 2~4m?

Alert Idle

Audio
Detection

Image
Detection

detection
range

detection
range

camera
height

moving
speed camera

tilt

N

Y

N

Y

Y

Y

N
N

Y

Y N Y

N
Y

N

N

Figure 2.8: Fusion algorithm. If necessary, the visual detector can be enabled to check if
the objects found by the acoustic detector do indeed exist.

allow the system to determine if the user is walking or stationary when its variance exceeds

a predefined threshold.

2.3.4 Fusion Algorithm

A combination of the above algorithms is used to improve accuracy and lower the false

detection rate. We also reduce power consumption by deactivating components that would

not improve the detection accuracy. Fig. 2.8 shows the logical flow of when to run which

component based on outputs from other components. First, the detection algorithm need

not be run when the user is stationary. We trigger the the detection algorithm only when the

user is walking, and switch it off when there is no movement. Second, the low-cost acous-

tic detector is triggered before the high-cost visual detector. That is, the visual detector is

triggered to double-check the acoustic detection result only when the latter is not convinc-

ing enough. When the visual detector is enabled, a warning message is issued only when

the both detectors find the same object within a 2–4m range. The acoustic detector is good

at detecting the objects around the user within a certain range but is less effective in deal-

ing with side objects (i.e., in cluttered environments). In contrast, the visual detector is free

from the side object problem since it focuses on the user’s front view. BumpAlert therefore

uses a combination of acoustic and visual detections, especially in cluttered environments.

26

(a) Outdoor (b) Aisle

Figure 2.9: Objects identified by the clutter filter. The clutter filter is a special case of
the proposed motion filter for finding objects with 0 relative speed to users. It provides a
hint for the fusion algorithm to trigger the visual detector, when necessary.

To identify cluttered environments, the motion filter in Algorithm 2 is also used to es-

timate the number of stationary objects when we set the relative speed to 0. This new

application of the motion filter with 0 relative speed is called the clutter filter, and its ef-

fectiveness is shown in Fig. 2.9. It can detect those objects that do not have any relative

speed to the user. The outdoor environment does not leave many objects after applying the

clutter filter, while the aisle environment leaves many objects. Thus, the aisle environment

can be identified as cluttered since the number of objects passing the filter exceeds a pre-

defined threshold. Reuse of the motion filter for identifying a cluttered environment is also

a novelty of BumpAlert, which provides a hint to the fusion algorithm for triggering the

visual detector. Existing approaches based on light and geomagnetism changes can only

determine if users are located inside a building or not [135], which is not sufficient since

disabling the visual detector in a lobby area (indoor) is found to provide better results, but

the visual detector is necessary in a cluttered (indoor) aisle.

In the fusion algorithm, different detectors complement each other in different situa-

27

tions. In a cluttered aisle, side walls will be falsely classified by the acoustic detector as

obstacles, but are filtered out by the visual detector since such side objects are not captured

by the rear camera. On the other hand, crossing from a cement floor to a grassy area is

falsely classified as obstacles by the visual detector but is filtered out by the acoustic detec-

tor because no reflections are received from the grassy area. By integrating these detectors,

BumpAlert can therefore discover dangerous objects with high accuracy and a low false

positive rate. Note that our current design aims to prevent users from bumping into static

objects, like walls, signboards, or pillars. See Section 2.7 for the discussion of detecting

moving objects.

2.4 Implementation

We implemented BumpAlert as an Android app on the Galaxy S4. As BumpAlert relies

only on the phone’s built-in sensors, it can be easily ported to different platforms, such as

iOS and Windows. For BumpAlert to be computationally efficient, the signal processing,

such as bandpass and matched filters, are implemented in C and interfaced through the Java

Native Interface (JNI), which yielded shorter execution times. The control logics shown in

Fig. 2.8 are implemented in Java due to its low computation requirement. As a result, each

iteration of the acoustic/visual detector can be completed within 25/80ms while its period

is set to 100ms.

We choose the rate to trigger acoustic/visual detectors to be 10Hz and the sensing range

to be 2–4m in order to balance between detection accuracy and processing cost. According

to the results in [41,42], the average human walking speed is about 1.5m/s and the reaction

time to an auditory alert is about 150ms. This reaction time is similar to using a vibration

alert. Thus, a sensing period of 100ms with a distance range of 2–4m is sufficient to alert

the user, and the choice of these parameters works well as shown in Section 2.5.

To run BumpAlertwith other apps simultaneously, we may choose to implement BumpAlert

as a system service. However, in the latest version of the Android API, the camera is not

28

1m

Ground truth markers

Wall Sign

Dustbin

Box

68"

30"
15"

(a) Test environment (b) Target obstacles
Figure 2.10: Test setting. Ground truth markers are used to collect the real distances to the
test targets. The selected test targets are ordered by their size, which is related to detection
accuracy.

allowed to be used in a background service due to privacy issues. Likewise, in BumpAlert,

images are not saved but only processed for object detection. In future, we will imple-

ment BumpAlert as an open-source library so that app developers may easily include our

modules to enable this functionality to protect their users.

2.5 Experimental Evaluation

We have conducted a series of experiments to assess the performance of BumpAlert

in real-world settings. Since the goal of these experiments is to capture and evaluate the

performance of BumpAlert, we manually selected objects of different sizes and asked par-

ticipants to walk toward those objects multiple times under different representative sce-

narios. The benefit of this setting is to collect ground truth and quantize the detection of

BumpAlert accurately. This information is important for us to infer the performance of

BumpAlert in the real world but difficult to obtain if participants are allowed to walk to-

ward random obstacles in a single long route. Moreover, as shown in our experiments, the

performance of BumpAlert depends on the objects and scenarios, so the objects seen in a

long route create a significant bias in the final result. For example, a path consisting of 10

walls and 5 dustbins can get a better result than the one of 5 walls and 10 dustbins because

29

wall is an easy target to detect. To avoid this bias, we chose to provide the accuracy of

BumpAlert against each object in different scenarios rather than the aggregated accuracy

in a single long route. The usability of BumpAlert is evaluated further in Section 2.6 via a

users study that collects feedbacks from 21 participants who used BumpAlert for 15min.

In future, we plan to evaluate BumpAlert with more participants over a longer period of

time after its deployment.

In each experiment, 7 participants are instructed to walk towards various objects, such

as walls and signboards in both indoor and outdoor environments. Each of these experi-

ments is repeated 10 times to average the errors due to the differences in each user’s walking

pattern and path. The participants are instructed to press a specified button when they walk

through a marker placed on the ground as shown in Fig. 2.10(a). This serves two purposes.

First, it simulates the users being pre-occupied with a task that they would have to accom-

plish by looking at, or typing on their phones. Second, the ground truth can be collected as

the markers are placed at a 1m interval. In this evaluation, we define a positive detection as

the obstacle detected within a 2–4m range. Any alert when the user is 2–4m away from the

target object is classified as a successful alert and the ratio of these alerts is called the true

positive (TP) rate. On the other hand, any alert occurring when the user is actually 4m or

farther away from the target object is classified as a false alert, and the corresponding rate

is calculated as the false positive (FP) rate. The average delay is defined as the time from a

participant walking through the 4m marker to the time an alert is triggered.

2.5.1 Accuracy in Different Environments

In this experiment, a set of 4 objects shown in Fig. 2.10(b) are used as obstacles in 3

different environments. They are wall, signboard, dustbin and cardboard box, which are

ordered by their relative size. These objects are selected to represent different types of ob-

jects in the real world. The difficulty of detection is due mainly to the size of objects. For

example, we get similar results for the detection of a glass door and a wall. Moreover, since

30

Wall Signboard Bin Box
TP FP Delay TP FP Delay TP FP Delay TP FP Delay
(%) (%) (ms) (%) (%) (ms) (%) (%) (ms) (%) (%) (ms)

Out./Acoustic 100 0.6 320 98.3 5.6 516 96.7 2.8 567 91.7 3.5 470
Out./Visual 63.3 9.8 247 85.0 27.6 265 85.0 13.9 251 75.0 19.9 485
Out./Fusion 100 0.5 433 98.3 2.2 610 95.0 1.7 572 90.0 1.8 508
Lob./Acoustic 98.3 1.3 108 93.3 1.2 318 96.7 0.6 278 93.3 1.3 321
Lob./Visual 78.3 11.9 297 61.7 4.5 323 86.7 12.7 496 71.7 7.5 711
Lob./Fusion 98.3 1.3 111 93.3 1.0 367 96.7 0.6 290 93.3 1.3 325
Ais./Acoustic 100 32.1 105 100 28.2 193 100 29.1 203 98.3 28.0 245
Ais./Visual 98.3 28.4 45 100 27.5 598 100 22.2 417 100 26.8 465
Ais./Fusion 91.7 9.8 330 100 6.0 547 95.0 6.1 447 91.7 6.3 566

Table 2.1: Comparison of performance in different environments

these objects can easily be found/moved in both indoor and outdoor environments, the per-

formance degradation caused by different environments can be accurately measured in this

setting. Other objects, such as pillars and cars, are also tested and shown to have similar

characteristics but those results are omitted due to space limitation. The three test environ-

ments we used are an open outdoor area, a building lobby, and a (5m–wide) cluttered aisle.

Each participant repeats each experiment 10 times and the 10Hz raw data of both acous-

tic and visual detectors are logged to evaluate the detection rate of individual experiment

offline by the same detection program. This is to allow for comparison of each individ-

ual component based on the same data set, which consists of more than 12km walking

traces. We conducted experiments in the presence of environmental noises, such as stu-

dents’ chatting, but found those noises didn’t affect BumpAlert’s performance much since

the frequencies of most noises associated with human activities are below 11kHz [116] and

BumpAlert adjusts its detection based on the noise level. The only problem we found is

participant 7’s outdoor trace collected on a very windy day (more than 24mph). In this

case, the signal received at the phone’s microphone was saturated by the wind sound alone,

and hence, we postponed the experiment to the next day.

From the results in Table 2.1, one can see that the acoustic detector outperforms the

visual detector in TP rate because the sensing range and sensitivity of the former is longer

31

and better than the latter. The overall TP rate of acoustic detection is higher than 95%

which is sufficient to identify most dangerous objects. The average delay in all cases is

shorter than 650ms for both visual and acoustic detections. This low delay of BumpAlert

provides the users walking at 1.5m/s with more than 2s to react and avoid the obstacles,

which is much longer than the human’s reaction time [41].

The aisle scenario shows a high FP rate for the acoustic detection due to its cluttered

environment. In contrast, the visual detection is not affected by this scenario due to the

directional nature of image taken by the phone’s rear camera. Therefore, the average FP

rate of visual detection in this scenario is even lower than the FP rate of acoustic detection.

We exploit this complementary nature of acoustic and visual detectors by using a fusion

algorithm to ensure a high TP rate in outdoor environments while significantly reducing

the FP rate in indoor environments as shown in Table 2.1. The fusion algorithm also lowers

the FP rate in outdoor environments which are due mainly to a strong wind blowing into

the phone’s microphones. Actually, many false detections in the 5m-wide aisle are not

incorrect since there exist objects, e.g., the water fountain on the side and the emergency

sign at the ceiling, which is in front of users within 2–4m. If the detection range is shrunk

to 1–2m, the FP rate of acoustic detector is reduced from 28% to 5% and it is reduced

further to 2% when a combination of acoustic and visual detection is applied. Note that

there is a trade-off between false detection and detection range. One possible resolution is

to alarm users when they are located in a cluttered environment where the detection range

of BumpAlert is shrunk, and hence they need to pay closer attention to their walking. This

is part of our future work.

As stated in Section 2.3, the key component of the fusion algorithm to work properly

is its ability to estimate the number of stationary objects through the clutter filter. In real-

world experiments, we set the threshold of stationary objects to classify environments as

cluttered as 5 (i.e., turning off the visual detection when there are < 5 stationary objects).

The distribution of stationary objects in different scenarios is plotted in Fig. 2.11. Our

32

Figure 2.11: Stationary objects passing the clutter filter. Cluttered areas can be identi-
fied by monitoring the number of stationary objects.

experimental results also validate the effectiveness of the clutter filter in enabling the visual

detector under a proper condition.

Of all the objects considered, the wall is found the easiest to detect due to its large

size, and the box is the hardest in terms of TP ratio and delay. Moreover, the TP rate

of signboard detected by the visual detector is lower than that of other objects, which is

due to the signboard overhanging above the floor as shown in Fig. 2.7(b). Although the

visual detection for the signboard is above 80% in outdoor and aisle environments, their

high TP rates are also accompanied by a high FP rate. This implies that the detector was

guessing most of the time, leading to the high TP and FP rates and not a true representation

of accurately detecting the object.

Many other objects have also been tested but the results are not reported here due to

space limit. One interesting finding is that acoustic detection of a human is harder than a

box even when the human is much larger than the box. This is because the human body

absorbs most sound signal instead of reflecting it. We found that the acoustic detector can

only detect humans within a 1–3m range under the current setting, which is shorter than the

other objects we tested. Nevertheless, BumpAlert can still detect humans with a TP ratio

higher than 82%. Moreover, the chance of bumping into a person is less likely than other

stationary objects because people usually try to avoid distracted walkers. An alternative

solution to this problem is to continuously monitor objects with an additional signal of

different (low) frequency which is easy to be reflected by the human body.

33

acoustic acoustic visual visual h̄p t̄p
id TP(%) FP(%) TP(%) FP(%) (m) (�)

p1 97.5 5.4 97.5 36.4 1.3 52
p2 100.0 1.8 100.0 11.1 1.1 54
p3 95.0 2.5 87.5 21.3 1.3 53
p4 100.0 3.2 90.0 17.6 1.1 39
p5 90.0 0.2 12.5 2.7 1.0 31
p6 100.0 1.7 100.0 32.2 1.2 65
p7 100.0 2.6 100.0 17.6 1.2 56

Table 2.2: Individual detection rate of the trace in lobby

Even though the current version of BumpAlert doesn’t handle moving objects, it is

general enough to detect a variety of objects in real time. The issue of detecting moving

objects like humans or cars will be part of our future work, and it might be addressable by

using other complementary approaches such as those in [65, 126].

2.5.2 Accuracy among Different Participants

To study the effects of different participants with different phone-holding positions and

walking patterns, the above results are separated based on individual participants. The

phone tilts/heights and the corresponding detection results are summarized in Table 2.2.

According to our experiments, the tilt of phones, tp, varies from 31� to 65� among different

participants; so does the phone height hp vary from 1 to 1.3m. These parameters for the

same user did not vary much over time.

An interesting finding is that the acoustic detection accuracy is slightly different among

participants. We have repeated several tests with different holding positions and found

that the variation is affected by the way the phone is held and the AGC of the phones’

microphones. For example, when the speakers are being blocked by fingers, the received

signal strength is low due to the obstruction. On the other hand, if the phone is held tightly,

the magnitude of the received signal sent directly from the phone is increased. This signal

may be strong enough to saturate the range of the microphones, and the reflected signals

34

are usually weaker due to the lower gain adapted by AGC. However, with the adaptive

threshold mechanism as described in Section 2.3, BumpAlert can accurately estimate the

noise level and detect reflections effectively.

The extreme low visual detection ratio of participant p5 was caused by his way of hold-

ing the phone, 30� with respect to the horizontal plane. The detection results we collected

from participant p5 show that only those images close to (within 1m of) the obstacles can

yield a sufficient area for detection because of the low tilt of the phone, implying that our

visual detection is not applicable to certain postures of holding a phone. We also recruited

two additional participants who hold their phones with a posture similar to participant p5’s

to repeat the above experiments. Our results indicate that the visual detector is unable to

function with tilt lower than 30� for identifying 2m-away objects. However, the high prob-

ability of successful visual detection by the other users also implies that visual detection

works with a broad range of tilts from 40� to 65�. One potential way to address this issue

is to warn the users, when they enable BumpAlert but hold their phones with the tilt less

than 40�. According to the users study in Section 2.6, most users feel comfortable with this

operating range of BumpAlert.

2.5.3 Processing Cost and Energy Consumption

Our final experiment is to evaluate BumpAlert for its real-time performance and re-

source consumption. Under its four different configurations, we ran BumpAlert for an

extended period of time in typical environments. The CPU usage of BumpAlert is logged

via the top command at an interval of 10 seconds. A 1-hour trace is averaged to obtain

CPU usage as well as power consumption. Four different scenarios are tested: idle (with

backlight on), acoustic detection only, visual detection only, and trace. The idle case is

used as a baseline which mainly represents the power consumed by the backlight. In the

case of acoustic or visual detection only, each algorithm is run independently at 10Hz with

backlight on. Since the energy consumption depends on how often BumpAlert turns on/off

35

the visual detector, we also include a real-world trace from participant 1 where the visual

detector was enabled only when necessary. This trace is collected when the participant is

walking between his home and work. We chose to display participant 1’s result because his

on-foot travel time is longer than the other participants.

The CPU usages when the app is Idle, in Acoustic only, and Visual only are 3.08%,

8.92% and 17.80%, respectively. One can see that the CPU usage of Visual detector is

approximately twice the value of Acoustic detector. As the high CPU usage, the power

consumption of the visual detector is also observed to be much higher than the acoustic

detector’s. For example, the acoustic detector only consumes one-fourth more energy than

the idle baseline (with backlight on) but the visual detector consumes twice more energy.

In our experiments, most of the energy is consumed by the microphone/speaker/camera

hardware, not by the computation [39]. Thus, the capability of reducing the energy con-

sumption in software is limited. Note that the additional energy consumed by BumpAlert

will be reduced further when users turn on WiFi/4G or play mobile games. In the actual

usage as the trace of participant 1, the S4 battery only has an additional 8% drop after one

hour usage.

2.6 Usability Study

We randomly selected 21 passers-by (10 females and 11 males) in our campus without

prior knowledge of BumpAlert to evaluate its usefulness and practicality. The users were

asked to try out BumpAlert for 15 minutes and fill out a survey form. Users tried a demo

version of BumpAlert as shown in Fig. 2.12(a) at locations shown in Fig. 2.12(c). The

results are summarized in Table 2.3.

The first section of our survey attempts to analyze the prevalence of distracted walking.

Our result indicates that 81% of the participants use their phones while walking and 43%

of them had run into obstacles due to distracted walking. Even though a half of the par-

ticipants did not bump into any obstacle before, 76% of them were afraid of running into

36

Outdoor

Lobby

Aisle

Test Area

(a) Demo app

Outdoor

Lobby

Aisle

Test Area

(b) Tilt survey app

Outdoor

Lobby

Aisle

Test Area

(c) Test location

Figure 2.12: Survey settings. The demo version of BumpAlert processes the acoustic/vi-
sual detectors in real time. The separate tilt survey app records phone tilt when participants
walk and provide feedback when the phone tilt is not in the selected range.

Questions Disagree No opinion Agree
I can play my phone around 40� (at
walking for detecting obstacles)

10 0 90

I can play my phone around 50� 10 18 72
I can play my phone around 60� 80 5 15
Detection accuracy is helpful 14 14 72
Detection range is acceptable 28 0 72
False alarm is bothering 39 32 29

Table 2.3: Survey results (%).

obstacles when they use their phones while walking. The percentage of people colliding

with obstacles increases to 86% if their friends who had bumped into objects are included.

The second section of the survey attempts to know the tilt when the users hold their

phones and check if people are willing to hold phones in a specific tilt range for the benefit

of obstacle detection and warning. A separate Android survey app shown in Fig. 2.12(b)

was used to record and inform the participants of the tilt in holding their phones. They were

first asked to walk with BumpAlert enabled to record tilts when they hold their phones in

the most comfortable position. Then, we selected several different angles that allow the

survey app to monitor the tilt of phones and provide a feedback (via vibration and a red

text) when the user doesn’t hold the phone in the selected angle within a ±10� range.

37

The phone tilt has been studied extensively in [111] by continuously recording the tilt

via published Android widgets. However, the users’ state (e.g., walking or sitting) when

the tilt is recorded was not reported there. In our users study which records the phone tilt

when users are walking, most participants hold their phones at approximately 35� relative

to the ground. This result matches the average phone tilt when Google Maps is run as

reported [111]. This tilt distribution is not optimal for BumpAlert as shown in Section 2.5.

However, after having experience in holding phones with different angles and being told

about our purpose, 90% of participants were willing to hold their phones between 40�

and 50�, which is proven good for BumpAlert. Thus, it is reasonable to provide similar

feedback when BumpAlert is enabled but the tilt of phones is not in the operation range.

The third section of the survey asks participants to evaluate the usefulness of BumpAlert

after a 15min trial in three scenarios as shown in Fig. 2.12(c). The three criteria we used are

the detection accuracy, detection range and false-alarm rate. About 72% of the participants

agree that the detection accuracy and range are adequate, allowing them enough time to

react to imminent obstacles. Some participants have commented that they would be able

to avoid obstacles at even a shorter distance, such as 1.5–3m. This feedback was useful

for BumpAlert to reduce the false positive ratio. 29% of the participants did not want to

have any false alarm. We found some of participants react even to the correct detection of

a wall 4m away as a false alarm. Based on the performance of BumpAlert we were able

to satisfy most participants with low false positive rate and good detection ratio.

The last section of the survey addresses the issue of power consumption. Only 14%

of the participants want the power consumption to be below 4% per hour. The power

consumption of BumpAlert varies from user to user, depending on the users’ activities. In

our initial experiment, power consumption is approximately 8% per hour, which meets the

criteria of 86% of people who are willing to use the application.

Even though the study of 21 users is somewhat limited, it did help us understand what

the users need. For example, besides the quantitative results mentioned earlier, during the

38

user study, we also noticed that the users’ satisfaction with BumpAlert is strongly depen-

dent on the user interface (UI). For example, in a crowded area, users are more comfortable

when the UI shows a detailed notification like “Crowded area detected. Don’t use your

phone while walking” rather than a message like “BumpAlert is off”. Many of the feed-

backs we received actually made us adjust our design as shown in Section 2.8. Crafting a

proper UI and building a large-scale user study are parts of our future work.

2.7 Limitations and Discussion

Based on our evaluation and users study, BumpAlert has been proven able to prevent

distracted walkers from colliding with various obstacles, ranging from glass doors to small

dustbins. However, there are a few limitations of the current version of BumpAlert, in-

cluding the detection of moving objects, the liability of missed detections, and the audible

sound used by the acoustic detector, as discussed below.

2.7.1 Detection of Moving Objects

In addition to the various static objects we have already tested for the evaluation of

BumpAlert, its current version cannot detect moving objects since they have the unmatched

relative speeds and are thus filtered out by the motion filter. There are several potential

solutions to address this issue. For example, instead of just matching the pedestrian’s

walking speed with the speeds of objects moving toward the user, a more sophisticated

machine learning algorithm might be able to distinguish the detections caused by different

objects, and then track their moving trajectories. However, this type of complex algorithm

might consume more energy/computation resources, and generate additional false detec-

tions. Finding a balance between detection capability and computation cost is part of our

future work.

39

OK
OK

Coca-cola just
saved you a bump! Bump avoided

thanks to Macy's! BumpAlert!
R

BumpAlert!
R

Figure 2.13: An example user interface for the business of app developers. BumpAlert
executes in the background with no disturbance to users and the warning with third-party
advertisements is shown only when dangerous obstacles are detected.

2.7.2 Liability of Missed Detections

As mentioned earlier, BumpAlert is unable to warn users of “all” dangerous objects,

and it is also not the purpose of BumpAlert. Some objects might be detected by integrating

BumpAlert with other existing systems while others may not. For example, distracted

pedestrians might fall by stepping through the gap from sidewalks to streets, but BumpAlert

won’t be able to detect this gap since there is nothing in the gap to reflect the audio signals.

This situation can be prevented by incorporating an existing system designed specifically

for recognizing the street gaps [70]. The same principle can also be applied to the detection

of moving vehicles [126]. However, no matter how the system is integrated and designed,

there will always be possible missed detections. That is, all warning systems including

BumpAlert are to enhance, but not to guarantee, distracted walkers’ safety.

We argue that even an expensive system relying on many specialized sensors still expe-

riences miss detections, e.g., the recent tragic accident of the latest Tesla autopilot driving

model [30]. The main goal of BumpAlert is to provide distracted pedestrians additional

safety protection with only minimal resources. So, users should not expect to navigate

based solely on BumpAlert but exploit the BumpAlert-provided warning for their safety.

40

Questions Disagree No opinion Agree
I can tolerate 11kHz sound beep (on
the purpose to detect obstacles)

42 10 48

I can tolerate 4kHz sound beep 48 10 42
I can tolerate 441Hz sound beep 42 29 29
I can tolerate 11–22kHz chirp 95 0 5
I can tolerate Music fused beep 39 29 32

Table 2.4: Audible sound survey (%).

Fig. 2.13 shows an example user interface for developing BumpAlert as a freemium which

lowers the users’ expectation of 100% detection rate. App developers still get paid via

advertisements in the alert view when obstacles are detected correctly.

2.7.3 Annoyance Caused By Audible Sound

As mentioned before, BumpAlert relies on a 11kHz beep to sense environments. Al-

though only a short (i.e., 40 samples) sequence of sound is emitted, imperfect speaker

design makes the beginning and end of this sound louder than expected. This audible noise

is due mainly to the hardware limitation of commodity phones.

The authors of [81] have shown that a 22kHz sound can be used to send data at a low

bit-rate with proper signal processing. However, the purpose of BumpAlert is different

from theirs in that the emitted sound should be strong enough to generate reflections from

obstacles rather than sending data in a best-effort manner. Moreover, their results didn’t

account for the limitation of speaker hardware either, since a special speaker (unavailable

in commodity phones) was used in their evaluation. In our experiments with Galaxy S4/5,

inaudible sound of 22kHz is unable to detect objects within 2–4m. This result is also

consistent with their hardware study; the signals captured by certain commodity phones

at 22kHz are 30dB weaker than those in the audible range. The responses to this audible

sound among 21 participants are summarized in Table 2.4.

The participants were asked to answer the questions after trying BumpAlert and based

on the assumption that it can help them avoid collision with obstacles during distracted

41

walking. As shown in this table, even with prior knowledge of BumpAlert’s purpose, only

48% of them support the sound emitted by the current version of BumpAlert. Other lower

frequency sounds received even less support. Use of a wide-band chirp, which can further

enhance the accuracy via pulse compression, was rejected by 95% of the participants. An

interesting candidate to hide the audible beep is to fuse the signals into a music. For ex-

ample, an instrumental music is selected and the music signal of 10–12kHz is filtered out

and replaced with our sound signals, and the emitted beeps can thus be played stealthily.

However, even fewer users support this idea since some think playing music while walking

actually gets more attention from other people. But only 10% of the participants chose not

to support any of these sound candidates. Thus, BumpAlert may provide multiple sound

signals for each user to choose based on his preference. Utilizing different sound signals

can also enable multiple users to run BumpAlert simultaneously, where the received sig-

nals from different users can be differentiated by the corresponding filters. BumpAlert can

also use inaudible sounds to detect objects with newer mobile devices that are equipped

with better-fidelity microphones/speakers, thus causing no disturbance to users. Next, we

present this light modification of BumpAlert based on our evaluation results and user feed-

backs.

2.8 BumpAlert+

From the participants’ feedback after using BumpAlert, we found most users favoring

less user interference, such as running the detection in background, no audible noise, and

low false detection over high detection accuracy. For example, they prefer to turn off the

object-detection function in a high false positive (e.g., crowded) area rather than getting

many false and correct detections. Moreover, while most of the participants in our study

liked the benefits of BumpAlert, only 48% of them were happy with the sound signal (of

11kHz). BumpAlert relies on 11kHz beeps to sense environments because it provides the

best sensing capability among the mobile devices we tested. Inaudible sound of 22kHz with

42

(a) Sound correlation

(b) Static object filtered

Ti
m

e

Distance (m)

Distance (m)

Figure 2.14: Acoustic detection in BumpAlert+. Bright areas indicate the possible exis-
tence of detected obstacles.

Galaxy S4/5 is unable to detect objects within a 2–4m range, because the signals captured

at 22kHz are significantly weaker than those in the audible range [81]. To preserve the

safety of distracted walkers without annoyance, we design and implement an extended

system called BumpAlert+ which provides reasonable detection accuracy with nearly zero

user annoyance. BumpAlert+ is designed as a background system service which uses only

an inaudible sound to sense environments. In a crowed area, BumpAlert+ will not check

the image taken by rear camera but pop up a warning message asking users to take care

by themselves, and temporarily turns off the detection. The detection range is shrunk to

3m since many participants in our study regarded the detection of objects 3m away as false

detections. Currently, BumpAlert+ can only be executed on Galaxy Note 4 as it provides

the highest sensing capability of inaudible signals among the devices we tested. We believe

that the design of both BumpAlert and BumpAlert+ can be improved and generalized for

devices that will likely emerge in the near future.

The main modification employed in BumpAlert+ is to use 25ms-long 18kHz–24kHz

chirps sampled at 48kHz to sense the environmental reflections. We choose the chirp

signal instead of a pure tone since we need to boost the SNR of received signals in this

inaudible band. To make this sound inaudible to humans, BumpAlert+ also applies sim-

ilar fade-in/out windowing at the beginning and the end of each chirp as shown in [81].

Our experimental results show the signal to noise ratio (SNR) of this particular sound de-

43

(a) Glass door

(f) Aisle entrance

(b) Trash bin

(i) Aisle corner

(c) Parapet wall

(j) Glass railing

(d) Phone station

(k) Round pillar (l) Thin pole

(e) 2m-wide aisle

Figure 2.15: Performance of BumpAlert+. Various scenarios have been tested by walk-
ing toward the obstacles from a position 10m away.

sign on Galaxy Note 4 provides sufficient signal strength to detect nearby objects. Porting

BumpAlert+ to other devices with compatible hardware settings is part of our future work.

In BumpAlert+, each chirp sensing period is decreased from 100ms to 50ms since the de-

tection range is set smaller and the audio frequency is higher (so the reflections from far

objects decay more quickly). This chirp signal setting also provides less estimation errors

and finer granularity due to the property known as pulse compression [112].

Based on this new audio setting, the acoustic detector is modified as follows. First, in-

stead of estimating distance by using the highest correlation peak, a one-time calibration is

done by sending 10 repetitions of a wide-band pilot signal before using BumpAlert+. This

calibration process compares the received and the sent pilots, and ends when the micro-

phone/speaker sample offset is tuned to less than 5. After getting the matched filter results

as shown in Section 2.3, a time-varying gain is applied to compensate for the decay of the

signals reflected from far objects. This is accomplished by multiplying a dynamic gain, i.e.,

gain(x) = x1.65 where x is the audio sample offset. An example of this new detection when

44

S4 S5 S7 S8 Note4 Nexus6P
Devices

0

10

20

30

D
et

ec
t e

ne
rg

y
ra

tio
 (d

B) 2m
3m

Figure 2.16: Device compatibility. Detect energy ratios are measured as the peak received
acoustic energy when the target is present versus the peak energy in an open area without
obstacles.

the user is walking toward the corner of an aisle is plotted in Fig. 2.14. This figure can

be regarded as a higher-resolution version of Fig. 2.3(c), where the bright areas represent

the likelihood of an object detection. As shown in this figure, we reuse the clutter filter to

remove objects with speed 0 relative to the user (such as the ceiling or side walls) before

applying the motion filter. After removing those objects, we set the threshold to 0.12 in

order to alarm users if the median of motion filtered area exceeds this threshold.

