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ABSTRACT

Computational neuroscience contributes to our understanding of the brain by ap-

plying techniques from fields including mathematics, physics, and computer science

to neuroscientific problems that are not amenable to purely biologic study. One

area in which this interdisciplinary research is particularly valuable is the proposal

and analysis of mechanisms underlying neural network behaviors. Neural synchrony,

especially when driven by inhibitory interneurons, is a behavior of particular impor-

tance considering this behavior play a role in neural oscillations underlying important

brain functions such as memory formation and attention. Typically, these oscillations

arise from synchronous firing of a neural population, and thus the study of neural

oscillations and neural synchrony are deeply intertwined. Such network behaviors are

particularly amenable to computational analysis given the variety of mathematical

techniques that are of use in this field.

Inhibitory interneurons are thought to drive synchrony in ways described by two

computational mechanisms: Interneuron Network Gamma (ING), which describes

how an inhibitory network synchronizes itself; and Pyramidal Interneuron Network

Gamma (PING), which describes how a population of interneurons inter-connected

with a population of excitatory pyramidal cells (an E-I network) synchronizes both

populations. As first articulated using simplified interneuron models, these mecha-

nisms find network properties are the primary impetus for synchrony. However, as

neurobiologists uncover interneurons exhibiting a vast array of cellular and intra-

connectivity properties, our understanding of how interneurons drive oscillations

must account for this diversity. This necessitates an investigation of how changing

xx



interneuron properties might disrupt the predictions of ING and PING, and whether

other mechanisms might interact with or disrupt these network-driven mechanisms.

In my dissertation, I broach this topic utilizing the Type I and Type II neuron

classifications, which refer to properties derived from the mathematics of coupled

oscillators. Classic ING and PING literature typically utilize Type I neurons which

always respond to an excitatory perturbation with an advance of the subsequent

action potential. However, many interneurons exhibit Type II properties, which

respond to some excitatory perturbations with a delay in the subsequent action

potential. Interneuronal diversity is also reflected in the strength and density of the

synaptic connections between these neurons, which is also explored in this work.

My research reveals a variety of ways in which interneuronal diversity alters syn-

chronous oscillations in networks containing inhibitory interneurons and the mecha-

nisms likely driving these dynamics. For example, oscillations in networks of Type II

interneurons violate ING predictions and can be explained mechanistically primarily

utilizing cellular properties. Additionally, varying the type of both excitatory and

inhibitory cells in E-I networks reveals that synchronous excitatory activity arises

with different network connectivities for different neuron types, sometimes driven by

cellular properties rather than PING. Furthermore, E-I networks respond differently

to varied strengths of inhibitory intra-connectivity depending upon interneuron type,

sometimes in ways not fully accounted for by PING theory.

Taken together, this research reveals that network-driven and cellularly-driven

mechanisms promoting oscillatory activity in networks containing inhibitory interneu-

rons interact, and oftentimes compete, in order to dictate the overall network dynam-

ics. These dynamics are more complex than those predicted by the classic ING and

PING mechanisms alone. The diverse dynamical properties imparted to oscillating
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neural networks by changing inhibitory interneuron properties provides some insight

into the biological need for such variability.
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CHAPTER I

Introduction

1.1 Neurons: the basis of biological and computational neuroscience

For centuries, human beings’ understanding of their own capacity for thought and

reason was limited to Rene Descartes famously straightforward platitude, “I think,

therefore I am”. Generations of existential and epistemological philosophers to fol-

low would flounder trying to expand upon this simple principle and explain the more

complicated facets of human consciousness such as emotion and knowledge. While

metaphysical approaches to these questions led only to endless debate with no pos-

sibility of resolution, the scientific method provided concrete advances in humanity’s

understanding of its own cognitive faculties. Through this research into the brain,

which makes up modern neuroscience, scientists have turned Decartes’ hackneyed

phrase around: neuroscientific advances have helped humans understand who we are

through a better understanding of how we think.

Incredibly, the vastly complicated structure that is the brain is made up of a sin-

gle fundamental unit: the neuron. First recognized via the late 19th century work

of Santiago Ramon y Cajal [35], the neuron is a specialized cell that is electrically

excitable and can respond to both chemical and electrical signalling. Perhaps not

coincidentally, most neurons function similarly to bits in modern computers, switch-
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ing between binary “on” and “off” states via the cell’s membrane potential. Via the

interaction of billions of neurons switching between these binary states, all of human

consciousness, thought, and emotion is brought into existence.

1.1.1 Action potentials

All cells are secured from the external world via a phospholipid bilayer that makes

up the cellular membrane. This membrane is itself an incredibly robust biological

structure capable of preventing extracellular materials from entering the interior of

the cell, and vice-versa. In this bilayer, the external barrier is made up of hydrophilic

phosphate groups, while the interior of the barrier is made up of hydrophobic fatty

acids. The fact that the membrane contains both hydrophilic and hydrophobic ele-

ments ensures that both polar compounds and non-polar compounds cannot easily

traverse this structure. This also leads cells to develop an electrical potential across

their membrane due to the differential accumulation of charged ionic species inside

and outside of the cell brought about by more intricate properties of the phospholipid

bilayer [6].

However, if this membrane was entirely impermeable, the existence of multi-

cellular organisms would be nigh impossible. Avoiding this dilemma, evolution-

ary processes led to the development of tools with which the cell can communicate

with other cells and gain information about the extracellular environment. This is

achieved via proteins that embed themselves in the cellular membrane, allowing for

inter-cellular communication via the bonding of specialized signalling molecules to

the protein. Additionally, these proteins can facilitate the transport of particular

biological structures into or out of the cell via a so-called “channel” through the

membrane created by the protein. Such channels often only open in specific circum-

stances and preferentially allow passage to specific compounds. The most common
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of these ion channels present on neurons are those that selectively allow the passage

of sodium (Na+) or potassium (K+) ions, while channels also exist for chlorine (Cl-)

and calcium (Ca2+) ions [6].

Figure 1.1: One of the earliest recordings of a neuronal actional potential performed by Hodgkin
and Huxley [56].

At rest, neurons typically achieve a membrane potential of between -60 and -80

mV, primarily driven by the distribution of Na+ and K+ ions across the membrane.

This potential may become more positive (depolarize) or more negative (hyperpo-

larize) driven by a variety of factors, most commonly signalling from other neurons

(the fashion by which this communication occurs will be discussed in more detail

in Section 1.2). If such signalling causes the neuron’s voltage to rise past a voltage

threshold (the value of which is a crucial source of heterogeneity between the vari-

ety of types of neurons), Na+ ion channels will open and begin allowing postiviely

charged ions into the interior of the cell, driven by the concentration and voltage

gradient across the membrane. Such activity further increases the neuron’s voltage,

and the resulting feedback loop leads to an abrupt spike in the voltage. As the

membrane potential rises, K+ ion channels open and allow postively charged ions
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out of the neuron, driven by the new voltage gradient created by the voltage spike.

The high membrane potential also causes Na+ ion channels to close, which results

in an even quicker drop in the membrane voltage. The neuron will then settle back

to its resting membrane potential following a period of hyperpolarization in which

the neuron is unable to respond to external stimuli. This process of a quick spike in

membrane voltage followed by a return to the resting potential is called the action

potential [6, 56], and is illustrated by an example experimental recording in Fig 1.1.

Fig 1.2 shows a cartoon diagram of the action potential in which each of the stages

of this dynamic, and the behaviors of the Na+ (bottom) and K+ (top-right) channels

at each stage, are highlighted.

The action potential as described above constitutes the “on” state of the neuron

that can be thought of as analogous to the binary switch that makes up the funda-

mental bit of computer systems. This electrical activity is the primary characteristic

that differentiates neurons from other cells, and is brought about via the action of

the unique ion channels present in the cellular membranes of neurons as opposed

to other cells. We will discuss in Section 1.2 how this “on” state is communicated

to other neurons, allowing for the large-scale computations achieved by networks of

neurons.

1.1.2 The historical development of computatonal neural models

The action potential has a very distinct profile when the membrane voltage is

plotted as a function of time. Modeling this activity mathematically quickly became

an important question for neuroscientists, given that such a model might reveal

some of the intricacies underlying the generation of the action potential. In fact, this

question could be considered the beginning of the field of computational neuroscience.

In the mid-20th century, scientists and mathematicians lacked the power of mod-
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Figure 1.2: A diagramatic representation of the action potential and the corresponding activity of
Na+ and K+ ions at the different dynamical stages. The Na+ channel (bottom), which
allows the flow of positively charged ions into the cell, opens during the initial uptick in
membrane voltage and closes once the membrane voltage reaches its peak, positive value.
Meanwhile, the K+ channel (top-right), which allows the flow of positively charged ions
out of the cell, is closed during the initial rise in membrane voltage and opens once the
peak, positive value of this voltage is achieved [6].

ern computers that may have been able to utilize brute-force methods to simply fit a

function to the shape of an action potential. This deficit turned out to be a stroke of

luck, as it forced neuroscientists to develop a model making direct use of the biology

underlying the action potential, which proved to be much more useful in understand-

ing the dynamics of the neuron. Alan Lloyd Hodgkin and Andrew Fielding Huxley

were the first to develop such a model in 1952.

The genius of Hodgkin and Huxley lied in their use of analogy to electrical circuits:

by thinking of the cell membrane as a capacitor and the ion channels as conductors,

the pair brought the tools of physics and electromagnetism to bear on the problem

of the biological neuron. Hodgkin and Huxley sought to understand the activity of
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Na+ and K+ separately by looking at each ion channel individually. Utilizing voltage

clamp experiments, in which the membrane voltage is artificially controlled and any

currents that arise from changing this voltage are measured, the pair were able to

use nonlinear differential equations to model the currents resulting from the flow of

particular ions through their corresponding ion channels. Ohm’s Law can relate this

current to a change in voltage across the membrane. This insight led to the creation

of the Hodgkin-Huxley equations, which are stated in full in Section 1.5.1 [57].

The Hodgkin-Huxley equations were the first conductance-based model of the

neuron, meaning that each term and variable is directly related to a biophysical

conductance caused by a particular ion’s flow across the cellular membrane. Utilizing

Hodgkin and Huxley’s technique, conductance-based models of any type of neuron

can be developed; indeed, dozens of neurons are now modeled in the “Hodgkin-

Huxley formalism”, although the original Hodgkin-Huxley equations came about

based upon experiments on the squid giant axon. The direct correlation between

this mathematical model and the biophysics of the neuron is best illustrated by

the insights into the makeup of the ion channels brought about by this work. In

articulating a differential equation to the activity of Na+ ions, Hodgkin and Huxley

found the best fit came about with two variables governing whether the channel was

active or not, with one of these variables raised to the third power. Years later,

more advanced biological techniques revealed that the Na+ ion channel was indeed

made up of four subunits, three alike and one different, exactly as predicted by

the Hodgkin-Huxley equations. This also holds true for the K+ channel, which the

Hodgkin-Huxley equations predicted consisted of four identical subunits and was

confirmed by later research [57].

While the Hodgkin-Huxley equations remain of paramount use today (and in-
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deed, the work included in this dissertation makes use exclusively of conductance-

based models of neurons), mathematicians both before and after Hodgkin and Huxley

sought to model the action potential in a computationally simpler fashion. Perhaps

the simplest of these alternative models, actually predating Hodgkin and Huxley, is

the integrate-and-fire model, which involves a single differential equation with an arti-

ficial threshold and reset dictating the onset of an action potential [1]. The integrate-

and-fire model is a very rough approximation of the action potential, however, and

as such many mathematicians have altered this model to better match a variety

of neural behaviors. A model put forth by Eugene Izhikevich, which makes use of

two coupled differential equations with threshold and reset conditions, is ubiquitous

throughout computational neuroscience and commonly used as a “middle ground”

between the biophysical accuracy of conductance-based models and the computa-

tional simplicity of the integrate-and-fire model [58]. All three of these model types

are used in the computational literature, and the choice of model is dependent upon

the aims of the study and the computational resources available.

1.1.3 Classifying neuron excitability profiles

Mathematical principles are useful beyond simply articulating models of the action

potential and the dynamics of neurons. Indeed, they are also used in order to quantify

the properties of neurons that are responsible for their diverse behaviors. Many

of these properties are encapsulated by the neuron’s current-frequency relation (I-

F Curve) and Phase Response Curve (PRC). The I-F Curve is a straightforward

function representing the relationship between a tonic current applied to a neuron

and the corresponding frequency of repetitive action potential firings. The PRC,

however, is a slightly more complicated measure.

The PRC came about originally from the mathematical study of coupled oscilla-
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tors, but for a neuron this is an experimentally obtainable measure that characterizes

membrane excitability properties. To measure the PRC experimentally on a neuron,

or computationally on a neuron model, one first ensures the neuron is firing repti-

tively, and then perturbs the neuron via a brief and small current pulse at various

phases in the oscillatory firing cycle. After this perturbation, the timing of the next

action potential is measured, and is compared to what the timing of this action po-

tential would have been sans perturbation. If the neuron fired earlier than expected

it is said that the perturbation caused “phase advance”, while if the neuron fired later

than expected the perturbation caused “phase delay”. A plot of these changes in

phase as a function of the timing of the perturbation yields the PRC. A diagramatic

representation of this process can be seen in Fig 1.3.

Figure 1.3: An illustrative example of how the PRC is calculated. Top: a small, excitatory pertur-
bation in the current driving a repetitively firing neuron delivered at approximately 60
ms leads to an earlier than expected firing of the subsequent action potential (the dashed
line compared to the solid line). Bottom: the resulting PRC, which plots the change in
phase against the timing of the perturbation, with the phase advance corresponding to
the example in the top panel highlighted [95].
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The correspondence between certain properties of the I-F Curve and PRC led

to the articulation of the Type I and Type II classifications of neuron excitability.

These classifications arose historically both from the concepts of excitability type [55]

and the mathematical analysis of the type of bifurcation that leads to periodic firing

in mathematical neuron models. While recent work has shown that the relationship

between the PRC, the I-F curve and the bifurcation type are not definite [41], usually

saddle node on an invariant cycle (SNIC) bifurcations are associated with Type I

properties and subcritical Hopf bifurcations are associated with Type II properties

[98, 38]. Additionally, the presence of an M-type adaptation current (discussed in

Section 1.1.4) has been shown to change Type I neurons into Type II neurons through

a corresponding change in the bifurcation type, as discussed in detail in Section 1.6.3

[38, 98].

Generally, Type I neurons are characterized by a steep I-F curve with arbitrarily

low firing frequency at firing threshold and by a PRC exhibiting only phase ad-

vances in response to a brief, excitatory current pulse. In contrast, Type II neurons

are characterized by a more shallow I-F curve with a minimum firing frequency at

threshold, and a PRC that exhibits phase delays in response to a brief, excitatory

current pulse early in the neuron’s firing cycle [114, 21]. Example plots illustrating

these differences are shown in Fig 1.8. These neuron classifications are used through-

out this dissertation, with the differences in the PRC properties being of particular

importance.

Mathematical analysis of dynamical systems using the PRC has yielded a variety

of insights that are applicable to neuronal PRCs. In particular, the PRC can serve

as an indicator of whether a pair of coupled oscillators, or in the case of neuroscience

a network of coupled neurons, might synchronize [40, 38, 95, 52, 94]. Indeed, it has
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been shown that Type II neurons have a higher propensity for synchronization than

Type I neurons in excitatory networks [40, 52], while these neurons may synchronize

via different mechanisms within inhibitory networks [85].

1.1.4 Cholinergic modulation

The properties of individual neurons, including their classification as Type I or

Type II, can be altered by a variety of chemical compounds in the brain termed

neuromodulators. One of the brain’s most potent neuromodulators is acetylcholine

(ACh). ACh levels change across sleep and wake states, with high levels during

waking contributing to arousal, attention, memory, and motivation.

ACh affects intrinisic neuronal properties as well as synaptic transmission through

two major pathways: nicotinic and muscarinic receptors. In individual neurons, ACh

blocks the slow, potassium-mediated M-type ionic current via muscarinic channels,

which has a three-fold effect on cellular properties: altering the current-frequency (I-

F) curve, to increase excitability; decreasing spike frequency adaptation (SFA), the

tendency for neurons to fire faster than is typical following a period of quiescence;

and finally, altering neuronal phase response curves (PRCs) [4, 91, 38, 98]. In cortical

and hippocampal networks, excitatory pyramidal cells and some types of inhibitory

interneurons can contain the M-type potassium current and thus are targets for these

effects of ACh [98, 92, 69, 82, 73].

In this dissertation, the discussion of neuromodulation and the changing intrinsic

properties of the neuron will commonly be done in the context of acetylcholine.

This is done given this neuromodulator’s ubiquity, its known behavioral correlates,

and the direct relationship between its presence and changes in the Type I/Type II

classification of individual neurons.
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1.2 Neural networks: encoding complex information and behaviors using
connected neurons

Just as a lone bit could not perform the complex computations accomplished by a

computer, a lone neuron could not possibly be responsible for the complex behaviors

made possible by the brain. These behaviors are brought about by the dynamics

of neural networks. In such networks, neurons communicate with each other in two

primary fashions: via synapses and via gap-junctions.

Gap-junctions utilize electrical signalling to allow neural communication. Facil-

itated by a specialized membrane protein, two neurons that are connected via a

gap-junction contain specialized channels that connect their cytoplasms. Ions and

other very small biological compounds are able to travel through this channel, mean-

ing that a change in the membrane potential in one neuron, and the corresponding

change in ion concentration inside the cell, will be reflected in any neurons connected

via gap-junction [68]. While gap-junctions are common throughout the brain, they

are limited to neurons that are located very close to each other, and thus the types

of networks that arise solely from gap-junctions are limited. Thus, the networks

analyzed in this dissertation do not include gap-junctions.

Synapses, on the other hand, are not limited to close spatial proximities; in fact,

axons traverse great distances in the brain to connect distant neurons. This allows

for more complex networks to arise, which is why this type of signalling is focused on

in this research. Synaptic communication occurs driven by action potentials: when

the membrane voltage of a neuron spikes, this triggers the activity of voltage-gated

Ca2+ channels, and in turn the release of chemicals known as neurotransmitters from

the neuron. These neurotransmitters, now free outside of the neuron, can bind to

receptor proteins on the membrane of a synaptically coupled neuron. The binding
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of the neurotransmitter to these proteins causes a change in this neuron that is

normally reflected by a change in its membrane voltage, which will affect the timing

of its next action potential firing. A cartoon representation of a typical synapse is

shown in Fig 1.4, illustrating the activity of voltage-gated Ca2+ channels and the

resulting release of neurotransmitter through the fusion of synaptic vesicles with

the neural membrane. When discussing synapses, the initial neuron that releases

neurotransmitter is referred to as the “pre-synaptic” neuron, while the neuron which

receives the signal and the neurotransmitter is referred to as the “post-synaptic”

neuron [24].

Figure 1.4: A cartoon representation of the typical synapse. When an action potential occurs,
the voltage spike activates voltage-gated Ca2+ channels. This triggers the release of
neurotransmitter through the fusion of a synaptic vesicle with the neuron membrane.
The neurotransmitter is now free in the extracellular space between the pre- and post-
synaptic neuron and is likely to bind to receptors on the post-synaptic neuron [97].

Synapses can be either excitatory or inhibitory. Excitatory synapses cause the

membrane voltage of the post-synaptic cell to rise, and are commonly associated
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with the neurotransmitter glutamate. Inhibitory synapses cause the membrane volt-

age of the post-synaptic cell to decrease, and are commonly associated with the neu-

rotransmitter gamma-Aminobutyric acid (commonly referred to as GABA). Other

neurotransmitters, such as the previously discussed ACh, can have more complicated

effects on the behavior of the post-synaptic neuron. Neurons that release excitatory

neurotransmitters such as glutamate are referred to as “excitatory neurons” while

neurons that release inhibitory neurotransmitters such as GABA are referred to as

“inhibitory neurons”.

Just as for the neuron, there are a variety of mathematical models that are used to

model the synaptic current felt by a post-synaptic neuron. In this dissertation, I use

what is commonly referred to as the “double-exponential” model, which is described

by the following equation,

(1.1) Isyn(t) = gsyn(V − Esyn)

(∑
si

e−(t−si)/τd − e−(t−si)/τr
)

where gsyn is the maximum conductance for the synapse, V is the membrane voltage

of the post-synaptic neuron, Esyn is the reversal potential of the synaptic current, si

are the times of all pre-synaptic spikes occuring before the current time t in ms, and

τd and τr are the synaptic decay and the synaptic rise time constants, respectively (in

ms), which affect the “shape” of the synaptic signal. The value of Esyn determines

whether the synapse is excitatory or inhibitory: it is inhibitory when it is set at −75

mV, and excitatory when it is set at 0 mV. In the various simulations performed in

this dissertation, τr, τd and gsyn are varied.

1.2.1 Oscillations and synchrony in neural networks

One of the most important behaviors brought about by synaptically coupled net-

works of neurons are synchronous oscillations of the neural populations. Such os-
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cillations have been detected by electroencephalogram (EEG) recordings since the

1930s, and rhythms with different frequencies are thought to be associated with dif-

ferent brain functions. For example, oscillations in the alpha band, with a frequency

between 7.5 and 12.5 Hz, appear to correspond with states where an individual is re-

laxed and has their eyes closed, while oscillations in the theta band, with a frequency

typically between 6 and 7 Hz, appear to correspond with the encoding of memory.

Gamma oscillations, which account for rhythms with frequencies ranging from 25

Hz to 100 Hz, are also thought to play a role in memory formation and recollection.

Increased power in the alpha and gamma frequency ranges also is seen in tasks re-

quiring selective attention. Finally, some studies imply that gamma oscillations may

be crucial for conscious awareness [116]. Given the ubiquity of the gamma rhythm

and the numerous computational studies focusing on this frequency range, we will

discuss gamma oscillations in more detail in Section 1.2.2.

The study of the mechanisms underlying neural oscillations and synchrony is of

great interest to neuroscientists, and is a problem that computational neuroscientists

are uniquely qualified to address. Utilizing a variety of mathematical techniques,

computational neuroscientists have articulated a diverse set of possible mechanisms

by which neural networks might oscillate. This research has revealed that the im-

petus behind neural oscillations can be either excitatory or inhibitory neurons. As

an example, a network of purely excitatory neurons is more predisposed to exhibit

synchrony when the neurons have Type II PRCs as opposed to Type I PRCs [52].

However, in this dissertation we focus on the ways that inhibitory interneurons

can initiate and influence neural oscillations. In the hippocampus, interneurons

mediate rhythms that appear to serve vital roles in memory processing and are

affected by sleep-wake activity [4, 9, 109, 64]. Interneurons also play a key role in
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generating rhythmic activity in the cortex; in the visual cortex in particular, these

rhythms are implicated in the control of attention in the presence of competing

stimuli [36, 70, 84, 46, 19].

There are two particularly ubiquitous mechanisms describing how these inhibitory

interneurons can drive synchrony in neural networks. One, the Interneuron Net-

work Gamma (ING) mechanism, describes the fashion by which a purely inhibitory

network might exhibit synchronous oscillations, while the other, the Pyramidal In-

terneuron Network Gamma Mechanism (PING), describes how inhibitory interneu-

rons can drive synchronous oscillations in a network containing both excitatory and

inhibitory neurons. The computational principles underlying these two mechanisms

will be discussed in detail in Section 1.3.

It is important to note the distinction between neural oscillations of the kind de-

tected in EEG recordings and neural synchrony as seen in the classic ING and PING

literature. While oscillatory activity in the brain does not manifest the complete syn-

chrony that can be driven by the ING and PING mechanisms (indeed, the existence

of completely synchronous neural dynamics is indicative of epilepsy, as discussed

in Section 1.2.3), oscillations do arise via “up” states in which neurons are much

more likely to fire and “down” states in which much fewer neurons fire. While this

more subtle behavior is difficult to match via modeling, ING and PING can model

the more idealized behavior represented by full synchrony. As such, computational

neuroscientists often study the mechanisms underlying neural synchrony as a means

to formulate well-justified hypotheses as to the generation of the oscillatory activity

actually detected in EEG recordings.
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1.2.2 Gamma rhythms and the potential informational capacity of neural oscillations

Oscillations in the gamma range merit further inspection, not only for their preva-

lence in diverse brain regions and behaviors, but also because the ING and PING

mechanisms, which are the focus of much of this dissertation research, yield oscilla-

tions primarily in this frequency range.

The ubiquity of gamma rhythms is supported by a variety of biophysical prop-

erties. These include the time scales by which GABA and alpha-amino-3-hydroxy-

5-methyl-4-isoxazolepropionic acid (a glutamate receptor commonly referred to as

AMPA) receptors operate and the membrane properties of excitatory pyramidal

cells. Due to these properties, a hypothesized role of the gamma rhythm is to collect

presynaptic spikes into the optimal time window in which to elicit spiking from a

postsynaptic neuron [25].

Gamma rhythms may also be uniquely suited to store information. One hypothesis

for how this can occur is through the presevation of the ordering of neural firings

within a gamma rhythm. In an example with short-term memory, it is theorized

that the ordering of excitatory pyramidal cells within a gamma rhythm is preserved,

and this ordering is hypothesized to store facets of the memory [116].

Gamma rhythms are also of particular interest because inhibitory interneurons

are thought to serve a necessary role in generating these rhythms. Various studies

have shown that parvalbumin (PV) positive basket cells, a type of inhibitory in-

terneuron differentiated by the expression of the parvalbumin protein, is essential for

the generation of a gamma rhythm. Other interneurons that act over longer spatial

distances may be responsible for synchronizing different regions of the brain into a

gamma rhythm. Whether these interneurons drive gamma oscillations via the ING

or PING mechanism (which are explained in Section 1.3 with cartoon representa-



17

tions in Figs 1.6 and 1.7), or whether both these mechanisms occur but compete

with each other, remains a subject of active research [25]. This open question helps

to motivate the continued computational research into the mechanisms underlying

gamma oscillations.

It should be emphasized that in vivo gamma rhythms tend to be short lived and

occur despite irregular firing of the pyramidal cells, and do not exhibit the “complete

synchrony” that the classic ING and PING rhythms reveal in computational studies.

Instead, in vivo gamma rhythms arise on a network-wide basis and are seen via

EEG and local field potential (LFP) recordings [25]. If neural networks exhibit

complete synchrony that persists for longer time periods, it is often indicative of a

neuropathology such as epilepsy, which we discuss in the following section.

1.2.3 Epilepsy and the potential pathology of neural synchrony

Not all forms of synchronous, oscillatory neural activity serve a specific brain

function; indeed, sometimes these events can be indicative of neuropathology. The

most common example of this is epilepsy, a disease typified by repeated seizures in the

patient. Epileptic seizures are detected by EEG recordings that exhibit overactive

and synchronous neural activity.

A variety of oscillatory neural dynamics have been implicated in the develop-

ment of epileptic seizures. Seizures are often initiated by high frequency oscillations

(HFOs) in the range of 70 to 120 Hz. Even faster oscillations, referred to as ripples

(with a frequency between 120 and 250 Hz) and fast ripples (with a frequency be-

tween 250 and 600 Hz) occur in between seizures and are used as markers for brain

regions that may be participating in or succeptible to epileptic events. An example

experimental recording of fast ripples from the hippocampus (A) and a computa-

tional model replicating this behavior (B) is shown in Fig 1.5. In each case, increased
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power in the 250-500 Hz frequency range illustrated by the spectrogram (bottom of

each panel) illustrates the development of fast ripples. Typically, epileptiform ac-

tivity spreads throughout the brain and causes synchronous activity between brain

regions [117].

Figure 1.5: A An example biological recording revealing fast ripples in the hippocampus. The
fast ripples are shown in the spectrogram at the bottom of the panel by the increased
power in the 250-500 Hz range. B An example computational model that is able to
replicate the fast ripples seen experimentally. The model network is represented in
an approximate, cartoon fashion in the top of the panel, with the spectrogram at the
bottom of the panel showing the presence of fast ripples [117].

Because oscillatory neural activity can be modeled using computational tech-

niques, computational neuroscience has been a particularly powerful tool in the study

of epilepsy. A variety of techniques utilizing different degrees of abstraction have

been used in creating mathematical models that display dynamics matching those

seen in experiments. These models range from complex networks of Hodgkin-Huxley

style neurons to neural mass models, which model the overall activity of a neural

network with a higher level of abstraction, eliminating the need for the simulation
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of individual neurons. Insights from computational studies have been invaluable in

decoding the mechanisms underlying the various types of oscillatory dynamics that

contribute to this neuropathology, providing a particularly compelling argument for

the continued study of neural oscillations using computational methods [117].

1.3 Computational mechanisms explaining synchrony in networks con-
taining inhibitory interneurons

As the discussion in Section 1.2.1 illustrates, the study of neural oscillations con-

sists of a multitude of questions that can be addressed both experimentally and

computationally. However, computational neuroscience is particularly adept in pro-

viding potential explanations regarding the ability for neural networks to exhibit

synchronous oscillations, illustrated by the multitude of studies published in this

field over the past quarter century. Indeed, two of the most commonly cited mech-

anisms explaining the generation of gamma rhythms, ING and PING, were first

articulated via computational study.

