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ABSTRACT

The explosion of high-throughput Omics assays in past 15 years has led to a rev-

olution in the quantity of data and the number of data types which are available to

biological researchers. This has necessitated a second revolution in the development

of analytical tools to handle this wealth and variety of data. No longer is it practical

for a researcher to simply examine a list of differentially expressed compounds and

draw meaningful insight about the biological processes at hand; these differentially

expressed compounds must be put into context with each other, and integrated with

existing biological knowledge. Co-expression techniques, where the simultaneous ex-

pression of two or more compounds is analyzed, have become a powerful tool for

biological insight in high-throughput Omics settings.

The primary goal of this dissertation is to develop techniques for identifying and

characterizing patterns of co-expression. In our first project, we develop a Differ-

entially Weighted Factor Model for estimating covariance matrices related through

structured experimental design. Our factor model allows us to estimate common

structural elements using all available data, and to estimate unique structural el-

ements in a condition specific manner. We develop a method for visualizing the

resulting estimates, and implement the method in an R package, DWFM. The sec-

ond project presents a method using the Prize Collecting Steiner Tree algorithm

to integrate and identify modules in lipid and untargeted metabolomic assays in a

data-driven manner. These assays are integrated over a co-expression network spe-

cific to the applied setting in question, allowing us to capture modules unique to

this setting. Our final project presents a second technique for identifying modules

xii



of co-expressed biomolecules. This technique addresses a major limitation of PCST

based approaches, namely that one is required to choose a cutoff to obtain a list of

differentially expressed compounds used as input into the algorithm. Additionally,

this second method utilizes a meta-analytic inspired approach to identify patterns of

co-expression across multiple data sets, thus reducing the impact of a single noisy

assay.
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CHAPTER I

Introduction

1.1 Background and motivation

1.1.1 Co-expression networks

Over the past decade, co-expression networks have proven themselves to be a

powerful tool for analyzing high-dimensional Omics data. In such settings, the nodes

correspond to biomolecules (genes, proteins, metabolites, lipids), while the edges cap-

ture statistical associations between them. These networks can be drawn from well

annotated biological or pathway databases; it has been noted, however, that networks

comprising of genome-wide (proteome-, metabolome-) interactions derived from ex-

perimental or observational data may contain novel interaction information not cov-

ered annotated in existing databases [2]. Studying such associations has enhanced our

understanding of a number of biological phenomena, including dynamics of human

disease [3], transcriptional changes associated with aging [4], and condition-specific

alterations to metabolic pathways [5].

A number of techniques are available in the literature to estimate networks from

data, including correlation based methods [6, 7, 8] and partial correlation ones [9,

10, 11]. The former are straight forward to calculate, but focus on highly connected

compounds which may not be particularly informative, being potentially driven by

1



artifacts [12], while also not differentiating between direct and indirect interactions

between compounds. Partial correlations have been used extensively in Omics set-

tings, but require large sample sizes to calculate (see discussion in [10].)

Coexpression networks on a single dataset have been used to identify hub genes and

pathway associations in retinoblastoma [13], to functionally annotate long noncoding

RNAs (lncRNAs) and identify their potential cancer associations [14], and to identify

potential treatment targets of peripheral arterial disease [15].

Differential analysis of co-expression networks, where the networks themselves are

tested for differences between conditions, have been used to identify novel glioblas-

toma linked gene sets [16] and capture changes in functional interactions resulting

from genetic/epigenetic changes that affect co-expression, but not expression, in the

molecular pathogenesis of multiple sclerosis [17].

Co-expression networks aggregated over multiple related data sets have been used

to gain insight into the ways in which cancer affects perturbs co-expression relation-

ships [18], illuminate the role of indirect connections in gene networks [19] and identify

functional modules of genes in a meta-analytic fashion [20].

1.1.2 Metabolomics

Metabolites are small molecules which are chemically transformed during metabolism;

the metabolome is the collection of these metabolites in an organism. The metabolome

is closely linked to phenotype [21], more so than the genome or proteome, as metabo-

lites are direct signatures of biochemical activity. We are particularly interested in

a subset of metabolites known as lipids - a group of organic compounds which are

crucial for understanding cellular physiology and pathology. Both targeted and un-

targeted mass spectrometry assays are used in metabolomics and lipidomics studies;

targeted assays seek to detect and measure a single metabolite or a select group of

metabolites, while untargeted assays seek to measure any metabolite feature present

2



in the data.

Advancements in mass spectrometry, coupled with the development of more so-

phisticated data processing tools and comprehensive spectral libraries, have enabled

researchers to probe deeper into the metabolome and lipodome; thousands of metabo-

lite features can be measured simultaneously, necessitating the development of new

techniques for functional interpretation of such data. In some ways, the field of

metabolomics stands at a similar point to where the field of genomics stood 15 years

ago, when gene set enrichment and pathway analysis became the tool of choice for

gaining insight into the underlying biology of differentially expressed genes [22].

Just as Gene Set Enrichment Analysis (GSEA) [23] and Gene Set Analysis [24]

approaches were developed to analyze high throughput genomics data, so various

metabolite set enrichment analysis methods have been developed to understand high

throughput metabolomics data [25, 26, 27]. Many of these methods, for any Omics

data types, rely on canonical pathways or other knowledge drawn from existing bio-

logical knowledge bases, such as KEGG [28] or Gene Ontology [29].

This reliance on prior biological knowledge for gaining insight poses a particular

problem in analyzing the lipidome, which is essentially unannotated to canonical

features. Additionally, there are certain lipid classes which are tightly linked, as

lipids in one class serve as precursors for those in another class; for example, there is

the association between the lysophospholipid, diacylglycerol, and triglyceride classes

that are involved in the triglyceride synthesis pathway. Such biochemical constraints

give rise to more structured co-expression patterns which, if appropriately leveraged,

can provide insight into disease processes.

1.2 Dissertation Overview

The primary subject of this thesis is identifying and characterizing patterns of

co-expression; each remaining chapter presents a variation on this theme. We focus

3



on Omics applications where prior biological knowledge is lacking (e.g. lipidomics and

untargeted metabolomics), and in each chapter the results of the method are used to

generate hypothesis about the broader biological phenomenon at play.

In Chapter 2 we introduce a differentially weighted factor model capable of jointly

estimating the structure of multiple related covariance matrices. Studying co-expression

networks from high dimensional Omics data has been used to enhance our understand-

ing of a wide range of biological phenomena. Often the data from such studies can be

partitioned intro groups corresponding to experimental conditions or disease states.

Traditional approaches analyze these groups separately, and thus do not make full

use of all sample information. Our method uses all available data for the identifi-

cation of common structural elements and group/condition specific data to estimate

differential weights across conditions. We also introduce a method of visualization to

aid in summarizing and interpreting the results of our method. The method’s utility

is demonstrated on lipidomics data from breast cancer patients.

The proposed method and visualizations have been implemented in the R-package

DWFM available at https://github.com/tguidici/DWFM.

Chapter 3 presents a data-driven method utilizing the Prize Collecting Steiner Tree

(PCST) algorithm to integrate and identify modules of differentially abundant lipids

and untargeted metabolites, while also also incorporating relevant, non-differential

compounds. We apply our method to data from a controlled feeding study and use

condition specific co-expression networks to identify dietary linked modules of lipids

and small polar molecules. We then confirmed that the identified modules were altered

in an animal model of differential metabolite utilization.

The method we present in Chapter 4 addresses one of the limitations of the method

in Chapter 3. As PCST methods rely on choosing a significance cutoff, biologically

meaningful features which miss this cutoff could be missed. Identifying modules based

only on patterns of co-expression between variables helps overcome this limitation.