Our measurements show that BumpAlert+ yields comparable results as BumpAlert in

identifying objects for the scenario shown earlier. We also tested many other objects in

both open and crowded areas, and plotted the results in Fig. 2.15. Thin objects like flat

poles are invisible to BumpAlert+ and aisles with width less than 3m are just marked as

consistent warning. These results can be further improved by setting a more aggressive

threshold. For example, setting the threshold to 0.08 can make the round pillar and the

phone station detectable with 98% accuracy with only 4% false positive rate. However,

as mentioned earlier, BumpAlert+ is designed to remove/mitigate users’ annoyance, and

hence the parameter setting is tuned to ensure a low false positive rate with high priority.

This result shows that BumpAlert+ serves this design purpose, providing reasonable de-

tection accuracy with nearly zero user disturbance. A demo video of BumpAlert+ can be

found from [9].

As mentioned earlier, this inaudible optimization is tuned mainly based on Note 4, and

45

different devices might have varying results of using the same setting. Fig. 2.16 shows the

device capability of using BumpAlert+ to detect a 1.5m-high parapet wall when it is 2 or

3m away from users. The peak detect energy ratio is used to characterize its capability of

detecting objects. For example, when the wall is 3m away from users, we first calculate

the peak of the reflected signal strength between 2.8m and 3.8m and then divide this value

by the peak detection energy in the same range of a reference data collected without any

obstacle. This metric represents the required strength of the acoustic reflections to be cap-

tured by the device hardware. As shown in Fig. 2.16, Note 4 can receive more than 19dB

peak detect energy ratio from the inaudible reflections when the object is 3m away, while

S4 only captures less than 5dB even when the object is 2m away. Among the devices we

tested, Nexus 6p can provide the best result with BumpAlert+. We also notice that the

detection capability of Samsung Galaxy S-series devices has improved over time, i.e., S8

> S7 > S5 > S4. Based on our testing results, the current setting of BumpAlert+ can be

applied to S8 and Nexus6p easily. Repeating our previous tests on different devices, like

detecting different objects when users are moving, is part of our future work.

2.9 Conclusion

We have explored how to reduce the accident rate of distracted walking by using only

phone sensors. A prototype called BumpAlert has been designed, implemented and eval-

uated as a mobile app to warn distracted pedestrians of imminent collision with obstacles.

Since BumpAlert relies only on built-in sensors of commodity phones, it can be easily

deployed on different platforms. BumpAlert detects obstacles by fusing several sensor

inputs with minimal computation and energy overheads. In the current implementation of

BumpAlert, the accuracy of detecting objects in front of the user is higher than 95% in both

outdoor and indoor environments. This high detection rate of BumpAlert is achievable in a

wide spectrum of real-life environments, ranging from glass doors to small dustbins, since

it does not depend on any a priori knowledge of detected objects. Our users study has

46

shown BumpAlert to be acceptable to the general public and a light-weight version called

BumpAlert+ is also proposed based on the users’ feedback on BumpAlert. We expect

BumpAlert and /or BumpAlert+ will reduce accidents caused by distracted walking.

47

CHAPTER III

EchoTag

3.1 Introduction

Imagine one day, the silent mode of a phone is automatically activated in order to avoid

disturbing a user’s sleep when the phone is placed near the bed. Likewise, favorite songs are

streamed to speakers whenever the phone is placed near a stereo or a predefined timer/re-

minder is set if the phone is near a medicine cabinet. This kind of applications is known

as context-aware computing or indoor geofencing which provides a natural combination

of function and physical location. However, such a function–location combination is still

not pervasive because smartphones are not yet able to sense locations accurately enough

without assistance of additional sensors or pre-installed infrastructure.

Existing localization systems are unable to provide this type of functionality for two

reasons. First, they usually rely on passively recorded WiFi, FM, or background acoustic

signals, and can only achieve about room- or meter-level accuracy. Nevertheless, the above-

mentioned applications need more accurate location sensing, e.g., both streaming music

and setting silent mode might take place in the same room or even on the same table as

shown in Fig. 3.1. Second, more accurate (i.e., with error of a few cm) location sensing

with light recording or acoustic beacons requires a pre-installed infrastructure. The cost of

such an infrastructure and the ensuing laborious calibrations make its realization expensive

or difficult, especially for personal use.

48

(a) Auto silent mode (b) Auto music (c) Auto timer

Figure 3.1: Candidate applications of EchoTag. Silent mode is automatically activated
when the phone is placed on a drawn box, named (echo) tag, near the bed. Favorite songs
are streamed to speakers or a predefined timer is automatically set when the phone is placed
at other nearby tags.

In this paper, we propose a novel location tagging system, called EchoTag, which en-

ables phones to tag and remember indoor locations with finer than 1cm resolution and

without requiring any additional sensors or pre-installed infrastructure. The main idea be-

hind EchoTag is to actively render acoustic signatures by using phone speakers to transmit

sound and phone microphones to sense its reflections. This active sensing provides finer-

grained control of the collected signatures than the commonly-used passive sensing. For

example, EchoTag emits sound signals with different delays at the right channel to enrich

the feature space for sensing nearby locations, and exploits the synchronization between

the sender and the receiver as an anchor to remove interferences/reflections from objects

outside the target area/locations. Moreover, this active sensing relies only on built-in sen-

sors available in commodity phones, thus facilitating its deployment. Note that EchoTag

is not designed to replace any localization system since it can only remember the locations

where it had been placed before, rather than identifying arbitrary indoor locations. How-

ever, this fine-grained location sensing for remembering location tags can enable many

important/useful applications that have not yet been feasible due to large location sensing

49

(a) Draw (echo) tags (b) Sense acoustic signatures (c) Select mapped applications (d) Replay recorded tags

Figure 3.2: Four steps of using EchoTag. The user first draws the contour of target lo-
cations/areas with a pencil, then commands the phone to sense the environment. After
sensing the environment, a combination of applications and functions to be performed at
this location is selected. Finally, the user automatically activates the selected applications/-
functions by simply placing his phone back within the contoured area. The contoured areas
are thus called (echo) tags.

errors or the absence of pre-installed infrastructure.

Fig. 3.2 demonstrates a 4-step process to set up and use EchoTag. The first step is

to place the phone at the target location and draw the contour of the phone with a pen-

cil. This contour is used as a marker for users to remember the target location, which is

called an (echo) tag. (Tags can also be drawn on papers pasted on target locations.) Then,

EchoTag generates and records the surrounding signatures of this target location. The next

step is to select the applications/functions being combined and associated with this tagged

location. Finally, users can easily activate the combined applications/functions by placing

their phones back in the drawn tags. In summary, EchoTag embeds an invisible trigger at

physical locations that the phone remembers what to do automatically.

We have implemented EchoTag as a background service in Android and evaluated the

performance by using Galaxy S5 and other mobile devices. Our experimental evaluation

shows that commodity phones equipped with EchoTag distinguish 11 tags with 98% ac-

curacy even when tags are only 1cm apart from each other and achieves 90% accuracy

based on the trace collected a week ago. Since EchoTag only utilizes existing sensors in

commodity phones, it can be easily implemented and deployed in other mobile platforms.

For example, we also implemented and evaluated EchoTag on iOS (with traces classi-

50

fied in Matlab) but omitted the results due to space limitation. Our usability study of 32

participants also shows that more than 90% of participants think the sensing accuracy and

prediction delay of EchoTag are useful in real life. Moreover, about 70% of the participants

agree that the potential applications in Fig. 3.1 can save time and provide convenience in

finding and activating expected functions.

This paper makes the following four contributions:

• The first indoor location tagging achieving 1cm resolution by using commodity phones;

• Demonstration of the ability of active sensing to enrich the feature space and remove

interferences;

• Implementation of EchoTag in Android without any additional sensors and/or pre-

installed infrastructure; and

• Evaluation of EchoTag, showing more than 90% accuracy even a week after locations

were tagged.

The remainder of this paper is organized as follows. Section 3.2 discusses the related

work in indoor location sensing. Section 3.3 provides an overview of EchoTag. Sections

3.4–3.6 describe the design of acoustic signature and classifiers. The implementation de-

tails are provided in Section 3.7, and the performance of EchoTag and its real-world us-

ability are evaluated in Sections 3.8 and 3.9, respectively. We discuss future directions in

Section 3.10 and conclude the paper in Section 3.11.

3.2 Related Work

Indoor localization is a plausible entry to location tagging. The existing localization

systems are summarized in Table 3.1. The most popular methods used for indoor localiza-

tion, such as Radar [38] and Horus [129], sense locations based on WiFi-signal degrada-

tion. Their main attractiveness is the reliance on widely-deployed WiFi, hence requiring a

minimal deployment effort. However, severe multipath fading of WiFi signals makes WiFi-

signature-based localization achieve only room-level accuracy. To overcome the instability

51

System Resolution Infrastructure Signature
SurroundSense [37] room-level No Fusion

Batphone [116] room-level No Sound
RoomSense [109] 300cm No Sound

Radar [38] 400cm Existing WiFi
Horus [129] 200cm Existing WiFi

Geo [46] 100cm No Geomagnetism
FM [44] 30cm Existing FM

Luxapose [77] 10cm Additional Light
Cricket [103] 10cm Additional Sound/WiFi
Guoguo [86] 6–25cm Additional Sound
EchoTag 1cm No Sound

Table 3.1: Existing indoor location sensing systems.

of WiFi signatures and increase the accuracy of indoor localization, researchers have also

explored other sources of signatures. For example, the authors of [46] adopted the readings

of geo-magnetism which varies with location due to the disturbance of steel structure of

buildings. FM radio is also adopted to increase the sensing accuracy of WiFi-based lo-

calization [44]. Batphone [116] determines the room locations by sensing the background

acoustic noise. Unfortunately, even with these improvements, localization systems relying

on passive sensing of the environment can only achieve meter-level resolution. Moreover,

passively sensing the environment suffers greatly when the environment changes. For ex-

ample, as shown in [116], the signature of background acoustic noise changes dramatically

when the climate control (HVAC) system was shut off for maintenance, and WiFi RSSI

is known to change significantly when the transmit power control in an Access Point is

enabled [44].

As shown in Table 3.1, a few systems, such as Luxapose [77], Cricket [103] and

Guoguo [86], provide indoor localization with a few cm resolution, thus enabling accurate

location tagging. However, these fine-grained localization systems can only be realized

with the help from a pre-installed infrastructure. For example, Luxapose requires replace-

ment of ceiling lamps by programmed LED and Guoguo & Cricket require customized

WiFi/acoustic beacons around the building. Even if the cost of each additional sensor

52

might be affordable, the aggregated cost and the laborious calibration required for this de-

ployment are still too high to be attractive/feasible for real-world deployment. Even with

the pre-installed infrastructure, the localization error is still around 10cm. The localization

error can be reduced further by using antenna or microphone arrays [59, 128], but these

advanced sensors are not available in commodity phones. In contrast, EchoTag achieves

location sensing with 1cm resolution without any pre-installed infrastructure or additional

advanced sensors. Location tagging can also be realized by deploying NFC tags [24],

but EchoTag makes this functionality realizable in all commodity phones — such as HTC

butterfly, the latest Xiaomi 4, and iOS phones1 — that are commonly equipped with mi-

crophones and speakers, but not NFC chips. Note that EchoTag is not designed to replace

any localization system since it can only remember the locations where it had been placed

before, rather than identifying arbitrary indoor locations like [77,86,103]. However, as the

results shown in this paper and the feedbacks from the participants of our usability study,

this fine-grained location sensing for remembering tags can be used to enable many im-

portant/useful applications that have not been feasible before, due to large location sensing

errors or lack of installed infrastructure.

EchoTag senses locations based on acoustic signatures. Acoustic signals have been

studied widely since they are readily available in commodity phones. For example, Sur-

roundSense [37] and Auditeur [96] classify user behaviors based on background noise.

Skinput [63], TapSense [62] and SufaceLink [56] provide new commuter–human inter-

actions based on acoustic reflections from human skin, fingertip, or contacted surface.

UbiK [124] provides a input method with acoustic signatures in response to touching differ-

ent positions on a table. All of these use similar acoustic signatures (e.g., resonances) as in

EchoTag, but EchoTag is the first to use it for accurate indoor location tagging. Additional

novelties of EchoTag include its active generation of acoustic signatures and enrichment of

signatures by emitting sound signals with different delays.
1Apple locks iPhone 6 NFC to Apple Pay:

http://www.cnet.com/news/apple-locks-down-iphone-6-nfc-to-apple-pay/

53

Check
WiFi Becons

Check
Tilt Profiles

Check
Reflected Sound

FFT
Analysis

Feature
extraction

SVM
Training

(WiFi, Tilt, Acoustic Reflections)
Target Location Environments

Signature
Database Acoustic

Response

Recording Phase

Recognition Phase

WiFi, Tilt

WiFi Tilt Acoustic
Response

Activate
Target Applications

66%

Sensing

Features

Updated Features

Active Sensing

Figure 3.3: System overview. Locations are sensed based on acoustic reflections while the
tilt/WiFi readings are used to determine the time to trigger acoustic sensing, thus reducing
the energy consumption of the sensing process.

The closest to EchoTag are Touch & Active [97], Symbolic Object Localization [76],

and RoomSense [109], all of which also actively generate acoustic signals and record their

signatures but for different purposes. Touch & Active [97] uses the same multipath signa-

ture to identify how the user touches an object equipped with piezo speakers and micro-

phones. Commodity phones were mentioned as a potential interface for Touch & Active,

but no evaluation was provided. The authors of [76] use sound absorption by the touched

surface as a feature to identify symbolic locations of a phone — i.e., in a pocket, on a

wood surface or a sofa — which is unable to detect nearby locations on the same surface.

RoomSense [109] also uses the sound reflections from environments to identify different

rooms. However, since only the compressed analytical feature (e.g., Mel Frequency Cep-

stral Coefficient) is used, its sensing resolution is larger than 9m2, thus becoming unable

to distinguish nearby tags. In this paper, we implement a novel accurate location tagging

system based on actively generated acoustic signatures via built-in phone sensors.

54

10 12 14 16 18 20 22
0

0.5

1

N
or

m
al

iz
ed

 a
m

pl
itu

de

Frequency (kHz)

mean
5th
95th

Figure 3.4: An example of acoustic signatures. The received attenuation of a flat fre-
quency sweep is uneven over different frequencies. The result is an average of 100 trials
over 1 minute.

3.3 System Overview

Fig. 3.3 gives an overview of EchoTag which is composed of recording and recognition

phases. In the recording phase, multiple short sequences of sound signals will be emit-

ted from the phone speakers. Each sequence is repeated a few times with different delays

between left and right channels to enrich the received signatures as we will discuss in the

following sections. The reading of built-in inertial sensors is also recorded for further op-

timization. After recording the signature, the selected target application/function and the

collected signatures are processed and saved in the device’s storage. In the recognition

phase, the phone will continuously check if the WiFi SSID and the tilt of the phone match

the collected signatures. If the tilt and WiFi readings are similar to one of the recorded

target locations, then the same acoustic sensing process is executed again to collect signa-

tures. This new collected signature is compared with the previous records in the database

using a support vector machine (SVM). If the results match, the target application/function

will be automatically activated.

3.4 Acoustic Signature

EchoTag differentiates locations based on their acoustic signatures, characterized by

uneven attenuations occurring at different frequencies as shown in Fig. 3.4. Note that

55

Frequency (Hz)

R

L

Frequency (Hz)

R

L

11000 22000 11000 22000

1

0

1

0

1

0

1

0

Ti
m

e
(s

ec
)

Ti
m

e
(s

ec
)

0

100

0

100

0

100

0

100

(a) Location A

Frequency (Hz)

R

L

Frequency (Hz)

R

L

11000 22000 11000 22000

1

0

1

0

1

0

1

0

Ti
m

e
(s

ec
)

Ti
m

e
(s

ec
)

0

100

0

100

0

100

0

100

(b) Location B

Figure 3.5: Frequency responses at nearby locations. Responses varies with location
(i.e., the distribution of light and dark vertical lines) thus being used as a feature for accurate
location tagging.

EchoTag does not examine the uneven attenuations in the background noise but those in

the sound emitted from the phone itself. For example, as shown in Fig. 3.4, the recorded

responses of a frequency sweep from 11kHz to 22kHz are not flat but have several signif-

icant degradations at certain frequencies. The characteristics of this signature at different

locations can be observed in Fig. 3.5 where the phone is moved 10cm away from its origi-

nal location. In what follows, we will unearth the causes of this phenomenon and describe

how to exploit this feature for EchoTag’s accurate location tagging.

3.4.1 Causes of Uneven Attenuation

There are three main causes of this uneven attenuation: (a) hardware imperfection, (b)

surface’s absorption of signal, and (c) multipath fading caused by reflection. As shown

in Fig. 3.6, when sound is emitted from speakers, hardware imperfections make the sig-

nal louder at some frequencies and weaker at other frequencies. These imperfections have

been identified and used as a signature to track people’s smartphones for the purpose of

censorship [136]. After the emitted sound reaches the surface touched by the phone, the

surface material absorbs the signal at some frequencies. Different materials have different

absorption properties, thus differentiating the surface on which the phone is placed [76].

Then, when the sound is reflected by the touched surface and the surrounding objects, the

56

Freq

Freq

Freq

Freq

Freq

(a) Hardware imperfection (b) Surface absorption

(c) Multipath fading by reflections from surface & near objects
Figure 3.6: Causes of uneven attenuation. During the recording of emitted sound, hard-
ware imperfection of microphones/speakers, absorption of touched surface materials and
multipath reflections from nearby objects incur different degradations at different frequen-
cies. Only the degradation caused by multipath reflections is a valid signature for sensing
locations even in the same surface.

combination of multiple reflections make received signals constructive at some frequencies

while destructive at other frequencies. This phenomenon is akin to multipath (frequency-

selective) fading in wireless transmissions. For example, if the reflection of an object ar-

rives at microphones t milliseconds later than the reflection from the touched surface, then

the signal component at 103/2t Hz frequency of both reflections will have opposite phases,

thus weakening their combined signal. This multipath property of sound has been shown

and utilized as a way to implement a ubiquitous keyboard interface [124]. When reflec-

tions reach the phone’s microphone, they will also degrade due to imperfect microphone

hardware design.

For the purpose of accurate location tagging, EchoTag relies on the multipath fading of

sound among the properties mentioned above as this is the only valid signature that varies

with location even on the same surface. In what follows, we will introduce the challenges

of extracting this feature and describe how EchoTag meets them.

57

3.4.2 Sound Selection

The selection of parameters for the emitted sound is critical for EchoTag to extract

valid multipath signatures. According to the guideline of Android platforms,2 44.1kHz

is the most widely supported sample rate for Android phones, so the highest frequency

that can be sensed is about 22kHz. Studies have shown that humans can hear signals of

frequency up to 20kHz [102]. It is thus desirable to make the emitted sound inaudible

(to avoid annoyance) by sensing 20 to 22kHz. But from our preliminary experiments on

commodity phones, we found that the signal responses in this high-frequency range are not

strong enough to support accurate indoor location tagging due to the imperfect hardware

design that causes significant degradation of signal strength in this high-frequency range.

Based on the experiments in [81], certain phones’ microphones receive signals with 30dB

less strength at 22kHz. This phenomenon is even worse if the degradation of speakers is

accounted for. Thus, we choose the chirp (i.e., frequency sweep) from 11kHz to 22kHz to

sense locations. The frequency response below 11kHz is not used since it contains mostly

background noise of human activities [116]. Even though this selection makes the sensing

of EchoTag audible to humans, the impact of this selection is minimal because EchoTag

triggers acoustic sensing very infrequently, i.e., only when the tilt and the WiFi readings

match its database as shown in Fig. 3.3. Moreover, the annoyance caused by sensing with

audible sounds is mitigated by reducing the sound volume (e.g., to 5% of the maximum

volume) without degrading sensing accuracy. None of the 32 participants in our usability

study considered the EchoTag’s emitted sound annoying and 7 of them didn’t even notice

the existence of emitted sound until they were asked to answer related questions in the

post-use survey.

We must also consider the length of the emitted sound, which is correlated with the

signal-to-noise-ratio (SNR) of received signals. The longer the sound of a frequency sweep,

the more energy at each frequency is collected. However, a long duration of emitted sound
2http://developer.android.com/reference/android/media/AudioRecord.html

58

106

104

102

0 2000 4500 500 1000 1500 2500 3000 3500 4000

Sample index

M
at

ch
ed

 fi
lte

r r
es

ul
t Signals kept as features

Reflections from objects 1.5m away

End of reflections

Figure 3.7: Characteristics of reflections. A matched filter is used to identify the reflec-
tions of a 100-sample chirp. Only first 200 samples after the largest peak are kept as a
feature in EchoTag, excluding reflections from objects farther than 86cm away.

introduces a serious problem to the functionality of EchoTag because reflections from far-

away objects are collected during this long duration of sensing. Fig. 3.7 shows the received

signal passed by a matched filter, where the peaks indicate received copies of the emitted

sound. The first and largest peak in this figure represents the sound directly traveled from

the phone’s speakers to its microphones and the subsequent peaks represent the reception

of environmental reflections. As the purpose of EchoTag is to remember a specific location

for future use, it is unnecessary to collect signatures of reflections from far-away objects

since those objects are likely to move/change. For example, the object 1.5m away shown

in Fig. 3.7 might be the reflection from the body of a friend sitting next to the user, and

he might move away when EchoTag is triggered to sense locations. One way to mitigate

this problem is to truncate the signals generated by the reflections from far-away objects.

EchoTag uses 100-sample short signals for sensing and collects only the 200 samples of

received signals after the largest peak passes through the matched filter. That is, the sensing

range of EchoTag is roughly confined to 1m since the sound of speed is 338m/s and the

chosen sample rate is 44.1kHz. The sensing range is actually shown to be shorter than

this calculated value since the signals reflected from nearby objects are inherently stronger

than those from far-away objects. Our results also confirm that this setting can meet most

59

R L

Frequency (Hz)
11000 22000 11000 22000

Ti
m

e
(s

ec
)

0

100

Time (sec)

Pilot Delayed repetition
Full frequency sweep

1.8 0

22

0

11

x104

1

-1

Fr
eq

ue
nc

y
(H

z)

A
m

pl
itu

de

0

1

Figure 3.8: Selected sound signals at EchoTag. The leading pilot is used for time syn-
chronization between speakers and microphones. The following chirps (repeated 4 times
each) cover the frequency sweep from 11 to 22kHz. (This figure is scaled for visualization.)

real-life scenarios in terms of accurate location tagging. One thing to note is that the entire

frequency sweep is divided into four smaller 100-sample segments rather than one 100-

sample chirp covering the 11–22kHz range. This selection reduces the sample duration

(also the sensing range), but keeps enough energy at each frequency for the purpose of

sensing locations.

The last parameter in selecting the emitted sound is the time to wait for playing the next

chirp after sending a chirp. This parameter is related to the sensing speed of EchoTag. The

larger this parameter, the longer the time EchoTag needs for single location sensing. On the

other hand, a short wait time causes detection errors since the received signals might acci-

dentally include the reflections of the previously emitted chirp. For example, if EchoTag

triggers the next chirp within the 500-th sample shown in Fig. 3.7, the peaks (i.e., reflec-

tions) near the 400-th sample will be added as a noise to the received signals associated

with the sensing of the next chirp. From our earlier field study to identify the surrounding

objects via sound reflections, we found the speakers and microphones on Galaxy S4 and

S5 are able to capture the reflections from objects even 5m away. This phenomenon can

also be found in Fig. 3.7; there is residual energy even after the 1500-th sample. Thus, the

60

Ti
m

e
(s

ec
)

0

100

Ti
m

e
(s

ec
)

0

100
Ti

m
e

(s
ec

)

0

100

R L

R L

R L

Frequency (Hz)
11000 22000 11000 22000

Frequency (Hz)
11000 22000 11000 22000

Frequency (Hz)
11000 22000 11000 22000

1

0

1

0

1

0

(a) 100% volume
Ti

m
e

(s
ec

)

0

100

Ti
m

e
(s

ec
)

0

100

Ti
m

e
(s

ec
)

0

100

R L

R L

R L

Frequency (Hz)
11000 22000 11000 22000

Frequency (Hz)
11000 22000 11000 22000

Frequency (Hz)
11000 22000 11000 22000

1

0

1

0

1

0

(b) 5% volume

Ti
m

e
(s

ec
)

0

100

Ti
m

e
(s

ec
)

0

100

Ti
m

e
(s

ec
)

0

100

R L

R L

R L

Frequency (Hz)
11000 22000 11000 22000

Frequency (Hz)
11000 22000 11000 22000

Frequency (Hz)
11000 22000 11000 22000

1

0

1

0

1

0

(c) 1% volume

Figure 3.9: Frequency responses at different volumes. Responses of full volume are sat-
urated by sound directly transmitted from speakers while responses at 1% of the maximum
volume are too weak to pick up valid features.

interval between two chirps in EchoTag is set to 4500 samples, making its signal sensing

time of the entire frequency sweep equal to 4(200+4500)/44100⇠= 0.42 second.

An example of sensing signals is shown in Fig. 3.8, where a 500-sample pilot is added

before the frequency sweep. This pilot is used for synchronization between speakers and

microphones because the operating system delays are not consistent in commodity phones.

The way EchoTag synchronizes a microphone and a speaker is similar to the sample count-

ing process in BeepBeep [100]. In the current version of EchoTag, this pilot is set as a

11,025Hz tone, which can be improved further by pulse compression [81,112], but accord-

ing to our test results, it doesn’t make any noticeable difference. Another 10000 samples

follow the pilot before the chirp signals are played. Note that 4 chirps in the same frequency

range are played consecutively before changing to the next frequency range. This repetition

is used to enrich the acoustic feature space as described in the following sections. Current

setting of EchoTag makes the total sensing time of EchoTag near 2–3 seconds. After test-

61

ing EchoTag, most participants of our usability study were satisfied with this latency in

sensing locations. Note that in the training phase of EchoTag, each trace is collected with

4 cycles of the above-mentioned frequency sweep to eliminate transient noises, consuming

about 10 seconds to collect.

3.4.3 Volume Control

The volume of an emitted sound plays a critical role in extracting valid signatures from

multipath fading. As shown in Fig. 3.9, when the volume of emitted sound is full (i.e.,

100%), a large portion of the feature space is saturated by the sound emitted directly from

the phones’ speakers. Moreover, emitting sound in full volume makes the sensing process

more annoying to the users since EchoTag uses audible frequency ranges. On the other

hand, if only 1% of full volume is used to emit sound, the reflections are too weak to be

picked up by phones’ microphones. Based on our preliminary experiments, setting the

phone volume at 5% is found optimal for Galaxy S5. Even though this setting varies from

one phone type to another, calibration is needed only once to find the optimal setting.

3.4.4 Acoustic Signature Enrichment

The goal of EchoTag is to enable accurate location sensing with fine resolution, but

according to our experimental results, one shot of the frequency sweep between 11 and

22kHz can distinguish 1cm apart objects with only 75% accuracy. One way to enrich the

feature space is repeating the emitted sound which can be used to eliminate the interfer-

ence caused by transient background noise. Instead of only repeating the emitted sound,

EchoTag also adds delay of emitted sound in the right channel at each repetition. This

intentional delay at the right channel is designed for two purposes. First, when there are

stereo speakers in the phone, such as HTC M8 and Sony Z3, this intentional delay yields

an effect similar to beamforming in wireless transmission, which helps us focus on the re-

sponse in one specific direction at each repetition. We validated this feature to enrich the

62

Ti
m

e
(s

ec
)

0

100

Ti
m

e
(s

ec
)

0

100
Ti

m
e

(s
ec

)

0

100

R L

R L

R L

Frequency (Hz)
11000 22000 11000 22000

Frequency (Hz)
11000 22000 11000 22000

Frequency (Hz)
11000 22000 11000 22000

1

0

1

0

1

0

(a) 0 sample delay
Ti

m
e

(s
ec

)

0

100

Ti
m

e
(s

ec
)

0

100

Ti
m

e
(s

ec
)

0

100

R L

R L

R L

Frequency (Hz)
11000 22000 11000 22000

Frequency (Hz)
11000 22000 11000 22000

Frequency (Hz)
11000 22000 11000 22000

1

0

1

0

1

0

(b) 1 sample delay

Ti
m

e
(s

ec
)

0

100

Ti
m

e
(s

ec
)

0

100

Ti
m

e
(s

ec
)

0

100

R L

R L

R L

Frequency (Hz)
11000 22000 11000 22000

Frequency (Hz)
11000 22000 11000 22000

Frequency (Hz)
11000 22000 11000 22000

1

0

1

0

1

0

(c) 2 samples delay

Figure 3.10: Frequency responses with delay at the right channel. When the emit-
ted sound is intentionally delayed at the right channel, different portions of features are
strengthened, which helps enrich the feature space for sensing locations.

collected signatures by HTC M8’s two front-faced speakers. A similar concept was also

adopted in acoustic imaging [69], but EchoTag doesn’t need calibration among speakers

because the purpose of this delay is used to enrich the feature space rather than pointing to

a pre-defined target direction. Second, the intentional delay also helps strengthen features

at certain frequencies even when there is only one speaker in the phone. The effects of this

delay at the right channel are shown in Fig. 3.10, where different portions of features are

highlighted with different delays. Based on the results in Section 3.8, 4 repetitions with 1

sample delay at the right channel improve EchoTag’s sensing accuracy from 75% to 98%

in sensing 11 tags, each of which is 1cm apart from its neighboring tags. This way to enrich

the acoustic signature space is a unique feature of EchoTag, as it actively emits sound to

sense the environment, rather than passively collecting existing features.

63

3.4.5 Modeling of Sensing Resolution

Suppose two (drawn) tags are at distance d from each other, the sensing signal wave-

length is l , and the angle from one of the nearby objects toward these two tags is q . The

difference of the reflection’s travel distance from this object to the two tagged locations

is d = 2d ⇤ cos q . Since the sensing signal wavelength is l , a change, d > l/2, in any

reflection’s travel distance will cause the summation of all acoustic reflections to vary from

constructive to destructive combing (or vice versa), thus resulting in a significant change in

the acoustic signature. So, if q of all nearby objects is not close to 0 (which is also rare in

the real world), tags separated by more than l/4 are to be distinguished by their acoustic

signatures. Based on this model, the current setting of EchoTag is capable of identifying

tags with a 1cm resolution. Our evaluation also validates this property as shown in the

following sections. However, this fine resolution also implies that users should place their

phones close enough to the trained location for collecting valid signatures; this is also the

reason why EchoTag requires “drawn” tags to remind users where to place their phones.

In our usability study, most users didn’t have any difficulty in placing phones back at the

trained locations with this resolution to activate the tagged functionality of EchoTag. The

limitations and future direction of this resolution setting will be discussed further in Sec-

tion 3.10.

3.5 Classifier

Several classifiers, such as k-nearest neighbors (KNN) and support vector machine

(SVM), have been tried for location sensing based on acoustic signatures. Our experi-

mental results show that one-against-all SVM [122] performs best in classifying locations.