ING and PING share a common impetus underlying neural synchrony and network

oscillations: the activity of inhibitory interneurons. It is for this reason that the focus

of this dissertation research is discerning the potential effects of changing interneuron

properties on these mechanisms. However, before delving into this research, the ING

and PING mechanisms as classically stated must be fully understood.

1.3.1 Interneuron Network Gamma (ING)

The ING mechanism explains how a network consisting only of inhibitory neu-

rons can generate synchronous activity and oscillations in the gamma frequency band

[63, 119, 114]. This mechanism was originally articulated utilizing model neurons ex-

hibiting Type I properties and with densely, synaptically coupled networks, justified
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by analogy to the ubiquitous PV interneurons [115, 119, 29, 8, 22]. However, as

discussed in more detail in Chapter II, the ING mechanism can persist in networks

where the neurons are randomly connected in a non-dense fashion.

Figure 1.6: An approximated, cartoon representation of a toy network with five all-to-all connected
inhibitory cells exhibiting ING synchrony, showing both the firing times of each cell and
the inhibitory synaptic signal felt by each neuron. In the regime outlined by the blue
bracket, some inhibitory cells fire, but not enough to suppress network activity. In the
regime outlined by the purple bracket, enough neurons fire in close enough temporal
proximity for the inhibitory signalling to sum and suppress network firing. The regime
outlined by the red bracket represents the time window in which firing is suppressed by
the resulting large amplitude inhibitory synaptic signals. The regime outlined by the
green bracket represents the time window in which firing can occur following the decay
of inhibitory signalling. The activities represented by the red and green brackets then
oscillate, forming the oscillatory network activity.

The ING mechanism is initiated when a sufficient proportion of the inhibitory

neurons in the network fire an action potential in close temporal proximity. The

summation of the resulting synaptic signals on each neuron leads to a large hyperpo-

larizing effect on the neurons’ membrane potential, which prevents further firing. The

neurons will not be able to fire an action potential until their membrane voltages

recover from this hyperpolarized state, which requires the decay of the inhibitory

synaptic signals. This creates a small temporal window between the decay of in-

hibitory synaptic signal and the next instance of large amplitude synaptic inhibition

in which neurons can fire an action potential. The creation of this window syn-
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chronizes neural firing, while also creating a network oscillation whose frequency

is dictated by the timing of these windows, controlled primarily by the duration

of synaptic current. A cartoon illustration of this mechanism, illustrating both the

spike times and inhibitory synaptic signal in a hypothetical, “toy” network consisting

of five all-to-all connected inhibitory neurons, can be found in Fig 1.6.

A major feature of this mechanism is that inhibitory signals promote synchro-

nization by gating the timing of neural firing. As a result, synchrony via the ING

mechanism is sensitive to properties of the synaptic currents present in the network

and is most robust when networks are densely connected and cellular heterogeneity is

low [63, 109, 106, 114, 119]. In particular, the ING mechanism predicts that synaptic

inhibition that is sufficiently strong and long lasting should robustly cause synchrony

amongst intrinsically firing cells whose firing frequencies are similar.

1.3.2 Pyramidal Interneuron Network Gamma (PING)

The PING mechanism explains the development of gamma frequency synchronous

oscillations in a network consisting of both excitatory and inhibitory neurons in which

the excitatory and inhibitory neurons are densely inter-connected. Such networks are

colloquially termed E-I networks. Computational studies leading to the articulation

of this mechanism [108, 63, 119, 42] were spurred by experimental results that im-

plicate interactions between excitatory and inhibitory neurons in gamma rhythm

generation [121].

The PING mechanism states that synchronous, rhythmic dynamics of both the

excitatory and inhibitory cell populations can be generated if the inhibitory cells spike

only in response to excitatory cell activity, if excitatory cell activity quickly induces

a synchronous inhibitory population burst, and if the inhibitory burst suppresses all

excitatory cells. These requirements ensure that a burst of inhibitory signalling will
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only occur directly following excitatory cell activity, which in turn will suppress the

excitatory cells in a fashion similar to how inhibitory cells were suppressed in the ING

mechanism. Here, though, the inhibitory neurons gate the firing of the excitatory

cells, as opposed to their own firing. The impetus behind this mechanism is the firing

of a large proportion of the excitatory cells in close temporal proximity, which causes

the burst of inhibitory cell firing; once again, this has a close analogue to the initiation

of the ING mechanism. A cartoon illustration of this mechanism, illustrating the

spike times, E-I synaptic signal, and I-E synaptic signal in a hypothetical, “toy”

network consisting of three excitatory and two inhibitory neurons with all-to-all

inter-connectivity, can be found in Fig 1.7.

Figure 1.7: An approximated, cartoon representation a toy network with three excitatory cells
(green) and two inhibitory cells (red) with all-to-all inter-connectivity exhibiting PING
synchrony. The timing of cell firings, the E-I synaptic signal, and the I-E synaptic signal
are shown. In the regime outlined by the blue bracket, some excitatory cells fire, but
not enough to elicit activity from the inhibitory cells. In the regime outlined by the
purple bracket, enough excitatory neurons fire in close enough temporal proximity to
cause inhibitory activity. The regime outlined by the red bracket represents the time
window in which excitatory firing is suppressed by the activity of inhibitory cells. The
regime outlined by the green bracket represents the time window in which firing of the
excitatory neurons can occur following the decay of inhibitory signalling. The activities
represented by the red and green brackets then oscillate, forming the oscillatory network
activity.

PING rhythmicity requires strong inter-connectivity between the excitatory and
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inhibitory subpopulations so that the requirements described above are satisfied.

Strong intra-connectivity within the inhibitory cell population also plays a role in

the PING mechanism by ensuring that the inhibitory population fires a single syn-

chronous burst following excitatory input. While this intra-connectivity has an abun-

dance of biological motivation [44, 59, 104, 82, 73, 76], the research detailed in Chap-

ter IV shows that strong intra-connectivity is not strictly necessary for PING-like

rhythms to arise [86], making inter-connectivity between excitatory and inhibitory

neurons the paramount aspect of network connectivity underlying PING.

1.3.3 Network versus cellular properties dictating inhibitory synchrony

It bears emphasis that the ING and PING mechanisms rely primarily on network

properties, in particular the properties of the synaptic connections, to dictate neural

synchrony and oscillatory dynamics. In the ING mechanism, synchrony arises only if

the inhibitory signalling is sufficiently strong, long lasting, and uniform across all of

the neurons making up the network. In the PING mechanism, the dense and strong

synaptic signalling between the excitatory and inhibitory populations precipitates

the generation of synchronous oscillations. This similarity manifests itself in the fact

that both mechanisms rely upon gating inhibition to synchronize neural activity.

Perhaps driven by this observation, a majority of the studies aiming to probe

the robustness of these mechanisms to various forms of heterogeneity and noise have

focused on the properties of the synaptic connections. However, this narrow focus ne-

glects the potential role that the properties of the inhibitory interneurons themselves

might play in these mechanisms. This is of particular importance given that recent

experimental advances have revealed that inhibitory interneurons are an immensely

diverse population expressing a variety of neural excitability profiles and synaptic

connectivities [61, 23, 10, 7, 96, 62, 51, 11, 47].
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This dearth of literature exploring the fashions in which the intrinsic cellular prop-

erties of inhibitory interneurons might drive synchrony and oscillatory dynamics in

neural networks provides the motivation for the research making up this disserta-

tion. Here, I look not only at the network properties that might underlie oscillatory

behavior, but also the potential effects of changing cellular properties on network

dynamics. Changes in cellular properties are easily quantified by the Type I/Type

II classificiations discussed in Section 1.1.3, and as such I utilize this specific cellular

variation in the analysis of interneuronal diversity.

1.4 Outline

Motivated by the distinction between network and cellular properties outlined in

Section 1.3.3, in this dissertation I probe how mechanisms other than ING and PING,

in particular those driven by cellular rather than network properties, interact and

compete with these commonly cited mechanisms to generate synchronous oscillations

in neural networks. This research is performed both on purely inhibitory networks,

in which the ING mechanism is typically cited, and in E-I networks, in which the

PING mechanism is ubiquitous.

In Chapter II, I investigate how changing the cellular properties of the inhibitory

interneuron affects synchronous network activity in a purely inhibitory network. The

cellular properties are manipulated via the Type I/Type II classifications as well as by

analyzing the role of an M-type adaptation current. This research reveals that while

networks consisting of Type I interneurons synchronize in fashions accounted for by

the ING mechanism, the dynamics of networks of Type II neurons and the distinct

behaviors caused by the presence of an adaptation current are not fully accounted for

by ING. In fact, mechanisms driven by cellular properties, particularly the distinct
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features of the Type II PRC, are likely responsible for the unique dynamics seen in

these networks.

Next, in Chapter III, the research transitions to the study of E-I networks and

the PING mechanism. In this work, I vary the structure of the E-I network via

manipulation of the synaptic strengths of inter-connectivities (synapses between the

excitatory and inhibitory neurons) and intra-connectivities (synapses within the ex-

citatory or inhibitory networks themselves). In all of these E-I networks I also ma-

nipulate the intrinsic cellular properties between Type I and Type II utilizing the

M-type adaptation current and modulation by ACh. My analysis of these simula-

tions reveals three distinct regimes of E-I network connectivities in which modulation

by ACh differentially affects synchronous oscillations in the network. When inter-

connectivity dominates intra-connectivity, network properties ensure that PING dy-

namics arise regardless of modulation by ACh. When intra-connectivity dominates

inter-connectivity, cholinergic modulation causes significant change in the network

dynamics, in which synchronous bursting arises in networks with Type II excita-

tory neurons but not in networks with Type I excitatory neurons. Finally, when the

inter- and intra-connectivities are balanced, mechanisms driven by both network and

cellular properties interact, and more complicated dynamics tend to arise.

Finally, in Chapter IV I focus on E-I networks in which PING rhythms tend to

occur, namely those with strong inter-connectivity, and analyze the role that changes

within the inhibitory cell population can have on PING rhythmicity. This research

reveals that networks with Type I and Type II inhibitory cells respond differently to

changes in the strength of the inhibitory intra-connectivity; in particular, networks

with Type I inhibitory cells and weak inhibitory intra-connectivity display oscillatory

dynamics not fully encapsulated by predictions of the PING mechanism. This result
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leads to a precise analysis of how patterning in the inhibitory population affects

variability seen in oscillatory firing of the excitatory cells.

In the remainder of this introduction, I discuss the neuron models and measures

used to quantify network dynamics throughout the three chapters outlined above.

1.5 Neuron models

The networks used in this research are composed of three different model neurons

in the Hodgkin-Huxley formalism that display different properties in their I-F curves

and PRCs. These models are referred to in this research succinctly as Type I neurons,

Type II neurons, and Type II neurons with adaptation.

All model neurons contain Na+, K+-delayed rectifier and leak currents. The

Type II neuron with adaptation additionally contains a slow, M-type K+ current

[43, 45, 98]. The difference between the Type I and Type II neuron models arises

due to the different parameter values for the conductances and the differences in the

functions governing the gating variables, primarily a depolarizing shift in the steady-

state activation function associated with the delayed rectifier potassium channel.

The difference between the Type I and Type II with adaptation neuron arises due

to the activity of the slow potassium channel.

A

C

E

B

D

F

Figure 1.8: Properties of the three neuron models utilized in this dissertation research. (A):
Current-frequency curves (I-F curves) of Type I (red), Type II (blue) and Type II
with adaptation (black) neuron models. (B): Phase response curves (PRCs) calculated
with a brief excitatory current pulse for each model neuron firing at 65 Hz.
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1.5.1 The Hodgkin-Huxley model

To model an interneuron exhibiting Type II properties without spike-frequency

adaptation, the classic Hodgkin-Huxley equations are used [57, 43]:

(1.2)
dV

dt
= −gNam3h(V − ENa)− gKn4(V − EK)− gL(V − EL) + Iapp − Isyn

(1.3)
dX

dt
= αX(V )(1−X)− βX(V )X, forX = m,h, n

(1.4) αm(V ) = −0.1

(
V + 40

e−(V+40)/10 − 1

)

(1.5) βm(V ) = 4e−(V+65)/18

(1.6) αh(V ) = 0.07e−(V+65)/20

(1.7) βh(V ) =
1.0

e−(V+35)/10 + 1

(1.8) αn(V ) = −0.01

(
V + 55

e−(V+55)/10 − 1

)

(1.9) βn(V ) = 1.25e−(V+65)/80

V represents the membrane voltage in [mV], while m,n and h represent the unitless

gating variables of the ionic current conductances. Iapp signifies the external applied

current to the neuron (described in detail in Section 1.2), in [µA/cm2], while Isyn

describes the synaptic current input to the cell from the network (Isyn is described in

detail above in Section 1.2, while Iapp will be described in more detail in the following

chapters), also with units of [µA/cm2]. ENa, EK and EL are the reversal potentials,

with Na symbolizing sodium, K symbolizing potassium, and L symbolizing the leak
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current. In this model these constants are set at ENa = 50 mV, EK = −77 mV and

EL = −54.4 mV. The corresponding maximum conductances gNa, gK and gL are set

at gNa = 120 mS/cm2, gK = 36 mS/cm2 and gL = 0.3 mS/cm2.

The Type II properties of this model neuron are reflected in its I-F curve (Fig

1.8(A)) and PRC (Fig 1.8(B)) [114]. At current threshold, firing frequency is a

discrete, non-zero value and the slope of the I-F curve is shallow for all applied

current values. The discontinuity between a zero firing frequency and a non-zero

firing frequency arises from the subcritical Hopf bifurcation that leads to periodic

firing in this model neuron, and this bifurcation is also historically associated with

the classification of this neuron model as Type II [38, 98]. The PRC displays an

initial delay region and phase advance when the brief depolarizing current pulse is

delivered at later phases.

1.5.2 The Cortical Pyramidal Neuron (CPN) model

Type I neurons and Type II neurons with adaptation are simulated utilizing a

model, first articulated to describe cortical pyramidal neurons, in which different

values for the conductance associated with the M-type potassium current switch the

properties of the neuron between Type I and Type II [45, 98]. The equations are

(1.10)

dV

dt
= −gNam3

∞h(V −ENa)−gKd
n4(V −EK)−gKsz(V −EK)−gL(V −EL)+Iapp−Isyn

(1.11)
dX

dt
=
X∞(V )−X

τX(V )
forX = h, n, z

(1.12) m∞(V ) =
1

1 + e(−V−30/9.5)

(1.13) h∞(V ) =
1

1 + e(V+53/7.0)
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(1.14) n∞(V ) =
1

1 + e(−V−30/10)

(1.15) z∞(V ) =
1

1 + e(−V−39/5)

(1.16) τh(V ) = 0.37 +
2.78

1 + e(V+40.5)/6

(1.17) τn(V ) = 0.37 +
1.85

1 + e(V+27)/15

(1.18) τz(V ) = 75

Variables and constants have identical meanings as in the Type II model (see Section

1.5.1), with the new terms gKd
and gKs representing the maximal conductances as-

sociated with the delayed rectifier and slow M-type potassium currents, respectively,

and z representing the gating variable governing the M-type potassium current. The

constants for this model are as follows: ENa = 55 mV, EK = −90 mV, EL = −60

mV, gNa = 24 mS/cm2, gKd
= 3 mS/cm2 and gL=0.02 mS/cm2.

When gKs = 0 mS/cm2 the model neuron is designated Type I because of the

properties of its I-F curve (Fig 1.8(A)) and PRC (Fig 1.8(B)) [114]. The neuron

exhibits firing frequencies arbitrarily close to zero at current threshold and the slope

of the I-F curve is initially very steep while becoming more shallow as applied current

increases. The PRC exhibits phase advance for a brief depolarizing current pulse

delivered at essentially every phase. This model neuron achieves repetitive firing via

a SNIC bifurcation, which is historically associated with the Type I classification

[98, 38].

When gKs = 1.5 mS/cm2 the model neuron is designated Type II with adaptation

because the properties of its I-F curve (Fig 1.8(A)) and PRC (Fig 1.8(B)) match the
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basic properties of a Type II neuron as described previously in Section 1.5.1 [114].

This neuron model achieves periodic firing with a subcritical Hopf bifurcation, a

known feature of neuron models with an M-type adaptation current that is associated

with the Type II classification [38].

While the equations for the Type I neuron and the Type II neuron with adaptation

were initially developed to model a cortical pyramidal neuron modulated by ACh,

the properties of this neuron when gKs = 0 closely mirror those of fast-spiking Type I

interneurons (such as the ubiquitous PV interneurons). Additionally, the presence of

an active M-current when gKs = 1.5 causes this model to act similarly to interneurons

with such a current, such as the oriens-lacunosum moleculare (OLM) interneurons.

1.6 Measures quantifying network behavior

While the primary behavior of interest in this dissertation research is synchronous

network oscillations, oftentimes this behavior can exhibit complex dynamics that

are not completely encapsulated by simply measuring whether or not the network

exhibits synchrony. The presence of some type of oscillatory dynamics can most easily

be detected by analyzing the propensity for the network to synchronize. However,

a major component of this dissertation research is the articulation of additional

measures that concisely articulate other crucial properties of the network dynamics.

Such measures are used repeatedly in the chapters to follow, and as such are described

here.

1.6.1 Synchrony Measure

The Synchrony Measure is an adaptation of a measure created by Golomb et.

al. [49, 50] that quantifies the degree of spiking coincidence in the network. Briefly,

the measure involves convolving a gaussian function with the time of each action



31

potential for every cell to generate functions Vi(t). The population averaged voltage

V (t) is then defined as V (t) =
1

N

N∑
i=1

Vi(t), where N is the number of cells in the

network, which in this work is typically 1000. We further define the overall variance

of the population averaged voltage σ and the variance of an individual neuron’s

voltage σi as

(1.19) σ =< V (t)2 > − < V (t) >2

and

(1.20) σi =< Vi(t)
2 > − < Vi(t) >

2

where < · > indicates time averaging over the interval for which the measure is

taken. The Synchrony Measure S is then defined as

(1.21) S =
σ

1

N

∑N
i=1 σi

The value S = 0 indicates completely asynchronous firing, while S = 1 cor-

responds to fully synchronous pattern of network activity. Example raster plots

differentiating synchronous and asynchronous firing are found in Fig 1.10.

1.6.2 Burst Similarity Measure

To quantify relative overlap in cell participation in subsequent network bursts,

where a network burst is defined as a small time window in which a large proportion

of the neurons in a network fire action potentials, I constructed a new measure,

entitled the Burst Similarity Measure. It quantifies the fraction of active neurons

that participate in consecutive bursts of network activity. This measure is calculated

in two steps. First, to detect timing and duration of each burst, the spike times of

each neuron in the network are convolved with a gaussian function and a cumulative
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Figure 1.9: Example raster plots differentiating synchronous and asynchronous network activity.
Left panel: example neural activity exhibiting asynchrony, which yields a Synchrony
Measure near 0. Right panel: example neural activity exhibiting synchrony, which
yields a Synchrony Measure near 1.

network activity trace is formed (in the same fashion as described for V (t) in Section

1.6.1. This trace is subsequently thresholded to determine the on and off times for

every burst (bj and ej, respectively).

For each burst j a binary vector is constructed that quantifies which neurons

spiked during the burst, vj. If neuron i spiked during burst j, meaning it fires at a

time tj such that bj ≤ tj ≤ ej, vj(i) = 1, otherwise vj(i) = 0. The Burst Similarity

Measure B is then determined via

(1.22) B =
1

n− 1

n−1∑
j=1

vj · vj+1

|vj||vj+1|

where · indicates the vector dot product, |x| indicates the vector norm, and n is the

total number of bursts.

A Burst Similarity Measure of B = 0 indicates that consecutive bursts contain

mutually exclusive populations of neurons, while B = 1 indicates that consecutive

bursts contain an identical population of neurons.

The measure allows for differentiation of multiple types of behavior reflected by an
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Figure 1.10: Example raster plots differentiating one-cluter and two-cluster network dynamics. Left
panel: example neural activity exhibiting two-cluster dynamics, which yields a Burst
Similarity Measure of 0. Right panel: example neural activity exhibiting one-cluster
dynamics, which yields a Burst Similarity Measure near 1.

intermediate value of the Synchrony Measure. For example, synchronous dynamics

for which half the cells in the network are active and participate in each synchronous

burst, while the other half of neurons are completely suppressed, exhibits an inter-

mediate value of S and B = 1. In contrast, dynamics consisting of bursts of network

activity in which consecutive bursts contain mutually exclusive populations of neu-

rons, each containing half of the neurons in the network, also has an intermediate

value of S but B = 0.

Numerous validation studies were done to confirm that this measurement satisfies

the above properties in practice. Toy cases easily confirm the extreme cases of B = 0

and B = 1 described above; additionally, for a variety of simulations of the networks

I confirmed that the dynamics predicted by B matched the dynamics exhibited by

the network by visually inspecting the corresponding raster plots. Example raster

plots differentiating one-cluster and two-cluster dynamics are shown in Fig 1.10.
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1.6.3 Variability Measure

The Synchrony Measure does not detect organization, or lack thereof, within each

synchronous burst of network activity, or take into account the periodicity of the

bursting dynamics. As such, three additional measures were utilized to quantify the

organization and periodicity of excitatory bursting dynamics in E-I networks.

Each of these three additional measures relied upon detecting instances of bursting

activity within the excitatory network and identifying which neurons participated in

the burst. This was done in an identical fashion to that described for the Burst

Similarity Measure in Section 1.6.2.

To analyze the organization of excitatory neurons within each network burst, the

Variance of Neuron Order (O) is calculated. For each burst of excitatory network

activity in the last second of a given simulation (term k the number of these bursts),

the spike time of each firing neuron is detected and temporally ordered. We assign a

value Oi,j for each neuron i in each burst j that conveys information on the ordering

of the firing of neuron i within burst j. The firing order is normalized by the number

of unique firing times in each excitatory burst and scaled between 1 and 100 such

that the neurons that fire first have a value of 1 and the neurons that fire last (or

not at all in a given burst) are given a value of 100. To calculate O, I take the

standard deviation of the values Oi,j for 1 ≤ j ≤ k for each excitatory neuron i,

and then average over the number of excitatory cells to yield O. Low values of O

indicate that neurons retain a predictable temporal ordering in each burst of activity;

typically neurons with stronger external driving currents fire earlier and those with

weaker driving currents fire later (where this variability in driving current is due to

implemented heterogeneity in the applied current). High values of O indicate that

the ordering of neuron firing within bursts is variable and thus the bursts do not
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retain significant ordering.

To analyze the consistency of cell participation in bursts, a measure of burst

strength, the Variance of Active Cells (A) is calculated. For each burst of excitatory

network activity in the last second of a given simulation, the proportion of excitatory

cells active in the burst is calculated, and A is defined as the standard deviation of

these values. Low values of A indicate that each burst of excitatory network activity

contains a similar proportion of the overall number of excitatory cells in the network,

which in turn means that the strength of the excitatory signal sent to the inhibitory

cell population is similar for each burst. High values of A indicate the number of

active excitatory neurons varies from burst to burst; in turn, this causes significant

variation in the strength of the excitatory signal sent to the inhibitory cell population.

Finally, to analyze the consistency of the periodic nature of excitatory network

bursting activity, the Variance of Inter-burst Interval (I) is calculated. The inter-

burst interval between bursts of excitatory network activity is found for each burst

occurring within the last second of a given simulation, and the coefficient of variation

is calculated for these inter-burst intervals, giving the measure I. We note that

the coefficient of variation in this measure is used because the standard deviation

values vary with the average firing frequency of the bursts. Low values of I indicate

that the network is periodic with very little variation in the timing between bursts

of network activity. High values of I indiate that bursts of excitatory cell activity

exhibit significant variability in their timing, which in turn means that the excitatory

signal sent to the inhibitory cell population is not strictly periodic.

These three measures are combined together into one measure, dubbed the Vari-

ability Measure (V ), to quantify the degree to which the excitatory network displays

well-organized, periodic bursts typical of classic PING rhythmic activity. The mea-
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sure is calculated thusly:

(1.23) V =
√(

Ō2 + Ā2 + Ī2
)

where the bar indicates normalized values of each of the measures O, A, and I

between 0 and 1.

Each measure is normalized by dividing by a maximal value, Xm for X = O,A, I,

that is slightly above the highest values of the measure typically achieved in networks

exhibiting clear bursting activity amongst excitatory cells. When S < .2, which

indicates that the network is asynchronous to the point that bursts of network activity

do not occur, the value of each normalized measure is artificially set to 1. This ensures

that the normalized values of each measure are 1 only in cases without clear bursting

patterns. Via this algorithm, the normalized values of each measure are calculated

as:

(1.24) for X = O,A, I: X̄ =


X

Xm

if S ≥ .2

1 if S < .2

The Variability Measure thus takes the Euclidean Distance of these three measures

when their values are scaled between 0 and 1, with 0 indicating minimal variability

in the given metric and 1 indicating abnormally high variability or a lack of network

bursts. The value V = 0 indicates a network in which there is no variability in

the order of neurons within each burst, no variability of the number of neurons

firing in each burst, and no variability in the inter-burst intervals. V will approach

its maximum value of
√

3 in networks when high variability is detected by each of

the three measures, and V will achieve its maximum value only if this variability is

abnormally high in each measure or if no bursting activity is achieved by the network.

Example raster plots differentiating dynamics with low and high Variability Measures
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Figure 1.11: Example raster plots differentiating network dynamics with low and high Variability
Measures. Left panel: example neural activity in which the excitatory cells exhibit
organized firing, consistent cell participation in each burst, and consistent inter-burst
intervals, yielding a low Variability Measure. Right panel: example neural activity in
which the excitatory cells exhibit variability in the order of firing from burst to burst,
inconsistent cell participation in each burst, and inconsistent inter-burst intervals,
yielding a high Variability Measure..

are shown in Fig 1.11.



CHAPTER II

Intrinsic cellular properties and connectivity density
determine variable clustering patterns in randomly

connected inhibitory neural networks

2.1 Introduction

The simplest case in which to examine the variety of mechanisms driving syn-

chronous oscillations in neural networks with inhibitory interneurons is that of a

purely inhibitory network. The ING mechanism described in detail in Section 1.3.1

is the most commonly cited impetus behind these networks’ tendency to synchro-

nize [63, 119, 114, 118]. A vast majority of the studies articulating and investi-

gating the ING mechanism utilize neuron models with distinctly Type I properties

[115, 119, 29, 8, 22]. The PV cells of the hippocampus have been shown via experi-

ment to normally exhibit a PRC only showing phase advance in response to a weak

excitatory current pulse and thus are typically classified as Type I; these neurons are

also known to exhibit reciprocal synapses to form an inhibitory network primarily

containing only this type of interneuron [44, 59], and thus are often analyzed as an

archetypical network in which ING might occur.

However, interneurons in the brain are in fact extremely heterogeneous. For ex-

ample, the oriens-lacunosum moleculare (OLM) cells of the hippocampus contain an

M-type potassium current which causes spike-frequency adaptation and is blocked

38
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by the action of ACh on muscarinic receptors [92, 69, 33, 32]. The cholecystokinin-

containing basket cells (CCK cells) of the hippocampus also exhibit cholinergic mod-

ulation [88, 89]. Moreover, in the cortex, cells exhibiting the PV marker exhibit a

wide range of properties, including the possibility of expressing the M-type potas-

sium channel, while somatostatin-expressing interneurons (SOM cells) consistently

exhibit spike frequency adaptation much like the OLM cells [82, 73].

Oftentimes, the presence of adaptation currents (like the M-type potassium cur-

rent) is what imbues a neuron with Type II properties [67]. Hippocampal OLM cells

exhibit Type II properties while also exhibiting spike-frequency adaptation, imparted

by the M-type potassium current [92, 69, 33, 32], and the SOM cells and some in-

terneurons expressing the PV marker exhibit these properties in the cortex [82, 73].

However, neurons may feature Type II properties without an adaptation current, as

is most simply illustrated by the classic Hodgkin-Huxley model neuron which does

not exhibit spike-frequency adaptation but does exhibit Type II properties [57, 43].

Interneurons exhibiting Type II properties without strong evidence of an adaptation

current have been found in various brain regions including the rat somatosensory

cortex [104, 103], the rat barrel cortex [71], the rat cerebellum [30] and the mouse

spinal cord [124]. There is evidence suggesting that Type II interneurons in the rat

somatosensory cortex synapse onto each other to form an inhibitory network primar-

ily containing only this type of interneruon [104], and the PV cells in the cortex,

which sometimes exhibit Type II properties, are also known to be connected in this

fashion [82, 73]. However, it is currently unclear whether the OLM interneurons are

synaptically interconnected.

The existence of this interneuronal diversity, including a variety of interneurons

exhibiting Type II properties, motivates work investigating whether the predictions
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of the ING mechanism are robust to changing intrinsic cellular properties. Type II

neurons have been analytically shown to synchronize in the case of mutual inhibition

in networks of two neurons [112]. Other studies have analyzed larger, all-to-all cou-

pled inhibitory networks of neurons exhibiting these properties, showing that they

can either exhibit synchrony or anti-phase clustering [67, 52, 2], while newer studies

have begun to investigate the activity of these types of neurons in randomly con-

nected networks [110]. However, this research is much less detailed than the literature

probing the ING mechanism and corresponding networks of Type I neurons.

