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Preface

The elements of this dissertation that are original scholarship and distinct con-

tributions to knowledge are as follows. Modified versions of most of this dissertation

have appeared as archival journal or conference publications, which have been the

subject of anonymous peer review. If the work has resulted in a publication, a refer-

ence is given. The contributions for guidance of aerospace systems in Part

II are as follows.

• Chapter 4

– A guidance and control algorithm formulated on SO(3) that can account

for attitude inclusion, and exclusion zones is introduced.

– The guidance and control algorithm is implemented and tested on a space-

craft with three reaction wheels in simulation.

• Chapter 5

– Constrained extremum-seeking guidance on R3 that uses a gain-projected

Kalman filter is developed [1].

– The constrained extremum-seeking guidance algorithm is demonstrated

on a linear time-invariant plant, as well as the formation flight of two

aircraft [1].

• Chapter 6

– A relationship between the gradient from a Taylor series expansion of a

function SO(3) → R and the gradient that lies in the tangent space at a

particular point of SO(3) is derived [2].

– An extremum-seeking guidance algorithm formulated on SO(3) using a

gain-projected Kalman filter that can account for attitude inclusion, and

exclusion zones, and

– an extremum-seeking guidance algorithm formulated on SO(3) using an

LMI-based Kalman filter that can take advantage of any type of LMI

constraint on the control input and state are derived [2].
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– Extremum-seeking guidance for performance functions that map SO(3)→
R is demonstrated on a spacecraft maximizing signal received from a ra-

diation source [2].

The contributions for control of nonlinear passive and conic systems in Part

III are as follows.

• Chapter 8

– A state-space structure with linear matrix inequality (LMI) conditions that

show an affine system is very strictly passive (VSP) is derived [3].

– The derived VSP controller is compared to an existing linear parameter

varying (LPV) controller [3].

– An affine VSP controller is used experimentally for the first time [3].

• Chapter 9

– Sufficient LMI conditions are given for a polytopic system to be interior-

conic. This is the analogous version to the Conic Sector Lemma for poly-

topic systems.

– A modified version of the Conic Sector Lemma for polytopic systems is

given that allows the upper conic bound to approach infinity.

– Methods to determine conic bounds for polytopic systems are analyzed.

– Two polytopic conic controller synthesis methods are given.

– The conic controllers are tested on a heat exchanger and are compared to

existing LPV controllers.

Except for one figure, all proofs, plots, illustrations, text, and numerical and

experimental results in this dissertation were produced by Alex Walsh. James R.

Forbes provided guidance and suggested edits throughout the dissertation. The LMI-

based Kalman filter of Section 6.5.2 was derived based on work by Stephen A. Chee.

Alex Walsh modified this Kalman filter for use with extremum-seeking guidance on

SO(3).
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Abstract

This dissertation studies guidance and control of aerospace systems. Guidance al-

gorithms are used to determine desired trajectories of systems, and in particular, this

dissertation examines constrained extremum-seeking guidance. This type of guidance

is part of a class of algorithms that drives a system to the maximum or minimum of

a performance function, where the exact relation between the function’s input and

output is unknown. This dissertation abstracts the problem of extremum-seeking to

constrained matrix manifolds. Working with a constrained matrix manifold necessi-

tates mathematics other than the familiar tools of linear systems. The performance

function is optimized on the manifold by estimating a gradient using a Kalman fil-

ter, which can be modified to accommodate a wide variety of constraints and can

filter measurement noise. A gradient-based optimization technique is then used to

determine the extremum of the performance function. The developed algorithms are

applied to aircraft and spacecraft.

Control algorithms determine which system inputs are required to drive the sys-

tems outputs to follow the trajectory given by guidance. Aerospace systems are

typically nonlinear, which makes control more challenging. One approach to control

nonlinear systems is linear parameter varying (LPV) control, where well-established

linear control techniques are extended to nonlinear systems. Although LPV control

techniques work quite well, they require an LPV model of a system. This model is

often an approximation of the real nonlinear system to be controlled, and any stabil-

ity and performance guarantees that are derived using the system approximation are

usually void on the real system. A solution to this problem can be found using the

Passivity Theorem and the Conic Sector Theorem, two input-output stability theo-

ries, to synthesize LPV controllers. These controllers guarantee closed-loop stability

even in the presence of system approximation. Several control techniques are derived

and implemented in simulation and experimentation, where it is shown that these

new controllers are robust to plant uncertainty.
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Chapter 1

Introduction

1.1 Motivation and Objectives

Aerospace vehicles, such as aircraft and spacecraft, rely on estimation, guidance,

and control strategies to realize mission objectives. Estimation is the process of

filtering noise and biases corrupting sensor data in order to determine vehicle states,

such as the position, velocity, attitude, and angular velocity of the vehicle, that may

or may not be measured directly. Generating a path from the current estimated

vehicle position to the desired vehicle position is guidance. Control is the application

of inputs to a vehicle, such as forces and torques, such that the vehicle follows the

generated path. This dissertation is divided into two parts, where each part focuses

on guidance and control respectively.

1.1.1 Guidance

Control algorithms are typically designed to minimize the error between a mea-

sured output and a desired output. The desired output of the system can be de-

termined in a variety of different ways, such as by a human operator, by a lookup

table scheduled as a function of time, or by a guidance algorithm. Often guidance

algorithms are optimal in some sense, where guidance commands are given by the

solution of an optimization problem that takes a performance metric into account.

The relation between a system’s output and the performance metric may be known

or unknown. An example of a known relationship is when the performance metric

is to minimize the difference between a desired and estimated attitude. An example

of an unknown relationship is the orientation of an antenna that maximizes signal

strength of an unknown radiation source. In such a situation, an extremum-seeking

guidance algorithm can be used to provide commands, such as a desired trajectory,
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to a system in order to maximize or minimize the performance function. Examples

of extremum seeking spans several industries, such as the automotive sector [6, 7, 8],

the energy sector [9, 10], biomedical engineering [11], and aviation [12, 13].

This dissertation emphasizes attitude guidance. The nonlinear nature of the state

space associated with spacecraft kinematics and dynamics compounds difficulties

when designing a constrained attitude control algorithm. In particular, the most

fundamental attitude parameterization, the direction cosine matrix (DCM), denoted

as C, must be orthonormal with a determinant equal to plus one. Matrices of this

type constitute the special orthogonal group, denoted SO(3). As such, the under-

lying state space is non-Euclidian. These nonlinearities pose a significant challenge

to existing optimization techniques used to solve the associated constrained attitude

control problem. Often, an attitude parameterization other than the DCM is used for

attitude control, but for every problem circumvented by introducing a different atti-

tude parameterization, another problem is introduced. For instance, the quaternion

parameterization is nonunique, and Euler angles have a kinematic singularity [14].

DCMs possess no kinematic singularities, and are a global and unique attitude pa-

rameterization. As such, the first objective of Part II of this dissertation is to deter-

mine an attitude guidance algorithm using the DCM directly. The second objective

is to develop an extremum-seeking guidance law on SO(3) that accommodates atti-

tude constraints. As a stepping stone to this objective, a secondary objective is a

constrained extremum-seeking guidance law on R3.

1.1.2 Nonlinear Control

Input-output properties and associated stability theorems are indispensable tools

to a control systems engineer. These tools have been widely used in robust, nonlinear,

and optimal control. In particular, passivity and small gain properties, as well as

their associated input-output stability theorems, are well-known and heavily used.

The Passivity Theorem is commonly used for the robust control of mechanical and

electrical systems, especially in the context of robotics [15]. Many robust control

strategies, including H∞ control, make use of the Small Gain Theorem, which has

been used to robustly control aerospace [16], electric, and piezoelectric systems [17].

The Conic Sector Theorem has seen resurgence in recent years, and has been shown to

be able to accommodate plants with passivity violations [18, 19]. The Extended Conic

Sector Theorem [20] is a more general results that unifies many existing input-output

theories [21].

Although passivity-based and conic-sector-based control have seen recent success,
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linear parameter varying (LPV) control theory based on small gain remains a more

widespread control paradigm. Nonlinear systems can be represented either approx-

imately or exactly by LPV systems. When parameters are functions of exogenous

signals only, the plant representation is referred to as an LPV system. When pa-

rameters are also functions of state or inputs, the plant representation referred to

as quasi-LPV [22]. For brevity, these two cases are generally referred to as LPV.

With origins in [23], the study of LPV systems has become popular because LPV

controller synthesis is an extension of linear time-invariant (LTI) control methods.

Several techniques to derive LPV controllers now exist [22, 24, 25, 26]. Closed-loop

stability results involve the LPV controller in feedback with the LPV plant represen-

tation, and often, closed-loop stability of an LPV controller connected in feedback

with the original nonlinear system cannot be claimed. However, in practice, the lack

of stability guarantee of an LPV controller designed using an LPV model is mitigated

because 1) the LPV plant representations can be precise enough for controller design,

2) robust control techniques are used to accommodate the differences between the

LPV and original plant model, or 3) the LPV model may represent the nonlinear sys-

tem exactly. Rigorous mathematical techniques to examine the effect of using LPV

plant approximations are lacking, and experimentation can determine the practical

usefulness of these approximations [22].

This dissertation aims to use input-output theory to overcome the challenges as-

sociated with using approximate LPV models to synthesize controllers for nonlinear

systems. Specifically, once a passive plant has been identified, an LPV controller

using the Passivity Theorem is sought. For systems that do not fall in the passiv-

ity framework, a tool to determine conic bounds for polytopic system is desired. In

addition, control synthesis methods for polytopic conic systems must also be derived.

1.2 Outline and Contributions

General concepts are introduced in Chapter 2, including vector spaces, normed

spaces, and optimization. These concepts are used throughout the dissertation. Part

II focuses on the guidance of aerospace systems, and presents novel guidance meth-

ods for aircraft and spacecraft. Two chapters have application to spacecraft, and

two chapters focus on extremum-seeking guidance. Specifically, Chapter 4 discusses

optimal guidance and control of spacecraft, where algorithms determine both the tra-

jectory and the control required to follow said trajectory. Chapters 5 and 6 cover

extremum-seeking guidance, where the former focuses on objective functions that
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map R3 → R, with application to formation flight of two aircraft. The latter chapter

examines functions that map SO(3)→ R, with guidance of spacecraft as an applica-

tion example. The main contribution of this part of the dissertation is an extremum-

seeking guidance algorithm on SO(3). The development of an linear matrix inequality

(LMI) constrained Kalman filter is also important as it allows estimation of gradients

with a wide variety of constraints. LMIs are also numerially efficient to solve, which

is vital for implementation purposes.

Part III is dedicated to LPV control using the Passivity and Conic Theorems.

Within Part III, Chapter 7 gives an overview of gain, passivity, conic sectors, and

LPV systems. Chapter 8 is devoted to LPV control in a passivity framework, where

the work is derived form [3]. Chapter 9 focuses on control of interior-conic polytopic

systems. The use of the Conic Sector Theorem in this chapter can allow for passivity

violations and control of systems that do not fall under the passivity framework. The

most significant contributions in this part are the passive and conic LPV controllers,

as well as a method for determining conic bounds for a polytopic plant. Chap-

ter 10 summarizes the importance of the findings in this dissertation and suggests

new research directions. For a detailed list of contributions along with appearances

in publications, see the Preface.

5



Chapter 2

Preliminaries

Two main themes of this dissertation are input-output theory and optimization.

Input-output theory requires a review of signal properties, and is discussed in Sec-

tion 2.1. Section 2.2 focuses on convex optimization and linear matrix inequalities.

2.1 Signals

Every system has inputs and outputs, and several properties must be considered

in order to adequately study these systems.

2.1.1 Vector Spaces and Norms

Definition 2.1 (Vector Space [27]). Consider the space V and field F. The operations

of vector addition and scalar multiplication are defined as

1. for every pair u, v ∈ V , a unique element z = u + v ∈ V is assigned and called

their sum, and

2. for all a ∈ F and u ∈ V , there is a unique element v = au ∈ V called their

product.

The space V is a vector space if the following properties hold for all u, v, w ∈ V and

for all a, b ∈ F, for addition

1. there exists an additive identity, denoted 0 ∈ V , such that u + 0 = u,

2. there exists an inverse, denoted −u ∈ V , such that u + (−u) = 0,

3. the commutativity relationship u + v = v + u holds,

4. the associativity property u + (v + w) = (u + v) + w holds,

and for multiplication
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1. there exists a multiplicative identity, denoted 1 ∈ F, such that 1u = u,

2. the associativity property a(bu) = (ab)u holds,

3. the vector distributivity property a(u + v) = au + bv holds, and

4. the scalar distributivity property (a+ b)u = au + bu.

Definition 2.2. A norm ‖·‖ on a vector space V is a function that maps V → R≥0,

for all u ∈ V that satisfies

1. ‖u‖ = 0 if and only if u = 0,

2. ‖au‖ = |a| ‖u‖ for all a ∈ F, and

3. the triangle inequality ‖u + v‖ ≤ ‖u‖+ ‖v‖, for all v ∈ V .

2.1.2 Inner Product Spaces

Definition 2.3 (Inner Product). An inner product 〈·, ·〉 on a vector space V is a

function mapping V × V → F such that

1. for all u ∈ V , 〈u,u〉 ≥ 0,

2. for all u ∈ V , 〈u, v〉 = 0 if and only if v = 0,

3. for all u, v, w ∈ V and a, b ∈ F, 〈u, av + bw〉 = a 〈u, v〉 + b 〈u,w〉. This

condition implies that the mapping u 7→ 〈v,u〉 is linear on V .

An inner product space, X , is a vector space that is equipped with an inner product.

Every real inner product space is also a normed space since an inner product 〈u,u〉 for

u ∈ X satisfies Definition 2.2. An important property of an inner product space is the

Cauchy-Schwartz inequality. Given the inner product space X , the Cauchy-Schwartz

inequality states that given u ∈ X and v ∈ X , then

|〈u, v〉| ≤ ‖u‖ ‖u‖ .

Definition 2.4 (Lebesgue Space). The Lebesgue space, L2, is an inner product space,

and is given by all square integral functions defined by

L2 =

x : R≥0 → Rn

∣∣∣∣∣
∞∫

0

xT(t)x(t)dt <∞

 .

The extended Lebesgue space space, L2e, is given by

L2e =

x : R≥0 → Rn

∣∣∣∣∣
T∫

0

xT(t)x(t)dt <∞, ∀T ∈ R>0

 .
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The inner product of two functions, u ∈ L2e and v ∈ L2e, is given by

〈u, v〉2T =

T∫
0

uTv dt,

and the norm of a function u ∈ L2e is given by

〈u,u〉2T = ‖u‖2
2T .

Definition 2.5. A function u ∈ L∞ if ‖u‖∞ = supt∈R>0
[maxi=1···n |ui(t)|] <∞ [28].

2.2 Optimization and LMIs

Optimal control and guidance is a central theme to this dissertation. Optimiza-

tion is used to find optimal trajectories, estimator gains, and control in Part II, and

is used to synthesize controllers in Part III. In all cases, optimization problems are

reformulated as semidefinite programs (SDPs), which are convex, have a linear objec-

tive, and linear matrix inequality (LMI) constraints. This section defines convexity,

LMIs, and techniques to transform quadratic objectives to linear objectives.

2.2.1 Convex Sets

Definition 2.6 (Convexity [29]). A set, S, in a real inner product space is convex if

for all x, y ∈ S and α ∈ [0, 1], αx + (1− α)y ∈ S. A function, f : S → R, is strictly

convex if for all x, y ∈ S, α ∈ (0, 1), and x 6= y, f(αx+(1−α)y) < αf(x)+(1−α)f(y).

Theorem 2.7 (Weierstrass). If a function f(x) : D → R is continuous and all x ∈ D,

where D is compact, then an extremum exists on D [30, p. 39].

Proposition 2.8. Suppose that f : S → R is strictly convex and continuous. If

S ⊂ Rn is closed, bounded, and convex, then a unique minimizer of f exists in S.

Proof. Existence of a solution comes from Theorem 2.7 since S is closed and bounded,

thus compact, and since f is continuous. If the minimizer were not unique, then for

any two minimizers x, y ∈ S such that f(x) = f(y), then z = αx + (1−α)y ∈ S since

S is convex. Since f is strictly convex, then

f(z) = f(αx + (1− α)y) < αf(x) + (1− α)f(y) = f(x),

which contradicts the assumption that x and y are minimizers.
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2.2.2 Linear Matrix Inequalities

Definition 2.9. (Linear Matrix Inequality [31]) An LMI, F : Rm → Rn×n, in the

variable x ∈ Rm, is given by

F(x) = F0 +
m∑
i=1

xiFi ≤ 0, (2.1)

where x = [x1 · · · xm]T, Fi ∈ Rn×n, i = 0, . . . ,m.

In [31], the LMI is defined in terms of strict inequalities. Here, an LMI is defined

in terms of nonstrict inequalities to ensure existence and uniqueness of solutions

when minimizing an objective subject to an LMI constraint. For example, consider

minimizing f(x) = x2 subject to x > 0. The minimum is at x = 0, which does not

satisfy the strict inequality. When strict inequalities are needed, F(x)+ε1 ≤ 0 is used

for some ε > 0 such that

F(x) < F(x) + ε1 ≤ 0.

In this dissertation, LMIs are not written in the form of (2.1), rather they are

written as a function of a matrix variable. Consider finding a matrix P = PT ∈ Rn×n

that satisfies

PA + ATP + Q ≤ 0, (2.2)

where P > 0. However, the LMI in (2.2) is not in the form of (2.1). Consider when

n = 2, and x = [p1 p2 p3]T, and

P =

[
p1 p2

p2 p3

]
= p1E1 + p2E2 + p3E3,

where

E1 =

[
1 0

0 0

]
, E2 =

[
0 1

1 0

]
, E3 =

[
0 0

0 1

]
.

The matrices Ei are linear independent and symmetric, and form a basis for P. The

LMI (2.2) can be rewritten as

p1(E1A + ATE1) + p2(E2A + ATE3) + p3(E2A + ATE3) + Q ≤ 0. (2.3)
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By letting F0 = Q and Fi = EiA + ATEi, yields

F0 +
3∑
i=1

piFi ≤ 0,

which is in the form of (2.1).

Proposition 2.10. An LMI F : Rm → Rn×n, is convex.

Proof. Consider x, y ∈ Rm and α ∈ [0, 1]. Using Definition 2.6 yields

F(αx + (1− α)y) = F0 +
m∑
i=1

(αxi + (1− α)yi)Fi = αF(x) + (1− α)F(y).

LMIs are useful because they are convex, as shown in Proposition 2.10. Thus,

when LMIs are the constraints of an optimization or feasibility problem, then Propo-

sition 2.8 can be used.

Often an objective of an optimization problem is quadratic. The Schur comple-

ment is a useful tool for transforming an LMI that is quadratic in a variable S ∈ Rn×m

to an LMI that is linear in S.

Lemma 2.11 (Schur complement [31]). Consider the matrices Q = QT ∈ Rn×n,

R = RT ∈ Rm×m, and S ∈ Rm×n. The following LMI is satisfied[
Q ST

S R

]
> 0,

if and only if

Q > 0, Q− STR−1S > 0,

or

R > 0, R− SQ−1ST > 0.

Since LMIs are almost always symmetric, a shorthand is used for symmetric ma-

trices. A “?” indicates symmetry for off-diagonal terms in a matrix. For example,

A = AT =

[
B C

CT D

]
=

[
B C
? D

]
.
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Chapter 3

Introduction to Guidance of

Aerospace Systems

3.1 Introduction

Spacecraft mission requirements often necessitate reorientation of the spacecraft

bus subject to various constraints. Attitude pointing exclusion zones are defined

for attitude sensors and sensitive instruments, such as star trackers and telescopes.

Attitude pointing inclusion zones are defined for mission hardware, such as a commu-

nications antenna pointing towards a ground station, or solar panels pointing towards

the sun. Similar constraints are common for many spacecraft. A noteworthy example

is the James Webb Space Telescope (JWST), which has an 85◦ attitude exclusion

zone towards the Sun, and a 45◦ inclusion zone allowable for observation [32]. Obser-

vations of an area of the Galaxy require a control algorithm to maintain or reorient

the spacecraft to different attitudes while simultaneously satisfying these constraints.

In the case of the JWST, the relationship between the attitude and the objective

is known, which Chapter 4 examines. Conversely, consider a spacecraft with attitude

constraints attempting to track a signal originating from an unknown location. The

objective is to maximize the received signal, but the attitude that maximizes this

objective is unknown. This is an extremum-seeking guidance problem that maxi-

mizes a function SO(3) → R, and is challenging due to attitude constraints and the

nonconvex nature of SO(3). Thus, as a first step, extremum-seeking guidance for a

function R3 → R is discussed in Chapter 5, and then extremum-seeking guidance for

SO(3)→ R is discussed in Chapter 6.

Attitude must be described by a parameterization for both guidance and control.

As addressed in Section 1.1.1, the DCM is an attitude parameterization that is both
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global and unique. Other parameterizations, such as quaternions and Euler angles,

are frequently used, but they each suffer from certain deficiencies. The yaw-pitch-roll

Euler angle sequence is used in Chapter 5. Once notation is reviewed in Section 3.2,

Section 3.3 reviews axis/angle, Euler angles, quaternions, the DCM, and their rela-

tionship with angular velocity are discussed in detail. The purpose of Section 3.3 is

to further motivate the use of DCMs for attitude guidance found in Chapter 4 and

Chapter 6.

3.2 Notation

A frame of reference Fa is defined by a set of three orthonormal dextral basis

vectors, a−→
1, a−→

2, and a−→
3. [14]. The matrix of vectors, known as the vectrix, is

defined as

F−→a =

 a−→
1

a−→
2

a−→
3

 .
The physical vector r−→ resolved in Fa and Fb is denoted by

r−→ = F−→
T
a ra = F−→

T
b rb. (3.1)

The symmetric projection operator Ps : Rn×n → SRn projects the matrix U ∈
Rn×n to the set of symmetric matrices,

SRn = {U ∈ Rn×n | U = UT},

where Ps(U) = 1
2
(U + UT). The antisymmetric projection operator Pa : Rn×n →

so(n) projects a matrix U ∈ Rn×n to the set of antisymmetric matrices,

so(n) = {U ∈ Rn×n | U = −UT},

where Pa(U) = 1
2
(U− UT). The operator (·)× maps R3 → so(3). For example, for a

column matrix v = [v1 v2 v3]T, v× is given by

v× =

 0 −v3 v2

v3 0 −v1

−v2 v1 0

 .
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The operator (·)∨ maps so(3)→ R3, such that (v×)∨ = v. For example,

 0 −v3 v2

v3 0 −v1

−v2 v1 0


∨

=

 v1

v2

v3

 = v.

Column matrices with unit norms are elements of spheres, defined as Sn−1 = {x ∈
Rn | xTx = 1}.

3.3 Attitude Parameterizations

A contribution of this dissertation is extreum-seeking guidance using the DCM as

opposed to another attitude parameterization. Several parameterizations of attitude

exist, but the DCM is a global representation, is unique, and possesses no kinematic

singularities [33]. In this section, properties of the DCM, axis/angle, Euler angles,

and quaternions are reviewed to demonstrate the advantages and disadvantages of

each. In general, a parameterization of the attitude of Fb relative to Fa is denoted

qba.

3.3.1 The Direction Cosine Matrix

Applying the left dot product of F−→b to (3.1) and rearranging yields

rb = F−→b · F−→
T
a ra,

where

Cba = F−→b · F−→
T
a .

The matrix Cba ∈ SO(3) is a direction cosine matrix (DCM) relating the orientation

of Fb relative to Fa, where

SO(3) = {C ∈ R3×3 | CTC = 1, det C = +1}.

The DCM is the most fundamental attitude parameterization, as it is both global

and unique.

The angular velocity of Fa relative to Fb resolved in Fc is given by ωbac . Angular

velocity is related to the DCM via Poisson’s equation, given by

Ċba = −ωba×b Cba. (3.2)
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3.3.2 Axis/Angle and the Rotation Vector

Theorem 3.1 (Euler’s Theorem [14]). The most general motion of a rigid body with

one point fixed is a rotation about an axis through that point.

Consider two frames, Fa and Fb. Theorem 3.1 implies that the attitude of Fb
relative to Fa can be globally parameterized by an axis and an angle, such as the

unit length physical vector a−→
ba and φba, which is indeed the case. The axis a−→

ba is

the same resolved in either Fa or Fb, which implies abab = abaa = aba, where aba ∈ S2.

The column matrix aba is in fact an eigenvector of Cba, where

Cbaaba = aba.

The DCM Cba is given by

Cba(qba) = cos(φba)1 + (1− cos(φba))abaaba
T − sin(φba)aba

×
.

The axis/angle qba = [aba φba]T is not unique for a given DCM for any aba ∈ S2, since

Cba([aba
T

π]T) = Cba([aba
T − π]T).

The rotation vector, denoted by φ−→
ba, is defined as a function of the axis/angle

parameterization, where

φ−→
ba = φba a−→

ba, and φba = φbaaba.

The DCM is related to φ−→
ba via the matrix exponential. Specifically, Cba = e−φ

ba×

where e−φ
ba×

is the matrix exponential given by

e−φ
ba×

= cos(φba)1 + (1− cos(φba))

(
φba

φba

)(
φba

φba

)T

− sin(φba)

(
φba

φba

)×
, (3.3)

where φba = (φba
T
φba)

1
2 [34, pp. 42–45]. The matrix exponential maps so(3)→ SO(3),

and is used extensively in Chapter 6.

Computation of φba is given by φba = −(ln(Cba))
∨. For a small rotation, that is

when φba � 1, Cba can be approximated as

Cba ≈ 1− φba× , (3.4)
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which can be derived by using small angle approximations in (3.3).

Angular velocity and the axis/angle parameterization are related by

ωbab = Sbab (qba)q̇ba, Sbab (qba) =
[

sin(φba)1− (1− cos(φba))aba× aba
]
, (3.5)

q̇ba = Γba
b (qba)ωbab , Γba

b (qba) =

[
1
2
(aba× − cot(φ

ba

2
)aba×aba×)

abaT

]
. (3.6)

A noticeable deficiency in (3.5) and (3.6) is that when φ = 2πk, k ∈ Z, the axis aba

is undefined, and thus Sbab (qba) is undefined. In addition, the limit of cot(φ
ba

2
) as φ

approaches 2πk is infinite, and thus the magnitude of ȧba also approaches infinity.

This is known as a kinematic singularity. Kinematic singularities pose problems

during simulation, since the attitude parameterization rates tend to infinity when φ

approaches 2πk, such as during set point regulation driving Cba to 1.

3.3.3 Euler Angles

A DCM can be parametrized using three principal rotations. A principal rotation

about the ith basis vector of Fb or Fa by an angle α is denoted by Cba = Ci(α). For

example, the rotation sequence given by a 3−2−1 sequence from Fa to Fb, described

by

Fa ψ−→
3

θ−→
2

φ−→
1
Fb, (3.7)

is related to the DCM Cba by

Cba = C1(φ)C2(θ)C3(ψ),

where qba = [φ θ ψ]T are the Euler angles. The specific Euler angle sequence in (3.7)

is known as a yaw, pitch, and roll. Other Euler angle combinations are also used in

various applications, including 3− 1− 3, 1− 2− 3, etc.

Although Euler angles are used extensively for aircraft dynamics, and are used

in Chapter 5, all Euler angles suffer from a condition where there can be a loss

of degrees of freedom, and the sequence coalesces into one degree of freedom. For

example, consider the 3− 1− 3 Euler angle sequence given by

Cba(qba) = C3(α)C1(β)C3(γ). (3.8)
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When β = 0, (3.8) becomes

Cba(qba) = C3(α + γ),

and until β 6= 0, rotation about only the a−→
3 and b−→

3 axis is possible.

Euler angles are a global attitude representation, however, they are not unique.

For any angle in a sequence, such as in (3.8), Cba is the same for any α±2πk, β±2πk,

and γ ± 2πk, k ∈ Z.