For example, in the experiment of sensing eleven 1cm apart tags based on the training data

collected 30min earlier, 98% accuracy can be achieved by SVM while only 65% test data

can be correctly classified via KNN with the Euclidean distance and k = 5. We believe

64

this inaccuracy is caused by the small training data size and nonlinear nature of acous-

tics signatures. For example, a 5mm position change might cause more significant feature

changes (in the frequency domain measured by the Euclidean distance) than a 10mm posi-

tion change since the acoustic signatures capture the superposition of all reflections.

In the one-against-all SVM, n classifiers are trained if there are n tags to sense. A loca-

tion is classified as the tag k if the k-th classifier outputs the highest prediction probability

for that tag. In our test with 2-fold cross validation, the linear kernel achieves the optimal

performance. As the results shown in Section 3.8, the difference of prediction probability

between the classifiers trained at the target location and the other locations is greater than

0.5 in most cases, which is adequate for EchoTag to distinguish locations using acoustic

signatures.

3.6 Performance Optimization

Even though activating microphones and speakers is shown to be more economical

than image or WiFi sensing [39], the cost of continuously collecting acoustic signals is still

non-negligible and unnecessary. Our measurements with Monsoon Power Monitor [23]

on Galaxy S5 show that acoustic sensing consumes 800mW. Moreover, due to the con-

straints in existing phone microphones, the signals we used are still audible, especially for

the pieces of frequency sweep close to 10kHz. The strength of acoustic signal is reduced

greatly by lowering the volume, but its continuous use still annoys the users and consumes

energy. We have therefore performed further optimizations by avoiding unnecessary acous-

tic sensing to reduce the power consumption and user annoyance. For example, in terms

of EchoTag’s functionality, it is useless to sense the environment via acoustic signals when

the user keeps the phone in his pocket while walking. This situation can be easily detected

by reading inertial sensors. As shown in Fig. 3.3, EchoTag first checks the status of the

surrounding WiFi to ensure that the phone is located in the same target room. Then, the

inertial sensor data, such as the accelerometer readings, are used to check if the phone is

65

placed with the same angle as recorded in the database. If both the WiFi status and the

inertial readings match the recorded data, one shot of acoustic sensing will be activated

to collect the surrounding acoustic signature. The next round of acoustic sensing can be

executed only when EchoTag finds the phones moved and the recorded WiFi beacons and

inertial readings match. Note that WiFi sensing in EchoTag incurs minimal overhead, since

it only needs connected WiFi SSID, which can be directly retrieved from the data already

scanned by Android itself via WifiManager. In the current implementation of EchoTag,

tilt monitoring only consumes additional 73mW in the background and the power usage

of WiFi is negligible since EchoTag uses only the (already) scanned results. We will later

evaluate the false trigger rate of this design.

3.7 Implementation

We implemented EchoTag as an Android background service. Since EchoTag relies

only on sensors commonly available in smartphones, it can be readily implemented on other

platforms like iOS or Windows. Acquisitions of active acoustic signatures, tilts, and WiFi

signals are implemented with Android API while the classifier relying on LIBSVM [43]

is written in C layered by Java Native Interface (JNI). The function to trigger applications,

such as setting silent mode or playing music, is implemented via Android Intent class. A

prototype of EchoTag is also implemented in iOS with classifiers trained in Matlab. In

our current implementation, one round of acoustic sensing (including SVM processing)

takes about 4 seconds. Most participants in our usability study are satisfied with the current

setting.

3.8 Performance Evaluation

We have conducted a series of experiments to evaluate the performance of EchoTag

using Galaxy S5 for two representative scenarios shown in Fig. 3.11. Certain experiments

66

6. Inside closet 10. Near bed 9. Desk 8. Railing 3. Laundry

1. Drawer 2. TV 3. Microwave 4. Kitchen 5. Shelves

(a) Lab/office (b) Home

Figure 3.11: Experiments scenarios. Red circles represent the target location to draw
(echo) tags.

are also repeated on Galaxy S4/Note3, and iPhone4/5s, but the results are omitted due

to space limitation. The first test environment is a lab/office and the second is a two-

floor home. The red circles in Fig. 3.11 represent the test locations to draw tags. Both

scenarios represent real-world settings since people usually work or live in either of these

two environments. In the lab/office environment, traces were collected while lab members

were chatting and passing through the test locations. During the experiment, an active user

kept on working (changing the laptop position and having lunch) on the same table. There

are two residents living in the home environment, and one of them is unaware of the purpose

of our experiments. The residents behave normally, cooking in the kitchen, watching TV,

and cleaning rooms. Thus, our evaluation results that include the interference due to human

activities should be representative of real-life usage of EchoTag.

In the lab/office environment, three tag systems shown in Fig. 3.12 are used to evaluate

the sensing resolution which is defined as the minimum necessary separation between two

tags. The first system is composed of three tags 10cm apart: A, B, and C, as shown in

Fig. 3.12(a). This setting is used to evaluate the basic resolution to support applications

of EchoTag (e.g., automatically setting phones to silent mode). The second and third sys-

tems include 11 tags which are 1cm (30�) apart from each other as shown in Fig. 3.12(b)

(Fig. 3.12(c)); this is used to evaluate the maximum sensing resolution of EchoTag. In the

67

(a) ABC tags (b) 1cm tags (c) 30� tags

Figure 3.12: Tag systems. The first tag system consists of disjoint (echo) tags while the
second and third tag systems are composed of overlapped tags 1cm or 30� apart.

home environment, 10 locations are selected as shown in Fig. 3.11(b). At each location,

we marked two tags, A and B, similar to the setting in Fig. 3.12(a).

In both scenarios, traces are collected at different sampling frequencies and time spans,

generating three datasets: 1) 30min, 2) 1day, and 3) 1week. In the 30min dataset, traces

are collected every 5 minutes for 30 minutes, which is used to evaluate the baseline per-

formance of EchoTag without considering the environment changes over a long term. The

1day dataset is composed of traces collected every 30 minutes during 10am – 10pm in a

day. The purpose of this dataset is to evaluate the performance changes of EchoTag in a

single day, which is important for certain applications, such as the silent-mode tag near

the bed where the users place their phones every night. The last 1week dataset is collected

over a week, which is used to prove the consistency of active acoustic signatures over a one-

week period. In the lab/office environment, the 1week dataset is sampled during 9:00am –

9:00pm every day while the 1week dataset in the home environment is tested at 11:00pm.

We believe these experiments can validate the effectiveness of EchoTag in real world.

Larger-scale experiments including more users and spanning longer periods are part of our

future plan after deploying EchoTag.

68

Predict locations

Ac
tu

al
 lo

ca
tio

ns

1A 1B 2A 2B 3A 3B 4A 4B 5A 5B 6A 6B 7A 7B 8A 8B 9A 9B 10A
10B

1A
1B
2A
2B
3A
3B
4A
4B
5A
5B
6A
6B
7A
7B
8A
8B
9A
9B

10A
10B

0

0.2

0.4

0.6

0.8

1

(a) Confusion matrix in home

0 0.5 1
0

0.5

1

Confidence

C
D

F
di

st
rib

ut
io

n

ABC
30degree
1cm
home

(b) Confidence distributions

Figure 3.13: Result of 30min dataset. Confidence is defined as the prediction probability
at the target location minus the largest prediction probability at the other locations.

3.8.1 Accuracy and Resolution

Sensing resolution in EchoTag is defined as the minimum necessary distance/degree

between tags, which is an important metric since it is related to the number of tags that

can exist in the same environment. On the other hand, the sensing accuracy at a loca-

tion is defined as the percentage of correct predictions at that location, whereas the overall

accuracy is defined as the average of accuracy at all locations. In the lab/office environ-

ment of 30min dataset, the average sensing accuracy under all settings is higher than 98%.

Orientation changes can be detected by EchoTag since the microphones/speakers are not

placed in the middle of the phone, and hence the relative position changes when the phone

is rotated. EchoTag can also distinguish 20 tags in a home environment with 95% accu-

racy. The resulting confusion matrix is shown in Fig. 3.13(a). This evaluation based on the

30min dataset validates that EchoTag can achieve a sensing resolution of 1cm and at least

30�. Without using any infrastructure, this sensing resolution is the finest among existing

methods to differentiate locations. Our measurements show that WiFi RSSI or background

acoustic noise can only distinguish the 20 tags at home with 30% accuracy.

69

3.8.2 Uniqueness and Confidence of Acoustic Signature

To measure the uniqueness of acoustic signature, we define a metric called confidence as

the prediction probability of the classifier trained at the target location minus the largest pre-

diction probability of classifiers at other locations. A high confidence means high feature

uniqueness among locations since SVM gets less confused among locations. A prediction

is wrong whenever the confidence is less than 0 because SVM will choose another location

with the highest prediction probability as the answer. Fig. 3.13(b) shows the confidence

distribution of 30min dataset in all environments. ABC tags get the highest confidence

since the tags are separated by more than 10cm and only 3 tags are considered. However,

even 20 tags are set at home or tags in office are separated by only 1cm (overlapped), acous-

tic signatures are still distinct enough to differentiate 90% of cases with confidence greater

than 0.5. This example demonstrates that the uniqueness of active acoustic signature is

good enough to support the function of EchoTag.

3.8.3 False Positives

The above-mentioned accuracy represents the true positive rate to differentiate loca-

tions. To prevent EchoTag from falsely classifying locations without tags as tagged ones,

two more traces are recorded on the same surface but 10cm away from each tag. These

traces are used to build an additional No Tag SVM classifier which determines if the sensed

traces belong to one of tagged locations or not. We set 0.5 as the threshold that any sensed

location is classified as No Tag when the prediction probability of this classifier is greater

than 0.5. In the 30min dataset of home environment, the probability to classify random lo-

cations without tags as tagged locations (i.e., false positive rate) is only 3%, and this setting

only causes a 1% false negative rate. We conducted another test by deploying the ABC tags

on three users’ office desks for three days. The users carry their phones as usual but are

asked not to place their phones inside the drawn tags. In this test, merely 22 acoustic sens-

ings are triggered per day and only 5% of them are falsely classified as being placed at tags

70

10 12 2 4 6 8 10
0

50

100

Time (pm)

Ac
cu

ra
cy

 (%
)

home
1cm
ABC

(a) 1day dataset

1 2 3 4 5 6 7
0

50

100

Day

Ac
cu

ra
cy

 (%
)

home
1cm
ABC

(b) 1week dataset

Figure 3.14: Accuracy variation over time/day. Prediction is based on 6 traces collected
during the first hour/day.

with online-updated classifiers. This rate can be reduced further by fusing other signatures

which is part of our future work. We also implemented a manual mode (without any false

trigger) in which users can press the home button to manually activate acoustic sensing.

This manual mode is a reasonable design choice since it is similar to the way Apple Siri or

Google Search is triggered.

3.8.4 Temporal Variation

The purpose of this evaluation is to test how active acoustic signatures change over

time. This is an important metric since EchoTag is designed to be able to remember the

location at least for a certain period of time. To evaluate this, the average accuracy among

tags of 1day and 1week datasets based on the first 6 traces collected in the first hour or day

is shown in Fig. 3.14. As shown in Fig. 3.14(a), the decay of active acoustic signatures

in one day is not significant. In the lab/office environment, the accuracy drops only by

5% in predicting the traces collected 12 hours later. Even one week later, the average

accuracy of EchoTag in the lab/office environment is still higher than 90%. However, as

shown in Fig. 3.14, the average accuracy of traces collected in the home environment drops

by 15% after 12 hours and the traces collected a week later achieve only 56% accuracy.

71

1 2 3 4 5 6 7
0

50

100

Day

Ac
cu

ra
cy

 (%
)

offline
online

(a) Online SVM

1 2 3 4 5 6 7
0

50

100

Day

Ac
cu

ra
cy

 (%
)

1
3
3(online)

(b) Multiple candidates

Figure 3.15: Performance of online SVM and providing multiple candidates in the
1week home dataset. Online SVM classifiers are updated using the traces collected in
previous days while the traces collected on the same day are excluded.

This phenomenon is caused by a series of environment changes at certain locations. For

example, the accuracy drops mainly at 4 locations: (1) drawer, (4) kitchen, (9) desk, and

(10) near the bed, which suffer environment changes due to human activities like cooking

in the kitchen or taking objects out of drawers. When the above-mentioned objects are

excluded from dataset, EchoTag can sense the remaining 12 tags at 6 locations with 82%

accuracy even a week later. This result suggests where to put tags is critical to EchoTag’s

performance. When we consider the tags in the kitchen as an example, if the tags are not

placed at the original location near the cooker and stove but on one of the shelves, the

acoustic signatures decay as slowly as at other locations. Providing guidelines for where to

put tags is part of our future work.

Sensing accuracy over a long term can be improved further in two ways. The first

is to use online SVM training. We simulated online SVM by retraining the offline SVM

classifiers with the traces collected before the test day (i.e., excluding the same day test

data). The cost of retraining classifiers can be further optimized by online SVM [117]. As

the results shown in Fig. 3.15(a), with online training, the average accuracy for the home

environment in one week can be increased to 91.5% during the last three days. This online

training is possible in real world because we assume users will provide feedback, such as

72

15"

15"

(a) Addition of objects

10 20 30 40 50
−1

−0.5

0

0.5

1

Object distance to C tag (cm)

C
on

fid
en

ce

Dustbin
Dictionary
Mug
Hand

(b) Prediction confidence

Figure 3.16: Test of environmental changes. EchoTag gets less confident when the size
of an added object is larger and its position is closer to the test locations.

selecting the right application/functions when a wrong prediction is made or suspending

wrongly-triggered applications. By monitoring this user reaction after each prediction,

online training data can be collected during the normal use of EchoTag. Moreover, in our

experiments, only 8.5% of error predictions need this user interaction.

Another way to improve the sensing accuracy over a long term is to provide more than

one predicted candidate for users. The candidates in EchoTag are provided based on the

prediction probability for each classifier. As shown in Fig. 3.15(b), when the first three

predicted candidates are provided, the accuracy during the last day based only on the first

day trace is increased to 77%. Moreover, providing 3 candidates with online SVM training

boosts the accuracy of EchoTag to 98% during the last day. Evaluating the overhead of

users’ interactions with online training feedback and multiple candidates is part of our

future work.

3.8.5 Environmental Disturbances

Similar to the signature decay due to significant environmental changes in the kitchen,

we investigate the performance of EchoTag when objects near a tagged location are dif-

ferent from those during the training. Fig. 3.16(a) shows 4 selected objects: 1) dustbin, 2)

73

dictionary, 3) mug, and 4) human hands. We add these objects sequentially near the ABC

tags and vary their distance to the C tag. The corresponding prediction confidence is used

to measure the change of EchoTag’s performance. As shown in Fig. 3.16(b), human hands

and small objects like a mug cause little disturbance to EchoTag even when those objects

are only 10cm away from the test locations. Medium-size objects like a thick dictionary

degrade EchoTag’s confidence to 0.38 when it is close to the test locations, but most pre-

dictions still remain correct. Placing large objects like a 15” high dustbin around the test

locations change the acoustic signatures significantly since it generates lots of strong acous-

tic reflections. Most predictions are wrong (i.e., confidence < 0) when the dustbin is placed

10cm away from the test locations. It is also the reason why the accuracy in the kitchen

degrades after the position of a large cooker is changed. However, this large environment

change is less common in real life. For example, users may change their mugs or hands

frequently but less likely to move large objects on their office desk.

When a large environmental change occurs, EchoTag needs to retrain its classifier to

account for this change. One interesting finding from our 1week trace is that the prediction

accuracy in the home environment increased back to 90% after three day classifier online

updates. This demonstrates that with enough training data, EchoTag is able to keep only

invariant features. In future we plan to derive a guideline for setting up tags and providing

online feedback when EchoTag finds more training necessary for certain locations. An-

other interesting finding is that the (dis) appearance of human causes only limited effect

on EchoTag because human body is prone to absorb sound signals rather than reflect them.

During experiments, a human body (the tester) continuously changed his relative position

to the test locations, but no significant performance degradation was observed in spite of

the large human body.

74

2 4 6 8 10
0

50

100

Number of training traces

Ac
cu

ra
cy

 (%
)

1cm(1week)
1cm(1day)
ABC(1week)
ABC(1day)

(a) Training traces

1 2 3 4
0

50

100

Number of delayed repetitions

Ac
cu

ra
cy

 (%
)

1cm(1week)
1cm(1day)
ABC(1week)
ABC(1day)

(b) Delayed repetitions

Figure 3.17: Impact of acoustic feature space. Accuracy is higher than 95% when 5
traces with 4 delayed repetitions are collected.

3.8.6 Acoustic Feature Space

Here we discuss the effect of the feature space selected for sensing locations. We first

examine accuracy with different training data sizes. The training data size is relevant to

the usability of EchoTag since it represents the time required for users to set tags and the

number of features necessary to remember a single location. As shown in Fig. 3.17(a), in

the lab/office scenario, 2–4 traces are able to distinguish rough locations and only 5 traces

can achieve 95% accuracy with 1cm resolution. Considering the tradeoff between training

overhead and sensing accuracy, the current version of EchoTag sets the size of training data

at a single location to 4. In our usability study, these 4 traces at each tag can be collected in

58 seconds on average. We also received a comment from one survey participant that the

training process and delay of EchoTag are acceptable since the entire procedure is similar

to that of setting up Apple TouchID. Based on our informal experiments with 5 participants

on iPhone5s, setting up Apple TouchID required 11–13 training traces with different finger

placements, taking about 1 minute. See Section 3.9 for details of the users’ other reactions

on this training set size.

Next, we study the benefit of our delayed repetitions for sensing locations. The sens-

ing accuracy based on 5 traces with different numbers of delayed repetitions is plotted in

75

2mm tags

2 tags

2mm tags

2 tags

(a) Testbed

−8 −4 0 4 8
0

50

100

Postion shifted(mm)/rotated(°)

Ac
cu

ra
cy

 (%
)

shift
rotation

(b) Accuracy of C tag

Figure 3.18: Tolerance test. Additional tags separated by 2(mm/�) are placed inside the
C tag. Test data at C are collected with errors ranging from -8 to 8(mm/�) for knowing the
tolerance of EchoTag. Dataset of ABC and 1cm tags are combined, so the accuracy shown
is the prediction among 14 locations.

Fig. 3.17(b). As shown in this figure, without help of delayed repetitions to enrich acous-

tic signatures, the accuracy for the 1cm dataset over a week is only 75% while it can be

boosted to 91% when 4 delayed repetitions are used. This way of enriching the feature

space is only available in active acoustic sensing since we have the full control of emitted/-

collected signals. We also find similar effectiveness of this delayed repetitions on phones

with stereo speakers like HTC M8, but these results are omitted due to space limitation.

The current version of EchoTag uses 4 delayed repetitions.

3.8.7 Tolerance Range

Since the phone might not be placed exactly at the same locations as it had been trained,

it is important to know the maximum tolerance range of EchoTag and if users can handle

the tolerance well. To evaluate the maximum tolerance of EchoTag, additional fine-grained

tags are drawn inside the C tag as shown in Fig. 3.18(a). These fine-grained tags are sep-

arated by 2(mm/�). Test data of these inside tags are collected with additional errors (i.e.,

between ±8mm/�), and a prediction is made by the first 4 traces of 30min dataset in the

lab/office environment. In the training phase, ABC and 1cm datasets are combined so the

76

25 50 75 100
0

50

100

Noise played volume (%)

Ac
cu

ra
cy

 (%
)

CNN
Music

(a) Accuracy at different noise

5 10 15 20
100

102

104

106

Frequency (kHz)

N
oi

se
 le

ve
l

0% volume
50% volume
100% volume

(b) Noise profile of CNN news

Figure 3.19: Impact of background noise. Predefined noises (i.e., music and CNN news)
are played by Macbook Air with different volumes. EchoTag is able to provide effective
prediction even when the noise is played at 75% of the full volume.

prediction is made for sensing 14 locations. The accuracy of the C tag when test data is

collected with additional errors is plotted in Fig. 3.18(b) where the maximum tolerance

range of EchoTag is about ±4mm and ±4�. The reason why accuracy with different de-

gree errors is not centered at 0� might be the measurement errors in collecting the training

data (i.e., the training data is also collected with a few degree errors). This result also

matches our resolution test, where EchoTag can provide 1cm resolution since features of

tags separated by 8mm vary significantly. With the help of drawn tags, this tolerance range

is good enough to allow users to put their phones back at the tags for triggering EchoTag.

Our usability study of 32 participants validates this hypothesis since most of them think it

is easy to place phones on the tags. We will discuss how to enhance the user experience

with this limitation of tolerance range in Section 3.10.

3.8.8 Noise Robustness

The last issue of EchoTag to address is its ability to sense locations in a noisy environ-

ment. Basically, the results discussed thus far were obtained in real-life scenarios where

traces were collected in the presence of noises from TV, people chatting, and air condition

fans. To further test the robustness against noises, we collected traces in a lab/office envi-

77

Test location
Figure 3.20: Usability study environments. The test location is selected near the a cafe
at a student center. Tags are drawn at memo pads since the table is black. Passers by and
students studying in this area are randomly selected to test EchoTag.

ronment when a laptop was placed 30cm away from tags on the same surface. This laptop

is set to either play a song (“I’m yours – Jason Marz”) or a clip of CNN news with different

volumes. The traces of ABC and the 1cm dataset are combined to make prediction for 14

locations. The results of this experiment are shown in Fig. 3.19. As shown in Fig. 3.19(a),

EchoTag can tolerate the music noise with 75% volume and can perform normally even

with noise from CNN news with 100% volume. In our measurements, the intensity of

noise from the music with 75% volume and CNN news with 100% volume is about 11dB

higher than the office background noise. Even though EchoTag is unable to work accu-

rately (i.e., only 71% among 14 locations) when the music was played with 100% volume,

this is not a typical operation scenario of EchoTag since it incurs 17dB higher noise.

EchoTag is robust to most real-world noises mainly because it relies on signatures ac-

tively generated by itself, rather than passively collected from background. That is, as the

noise profile of CNN news shown in Fig. 3.19(b), most noise from human speaking occurs

in frequencies less than 10kHz while EchoTag uses higher frequencies to sense locations.

This phenomenon is also consistent with the results shown in [116]. The current setting

of EchoTag is already resilient to the noise in our usual environment. Our usability study

done at a noisy location near a cafe also validates the robustness against noise. Incorpo-

rating other sources of signatures that are free from acoustic noise is part of our future

work.

78

3.9 Usability Study

In this section, we explore how real users of EchoTag perceive its performance. For

example, we would like to answer a question like “can users easily place phones on drawn

tags?” To evaluate the usability of EchoTag, 32 (9 female and 23 male) participants were

recruited at our university students’ activity center. The test location was the table near a

cafe as shown in Fig. 3.20. Participants are randomly selected from those passing by this

area. All participants didn’t know EchoTag and its developers, but all have experience in

using smart phones (11 Androids, 19 iPhones, and 2 others). Most participants are univer-

sity students of age 20–29 while 6 of them are not. We first introduced the functionality of

EchoTag to users and its three representative applications as shown in Section 3.1. Then,

three tags (i.e., turning on silent mode, setting a 45min timer, and playing music) were de-

ployed at the table. Since the table surface is black and is the university’s property, we drew

the tags on sheets of 5⇥6 paper which were then attached on the table. Our survey results

also validate that drawing tags on attached papers will not affect the accuracy of EchoTag.

After users were informed of the purpose of EchoTag, we asked them to put phones on the

tags and EchoTag is triggered automatically to make its prediction on attached applications.

The participants were asked to first put phones inside the tag for measuring prediction ac-

curacy, and then slightly move the phones away from the tags until a wrong prediction is

made for testing the tolerance range of EchoTag. After trying the functionality of EchoTag

with the tags we trained, the participants were asked to train their own tags. This process

helps users “sense” the amount of effort to set up and use EchoTag, indicating the average

user training time. The participants then filled out the survey forms. Each study lasted

15–20 min.

The main results of this usability study are summarized in Table 3.2. 31 of 32 par-

ticipants think the sensing accuracy of EchoTag is adequate for its intended applications.

During this study, three users experienced a bug in our app. In these cases, we restarted

the whole survey process and asked the participants to try EchoTag again. The average

79

Questions Disagree No opinion Agree
Sensing accuracy is useful 1 0 31
Sensing noise is acceptable 0 3 29
Sensing delay is acceptable 1 6 25
Placing phones inside (echo)tags is easy 0 3 29
EchoTag can help me remember turning
on silent mode when going to sleep

2 5 25

EchoTag can help me remember setting
the timer for taking washed clothes

5 3 24

EchoTag can save my time in activating
apps under specific scenarios

1 0 31

Table 3.2: Usability survey results of 32 participants.

accuracy including these three buggy traces were 87%, while the results excluding these

three cases were 92%. One thing to note is that even those three users experienced the low

sensing accuracy during the first trial, still think the overall detection accuracy of EchoTag

is acceptable and useful. Moreover, 25 of the participants think the prediction delay is

acceptable for the purpose of EchoTag. In another question to learn their expectation of

EchoTag, only 2 of users hope to have the sensing delay less than 1 second and 12 users

hope the sensing delay can be shortened to about 2 seconds.

Based on participants’ experience in placing phones on tags, 29 of them think it is

easy to do. Five participants put their phones too far away from the drawn tags during the

first trial, but they were able to place their phones on the tags after they were told of it.

Only one participant made a comment that he expected a larger tolerance range. Actually,

there is an inherent tradeoff between the tolerance range and the training overhead. For

example, a very long training sequence that moves phones at all possible locations near the

drawn tags can increase the tolerance range, but with a significant overhead in the training

phase. In the current version of EchoTag, 4 repetitions are used in the training phase to

collect signatures at a single location. Between two consecutive repetitions, the phones

need to be taken away from, and then placed back on tags for sensing valid signatures. On

average, users need 58 seconds to finish the whole training phase for a tag. 8 participants

expected less than 2 training repetitions at each location, while 17 of participants think the

80

4 repetitions setting is reasonable since it is only one-time training. Considering this trade-

off between accuracy, tolerance, and training overhead, the existing setting of EchoTag

satisfies most scenarios and users.

According to the survey related to potential scenarios based on EchoTag, 25 partici-

pants agree the silent mode tag can help them remember setting phones to stay quiet during

sleep, and 24 of them agree the auto-timer scenario can help them take clothes out of a

washing machine. These results indicate that the users see benefits from EchoTag in re-

membering things to do in specific situations since the functionality of EchoTag provides

natural connections between the locations and things-to-do. Moreover, 31 participants also

think the automation of triggered applications can save time in finding and launching de-

sired applications.

3.10 Discussion and Limitations

The purpose of EchoTag is to provide a novel way of accurately tagging locations. With

the realization of this functionality, we believe many advanced applications can be realized.

Most participants in our usability study agree with the scenarios we considered, and they

also provide other possible uses of EchoTag.

3.10.1 Potential Applications

Similar to those applications mentioned so far, participants also suggest use of an auto-

set timer during cooking or auto-set silent mode in an office environment. These applica-

tions can be classified into two categories based on the resulting benefits: 1) helping users

remember things, and 2) saving time for users in finding and launching desired applica-

tions. For example, applications like auto-set silent mode do not save a significant amount

of time since pressing a phone’s power button can also set up silent mode manually. How-

ever, this function turns out to receive most support from the participants because it is easy

to forget setting silent mode before going to bed everyday. Instead of doing it manually,

81

0 10 20
0

50

100

Postion shifted(mm)

Ac
cu

ra
cy

 (%
)

1~4kHz
1~6kHz
1~8kHz
1~10kHz

(a) Tolerance in lower frequency

1 2 3 4 5 6
0

50

100

Number of NoTag Traces

C
la

ss
ify

in
g

R
es

ul
ts

 (%
)

C No A,B

(b) NoTag SVM classifiers

Figure 3.21: Extension of tolerance range. The tolerance range can be extended by
sensing tags with lower-frequency signals. Building ‘NoTag’ classifiers can also prevent
EchoTag from incorrect classification of misplacements.

a natural combination of a location (i.e., a tag near bed) and target applications/functions

(i.e., silent mode) helps users remember them more easily. Other suggested applications

like automatically turning off lights or activating a special app for monitoring the sleep

behavior are also in this category. On the other hand, the applications like automatically

playing favorite songs (movies) on speakers (TV) help users find the expected application-

s/functions with less time due to the hint of tagged locations. For example, we received

a feedback saying that EchoTag can be used to set up Google Map and activate the car

mode when a tag is placed inside the car (e.g., an iPhone stand). Actually, this task can be

easily remembered whenever the user gets into his car, but it is time-consuming to find and

enable these applications. In this scenario, the natural combination of locations and appli-

cations can help users filter out unnecessary information and save their time in triggering

the desired applications.

3.10.2 Limitation of Tolerance Range

As shown in Section 3.8, the merit of EchoTag’s fine resolution comes with the limi-

tation that the tolerance range of current setting is about 0.4cm. Even though most partic-

ipants in our user study were able to place phones at the tagged locations accurately after

82

they were instructed on how to use EchoTag, this fine resolution and its limited tolerance

range may not be needed for certain applications and cause unintended prediction errors

when the phone is not placed correctly. To meet such applications needs, one can take the

following two approaches.

First, we can enlarge the tolerance range of EchoTag (while decreasing its sensing

resolution). Based on the mathematical model in Section 3.4.5, we can lower the sensing

frequency to extend the tolerance range. For example, setting the highest sensing frequency

to 6kHz can increase the tolerance range from 0.4cm to about 1.4cm. This increase of tol-

erance range is plotted in Fig. 3.21(a), showing that lower-frequency signals are better in

identifying tags with large placement errors. However, lowering sensing frequency will

increase the audibility of sensing signal and decrease the feature space. For example, sens-

ing with 1⇠4kHz lowers overall accuracy because the collected signature is not enough

to be distinguished from others. Studying the tradeoff between tolerance range and other

concerns is part of our future work.

Second, instead of trying hard to classify misplacements as trained tags, EchoTag can

simply opt to report “There is no tag” once the location is out of the tag’s tolerance range.

We choose to use the same ‘NoTag SVM’ classifier as introduced in Section 3.8.3, which is

built from traces in the same surface but at least 0.4cm away from the tags. That is, EchoTag

identified locations as “There is no tag” if the trace gets the prediction probability of NoTag

classifier which is greater than 0.3 and also larger than the prediction probability of other

classifiers. With this method, if the user places his phone outside of the operation range of

EchoTag, the message of “There is no tag” (rather than identifying a wrong tag and then

triggering a wrong function) will tell the user he needs to place the phone more precisely

to activate the tagged function. The result of the same experiment of identifying C tag with

traces collected 0.4cm away from the trained location is shown in Fig. 3.21(b). Without the

help of ‘NoTag’ classifier, 50% of those misplaced traces around the C tag were classified

as wrong tags, i.e., as A and B. However, with enough NoTag training traces, EchoTag can

83

identify the misplacements with a high probability, thus not triggering functions attached

to wrong tags. Note that NoTag SVM with 6 training traces in this experiment only causes

1% false negatives when the trace is collected at the right location (within the tolerance

range), which also matches the result reported in Section 3.8.3.