4



We present a method for identifying modules based on co-expression patterns across

multiple datasets. The method is applied to the data set used in Chapter 3, and the

discovered modules are used to illuminate systems level changes in a second, more

complex data set.

5



CHAPTER II

A Differentially Weighted Factor Model for

Estimating Multiple Related Covariance Matrices

with Applications to Lipidomics

2.1 Introduction

There has been much work in recent years on estimating co-expression networks

from high-dimensional Omics data. In such networks, the nodes correspond to biomolecules

(genes, proteins, metabolites, lipids), while the edges capture statistical associations

between them. Associations can correspond to Pearson correlations or more robust

variants such as Spearman’s ρ or Kendall’s τ , or partial correlations [30]. As noted

in [31], networks comprising of genome-wide (proteome-, metabolome-) interactions

derived from experimental or observational data, may contain novel interaction in-

formation not covered by the standard pathways. Studying such associations has

enhanced our understanding of a number of biological phenomena, including dy-

namics of human disease [3], transcriptional changes associated with aging [4], and

condition-specific alterations to metabolic pathways [5]. Patterns of co-expression

are also important in studies involving metabolomics and/or lipidomics data, since

changes across experimental conditions or disease states can provide insights into the

flow of metabolites through latent metabolic processes. Further, since most lipid

6



species are not currently mapped to canonical pathways, studying their co-expression

can provide useful information of identifying sets of lipids, possibly from different

classes (see Appendix Section A.4 for a very brief primer on lipid classes), that can

be the focus of downstream analysis. Note that in the case of lipids, there are certain

lipid classes which are tightly linked, as lipids in one class serve as precursors for

those in another class; for example, there is the association between the lysophos-

pholipid, diacylglycerol, and triglyceride classes that are involved in the triglyceride

synthesis pathway. Thus, such biochemical constraints give rise to more structured

co-expression patterns which, if appropriately leveraged, can provide insight into dis-

ease processes. Such a setting arises due to the dietary and enzymatic influences that

affect lipid metabolism [32, 33].

The data from many biomedical studies involving Omics data can be naturally

partitioned into groups, corresponding to either different experimental conditions or

disease states. The standard way to conduct analysis of co-expression patterns in this

setting would be to estimate from the Omics measurements a separate co-expression

network for each group and subsequently examine them for common patterns. Under

the assumption that the groups exhibit similarities in their co-expression due to

relationships between the experimental conditions or disease states, a better strategy

would be to develop a statistical model that would enable joint estimation of all co-

expression networks, thus utilizing the sample information across all groups efficiently,

but at the same time allow for differences across groups to manifest themselves.

The motivation for such a modeling framework comes from examining co-expression

lipidomics data for a set of women with early stage breast cancer being treated with

aromatase inhibitor (AI) therapy. The subject’s lipidomes are assayed before begin-

ning the therapy, and 3 months into treatment. Half of the women were unable to

tolerate the AI therapy for more than 6 months due to significant side effects (more

details in Section 2.3.3 and Appendix Section A.4). A visual exploration of the co-
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Figure 2.1: Scaled first and second eigenvectors from each condition in AI dataset.
Eigenvectors taken from the eigendecomposition of the sample covariance
matrices. Metabolites are colored by class. The TGs, colored in grey,
provide a good illustration of the overall similarities and condition spe-
cific differences between the four conditions. They are relatively similarly
placed in the four plots, but different subgroups of the TGs expand or
contract from condition to condition.

variance matrices for the four groups shows a number of striking similarities across

all of them, but also group specific patterns within each individual data set. These

are depicted in Figure 2.1, where the first two principal components of each data set’s

covariance matrix are plotted, with the points colored by lipid class. It can be seen

that a common structure is shared amongst the data sets, but the patterns are ex-

panded or contracted in each data set; i.e., the group specific co-expression patterns

are roughly proportional to some common structure shared across the data sets.

To formalize this finding, we propose a factor analysis model, wherein the factor

loadings are decomposed onto a common set of loadings, shared across all groups,

but which we allow to be differentially weighted within each group. Thus, when esti-
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mating the common loadings, information from all samples in the study is utilized, a

particularly attractive feature in the analysis of data sets with a small number of sam-

ples in each group (a common enough setting for Omics data), while the differential

weights are calculated based on the sample information from each group.

This modeling framework can inform biomedical researchers of the set of variables

(biomolecules) which are acting in a concordant manner and characterize the under-

lying biological processes in the data, while their differential weighting sheds light on

how these common patterns of association are modulated or disrupted in a specific

group. Such information could then suggest avenues for further investigation into

potential mechanisms underlying the observed differences between groups.

This problem has received some attention in the bioinformatics and biostatistics

literature. A number of approaches focuses on data sets representing different Omics

modalities (genomics, proteomics, etc.) but acquired on the same set of samples and

the goal is either to remove idiosyncratic variability [34], or find common signatures

across Omics modalities for subsets of samples [35, 36]. These approaches use matrix

decompositions (e.g. principal components analysis or non-negative matrix factor-

ization) appropriately constraining their parameters across data sets; for a review of

related approaches see also [37]. When the statistical associations in the co-expression

networks correspond to partial correlations, one has also to contend with the issue

that there are more variables present than samples, and therefore such networks can

only be estimated from Omics data only if additional structural assumptions are im-

posed; the most common and popular assumption being that of sparsity - namely,

that most interactions are non-present. There is an expanding body of literature on

this topic -see e.g. [38, 39, 40] and references therein. Finally, [41] focuses on the

problem of testing for differences between two covariance matrices defined on the

same set of variables, obtained from two different data sets, without assuming any

structural similarities between them.
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In this work, the focus is on identifying common, but “differentially weighted” co-

expression patterns, which shares some conceptual commonalities with the work on

partial correlation networks mentioned above. However, the technical framework and

developments are different. Finally, it should be noted that the proposed methodol-

ogy is capable of identifying data driven strongly interacting modules of biomolecules,

that can be of interest to test for enrichment, as discussed in [31]. This feature is par-

ticularly useful in studies involving lipidomics data, where as previously mentioned,

canonical pathways are not well delineated. Hence, their enrichment analysis has

the potential to provide a systems perspective which can lead to deeper biological

insights.

2.2 Methods

2.2.1 Differential Weighted Factor Model

We start the presentation by providing some basic background on the factor

model for a single data set, before generalizing to the K-group setting. Let X

denote a data set of size n × p, containing Omics measurements on p variables

(biomolecules) collected from n samples. Since the focus is on understanding co-

expression/co-variation patterns amongst variables, a factor model represents a stan-

dard tool for this task. Formally, let x be a p-dimensional vector of random vari-

ables with distribution function H representing the p Omics measurements. Hence,

the n samples are independent and identically realizations from the distribution H.

The classical factor model [30] posits that the i-th variable can be expressed as a

linear combination of m latent common factors {fj}mj=1 and an idiosyncratic error;

namely xi =
∑m

j=1 λijfj + εi, where λij is a weight and εi an error term. Since

both the factors and the errors are unobservable, for identifiability purposes it is

assumed that F = [f1, · · · , fm]′ and E = [ε1, · · · , εp]′ satisfy E(f) = 0,E(E) = 0,
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E(FF ′) = I,E(EE ′) = Ψk,E(F ′E) = 0, where Ψ is a diagonal matrix containing

the variances of the error term. Therefore, the common factors and the idiosyncratic

components are uncorrelated and also uncorrelated between them. Then, some stan-

dard algebra gives that Cov(x) ≡ Σ = (Λ)(Λ)′+Ψ, where Λ is a p×m matrix of factor

loadings with elements {λij}p,mi=1,j=1. The latter equation can be used to estimate from

the data set X, the corresponding model parameters (Λ,Ψ) by applying for example

an eigenvalue decomposition on the sample covariance matrix S = (X ′X) [30]. Note

that Λ is identified up to rotations, since for any orthonormal matrix Φ, we have that

Σ = Λ̃Λ̃′ + Ψ, where Λ̃ = ΛΦ and F̃ = ΦF .