The relationship between Euler angles and angular velocity depends on the specific

Euler angle sequence in used. A 3− 2− 1 Euler angle sequence has the relation

ωbab = Sbab (qba)q̇ba, Sbab (qba) =
[

11 C1(φ)12 C1(φ)C2(θ)13

]
, (3.9)

q̇ba = Γba
b (qba)ωbab , Γba

b (qba) = Sba−1

b (qba). (3.10)

The matrices Sbab (qba) and Γba
b (qba) posses a kinematic singularity, which is given when

det(Sbab (qba)) = cos(θ) = 0,

that is when θ = π
2

+ πk, k ∈ Z.

3.3.4 Quaternions

Quaternions, also known as Euler parameters, are a widely used parameterization

for attitude control. They are related to the axis/angle parameterization via

qba =

[
ε

η

]
=

[
a sin

(
φ
2

)
cos
(
φ
2

) ] ,
where a is the axis of rotation, φ is the angle, and qba ∈ S3 is the quaternion. Some

superscripts ba have been dropped for brevity. Quaternions are advantageous because

the DCM is related to the quaternion algebraically, that is without any trigonometric

functions. This relationship is given by

Cba(qba) = (1− 2εTε)1 + 2εεT − 2ηε×.

Quaternions are a universal cover for SO(3), that is they are a global attitude

representation. However, quaternions are not unique since Cba(qba) = Cba(−qba).
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Table 3.1: Summary of attitude parameterizations, including number of parameters
and number of constraints.

Parameterization Global Unique Kin. Singularity no. param. no. constr.

DCM yes yes no 9 6

Axis/Angle yes no yes 4 1

Quaternions yes no no 4 1

Euler Angles yes no yes 3 0

The relationship between quaternions and angular velocity is given by

ωbab = Sbab (qba)q̇ba, Sbab (qba) =
[

2(η1− ε×) −2ε
]
, (3.11)

q̇ba = Γba
b (qba)ωbab , Γba

b (qba) =
1

2

[
η1 + 2ε×

−εT

]
. (3.12)

Quaternions do not suffer from a kinematic singularity, but since they double cover

SO(3), other control problems may arise such as unwinding.

3.3.5 Summary of Parameterizations

The advantages and disadvantages of each attitude parameterization are found in

Table 3.1. Each parameterization except for the DCM has a clear disadvantage in

terms of not being global, not being unique, or possessing a kinematic singularity.

However, the DCM has more parameters and constraints than other parameteriza-

tions, and thus the quaternion has been the main focus of attitude control for the

past four decades. In the recent literature there has been a push to evolve control

algorithms from using an attitude parameterization, such as the quaternion, to us-

ing the DCM directly. For example, adaptive attitude control on SO(3) is developed

in [35], coordinated attitude control is studied in [36], passivity-based attitude control

without and with actuator saturation is investigated in [37, 38], and global exponen-

tial attitude control is considered in [39]. Estimation using complementary filters on

SO(3) is studied in [40], and [41, 42, 43] develop various SO(3)-constrained attitude

estimation methods. Other contributions to optimal control on SO(3) include op-

timization without attitude constraints [44], the projection operator approach [45],

and work with reference governors and model predictive control [46]. Unlike [46],

dynamics are not linearized in this dissertation, and kinematics are not linearized at

a point where the associated DCM is the identity. Finally, in [2], extremum-seeking
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on SO(3) with attitude inclusion and exclusion zones is developed using a Kalman

filter.

19



Chapter 4

Guidance and Control on SO(3)

4.1 Introduction

Guidance is a critical component for spacecraft attitude control. Despite the fact

a quaternion parameterization of attitude is nonunique, several different methods

of path planning and optimal attitude control using quaternions exist. In the path

planning approach, the optimization method considers the entire attitude trajectory

during the optimization. Discretized quaternion attitude path planning examples

include [47, 48], and [49], where the latter two papers build on the A∗ method [50].

The sequential optimization method, presented in [51, 52], determines an optimal

attitude by approximating the optimal control problem as a semidefinite program

(SDP) at each time step. Note that by considering each time step individually, it

is implied the entire attitude trajectory is not considered during the optimization.

SDPs are particularly attractive since they are solved numerically efficiently using

interior-point methods, and provided the problem is feasible, solutions are globally

optimal [31, p. 1]. Due to the advantages of SDPs, the approach of this chapter is to

reformulate the optimal control problem as an SDP. Solving nonconvex or nonlinear

optimization problems by sequential linearization and SDPs is formalized in [53].

In the aforementioned optimal attitude control papers, the DCM is not used di-

rectly for control purposes. As discussed in Section 3.3, DCMs are global and unique,

and there has been a recent push to extend and develop control and estimation al-

gorithms for SO(3). Therefore, as other papers develop SO(3)-based controllers and

filters, the focus of this chapter is a constrained SO(3)-based optimal attitude con-

troller that employs sequential linearization.

This chapter’s main contribution is developing an optimal attitude control tech-

nique that evolves on constrained subsets of SO(3). In particular, this chapter ex-
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pands on [51] by considering attitude inclusion and exclusion zones, formulates the

control problem as an SDP, and uses the DCM directly. This chapter also considers a

spacecraft with reaction wheels as opposed to a rigid body with body torques applied

to it for control purposes. The control method is then demonstrated in closed-loop

on a spacecraft equipped with three reaction wheels. The controller solves for control

torques subject to control magnitude and angular velocity constraints. The chapter

begins with preliminaries in Section 4.2, the description of the control technique in

Section 4.3, the numerical example in Section 4.4, and ends with closing remarks in

Section 4.5.

4.2 Spacecraft Dynamics

Consider an inertial frame Fa, and a spacecraft with body frame Fb. The desired

spacecraft attitude is denoted by frame Fd. The DCM Cba parameterizes the attitude

of Fb relative to Fa, and is assumed to be known deterministically. In practice, Cba

can be estimated using a suite of sensors such as a magnetometer, a sun sensor, a

horizon sensor, and others [54]. The spacecraft moment of inertia relative to its centre

of mass, c, resolved in Fb is JBcb ∈ R3×3, where B denotes the spacecraft body. The

spacecraft is equipped with three orthonormal reaction wheels, each with a spin-axis

moment of inertia of Is, and rotation speed γ̇ ∈ R3. The control inputs are torques

that drive the wheels, and are given by u ∈ R3. The spacecraft’s equations of motion

are [35, 55, Appendix B.1]

JBcb ω̇
ba
b + ω̇ba

×

b (JBcb ω̇
ba
b + Isγ̇) + Isγ̈ = 0, (4.1)

Isγ̈ = −u, (4.2)

Ċba = −ωba×b Cba. (4.3)

Let Fbk be Fb at time tk. The discrete-time dynamics and kinematics between tk

and tk+1are

ω
bk+1a
bk+1

= ωbkabk
+ TJBc−1

bk

(
JBcbkω

bka
bk

+ Isγ̇k

)×
ωbkabk

+ TJBc−1

bk
uk, (4.4)

where

Isγ̈k = −uk, (4.5)

γ̇k+1 = γ̇k + T γ̈k. (4.6)

21



The discrete-time attitude kinematics between tk+1 and tk+2 are

Cbk+2a = exp(−Tωbk+1a
×

bk+1
)Cbk+1a. (4.7)

The kinematics (4.7) are determined for tk+2, since ω
bk+1a
bk+1

is a function of uk. The

DCM Cbk+1a is a function of ωbkabk
, which is a function of a past control input, uk−1,

and cannot be changed.

When k = 0, the initial conditions are ωb0ab0 and Cb0a. The DCM Cb1a is given by

Poisson’s equation, Cb1a = exp(−Tωb0a×b0
)Cb0a. The DCM Cb1a is only dependent on

the initial conditions, and not on the control input u0. The DCM Cb2a is determined

via (4.7) once u0 and ωb1ab1 are ascertained in the resulting optimal control problem.

4.3 Constrained Attitude Control on SO(3)

This section discusses the constrained attitude control problem on SO(3) for the

spacecraft from Section 4.2. The algorithm provides a desired attitude and angular

velocity, which is a guidance step. However, the algorithm also provides a control

input for the spacecraft. This chapter begins by setting up the optimal control prob-

lem and then discussing how it can be solved. The final algorithm is summarized by

Algorithm 4.1.

4.3.1 Optimal Attitude Control Problem

The proposed control law determines a control input uk that minimizes the ob-

jective function

J(uk,Cdk+2a) = −tr(Cdk+2aB
T
k+2), (4.8)

where Bk+2 ∈ R3×3, and Cdk+2a ∈ SO(3) is the desired attitude of the spacecraft at

time tk+2. The control uk and Cdk+2a are related via a modification of (4.4) and (4.7).

While solving the optimization problem, the control effort uk yields the desired an-

gular velocity, ω
dk+1a
dk+1

, given by

ω
dk+1a
dk+1

= ωbkabk
+ TJBc−1

bk

(
JBcbkω

bka
bk

+ Isγ̇k

)×
ωbkabk

+ TJB
−1
c

bk
uk. (4.9)

The desired attitude is given by

Cdk+2a = exp(−Tωdk+1a
×

dk+1
)Cbk+1a. (4.10)
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Equation (4.8) is a general objective function that can be used for many purposes,

including the minimization of the angle between two vectors, where one is resolved

in the desired frame, xdk+2
, and the other is resolved in the inertial frame, ya. One

example of the former is the direction of the solar cells of a spacecraft and an example

of the latter is the position vector of the spacecraft relative to the sun. For example,

let J(uk,Cdk+2a) be the objective function

J(uk,Cdk+2a) = −xT
dk+2

Cdk+2aya, (4.11)

which can be rewritten as

J(uk,Cdk+2a) = −tr(xT
dk+2

Cdk+2aya)

= −tr(Cdk+2ayax
T
dk+2

)

= −tr(Cdk+2aB
T
k+2),

where BT
k+2 = yaxT

dk+2
. In another example, it may be desirable to track N stars using

a sensor whose lens is in direction xdk+2
, and the stars are in directions yia. The matrix

Bk+2 is thus given by

BT
k+2 =

N∑
i=1

wiyiax
T
dk+2

,

where each wi are weighting scalars that allow the emphasis to be placed in the

observation of specific stars.

In this chapter, the matrix Bk+2 is chosen to be Bk+2 = Ctk+2a, where Ctk+2a

parameterizes the attitude of a target frame Ftk+2
relative to the frame Fa. The

DCM Ctk+2a is a function of time, where

Ctk+2a = exp(−Tωtk+1a
×

tk+1
)Ctk+1a.

The objective function (4.8) is augmented with angular velocity error

J1(uk,Cdk+2a,ω
dk+1a
dk+1

) = −wptr(Cdk+2aC
T
tk+2a

) + wdω
dk+1t

T

dk+1
ω
dk+1t
dk+1

, (4.12)

where ω
dk+1t
dk+1

= ω
dk+1a
dk+1

− Cdk+1aCT
tk+1a

ω
tk+1a
tk+1

, and where wp > 0 and wd > 0 are

weighting scalars. This objective is inspired by PD control and is the weighted sum

of the attitude error and the angular velocity error. The resulting controller takes the

form shown by the block diagram in Fig. 4.1.
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Controller Plant
Cta u Cba,ω

ba
b

Figure 4.1: Attitude controller block diagram.

4.3.2 Constraints

The control algorithm must account for various constraints. The magnitude of

the angular velocity is constrained by√
ω
dk+1aT

dk+1
ω
dk+1a
dk+1

≤ ωmax, (4.13)

and the control effort constraint is given by

− uk,max ≤ uk,i ≤ uk,max, i = 1, . . . , nw. (4.14)

The attitude constraints are given by

ξi
T

dk+2
Cdk+2aζ

i
a ≥ cos(αi), i = 1, . . . , nc, (4.15)

where the maximum angle between the vectors ξ−→
i and ζ−→ is αi. The constraint (4.15)

is a cone that can represent a pointing inclusion or exclusion zone [51, 2].

4.3.3 Solving the Optimal Control Problem

Problem 4.1. The optimal control problem to determine inputs u is given by mini-

mizing (4.12) subject to (4.5), (4.6), (4.9), (4.10), (4.13)-(4.15). �

Problem 4.1 is not an SDP due to i) a quadratic term in the objective func-

tion (4.12), ii) the exponential in (4.10), and iii) the norm constraint in (4.13). In

addition, iv) the angular velocity and v) attitude constraints, (4.13) and (4.15) re-

spectively, may be infeasible due to initial conditions or uncertainties in the system.

As such, these constraints must be softened. These five modifications to Problem 4.1

must be addressed, as discussed next. The SDP version of Problem 4.1 is given by

Problem 4.2 at the end of this section.

i) Quadratic term in (4.12): The optimization problem given by minimizing J =

wdω
dk+1t

T

dk+1
ω
dk+1t
dk+1

is equivalent to minimize J ′ = wdzω, where zω must satisfy the LMI
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given by [31] [
zω ω

dk+1t
T

dk+1

ω
dk+1t
dk+1

1

]
≥ 0. (4.16)

The objective J ′ is linear with an LMI constraint (4.16).

ii) Exponential in (4.10): The technique used to solve the optimal attitude control

problem is sequential linearization, and as such, (4.10) is linearized using (3.4), which

yields

Cdk+2a = (1− Tωdk+1a
×

dk+1
)Cbk+1a. (4.17)

Placing a norm constraint on ω
dk+1a
dk+1

with a small enough time step T ensures the

linearization is valid. In fact, choosing an appropriate ωmax and then enforcing (4.13)

is equivalent to choosing a trust region [53].

iii) Norm constraint in (4.13): The norm constraint in (4.13) is simplified by using

the Schur complement [31]. The angular velocity must satisfy the LMI given by[
ω2

max ω
dk+1a

T

dk+1

ω
dk+1a
dk+1

1

]
≥ 0. (4.18)

iv) Angular velocity (4.13): Given that uk is constrained by (4.14), there may not

be a feasible control to satisfy (4.18). As such, the slack variable bω ≥ 0 with weight

sω is added to the objective function, and (4.18) is modified such that[
ω2

max ω
dk+1a

T

dk+1

ω
dk+1a
dk+1

1

]
≥ −bω. (4.19)

The slack variable softens the constraint to allow for control that cannot keep or

bring the angular velocity below its maximum. Once the slack variable is minimized

to zero, the constraint (4.19) is equivalent to (4.18). The slack variable prioritizes

control constraints, and allows (4.18) to be enforced gradually.

v) Attitude constraints (4.15): Due to disturbances or initial conditions, the space-

craft can violate attitude constraints and it may not be feasible to satisfy these con-

straints at the next time step. As such, the constraints given by (4.15) are softened

by introduce the slack variable ba,i ≥ 0 and weight si, resulting in the constraint

ξi
T

dk+2
Cdk+2aζ

i
a ≥ cos(αi)− ba,i, i = 1, . . . , nc. (4.20)

It is now possible to present Problem 4.2, the SDP version of Problem 4.1. Prob-

lem 4.1 is approximately equivalent to Problem 4.2 due to the approximation in (4.17).
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Algorithm 4.1 Guidance and Control formulated on SO(3)

1: for k = kinitial to kfinal do
2: Estimate ωbkabk

, γ̇k, and Cbka.

3: Determine Cbk+1a using ωbkabk
and Cbka via Poisson’s equation.

4: Solve Problem 4.2 to determine uk, Cdk+2a, and ω
dk+1a
dk+1

.
5: Use uk to control the spacecraft for time tk to tk+1.
6: end for

However, due to the angular velocity constraint and small time step, Problem 4.1 and

Problem 4.2 are identical from a practical point of view.

Problem 4.2. Consider the objective function

J2(uk,Cdk+2a,ω
dk+1a
dk+1

, zω,b) = −wptr(Cdk+2aC
T
tk+2a

)

+wdzω + sTb,
(4.21)

where b = [bω ba,1 · · · ba,nc ]
T ≥ 0 and s = [sω s1 · · · snc ]

T. The objective is to

minimize (4.21), subject to the constraints given by (4.5), (4.6), (4.9), (4.14), (4.17),

(4.19), and (4.20). �

As previously discussed, the role of the slack variables, which manifest themselves

in the objective function in the term sTb, is to allow the problem to be feasible in case

of uncertainty, and to prioritize the control constraints. The control algorithm has

direct control over control torques, but not direct control over attitude and angular

velocity due to uncertainty and dynamics. Therefore, while control torque constraints

can always be satisfied, uncertainty in the physical system or initial conditions can

result in attitude and angular velocity constraints to be violated. In effect, the term

sTb allows for constraints to be violated. However, sTb first dominates the objective

function, and drives b to a small value. Once b is arbitrarily small, constraints are

satisfied, and the other terms in the objective function of (4.21) are minimized.

4.4 Numerical Example

In this section, a spacecraft endowed with three reaction wheels is controlled

using the optimal control algorithm developed in Section 4.3. The moment of inertia

of the spacecraft bus is JBcb = diag (4, 4, 1) kg · m2, each reaction wheel spin axis

has moment of inertia Is = 0.04 kg · m2. The control law runs at 1 Hz, and thus

T = 1 s. The dynamics of the spacecraft are simulated with a fourth-order Runge-

Kutta numerical integration method. An extra step is taken to ensure that Cbka
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does not drift numerically from SO(3). The scalar and matrix weights are given

by wp = 0.6, wd = 1, wd = 103
[

1 · · · 1
]T
. The target attitude is given by

Ctka = C3

(
2πTtk

10

)
, until k = 200, and then the target attitude is held constant and

equal to Ctka = 1. This trajectory leads the spacecraft to spin around, and then stop

and match its attitude with Fa.
The attitude constraints are given by

x1
b =

 1

0

0

 , y1
a = −

 0.8944

0

−0.4472

 , α1 = 180◦ − 20◦, (4.22)

x2
b =

 0

0.0995

0.9950

 , y2
a = −

 0.5774

0.5774

0.5774

 , α3 = 180◦ − 30◦, (4.23)

x3
b =

 0

0

1

 , y3
a =

 0

1

0

 , α2 = 40◦, (4.24)

where (6.65) and (6.66) are the exclusion zones, and (4.24) is the inclusion zone.

The SDP given by Problem 4.2 is solved using MOSEK [56] through the YALMIP

interface [57].

The simulation results of the closed-loop system of the controller and spacecraft

simulated with attitude constraints are shown in Fig. 4.2 and Fig. 4.3. As shown

in Fig. 4.2a, the initial reaction of the system is to satisfy the attitude constraints.

In this case, the slack variables dominate the objective function given in (4.21) so

that the error associated with being outside or inside an inclusion or exclusion zone

is minimized quickly. The constraints are satisfied when the lines of the constraints

are greater than zero.

Fig. 4.3a shows the angular velocity and angular velocity constraints. The initial

angular velocity is at a maximum when the controller drives the system to an attitude

that satisfies the constraints. The angular velocity is then nonzero as the system

tracks Cta. Variations in the angular velocity occur as the spacecraft encounters

different constraints on its trajectory. When Cta = 1 after 200 s, the angular velocity

of the system tends to zero.

Fig. 4.3b shows the reaction wheel torques on the spacecraft. The torques give an
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angular acceleration to create the angular velocity required to satisfy the constraints,

and then to drive the angular velocity back to zero. The torque limits are set to

0.05 N·m.

Fig. 4.2b shows a the spacecraft at the end of the simulation. The tips of the

vectors x−→
i that define the attitude constraints draw a locus of points to visualize the

trajectory of the spacecraft. The red lines are the exclusion zones and these lines

avoid the red cones, which are the exclusion zones. The green line is associated with

the inclusion zone. Its initial path is perpendicular to the green cone, as it takes the

shortest route possible to satisfy the inclusion zone constraint.

4.5 Closing Remarks

The main contribution of this chapter is to solve an optimal attitude control

problem for a spacecraft subject to attitude constraints, while treating the attitude

constraints in SO(3). At each time step, a semidefinite program is solved to determine

the reaction wheel control torques. Similar to other solutions that use sequential

linearization [51, 53], this controller does not consider the entire attitude trajectory

during the optimization. Given the three attitude constraints, the angular velocity,

and control constraints in the numerical example considered, the controller is able to

provide effective attitude tracking.
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(a) Objective function and exclusion zone (E.Z.) and inclusion
zones (I.Z.) for optimal control problem. Constraints are satis-
fied when lines are above black dotted line (zero).

(b) Three-dimensional plot of spacecraft attitude. Exclusion
zones are the red cones the inclusion zone is the green cone.

Figure 4.2: Spacecraft objective and trajectory for attitude tracking.
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(a) Spacecraft angular velocity and angular velocity constraint.
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(b) Reaction wheel speeds and torques.

Figure 4.3: Spacecraft states and control for attitude tracking.
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Chapter 5

Extremum-Seeking Guidance on R3

5.1 Introduction

Extremum-seeking uses a pre-determined optimization method to determine the

extremum of the objective function. Newton’s method requires knowledge of the Hes-

sian and gradient of the objective function. In one formulation of extremum-seeking

guidance, a Kalman filter estimates the gradient and Hessian of the objective function,

which are then used to determine the objective function’s extremum [13]. However,

in [13], the extremum-seeking is unconstrained, which may not be suitable in some

situations. Current constrained extremum-seeking guidance techniques use adaptive

methods to estimate the gradient and the Hessian of the objective function. Systems

with constrained inputs, such as controller saturation are studied in [58]. Constrained

extremum-seeking guidance that assumes the objective function and constraints are

available for measurement are studied in [59], and state-constrained nonlinear systems

using a barrier function and an adaptive method are studied in [60]. Constrained

extremum-seeking in one dimension with projection is discussed in [61]. One appli-

cation example includes adaptive dynamic inversion extremum-seeking guidance for

constrained robotics systems [62].

The main contribution of this chapter is a linearly constrained extremum-seeking

guidance algorithm enabled by a constrained Kalman filter, such as the Kalman filters

described by [63, 64, 65]. In this chapter, the gain-projected Kalman filter is chosen

as it is easily adapted to a projected gradient optimization method. The algorithm

is demonstrated on a linear time-invariant (LTI) example, and then applied to the

formation flight of two aircraft. In formation flight, the trailing aircraft reduces fuel

burn by flying in the upwash of a leading aircraft wake. Figure 5.1 shows two aircraft

in formation flight and the wingtip vortex of the leading aircraft. The problem of
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Figure 5.1: Formation flight of two aircraft [4]. The leading aircraft’s wingtip vortex
is observable due to the smoke. The trailing aircraft is flying in the wake of the
leading aircraft.

formation flight using an extremum-seeking guidance law has been previously stud-

ied [66, 13], and is thus a suitable benchmark problem to demonstrate the constrained

extremum-seeking guidance method proposed in this chapter. The model of the air-

craft is given by [67]. Only the trailing aircraft is simulated, and the aerodynamic

effects of the leading aircraft is incorporated into the model using data from [68, 69].

The above contributions are shown by transitioning from the known unconstrained

Kalman filter extremum-seeking method in Section 5.2, to the new constrained Kalman

filter extremum-seeking formulation in Section 5.3 by considering a constrained op-

timization method. The extremum-seeking algorithm with the constrained Kalman

filter is demonstrated on an LTI system in Section 5.4, and the formation flight ex-

ample is in Section 5.5. We then consider real-world implementation challenges and

closing remarks in Section 6.7.
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5.2 Unconstrained Extremum-Seeking Guidance

The extremum-seeking guidance law is designed to determine the output of a

system that minimizes or maximizes the objective function J(z). Consider the system

given by

ẋ = f(x) + g(x)u, (5.1)

z = h(x), (5.2)

y = c(x). (5.3)

The measurements y are used by a feedback controller to drive the performance

variable z to an extremum of J(z), denoted as z?.
In some applications, it is not possible to evaluate the objective function directly.

In fact, in many situations, the specific form of the objective function, as well as the

value of z?, is completely unknown. For example, in the context of two aircraft in

formation flight, it is generally unknown what position the trailing aircraft must be

relative to the leading aircraft to minimize fuel consumption. In other words, the

exact relationship between the position z and the fuel burn or drag J(z) is unknown.

To determine z?, the desired output at time tk, zd
k = zd(tk), is computed using

zd
k = zk + κkdk, (5.4)

where κk > 0 is the step size and where dk is the descent direction. In the gradient

descent method, dk = −bk, where bk is the gradient. Newton’s method uses a

descent direction of −M−1
k bk, where Mk is the Hessian. The inner-loop controller

then minimizes the difference between zk and zd
k. Thus as k → ∞, the output zk

approaches z?k.
This chapter focuses on variations of gradient-based optimization methods. Since

the specific form of the objective function is unknown, the gradient must be estimated.

One method to estimate the gradient is to use a linear time-varying (LTV) Kalman

filter, such as the one proposed in [13]. The Taylor expansion of J(z) about zk = z(tk)

is

J(z) ≈ J(zk) + bT
k (z− zk), (5.5)

where bk is the gradient at zk, and higher-order terms have been neglected. In ex-

tremum seeking, bk is unknown, and the measurement of the performance function

J(zk−1) and J(zz) is known. Thus, instead of using the Taylor series to approximate
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Jpzq
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Jpzkq

Performance function

Exact first order
Taylor series

Jpzq

zzk zk´1

Jpzkq

Jpzk´1q

Performance function

Exact first order

Approximated Taylor
series from sampling

Taylor series

Jzk´1q

Exact value of Jpzk´1q

Approx. value of Jpzk´1q

Approximating Jpzk´1q using Taylor series Approximating gradient using Taylor series

(known gradient, unkown Jpzk´1q) (unknown gradient, known Jpzk´1q)

Figure 5.2: Sampling the performance function J(z), where J : R→ R. On the left,
the Taylor series at zk can be used to approximate J(zk−1). On the right, multiple
measurements of z and J can be used to approximate the Taylor series at zk.

J in the neighbourhood of zk, the Taylor series is used to approximate bk in the the

neighbourhood of zk, using measurements of J at zk−`, for ` = 0, . . . , N . The linear

case is detailed in [13], but for clarity, an example for a function J : R→ R is shown

in Fig. 5.2. The exact first order Taylor series cannot be obtained due to the sam-

pling, but if measurements are made close enough together, the difference between

the approximated Taylor series and the actual Taylor series is negligible.

Evaluating (5.5) at zk−` = z(tk−`), ` = 1, . . . , N , and then rearranging yields,
∆Jk

...

∆Jk−N+1

 =


bT
k∆zk

...

bT
k∆zk−N+1

 , (5.6)

where ∆Jk−`+1 = J(zk)−J(zk−`) and ∆zk−`+1 = zk−zk−` for ` = 1, . . . , N . Equation

(5.6) can be rewritten as

yk = Hkbk + vk, (5.7)

where vk ∼ N (0,Rk) is measurement noise, and where

yk =
[

∆Jk · · · ∆Jk−N+1

]T
, (5.8)

Hk =
[

∆zk · · · ∆zk−N+1

]T
. (5.9)
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Algorithm 5.2 Unconstrained Extremum-Seeking Guidance R3 → R
1: for k = kinitial to kfinal do
2: Measure zk−` for ` = 0, . . . , N .
3: Measure J(zk−`) for ` = 0, . . . , N .
4: Construct yk and Hk using (5.8) and (5.9).

5: Predict gradient using b̂
−
k = b̂k−1.

6: Predict covariance using P−k = Pk−1 + Qk−1.
7: Determine gain Kk using (5.13).
8: Correct gradient to obtain b̂k using (5.11).
9: Correct covariance to obtain Pk using (5.12).

10: Determine zd
k using b̂k via (5.4), where κk > 0 and dk = −b̂k.

11: end for

The notation vk ∼ N (0,Rk), vk ∈ Rn, Rk ∈ Rn×n, indicates that vk is Gaussian

noise with a mean of 0, and covariance Rk. For the Kalman filter formulation, (5.7)

serves as the measurement model, and

bk = bk−1 + wk−1 (5.10)

serves as the process model, where wk−1 ∼ N (0,Qk−1) is process noise. The Kalman

filter estimates bk using a prediction step

b̂−k = b̂k−1,

ŷ−k = Hkb̂−k ,

P−k = Pk−1 + Qk−1,

and a correction step

b̂k = b̂−k + Kk(yk − ŷ−k ), (5.11)

Pk = (1−KkHk)P−k (1−KkHk)
T + KkRkKT

k , (5.12)

where b̂k is the estimated gradient, and Pk is the error covariance. The Kalman gain

Kk is given by

Kk = P−k HT
kV−1

k , (5.13)

where Vk is the measurement error covariance given by Vk = HkP−k HT
k + Rk. Uncon-

strained extremum-seeking guidance is summarized in Algorithm 5.2.
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5.3 Constrained Extremum-Seeking Guidance

Linearly constrained extremum-seeking guidance is accomplished using a con-

strained Kalman filter. The novelty of this chapter is the use of a constrained

Kalman filter for the constrained optimization problem. The gain-projected Kalman

filter from [65] is modified to constrain the gradient estimate in the same way the

projected gradient optimization method constrains the gradient for constrained op-

timization in [30]. Providing the Kalman filter with knowledge of the constraints on

the gradient can allow the filter to exploit this additional information and provide an

improved gradient estimate [65].