Motivated by the variety of interneurons present in the hippocampus and cortex,

evidence that they form inhibitory networks, and the relative dearth of research on

purely inhibitory networks with Type II interneurons, in this chapter I investigate

spatio-temporal pattern formation in strongly synaptically coupled, randomly con-

nected inhibitory networks of Type I neurons, Type II neurons and Type II neurons

containing an M-type potassium current (hereafter referred to as Type II neurons

with adaptation). This coupling regime is the focus because networks of this type

are not amenable to analytical treatment. Utilizing simulations, it is shown that

these networks exhibit different types of synchronous or clustering behavior through

multiple mechanisms, which arise from the differing intrinsic cellular properties of

these neuron models.

While PRCs generated with a weak excitatory current pulse are used to classify

model neurons as either Type I or Type II, a PRC calculated with a perturbation

matching the synaptic current profile, which is termed the sPRC and defined in more

detail below, is used to more accurately illustrate neural response properties in net-

works which contain stronger synaptic connections. Neurons that exhibit distinct

properties in their PRCs exhibit analagously distinct properties in their sPRCs as il-
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lustrated in Fig 2.1, and these sPRC properties are used to articulate the mechanisms

underlying the dynamics found in these networks.

Network activity patterns are classified into four major behaviors: asynchrony;

full synchrony, in which every neuron in the network fires roughly simultaneously

in a stable fashion; one-cluster dynamics, in which some of the neurons in the net-

work fire synchronously in bursts of network activity, but others are silenced; and

two-cluster dynamics, in which some, but not all, of the neurons in the network fire

synchronously in bursts, but subsequent bursts contain mutually exclusive popula-

tions of neurons, providing informational specificity to the burst. While a number

of these dynamical patterns have previously been found in computational studies

of neural networks [101, 77, 60, 37, 39, 100], I focus on directly comparing network

activity in large-scale, synaptically coupled inhibitory networks consisting of neu-

rons with different membrane properties and with differing cellular heterogeneity

and connectivity density.

This research shows that the ING mechanism drives one-cluster dynamics via

cell suppression [29] and full synchrony in networks of Type I neurons, as has been

previously shown [63, 119, 114]. However, I also show that the properties of the

sPRC of the neuron, specifically those associated with Type II neurons, can interfere

with the ING mechanism and produce two-cluster dynamics. The fact that such

networks do not necessarily evolve into one-cluster dynamics as the synaptic decay

time constant increases violates the predictions of the ING mechanism and the results

indicate that clustering in these networks occurs in a fashion largely independent of

synaptic properties. In fact, ING-driven synchrony only appears in networks of Type

II neurons when heterogeneity in the intrinsic firing frequency of cells in the network

is minimal. Previous studies have shown that the PRC is a useful tool to explain
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divergent network dynamics, including the differences between one-cluster and two-

cluster firing, although such analysis has not been performed in detail on strongly and

randomly connected, strictly inhibitory networks, and has not utilized the features

of the PRC focused on in this study [123, 101, 38, 60, 39, 48, 67, 110, 26].

Furthermore, I illustrate that networks of Type II neurons with adaptation exhibit

activity patterns similar to either Type I or Type II networks dependent upon the

average intrinsic cell firing frequency of neurons in the network and the synaptic

decay constant of synapses in the network. The values of these parameters and

their interaction with the properties of the adaptation current lead to a change

in network dynamics that is associated with a change in properties of sPRC. These

results show the importance of the adaptation current in driving network dynamics in

strictly inhibitory, randomly-connected networks, further emphasizing the influence

of spike-frequency adaptation on network dynamics as shown in other network types

[38, 111, 39, 67, 110]. Together, these results detail the important role played by

intrinsic cellular properties of neurons, as well as the degree of connectivity in the

network, in driving rhythmic behavior in randomly-connected inhibitory networks 1.

2.2 Methods

2.2.1 Neuron properties: Synaptic Phase Response Curves and Spike Frequency
Adaptation

For network simulations in this chapter, a constant, though heterogeneous be-

tween neurons, external input current is applied to all neurons, inducing continuous

periodic firing which allows the PRC to be a useful tool for analyzing neural response

properties. However, the PRC computed in response to a brief, weak input (as in Fig

2.1(B) and (C)) does not accurately describe the cell’s response to the inhibitory

1Work presented in this chapter has been previously published [85]
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synaptic input received within the network, because the synaptic transmission as

modeled is not brief and weak. To understand how differences in intrinsic cellular

properties affect responses to perturbations received by neurons within the model

networks, PRCs with an inhibitory signal approximating the magnitude and profile

of the synaptic current received by a single cell following a burst of network activity

are computed. To differentiate PRCs calculated with this type of perturbation from

those used to classify neuron type, I refer to the PRCs calculated with synaptic cur-

rents as sPRCs (as opposed to PRCs calculated with brief, excitatory current pulses

which are referred to simply as PRCs). The sPRCs are shown in Fig 2.1(D), (E)

and (F) for Type I neurons, Type II neurons and Type II neurons with adaptation,

respectively. For brief synaptic currents, sPRCs show similar properties to their PRC

counterparts in Fig 2.1(C), but as the duration of the synaptic current increases,

the sPRCs for different cell types become more similar.

The sPRCs for the Type I neuron show a large delay response to perturbations

delivered at early phases and exhibit linear properties, with a slope of approximately

-1, as the phase of the perturbation increases. The magnitude of the delay depends

upon the duration of the synaptic current. The linear properties of these sPRCs

indicate that, regardless of timing, all perturbations serve to “reset” the neuron to

the beginning of its firing cycle, where the neuron is held until the inhibition decays

sufficiently. Furthermore, the neuron is held at the beginning of its firing cycle for

the same duration regardless of when the perturbation occurred. The only factor

that changes the magnitude of the phase delay, then, is the time elapsed between

the initial action potential firing and the delivery of the perturbation. This evolves

linearly with the timing of the perturbation. Since the scales of both the timing

and the phase delay are normalized to 1, the sPRCs display linear properties with
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Figure 2.1: Properties of neuron models. (A): Current-frequency curves (I-F curves) of Type
I (red), Type II (blue) and Type II with adaptation (black) neuron models. (B): Phase
response curves (PRCs) calculated with a brief excitatory current pulse for each model
neuron firing at 65 Hz. (C): PRCs calculated with a brief inhibitory pulse for each
model neuron neuron firing at 65 Hz. (D)-(F): sPRCs calculated with a perturbation
matching the double exponential synaptic current model with various synaptic decay
constants for a Type I neuron firing at 44 Hz ((D)), for a Type II neuron firing at 70
Hz ((E)) and for a Type II neuron with adaptation firing at 30 Hz ((F)).

an approximate slope of -1. For these reasons, sPRCs with linear characteristics are

classified as having “phase-resetting” properties.

The sPRCs for both the Type II neuron and the Type II neuron with adaptation

exhibit a distinctly concave down shape for brief synaptic currents. As the duration

of the synaptic current increases, the sPRCs for both of these neurons become more

linear and start to resemble the phase-resetting shape. However, even for the longest

lasting synaptic currents the sPRCs for the Type II neuron and the Type II neuron

with adaptation still retain some concave down characteristics, never achieving the
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degree of linearity shown by the sPRCs for Type I neurons.

Another relevant property of the Type II neuron with adaptation is spike-frequency

adaptation. When this neuron is quiescent for a sufficient period of time, the gat-

ing variable governing the slow potassium current, z, falls below its typical value

achieved during repetitive firing. When the neuron begins firing again, the slow time

dynamics of z cause its value to rise slowly, allowing faster than normal firing until

it fully recovers. These dynamics are displayed in Fig 2.2: in response to an applied

current step initiated at t = 100 ms from resting membrane potential, action poten-

tial firing occurs at higher frequency until the value of z rises to a steady oscillation.

Removal of the current step for a moderate period of time allows sufficient decay of

z so that frequency is again high when the current step is reintroduced.

Figure 2.2: Type II neurons with adaptation exhibit spike-frequency adaptation. Voltage
trace (blue) and value of the slow potassium gating variable z (green) shown for a single
neuron that begins with no input current and equilibrium values of the voltage and all
gating variables. The current step is shown above the voltage trace in black. The
frequency of action potential firing depends upon the rate of previous action potential
firing, which is reflected by the value of the gating variable of the slow potassium current.

2.2.2 Network Structure

Simulations in this chapter are performed on networks of 1000 inhibitory neu-

rons. Each neuron received synaptic input from the same number (unless otherwise
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specified, 300) of randomly selected pre-synaptic cells.

Cell heterogeneity was implemented by varying the external input current, Iapp, to

each neuron. The input currents were selected from a uniform distribution centered

on the current (IA) that would impart an average intrinsic cell firing frequency to

an isolated neuron. Networks with two levels of heterogeneity are studied. For

high heterogeneity simulations the input currents are uniformly chosen from the

distribution [.9IA, 1.1IA], while for low heterogeneity simulations the input currents

are uniformly chosen from the distribution [.99IA, 1.01IA].

Synapses are modeled using a double exponential profile of the form described

in Section 1.2 and Equation 1.1. Here, τr is set at 0.2 ms while τd is varied in the

simulations. In all simulations, gsyn is set at 0.010 mS/cm2.

2.2.3 Simulations

The code underlying these simulations was written in the C programming language

and run on the University of Michigan’s Flux cluster, a Linux-based high-performance

computing cluster.

All simulations were run for 2500 ms from random initial conditions for voltage

and gating variables for each neuron. Possible initial conditions for V ranged be-

tween −62 and −22 mv, while the possible initial conditions for each gating variable

ranged between 0.2 and 0.8. In order to investigate the stability of the network’s

behavior, at a time of 1400 ms a large amplitude, brief current pulse was delivered to

each cell in the network to cause all neurons to fire at the same time. As inhibitory

synaptic currents do not directly promote synchronized firing and the ING mecha-

nism achieves synchrony by organizing time windows that allow synchronized firing,

this applied current pulse acts to impose an instance of synchrony on the network

(analagous to imposing homogeneous initial conditions causing instantaneous spik-
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ing of all neurons in the network, as opposed to the randomized initial conditions

that begin the simulations). This allows for the comparison of network dynamics

established from random initial conditions (Pre Pulse) to those established after the

current pulse (Post Pulse), and for differentiation between global convergence and

local stability of network synchrony. An illustrative example of a clustered solution

that is not globally convergent from random initial conditions but stable locally after

the pulse is shown in Fig 2.3.

Figure 2.3: Effect of a synchronizing current pulse in network simulations. In an example
network consisting of Type I neurons with high heterogeneity, a large, brief current
pulse delivered at 1400 ms causes every cell in the network to fire synchronously. In
response, this network changes behavior and exhibits one-cluster dynamics following
the pulse despite firing asynchronously previously.

Model equations are integrated using a fourth order Runge-Kutta technique.

Spikes do not trigger synaptic current until 100 milliseconds into the simulation

to allow initial transients to decay.

Color plots of the Synchrony Measure and the Burst Similarity Measure display

the average of these scores over 10 independent simulations. The Pre Pulse scores

(left panels) are calculated based on the network activity from 300 to 1300 millisec-

onds, and the Post Pulse scores (right panels) are calculated based on the network

activity from 1500 to 2500 milliseconds. Simulations (not shown here) were run to

ensure that the behaviors indicated by the Synchrony Measure and Burst Similarity
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Measure taken over the given interval were indicative of stable behaviors that would

persist long past the time interval measured here.

Color plots display measures for the same range of values for the synaptic decay

time constant τd, while the average intrinsic cell firing frequencies are chosen to

sample a majority of the range of frequencies of repetitive cell firing that a given

model can attain.

2.3 Results

I investigated global pattern formation in randomly connected inhibitory networks

composed of neurons with three cellular excitability types and different levels of

cellular heterogeneity, finding that the clustering dynamics were dependent upon cell

type, heterogeneity level and the degree of connectivity. This diversity in network

activity patterns provides evidence for the importance of intrinsic cell properties in

dictating network patterns in randomly connected inhibitory networks, while also

allowing for the identification of the mechanisms underlying these dynamics that

depend upon these properties.

2.3.1 Effect of Connectivity Density

The computational study of neural networks includes a plethora of studies focusing

on all-to-all connected networks. This literature includes many of the papers cited

here as relevant to the study of interneuron networks, inhibitory networks, or the role

of spike-frequency adaptation in network dynamics [112, 67, 123, 38, 39, 77, 60, 37,

48]. One of the benefits of the study of all-to-all connected networks is the ability to

use techniques, including weakly coupled oscillator theory and the phase-reduction

technique, in order to mathematically analyze the network dynamics and in turn

prove the generality of dynamical results. However, these techniques rely upon the
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assumption that the networks have all-to-all network topology [94].

In networks with high heterogeneity in intrinsic cell firing frequency, the level of

connectivity density caused significant changes in the patterns of network dynamics.

These changes are shown by the changing network dynamics illustrated in Fig 2.4

for networks of Type I (first column), Type II (second column) and Type II with

adaptation (third column) neurons, for networks with a connectivity density of 10%,

30%, and 100%, from top to bottom, respectively.
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Figure 2.4: Network activity patterns are dependent upon connectivity density. Dia-
grams illustrating the changing network dynamics in simulations as a function of con-
nectivity density and neuron type, with simulations run with a range of average intrinsic
cell firing frequencies (horizontal axis) and synaptic decay constants (vertical axis). The
connectivity densities shown here are 10%, 30%, and 100%, from top to bottom. Simu-
lations for Type I neurons are shown in the first column, simulations for Type II neurons
are shown in the second column, and simulations for Type II neurons with adaptation
are shown in the third column.

The values of the Synchrony Measure (S) and Burst Similarity Measure (B),

when analyzed jointly, indicate the type of activity in these networks and inform

the classification of network dynamics in Fig 2.4. The manner in which S and B

are analyzed to yield the classification of network dynamics is described below. For
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simplicity, in Fig 2.4 only the changes in overall network dynamics is illustrated.

Regardless of the connectivity density, synchronous activity in networks of Type

I neurons was restricted to one-cluster dynamics. The parameter space in which

one-cluster firing occurred, as opposed to asynchronous dynamics, moved to include

lower intrinsic cell firing frequencies as the connectivity density increased. While

networks with 30% connectivity density do not evolve to one-cluster dynamics from

randomized initial conditions at low intrinsic firing frequencies, as shown here, it

is shown below that these networks can achieve one-cluster dynamics following the

synchronizing current pulse.

When connectivity density was less than 30%, networks of Type II neurons with

adaptation exhibited one-cluster dynamics for high average intrinsic cell firing fre-

quencies, but displayed two-cluster dynamics or asynchronous activity as cell firing

frequency decreased or the synaptic decay time constant increased. As the connec-

tivity density increased, parameter regimes which supported two-cluster dynamics at

lower connectivity densities exhibited one-cluster dynamics at the higher connectiv-

ity densities. At full connectivity density, two-cluster dynamics were only found for

networks with the slowest average cell firing frequencies or shortest synaptic decay

constants. Thus, in these networks, lower connectivity density allows cellular and

synaptic properties to influence network activity and determine whether two-cluster

dynamics or one-cluster dynamics are exhibited. In fully connected networks, cel-

lular and synaptic properties are less influential and network dynamics converge to

similar patterns of one-cluster dynamics.

Connectivity density had minimal effect on the type of synchronous dynamics

exhibited in networks of Type II neurons. For all densities, networks displayed two-

cluster dynamics with little effect due to variations in intrinsic cell firing frequency
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and synaptic decay time constant.

In summary, increasing connectivity density limited the contributions of cellular

and synaptic properties to network dynamics in simulations. Not surprisingly, full

connectivity promoted one-cluster synchronous dynamics, except in the Type II net-

works. When heterogeneity in intrinsic cell firing frequency was reduced in Type II

networks, one-cluster dynamics were exhibited (see further results below).

For the remainder of this chapter, networks with 30% connectivity density are

considered. There exists biological evidence for 30% connectivity density among

inhibitory neurons based on data from the CA1 region of the rat hippocampus [110,

3]. Additionally, from the above results, networks with this connectivity showed

distinct dynamical patterns from both extremely sparsely and extremely densely

connected networks, thus making generalizations from the study of these networks

to other randomly connected networks reasonable.

2.3.2 Networks of Type I Neurons

Inhibitory networks of Type I neurons manifested full synchrony, one-cluster dy-

namics, or asynchrony with 30% connectivity density. The particular type of behavior

exhibited by the network was determined by the two parameters varied across simu-

lations, the average intrinsic cell firing frequency of neurons in the network and the

synaptic decay time constant, as well as the level of heterogeneity. Full synchrony

was exhibited only when the level of heterogeneity was low (Fig 2.5); in this case

the network exhibited bursts of network activity containing every neuron in the net-

work. In the high heterogeneity case (Fig 2.6), one-cluster dynamics were observed

in which bursts contained largely the same group of neurons but not all neurons in

the network, which is indicative of cell suppression [29].

The dynamics exhibited by the network were determined by the values of S and
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Figure 2.5: Dynamics of networks of Type I neurons with low cellular heterogeneity.
(A)-(B): Synchrony Measure ((A)) and Burst Similarity Measure ((B)) for simulations
run with a range of average intrinsic cell firing frequencies (horizontal axis) and synaptic
decay constants (vertical axis), averaged over 10 independent simulations before (left
panel) and after (right panel) the synchronizing current pulse. (C): Example raster plot
for a simulation with an average intrinsic cell firing frequency of 98.8 Hz and a synaptic
decay constant of 3.5 ms (whose position in the heatmaps is illustrated by the overlayed
C) shows asynchrony occuring from initial conditions but full synchrony following the
pulse. (D): Example raster plot for a simulation with an averge intrinsic cell firing
frequency of 171.2 Hz and a synaptic decay constant of 3.5 ms (whose position in the
heatmaps is illustrated by the overlayed D) exhibits full synchrony before and after the
pulse.

B. High values of both measures indicate that the network exhibited one-cluster

dynamics: high values of S indicate that some clustering occurred in the network,

and high values of B indicate that subsequent bursts of network activity contained

similar populations of neurons. After inspecting the values of both S and B cor-

responding with various network behaviors and visually classifying dynamics in the

corresponding raster plots, it was determined that clustering occurs when S > 0.4,
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Figure 2.6: Dynamics of networks of Type I neurons with high cellular heterogeneity.
(A)-(B): Synchrony Measure ((A)) and Burst Similarity Measure ((B)) for simulations
run with a range of average intrinsic cell firing frequencies (horizontal axis) and synaptic
decay constants (vertical axis), averaged over 10 independent simulations before (left
panel) and after (right panel) the synchronizing current pulse. (C): Example raster plot
for a simulation with an average intrinsic cell firing frequency of 98.8 Hz and a synaptic
decay constant of 3.5 ms (whose position in the heatmaps is illustrated by the overlayed
C) shows asynchrony occuring from initial conditions but one-cluster dynamics following
the pulse. (D): Example raster plot for a simulation with an averge intrinsic cell firing
frequency of 171.2 Hz and and a synaptic decay constant of 3.5 ms (whose position in
the heatmaps is illustrated by the overlayed D) exhibits one-cluster dynamics before
and after the pulse.

and when B > 0.2 subsequent bursts are sufficiently similar for the behavior to be

deemed one-cluster dynamics (although the values of B observed for one-cluster dy-

namics were typically much higher than this level). Both measures approaching their

maximal value of 1 indicated that the network exhibits full synchrony. Two-cluster

dynamics are indicated by a moderate value of S (typically S ≈ 0.6), but B = 0.

The stability of the solutions observed from randomized initial conditions were
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investigated by applying a synchronizing current pulse to all neurons approximately

midway through the simulation. The current pulse caused all neurons to fire simul-

taneously which produced a subsequent uniform suppression of all neurons via the

synaptic inhibition. The left and right panels of Figs 2.5 and 2.6 display the measures

and example raster plots of pre- and post-pulse network activity, respectively.

Networks with low average intrinsic cell firing frequencies exhibited asynchronous

activity patterns, regardless of heterogeneity and synaptic decay time constant, when

simulated from random initial conditions. However, stable full synchrony or one-

cluster dynamics could be induced by the synchronizing current pulse in some of these

networks: in nearly all networks with low heterogeneity, the current pulse induced

full synchrony, while in networks with high heterogeneity the pulse induced one-

cluster dynamics within a range of synaptic decay time constant values. Thus, the

current pulse revealed bistable dynamics in these networks characterized by evolution

to either asynchronous or clustered dynamics depending on initial conditions. Full

synchrony developed following the current pulse in networks with high heterogeneity

and an average intrinsic cell firing frequency of 15 because IA for these networks was

0, resulting in networks with homogeneous external input current to the neurons.

Examples of these bistabilities between asynchronous and fully synchronous or one-

cluster firing are shown in the raster plots in Figs 2.5(C) and 2.6(C).

This bistability is reflective of properties of the ING mechanism. Asynchrony oc-

curred due to the combination of the low firing frequency of neurons and the presence

of synaptic inhibition preventing enough cells from firing in close enough temporal

proximity to generate sufficient synaptic inhibition to suppress spiking activity in

the entire network for a sufficient period. However, the current pulse instantiated a

state in which every neuron in the network fired synchronously; following this, every
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neuron in the network received identically strong synaptic inhibition, initiating ING-

driven activity. Following the pulse, this synchronous activity was fully maintained

in most of the low heterogeneity networks, and partially preserved via one-cluster

dynamics in many high heterogeneity networks.

Networks with higher average intrinsic cell firing frequencies showed no significant

changes in either S or B and after the current pulse, indicating that ING-driven dy-

namics are globally stable solutions that do not depend on initial conditions. These

networks exhibited full synchrony in the low heterogeneity case and one-cluster dy-

namics in the high heterogeneity case. Example raster plots in this domain, illustrat-

ing the similarity in network activity before and after the current pulse, are shown

in Figs 2.5(D) and 2.6(D). In the high heterogeneity case, the range of computed

S values reflect the proportion of cells in the network that participate in the one-

cluster dynamics, with lower values of S indicating that fewer cells participated in

each burst of network activity. In networks with a lower S, neurons that have smaller

input currents either participated in very few bursts or were completely suppressed.

This is illustrated by Fig 2.7(C), which shows the relationship between input current

and average firing frequency for each individual neuron in an example network il-

lustrating cell suppression. These results match previous results studying analagous

networks with heterogeneity [115, 44, 29, 8, 106].

The sPRCs shown in Fig 2.1(D) help to explain these networks’ tendency to ex-

hibit dynamics driven by the ING mechanism. Regardless of the duration of the

synaptic current, the sPRCs for Type I neurons showed strong phase-resetting char-

acteristics. As discussed above, phase-resetting characteristics arise in an sPRC when

the synaptic inhibition holds a cell at the beginning of its firing cycle for the duration

of the synapse, irregardless of the signal’s timing. When all the cells in the network
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Figure 2.7: Comparison of relationships between input current and average neuron firing
frequencies in one-cluster and two-cluster network dynamics. (A): Average
firing frequencies of individual neurons in a network of Type II neurons with adaptation
exhibiting one-cluster dynamics plotted against the input current to the corresponding
neuron. (B): Same as (A) but for a network of Type II neurons with adaptation
exhibiting two-cluster dynamics. (C): Same as (A) but for a network of Type I neurons
with similar values of S and B as in (A). (D): Same as (B) but for a network of Type
II neurons with similar values of S and B as in (B).

receive this type of perturbation, they become suppressed until the synaptic signal

decays, eliciting a “window” in which cell firing can occur before the next round of

action potential firing and the resulting synaptic inhibition suppresses the neurons

once again. This is exactly the underlying mechanism of ING, indicating that the

tendency for the ING-driven dynamics in these networks can be explained by the

phase-resetting characteristics of the sPRC.

Thus, the results in this case agreed with the theory of the ING mechanism, as net-

works exhibited full synchrony or one-cluster dynamics with the degree of synchrony

within these clusters dependent upon heterogeneity, the synaptic decay constant, and

the average intrinsic cell firing frequency of neurons in the network. Further evidence

for the ING mechanism driving the synchronous activity was in the response of these

networks to the current pulse that artificially instantiated synchronous dynamics into
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these networks.

2.3.3 Networks of Type II Neurons

The networks of Type II neurons typically exhibited either full synchrony or two-

cluster dynamics. The type of behavior displayed depended upon the synaptic decay

time constant and level of cellular heterogeneity. Interestingly, for the range of

synaptic decay time constants and average intrinsic cell firing frequencies studied

here, networks of Type II neurons only exhibited ING-driven full synchrony in the low

heterogeneity case. This provides strong evidence that intrinsic cellular properties

are important in determining clustering dynamics in networks with non-trivial levels

of heterogeneity, which are more biologically plausible than homogeneous networks.

For low values of the synaptic decay time constant, networks with low heterogene-

ity (Fig 2.8) exhibited two-cluster dynamics. When the decay constant was large,

the network evolved to full synchrony from random initial conditions, but for mod-

erate values of the decay constant the synchronizing current pulse was necessary to

induce full synchrony. Thus, in this regime the network displayed bistability between

a two-cluster solution and full synchrony. Networks of Type II neurons with high

heterogeneity (Fig 2.9) almost exclusively exhibited two-cluster dynamics. The cur-

rent pulse did not induce full synchrony or one-cluster dynamics, but instead the

synchronous firing instantiated by the pulse was not maintained and firing evolved

back into two distinct clusters.

The fact that low heterogeneity networks showed a response to the current pulse,

while high heterogeneity networks did not, implies that ING-driven synchrony plays

a role in networks of Type II neurons when the heterogeneity is sufficiently low, but

a different mechanism controls behavior in the high heterogeneity case.

Closer analysis of networks of Type II neurons exhibiting two-cluster dynam-
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Figure 2.8: Dynamics of networks of Type II neurons with low cellular heterogeneity.
(A)-(B): Synchrony Measure ((A)) and Burst Similarity Measure ((B)) for simulations
run with a range of average intrinsic cell firing frequencies (horizontal axis) and synaptic
decay constants (vertical axis), averaged over 10 independent simulations before (left
panel) and after (right panel) the synchronizing current pulse. (C): Example raster
plot for a simulation with an average intrinsic cell firing frequency of 91.7 Hz and a
synaptic decay constant of 1.5 ms (whose position in the heatmaps is illustrated by the
overlayed C) exhibits two-cluster dynamics before and after the synchronizing current
pulse. (D): Example raster plot for a simulation with an averge intrinsic cell firing
frequency of 91.7 Hz and and a synaptic decay constant of 5.5 ms (whose position in
the heatmaps is illustrated by the overlayed D) exhibits two-cluster dynamics before
the pulse but full synchrony after the pulse.

ics showed that the two clusters were easily differentiated: one cluster consisted of

neurons with smaller external input currents (Iapp) and thus lower intrinsic firing

frequencies, while the other cluster consisted of neurons with higher input currents

and associated intrinsic firing frequencies. Furthermore, the timing of cluster firings

was asymmetric. The cluster containing neurons with lower Iapp values typically fired

later in the cycle between firings of the cluster containing neurons with higher Iapp
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Figure 2.9: Dynamics of networks of Type II neurons with high cellular heterogeneity.
(A)-(B): Synchrony Measure ((A)) and Burst Similarity Measure ((B)) for simulations
run with a range of average intrinsic cell firing frequencies (horizontal axis) and synaptic
decay constants (vertical axis), averaged over 10 independent simulations before (left
panel) and after (right panel) the synchronizing current pulse. (C): Example raster
plot for a simulation with an average intrinsic cell firing frequency of 91.7 Hz and a
synaptic decay constant of 1.5 ms (whose position in the heatmaps is illustrated by the
overlayed C) exhibits two-cluster dynamics before and after the synchronizing current
pulse. (D): Example raster plot for a simulation with an average intrinsic cell firing
frequency of 91.7 Hz and a synaptic decay constant of 5.5 ms (whose position in the
heatmaps is illustrated by the overlayed D) exhibits two-cluster dynamics before and
after the synchronizing current pulse.

values, while the cluster containing neurons with higher Iapp values typically fired

earlier in the cycle between firings of the low Iapp cluster (Fig 2.10).

Properties of the sPRC for Type II neurons explain this phenomenon. When

calculated using an inhibitory perturbation matching the synaptic current, the sPRC

(red curve in Fig 2.10) is approximately flat for perturbations arriving early in a

neuron’s firing cycle, but the response begins to change rapidly as the timing of
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Figure 2.10: Clusters in networks of Type II neurons are segregated based upon neurons’
intrinsic firing frequency. Raster plot of a high heterogeneity Type II network with
an average intrinsic cell firing frequency of 72.9 Hz and a synaptic decay constant of 3.5
ms, with neurons organized based upon their external input current. Overlaid with
this plot is a sPRC, generated from analogous synaptic parameters for the neuron
firing at a similar frequency to those in the network, showing the timing of firings of
the clusters relative to each other (dashed lines added at the beginning of bursts to
emphasize these timings). While the raster plots in the bottom and top panels are
identical, the overlaid sPRC begins with the black burst in each panel in order to
emphasize the timing differences in the cluster firings relative to the effect articulated
by the sPRC.

the perturbation occurs later in the neuron’s period. As the perturbation to the

cells in the high Iapp cluster from the firing of the low Iapp cluster occurred at later

phases in their firing cycle, these faster firing cells responded with a larger phase

delay (top panel). In contrast, since the perturbation to the cells in the low Iapp

cluster from the firing of the high Iapp cluster occurred at earlier phases, the induced

phase delay to these slower firing cells was smaller (bottom panel). This difference

in the magnitude of phase delays induced in the two clusters served to balance the

frequency differences among their constituent cells, and in turn organized network

activity into stable two-cluster dynamics. The properties of the sPRC that underlie

this mechanism are distinct from the phase-resetting properties displayed by Type I

neuron sPRCs.
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This hypothesis was further supported by the timing of firing of cells within each

cluster. Within the burst firing of the high Iapp cluster (the larger cluster in Fig

2.10), the neurons with the highest Iapp values fired earliest, thus responding with

a greater phase delay than the neurons firing later within the cluster. This pattern

of cell firing within the cluster balances the effect of the heterogeneity in external

input current. This feature holds true for the timing of cell firing within the low Iapp

cluster as well.