Our objective is to model jointly the co-expression/co-variation of the K groups.

To that end, we posit the following model for the p random vector xk that generates

the observed data in set Xk comprising of nk samples:

(2.1) Xk = ΛkF k + εk = BkQF + εk, k = 1, · · · , K,

where Λ = BkQ, with Q being a p×m matrix of common factor loadings and Bk, a

p×p diagonal matrix, being a set of differential weights. Further, the assumptions on

the factors F k and idiosyncratic components Ek are as in the single model case, and

further we assume that E(F k(F `)′) = 0,E(Ek, (E`)′) = 0,E(F k(E`)′) = 0, ∀ k 6=

` = 1, · · · , K. Similar calculations as above yield that each group specific covariance

matrix Σk = Bk(QQ′)Bk +Ψk. Note that the model reduces significantly the number

of loading related model parameters to (p × m) + Kp from k × (p × m), in the

unconstrained version above.

To complete the model formulation, we need to impose a further identifiability

constraint on the differential weight matrices Bk; otherwise, we can inflate all of them

by a factor c, deflate the elements of Q by the same factor c and the model would

not change. To that end, we propose the following two identifiability constraints.
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The first is
∑K

k=1 B
k = Ip (ID1), where Ip denotes the p-dimensional identity matrix.

According to it, the weights for each variable i must sum to 1 across the K conditions.

The second one is motivated by applied settings where the K groups can be naturally

arranged according to the levels of a two-way factorial design. For example, suppose

we have K = 4 groups of disease and normal, female and male patients. Hence, our

two grouping factors are disease status with K1 = 2 levels and sex with K2 = 2 levels.

The second identifiability constraint is then given be
∑K1

k=1B
k = Ip (ID2) for those

groups k, where one of the grouping factors is fixed at a certain level (e.g. normal)

and we are normalizing over the levels of the other grouping factor.

Remark II.1. The model formulation assumes that the factors F k for each group

span different (orthogonal) subspaces, and their coupling comes from the structure

imposed on the factor loading matrices Λk. An alternative would have been to allow

the factor F = [F 1, · · · , FK ]′ to have correlated elements between the various F k’s,

but not within. That is E(F k(F k)′) = 0 for all k = 1, · · · , K, but E(F k(F `))′ 6= 0. In

this case, to identify the model parameters we would require that the factor loading

matrix Λ containing the loadings for all K factors F k, k = 1, · · · , K be block diagonal.

The most restrictive model formulation assumes that F k = F̃ , ∀ k = 1, · · · , K, that

is there is a single latent space explaining the co-variation structure of all the K data

sets, but this proves excessively stringent, since this would suggest to put all K data

sets together and analyze them as a single one.

2.2.2 Estimation Procedure

Since we assume that the data Xk span different subspaces, we can estimate the

model parameters by the following two stage procedure:

1. Estimate Λk through the eigenvalue decomposition of Sk the empirical covari-

ance matrix of Σk.
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2. Estimate the model parameters by solving Λk = BkQ subject to the identifia-

bility constraints (ID1) or (ID2).

Specifically, since we require a rank-m solution, an application of the Eckart-Young

theorem gives that the best rank-m approximation (in squared Frobenius norm) of

S̃k = Uk
[1:m]D

k
[1:m](U

k
[1:m])

′, i.e. the eigenvectors corresponding to the largest m eigen-

values of Sk. Therefore, a rank(m) estimate for Λk is Λ̂k = Uk
[1:m]

√
Dk

[1:m]. Then, from

step (2) above, we get using (ID1) that

(2.2) Q̂ =
K∑
k=1

Λ̂k

or under the (ID2) constraint, the estimate is given by Q̂ = 1
K1

∑K
k=1 Λ̂k or replacing

K1 by K2.

Then, the estimates for the differential weights are obtained under both normal-

ization constraints by

(2.3) B̂k
ii =

1

m

m∑
j=1

Λ̂ij

Q̂ij

.

Next, we briefly discuss two implementation issues. The first has to do with

selecting the number of factors; one can use the standard strategies employed in

factor and principal components analysis for each Σk, namely employ the scree plot

and spot where the knee in the eigenvalues occurs, or require that the total variance

explained by the first m factors exceeds a certain percentage (e.g. 60% or 70%). The

final selection for m would be that value that is most compatible across all K groups.

The second issue deals with the rotational invariance of the factor model discussed

above, which is also a feature of the eigenvalue decomposition [30] used to obtain Λ̂k.

Since the Q̂ is an average of K Λ̂k’s, we need to ensure that all of them have the same

”orientation”. The latter is addressed through a Procrustes rotation (see [42].)
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Extension to Sparse Factor Models: For many data sets, the factor structure

may be sparse, wherein different subsets of variables load on different factors. The

estimation of sparse Λk’s becomes more involved. There are a number of propos-

als in the literature that address this issue, including (i) sparse principal component

analysis (SPCA) [43, 44] that employs an elastic net (a combination of a lasso and

a ridge) penalty to obtain sparse principal components, while relaxing their orthog-

onality constraint commonly assumed in classical PCA, (ii) the standard eigenvalue

decomposition used in Step 1 of the proposed estimation procedure, where the eigen-

vectors are truncated by magnitude [45] (EDTM) and (iii), a novel method presented

here, similar to (ii) but the eigenvectors are truncated by the cardinality of their

support (EDTC).

Note that approaches (i) and (ii) require careful selection of tuning parameters;

specifically, for SPCA the regularization parameters the control the lasso and ridge

penalties, while for EDTM selecting a universal threshold value. Without a priori

knowledge of the sparse patterns in Q, tuning these methods directly proves chal-

lenging, as manifested in our simulation studies. Instead, we developed an alternative

approach that provides good estimates of the number of factors m together with their

support using a community detection algorithm. Each covariance matrix is regarded

as a graph, with edge weights given by the absolute value of the covariance matrix.

The leading eigenvector community detection algorithm (LEVCD) [46] is used to find

groups of highly connected nodes (correlated variables). These communities corre-

spond to the columns of Q and the size of each community roughly corresponds to the

number of non-zero components (the cardinality of the support) for a given column

of Q. This last fact is key - we could have estimated the number of factors from a

scree plot, but it would not have provided the support size for each factor. We set the

number of factors, m, equal to the smallest number of communities within a data set,

across all K data sets. The cardinality of non-zero support in each factor is set to the
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cardinality of these communities s = (s1, · · · sm), where si > si+1. These estimates

for m and s, can then be used to estimate Λ̂k via either SPCA (Appendix Algorithm

4) or EDTC (Appendix Algorithm 3).

All algorithms are detailed in full in Appendix A.1, along with a performance

review on selecting the tuning parameters, and a comparison of all three methods in

Appendix A.2.

2.2.3 Illustration of the Method through a Toy Example

An intuitive understanding of how the method works can be gained via the follow-

ing small example. Suppose we have data from an experiment with 3×1 experimental

design. The data have 2 common latent factors, 2 variables are observed across data

sets. The Bk
ii are equal across all data sets (Bk

ii = 0.33), but the noise in the ob-

served data (Ek) increases with each condition. The error terms are generated so

that cor(X1
1 , X

1
2 ) ≈ 0.9, cor(X2

1 , X
2
2 ) ≈ 0.75 and cor(X3

1 , X
3
2 ) ≈ 0.6.

We can compare the results of our method with the standard approach of separate

eigen-decompositions by computing the reconstruction loss in Equation A.5. We

expect our method to perform well when the sample size is large; we also expect

gains over the standard approach when the sample size is small. In panel (a) of

Figure 2.2 we can see that this is indeed the case.