3.11 Conclusion

We have proposed and implemented EchoTag, a novel indoor location tagging based

only on built-in sensors available in commodity phones. EchoTag is designed to be able

to remember indoor locations with 1cm resolution, enabling the realization of many new

applications. The main idea of EchoTag is to actively sense the environments via acoustic

signatures. With the help of active sensing, a fine-grained control of collected signatures

can be achieved for either enriching the feature space or removing environmental interfer-

ences. Our evaluation in different environments validates the capability of EchoTag to meet

the users’ need. In future, we would like collect larger datasets after deploying EchoTag.

84

CHAPTER IV

ForcePhone

4.1 Introduction

As smartphones become an essential part of our daily activities, human–phone interac-

tions have become a norm. To enhance the input capability on the severely limited space

of a phone’s touch screen, researchers and practitioners have been seeking various ways to

expand the input dimensions. For example, augmenting a force-sensitive, deformable, or

squeezable input is shown to enrich the input vocabulary significantly, especially for the

one-hand operations [55, 90, 106]. However, most of those extended input interfaces have

not yet been fully developed nor deployed in commodity phones for two reasons. First,

they usually require additional hardware, such as capacitive or contact piezoelectric sen-

sors [56, 98, 99], which are usually unavailable in commodity phones, and the requirement

of additional cost and space make them less attractive to phone users and manufactur-

ers [32]. Second, systems based only on built-in sensors usually impose unnatural/incon-

venient usage restrictions because it is challenging to recognize those interactions without

additional sensors. For example, users are required to touch the microphone reception

hole or block the camera flash light source for sensing a touch interaction [68, 87], both

of which limit the usability of this additional sensing. Other systems require continuous

vibration of the phone with a vibration motor, causing significant annoyance to users [67].

To the best of our knowledge, the only few commodity phones supporting a force-sensitive

85

Play inaudible sound

Apply force

Structure-borne
 propagation

Less
structure-borne

propagation

Receive the played sound

(a) No force

Play inaudible sound

Apply force

Structure-borne
 propagation

Less
structure-borne

propagation

Receive the played sound

(b) Force applied

Figure 4.1: Structure-borne propagation and the applied force. When no force is ap-
plied to the phone, the frame and internal components of the phone can vibrate freely, and
hence the played inaudible sound can easily propagate through the phone’s body.

touch screen are the iPhone 6s and iPhone7, enabled by their proprietary sensors [5]. Un-

like these systems, we propose a new, inexpensive solution, called ForcePhone, which

provides a force-sensitive input interface to commodity phones without any addition/mod-

ification of hardware. Moreover, ForcePhone provides this force-sensing capability to the

touch screen as well as the phone’s body, called a squeezable interface.

ForcePhone estimates the user-applied force by utilizing the structure-borne sound

propagation, i.e., the sound transmitted through subtle vibrations of the device body. In

most designs, such as headphones or pipe-work, this type of propagation is usually consid-

ered as a mechanical noise, but ForcePhone uses it in a novel way to estimate the force

applied to commodity phones. As shown in Fig. 4.1, when the phone is left free to vibrate

(e.g., the user is not touching/squeezing the phone), the sound sent from the phone’s speak-

ers can easily travel through its body to its microphone. However, when force is applied to

the phone, it restricts the phone body’s vibration with the sound, thus degrading the sound

traveling through this structure-borne pathway. ForcePhone estimates the amount of force

applied to the phone by monitoring the degree of this degradation.

As mentioned earlier, it is challenging to provide extended input interfaces with only

86

Force Force

(a) Hard-pressed option

Force Force

(b) Squeezable back button

Figure 4.2: Demo apps of ForcePhone. Users can reach an option page when a button is
pressed hard and can also surf the previous webpage by squeezing the phone.

limited built-in phone sensors. For example, in ForcePhone, the recorded audio includes

not only the sound signal transmitted through the phone’s body but also that through air,

and other reflections. To achieve reliable force estimation, ForcePhone exploits the feature

of active acoustic sensing to get a proper reference point for fetching the signal traveling

through the phone’s body. ForcePhone also utilizes the information of other sensing ma-

terials to enhance sensing accuracy and reduce the false detection rate. For example, the

location and the start time of a touch are inferred from the touch screen, and the phone’s

movement is inferred from accelerometer readings, which are then used to filter out un-

expected audio signal changes caused by environment and human noises. By integrating

readings of these sensors, ForcePhone can achieve high force-sensing accuracy while lim-

iting the false positive rate.

To date, ForcePhone has been implemented on Android and iOS phones to provide a

force-sensitive and squeezable interface. We have realized several apps based on ForcePhone.

Fig. 4.2 presents two examples of those apps which have been shown useful: (1) the hard-

pressed option, which is similar to the 3D Touch on iPhone 6s where varying options are

given to users when applying different amounts of force to buttons, and (2) the squeez-

able back of a phone, which allows users to surf the previous webpage by just squeez-

ing the phone. Note ForcePhone is not limited to these two use-cases, and can extend

87

human–mobile interactions in many ways. For example, it has been shown useful to

zoom in/out maps by squeezing phones or type upper-case letters by applying force to

keyboards [55, 90, 106]. Other potential apps of ForcePhone are discussed in Section 4.7.

In our experiments, the estimated force is shown greater than 0.9 correlation to the real

applied force with 54g errors in stationary environments. The participants in our controlled

experiments were able to use ForcePhone for applying force at 2 different levels with a

higher than 97% accuracy and squeezing the phone body correctly with a greater than 90%

accuracy. After trying our demo apps of ForcePhone most participants think our current

design comparable to state-of-the-art proprietary sensors in accomplishing simple tasks,

such as hard-pressing of a button. A demo video of ForcePhone can be found from [14].

This paper makes the following four main contributions:

• Design of force-sensitive and squeezable interfaces via structure-borne sound propa-

gation;

• Implementation of ForcePhone on both iOS and Android phones;

• Demonstration and evaluation of two popular apps; and

• Achieving a higher than 90% accuracy of using the demo apps in most scenarios.

The rest of this paper is organized as follows. Section 4.2 discusses the related work

on expressive input interfaces. Section 4.3 describes the principle of structure-borne prop-

agation, and Section 4.4 details the design of ForcePhone based on this principle. The

implementation and evaluation of ForcePhone are presented in Sections 4.5 and 4.6, re-

spectively. Limitations and potential use-cases are discussed in Section 4.7, and the paper

concludes with Section 4.8.

4.2 Related Work

Expanding the dimension of touch inputs has been a major research topic for many

years owing to the limited-size touch screens of mobile phones. Users are shown to be able

to easily and effectively control force-sensitive, deformable, or squeezable input interfaces

88

System Interaction Methods Hardware Working Areas

Apple 3D Touch [5] Force Force sensors Additional Touch screen
Camera and Flash [87] Force Camera flash Existing Camera lens
Touch&Active [97, 98] Force Sound Additional Sensors attached objects

PseudoButton [68] Force Sound Existing Microphone reception hole
Expressive Touch [99] Tapping material Sound Existing Touch screen

ForceTap [64] Instantaneous force Accelerometer Existing Phone screen+body
VibPress [67] Force+Squeeze Vibration motor Existing Vibrated phone body

Acoustruments [79] Force+Squeeze Sound Additional Hardware attached objects
ForcePhone Force+Squeeze Sound Existing Phone screen+body

Table 4.1: Existing touch interfaces to enrich input dimensions.

as they are akin to many natural interfaces, such as applying force to a water knob [55, 90,

106]. A force-sensitive interface can be implemented by adding capacity sensors [106],

adding contact piezoelectric sensors [98], checking the flash light source blocked by a

human hand [87], monitoring the reduction of sound volume by covering the microphone

reception hole [68], and estimating the damped motor vibration with accelerometers [67].

These systems either require additional sensors or impose stringent usage restrictions, such

as blocking the flash light source by hand or continuously vibrating the phone.

There have also been systems that extend the user’s input by recognizing the materials

of tapping or the instantaneous tapping force. For example, TapSense [62] classifies the

touch sound to recognize if the user touches the screen by a finger tip or a fist. ForceTap [64]

utilizes the accelerometer to learn how hard the user taps or shakes the device. It is also

possible to extend the touch surface by other accessible objects. SurfaceLink [56] allows

users to perform gestures on a table where the phone is placed, while SkinInput [63] uses

the human body as an extension of input interface. Here we focus on how to provide a force-

sensitive and squeezable input interface by utilizing the structure-borne sound propagation.

Table 4.1 shows a comparative summary of ForcePhone and other related work. Note that

instantaneous tapping force is different from the force sensing introduced in this paper; the

former only represents the instantaneous force sensed at the time of the user contacting the

touch screen, while the latter continuously monitors the force applied to the phone after the

89

user touches the phone. Our system is parallel to these instantaneous-tapping-force systems

and can be integrated with others to enrich the user experience further.

Sound has been a widely-used sensing method as it only requires microphones and

speakers on commodity phones. For example, knowing the surrounding sounds and reflec-

tions can provide accurate indoor localization [88, 118] or tracking human living/sleeping

behaviors [93, 96]. ForcePhone is also sound-based but designed for providing force-

sensitive and squeezable interactions. The closest to ForcePhone are Touch & Active [97]

and PseudoButton [68]. Touch & Active attaches external contact piezoelectric micro-

phones and speakers to objects to learn how the user is touching the object, which is

achieved by fingerprinting the object’s resonants. A follow-on study [98] showed that the

same fingerprinting technique can also be used to infer the force applied to objects, which

aimed mainly to ease product prototyping. Using the built-in speakers and microphones

on commodity phones was mentioned as a potential interface for Touch & Active, but no

further details were provided. Moreover, ForcePhone directly models and interprets the

signal changes caused by the applied force, rather than classifying the resonants by using

machine learning. The latter usually requires a significantly more effort for periodic train-

ing and retraining. On the other hand, PseudoButton utilizes similar sound degradation to

estimate the applied force. However, it focuses on the sound degradation of airborne prop-

agation, so it can only estimate the force changes at the microphone reception hole, e.g.,

the recorded volume decreases when the user completely blocks the microphone reception

hole. In contrast, ForcePhone utilizes the structure-borne sound propagation, which can

provide this force-sensitive touch around the entire body of each phone.

4.3 Structure-Borne Propagation

Sound is a mechanical wave broadcasted by compressions and rarefactions. The most

common material for sound to propagate is the air, which is known as airborne propaga-

tion. Besides the air path, as shown in Fig. 4.3, when the sound is generated and received by

90

Structure-borne propagation

Airborne propagation

Enviroment reflections

(a) Sent Sound Propagation (b) Received Sround Response

Time (ms)

S
ou

nd
 C

or
re

la
tio

n

Structure/air-borne propagation
Airborne propagation

Enviroment reflections

0 15 5 10

12

0

2

4

6

8

10

x104

Figure 4.3: Structure-borne propagation in a phone. The sound received at a phone
is a combination of structure- and air-borne propagations as well as the environments’
reflections (echo). ForcePhone uses 20 samples before the strongest correlation peak as
an indicator for a structure-borne propagation.

the same device, its body becomes another pathway for the sound to travel, which is called

structure-borne propagation. Since the structure-borne propagation is usually unrelated

to the intended application, it is generally considered as a noise [49, 84, 134]. However,

ForcePhone utilizes it in a novel way to estimate the force applied to the phone by moni-

toring the degradation of structure-borne propagated sound.

As shown in Fig. 4.4, we model a vibrating phone as a forced, damped mass–spring

system, where the phone vibrates up and down with the force Fv, which is caused by the

sound played at the phone speaker. When there is no external force applied, the phone

can vibrate freely with amplitude A0, which is captured by the system’s effective spring

constant, K0, and also the damping coefficient. Moreover, since the phone is considered as

a rigid body, the equilibrium is located at A0 above the table. Based on Hooke’s law [66],

when an external force Fh is applied to the screen, the system equilibrium moves downward

by Fh/K0. However, since the phone (a rigid body) is impossible to move downward “into”

the table, the applied force also makes the system spring constant increase to K so as to

meet this equilibrium change and rigid body constraint. In such a case, if the vibration

energy is constant, the potential energy for both systems will be identical, thus leading to:

91

Figure 4.4: Phone vibration model. Phone vibration is modeled as a forced and damped
mass–spring system where the phone vibrates with amplitude A0 due to the force Fv from
the phone speaker. The vibration amplitude is decreased to A and the effective system
spring coefficient is increased to K due to the applied force Fh.

1
2

K0A2
0 =

1
2

KA2 =
Fh

A0�A
A2 (4.1)

which defines the relation between the applied force and the reduced vibration amplitude.

Note that this basic model is designed only for an illustrative purpose as it doesn’t consider

the horizontal vibration and the increased friction caused by the applied force. Moreover,

since the hand and the table also slightly vibrate with the phone, the system’s damping

coefficient and effective mass will change accordingly, which are not accounted for, ei-

ther. However, according to our vibration measurements, this simplified model suffices to

describe the principle of ForcePhone’s operation.

We used the Polytec OFV-303 laser vibrometer [26] to measure the nm-level vibration

of a phone, capturing the change of structure-borne propagation caused by touching the

phone with hand. Compared to capturing the structure-borne propagation via microphones

(which ForcePhone is using as described in the next section), this vibration measurement

helps neglect the noises caused by the air-propagated sound and the imperfect microphone

hardware. Fig. 4.5 shows our experimental setting where the phone is placed on a metal

surface under the laser vibrometer. The laser’s focus has been calibrated before the test

to ensure that the laser beam will be reflected properly by the phone surface. The latest

92

Figure 4.5: Vibration measurement setting. Vibration is measured by Polytec OFV-303
laser vibrometer when force is applied.

Apple iPhone 6s is used for these measurements owing to its capability of estimating the

applied force. Thumb is used to apply force at the middle of the phone and the iPhone 3D

Touch reading (ranging from 0 to 1) is used as a reference of the applied force. From our

preliminary test, we found that the Apple 3D Touch sensors can only read the applied force

up to about 380g. Hence, we also repeat the same measurements with the Interlink force

sensor [16] which can measure force up to 10kg. Its current change caused by the applied

force is recorded by the Monsoon power monitor [23].

Fig. 4.6 shows the results of phone vibration while applying different amounts of force.

As shown in Fig. 4.6(a), when the Apple 3D Touch reaches its maximum sensitivity, the

amplitude of phone vibration decreases about 5%. If more force is applied further (marked

as > 1), near 50% of the vibration amplitude is damped by hand. Fig. 4.6(b) shows the

results of measuring the force with external force sensors. The vibration amplitude also

decreases about 5% when a 380g force is applied to the phone. Our system model is shown

to be able to capture the main trend of vibration amplitude when the initial system spring

constant K0 = 2.7(kg/nm) is assumed. The most important property observed in this exper-

iment is the high correlation between the applied force and the decreased vibration ampli-

93

0 0.2 0.4 0.6 0.8 1.0 >1
Force (Apple force unit)

4

5

6

7

8

Vi
br

at
io

n
am

pl
itu

de
 (n

m
)

(a) By Apple Sensors

0 1 2 3 4
Force (kg)

75

80

85

90

95

100

Vi
br

at
io

n
am

pl
itu

de
 (%

)

iPhone
Model
iPhone (bottom pressed)

(b) By External Sensors

Figure 4.6: Phone vibration damped by force. The correlation between the damped
vibration and the applied force enables ForcePhone’s force-sensitive and squeezable inter-
faces.

tude. Based on this property, ForcePhone can provide useful force-sensitive applications

as introduced in the following sections.

As mentioned earlier, our model is not perfect. For example, as shown in Fig. 4.6(b),

when the force is applied to the bottom of the phone, it incurs less vibration change since the

measured location (i.e., the top of the phone) has less restriction when the phone’s bottom is

pressed. A similar phenomenon also occurs when different speakers are used to play sound.

Thus, it is necessary for ForcePhone to make one-time calibration for unifying different

estimations when force is applied at different locations on the screen. The calibration needs

to be tuned to the phone models as they have varying vibration patterns depending on the

phone material. For example, the vibration of Galaxy Note 4 is found to be 50% larger

than the vibration of iPhone 6s, and more sensitive to the applied force since its plastic

body is easier to compress. We also found, for some phone models, such as iPhone 6s, this

vibration decays too fast when sound is played by the bottom speaker and received by the

top microphone, making the force estimation less accurate. In such a case, we used the top

speaker to get an adequate signal to noise ratio (SNR) of collected sound even though the

collected sound will include a part of airborne propagation components.

94

18k~22kHz Sound Expressive Touch

Audio Signal

Touch Screen & Accelrometer data

Action Feedback

Action
Detector

Force
Estimator

Action
Analyzer

Figure 4.7: System overview. Force applied to the phone damps the inaudible sound sent
from the phone’s speaker to its microphone. Accelerometer and gyroscope readings are
used to avoid other audio signal noises caused by movements.

4.4 System Design

As shown in Fig. 4.7, ForcePhone actively plays an inaudible sound with the phone

speaker, and then picks up this sound with the phone microphone. The touch screen input

(such as the location or the start time of a touch) and the data from the other motion sensors

are also recorded. These sensor data are then used to improve the force estimation and

reduce the number of false detections. When force is applied to the touch screen or the other

parts of the phone body, the action analyzer triggers the pre-designed feedback/behavior

based on the monitored (inaudible) sounds and user motions.

4.4.1 Sound Selection

The design of sound is critical to the system performance. While there are many other

possible options, the current design of ForcePhone uses a 1200-sample linear chirp from

18kHz to 24kHz. A hamming window is multiplied to the first and last of 300 samples

to eliminate the audible noise caused by spectral leakage [61]. The main frequency range

of sound signals used to sense is about 20kHz–22kHz while the remaining signals close

to 18kHz and 24kHz are played with minimal volume which are “stuffed” only to avoid

95

signal loss due to the windowing. ForcePhone samples this chirp at 48kHz and replays it

every 50ms. This sound is designed to achieve (i) minimal user annoyance, (ii) high SNR,

and (iii) adequate force sensing delay.

According to the field study in [102], humans are shown to have a limited ability to hear

sound above 20kHz. Since most modern smartphones only support the sampling rate up to

48kHz, the highest sound frequency to use is 24kHz. This setting is likely to be expanded

in the near future; for example, Android 6.0 has announced a plan to support a higher

sample rate. Our experiments have shown that playing a high frequency chirp directly

is still audible to humans because an abrupt increase/decrease of energy in time domain

incurs frequency leakages. To avoid this problem, ForcePhone uses a similar windowing

process as in [81] to reduce the noise burst at the beginning and end of signals. This

windowing process adds an envelope to the sent signal that controls the signal amplitude

to 0 in the beginning and then gradually restores the signal amplitude to the normal range

(the same principle is also applied to the end of the signal). This design choice will cause

SNR degradation when we estimate the audio correlation of received/sent signals, but it is

practically important to avoid any audible sound. Note that the chirp starts at 18kHz but

is still inaudible because the beginning of the chirp is played only at the minimal volume

(windowing). None of the participants in our user study noticed/heard the sound used in

ForcePhone.

Ideally, less stop time between chirps will provide a smaller sensing delay, but the chirps

in ForcePhone are designed to be played every 50ms. This parameter setting is chosen to

prevent the inclusion of audio signals reflected by environments as an unexpected/unwanted

noise. For example, as shown in Fig. 4.3(b), after the sound transmitted via airborne prop-

agation (i.e., the highest correlation peak) is received, there are multiple following local

peaks which indicate the reception of sound reflected by the environment. From our ex-

periments, the received reflections are found to degrade 20dB after 25ms, which is small

enough to let ForcePhone play and receive the next round of chirp correctly with only

96

x104

1

0 400 100 200 300 500

Sample index

M
at

ch
ed

 fi
lte

r r
es

ul
t

2

3

4

5
U

se
d

S
ou

nd

S
in

gl
e

C
hi

rp

Samples
0 600 1200

Pilots Repeated Chirps

-1

1

-1

1 18kHz 24kHz

Figure 4.8: Example of transmitted inaudible sound. The pilots are used to synchronize
the phone’s microphone and speaker. The subsequent chirps stop for 25ms before playing
the next chirp to avoid unexpected noises from environmental reflections. (This figure is
rescaled for easy visualization)

minimal noise due to environmental reflections. Thus, it is necessary for ForcePhone to

have a 25ms (i.e., 1200-sample) stop time after playing each chirp.

ForcePhone uses the signal correlation (also known as the matched filter) to estimate

the reception of the played sound. The SNR of this correlation in the chirp is proportional

to the signal length and sweeping frequency [112]. We selected the sweeping frequency

as above in order to not annoy users and cope with the hardware limitation while setting

the signal length to 25ms. Even though a longer chirp can achieve a higher SNR, it also

increases the sensing delay because ForcePhone needs to wait for the completion of the

sound being played. To strike a balance between SNR and the sensing delay, ForcePhone

sets the chirp length to 25ms, which makes the total delay in sensing each chirp equal to

50ms (i.e., 20 force estimations can be made every second). This setting is found to provide

enough SNR for estimation of the applied force and an adequate sensing delay which meets

most users’ needs.

Besides the design of sound signal, there is another parameter that affects the received

SNR: the phone’s speaker volume. In the current setting, the audio volume is set to 50%

of the maximum to avoid some audible noise due to the imperfect speaker hardware and

deal with the coexistence of multiple phones that run ForcePhone. An example of the

97

sent sound is shown in Fig. 4.8. One thing to note is that there are 10 additional chirps

sweeping from 24kHz to 10kHz played before the above-mentioned chirps, which are used

as the pilot signal for synchronizing the timing of the phone’s microphones and speakers. If

the synchronization fails, ForcePhone will stop the sensing process and replay the pilot to

achieve correct time synchronization. Detailed performance measurements are presented

and discussed in Section 4.6.

4.4.2 Estimation of Applied Force

ForcePhone utilizes the structure-borne sound propagation to estimate the applied

force. As mentioned in Section 4.3, when force is applied to the phone body, the hand

in contact with the phone body damps/degrades the structure-borne sound propagation.

Besides the structure-borne propagation, there are other factors that affect the received

sound strength. For example, the airborne propagation might be blocked by hand, and the

overall sound signal strength may be enhanced by reflections from the environment or the

internal resonant. In ForcePhone, these noises are identified and removed by timestamp-

ing the received audio signal. For example, the reflection from an object 10cm away will

be received 28 samples later than the airborne propagation since it travels a 10cm longer

distance. Moreover, sound usually travels 100x faster in a solid phone [74]. Thus, the

structure-borne propagation will be received 21 samples ahead of the airborne propaga-

tion when the microphone and the speaker are 15cm apart. Based on these observations,

ForcePhone uses the signal which is 20 samples ahead of the airborne propagation as the

indicator of the structure-borne propagation, thus removing the most undesirable noise.

Note that the reference of airborne propagation is assumed to be the strongest audio cor-

relation because the sound energy decays faster through the solid phone body and absorbed

more on the reflection objects than air. Ideally, the temporal -3dB width of audio correlation

are 7 samples for our chirp selection, so it would be possible to find a clear peak ahead of the

airborne propagation, indicating the reception of structure-borne propagation. However, as

98

x104

1

0 400 100 200 300 500

Sample index

M
at

ch
ed

 fi
lte

r r
es

ul
t

2

3

4

5

3D
 T

ou
ch

M

ot
io

n

0

1

0

0.5

Light touch Hard touch Gradually applying force

s(
t)

Time (sec)
0 5 10

0

2

0

2

x105

Accelerometer
Gyroscope

r(
t)

+8
r(

t) Estimated force
3D Touch maximum

Figure 4.9: Responses of different amounts of applied force. Motion sensors only cap-
ture the initial response of a touch, but the sound response can monitor the subsequent
applied force.

shown in Fig. 4.3(b), there is no such clear peak found before airborne propagation, and the

temporal -3dB width of audio correlation is about 40 samples in this measurement. This

phenomenon is caused by the adoption of windowing, which suppresses the frequency-

domain signal leakage but incurs the time-domain signal leakage. This 20-sample-ahead

sampling heuristic will thus include both air- and structure-borne propagations. To get a

reliable estimation of the applied force, ForcePhone utilizes the sound strength when the

touch begins as a reference to estimate the subsequent change caused by the force applied

later. In the rest of this paper, we will denote the sound correction at time t as signal s(t)

and the signal at the beginning of a touch as sstart . The subsequent force at time t is es-

timated based on a metric called the signal changing ratio, r(t) = |(s(t)� sstart)/sstart |.

The applied force f (t) at time t is then determined by a linear regression model with r(t).

Fig. 4.9 shows a real-world example of applying force to an iPhone 6s placed on a wooden

table. We simply visualize the estimated force as
p

r(t)+ 8r(t); the intuition behind this

99

(a) Calibration UI

iPhone 6s Nexus 6p
0.25

0.02

0.45

0.05

(b) Signal change r(t) of 500g force

Sound
played at

Sound
played at

Figure 4.10: Touch calibration. The extent of signal changes caused by the applied force
varies with the touch location. Thus, a one-time touch calibration is made at the 13 marked
locations to compensate the estimated force at different locations.

setting will be discussed later. In this measurement, there are 3 different types of touch,

each with a different applied force: (1) light touch, (2) hard touch, and (3) touch with a

gradually increasing force. The ground truth of the applied force can be read from the

Apple 3D Touch sensors [5]. As shown in the figure, motion sensors can only detect the

slight movement at the start/end of a touch but are unable to determine the applied force.

Our heuristic based on r(t) captures most of the force characteristics even when the applied

force exceeds the maximum sensing range of Apple 3D Touch.

Note the calibration between f (t) and r(t) varies with the location of force applied on

the phone as described in Section 4.3. Thus, a preparatory experiment is needed for each

phone model before ForcePhone is activated. However, this calibration is just a one-time

requirement, which is different from other sound-fingerprinting systems that need laborious

training each time before using the application.

Our current implementation of ForcePhone is calibrated by using external force sen-

sors. The calibration is done by applying different amounts of force (up to 1.5kg) at 13

selected locations as shown in Fig 4.10(a). The remaining parts of touch screen are cali-

100

x104

1

0 400 100 200 300 500

Sample index

M
at

ch
ed

 fi
lte

r r
es

ul
t

2

3

4

5

s(
t)

A
cc

In pocket Taken to hand Squeezed x2

0

2

0

2

Used when walk
x104

Time (sec)
0 6 12

0

8
Accelerometer
Gyroscope

M
ot

io
n

Figure 4.11: Response of movement and squeeze. Sound correlation changes when the
environment changes, such as moving the phone from the pocket to hands, but it becomes
stable quickly when people hold phones in their hands.

brated by interpolating the estimated force at those 13 locations. Fig. 4.10(b) shows exam-

ples of average signal change ratio, r(t), when a 500g force is applied to the 13 calibrated

locations and the estimated r(t) over the remaining parts of the phone. As shown in this

figure, r(t) varies with location due to different distances from/to the speaker/microphone

and also with the structure of the phone. In general, touching near the speaker used to play

sounds generates more pronounced signal changes while touching locations far away from

the speaker causes less pronounced changes. Note that our current calibration is done when

the phone is placed on a static surface, thus ignoring the airborne signal changes due to the

movement of the phone during the touch. However, as we will discuss later, the added

estimation noise due to the phone movement can be tolerated with proper app design since

users are also unaware of the actual amount of force being applied to the phone unless

the response from the phone is sensed. Most participants of our usability study felt com-

fortable with the current setting. Improving this calibration process with more advanced

sensors and algorithms is part of our future work.

4.4.3 Squeeze Detection

It is challenging to detect the squeeze of phone body. Fig. 4.11 shows an example of

the observed signal change when a phone is taken out of the pocket with hand, used while

101

0 10 20 30
Sample index

0

0.5

1

1.5

2

So
un

d
Co

rre
la

tio
n

×105

Over squeeze

Squeeze preparing

Under release

(a) Squeeze response

0 10 20 30
Sample index

0

0.2

0.4

0.6

0.8

1

1.2

Si
gn

al
 c

ha
ng

e
ra

tio

Original
Corrected
Thr high

Thr low
Peak
Valley

(b) Squeeze detection

Figure 4.12: Squeeze detection example. Received signal is first normalized by the start
and the end of signal amplitudes. Peak is identified when the corrected signal passing the
high threshold and the signal above the low threshold is considered as part of the peak.

walking, and then squeezed twice. As shown in this figure, even though the signal response

of a squeeze is clearly observable, it is also possible to include lots of noise due to the

phone’s movements. To avoid this noise from large phone movements, we have built a

motion detector based on both accelerometer and gyroscope readings, which turns off our

squeeze detection when there is a large phone movement and the signal is noisy. We thus

set a threshold to turn off the detection during large phone movements (such as taking the

phone out of pocket and transferring it to a hand) but keep the squeeze function on during

slow/small phone movements, such as walking and using the phone in hand.

Even though the movement noise is removed by the motion detector, determining if

the user squeezes the phone is still harder than estimating the force applied to the touch

screen. Due to the lack of touch screen input, we don’t know when the squeeze starts.

Moreover, the location of squeeze is inaccessible, thus making it difficult to perform a

proper calibration. To solve these issues, our squeezable back function is made to respond

only to a predefined squeeze behavior, such as double squeezes applied to the phone’s left

and right body frame as shown in Fig. 4.2, and the entire squeeze process is assumed to

complete in 1.5 seconds.

102

Fig. 4.12(a) shows an example of this predefined squeeze response, where the ap-

plied squeezes cause two significant signal drops at time 10 and 20. Besides the signal

response to the squeeze operation, there are three characteristics of human squeezing be-

havior, which are critical to our design of squeeze detection. First, the the applied force

might decrease slightly before a squeeze, probably because the users need to relax their

hands before squeezing their phone. After the squeeze, the applied force may also decrease

around the expected force peak. We call this phenomenon over-squeeze, and think it is

caused by the fact that users actually release part of their fingers/palms from the phone

body when they try to apply more force with the other part(s) of the hand. At the end of

squeeze, the applied force may not return to its initial condition either, because the users

may change their position of holding the phone during the squeeze.

Squeezes are also detected based on the signal change ratio r(t). ForcePhone contin-

uously checks each 30-sample received signal to see if the predefined squeeze pattern has

occurred. As the hand position is likely to change during a squeeze, it is less accurate to

estimate the applied force based only on sstart . For example, the larger drop of the second

squeeze shown in Fig. 4.12(a) might be caused by a hand position change rather than a

larger squeezing force. To account for this phenomenon, we heuristically set the reference

signal based on both the start and end of this 30-sample signal. This new reference signal

varies over time and is defined as s(t)re f erence = ((tend � t)sstart +(t � tstart)send)/(tend �

tstart). The signal change ratio r(t) is calculated based on s(t)re f erence using the same pro-

cess as described earlier. Basically, this method estimates r(t) by weighting the reference

signal proportional to the difference between t and tstart , tend . Fig. 4.12(b) shows the result

of this correction. After estimating r(t), ForcePhone sets two thresholds to identify the

force peaks caused by squeezes. A peak occurs when r(t) > thrhigh. The following sam-

ples where r(t)> thrlow are defined as parts of this identified peak. This setting is designed

to avoid false identification due to the over squeeze and squeeze preparation. Thus, thrhigh

is set larger than the assumed squeeze preparation force change, and thrlow is set smaller

103

Audio + Motion

Force + Action

ForcePhone App
Linux Android iOS

(a) Standalone Mode (b) Client-server Mode

Local Implementation

Figure 4.13: Implementation overview. ForcePhone has been implemented as a stan-
dalone app on Android via Java Native Interface (JNI). Our iOS implementation requires
the force estimation done at a remote server.

than the over squeeze force change. A valid squeeze is identified when the number of de-

tected peaks, the peak widths, and the peak-to-valley ratios fit a predefined criterion. The

performance of our current setting will be evaluated in Section 4.6.