The general shape and skew properties of the sPRC shown in Fig 2.10 are present

for Type II neuron sPRCs with all but the largest synaptic decay time constants, as

shown in Fig 2.1(E). Only for the longest lasting synaptic currents do these prop-

erties diminish and phase-resetting properties appear. This helps to explain why

for longer lasting synaptic currents, networks with low heterogeneity displayed full

synchrony analagous to that seen in similar networks of Type I neurons. The di-

minished phase-resetting characteristics of the sPRCs calculated for Type II neurons

imply that cellular properties play a more important role in determining the dynam-

ics of networks of these neurons as opposed to networks of Type I neurons.

2.3.4 Networks of Type II Neurons with an M-Type Adaptation Current

Networks of Type II neurons with adaptation were found to exhibit all considered

types of dynamics: asynchrony, full synchrony, one-cluster and two-cluster dynam-

ics. The exhibited spatio-temporal pattern depended upon the average intrinsic cell

firing frequency and synaptic decay time constant. In the low heterogeneity case

(Fig 2.11), for higher intrinsic cell firing frequencies there was a bounded range of

synaptic decay constant values that led to full synchrony. Outside of this regime,

two-cluster dynamics were primarily observed, with a small region of asynchronous

behavior for very brief synaptic currents. Networks primarily evolved to these dy-
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namics from random initial conditions and the synchronizing current pulse revealed

minimal regions of bistability.
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Figure 2.11: Dynamics of networks of Type II neurons with adaptation with low cellular
heterogeneity. (A)-(B): Synchrony Measure ((A)) and Burst Similarity Measure
((B)) for simulations run with a range of average intrinsic cell firing frequencies (hori-
zontal axis) and synaptic decay constants (vertical axis), averaged over 10 independent
simulations before (left panel) and after (right panel) the synchronizing current pulse.
(C): Example raster plot for a simulation with an average intrinsic cell firing frequency
of 54.7 Hz and a synaptic decay constant of 5.5 ms (whose position in the heatmaps
is illustrated by the overlayed C) exhibits two-cluster dynamics prior to the pulse but
full synchrony following the pulse. (D): Example raster plot for a simulation with an
averge intrinsic cell firing frequency of 66.2 Hz and and a synaptic decay constant of
5.5 ms (whose position in the heatmaps is illustrated by the overlayed D) exhibits full
synchrony both before and after the pulse.

In these networks, dynamics were robust to cellular heterogeneity. The high

heterogeneity case (Fig 2.12) showed very similar results as those observed in the

low heterogeneity case, although the region of full synchrony was replaced by a

region of one-cluster dynamics in which not every cell participated in each burst. No
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bistability between two-cluster and one-cluster firing was observed in response to the

synchronizing current pulse for high heterogeneity networks.
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Figure 2.12: Dynamics of networks of Type II neurons with adaptation with high cellular
heterogeneity. (A)-(B): Synchrony Measure ((A)) and Burst Similarity Measure
((B)) for simulations run with a range of average intrinsic cell firing frequencies (hori-
zontal axis) and synaptic decay constants (vertical axis), averaged over 10 independent
simulations before (left panel) and after (right panel) the synchronizing current pulse.
(C): Example raster plot for a simulation with an average intrinsic cell firing frequency
of 43.3 Hz and a synaptic decay constant of 5.5 ms (whose position in the heatmaps is
illustrated by the overlayed C) exhibits two-cluster dynamics both before and after the
synchronizing current pulse. (D): Example raster plot for a simulation with an averge
intrinsic cell firing frequency of 54.7 Hz and and a synaptic decay constant of 5.5 ms
(whose position in the heatmaps is illustrated by the overlayed D) exhibits one-cluster
dynamics both before and after the synchronizing current pulse.

For both high and low heterogeneity simulations, in the regime in which two-

cluster dynamics was observed the synchronizing current pulse had minimal effect.

Because the effect of the current pulse is to induce ING-driven full synchrony or

one-cluster dynamics where possible, this led us to conclude that ING-driven syn-
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chrony is not achievable in a large majority of the networks that exhibited two-cluster

dynamics.

The transition from two-cluster dynamics to one-cluster dynamics in the high

heterogeneity case, or to full synchrony in the low heterogeneity case, as average

intrinsic cell firing frequency increased can be explained by changes in the shape of

the sPRC. In networks exhibiting two-cluster firing, the average firing frequency of

a cell within this network activity pattern was significantly lower than the average

firing frequency of a cell in a network exhibiting either one-cluster firing or full

synchrony (Fig 2.13(A)). The sPRC for these neurons firing at a frequency observed

during two-cluster firing (the 12.4 Hz sPRC in Fig 2.13(B)) exhibited slope and skew

typical of a sPRC calculated for a Type II neuron. In contrast, the sPRC for these

neurons firing at a frequency observed during one-cluster firing (the 55 Hz PRC in

Fig 2.13(B)) showed a strong phase-resetting shape. Thus, both types of network

dynamics exhibited in networks of Type II neurons with adaptation are predicted by

variations in the shapes of their sPRCs with increasing intrinsic cell firing frequency.

The sPRCs for Type I neurons and Type II neurons, on the other hand, do not

show significant variation to their overall shapes and skews in response to changes in

the cell’s firing frequency (Fig 2.13(D) and (F)), thus predicting the robustness of

one-cluster or two-cluster dynamics in these networks, respectively. This frequency-

dependence of PRC shape for Type II neurons with adaptation has previously been

discussed in relation to the effects of the M-current [45, 67, 38, 39], although the

specific effects on the dynamics of inhibitory networks of the type studied here have

not.

The behavior of both the one-cluster and two-cluster dynamics exhibited by net-

works of Type II neurons with adaptation differed in important ways from analagous
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Figure 2.13: Relationship between average network cell firing frequency and network
dynamics is explained by properties of corresponding sPRCs. (A): Average
firing frequency of neurons in networks of Type II neurons with adaptation in the
high heterogeneity case, both before and after the current pulse and averaged over ten
independent simulations. (B): sPRCs for a Type II neuron with adaptation naturally
firing at various frequencies, calculated with a double exponential synaptic current
perturbation with a synaptic decay constant of 3.5 ms. (C)-(F): Same as (A) and
(B) but for Type I neurons ((C) and (D)) and Type II neurons ((E) and (F)).

behavior in networks of Type I or Type II neurons, respectively. The adaptation

current in the cells of these networks generated unique characteristics of clustered

firing. Specifically, networks of Type II neurons with adaptation that displayed one-

cluster firing exhibited, on average, clusters containing more neurons than the single

clusters in Type I networks in the high heterogeneity case, which is reflected in the

higher value of S seen in these networks. Additionally, all neurons fired in a majority

of the clusters if the network contained Type II neurons with adaptation, while in

networks of Type I neurons many cells fired in every cluster while many others were
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completely suppressed. This difference is illustrated by comparing the average firing

frequencies of individual neurons as a function of the input current to those neurons

in similar example networks shown in Figs 2.7(A) and (C).

In Type I networks, since the time interval between cluster firings was primarily

determined by the duration of synaptic inhibition, slower firing cells were not able to

escape inhibition and fire before the faster firing cells initiated the next cluster firing.

As a result, the slower firing cells did not fire in every cluster burst and were often

completely suppressed. However, in networks of Type II neurons with adaptation

exhibiting one-cluster dynamics, no cells were completely suppressed because deac-

tivation of the slow potassium current makes cells more excitable following extended

periods of quiescence. In these networks, cells with lower Iapp values did not partici-

pate in every cluster firing, so the slow potassium gating variable z decayed to lower

values between spike firings, as evidenced by their lower average z value compared to

cells with higher Iapp values (Fig 2.14(A)). Consequently, at the time of subsequent

bursts, these cells were more excitable and were able to escape inhibition and fire

with the faster firing cells that initiate cluster firing. Thus, the adaptation current

serves to minimize the “effective heterogeneity” of these networks by minimizing the

variability in the firing frequencies of individual neurons within the network.

The adaptation current also influenced the pattern of cell firing in two-cluster

dynamics. In particular, the clusters in networks of Type II neurons with adaptation

were not identical over time, as shown by the fact that neurons in such a network

exhibited a range of average firing frequencies dependent upon their input currents,

as shown in Fig 2.7(B). In contrast, neurons in networks of Type II neurons that

displayed two-cluster dynamics exhibited identical individual neuron firing frequen-

cies irregardless of the neuron’s input current (Fig 2.7(D)), which indicates that the
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A B

Figure 2.14: Dynamics of adaptation current explains cell firing activity in networks of
Type II neurons with adaptation exhibiting one or two-cluster dynamics
(A): Average value of the slow potassium gating variable z plotted against the input
current to each neuron in a network of Type II neurons with adaptation exhibiting
one-cluster dynamics. (B): Histogram of average z values of neurons leading up to a
particular burst of activity in a network of Type II neurons with adaptation exhibiting
two-cluster dynamics, differentiating neurons participating in the burst (red) and those
that are quiescent during that burst (blue).

clusters in these networks were stable.

Furthermore, such networks of Type II neurons with adaptation did not segregate

into clusters based upon the neurons’ Iapp, unlike those formed by networks of Type

II neurons. Again, effects of the adaptation current on neuron frequency were re-

sponsible: frequency of these cells is variable over time, dependent upon the amount

of firing that has occurred in the recent past. Cells that participated in a burst had

a lower value of the slow-potassium gating variable z leading up to the beginning

of a burst compared to cells that were quiescent during that burst. Furthermore,

cells with the highest z values did not participate in the burst. This is illustrated

by the histograms in Fig 2.14(B): the red histogram shows the average z values of

cells participating in a particular burst in the moments before the burst occurred,

while the blue histogram shows the average z values of cells not participating in the

burst. The offset between these histograms implies that whether a cell fires in a

given cluster depends strongly on spike-frequency adaptation and not just a cell’s

external input current. The large overlap between the two histograms may be due

to the randomness in total synaptic inhibitory input arriving at each cell given the
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random connectivity.

In summary, the presence of the adaptation current allowed for effective switch-

ing between the dynamics exhibited by Type I and Type II networks. Furthermore,

the adaptation current minimized the effective heterogeneity present in one-cluster

dynamics while preventing neurons from segregating into unique clusters when ex-

hibiting two-cluster dynamics, distinguishing the dynamics in these networks from

similar dynamics in networks of Type I neurons or Type II neurons.

2.4 Discussion

The work presented in this chapter shows that intrinsic cellular properties, es-

pecially properties of the PRC and the presence of an adaptation current, are of

paramount importance in the synchrony and clustering dynamics of a randomly con-

nected network of inhibitory neurons. Furthermore, these intrinsic cellular properties

can be the driving force behind potential mechanisms causing these dynamics.

These effects were highly dependent on the degree of connectivity within these

networks. Increasing connectivity density limited the contribution of intrinsic cell

firing frequency and synaptic decay constant in determining network dynamics. Ad-

ditionally, increasing connectivity density changed the type of clustering dynamics

the networks exhibited. Most crucially, networks of Type II neurons with adaptation

exhibited two-cluster firing for networks with low intrinsic cell firing frequencies and

lower connectivity densities, but one-cluster dynamics when the network had higher

connectivity density. Furthermore, in networks of Type I neurons, lower connectivity

density allowed for bistability between asynchronous and one-cluster dynamics when

intrinsic cell firing frequencies were low. When the connectivity density was high,

networks evolved directly into one-cluster firing.
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In this study, networks with 30% connectivity density were the focus since there

is evidence for this level of connectivity among interneurons in the hippocampus

[110, 3] and this level displayed dynamics distinct from both very sparsely connected

and fully connected networks, as shown in Figure 2.4. The focus on this connectiv-

ity regime necessitated a numerical study. Previous studies have applied analytical

techniques, such as reduction to phase oscillator models, to the investigation of in-

terneuron network dynamics [112, 67, 52, 2, 123, 39]; however, these techniques rely

on assumptions of all-to-all connectivity and weak coupling among neurons. The

results clearly violate these assumptions: the network regimes focused on exhibit

different dynamics from those observed with 100% connectivity density and the sup-

pression of cell firing observed in the one-cluster dynamics of networks of Type I

neurons (see Fig 2.7(B)) contradicts the hypotheses of the weak coupling regime.

Furthermore, much of the existing literature analyzing networks of interneurons

has focused on gap-junctional coupling as opposed to synaptic inhibition [123, 39].

Gap-junctional coupling is instantaneous and can be both excitatory and inhibitory,

while synaptic inhibition is purely inhibitory and possesses an intrinsic timescale.

These studies also investigate all-to-all coupled networks with weak coupling between

neurons, which can be analyzed using techniques such as the phase-reduction method

and weakly-coupled oscillator theory [94].

This research illustrates that while networks of Type I neurons exhibit full syn-

chrony or one-cluster dynamics driven by the classical ING mechanism, which relies

upon properties of the synaptic current, networks of Type II neurons exhibit two-

cluster dynamics driven by neuronal excitability properties (namely, the concave

down shape of these neurons’ sPRCs). Additionally, networks of Type II neurons

with adaptation displayed either one-cluster or two-cluster dynamics dependent upon
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the average firing frequency of neurons in the network and the effect this frequency

had on the properties of the sPRCs of these cells.

While low heterogeneity networks of Type II neurons fully synchronized via the

ING mechanism, these networks exhibited two-cluster dynamics for short lasting

inhibitory synapses in low heterogeneity networks and for nearly all values of the

synaptic decay time constant with high heterogeneity. Neurons forming these clusters

were segregated based upon their natural firing frequencies. The network stabilized

two-cluster dynamics by forming asymmetric timing of cluster firings that, due to

the skew of the sPRC, led to a different magnitude of delay experienced by each

respective cluster. This asymmetry acted to balance the differences in natural firing

frequencies of neurons in each cluster.

The tendency for inhibitory networks containing Type II neurons to display the

two-cluster dynamics observed here has been previously seen in studies looking at

small networks, all-to-all connected networks, and networks containing other meth-

ods of signal propagation than synaptic inhibition [112, 67, 110, 52, 2]. However,

given the importance of the degree of network connectivity in determining clustering

dynamics shown in this study, it can not merely be assumed that these dynamics ex-

tend to a larger, randomly coupled network. The simulations justify this extension.

Furthermore, analysis reveals that heterogeneity in intrinsic firing frequencies can

be compensated for by differences in firing times of each cluster and of individual

neurons within in each cluster in order to promote two-cluster dynamics in these

networks.

Networks of Type II neurons with adaptation exhibited behavior similar to the

one-cluster dynamics of networks of Type I neurons or the two-cluster dynamics of

networks of Type II neurons, dependent upon how the average intrinsic cell firing
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frequency and synaptic decay constant dictated the average firing frequency of cells

in the network. When neurons in the network fired sufficiently fast, the network

behaved similarly to networks of Type I neurons, because the sPRC of Type II

neurons with adaptation computed at such frequencies mirrored the phase-resetting

properties of a Type I neuron. However, the one cluster formed in such a network

of Type II neurons with adaptation contained more active neurons, on average, then

similar clusters formed in networks of Type I neurons. This difference was caused

by the influence of the adaptation current in increasing the excitability of neurons

following a period of quiescence.

When cells in a network of Type II neurons with adaptation fired more slowly, the

network exhibited behavior similar to the two-cluster dynamics shown by networks of

Type II neurons, because the sPRCs calculated for Type II neurons with adaptation

firing at this slower frequency matched the shape and skew properties, in particular

the concave down nature, of sPRCs of Type II neurons. Here the adaptation current

also played a pivotal role in differentiating the dynamics in networks of Type II

neurons with adaptation from those of networks of Type II neurons. In particular,

the changing cellular excitability of Type II neurons with adaptation brought about

by the adaptation current prevented the segregation of neurons into unique clusters

based upon their Iapp values, as was the case in networks of Type II neurons.

Care should be taken when interpreting PRCs for neuron models that contain

active currents with slowly evolving gating variables, like the M-current in the Type

II neuron with adaptation model. Specifically, perturbations can have effects on

firing cycles subsequent to the cycle in which the perturbation occurred. To account

for such longer-lasting effects of the perturbation, previous studies have employed

higher-order PRCs [80, 102] and functional PRCs [31]. Indeed, for the Type II neuron
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with adaptation, the perturbation used to compute the sPRC did result in slightly

shorter periods for several firing cycles subsequent to the perturbation cycle due to

the influence of spike-frequency adaptation. For Type I and Type II model neurons,

on the other hand, firing cycles subsequent to the perturbation cycle showed no

effects of the perturbation.

Thus, for networks of Type II neurons with adaptation the focus is on applying the

sPRC to explain the transition from one-cluster dynamics to two-cluster dynamics by

considering the change in its overall shape as the firing frequency increases: from a

more concave down shape to the more linear phase resetting shape as firing frequency

increases. As shown in Fig 2.13(A) and (B), the correspondence of the change

in sPRC shape with the change in network frequency and thus cluster dynamics

is remarkably tight: the low network frequency parameter regimes (blue in (A))

correspond to concave down sPRCs (blue curves in (B)) and display two-cluster

dynamics, while the high network frequency parameter regimes (green and warmer

colors in (A)) correspond to phase resetting sPRCs (green and warmer color curves

in (B)) and exhibit one-cluster dynamics. Features of the time dynamics of the

M-current gating variable are highlighted to explain how cell participation in the

one-cluster and two-cluster dynamics differs from the Type I and Type II networks,

respectively, in Figs 2.7 and 2.14. For networks of Type II neurons, since the sPRC is

the same for all cycles, its use is expanded to understand the segregation of neurons

between the two-clusters and to explain the asymmetric timing pattern of the firing

of the two-clusters, as shown in Fig 2.10.

The results for networks of Type I neurons paralleled those of previous works in

the field, including the work of Wang and Buzsaki [115] and Whittington et. al. [119],

as well as more recent, biologically driven simulations of Type I neurons by Ferguson
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et. al. [44]. In simulating similar networks of Type I neurons with heterogeneity,

Wang and Buzsaki identified a length of synaptic decay that leads to optimal network

synchronization. In similar simulations with a model of the PV interneuron (which

exhibits distinctly Type I properties), Ferguson et. al. showed that synchrony of

these networks improves with faster firing neurons. In these results, the application

of the synchronizing current pulse revealed that synchrony and one-cluster dynamics

are possible in these networks when intrinsic cell firing frequencies are low, but

the network may not evolve to those dynamics from random initial conditions. In

particular, if only network dynamics as evolved from random initial conditions are

considered, it would appear that there is a strict threshold in intrinsic firing frequency

for synchronous or one-cluster firing to occur (left panels of Figs 2.6(A),(B) and

2.8(A),(B)). The effect of the synchronizing current pulse mimics the conditions for

synchronization by the ING mechanism. Specifically, as Whittington states, ING

synchrony will occur if enough neural firing occurs in close temporal proximity in

order to send a sufficiently strong inhibitory signal throughout the network, which

prevents any neuron from firing until this synaptic signal decays [119]. While an

instance of enough neurons firing in close temporal proximity is likely to happen

when intrinsic neuron firing frequencies are high, it is less likely in networks of slower

firing cells. For such networks a single, brief stimulation can be enough to induce

stable synchronous dynamics.

A brief synchronizing stimulus may provide a mechanism, both experimentally

and computationally, by which the presence of ING can be directly assessed. Indeed,

the ING theory predicts that if ING-driven dynamics are at all possible for a given

network, the instance of synchronous firing caused by the current pulse should always

induce ING-driven clustering or synchrony. The fact that the current pulse had
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minimal effect on networks exhibiting two-cluster dynamics, and never induced two-

cluster dynamics from a previously asynchronous network, thus suggests that the

ING mechanism does not drive two-cluster dynamics in the networks studied here.

Bistability between asynchronous and synchronous solutions in small networks of

two mutually coupled inhibitory neurons, where the initial conditions of the network

determine the dynamics of the system, has been previously reported [105]. These

results serve as a generalization of this phenomena to a larger network with a more

complicated connectivity structure.

These results for networks of Type II neurons are similar to those found for pairs of

Type II neurons coupled by mutual inhibition studied by Van Vreeswijk et. al. [112].

They analytically showed that for sufficiently long lasting synapses, anti-synchrony is

the stable state of these neurons. Anti-synchrony of two neurons corresponds with the

two-cluster dynamics seen in these simulations. The work of Achuthan and Canavier

on all-to-all coupled inhibitory networks with four Type II neurons also showed the

tendency of these networks to exhibit two-cluster dynamics predicted by properties

of the PRC [2]. The tendency for larger networks to exhibit these properties has been

shown in work by Ladenbauer et. al. and Viriyopase et. al., albeit in networks with

different connectivity and heterogeneities than those studied here [67, 110]. This

work shows that the results found in these studies can be extended to randomly

connected inhibitory networks with heterogeneity in the external input currents to

the neurons in the network. This work additionally explains intricacies of the two-

cluster dynamics, such as the segregation of neurons into unique clusters based upon

their intrinsic firing frequency and the asymmetric timing of the cluster firing.

These results indicate that the clustering properties of Type II neurons, when sub-

jected to high heterogeneity in their external input currents, do not show significant
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change in response to a change in average intrinsic cell firing frequency or synaptic de-

cay constant. Given that biologically plausible inhibitory networks typically receive

a heterogeneous driving current based upon the drive from a network of excitatory

neurons, these results imply that the two-clustering properties of a network of Type

II interneurons might prove especially robust to changes in the excitatory drive from

the network. This research finds that networks of Type II neurons synchronize fully

only when cellular heterogeneity was low and for sufficiently long lasting synapses.

This result contradicts previous research that suggested that neurons with Type II

properties could not exhibit synchronous behavior in an inhibitory network [52, 2].

Recently, work by Tikidji-Hamburyan et. al. analyzed a randomly connected net-

work of Type II neurons that exhibit post-inhibitory rebound firing (which neither

the Type II or Type II with adaptation models exhibit). Their results illustrated

that such networks can form synchronous gamma rhythms in a fashion more robust

to heterogeneity than similar networks of Type I neurons, driven primarily by the

properties of the post-inhibitory rebound firing [107].

The results for networks of Type II neurons with adaptation are of particular

biological relevance, considering that the OLM interneurons of the hippocampus

exhibit the M-type adaptation current [92, 69, 33, 32], as do some interneurons in the

cortex [82, 73]., This work shows that the presence of the adaptation current imbues

these neurons with clustering properties and a mechanism driving these dynamics

that is distinct from that of Type II neurons without adaptation.

The concentration of ACh in the brain is strongly correlated with sleep state, with

the concentrations at their highest during wake and REM sleep. Additionally, the im-

portant role of ACh in the hippocampus and its effect on M-type potassium channels

has been well studied [4, 91]. These results provide a potential mechanistic explana-
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tion for how ACh can affect pattern generation amongst networks of interneurons;

in particular, inhibitory networks comprised of neurons containing an M-current are

shown to exhibit only one-cluster dynamics when the ACh concentration is high,

blocking the M-current and making the neuron Type I, while these networks may

exhibit two-cluster dynamics when the ACh concentration is low and the M-current

is active. Additionally, the ability for these networks to exhibit either two-cluster or

one-cluster dynamics, largely dependent upon how much applied current drives the

network, could provide a “gate” by which inhibitory tone to downstream neurons is

modulated. These effects on pattern generation might potentially be propagated to

pyramidal cells and affect the overall oscillatory behavior of the hippocampus and

cortex.



CHAPTER III

Effects of neuromodulation on excitatory-inhibitory neural
network dynamics depends on network connectivity

structure

3.1 Introduction

The purely inhibitory networks discussed in Chapter II are idealized in order to

facilitate computational analysis. One paramount fashion in which these networks

diverge from their biological analogues is the tonic excitatory drive provided to the in-

hibitory interneurons, as biologically this excitatory drive is not tonic and is supplied

by excitatory neurons. In computational neuroscience, this idealized network is made

more biologically realistic by replacing the tonic excitatory drive with a population

of excitatory neurons that is densely inter-connected with the inhibitory interneu-

rons. Such a network is colloquially termed an excitatory-inhibitory (E-I) network.

The interactions of excitatory and inhibitory neurons can generate oscillatory bursts

of synchronous spiking of excitatory cells which underlie rhythmic electrical activity

observed in electroencephalogram (EEG) recordings associated with different brain

states and cognition [27, 121]. These networks are ubiquitous throughout the brain

[20, 63, 12] and have been the subject of intense study in the computational literature.

In E-I networks, the Pyramidal Interneuron Network Gamma (PING) mechanism

is commonly utilized to explain the formation of synchronous rhythms. This con-

77
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ceptual PING mechanism, discussed in detail in Section 1.3.2, has led to research

probing the robustness of the mechanism to various forms of randomness and hetero-

geneity that are likely to occur in the brain. Such studies have investigated the role

of sparse and heterogeneous connectivity in PING rhythm formation [15], the role

of the strength of interconnectivity between the excitatory and inhibitory neurons

in eliciting PING rhythms [14], the effects of noise on these rhythms [16], changes

caused by changing the properties of the inhibitory neurons from Type I to Type

II [18], and various effects of adaptation currents in the cell models [66, 79]. These

studies focus primarily on the interconnectivity between the excitatory and inhibitory

cell populations, which according to the PING mechanism is the paramount impetus

behind rhythmic activity.

However, the density and strength of the various synaptic connectivities in an

E-I network are not the only factor that dictate the network’s propensity to exhibit

synchronous dynamics. Neuromodulation may also serve a key role in determin-

ing network dynamics via multiple pathways. The different types of modulators can

wield powerful effects on neural network dynamics, as they can change intrinsic firing

properties of neurons as well as alter their effective synaptic strengths. Indeed, while

anatomical synaptic connectivity of a neural network plays a primary role in dictating

neural activity patterns, the ultimate dynamics exhibited by a network depends crit-

ically on which of many neuromodulators are acting on it [5, 72]. One of the brain’s

most potent neuromodulators is acetylcholine (ACh), which as discussed in Section

1.1.4 and Section 1.5.2 can block an M-type potassium channel and correspondingly

shift neuron excitability properties from Type II to Type I. Given the paramount

effect cholinergic modulation has on intrinsic cellular properties and a neuron’s ten-

dency to exhibit synchrony, it is used as an analogue to analyze neuromodulation in
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this work.

In this chapter I analyze how the connectivity of E-I networks affects the influ-

ence of cholinergic modulation on the generation of synchronous excitatory bursting.

Utilizing computational simulations of E-I networks with neurons modeled in the

Hodgkin-Huxley formalism, the effect of ACh is simulated by blocking an M-type

potassium current in the neuron models. I investigate all four combinations of mod-

ulatory tone of excitatory and inhibitory cells, namely excitatory or inhibitory cells

with high (Type I) or low (Type II) modulatory tone. Note that the cases of mixed

networks, where one subpopulation exhibits Type I properties and the other exhibits

Type II properties, could conceivably arise if cholinergic release is nonuniform or if

either subpopulation exhibited the given properties and lacked muscarinic receptors.

To vary network connectivity structure, I focus on the effects of the strengths of inter-

connections between excitatory and inhibitory cells (E-I synapses and I-E synapses),

and the strengths of intra-connections among excitatory cells (E-E synapses) and

among inhibitory cells (I-I synapses). These results show that depending on the

network connectivity, neuromodulation that changes the cellular propensity for syn-

chronization may or may not affect the generation of network synchrony 1.

3.2 Methods

3.2.1 Cholinergic modulation of CPN neuron model

In this study, only the CPN neuron model is utilized, as it is modulated by

ACh (see Section 1.5.2). Two cases of cholinergic modulation are considered: when

gKs = 0 mS/cm2 the neuron displays Type I properties (biologically, due to com-

plete blockade of the slow M-type potassium channel by ACh), and when gKs = 1.5

mS/cm2 the neuron displays Type II properties (biologically, due to the absence of

1Work presented in this chapter has been previously published [87]
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ACh that permits maximal activity of the slow M-type potassium channel). These

properties are illustrated by the I-F curves and PRCs displayed in Figure 3.1. Note

that the only difference between the Type I and Type II neuron models is the ac-

tivity, or lack thereof, of the M-type potassium channel; thus, the M-current, and

the corresponding cholinergic modulation, is entirely responsible for the differences

between the Type I and Type II neuron properties. The range of gKs values used

here have been shown to replicate experimentally measured ACh-induced changes in

I-F and PRC curves in cortical pyramidal neurons [98, 99]. Also note that in this

study only the effect of ACh on this M-current is modeled, and not any of the other

potential modulatory effects of ACh.

A

B

Figure 3.1: Properties of Type I and Type II neuron models (A) I-F curves for Type I (red)
and Type II (blue) cells. (B) PRCs for Type I (red) and Type II (blue) cells.