We can also see in panel (b) of Figure 2.2 and Table 2.1 that our estimation of

Bk and Q moves closer to the truth as sample size increases.

2.2.4 Visualization

Note that the output of the proposed model comprises of the common factor load-

ings Q̂ and the differential weights {Bk}Kk=1. The common factor loadings can be rep-

resented as in any standard factor or principal components analysis through a scatter-

plot of its elements. Similarly, the reconstructed covariance matrices Σ̂k = B̂kQ̂Q̂′B̂k
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(a) Λ̂k estimated with different sample sizes (b) true Q and estimated Q̂

Figure 2.2: Toy Example: (a) Both our method and separate eigen-decompositions
improve with increasing sample size. Our algorithm (top row) does a

better job of estimating the Λ̂k similarly, while the estimates from separate
eigen-decompositions are spread further apart, reflecting the influence of
increasing noise in the data. Left to right by row, the reconstruction loss
values are: 0.153 (method, n=15), 0.108 (method, n=100), 0.161 (eigen-
decomp, n=15), 0.109 (eigen-decomp, n=100). (b) As the sample size

increases, Q̂ moves closer to the true Q.
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B1 B2 B3

true Bk
11, Bk

22 0.33 0.33 0.33

n = 100, B̂k
11 0.25 0.34 0.41

n = 100, B̂k
22 0.24 0.35 0.41

n = 15, B̂k
11 0.25 0.30 0.46

n = 15, B̂k
22 0.21 0.33 0.46

Table 2.1: Toy Example Performance. B̂k for n = 100 and n = 15. True Bk
11 = Bk

22 =
0.33,∀k.

can be visualized through heatmaps. For the differential weights, we propose to com-

pute a quantity similar in spirit to the traditional log-fold-change. For comparing

groups k and `, we define rk`i = log(B̂k
ii/B̂

`
ii), i = 1, · · · , p. This ratio provide informa-

tion about how the loadings Q̂·i for variable i are modulated between groups k and `;

for example, if rk`i is close to 0, then the patterns of association involving variable i

are similar in both groups. As rk`i moves away from 0 and becomes more positive, the

associations involving i become, on average, stronger in group k relative to `, while if

it becomes increasingly negative, the associations become weaker in group k relative

to `. The ratios rk` are visualized as bar charts, with bars extending to either side of

the central axis (representing 0). A visualization of synthetic data corresponding to

4 groups organized according to two experimental design factors with two levels each

are depicted in Figure 2.4.

Figure 2.3 illustrates our approach to visualization in a setting with 3× 1 experi-

mental design structure.

2.3 Results

Next, we provide an in depth performance evaluation of the proposed methodology

based on synthetic data. We start with a comparison over estimating K separate

models, and then focus on the performance of the method under different settings
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Figure 2.3: Visualization for 2×2 experimental design. Visualization for results from
a simulated 2×2 setting with the following selection of model parameters;
m = 2, p = 30, n = 100. Latent factors account for 75% of observed vari-
ance, while Q1 has 20 non-sparse entries and Q2 has 10. Reconstruction
loss is 0.1486. The reconstructed covariance matrix heatmaps are inter-
preted in the usual manner. The bar charts are oriented so that longer
bars extending in the direction of a specific reconstructed covariance ma-
trix k indicate that those Bk values are larger than the same values in
the condition the bars are pointing away from. We can see that the
visualization allows us to see the common block structure, as well as spe-
cific differences between conditions (compare, for example, the lower right
block and the relevant sections of the bar charts between all 4 heatmaps.)
This figure also allows us to observe the impact of the experimental de-
sign on the normalization - B̂1 and B̂2 are normalized together, as are B̂3

and B̂4. This can be seen in the figure, where Σ̂1
R and Σ̂2

R have patterns
of light and dark cross-hatching which are complimentary to each other,
and very different from the patterns present in Σ̂3

R and Σ̂4
R
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Figure 2.4: Visualization for 3×1 experimental design. We observe that the visualiza-
tion allows us to see the common structure present in all of the covariance
matrices - they all share a block diagonal structure, with a large block in
the upper left (representing the first factor), and a small block in the lower
right (the second factor). Differences between the conditions can be seen
in both the color and intensity of the individual cells in the heatmaps, and
in the bar charts. We can see this concretely by regarding the lower right
block in Σ̂1

R. This represents the variables which load onto Q2. Overall

this square is darker than the equivalent square in Σ̂2
R and lighter than

the one in Σ̂3
R. This relationship between Σ̂1

R and the other two datasets
is also reflected in the bar charts - in r12 the bars corresponding to the
second factor point towards Σ̂1

R, but in r13 these same bars point away

from Σ̂1
R and towards Σ̂3

R.

involving the key model parameters p, n,m,K and the noise level.

2.3.1 Comparison to performing separate analyses

Using synthetic data across a range of simulation settings: 3× 1, 2× 2 and 5× 1

experimental design settings, with 2 latent factors, 50 or 100 variables, and a range of

sample sizes. Further, the latent factors account for 50% of the observed variation. We

compare the reconstruction error from using K separate scaled eigen-decompositions
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or using the proposed method to estimate Λk. We compute

1

K

K∑
k=1

||Λ̃k − Λk||
||ΛK ||

(2.4)

where Λ̃k is either Λ̂k, or B̂kQ̂. The ratio of this reconstruction error for the two

approaches is given in Table 2.2. In general, the proposed method outperforms un-

dertaking K separate analyses. The greatest gains are observed when the experi-

mental design necessitates constraint ID2 (the 2× 2 experimental design setting), or

when noisy entries of a modest size (cutoff = 0.05) are removed. In settings where

ID1 is used (3 × 1 and 5 × 1), and the cutoff is too large (0.2), our method slightly

under-performs. This is primarily due to the fact that the selected threshold 0.2 sets

some true non-zero entries to zero (a common practice in classical factor analysis to

aid interpretation), and the additional steps included in the algorithm to deal with

noisy entries slightly decrease the accuracy in these scenarios.

3× 1 2× 2 5× 1
cutoff = 0 0.9516 0.8903 0.9221
cutoff = 0.05 0.9498 0.8860 0.9264
cutoff = 0.1 0.9772 0.8925 0.9987
cutoff = 0.2 1.0223 0.9416 1.0092

Table 2.2: Average loss ratio: (method based reconstruction loss)/(separate eigen-
decomposition reconstruction loss). Results are averaged over 500 error
realizations, all n and all p. Entries with magnitude less than the cutoff
are set to 0.

2.3.2 Performance evaluation based on Synthetic Data

Next, we consider a large set of scenarios to test the performance of the model

and the corresponding estimation strategies for both sparse and non-sparse Q, with

varying experimental design structures. For each simulation setting, we measured the

algorithm’s performance on estimating a range of model elements. Here, we present

the algorithm’s performance in computing B̂k, for a subset of simulation settings that
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give an overall sense for the algorithm’s behavior.

This performance can be measured by B-loss, calculated as

B-loss :
||B − B̂||F
||B||F

(2.5)

where B is a p × K matrix whose kth column is the diagonal entries in Bk. Figure

2.5 shows this loss for 3×1 experimental design structure (a single design factor with

3 levels), with non-sparse Q settings in panel (a) and sparse Q settings in panel (b).

See figure legend for complete simulation details.

It can be seen that the algorithm behaves in an expected manner; specifically, loss

decreases as the percentages of variance explained by the latent factors increases, or

as sample or variable size increase. We also observe that the standard deviations of

the loss values are quite small - indicating that the algorithm consistently exhibits

good performance.