Constrained extremum-seeking determines z? that solves

min J(z), s.t. (5.14)

aT
j z ≥ ζj, j = 1, . . . , nc, (5.15)

where nc is the number of constraints. Traditional projected-gradient methods assume

that zk is feasible. However, we do not make this assumption and instead project zk
onto the feasible set to obtain zfeas

k by solving

min
1

2
(zfeas
k − zk)T(zfeas

k − zk), s.t. (5.16)

aT
j zfeas

k ≥ ζj, j = 1, . . . , nc. (5.17)

The problem defined by (5.16)-(5.17) is solved by constructing the matrices Av
k and

ζv
k , which are the violated constraints, where

Av
k =

[
av

1 · · · av
nv

]T
, ζv

k =
[
ζv

1 · · · ζv
nv

]T
, (5.18)

and nv is the number of violated constraints. The av
i ’s and the ζv

i ’s are the violated

aj’s and ζj’s. The feasibility problem can thus be written as

min
1

2
(zfeas
k − zk)T(zfeas

k − zk), s.t.

Av
kzfeas
k = ζv

k ,

with the solution

zfeas
k = zk − AvT

k (Av
kAvT

k )−1(Av
kzk − ζv

k). (5.19)

Similar to (5.4), zd
k is determined by using zfeas

k and is given by zd
k = zfeas

k + κkdk,
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where dk must still be determined. In the projected gradient method, dk is chosen

to minimize the Euclidian distance between dk and −b̂k while satisfying (5.15). In

the constrained Kalman filter formulation, dk = −b̃k, where b̃k is the constrained

gradient estimate. The constrained gradient is given by minimizing the Euclidian

distance between the estimated gradient b̂ and b̃k, while satisfying (5.15). This

problem is given by

min
1

2
(b̂k − b̃k)T(b̂k − b̃k), s.t.,

zd
k = zfeas

k − κkb̃k,
Aactive
k zd

k = ζactive
k ,

and b̃k is given by

b̃k = (1− AactiveT

k (Aactive
k AactiveT

k )−1Aactive
k )b̂k. (5.20)

The matrices Aactive
k and bactive

k represent the active constraints, and are formed in a

similar manner to that of the feasibility problem. This modification to the Kalman

filter does not bias the filter [70]. To finish constraining the Kalman filter, the pre-

diction step of the Kalman filter must also use b̃k−1, where

b̂−k = b̃k−1. (5.21)

If b̂−k = b̂k−1 were used instead of (5.21), the result would be an unconstrained

Kalman filter with constrained optimization. This discrepancy is the key difference

between the constrained and unconstrained Kalman filter formulations for constrained

extremum-seeking.

Using the projected gradient method, there is a maximum value for κk. For each

inactive constraint,

κmax
k,i = −(aT

i zfeas − bi)
1

aT
i dk

, (5.22)

where each i is an inactive constraint. If κmax
k,i < 0, it is ignored. The maximum

κk is then determined by using the minimum κmax
k,i . Constrained extremum-seeking

guidance with a gain-projected Kalman filter is summarized in Algorithm 5.3. In

Algorithm 5.3, persistent excitation is added to zd
k to ensure observability of bk, as

explained in Section 5.4.
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Algorithm 5.3 Constrained Extremum-Seeking Guidance R3 → R with Gain-
Projected Kalman Filter

1: for k = kinitial to kfinal do
2: Measure zk−` for ` = 0, . . . , N .
3: Measure J(zk−`) for ` = 0, . . . , N .
4: Construct yk and Hk using (5.8) and (5.9).

5: Predict gradient using b̂
−
k = b̃k−1.

6: Predict covariance using P−k = Pk−1 + Qk−1.
7: Determine gain Kk using (5.13).
8: Construct violated constraints Av

k and ζv
k using (5.18).

9: Determine zfeas
k using (5.19).

10: Determine set of active constraints Aactive
k .

11: Correct gradient to obtain b̂k using (5.11).
12: Constrain b̂k using (5.20) to obtain b̃k.
13: Correct covariance to obtain Pk using (5.12).
14: Note maximum step size κk from (5.22).
15: Determine zd

k using zd
k = zfeas

k − κkb̃k + wpe
k .

16: end for

5.4 Linear Example

Constrained extremum-seeking is illustrated on the LTI plant given by the state-

space model

ẋ = Ax + Bu, z = C1x, (5.23)

where

A =


−1 0 0 0 0

0 0 1 0 0

0 −2 −3 0 0

0 0 0 0 1

0 0 0 −2 −3

 , B =


1 0 0

0 1 0

0 0 0

0 0 1

0 0 0

 , (5.24)

C1 =

 1 0 0 0 0

0 1 0 0 0

0 0 0 1 0

 . (5.25)

The objective is to drive z to the extremum of

J(z) = (z1 − 0.3)2 + 4(z2 + 0.2)2 + 10(z3 − 0.1)2. (5.26)
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The desired output zd
k = zd

k(tk) is given by the output of the extremum-seeking

guidance algorithm from Section 5.3, which estimates the gradient of J(z). Ten

(N = 10) measurements are chosen and thus

Hk =
[

∆zk . . . ∆zk−9

]T
. (5.27)

Persistent excitation is added to the desired states

zd
k = zk − εb̂k + wpe

k , (5.28)

where wpe
k is zero-mean Gaussian noise with covariance 0.051. The persistent excita-

tion is to ensure that the estimates of the gradient converges to its desired values.

The system (5.23) is augmented with the integrator ė = z − zd. The augmented

system is

ẋa = Aaxa + Ba
1zd + Ba

2u,

z = Ca
1xa,

y = Ca
2xa,

where y is the measurement, and where

xa =

[
x
e

]
, Aa =

[
A 0
C1 0

]
, Ba

1 =

[
0
−1

]
.

Ba
2 =

[
B
0

]
, Ca

1 =
[

C1 0
]
, Ca

2 =

[
C1 0
0 1

]
.

The triple (Aa,Ba
2,Ca

2) is observable and controllable. The control is given by the

LQG controller

ẋc = Acxc + Bcy, u = Ccxc,

where

Ac = Aa − Ba
2Cc − BcCa

2, Bc = ΠCaT

2 R−1
2 ,

Cc = R−1
1 BaT

2 P.
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The matrices P and Π are given by the algebraic Riccati equations

AaTP + PAa − PBa
2R−1

1 BaT

2 P + Q1 = 0,

ΠAaT + AaΠ−ΠCaT

2 R−1
2 Ca

2Π + Q2 = 0.

The extremum of (5.26) is z? =
[

0.3 −0.2 0.1
]T
. The performance variables

zi reach the extremal values z?i , where i = 1, 2, 3. The problem is constrained such

that −0.2 ≤ zi ≤ 0.2 for i = 1, 2, 3. These constraints are chosen so that one element

of the minimizer lies within the constrained set, one element of the minimizer lies on

the constrained set, and one element of the minimizer lies outside the constrained

set. The results of the simulation are shown in Fig. 5.3. As expected, each output

zi converges to either to z?i or to the constraint. Notice how z1 does not hit the

unconstrained z?1 because it lies outside the constraint set, and as such, hits the

constraint boundary. The performance variable z2 is still able to reach z?2 because z?2

lies exactly on the constraint boundary. The performance variable z3 is also able to

reach z?3 because z?3 lies within the constraint. Notice also that z1 and z2 violate the

constraints just slightly owing to the presence of noise that persistently excites the

system.

5.5 Application to Formation Flight of Two Aircraft

The following notation is used in this section. For a column matrix e(t) ∈ Rn, let

the function Γ(e) : Rn → Rn be defined as

Γ(e) = Kpe + Kdė + Ki

t∫
0

e dt, (5.29)

where Kp = KT
p > 0, Kd = KT

d ≥ 0, and Ki = KT
i ≥ 0. The function Γ(·) is denoted

Γ when Γ : R→ R.

5.5.1 Aircraft Kinematics

Let Fa be the inertial frame, Fv is the wind frame, and Fb is the body frame of

the aircraft. The wind frame is defined such that v−→
1 is aligned with the velocity

vector. A 3− 2− 1 Euler angle sequence

Fa ψ−→
3

θ−→
2

φ−→
1
Fb (5.30)
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(a) Output of system versus time with bounds of ±0.2.
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Figure 5.3: 3D extremum-seeking guidance simulation with gradient descent. Objec-
tive function is a smooth function, noise has been added, and constraints are to keep
each state | · | ≤ 0.2.

describes the attitude of the aircraft’s body frame Fb relative to the inertial frame

Fa, where ψ is the yaw angle, θ is the pitch angle, and φ is the roll angle. In addition,
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the relations

Fa χ−→
3

γ−→
2

µ−→
1
Fv −β−→

3

α−→
2
Fb, (5.31)

describe the aircraft’s attitude with an intermediate relative wind frame Fv, where χ

is the heading, γ is the flight path angle, µ is the bank angle, β is the sideslip angle,

and α is the angle of attack. These kinematics assume zero wind. The negative sign

associated with the sideslip is included to satisfy the convention adopted by most of

the aircraft literature.

The relations defined by (5.30)-(5.31) allow us to define

qva =
[
µ γ χ

]T
, qbv =

[
α β

]T
,

qba =
[
φ θ ψ

]T
,

with associated parameterized DCMs and angular velocities given by

Cva = C1(µ)C2(γ)C3(χ), ωvav = Svav (qva)q̇va,

Cbv = C2(α)C3(−β), ωbvb = Sbvb (qbv)q̇bv,

Cba = C1(φ)C2(θ)C3(ψ), ωbab = Sbab (qba)q̇ba.

The mapping matrices between angle rates and angular velocities are [14]

Svav (qva) =
[

12 C2(γ)13

]
, (5.32)

Sbvb (qbv) =
[

13 −C2(α)12 C2(α)C3(−β)11

]
, (5.33)

Sbab (qba) =
[

11 C1(φ)12 C1(φ)C2(θ)13

]
. (5.34)

5.5.2 Flight Control Law

The position of the aircraft resolved in Fa is rcwa , where c is the centre of mass of

the aircraft, and where w is an unforced particle that can be though of as the origin of

the inertial frame. The leading aircraft’s centre of mass is at point `, and the position

of the trailing aircraft relative to the leading aircraft is given by rc`a . The velocity of

the aircraft with respect to Fa is given by vcw/aa , and the aircraft’s dynamics are given
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by

v̇cw/aa = fr(rcwa , v
cw/a
a ,qba,ωbab , r

c`
a )

+ Gr(rcwa , v
cw/a
a ,qba,ωbab )u, (5.35)

ω̇bab = fω(qba,ωbab , r
c`
a ) + Gω(qba,ωbab , r

c`
a )uδ, (5.36)

where u = [ut uδT ]T are the control inputs, ut is the thrust produced by the engines,

and uδ are the control surface deflections. Equation (5.35) can be used to derive an

airspeed equation

v̇cw/aa = f v(rcwa , v
cw/a
a ,qba,ωbab , r

c`
a ,u

δ)

+Gv(r, ṙ,qba,ωbab )ut,
(5.37)

where v
dw/a
a =

∥∥∥vcw/aa

∥∥∥, and ‖·‖ is the Euclidian norm.

The flight control laws are based on nonlinear dynamic inversion, inspired by [71].

This control law is designed to track a desired position rdwa , which is the output of

the extremum-seeking guidance law.

First, a control law is given by vdw/aa = Γ(rdwa − rcwa ). To track vdw/aa , the desired

flight path and heading angles are required. Similar to the relation between Fa and

Fb in (5.30), the desired frame Fd is given by

Fa χd−→
3

γd−→
2

µd−→
1
Fvd

−βd−→
3

αd−→
2
Fd, (5.38)

where the angles with the subscript “d” signifies “desired”. Using (5.38), and the

desired velocity, the desired flight path and heading angles are given by

γd = sin−1

(
−1T

3 vdw/aa

vdw/a

)
, χd = sin−1

(
1T

2 vdw/aa

1T
1 vdw/aa

)
.

The desired flight path and heading angle rates are

γ̇d = Γ(γd − γ), χ̇d = Γ(χd − χ).

The desired bank angle is approximated as µd = tan−1
(
χ̇dv

dw/a/g cos(θ)
)
, and the

desired sideslip angle is, βd = 0, which should result in coordinated flight. The desired

angle of attack is given by αd = Γ(γd − γ), and the desired angle of bank, sideslip,

43



angle of attack rates are given by

α̇d = Γ(αd − α), µ̇d = Γ(µd − µ), β̇d = Γ(βd − β).

Similar to the relation between Fa and Fb in (5.31), the desired frame Fd is given by

Fa χd−→
3

γd−→
2

µd−→
1
Fvd

−βd−→
3

αd−→
2
Fd, (5.39)

Using (5.39), the desired angular velocity is ωdab = Cbd(Sdvdd q̇dvd +CdvdSvdavd
q̇vda), where

qdvd =
[
αd βd

]T
, qvda =

[
µd γd χd

]T
.

The matrices Sdvdd and Svdavd
can be determined in a similar manner as (5.32)-(5.33).

The desired angular acceleration is given by ω̇dab = Γ(ωdab −ωbab ), and control surface

deflections are
uδ = Gω−1

(ω̇dab − fω). (5.40)

Lastly, using (5.37), the thrust is given by

ut = Gv−1

(v̇dw/a − f v), (5.41)

where desired speed is vdw/a = ||vdw/aa ||, and the desired acceleration is v̇dw/a =

Γ(vdw/a − vcw/a). The control inputs to the aircraft are the combination of (5.40)

and (5.41).

5.5.3 Simulation Results

The constrained Kalman filter-based extremum-seeking guidance runs at 0.2 Hz,

with 10 measurement collected at 1 Hz. The autopilot runs at 10 Hz, and the aircraft

is simulated in continuous time. The leading aircraft is flying at a speed of Mach 0.56

at an altitude of 25, 000 ft, which corresponds to the condition 1 flight conditions from

[68, 69]. The desired position relative to the leading aircraft is given by rd`a . When

simulated with the extremum-seeking guidance law, the performance variables are

z = rc`a , zd = rd`a . The constraint [−51 0 −11]T m ≤ rd`a ≤ [−28 10 11]T m defines a

zone where empirical drag reduction data is available for simulation, where formation

flight has the greatest effect on drag reduction, and which maintains a distance from

the leading aircraft. The drag reduction as a function of rc`a is shown in Fig. 5.4a,

where it can be seen that a 20% drag reduction is possible. Change in drag reduction
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is much less pronounced in the rc`a,1 direction, and thus variation in zd
1 has less of an

effect. For these simulations, the measured performance J(z) is the change in drag

shown in Fig. 5.4a, and the relationship between z and J(z) is much more complex

here than in (5.26).

No external wind gusts are introduced into the simulation, and the autopilot of

the second aircraft has no knowledge of the effect of the wake generated by the leading

aircraft. The simulation results of the extremum-seeking algorithm, in tandem with

the autopilot and the aircraft, are shown in Fig. 5.4 and Fig. 5.5. Figure 5.4b shows

that zd mostly lies within the constraints as sinusoidal excitation has been added to

zd to improve the gradient estimates. As expected, zd approaches z?.
The gradient error estimates are shown in Fig. 5.5a. This plot shows the difference

between b̃ and the actual gradient b projected onto the constrained set, denoted as

bc. This is done so that when the extremum-seeking guidance law is at an active

constraint, the expected error will be zero. The gradient estimates remain within

the ±3σ bounds, which indicates that the Kalman filter remains consistent. As the

system stabilizes, the ±3σ bounds increase since the measurements provided to the

Kalman filter are closer together, and ∆zk−`+1, ` = 1, . . . , N becomes closer to zero.

The error states of the aircraft are shown in Fig. 5.5b. These states are important

because the extremum-seeking guidance law uses the current output zk to obtain zd
k.

If the autopilot is unable to drive zk to zd
k, then zd

k will be unable to converge to z?.
As an example, zd

3 remains at the upper limit of the constrained set for most of the

simulation since the autopilot slowly corrects for the error in the rc`a,3 direction. The

large amplitude oscillations in the plot are due to the autopilot. In addition, these

oscillations appear more severe than they are because of the scale of the plot. The

scale is chosen to highlight the steady state of the aircraft.

5.6 Closing Remarks

This chapter presents an extremum-seeking controller using a constrained Kalman

filter for extremum-seeking guidance on R3. A linear plant is presented and the de-

veloped technique is applied to a formation flight problem. Although no disturbances

were present in the formation flight simulation, this is not a large concern because

these disturbances would affect the autopilot rather than the extremum-seeking guid-

ance algorithm. That being said, the extremum-seeking guidance method directly

used the percent change of the drag coefficient. In practice, other metrics such as fuel

flow or rolling moment could be used. However, since changes in these measurements
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take time, the extremum-seeking controller should be run at a much lower frequency.

In previous extremum-seeking work, the Hessian was also estimated for use with

a Newton’s method approach to optimization. In this work, estimating the Hessian

was a challenging task that did not yield promising results. Exact reasons why the

Kalman filter had trouble estimating the Hessian were not pursued. In the future,

determining these reasons and experimenting with other types of filters, including

sigma point filters, can provide methods to estimate the Hessian associated with the

performance function.
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(a) Percent change of CD plotted as a function of rc`a . The solid
black line represents zd for the duration of the simulation.
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(b) Desired position zd = rd`a and position constraints.

Figure 5.4: Constrained extremum-seeking using constrained Kalman filter applied
to formation flight control.
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Figure 5.5: Estimated gradient and state error of constrained extremum-seeking using
constrained Kalman filter applied to formation flight control.
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Chapter 6

Extremum-Seeking Guidance on

SO(3)

6.1 Introduction

Consider extremum-seeking algorithms that attempt to maximize an objective

function J : D → R, where J = J(z), and where z ∈ D is the performance variable

of the plant. There are three main approaches to extremize the objective function J

on the the restricted domain D ⊂ Rn×m, n,m ∈ N, depending on the nature of the

constraints. These methods include a Lagrangian approach [72], a barrier function

approach [60, 58, 59], and an optimization on manifolds approach [73, 74]. Each

method has its own strengths depending on the nature of the given constraints. In

this chapter, extremum seeking on the manifold SO(3) and on a constrained subset of

SO(3) is discussed. In particular, extremum seeking on SO(3) is enabled by merging

a Lagrangian-based approach and a manifold-based gradient optimization algorithm.

Gradient-based extremum-seeking guidance methods require estimation of the

gradient, a process that usually falls in two categories: a parameter estimation ap-

proach [8, 75, 61], and a Kalman filter approach [13]. A Kalman filter is advantageous

since it is able to filter measurement noise while providing the gradient estimate, and

is therefore the approach used in this chapter. For constrained subsets of SO(3), a

constrained gradient optimization method is used, which can be enabled by a con-

strained filtering method. In this chapter, attitude inclusion and exclusion zones are

written as linear inequality constraints, which are a function of the gradient of the

performance function. The linear attitude constraints are constructed at each time

step, and a constraint to ensure the linearization remains valid can then be used. The

idea of sequential linearization and then ensuring small step sizes are small is simi-
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lar to that of [53]. A constrained gradient is then estimated using a gain-projected

Kalman filter [70], which requires linear constraints. This filter projects the posteri-

ori gradient estimate onto a constrained set so that the desired trajectory does not

violate the inclusion or exclusion zones. Further discussion of filtering with equality

an inequality state constraints can be found in [65].

In general, a Kalman filter determines the best state estimate in a minimum

mean square error sense. This is an optimization problem that can be formulated as

a semidefinite programming (SDP) problem using linear matrix inequalities (LMIs),

which can be solved efficiently using interior-point methods [31]. Using an LMI ap-

proach to Kalman filtering, state constraints or set-membership can easily be in-

troduced. An LMI-based approach is used for set-membership filtering for equality,

inequality, and linearized nonlinear constraints in [76, 77]. Unlike the gain-projected

Kalman filter, the LMI-based filter modifies the Kalman gain so that the state esti-

mate is constrained during the correction step, and thus no extra constraining step

is needed to ensure the state estimates satisfy the constraints. Using [76, 77] as in-

spiration, a novel LMI-based Kalman filter is introduced to estimate the constrained

gradient for the extremum-seeking guidance problem. The filter has a different struc-

ture, different assumptions on the system’s characteristics, and a different derivation

than in [76], and can handle both the linear inequality and norm constraints placed

on the gradient estimates. These attributes make the LMI-based filter well suited for

estimating the constrained gradient in extremum-seeking applications.

There are several contributions in this chapter that together realize extremum

seeking on SO(3) and on a constrained subset of SO(3). First, the relationship be-

tween the gradient of a function on SO(3) and a Taylor series expansion of the same

function is elucidated. The extremum-seeking algorithm hinges on this relationship.

Second, inclusion and exclusion zones on SO(3) are reformulated as linear inequality

constraints that are easily embedded into a constrained optimization problem. To be

clear, it is the manner the constraints are reformulated into a form suitable for con-

strained optimization that is the contribution, not the fashion that the constraints are

initially posed. The initial statement of the attitude constraints is identical to other

work, such as in [51, 78]. Third, the gradient of an unknown constrained performance

function is estimated using a gain-projected Kalman filter and a novel LMI-based

Kalman filter. The estimated gradient is used in a gradient ascent optimization al-

gorithm. Fourth, the proposed extremum-seeking technique is demonstrated on a

spacecraft attitude guidance problem. Specifically, the proposed extremum-seeking

guidance law is used to determine a desired attitude that maximizes an objective
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function, and a feedback control law minimizes the error between the actual attitude

and the desired attitude of the spacecraft. For purposes of this chapter, the space-

craft’s attitude is assumed to be known exactly, but similar control techniques can be

applied if the attitude were estimated from sun sensors, star trackers, magnetometers,

etc.

The first contribution is developed in Section 6.2 once pertinent notation and

concepts from differential geometry are reviewed. Section 6.3 gives an overview of

gradient and projected gradient ascent optimization on SO(3). Unconstrained and

constrained extremum-seeking on SO(3) using gradient and projected gradient ascent

are shown in Section 6.4 and Section 6.5, respectively. Application of the developed

extremum-seeking guidance algorithms to a spacecraft equipped with a patch antenna

and three reaction wheels is in Section 6.6, and closing remarks are in Section 6.7.

6.2 Mathematical Preliminaries

This section briefly introduces necessary notation, and then reviews important

concepts from differential geometry. The tangent space of SO(3) and the gradient

of a function f : SO(3) → R is explained, as well as the relationship between a first

order Taylor series expansion of f and the gradient of f that lies in the tangent space

of SO(3). The explanation of the gradient is necessary because a gradient ascent

optimization method is used for the extremum-seeking guidance algorithm.

6.2.1 Useful Identities

Proposition 6.1. Let M ∈ Rn×n, and Ω ∈ so(n), then

tr(MΩ) = tr(Pa(M)Ω). (6.1)

Proof. Expand the right side using the definition of Pa(M) to obtain the left side.

Proposition 6.2. Let u, v ∈ R3, then

tr(−u×v×) = 2uTv. (6.2)

Proof. Use the identity defined by Eq. (2.56b) in [34, p. 29] in (6.2).

Proposition 6.3 (Chain Rule). Given a function f(X) : Rn×n → R and a function
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X(y) : R→ Rn×n, the derivative of f(X(y)) with respect to y is given by

df

dy
= tr

[(
df(X)

dX

)(
dX(y)

dy

)]
. (6.3)

Proof. See Appendix B.2.

In Section 6.3, continuous functions of the form f : SO(3) → R are considered.

The manifold SO(3) is compact and, as such, the function f admits an extremum

according to Theorem 2.7.

6.2.2 Manifolds and Tangent Spaces

The manifold SO(3) is an embedded submanifold of R3×3 [79, pp. 41-42]. The

embedding space of SO(3), denoted as SO(3), is the manifold R3×3. The tangent

space to SO(3) at C ∈ SO(3) is [79, p. 42]

TCSO(3) = {ΩC : Ω ∈ so(3)}. (6.4)

A manifold whose tangent spaces are equipped with a smoothly varying inner product

is called a Riemannian manifold. The manifold R3×3 has the inner product given by

〈A,B〉 = tr(ATB), (6.5)

where A,B ∈ R3×3. The submanifolds and tangent manifolds of R3×3 inherit this

inner product. Thus, SO(3) becomes a Riemmannian manifold when TCSO(3) is

equipped with the inner product defined by (6.5). The inner product is important

since it is used to define the gradient of a function.

The orthogonal complement of TCSO(3) is denoted as (TCSO(3))⊥. An element

of Y ∈ (TCSO(3))⊥ is defined such that for all X ∈ TCSO(3), 〈X,Y〉 = 0. The space

(TCSO(3))⊥ is given by [79, p. 48]

(TCSO(3))⊥ = {SC : S ∈ SR3}. (6.6)

Proposition 6.4. Let TCSO(3) be the tangent space of SO(3) at C. An element

Z ∈ TCSO(3) can be decomposed into the sum of an element in TCSO(3) and in

(TCSO(3))⊥ by

Z = PC(Z) + P⊥C (Z), (6.7)

where PC and P⊥C are projection operators that define the mapping PC : TCSO(3)→
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TCSO(3) and P⊥C : TCSO(3) → (TCSO(3))⊥. These projections are given by [79,

p. 48]

PC(Z) = Pa(ZCT)C, (6.8)

P⊥C (Z) = Ps(ZCT)C. (6.9)

Proof. Comparing (6.8)-(6.9) to (6.4) and (6.6) shows that PC(Z) ∈ TCSO(3) and

P⊥C (Z) ∈ (TCSO(3))⊥. Evaluating (6.7) using (6.8) and (6.9) completes the proof.

6.2.3 Gradients on SO(3) from Definition

Let f : SO(3) → R be a continuous function, where SO(3) is a Riemmanian

manifold equipped with the inner product given by (6.5). The gradient of f at

C, denoted by ∇f(C), is defined as the unique element of TCSO(3) that for all

Ξ ∈ TCSO(3), satisfies

〈∇f(C),Ξ〉 =
d(f(Γ(ε)))

dε

∣∣∣∣∣
ε=0

, (6.10)

where Γ(ε) ∈ SO(3), Γ(0) = C, and where Γ′(0) = [dΓ(ε)/dε]ε=0 = Ξ [79, p. 46].

Note that the derivative of etA, A ∈ Rn×n, with respect to t is detA/dt = AetA = etAA.

As such, an example of a function Γ(ε) that satisfies the criteria for use in (6.10) is

Γ(ε) = e−εg
×C, (6.11)

Γ′(0) = −g×C, (6.12)

where g is any element of R3.

Example 6.5. Consider the function f(C) = tr(BTC), that maps SO(3) to R, where

B ∈ R3×3. Evaluating (6.10) using (6.11)-(6.12) yields

〈∇f(C),−g×C
〉

=
d

dε
tr
(

BTe−εg
×C
) ∣∣∣∣∣

ε=0

tr
[
−(∇f(C))Tg×C

]
= tr(−BTg×C).

Using the identity (6.1) yields

tr
[
−C(∇f(C))Tg×

]
= tr(−g×Pa(CBT)).
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Since ∇f(C) = ΩC for some Ω ∈ so(3), C(∇f(C))T = −CCTΩ = −Ω is antisym-

metric. Thus using identity (6.2) yields

2gT
[
C(∇f(C))T

]∨
= 2gTPa(CBT)∨

gT
[
C(∇f(C))T −Pa(CBT)

]∨
= 0. (6.13)

Since (6.13) must hold for all g, the gradient is given by

∇f(C) = −Pa(CBT)C. (6.14)

�

6.2.4 Gradients on SO(3) Using Projection

A different method to derive a gradient on SO(3) can be found using the projec-

tions discussed in Section 6.2.2. Let f be defined on R3×3 → R, and let f be the

restriction of f defined on SO(3)→ R. The gradient of f at C is denoted as ∇f(C),

and the gradient of f at C is denoted as ∇f(C). The gradient ∇f(C) is given by [80,

p. 641]

∇f(C) =

(
df

dC

)T

. (6.15)

The gradient ∇f(C) can be expressed in terms of ∇f(C) using (6.8), by projecting

∇f(C) onto TCSO(3), that is [79, p. 48]

∇f(C) = PC(∇f(C)). (6.16)

Example 6.6. Let f(C) = tr(BTC), B,C ∈ R3×3, and let f be the restriction of f

such that C ∈ SO(3). The gradient ∇f(C) is given by [81, p. 691]

∇f(C) =

(
d

dC
tr(BTC)

)T

= B.