This model is used for both the excitatory and inhibitory neurons in this study.

While these equations were initially developed to model the excitatory cortical pyra-

midal neuron, the properties of this neuron when gKs = 0 mS/cm2 closely mirror

those of fast-spiking Type I inhibitory interneurons, such as the parvalbumin positive
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(PV+) interneurons [44], as well as interneurons containing an M-current blocked by

ACh. When the inhibitory interneurons are modeled as Type II with gKs = 1.5

mS/cm2, their properties mirror those of interneurons like the oriens-lacunosum

moleculare (OLM) and somatostatin expressing (SOM) cells, which exhibit an active

M-current when ACh concentrations are low [92, 69, 33, 32, 82, 73]. These similar-

ities justify the use of equations that were originally developed to model excitatory

cells for inhibitory cells as well.

3.2.2 Network Structure

The E-I networks simulated in this chapter consist of 1000 neurons, 800 excitatory

and 200 inhibitory. Excitatory neurons receive an external driving current (described

below) and also receive inhibition from the inhibitory cells, where each inhibitory

cell has a 50% chance to synapse onto a given excitatory cell. Inhibitory neurons

receive a external current (described below) depending upon their cell type in order

to ensure they do not fire in the absence of excitatory input and are near their firing

threshold. Inhibitory neurons are driven by the excitatory cell population, as each

excitatory cell has a 50% chance to synapse onto a given inhibitory cell. Additionally,

both the inhibitory and excitatory neurons have a 30% probability of synapsing onto

neurons within their subpopulation, forming the intra-connectivity of the network.

The choice of this connectivity density is motivated by evidence for this level of intra-

connectivity amongst interneurons in the hippocampus [110, 3], and this connectivity

density is matched amongst the excitatory neurons for consistency.

Cell heterogeneity was implemented by varying the external input current, Iapp,

to each excitatory neuron. The range of input currents were chosen such that the

intrinsic firing frequencies of neurons had a range of 10 Hz. In the results displayed

below the average intrisic cell firing frequency for an exciatory cell is 50 Hz, meaning
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that the minimum current, Iappmin
, is the current that would cause an isolated neuron

to fire at 45 Hz, while the maximum current, Iappmax , is the current that would cause

an isolated neuron to fire at 55 Hz. The currents are then chosen from a uniform

distribution of the form U(Iappmin
, Iappmax).

Inhibitory neurons receive an external current to ensure they will not fire without

excitatory input and are near firing threshold. Type I inhibitory cells were given

a small external hyperpolarizing current to ensure that the neurons would not fire

spontaneously, given that this neuron model exhibits spontaneous firing with no

external current. Type II inhibitory cells were given a small depolarizing current such

that these neurons were closer to their firing threshold. Variability was implemented

in these currents to impart mild heterogeneity to the inhibitory population: the

external current for each interneuron was chosen uniformly from the distribution

U(.95IA, 1.05IA), where IA is the average current. IA = −0.2 mS/cm2 for Type I

inhibitory cells, and IA = 1.0 mS/cm2 for Type II inhibitory cells.

Synapses are modeled using a double exponential profile of the form described in

Section 1.2 and Equation 1.1. Here, τr is set at 0.2 ms for all synapses, while τd is

set at 3.0 ms for excitatory synapses and 5.5 ms for inhibitory synapses.

The structure of the E-I networks is altered by varying the strength of the various

synapses (E-E, E-I, I-I, I-E) in the network. This is done by varying the maximum

conductances (gsyn) for the corresponding type of synapse. To analyze the role of

inter-connectivity (E-I, I-E) versus intra-connectivity (E-E, I-I) the inter-connectivity

strengths are varied jointly, as are the intra-connectivity strengths. Since in the

networks there are four times as many excitatory cells than inhibitory cells, the E-E

synaptic conductance values in the network are 1/4 of the I-I synaptic conductance

values shown on the horizontal axis of Fig 3.3-3.6.
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The connectivity diagram of the E-I networks studied here is shown in Fig 3.2.

E
(800)

I
(200)I I-I

E-E

I-EE-I

External Driving 

Current

Figure 3.2: Network diagram for E-I networks. Network connectivity for E-I networks used
for all simulations performed in this work. The various synaptic strengths (E-E, I-I,
E-I, I-E) are altered in order to change the network connectivity structure.

3.2.3 Simulations

The code implementing these simulations was written in the C programming lan-

guage and run on the University of Michigan’s Flux cluster, a Linux-based high-

performance computing cluster.

All simulations in this chapter were run for 1500 ms from random initial conditions

for voltage and gating variables for each neuron. Possible initial conditions for V

ranged between −62 and −22 mv, while the possible initial conditions for the gating

variables n and h ranged between 0.2 and 0.8, while the initial conditions for the

gating variable z ranged between 0.15 and 0.25.

Model equations were integrated using a fourth order Runge-Kutta technique.

Spikes do not trigger synaptic current until 100 ms into the simulation to allow

initial transients to decay.

Example raster plots shown throughout this chapter are plotted such that the

excitatory cells with the highest external driving current are given the lowest Neuron
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Index, and thus are plotted towards the bottom of the y-axis, while neurons with

lowest external driving current are given the highest Neuron Index, and thus are

plotted towards the top of the y-axis. This fashion of organizing the excitatory cells

is chosen in order to more clearly illustrate the organization of these cells within a

burst and does not reflect their location in the network.

All plots illustrating the various measures used to quantify network dynamics

display the average of these scores over five independent simulations, where the

measures are calculated over the last second of the simulation.

3.3 Results

The computational study of E-I networks reveals that network dynamics depend

jointly on the network connectivity structure, namely the relative strength of inter-

and intra-connectivity between and within the excitatory and inhibitory subnet-

works, and the neuromodulation of excitatory and inhibitory cells. ACh’s effect on

both excitatory and inhibitory cells that switches neuronal response properties is

considered, as measured by the PRC and I-F curves, from Type II to Type I, thus

affecting the cellular propensity of synchronization. Considering the possibility of

nonuniform cholinergic release or that excitatory and inhibitory cells exhibit Type I

or Type II properties without the presence of an M-current, all four combinations of

excitatory and inhibitory cells are investigated, namely excitatory or inhibitory cells

with high (Type I) or low (Type II) modulatory tone. To vary network connectivity

structure, the focus is on the effects of the strengths of inter-connections between

excitatory and inhibitory cells (E-I synapses and I-E synapses), and the strengths of

intra-connections among excitatory cells (E-E synapses) and among inhibitory cells

(I-I synapses). Figs 3.3 and 3.4 show measures of network dynamics as E-E and
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I-I intra-connectivity strengths are varied together (horizontal axes) and E-I and I-

E inter-connectivity strengths are varied together (vertical axes) for networks with

Type I excitatory cells (Fig 3.3) and Type II excitatory cells (Fig 3.4), and inhibitory

cells exhibiting either Type I or Type II properties. Network dynamics roughly divide

into three parameter regions in which synchronous bursting of the excitatory cells

are differentially affected by a combination of the modulation of cellular properties

and network connectivity structure.

3.3.1 High E-I and I-E inter-connectivity promotes synchronous excitatory bursting
regardless of cellular properties

When E-I and I-E inter-connectivity strength dominates over E-E and I-I intra-

connectivity strength (upper-left corners of heatmaps in Fig 3.3 and 3.4), all networks

exhibit synchronous excitatory bursting regardless of the cellular propensity for syn-

chrony modulated by ACh. Values of the Synchrony Measure (panels A and E)

are high in this parameter regime for all modulatory conditions, with networks with

Type II excitatory cells (Fig 3.4) reporting higher values due to more coincident spike

firing predicted by their cellular properties. Synchronous activity is robust with ap-

proximately all cells participating in the activity bursts (panels B and F) and the

frequency of bursts are similar in all networks (panels C and G). Furthermore, the

widths of both the excitatory and inhibitory bursts remain narrow in this regime,

with narrower excitatory bursts exhibited by networks with Type II excitatory cells

due to the additional synchrony promoted by excitatory intra-connectivity and the

properties of Type II PRCs (Figs 3.3 and 3.4D and H). Note that the detection of

excitatory bursts was robust to repeated simulations of these networks, with only

one set of network connectivities (whose position in the heatmap is identified by

the bolded outline in Fig 3.3C and D) for which bursts are detected in some, but
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Figure 3.3: E-I networks with Type I excitatory cells primarily exhibit bursting dy-
namics of the excitatory subpopulation when the network inter-connectivity
dominates network intra-connectivity. Spatio-temporal dynamics for E-I networks
with Type I excitatory cells and Type I inhibitory cells (A-D) or with Type II in-
hibitory cells (E-G) as E-E and I-I intra-connectivity strength (x-axis) and E-I and I-E
inter-connectivity strength (y-axis) is varied. Dynamics are quantified by the degree of
synchrony for active cells (A, E), number of active cells (B, F), the burst frequency
(C, G), and the burst width (D,H), where results for excitatory cells are shown in
the left panels and results for inhibitory cells are shown in the right panels. Overlaid
alphanumeric codes on (A) and (D) indiate simulations for which an example raster
plot is shown in the indicated figure. Panels (C), (D), (G) and (H) display values
(i.e. non-white coloring) only for networks for which the burst detection mechanism
identified repetitive bursting for a majority of the simulations, and the value plotted is
the average only of networks when repetitive bursting was detected. Networks in which
bursting is detected in three or four of the five repetitions run have their colored entry
surrounded by a bolded outline. Networks in which bursting is detected in only one or
two of the five repetitions run have their white entry surrounded by a bolded outline.

not all, of the simulations run. As shown in the raster plots in Fig 3.5, whether

excitatory cells are Type I (Fig 3.5A and B) or Type II (Fig 3.5C and D) they fire

in synchronous bursts. Thus, for this network connectivity, neuromodulation of cel-
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Figure 3.4: E-I networks with Type II excitatory cells can exhibit bursting dynamics
of the excitatory subpopulation not just when network inter-connectivity
dominates network intra-connectivity, but also in other parameter regimes
driven by the propensity of Type II excitatory cells to synchronize via exci-
tatory signalling. Spatio-temporal dynamics for E-I networks with Type II excitatory
cells and Type I inhibitory cells (A-D) or with Type II inhibitory cells (E-G) as E-E
and I-I intra-connectivity strength (x-axis) and E-I and I-E inter-connectivity strength
(y-axis) is varied. Dynamics are quantified by the degree of synchrony for active cells
(A, E), number of active cells (B, F), the burst frequency (C, G), and the burst
width (D,H), where results for excitatory cells are shown in the left panels and results
for inhibitory cells are shown in the right panels. Overlaid alphanumeric codes on (A)
and (D) indiate simulations for which an example raster plot is shown in the indicated
figure. Panels (C), (D), (G) and (H) display values (i.e. non-white coloring) only for
networks for which the burst detection mechanism identified repetitive bursting for a
majority of the simulations, and the value plotted is the average only of networks when
repetitive bursting was detected. Networks in which bursting is detected in three or
four of the five repetitions run have their colored entry surrounded by a bolded outline.
Networks in which bursting is detected in only one or two of the five repetitions run
have their white entry surrounded by a bolded outline.

lular propensity for synchronization has little effect on the generation of excitatory

bursting.
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A BType I Excitatory, Type I Inhibitory Type I Excitatory, Type II Inhibitory

C DType II Excitatory, Type I Inhibitory Type II Excitatory, Type II Inhibitory

Figure 3.5: Raster plots from an example network where inter-connectivity dominates
intra-connectivity illustrate synchronous excitatory cell dynamics for all
combinations of cell types, albeit with varying profiles of the excitatory
bursting and inhibitory dynamics. (A-D) Example raster plots from a network
with an E-I and I-E connectivity strength of 0.00175 mS/cm2, an I-I connectivity
strength of 0.00025 mS/cm2, and an E-E connectivity strength of 0.0000625 mS/cm2.
(A) is a network with Type I excitatory and inhibitory cells, (B) is a network with
Type I excitatory and Type II inhibitory cells, (C) is a network with Type II excita-
tory and Type I inhibitory cells, and (D) is a network with Type II excitatory and
inhibitory cells. In each case synchronous patterns are apparent in the excitatory net-
work, although the bursting patterns exhibited by the inhibitory cells vary depending
on their cell type.

The synchronous excitatory bursting in these networks with high inter-connectivity

is predicted and governed largely by the PING mechanism. In the PING mechanism,

the inhibitory cells serve to “silence” the excitatory cells following an inhibitory burst,

which causes all of the excitatory cells to return to the same point of their oscilla-

tory firing cycle and subsequently fire synchronously when released from inhibition

[108, 63, 119, 42]. Evidence of the PING mechanism at work lies in the occurrence of

inhibitory cell synchronous bursts near the end of excitatory cell synchronous bursts

or immediately following these bursts, and in the effective silencing of excitatory

activity by the inhibitory burst.

For additional verification, the same networks are simulated but with all synap-

tic connections from the inhibitory cells to the excitatory cells (I-E synapses) re-
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moved (Fig 3.6). In the parameter region discussed above, no synchronous activity

is obtained when excitatory cells are Type I, confirming that synchronous inhibitory

signalling is necessary to induce excitatory synchronous bursting in these networks.

When excitatory cells are Type II, synchronous activity emerges as intra-connectivity

strength increases in this parameter regime, as expected from the propensity for Type

II neurons to synchronize in response to excitatory connectivity. However, obtain-

ing synchrony for the weakest intra-connectivity strength values, as obtained in the

networks containing I-E synapses, depends critically on inhibitory signalling.

In these networks, cellular properties influence the patterning of spike firing within

the PING-driven synchrony. The patterning of inhibitory cell activity in response to

an excitatory burst relies heavily on the inhibitory cell type, which in turn can cause

subtle changes in excitatory cell dynamics. When the excitatory cells are Type

I this effect is primarily seen through the burst frequencies of the excitatory and

inhibitory subpopulations (Figs 3.3C and G). Comparing the example raster plot

with Type I excitatory cells and Type I inhibitory cells (Fig 3.5A) to that with Type

I excitatory cells and Type II inhibitory cells (Fig 3.5B), the results show that the

slower excitatory burst frequency of the former network is due to the multiple bursts

of inhibitory activity in response to a burst of excitatory activity, which provides a

longer lasting inhibitory synaptic signal to the excitatory cells. In contrast, when the

inhibitory cells are Type II, only one instance of inhibitory activity follows excitatory

activity, allowing the excitatory cells quicker release from this inhibitory signal.

The role of inhibitory cell patterning when the excitatory cells are Type II is

seen primarily via differences in the Synchrony Measure, and is shown by compar-

ing example networks with Type I inhibitory cells (Fig 3.5C) to those with Type II

inhibitory cells (Fig 3.5D). In the latter case, each excitatory burst elicits a single
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Figure 3.6: E-I networks with Type I excitatory cells cannot exhibit excitatory subpop-
ulation synchrony in the absence of I-E connectivity, while this connectivity
is not necessary to elicit excitatory subpopulation synchrony in most cases
when the excitatory cells are Type II. (A-D) Heatmaps illustrating the degree of
synchrony achieved by excitatory (left panel) and inhibitory (right panel) populations
in E-I networks without any I-E connectivity for each combination of excitatory and in-
hibitory cell type. Such networks with Type I excitatory cells, shown in (A-B), exhibit
no synchrony in the excitatory cell population, implying that the excitatory bursting
patterns achieved in networks with strong inter-connectivity in Fig 3.3 (A) and (D)
are driven by inhibitory signaling to the excitatory population. In contrast, networks
with Type II excitatory cells, shown in (C-D), still exhibit excitatory synchrony for
a majority of networks (excepting those with the lowest degree of intra-connectivity).
The similarities between the parameter regimes exhibiting excitatory synchrony here
and in Fig 3.4 (A) and (D), where I-E connectivity was active, implies that excita-
tory intra-connectivity rather than network inter-connectivity may drive synchronous
excitatory subpopulation dynamics in these networks.

inhibitory burst of activity including all inhibitory cells, which ensures each excita-

tory cell receives a near-identical profile of inhibitory synaptic current. This allows

the excitatory cells to organize based upon their external driving current, with cells

with the highest external current firing earliest in the burst and those with the lowest
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firing latest. This organization causes the burst to occur over a longer time inter-

val, slightly lowering the Synchrony Measure. However, when the inhibitory cells

are Type I, the results again show that they respond to an instance of excitatory

network bursting with multiple instances of activity; importantly, in this case the

profile of these bursts varies in response to different instances of excitatory activity

due to the randomness in the connectivity of the network as well as the heterogeneity

in external drive to the cells. Variations in the inhibitory activity cause a disparity

in the inhibitory signal felt by each excitatory cell, which disrupts organization in

the excitatory bursts. However, this disorder also allows the burst to occur over a

shorter timescale, increasing the Synchrony Measure. Thus, the inhibitory cell type

plays a key role in explaining the slight difference in the Synchrony Measure seen in

these networks when comparing Fig 3.4A and Fig 3.4E, while a negligible effect is

seen in the frequency of the bursts (Fig 3.4C and G).

3.3.2 Cellular properties dictate synchronous excitatory bursting when E-E and I-I
intra-connectivity is high

When E-E and I-I intra-connectivity dominates over E-I and I-E inter-connectivity,

obtaining synchronous excitatory bursting depends on the cellular propensity for syn-

chrony. For the ranges of synaptic strengths considered here, this parameter regime

begins when intra-connectivity strength is slightly higher than inter-connectivity

strength (near 7A,B labels in Fig 3.3 and 7C,D labels in Fig 3.4). When intra-

connectivity is much higher than inter-connectivity (lower-right corners of heatmaps

in Fig 3.3 and 3.4), the high I-I synaptic strength acts to slow firing of the inhibitory

cells to the point that they cannot fire synchronously, thus minimizing their influence

on excitatory subnetwork dynamics. In this regime, networks with Type I excitatory

cells have Synchrony Measure values close to zero for excitatory cells (Fig 3.3A, E
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left panels) reflecting asynchronous firing (as seen in the examples in Fig 3.7A, B),

as predicted by their cellular properties. While the majority of excitatory cells are

firing (Fig 3.3B, F left panels), no synchronous excitatory bursts were detected, as re-

flected by the lack of a burst frequency value (Fig 3.3C, G left panels). Networks with

Type II excitatory cells, on the other hand, display synchronous excitatory bursting

(as seen in the examples in Fig 3.7C, D), as predicted by cellular properties, with

high Synchrony Measure (Fig 3.4A, D), full cell participation in synchronous bursts

(Fig 3.4B, E) and similar burst frequencies (Fig 3.4C, G). Thus, in this network

structure, ACh governs the generation of synchronous excitatory activity.

A BType I Excitatory, Type I Inhibitory Type I Excitatory, Type II Inhibitory

C DType II Excitatory, Type I Inhibitory Type II Excitatory, Type II Inhibitory

Figure 3.7: Raster plots from an example network with low inter-connectivity and
slightly higher intra-connectivity illustrate that networks with Type I exci-
tatory cells can not achieve synchronous bursting dynamics, while networks
with Type II excitatory cells can. (A-D) Example raster plots from a network with
an E-I and I-E connectivity strength of 0.00025 mS/cm2, an I-I connectivity strength
of 0.0005 mS/cm2, and an E-E connectivity strength of 0.000125 mS/cm2. (A) is a
network with Type I excitatory and inhibitory cells, (B) is a network with Type I exci-
tatory and Type II inhibitory cells, (C) is a network with Type II excitatory and Type
I inhibitory cells, and (D) is a network with Type II excitatory and inhibitory cells.
Only networks with Type II excitatory cells can achieve excitatory synchrony, although
inhibitory synchrony is achieved without excitatory synchrony in (A).

The PING mechanism is not involved in generating synchronous excitatory bursts

in this parameter regime as evidenced by the long gap between the excitatory cell
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burst and inhibitory cell firing. Inhibitory cells fire in bursts, with higher synchrony

measure when they are Type I (Fig 3.7C and D), in response to the oscillatory exci-

tatory signal, but inhibition is not responsible for silencing the excitatory cells after

the burst since they stop firing well in advance of the inhibitory bursts. Additionally,

the burst frequency is not affected by the different profiles of inhibitory firing when

the inhibitory cells are Type I or Type II, reflecting their lack of influence on excita-

tory bursting. This is confirmed by fully removing the I-E synapses and continuing

to see synchronous excitatory cell firing in this regime (Fig 3.6C and D).

In this regime of dominant intra-connectivity, inhibitory cell type can play a role

in the dynamics of the inhibitory cell population without significantly influencing the

patterning of the excitatory subpopulation. When excitatory cells are Type I, their

asynchronous firing provides a weak, nearly tonic drive to the inhibitory cells. Type I

inhibitory cells with weak I-I connectivity can form synchronous patterns in response

to such a drive, as shown by the example raster plot in Fig 3.7A and discussed in

detail in previous work [86]. In contrast, Type II inhibitory cells are less excitable

and more susceptible to suppression by inhibitory signalling via the dominant intra-

connectivity, preventing them from forming clearly synchronous dynamics, as seen

in the example raster plot in Fig 3.7B.

Meanwhile, Type II excitatory cells can synchronize driven by E-E connectivity

and not network inter-connectivity as discussed above, allowing for the synchronous

excitatory subpopulation dynamics seen in Fig 3.7C and D. Here again, though,

the type of inhibitory cell dictates the dynamics of the inhibitory subpopulation in

response to this weak, but synchronous, drive to the inhibitory cells. Given that

Type I inhibitory cells are more excitable, the weak burst of excitation is sufficient

to prompt all of the inhibitory cells to fire in a closely clustered fashion, an example
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of which is shown by the raster in Fig 3.7C. In contrast, properties of the Type II

neuron model lead these inhibitory cells to respond with a more sparse burst to a

nearly identical excitatory synaptic drive, an example of which is shown by the raster

in Fig 3.7D.

Note that the interaction between Type II PRC properties and strong E-E con-

nectivity can cause some complex burst patterns in the excitatory population. This

is evidenced in Fig 3.4D and H by the significantly wider excitatory bursts seen in

the middle of the range of network intra-connectivities. However, this behavior does

not disrupt the overall oscillatory behavior of the network driven by the network

intra-connectivity.

3.3.3 Cellular properties influence ability of inter-connectivity to generate synchronous
excitatory bursting when inter- and intra-connectivity are balanced

When E-I, I-E inter-connectivity and E-E, I-I intra-connectivity are both strong

in this parameter space, corresponding to the upper-right corner of the heatmaps

in Fig 3.3 and 3.4, both cellular properties and network connectivity contribute to

the network’s tendency to exhibit synchronous excitatory bursting. When excita-

tory cells are Type I, while their cellular properties resist synchronization, loose

synchronous bursting is obtained when inhibitory cells are Type I (example raster in

Fig 3.8A) but not Type II (example raster in Fig 3.8B). This example represents one

of the few instances in this parameter regime in which excitatory bursting activity

was detected in some, but not all, of the simulations run (as represented by the grid

squares with a bolded outline in Fig 3.3C and D) As reflected in their Synchrony

Measures (Fig 3.3A and E), Type I inhibitory cells synchronize tightly with high

I-I intraconnectivity (A, right panel), while Type II inhibitory cells do not (E, right

panel). The strong inhibitory signal provided to the excitatory cells from Type I
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inhibitory cells silences their activity and produces a weak synchronous excitatory

burst by the PING mechanism. When inhibitory cells are Type II, however, their

more sparse firing has little effect on the excitatory subnetwork, and asynchronous

excitatory firing persists.

A BType I Excitatory, Type I Inhibitory Type I Excitatory, Type II Inhibitory

C DType II Excitatory, Type I Inhibitory Type II Excitatory, Type II Inhibitory

Figure 3.8: Raster plots from an example network with strong intra-connectivity and
inter-connectivity reveal the tendency for high E-E connectivity to elicit de-
polarization block in some Type I excitatory cells, while consistent bursting
patterns remain in networks with Type II excitatory cells. (A-D) Example
raster plots from a network with an E-I and I-E connectivity strength of 0.002 mS/cm2,
an I-I connectivity strength of 0.015 mS/cm2, and an an E-E connectivity strength of
0.00375 mS/cm2. (A) is a network with Type I excitatory and inhibitory cells, (B) is a
network with Type I excitatory and Type II inhibitory cells, (C) is a network with Type
II excitatory and Type I inhibitory cells, and (D) is a network with Type II excitatory
and inhibitory cells. While networks with Type II excitatory cells exhibit consistent
bursting patterns in both the excitatory and inhibitory networks, networks with Type
I excitatory cells have some cells shut down due to depolarization block (shown most
clearly in (B)), which can interfere with the development of synchrony.

When excitatory cells are Type II, their propensity for synchronization strength-

ens the influence of high inter-connectivity to generate robust excitatory synchronous

bursting for both types of inhibitory cells (Fig 3.8C and D). Indeed, Synchrony

Measures for both excitatory and inhibitory subnetworks are the highest in this pa-

rameter regime (Fig 3.4A and E) with full network participation in the bursts (Fig

3.4B and F). Additionally, values of all measures are the same for Type I and Type
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II inhibitory cells. There is conflicting evidence as to whether the PING mechanism

or excitatory network intra-connectivity drives this synchrony: while the inhibitory

network bursts do closely follow the excitatory network bursts (Fig 3.8C and D), as

predicted by the PING mechanism, the removal of I-E synapses does not eliminate

excitatory synchrony (Fig 3.6C and D), meaning inhibition may not serve a causal

role in synchronizing excitatory cells. It is likely that some combination of these two

mechanisms is what results in the strong synchrony of the excitatory network seen

here.

Thus, in this network structure, cholinergic modulation acts in conjunction with

high inter-connectivity to generate synchronous excitatory bursting. Synchronous

excitatory bursting fails to exist only when both excitatory and inhibitory popula-

tions have a low propensity for synchronization.

In this regime of balanced inter- and intra-connectivity, cell properties contribute

to the characteristics of excitatory synchronous bursting, as seen by the example

raster plots in Fig 3.8. For Type II excitatory cells, spikes in the synchronous bursts

are highly coincident (Fig 3.8C and D) due to the strong E-E intra-connectivity

overpowering the heterogeneity in firing frequency that created more variation in

spike timing in the low E-E intra-connectivity regime (examples in Fig 3.5C and D)

This induces a highly coincident burst of inhibitory cells immediately following the

excitatory burst. The strong inhibitory signal to all excitatory cells coupled with their

previous coincident firing leads to a long silent period between excitatory bursts and

low burst frequency (Fig 3.4C and G). For Type I excitatory and inhibitory cells,

burst frequencies are the highest since the high E-E intra-connectivity drives the

excitatory cells to recover quickly from the inhibitory signal and initiate the next

excitatory burst (Fig 3.3C).
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The inter- and intra-connectivity strengths can also be balanced at a weak level in

this parameter space, which corresponds with the lower-left corner of the heatmaps

in Fig 3.3 and 3.4. In this regime networks with Type I excitatory cells exhibit

completely asynchronous firing due to an inability to achieve PING rhythmicity,

while inhibitory cells may be able to synchronize themselves due to the near-tonic

drive provided by the asynchronous excitatory cells (Fig 3.3A and E). Meanwhile,

in networks with Type II excitatory neurons, excitatory synchrony can be achieved

in networks with all but the weakest connectivity strengths (Fig 3.4A and E) driven

by the ability for Type II excitatory neurons to synchronize themselves even with

weak E-E synapses.

Thus, when the inter- and intra-connectivity strengths are balanced, but at weak

levels, the tendency to achieve synchronous excitatory cell dynamics is controlled

by ACh. In this regime, synchronous excitatory bursting occurs only due to the

tendency of Type II neurons to synchronize due to E-E synapses, even when these

synapses may be weak.

3.3.4 Dynamics of inhibitory subnetworks

Across the parameter space of network connectivity structures, there are regimes

where activity in the inhibitory subnetwork does not correlate with activity in the

excitatory subnetwork. These instances are largely robust to repetition, as there

are few instances where inhibitory bursts are detected in some, but not all, of the

repetitions for a given network (cases in which this occurs are represented the grid

squares with bolded outlines in Figs 3.3 and 3.4 C, D, G, and H). For example,

as discussed above, Type I inhibitory cells can form oscillatory synchronous bursts

independent of synchronous activity in the excitatory subnetwork. This behavior is

seen in the networks with Type I excitatory cells when intra-connectivity is larger
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than inter-connectivity (diagonal band of high Synchrony Measure in Fig 3.3A, right

panel). In this regime, the excitatory cells are asynchronous and provide a tonic

excitatory drive to the inhibitory cells, inducing repetitive firing. When coupled

with inhibitory synapses, repetitively firing Type I cells receiving strong tonic drive

have a high propensity for synchronization [85]. As intra-connectivity increases,

maintaining synchronous bursting requires increased excitatory input to counteract

the increased inhibitory signaling within the inhibitory subnetwork (resulting in the

diagonal band). In fact, inhibitory activity becomes sparse and asynchronous when

intra-connectivity is much higher than inter-connectivity (Fig 3.3A, B and C right

panels, lower right corners).