When Q is sparse, these trends still apply, but the loss values are generally higher

and the range of loss values is broader. This can be attributed to the challenge of

identifying the sparse support of Q with a very high degree of accuracy. In the non-

sparse case, mean B-loss is always less than 0.233, with half of the instances even

below 0.11. For the sparse case, the mean B-loss is higher, ranging from 0.042 to

0.24, but in the majority of the settings the loss values remain below 0.15.

In Appendix A.3results on the model’s performance in estimating Q̂ and recon-

structing Λ̂k, across additional simulation settings (2 × 2 experimental design struc-

tures are also tested) are provided. Further, a discussion of a scaling factor, sij,

included to adjust for noisy entries and complete technical details on the simulation

procedure are also given.
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(a) B-loss with non-sparse Q (b) B-loss with sparse Q

Figure 2.5: B-loss for 3 × 1 experimental design. We consider m = 2, 3, and Ψ such
that Λk explains 50% or 75% of the variance present in the simulated
data. For the non-sparse Q (each column in Q is fully populated with
non-zero entries), we consider p = 100, 250 with n = 50, 100, 250, de-
pending on p. When Q is sparse, we test p = 100 and n = 75, 150. For
both 2 and 3 factors in the sparse scenario, we also vary the amount
of sparsity in each column of Q. The first column of Q always has the
greatest number of non-zero entries, followed by the second column and
so on. Every row in Q has a single non-zero entry, giving the columns
of Q distinct, non-overlapping support. For m = 2 we look at Q having
(0.55p, 0.45p) and (0.7p, 0.3p) non-sparse elements, while for m = 3 we
testQ with (0.39p, 0.33p, 0.28p) and (0.5p, 0.3p, 0.2p) non-sparse elements.
These patterns of loading are referred to as ”Qload: 1” and ”Qload: 2”.
All scenarios are run for 500 error realizations with a single realization
of Q and Bk, ∀ k. Our preferred method for estimating sparse Λ̂k is the
EDTC method, as it yielded the best results (see Appendix Algorithm 3
and Appendix Section A.2 for more details.)
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2.3.3 Application to lipidomics data

We further illustrate the usefulness of the proposed model by analyzing the fol-

lowing lipidomics data set. Aromatase inhibitor (AI) adjuvant therapy is effective

in reducing the recurrence early stage hormone receptor-positive of breast cancer by

inhibiting the conversion of androgens to estrogen, interrupting estrogen-dependent

cancer cell growth [47]. AI use is associated with adverse events, including muscle

and joint pain that occurs in up to 50% of treated patients [48]. These side effect can

affect quality of life and lead to discontinuation of the drug in a significant proportion

of symptomatic patients [49] .

Dietary fatty acid intake, especially ω3- and ω6-fatty acids, can affect overall in-

flammation by altering the production of pro- and anti-inflammatory cytokines [50].

An earlier study showed that women treated with daily ω3-fatty acids showed no

difference in incidence of AI side effects when compared to soybean/corn oil supple-

mentation [51]. However, it was noted that both groups showed a significantly higher

improvement during the intervention phase than had been seen in other intervention

trials to modulate side effects following AI inhibition. One potential explanation for

this finding is that the ”placebo” soybean and corn oil have over 50% content of

ω6-fatty acids, which also can have anti-inflammatory effects [52].

Given the above, we employed the proposed model to identify potential differences

in patterns of co-variation of lipids in the serum lipidome of women who developed

symptomatic arthralgias following treatment with AI (Cases n = 24) compared to

women who remained asymptomatic (Controls n = 25). Samples were derived from

a prospective clinical trial (more details in Appendix A.4.) Cases were defined as

women who were unable to continue treatment for more than 6 months due to the

development of musculoskeletal pain, whereas controls remained symptom free (de-

fined as pain ≤ 2/10) for at least 24 months. Clinical characteristics of the women

were not different between cases and controls (Appendix Table A.1) nor were there a
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Figure 2.6: Visualization of results for AI data (a) Q̂ for AI data. Metabolites are
colored as in Figure 2.1, and are grouped according to their loadings onto
Q̂. (b) Σ̂k

R and rkk
′

for AI data. Variables in each heatmap are sorted by
group assignment from (a). Clockwise from upper left, the reconstructed
heatmaps are: Cases at baseline, Cases at 3 months, Controls at 3 months,
Controls at baseline. In the same order, the bar charts are: Case at
baseline vs Cases at 3 months, Cases at 3 months vs Controls at 3 months,
Controls at baseline vs Controls at 3 months, Controls at baseline vs Cases
at baseline.

difference in the type of AI used.

Subjects’ lipidomes were assayed at baseline, and 3 months following initiation

of AI treatment; a total of 442 lipids in 15 classes were identified and their relative

levels determined by LC/MS. We also measured a small set of eicosanoids which are

potential modulators of inflammation [53], and free fatty acids (FFA).

A description of the normalization procedure used, as well as pre- and post-

processing steps for the method and wet lab lipidomics methods can be found in

the Appendix A.4.. In short, after normalizing and selecting samples which were

present in all three analytical platforms, there were 24 subjects who could not con-

tinue receiving the drug (cases) and 25 subjects who could continue being on the

drug (controls). For these 49 subjects, data were available on 467 compounds (lipid

species, FFA and eicosanoids).
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In preliminary analysis of the data, paired and unpaired t-tests were used for iden-

tifying differentially expressed compounds related to the following comparisons: (i)

cases at baseline vs cases at 3 months, (ii) controls at baseline vs controls at 3 months,

(iii) cases vs controls at baseline and (iii) cases vs controls at 3 months. After cor-

recting the resulting p-values for multiple comparisons using the Benjamini-Hochberg

False Discovery Rate adjustment procedure [1], there were only 3 metabolites (CE

22:6, TG 62:13, TG 62:14) with an adjusted p-value less than a 0.1 threshold, in the

controls at baseline vs controls at 3 month comparison. No statistically significant

differential abundance was found for any other comparison.

We then turned our attention to co-variation patterns exhibited across the four

groups, using the proposed factor model. Based on scree plots, we set the rank to

be m = 2. The differential weights were normalized based on the (ID2) constraint

applied to the samples in the controls and the cases, respectively. To enhance interpre-

tation, we thresholded small values of Q̂ (removing values between −0.2 and 0.2) and

the results are depicted in Figure 2.6, where the coloring scheme of the compounds

corresponds to their class. Based on their location on this plot, each compounds can

be assigned to a group; this assignment is reflected by the plotting symbols used in

Figure 2.6.

The common factor loadings reflect the association of each variable with the la-

tent factors, with a positive value indicating that the specific compound is positively

associated with the corresponding factor. This fact provides a data driven strategy

for grouping variables (compounds) for further analysis, in settings where canonical

pathways are not defined, or well studied.

With the compounds divided into groups, we tested those groups for over-representation

of each lipid class, and saturation level. Similar to the approach often taken in the

analysis of gene expression data organized into canonical pathways, we also tested

each group for differential abundance using the GSA technique [24]. More specific
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methodological details and full results for these tests can be found in Appendix Sec-

tion A.5, and Appendix Tables A.2 and A.3.

We found that group 1 enriched for saturated compounds, group 2 for monounsat-

urated, and both groups 3 and 4 strongly enriched for polyunsaturated lipids. Group

1 included many FFA and eicosanoids, having over half of the FFA and all of the

eicosanoids. Group 2 mainly contained the DG and TG lipid classes. Group 3 was

enriched for the lysoPC and PC lipid classes, while Group 4 was enriched for the

plasmenyl-PE and TG lipid classes.