4.5 Implementation

We have implemented ForcePhone on both Android and iOS devices. As shown in

Fig. 4.13, our Android implementation runs as a standalone app; the force estimation is

implemented as a library in native code (C++) which we integrate into the app via Java

Native Interface (JNI). On the other hand, the current iOS implementation requires the

force estimation to be done at a remote server using Matlab. Both implementations provide

real-time force estimations. The delay between recording each chirp and receiving a force

estimation is 15ms and 61ms at our local and remote implementations, respectively. We

are currently porting the force estimation library implemented in C++ to iOS.

One implementation challenge is that ForcePhone needs accurate time synchronization

between the phone speaker and microphone to extract valid structure-borne propagations.

However, both iOS and Android platforms don’t meet this real-time requirement since

both take 20–100ms to run the play/record audio command. To overcome this difficulty,

104

ForcePhone adds 10 pilot sequences ahead of the used chirps. In this synchronization,

ForcePhone checks if the received signal contains the identical sent pilots, such as having

the same stop time among pilots. In our experiments, more than 95% of the received pilots

have less than 5-sample jitters in their stop time, and 15% of trials on Android experience

a special 960-sample delay before the 4-th pilots. The criterion for ForcePhone to finish

this synchronization test is the existence of these 10 pilots, and 50% of received pilots have

the exact same stop time, and the last three pilots have less than 5-sample jitters. Once the

pilots are identified correctly, the timing of the last pilot is used as a reference to extract the

structure-borne propagation from the subsequent chirps as described earlier.

4.6 Evaluation

We first measure system performance, such as force estimation accuracy, overhead, and

robustness to noise. We then measure the user’s benefit of using ForcePhone, such as the

probability of an assigned request being honored or whether the users think it useful.

4.6.1 Accuracy of Force Estimation

We evaluate the accuracy of force estimation by using the mean square errors and cor-

relation coefficients where the former represents the ability to estimate exact force while

the later indicates the capability to learn how force is changed. Fig. 4.14 shows an example

of 12 different touches when the iPhone 6s is held in left hand and the center of the touch

screen is pressed with left thumb. The applied force is estimated by the internal Apple 3D

Touch sensors, external force sensors, and ForcePhone. Since Apple 3D Touch can only

provide normalized results and no documented interpretation of the sensed values is avail-

able, we built our own post-hoc translation based on an external force scale. We found the

sensed value is linear in the applied force, and the maximum value is reached when 380g

is applied.

As shown in Fig. 4.14, the proprietary sensors used in Apple 3D Touch captures the

105

0 200 400 600 800 1000 1200
Sample Index (20Hz)

0

0.5

1

1.5

2

Fo
rc

e
(k

g)

External Sensor
ForcePhone
Apple 3D Touch Sensor

Figure 4.14: Accuracy of force estimation. 12 touch events with different amounts of
applied force are plotted. The force estimated by ForcePhone provides high correlation
with the ground truth estimated by using our external force sensors.

force change below its maximum (380g in this case) with high accuracy. Even though

ForcePhone estimates the force under 380g with less accuracy, it captures most force-

change characteristics as shown in Fig. 4.14. Meanwhile, ForcePhone can estimate the

force above 380g without using any additional sensors.

The mean square error of this in-hand example is 205g and the correlation coefficient

to the force estimated by external sensors is 0.87. Compared to the maximum sensed force

up to 1.5kg, this error is tolerable for most force-sensitive apps as shown later. When the

phone is stationary on a wooden table, the mean square error falls to 54g and the correla-

tion coefficient increases to 0.91. Note that the error in estimating the exact value of the

applied force could change if the force is applied in a different way than our calibration

(as we don’t consider the damping coefficient change in our current model as introduced in

Section 4.3.) For example, there might be an estimation drift, so applying a varying force

from 500g to 1000g might be estimated wrongly as changing from 400g to 900g plus the

previously-mentioned errors. However, this feature doesn’t hurt the experience of using

ForcePhone because users are not aware of the exact value of the force applied to a phone

unless this value is shown in the user interface [106]. With a proper user interface design,

even though the estimated force is 100g less than the real force applied to the phone, users

106

can easily learn to adjust the applied force for getting a correct response. Actually, even

the proprietary sensors used for 3D Touch have about 100g errors between the corners of

touch screen, and it is suggested not to be used for estimating exact force [3]. In our current

setting, when the force is applied to the middle area of the phone, the estimated force (in

g) is calculated as f (t) = 15+ 230
p
(r(t))+ 2800r(t) in iPhone 6s and f (t) = 1900r(t)

on Galaxy Note 4. As shown in our usability study, this setting is adequate for building

useful force-sensitive and squeezable apps. Calibration while considering how users touch

the phone is part of our future work, which could be accomplished by other grip detection

systems like GripSense [57].

4.6.2 Noise and Interference

The estimation of force based on sound propagation becomes erroneous if there is a

strong audio noise with a similar structure as the chirps used in ForcePhone. For example,

the mean square error of ForcePhone can increase from 50g to more than 500g when the

same chirps are played by nearby computers’s speakers. Even tough this is the natural

limitation of any audio-based application, it is not the case in most real-life scenarios. In

our measurements, ForcePhone is shown to be resistant to: (1) real-life background audio

noise such as music being played in the testing room, (2) inter-device interference from

ForcePhone running on another nearby device, and (3) self-interference from the audio

played on the same device. To study the performance degradation caused only by the

audio noise, rather than the force instability of human hands or other movement noises,

we kept the test phone stationary on a wooden table and no force is applied. The standard

deviation of force estimations is recorded and reported. This estimated force variation also

represents errors when there is a force applied to the phone if the received noise is modeled

as an additive noise.

Particularly, we use an Apple MAC Air or an iPhone 6s placed on the same surface

as test devices. Multiple sets of noises were played, but no significant differences were

107

0 20 40 60 80 100 120 140
Time (sec)

0

10

20

N
oi

se
 L

ev
el

 (d
B)

0

1

2

So
un

d
C

or
re

la
tio

n×105

Noise Level
Sound Correlation

Figure 4.15: Resistance to background noise. Music (i.e., noise) played by a laptop
20cm away from the device under test has limited effect on the sound correlation even if
the noise level is increased to 20dB higher than the used chirps.

observed, so we only report the results of music-playing noise, i.e., rock music “Jump –

Van Halen” or gaming background music “Spot On”. Since we place both the test device

and the noise source on the same table, the results account for the vibration coupling and

the noise transmitted through the surface.

We found ForcePhone to be resistant to most external real-life noises. As shown in

Fig. 4.15, even when the rock music is played at full-volume by a laptop 20cm away from

the test device, the sound correlation of the used chirps doesn’t change much. This is

because most human (singing or chatting) noises have limited signals in the 18kHz – 24kHz

range. Moreover, this natural noise usually has only a limited correlation to our 1200-

sample chirps. In this measurement, the increased estimation errors are less than 10g,

which does not affect most of ForcePhone’s functionality, even when the noise level is

20dB higher than the used chirps.

Compared to the uncorrelated noises, ForcePhone is more sensitive to the noise that

has a similar structure as the chirp it uses. Solutions of this issue are critical in allowing

multiple phones to run ForcePhone in the same environment. To measure this, we had

another device playing the same chirps used by ForcePhone, but with random stop time

between consecutive chirps. This is designed to learn the average performance when two

devices run ForcePhone simultaneously. As shown in Fig. 4.16(a), the average estimated

error increases to 110g when the correlated noise is played at full-volume by another de-

108

10 20 30 40 50 60
Device distance (cm)

0
20
40
60
80

100
120

Fo
rc

e
st

d
(g

)

Vol 50%
Vol 100%

(a) Inter-device interference

0 10 20 30 40 50
Music volume (%)

20

30

40

50

Fo
rc

e
st

d
(g

)

Original Music
Filtered Music

(b) Self interference

Figure 4.16: Resistance to inter-device and self interferences. The variation of sound
correlation for each second is used to indicate the error when another device is running
ForcePhone or a music is played on the same device.

vice. This trend is mitigated when the noise volume is reduced. Since ForcePhone only

requires the designed chirps to be played at 50% of full-volume, multiple devices can run

ForcePhone if they are at least 10cm apart from each other.

In the last scenario, we evaluate whether other audio signals can be played on the same

device when ForcePhone is running. This capability is critical to the user experience, es-

pecially when using ForcePhone for a game control. We play a game background music

from the same device when ForcePhone is running, and record the increased estimation

error. As shown in Fig. 4.16(b), when the music is played by the same speaker at 50%

of full-volume, ForcePhone experiences about 46g of additional estimation error, which

does not affect the core functionality of ForcePhone. Moreover, when the played music

is processed further by using a 15kHz low-pass filter, the imposed error decreased further

to 37g. Note that the current design of ForcePhone allows game music to be played at

most 50% of full-volume, as the other 50% is dedicated for ForcePhone’s functionality.

This limitation can be addressed when the phone development kit supports streaming mu-

sic/chirps to different speakers (devices usually have 2 or more speakers, but only one of

them can be used at a time).

109

Setting Idle Backlight ForcePhone Website Game
Power (mean) 33 856 1160 2564 3692

Table 4.2: Power consumption (mW). The additional power consumption by
ForcePhone is about 304mW, which is small relative to that of normal phone usage.

4.6.3 Power Consumption

We measure the power consumption of ForcePhone with the Monsoon Power Moni-

tor [23] on Galaxy Note 4. For the baseline measurements, we turn off the phone’s radios

and estimate the force through our JNI/C++ local implementation. We ran each scenario for

20 seconds in 6 different states: 1) idle, with the screen off, 2) backlight, with the screen

displaying a white background, 3) ForcePhone, with the screen on, 4) website surfing,

when networking is enabled, and 5) video game, “Puzzle&Dragon”. These measurement

results are summarized in Table 4.2.

Activating the naive implementation of ForcePhone consumes an additional power of

304mW compared to the case when nothing is executed and background is on. More than

90% of this power consumption comes from using the hardware of speaker, microphone,

and accelerometer — this is consistent with the results in [39]. The computation cost of

ForcePhone is minimal since it builds a model to estimate the applied force rather than

fingerprinting the sound changes. Note that the ratio of ForcePhone’s power consumption

is dependent on its usage. For example, though ForcePhone incurs 26% power overhead

(compared to the blacklight case) when it is used to select app options at home screen,

users won’t press this option for a long time and ForcePhone can be turned off once the

selection is done. If the proposed squeezable back function is used for web surfing, acti-

vating ForcePhone incurs only an 11% power-consumption overhead, which reduces the

life of Note 4’s 12 Wh battery by about 30min. The percentage overhead is reduced fur-

ther if ForcePhone is used for game control or when microphones or speakers have been

activated for other purposes.

110

This button moves
the ball by force

(b) Experiment Controller (a) Experiment App

This button reports
"no response"

This button sends
task requests

Figure 4.17: User interface for experiments. Users are requested to move a ball to the
marked red box by applying different amounts of force to the blue button and squeeze the
phone twice for surfing the previous web page. Action requests are sent, and the results are
recorded by the controller.

4.6.4 Usability Test

We recruited 6 participants (4 males and 2 females) to test the usability of ForcePhone

by asking them to perform a set of tasks as shown in Fig. 4.17(a). Since these 6 participants

are students who are aware of this project, we only tested their ability to complete the

assigned tasks. (The results of the other users’ opinions on ForcePhone will be provided

in the next subsection.) In the first task, users are asked to move a ball by applying force

and stop it at a randomly-selected red box; the highest box is reached by applying a 500g

force and the ball located at the bottom of boxes (0g) when the task starts. This experiment

follows a similar design principle as that in [106] to test if the user can effectively control

the force at different levels. Experiments start from stopping the ball at one of the two

big boxes (i.e., only two levels) to one of the five small boxes. We asked users to perform

these tasks at different positions, such as controlling the phone while it is on a table, while

holding it in hand, or while walking and using it simultaneously. A remote controller sends

requests and records the accuracy and delay of users’ reaction as shown in Fig. 4.17(b).

Fig. 4.18 shows the accuracy (the success rate of moving the ball into the selected box)

and the delay between the user touching the blue button and finishing the task. The plots

111

2 3 4 5
Number of boxes

0

20

40

60

80

100

Ac
cu

ra
cy

 (%
)

On table
In hand
Walking

(a) Accuracy

2 3 4 5
Number of boxes

0

0.5

1

1.5

2

De
la

y
fro

m
 to

uc
h

(s
ec

)

On table
In hand
Walking

(b) Delay

Figure 4.18: Result of controlling a ball with ForcePhone. Results are averaged over 6
participants. Delay is estimated as the time between the user presses/releases the button.

show that most participants can effectively control ball movement with ForcePhone when

there are only 2 – 3 boxes. This result supports our hard-pressed option app since the users

can easily control the applied force at two levels with higher than 97% accuracy. When

more than 3 boxes (levels) are provided, users can still achieve higher than 90% accuracy

when the phone is stationary on the table. This is consistent with our earlier evaluation of

estimation accuracy. Although different touch positions might incur additional errors, the

high correlation between the force estimated by ForcePhone and the real force is sufficient

for users to control the phone effectively. It is worth noting that moving the ball toward the

top/bottom boxes is easier than the box in the middle; moving the ball to the bottom or top

box has 13% higher accuracy than moving the ball into the middle box. A similar property

was also reported in [106].

On average, users require only 0.7 second to stop the ball at the correct position when

there are two boxes. This delay increases to 2 seconds when the users attempt moving

the ball among 5 boxes while walking. Interestingly, controlling the ball when the phone

is stationary is considered the easiest task, but the participants use a slightly less time to

complete the 2-box task while walking. We conjecture this phenomenon is caused by the

order of tests we perform, where the walking test is executed after testing the phone–table

and in-hand cases. This property implies that performance can be improved further once

112

p1 p2 p3 p4 p5 p6
Participant index

0

20

40

60

80

100

Ac
cu

ra
cy

 (%
)

In hand
Walking
In pocket

(a) Accuracy

p1 p2 p3 p4 p5 p6
Participant index

0

1

2

3

D
el

ay
 (s

ec
)

In hand
Walking
In pocket

(b) Delay

Figure 4.19: Results of squeeze detection. The accuracy of the last three participants is
increased to more than 90% when the detection criterion is adjusted after this test.

the users become familiar with ForcePhone. The average accuracy of repeating the same

task on the Galaxy Note 4 is increased by 3%. We think this minimal improvement is due to

the users’ familiarity with this task rather than the force estimation accuracy. In summary,

users can effectively use ForcePhone to control different levels of applied force for various

scenarios.

In the second experiment, we asked the participants to squeeze the phone’s body. Once

ForcePhone detects the squeeze, the testing app switches to the previous UI page with a

different background and indicates the page number as shown in Fig. 4.17(a). Due to the

lack of ground truth (no touch event exists), we asked the users to click the no response

button once the user observes the applied squeeze not detected. We count the number of

times the squeeze is detected without any instruction from the remote controller as a false

positive.

Fig. 4.19 shows the accuracy and delay for each user. Participant 1 has the highest

accuracy and the lowest delay because the detection setting is tuned according to his own

preliminary test and since he practiced this task more than the other users. The average

accuracy when the phone is held in hand is 90%. The accuracy drops to 82% when the

participants use their phones while walking. Due to the lack of timing information on when

the user applies and stops the squeeze, we only record the delay between the instruction and

113

the squeeze feedback (either success or fail). As shown in Fig. 4.19(b), the average delay

of each squeeze is about 2 seconds. Users experience low accuracy usually experience a

long delay since they have to wait and then click the “no response” button if the squeeze

is not detected. From the measurements of our previous moving-ball test, we found users

usually need 0.8 second to react to the displayed instruction, and hence the delay of squeeze

detection is expected no longer than 1.5 seconds.

It is possible to detect a squeeze in users’ pocket, which can be used to turn off alarms

or notifications when the phone is in pocket. However, our measurement shows that its

performance depends not only on how the phone is squeezed but also on the clothing ma-

terial. Tight jeans (e.g., worn by p1 to p3) generally have a better detection accuracy than

loose pants. During this controlled experiment, only 4 false detections are observed. Users’

feedback on the false positive rate will be presented in the next section.

Based on more than 600 squeeze profiles collected from the 6 participants, we tuned our

final squeeze detection setting as follows. We set the high and low thresholds of squeeze

detection to 310g and 175g, respectively. We identify signals as a peak only when the peak

width lies between 2 and 8 samples and the peak-to-valley ratio is greater than 2.5. By

applying these new criteria to the collected traces, the overall detection accuracies for the

last three participants increase to higher than 90% for both in-hand and walking scenarios.

We used the same setting in our subsequent application tests for other participants.

4.6.5 Users Study of Proposed Apps

For a users study of ForcePhone-based apps, we randomly chose 21 participants (7

females and 14 males) among a large student population at the University of Michigan.

All of recruited participants own smartphones; only 3 of them have the latest iPhone 6s

and knew how to use 3D Touch prior to this test. In contrast to our previous usability

test, these participants were unaware of ForcePhone and our research group (so they have

no initial bias). We first ask the participants to use the built-in hard-pressed option of

114

Questions Strongly disagree
/Disagree

No
opinion

Strongly agree
/Agree

Hard-pressed option is helpful 0 0 21
Hard-pressing(3D Touch) is responsive 1 1 19
Hard-pressing is responsive 0 1 20
Ball-moving game is interesting 0 3 18
Moving ball is responsive 2 4 15
Squeezable back is helpful 1 2 18
Squeezing is responsive 2 1 18
False detection is acceptable 4 7 10

Table 4.3: Application study results. Survey questions are given after users try the hard-
pressed option, ball-moving game, and squeezable back applications for 10 to 15mins.

iPhone 6s and then try the same function implemented by ForcePhone on Galaxy Note

4. We built a fake UI (as shown in Fig. 4.2(a)) to make them feel if they were triggering

the real option on Android. We set the testing threshold for enabling options to 340g,

which is similar to the iPhone’s. We chose not to make a blind test by using our iPhone

implementation because the current iOS disables the vibration service when audio is being

recorded. According to our preliminary test, vibrating the phone when the hard-pressed

option is being activated is critical to the user experience. After trying the hard-pressed

option, the users were instructed to play a simple game with the moving-ball test app. This

allows us to record the users’ feedback on using ForcePhone as a continuous UI input.

While playing the game, users have to move the ball into the red box, and the number of

boxes was increased when the users completed the task. Last, we asked the participants to

test our squeezable back app that automatically navigates the previous UI page when they

squeeze the phone twice. The threshold is set based on the results of our previous usability

study. It took about 15 minutes on average, to complete the entire test.

After testing our app, a survey form was filled out by the participants, and the results are

summarized in Table 4.3. The question mark by “3D Touch” in Table 4.3 refers to the hard-

pressed option implemented by Apple 3D Touch, while the others refer to ForcePhone.

Most users are positive of the proposed apps and think them helpful. For the hard-press

115

option, most users think ForcePhone has a comparable performance to Apple 3D Touch.

One of them said ForcePhone is better than 3D Touch because the vibration in Android is

much clearer (stronger) than iPhone’s, which is not related to the force detection. Only 3

users think iPhone’s performance is better, but still acknowledge ForcePhone is responsive

enough for the hard-pressed option app. This indicates that ForcePhone can handle simple

tasks with a comparable performance as adding proprietary sensors. Moreover, most users

feel the squeezable back app is helpful, which is a unique capability of ForcePhone.

Most users regard that controlling the ball based on the applied force is relatively diffi-

cult, but still were able to control the ball. Two users think our test setting is too sensitive,

making it difficult to move the ball. We also discovered some errors caused by applying a

large initial force and releasing the button immediately, which was not the intended case for

ForcePhone. After the users are instructed to move the ball by gradually applying force,

they are able to control the ball with ForcePhone. The squeezable back app received a

similar rating as the ball-moving game. In our other survey, 16 users indicated difficulty in

clicking the app back button when operating the phone with one hand which supports the

design of our squeezable back app. Most users think our current parameter setting tuned

by previous 6 participants is responsive and acceptable. A half of users experienced false

detections when they moved the phone from one hand to the other. During the test, none of

users heard the sound used in ForcePhone, so no user annoyance. The test locations were

close to a cafe crowded with students, but ForcePhone was robust to human noises. Most

common comments from the users are “cool idea” and “useful’. We plan to have extensive

and large-scale tests before releasing ForcePhone to public.

4.7 Discussion

ForcePhone has been shown to be able to expand user input interfaces by using only

built-in sensors. Several demonstrative apps have been developed and tested, but there

are many other use-cases of ForcePhone. Discussed below are the limitations of current

116

(b) Hand-trainer app (c) Wearable app (a) Drawing app

by ForcePhone

by 3D Touch

Figure 4.20: Potential usage of ForcePhone.

ForcePhone and some of possible directions of our future work.

4.7.1 Limitations

As our evaluation results show, ForcePhone’s force estimation includes noise from

object contacts and human movements, calling for an app design to eliminate this noise. An

extreme example that breaks ForcePhone’s functionality is to activate the force estimation

by placing the phone on a table then quickly moving and holding it in hand. However,

this limitation of ForcePhone can be avoided by a proper app design. For example, the

hard-pressed option app only needs force measurements within a short period of time (e.g.,

2 seconds) and is inactivated if the phone is being moved. Apps like drawing lines with

different line styles/thickness by applying different amounts of force is not suitable for

the current ForcePhone as it is more probable for the user to (unintentionally) change

the environment during the line drawing. But selection of thickness by applying different

amounts of force is possible since it is akin to our ball-moving test. In our measurement, to

achieve accurate and long-lasting force sensing, ForcePhone needs the phone to be fixed

at a certain location. For example, Fig. 4.20(a) demonstrates the above-mentioned force-

sensitive drawing app by attaching the phone on a stand.

In our squeezable back app, missed detections occur when the detection is intentionally

turned off upon identification of extensive movements, such as sudden turns or stops. This

117

is a safety mechanism for ForcePhone to avoid false detections, but the users are not

aware of this. One way to avoid this misunderstanding and improve the user experience is

to provide a feedback when the squeeze detection is temporarily turned off. For example,

the background of website or the title bar can be dimmed slightly when the squeezable back

app is deactivated. Studying the users’ reaction to this new UI design is part of our future

work.

While the touch location near the speaker/microphone used to play/record sounds is

found more sensitive to the applied force (i.e., making more pronounced signal changes),

the middle area of touch screen usually provides more reliable force estimation. For ex-

ample, when more than 1.2kg force is applied to the top area of iPhone 6s, the received

signals jump quickly and the relation between f (t) and r(t) breaks down. We suspect this

phenomenon is due to the pressuring of phone’s microphone and other internal compo-

nents. So, we suggest to limit the estimated force to 500g for consistent performance, even

though certain locations can sense the force up to 3kg. This phenomenon also causes the

estimated signal strength s(t) at certain locations to rise when the force is applied. Most of

these situations caused by pressing the phone can be compensated by our calibration of r(t)

and the estimation constraints caused by this problem will likely be addressed in the near

future since commodity phones start to increase the number and fidelity of speakers/mi-

crophones. For example, when multiple speaker–microphone pairs are used to sense force

interactively, the locations yielding erroneous estimations for a single microphone–speaker

pair can be corrected by the other microphones and speakers. We should also note that, as

shown in our measurements, these minor issues incur minimal annoyance to users when

ForcePhone is properly applied.

4.7.2 Potential Applications

The participants of our usability study suggested many potential uses of ForcePhone

after trying the proposed apps. Of them, two most promising and interesting uses are

118

mobile health apps and force-sensitive wearable devices.

Mobile phones or wearables are good candidate platforms for mobile health apps since

people carry them all time. For example, systems of notifying/requesting users to walk or

excise are now built in most commodity phones [4, 28]. Researchers have also shown the

benefits of drinking more water via mobile apps [45]. ForcePhone can provide a new func-

tion/capability of these systems because it can determine how hard a user squeezes/touches

the phone. As shown in Fig. 4.20(b), this functionality can be used as a replacement of

force-finger-trainer that is helpful for the people with disability and those who use hands

and fingers excessively for their work, e.g., computer programmers.

ForcePhone can also be implemented in wearable devices that have even less space

for user inputs than smartphones. Unfortunately, current wearable devices usually have

less sensing capabilities than smartphones, especially for the microphone sensitivity and

sample rate. For example, Samsung Gear S (watch) can only support an audio sample rate

up to 32kHz, which is inadequate for the current design of ForcePhone. Apple Watch

hardware is found to be the best to implement ForcePhone, but its current API does not

yet support data reading from the audio queue and process audio data in real time. In

future, we expect the sensing capability of wearables to improve so that ForcePhone can

be implemented and used for numerous apps.

4.8 Conclusion

We have proposed ForcePhone, an inexpensive solution that adds a force-sensitive

interface to commodity phones without additional hardware. ForcePhone has been im-

plemented on iOS and Android, and several apps based on its functionality have been

developed and tested. Our evaluation has shown ForcePhone to provide comparable per-

formance as augmented proprietary force sensors and to be robust to most real-life noises.

The proposed apps are easy to use with higher than 90% accuracy and minimal overheads.

In future, we plan to test ForcePhone on a wide range of devices and scenarios.

119

CHAPTER V

LibAcousticSensing

5.1 Introduction

Over the past decade, acoustic sensing has drawn significant attention thanks to its

ubiquitous sensing capability. For example, it can be easily installed on numerous ex-

isting platforms, such as laptops, smartphones, wearables, or even IoT devices, because

most of them are already equipped with microphones and speakers. Acoustic sensing is

also versatile; it can provide context-aware computations [37, 76, 83, 88, 96, 109, 118], ex-

tend human–computer interfaces [47, 58, 62, 79, 94, 119, 124], and create nearly zero-cost

inter-device interactions [36, 56, 81, 92, 115, 131, 132]. Even though these applications are

designed to be ubiquitous, most of them are implemented only on a single platform like

Android or iOS, and tested with just one or two types of devices.

Different platforms/devices, in general, have significantly different sensing capabilities

due to their varying hardware and operating systems (OSes). As a result, cross-platform

implementation and deployment of acoustic sensing apps require a significant amount of

time/effort.

We introduce below the three major challenges in building such cross-platform support.

Fragmented programming language support Porting the same signal processing algo-

rithms and applications to different programming languages and platforms, such as Java

120

on Android and Objective-C/SWIFT on iOS, are difficult, time-consuming, and error-

prone [51]. Moreover, any modification of the algorithms causes changes of code on mul-

tiple platforms, entailing significant development and maintenance costs.

Platform-dependent settings Each platform has a specific set of settings, so develop-

ers must acquire detailed knowledge to set the correct values on multiple platforms. For

example, adding a recorder flag in Android (AudioSource.VOICE RECOGNITION) might

significantly change the acoustic sensing behavior by disabling the automatic gain control

(AGC). A similar tweak exists in iOS’s AVAudioSession. These settings can be easily

overlooked by the developers unfamiliar with platform SDK.

Device hardware tuning Since real-time acoustic sensing has stringent timing and sig-

nal requirements, it is essential to tune the algorithms to different device hardware. For

example, some microphones might even receive 20dB less signal strength at 22kHz than

others [81]. It is also worth noting that, due to the varying installation location of the micro-

phone/speaker on a device, a fixed-volume sound might saturate the microphone on certain

devices while it might be too weak to be picked up on other devices.

We propose LibAcousticSensing (LibAS)1 to meet these challenges by facilitating

the rapid development/deployment of acoustic sensing apps on different platforms. LibAS

is designed based on our study of more than 20 existing acoustic sensing apps. Specifi-

cally, large amounts of time and effort have been spent repeatedly to address the common

platform issues that are often irrelevant to each app’s sensing purpose. For example, sev-

eral researchers [82, 100, 118, 132] mentioned the problem caused by non-real-time OS

delay and then solved this issue by syncing the played/recorded sound through their own

ad-hoc solutions. This repeated effort can be avoided or significantly reduced by providing

a proper abstraction that handles the common platform issues systematically.

Fig. 5.1 shows the concept of LibAS which divides a normal acoustic sensing app into
1LibAS is open-sourced at: https://github.com/yctung/LibAcousticSensing

121

Sensing
Result:
Object is
4m away

Developer's responsibility without LibSS

Developer's only responsibility with LibAS

sensed signals

FFT
Design processing callback

Sensing devices
(Android/iOS/Tizen...)

Essential sensing
algortihms

Platform control
components

Hardware control
Audio buffer control
Play/record sync
Preprocessing
Data streaming
Multi-threading
Mic auto-tuning
Disable AGC
...
Implement above
on multiple platforms

Android/iOS/Tizen
Windows/Linux ...

iOS

Linux Tizen
Design sensing signals LibAS

Figure 5.1: Concept of LibAS. LibAS reduces the cross-platform development effort for
acoustic sensing apps by hiding laborious platform-dependent programming details.

two parts: (1) essential sensing algorithms and (2) platform control components. This

separation is based on an observation that the design of sent signals (e.g., tones, chirps,

or phase-modulated sounds) and the analysis of received signals (e.g., Doppler detection,

fingerprinting, or demodulation) are usually aligned with the specific app’s goal. Besides

these two app-dependent components, handling audio ring buffers and audio multiplexing

are mostly duplicated across apps and are closely related to the specific platform. Given

such characteristics of acoustic sensing apps, separating the essential sensing algorithms

from the other components can provide a cross-platform abstraction that hides the platform-

dependent details from the app developers. To date, LibAS’s platform control API has been

implemented to support iOS, Android, Tizen, and Linux/Windows.

With LibAS, app developers are only required to choose signals to sense and then build

a callback function for handling each repetition of the sensing signals being received. The

developers can either build the callback function by using LibAS’s server-client remote

mode with Matlab, or choose the standalone mode with C (both are cross-platform sup-

ported). The former provides rapid prototyping environments (the received signals can

be monitored and visualized via the built-in utility functions and GUI), while the latter

provides a fast computation interface and can be shipped in a standalone app. We expect

122

developers to use the remote mode first to design and validate their sensing algorithms, and

then transform their algorithms to the standalone mode, when necessary. Building acous-

tic sensing apps in this remote-to-standalone way not only reduces the development effort

(compared to programming directly in the platform languages without any visualization

support) but also makes the essential components platform-agnostic. This is akin to sev-

eral well-known cross-platform UI libraries [11, 25, 27], but we are the first to apply it to

acoustic sensing apps.

Evaluation results show that our library significantly reduces the cross-platform de-

velopment effort of acoustic sensing apps. Specifically, LibAS has been used to build

three demonstrative acoustic sensing apps. These apps cover the three major categories of

acoustic sensing, i.e., sonar-like sensing, inter-device interaction, and sound fingerprint-

ing. Our implementations show LibAS’s adaptability to meet all the unique requirements

of these categories, such as real-time response, capability of controlling multiple devices,

and connecting to a third-party machine learning library. With LibAS, app implementa-

tions require only about 100 lines of code to build (excluding the code for user interface).