In other parameter regimes, firing in the inhibitory subnetwork is almost com-

pletely suppressed. This occurs in three parameter regimes that are most easily

identified in the right panels of Fig 3.3 and 3.4 B and F, which show the number

of active inhibitory cells: a small region of high inter-connectivity strength for net-

works of Type I excitatory and inhibitory neurons (Fig 3.3B), a small region with low

inter-connectivity strength for networks of Type II excitatory and inhibitory neurons

(Fig 3.4F), and a relatively large parameter regime for networks of Type I excitatory

neurons and Type II inhibitory neurons (Fig 3.3F). The first two cases are easily

explained. The first is a case of classic depolarization block of the Type I inhibitory

neurons: the moderate intra-connectivity strength is enough to force excitatory cells

to fire very quickly due to the E-E connectivity, and the high inter-connectivity

strength leads these fast firing excitatory cells to provide excessive excitation to the

inhibitory cell population, driving those cells into depolarization block. The second

case is the opposite situation, as weak inter-connectivity combined with low excitabil-

ity of Type II inhibitory cells result in insufficient excitatory synaptic signal to the
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inhibitory cells to induce firing.

The final case, that seen in networks of Type I excitatory neurons and Type II

inhibitory neurons, is more complex, involving intricacies of the dynamics of the M-

type potassium current. The activity of this ionic current not only serves to shift the

properties of the neuron PRC from Type I to Type II as discussed previously, but also

imbues the neurons with spike-frequency adaptation. Given the slow time-scale of

the z gating variable that governs this current when compared to the extremely fast

time-scale of the m, n, and h variables governing the currents directly inciting action

potential firing, the M-current acts to slow down the firing of the neuron following

repetitive action potentials. Thus, the neuron “adapts” its firing frequency given the

recent past, firing slower if a quick burst of action potentials occurred previously.

This adaptation is reflected by a rise in the value of z as action potential firings

occur. As the potassium current is a hyperpolarizing current, larger values of z that

arise from action potential firing invoke a larger amplitude of the M-type potassium

current which in turn slows down cell firing.

When Type II neurons are provided a tonic excitatory drive that induces repetitive

firing, the adaptation current eventually settles into a stable periodic pattern that

allows repetitive action potential firing at a constant frequency. However, in these

E-I networks, the drive to the inhibitory population is provided by the synaptic drive

from the excitatory population, which has a distinctly non-tonic profile. In particular,

properties of the reversal potential in the synaptic current term in Equation 1.1 speed

up action potential firing when compared to a tonic current with a similar maximum

amplitude. This increase in firing frequency prevents z from settling into a stable

oscillation, instead causing it to steadily increase. When this gating variable rises too

high, the hyperpolarizing current from the M-type potassium channel exceeds the
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depolarizing excitatory input current from the excitatory cell population, causing a

net hyperpolarizing current and in turn quiescence. In short, in certain E-I networks

where the excitatory cells do not synchronize, the adaptation current prevents the

inhibitory cells from exhibiting repetitive firing due to the form of the excitatory

synaptic current.

3.4 Discussion

The work discussed in this chapter reveals that the development of synchronous

excitatory activity in E-I networks depends critically on both the intrinsic cellular

properties of the excitatory and inhibitory cells as well as the connectivity struc-

ture of the network as described by the inter- and intra-connectivity strengths.

These results are summarized in Figure 3.9. In particular, depending on the net-

work connectivity, effects of neuromodulation that change the cellular propensity

for synchronization may or may not affect the generation of network synchrony.

High E-I and I-E inter-connectivity that dominates over the influence of E-E and I-I

intra-connectivity induces synchronous excitatory bursting regardless of the cellular

propensity for synchronization. In this regime, the PING mechanism generates the

excitatory bursting along with synchronous activity of inhibitory cells. When E-E

and I-I intra-connectivity has a larger influence than E-I and I-E inter-connectivity,

the propensity of excitatory cells to synchronize determines the generation of exci-

tatory bursting in the networks. Even when inhibitory cells can form synchronous

activity due to their cellular properties, weak inter-connectivity does not induce

synchronous activity in the excitatory cells. Thus mechanisms for PING-driven syn-

chrony are ineffective in these network topologies.

Networks in which both inter- and intra-connectivity are strong achieve excitatory
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Figure 3.9: Summary figure illustrating the three regimes in which excitatory synchrony
is mediated differentially by cholinergic modulation and network topol-
ogy. When network inter-connectivity dominates network intra-connectivity (top-left
regime), excitatory synchrony is mediated by network inter-connectivity while cholin-
ergic modulation has minimal effect on dynamics. When network inter-connectivity
is weak (bottom regime) exciatory synchrony is mediated by cholinergic modulation’s
effect on cell type, and not by network inter-connectivity. Finally, when network inter-
and intra-connectivity are both strong (top-right regime), cholinergic modulation and
network inter-connectivity both influence the tendency for networks to exhibit excita-
tory synchrony, with these interactions sometimes leading to complex dynamics.

synchrony resulting from a combination of the cellular propensity for synchroniza-

tion and the network inter-connectivity that drives PING. In this regime, the high

propensity for synchronization of Type II excitatory cells, combined with PING-like

dynamics driven by strong inter-connectivity, leads to strong synchrony irrespective

of inhibitory cell properties. Meanwhile, although Type I excitatory cells resist syn-

chrony driven by intra-connectivity, the ability for inhibitory cells to synchronize

permits the PING mechanism to induce weaker synchrony in the excitatory popu-

lation in some cases. Finally, networks in which both inter-and intra-connectivity
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are weak are able to achieve excitatory synchrony only when the excitatory cells

are Type II and prone to synchronize even with weak intra-connectivity, while net-

works with Type I excitatory cells can sometimes elicit synchronous spiking of the

inhibitory network due to the near-tonic drive asynchronous firing of the excitatory

cells provides.

Computational studies probing oscillatory synchronous activity in E-I networks,

and in particular the intricacies of PING rhythms, are prevalent in the literature

[108, 63, 119, 42, 15, 14, 16, 18, 66, 79]. These studies pay less attention to the role

of intrinsic cellular properties or the impact of more varied network structures, as

the conceptual PING mechanism assumes strong E-I and I-E inter-connectivity as

well as strong I-I intra-connectivity and burst frequencies are presumed to be dic-

tated by properties of synaptic currents. However, as the biological understanding

of the brain rapidly accelerates, the immense diversity of neuron properties, particu-

larly of inhibitory interneurons, and network connectivities among these interneuron

populations [20, 63, 12, 61, 23, 10, 7, 96, 62, 51, 11, 47, 34, 53, 54, 93] motivates

computational research to investigate and understand dynamics arising from the

interaction of cellular properties and network connectivity structures.

Investigating the role of intrinsic cellular properties on E-I network dynamics

through the lens of neuromodulation, particularly that achieved via the action of

ACh, provides further salience to this work given the important roles this neuro-

modulator has in the brain. Concentrations of ACh are known to fluctuate based

on sleep-wake states: ACh is present in high concentrations during wake and REM

sleep, and in low concentrations during slow-wave sleep [4, 91]. Computational re-

search has shown that changing the cholinergic modulatory tone can elicit changes

in neural network dynamics that mirror those seen experimentally [90], and this
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work shows that the changes brought about by varying ACh concentrations are also

affected by network connectivity. Furthermore, ACh also influences how the brain

directs attention in response to competing stimuli [36, 70, 84, 46, 19], a behavior

whose corresponding neural dynamics might also be explained by analyzing the role

of ACh on neural networks as done here. These hypotheses relating ACh concen-

tration to differing neural network dynamics are supported by experiments in which

direct manipulation of the M-current causes changes in network dynamics; for exam-

ple, slow oscillations in excitatory networks in the motor cortex are abolished when

the M-current is blocked [28].

More generally, however, it is clear from this study that both cellular as well

as structural network properties are intertwined together to dictate which specific

dynamical mechanisms generate observed spatio-temporal dynamics. I hypothesize

that gross changes in network structure, as those observed for example in the epilep-

tic brain, may lead to transitions among cellular-based and network-based dynamical

mechanisms which in turn may result in transitions between cognitive and patholog-

ical brain function (see, for example, [13, 81]).



CHAPTER IV

Dichotomous dynamics in E-I networks with strongly and
weakly intra-connected inhibitory neurons

4.1 Introduction

As discussed in Chapter III, the classic PING mechanism explains the tendency

for E-I networks with strong inter-connectivity between the excitatory and inhibitory

neuron populations to exhibit synchronous bursting. As much of the literature ex-

amining E-I networks focuses on the PING mechanism [15, 14, 16, 18, 66, 79], in

this chapter we analyze in greater detail E-I networks with strong inter-connectivity

(corresponding with the “top” regimes in the parameter space seen in Figure 3.9)

that are predisposed to exhibit PING-driven dynamics.

Despite the abundance of literature cited above analyzing PING rhythmicity, lit-

tle work has been done to analyze the role of the intra-connectivity of the inhibitory

cell population in affecting the dynamics of E-I networks. Indeed, as classically

articulated this inhibitory intra-connectivity is not necessary for PING rhythm gen-

eration, but is typically included in the network structure as motivated by numer-

ous experimental studies showing that interneurons tend to be highly connected

[44, 59, 104, 82, 73, 76]. Thus, most of the computational studies assume some

level of strong synaptic coupling amongst the interneurons, which serves to “slow

down” and help prevent disorganized firing of the inhibitory cells that can disrupt

104
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synchronous firing of the excitatory cells [16].

Given the multitude of types of interneurons identified in brain regions where

PING rhythms are thought to occur, such as the hippocampus [61, 23] and cortex [10,

7, 96, 62, 51, 11, 47], along with the known connectivity of many of these interneurons

with excitatory pyramidal cells as modeled in an E-I network [120], a closer analysis of

the role of inhibitory intra-connectivity in PING-driven dynamics will paint a more

complete picture of how such rhythmic activity might arise in the brain. In this

chapter, the role that the strength of inhibitory intra-connectivity (I-I connectivity)

plays in dictating the burst dynamics of excitatory cells in E-I networks is investigated

in detail. While some differences in bursting dynamics that arise from weakening the

inhibitory intra-connectivity to values well below that typically studied in the PING

literature, such as inhibitory spike doublets, have been identified previously [16], this

work finds that these differences can have important effects on the spiking properties

of the excitatory network.

These results show that, when interneurons have Type I firing properties (similar

to those often exhibited by the ubiquitous fast-spiking PV interneuron [44]), there

is a distinct difference in rhythmic synchronous dynamics when the strength of I-I

connectivity varies from weak to strong. Networks with Type I interneurons are the

focus of this work given the preponderance of PV interneurons in the hippocampus

and cortex, and also because a majority of PING literature uses inhibitory neuron

models with these properties.

When the I-I connectivity is strong, the results closely mirror those of most anal-

yses of PING rhythms. The dynamics of these networks not only include synchrony

amongst the excitatory cells, but also lead to organized spike timing within the exci-

tatory bursts, consistent cell participation in each burst, and consistent periodicity of
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the bursts. These dynamics are classified as having “low variability” to differentiate

them from networks that exhibit synchronous bursting but without this additional

spike organization. When the excitatory to inhibitory connectivity (E-I connectivity)

is very weak, however, networks with this strong intra-connectivity amongst the in-

hibitory cells exhibit asynchonous excitatory cell activity, as predicted by the PING

mechanism.

On the other hand, when I-I connectivity is weak, E-I networks exhibit alternate

dynamics, highlighting the importance of inhibitory cell patterning in dictating ex-

citatory cell dynamics. In this case, synchronous excitatory activity is exhibited at

very low values of the E-I connectivity strength, seemingly in opposition to one of

the key requirements of PING theory. As E-I connectivity strength increases, these

networks tend to exhibit disorganized inhibitory cell firing that follows inhibitory

bursts, which in turn leads to degradation of excitatory cell synchrony. Namely,

excitatory bursts tend to be disorganized, exhibit variability in the number of cells

participating in each burst, and do not exhibit a consistent inter-burst interval.

To determine dependence on inhibitory cellular properties, how changing I-I con-

nectivity affects networks where the interneurons have Type II firing properties is

also examined. This work finds that changes to the I-I connectivity in E-I networks

do not significantly alter dynamics of the overall network when the interneurons are

modeled as Type II. This corresponds with previous work which shows that, unlike

strictly inhibitory networks with Type I neurons, such networks containing Type II

neurons with and without an M-type slow potassium current do not show significant

changes in the propensity for synchrony as the connectivity density, which roughly

corresponds with the overall strength of inhibitory signalling in the network, changes

[85].
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The research presented in this chapter indicates that synchronous, rhythmic,

PING activity in E-I networks consisting of Type I interneurons is sensitive to I-I

connectivity strength. Specifically, weak inhibitory intra-connectivity allows well-

ordered synchronous excitatory activity primarily for low values of the E-I synaptic

weight, while networks with strong inhibitory intra-connectivity exhibit such ac-

tivity for high values of the E-I synaptic weight. This dichotomy motivates the

investigation of a network architecture that preserves the advantages of both types

of networks, effectively expanding the parameter regime at which PING-like rhythms

can be achieved. An E-I network with two inhibitory subnetworks, one weakly

intra-connected and one strongly intra-connected, achieves this goal, providing a

potential mechanism by which such rhythms can be generated in the brain in a

more robust fashion. Numerous studies provide support for the existence of this

type of network topology in the brain, where multiple populations of interneu-

rons synapse onto the same excitatory pyramidal cells while connectivity between

inhibitory interneurons consists almost exclusively of synapses between similar in-

terneurons [113, 47, 11, 96, 61].

Taken together, these results serve to expand upon the understanding of PING-

like rhythms in E-I networks by revealing the important, but often overlooked, role

that inhibitory intra-connectivity and inhibitory cell dynamics play in governing the

overall network dynamics 1.

4.2 Methods

4.2.1 Network Structure

Simulations of E-I networks presented in this chapter consist of 1000 neurons,

800 of which are excitatory and 200 of which are inhibitory. Excitatory neurons re-

1Work presented in this chapter has been previously published [86]
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ceive an external driving current (described below) and also receive inhibition from

the inhibitory cells, where each inhibitory cell has a 50% chance to synapse onto a

given excitatory cell. Inhibitory neurons receive a external current (described below)

depending upon their cell type in order to ensure they do not fire in the absence

of input from the excitatory cells and are near their firing threshold. Inhibitory

neurons are driven by the excitatory cell population, as each excitatory cell has a

50% chance to synapse onto a given inhibitory cell. Additionally, inhibitory neu-

rons receive inhibition from within the inhibitory network, as each inhibitory neuron

has a 30% chance to synapse onto a given, different inhibitory cell. The choice of

this connectivity density is motivated by evidence for this level of intraconnectivity

amongst interneurons in the hippocampus [110, 3]. Diagramatic representations of

these networks with strong and weak inhibitory intra-connectivity are shown in Fig

4.1.

Cell heterogeneity was implemented by varying the external input current, Iapp,

to each excitatory neuron. The input currents were selected from a uniform distri-

bution centered on the current (IA) that would impart an average intrinsic cell firing

frequency to an isolated neuron. For excitatory cells, the driving currents are chosen

uniformly from the distribution [.9IA, 1.1IA]. IA was varied for the excitatory cells

in order to study the effects of their intrinsic frequency.

Type I inhibitory cells were given a small external hyperpolarizing current to en-

sure that the neurons would not fire spontaneously, given that this neuron model

exhibits slow, spontaneous firing with no external current. Heterogeneity was imple-

mented in this hyperpolarizing (i.e. negative) current similar to the excitatory cells

to impart some degree of heterogeneity to the inhibitory population: the external

hyperpolarizing current for each interneuron was chosen uniformly from the distri-
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Figure 4.1: Network diagram of E-I networks. (A) Connectivity in an E-I network with a
weakly connected inhibitory subnetwork. Thin, light red arrow symbolizes the weak
intraconnectivity between inhibitory interneurons. (B) Connectivity in an E-I network
with a strongly connected inhibitory subnetwork. Thick, dark red arrow symbolizes the
strong intraconnectivity between inhibitory interneurons.

bution [1.05IA, 0.95IA]. Here IA is chosen to be -0.2 µA/cm2 so that all interneurons

will not fire action potentials without input from the excitatory cells. This external

hyperpolarizing current was not needed when the inhibitory cells were modeled using

either Type II formalism, as those model neurons will not fire spontaneously.

Synapses are modeled using a double exponential profile of the form described in

Section 1.2 and Equation 1.1. Here, τr is set at 0.2 ms for all synapses, while τd is

set at 3.0 ms for excitatory synapses and 5.5 ms for inhibitory synapses. For I-E

synapses, gsyn = 0.003 mS/cm2, while the synaptic weight for I-I and E-I synapses

is varied in the simulations.

Simulations of strictly inhibitory networks utilize the network connectivity de-

scribed in Chapter II [85], where 1000 inhibitory neurons are randomly connected
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with a 30% connectivity density. Cell heterogeneity is implemented in these simula-

tions by varying the external driving current to the inhibitory neurons in a method

analagous to that used for the excitatory neurons in the E-I networks described

above. Synapses are also modeled identically to those described above.

4.2.2 Noise

To investigate the effects of noisy perturbations to the network, simulations were

run where Poisson trains of brief excitatory stimuli were given to the excitatory

neurons in addition to their tonic driving currents and synaptic currents. At each

time step, there is a probability p = 10−3 that a given excitatory cell receives an

excitatory “kick”. These kicks are modeled with a temporal profile similar to the

excitatory synaptic currents in the network and are thus of the form

(4.1) Inoisei(t) = gnoise
(
e−(t−si)/τd − e−(t−si)/τr

)
where si is the time of the ith kick to the cell, τd and τr are the same as for excitatory

synaptic currents, and gnoise is the amplitude of each kick. The times of the ten most

recent kicks are stored and contribute to the drive to the cell, such that

(4.2) Inoisetotal(t) = gnoise

 ∑
(k−9)≤i≤k

e−(t−si)/τd − e−(t−si)/τr


where k is the total number of kicks to the given cell at time t. This term is added

to the overall current balance equation of the given cell, such that

(4.3)
dV

dt
= Iionic + Iapp − Isyn + Inoisetotal

where Iionic denotes all terms besides Iapp and Isyn found in Equations 1.10 and 1.2.

While the frequency of the noise was kept constant (i.e. p was the same for all

simulations with noise), gnoise was varied in these simulations, as seen in Fig 4.8.
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4.2.3 E-I Difference

The difference between the total excitatory and total inhibitory synaptic signalling

(E-I Difference) in the inhibitory network was also calculated. It is calculated as a

mean difference between the total excitatory synaptic current and total inhibitory

synaptic current received by the inhibitory cell population. As with other measures,

the final second of the simulations are analyzed using the E-I Difference. Note

that this measure is utilized instead of a ratio of excitatory and inhibitory synaptic

current, as is common in E/I Balance measures, because such a ratio would tend

towards infinity in networks with little or no inhibitory cell activity, which exist in

the parameter space.

4.2.4 Simulations

The code implementing these simulations was written in the C programming lan-

guage and run on the University of Michigan’s Flux cluster, a Linux-based high-

performance computing cluster.

All simulations presented in this chapter were run for 1500 ms from random initial

conditions for voltage and gating variables for each neuron. Possible initial conditions

for V ranged between −62 and −22 mv, while the possible initial conditions for each

gating variable ranged between 0.2 and 0.8.

Model equations were integrated using a fourth order Runge-Kutta technique.

Spikes do not trigger synaptic current until 100 ms into the simulation to allow

initial transients to decay.

Example raster plots shown throughout this chapter are plotted such that the

excitatory cells with the highest external driving current are given the lowest Neuron

Index, and thus are plotted towards the bottom of the y-axis, while neurons with
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lowest external driving current are given the highest Neuron Index, and thus are

plotted towards the top of the y-axis. This ordering of the excitatory cells was

chosen to clearly illustrate the temporal organization of cells within a burst and does

not reflect their location in the network.

All plots illustrating the various measures used to quantify network dynamics

display the average of these scores over five independent simulations, where the

measures are calculated over the last second of the simulation. The lone exception

are the results shown in Fig 4.10 for networks with Type II interneurons, for which

only three repetitions were performed given the uniformity of the results.

4.3 Results

Previous results from the study of strictly inhibitory neural networks [85], com-

bined with previous work in the field [63, 119, 114, 118] show that synchronous

bursting occurs in distinct parameter regimes for strongly connected and weakly

connected networks of Type I neurons (see Fig 4.2). From random initial condi-

tions, only networks with very weak inhibitory synaptic weight exhibit synchronous

activity when average intrinsic cell firing frequency is low. As average intrinsic cell

firing frequency increases, such networks exhibit asynchrony or weaker synchrony. In

contrast, networks with stronger inhibitory synaptic weight synchronize only when

average intrinsic cell firing frequency is high.

These results motivate the work in thi chapter in which I describe how changing

the I-I connectivity strength in an E-I network is the impetus behind changing pat-

tern formation in the inhibitory network, which in turn affects the dynamics of the

excitatory network. The PING dynamics that have been analyzed in the literature

typically are analogous to those seen in Fig 4.3D, F and H, where the inhibitory



113

Figure 4.2: Randomly connected strictly inhibitory networks of Type I neurons with
strong and weak inhibitory connectivity synchronize in divergent parameter
regimes. Synchrony measure computed from dynamics of strictly inhibitory networks
consisting of Type I neurons as synaptic weight (x-axis) and average intrinsic cell firing
frequency (y-axis) are varied. Only networks with very weak inhibitory synaptic weight
exhibit synchronous activity when average intrinsic cell firing frequency is low. Networks
with stronger inhibitory synapses only synchronize when average intrinsic cell firing
frequency is higher. Inhibitory synaptic weights stronger than those shown here simply
continue the pattern of synchronous behavior shown for networks with an inhibitory
synaptic weight above 0.0041 mS/cm2.

network is strongly intra-connected and exhibits one instance of activity per oscilla-

tory cycle. However, by weakening the I-I connectivity, different types of dynamics

can arise amongst the inhibitory cells that affect the profile of excitatory network

bursts, as seen by the examples in Fig 4.3C, E, and G. The focus is on the effects

that multiple firings of inhibitory cells and the consistency and organization of these

bursts have on the temporal organization of firing in excitatory cell bursts.

4.3.1 E-I Networks with Strong and Weak I-I Synaptic Strength

I analyze E-I networks with two I-I connectivity strengths in detail: an E-I network

with strong intra-connectivity amongst the inhibitory subnetwork (entitled “Strong
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Figure 4.3: Example raster plots illustrate the differences between dynamics in networks
with weakly connected and strongly connected inhibitory subnetworks. (A-
H) Example raster plots with the excitatory cells (green dots) in these raster plots
organized such that cells with the highest external drive are given the lowest Neuron
Indices with the rest of the neurons organized such that decreasing external drive cor-
responds with increased Neuron Index. Panel letter corresponds with overlaid labels in
Figs 4.4 and 4.5 indicating the parameters of the given network. Panels A, C, E and
G are from networks with weakly connected inhibitory subnetworks, while panels B,
D, F, and H are from networks with strongly connected inhibitory networks. Panels
A and B are raster plots from a network with an E-I synaptic weight of 0.0004 mS/cm2

and an average intrinsic excitatory cell firing frequency of 98.8 Hz. Panels C and D
are raster plots from a network with an E-I synaptic weight of 0.00235 mS/cm2 and
an average intrinsic excitatory cell firing frequency of 39.6 Hz. Panels E and F are
raster plots from a network with an E-I synaptic weight of 0.00235 mS/cm2 and an
average intrinsic excitatory cell firing frequency of 80 Hz. Panels G and H are raster
plots from a network with an E-I synaptic weight of 0.00235 mS/cm2 and an average
intrinsic excitatory cell firing frequency of 126 Hz.

Networks” for brevity) and an E-I network with weak intra-connectivity amongst the

inhibitory subnetwork (entitled “Weak Networks” for brevity). Strong Networks have

an I-I synaptic weight of 0.025 mS/cm2, which was chosen in order to be analogous

to the strong inhibitory synaptic weights used in the study of strictly inhibitory
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networks [85] (where scaling from 1000 inhibitory neurons in the strictly inhibitory

networks to 200 inhibitory neurons in the E-I networks is taken into account). Weak

Networks have an I-I synaptic weight of 0.0015 mS/cm2.

For both Strong and Weak Networks the average intrinsic excitatory cell firing

frequencies and E-I synaptic weights are varied. The I-E synaptic weight as well as

connectivity densities (I-I, E-I and I-E) are kept constant in all simulations.

To summarize network dynamics, the Variability Measure is shown for Strong

Networks in the left panel of Figs 4.4(A) and 4.5(A) and for Weak Networks in

the left panel of Figs 4.4(B) and 4.5(B). For moderate values of the E-I synaptic

weight, both Strong and Weak networks show synchronous rhythmic bursting with

low Variability Measure reflecting periodic, well-organized excitatory cell bursts. For

low E-I synaptic weight and high E-I synaptic weight there is a significant difference

that requires further investigation. The right panels of Fig 4.4(A) and (B) investi-

gate networks with low E-I synaptic weight in more detail by showing the Synchrony

Measure as well as the three measures that are used in the formation of the Vari-

ability Measure individually. The same is done for networks with high E-I synaptic

weight in the right panels of Fig 4.5(A) and (B).

These results indicate that Strong Networks do not display any form of excitatory

bursting activity in most networks with the lowest E-I synaptic weights. This is

illustrated by the Synchrony Measure in the right panel of Fig 4.4(B). A raster plot

showing an example of this asynchronous activity is shown in Fig 4.3(B). In contrast,

Weak Networks achieve excitatory bursting for many networks with the lowest E-

I synaptic weights as shown by the Synchrony Measure in the right panel of Fig

4.4(A). The raster plot in Fig 4.3(A) shows a network with identical parameters to

that shown in Fig 4.3(B) with only the I-I synaptic weight weakened which exhibits
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Figure 4.4: E-I networks with weakly connected inhibitory subnetworks are able to
achieve synchrony for low values of the E-I synaptic weight, while E-I net-
works with strongly connected inhibitory subnetworks are unable to achieve
any sort of excitatory bursting activity for many of these networks. (A-B)
Variability Measure (left panel) calculated over the entire parameter range studied,
with the parameter regime of particular interest outlined in red. For this parameter
regime of interest, the Synchrony Measure is shown along with the three measures that
are used to calculate the Variability Measure (Variance of Neuron Order, Variance of
Active Cells, and Variance of Inter-burst Intervals) in the red box making up the right
panel. White entries in the heatmaps indicate that the excitatory network did not
achieve sufficient synchrony for the given measure to be accurately calculated for that
network. Overlaid letters indicate parameter values of example raster plots in Fig 4.3.
Results for E-I networks with weakly connected inhibitory subnetworks are shown in
(A), while results for E-I networks with strongly connected inhibitory subnetworks are
shown in (B). In the parameter regime of interest, networks with weakly connected
inhibitory subnetworks achieve synchrony of the excitatory subnetwork for many net-
work parameters for which networks with strongly connected inhibitory subnetworks
are completely asynchronous.

clear bursting activity. Additionally, there is a consistent ordering of the excitatory

cells in each burst, along with periodic firing and the same level of participation of

excitatory cells in each burst, leading to low values of the Variability Measure.

When E-I synaptic weight is strengthened, strong inhibitory intra-connectivity

plays a significant role in controlling network dynamics. For a large majority of the
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Figure 4.5: E-I networks with weakly connected inhibitory subnetworks exhibit exci-
tatory bursting with high variability for high values of the E-I synaptic
weight despite exhibiting synchrony in this parameter regime; in contrast,
E-I networks with strongly connected inhibitory subnetworks exhibit mostly
low variability firing in this parameter regime. (A-B) Variability Measure (left
panel) calculated over the entire parameter range studied, with the parameter regime
of particular interest outlined in green. For this parameter regime of interest, the Syn-
chrony Measure is shown along with the three measures that are used to calculate the
Variability Measure (Variance of Neuron Order, Variance of Active Cells, and Variance
of Inter-burst Intervals) in the green box making up the right panel. White entries in
the heatmaps indicate that the excitatory network did not achieve sufficient synchrony
for the given measure to be accurately calculated for that network. Overlaid letters
indicate parameter values of example raster plots in Fig 4.3. Results for E-I networks
with weakly connected inhibitory subnetworks are shown in (A), while results for E-
I networks with strongly connected inhibitory subnetworks are shown in (B). In the
parameter regime of interest, networks with strongly connected inhibitory subnetworks
almost exclusively exhibit bursting patterns with low variability, while networks with
weakly connected inhibitory subnetworks show a much higher Variability Measure due
to the higher values of the Variance of Neuron Order, Variance of Active Cells, and
Variance of Inter-burst Intervals for most networks in this parameter regime.

networks with high E-I synaptic weight (highlighted in Fig 4.5(B)), Strong Networks

show well-organized synchronous bursting with very low Variability Measures, with

behavior typified by the example raster plots shown in Fig 4.3(F) and (H). In con-

trast, a majority of Weak Networks show a significantly increased Variability Measure
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in the regime of high E-I synaptic weight, despite still exhibiting synchronous ex-

citatory activity. As shown in the right panel of Fig 4.5(A), these networks show

noticeable increases in each of the measures making up the Variability Measure.