Using GSA we tested all 2-way comparisons of interest (described above), and

found that only group 4 showed any differential abundance, with the controls ex-

hibiting lower abundance of the respective compounds at month 3, vs the controls at

baseline. As previously mentioned, group 4 contains mostly polyunsaturated lipids,

which have polyunsaturated fatty acid (PUFA) tails. Since longer chain PUFA species

with multiple double bonds are primarily derived from the elongation and desatura-

tion of dietary essential fatty acids [54], the significant decrease in Group 4 lipids

following AI treatment in Controls could be due to differences in PUFA intake or

metabolism.

Women have higher levels of the ω3-fatty acid, docosahexaenoic acid (DHA) than

men due to estrogen, but these levels fall in the absence of estrogen due to decreased

conversion of dietary ω6-fatty acids to DHA [55]. The fall in the levels of the very long

chain fatty acids in women who remained asymptomatic could be due to a decrease

in the intake of ω3-fatty acids with an increase in the relative intake of ω6-fatty acids,

including α-linoleic acid. Accumulating evidence suggests that dietary α-linoleic acid

may have potent anti-inflammatory effects and reduces cardiovascular risk factors.

Given the greater than expected response from the ’placebo’ arm which contained

high levels of α-linoleic in studies testing the efficacy of fish oil to alleviate arthralgias

in AI treatment may due to salutary biological effects of lipids in soybean/corn oil in
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the placebo.

2.4 Discussion

There is increased interest in studying co-variation patterns across multiple data

sets, as in routinely done with analysis of variance for examining mean changes. The

proposed method fills in this gap. As extensive numerical work shows, the method

performs well across a range of simulation settings in identifying common co-variation

patterns in complex experimental settings and can also accommodate sprase factor

structures.

As the AI case study shows, the resulting estimates of the common factors and

their differential weights prove useful for gaining deeper biological insights. To do so

effective visualization strategies are needed and this work provides plots that success-

fully summarize the bulk of the information produced by the algorithm.

At present, the model serves as an exploratory analysis tool. If one is interested

in a more confirmatory approach, it would be possible to do hypothesis testing on

the elements of Bk. Bootstrapping could be used to generate confidence intervals for

Bk. Fox example, if one’s experimental design allowed for constraint (ID1), and one

had K total data sets, a tight confidence interval around 1
K

for Bk
i would imply that

there is no (or little) condition-specific modulation for the ith metabolite across the

K conditions. Further, permutation tests could be used to test ||Bk − Bk′|| for two

conditions k, k′, where || · || is an appropriate norm that reflects well the magnitude

of the differences in the two conditions. If ||Bk −Bk′|| was not significantly different

from zero, then one could consider treating k and k′ as the same condition - allowing

the researcher to pool the data and increase sample size for that condition. This

would, of course, change the calculations for the normalization constraints, and could

even change which normalization constraint was applied. This pooling would need to

be done with care, as would consideration of the label swapping in the permutation
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test. Additionally, one could test ||Bk
i − Bk′

i ||, over a subset of metabolites, such as

those with high loadings on a particular column of Q̂.

At a technical level, the model can be used with more complicated experimental

designs (such as a 5×4 design). Visualization in these scenarios is less straightforward

and more advanced tools such as those provided in [56] and Shiny [57] need to be

employed to enable researchers to fully explore the results and understand co-variation

patterns in their data.

Finally, the model assumes that all patterns of co-variation observed in the data

are up or down modulations of common motifs when, in truth, there could be additive

differences in these patterns as well. Additionally, in a biological context, it is much

more likely that the columns of Q would have sparse, overlapping support, rather

than the non-overlapping sparse scenarios investigated here. In the case where the

conditions do not all have the same number of factors, the model will still be suitable,

but one would need to be careful about the interpretation of the results. For example,

an experimental condition having 4 factors, while the remaining ones only have have

2 could indicate that that dataset is more variable than the others and should be

treated with care.
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CHAPTER III

Integrative data-driven module discovery of

metabolic perturbations induced by diet

3.1 Introduction

Advancements in mass spectrometry, coupled with the development of more so-

phisticated data processing tools and comprehensive spectral libraries, have enabled

researchers to probe deeper into the metabolome and lipodome. This has allowed

new insights into biological mechanisms and disease progression, such as creating

measurements of internal body time [58], integrating metabolomics and genomics to

identify features associated with poor prognosis in neuroendocrine cancers [59], or

illuminating metabolic profiles predictive of future diabetes [60].

While primary and secondary metabolites are well mapped to canonical pathways

(such as KEGG [28]), and this prior knowledge can be leveraged for biological in-

sights, the lipidome remains essentially unannotated in this way. Metabolites in the

blood have notable interconnectedness which can result in substantial co-expression.

This holds true both for metabolites sequentially formed and consumed in metabolic

pathways, and metabolites that are metabolized by the same enzymes. The high

correlation of various lipids within and across lipid classes is due to both step-wise

metabolic anabolism and multiple lipid species competing as substrate. Because
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metabolomics analysis of small polar compounds and lipidomics are often done on

separate platforms, integration of these data sets is important to gain broader in-

sights into how a physiological or disease state affects the interconnected domains of

intermediary metabolism. The presence of unannotated features in the ”untargeted”

metabolomics profiles also limits the utilization of all information derived from mass

spectrometry analyses [12]. Recent studies have demonstrated that networks beyond

those defined by canonical pathways can provide novel biological insights [2, 61, 62].

These factors make network based methods particularly attractive in studying Omics

data in general, and metabolomics data in particular. Recent applications of network

based methods include detecting novel candidate drivers in melanoma [63], illuminat-

ing a link between pre-existing cellular phenotype and certain genetic alterations in

glioblastoma [64] and identifying relevant unannotated compounds in a longitudinal

study of women’s aging [10].

A number of techniques are available in the literature to estimate networks from

data, including correlation based methods [6, 7, 8] and partial correlation ones [9,

10, 11]. The former are straight forward to calculate, but focus on highly connected

compounds which may not be particularly informative, being potentially driven by

artifacts [12], while also not differentiating between direct and indirect interactions

between compounds. Partial correlations have been used extensively in Omics set-

tings, but require large sample sizes to calculate (see discussion in [10].) A common

analytic pipeline leveraging such data driven networks is to first calculate (partial)

correlation networks from metabolomics (or other Omics) profiles and subsequently

extract strongly connected components from them. These components are then con-

sidered as sets and examined for enrichment using one of the numerous methods

available in the literature [65, 66, 25].

In this paper, we employ the PCST algorithm that integrates the above two-step

process and simultaneously considers differential expression/abundance and interac-
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tions between compounds. This algorithm requires as input a network (nodes and

their corresponding edge set) together with a cost associated with each edge and a

prize associated with a subset of the nodes. Its output comprises of a tree that max-

imizes profit (total prizes - total cost). It has been successfully applied to identify

relevant modules (subnetworks) across a range of Omics data types. For example,

Bailly-Bechet et al. [67] used it to uncover the role of a previously uncharacterized

protein, leveraging a yeast protein interaction network (edge costs) combined with

p-values obtained from testing for differential expression across experimental condi-

tions related to response to yeast (prizes). A human protein interaction network

was also employed in Balbin et al. [68] together with differential abundance (prizes)

between non-small cell lung cancer phenotypes in transcript, protein and phospho-

protein datasets to help discover a protein in the KRAS pathway that could serve

as a drug target. More recently Pirhaji et al. [69] used a network of protein-protein

and protein-metabolite interactions, constructed from integrating multiple databases,

while the prizes reflected the significance of a metabolomic feature’s disregulation be-

tween conditions in a Huntington’s disease cell-line model.

This brief literature overview shows that the PCST is used in conjunction with a

network of physical interactions (protein-protein, protein-DNA, protein-metabolite)

obtained from curated biological databases. However, as argued in Creixell et al. [2]

such interactions may not reflect the current physiological state, since different phys-

iological or pathological conditions may directly or indirectly alter the interactions,

limiting the technique’s potential. Indeed, in earlier studies we found that the relative

correlations of metabolite can be affected in individuals prone to type 2 diabetes [10].