Using (6.8) and (6.16), the gradient ∇f(C) is given by

∇f(C) = Pa(BCT)C = −Pa(CBT)C, (6.17)

which is the same result as in (6.14). �
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6.2.5 Gradient from Taylor Series

Although the previous two sections have provided an analytic method to determine

the gradient of a function on SO(3), a numerical method is needed in this chapter for

implementation purposes. In this section, we show the relationship between a Taylor

series expansion of f(C) : SO(3) → R and the gradient ∇f(C). This relationship is

critical for the extremum-seeking guidance algorithm presented in Section 6.4.

Let C = e−φ
×Ĉ be a parameterization of C, where Ĉ ∈ SO(3) is constant, and

where φ = [φ1 φ2 φ3]T ∈ R3 represents a rotation from the nominal Ĉ. The first

order Taylor series expansion of a function f(C(φ)) at Ĉ, that is around the point

φ = 0 + δφ, is given by

f(C(φ)) ≈ f(C(0)) + bTδφ, (6.18)

where b = [b1 b2 b3]T is the gradient of (6.18), and where

bT =
d

dφ
f(C(φ))

∣∣∣∣∣
φ=0

. (6.19)

Since b ∈ R3 is the gradient of f(C(φ)) : R3 → R at φ = 0, and ∇f(Ĉ) ∈ TĈSO(3)

is the gradient of f(C) : SO(3) → R at Ĉ, the matrices b and ∇f(Ĉ) are different.

However, for brevity, we refer to both b and ∇f(Ĉ) as the gradient. This practice

is acceptable in this chapter since b can uniquely identify ∇f(Ĉ) and vice versa, via

the relation given in Proposition 6.7.

Proposition 6.7. The gradient b and the gradient ∇f(Ĉ) are related via

∇f(Ĉ) = −1

2
b×Ĉ. (6.20)

Proof. Since the parameterization of C results in C ∈ SO(3) for all φ ∈ R3, we are

able to relax f to f . Using (6.15), (6.19), and the chain rule given by (6.3), each
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element of b is given by

bi =
d

dφi
f(C(φ))

∣∣∣∣∣
φ=0

= tr

[(
df(C)

dC

)(
dC
dφi

)]
φ=0

= tr

[
(∇f(C))T

(
d

dφi
exp

(
−

3∑
j=1

φj1×j

)
Ĉ

)]
φ=0

= tr

[
(∇f(C))T

(
−1×i exp

(
−

3∑
j=1

φj1×j

)
Ĉ

)]
φ=0

= tr
[
−(∇f(Ĉ))T1×i Ĉ

]
= tr

[
−Ĉ(∇f(Ĉ))T1×i

]
, (6.21)

where ∇f(Ĉ) is the gradient of f at Ĉ. Using (6.1) and (6.2), (6.21) simplifies to

bi = 2

[
Pa

(
Ĉ(∇f(Ĉ))T

)∨]T
1i,

and thus

b = 2Pa

(
Ĉ(∇f(Ĉ))T

)∨
,

−1

2
b× = Pa

(
∇f(Ĉ) ĈT

)
. (6.22)

Right multiplying (6.22) by Ĉ and substituting in (6.16) yields (6.20).

6.3 Maximization of a Function J : SO(3)→ R

In this section, we review the gradient ascent and constrained gradient ascent

methods to solve the problem

max
Cba∈SO(3)

J = J(Cba), (6.23)

s.t. xiTb Cbayia ≥ cos(αi), i = 1, . . . , nc, (6.24)

where J : SO(3) → R is continuous, αi ∈ R, and nc is the number of constraints.

Since the manifold SO(3) is compact [79, p. 42], and since J is continuous, J has

an extremum in SO(3) by Theorem 2.7. Equation (6.24) can be used to define both

inclusion zones and exclusion zones, where xib and Cbayia must have a separation angle
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no larger than αi. To conserve the “≥” sign, the exclusion zone between xib and Cbayia
with angle αi is written as

xiTb Cba(−yia) ≥ cos(π − αi). (6.25)

In Section 6.3.1, the algorithm to solve the unconstrained problem (6.23) is considered.

In Section 6.3.2, the algorithm to solve the constrained problem defined by (6.23)

and (6.24) is shown.

6.3.1 Gradient Ascent

A retraction on a manifold is a mapping from the tangent space to the manifold,

that is TCSO(3)→ SO(3). The retraction of ∇f(C) = ΩC is given by a Riemannian

exponential mapping on SO(3), and defined as RC(ΩC) = eΩC [79, p. 59].

Example 6.8. Consider the gradient from Example 6.5 and 6.6. The retraction of

∇f(C) = −Pa(CBT)C is given by

RC(∇f(C)) = exp
[
−Pa(CBT)

]
C, (6.26)

and (3.3) can be used to evaluate the exponential in (6.26), with φ = Pa(CBT)∨. �

Let the optimizer of J = J(Cba) be Cb?a. The frame Fbk is a frame that is defined

at the kth step of the gradient ascent algorithm. The gradient ascent algorithm

determines successive Cbk+1a using the gradient of J at Cbka, given by ∇J(Cbka). The

matrix Cbk+1a is given by

Cbk+1a = RCbka
(2κk∇J(Cbka)), (6.27)

where 2κk > 0 is the step size [79, p. 62]. When the gradient ∇J(Cbka) is determined

from a Taylor series such as in (6.18), the update law is given by

Cbk+1a = e−d×
k Cbka, (6.28)

where dk = κkbk. Equation (6.28) is obtained by substituting (6.20) into (6.27),

which is the critical step that enables the extremum-seeking algorithm. This gradient

ascent algorithm is shown in Fig. 6.1. The step in the tangent space TCbka
SO(3) is

−κkb×k Cbka, depicted by the blue arrow. The retraction from TCbka
SO(3) to SO(3)

represented by the red arrow.

If the objective function is known and can be evaluated, κk can be chosen via
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SOp3q

Figure 6.1: Gradient ascent for J = J(Cba), with maximum Cb?a. The sphere is a vi-
sualization of SO(3), and the plane is a visualization of the tangent space TCbka

SO(3).
The blue arrow is a step in the tangent space, and the red arrow represents the re-
traction from TCbka

SO(3) to SO(3). The shading represents values of J , with the
maximum value at the red shading, and the minimum values at the blue shading.

an exact line search to ensure that there is a sufficient decay in J . However, the

exact line search can be computationally expensive, and thus the line search can be

approximated via Armijo’s rule to provide a maximum step size [82, p. 33]. Wolfe’s

conditions also provide a provision for sufficient decrease by providing a lower bound

on the step size [82, p. 33]. In extremum-seeking, the objective function cannot be

evaluated and neither of these conditions can be used. Instead, the step size κk can

be chosen to satisfy

dmin ≤ κk ‖bk‖2 ≤ dmax, (6.29)

where dmin is a minimum step size and dmax is a maximum step size. These conditions

do not directly ensure a sufficient decrease, but allow for quicker convergence of J

when the curvature of J becomes small.

6.3.2 Constrained-Gradient Ascent

Consider the optimization problem given by (6.23)-(6.24). This problem is solved

by incorporating constraints to the gradient ascent method presented in Section 6.3.1.
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The updated DCM Cbk+1a must satisfy (6.24), and thus (6.24) is rewritten as

xiTbk+1
Cbk+1ay

i
a ≥ cos(αi). (6.30)

The constraint defined by (6.30) can be transformed to a linear inequality constraint

if the step dk is small. One method to obtain a small dk is by considering the norm

constraint

dT
kdk ≤ d2

max. (6.31)

With a small step dk, the small angle approximation (3.4) can be used, and (6.28)

becomes

Cbk+1a = (1− d×k )Cbka. (6.32)

Substituting (6.32) into (6.30) yields

xiTbk+1
(1− d×k )Cbkay

i
a ≥ cos(αi). (6.33)

Simplifying and rearranging (6.33) yields

Acon,kdk ≥ ξcon,k, (6.34)

where

Acon,k =


x1T

bk+1
(Cbkay1

a)
×

...

xn
T
c
bk+1

(Cbkaync
a )×

 , ξcon,k =


β1

...

βnc

 ,
and where βi = cos(αi) − xiTbk+1

Cbkayia. The linearization of the constraint is the sec-

ond contribution. The linearization is possible since we are looking for Cbk+1a in the

neighbourhood of Cbka rather than looking for any Cbk+1a that satisfies (6.30). Other

methods to determine attitude based on inclusion and exclusion zones can be found

in [51], but this method uses quaternions and quadratic constraints. In [78], admissi-

ble sets are used, and this method does not fit within this framework. Equation (6.34)

is a linear constraint, which works well given the nature of the application, which is

a projected gradient optimization.

The DCM Cbk+1a is still given by (6.28), but dk is chosen as the minimizer of

min
1

2
(dk − κkbk)T(dk − κkbk), (6.35)

such that (6.31) and (6.34) are satisfied. Ignoring (6.31) and choosing a small κk,
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the solution to (6.35) subject to (6.34) is given by constructing the matrices of active

constraints Aactive
con,k and ξactive

con,k to yield

Aactive
con,k dk = ξactive

con,k , (6.36)

where the minimizing dk is given by

dk = κbk − AactiveT

con,k (Aactive
con,k AactiveT

con,k )−1(Aactive
con,k κbk − ξactive

con,k ). (6.37)

Equation (6.37) projects dk onto the constrained set (6.34).

With a small step size κk, ignoring (6.31) is acceptable if it is either assumed or

known that κbk is always small. When estimating the constrained gradient in Sec-

tion 6.5, the gain-projected Kalman filter of Section 6.5.1 requires linear constraints,

and norm constraints must be reformulated or ignored. However, the Kalman filter in

Section 6.5.2 that uses LMI’s to determine the Kalman gain is capable of using (6.31)

directly in the filter formulation.

6.4 Unconstrained Guidance on SO(3) with an Unknown Ob-

jective Function

Consider the system shown in Fig. 6.2. The attitude of Fb relative to Fa is

parameterized by Cba. The function J : SO(3) → R is a performance function.

The outputs of the plant are Cba and the measurement of J = J(Cba), described in

Section 6.4.1. The extremum-seeking guidance law determines a desired frame Fd and

the DCM Cda. The attitude error Cbd = CbaCT
da is used for feedback in the controller

to drive Cba to Cda. Ideally, the desired attitude Cda converges to Cb?a, where Cb?a

is an unknown extremum of J(Cba). Therefore, since Cba converges to Cda through

feedback control, Cba converges to Cb?a. When the mapping of SO(3) → R of J is

unknown, the gradient must be estimated to use the gradient ascent algorithm from

Section 6.3.1.

Using the gradient ascent optimization method and (6.28), the desired attitude is

given by

Cdka = e−d×
k Cbka, (6.38)

where dk is the step. In gradient ascent, the update (6.28) gives the next attitude in

the optimization, Cbk+1a. However, in extremum-seeking guidance, the update (6.38)

yields the desired attitdue Cdka at time tk. The purpose of this section is to ex-
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Plant Cba
Controller

Cda

Guidance

JpCbaqCbd uExtremum-Seeking

Figure 6.2: Extremum-seeking guidance block diagram. The attitude error is given
by Cbd = CbaCT

da.

plain how to determine dk for unconstrained extremum-seeking on SO(3). Since dk
is determined from the gradient, the gradient must be estimated. The gradient is

estimated using measurements described in Section 6.4.1 and the filter described in

Section 6.4.2.

6.4.1 Performance Measurements

The estimation of the gradient of J is enabled by taking a first order Taylor

series expansion of J using (6.18), at Cba(tk) = Cbka. The parameterization Cba =

exp(−φbb×k )Cbka in the Taylor series expansion yields

J(Cba) ≈ J(Cbka) + bT
kφ

bbk , (6.39)

where bk is the gradient of J at Cbka. The unit of bk is typically the unit of J per

radian. When using a first order Taylor series expansion, it is implied that the Taylor

series is a valid approximation of J in the neighbourhood of Cbka. Therefore, if we

knew the exact value of bk, J(Cbk−1a) could be approximated by evaluating (6.39) at

Cba = Cbk−1a to obtain

J(Cbk−1a) ≈ J(Cbka) + bT
kφ

bk−1bk .

As in Section 5.2, the Taylor series is used to approximate bk in the the neighbourhood

of Cbka. Equation (6.39) evaluated at Cba = Cbk−`a, ` = 1, . . . , N and rearranged

results in 
∆Jk

...

∆Jk−N+1

 =


φbkb

T
k−1

...

φbkb
T
k−`

bk, (6.40)

61



where

∆Jk−`+1 = J(Cbka)− J(Cbk−`a),

φbkbk−` = −(ln(CbkaC
T
bk−`a

))∨.

Equation (6.40) is written more compactly as

yk = Hkbk, (6.41)

where

yk =


∆Jk

...

∆Jk−N+1

 , Hk =


φbkb

T
k−1

...

φbkb
T
k−`

 . (6.42)

Both yk and Hk can be determined from the current and previous attitude estimates

of the plant.

Several methods of determining bk using (6.41) exist, such as a parameter esti-

mation approach, where bk contains the parameters and Hk is the regressor. In this

chapter, a Kalman filter formulation is used to estimate bk. Equation (6.41), which

forms the basis of the measurement model, is augmented with a process model, and

is explained Section 6.4.2.

6.4.2 Kalman Filter Formulation

As in Section 5.2, a linear time-varying Kalman filter is used to estimate bk, by

specifying a process model and by modifying (6.41) to be the measurement model,

where both are given by

bk = bk−1 + wk−1, (6.43)

yk = Hkbk + vk, (6.44)

where wk−1 ∼ N (0,Qk), Qk ≥ 0, vk ∼ N (0,Rk), Rk > 0, and where yk and Hk are

defined in (6.42). The notation w ∼ N (w̄,Q), w, w̄ ∈ Rn, Q ∈ Rn×n, indicates that

w is Gaussian with a mean of w̄ and covariance Q.
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The Kalman filter estimates bk using a prediction step

b̂−k = b̂k−1,

ŷ−k = Hkb̂−k ,

P−k = Pk−1 + Qk−1,

and a correction step

b̂k = b̂−k + Kk(yk − ŷ−k ), (6.45)

Pk = (1−KkHk)P−k (1−KkHk)
T + KkRkKT

k , (6.46)

where b̂k and b̂−k are the predicted and estimated gradient, and P−k and Pk are the

predicted and estimated error covariance. Equation (6.46) is known as the “Joseph

form”, and is more numerically stable than other forms, while still being valid for any

gain Kk [34, pp. 464-465]. This is useful since in Section 6.5.2, (6.46) can be used to

correct P−k . In Section 6.5.2, the derived Kk is different from the traditional Kalman

gain, which is found by minimizing tr(Pk) [34, p. 464]. The Kalman gain Kk is given

by

Kk = P−k HT
k (HkP−k HT

k + Rk)
−1. (6.47)

The step is determined using the estimated gradient,

dk = κkb̂k + wpe
k , (6.48)

where wpe
k is persistent excitation required to ensure observability of the performance

function [13]. The desired attitude is given by substituting (6.48) into (6.38). Un-

constrained extremum-seeking guidance is summarized in Algorithm 6.4.

6.5 Constrained Guidance on SO(3) with an Unknown Ob-

jective Function

Constrained extremum-seeking guidance is similar to the unconstrained version

in that the step dk from (6.38) must be determined. Two different constrained

extremum-seeking guidance problems are considered in this section. First, the gain-

projected Kalman filter solves an extremum-seeking problem to maximize (6.23),

subject to the inclusion and exclusion zones (6.24). The gain-projected Kalman filter

estimates the constrained gradient that can be used with the constrained gradient as-
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Algorithm 6.4 Unconstrained Extremum-Seeking Guidance SO(3)→ R
1: for k = kinitial to kfinal do
2: Measure Cbk−`a for ` = 0, . . . , N .
3: Measure J(Cbk−`a) for ` = 0, . . . , N .
4: Construct yk and Hk using (6.42).

5: Predict gradient using b̂
−
k = b̂k−1.

6: Predict covariance using P−k = Pk−1 + Qk−1.
7: Determine gain Kk using (6.47).
8: Correct gradient to obtain b̂k using (6.45).
9: Correct covariance to obtain Pk using (6.46).

10: Determine dk using (6.48).
11: Determine the desired attitude for the next time step Cdka using (6.38).
12: end for

cent method from Section 6.3.2. As the name implies, the gain-projected Kalman filter

estimates the gradient, and then projects it to a constrained set. Second, the LMI-

based Kalman filter solves almost the same problem as the gain-projected Kalman

filter. Unlike the gain-projected Kalman filter, which only handles linear equality and

inequality constraints, the LMI-based Kalman filter can handle any type of LMI-based

constraints. The disadvantage is that an SDP must be solved at each guidance step,

but norm constraints can be efficiently handled with this formulation. Therefore, the

norm constraint given by (6.31) is considered in addition to the inclusion and exclu-

sion zones (6.24). Both constrained extremum-seeking algorithms are summarized in

Algorithm 6.5.

6.5.1 Gain-Projected Kalman Filter

The projected gradient method can be incorporated in the Kalman filter by using

the gain-projected Kalman filter [70], which is also used in Section 5.3. It is briefly

reviewed here for completeness. The gradient is first estimated as in the unconstrained

case to obtain b̂k. The constrained gradient estimate, b̃k, is then obtained by solving

min
1

2
(b̃k − b̂k)T(b̃k − b̂k),

subject to

κkAcon,kb̃k ≥ ξcon,k, (6.49)
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where (6.49) is obtained by substituting dk = κkb̃k in (6.34). The solution to this

minimization problem is given by

b̃k = b̂k − κ−1
k AactiveT

con,k (Aactive
con,k AactiveT

con,k )−1(Aactive
con,k κkb̂k − ξactive

con,k ). (6.50)

At the next iteration, where k has been incremented by one, the new prediction step

is given by

b̂−k = b̃k−1.

There is no change to the predicted covariance matrix Pk, given by (6.46). The gain-

projected method does not bias the Kalman filter and is simple to implement, which

makes this method effective for scenarios with limited computational resources [70].

The desired attitude Cdk+1a is given by substituting

dk = κkb̃k + wpe
k (6.51)

into (6.38).

6.5.2 Kalman Filter with LMI Constraints

The LMI-based Kalman filter does not require a step to constrain b̂k to b̃k. Rather,

the gain Kk is determined so that the constraints are imposed directly on the estimate

b̂k. The constraints are given by

κkAcon,kb̂k ≥ ξcon,k − ζk, (6.52)

κ2
kb̂T

k b̂k ≤ d2
max, (6.53)

where (6.53) is obtained from (6.31) by substituting dk = κb̂k. The matrix ζk ≥ 0 is

a slack variable, which transforms (6.52) to a soft constraint. This slack variable is

critical because if Cbka is not feasible, a large b̂k might be necessary to satisfy (6.52),

which could violate (6.53). In this situation, without ζk, it would be impossible to

simultaneously satisfy both sets of constraints. Any optimization problem posed with

these constraints would be infeasible.

The gain matrix Kk is chosen to minimize the objective function

Jk(Kk, ζk) =
1

2

[
(yk −Hkb̂k)TR−1

k (yk −Hkb̂k) + (b̂k − b̂−k )T(P−k )−1(b̂k − b̂−k )
]

+ sTk ζk,
(6.54)

which is inspired by the recursive least-squares [83, p. 205–207] and maximum like-
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lihood approach to deriving the Kalman filter [84]. This objective function weighs

the term yk −Hkb̂k with respect to the measurement covariance Rk, and weighs the

residual between the prior and posterior estimates with respect to the prior covariance

P−k . The matrix sk ≥ 0 is a weighting column matrix which penalizes a nonzero slack

variable ζk. The matrix sk is chosen to be sufficiently large to render Cbka feasible by

driving ζk to zero. When the constraints are infeasible, the term sTk ζk is the domi-

nant term of Jk, and thus the primary objective is to satisfy (6.52) with a zero slack

variable. Once this occurs, the first term of Jk is the dominant term, and normal

Kalman filtering behaviour ensues.

Using the correction of the state estimate b̂k = b̂−k + Kkrk from (6.45), where

rk = yk −Hkb̂−k is the innovation term, the objective function can be rewritten as

Jk(Kk, ζk) =
1

2

[
(yk −Hk(b̂−k + Kkrk))TR−1

k (yk −Hk(b̂−k + Kkrk))

+ ((b̂−k + Kkrk)− b̂−k )T(P−k )−1((b̂−k + Kkrk)− b̂−k )
]

+ sTk ζk

=
1

2

[
(rk −HkKkrk)TR−1

k (rk −HkKkrk) + (Kkrk)T(P−k )−1(Kkrk)
]

+ sTk ζk

=
1

2
rTk
[
(1−HkKk)

TR−1
k (1−HkKk) + KT

k (P−k )−1Kk

]
rk + sTk ζk. (6.55)

Without the norm constraint, ζk is ignored, and the Kalman gain given by (6.47) can

be recovered by differentiating (6.54) with respect to Kk and solving for Kk, as shown

in Appendix B.3.

A new matrix variable Zk is introduced to transform (6.55) to a linear convex

objective function given by [80, p. 67]

Ĵk(Kk,Zk, ζk) =
1

2
rTkZkrk + sTk ζk, (6.56)

where Zk is subject to the constraint

Zk ≥ (1−HkKk)
TR−1

k (1−HkKk) + KT
k (P−k )−1KT

k ,

Zk − (1−HkKk)
TR−1

k (1−HkKk)−KT
k (P−k )−1KT

k ≥ 0. (6.57)

Using the Schur Complement [31], (6.57) can be converted to an LMI in terms of Zk

and Kk,  Zk (1−HkKk)
T KT

k

(1−HkKk) Rk 0
Kk 0 P−k

 ≥ 0. (6.58)
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Algorithm 6.5 Constrained Extremum-Seeking Guidance SO(3)→ R
1: for k = kinitial to kfinal do
2: Measure Cbk−`a for ` = 0, . . . , N .
3: Measure J(Cbk−`a) for ` = 0, . . . , N .
4: Construct yk and Hk using (6.42).
5: Predict covariance using P−k = Pk−1 + Qk−1.
6: if gain-projected Kalman filter then

7: Predict gradient using b̂
−
k = b̃k−1.

8: Determine gain Kk using (6.47).
9: Determine active constraints Aactive

con,k and ξactive
con,k .

10: Correct gradient to obtain b̃k using (6.50) .
11: Determine dk using (6.51).
12: else if LMI-based Kalman filter then
13: Predict gradient using b̂

−
k = b̂k−1.

14: Solve for Kk by minimizing (6.56) subject to (6.58)-(6.60).
15: Correct gradient to obtain b̂k using (6.45) .
16: Determine dk using (6.48).
17: end if
18: Correct covariance to obtain Pk using (6.46).
19: Determine the desired attitude for the next time step Cdka using (6.38).
20: end for

In addition, b̂k = b̂−k + Kkrk is substituted into (6.49) and (6.53) to obtain[
d2

max κk(b̂−k + Kkrk)T

κk(b̂−k + Kkrk) 1

]
≥ 0, (6.59)

κkAcon,k(b̂−k + Kkrk) ≥ ξcon,k − ζk. (6.60)

The gain Kk is found by minimizing (6.56) subject to (6.58)-(6.60). The correction for

P−k is still given by (6.46). Using b̂k from this section, dk is determined using (6.48),

and the desired attitude Cdk+1a is once again found using (6.38).

6.6 Numerical Example

Three different extremum-seeking guidance algorithms are used for guidance of

a spacecraft with a patch antenna. The guidance algorithms attempt to align the

antenna with an unknown source, which could be from another spacecraft or from a

ground station, to maximize received power, while satisfying inclusion and exclusion

zones. For simplicity, in this numerical example, the position of the radiation source

relative to the spacecraft does not change over time. The three Kalman-filter-based
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guidance algorithms are 1) the unconstrained Kalman filter, 2) the gain-projected

Kalman filter with inclusion and exclusion zones, and 3) the LMI-based Kalman

filter with norm and attitude constraints.

6.6.1 Simulation Parameters

6.6.1.1 Spacecraft with Three Reaction Wheels

Consider a spacecraft with moment of inertia JBcb , equipped with three orthonor-

mal reaction wheels that have a combined moment of inertia JWb , and rotation speed

γ̇. The control input to the wheels is given by η, a wheel acceleration. Frame Fa
is inertial, Fb is the body frame of the spacecraft, and Fd is the desired body frame

representing the desired spacecraft attitude. The DCM Cba parameterizes the atti-

tude of the spacecraft relative to Fa, and is assumed to be known deterministically.

In practice, Cba can be estimated using using a suite of sensors such as a magnetome-

ter, a sun sensor, a horizon sensor, and others. As in Section 4.2, the spacecraft’s

dynamics are given by [35, 55]

JBcb ω̇
ba
b + ω̇ba

×

b (JBcb ω̇
ba
b + JWb γ̇) + JWb γ̈ = 0, (6.61)

γ̈ = −η, (6.62)

Ċba = −ωba×b Cba. (6.63)

In particular, the spacecraft’s moment of inertia is JBcb = diag (4, 4, 1) kg ·m2, and the

reaction wheel array’s moment of inertia is JWb = 0.041 kg ·m2. The initial conditions

of the spacecraft are Cba(0) = C2(60◦)C3(20◦), ωbab (0) = 0 rad/s, and γ̇(0) = 0 rad/s.

6.6.1.2 Patch Antenna and Performance Function

The received power of an antenna, denoted by C, is given by [85, p. 554]

C = PEIRPLsLaGr (6.64)

where PEIRP is effective isotropic radiated power, Ls is the space loss, and La is the

transmission path loss. For simplicity, let PEIRPLsLa = 1 W, and thus C = Gr · 1 W.

Let the patch antenna be mounted on the spacecraft such that b−→
3 associated with

the body frame is normal to the patch antenna. The radiation pattern of the patch
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Figure 6.3: Radiation pattern of a patch antenna for the m = 1 and n = 0 mode [5,
pp. 61–64]. Gain below 3 dBi not pictured for clarity.

antenna is given by the function Gr(θ, φ) where θ and φ can be found from

cos(θ) = b3T

a a3
a,

cos(φ) = b1T

a a1
a,

where a1
a = 11, a3

a = 13, and CT
ba =

[
b1
a b2

a b3
a

]
. The radiation pattern is shown in

Fig. 6.3. The objective at hand is to maximize J(Cba) = C(Cba) = Gr(Cba) · 1 (W),

where J is all that is available to the guidance algorithm. To be clear, the guid-

ance algorithm uses measurements of received power but does not know the explicit

relationship between received power and attitude. The attitude that maximizes the

antenna gain is given by Cb?a(θ
?, φ?). This attitude corresponds to when b−→

3 is aligned

with a−→
3 and, as such, θ? = 0◦ and φ? ∈ R. Since the guidance algorithm has no

knowledge of where the radiation source is, the guidance algorithm has no knowledge

of Cb?a. The maximum performance is J(Cb?a) = 4.61 W. The actual gradient of

J(Cba) is determined numerically in simulation to determine the gradient estimate er-

ror. Received power is measured at 10 (Hz), and white noise with standard deviation

of 0.05 W is added to each measurement of received power.
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6.6.1.3 Attitude Constraints

Inclusion zones and exclusion zones often arise constraints on sensors or scientific

payloads on-board the spacecraft. For example, a star tracker cannot point towards

the Sun, an Earth surveillance sensor must always point towards the Earth, and solar

cells should point towards the Sun. The exclusion and inclusion zones are given by

x1
b =

 1

0

0

 , y1
a = −

 0.3

1

−.5

 ·
∥∥∥∥∥∥∥
 0.3

1

−.5


∥∥∥∥∥∥∥
−1

, α1 = 180◦ − 20◦, (6.65)

x2
b =

 0

1

0

 , y2
a =

 −1

0

0

 , α2 = 20◦. (6.66)

The constraint associated with x1
b , y1

a, and α1 is the exclusion zone.