High values of the Variance of Neuron Order indicates that the timing of individual

excitatory neuron activity within each burst is not consistent (shown by the “wider”

excitatory bursts without a clear slope and outlier firings in the raster plots displayed

in Fig 4.3(C) and (G)); high values of the Variance of Active Cells indicates that the

number of excitatory cells in each excitatory burst fluctuates significantly from burst

to burst (again illustrated by Fig 4.3(C) and (G)); increased values of the Variance

of Inter-burst Interval indicates that excitatory burst firing is not strictly periodic

(best illustrated by Fig 4.3(G)). All three of these issues, reflected by an increase

in the Variability Measure, imply that for high E-I coupling, Weak Networks lose

the organization, consistency and strict periodicity of excitatory bursts that have

classically typified PING rhythmicity.

The cause of the changes in excitatory bursting dynamics in the Weak Networks

is the disorganization of inhibitory cell firing. As illustrated by the example raster

plots in Fig 4.3(C) and (G), the combination of weak I-I and strong E-I synaptic

strength leads to multiple instances of inhibitory cell activity in response to a burst

of excitatory cell activity. Due to the randomness in network connectivity and cell

heterogeneity, these multiple bursts are not consistent across different instances of

inhibitory activity; in extreme cases, inhibitory bursts may not exhibit clear syn-

chrony. The specific form of the inhibitory network activity changes throughout

the simulation, altering in turn the modulation of the excitatory network’s activity.

Thus, while these dynamics might not disrupt the formation of synchronous excita-

tory bursts, they do disrupt the organization, consistency and periodicity of these



119

bursts.

However, there is a parameter regime within the highlighted high E-I synaptic

strength region for which Weak Networks retain a low Variability Measure. Such

networks, an example of which is shown by the raster in Fig 4.3(E), still exhibit

multiple bursts of inhibitory activity in response to excitatory activity, but do so in

a consistent and organized fashion in response to each instance of excitatory activity.

The existence of such networks shows that it is the disorganization of inhibitory cell

firing, and not necessarily the existence of multiple inhibitory network bursts, that

causes significant changes to the properties of excitatory bursts.

An additional parameter regime of interest is networks with a low average intrinsic

cell firing frequency but a high E-I synaptic weight. Here, Strong Networks exhibit a

significantly increased Variability Measure similarly to Weak Networks, albeit driven

by a different mechanism. While the increased variability in Weak Networks in this

regime can be attributed to overactivity and disorganization amongst the inhibitory

cells (as illustrated by the raster in Fig 4.3(C)), the increased variability in this

regime for Strong Networks is caused primarily by the dynamics of the excitatory

cells.

A combination of two factors leads to these dynamics in Strong Networks, typi-

fied by the behavior shown by the raster plot in Fig 4.3(D). First, for networks with

the slowest average intrinsic excitatory cell firing frequencies, following an inhibitory

burst, the excitatory cells are slow to fire leading to a longer interval between in-

hibitory bursts. This allows the burst of excitatory activity to occur over a longer

period of time (see example in Fig 4.3(D)). Thus, the possibility of more variability

in the excitatory bursts arises. In contrast, for networks with faster firing excitatory

cells, the excitatory cells fire shortly after the inhibition decays, causing the next
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inhibitory burst to occur quickly as well. This, in turn, creates a very small time

window in which excitatory activity can occur and thus less possibility for significant

variability in firing times.

Second, with high E-I synaptic weight, even strongly intra-connected inhibitory

networks can receive sufficient excitatory signal to burst without a majority of the

excitatory cells firing. Excitatory cells that fire before the burst of inhibition are sup-

pressed following the burst of inhibition, while cells that have not fired are typically

past the threshold for action potential firing at the time of the burst of inhibition,

and thus their firing pattern is not significantly affected by the inhibition. Thus, cells

that fire prior to the burst of inhibition on one cycle will fire later, if at all, on the

following cycle. This causes disorganization in the neuron order from cycle to cycle,

as the driving current to the excitatory cells is now not the only factor determining

when in a burst they fire, since each neuron is not receiving similar inhibitory delay

as is typical in PING rhythmicity.

These two factors cooperatively lead to the disorganization of the excitatory bursts

as reported by the Variability Measure. This is shown in the raster in Fig 4.3(D)

by the lack of a clear slope in the excitatory burst, as well as the bursts occurring

over a longer timespan. Additionally, the number of cells participating in each burst

varies significantly by the same reasoning.

In summary, in most cases high values of the E-I synaptic weight require stronger

inhibitory intra-connectivity in order to preserve consistent inhibitory response to

excitatory activity in an E-I network, which in turn preserves well-ordered and con-

sistent bursting of the excitatory population. However, investigation into these net-

works also reveals that Weak Networks may exhibit well-organized and consistent

excitatory bursting when the inhibitory network exhibits multiple bursts, as long
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as such bursts are themselves well-organized. Additionally, Strong Networks exhibit

increased variability for high E-I synaptic weight when intrinsic excitatory cell firing

has lower average frequency.

A further explanation as to the differences underlying the Strong and Weak Net-

works lies in the synaptic E-I Difference in the inhibitory subnetwork. As shown in

Fig 4.6, there is a stark difference between the E-I Difference for Weak Networks

(Fig 4.6(A)) and Strong Networks (Fig 4.6(B)). In particular, the E-I Difference for

Strong Networks is always negative, meaning that the inhibitory intra-connectivity

dominates the excitatory drive to the inhibitory cells, and shows minimal change in

response to altering network parameters. In contrast, the E-I Difference for Weak

Networks increases as the E-I synaptic weight increases and is always positive, mean-

ing that the excitatory drive dominates the inhibitory intra-connectivity within the

inhibitory subnetwork.

This dichotomy provides a more quantitative explanation for the dynamical dif-

ferences exhibited by these networks. The dominance of inhibitory intra-connectivity

over the excitatory synaptic drive in Strong Networks ensures that following a burst

of inhibitory activity, the inhibitory synaptic drive dominates the excitatory synaptic

drive and ensures that inhibitory cells are silent following the burst. This explains

the tendency for Strong Networks to only exhibit the 1:1 bursting ratio that is a hall-

mark of classic PING theory, as well as the minimal differences in network dynamics

seen as the E-I synaptic weight increases. However, in Weak Networks, increasing E-I

synaptic weight cannot be counteracted by the weaker inhibitory synapses as illus-

trated by the increasing and positive E-I Difference, which allows for multiple bursts

of inhibitory activity that are often disorganized and in turn lead to an increase in

the Variability Measure.
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Figure 4.6: Dynamical differences between networks with weakly connected and
strongly connected inhibitory subnetworks are reflected in differences in
E-I Difference and Inhibitory Synchrony Measure, even with changes to
the external hyperpolarizing current. (A-C) Synaptic E-I Difference for Weak
Networks (A), Strong Networks (B), and Weak Networks where the external hyperpo-
larizing current is increased from -0.2 to -3.0 µA/cm2 (C). (D-F) Inhibitory Synchrony
Measure for the same three network types. White entries in the heatmaps indicate that
the measure could not be calculated due to insufficient inhibitory activity, and overlaid
alphanumeric codes indicate position of example raster plots seen in Fig 4.3 (for com-
parison to those shown here) and in this figure. (G-H) Example raster plots for Weak
Networks with Extra Hyperpolarizing Current; both examples are for a network with
an average intrinsic excitatory cell firing frequency of 126 Hz, with Panel (G) an ex-
ample from a network with an E-I synaptic weight of 0.00235 mS/cm2 while Panel (H)
is an example from a network with an E-I synaptic weight of 0.00190 mS/cm2. Weak
Networks, both with and without additional hyperpolarizing current, show a dominance
of excitatory synaptic activity reflected in positive E-I Difference values that increase
as the E-I synaptic weight increases, while Strong Networks show a dominance of the
inhibitory synaptic activity reflected in largely uniform negative values of the E-I Dif-
ference. Moreover, Weak Networks with Extra Hyperpolarizing Current retain distinct
behaviors from Strong Networks as illustrated by the Inhibitory Synchrony Measure
and example raster plots.

Additionally, analyzing the E-I Difference cements the importance of the I-I con-

nectivity in dictating overall network dynamics. Fig 4.6(C) illustrates the E-I Dif-
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ference for a Weak Network where the hyperpolarizing current to the inhibitory cells

is increased from -0.2 to -3.0 µA/cm2. In this network paradigm, the inhibitory cells

are “less excitable” than those in the Weak Networks due to the external current,

but the synaptic E-I Difference in the inhibitory subnetwork retains similarity to

that seen in the Weak Network, namely retaining positive values that increase with

increasing E-I synaptic weight. Importantly, the E-I Difference remains entirely dis-

tinct from that of Strong Networks, which can be considered to have “less excitable”

inhibitory cells given the stronger I-I connectivity. This result indicates that the net

excitability of the inhibitory cells and the strength of inhibitory intra-connectivity

are distinct features that have differing effects on network dynamics. Indeed, mul-

tiple and sometimes disorganized inhibitory bursts are seen in Weak Networks with

this additional hyperpolarizing current, as shown by the example raster plots in Fig

4.6(G) and (H), while Strong Networks never show inhibitory double bursts. This

again shows that making the cells less excitable through an external hyperpolariz-

ing current does not have the same effect as doing so by increasing the I-I synaptic

weight. The differences in dynamics of the inhibitory cells between these networks

and Strong Networks are confirmed by comparing the Synchrony Measure computed

for the inhibitory subnetwork, shown for all three types of networks discussed above

in Fig 4.6(D-F). Thus, regardless of the hyperpolarizing current to the inhibitory

cells, the weak I-I synaptic weight is not sufficient to balance increasing excitatory

signal, preventing them from achieving the very synchronous bursts exhibited in

Strong Networks for all values of the E-I synaptic weight.

To study the robustness of these behaviors, the I-I synaptic weights are varied

between the values used in the Weak and Strong Networks. The results are illustrated

in Fig 4.7, in which the I-I synaptic strength is varied along the y-axis and the E-
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I synaptic strength along the x-axis while keeping the average intrinsic cell firing

frequency fixed. Examples are shown for slow firing excitatory cells in panels (A),

(C), (E) and (F) and for fast firing excitatory cells in panels (B), (D), (F) and

(G).

Figure 4.7: Varying the I-I synaptic weight reveals that E-I networks display two dis-
tinct dynamical patterns directly analagous to those seen in the networks
with weakly connected or strongly connected inhibitory subnetworks. (A-H)
Heatmaps varying the E-I synaptic weight on the x-axis and I-I synaptic weight on the
y-axis for networks with an average intrinsic excitatory cell firing frequency of 39.6 Hz
(A, C, E, G) and 126 Hz (B, D, F, H). Four measures are shown: the Variability
Measure (A-B), the Synchrony Measure for Excitatory Neurons (C-D), the Average
Excitatory Burst Frequency in Hz (E-F) and the ratio of the Average Inhibitory Burst
Frequency over the Average Excitatory Burst Frequency (G-H). White boxes in the
heatmaps indicate that the excitatory network did not achieve sufficient synchrony for
the given measure to be accurately calculated for that network. Values of I-I connectiv-
ity strength that exhibit behavior corresponding with that seen in the network with a
weakly connected inhibitory subnetwork are highlighted by the pink bracket, while val-
ues that exhibit behavior corresponding with that seen in the network with a strongly
conected inhibitory subnetwork are highlighted by the blue bracket.
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As the I-I connectivity is varied, there are two distinct dynamical regimes, one

with dynamics analogous to the Strong Network (blue bracketed values) and one

with dynamics analogous to the Weak Network (pink bracketed values), with an

abrupt transition between the two. This result justifies the study of the Strong

Network and Weak Network as their activity is representative of dynamics for a

range of I-I synaptic weights in the E-I network topology. For the values of the I-I

synaptic weight in the weak regime, the Variability Measure (panels (A) and (B))

increases non-monotonically as E-I synaptic weight increases as discussed for the

Weak Network. These regimes of high and low Variability Measure shift as the I-I

synaptic weight increases since the E-I synaptic weight for which a given behavior is

achieved likewise increases; for example, when the I-I synaptic weight is increased, a

correspondingly higher E-I synaptic weight, which provides a stronger drive to the

inhibitory cells, is required to achieve the “parameter balance” necessary for these

networks to achieve a low Variability Measure despite a high E-I synaptic weight.

Additionally, these networks display a non-zero Synchrony Measure (panels (C) and

(D)) for lower values of the E-I synaptic weight. In contrast, the values of the I-I

synaptic weight in the strong regime display a consistently low Variability Measure

(with the exception of high E-I synaptic weight for the slower firing network, the

unique situation discussed in detail above) but completely asynchronous activity

(shown by the Synchrony Measure) for low values of the E-I synaptic weight.

The presence of two distinct dynamical regimes is also apparent from analyz-

ing the average excitatory burst frequency (panels (E) and (F)) and the ratio of

inhibitory bursts to excitatory bursts (panels (G) and (H)) in these networks, prop-

erties that reveal the network dynamics in more detail. Networks with inhibitory

intra-connectivity in the strong regime show a monotonic increase in their average
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excitatory burst frequency as the E-I synaptic weight increases, while networks with

inhibitory intra-connectivity in the weak regime show an overall decrease in their

average excitatory burst frequency as the E-I synaptic weight increases, with some

instances of increasing burst frequency that correspond with networks that exhibit

low variability. Additionally, networks in the strong regime exclusively exhibit a 1:1

ratio between inhibitory and excitatory bursts, while networks in the weak regime

can exhibit two or even three inhibitory bursts for each excitatory burst. Through

these measures it is apparent that activity closely matching classic PING rhythms

is seen over the majority of the values of the E-I synaptic weight for the range of

I-I synaptic weights that yield behavior analogous to the Strong Network studied

above, while unique dynamics are seen over the range of I-I synaptic weights that

yield behavior analogous to the Weak Network studied above.

These results reveal the robustness of the dichotomous dynamics displayed by

excitatory cells in the Strong Network and Weak Network studied above. Indeed,

it appears that slight heterogeneities in the I-I synaptic strength should not lead to

major changes in network dynamics in an E-I network, while larger heterogeneities

(where I-I synaptic weights include those inducing both weak and strong behavior)

may lead to antithetical dynamics. This motivates the construction of E-I networks

with heterogeneous inhibitory populations, described below.

4.3.2 E-I Networks with Noisy Excitatory Cells

To confirm the robustness of these results to more realistic biological conditions,

analogous networks are simulated while adding Poisson trains of excitatory synaptic

input to the excitatory neurons. These simulations were performed with a range of

noise amplitudes: the lowest amplitude noise slightly accelerates the next firing of

the perturbed neuron, while the highest amplitude noise causes the perturbed neuron
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to fire with a probability of nearly 1 in a 5 ms window following the perturbation.

The results of these simulations for an illustrative choice of the average intrinsic

excitatory cell firing frequency, for both Strong Networks and Weak Networks, are

illustrated in Fig 4.8. For both types of networks, the network dynamics are quan-

tified via the Variability Measure (Fig 4.8 (A) and (B)) and Synchrony Measure

(Fig 4.8 (C) and (D)). Overall, it is observed that slight increases in the Variability

Measure are seen as the noise amplitude increases, but this increase is largely uni-

form across all values of the E-I synaptic weight, preserving the relative pattern of

well-organized and less organized excitatory bursting dynamics. These patterns only

break down in the presence of large amplitude noise, in which many simulations lose

synchronous excitatory activity, shown by the maximal Variability Measure values

and near-minimal Synchrony Measure values.

In particular, Weak Networks (Fig 4.8 (A) and (C)) still exhibit pockets of lower

Variability Measure amidst the simulations with higher E-I synaptic strength that

tend to exhibit higher Variability Measure. In contrast, Strong Networks ((Fig 4.8

(B) and (D)) retain their more consistent pattern of exhibiting low Variability Mea-

sure in nearly every case where excitatory synchrony is achieved. In both scenarios,

the Variability Measure increases in a largely consistent manner as the amplitude

of the noise increases, with exceptions for the scenarios when excitatory network

synchrony is completely lost.

These results taken together illustrate that the introduction of noise does not

significantly alter the previously identified dynamical regimes of the Strong and Weak

Networks, as each retains their unique properties that differentiate network dynamics

dependent upon the strength of inhibitory intra-connectivity.
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Figure 4.8: Differences in dynamical patterns between Weak and Strong Networks are
preserved in the presence of noisy drive to the excitatory cells. (A-D) Vari-
ability Measure (A,B) and Synchrony Measure (C,D) shown for Weak Networks (A,C)
and Strong Networks (B,D) with an average intrinsic excitatory cell firing frequency of
98.8 Hz in the presence of noise with varying amplitudes (y-axis). E-I synaptic weight is
varied along the x-axis. Distinct differences in the dynamics articulated by the Variabil-
ity Measure and Synchrony Measure are still seen between Weak and Strong Networks,
with the major similarity being that both networks similarly devolve into asynchronous
excitatory cell firing with high-amplitude noise.

4.3.3 E-I Networks with Heterogeneity in I-I Synaptic Strength

To construct a network that incorporates properties of networks with weak I-I

connectivity and networks with strong I-I connectivity, networks with heterogeneous

inhibitory synaptic strengths were created (which for brevity are refered to to as

Strong/Weak Networks, Fig 4.9(B)).

Strong/Weak Networks contain 800 excitatory cells and 200 inhibitory cells as

before, but the inhibitory cells are divided into two subnetworks of 100 cells each.

One of the subnetworks has a strong I-I synaptic strength of 0.05 mS/cm2, while

the other has a weak I-I synaptic strength of 0.003 mS/cm2. The values of the I-I

synaptic strength are scaled from the values used in the Strong Networks and Weak
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Figure 4.9: Constructing an E-I network that contains both strongly connected and
weakly connected inhibitory subnetworks decreases burst variability in net-
works with strictly weakly connected inhibitory subnetworks while also ex-
panding the parameter regime in which any synchrony is achieved in com-
parison to networks with strictly strongly connected inhibitory subnetworks.
(A) Synchrony Measure (left panel) and Variability Measure (right panel) for a network
with both strongly connected and weakly connected inhibitory subnetworks (hereafter
referred to as Strong/Weak networks). (B) Diagram representing the connectivity for
the Strong/Weak network. The thicker and darker red curve connecting the inhibitory
cells to themselves for the population on the left illustrates the strong interconnectivity
of those interneurons, while the thinner and lighter red curve connecting the inhibitory
cells to themselves for the population on the right illustrates the weak interconnectivity
of those interneurons. (C-D) Difference between the Synchrony and Variability Mea-
sure of a strictly weakly connected inhibitory subnetwork (C) and strictly strongly con-
nected inhibitory subnetwork (D) with the Strong/Weak network with networks show
the parameter regimes in which the Strong/Weak Networks show a higher Synchrony
Measure and lower Variability Measure compared to networks with only one strength of
inhibitory interconnectivity. (E-F) Example raster plots from Strong/Weak Networks.
Panel (E) is a network with an intrinsic cell firing frequency 53.4 Hz and an E-I synaptic
weight of 0.0003 mS/cm2, and is from a parameter regime similar to the network shown
in Fig 4.5(B). Panel (F) is a network with an intrinsic cell firing frequency 53.4 Hz and
an E-I synaptic weight of 0.00225 mS/cm2, and is from a parameter regime similar to
the network shown in Fig 4.5(C).

Networks for a network of 100 as opposed to 200 cells. Each of these subnetworks has

30% intra-connectivity density, just as for the inhibitory subnetworks in previously

studied E-I networks, but these inhibitory neurons only synapse onto other inhibitory
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neurons within their subnetwork. Interneurons have the same likelihood of receiving

synaptic input from an excitatory cell or sending synaptic output to an excitatory

cell as in the networks studied above.

The Synchrony and Variability Measures for the excitatory neurons in Strong/Weak

Networks are shown in Fig 4.9(A). For ease of comparison the difference between

these measures in the Weak and Strong Networks (Figs 4.4 and 4.5) and the Strong/Weak

Networks are shown in Figs 4.9(C) and 4.9(D). As Fig 4.9(C) illustrates, compared

to the Strong Networks, Strong/Weak Networks achieve a higher Synchrony Measure

and lower Variability Measure for low values of the E-I synaptic weight. A raster plot

exhibiting such a network is shown in Fig 4.9(E), where despite sparse, asynchronous

activity of the strongly connected interneurons, the weakly connected interneurons

exhibit synchronous bursting that provides the necessary inhibition to the excitatory

cells to promote synchronous bursting. In contrast, Strong Networks in this param-

eter regime are typified by the behavior shown by the raster in Fig 4.3(B), which is

completely asynchronous. Additionally, Strong/Weak networks exhibit higher values

of the Synchrony Measure and lower values of the Variability Measure in the regime

of high E-I synaptic weight and low average intrinsic cell firing frequency for which

Strong Networks show less organized bursting.

Furthermore, as illustrated in Fig 4.9(D), compared to Weak Networks, Strong/Weak

Networks show a significant decrease in the Variability Measure for high values of

the E-I synaptic weight, as well as in a thin parameter regime with moderate E-I

synaptic weight for which Weak Networks showed increased variability in excitatory

bursting. Fig 4.9(F) displays an example raster plot of a Strong/Weak network

with high E-I synaptic weight where the organization and consistency of excitatory

bursting is largely maintained thanks to consistent synchronous bursting from the
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strongly connected inhibitory neurons, which in turn helps to maintain a more con-

sistent firing pattern amongst the weakly connected inhibitory neurons by gating

excitatory cell activity. This can be compared to the Weak Network illustrated in

Fig 4.3(C) which displays distinctly unorganized and variable bursting patterns.

Indeed, Strong/Weak Networks achieve the proverbial “best of both worlds”, ex-

hibiting synchrony for very low values of the E-I synaptic weight like Weak Net-

works while preserving the organization and consistency of excitatory bursting for

high values of the E-I synaptic weight like Strong Networks. This new type of E-

I network with heterogeneity amongst the inhibitory interneurons thusly generates

well-organized and consistent excitatory bursting over a wider parameter range than

a network with homogeneous inhibitory intraconnectivity, regardless of the strength

of that intraconnectivity. The biological motivations for creating such a network and

the implications of this mechanism are discussed in more detail in the Discussion

below.

4.3.4 E-I Networks with Type II Interneurons

Previous work revealed that intrinsic cellular properties, typified by the Type I and

Type II neuron classifications, play a pivotal role in determining network dynamics

in strictly inhibitory neural networks [85]. The importance of interneuron cell type

in those networks begs the question of whether E-I networks with different inhibitory

cell types will exhibit different responses to a change in the I-I synaptic weight.

To probe this topic, E-I networks with the same topology as those studied above

while replacing the Type I interneuron with either a model neuron exhibiting Type II

properties without spike frequency adaptation (hereafter simply referred to as Type

II neurons) or Type II properties with spike frequency adaptation (hereafter simply

referred to as Type II neurons with adaptation) are studied.
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It is observed that networks with either Type II interneuron do not exhibit signifi-

cant changes in dynamics as the I-I synaptic weight changes. For slow firing networks

there is essentially no change in the excitatory bursting properties as the I-I synaptic

weight changes, as displayed in Fig 4.10(A) and (C); indeed, even though networks

with Type II neurons show a significantly increased Variability Measure for high val-

ues of the E-I synaptic weight, this increase is not dependent upon the I-I synaptic

weight.

Figure 4.10: E-I networks with Type II interneurons, both with and without an adap-
tation current, do not show significant change in dynamics as a function of
I-I synaptic strength, unlike E-I networks with Type I interneurons. (A-
D) Heatmaps showing the Variability Measure for networks with varying E-I synaptic
strength on the x-axis and varying I-I synaptic strength on the y-axis. The average
intrinsic cell firing frequency of the networks are set at 39.6 Hz in panels (A) and
(C) and 126 Hz in panels (B) and (D) . Results with inhibitory neurons modeled as
a Type II neuron with adaptation are shown in (A-B), while results with inhibitory
neurons modeled as a Type II neuron without adaptation are shown in (C-D). Neither
networks with Type II with adaptation or Type II interneurons show the significant
changes in dynamics as a function of the I-I synaptic weight that typified networks
with Type I interneurons.

Faster firing networks with Type II neurons, shown in Fig 4.10B and (D), also

exhibit minimal change in network dynamics as a result of changing I-I synaptic

weight. For the faster firing networks with Type II neurons with adaptation shown
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in Fig 4.10(B), networks with high values of the I-I synaptic weight exhibit a regime

with a moderate value of the Variability Measure whereas networks with weaker

values of the I-I synaptic weight are less likely to do so; however, all networks,

regardless of I-I synaptic strength, with moderate to high E-I synaptic weight still

show similar bursting properties, unlike in Type I networks.

These results imply that classic PING rhythmic bursting, which typically yield low

values of the Variability Measure, are more robust to changes in I-I synaptic weight

when the interneurons are Type II (with or without adaptation) then when the

interneurons are Type I. This provides further evidence for the important role that

cell type plays in networks with inhibitory neurons. Furthermore, these results also

match the intuition gained from varying the connectivity density in strictly inhibitory

networks with these types of neurons, as unlike networks of Type I neurons, networks

of Type II neurons showed little if any change in dynamics as the synaptic strength

changed [85].

4.4 Discussion

The work presented in this chapter shows that the strength of intra-connectivity

amongst inhibitory neurons in a E-I network plays a pivotal role in controlling rhyth-

mic PING-like dynamics. Changes to this connectivity can cause the inhibitory net-

work to display dynamics beyond the single burst per oscillatory cycle typically seen

in PING rhythms. Analyzing networks that do not satisfy this largely artificial con-

straint reveals that changing dynamics amongst the inhibitory cells are the impetus

behind patterns formed in the excitatory cells that diverge from the classic PING

predictions. Changes in the dynamics of the excitatory network are of paramount im-

portance in biological networks where the excitatory pyramidal cells serve to output
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the signal generated by an E-I network to other brain regions.

Such networks with strong I-I connectivity display behavior largely explained

by the conceptual PING model. For example, the inability for these networks to

exhibit any excitatory synchrony for low E-I synaptic weights follows directly from

the classical PING theory [63]. In this case, the strong intra-connectivity between

inhibitory cells, combined with a weak excitatory drive to the inhibitory cells due

to the weak E-I synaptic weight, prevents enough net drive from accumulating in

the inhibitory cells to elicit a synchronous burst. This parallels the behavior seen in

strictly inhibitory networks with strong inhibitory connectivity, in which networks

with a low average intrinsic cell firing frequency, analogous to the excitatory drive

to the inhibitory cells seen here, exhibit complete asynchrony. This behavior is

explained in greater detail in previous work, as the synaptic weight values analyzed

in those strictly inhibitory networks are in an analogous range to the strong inhibitory

intra-connectivity in the Strong Network here [85].

Furthermore, in Strong Networks with increased E-I synaptic weight, which results

in a stronger drive to the inhibitory cells, the strong inhibitory intraconnectivity

ensures only a single inhibitory burst occurs in response to excitatory cell activity.

This provides for nearly identical levels of inhibition to each excitatory cell, which

leads to classic PING activity [63].

However, networks with weak I-I connectivity display divergent dynamics that

have not been thoroughly analyzed by existing PING literature. These networks

exhibit synchrony amongst the excitatory cells for very weak values of the E-I con-

nectivity, contrary to the conceptual PING model [108, 63, 119, 42]. When the I-I

synaptic weight is weak, less inhibition accumulates as a result of inhibitory intra-

connectivity; this means that less excitatory drive is required to elicit a synchronous
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burst of inhibitory cell activity, which in turn leads to an excitatory burst. Here

again the parallels to strictly inhibitory networks with weak inhibitory connectivity

are apparent, as such networks were able to synchronize for low average intrinsic cell

firing frequencies for which strongly connected networks were asynchronous.

Additionally, as the E-I connectivity strength increases, Weak Networks exhibit

inhibitory cell dynamics beyond the single synchronous burst typically seen in PING

networks. These dynamics can include multiple inhibitory bursts, as well as asyn-

chronous inhibitory firing. Furthermore, the inhibitory patterning may differ in

response to each excitatory burst. While such networks can still exhibit synchronous

activity amongst the excitatory cells, the inconsistency of the inhibitory cell activity

combined with the heterogeneous connectivity between neuron populations will cause

a loss of well-organized and consistent bursting in the excitatory cell population, a

feature which is reflected in the Variability Measure but not the Synchrony Measure.

With high E-I connectivity strength, Weak Networks do exhibit excitatory bursts

with low Variability Measure in some cases. In these instances multiple inhibitory

bursts occur, but the profile of these bursts is consistent and well-organized in re-

sponse to each excitatory burst. The behavior of E-I networks with multiple in-

hibitory bursts, in particular the differences in excitatory network dynamics seen in

response to disorganized versus well-organized patterns of multiple inhibitory bursts,

is not investigated in detail by the conceptual PING model.

The dichotomy between networks deemed “strongly” intra-connected and “weakly”

intra-connected is in fact a robust feature when the I-I connectivity is varied. In-

deed, by varying the strength of inhibitory intra-connectivity two distinct regimes of

activity are revealed: networks exhibiting “strong behavior” show a low Variability

Measure for a vast majority of networks in which any form of excitatory synchrony
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is achieved, while networks exhibiting “weak behavior” show synchronous excitatory

activity at significantly lower values of the E-I connectivity strength but also ex-

hibit increased variability in the excitatory bursting patterns as the E-I connectivity

strength increases. Analysis of networks with various values of the I-I connectiv-

ity also reveals that these two types of dynamics correspond with features in other

important network properties. While networks exhibiting strong behavior show a

monotonic increase in their average excitatory burst frequency as the E-I connectiv-

ity strength increases, networks exhibiting weak behavior show an overall decrease

in this frequency, albeit with some upticks in frequency corresponding to networks

where well-organized bursting is recovered thanks to consistent patterning in the

inhibitory population. Additionally, in the parameter regime studied here networks

exhibiting strong behavior will only exhibit a 1:1 ratio between inhibitory and exci-

tatory bursts, while networks exhibiting weak behavior can achieve 2:1 and 3:1 burst

ratios.