Metabolites in the blood have notable interconnectedness which can result in

substantial co-expression patterns [70]. This arises from the metabolites sequentially

formed and consumed in metabolic pathways, and metabolites that are metabolized

by the same enzymes. A high correlation of various lipids species, within and across
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lipid classes, is due to both to step wise metabolic anabolism and multiple lipid species

competing as substrate. For example, glycerol-3-phosphate acyltransferase (GPAT)

enzymes catalyze the conversion of multiple diacylglycerol species to triacylglycerol

[71] resulting in high co-expression of diacylglycerol with triacylglycerols in plasma.

Increased dietary carbohydrates (CHO) intake result in increase in de novo lipogenesis

of saturated and monounsaturated fatty acids [72] while polyunsaturated fatty acids

(PUFA) from the diet correlate with fat intake [73]. These correlations extend to a

variety of other metabolites such as amino acids and acylcarnitines [10].

In the present study, we performed a controlled feeding study to assess the al-

terations in the metabolome as a first step in developing an objective assessment of

dietary intake. Our goal is to identify modules of co-varying lipids and small po-

lar molecules by analyzing the results of LC-MS based lipidomic and untargeted

metabolomics profiles, integrating these platforms to gain insights into both the

metabolic pathways that are affected by the diets and the metabolite signature of

each diet.

In the application, we exploit the high degree of interconnectedness amongst

molecular entities in metabolomics datasets, especially those derived from lipidomics

profiling and take an agnostic approach using networks with data driven edge weights,

instead of those based on physical interactions obtained from curated biological

databases. We combine these networks with node prizes based on differential abun-

dance and apply the PCST to identify biologically relevant modules in the plasma

metabolome from individuals fed two different diets, one high on polyunsaturated fats

(PUFA) and another high on carbohydrates (CHO). The proposed approach yields

insights into both the metabolic pathways that are affected by the diets and the

metabolite signature of each diet. We further show that identified modules can be

coordinately altered in the plasma of an animal model of altered fatty acid oxidation,

suggesting that the intimate association of metabolites may provide a statistically
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tractable way of identifying variable interactions amongst metabolites that provides

both biomarkers for dietary intake, but also may provide insights into alterations in

underlying physiological processes in physiological or disease states.

3.2 Integration Methodology

The Prize Collecting Steiner Tree algorithm [74] is employed to integrate, in a

condition specific manner, lipidomic and untargeted metabolomic data sets, with a

focus on lipids and metabolites that are significantly changed across dietary condi-

tions. As mentioned in the introductory Section, the PCST algorithm requires as

input an undirected network G(V,E, c(e), p(v)), with node set V , and edge set E.

The function p(v) assigns a prize, p(v) ≥ 0 to each node v ∈ V , and nodes with

p(v) > 0 are referred to as terminal nodes. The function c(e) > 0 assigns a cost

to each e ∈ E. The aim is to find a tree T (VT , ET ) that maximizes the objective

function:

profit(T ) =
∑

v∈Vt
βp(v)−

∑
e∈Et

c(e)(3.1)

Nodes with p(v) = 0 which are returned in VT as part of the solution will be referred

to as Steiner nodes.

Effectively the PCST algorithm is used to sparsify a condition-specific co-expression

network, where the latter is sparsified around nodes of interest (often those which

show differences between experimental conditions or groups). Further, in a setting

where the co-expression network itself is substantially different between conditions,

such as the feeding study, our method enables researchers to utilize this condition-

specific connectivity information to generate hypothesis about systems level differ-

ences in behavior.

To ensure robust results, the algorithm is run multiple times while applying a
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small amount of noise to the cost function. The results are then used to create

consensus graphs in which the approach identifies modules of metabolites that are

strongly linked by their patterns of co-variation. The resulting stable modules can

then by characterized by testing for enrichment or depletion in relevant characteristics

and compared across conditions in order to obtain a ranking of their contribution.

This workflow is outlined graphically in Figure 3.1.

Figure 3.1: Method Schematic: Differentially abundant lipids and untargeted metabo-
lites are designated as terminal nodes and assigned prizes. Condition spe-
cific correlation matrices are used to calculate edge weights. The Prize
Collecting Steiner Tree Algorithm is run with noise over an undirected
network as described in main text. Consensus graphs are created from
PCST output; modules are identified in these graphs. Modules are tested
for enrichment in relevant characteristics and compared across experimen-
tal conditions.

In the discovery phase of this work, we analyze data from a controlled feeding study

on humans. Twelve healthy adults (6M/6F) were fed a diet high in polyunsaturated

fatty acids (PUFA) for 3 weeks, immediately followed by a diet high in carbohydrates

(CHO) for 3 weeks. Each subject’s plasma lipidome was assayed at days 0, 2, 7, 21,
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23, 28, and 42, while their plasma metabolome was assayed at days 0, 21 and 42. For

additional details see Methods.

3.2.1 Prize Collecting Steiner Tree algorithm

The PCST algorithm employed is implemented in the OmicsIntegrator software

[75] (local copy, downloaded on 2/2/2017) which solves a modified version of the

Prize Collecting Steiner Forest (PCSF) problem. Formulated similarly to the PCST

problem, the PCSF allows the solution set to be comprised of disjoint trees. OmicsIn-

tegrator further incorporates additional tuning parameters into the objective function,

most of which we set to their default values. For complete details of the formulation,

see Tuncbag et al. [75].

We supplied the node and edge sets, edge weights, and terminal prizes (detailed

below), using forest.py with the forest-only and doRandom options. We modified

the original forest.py file so that betweenness was not calculated when merging the

results from noisy PCST runs. Forest parameters were as follows: w = 4 (controls the

number of trees), b = 20 (controls the trade off between including more terminals and

using less reliable edges), D = 10 (controls maximum depth of trees), processes= 1

(number of processors to spawn when doing randomization runs), threads= 2 (number

of threads to use in optimization algorithm), noise= 0.005 (the standard deviation

of the Gaussian noise added to edge costs). All other parameters were set to their

default values. For robustness, the algorithm was run 50 times over the same set of

terminal nodes and prizes for each network, with a small amount of noise added to

the edge weights each time.

The four networks considered - labeled as

G21u(V,E21, c(e), p21u(v)), G42u(V,E42, c(e), p42u(v))

G21d(V,E21, c(e), p21d(v)), G42d(V,E42, c(e), p42d(v))
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- are described fully below. Each network has the same node sets and cost function,

while the edge weights and prize functions differed.

3.2.2 Terminal prizes

To determine terminal nodes and the corresponding prizes, we used a linear model

to test for differences in abundance levels between any two time-points assayed. We

modeled the abundance of the kth lipid (or metabolite) Lk as

Lk = d+ u(3.2)

where d is a factor, with levels, di, representing each day assayed in the study

(di, i ∈ {0, 2, 7, 21, 23, 28, 42} for lipids or i ∈ {0, 21, 42} for untargeted metabolites.)

The random effects u for the nth subject on day k of diet j are specified as: un+unj +

unk; note that d0, d2, d7, d21 are classified as diet 1, PUFA; the remainder of the days

are classified as diet 2, CHO.) TThis specification allows us to account for overall

subject level variation, as well as differences in the way each subject processes each

dietary intervention across time.

Differential abundance between any two levels i and j of d were then tested using

contrast vectors based on the R-language implementation in the lme4 and pbkrtest

packages. Formally, the hypothesis of interest is given by

H0 : di − dj = 0

Hα : di − dj 6= 0(3.3)

While we included all of the data in our linear model, our analysis focused on

the dynamics between days 0, 21 and 42 as these time points captured the most

meaningful differences between dietary interventions.