6.6.1.4 Guidance Algorithms

The guidance algorithms run at 2 Hz, have N = 5 measurements, with one mea-

surement taken at a frequency of 5 Hz. These values are chosen so that the spacecraft

has time to react to a change in desired attitude and so that enough new measure-

ments of J can be made. The weight sk is chosen as sk = 105[1 1 1]T, and the LMIs

are solved using the MOSEK solver [56] with the YALMIP interface [57] in Matlab.

The persistent excitation wpe
k is set to wpe

k = 0.001 sin(0.05πk)[1 1 1]T rad. As

in [13], to ensure smooth commands to the attitude controller, the gradient estimate

is filtered with a first-order low-pass filter with a cutoff frequency of 0.08 Hz.

The Kalman filter is used in a similar manner to filters used for parameter esti-

mation. As such, the matrix Rk can be characterized using the noise of the received

power measurements. A single element of yk is the difference between two measure-

ments of the objective function. Since the noise added to a measurement of the

objective function has a standard deviation of 0.05 W, the standard deviation of

noise of the difference of two measurements is 0.05
√

2 W. Using this information and

the update rate of the Kalman filter, Rk is set to Rk = 0.0011 W. It is more diffi-

cult to characterize the Qk−1 matrix. Various methods exist to tune Qk−1, such as

a retrospective optimization [86], but trial and error is used in this chapter, where

Qk−1 = 0.0021 W/rad. The initial error covariance estimate is P0 = 1 W/rad and

the initial gradient estimate is b̂0 = 0 W/rad.
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The Kalman filters use a κk of 0.15, and the LMI-based Kalman filter uses the norm

constraint (6.53) with dmax = 0.25 W/rad. Considering the interpretation that the

norm of dk represents an angle of rotation in radians, dmax = 0.25 W/rad corresponds

to a maximum rotation of 14◦ for each iteration of the guidance algorithm, ensuring

the small angle approximation used for the attitude constraints is always valid.

6.6.1.5 Control Algorithm

The desired attitude Cdka is fed to the discrete-time attitude controller, given by

ηk = −JW−1

b (Kdω
bka
bk
−KpPa(Cbkdk)

∨), (6.67)

where Cbkdk = CbkaCT
dka

is the attitude error [35]. The attitude controller runs at

10 Hz, and thus T = 0.1 s. The gains of (6.67) are Kd = 1.21 N · m and Kp =

0.961 N ·m/s. The controller is simulated in discrete time, and the dynamics of the

spacecraft are simulated in continuous time.

6.6.2 Simulation Results

6.6.2.1 Unconstrained Kalman Filter

The simulation results with the unconstrained Kalman filter are shown in Fig. 6.4.

Fig. 6.4a shows that J converges to 4.61 W, which corresponds to the maximum

possible performance. Near J = 4.61 W, the magnitude of the gradient becomes

quite small, and without dmin, the convergence time would be much longer. The

middle plot in Fig. 6.4a shows the values of the constraints. For the constraints to

be satisfied, both lines must be greater than zero. A dotted black line is shown to

emphasize the zero line on the plot. Fig. 6.4b shows that the gradient estimate error

converges to zero and that the errors mostly remain within the ±3σ bounds.

Fig. 6.7 shows a three-dimensional plot of the results from the unconstrained and

the gain-projected Kalman filters. The red cone is the exclusion zone and the green

cone is the inclusion zone. The red trace is the locus of points created by the tip of

x−→
1 from (6.65), and the green line is the locus of points created by x−→

2 from (6.66). In

the unconstrained formulation shown in Fig. 6.7a, the green line remains clear of the

inclusion zone. As it happens, the red line does not venture in the exclusion zone, but

there is no guarantee that this will happen given different initial conditions or noise

characteristics. The black vectors form the basis for Fa, and the dark-green/blue

vectors are the bases for Fd and Fb respectively. However, since the controller drives
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the error Cbd to 1, Fd and Fb are virtually indistinguishable in this plot.

6.6.2.2 Gain-Projected Kalman Filter with Attitude Constraints

The gain-projected Kalman filter considers the inclusion and exclusion zones

from (6.65)-(6.66), and the results of this simulation are shown in Fig. 6.5. Fig. 6.5a

shows that J converges to J(Cb?a) = 4.61 W, the theoretical maximum of the con-

strained problem. In addition, the initial reaction of the extremum-seeking guidance

algorithm is to ensure that the inclusion zone constraint is satisfied. As a result, b̃
and dk become large, and estimation of b̃ is poor, as shown by b̃ escaping the ±3σ

bounds in Fig. 6.5b. Once the attitude constraints are satisfied, the gradient estimates

improve and the ±3σ bounds are satisfied. Note that the gradient estimate errors

are the difference between the constrained gradient estimate b̃k and the constrained

gradient bc
k. The constrained gradient is obtained by constraining bk using the same

equation that is used for b̂k, that is equation (6.50).

The three-dimensional plot of the gain-projected Kalman filter is shown in Fig. 6.7b.

The green line begins outside the green cone and initially follows a trajectory perpen-

dicular to the green cone. This part of the trajectory is when the guidance algorithm

seeks to satisfy the attitude pointing constraints. The second part of the green line

is when the guidance algorithm seeks to maximize J(Cba). In this plot b−→
3 is not

exactly aligned with a−→
3, but this is expected since received power is not sensitive

near the extremum, which is to say the gradient near the optimum is quite shallow.

Fig. 6.9 shows the performance of the attitude control law with the gain-projected

Kalman filter simulation. Specifically, Fig. 6.9a shows that the angular velocity and

attitude errors trend to zero, which indicates that Cbd does in fact trend to 1. Fig. 6.9b

shows the reaction wheel rates and control torques, which also go to zero as there are

no external torques acting on the spacecraft.

6.6.2.3 LMI-Based Kalman Filter with Norm and Attitude Constraints

The third simulation uses the LMI-based Kalman filter, which considers both the

attitude constraints (6.65)-(6.66), and the norm constraint (6.53). The results of this

simulation are shown in Fig. 6.6, and the three-dimensional plot is shown in Fig. 6.8.

The objective function converges to its constrained extremum in a slightly longer

time than the gain-projected Kalman filter. In addition, the attitude constraints

are not satisfied as quickly in this example since dk is constrained. This is not a

shortcoming of the LMI-based Kalman filter, but rather an advantage. The effect of
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constraining dk is shown by comparing Fig. 6.9 and Fig. 6.10. Constraining dk results

in a smoother commanded attitude, gradient estimates that remain within the ±3σ

bounds, and smoother and smaller control effort than with the projected-gain Kalman

filter.

6.7 Closing Remarks

This chapter presents several useful results for unconstrained and constrained

extremum-seeking guidance on SO(3). First, the relationship between the gradient of

a function on SO(3) and the gradient of its Taylor series expansion is given. Second, it

is shown how to transform inclusion and exclusion zone attitude constraints to a linear

inequality constraint. Third, three different Kalman-filter-based extremum-seeking

guidance algorithms are presented to estimate the gradient of an unknown function

on SO(3) to find an extremizing attitude. Each filter has its unique advantages,

and can be chosen based on the level of complexity of the application. Numerical

simulations are presented to demonstrate the effectiveness of the extremum-seeking

guidance algorithms.

Several avenues exist to improve the proposed extremum-seeking algorithm. In

the present chapter, the guidance law may cause the attitude controller to command

unrealistic torques. To prevent this, the torques can either be saturated, or the guid-

ance algorithm can be augmented with a model of the spacecraft dynamics. Using

the spacecraft dynamics, torque limits can be written as a function of desired atti-

tude using an LMI, which can be incorporated in the LMI-based Kalman filter. The

resulting guidance algorithm will generate an attitude trajectory that will nominally

keep control torques within acceptable limits. In addition, other optimization al-

gorithms, such as conjugate-gradient methods, can improve the performance of the

extremum-seeking algorithm. Finally, the transformation of inclusion and exclusion

zone constraints to linear inequality constraints may prove to be a useful transforma-

tion for other areas of research, such as optimal control or path planning.
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(a) Objective function, constraints, and step size. In middle plot, con-
straints are satisfied when they are above the black dashed line (i.e., above
0).
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(b) Gradient estimate error with ±3σ bounds.

Figure 6.4: Extremum-seeking enabled by the unconstrained Kalman filter, with no
attitude constraints.
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(a) Objective function, constraints, and step size. In middle plot, con-
straints are satisfied when they are above the black dashed line (i.e., above
0).
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(b) Constrained gradient estimate error with ±3σ bounds.

Figure 6.5: Extremum-seeking enabled by the gain-projected Kalman filter, with
attitude inclusion and exclusion zones.
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(a) Objective function, constraints, and step size. In middle plot, con-
straints are satisfied when they are above the black dashed line (i.e., above
0).
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(b) Constrained gradient estimate error with ±3σ bounds.

Figure 6.6: Extremum-seeking enabled by the LMI-based Kalman filter, with attitude
inclusion and exclusion zones, and with norm constraint on dk.
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(a) Extremum-seeking with unconstrained Kalman filter.

(b) Extremum-seeking with gain-projected Kalman filter and
attitude constraints.

Figure 6.7: 3D-representation of extremum-seeking algorithms. Exclusion zone is
shown in red on the left and inclusion zone shown in green on the right.
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Figure 6.8: 3D-representation of extremum-seeking guidance with the LMI-based
Kalman filter. Exclusion zone is shown in red on the left and inclusion zone shown
in green on the right.
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(a) Attitude and angular velocity errors.
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(b) Reaction wheel speeds and control torques.

Figure 6.9: Spacecraft state errors and control for gain-projected Kalman filter
extremum-seeking simulation.
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(a) Attitude and angular velocity errors.
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(b) Reaction wheel speeds and control torques.

Figure 6.10: Spacecraft state errors and control for LMI-based Kalman filter
extremum-seeking simulation.
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Chapter 7

Review of Input-Output Theory

Input-output theory forms the basis for stability results in this part of this dis-

sertation. Some definitions presented are applicable to all real inner product spaces,

but this dissertation restricts itself to Lebesgue spaces. Much of the information is

taken from [87, 27, 88, 26].

7.1 Gain

Definition 7.1 (L2 stable [87]). An operator G : L2e → L2e is L2 stable if Gu ∈ L2

for all u ∈ L2.

Definition 7.2 (Finite L2 gain [87]). Consider an operator G : L2e → L2e, with

input u ∈ L2e. The operator G has finite L2 gain if there exists a constant γ and a

function β such that

‖Gu‖2T ≤ γ ‖u‖2T + β. (7.1)

An operator that has finite L2 gain is L2 stable. If β = 0, then G has finite L2 gain

with zero bias [87, p. 4]. This property is also known as weakly finite-gain stable

(WFGS) in [88, p. 191].

If G is linear and β = 0, then (7.1) implies ‖G‖∞ ≤ γ. Note that ‖G‖∞ = γ when

‖G‖∞ = sup
u∈L2e\{0}

‖Gu‖2T

‖u‖2T

.

The Small Gain Theorem, written below in Theorem 7.3, is a key component to

input-output stability theory. The Small Gain Theorem is applicable to operators

that map from an extended normed linear subspace, but in this dissertation, it is
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Figure 7.1: Negative feedback interconnection.

written only for L2e since the more general version is not needed. In Theorem 7.3,

an operator G that maps L2e → L2e is written as y = Gu, where y,u ∈ L2e.

Theorem 7.3 (Small Gain Theorem). Consider the systems Gi : L2e → L2e for

i ∈ {1, 2}, where

y1 = G1u1, u1 = r1 − y2,

y2 = G2u2, u2 = r2 + y1.

Suppose there are constants βi, γi ≥ 0 for i ∈ {1, 2} such that for all t ∈ R≥0,

‖yi‖T ≤ γi ‖ui‖T + βi.

If γ1γ2 < 1, r1, r2 ∈ L2, then u1,u2, y1, y2 ∈ L2. In other words, the closed-loop

system y = Gr, where r = [rT1 rT2 ]T and y = [yT
1 yT

2 ]T, has finite L2 gain.

The Small Gain Theorem plays an important role for LPV control, as it used to

design LPV controllers. The main disadvantage of using this method is when the

plant gain is high, the controller gain must be low, and can lead to conservative

controllers with poor closed-loop performance.

7.2 Passivity

Definition 7.4 (Passive, ISP, OSP, and VSP [28, 88]). A general square system with

inputs u ∈ L2e and outputs y ∈ L2e mapped through the operator G : L2e → L2e is

very strictly passive (VSP) if there exists constants β, 0 < δ < ∞, and 0 < ε < ∞
such that

〈y,u〉2T ≥ δ ‖u‖2
2T + ε ‖y‖2

2T + β, ∀u ∈ L2e, ∀T ∈ R≥0. (7.2)

The system is
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• input strictly passive (ISP) if δ ∈ R>0 and ε = 0,

• output strictly passive (OSP) if δ = 0 and ε ∈ R>0, and

• passive if δ = ε = 0.

Theorem 7.5 (Passivity Theorem [87]). Consider the feedback interconnection in

Fig. 7.1. If Gi : L2e → L2e for i = 1, 2 satisfies

〈yi,ui〉2T ≥ δi ‖ui‖2
2T + εi ‖yi‖2

2T + β, ∀ui ∈ L2e, ∀T ∈ R≥0,

for some constant βi ∈ R. If ε1 + δ2 > 0, and ε2 + δ1 > 0, where ε1 and δi may be

negative, then the feedback interconnection has finite L2 gain.

Remark 7.6. To further understand Theorem 7.5, consider a passive plant in feedback

interconnection with a controller. If the controller is ISP, then the closed-loop system

is L2 stable, but if the controller is VSP, the closed-loop system has finite L2 gain.

Closed-loop finite L2 gain is a motivating factor why a VSP controller is sought in

Chapter 8.

Passivity properties hold for nonlinear operators, and it can be difficult to ascertain

if an input-output map is passive. However, when considering a linear system, passiv-

ity and positive realness (PR) are synonymous, and the property of being very strictly

passive and being strictly positive real (SPR) with positive definite feedthrough are

synonymous. Lemma 7.7 provides conditions for a linear system to be SPR.

Lemma 7.7 (Kalman-Yakubovich-Popov (KYP) Lemma [89]). Consider the transfer

matrix G(s) = C(s1 − A)−1C + D, where (A,B,C,D) forms a minimal state-space

realization. The system G(s) is SPR if and only if there exists a P = PT > 0, an L
and W, and ν > 0 such that

PA + ATP = −LTL− 2νP (7.3)

PB = CT − LTW, (7.4)

D + DT = WTW. (7.5)

If the above holds for ν = 0, then G(s) is PR.

Lemma 7.7 is not directly used in this dissertation, but it is mentioned several

times. In addition, (7.3)-(7.5) are used as inspiration for VSP controller synthesis.

Several of the conditions to ensure an affine system is VSP are based on conditions

similar to Lemma 7.7.
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7.3 Conic Systems

There are many types of conic systems, including interior conic, exterior conic,

degenerate conic, strictly interior and exterior conic, and strictly degenerate conic.

Passive, ISP, OSP, and VSP systems are different cases of degenerate and strictly

degenerate conic. Chapter 8 uses the Passivity Theorem directly, but Chapter 9 uses

the Conic Sector Theorem for interior conic systems [21].

7.3.1 Definitions

Definition 7.8 (Interior Conic [90, 91]). A square system G : L2e → L2e that satisfies

− ‖Gu‖2
2T + (a+ b) 〈Gu,u〉2T − ab ‖u‖

2
2T ≥ β, ∀u ∈ L2e, ∀T ∈ R≥0, (7.6)

for β ∈ R and a, b ∈ R, a < b, is interior conic with bounds a and b, denoted

G ∈ cone[a, b]. The system G is strictly interior conic, denoted G ∈ cone(a, b), if (7.6)

holds for bounds a+ δ and b− δ for some δ > 0.

Remark 7.9 (Gain). If a = −γ and b = γ, then (7.6) reduces to (7.1).

Theorem 7.10 (Conic Sector Theorem [90, 91]). Consider the negative feedback in-

terconnection of two square systems, G1 : L2e → L2e and G2 : L2e → L2e, where

yi = Giui for i = 1, 2. The closed-loop system with inputs r = [rT1 rT1 ]T and outputs

y = [yT
1 yT

1 ]T is L2 stable if G1 ∈ cone[a, b] for a < 0 < b and G2 ∈ cone(−1
b
,− 1

a
).

Corollary 7.11 (Small Gain Theorem [88]). Consider the system in Theorem 7.10,

where G1 ∈ cone[−γ1, γ1] and G2 ∈ cone[−γ2, γ2]. If γ1γ2 < 1 and r ∈ L2, then

u ∈ L2 and y ∈ L2.

For linear systems with minimal state space realizations, LMI conditions exist to

relate a plant to its conic bounds. These LMI conditions are known as the Conic

Sector Lemma and the Modified Conic Sector Lemma. These two lemmas are not

used in this dissertation, but analogous versions are presented in Section 9.2.2 for

polytopic systems. As such, these two lemmas are presented within Theorem 7.12

below for completeness.

Theorem 7.12 (Conic Sector Lemma [92]). Consider a square, asymptotically stable,

LTI system, G : L2e → L2e with minimial state space realization (A,B,C,D). For

a, b ∈ R, a < b, the following are equivalent.

1. G ∈ cone[a, b].
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1

1

b

a

φ(u(t))

u(t)

Figure 7.2: Conic bounds on a memoryless nonlinearity.

2. There exists a P = PT > 0, and real matrices L, and W such that

PA + ATP + CTC = −LTL,

PB− a+ b

2
CT + CTD = −LTW,

DTD− (a+ b)
D + DT

2
+ ab1 = −WTW.

3. There exists a P = PT > 0, such that[
PA + ATP + CTC PB− a+b

2
CT + CTD

? DTD− (a+ b)D+DT

2
+ ab1

]
≤ 0. (7.7)

4. [Modified Conic Sector Lemma] There exists a P = PT > 0, such that[
PA + ATP + 1

b
CTC PB− 1

2

(
a
b

+ 1
)

CT + 1
b
CTD

? 1
b
DTD−

(
a
b

+ 1
) D+DT

2
+ a1

]
≤ 0. (7.8)

7.3.2 Graphical Interpretations of Conic Sectors

Graphical representations serve as a method to improve understanding of abstract

notions, such as conic sectors and the Conic Sector Theorem. Consider the memo-

ryless nonlinearity φ : R → R, such that (Gu)(t) = φ(u(t)) for t ∈ R≥0, where

G : L2e → L2e. If the trajectory (u(t), φ(u(t))) lies inside the sector bounded by two
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1
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(Gu)(t)

u(t)

(a) Conic plant sector, G ∈
cone[a, b].

−1

1

1
b

− 1
a

(Gcuc)(t)

uc(t)

(b) Plant conic sector complement,
negative inverse of controller sector.

1

1

ac = − 1
b

bc = − 1
a

(Gcuc)(t)

uc(t)

(c) Controller conic sector, Gc ∈
cone(ac, bc).

Figure 7.3: Visualization of the Conic Sector Theorem. Shaded areas are inside the
specified conic sector. A solid line indicates a nonstrict conic bound and a dashed
line indicates a strict conic bound. The visualization of the operator G borrows from
the visualization of a sector-bounded memoryless nonlinearity.

lines intersecting at the origin with slopes equal to a and b, then G ∈ cone[a, b], as

shown in Fig. 7.2. A visualization of the Conic Sector Theorem is shown in Fig. 7.3.

A controller (Fig. 7.3c) that guarantees input-output stability via the Conic Sector

Theorem is one where the graph of the negative inverse of the controller lies in the

plant’s sector’s complement (Fig. 7.3b).

Consider a stable, SISO LTI system G : L2e → L2e. The conic bounds of G : L2e →
L2e can be visualized on its Nyquist plot [90], as shown in Fig. 7.4. If G ∈ cone[a, b],

then the Nyquist plot of G lies entirely within the circle bounded on the real axis by
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Im

Reba

Figure 7.4: Nyquist of plot of plant G ∈ cone[a, b], with plot of circle defined by
cone[a, b]. The shaded area represents cone[a, b].

a and b. The Nyquist plot is useful when discerning how effective numerical methods

are at determining conic bounds. The proximity of the circle defined by cone[a, b] to

the plot of G can give an indication of “tightness” of the bounds. If the plot of G
does not lie within the circle defined by cone[a, b], then it is also an efficient method

to verify that G /∈ cone[a, b].

7.4 LPV Systems

Linear parameter varying (LPV) control began as an extension to gain-scheduling

by defining a system in state space form with state space matrices that are dependent

on parameters [25, 93]. The goal of the LPV framework was to define new control

methodologies that can take advantage of well-known linear control techniques, but

that also provide closed-loop stability and performance guarantees of nonlinear sys-

tems. LPV systems are defined as

ẋ = A(s)x + B(s)u, (7.9)

y = C(s)x + D(s)u, (7.10)

where s is a parameter that can be dependent on time. In the LPV literature, the

parameter is often written as θ or ρ. In this dissertation, s is used due to its origin

as a scheduling signal.
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LPV systems are related to linear time-varying systems. A linear time-varying

system is a linear system that depends only on time, a linear parameter-varying

system depends on a exogenous variable or time, and a quasi-LPV system depends

on state, exogenous variables, or time. Quasi-LPV systems that only depend on state

are also known as state dependent coefficients [94]. In this dissertation, the signals

s = s(σ(t), x(t), t) can be dependent on time, external variables σ, or the system state

x. In addition, the difference between LPV and quasi-LPV systems are not treated

because how s changes has no effect on the results of this dissertation.

Definition 7.13 (Quadratic Stability). Let Ω be a set of all admissible s. An LPV

system is quadratically stable if there exists an P(s) > 0 such that

AT(s)P(s) + P(s)A(s) +
N∑
i=1

ṡi
∂P(s)
∂si

< 0, (7.11)

for all s ∈ Ω.

Equation (7.11) is infinite-dimensional since it must be evaluated for all s ∈ Ω,

which poses a drawback to this formulation. There are several methods of circum-

venting this problem. A gridding solution can be accomplished by evaluating (7.11)

at many s and ṡ combinations. A constant P can also be considered, which introduces

conservatism in the result.

The H∞ norm cannot be used for performance since an LPV system is parameter

dependent and time varying. Instead, the induced L2 norm is used. The induced L2

norm for the system G : L2e → L2e defined by (7.9) and (7.10) is

‖G‖22 = sup
s∈Ω

sup
u∈L2e\{0}

‖Gu‖2T

‖u‖2T

.

However, by abuse of language, the induced L2 norm for an LPV system is often

written as the H∞ gain ‖G‖∞ of the system. A condition for L2 stability of an LPV

system given a state-space realization is given by Theorem 7.14.

Theorem 7.14 (Generalized Bounded Real Lemma [26]). Consider the system G, and

that |ṡi| ≤ νi. If there exists a P(s) = PT(s) > 0 such that AT(s)P(s) + P(s)A(s) +
∑N

i=1 νi
∂P(s)
∂si

P(s)B(s) CT(s)
? −γ1 DT(s)
? ? −γ1

 < 0, (7.12)
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then ‖G‖22 ≤ γ.

Theorem 7.14 is a state-space dependent result, and it is implied that the plant

and closed-loop system can be written in LPV form. However, LPV systems are

often approximations of nonlinear systems. Thus, any controllers synthesized using

Theorem 7.14 do not actually have any closed-loop stability guarantees. Instead of

using Theorem 7.14 for stability, this part focuses on using passive and conic input-

output theory. The advantage of these input-output stability theories is that even if

a plant LPV approximation is used for controller synthesis, closed-loop stability with

the original nonlinear system can still be guaranteed if passive or conic bounds on

the original nonlinear system are known.
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Chapter 8

Very Strictly Passive Control with

Affine Parameter Dependence

8.1 Introduction

Nonlinear systems that have a passive input-output map are pervasive, with ex-

amples including spacecraft, flexible robot manipulators, and electric circuits [15].

The passivity theorem states that the negative feedback interconnection of a very

strictly passive (VSP) controller and a passive plant has finite L2 gain [88]. A strictly

positive real (SPR) controller is often used in place of a VSP controller to control

a nonlinear passive system. The reason is because the design of an SPR controller,

which is a linear time-invariant (LTI) controller, is often more straightforward than

the design of a nonlinear VSP controller [95]. However, an SPR controller optimally

designed based on a linearization of the nonlinear passive system about a particular

set point will not necessarily perform in an optimal way throughout the entire operat-

ing envelope of the nonlinear system. In order to improve performance and guarantee

closed-loop L2 stability, a nonlinear VSP controller is sought. This chapter’s focus is

the analysis and synthesis of a particular class of nonlinear VSP controllers, which

have an affine dependence on its parameters or scheduling signals.

When considering passive nonlinear systems, an LPV plant representation with

affine parameter dependence can be used to design SPR subcontrollers that can be

gain-scheduled [96, 95]. The SPR subcontrollers can be designed individually at the

linearizations of each set point, i = 1, . . . , N . The resulting system is VSP, and

thus can stabilize a passive nonlinear system via the Passivity Theorem. However,

unlike LPV controllers, the number of states associated with [96, 95] required to be

integrated on-line in real time increases with O(N), which may not be acceptable
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for some applications. Other attempts at passivity-based gain-scheduling requires a

constant dynamics matrix [97].

This chapter introduces a controller that is a major step towards closing the gap

between VSP gain-scheduled controllers and LPV controllers. The proposed controller

is referred to as the VSP-LPV controller, and improves on both control paradigms.

For example, the passivity-based gain-scheduled controller [96, 95], has in increasing

number of integrating states for each set point. In [97, 98], the controllers have a

fixed number of integrating states with each additional set point, but the controller

dynamics matrix Ac is not a function of any parameter. The proposed VSP-LPV con-

troller has a parameter dependent Ac and has a constant number of integrating states

versus number of set points. The closest related work in the LPV-passivity framework

are controllers that deal with integral quadratic constraints (IQCs) [99]. However,

within the LPV framework, the IQC is placed on the closed-loop system, such that

L2 input-output stability is achieved [100]. In addition, the Passivity Theorem is not

used explicitly when using IQCs. This chapter constrains the controller and not the

closed-loop system, and uses the Passivity Theorem for closed-loop stability results.

The synthesis of LPV controllers differs from traditional gain-scheduling. LPV

controllers require a predefined synthesis method and are directly synthesized “en-

masse” [24]. Characterization of stability and controller synthesis in the LPV frame-

work is done through linear matrix inequalities (LMIs), which can be solved numer-

ically very efficiently [31]. Traditional gain-scheduled controllers synthesize subcon-

trollers at specific set points, and then linearly interpolate or switch between the

subcontrollers using scheduling signals [101].

The proposed VSP-LPV controller has features from traditional gain-scheduling

and LPV control synthesis. An affine parameter LPV representation of the nonlinear

passive system is required. As is discussed in Section 8.3, subcontrollers are synthe-

sized at each set point using H2 or H∞ control techniques, which allows for the flexi-

bility to tune the controller at each set point. The second step ensures the controller is

VSP, and is done “en-masse” using convex optimization with LMI constraints. Much

like the polytopic LPV framework, where a constant Lyapunov matrix is used for

controller synthesis [22], the VSP-LPV controller requires a constant Lyapunov ma-

trix to guarantee the desired VSP property. The resulting VSP-LPV controllers are

referred to as the H2-VSP and H∞-VSP controllers so that their synthesis methods

can be identified.

The VSP-LPV controller has similar form to the self-scheduled LPV controller

found in [102]. As such, this chapter provides experimental results comparing the per-
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formance of the VSP-LPV controller with H2-VSP and H∞-VSP synthesis techniques

to the controller from [102]. The controller from [102] is designed for a polytopic plant

instead of an affine plant. However, a plant that is affine can be transformed to a poly-

topic form if lower and upper bounds on the scheduling parameters are known [22].

In the experimental results, the scheduling signals are such that no affine to polytopic

transformation is needed.