Perhaps most interestingly, these results highlight that the patterning of inhibitory

activity, as influenced heavily by the I-I connectivity strength, controls the consis-

tency of excitatory burst rhythmicity. When the inhibitory bursting pattern is con-

sistent following each excitatory burst, be that pattern a single burst of activity as

is classic in PING activity or multiple inhibitory bursts as occured in networks with

weak I-I connectivity, well-organized and consistent excitatory cell bursting is com-

mon and rhythmicity is periodic. However, when the inhibitory bursting pattern

varies in response to each excitatory burst, different magnitudes and profiles of in-

hibitory current are generated. When the inhibitory input to the excitatory neurons

varies from burst to burst, this disrupts the ability for these cells to exhibit consis-

tent organization, leading to increased rhythm variability. Indeed, the importance
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of I-I connectivity in controlling inhibitory dynamics plays a crucial role in preserv-

ing consistent excitatory bursting and rhythmicity, revealing both the role of the

I-I connectivity and inhibitory patterning to be of more importance in E-I network

dynamics than previous studies of PING-like dynamics indicate.

Note that some of the behaviors of E-I networks focused on in this work, includ-

ing multiple bursts of the inhibitory network, have been identified in previous PING

literature without a thorough analysis [16]. This research shows that when E-I net-

works display patterns of inhibitory behavior slightly beyond the classic restrictions

of PING, such as the requirement that the inhibitory network only be active once

per oscillatory cycle, the effect on the dynamics of the excitatory network can be

more salient than previously suggested.

Furthermore, the same work by Börgers and Kopell identifies a broad “suppression

boundary” between a regime of strict PING rhythms and a regime of asynchrony

of the inhibitory cells that is affected by the strength of the I-I connectivity [16].

Thus, it stands to reason that networks that exhibit patterns of multiple inhibitory

bursts that are messy or inconsistent, such as the examples shown in Fig 4.3(C)

and (G), may exist in the region of bistability between strict PING rhythms and

complete asynchrony of the inhibitory cells identified by Börgers and Kopell; by this

interpretation, one can contextualize this work as expounding upon the dynamics of

E-I networks in this regime where E-I network behavior is neither strictly rhythmic

nor strictly asynchronous.

Finally, note that all E-I networks studied here tend to exhibit more asynchrony

and higher variability for networks with a stronger external drive to the excitatory

cells. A clear example of this at work is seen in the differences between the example

raster plots in Fig 4.3(E) and (G). This result fits the predictions of more analytical
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work done by Börgers, Krupa and Stan [17].

The focus of this work was on networks containing Type I interneurons given the

evidence that fast-spiking, PV+ interneurons, which often display Type I properties

[44], make up a majority of the interneuron population in various brain regions

[78, 83]. Additionally, a majority of the computational studies analyzing PING

rhythms utilize Type I interneurons. However, given the important role intrinsic

cellular properties play in determining inhibitory dynamics [85], E-I networks were

simulated with interneurons modeled as Type II neurons with and without an M-

type adaptation current to see if cell type plays a similarly important role in E-I

networks. Strictly inhibitory networks of such neurons did not exhibit significant

changes in dynamics in response to changing the inhibitory intraconnectivity, unlike

such networks containing Type I interneurons; as expected, neither did E-I networks

with Type II interneurons. This result indicates that PING-style networks with

Type II interneurons exhibit more consistent activity in response to changes in the

I-I connectivity.

The dichotomy between the dynamics of E-I networks with weakly intra-connected

Type I interneurons and strongly intra-connected Type I interneurons motivated the

creation of a E-I network utilizing heterogeneity in the I-I connectivity. Various

studies have shown that heterogeneities can be used in neural networks to improve

the network’s ability to exhibit features such as rate coding [74], gain control [75],

synchrony [65], and robust oscillations [122]. While many of these studies look at

E-I networks similar to the ones analyzed here, the heterogeneities studied are not

in the I-I connectivity.

The Strong/Weak Network created in this study implements heterogeneity in the

I-I coupling by creating two inhibitory subnetworks, one that is strongly intracon-
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nected and one that is weakly intraconnected. Given the vast diversity in cellular

properties amongst interneurons [61, 23, 10, 7, 96, 62, 51, 11, 47], heterogeneity in

the strength of inhibitory intra-connectivity amongst a population of interneurons is

likely. Furthermore, numerous studies have shown that interneurons tend to intra-

connect preferentially to those exhibiting similar properties [113, 47, 11, 96, 61], in a

sense forming the “subnetworks” modeled in the Strong/Weak Network. In addition,

many of these same studies show evidence for these different types of interneurons

connecting with the same excitatory pyramidal cells, forming a network similar to

that modeled here. Thus, there is biological motivation for creating a network not

only with heterogeneity amongst the interneuron intra-connectivity, but also with

inhibitory subnetworks without interconnectivity that synapse onto the same exci-

tatory cell population.

Indeed, the heterogenous network structure broadens the parameter regime in

which well-organized and consistent excitatory bursting patterns are achieved. While

Strong Networks did not achieve any sort of synchronous dynamics amongst excita-

tory cells for low values of the E-I connectivity, Strong/Weak Networks do. Addition-

ally, while Weak Networks exhibited excitatory bursting without well-organized or

consistent excitatory bursting for high values of the E-I synaptic weight, Strong/Weak

Networks decrease the Variability Measure in this parameter regime significantly.

Thus, the Strong/Weak Networks provide a potential mechanism by which PING

rhythms might be generated more robustly for a variety of external drives to the

excitatory cells and E-I synaptic weights.



CHAPTER V

Conclusion

5.1 Summary and conclusions

Perhaps the most daunting task facing neuroscientists is understanding how the

brain can encode all of human consciousness, thought, and emotion while being

comprised of a single fundamental unit, the neuron. Given that an individual neuron

mimics a binary variable, with the spike of an action potential analogous to an

“on” state and resting voltages analogous to an “off” state, it is extremely unlikely

that individual neurons alone could store such complex information. Instead, all

indications are that the neural correlates of complex behaviors lie in networks of

communicating neurons, which as a network can achieve a much greater variety of

states than just the binary “on” or “off”. Indeed, it appears to be no coincidence

that modern computing is made possible by communicating binary bits just as our

brain accomplishes complex tasks via communicating neurons.

Network oscillations, which are typically driven by some degree of synchronous

neural firing, are one type of neural network dynamic that is thought to serve a

vital role in a variety of important functions performed by the brain. The fashions in

which these oscillations arise has been a subject of intense scrutiny by neuroscientists

for decades, and has made use of the interdisciplinary tools brought to bear by

140
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computational neuroscientists. In particular, computational techniques have led to

the precise articulation of a variety of potential mechanisms by which these rhythms,

particularly those in the gamma frequency band, might be generated. However,

historically the articulation of these mechanisms has been facilitated by a variety of

idealizations that, while making computational study possible, sometimes overlook

crucial features of biologically accurate neural networks.

Two such mechanisms, ING and PING, propose that neural synchrony driving

rhythms in the gamma range are caused by gating inhibition provided by inhibitory

interneurons. However, given the immensely diverse properties displayed by such

interneurons, both in their excitability profiles and in the fashions that they commu-

nicate with each other, it remains an open question whether the predictions of these

mechanisms are robust to changing interneuronal properties. The research presented

in this dissertation studies less idealized networks than typically seen in the ING and

PING literature to identify what, if any, dynamical changes are caused by changing

interneuron properties and, where necessary, articulate new mechanisms explaining

novel dynamics.

In Chapter II, I probe the classic ING mechanism, which describes the tendency

for purely inhibitory networks to synchronize themselves, to see whether changing

intrinsic cellular properties affects the tendency for such networks to oscillate. This

research reveals that the predictions of ING theory are often violated in networks

containing neurons with Type II excitability profiles. Instead, a mechanism relying

upon properties of the Type II PRC, rather than properties of the network connec-

tivity like in ING, explains the dynamics of these networks. Interestingly, networks

with neurons containing an M-type potassium current modulated by the concentra-

tion of ACh, display unique dynamics that include a “switch” between two dynamical
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behaviors as a function of the driving current to the network. This feature might

provide a potential mechanism by which this ubiquitous neurotransmitter causes

changes in neural dynamics that correspond with its known behavioral effects.

Next, in Chapter III this investigation transitions to the study of E-I networks and

the PING mechanism. Here, I explore the interacting effects of changing network

connectivity and changing cellular excitability type on overall network dynamics.

This research shows that networks predisposed to exhibit PING rhythms will do so

regardless of the cellular properties of either the excitatory or inhibitory cells; how-

ever, the dynamics of networks with weaker inter-connectivity between the excitatory

and inhibitory populations depends critically on excitatory cell type and the corre-

sponding propensity for synchrony. As these changes in cellular properties are often

caused by differing ACh concentrations, these results provide another hypothesis for

the fashion by which cholinergic modulation might cause major changes in neural

network dynamics corresponding with changes in behavior.

Finally, Chapter IV focuses on E-I networks with dense and strong inter-connectivity

that are predisposed to exhibit PING rhythms, analyzing how changing the inhibitory

cell type and strength of inhibitory intra-connectivity affects the dynamics of excita-

tory network oscillations. This work reveals that networks with different inhibitory

neuron types respond differently to changes in the inhibitory intra-connectivity; in

particular, networks with Type II inhibitory cells adhere to the predictions of the

PING mechanism more robustly in response to such changes than networks with Type

I inhibitory cells. Indeed, networks with Type I inhibitory cells and weak inhibitory

intra-connectivity are able to achieve oscillatory dynamics for weak excitatory-to-

inhibitory signalling, while the rhythms achieved with strong excitatory-to-inhibitory

signalling are often very irregular in nature. Both of these dynamics are not ac-
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counted for by the classic PING literature. Finally, and perhaps most interestingly,

an altered E-I network architecture, consisting of one inhibitory population that

is strongly intra-connected and one which is weakly intra-connected, exhibits more

robust oscillatory dynamics than seen in the classic networks.

Taken together, these results reveal that the properties of inhibitory interneu-

rons serve a paramount role in dictating the characteristics of synchronous dynamics

achieved both in purely inhibitory and E-I networks. These specific intricacies have

not been the subject of intense scrutiny in the computational literature, as much of

this work still utilizes inhibitory interneurons with the same idealized properties as

those used in the classic articulation of the ING and PING mechanisms. However,

the discovery of interneurons with varied excitability profiles and connectivity ten-

dencies continues at a rapid pace, necessitating broadening our understanding of the

dynamics of neural networks containing inhibitory interneurons to reflect interneu-

rons exhibiting these diverse properties. In this vein, this work identifies the pivotal

fashions in which modulation by the neurotransmitter ACh can affect the features

of oscillatory neural network dynamics through changing the properties of inhibitory

interneurons. It stands to reason that the known behavioral changes affected by

varied concentrations of ACh should correspond with some change in neural dynam-

ics, and the work presented in this dissertation provides potential explanations as to

how such dynamical changes, brought about via altered properties of neural network

oscillations, might arise.

While the work presented in this thesis focuses primarily on an analysis of the po-

tential computational mechanisms underlying synchronous oscillations in simulated

neural networks, it is important to place this work in the context of existing biologi-

cal experiments. Rhythms in the gamma frequency band, particularly around 40 Hz,
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have been observed in both the cortex and hippocampus, and experiments by Whit-

tington et. al. have provided convincing evidence that inhibitory interneurons play a

role in driving these dynamics [121]. Further experiments in both the hippocampus

and cortex confirmed that interneurons in these regions tend to be connected to each

other in the fashions necessary for the ING or PING mechanisms to be viable [119].

Thus, while the networks studied here are idealized to some extent from their bio-

logical counterparts, there exists convincing evidence that these mechanisms acting

in these idealized networks may also be playing a role in dynamics seen in the brain.

Many of the manipulations to the neural networks studied in this dissertation also

have experimental analogues. For example, in Chapter IV I manipulate the strength

of inhibitory intra-connectivity and study the resulting changes in network dynamics.

Experimental results have found the magnitude of the synaptic inhibition between

inhibitory interneurons to be key modulators of dynamics potentially driven by ING

or PING, and have manipulated this magnitude via the use of anesthetics, sedatives,

and sex steroids, amongst other neuromodulators [119]. Furthermore, in the work

presented in Chapters II and IV the external driving current to the modeled neurons

is manipulated to see its effect on the development of synchronous oscillations. This

too has an analogue to experimental manipulations in which this drive is altered by

differential release of the neurotransmitter glutamate or differential expression of the

metabatropic glutamate receptor on neurons [119]. In both cases, the parameters of

interest in my simulated networks have been shown via experimental manipulation

to serve a key role in modulating dynamics that are potentially driven by ING or

PING.

Additionally, it is worth emphasizing that the work presented in this dissertation

involves the direct study of large scale spiking neural networks, while other studies
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of the ING and PING mechanims often utilize analytical techniques to idealize and

simplify the computational costs of such analysis. Such techniques, while useful,

require the networks studied to be idealized to a further degree than what was done

here. By studying the large scale spiking neural networks directly, this research was

able to analyze more complex, and likely more biologically realistic, network topolo-

gies, as well as develop new tools and measures for the quantification of oscillatory

dynamics in such networks. Indeed, the ability for this research to analyze the role

of cellular properties in dictating network dynamics was facilitated by the choice to

directly analyze the large scale spiking neural networks rather than reduce them.

Finally, the multitude of interneurons in the brain begs a more fundamental neu-

roscientific question: what role does this diversity serve? My research provides a po-

tential explanation in the different types of synchronous oscillatory dynamics brought

about by changing inhibitory cell properties. Indeed, for the brain to be responsible

for such a vast range of critical functions necessary for human survival and flourish-

ing, neural networks much be able to achieve a corresponding range of differentiable

dynamics. Given the results of the research presented in this dissertation, it is possi-

ble that intereneuronal diversity serves as an impetus for diverse oscillatory dynamics

that could be responsible for a variety of brain functions and behaviors.

5.2 Future Directions

There are a variety of future directions this research could take, some of which I

plan to pursue in post-doctoral studies. Perhaps the most straightforward of these

is expanding the type of analysis presented in this dissertation to the study of other

rhythms besides gamma. Some results presented here approach the theta frequency

band, begging the question of whether the networks studied in this research could
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be made to oscillate with a theta frequency. Such research, when viewed alongside

some of the papers cited in this dissertation that look at oscillations in non-gamma

frequency bands (particularly work by Nancy Kopell), could provide further insights

into whether oscillations of different frequencies can be achieved by similar networks,

or whether the mechanisms underlying these different oscillations are so distinct that

network-level changes are required to change the freuqency band of the oscillatory

activity.

A more biologically-motivated extension of this research is the study of epilepsy,

which is discussed briefly in Section 1.2.3. A more detailed analysis of the differ-

ent mechanisms underlying “noisy” oscillations, which are more indicative of the

rhythms observed in the brain, versus oscillations containing complete neural syn-

chrony, which occur primarily during seizures, might provide insights into the de-

velopment of epileptic events. Moreover, computational analysis of neural networks

known to produce epileptic seizures, utilizing the techniques developed in this dis-

sertation, could provide insights into ways in which seizure dynamics might be dis-

rupted.
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Somogyi, P.: Brain-state-and cell-type-specific firing of hippocampal interneurons in vivo.
Nature 421(6925), 844–848 (2003)

[62] Klausberger, T., Somogyi, P.: Neuronal diversity and temporal dynamics: the unity of hip-
pocampal circuit operations. Science 321(5885), 53–57 (2008)

[63] Kopell, N., Börgers, C., Pervouchine, D., Malerba, P., Tort, A.: Gamma and theta rhythms
in biophysical models of hippocampal circuits. In: Hippocampal Microcircuits, pp. 423–457.
Springer (2010)

[64] Kopell, N., Ermentrout, G.B., Whittington, M.A., Traub, R.D.: Gamma rhythms and beta
rhythms have different synchronization properties. PNAS 97(4), 1867–1872 (2000)

[65] Kriener, B.: How synaptic weights determine stability of synchrony in networks of pulse-
coupled excitatory and inhibitory oscillators. Chaos: An Interdisciplinary Journal of Nonlin-
ear Science 22(3), 033,143 (2012)

[66] Krupa, M., Gielen, S., Gutkin, B.: Adaptation and shunting inhibition leads to pyrami-
dal/interneuron gamma with sparse firing of pyramidal cells. Journal of computational neu-
roscience 37(2), 357–376 (2014)

[67] Ladenbauer, J., Augustin, M., Shiau, L., Obermayer, K.: Impact of adaptation currents
on synchronization of coupled exponential integrate-and-fire neurons. PLoS Computational
Biology 8(4), 1–19 (2012)



152

[68] Larsen, W.: Biological implications of gap junction structure, distribution and composition:
a review. Tissue and Cell 15(5), 645–671 (1983)

[69] Lawrence, J., Saraga, F., Churchill, J., Startling, J., Travis, K., Skinner, F., McBain, C.: So-
matodendritic kv7/kcnq/m channels control interspike interval in hippocampal interneurons.
The Journal of Neuroscience 26(47), 12,325–12,338 (2006)

[70] Luck, S.J., Chelazzi, L., Hillyard, S.A., Desimone, R.: Neural mechanisms of spatial selective
attention in areas v1, v2, and v4 of macaque visual cortex. Annual Reviews Neuroscience 77,
24–42 (1997)

[71] Mancilla, J.G., Lewis, T.J., Pinto, D.J., Rinzel, J., Connors, B.W.: Synchronization of elec-
trically coupled pairs of inhibitory interneurons in neocortex. The Journal of Neuroscience
27(8), 2058–2073 (2007)

[72] Marder, E.: Neuromodulation of neuronal circuits: Back to the future. Neuron 76(1), 1–11
(2012)

[73] Markram, H., Toledo-Rodriguez, M., Wang, Y., Gupta, A., glad Silberberg, Wu, C.: In-
terneurons of the neocortical inhibitory system. Natural Reviews Neuroscience 5, 793–807
(2004)

[74] Mejias, J., Longtin, A.: Optimal heterogeneity for coding in spiking neural networks. Physical
Review Letters 108(22), 228,102 (2012)

[75] Mejias, J.F., Longtin, A.: Differential effects of excitatory and inhibitory heterogeneity on
the gain and asynchronous state of sparse cortical networks. Frontiers in computational
neuroscience 8, 107 (2014)

[76] Mody, I., Pearce, R.A.: Diversity of inhibitory neurotransmission through gaba a receptors.
Trends in neurosciences 27(9), 569–575 (2004)

[77] Moon, S.J., Cook, K.A., Rajendran, K., Kevrekidis, I.G., Cisternas, J., Laing, C.R.: Coarse-
grained clustering dynamics of heterogeneously coupled neurons. Journal of Mathematical
Neuroscience 5(2), 1–20 (2015)

[78] Muller, J.F., Mascagni, F., McDonald, A.J.: Pyramidal cells of the rat basolateral amyg-
dala: synaptology and innervation by parvalbumin-immunoreactive interneurons. Journal of
Comparative Neurology 494(4), 635–650 (2006)

[79] Olufsen, M.S., Whittington, M.A., Camperi, M., Kopell, N.: New roles for the gamma rhythm:
population tuning and preprocessing for the beta rhythm. Journal of computational neuro-
science 14(1), 33–54 (2003)

[80] Oprisan, S.A., Prinz, A.A., Canavier, C.: Phase resetting and phase locking in hybrid circuits
of one model and one biological neuron. Biophysical Journal 87, 2283–2298 (2004)

[81] Parent, J.M., Timothy, W.Y., Leibowitz, R.T., Geschwind, D.H., Sloviter, R.S., Lowenstein,
D.H.: Dentate granule cell neurogenesis is increased by seizures and contributes to aberrant
network reorganization in the adult rat hippocampus. Journal of Neuroscience 17(10), 3727–
3738 (1997)

[82] Perrenoud, Q., Rossier, J., Geoffrey, H., Vitalis, T., Gallopin, T.: Diversity of gabaergic
interneurons in layer via and vib of mouse barrel cortex. Cerebral Cortex 23, 423–441 (2013)

[83] Povysheva, N.V., Zaitsev, A.V., Rotaru, D.C., Gonzalez-Burgos, G., Lewis, D.A., Krimer,
L.S.: Parvalbumin-positive basket interneurons in monkey and rat prefrontal cortex. Journal
of neurophysiology 100(4), 2348–2360 (2008)



153

[84] Reynolds, J.H., Chelazzi, L., Desimone, R.: Competitive mechanisms subserve attention in
macaque areas v2 and v4. The Journal of Neuroscience 19(5), 1736–1753 (1999)

[85] Rich, S., Booth, V., Zochowski, M.: Intrinsic cellular properties and connectivity density
determine variable clustering patterns in randomly connected inhibitory neural networks.
Frontiers in Neural Circuits 10, 82 (2016)

[86] Rich, S., Zochowski, M., Booth, V.: Dichotomous dynamics in ei networks with strongly and
weakly intra-connected inhibitory neurons. Frontiers in Neural Circuits 11 (2017)

[87] Rich, S., Zochowski, M., Booth, V.: Effects of neuromodulation on excitatory–inhibitory
neural network dynamics depend on network connectivity structure. Journal of Nonlinear
Science pp. 1–24 (2018)

[88] del Rio, C.A.C., Lawrence, J.J., Erdelyi, F., Szabo, G., Mccain, C.J.: Cholinergic modula-
tion amplifies the intrinsic oscillatory properties of ca1 hippocampal cholecystokinin-positive
interneurons. The Journal of Physiology 589(3), 609–627 (2011)

[89] del Rio, C.A.C., McBain, C.J., Pelkey, K.A.: An update on cholinergic regulation of
cholecystokinin-expressing basket cells. The Journal of Physiology 590(4), 695–702 (2012)

[90] Roach, J.P., Ben-Jacob, E., Sander, L.M., Zochowski, M.R.: Formation and dynamics of
waves in a cortical model of cholinergic modulation. PLoS computational biology 11(8),
e1004,449 (2015)

[91] Ruivo, L.M.T.G., Mellor, J.R.: Cholinergic modulation of hippocampal network function.
Frontiers in Synaptic Neuroscience 5 (2013)

[92] Saraga, F., Wu, C., Zhang, L., Skinner, F.: Active dendrites and spike propagation in multi
compartment models of oriens-lacunosum/moleculare hippocampal interneurons. The Journal
of Physiology 552, 673–689 (2003)

[93] Sarter, M., Hasselmo, M.E., Bruno, J.P., Givens, B.: Unraveling the attentional functions
of cortical cholinergic inputs: interactions between signal-driven and cognitive modulation of
signal detection. Brain Research Reviews 48(1), 98–111 (2005)

[94] Schemer, M.A., Lewis, T.J.: The Theory of Weakly Coupled Oscillators, vol. 6. Springer
(2012)

[95] Schultheiss, N., Prinz, A., Butera, R.J. (eds.): Phase Response Curves in Neuroscience:
Theory, Experiment and Analysis. Springer Series in Computational Neuroscience. Springer-
Verlag (2014)

[96] Somogyi, P., Klausberger, T.: Defined types of cortical interneurone structure space and spike
timing in the hippocampus. The Journal of physiology 562(1), 9–26 (2005)

[97] Splettstoesser, T.: Synapse schematic. URL https://www.scistyle.com/

[98] Stiefel, K.M., Gutkin, B.S., Sejnowski, T.J.: Cholinergic neuromodulation changes phase
response curve shape and type in cortical pyramidal neurons. PLoS ONE 3(12) (2008)

[99] Stiefel, K.M., Gutkin, B.S., Sejnowski, T.J.: The effects of cholinergic neuromodulation on
neuronal phase-response curves of modeled cortical neurons. Journal of computational neu-
roscience 26(2), 289–301 (2009)

[100] Talathi, S.S., Hwang, D.U., Carney, P.R., Ditto, W.L.: Synchrony with shunting inhibition
in a feedforward inhibitory network. Journal of Computational Neuroscience 28, 305–321
(2010)



154

[101] Talathi, S.S., Hwang, D.U., Ditto, W.L.: Spike timing dependent plasticity promotes syn-
chrony of inhibitory networks in the presence of heterogeneity. Journal of Computational
Neuroscience 25, 263–281 (2008)

[102] Talathi, S.S., Hwang, D.U., Militias, A., Carney, P.R., Ditto, W.L.: Predicting synchrony in
heterogeneous pulse coupled oscillators. Phys. Rev. E 80 (2009)

[103] Tateno, T., Harsch, A., Robinson, H.: Threshold firing frequency-current relationships of
neurons in rat somatosensory cortes: Type 1 and type 2 dynamics. J. Neurophysiology 92,
2283–2294 (2004)

[104] Tateno, T., Robinson, H.P.C.: Phase resetting curves and oscillatory stability in interneurons
of rat somatosensory cortex. Biophysical Journal 92, 683–695 (2007)

[105] Terman, D., Kopell, N., Bose, A.: Dynamics of two mutually coupled slow inhibitory neurons.
Physica D 117, 241–275 (1997)

[106] Tiesinga, P., Sejnowski, T.J.: Cortical enlightenment: Are attentional gamma oscillations
driven by ing or ping? Neuron 63, 727–732 (2009)

[107] Tikidji-Hamburyan, R.A., Martnez, J.J., White, J.A., Canavier, C.C.: Resonant interneurons
can increase robustness of gamma oscillations. Journal of Neuroscience 35(47), 15,682–15,695
(2015)

[108] Traub, R.D., Jefferys, J.G., Whittington, M.A.: Simulation of gamma rhythms in networks
of interneurons and pyramidal cells. Journal of computational neuroscience 4(2), 141–150
(1997)

[109] Traub, R.D., Spruston, N., Soltesz, I., Kenneth, A., Whittington, M.A., Jeffreys, J.G.R.:
Gamma-frequency oscillations: a neuronal population phenomenon, regulated by synaptic
and intrinsic cellular processes, and inducing synaptic plasticity. Progress in Neurobiology
55, 563–575 (1998)

[110] Viriyopase, A., Memmesheimer, R.M., Gielen, S.: Cooperation and competition of gamma
oscillation mechanisms. Journal of Neurophysiology (2016)

[111] van Vreeswijk, C., Hansel, D.: Patterns of synchrony in neural networks with spike adaptation.
Neural Computation 13, 959–992 (2001)

[112] Vreeswijk, C.V., Abbott, L.F., Ermentrout, G.B.: When inhibition not excitation synchro-
nizes neural firing. The Journal of Computational Neuroscience 1, 313–321 (1994)

[113] Wang, S.J., Hilgetag, C., Zhou, C.: Sustained activity in hierarchical modular neural net-
works: self-organized criticality and oscillations. Frontiers in computational neuroscience 5,
30 (2011)

[114] Wang, X.J.: Neurophysiological and computational principles of cortical rhythms in cognition.
Physiological Review 90, 1195–1268 (2010)

[115] Wang, X.J., Buzsaki, G.: Gamma oscillation by synaptic inhibition in a hippocampal in-
terneuronal network model. The Journal of Neuroscience 16(20), 6402–6413 (1996)

[116] Ward, L.M.: Synchronous neural oscillations and cognitive processes. Trends in cognitive
sciences 7(12), 553–559 (2003)

[117] Wendling, F., Benquet, P., Bartolomei, F., Jirsa, V.: Computational models of epileptiform
activity. Journal of neuroscience methods 260, 233–251 (2016)

[118] White, J.A., Chow, C.C., Rit, J., Soto-Treviño, C., Kopell, N.: Synchronization and os-
cillatory dynamics in heterogeneous, mutually inhibited neurons. Journal of computational
neuroscience 5(1), 5–16 (1998)



155

[119] Whittington, M., Traub, R.D., Kopell, N., Ermentrout, B., Buhl, E.: Inhibition-based
rhythms: experimental and mathematical observations on network dynamics. International
Journal of Psychophysiology 38, 315–336 (2000)

[120] Whittington, M.A., Traub, R.D.: Interneuron diversity series: inhibitory interneurons and
network oscillations in vitro. Trends in neurosciences 26(12), 676–682 (2003)

[121] Whittington, M.A., Traub, R.D., Jefferys, J.G.: Synchronized oscillations in interneuron net-
works driven by metabotropic glutamate receptor activation. Nature 373(6515), 612 (1995)

[122] Xie, J., Wang, Z., Fang, J.: Feedback-dependence and robustness of gamma oscillations in
networks with excitatory and inhibitory neurons. Procedia Engineering 15, 3103–3108 (2011)

[123] Zahid, T., Skinner, F.K.: Predicting synchronous and asynchronous network groupings of
hippocampal interneurons coupled with dendritic gap junctions. Brain Research 1262, 115–
129 (2009)

[124] Zhong, G., Shevtsova, N.A., Rybak, I.A., Harris-Warwick, R.M.: Neuronal activity in the
isolated mouse spinal cord during spontaneous deletions in fictive locomotion: insights into
locomotor central pattern generator organization. J. Physiology 590(19), 4735–4759 (2012)