LibAS reduces up to 90% of the lines of code in the projects for which we acquired the

source code. Three developers who used LibAS to build projects reported significant re-

ductions of their development time, especially in case of building the first prototype, e.g.,

from weeks to a few days. As reported by these developers, LibAS’s utility functions ease

the cross-platform/device tuning by visualizing several critical sensing metrics in real time.

Only minimal overheads are imposed by LibAS, e.g., 30ms and 5ms latencies in the remote

mode and standalone mode, respectively.

This paper makes the following four contributions:

• Design of the first library to ease the cross-platform development of acoustic sensing

apps [Section 5.3];

• Implementation of three existing apps from different categories using LibAS [Section

5.4 / Section 5.5];

• Evaluation of the overhead of LibAS and its capability to handle the effects of het-

123

Sonar-like sensing
System Purpose Testbed

FingerIO [94] Gesture sensing Galaxy S4 & wearables
SoundWave [58] Gesture sensing MAC Air & 3 laptops
AudioGest [110] Gesture sensing Galaxy S4/Tab & Mac

LLAP [127] Gesture sensing Galaxy S5
vTrack [47] Drawing & Keystroke sensing Galaxy Note4 & S2

ApneaApp [93] Sleep apnea detection 4 Android devices
BumpAlert [120] Obstacle detection 6 Android devices

Inter-device interactions
PseudoRanging [81] Location sensing Special mic and amp

Spartacus [115] Movement sensing Galaxy Nexus
AAMouse [130] Movement sensing Google Nexus 4 & Dell laptop

SwordFight [132] Device distance sensing Nexus One & Focus
BeepBeep [100] Device distance sensing HP iPAQ & Dopod 838
DopEnc [131] Life logging 6 Android devices
Dhwani [92] Device communication Galaxy S2 & HP mini

Sound fingerprinting
EchoTag [118] Location sensing 4 Android & 1 iPhone

RoomSense [109] Location sensing Galaxy S2
CondioSense [83] Location sensing 4 Android devices

Acoustruments [79] User interface augmenting iPhone 5c
Symbolic Location [76] Contacted surface sensing Nokia 5500 Sport
Touch & Activate [97] Touch sensing Arduino

SweepSense [80] Configuration sensing Mac & earbuds

Table 5.1: Acoustic sensing apps. Most ubiquitous acoustic sensing apps are only imple-
mented and tested on few devices and platforms. We categorize these apps into three types
and will demonstrate how to build sensing apps of each type with LibAS.

erogeneous hardware/platform support [Section 5.6]; and

• User study of three developers who used LibAS in their real-world projects [Section

5.7].

5.2 Related Work

Acoustic sensing is expected to become ubiquitous as it can be integrated into exist-

ing computational platforms, such as laptops, mobile phones, wearables, and IoT devices.

Sensing via acoustic signals can be either passive or active. Passive acoustic sensing only

utilizes the device microphone to record the environmental sounds, user speeches, or the

124

sound of nearby events to provide context-aware computations [37,62,63,88,109,116,124].

On the other hand, active acoustic sensing uses both the speaker and the microphone to send

a specially-designed sound and then monitor/evaluate how this sound is received/modified

by the targeting events. Active acoustic sensing can provide virtual touch interfaces [47,

79, 97, 130], determine the relative movements between devices [81, 100, 115, 131, 132],

remember the tagged locations [76, 109, 118], or recognize the users’ status or their inter-

actions with devices [58,93,94,119]. LibAS is designed mainly for active acoustic sensing

but it can also be used for passive acoustic sensing. Existing active acoustic sensing apps

are summarized in Table 5.1. Although these apps are usually claimed to be ubiquitous,

most of them are actually implemented and tested only on one or two types of devices.

This lack of cross-platform support hampers the deployment of acoustic sensing apps.

LibAS is designed to solve this problem by providing a high-level abstraction that hides

device/platform-dependent development details from the acoustic sensing algorithms.

LibAS also provides utility functions to help tune the performance of acoustic sensing

on devices. Existing studies reported several tuning issues caused by high speaker/mi-

crophone gain variations [81], lack of device microphone controls [124], speaker ringing

effects [92], significant physical separation of microphones from speakers [119], random

speaker jitters [132], and adaptation of microphone automatic gain control (AGC) [118].

These issues have usually been addressed in an ad-hoc way by each developer, and there

are few systematic ways to analyze them. LibAS provides an easily accessible GUI to se-

lect microphones/speakers available to sense, determine if the AGC can be disabled, and

then determine the gains of signals received between different pairs of microphones and

speakers. We also plan to add a crowdsourcing feature that helps collect these types of

device information when developers are testing them with LibAS, so that future developers

will have a better insight before actually building their own acoustic apps.

There already exist several libraries/frameworks targeting the acoustic sensing apps,

but all of them have very different goals from LibAS. For example, Dsp.Ear [54] is a

125

audio settings

settings/results

settings settings

server:10.0.0.1:555

Sensing Result:
Object 5m away!

Mode: remote

Connect

jni:Callback.cpp

Sensing Result:
Object 5m away!

Mode:standaline

Start

Remote
10.0.0.1

2

4.2 m

0.5

Standalone Mode
results

imported
(based on platorms)

Tizen
LibAS.h/.c

Linux/Win
LibAS.jar

iOS
LibAS.framework

Android
LibAS.aar

Android [.aar] iOS [.framework] Linux/Win [.jar] Tizen [.h/.c]

Callback.cpp

Assets/setting.json
Assets/signal.dat ...

SensingServer.m Callback.m

Main.m

NetworkController

AcousticSensingController

StandaloneController

AudioController

Callback.m/cpp

Developer's app codes Swaptable platofrm codes, ex:

Genearl sensing codes Universal interface & wrapper

MEXWrapper.m

record setting
/audio source

recorded data

recorded data

recorded data

server setting

sensing results

recorded data

record setting
/audio source

(load)

(create)

(export)

(test)

recorded data

recorded data

recorded data

sensing results

sensing results

sensing results

sensing results

sensing results

sensing results

device setting
/server ip/port

device setting
/jni setting sensing results

Remote Server

Sensing Device

(play/record)

(play/record)

(create)

(export) (load)

audio

audio

(generate / test)

results

settings

results

settings/results audio

audio
settings

audio

results

audio

MEX

MEX

JNI/C

Files

Socket

universal interface & wrapper

Remote Mode

App UI Platform Control API Remote Matlab API Developer Code

Dev

DevApp
3:12

Mode:
Server:

UserData:

Result:

Connect

Send

Code: Val:

Figure 5.2: System overview. LibAS provides a universal interface/wrapper to communi-
cate with the callback components. Thus, the platform control API can be easily imported
to support different devices/platforms while keeping the developer’s essential sensing al-
gorithm consistent.

system-wide support to accelerate the acoustic sensing computation by utilizing phone’s

GPU while DeepEar [78] is a library for constructing a convolution neural network (CNN)

based on acoustic sensing signals. Auditeur [96] and SoundSense [88] focus on providing

a scalable/cloud-based service to collect acoustic features. CAreDroid [50] is an Android-

only framework to provide an efficient sensing (including acoustic signals) interface for

context-aware computations. The closest to LibAS is Code In The Air (CITA) [71, 107],

which also provides a cross-platform abstraction for smartphone sensors (including micro-

phones). However, CITA focuses on only tasking apps, such as sending a message to users’

wives when they leave office, and has limited real-time support for active acoustic sensing.

Note that most of these libraries/frameworks are also parallel to LibAS, so can be inte-

grated in LibAS, if necessary. In terms of the cross-platform development, LibAS is more

closely related to the well-known PhoneGap [25], ReactNative [27], and Cocoa2d-x [11]

frameworks where developers can build cross-platform mobile app/game UI by JavaScript

or C++.

5.3 System Design

Fig. 5.2 provides an overview of LibAS. As shown in this figure, among the four compo-

nents of an app developed by LibAS, only the leftmost component includes the developer’s

126

code that realizes the essential sensing algorithm of apps. The platform control API is

the only platform-dependent component which needs to be imported based on the target

platforms (e.g., LibAS.aar for Android or LibAS.framework for iOS). The main interface

of LibAS exposed to developers is the class called AcousticSensingController which

can be initialized to either a “remote mode” or a “standalone mode”. In what follows,

we will describe how to use LibAS in these two modes, how LibAS can be cross-platform

supported, and the development flow of using LibAS.

5.3.1 Remote Mode

In the remote mode, the phone/watch becomes a slave sensing device controlled by a

remote Matlab script called Main.m. This Matlab script creates a LibAS sensing server

which will send the sensing sounds to devices, sync the developer’s sensing configurations,

and use the assigned callback function, Callback.m, to handle the recorded signals. The

recorded signals will first be pre-processed by LibAS, truncated into small pieces (i.e., the

segment of each sensing signal repetition), and each segment will be sent to the callback

function. The callback function is responsible for calculating the sensing result based on

the app’s purpose. A conceptual callback function of a sonar-like sensing app can be:

dists = peak detect(matched f ilter(received signal))

Note the sensing results, e.g., dists in this example, will be automatically streamed back

to the device for providing a phone/watch UI update (e.g., dumping the result as texts) in

real time. A complete code example of using LibAS to implement real apps is provided in

the next section.

Our remote mode design aims to help developers focus on building the essential sensing

algorithm in a comfortable programming environment, i.e., Matlab. Note that our current

Matlab implementation is only a design choice; it is possible to build the same function-

127

ality in other languages (e.g., Python). We choose to implement the remote mode with

Matlab because it provides several useful built-in signal processing and visualization tools.

Many existing acoustic sensing projects also use Matlab to process/validate their acoustic

algorithms [37, 37, 76, 82, 89, 93, 115, 118–120, 130].

5.3.2 Standalone Mode

In contrast to the remote mode, the standalone mode allows sensing apps to be executed

without connecting to a remote server. To achieve this, the developers are required to

export their sensing configurations in the Main.m to binary/json files (with a single LibAS

function call) and then transform the Callback.m function to C. In our current setting, this

Matlab-to-C transformation can be either done manually by the developers or automatically

completed by the Matlab Coder API [22,31]. The transformation should be straightforward

since LibAS’s abstraction lets the callback only focus on “how to output a value based

on each repetition of the received sensing signals”. The C-based callback has the same

function signature as our Matlab remote callback so it can be easily connected to the same

LibAS platform control API. Specifically, when developers already have a workable sensing

app with the remote mode, the standalone can be enabled by passing the C-based callback

function as an initialization parameter to AcousticSensingController. The app will

then seamlessly become a standalone app while all other functions work the same as in the

remote mode.

Note that the standalone mode not only can execute the app without network access but

also usually provide a better performance, such as a shorter response latency. However, it

is challenging to develop/debug the sensing callback directly in the low-level language like

C due to the lack of proper signal processing and visualization support. For example, if the

developers incorrectly implement the previously-mentioned matched filter with wrong pa-

rameters, the detections might seem correct (still able to detect something) while the detec-

128

(a) Preparation (b) Tuning (c) Finalization

Install LibAS
DevApp

Connect DevApp
to Remote Mode

Design sensing
signals & callbacks

(Optional)
Standalone Mode

Link App UI to
LibAS's Interface

Include LibAS
as a library Start sensing

& testing

Tune parameters
& algorithms

Figure 5.3: Expected development flow. Developers can first use the published LibAS

DevApp (cross-platform supported) to realize their idea without even installing platform
development kits, like XCode or AndroidStudio.

tion performance is severely degraded. To solve this problem, we provide a MexWrapper
2

that can easily connect/test the C callback even in the remote mode (i.e., the recorded audio

will be streamed remotely to the Matlab server but the received signal will be processed

by the C-based callback, as shown in Fig. 5.2). This “hybrid” mode helps visualize and

debug the C callback. For example, the matched filter with wrong parameters can be easily

identified by plotting the detected peak profiles in Matlab.

5.3.3 Expected Development Flow

Fig. 5.3 shows a typical development flow of using LibAS. New developers may first

install our remote Matlab package and the pre-built DevApp (like an example developing

app). This DevApp helps developers connect phones/watches to their sensing servers, with

a simple UI as shown in Fig. 5.2, thus eliminating the need to install and learn platform

development kits at this stage. After deciding which signals to use and how to process

them in the callback function, the developers can start testing their sensing algorithms on

real devices from different platforms and then modify the algorithm to meet their goals.

Developers can, in the end, choose to install a platform development kit for building

the UI that they like to have and import LibAS as a library for their own apps. Note that the
2MEX [8] is an interface to call native C functions in Matlab

129

same sensing algorithm implemented in Matlab can be used for both ways, i.e., executing

DevApp directly or including LibAS as an external library. Most of our current developers

choose our remote mode to build their demo apps thanks to the simplicity and the strong

visualization support in Matlab.

Once developers have validated their algorithms in the remote mode, they can (op-

tionally) finalize the app to the standalone mode. As described earlier, developers can

finish this transformation easily with the Matlab Coder API [22, 31], test with our Matlab

MEXWrapper, and then ask the app to connect to the standalone callback function. When-

ever developers notice a problem with their designed sensing algorithms, they can easily

switch back to the remote Matlab mode for ease of the subsequent development.

5.3.4 Cross-platform Support

Some astute readers might have already noticed that LibAS can provide the cross-

platform support because our platform control API connects to developers’ sensing al-

gorithms via several universal interfaces/wrappers (marked by the double tilde symbols in

Fig. 5.2). For example, in the remote mode, different devices/platforms talk to the remote

server via a standard socket. In the standalone mode, devices can understand the C-based

callback either directly (like iOS and Tizen) or through native interfaces, like JNI/NDK

(Android and Java). In summary, nearly all mobile platforms can understand/interface C

and standard sockets, thus enabling LibAS to support the development of cross-platform

acoustic sensing apps.

We are not the first to support cross-platform frameworks with this concept. For ex-

ample, a well-known game library, Cocos2d-x [11], also helps build cross-platform games

in C. Our remote mode model is also similar to several popular cross-platform UI frame-

works like PhoneGap [25] and ReactNative [27] that load app UI/content from a remote/lo-

cal JavaScript server. However, we are the first to apply this concept to acoustic sensing

apps. With its cross-platform support, LibAS enables acoustic sensing apps to be ported to

130

various existing and emerging devices.

5.4 Implementation

LibAS implements the platform control API in Java, Objective-C, and C separately,

and exports them as external libraries on different platforms, such as .aar for Android,

.framework for iOS, .jar for Linux/Windows, and .h/.c for Tizen. These implementations

follow a unified protocol to play/record acoustic signals and talk to the remote Matlab

sensing server. Implementing this framework to offload the sensed data to a Matlab, process

it, and then return the result to the device is challenging for the following two reasons.

First, it requires the domain knowledge of controlling audio and network interfaces

on different platforms. For example, Android SDK can support recording and playing

audio signals simultaneously by just writing or reading bytes from AudioRecord and to

AudioTrack classes in separate threads. However, iOS requires developers to know how

to allocate and handle low-level audio ring buffers in the CoreAudio framework to record

audio in real time (i.e., fetching the audio buffer for real-time processing whenever it is

available rather than getting the entire buffer only when the recording ends). Tizen needs

its native programming interface of audio-in/out classes to record and play audios based

on a callback. Also, different platforms usually need their own ways to control which mi-

crophone/speaker to use and how to send/record the signal properly. These development

overheads can be the roadblock to the realization of existing acoustic sensing apps on dif-

ferent platforms.

Second, building a Matlab server to control the sensing devices via sockets is not trivial.

Even though Matlab has already been used to process and visualize acoustic signals in many

projects [37, 76, 115, 118, 119, 130], the lack of well-established socket support makes it

challenging to realize our remote mode, especially when multiple devices are connected.

For example, during the development of LibAS, we discovered and reported two issues

with Matlab’s socket library regarding randomly dropped packets and UI thread blocking.

131

Similar issues are also noticed by our current users. As a result, they chose to either export

the audio signals as files or processing signals directly in Java before using LibAS. To

address these issues that might have been caused by Matlab’s single-thread nature, LibAS

builds its own external Java socket interface. This Java socket interface is then imported to

Matlab to support reading/writing multiple sockets simultaneously in separate threads. The

performance of our current design is shown in Section 5.6.

5.5 Demonstrative Applications

We have implemented three different types of acoustic sensing apps with LibAS. These

apps are chosen to cover the three major acoustic sensing categories: (1) sonar-like sensing

(2) inter-device interaction, and (3) sound fingerprinting. Table 5.1 shows how existing

projects belong to these three categories. The purpose of these implementations is to show

how LibAS can be used to build real acoustic sensing apps and how LibAS can reduce the

development efforts.

The first demo app is a sonar sensing on phones, which sends high-frequency chirps

and estimates the distance to nearby objects based on the delay of received/reflected chirps.

Technically, the development pattern of such a sonar-like sensing is akin to many exist-

ing approaches which send a sound and analyze the reflected echoes in real time (even

though the signals might be processed differently). The second demo app is an inter-device

movement sensing based on the Doppler effect [108]. This app can be regarded as a gener-

alization of multiple existing inter-device interacting apps. We will use this app to show the

advanced features of LibAS, such as how to control multiple devices simultaneously. The

last demo app is a graphic user interface (GUI) which can easily classify different targeted

activities based on acoustic signatures. The functionality of this app can cover several ex-

isting projects to know the location/status of phones by comparing the acoustic signatures.

We will utilize this app to demonstrate Matlab’s GUI support and capabilities in connecting

to other 3rd-party libraries to quickly validate acoustic fingerprinting apps.

132

SERVER PORT = 50005;
JavaSensingServer.closeAll();

% 0. sensing configurations
FS = 48000; PERIOD = 2400; CHIRP LEN = 1200;
FREQ MIN = 18000; FREQ MAX = 24000;
FADING RATIO = 0.5; REPEAT CNT = 36000;

% 1. build sensing signals
time = (0:CHIRP LEN�1)./FS;
signal = chirp(time, FREQ MIN, time(end), FREQ MAX);
signal = ApplyFadingInStartAndEndOfSignal(signal, FADING RATIO); % for

inaudibility
as = AudioSource('demo', signal, FS, REPEAT CNT);

% 2. parse settings for the callback
global PS; PS = struct();
PS.FS = FS; PS.SOUND SPEED = 340; PS.thres = 0.5;
PS.matchedFilter = signal(CHIRP LEN:�1:1);
% 3. create sensing server with callback
ss = SensingServer(SERVER PORT, @SonarCallback, SensingServer.

DEVICE AUDIO MODE PLAY AND RECORD, as);

Code 5.1: SonarMain.m. The remote main script defines the sensing settings and creates
a sensing server.

5.5.1 Demo App: Sonar Sensing

The first app we developed with LibAS is a basic sonar system that continuously sends

inaudible chirps to estimate the distance to nearby objects. The distance can be measured

by calculating the delay of reflected echoes with the corresponding matched filter [112] (for

the linear chirp case, the optimal matched filter is the reverse of sent chirps). We chose this

app to illustrate the basic steps of using LibAS for the simplicity of the necessary signal

processing. It can be easily extended to many other existing projects which also sense the

environments/objects based on the real-time processing of the reflected sounds.

Code 5.1 (main script) and Code 5.2 (callback function) show how this sonar app is im-

plemented in our remote Matlab mode. As mentioned earlier, the main script and callback

are the only two required functions which developers need to implement for their sensing

algorithms. As the main script shown in Code 5.1, we first create the desired chirp signals

ranging from 18kHz to 24kHz and then pass this created chirp signal along with the desired

SonarCallback function to the SensingServer class. A few other constants necessary

for the callback to parse the received signal — e.g., the signal to correlate as the matched

133

function [ret] = SonarCallback(action, data, user, context)
global PS; % parse settings
USER CODE RANGE = 1;

% 1. init callback parameters
if action == context.CALLBACK INIT
PS.detectRange = 5; % meter

% 2. process the senisng data
elseif action == context.CALLBACK DATA
cons = conv(data, PS.matchedFilter);
peaks = cons(cons > PS.thres);
dists = 0.5 * (peaks(2:end) � peaks(1)) * PS.SOUND SPEED / PS.FS;
dists = dists(dists < PS.detectRange);
ret = SenisngResult(dists, 'floatArray');

% 3. user�specificied events (optional)
elseif action == context.CALLBACK USER && user.code ==

USER CODE RANGE,
PS.detectRange = user.intVal;

end
end

Code 5.2: SonarCallback.m. The remote callback focuses on processing each repetition
of the sensing signals received.

filter in this example — can be assigned to a global variable called PS.

As the remote callback function shown in Code 5.2, the received data argument can be-

long to 3 different types of action. When the server is created, an action called CALLBACK INIT

will be taken to initialize necessary constants/variables. In this example, we assign the

value of detectRange and it can later be updated in the app’s UI. The most important part

of the callback function occurs when the received data belongs to the action CALLBACK DATA.

In this case, the received data will be a synchronized audio clip which has the same size

and offset as the sent signal. For example, it will be the 25ms chirp sent by the app plus

many reflections following. The synchronization (e.g., knowing where the sent signals in

the received audio start) is processed by LibAS and hidden from the developers. So, de-

velopers can just focus on how to process each repetition of sent signals received. This is

found to be a general behavior of acoustic sensing apps [93, 94, 110, 118–120], where the

apps usually focus on the processing of each repetition of the sent signal. Some system

may need the reference of previously-received signals which can be done by buffering or

using the context input argument. Details of these advanced functions can be found in

LibAS’s Github repository [17].

134

Since the recorded signal has already been synchronized and segmented by LibAS, the

processing of each recorded chirp is straightforward. As shown in Code 5.2, a matched

filter, i.e., conv(), can be directly applied to the received signal, and then the peaks (i.e.,

the indication of echoes) are identified by passing a predefined threshold. The distance to

nearby objects can be estimated by multiplying half of the peak delays (after removing the

convolution offset) to the sound of speed, and then divide by the sample rate. The objects

within the detect range will be added to a return object and then be sent back to the device

for updating the app UI. Moreover, the simplicity of callback in LibAS makes its transfor-

mation straightforward for the C-based standalone mode (it can even be automated with

the Matlab Coder API [22, 31]). Note that we intentionally make the detect range modifi-

able in this example to show the extensibility of LibAS. In this example, this value can be

adjusted in the app by calling the sendUserEvent(code, val) function in our platform

control API. An example of sending this user-defined data can be found in the DevApp UI

as shown in Fig. 5.2. This extensibility is important for developers to customize their own

sensing behavior with LibAS. For example, one of our current developers uses this function

to send movement data (based on accelerometers) and then improve the acoustic sensing

performance by integrating the updated movement data. More details of user experience of

LibAS can be found in Section 5.7.

5.5.2 Demo App: Inter-Device Movement Sensing

The second demo app implemented with LibAS is the inter-device movement sensing

app based on the Doppler effect. Specifically, the frequency shift due to the Doppler effect

can be used to estimate the velocity and distance of movements between devices. Sensing

the movement by Doppler shifts has been used to provide a virtual input interface to IoT

devices [130], create a new gesture control between smartphones [115], and detect if two

users are walking toward each other [131]. Our demo app implemented with LibAS can be

viewed as a generalization of these movement sensing apps.

135

(a) Experiment settings

(b) Movements estimated by the doppler effect

70cm away

The watch is moved close to the phone
and moved back to the original position Velocity (cm/s)

Distance (cm)

Time (second) 0 10 M
ov

em
en

t (
cm

 o
r c

m
/s

)

-40

0

40

80

70cm

Figure 5.4: Movement sensing by Doppler shifts. The integrated area of velocity indi-
cates the movement shift. A demo video can be found at https://goo.gl/AiJba9 [19]

Based on Doppler’s theory [108], the relationship between the changed movement

speed and the shifted central frequency can be expressed as: f 0c� fc = v fc/c, where the

fc is the central frequency of sent signals, f 0c is the shifted central frequency, v is the rel-

ative velocity between devices, and c is the speed of sound. Note this Doppler detection

is usually coupled with a downsampling and overlapped sampling to further improve the

sensing resolution and response latency [115, 130, 131]. For example, we set the down-

sampling factor to 8 with an 87% overlapping ratio. This setting can provide a movement

sensing resolution of 2cm/s instead of 17cm/s when sensing via a 20kHz tone.

Most of our current implementation of this demo app follows a similar pattern as in our

previous demo app. Some minor changes include using different signals (i.e., narrow-band

tones) and passing different parsing parameters to the callback (i.e., downsampling fac-

tors). The largest difference is to initialize multiple SensingServer classes for controlling

multiple devices to sense simultaneously. For example, in this example, we have a trans-

mitting/receiving server that connects two devices where one is responsible for sending the

tone sound while the other is responsible for receiving and processing it. In LibAS, devel-

opers can easily configure multiple devices getting connected and then trigger the sensing

among devices together. We omit the description of how to process the callback function of

136

the receiving device since it is nearly identical to the previous demo app except for applying

FFT to the data argument instead of the matched filter.

Fig. 5.4 shows the result of moving a Zenwatch 3 from 70cm away toward a Nexus 6P

and then moving it back to the original location. In this example, integrating the estimated

velocity can estimate the moving distance as 64cm, which is about 6cm different from the

ground truth. Similarly to the previous demo app, this implementation needs only about

100 lines of code to write and it can be easily executed on devices from different platforms,

thus showing the simplicity of creating acoustic sensing between devices with LibAS. Note

that this example can also be extended to other apps that need inter-device sensing, such as

aerial acoustic communication or localization [81, 82, 92, 125]. A video of this demo app

can be found at https://goo.gl/AiJba9 [19].

5.5.3 Demo App: GUI for Activity Fingerprinting

The last demo app we have implemented is a graphic user interface (GUI) that can

classify various activities based on acoustic signatures. This demo app is based on the

property that different activities, like placing the phone at different locations, will result in

different frequency-selective fading because the reflected acoustic signals are different from

one location to another. This acoustic signature has been utilized in many sensing apps. For

example, it can be used to distinguish rooms [109], remember the tagged locations [118],

recognize the touched surface [76], and sense how the phone is touched [97]. Using the

GUI of this demo app implemented with LibAS, similar fingerprinting apps can be realized

without even writing a single line of code.

The GUI of this demo app built upon LibAS is shown in Fig. 5.5. After the device’s

DevApp connected to the Matlab server, developers can click the new button to create the

target activity to sense. For example, we have used this GUI to implement a novel app

of sensing hand gestures (i.e., a palm or a fist) with smartwatches. After these targets are

created using the GUI, we ask users to place the hand on each target gesture and click

137

Acoustic signatures for each target

Sensing Control Pnael SVM Parameter Control Panel Real-time updated acoustic signatures and predicted results

Server Control Pnael

Target2: fist Target1: palm

Figure 5.5: Graphical User Interface (GUI) for fingerprinting acoustic signatures.
Developers can easily classify different user-defined actions based on acoustic signatures.
A demo video of this GUI support can be found at https://goo.gl/DqFFcA [18].

the record button, which triggers the callback function to save the audio fingerprint of

that target activity. The collected fingerprint is shown automatically in the GUI when the

recorded data is streamed by LibAS, so that developers may easily see if it is possible

to get reliable acoustic signatures for each target activity. SVM classifiers can be built

by clicking the train button and the corresponding training parameters can be adjusted

in the right side of the control panel. Once the predict button is clicked, the result of

classification will be updated as the red text shown in the GUI in real time. This simple

GUI for fingerprinting apps is shown to be able to identify the above-mentioned gestures

by Zenwatch 3 with a higher than 98% accuracy. A demo video of this GUI can be found

at https://goo.gl/DqFFcA [18].

This demo app shows how the GUI-support of Matlab and the capability of integrating

3rd-party libraries, i.e., LibSVM [43], can help develop acoustic sensing apps using LibAS.

We have also used this GUI to realize other fingerprinting apps, such as EchoTag [118],

and obtained reasonably good results in a very short time without any coding. This GUI

can be easily adapted to passive acoustic fingerprinting apps, such as Batphone [116] and

138

others [37,88], which use the sound of environments as acoustic signatures, rather than the

sensing signals sent by the device.

5.6 Evaluation

We will first evaluate the overhead of our current LibAS implementation, such as the

response latency and the preprocessing cost. Then, we will show the adaptability of us-

ing LibAS to build cross-platform acoustic sensing apps. Specifically, we will show how

the platform/device heterogeneity can affect our demo apps and how these issues can be

identified/mitigated by using LibAS.

5.6.1 Overhead

As the system described earlier, LibAS is a thin layer between the developers’ sensing

algorithms and the sensing devices. In the standalone mode, the performance overhead of

LibAS is nearly negligible since every component is built natively. In the remote mode,

there can be an additional overhead caused by the network connection.

5.6.1.1 Response latency

LibAS provides a convenient utility function to measure the response latency of the de-

velopers’ sensing configurations. We define the response latency of LibAS as the time that

sensing devices record a complete repetition of sensing signals to the time that the sensing

results based on this repetition are processed and returned from callbacks. Fig. 5.6(a) shows

this latency profiles under different configurations. We first show a dummy case where the

callback doesn’t process anything, but returns a constant (dummy) sensing result instantly.

This dummy case is used to characterize the baseline overhead that is caused by LibAS’s

implementation. As shown in the figure, we repeated the latency measurements under four

different configurations, which include (i) 2-hop (the sensing server and the device are

connected to the same 802.11n WiFi router), (ii) 1-hop (the sensing device is connected

139

2hop 1hop 0hop native
Settings

0

20

40

60

La
te

nc
y

(m
s)

dummy
sonar
5x sonar

(a) Response latency

0.1 1 10 100
Preamble volume (%)

0

0.2

0.4

0.6

0.8

1

D
et

ec
tio

n
pr

ob
ab

ilit
y

iPhone 6s
Tizen Gear S3
Nexus 6P

(b) Preamble detection

Figure 5.6: Overheads. The minimal overhead incurred by LibAS can support most real-
time acoustic sensing apps.

directly to the server), (iii) 0-hop (the sensing device is connected to a server residing in

the same machine), and (iv) standalone (the processing is executed natively and locally). In

this experiment, we always use a 2013 MacBook Air, i.e., 1.3 GHz CPU & 8GB RAM, as

the sensing server and an Android Nexus 6P as the sensing device (except the 0-hop case

where the sensing device is the MacBook itself). The results from our implementations on

iOS and Tizen follow a similar pattern but are thus omitted due to the space limit.

As shown in Fig. 5.6(a), without considering the processing cost of the sensing algo-

rithm (i.e., a dummy case), the remote mode of LibAS can achieve an average response

latency less than 40ms in a common 2-hop setting. This latency can be reduced further to

30ms by turning either the laptop or phone into a hotspot and connect them directly. Note

that this 1-hop (hotspot) setting is particularly helpful to use LibAS when WiFi is not avail-

able, e.g., testing our sonar demo app in an outdoor environment. When both the sensing

devices and the server are located on the same machine (i.e., zero networking overhead), the

response latency can be reduced further to 10ms. By closely anatomizing the delay, 6ms

comes from the way our Java socket interface is hooked to Matlab while only the other

4ms is caused by our pre-processing. According to our preliminarily test, implementing

the same remote function directly on Matlab’s asynchronous socket API incurs a >250ms

140

overhead under the same configuration, thus making it nearly impossible to provide a real-

time response. Even though our standalone mode can push the response latency to less than

5ms, this 0-hop setting is useful for developers to build/test their sensing algorithms with

the strong Matlab support while keeping the latency overhead at a level similar to the na-

tive calls. Generally, the low latency overhead of LibAS can meet the requirement of many

real-time acoustic sensing apps, such as our sonar demo app that needs the processing to be

completed in 50ms (i.e., before sending the next 2400-sample signals sampled in 48kHz).