This chapter has three main contributions. First, the VSP-LPV controller that

guarantees stability of passive nonlinear systems is presented. Since the VSP-LPV

controller is dependent on the Passivity Theorem for stability results, using an approx-

imate LPV model is sufficient for controller design. Second, theH2-VSP andH∞-VSP

synthesis methods are described in Section 8.3. Third, the VSP-LPV controller using

the H2-VSP and H∞-VSP synthesis techniques are compared experimentally to the

LPV controller from [102] by using each controller for trajectory tracking of a flexible-

joint two-link manipulator. The VSP-LPV controller is presented in Section 8.2 with

synthesis in Section 8.3. The application example with experimental results is in

Section 8.4, followed by closing remarks in Section 8.5.

8.2 Very Strictly Passive Linear Parameter Varying Con-

troller

8.2.1 Plant Description

Consider the nonlinear system G defined by

ẋ = f(x,w,u), (8.1)

z = g(x,w,u), (8.2)

y = h(x,w,u), (8.3)

where x ∈ Rn is the system state, w ∈ Rnw is the disturbance or exogenous signal,

u ∈ Rm is the control input, z ∈ Rnz is the performance variable and y ∈ Rm is

the measurement signal. The map u 7→ y is passive. The map w 7→ z is often

used for to asses performance and for synthesizing controllers, and is not necessarily

passive. For controller synthesis, the nonlinear system (8.1)-(8.3) must be written in

affine parameter form. The plant’s LPV representation may be exact or approximate,

and scheduling signals may be functions of state or exogenous signals. Regardless of

what LPV plant representation is used, as long as the representation is affine in the
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parameters (subject to some small constraints on the parameters), closed-loop L2

stability of the VSP-LPV controller connected in a negative feedback interconnection

with this passive (or input strictly passive, or output strictly passive, or VSP) plant

is guaranteed. Stability of the LPV plant representation in closed-loop with the

controller is not investigated because it is the nonlinear plant that is under control in

practice, not the LPV representation of the nonlinear plant.

Writing (8.1)-(8.3) in affine parameter form yields

ẋ = A(s)x + B1(s)w + B2(s)u, (8.4)

z = C1(s)x + D11(s)w + D12(s)u, (8.5)

y = C2(s)x + D21(s)w + D22(s)u, (8.6)

where s = [s1 · · · sN ]T are the scheduling signals, and A B1 B2

C1 D11 D12

C2 D21 D22

 =
N∑
i=1

si

 Ai B1,i B2,i

C1,i D11,i D12,i

C2,i D21,i D22i

 . (8.7)

Each si = si(σ(·), x, ·) can be dependent on time, external variables σ, or the system

state x. For some α ∈ R>0, it is assumed that the signals satisfy

N∑
i=1

s2
i (σ, x, t) ≥ α > 0


si(σ, x, t) ∈ L2e, ∀σ, x ∀t ≥ 0,

si(σ, x, t) ∈ L∞, ∀σ, x ∈ L∞,
si(σ, x, t) ≥ 0,

(8.8)

guaranteeing that the map u 7→ y exists, the scheduling signals are square integrable

on any finite time interval, and the time dependence of each signal is bounded. There

is no restriction on the time rate of change of the scheduling signals. Unlike other

passivity-based gain-scheduling schemes [96, 95], scheduling signals must be positive.

In [96, 95], scheduling signals only affect the input and output of the controller. Since

both the input and output of the controller are scaled by the scheduling signals, a

negative sign on the signal retains the structure of the inner product, that is 〈u, y〉T =

〈−u,−y〉T . Here, the dynamics matrix is also a function of the scheduling signal, and

a negative scheduling signal can change the system’s input-output properties. If

bounds on negative scheduling signals are known, the system can be redefined so that

scheduling signals are positive.

Some LPV systems are already described with an affine parameter representa-
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tion [22]. One method of transforming (8.1)-(8.3) to (8.4)-(8.6) is by linearizing (8.1)-

(8.3) at set points (xi,wi,ui), which yields a realization for Gi of the form δẋ
δz
δy

 =

 Ai B1,i B2,i

C1,i D11,i D12,i

C2,i D21,i D22,i


 δx
δw
δu

 , (8.9)

where δ(·) = (·) − (·)i. The dynamics at state x can be defined by using (8.9)

in (8.7) by linearly interpolating between different Gi using the scheduling signals si.

Furthermore, the plant in (8.4)-(8.6) is polytopic if each si ≥ 0 and
∑N

i=1 si = 1.

If bounds on si are known, an affine plant representation can be transformed to a

polytopic plant representation [22]. The VSP-LPV controller requires a plant with an

affine parameter representation (8.4)-(8.6) for controller synthesis, but the stability

results are valid for the nonlinear system (8.1)-(8.3).

8.2.2 VSP-LPV Controller

The main contribution of this chapter is a VSP-LPV controller yc = Gcuc that

is designed for passive plant (8.1)-(8.3) using (8.4)-(8.6). The controller’s input is

y = uc ∈ Rm and output is u = −yc ∈ Rm. The VSP nature of Gc is proven in

Theorem 8.1. The controller Gc has the state-space form

ẋc = Ac(s)xc + Bc(s) (uc − ε̄Cc(s)xc) , (8.10)

yc = Cc(s)xc + Dcuc, (8.11)

where xc ∈ Rnc is the controller state, Dc = δ̄1, ε̄, δ̄ ∈ R>0 and s = [s1 · · · sN ]T, N ∈
N>0. The matrices Ac(s), Bc(s), and Cc(s) are affine in s and are written as[

Ac(s) Bc(s)
Cc(s) Dc

]
= diag

{
0, δ̄1

}
+

N∑
i=1

si

[
Ac,i Bc,i

Cc,i 0

]
. (8.12)

Each Ac,i is assumed Hurwitz and satisfies the LMI

PcAc,i + AT
c,iPc < 0, i = 1, . . . , N, (8.13)

where Pc = PT
c > 0. Equation (8.13) is equivalent to

PcAc,i + AT
c,iPc = −Qc,i, (8.14)
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where Qc,i = QT
c,i > 0. Each pair (Bc,i,Cc,i) must satisfy

PcBc,i = CT
c,i. (8.15)

Due to the linearity of (8.14), a matrix Qc = QT
c > 0 can be constructed such that

PcAc + AT
c Pc = −Qc where Qc =

∑N
i=1 siQc,i. In (8.13), the matrix Pc is a common

Lyapunov matrix that is the same for each i = 1, . . . , N . The existence of common

Lyapunov matrices has been given much attention [103], and conditions for Hurwitz

matrices, 2 × 2, and 3 × 3 complex matrices can be found in [104]. Generally, the

conditions for the existence of a common Lyapunov matrix remains an open problem.

Nevertheless, these are still commonly used in LPV control [22].

With a nonzero ε̄, the effective controller is

ẋc = (Ac(s)− ε̄Bc(s)Cc(s))xc + Bc(s)uc,

and the effective controller dynamics matrix is (Ac(s)− ε̄Bc(s)Cc(s)). The role of ε̄ is

to ensure that the controller is at least OSP. When combined with a nonzero δ̄, the

controller is VSP and thus the controller is guaranteed to stabilize a passive plant via

the Passivity Theorem. The VSP property of the controller is proven in the following

theorem, Theorem 1.

Theorem 8.1. Consider the controller yc = Gcuc described by (8.10)-(8.11), where N ∈
N>0, with ε̄, δ̄ ∈ R>0 and with the scheduling signals satisfying (8.8). Furthermore,

if all Ac,i, i = 1, . . . , N are Hurwitz, if Pc is obtained from (8.13), and if (Bc,i,Cc,i)

satisfies (8.15), then the controller yc = Gcuc is VSP.

Proof. Consider the Lyapunov-type function

V =
1

2
xT

c Pcxc. (8.16)
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The time derivative of (8.16) is

V̇ =
1

2
xT

c

(
PcAc + AT

c Pc

)
xc + xT

c PcBcuc − ε̄xT
c PcBcCcxc

= −1

2
xT

c Qcxc + xT
c CT

c uc − ε̄xT
c CT

c Ccxc

= −1

2
xT

c Qcxc + (yc − Dcuc)
T uc

− ε̄ (yc − Dcuc)
T (yc − Dcuc)

= −1

2
xT

c Qcxc + yT
c uc − uT

c Dcuc − ε̄uT
c DT

c Dcuc

− ε̄yT
c yc + 2ε̄yT

c Dcuc. (8.17)

Let q = αmini=1,...,N(λmin(Qc,i)). Integrating (8.17) in time, and simplifying, yields

V(T )− V(0) = −1

2

T∫
0

xT
c Qcxcdt− 〈uc,Dcuc〉T

− ε̄ ‖Dcuc‖2
2T − ε̄ ‖yc‖2

2T + 〈yc,uc〉T + 2ε̄ 〈yc,Dcuc〉T ,

(1 + 2ε̄δ̄) 〈yc,uc〉T ≥ −V(0) +
1

2
q ‖xc‖2

2T + ε̄ ‖yc‖2
2T + (δ̄ + ε̄δ̄2) ‖uc‖2

2T ,

〈yc,uc〉T ≥
1

1 + 2ε̄δ̄

(
− V(0) +

1

2
q ‖xc‖2

2T + ε̄ ‖yc‖2
2T + δ̄(1 + ε̄δ̄) ‖uc‖2

2T

)
≥ β + ε ‖yc‖2

2T + δ ‖uc‖2
2T , (8.18)

where

ε =
ε̄

1 + 2ε̄δ̄
, δ =

δ̄(1 + ε̄δ̄)

1 + 2ε̄δ̄
. (8.19)

Noting that β = − 1
1+2ε̄δ̄
V(0) is only dependent on the initial condition, and ε, δ ∈ R>0,

proves yc = Gcuc is VSP.

Corollary 8.2. Consider the controller yc = Gcuc in Theorem 8.1. The controller

yc = Gcuc is

1. ISP if δ̄ ∈ R>0, ε̄ = 0,

2. OSP if δ̄ = 0, ε̄ ∈ R>0,

3. passive if δ̄ = 0, ε̄ = 0.

Proof. The proof follows by substituting the values for δ̄ and ε̄ into (8.19), and then

by comparing (8.18) to the definition of interconnected passive systems from [88].

97



8.3 Controller Synthesis

Provided unknown uncertainties do not violate the plant’s passive map, any con-

troller that satisfies Theorem 8.1 can robustly stabilize (8.1)-(8.3). The next challenge

is to synthesize a controller that meets some closed-loop performance measure. A lin-

ear system’s closed-loop performance can be measured using H2 and H∞ norms, and

an optimal controller would be one that minimizes said norms. Ideally, the VSP-LPV

controller could be designed to minimize the induced L2 norm of the closed-loop non-

linear system. Even minimizing the closed-loop H2 or H∞ norms of an LTI plant in

negative feedback with an LTI controller subject to (8.13) and (8.15) with N = 1

is difficult. Methods only exist that minimize an upper-bound on the H2 or H∞
norm [105, 106, 107, 108]. In [109, 110], an LTI controller is derived by minimizing

an upper bound of H2 and H∞ for systems with polytopic uncertainty. An upper

bound on H2 and induced L2 norm of affine parameter systems with affine parameter

controllers is found in [111].

To overcome these challenges, given either the H2 or the H∞ framework, we

consider two general methods and their dual to design a controller that satisfies the

conditions of Theorem 8.1. The method consists of transforming the passive nonlinear

system to an LPV system with an affine representation, as shown in Fig. 8.1. Next,

either the H2 or the H∞ closed-loop norm at each set point is minimized. The

resulting controller is forced to satisfy (8.13) and (8.15) using an H2-inspired or SPR-

inspired method. The controller synthesis methods inspired from H2 or H∞ control

techniques are here named H2-VSP and H∞-VSP methods. These synthesis methods

are influenced by previous work on passivity-based gain-scheduled controller [96, 95],

and on conic controllers [19, 18].

Neglecting a Dc matrix during the initial parts of the synthesis is required for the

H2 synthesis so that there is roll-off at higher frequency. In addition, the Dc matrix

is omitted for the H∞ controller synthesis so that a large Dc is not provided by the

synthesis method, which would excite high-frequency measurement noise. That being

said, a zero Dc would violate the VSP condition of the controller, and thus Dc is set to

Dc = δ̄1, where δ̄ is small. We choose δ̄ = 10−5 since this has an insignificant impact

on the controller performance, but has a critical impact on its passivity properties.

8.3.1 H2-VSP Controller

In this section the plant considered is described by (8.4)-(8.6) assuming

1. the scheduling signals satisfy (8.8),
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Figure 8.1: Workflow for LPV controller synthesis. Specific controllers used for ex-
perimentation are in red. The “H2-inspired for Bc,i” and “SPR-inspired for Bc,i”
methods are also applicable to Cc,i, but are not shown.

2. (Ac,i,B1,i) is controllable and (Ac,i,C1,i) is observable,

3. (Ac,i,B2,i) is controllable and (Ac,i,C2,i) is observable,

4. DT
12,iC1,i = 0 and DT

12,iD12,i > 0,

5. D21,iBT
1,i = 0 and D21,DT

21,i > 0, and

6. D11,i = D22,i = 0.

TheH2-VSP controller Gc is designed at each set point, to obtain Gc,i with state-space

matrices (Ac,i,Bc,i,Cc,i,Dc). Let QK,i = CT
1,iC1,i, RK,i = DT

12,iD12,i, QL,i = B1,iBT
1,i,

and RL,i = D21,iDT
21,i, and then minimize the closed-loop H2 norm. This can be done

as in [112], or as a convex optimization problem in two steps [31, p. 115], by first, for

i = 1, . . . , N , maximizing JK(Pi) = tr(BT
1,iPiB1,i) subject to the constraint[

AT
i Pi + PiAi + QK,i PiB2,i

? RK,i

]
≥ 0, (8.20)

and then by maximizing JL(Πi) = tr(C1,iΠiCT
1,i) subject to[

AiΠi + ΠiAT
i + QL,i CT

2,iΠi

? RL,i

]
≥ 0. (8.21)
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Given Pi, set Ki = R−1
K,iBT

2,iPi and given Πi, set Li = ΠiCT
2,iR

−1
L,i , leading to a

controller of the form

ẋc = (Ai − B2,iKi − LiC2,i)︸ ︷︷ ︸
Ac,i

xc + Li︸︷︷︸
Bc,i

uc, (8.22)

yc = Ki︸︷︷︸
Cc,i

xc. (8.23)

The matrix Ac,i must be Hurwitz, and thus it must be verified that Ai−B2,iKi−LiC2,i

does satisfy this property. However, simply restricting Ac,i to be Ac,i = Ai−B2,iKi or

Ac,i = Ai −LiC2,i can suffice. The controller satisfying Theorem 8.1 at this set point

has a similar form with

Ac,i = Ai − B2,iKi − LiC2,i, Cc,i = Ki, Dc = δ̄1,

where Bc,i is designed so that (8.13) and (8.15) are satisfied, and δ̄ ∈ R>0. Various

design methods for Bc,i exist, explained in Sections 8.3.1.1 and 8.3.1.2. The dual

method to ensure Theorem 8.1 is satisfied is to let Bc,i = Li and use Cc,i as the design

variable. The matrix Cc,i is determined so that (8.13) and (8.15) hold.

8.3.1.1 H2-inspired synthesis

Modifying the procedure in [108], the Bc,i matrix is determined by minimizing the

H2-norm of the difference between the H2 controller and a controller that satisfies the

conditions of (8.13) and (8.15). This optimization problem is given by minimizing

J (P−1
c ,Bc,1, . . . ,Bc,N) =

N∑
i=1

tr(Bc,i − Li)
TWi(Bc,i − Li), (8.24)

subject to, for i = 1, . . . , N ,

Ac,iP−1
c + P−1

c AT
c,i < 0, (8.25)

Bc,i = P−1
c CT

c,i, (8.26)

where (8.25)-(8.26) are a modification of (8.13) and (8.15). The matrix Wi is the

observability Grammian that satisfies

AT
c,iWi + WiAc,i + CT

c,iCc,i = 0. (8.27)
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The objective function (8.24) is chosen because when the difference between Bc,i and

Li subject to the weight Wi is minimized, the difference between the H2 controller

and the controller that satisfies the conditions of (8.13) and (8.15) is minimized as

desired. This method to determine Bc,i is used in this chapter.

The solution to the optimization problem given by (8.24)-(8.27) can be trans-

formed to an SDP by introducing a slack variable Zi, where

Zi ≥ (Bc,i − Li)
TWi(Bc,i − Li). (8.28)

SDPs have a linear objective function with LMI constraints, and can be solved nu-

merically very efficiently [31]. The Schur complement and (8.26) can then be used to

expand (8.28). The optimization problem’s objective becomes to minimize

J (P−1
c ,Z1, . . . ,ZN) =

N∑
i=1

tr(Zi),

such that for i = 1, . . . , N , [
Zi (P−1

c Cc,i − Li)
T

? W−1
i

]
≥ 0,

and (8.25) are satisfied, where Wi is given by (8.27). The matrix Bc,i is then deter-

mined from (8.26) using P−1
c found from the solution of the optimization problem.

Similar to [19], the dual version of this synthesis method is to let Bc,i = Li

and to allow Cc,i be the design variable. In this case, (8.24) is modified so that

J (Cc,1, . . . ,Cc,N) =
∑N

i=1 tr(Cc,i − Ki)
TVi(Cc,i − Ki), subject to (8.13) and (8.15),

where Vi is the controllability Grammian.

8.3.1.2 SPR-inspired synthesis

Recall via the Kalman-Yakubovich-Popov (KYP) Lemma that an LTI system

with state-space realization (A,B,C) is SPR if and only if ATP + AP = −Q, and

PB = CT for positive definite matrices P and Q [89]. An LTI controller with state-

space realization (Ac,Bc,Cc) with Ac Hurwitz is made SPR by choosing a positive

definite Qc, by solving AT
c Pc + AcPc = −Qc for Pc, and then solving for a new Bc

using Bc = P−1
c CT

c [113].

Inspired by this method, the second method to determine each Bc,i begins by
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choosing Qc,i = QT
c,i > 0 and solving for Pc,i in

Pc,iAc,i + AT
c,iPc,i = −Qc,i.

However, for the LPV controller to be VSP, there cannot be different Pc,i matrices,

but rather a single Pc. The matrix Pc is determined by minimizing the difference

between Pc and each Pc,i using the objective function

J (Pc) =
N∑
i=1

tr(Pc,i − Pc)
T(Pc,i − Pc), (8.29)

subject to the constraints (8.13). The matrix Bc,i is then found by solving (8.15).

Although not shown in this chapter, this problem can be also formulated as an SDP

using a procedure similar to the one outlined in Section 8.3.1.1. A dual version of this

method exists by setting Bc,i = Li and then using the resulting Pc from the solution

to (8.29) in (8.15) to determine Cc,i.

8.3.2 H∞-VSP Controller

The assumptions on (8.4)-(8.6) are [114]

1. the scheduling signals satisfy (8.8),

2. (Ac,i,B2,i) is stabilizable and (Ac,i,C2,i) is detectable, and

3. D22 = 0 for simplicity.

These assumptions are less restrictive than in the H2-VSP case. In this framework,

a controller in the form of (8.10)-(8.11) is needed with matrices

Ji =

[
Ac,i Bc,i

Cc,i Dc,i

]
, (8.30)

that minimizes the closed-loopH∞-norm at each set point. When finding this nominal

controller, Dc,i is set to zero, and then later adjusted to have a constant Dc = δ̄1 as

in the H2 case. Notation borrows from [27], but the method to determine (8.30) is

from [114]. Define the matrices No,i and Nc,i as

R(No,i) = N
([

C2,i D21,i

])
, (8.31)

R(Nc,i) = N
([

BT
2,i DT

12,i

])
. (8.32)
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The matrices Xi = XT
i > 0 and Yi = YT

i > 0 are found by minimizing γi > 0 subject

to the LMI constraints

[
No,i 0
? 1

]T  AT
i Xi + XiAi XiB1,i CT

1,i

? −γi1 DT
11,i

? ? −γi1

[ No,i 0
? 1

]
< 0, (8.33)

[
Nc,i 0
? 1

]T  AiYi + YiAT
i YiCT

1,i B1,i

? −γi1 D11,i

? ? −γi1

[ Nc,i 0
? 1

]
< 0, (8.34)

[
Xi 1
? Yi

]
≥ 0. (8.35)

The matrix X̄i is determined from Xi − Y−1
i = X̄iX̄

T
i . The matrix X̄i is used to

construct Xcl,i, where

Xcl,i =

[
Xi X̄T

i

? 1

]
. (8.36)

The matrix Ji is found by solving

HXcl,i
+ QT

i JT
i PXcl,i

+ PT
Xcl,i

JiQi < 0, (8.37)

using the parameterizations

Ai =

[
Ai 0
0 0

]
, Bi =

[
0 B2,i

1 0

]
, (8.38)

Ci =

[
0 1

C2,i 0

]
, D1,i =

[
D1,i

0

]
, (8.39)

Ci =
[

C1,i 0
]
, D12,i =

[
0 D12,i

]
, (8.40)

D21,i =

[
0

D21,i

]
, (8.41)
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and where

PXcl,i
=
[

BT
i Xcl,i 0 DT

12,i

]
, (8.42)

Qi =
[

Ci D21,i 0
]
, (8.43)

HXcl,i
=

 AT

i Xcl,i + Xcl,iAi Xcl,iD1,i CT

i

? −γi1 DT
11,i

? ? −γi1

 . (8.44)

This synthesis procedure yields an H∞ controller for a specific set point. As

in the H2 case, the nominal Bc,i can ignored and replaced by a Bc,i matrix that

ensures (8.13) and (8.15) are satisfied. In this chapter, the method in Section 8.3.1.1

is used to determine Bc,i. The resulting Ji is not guaranteed to satisfy (8.37) for the

minimal γi, as expected due to the added robustness caused by the VSP nature of

the controller.

8.3.3 Self-Scheduled LPV Controller

The LPV controller used is from [102] as this controller has a very similar structure

to the H∞-VSP controller. The assumptions are

1. the scheduling signals satisfy (8.8),

2. the plant is polytopic,

3. (A,B2) and (A,C2) are quadratically stabilizable and detectable (see [102]),

4. D22 = 0 for simplicity, and

5. B2, C2, D12, and D21 must all be constant and parameter independent.

In the application example, the LPV representation is already polytopic. The poly-

topic LPV control synthesis essentially determines control matrices at the vertices of

the polytope of the plant with a common Lyapunov function, and are then scheduled

as in (8.12).

The fifth assumption is unlike the VSP-LPV controller, where the matrices B2,

C2, D12, D21 can be different at each set point. In the application example, B2 is

dependent on the mass matrix of the system, and thus B2 varies as a function of the

scheduling signal. If B2 is not constant, there are an infinite number of constraints

in the resulting LMIs required for controller synthesis [115], which can be overcome

by pre-filtering the control inputs as in [102]. A first-order low-pass filter is used for

both inputs G(s) = ωi
s+ωi

that has large enough bandwidth to capture plant dynamics.

The filter increases the effective order of the controller.
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8.3.4 VSP-LPV Controller Synthesis Summary

Each controller synthesis method begins with linearized plant in (8.9). The plant

must satisfy the assumptions for the H2-VSP controller in Section 8.3.1.

1. Define QK,i = CT
1,iC1,i, RK,i = DT

12,iD12,i, QL,i = B1,iBT
1,i and RL,i = D21,iDT

21,i.

2. Maximize JK(Pi) = tr(BT
1,iPiB1,i) subject to (8.20).

3. Maximize JL(Πi) = tr(C1,iΠiCT
1,i) subject to (8.21).

4. Set Cc,i = R−1
K,iBT

2,iPi, Li = ΠiC2,iR−1
L,iand Ac,i = Ai − B2Cc,i − LiC2,i. Verify

that Ac,i is Hurwitz.

5. Determine a Bc,i by following the procedure in Section 8.3.1.1 or 8.3.1.2.

6. Set Dc = δ̄1.

The H∞-VSP controller requires (Ac,i,B2,i,C2,i) is stabilizable and detectable with

D22 = 0 for simplicity.

1. Minimize γi > 0 subject to (8.33)-(8.35) and find an Xi and Yi. This step

involves N minimizations with 3 LMI constraints each.

2. Solve for Xcl,i using (8.36) N times.

3. Determine Ji using (8.37).

4. Determine a Bc,i by following the procedure in Section 8.3.1.1 or 8.3.1.2.

5. Set Dc = δ̄1.

8.4 Application Example

The content of this work is directed at controlling a general nonlinear passive

system. The purpose of this application example is to show how to use the VSP-LPV

controller on a real system. Although the H∞-VSP controller has relatively superior

performance, the main thrust is that regardless of how other controllers perform,

the VSP-LPV controllers guarantee closed-loop input-output stability as it exploits

passivity properties of the plant under consideration, while other existing LPV control

design methods do not.

8.4.1 Plant Description

The three controller types are used on the Quanser two-link planar flexible-joint

manipulator [116], shown in Fig. 8.2. The manipulator’s physical properties are in

Table 8.1. Control of the flexible joint manipulator is difficult because the system

105



Table 8.1: Two-link manipulator properties.

Parameter
Joint 1 Joint 2

Symbol Value Symbol Value

Length (m) L1 0.343 L2 0.267

Link mass (kg) m1 1.510 m2 0.873

Link moment of
inertia (kg·m2)

I1 0.0392 I2 0.00808

Centre of mass
of link relative to
joint (m)

rcm,1 0.159 rcm,2 0.0550

Joint stiffness
(N·m/rad)

k1 9.0 k2 4.0

Hub moment of
inertia (kg·m2)

Ihub,1 0.011 Ihub,2 0.0094

consists of a rigid body and lightly damped flexible joints. The flexibility of the joints

is a source of modelling uncertainty, and the varying dynamics of the manipulator

are a source of nonlinearity. The VSP-LPV controller is robust to uncertain mass

and stiffness of the manipulator, and the gain-scheduling provides a controller that is

able to effectively function throughout various manipulator configurations.

The manipulator’s equations of motion are [96]

M(q)q̈ + Dq̇ + Kq = B̂τ + fnon(q, q̇), (8.45)

where M = MT > 0, D = DT ≥ 0, and K = KT ≥ 0 are the mass, damping

and stiffness matrices, B̂ = [1m×m 0]T is the input matrix, fnon = [fTnon,θ fTnon,e]
T

are the nonlinear inertial and Coriolis forces, τ ∈ Rm are the joint torques, and

q ∈ Rnp are the generalized coordinates. The generalized coordinates are partitioned

to joint angles θ = [θ1 · · · θm]T ∈ Rm and elastic coordinates qe ∈ Rne such that

q = [θT qT
e ]T. Additionally,

M =

[
Mθθ Mθe

Meθ Mee

]
, (8.46)

and K = diag (0m×m,Kee). The plant dimensions for a two-link flexible joint manip-

ulator are m = 2, ne = 2, and np = 4.

The major source of nonlinearity in (8.45) is the second joint angle θ2. The
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Figure 8.2: Quanser two-link flexible-joint manipulator.

mass matrix is dependent on cos(θ2) and the manipulator’s second joint angle is in

the range of [−90◦, 90◦]. Thus to cover the entire operating envelope of the second

joint, set points can be chosen with θ2 ∈ [0◦, 90◦]. Three set points are chosen with

θ2,i ∈ {0◦, 45◦, 90◦}, and with all other states zero so that

qi =
[

0 θ2,i 0
]T
. (8.47)

Equation (8.45) is linearized at qi to form Ai, B2,i, and C2,i, i = 1, . . . , 3. The schedul-

ing signals si are then determined by linear interpolation so that θ2 =
∑N

i=1 siθ2,i. For

example, if θ2 = 22.5◦, then s = [0.5 0.5 0]T. The linearization of (8.45) in the form

of (8.9) is

Ai =

[
0 1

−M(qi)−1K −M(qi)−1D

]
, (8.48)

B2,i =

[
0

−M(qi)−1B̂

]
, (8.49)

C2,i =
[

02×4 12×2 02×2

]
, (8.50)

where the measurement is the joint rates. All three controllers use the same weighting
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matrices

B1,i =

[
B2,i

[
2 0

0 0.5

]
0

]
, D11 = 0, (8.51)

C1 =

 0 31 0
0 0 0.31
0 0 0

 , D12 =
[

0 1
]T
, (8.52)

D21 =
[

0 1
]
, (8.53)

such that the assumptions 1)-6) in Section 8.3.1 are satisfied, and so that the least

biased comparison possible can be made between the three controllers.