It is important to note that, by considering the callback processing delay of the devel-

oper’s sensing algorithms, the remote mode might sometimes get an even better overall

performance than the standalone mode. For example, if we intentionally repeat the same

sonar processing 5 times in the demo app callback, i.e., the 5x sonar case in Fig 5.6(a),

the standalone mode will miss the 50ms deadline while the remote mode will not. This

phenomenon is caused by the fact that a remote server (laptop) usually has more computa-

tion resource than the sensing device (phone/watch). This fact is widely used in offloading

several computation-hungry processing, e.g., video decoding, to a cloud server [105] and

might be necessary to build sophisticated acoustic sensing apps in future. LibAS already

supports both modes and can automatically collect/report the performance overheads, so

developers can easily choose whatever mode fits best to their purpose. As we will discuss

in Section 5.7, the minimal latency overhead of LibAS meets the real-time requirements of

our current users.

5.6.1.2 Preamble detection overhead

Preamble detection is an important feature provided by LibAS as it helps identify when

the start of sent signals is recorded and then truncate the received audio signals into correct

segments with the same size/offset of the sent signals. Our preamble detection is based on

a similar design to existing approaches [82,118,119]. Specifically, the preamble is a series

of chirps (must be different from the sensing signals) that can be efficiently identified by

141

a corresponding matched filter [112]. The performance of preamble detection depends on

the length/bandwidth of preamble signals, the detection criteria, and also on the hardware

capability. Theoretically, a long and wide-band preamble usually has a high detection rate,

but also incurs a long initial sensing delay (i.e., the delay before playing the sensing signals)

and more audible noise. We currently use 10 repetitions of a 15kHz–22kHz chirp plus a

4800 sample padding as the default preamble for LibAS. Each chirp is 500 samples long

and separated from the next chirp by 500 samples. We set the criteria to pass the detection

when all 10 chirps are detected correctly (i.e., jitter between detected peaks is less than 5).

This ad-hoc setting is chosen based on our experience that can support most devices from

different platforms for reliable detection of the start of signals.

We have conducted experiments of our current preamble detections on more than 20

devices. For the acoustic sensing apps that sense the signal sent by itself, such as our sonar

demo app, LibAS can easily achieve higher than a 98% detection probability when 20% of

volume is used to play the preamble. On the other hand, for apps that sense the signal sent

from another device, like our inter-device demo app, LibAS can successfully detect a device

1m (5m) away with a higher than 90% (80%) probability. Our current design can reliably

detect the preamble sent from a device 10m away when the retransmission of preamble is

allowed. As shown in Fig 5.6(b), this performance might vary from device to device due to

their hardware differences. This is the reason for our choice of a wideband 15kHz–22kHz

preamble, which incurs fewer hardware artifacts and frequency-selective fading as shown

in the following sections.

Note that this current preamble setting might not be perfectly aligned with every sensing

app. For example, apps based on frequency-domain response rather than time-domain

information, might be more tolerant of the segment errors. In such a case, developers might

want to loosen the detection criteria to sense devices within a longer range or reduce the

chirp bandwidth to make the preamble inaudible. The preamble parameters can be easily set

by AudioSource.setPreamble() function, and it can be efficiently tested through LibAS.

142

0 50 100
Speaker volume (%)

0

0.2

0.4

0.6

0.8

1

N
or

m
al

iz
ed

 a
m

pl
itu

de

Galaxy S5 (MIC)
Zenwatch 3 (MIC)
Tizen Gear S3

(a) AGC on

0 50 100
Speaker volume (%)

0

0.2

0.4

0.6

0.8

1

No
rm

al
ize

d
am

pl
itu

de

Nexus 6P (MIC)
Nexus 6P (CAM)
Nexus 6P (RECOG)

(b) Different flags are used

Figure 5.7: Automatic gain control detections (AGC). LibAS detects if AGC is enabled
by sending a signal with linearly increased volumes.

We expect a better preamble design to emerge once more developers start building apps

with LibAS. One of our current active developers using LibAS has modified our setting to a

customized short and inaudible preamble since he only targets high-end smartphones with

reliable microphone/speaker hardware while another developer added a longer padding

period after the preamble to avoid overlapping it with the sensing signals when more than

3 devices are connected.

5.6.2 Adaptability

Adaptivity is an important performance indicator of LibAS since it is designed to sup-

port various applications, platforms, and devices. Our demo apps have shown that LibAS’s

design is general enough to support several categories of acoustic sensing algorithms. Some

other real-world use-experience of LibAS by our current developers will also be presented

in the next subsection. Here we will focus on how LibAS can adapt the platform/device

heterogeneity to improve the sensing performance and help developers make the correct

sensing configurations.

143

5.6.2.1 Platform heterogeneity

One of the key software features of mobile OSes that might significantly affect the

performance of acoustic sensing apps is the automatic gain control (AGC). AGC is reason-

able for voice recording because it can avoid saturating the limited dynamic range of the

installed microphone. However, AGC is usually not desirable for acoustic sensing apps.

Taking our fingerprinting demo app as an example, AGC can alter the acoustic signatures

when the ambient noise increases, thus reducing the prediction accuracy. AGC will also

confuse the sonar demo app because the change of time-domain response might be domi-

nated by AGC rather than the object reflections.

Fig. 5.7 shows LibAS’s utility function to identify AGC by sending a 2kHz tone over 4

seconds with a linearly increased speaker volume (from 0% to 100%). If the AGC is not

enabled, the amplitude of received signals should increase linearly over time (in the same

way as how the signal is sent). A few examples with AGC enabled can be found from

Fig. 5.7(a), where the amplitude of received signals does not increase linearly and it stops

increasing after the speaker volume reaches certain ranges.

In iOS, this AGC can be turned off by setting kAudioSessionMode Measurement,

but based on our experiments, the official Android AGC API always fails to disable the

microphone AGC (e.g., not functional or indicating the API not implemented by the man-

ufacturer). By using LibAS to loop several audio settings automatically, the response is

found to vary based on the programming AudioSource flag set to the microphone, e.g.,

MIC, CAMCORDER, or VOICE RECOGNITION. As shown in the example of Fig. 5.7(b), setting

the flag to VOICE RECOGNITION in Nexus 6P can disable AGC and make the response linear

in the speaker volume. Based on our experiments, setting the flag to VOICE RECOGNITION

can actually turn off AGC for most Android devices we have tested except for Zenwatch

3. Our DevApp has a clear UI, helping developers to select these hidden platform options,

check the effects of each option, and adapt their sensing configurations accordingly (e.g.,

using the sound volume in the linear range even when the AGC cannot be disabled).

144

0 0.5 1 1.5 2 2.5
Frequency (Hz) ×104

0

20

40

60
Am

pl
itu

de
 (d

B)

Galaxy S4 (mic ch1)
Galaxy S4 (mic ch2)
Nexus 6P (mic ch1)
Nexus 6P (mic ch2)

(a) Different microphones

0 0.5 1 1.5 2 2.5
Frequency (Hz) ×104

0

10

20

30

40

50

Am
pl

itu
de

 (d
B)

iPhone5c (top speaker)
iPhone5c (bottom speaker)
iPhone6s (top speaker)
iPhone6s (bottom speaker)

(b) Different speakers

Figure 5.8: Frequency responses of various devices. The sensed frequency responses
vary not only with devices but also with the microphone/speaker used to sense.

5.6.2.2 Device heterogeneity

The microphones and speakers in commodity phones are usually not designed for

acoustic sensing, especially for inaudible sensing signals. Fig. 5.8 shows the frequency

response of several Android and iOS devices. These results are based on experiments of

sending and receiving 5 repetitions of a 4-second frequency sweep from 0Hz to 24kHz by

the same device. This experiment was conducted in a typical room environment and the

phone was held in the air by hands, which resembles the most common scenario of using

smartphones. A similar experiment was done previously [81], but only the microphone

gains were reported.

As shown in Fig. 5.8, sensing signals at certain frequencies could inherently have a

20dB higher signal strength than at other frequencies. For apps that need to detect fre-

quency shifts due to Doppler effects, it would be more beneficial to sense in the range with

flat frequency responses. Otherwise, acoustic sensing apps would prefer sensing at frequen-

cies with stronger responses. Among the device we tested, Nexus 6P and iPhone 5c are the

best to have consistent responses over different frequencies. We also noticed that iPhones

generally have a lower speaker/microphone gain than Android devices, which could be due

to the different hardware configuration in iOS. The strong peak of iPhone 5c on 2250Hz (as

145

shown in Fig. 5.8(b)) is usually known as the microphone resonant frequency. Most acous-

tic sensing apps should avoid sensing at this resonant frequency because the responses

might be dominated by this effect, rather than by the target activity to sense.

This hardware heterogeneity calls for a careful design of sensing signals and algorithms.

For example, according to our experimental results, the same sensing algorithm in our sonar

demo app allows Nexus 6P, Galaxy S7, Galaxy Note4 to sense a glass door 3m way reliably

(with more than 15dB SNR) based on a18kHz–22kHz inaudible sound. However, iPhone

6s, Galaxy S4, and Gear S3 are unable to achieve a similar performance unless using an

audible sound. With LibAS, such device heterogeneity can be easily observed and adapted

with our real-time visualization support.

5.7 User Experience

To evaluate the applicability of LibAS, we collected and analyzed feedback from three

users (including experienced and novice developers) who were using LibAS for their projects.

The first user (EngineerA) is an engineer at a major smartphone manufacturer, which

sells more than 200M smartphones per year. He wanted to build a demo app for an ex-

isting sound-based force sensing project called ForcePhone [119]. The other two users are

CS PhD students at different universities (StudentB and StudentC). They both wanted

to build new acoustic sensing apps. StudentB is familiar with Android/Python, while

StudentC has only relevant experience in processing WiFi signals with Matlab. StudentB

had a proof-of-concept app before adapting this project to LibAS, and StudentC started

her project from scratch with LibAS.

EngineerA was the first user of LibAS and collaborated with us. Since LibAS was

not mature at that time, we provided him numerous technical supports and also added

new functions based on his need. An issue that EngineerA faced was the hanging of

LibAS installation, i.e., when adding our customized socket interface. This issue was later

identified as a path problem and solved in our new update. StudentB is the second user of

146

LibAS. At the time StudentB used LibAS, we had already published DevApp online and

documented our API. StudentB knew us but never worked on the same project. StudentB

mostly worked independently to adapt his project to LibAS. StudentC is our third user

and had no knowledge of our team or LibAS. She contacted us after seeing some of our

publications on acoustic sensing apps. At the time StudentC started using LibAS, our

installation guide and examples had already been documented and made available, so she

can successfully install LibAS by herself and used our demo apps. Our study shows that

LibAS not only significantly reduced the development efforts in real-world projects for

experienced users but also lowers the bar for developing acoustic sensing applications for

novice users.

5.7.1 Why LibAS?

Before using LibAS, EngineerA already had the Android source from the ForcePhone

project team, but he found it challenging to modify the sensing behaviors directly in this

source. For example, EngineerA had no idea why/how the program failed to work after his

modifications on the sensing signals since all the processing was embedded in the native

Java/C code. EngineerA wanted to build his system using LibAS because he needed full

control of the ForcePhone project to meet his demo need.

StudentB’s goal was to develop a smartwatch localization based on sounds (called

T-Watch). Specifically, the app could estimate smartwatches’ locations by triangulating

the arrival time of signals recorded in paired smartphones. He already had a proof-of-

concept system before using LibAS. Specifically, he developed an app on Android that

played/recorded sounds simultaneously and saved the recorded sounds to a binary trace

file. He loaded this file to a laptop via USB cable and then processed his sensing algorithm

offline in Python. StudentB started using LibAS because he noticed that porting his proof-

of-concept Python code to a real-time demo would be time-consuming and error-prone.

StudentC was developing an acoustic sensing app similar to our sonar demo app, but

147

based on an advanced FMCW sonar technique [75]. She had tried to build a standalone app

on Android/iOS to process the FMCW directly but got stuck on several issues. For example,

she was wondering why her own app could not record the high-frequency responses and

why the played high-frequency chirp was audible. In fact, these were frequently asked by

new acoustic sensing developers. She wanted to use LibAS because our demo apps could

serve as a reference design to build her own project.

5.7.2 Benefits of Using LibAS

The biggest common benefit reported by all three users was the visualization provided

by LibAS’s remote mode. They commented that such a visualization helped them “see”

and understand how the received response changed (e.g., a higher/lower SNR) when the

sensing settings were modified. Specifically, using this visualization, EngineerA tuned the

system performance and investigated how the environmental noise affected his demo app;

StudentB identified and solved several unseen issues such as the signal degradation caused

by different wearing positions of smartwatches; and StudentC learned the sonar sensing

capability on real devices and also noticed the potential issues caused by reflections from

ceilings/floors.

LibAS’s abstraction was another benefit these three users mentioned multiple times.

They all reported that this abstraction helped them focus on developing the core sensing

algorithm, so they could build/transform their projects quickly. Note that our abstraction

is designed with the consideration of future extensibility. For example, in StudentB’s

project, the sensing algorithm needed to know if users were clicking a surface based on

accelerometer data, and these “additional” data could be easily sent by the extensible user-

defined data interface of LibAS, as described in Section 5.5.

The cross-platform support might not be the primary incentive for these three develop-

ers to use LibAS, but it turned out to be an unexpected handy feature the users enjoyed.

For example, StudentB was targeting only Android phones and smartwatches, but he later

148

ForcePhone (no UI) T-Watch (offline) BumpAlert (no camera)
Java 3913 Java 4080 Java 1734
Matlab 1992 Python 1998 Python 765
C/C++ 2273 C/C++ 115 C/C++ 353

w/ LibAS w/ LibAS Sonar demo app
Matlab 490 Matlab 1390 Matlab 279
Java 446
C/C++ 153
Reduction 86% Reduction 78% Reduction 90%

Table 5.2: Estimated code reductions. The significant reduction of code demonstrates
the capability of LibAS to save development time/effort.

discovered that one strong use-case for his project was to provide a touch interface on

laptops by directly using the laptop microphones. If his app had been built natively on

Android, it would be another challenging task to transform the app to Linux/Windows, but

this was not a problem with LibAS. By using LibAS, he easily achieved this by installing

DevApp (including the platform control API) on his laptop. He also used this function to

test his project on a newly-purchased Tizen smartwatch. The same benefit was also seen

by StudentC, when she installed DevApp on her personal iPhone and conducted a few

experiments with it. We expect the cross-platform support to become a more attractive fea-

ture when users notice the effort of cross-platform development is significantly reduced by

using LibAS.

5.7.3 Estimated Code Reduction

We analyze the code reduction of these three use-cases to estimate the potential saving

of effort when using LibAS. Note that this estimation is not perfectly accurate since the

apps developed with LibAS by our users are not completely identical to the original/refer-

ence implementations. For example, the ForcePhone source code includes some demo/test

activities, but they are not necessary for EngineerA. There are also no real-time process-

ing components in StudentB’s original offline Python code since he built the real-time

demo app only with LibAS. We have tried our best to estimate the (approximate) code

149

reduction fairly by ensuring the code w/ or w/o LibAS implements the same functional-

ity. Specifically, we remove all components from the original/reference system that are not

used in our users’ implementations with LibAS (such as the demo/test activities). We use

our sonar demo app and an existing sensing app called BumpAlert [120] as the reference

for StudentC’s case since StudentC has not yet finished her project. The trend of code

reduction should be similar if she keeps building her system upon our sonar demo app.

Table 5.2 shows the lines of code estimated with the open-sourced cloc tool [35], where

all three use-cases are shown to have more than 78% reduction of code. Most of the reduc-

tion comes from the abstraction of hiding platform-dependent code. EngineerA is the only

one who includes LibAS’s platform control API in his own app while others use our pre-

built DevApp. Even in this case, his app’s Java implementation is still significantly shorter

than the original design (490 lines instead of 3913) since most audio/network/processing-

related components are covered by LibAS. Note that this reduction should be even more

prominent if we consider StudentB’s and StudentC’s use of LibAS on Linux/Win, Tizen,

and iOS devices.

After taking a close look at StudentB’s original implementation, we notice that 1745

lines of code are used to handle the audio recording and 370 lines of code are used for

communicating the recorded trace. These lines of code are reduced to 62 and 22 lines with

LibAS, respectively. The code for the UI is nearly identical for both implementations (w/

or w/o LibAS), but there is a large reduction of code on processing the received signals.

He told us this reduction exists because he sometimes needed to duplicate his Python pro-

cessing on Android to check some performance metrics before going to the offline parser.

This problem does not exist when LibAS is used since it allows the designed algorithm to

be executed on different platforms. Even though our estimation is not general, it is still an

interesting indicator of how LibAS can save developers’ efforts in building acoustic sensing

apps on different platforms.

150

5.8 Discussion

LibAS is a cross-platform library to ease the development of mobile acoustic sensing

apps. However, when developers want to release their production apps, they might still

need to implement the customized UI on multiple platforms by using the specific platform

development kits. One way to solve this problem is to package LibAS as a native plug-in

for existing cross-platform UI libraries, such as PhoneGap [25] or ReactNative [27]. Some

other features that we are considering to add, include the support of Apple’s Watch OS4 and

Tizen TV, more demo examples, and a crowdsourcing platform to share developers’ sensing

configurations. Also, there is potential for LibAS to support “non-sensing” apps, such as

real-time sound masking or authentication based on acoustic signal processing [52, 72].

LibAS has been open-sourced for months. We expect the open-source community to try

and refine the idea of LibAS. For example, based on EngineerA’s suggestion, we added a

save/replay function that allowed developers to keep their sensed signals in a file and then

replay it with their assigned callback. This function is useful since developers might want

to try different parameters/algorithms based on the same experiment data. StudentB has

become an active contributor, and helped build several useful UI features on our DevApp.

We expect to see more changes like these, so LibAS may help acoustic sensing apps truly

ubiquitous.

5.9 Conclusion

We have presented LibAS, a cross-platform framework to ease the development of

acoustic sensing apps. Developing acoustic sensing apps with LibAS is shown to reduce

lines of code by up to 90% and provide cross-platform capabilities with minimal overheads.

LibAS has been open-sourced and currently supports Android, iOS, Tizen, and Linux/Win-

dows. Three developers have already used LibAS to build their own apps and they all agree

that it saves their effort significantly in developing acoustic sensing apps.

151

CHAPTER VI

Conclusion and Future Works

In this thesis, we proposed and implemented three novel acoustic sensing applications,

BumpAlert, EchoTag, and ForcePhone. These apps rely only on acoustic signals and

built-in hardware, so they are compatible with most existing mobile devices and likely to

remain that way in the future. From our experience of designing these three apps, we

learned that building acoustic sensing apps usually requires a significant amount of specific

domain knowledge and faces challenges unseen in traditional apps. Thus, to facilitate

the development of acoustic sensing apps, we proposed a cross-platform framework called

LibAS. LibAS provides a proper abstraction that separates the core sensing algorithms from

platform hardware controls, thus allowing developers to prototype/test their design quickly

without even installing the platform development kits. Since apps built by LibAS are cross-

platform supported, they can be installed/executed on multiple popular mobile platforms,

such as Android, iOS, or Tizen, without modifying their code. The simplicity/efficiency

of developing acoustic sensing apps with LibAS can help non-experts with various design

backgrounds to develop new acoustic sensing apps.

6.1 Acoustic Sensing Applications

Since audio is a natural interface for humans to interact with devices, microphones and

speakers have become the standard/common built-in sensors on nearly all mobile/wear-

152

able/IoT devices. Acoustic sensing apps reuse these built-in microphones/speakers to pro-

vide advanced sensing functions. For example, BumpAlert has shown that acoustic sensing

in mobile devices can detect objects more than 4 meters away, and EchoTag has shown that

the sensing resolution can distinguish locations even at a cm-level. ForcePhone further

utilizes the sounds traveling through the smartphone body to provide a force-sensing inter-

face.

Even though the hardware of built-in microphones/speakers cannot achieve the same

sensing capability as specially-designed sensors (like SONAR or LIDAR), their hard-

ware limitations can usually be mitigated by the proper software design. For example,

BumpAlert removes the unnecessary reflections from the floor and ceiling by matching the

users’ walking speeds to acoustic reflections. EchoTag utilizes the drawn outline of phones

to compensate for a small placement tolerance. ForcePhone provides an animation clue to

indicate the level of estimated force, so users can easily adjust their behavior even when the

estimation drifts. The broad sensing range and fine sensing resolution shown in this thesis

can also be used in many other sensing functions. Users might be able to communicate or

interact with others using the acoustic signals, life-log or monitor the environments based

on acoustic signatures, or even determine the holding posture or the user’s identity based on

the damped acoustic sensing signals. Several similar concepts have been implemented in

recent years [79,83,110,125,127,131], while there still remain many unexplored functions

that can be supported by acoustic signals.

6.2 Acoustic Sensing Frameworks

Acoustic sensing apps are shown to be able to provide several distinct benefits, but their

development requires special domain knowledge to address new challenges unseen in tra-

ditional apps. For example, handling low-level audio ring buffers might not be straightfor-

ward for normal app developers, and it becomes more troublesome when building sensing

algorithms on different platforms. For example, setting an Android programming flag, like

153

AudioSource.VOICE RECOGNITION, can dramatically change the sensing performance.

Moreover, different devices usually require substantial fine-tuning, but there is currently no

way for developers to debug signals easily on different platforms. Many necessary utility

functions, like visualizing the sensing signals or setting proper microphone configurations,

are also not supported in the state-of-the-art Integrated Development Environments (IDEs),

such as Android Studio or XCode.

LibAS is a cross-platform framework to solve these unmet needs for developing active

acoustic sensing apps. LibAS defines a novel abstraction that separates the core sensing

algorithms from the platform-dependent controls. This abstraction is designed based on

our experience in developing acoustic sensing apps, and has been shown to support many

other acoustic sensing apps. LibAS has been implemented on several major platforms, such

as Android, iOS, Tizen, and Windows/Linux. This cross-platform feature lets developers

easily build and test their own acoustic sensing apps on different devices. Note that the

cross-platform framework is particularly important for making acoustic sensing apps truly

ubiquitous.

LibAS has been open-sourced and the accompanying DevApp has been published for

more than three months. More than three active users have built their own projects with

LibAS. According to their experiences, LibAS is shown to be able to significantly reduce

the development effort. By analyzing their code with other similar projects, we observed a

reduction of about 80% of lines of code by using LibAS. Some users also provide feedback

and their expectations for LibAS, like a replay feature to test different sensing configura-

tions on the same recording. Many of their suggestions have been reflected in the current

LibAS and others are part of our future work. We expect that the open-source community

can help polish LibAS and make it accessible in building many more acoustic sensing apps.

154

6.3 Limitations and Future Work

Even though we would like to install acoustic sensing apps on all devices/platforms

with microphones and speakers, it is still not the case in the real world. For example,

during the period when we were trying to implement EchoTag on smartwatches, Apple

WatchOS 2 didn’t support real-time audio recording, Samsung Gear 2 could only record

sounds up to 8kHz, and the first generation of Android wear devices didn’t have speakers

installed. However, as discussed earlier, such a real-time audio support is critical for many

apps (not only acoustic sensing), so manufacturers are expected to implement this function

in the near future. Today’s smartwatches, such as Apple Watch Apple 3 (WatchOS 4),

Samsung Gear S3 (Tizen 3.0), and ASUS ZenWatch 4 (Android Wear 2.0), all have such

support available. Our applications and frameworks already support many of them, and we

are continuously working to support other new platforms. With this trend, it is not difficult

to see that more devices that can execute acoustic sensing apps will soon be available and

become ubiquitous.

Besides the device/platform limitations, acoustic sensing apps usually need a calibra-

tion to compensate for the hardware heterogeneity among different devices. This is an

inherent requirement for all cross-device supported applications (just like how apps usually

need to dynamically adapt the UI based on screen sizes). We have already built LibAS to

automatically calibrate some audio properties (like AGC or frequency-selective fading) for

acoustic sensing developers, but it is still uncertain if that includes all the calibration that

we need for most acoustic sensing apps. An extensive study of hardware heterogeneity is

an important prerequisite for future research on acoustic sensing. Specifically, it will be

helpful to summarize “critical“ properties and collect them by crowdsourcing all existing

devices. With this information, acoustic sensing app developers can easily set proper cri-

teria of these critical audio properties, e.g., can sense 15dB via ultrasound band, for their

applications. Then, devices which cannot meet this set of requirements will be filtered out

automatically when the owners are searching for acoustic apps to install.

155

Another important issue of acoustic sensing apps is their energy consumption. For ex-

ample, based on our tests, triggering acoustic sensing on smartphones usually consumes

300mW to 500mW. This result is also consistent with the other energy studies [39]. Since

most of the energy is consumed by the speaker/microphones hardware, the signal process-

ing optimization cannot help much to remove it. However, as we have shown, this problem

can be mitigated by a proper app design. The key idea is to trigger the acoustic sensing only

when necessary. For example, we only enable the acoustic sensing when the accelerometer

data seems to be a walking pattern on BumpAlert, the phone tilt/WiFi matches a saved

fingerprint on EchoTag, or the touch event is given by the touch screen for ForcePhone.

These are akin to how voice assistants (such as Apple Siri or Google Now) enable the mi-

crophone recording when certain conditions are met (e.g., the screen has been turned on

or the home button is long-pressed). By using these methods, energy consumption can be

significantly reduced based on users’ usage pattern. Care must be taken for such design

considerations in any future acoustic sensing apps.

6.4 Conclusion

In this thesis, we have shown sensing through acoustic signals can be a practical tool

for future sensing mechanisms because it is compatible with many existing/future devices.

We have proposed and implemented three different acoustic sensing apps on Android and

iOS. We have also built an open-source framework to facilitate the development of acoustic

sensing apps. Using this tool, we believe many future acoustic sensing apps can be built

with minimal development and deployment costs.

156

BIBLIOGRAPHY

157

BIBLIOGRAPHY

[1] Android AutomaticGainControl. https://developer.android.com/

reference/android/media/audiofx/AutomaticGainControl.html (archived
in Jul 2017: https://web.archive.org/web/20170709024320/https:

//developer.android.com/reference/android/media/audiofx/

AutomaticGainControl.html).

[2] AndroidWalk N Text. https://play.google.com/store/apps/details?

id=com.incorporateapps.walktext (archived in Oct 2017: https:

//web.archive.org/web/20171020061121/https://play.google.com/

store/apps/details?id=com.incorporateapps.walktext).

[3] Apple doesn’t want you weighing things with your iPhone just yet.
http://www.theverge.com/2015/10/28/9625340/iphone-6s-gravity-

app-digital-scales (archived in Feb 2017: https://web.archive.org/

web/20170205080030/http://www.theverge.com/2015/10/28/9625340/

iphone-6s-gravity-app-digital-scales).

[4] Apple Health App. http://www.apple.com/ios/health/ (archived in
Nov 2017: https://web.archive.org/web/20171102093105/https://www.

apple.com/ios/health/).

[5] Apple iPhone 6s 3D Touch. http://www.apple.com/iphone-6s/3d-touch/

(archived in Sep 2017: https://web.archive.org/web/20170912044616/

https://developer.apple.com/ios/3d-touch/).

[6] Apple iPhone 7 Cost Estimations. http://news.ihsmarkit.com/press-

release/technology/iphone-7-materials-costs-higher-previous-

versions-ihs-markit-teardown-revea (archived in May 2017: https:

//web.archive.org/web/20170521011516/http://news.ihsmarkit.

com/press-release/technology/iphone-7-materials-costs-higher-

previous-versions-ihs-markit-teardown-revea).

[7] Apple willing to take hit on iPhone 8 3D Touch sensors that are double the
price. http://www.techradar.com/news/apple-willing-to-take-hit-

on-iphone-8-3d-touch-sensors-that-are-double-the-price (archived
in May 2017: https://web.archive.org/web/20170522110920/http:

//www.techradar.com/news/apple-willing-to-take-hit-on-iphone-8-

3d-touch-sensors-that-are-double-the-price).

158

[8] Build MEX function from C/C++ or Fortran source code. https:

//www.mathworks.com/help/matlab/ref/mex.html (archived in Dec 2016:
https://web.archive.org/web/20161225193558/http://www.mathworks.

com:80/help/matlab/ref/mex.html).

[9] BumpAlert Demo Video. https://youtu.be/X5kj7sFegIY (archived in July
2017: https://kabru.eecs.umich.edu/?attachment_id=1451).

[10] Chinese City Creates a Cell Phone Lane for Walkers. https://http://www.

newsweek.com/chinese-city-creates-cell-phone-lane-walkers-271102

(archived in Nov 2016: https://web.archive.org/web/20161117140113/

http://www.newsweek.com:80/chinese-city-creates-cell-phone-lane-

walkers-271102).

[11] Cocos2d-x: a suite of open-source, cross-platform, game-development tools. http:
//www.cocos2d-x.org/ (archived in Nov 2017: https://web.archive.org/

web/20171101095852/http://www.cocos2d-x.org/).

[12] Ettus Inc., Universal Software Radio Peripheral. http://ettus.com (archived
in Oct 2017: https://web.archive.org/web/20171014180904/https://www.
ettus.com/).

[13] Fines For Using Smartphones In Crosswalks: Why This Taiwan Law Won’t Work.
http://www.forbes.com/sites/ralphjennings/2014/05/13/fines-for-

using-smartphones-in-crosswalks-why-this-taiwan-law-wont-work/

(archived in Apr 2016: https://web.archive.org/web/20160401023514/

http://www.forbes.com:80/sites/ralphjennings/2014/05/13/fines-

for-using-smartphones-in-crosswalks-why-this-taiwan-law-wont-

work/#54694b897b37).

[14] ForcePhone Demo Video. https://youtu.be/cYxr2wnQVMU (archived in Feb
2018: https://kabru.eecs.umich.edu/?attachment_id=1450).

[15] HTC wants you to squeeze its new phone. https://www.theverge.com/2017/

5/16/15643668/htc-wants-you-to-squeeze-its-new-phone (archived
in Oct 2017: https://web.archive.org/web/20171017033257/https:

//www.theverge.com/2017/5/16/15643668/htc-wants-you-to-squeeze-

its-new-phone).

[16] Interlink 402 FSR. http://www.interlinkelectronics.com/FSR402.php

(archived in Jan 2017: https://web.archive.org/web/20170109203625/

http://interlinkelectronics.com/FSR402.php).

[17] LibAcousticSensing Github Repository. https://github.com/yctung/

LibAcousticSensing (archived in Nov 2017: https://web.archive.org/web/
20171108183308/https://github.com/yctung/LibAcousticSensing).

159

[18] LibAS Demo: Fingerprint GUI. https://youtu.be/cnep7fFyJhc (archived in
Feb 2018: https://kabru.eecs.umich.edu/?attachment_id=1448).

[19] LibAS Demo: Movement Sensing. https://youtu.be/At8imJVRDq4 (archived in
Feb 2018: https://kabru.eecs.umich.edu/?attachment_id=1449).

[20] LibAS DevApp in Apple App Store. https://itunes.apple.com/us/app/

libas-devapp/id1292387567?ls=1&mt=8 (archived in Nov 2017: https:

//web.archive.org/save/https://itunes.apple.com/us/app/libas-

devapp/id1292387567?ls=1&mt=8).

[21] LibAS DevApp in Google Play Market. https://play.google.com/

store/apps/details?id=umich.cse.yctung.devapp (archived in
Nov 2017: https://web.archive.org/web/20171108183404/https:

//play.google.com/store/apps/details?id=umich.cse.yctung.devapp).

[22] MATLAB Coder App. https://www.mathworks.com/products/matlab-

coder/apps.html (archived in Nov 2017: https://web.archive.org/

web/20171126075919/https://www.mathworks.com/products/matlab-

coder/apps.html).

[23] Monsoon Power Monitor. http://www.msoon.com/LabEquipment/

PowerMonitor/ (archived in Dec 2016: https://web.archive.org/web/

20161225121515/https://www.msoon.com/LabEquipment/PowerMonitor/).

[24] Near Field Communication. http://www.nfc-forum.org (archived in
Oct 2017: https://web.archive.org/web/20171025213516/https://nfc-

forum.org/).

[25] PhoneGap: build amazing mobile apps powered by open web tech. http:

//phonegap.com/ (archived in Nov 2017: https://web.archive.org/web/

20171106185918/https://phonegap.com/).

[26] Polytec OFV-303 Laser Vibrometer. http://www.polytec.com/us/products/

vibration-sensors/ (archived in Oct 2017: https://web.archive.org/

web/20171009060418/http://www.polytec.com/us/products/vibration-

sensors/).

[27] ReactNative: Learn once, write anywhere: Build mobile apps with
React. https://facebook.github.io/react-native/ (archived in
Oct 2017: https://web.archive.org/web/20171027163619/https:

//facebook.github.io/react-native/).

[28] Samsung S Health App. http://shealth.samsung.com/ (archived in
Jul 2017: https://web.archive.org/web/20170723112943/http://health.
apps.samsung.com/).

160

[29] Talk When U Walk. https://play.google.com/store/apps/details?id=

com.a3logics.talkwyw (archived in Sep 2014: https://web.archive.org/

web/20140912014652/https://play.google.com/store/apps/details?id=

com.a3logics.talkwyw).

[30] Tesla driver killed in crash with Autopilot active, NHTSA investigating.
http://www.theverge.com/2016/6/30/12072408/tesla-autopilot-car-

crash-death-autonomous-model-s (archived in Nov 2017: https://web.

archive.org/web/20171102011305/https://www.theverge.com/2016/6/

30/12072408/tesla-autopilot-car-crash-death-autonomous-model-s).

[31] The joy of generating c code from Matlab. https://www.mathworks.com/

company/newsletters/articles/the-joy-of-generating-c-code-from-

matlab.html (archived in Aug 2016: https://web.archive.org/web/

20160829154327/http://www.mathworks.com:80/company/newsletters/

articles/the-joy-of-generating-c-code-from-matlab.html).

[32] Why Apple’s iPhone SE lacks 3D Touch technology. http://appleinsider.com/
articles/16/03/23/why-apples-iphone-se-lacks-3d-touch-technology

(archived in May 2017: https://web.archive.org/web/20170502032338/

http://appleinsider.com/articles/16/03/23/why-apples-iphone-se-

lacks-3d-touch-technology).

[33] F. Adib, C.-Y. Hsu, H. Mao, D. Katabi, and F. Durand. Capturing the human figure
through a wall. ACM Trans. Graph., 34(6):219:1–219:13, Oct. ACM, 2015.

[34] F. Adib, Z. Kabelac, D. Katabi, and R. C. Miller. 3d tracking via body radio reflec-
tions. In Proceedings of the 11th USENIX Conference on Networked Systems Design
and Implementation, NSDI’14, pages 317–329. USENIX Association, 2014.

[35] AlDanial. Count Lines of Code. https://github.com/AlDanial/cloc

(archived in Dec 2017: https://web.archive.org/web/20171221224627/

https://github.com/AlDanial/cloc).

[36] M. T. I. Aumi, S. Gupta, M. Goel, E. Larson, and S. Patel. Doplink: Using the
doppler effect for multi-device interaction. In Proceedings of the 2013 ACM Inter-
national Joint Conference on Pervasive and Ubiquitous Computing, UbiComp ’13,
pages 583–586. ACM, 2013.

[37] M. Azizyan, I. Constandache, and R. Roy Choudhury. Surroundsense: Mobile phone
localization via ambience fingerprinting. In Proceedings of the 15th Annual Inter-
national Conference on Mobile Computing and Networking, MobiCom ’09, pages
261–272. ACM, 2009.

[38] P. Bahl and V. Padmanabhan. Radar: an in-building RF-based user location and
tracking system. In Proceedings of Conference on Computer Communications, IN-
FOCOM ’00, pages 775–784 vol.2. IEEE, 2000.

161

[39] F. Ben Abdesslem, A. Phillips, and T. Henderson. Less is more: Energy-efficient
mobile sensing with senseless. In Proceedings of the 1st ACM Workshop on Net-
working, Systems, and Applications for Mobile Handhelds, MobiHeld ’09, pages
61–62. ACM, 2009.

[40] J. Borenstein and Y. Koren. The vector field histogram-fast obstacle avoidance for
mobile robots. Robotics and Automation, IEEE Transactions on, 7(3):278–288,
IEEE, 1991.

[41] J. Brebner. Reaction time in personality theory. Reaction times, pages 309–320,
Academic Press London, 1980.

[42] R. C. Browning, E. A. Baker, J. A. Herron, and R. Kram. Effects of obesity and sex
on the energetic cost and preferred speed of walking. Journal of Applied Physiology,
100(2):390–398, Am Physiological Soc, 2006.

[43] C.-C. Chang and C.-J. Lin. LIBSVM: A library for support vector machines. ACM
Transactions on Intelligent Systems and Technology, 2:27:1–27:27, ACM, 2011.
Software available at http://www.csie.ntu.edu.tw/~cjlin/libsvm.

[44] Y. Chen, D. Lymberopoulos, J. Liu, and B. Priyantha. FM-based indoor localization.
In Proceedings of the 10th International Conference on Mobile Systems, Applica-
tions, and Services, MobiSys ’12, pages 169–182. ACM, 2012.

[45] M.-C. Chiu, S.-P. Chang, Y.-C. Chang, H.-H. Chu, C. C.-H. Chen, F.-H. Hsiao, and
J.-C. Ko. Playful bottle: A mobile social persuasion system to motivate healthy
water intake. In Proceedings of the 11th International Conference on Ubiquitous
Computing, UbiComp ’09, pages 185–194. ACM, 2009.

[46] J. Chung, M. Donahoe, C. Schmandt, I.-J. Kim, P. Razavai, and M. Wiseman. Indoor
location sensing using geo-magnetism. In Proceedings of the 9th International Con-
ference on Mobile Systems, Applications, and Services, MobiSys ’11, pages 141–
154. ACM, 2011.

[47] S. Chung and I. Rhee. vtrack: Envisioning a virtual trackpad interface through mm-
level sound source localization for mobile interaction. In Proceedings of the 8th EAI
International Conference on Mobile Computing, Applications and Services, Mobi-
CASE’16, pages 32–41. ICST (Institute for Computer Sciences, Social-Informatics
and Telecommunications Engineering), 2016.

[48] A. R. Derhgawen and D. Ghose. Vision based obstacle detection using 3d hsv his-
tograms. In Proceedings of Annual IEEE India Conference, pages 1–4. IEEE, 2011.

[49] S. Elliott. Active control of structure-borne noise. Journal of Sound and Vibration,
177(5):651 – 673, Elsevier, 1994.

[50] S. Elmalaki, L. Wanner, and M. Srivastava. Caredroid: Adaptation framework for
android context-aware applications. In Proceedings of the 21st Annual International

162

Conference on Mobile Computing and Networking, MobiCom ’15, pages 386–399.
ACM, 2015.

[51] X. Fan and K. Wong. Migrating user interfaces in native mobile applications: An-
droid to ios. In Proceedings of the International Conference on Mobile Software
Engineering and Systems, MOBILESoft ’16, pages 210–213. ACM, 2016.

[52] H. Feng, K. Fawaz, and K. G. Shin. Continuous authentication for voice assistants.
In Proceedings of the 23rd Annual International Conference on Mobile Computing
and Networking, MobiCom ’17, pages 343–355. ACM, 2017.

[53] J. Fernandes and J. Neves. Angle invariance for distance measurements using a
single camera. In Industrial Electronics, 2006 IEEE International Symposium on,
volume 1, pages 676–680. IEEE, 2006.

[54] P. Georgiev, N. D. Lane, K. K. Rachuri, and C. Mascolo. Dsp.ear: Leveraging co-
processor support for continuous audio sensing on smartphones. In Proceedings of
the 12th ACM Conference on Embedded Network Sensor Systems, SenSys ’14, pages
295–309. ACM, 2014.

[55] A. Girouard, J. Lo, M. Riyadh, F. Daliri, A. K. Eady, and J. Pasquero. One-handed
bend interactions with deformable smartphones. In Proceedings of the 33rd Annual
ACM Conference on Human Factors in Computing Systems, CHI ’15, pages 1509–
1518. ACM, 2015.

[56] M. Goel, B. Lee, M. T. Islam Aumi, S. Patel, G. Borriello, S. Hibino, and B. Begole.
Surfacelink: Using inertial and acoustic sensing to enable multi-device interaction
on a surface. In Proceedings of the 32Nd Annual ACM Conference on Human Fac-
tors in Computing Systems, CHI ’14, pages 1387–1396. ACM, 2014.

[57] M. Goel, J. Wobbrock, and S. Patel. Gripsense: Using built-in sensors to detect
hand posture and pressure on commodity mobile phones. In Proceedings of the 25th
Annual ACM Symposium on User Interface Software and Technology, UIST ’12,
pages 545–554. ACM, 2012.

[58] S. Gupta, D. Morris, S. Patel, and D. Tan. Soundwave: Using the doppler effect
to sense gestures. In Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems, CHI ’12, pages 1911–1914. ACM, 2012.

[59] T. Gustafsson, B. Rao, and M. Trivedi. Source localization in reverberant envi-
ronments: modeling and statistical analysis. Speech and Audio Processing, IEEE
Transactions on, pages 791–803, IEEE, 2003.

[60] D. Halperin, W. Hu, A. Sheth, and D. Wetherall. Tool release: Gathering
802.11n traces with channel state information. SIGCOMM Comput. Commun. Rev.,
41(1):53–53, Jan. ACM, 2011.

[61] F. J. Harris. On the use of windows for harmonic analysis with the discrete fourier
transform. Proceedings of the IEEE, 66(1):51–83, IEEE, 1978.

163

[62] C. Harrison, J. Schwarz, and S. E. Hudson. Tapsense: Enhancing finger interaction
on touch surfaces. In Proceedings of the 24th Annual ACM Symposium on User
Interface Software and Technology, UIST ’11, pages 627–636. ACM, 2011.

[63] C. Harrison, D. Tan, and D. Morris. Skinput: Appropriating the body as an input
surface. In Proceedings of the SIGCHI Conference on Human Factors in Computing
Systems, CHI ’10, pages 453–462. ACM, 2010.

[64] S. Heo and G. Lee. Forcetap: Extending the input vocabulary of mobile touch
screens by adding tap gestures. In Proceedings of the 13th International Conference
on Human Computer Interaction with Mobile Devices and Services, MobileHCI ’11,
pages 113–122. ACM, 2011.

[65] J. D. Hincapié-Ramos and P. Irani. Crashalert: Enhancing peripheral alertness for
eyes-busy mobile interaction while walking. In Proceedings of the SIGCHI Confer-
ence on Human Factors in Computing Systems, CHI ’13, pages 3385–3388. ACM,
2013.

[66] R. Hooke and J. Yonge. Lectures de Potentia Restitutiva, Or of Spring Explaining
the Power of Springing Bodies. John Martyn, 1931.

[67] S. Hwang, A. Bianchi, and K.-y. Wohn. Vibpress: Estimating pressure input us-
ing vibration absorption on mobile devices. In Proceedings of the 15th International
Conference on Human-computer Interaction with Mobile Devices and Services, Mo-
bileHCI ’13, pages 31–34. ACM, 2013.

[68] S. Hwang and K.-y. Wohn. Pseudobutton: Enabling pressure-sensitive interaction
by repurposing microphone on mobile device. In Proceedings of CHI ’12 Extended
Abstracts on Human Factors in Computing Systems, CHI EA ’12, pages 1565–1570.
ACM, 2012.

[69] A. Izquierdo-Fuente, L. del Val, M. I. Jiménez, and J. J. Villacorta. Performance
evaluation of a biometric system based on acoustic images. In Proceedings of Sen-
sors, volume 11, pages 9499–9519. Molecular Diversity Preservation International,
2011.

[70] S. Jain, C. Borgiattino, Y. Ren, M. Gruteser, Y. Chen, and C. F. Chiasserini. Lookup:
Enabling pedestrian safety services via shoe sensing. In Proceedings of the 13th
Annual International Conference on Mobile Systems, Applications, and Services,
MobiSys ’15, pages 257–271. ACM, 2015.

[71] T. Kaler, J. P. Lynch, T. Peng, L. Ravindranath, A. Thiagarajan, H. Balakrishnan, and
S. Madden. Code in the air: Simplifying sensing on smartphones. In Proceedings
of the 8th ACM Conference on Embedded Networked Sensor Systems, SenSys ’10,
pages 407–408. ACM, 2010.

[72] N. Karapanos, C. Marforio, C. Soriente, and S. Čapkun. Sound-proof: Usable two-
factor authentication based on ambient sound. In Proceedings of the 24th USENIX

164

Conference on Security Symposium, SEC’15, pages 483–498. USENIX Association,
2015.

[73] A. Khattab, J. Camp, C. Hunter, P. Murphy, A. Sabharwal, and E. W. Knightly.
Warp: A flexible platform for clean-slate wireless medium access protocol design.
SIGMOBILE Mob. Comput. Commun. Rev., 12(1):56–58, Jan. ACM, 2008.

[74] Y.-H. Kim. Sound propagation: An impedance based approach. Wiley, 2010.

[75] M. Kunita. Range measurement in ultrasound fmcw system. Electronics and Com-
munications in Japan (Part III: Fundamental Electronic Science), 90(1):9–19, Wi-
ley, 2007.

[76] K. Kunze and P. Lukowicz. Symbolic object localization through active sampling
of acceleration and sound signatures. In Proceedings of the 9th International Con-
ference on Ubiquitous Computing, UbiComp ’07, pages 163–180. Springer-Verlag,
2007.

[77] Y.-S. Kuo, P. Pannuto, K.-J. Hsiao, and P. Dutta. Luxapose: Indoor positioning with
mobile phones and visible light. In Proceedings of the 20th Annual International
Conference on Mobile Computing and Networking, MobiCom ’14, pages 447–458.
ACM, 2014.

[78] N. D. Lane, P. Georgiev, and L. Qendro. Deepear: Robust smartphone audio sensing
in unconstrained acoustic environments using deep learning. In Proceedings of the
2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing,
UbiComp ’15, pages 283–294. ACM, 2015.

[79] G. Laput, E. Brockmeyer, S. E. Hudson, and C. Harrison. Acoustruments: Passive,
acoustically-driven, interactive controls for handheld devices. In Proceedings of the
33rd Annual ACM Conference on Human Factors in Computing Systems, CHI ’15,
pages 2161–2170. ACM, 2015.

[80] G. Laput, X. A. Chen, and C. Harrison. Sweepsense: Ad hoc configuration sensing
using reflected swept-frequency ultrasonics. In Proceedings of the 21st International
Conference on Intelligent User Interfaces, IUI ’16, pages 332–335. ACM, 2016.

[81] P. Lazik and A. Rowe. Indoor pseudo-ranging of mobile devices using ultrasonic
chirps. In Proceedings of the 10th ACM Conference on Embedded Network Sensor
Systems, SenSys ’12, pages 391–392. ACM, 2012.

[82] H. Lee, T. H. Kim, J. W. Choi, and S. Choi. Chirp signal-based aerial acoustic
communication for smart devices. In Proceedings of Conference on Computer Com-
munications, INFOCOM ’15, pages 2407–2415. IEEE, 2015.

[83] F. Li, H. Chen, X. Song, Q. Zhang, Y. Li, and Y. Wang. Condiosense: High-quality
context-aware service for audio sensing system via active sonar. Personal Ubiquitous
Comput., 21(1):17–29, Feb. Springer-Verlag, 2017.

165

[84] Q. Li, J. long Han, and D. jun Wu. Survey on predicting and controlling of structure-
borne noise from rail transit bridges. In Proceedings of Electric Technology and Civil
Engineering (ICETCE), pages 4559–4563, 2011.

[85] J. Lim, A. Amado, L. Sheehan, and R. E. Van Emmerik. Dual task interference
during walking: The effects of texting on situational awareness and gait stability.
Gait & posture, 42(4):466–471, Elsevier, 2015.

[86] K. Liu, X. Liu, and X. Li. Guoguo: Enabling fine-grained indoor localization via
smartphone. In Proceeding of the 11th Annual International Conference on Mobile
Systems, Applications, and Services, MobiSys ’13, pages 235–248. ACM, 2013.

[87] S. Low, Y. Sugiura, D. Lo, and M. Inami. Pressure detection on mobile phone
by camera and flash. In Proceedings of the 5th Augmented Human International
Conference, AH ’14, pages 11:1–11:4. ACM, 2014.

[88] H. Lu, W. Pan, N. D. Lane, T. Choudhury, and A. T. Campbell. Soundsense: Scalable
sound sensing for people-centric applications on mobile phones. In Proceedings of
the 7th International Conference on Mobile Systems, Applications, and Services,
MobiSys ’09, pages 165–178. ACM, 2009.

[89] W. Mao, J. He, H. Zheng, Z. Zhang, and L. Qiu. High-precision acoustic motion
tracking: Demo. In Proceedings of the 22Nd Annual International Conference on
Mobile Computing and Networking, MobiCom ’16, pages 491–492. ACM, 2016.

[90] P. Marti and I. Iacono. Evaluating the experience of use of a squeezable interface. In
Proceedings of the 11th Biannual Conference on Italian SIGCHI Chapter, CHItaly
’15, pages 42–49. ACM, 2015.

[91] J. Minguez. The obstacle-restriction method for robot obstacle avoidance in difficult
environments. In Proceedings of IROS, pages 2284–2290. IEEE, 2005.

[92] R. Nandakumar, K. K. Chintalapudi, V. Padmanabhan, and R. Venkatesan. Dhwani:
Secure peer-to-peer acoustic nfc. In Proceedings of the ACM SIGCOMM 2013 Con-
ference on SIGCOMM, SIGCOMM ’13, pages 63–74. ACM, 2013.

[93] R. Nandakumar, S. Gollakota, and N. Watson. Contactless sleep apnea detection on
smartphones. In Proceedings of the 13th Annual International Conference on Mobile
Systems, Applications, and Services, MobiSys ’15, pages 45–57. ACM, 2015.

[94] R. Nandakumar, V. Iyer, D. Tan, and S. Gollakota. Fingerio: Using active sonar for
fine-grained finger tracking. In Proceedings of the 2016 CHI Conference on Human
Factors in Computing Systems, CHI ’16, pages 1515–1525. ACM, 2016.

[95] J. L. Nasar and D. Troyer. Pedestrian injuries due to mobile phone use in public
places. Accident Analysis & Prevention, 57(0):91 – 95, Elsevier, 2013.

166

[96] S. Nirjon, R. F. Dickerson, P. Asare, Q. Li, D. Hong, J. A. Stankovic, P. Hu, G. Shen,
and X. Jiang. Auditeur: A mobile-cloud service platform for acoustic event detection
on smartphones. In Proceeding of the 11th Annual International Conference on
Mobile Systems, Applications, and Services, MobiSys ’13, pages 403–416. ACM,
2013.

[97] M. Ono, B. Shizuki, and J. Tanaka. Touch & activate: Adding interactivity to exist-
ing objects using active acoustic sensing. In Proceedings of the 26th Annual ACM
Symposium on User Interface Software and Technology, UIST ’13, pages 31–40.
ACM, 2013.

[98] M. Ono, B. Shizuki, and J. Tanaka. Sensing touch force using active acoustic sens-
ing. In Proceedings of the Ninth International Conference on Tangible, Embedded,
and Embodied Interaction, TEI ’15, pages 355–358. ACM, 2015.

[99] E. W. Pedersen and K. Hornbæk. Expressive touch: Studying tapping force on table-
tops. In Proceedings of the SIGCHI Conference on Human Factors in Computing
Systems, CHI ’14, pages 421–430. ACM, 2014.

[100] C. Peng, G. Shen, Y. Zhang, Y. Li, and K. Tan. Beepbeep: A high accuracy acous-
tic ranging system using cots mobile devices. In Proceedings of the 5th Interna-
tional Conference on Embedded Networked Sensor Systems, SenSys ’07, pages 1–
14. ACM, 2007.

[101] V. Philomin, R. Duraiswami, and L. Davis. Pedestrian tracking from a moving ve-
hicle. In Intelligent Vehicles Symposium, 2000. IV 2000. Proceedings of the IEEE,
pages 350–355, 2000.

[102] C. J. Plack. The sense of hearing. Lawrence Erlbaum Associates, Inc., 2005.

[103] N. B. Priyantha, A. Chakraborty, and H. Balakrishnan. The cricket location-support
system. In Proceedings of the 6th Annual International Conference on Mobile Com-
puting and Networking, MobiCom ’00, pages 32–43. ACM, 2000.

[104] Q. Pu, S. Gupta, S. Gollakota, and S. Patel. Whole-home gesture recognition using
wireless signals. In Proceedings of the 19th Annual International Conference on
Mobile Computing & Networking, MobiCom ’13, pages 27–38. ACM, 2013.

[105] M.-R. Ra, A. Sheth, L. Mummert, P. Pillai, D. Wetherall, and R. Govindan. Odessa:
Enabling interactive perception applications on mobile devices. In Proceedings of
the 9th International Conference on Mobile Systems, Applications, and Services,
MobiSys ’11, pages 43–56. ACM, 2011.

[106] G. Ramos, M. Boulos, and R. Balakrishnan. Pressure widgets. In Proceedings of
the SIGCHI Conference on Human Factors in Computing Systems, CHI ’04, pages
487–494. ACM, 2004.

167

[107] L. Ravindranath, A. Thiagarajan, H. Balakrishnan, and S. Madden. Code in the air:
Simplifying sensing and coordination tasks on smartphones. In Proceedings of the
Twelfth Workshop on Mobile Computing Systems & Applications, HotMobile ’12,
pages 4:1–4:6. ACM, 2012.

[108] J. Rosen and L. Q. Gothard. Encyclopedia of Physical Science (Facts on File Science
Library), Volume 1 & 2. Facts on File, 2010.

[109] M. Rossi, J. Seiter, O. Amft, S. Buchmeier, and G. Tröster. Roomsense: An indoor
positioning system for smartphones using active sound probing. In Proceedings of
the 4th Augmented Human International Conference, AH ’13, pages 89–95. ACM,
2013.

[110] W. Ruan, Q. Z. Sheng, L. Yang, T. Gu, P. Xu, and L. Shangguan. Audiogest: En-
abling fine-grained hand gesture detection by decoding echo signal. In Proceedings
of the 2016 ACM International Joint Conference on Pervasive and Ubiquitous Com-
puting, UbiComp ’16, pages 474–485. ACM, 2016.

[111] A. Sahami Shirazi, N. Henze, T. Dingler, K. Kunze, and A. Schmidt. Upright or
sideways?: Analysis of smartphone postures in the wild. In Proceedings of the 15th
International Conference on Human-computer Interaction with Mobile Devices and
Services, MobileHCI ’13, pages 362–371. ACM, 2013.

[112] S. Salemian, H. Keivani, and O. Mahdiyar. Comparison of radar pulse compression
techniques. In Proceedings of International Symposium on Microwave, Antenna,
Propagation and EMC Technologies for Wireless Communications, volume 2, pages
1076–1079 Vol. 2. IEEE, 2005.

[113] S. Sen, R. R. Choudhury, and S. Nelakuditi. Spinloc: Spin once to know your
location. In Proceedings of the Twelfth Workshop on Mobile Computing Systems &
Applications, HotMobile ’12, pages 12:1–12:6. ACM, 2012.

[114] H. Shuldiner. Volvo stops for pedestrians. Ward’s Dealer Business, 43(12):9, 12
2009.

[115] Z. Sun, A. Purohit, R. Bose, and P. Zhang. Spartacus: Spatially-aware interaction
for mobile devices through energy-efficient audio sensing. In Proceeding of the 11th
Annual International Conference on Mobile Systems, Applications, and Services,
MobiSys ’13, pages 263–276. ACM, 2013.

[116] S. P. Tarzia, P. A. Dinda, R. P. Dick, and G. Memik. Indoor localization without
infrastructure using the acoustic background spectrum. In Proceedings of the 9th
International Conference on Mobile Systems, Applications, and Services, MobiSys
’11, pages 155–168. ACM, 2011.

[117] D. M. J. Tax and P. Laskov. Online svm learning: from classification to data de-
scription and back. In 2003 IEEE XIII Workshop on Neural Networks for Signal
Processing (IEEE Cat. No.03TH8718), pages 499–508. IEEE, 2003.

168

[118] Y.-C. Tung and K. G. Shin. Echotag: Accurate infrastructure-free indoor location
tagging with smartphones. In Proceedings of the 21st Annual International Confer-
ence on Mobile Computing and Networking, MobiCom ’15, pages 525–536. ACM,
2015.

[119] Y.-C. Tung and K. G. Shin. Expansion of human-phone interface by sensing
structure-borne sound propagation. In Proceedings of the 14th Annual International
Conference on Mobile Systems, Applications, and Services, MobiSys ’16, pages
277–289. ACM, 2016.

[120] Y. C. Tung and K. G. Shin. Use of phone sensors to enhance distracted pedestrians’s
safety. IEEE Transactions on Mobile Computing, PP(99):1–1, IEEE, 2017.

[121] I. Ulrich and I. R. Nourbakhsh. Appearance-based obstacle detection with monocu-
lar color vision. In Proceedings of the Seventeenth National Conference on Artificial
Intelligence and Twelfth Conference on Innovative Applications of Artificial Intelli-
gence, pages 866–871. AAAI Press, 2000.

[122] V. N. Vapnik. Statistical Learning Theory. Wiley-Interscience, 1998.

[123] H. Veeraraghavan, O. Masoud, and N. Papanikolopoulos. Computer vision algo-
rithms for intersection monitoring. Intelligent Transportation Systems, IEEE Trans-
actions on, 4(2):78–89, IEEE, 2003.

[124] J. Wang, K. Zhao, X. Zhang, and C. Peng. Ubiquitous keyboard for small mobile
devices: Harnessing multipath fading for fine-grained keystroke localization. In
Proceedings of the 12th Annual International Conference on Mobile Systems, Appli-
cations, and Services, MobiSys ’14, pages 14–27. ACM, 2014.

[125] Q. Wang, K. Ren, M. Zhou, T. Lei, D. Koutsonikolas, and L. Su. Messages behind
the sound: Real-time hidden acoustic signal capture with smartphones. In Pro-
ceedings of the 22Nd Annual International Conference on Mobile Computing and
Networking, MobiCom ’16, pages 29–41. ACM, 2016.

[126] T. Wang, G. Cardone, A. Corradi, L. Torresani, and A. T. Campbell. Walksafe:
A pedestrian safety app for mobile phone users who walk and talk while crossing
roads. In Proceedings of the Twelfth Workshop on Mobile Computing Systems &
Applications, HotMobile ’12, pages 5:1–5:6. ACM, 2012.

[127] W. Wang, A. X. Liu, and K. Sun. Device-free gesture tracking using acoustic signals.
In Proceedings of the 22Nd Annual International Conference on Mobile Computing
and Networking, MobiCom ’16, pages 82–94. ACM, 2016.

[128] J. Xiong and K. Jamieson. Towards fine-grained radio-based indoor location. In
Proceedings of the Twelfth Workshop on Mobile Computing Systems & Applications,
HotMobile ’12, pages 13:1–13:6. ACM, 2012.

169

[129] M. Youssef and A. Agrawala. The horus wlan location determination system. In
Proceedings of the 3rd International Conference on Mobile Systems, Applications,
and Services, MobiSys ’05, pages 205–218. ACM, 2005.

[130] S. Yun, Y.-C. Chen, and L. Qiu. Turning a mobile device into a mouse in the air.
In Proceedings of the 13th Annual International Conference on Mobile Systems,
Applications, and Services, MobiSys ’15, pages 15–29. ACM, 2015.

[131] H. Zhang, W. Du, P. Zhou, M. Li, and P. Mohapatra. Dopenc: Acoustic-based
encounter profiling using smartphones. In Proceedings of the 22Nd Annual Inter-
national Conference on Mobile Computing and Networking, MobiCom ’16, pages
294–307. ACM, 2016.

[132] Z. Zhang, D. Chu, X. Chen, and T. Moscibroda. Swordfight: Enabling a new class
of phone-to-phone action games on commodity phones. In Proceedings of the 10th
International Conference on Mobile Systems, Applications, and Services, MobiSys
’12, pages 1–14. ACM, 2012.

[133] Z. Zhang, X. Zhou, W. Zhang, Y. Zhang, G. Wang, B. Y. Zhao, and H. Zheng. I
am the antenna: Accurate outdoor ap location using smartphones. In Proceedings
of the 17th Annual International Conference on Mobile Computing and Networking,
MobiCom ’11, pages 109–120. ACM, 2011.

[134] H. Zheng, J. Mou, W. Lin, and E. Ong. Modeling and prediction of structure-borne
seek noise of hard disk drives. Magnetics, IEEE Transactions on, 45(11):4933–4936,
IEEE, 2009.

[135] P. Zhou, Y. Zheng, Z. Li, M. Li, and G. Shen. Iodetector: A generic service for
indoor outdoor detection. In Proceedings of the 10th ACM Conference on Embedded
Network Sensor Systems, SenSys ’12, pages 361–362. ACM, 2012.

[136] Z. Zhou, W. Diao, X. Liu, and K. Zhang. Acoustic fingerprinting revisited: Generate
stable device id stealthily with inaudible sound. In Proceedings of the 2014 ACM
SIGSAC Conference on Computer and Communications Security, CCS ’14, pages
429–440. ACM, 2014.

[137] X. Zhu, Q. Li, and G. Chen. Apt: Accurate outdoor pedestrian tracking with smart-
phones. In Proceedings of Conference on Computer Communications, INFOCOM
’13, pages 2508–2516. IEEE, 2013.

170