The desired joint angles θd are designed by choosing joint angles θd(tk) and

θd(tk+1) at times tk and tk+1, for k = 0, . . . , 7. The desired trajectory at time t

is

θd(t) =

[
10

(
t− tk

tk+1 − tk

)3

− 15

(
t− tk

tk+1 − tk

)4

+

6

(
t− tk

tk+1 − tk

)5
]

(θd(tk+1)− θd(tk)) + θd(tk).

(8.54)

The time derivatives of (8.54) yield θ̇d and θ̈d. The trajectory is designed so that

several joint positions and rates are attained by using (8.54) for various intervals.

The trajectories for both joints are shown in Fig. 8.4, where

t0 = 0 s, t1 = 2.5 s, θd(t0) = θd(t1) = [0◦ 0◦]T,

t2 = 5 s, θd(t2) = [−30◦ − 30◦]T,

t3 = 7.5 s, θd(t3) = [−60◦ − 30◦]T,

t4 = 10 s, θd(t4) = [60◦ 80◦]T,

t5 = 12.5 s, t6 = 15 s, θd(t5) = θd(t6) = [−30◦ − 45◦]T,

t7 = 17.5 s, t8 = 20 s, θd(t7) = θd(t8) = [0◦ 0◦]T.

8.4.2 Control Structure and Synthesis

The passive map of (8.45) is joint torques to joint rates τ 7→ θ̇. A proportional

control pre-wrap Kp(θ − θd) is added to the system, as this does not violate the
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passive map [96]. The control has the structure

τ = τff −Kp(θ − θd)− yc, (8.55)

where Kp = diag (270, 8) N ·m. The feedforward control is given by

τff = Mθθ(θd)θ̈d − fnon,θ(θd, θ̇d), (8.56)

which attempts to cancel out the nominal rigid-body dynamics based on the desired

trajectory, where Mθθ is given by (8.46). The term fnon,θ is the joint angle partition of

fnon evaluated along the desired trajectory. The torque yc is the output of the chosen

feedback controller yc = Gcuc, where uc = θ̇ − θ̇d. The controllers are synthesized

with the plant description (8.48)-(8.53). The VSP-LPV controller (8.10)-(8.11) uses

values of δ̄ = 10−5 and ε̄ = 0.3 as these had the best closed-loop performance. Both

the H2-VSP and H∞-VSP controllers minimize (8.24) subject to (8.27)-(8.26) to

determine Bc,i, i = 1, . . . , N . In addition, the LPV controller filters the input to the

plant with first order filter of 30 Hz so that the effective B2 matrix is constant. This

filter increases the effective number of states of the controller. A constant B2 matrix

is one of the limitations of the LPV control synthesis method. Controller synthesis

and solutions to all LMIs are generated in Matlab using SDPT3 [117, 118] with the

Yalmip interface [57].

The maximum singular values and minimum Hermitian parts of the controllers de-

fined at the second set point, θ2 = 45◦, are shown in Fig. 8.3. These plots serve to gain

insight in the controller dynamics. Due to similar plant dynamics, all three controllers

have a peak in singular values at slightly less than 10 rad/s. Since the H2-VSP and

H∞-VSP are constructed using (8.13) and (8.15), it is expected that the controller

defined at a set point has a strictly positive minimum Hermitian part since (8.13)

and (8.15) are similar conditions to the Kalman-Yakubovich-Popov Lemma [89] for

one set point, that is when N = 1. Fig. 8.3 shows that the two VSP-LPV controllers

are SPR-like at the set points since the minimum Hermitian parts are positive, and

the LPV controller is not. However, it must be noted that “SPR” can only be said in

the context when the controller is fixed at a set point. These controllers are not time-

invariant and thus the VSP property of the VSP-LPV controller for all scheduling

signals is important, not the SPR property at a single set point.
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Figure 8.3: Comparison of the maximum singular values and minimum Hermitian
parts of theH2-VSP, theH∞-VSP and LPV controllers at set point 2, where θ2 = 45◦.

8.4.3 Experimental Results

The results for the system (8.45) with control (8.55) with trajectory defined

in (8.54) are shown in Fig. 8.4, Fig. 8.5, and Fig. 8.6. Figure 8.4 shows the de-

sired trajectory of the manipulator and that each controller is able to follow closely.

Figure 8.5 shows that each controller exhibit similar error tendencies, where the angle

error is θ̃ = θ − θd. In particular, the systems with the H2-VSP and H∞-VSP con-

trollers have less angle error than the LPV controller, and the H∞-VSP has the least

amount of angular rate error. The root mean square (RMS) angle error and error

rates are tabulated in Table 8.2 for more detail. In general, all three controllers have

less than 0.06 deg error for the joint angles and 3.5 deg/s angular rates. Although

the H2-VSP controller has the greatest error for ˙̃θ2, the VSP-LPV controllers have

less joint angle error than the self-scheduled LPV controller. The H2-VSP also does

not have any relation to H∞ theory. Comparing the two controllers that do have

H∞ roots, that is the LPV controller and the H∞-VSP controller, the H∞-VSP con-

troller has less angle and angular rate errors, demonstrating the effectiveness of this

new control technique. While we use the same weights for the all three controllers

for simplicity of exposition and for fair comparison, it seems that the weights favour

the H∞-based synthesis methods (H∞-VSP and LPV). Retuning the weighting ma-

trices may yield decreased performance for the H∞-based controllers and increased
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Figure 8.4: Comparison joint angles and joint rates.

Table 8.2: RMS error of angle and angle error tracking for two-link flexible joint
experiment.

RMS Angle Er-
ror (deg)

RMS Angle Rate
Error (deg/s)

Control Method θ̃1 θ̃2
˙̃θ1

˙̃θ2

LPV 0.0652 0.3866 1.4417 1.8596

H2-VSP 0.0408 0.3463 1.0313 3.4204

H∞-VSP 0.0434 0.3695 0.8871 1.3289

performance for the H2-VSP controller. For a specific application, we recommend

testing different controller synthesis methods with different weighting matrices. The

controllers we present in this chapter are alternatives to existing methods and may

perform better or worse than other existing control methods. As all applications are

different, it is the control engineer’s responsibility to decide which implementation is

best.
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Figure 8.5: Comparison of joint angle errors and error rates.

8.5 Closing Remarks

When approximate LPV plant representations are required to make LPV con-

troller synthesis tractable, systematic and mathematically rigorous methods to deter-

mine stability of the nonlinear system remain elusive [22]. While these issues cannot

be generally solved yet, advances are made in this chapter by considering passive sys-

tems. Although an LPV approximation is used for controller synthesis, the resulting

VSP-LPV controller guarantees closed-loop stability of the original nonlinear system

with finite gain. In short, this chapter makes large strides to close the gap between

LPV control and passive systems theory.

The VSP-LPV controller has affine parameter dependence and two different con-

trol synthesis methods are presented. An H2-VSP method and a H∞-VSP method

are introduced that are based on H2 and H∞ control theory. These synthesis methods

have the flexibility to tune the controller at each set point, and make use of LMIs,

which are numerically efficient to solve. Both these controllers are able to provide

joint-angle tracking for a two-link flexible-joint manipulator, with performance that

improves upon polytopic LPV control.
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Figure 8.6: Comparison of joint torques from each controller.

Several avenues for future research exist. For example, the control synthesis

method used for the H∞-VSP controller minimizes the H2 norm between the nominal

H∞ controllers at each set point and a controller that satisfies Theorem 8.1. Although

this synthesis method may retain some features of the nominal H∞ controller of the

set point, no real performance guarantees for the VSP-LPV controller exist (only

stability guarantees). A controller synthesis method that determines an upper bound

on a closed-loop performance criteria is desirable. Additionally, a common Lyapunov

matrix Pc is used for controller synthesis and for the proof that the controller is indeed

VSP. A common Lyapunov matrix approach is known to increase the conservatism

of LPV controllers, and research into extensions of Theorem 8.1 to accommodate a

parameter-dependent Lyapunov matrix may be possible.
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Chapter 9

Interior Conic Polytopic Systems

9.1 Introduction

Input-output theories have found widespread usage in robust control. The Small

Gain Theorem is at the heart of robust linear parameter varying (LPV) control.

Specifically, the Bounded Real Lemma was extended for application to parameter

varying systems, enabling the statement of sufficient conditions to derive stabiliz-

ing LPV controllers [26, p. 15]. Two examples that are particularly relevant to this

chapter are [102, 119], where polytopic controller synthesis is discussed. In [102],

subcontrollers at each vertex are synthesized while simultaneously satisfying a global

constraint for stability, whereas in [119], subcontrollers at each vertex are first syn-

thesized, and then a global constraint for stability is imposed in an effort to reduce

computational complexities.

Initial attempts at deriving LPV controllers had shortcomings such as limits on

parameter-variation rates and synthesis complexity, but recent efforts have greatly im-

proved LPV control effectiveness and synthesis tractability [22, 24, 25, 26]. Nonethe-

less, LPV plant descriptions are often approximations of nonlinear systems, and a

controller synthesized to stabilize one of these approximations is not guaranteed to

stabilize the original nonlinear system [22]. For passive systems, the Passivity The-

orem is used to circumvent this problem [3, 98, 97]. Strictly passive controllers can

guarantee closed-loop input-output stability of passive plants, even if an approximate

model is used for controller synthesis.

Despite advances in control theory and controller synthesis rooted in the Passivity

and Small Gain Theorems, relying on these two theorems introduces limitations. For

instance, relying on the Small Gain Theorem may lead to conservative results owing

to the fact that the analysis relies on the supremum of the operator in question.
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Weighting transfer functions can be used to emphasize certain frequency bands, but

the conservatism still remains. When stabilizing systems using the Passivity Theorem,

plants that are nominally considered passive can have so-called passivity violations

due to discretization, time-delay, and sensor noise [120, 18]. With any one or a

combination of these violations, results obtained using the Passivity Theorem may

be void. As it turns out, the Conic Sector Theorem is a more general input-output

stability theorem, of which small gain and passivity are special cases [90]. Synthesizing

a controller with the Conic Sector Theorem can help avoid the conservative nature

of controllers designed using the Small Gain Theorem, and provide a remedy for

situations where the plant features a passivity violation and the Passivity Theorem

is not applicable.

The design of conic controllers has been studied for linear systems [91, 18, 19]. The

design approach considered in [91, 18, 19] begins by determining the conic bounds

of the plant using the Conic Sector Lemma [92], then choosing appropriate conic

bounds of the controller using the Conic Sector Theorem [90], and finally synthesizing

a linear controller that satisfies these conic bounds. A similar approach is undertaken

in this chapter specific to polytopic systems, which are a type of LPV systems. The

challenges to overcome include the fact that currently, there are no LMI conditions

to determine conic bounds for polytopic systems, and no synthesis methods for conic

polytopic controllers.

In short, the two main contributions of this chapter are providing a means to assess

the conic bounds of polytopic systems using an LMI as stated in Theorem 9.2, and a

method to design polytopic conic controllers in Section 9.3. A third contribution is the

demonstration of the conic polytopic controller on a heat exchanger. The derivation

of conic bounds for polytopic systems are in Section 9.2, the numerical example is in

Section 9.4, and closing remarks are in Section 9.5.

9.2 Conic Polytopic Systems

9.2.1 System Architecture

Recall a matrix polytope is defined as the convex hull of a finite number of matrices

Hi, defined as

Co{Hi, i = 1, . . . , N} =

{
N∑
i=1

siHi

∣∣∣ si ≥ 0,
N∑
i=1

si = 1

}
.
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Figure 9.2: Upper and lower LFTs for controller synthesis.

In this chapter, only polytopic systems are examined. Consider the polytopic system

shown in Fig. 9.1, given by

ẋ = Ax + B1w + B2u + B3q, (9.1)

z = C1x + D11w + D12u + D13q, (9.2)

y = C2x + D21w, (9.3)

p = C3x + D31w + D32u + D33q, (9.4)

where x ∈ Rn is the system state, z ∈ Rnz is the performance variable, w ∈ Rnw is the

exogenous signal that can include noise, y ∈ Rm is the measurement variable, p ∈ Rnp

is the input to the uncertainty block, q ∈ Rnq is the output of the uncertainty block,

and u ∈ Rm is the system input. Each system matrix is a function of a scheduling

signal si, such that
A B1 B2 B3

C1 D11 D12 D13

C2 D21 0 0
C3 D31 D32 D33

 =
N∑
i=1

si(σ, x, t)


Ai B1,i B2,i B3,i

C1,i D11,i D12,i D13,i

C2,i D21,i 0 0
C3,i D31,i D32,i D33,i

 , (9.5)
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where

0 ≤ si(σ, x, t) ≤ 1,
N∑
i=1

si(σ, x, t) = 1. (9.6)

The scheduling signals si(σ, x, t) can be a function of time t ∈ R≥0, a function of

state x ∈ Rn, or a function of an exogenous signal σ ∈ Rnσ .

For robust control design using H∞-based techniques, the H∞ norm of the closed-

loop system of the plant G and the controller Gc, denoted Gcl, is determined. Closed-

loop input-output stability with ∆ is guaranteed via Theorem 7.3 when ‖∆‖∞ ‖Gcl‖∞ <

1. The block diagram for this synthesis is described by Fig. 9.2a. Controller synthe-

sis methods using the Small Gain Theorem are extensively covered in the literature.

See [27] and [102] for general reference on control synthesis using LMIs and polytopic

systems, respectively.

For robust control design rooted in the conic-systems framework, which is the focus

of this chapter, the uncertainty and the plant are lumped together as G∆, as shown

in Fig. 9.2b. The conic bounds of the system G∆ are first determined for the mapping

u 7→ y. Theorem 9.2 in Section 9.2.2 provides sufficient conditions to determine conic

bounds for polytopic systems. Appropriate controller bounds are then determined

via Theorem 7.10 to ensure closed-loop input-output stability. Theorem 9.2 is used

once again when deriving a polytopic controller.

9.2.2 Conic Bounds for Polytopic Systems

Conic bounds for a system are defined for a specific input-output pair. For the

plant (9.1)-(9.4), the input-output pair for conic bounds is u 7→ y, with minimal state

space realization

G :

 ẋ = A(s)x + B(s)u

y = C(s)x
(9.7)

where x ∈ Rn, u ∈ Rm, y ∈ Rm, s = [s1 · · · sN ]T, and[
A(s) B(s)
C(s) 0

]
=

N∑
i=1

si(σ, x, t)

[
Ai Bi

Ci 0

]
, (9.8)

where s satisfies (9.6). The feedthrough matrix, D22, is assumed to be zero as physical

systems exhibit some sort of roll-off in gain at higher frequency. If a model does

contain a D22 matrix, the measurement y can be filtered to remove the feedthrough

term.

117



Lemma 9.1. Given y(t) =
∑N

i=1 si(σ, x, t)yi(t), where y(t) ∈ L2e, yi = Cix(t), and

where scheduling signals satisfy (9.6), then

− ‖y(t)‖2
2T ≥

N∑
i=1

−
∥∥∥√si(σ, x, t)yi(t)

∥∥∥2

2T
. (9.9)

Proof. See Appendix B.4.

Theorem 9.2. Consider the system y = Gu described by (9.7), where A(s), B(s), and

C(s) satisfy (9.6) and (9.8). For a, b ∈ R, a < 0 < b, if the LMI in P[
PAi + AT

i P + CT
i Ci PBi − a+b

2
CT
i

? ab1

]
= −

[
LT
i

WT
i

] [
Li Wi

]
≤ 0 (9.10)

is satisfied for some real matrices P = PT > 0, Li and Wi for i = 1, . . . , N , then the

system G is in cone[a, b].

Proof. In this proof, the argument s associated with (A(s),B(s),C(s)) is dropped for

brevity. First note that (9.10) implies

PAi + AT
i P + CT

i Ci = −LT
i Li,

PBi −
a+ b

2
CT
i = −LT

i Wi, ab1 = −WT
i Wi.

(9.11)

Consider the time derivative of the Lyapunov-like function V = 1
2
xTPx,

V̇ =
1

2
xT(PA + ATP)x + xTPBu. (9.12)

Substituting (9.11) in to (9.12) yields

V̇ =
N∑
i=1

si

[
− 1

2
xTCT

i Cix + xT

(
a+ b

2

)
Ciu−

1

2
xTLT

i Lix− xTLT
i Wiu

− 1

2
uTWT

i Wiu +
1

2
uTWT

i Wiu
]

=
N∑
i=1

si

[
− 1

2
yT
i yi −

1

2
(Lix + Wiu)T(Lix + Wiu)

]
− 1

2
abuTu +

(
a+ b

2

)
yTu.

(9.13)
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Integrating (9.13) in time from 0 to 0 < T <∞ gives

V(T )− V(0) =
N∑
i=1

[
− 1

2
‖√siyi‖2

2T −
1

2
‖√si (Lix + Wiu)‖2

2T

]
− ab

2
‖u‖2

2T

+

(
a+ b

2

)
〈y,u〉T .

Rearranging yields

−
N∑
i=1

‖√siyi‖2
2T + (a+ b) 〈y,u〉T − ab ‖u‖

2
2T = +2(V(T )− V(0))

+
N∑
i=1

‖√si (Lix + Wiu)‖2
2T .

(9.14)

Since 2(V(T ) − V(0)) +
∑N

i=1

∥∥√si (Lix + Wiu)
∥∥2

2T
≥ −2V(0), using Lemma 9.1 re-

duces (9.14) to

− ‖y‖2
2T + (a+ b) 〈y,u〉T − ab ‖u‖

2
2T ≥ β, (9.15)

where β = −2V(0) only depends on initial conditions. Comparing (9.15) to (7.6)

proves Theorem 9.2.

Corollary 9.3. Consider the system y = Gu described by (9.7). For a, b ∈ R, a < 0 <

b, if the LMI in P̃[
P̃Ai + AT

i P̃ + 1
b
CT
i Ci P̃Bi − 1

2

(
a
b

+ 1
)

CT
i

? a1

]
≤ 0 (9.16)

is satisfied for i = 1, . . . , N , and P̃ > 0, then the system G is in cone[a, b].

Proof. Multiplying (9.10) by 1
b
> 0 results in[

1
b
PAi + AT

i P1
b

+ 1
b
CT
i Ci

1
b
PBi − 1

2

(
a
b

+ 1
)

CT
i

? −a1

]
≤ 0.

Using the change of variable P̃ = 1
b
P > 0 yields (9.16). Since change of variable and

multiplication are reversible, (9.16) also implies (9.10). Thus, if G satisfies Corol-

lary 9.3, then G also satisfies Theorem 9.2.

Both Theorem 9.2 and Corollary 9.3 are sufficient conditions for G ∈ cone[a, b].

Corollary 9.3 is a reformulation of Theorem 9.2, and may be useful in situations with
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a large b. A large b can cause (9.10) to become ill-conditioned, whereas a large b does

not cause problems for (9.16).

9.2.3 Determining Conic Bounds

The matrix inequality (9.10) is nonlinear in a and b, and thus solving for an a and

b directly given the polytopic plant G is not possible. Three methods of determining

tight bounds a and b exists. They consist of

1. fixing a = −∞, minimizing b, then fixing b, and maximizing a,

2. fixing b =∞, maximizing a, then fixing a, and minimizing b, and

3. defining the conic radius r = b−a
2

and conic centre, c = a+b
2

, and then minimizing

the conic radius.

As [18] shows for the LTI case, each method yields different conic bounds. In the

polytopic case, the same holds true. Fixing b =∞, and then maximizing a is preferred

to determine plant conic bounds because this results in a controller with the least

conservative gain. To understand why, note that the controller conic bound bc = − 1
a

is related to controller gain, and thus an a closest to zero as possible is desired. When

b is set to ∞, Corollary 9.3 is used.

To determine conic bounds using the radius and centre, r and c respectively,

consider that [
PAi + AT

i P + CT
i Ci PBi − cCT

i

? −κ1

]
≤ 0 (9.17)

is equivalent to (9.10), where κ = −ab. Note that

r2 =
(a− b)2

4
=

(a+ b)2 − 4ab

4
= c2 + κ, (9.18)

and thus minimizing (9.18) results in the minimum conic radius. Since (9.18) is

quadratic, it can be transformed to a linear objective along with an LMI constraint

by introducing a variable z, and then minimizing z subject to the constraint[
z − κ c

? 1

]
≥ 0, (9.19)

where (9.19) is derived from z ≥ c2 + κ using the Schur complement.
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9.3 Design of Polytopic Conic Controllers

Passivity-based synthesis for affine controllers is discussed in Chapter 8. The

conic-polytopic controller synthesis considered in this chapter is an adaptation of the

synthesis methods presented in [3, 19, 18]. The goal is to determine a set of controller

matrices, [
Ac Bc

Cc 0

]
=

N∑
i=1

si(σ, x, t)

[
Ac,i Bc,i

Cc,i 0

]
, (9.20)

where the signals si satisfy (9.6). In particular, an H∞ controller is synthesized

at each vertex of the polytope, and then the closest controller in an H2 sense that

satisfies conic constraints is determined. Associated assumptions are

1. (Ai,B2,i,C2,i) is stabilizable and detectable, and

2. D22 = 0.

The resulting state space matrices from the H∞ synthesis are[
Ac,i Li

Ki 0

]
,

where Ac,i from theH∞ synthesis is also the Ac,i of the conic controller given in (9.20).

The matrix Cc,i in (9.20) is set to Cc,i = Ki. The Bc,i matrix is determined by

minimizing the H2-norm of the difference between the H∞ controller and a controller

that satisfies (9.10). Specifically, this optimization problem is given by minimizing

J (Πc,Bc,1, . . . ,Bc,N) =
N∑
i=1

tr(Bc,i − Li)
TWi(Bc,i − Li), (9.21)

subject to  ΠcAT
c,i + Ac,iΠc Bc,i Cc,iΠc

? − (ac−bc)2

4bc
1 −ac+bc

2
1

? ? −bc1

 < 0, (9.22)

for i = 1, . . . , N , where (9.22) is derived from Corollary 9.3. See Appendix B.5 for

the derivation. Equation (9.16) is bilinear in Bc,i and P, and thus cannot be used for

conic synthesis. The matrix Wi is the observability Grammian that satisfies

AT
c,iWi + WiAc,i + CT

c,iCc,i = 0. (9.23)

The objective function (9.21) is chosen because when the difference between Bc,i and
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Li subject to the weight Wi is minimized, the difference between the H∞ controller

and the controller that satisfies (9.10) is minimized in an H2 sense.

The quadratic function (9.21) can be transformed to a linear function and an LMI

constraint given by

Ĵ (ν,Z,Πc,Bc,1, . . . ,Bc,N) = ν, (9.24)

constrained by

ν ≥ tr(Z), (9.25)

and 
Z (Bc,1 − L1)T · · · (Bc,N − LN)T

? W−1
1 0 0

... ?
. . .

...

? ? ? W−1
N

 ≥ 0. (9.26)

Determining Bc,i is summarized by Problem 9.4.

Problem 9.4. The problem to determine Bc,i for i = 1, . . . , N is given by minimiz-

ing (9.24), subject to (9.25), (9.26), and (9.22). �

The controller scheduling signals and the plant scheduling signals can be different

and arbitrarily chosen. The reason is that the plant will always lie within the plant

conic sector, and the controller will always lie within the controller conic sector for

all scheduling signals that satisfy (9.6). However, since the controller is designed

using the plant, for performance it would only make sense to use the same scheduling

signals for both the plant and controller.

9.4 Numerical Example

9.4.1 System Description

Consider the linearized model of a heat exchanger described by [121, pp. 55–

60], shown in Fig. 9.3, with properties listed in Table 9.1. The nonhomogeneous

differential equation describing the dynamics of the heat exchanger is given by

Ṫ = ApT + BpT
i
h + WT ic , (9.27)
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Table 9.1: Heat exchanger properties

Parameter Unit Cold Fluid Hot Fluid

U J
s·m2·◦C

2411.8 2411.8

A m2 48.4 48.4

vc,i, vh,i m3/s 0.04 0.10

vc,f, vh,f m3/s 0.02 0.06

ρc, ρh kg/m3 · 103 3.50 3.72

cpc, cph
J

kg·◦C
481.8 499.0

Vc, Vh m3 · 10−2 15.8 57.8

T oc,i
◦C 9.3 –

T oc,f
◦C 25 –

u “ T i
h

T i
c “ const y “ T o

c

T o
h

Figure 9.3: Diagram of a counter flow heat exchanger.

where

Ap =

[
−vc(t)

Vc
− UA

cpcρcVc
UA

cpcρcVc
UA

cphρhVh
−vh(t)

Vh
− UA

cphρhVh

]
, (9.28)

Bp =

[
0

−vh(t)
Vh

]
, W =

[
−vc(t)
Vc

0

]
, T =

[
T oc (t)

T oh(t)

]
. (9.29)

In this model, the input cold stream T ic is constant, and the outlet temperature T oc is to

be regulated. The hot inlet temperature T ih is the control input, and the flow rates of

the hot and cold fluids, vc(t) and vh(t) respectively, are time varying. In particular,

cold and hot stream flow rates are vc(t) = φ(t, vc,i, vc,f) and vh(t) = φ(t, vh,i, vh,f),
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where tf = 20 s, and where

φ(t, xi, xf) =
xi, t ≤ 0,

xi + (xf − xi)

[
3
(
t
tf

)2

− 2
(
t
tf

)3
]
, 0 ≤ t ≤ tf,

xf, tf ≤ t.

(9.30)

The desired cold output temperature is given by T oc,d(t) = φ(t, T oc,i, T
o
c,f) To realize a

linear system with desired output y = 0, the system (9.27) is approximated by using

the change of variables

x = T + η +

[
ν

ν

]
,

u = T ih + ν,

y =
[

1 0
]

(T + η) + ν,

where

η = (Ap + W
[

1 0
]
)−1W(T ic − T oc,f),

ν =
[

1 0
]
η − T oc,f.

When fluid-flow is constant, ẋ = Ṫ. The resulting state-space realization is deter-

mined using (9.30). The matrices A and B2 are

A =
2∑
i=1

si(σ, x, t)Ai, B2 =
2∑
i=1

si(σ, x, t)B2,i,

where s1 = φ(t, 1, 0), and s2 = 1 − s1 = φ(t, 0, 1). The matrices A1 and B2,1 are

defined by evaluating Ap and Bp in (9.28)-(9.29) at vc,i and vh,i. The matrices A2 and

B2,2 are defined by evaluating Ap and Bp in (9.28)-(9.29) at vc,f and vh,f. The matrix

C2 is constant, where C2 = [1 0].

9.4.2 Robust Control Design

The matrix physical parameters in Ap may be uncertain. For example, U may be

uncertain due to CaCO3 formation [121, p. 31]. The uncertain Ā matrix is modelled
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Table 9.2: Conic bounds of the uncertain heat exchanger model.

Plant Conic Max a Conic Min r ‖∆‖∞
G cone[−0.06, 98.9] cone[−0.14, 0.38] 0

G∆, δ = 0.5 cone[−0.04, 97.4] cone[−0.09, 0.24] 0.057

G∆, δ = −1 cone[−0.08, 99.4] cone[−0.19, 0.52] 0.23

as Ā = A + Aδ, where

Aδ = δ

[
UA

cpcρcVc
− UA
cpcρcVc

− UA
cphρhVh

UA
cphρhVh

]
.

The system for robust control design is

ẋ = Ax + B2u + q, (9.31)

y = C2x, (9.32)

p = x, (9.33)

where the uncertainty block is given by q = Aδp, and thus ∆ = Aδ. The weighting

matrices for robust control design using (9.31)-(9.33), are

B3 = 1, C3 = 1, D23 = 0, D32 = 0. (9.34)

Other weighting combinations are possible, such as by factoring Aδ, with factorization

B3C3 = Aδ or B3C3 = δ−1Aδ, and then by setting ∆ = 1 or ∆ = δ1. In some cases,

this may provide a numerically simpler controller synthesis, but in the heat exchanger

example, no significant controller improvements were found. Table 9.2 shows the heat

exchanger’s conic sectors and ||∆||∞ for various values of δ. A value of δ = 0.5 is

equivalent to halving the heat exchanger’s area, such as during CaCO3 buildup. A

value of δ = −1 doubles the heat exchanger’s area.

Using the design method for an LPV controller from [102], the input must be

filtered to obtain a constant B2 matrix. A first-order filter with a cutoff frequency

of 2 rad/s is implemented on the input of the system, which adds system states.

Designing the polytopic LPV controller using the weights from (9.34) results in

||Gcl||∞ = 16.67. Recall that for robust closed-loop stability via the Small Gain

Theorem, ||Gcl||∞ < 1/||∆||∞. This means that stability can be guaranteed via the

Small Gain Theorem for δ = 0.5, but cannot be guaranteed for δ = −1.

The conic bounds of the heat exchanger are found using Theorem 9.2. The Nyquist

125



plots of G at the vertices of the polytope are shown in Fig. 9.4, as well as a circle that

denotes the conic bounds. Notice that the plant lies well within the conic bounds

determined by Theorem 9.2. The Nyquist plot of the vertices is shown in Fig. 9.5

when the conic radius is minimized. In this plot, the black dashed circle is much

tighter than when maximizing a. This would seem like tighter conic bounds and thus

improved controller performance, but the more negative a leads to a decreased bc,

and thus yields a controller with more conservative gain and inferior performance.

To robustly stabilize the plant, the largest cone that captures both the nominal and

perturbed plant must be considered, thus cone for controller design is cone[−0.19, 0.52]

for minimizing r and cone[−0.08, 99.4] for maximizing a.

The weights (9.34) are used to design the H∞ controllers at each vertex. These

controllers are used for controller synthesis, as discussed in Section 9.3. To analyze

the utility of forcing the H∞ controllers at each vertex to satisfy Theorem 7.10, the

H∞ controllers at each vertex are linearly interpolated as is to form an H∞ gain-

scheduled controller. This controller has no stability or performance guarantees when

in closed-loop with the heat exchanger.

The Nyquist plots of the H∞ controller at each vertex and the conic controller

at each vertex, synthesized using maximum plant a, are shown in Fig. 9.6. The gain

of the H∞ controllers is much larger than the gain of the conic controllers. When

synthesizing the conic controller, the gain of the controller is decreased so that the

resulting controller fits in the bc bound. The gain at both vertices are not the same.

The gain at vertex 1 of the H∞ controller is smaller than at vertex 2, and this is

reversed for the conic case. This may indicate that the controller is more effective at

one vertex compared to the other vertex, but this has not been tested due to the way

the temperature is commanded as the fluid flow rate changes.

Fig. 9.7 shows the conic bounds for the controller synthesized with maximum

plant a and minimum plant r. The bc bound, which is related to the upper limit on

controller gain, is approximately 2.5 times larger when using the bounds determined

by maximum a than by minimum r. It is expected that the controller with the larger

design freedom exhibits superior closed-loop performance, that is the RMS error of

T oc should be less for the max a controller than the min r controller.

9.4.3 Numerical Results

Numerical results are shown in Fig. 9.8, and the case δ = −1 is omitted for brevity.

The root-mean square (RMS) values of the error of the cold outlet temperature are

shown in Table 9.3. At δ = 0.5, the area for heat exchange halves. The performance
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Figure 9.4: Nyquist plot of plant and conic bounds.

of all controllers improve with δ = 0.5, which implies that not all uncertainty degrades

performance. When δ = −1, the opposite is true and the performance of all controllers
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Figure 9.5: Plant conic boundary and plant Nyquist plot with minimum conic radius.

deteriorates.

For δ = 0 and δ = 0.5, the H∞ controller actually performs better than the LPV

controller. This may be explained by the fact that for polytopic controller design,

a common Lyapunov matrix is required, which is a source of conservatism. The

interpolated H∞ is synthesized at the vertices, and even though it has no guarantee

to stabilize the closed-loop system, it still worked. However, with a different set of

weighting matrices, in simulation, the interpolated H∞ controller lead to poor closed-

loop performance, and even closed-loop instability.

This numerical example highlights the benefits of conic-sector-based control. The

largest conic bounds for the three plants are chosen for conic design, and the conic

controller is guaranteed to stabilize the plant in each case. In addition, the sensitivity

to plant uncertainty is minimal. The standard deviations of the RMS temperature

error of each plant for each controller are given in Table 9.3. The standard deviation

between the RMS errors is seven times less for the conic controller design than with

the H∞-based LPV design. However, this is partly expected because conic controllers

exhibit a similar level of robustness for linear control design [18].

9.5 Closing Remarks

This chapter provides LMI conditions to determine conic bounds for interior-conic,

polytopic systems. This chapter also provides a method that synthesizes a polytopic
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Table 9.3: RMS error of T oc − T oc,d, ◦C

Plant H∞ Conic Max a Conic Min r LPV

G 1.13 0.612 0.912 1.19

G∆, δ = 0.5 0.782 0.606 0.850 0.832

G∆, δ = −1 1.72 0.721 1.047 1.68

std. dev. 0.477 0.065 0.100 0.424

controller subject to conic bounds. A common Lyapunov matrix is required for both

these methods, which is a source of conservatism. This may provide unnecessarily

large conic bounds for the plant, which would lead to more conservatives controllers.

Additionally, even without conservative controller conic bounds, a common Lyapunov

matrix may result in a conservative controller anyway. That being said, the effects

and methods to mitigate the common Lyapunov matrix is an area of future research.
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Figure 9.6: Nyquist plot of H∞ controller and the conic controller at each vertex of
the polytope. The controller circle plots the conic bounds of the controller.
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Figure 9.8: Simulation results to track T oc , with input T ih of the heat exchanger.
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Part IV

Conclusion

132



Chapter 10

Closing Remarks and Future Work

This dissertation considers guidance and control of nonlinear systems. First, guid-

ance for position and attitude is discussed. The guidance laws extremize objective

functions using SDPs in Chapter 4 and gradient-based optimization methods for

extremum-seeking in Chapters 5 and 6. Gradient-based extremum-seeking guidance

necessitates estimation of the gradient, which is enabled by a Kalman filter. The

Kalman filter is modified so that it can handle any type of linear or LMI constraint,

and is able to filter measurement noise to better estimate the gradient of the objective

function. Although the presented extremum-seeking guidance algorithms are effec-

tive, they are gradient-based methods, which suffer from local maxima and minima

when the optimization space is nonconvex. Extremum-seeking guidance for noncon-

vex problems is an area for future research.

A particular contribution that is emphasized in this dissertation is the use of the

DCM, an element of SO(3), for attitude parameterization. The DCM parameterizes

attitude globally and uniquely, but familiar tools such as matrix addition and sub-

traction cannot be used with the DCM. This dissertation presents extremum-seeking

for attitude using the DCM directly and, by doing so, effectively overcomes these

challenges.

Guidance in Part II is demonstrated on the formation flight of two aircraft and a

spacecraft with three reaction wheels. Problems that consider swarms of aircraft or

spacecraft that work in unison to accomplish a common goal may require extremum-

seeking guidance to be extended to Rn, Rn×n, SO(n), or SE(n). The matrix Lie group

SE(n) is not discussed in this dissertation. An element of SE(3) represents a body’s

pose, that is its position and attitude relative to a particular point and reference

frame. The set SE(n) is the generalization of SE(3). An extremum-seeking guidance

law on SE(3) can simultaneously provide guidance for position and attitude, rather

133



than separately, as is the case in this dissertation. In the short term, extremum-

seeking guidance on SE(3) can be derived by using Chapters 5 and 6 as a starting

point.

Part III moves from guidance to control. LPV control based on the Passivity and

Conic Sector Theorems finds its origins from gain-scheduling of SPR subcontrollers

[96, 95]. Initial attempts at gain-scheduling resulted in ISP and VSP controllers with

a constant dynamics matrix, where the poles of the controller were invariant [97, 98].

Only the Bc and Cc matrices of the controller changed as a function of scheduling

signal. This dissertation extends [97, 98], which resulted in [3], and is detailed in

Chapter 8. Chapter 8 presents a control architecture that is VSP and allows all con-

troller state-space matrices to be parameter dependent. This new controller is much

closer in structure to a traditional LPV system than previous passivity-based gain-

scheduled control attempts. However, stability results from the Passivity Theorem

are based on phase. Thus, unlike traditional LPV controllers where stability results

depend on the Small Gain Theorem, gain of uncertainty is not needed in the passivity

framework. The VSP controller is able to stabilize any passive plant where uncer-

tainty does not violate the passive input-output map. Robustness of the controller is

inherent due to the input-output theory that is used.

Since passive systems may exhibit passivity violations, the Conic Sector Theorem

can be used as an alternative to the Passivity Theorem. The Conic Sector Theorem

does not require plants, uncertainty, or controllers to be passive. Furthermore, un-

certainty that results in a large b bound on the plant may not result in a conservative

controller compared to controllers designed with the Small Gain Theorem. For an

explanation, recall that bc < −1/a, and the b and bc bounds are related to plant

and controller gain respectively. The bc bound is not related to the b bound via the

Conic Sector Theorem. Using the Small Gain Theorem, a large b bound would mean

an equally large a bound (since a = −b in this case), which would dramatically de-

crease controller gain. In this case, bc = −1/a = 1/b, indicating b and bc are related.

Conic-sector-based control circumvents this problem. That being said, this disserta-

tion does not provide a truly direct comparison between these two design methods.

For conic-sector-based robust control, the controller is forced to satisfy conic bounds

to ensure closed-loop stability with G∆. For traditional robust control, the controller

is designed such that Gcl satisfies the small gain condition with respect to the uncer-

tainty block, ∆. In the future, it is of interest to design Gcl to satisfy conic bounds,

or to have Gc satisfy the small gain condition with respect to G∆.

In Chapter 8, nonlinear systems can be shown to be passive, and thus VSP con-
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trollers can be used to stabilize the passive system even if an affine plant approxima-

tion is used for controller synthesis. However, for a general nonlinear system, there

is no systematic method to determine conic bounds for an input-output map. As

such, control techniques from Chapter 9 may be limited to polytopic systems because

Chapter 9, via Theorem 9.2, introduces a method to determine bounds that is limited

to polytopic systems. However, Theorem 9.2 may also be used for an affine system

by transforming the affine system to a polytopic system. This transformation is pos-

sible if bounds on the parameters or scheduling signals are known, which is often the

case [22].

In Part III, controller synthesis requires a common Lyapunov matrix in their

formulations, which is a source of conservatism. In the traditional LPV framework,

a parameter dependent Lyapunov matrix is possible, but controller synthesis often

results in gridding. It is possible to extend the presented framework to allow gridding,

but this injects numerical complexity to synthesis problems. The use of dilated LMIs

may be useful to reduce conservatism from a common Lyapunov matrix, but only

preliminary work has been conducted using dilation, and is thus not included in this

dissertation.

In summary, although there are still challenges associated with conic-sector-based

control, this new approach to LPV control has many advantages. Conic-sector-based

control does not have the drawbacks associated with the strict conditions of passivity-

based control or the conservativeness associated with small-gain-based control. Chap-

ter 9 further reveals that controllers based on the Conic Sector Theorem are not very

sensitive to plant uncertainty and can provide superior closed-loop performance com-

pared to traditional LPV controllers.
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Appendix A

Polytopic Conic Design with Cc Matrix

The alternative to conic design with the Bc,i matrix is design with Cc,i. The

resulting state space matrices from the H∞ synthesis are[
Ac,i Li

Ki 0

]
.

The matrix Bc,i is set to Bc,i = Li. The Cc,i matrix is determined by minimizing

the H2-norm of the difference between the H∞ controller and a controller that satis-

fies (9.10). Specifically, this optimization problem is given by minimizing

J (Pc,Cc,1, . . . ,Cc,N) =
N∑
i=1

tr(Cc,i −Ki)Vi(Cc,i −Ki)
T, (A.1)

subject to  AT
c,iPc + PcAc,i PcBc,i Cc,i

? − (ac−bc)2

4bc
1 −ac+bc

2
1

? ? −bc1

 < 0, (A.2)

for i = 1, . . . , N , where (A.2) is a modification of (9.10). The matrix Vi is the

controllability Grammarian that satisfies

ViAT
c,i + Ac,iVi + Bc,iBT

c,i = 0. (A.3)

The objective function (A.1) is chosen because when the difference between Cci and

Ki subject to the weight Wi is minimized, the difference between the H∞ controller

and the controller that satisfies (9.10) in an H2 sense.
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The quadratic function (A.1) can be transformed to a linear function and an LMI

constraint given by

J ′(ν,Z,Pc,Cc,1, . . . ,Cc,N) = ν, (A.4)

constrained by

ν ≥ tr(Z), (A.5)

and 
Z (Cc,1 −K1) · · · (Cc,N −KN)

? V−1
1 0 0

... ?
. . .

...

? ? ? V−1
N

 ≥ 0. (A.6)

Determining Cc,i is summarized by Problem A.1.

Problem A.1. The problem to determine Bc,i for i = 1, . . . , N is given by minimiz-

ing (A.4), subject to (A.5), (A.6), and (A.2). �
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Appendix B

Miscellaneous Derivations

B.1 Newton-Euler Derivation of Spacecraft with Three Re-

action Wheels

In this section, only the rotational equation of motion for the spacecraft is derived.

The Newton-Euler equation of motion for a rigid-body B is given by

h−→
Bc/a·a = m−→

Bc, (B.1)

where m−→
Bc is the total moment acting on the body relative to point c, the centre of

mass, and h−→
Bc/a is the angular momentum of body B relative to point c with respect

to Fa [35]. The total angular momentum is

h−→
Bc/a = h−→

Pc/a +
N∑
k=1

h−→
Wkc/a, (B.2)

where the angular momentum of a reaction wheel is

h−→
Wkc/a = h−→

Wkdk/a + r−→
dkc×mWk�

��
��*

0−→
r−→
dkc·a = J−→

Wkdk · ω−→
wka = J−→

Wkdk ·
(
ω−→
wkp + ω−→

pa
)
,

(B.3)
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and the angular momentum of the spacecraft bus is h−→
Pc/a = J−→

Pc · ω−→
pa. Substituting

h−→
Pc/a and Eq. (B.3) into Eq. (B.2) yields

h−→
Bc/a = J−→

Pc · ω−→
pa +

N∑
k=1

J−→
Wkdk ·

(
ω−→
wkp + ω−→

pa
)

= J−→
Bc · ω−→

pa +
N∑
k=1

J−→
Wkdk · ω−→

wkp.

(B.4)

Assume ω−→
wkp is a along the spin axis of J−→

Wkdk and that J−→
Bc is constant. Taking

the time derivative of Eq. (B.4) with respect to Fa and substituting the result into

Eq. (B.1) yields

m−→
Bc = J−→

Bc · ω−→
pa·a +

N∑
k=1

J−→
Wkdk · ω−→

wkp·a

= J−→
Bc · ω−→

pa·p + ω−→
pa × ( J−→

Bc · ω−→
pa) +

N∑
k=1

(
ω−→
pa × J−→

Wkdk · ω−→
wkp + J−→

Wkdk · ω−→
wkp·p)

= J−→
Bc · ω−→

pa·p + ω−→
pa ×

(
J−→
Bc · ω−→

pa +
N∑
k=1

J−→
Wkdk · ω−→

wkp

)
+

N∑
k=1

J−→
Wkdk · ω−→

wkp·p .
(B.5)

Equation (B.5) is the equation of motion of the spacecraft derived via a Newton-Euler

approach. To resolve Eq. (B.5) in Fp, the relations

J−→
Bc = F−→

T
p JBcp F−→p, J−→

Wkdk = F−→
T
wk

JWkdk
wk

F−→wk , ω−→
pa = F−→

T
pω

pa
p , ω−→

pa·p = F−→
T
p ω̇

pa
p ,

ω−→
wkp = F−→

T
wk
ωwkpwk

, ω−→
wkp·p = F−→

T
wk
ω̇wkpwk

, m−→
Bc = F−→

T
p τ

ext
p ,

are substituted into Eq. (B.5) and the result is left-multiplied by F−→p yielding

JBcp ω̇
pa
p + ωpa

×

p

(
JBcp ω

pa
p +

N∑
k=1

CT
wkp

JWkdk
wk

ωwkpwk

)
+

N∑
k=1

CT
wkp

JWkdk
wk

ω̇wkpwk
= τ ext

p . (B.6)

B.2 Proof of Proposition 6.3.

The derivatives of a function f(X) : Rn×n → R and a function X(y) : R → Rn×n

are given by

A =
df

dX
, B =

dX
dy
, (B.7)
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where the elements of A and B are given by

aij =
df(X)

dxji
, bji =

dxji(y)

dy
, (B.8)

where xji are elements of X (notice the order of the indices). In addition, the chain

rule for the function f(X(y)) is defined as

df

dy
=

n∑
i=1

n∑
j=1

df(X)

dxji

dxji(y)

dy
. (B.9)

Since the trace of two matrices A and B is tr(AB) =
∑n

i=1

∑n
j=1 aijbji, using (B.7)-

(B.9), yields

df

dy
=

n∑
i=1

n∑
j=1

df(X)

dxji

dxji(y)

dy

=
n∑
i=1

n∑
j=1

aijbji

= tr(AB)

= tr

[(
df(X)

dX

)(
dX(y)

dy

)]
.

B.3 Kalman Filter Derivation

Consider the objective function given by

Jk(Kk) =
1

2

[
(yk −Hkb̂k)TR−1

k (yk −Hkb̂k) + (b̂k − b̂−k )T(P−k )−1(b̂k − b̂−k )
]
,

which is inspired by the recursive least-squares [83, p. 205–207] and maximum like-

lihood approach to deriving the Kalman filter [84]. This objective function weighs

the term yk −Hkb̂k with respect to the measurement covariance Rk, and weighs the

residual between the prior and posterior estimates with respect to the prior covariance

P−k .

Using the correction of the state estimate b̂k = b̂−k + Kkrk, where rk = yk −Hkb̂−k
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is the innovation term, the objective function is

Jk(Kk) =
1

2

[
(yk −Hk(b̂−k + Kkrk))TR−1

k (yk −Hk(b̂−k + Kkrk))

+ ((b̂−k + Kkrk)− b̂−k )T(P−k )−1((b̂−k + Kkrk)− b̂−k )
]

=
1

2

[
(rk −HkKkrk)TR−1

k (rk −HkKkrk) + (Kkrk)T(P−k )−1(Kkrk)
]

=
1

2
rTk
[
(1−HkKk)

TR−1
k (1−HkKk) + KT

k (P−k )−1Kk

]
rk. (B.10)

The objective function (B.10) can be rewritten as

Ĵk(Kk) = tr
[
(1−HkKk)

TR−1
k (1−HkKk) + KT

k (P−k )−1Kk

]
,

since we must find the minimum of (B.10) for any rk. Taking the derivative of (B.10)

with respect to Kk and setting the result to zero yields

∂Ĵk(Kk)

∂Kk

= −(1−HkKk)
TR−1

k Hk + KT
k (P−k )−1 = 0.

Simplifying the above results in

−(1−HkKk)
TR−1

k Hk + KT
k (P−k )−1 = 0

−HT
kR−1

k (1−HkKk) + (P−k )−1Kk = 0

−HT
kR−1

k + HT
kR−1

k HkKk + (P−k )−1Kk = 0

((P−k )−1 + HT
kR−1

k Hk)Kk = HT
kR−1

k

Kk = ((P−k )−1 + HT
kR−1

k Hk)
−1HT

kR−1
k . (B.11)

Applying the identity given by (13) in [122] to (B.11) directly yields

Kk = P−k HT
k (Rk + HkP−k HT

k )−1. (B.12)

B.4 Proof of Lemma 9.1

This Appendix presents the proof of Lemma 9.1. Each element of y is given by

yj(t) =
N∑
i=1

si(σ, x, t)yij(t). (B.13)
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The square of (B.13) results in

y2
j (t) =

∣∣∣∣∣
N∑
i=1

si(σ, x, t)yij(t)

∣∣∣∣∣
2

,

=

∣∣∣∣∣
N∑
i=1

√
si(σ, x, t)

(√
si(σ, x, t)yij(t)

)∣∣∣∣∣
2

.

Using the Cauchy-Schwartz Inequality yields

y2
j (t) ≤

(
N∑
i=1

∣∣∣√si(σ, x, t)
∣∣∣2)( N∑

i=1

∣∣∣√si(σ, x, t)yij(t)
∣∣∣2)

=

(
N∑
i=1

si(σ, x, t)

)(
N∑
i=1

(
√
si(σ, x, t)yij(t))2

)

=

(
N∑
i=1

si(σ, x, t)y2
ij(t)

)
.

Taking the sum from j = 1 to m, and then rearranging yields

m∑
j=1

y2
j (t) ≤

m∑
j=1

(
N∑
i=1

si(σ, x, t)y2
ij(t)

)

yT(t)y(t) ≤
N∑
i=1

si(σ, x, t)
m∑
j=1

y2
ij(t)

=
N∑
i=1

si(σ, x, t)yT
i (t)yi(t).

Integrating both sides in time from 0 to T in time yields

T∫
0

yT(t)y(t) dt ≤
N∑
i=1

T∫
0

si(σ, x, t)yT
i (t)yi(t) dt

‖y(t)‖2
2T ≤

N∑
i=1

∥∥∥√si(σ, x, t)yi(t)
∥∥∥2

2T
. (B.14)

Multiplying both sides of (B.14) by −1 yields (9.9).
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B.5 Equivalence of (9.10) and (9.22)

Let Π = P̃−1
, and pre and post multiply (9.16) by[

Π 0
0 1

]

to obtain [
AiΠ + ΠAT

i + 1
b
ΠCT

i CiΠ Bi − a+b
2b

ΠCT
i

? a1

]
≤ 0,

which is equal to

0 ≥
[

AiΠ + ΠAT
i Bi

? a− (a+b)2

4b
1

]
+

[
ΠCT

i CiΠ −a+b
2b

ΠCT
i

? (a+b)2

4b
1

]

=

[
AiΠ + ΠAT

i Bi

? − (a−b)2
4b

1

]
+

[
ΠCT

i

−a+b
2

1

]
(−1

b
1)
[

CiΠ −a+b
2

1
]
. (B.15)

Taking the Schur complement of (B.15) yields ΠAT
i + AiΠ Bi CiΠ

? − (a−b)2
4b

1 −a+b
2

1
? ? −b1

 ≤ 0. (B.16)

Equation (B.16) and (9.22) are equivalent when the controller matrices and controller

conic bounds are used.
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[74] H.-B. Dürr, M. Stanković, K. H. Johansson, and C. Ebenbauer, “Extremum
seeking on submanifolds in the euclidian space,” Automatica, vol. 50, no. 10,
pp. 2591–2596, 2014.

[75] M. Guay and D. Dochain, “A minmax extremum-seeking controller design tech-
nique,” IEEE Transactions on Automatic Control, vol. 59, no. 7, pp. 1874–1886,
2014.

[76] F. Yang and Y. Li, “Set-membership filtering with state constraints,” IEEE
Transactions on Aerospace and Electronic Systems, vol. 45, no. 4, pp. 1619–
1629, 2009.

151



[77] F. Yang and Y. Li, “Set-membership filtering for discrete-time systems with
nonlinear equality constraints,” IEEE Transactions on Automatic Control,
vol. 54, no. 10, pp. 2480–2486, 2009.

[78] A. Weiss, F. Leve, M. Baldwin, J. R. Forbes, and I. Kolmanovsky, “Spacecraft
constrained attitude control using positively invariant constraint admissible sets
on SO(3)×R3,” in Proceedings of the 2014 American Control Conference, (Port-
land, OR), pp. 4955–4960, 2014.

[79] P.-A. Absil, R. Mahony, and R. Sepulchre, Optimization Algorithms on Matrix
Manifolds. Princeton, NJ: Princeton University Press, 2008.

[80] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge, United King-
dom: Cambridge University Press, 2004.

[81] D. S. Bemstein, Matrix Mathematics: Theory, Facts, and Formulas. Princeton,
NJ: Princeton University Press, 2 ed., 2009.

[82] J. Nocedal and S. J. Wright, Numerical Optimization. New York, NY: Springer,
2 ed., 2006.

[83] A. H. Jazwinski, Stochastic Processes and Filtering Theory. New York, NY:
Academic Press, Inc., 1970.

[84] H. E. Rauch, F. Tung, and C. T. Striebel, “Maximum likelihood estimates of
linear dynamic systems,” AIAA Journal, vol. 3, no. 8, pp. 1445–1450, 1965.

[85] J. Wertz and W. J. Richard. Larson, eds., Space Mission Analysis and Design.
Hawthorne, CA: Microcosm Press, 3rd ed ed., 1999.

[86] F. M. Sobolic and D. S. Bernstein, “Kalman-filter-based time-varying parameter
estimation via retrospective optimization of the process noise covariance,” in
Proceedings of the 2016 American Control Conference, (Boston, MA), pp. 4545–
4550, 2016.

[87] A. J. v. d. Schaft, L2-gain and passivity techniques in nonlinear control. London;
New York: Springer, 1996.

[88] B. Brogliato, R. Lozano, B. Maschke, and O. Egeland, Dissipative Systems
Analysis and Control Theory and Applications. London: Springer, 2 ed., 2007.

[89] J. T. Wen, “Time domain and frequency domain conditions for strict positive
realness,” IEEE Transactions on Automatic Control, vol. 33, no. 10, pp. 988–
992, 1988.

[90] G. Zames, “On the input-output stability of time-varying nonlinear feedback
systems part I & II,” IEEE Transactions on Automatic Control, vol. 11, no. 2,
pp. 229–231, 1966.

152



[91] S. Joshi and A. Kelkar, “Design of norm-bounded and sector-bounded lqg con-
trollers for uncertain systems,” Journal of Optimization Theory and Applica-
tions, vol. 113, no. 2, pp. 269–282, 2002.

[92] S. Gupta and S. M. Joshi, “Some properties and stability results for sector-
bounded lti systems,” in Proc. 33rd Conference on Decision and Control, vol. 3,
(Lake Buena Vista, FL), pp. 2973–2978, 1994.

[93] D. J. Leith and W. E. Leithead, “Survey of gain-scheduling analysis and design,”
International Journal of Control, vol. 73, no. 11, pp. 1001–1025, 2000.

[94] C. Mracek, J. Clontier, and C. D’Souza, “A new technique for nonlinear esti-
mation,” in Proc. 1996 American Control Conference (ACC), (Dearborn, MI),
pp. 338–343, 1996.

[95] J. R. Forbes and C. J. Damaren, “Design of gain-scheduled strictly positive real
controllers using numerical optimization for flexible robotic systems,” Journal
of Dynamic Systems, Measurement, and Control, vol. 132, no. 3, 2010.

[96] C. J. Damaren, “Gain scheduled SPR controllers for nonlinear flexible sys-
tems,” Journal of Dynamic Systems, Measurement, and Control, vol. 118, no. 4,
pp. 698–703, 1996.

[97] A. Walsh and J. R. Forbes, “Analysis and synthesis of input strictly pas-
sive gain-scheduled controllers,” Journal of the Franklin Institute, 2016,
doi:10.1016/j.jfranklin.2016.03.014.

[98] A. Walsh and J. R. Forbes, “A very strictly passive gain-scheduled controller:
Theory and experiments,” IEEE/ASME Transactions on Mechatronics, 2016.

[99] A. Megretski and A. Rantzer, “System analysis via integral quadratic con-
straints,” IEEE Transactions on Automatic Control, vol. 42, no. 6, pp. 819–830,
1997.

[100] C. W. Scherer, “LPV control and full block multipliers,” Automatica, vol. 37,
no. 3, pp. 361–375, 2001.

[101] B. P. Rasmussen and A. G. Alleyne, “Gain scheduled control of an air condition-
ing system using the youla parameterization,” IEEE Transactions on Control
Systems Technology, vol. 18, no. 5, p. 1216, 2010.

[102] P. Apkarian, P. Gahinet, and G. Becker, “Self-scheduled H∞ control of linear
parameter-varying systems: a design example,” Automatica, vol. 31, pp. 1251–
1261, 9 1995.

[103] R. Shorten, K. S. Narendra, and O. Mason, “A result on common quadratic
Lyapunov functions,” IEEE Transactions on Automatic Control, vol. 48, no. 1,
pp. 110–113, 2003.

153
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