We identified three different terminal node sets of interest: 21d, the lipids and
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metabolites for which there is a significant difference between d0 and d21; 42d, the

lipids and metabolites for which there is a significant difference between d21 and

d42; and 21u = 42u, the union of those two sets. Significance was defined for

lipids as a False Discovery Rate corrected (via the Benjamini-Hochberg procedure)

p-value of p < 0.1; for untargeted metabolites a p-value of p < 0.2. Let p0v21 de-

note the FDR-corrected p-value from testing d0 − d21 = 0, and p21v42 be the corre-

sponding p-value for testing d21 − d42. Terminal prizes for 21u and 42u were set to

p21u(v) = p42u(v) = −log(min(p0v21, p21v42)). For 21d, p21d(v) = −log(p0v21) and for

42d, p42d(v) = −log(p21v42).

3.2.3 Network Edge Weights

Edge weights for the diet specific networks were generated by applying Fisher’s

z-transformation [76] to the 603 × 603 matrix of correlations between all lipids and

metabolites at a single time point. We employ Fisher’s z-transformation to test

whether correlation amongst lipids and/or metabolites is zero or not. Specifically,

letting r denote the sample correlation between two lipids, then z(r) = 1
2

log(1+r
1−r ) =

arctanh(r). Further, if the measurements of the two lipids are assumed to be indepen-

dent and identically distributed from a bivariate normal distribution with correlation

ρ, then z(r) ∼ N(1
2

log(1+ρ
1−ρ), 1√

N−3
), where N denotes the corresponding sample size.

This allows us to test for correlations that are significantly different from 0.

In our implementation of the OmicsIntegrator, we set edge weights to w(e) = 1−

pe, where pe is the FDR-corrected p-value from testing the null hypothesis H0 : ze = 0

for the pair of lipids defined by edge e, versus the alternative of being different than

0. Hence, the corresponding edge cost is set to c(e) = pe, so that edges with more

significant p-values are more likely to be included in the solution set. Further, the

sample correlation matrix at day 21 was used to create E21, while E42 was created

from the sample correlation matrix at day 42; these correlation coefficients are then
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converted to z values using the above transformation and tested for significance,

yielding p-values for the edge costs.

3.2.4 Consensus graphs, module discovery, enrichment analysis

Inspired by the consensus clustering approach [77], we created consensus graphs

from the PCST results on each graph by selecting nodes which appeared in > 80% of

all noisy runs. Any edge chosen by the algorithm to connect these nodes, regardless of

how frequently that edge appeared in the solution set, was included in the consensus

graph. We we refer to the consensus graph from the results on Gi as CGi.

Modules in each consensus graph were identified via the leading eigenvector com-

munity detection algorithm [46] (LEVCD), which identifies highly connected sub-

groups/modules within a larger network. For this clustering step, an edge between

nodes i and j was given weight equal to |rij|, where rij is the sample correlation

between the nodes at the relevant time point. The kth module from consensus graph

CGi is labeled Mi:k. These modules were then tested for enrichment in relevant char-

acteristics using the hypergeometric test. The hypergeometric test indicates whether,

in a given module, there are more lipids/metabolites with a certain characteristic

than one would expect by chance (in which case the module is enriched in said char-

acteristic), or if there are fewer than one would expect (in which case the module is

depleted.) (see Cao and Zhang [78] for a good review on the hypergeometric test).

Finally, percent density for the consensus graphs is calculated as:

D = 100
2|E|

|V |(|V | − 1)

3.2.5 Validation in Rat data

The discovered modules based on the data from the human feeding study were

subsequently assessed for concordance and biological relevance in metabolomic and
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lipid profiles obtained from the rat model (see details below). For the comparison,

we first identified modules in which at least 70% of the module’s lipids/metabolites

are also present in the rat data. These modules were then tested for differential

abundance between pairs of conditions using the Gene Set Analysis (GSA) approach

[24] implemented in the R package GSA. We used the maxmean method, with s0 = 0,

and without restandardization. The GSA method [24] is a more powerful and robust

version of the popular Gene Set Enrichment Analysis (GSEA) procedure [23]. The

maxmean statistic used in GSA can detect subtle, concordant changes in a group of

biomolecules across a wide range of settings.

3.3 Results

3.3.1 Method Results

To create our list of terminal nodes, we used a linear model to test for DA across

the course of each dietary intervention. Lipids and untargeted metabolites were mod-

eled and tested separately, as the untargeted metabolomics assay was only run on

days 0, 21 and 42.

Lipids showed high levels of activity across all classes - 180 lipids exhibited sta-

tistically significant changes from day 0 to day 21, and 222 from day 21 to day 42.

Out of these, 130 lipids exhibited statistically significant differences under both diets

(FDR adjusted p-value < 0.1.) Untargeted metabolites showed much lower levels of

activity overall - out of 147 metabolites, only 9 showed statistically significant dif-

ferences under PUFA, and 10 changed under CHO (FDR adjusted p-value < 0.2).

Finally, no metabolites were differentially expressed under both diets. These cutoffs

gave G21u and G42u 291 terminal nodes, while G21d and G42d had 189 and 232 ones,

respectively.

As previously mentioned, the PCSF algorithm was applied on the following four
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Graph Nodes in CGi Edges in CGi # of modules
# of modules with

>8 members
G21d 224 619 21 8
G42d 291 1475 16 6
G21u 323 967 20 7
G42u 346 1668 16 9

Table 3.1: Summary of results from PCST and module discovery steps

networks: G21u, G42u, G21d, and G42d. In each case, it always returned the terminal

nodes and a fairly stable subset of Steiner nodes (Appendix Table B.1). We chose

to include Steiner nodes which occurred in > 80% of the solutions in the consensus

graphs. The edge sets were much more variable - relatively few edges were chosen

every time, with many more ”moderately often” chosen edges (Appendix Table B.1.)

This variability led us to include in the consensus graphs all edges chosen by the

algorithm which connected our terminal and selected Steiner nodes.

The resulting consensus graphs are overall quite sparse - only 1.86% dense, 2.79%

dense, 2.52% dense and 3.54% dense for CG21u, CG42u, CG21d, and CG42d respec-

tively. The Leading Eigenvector Community Detection (LEVCD) algorithm identifies

between 16 and 21 modules in each consensus graph (Table 3.1); the jth module from

CGi is referred to as Mi:j (i.e. M21u:2 refers to the second identified module from

CG21u.) Between 6 and 9 modules in each consensus graph had more than 8 mem-

bers. These larger modules were tested for enrichment in the observed lipid classes,

saturation levels, and other relevant characteristics. The enrichment and depletion

results for select modules are summarized in Table 3.2, with complete results for all

modules in CG21u and CG42u available in Supplemental Table A4.

In general, the untargeted metabolites are fairly well integrated with lipids in the

identified submodules. Although many modules do not contain any metabolites, those

that do, also contain lipids from a range of lipid classes. Hence, we conclude that the

approach successfully integrates lipids and metabolites and does not segregate the

two classes of biomolecules into their own modules ((see Appendix C)
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Module CE DG lysoPC lysoPE MG PC PE plasmenyl-PC plasmenyl-PE SM TG SFA MUFA PUFA
M21u:2 0.795 0.106 0.921 0.728 0.595 0.338 0.886 0.523 0.928 0.859 0.000 0.426 0.008 0.366
M21u:3 0.648 0.000 0.921 0.627 0.595 0.558 0.886 0.523 0.928 0.404 0.137 0.977 0.922 0.004
M21u:4 0.441 0.707 0.000 0.361 0.057 0.251 0.886 0.523 0.860 0.429 0.990 0.009 0.017 0.720
M21u:6 0.441 0.735 0.921 0.465 0.282 0.595 0.886 0.523 0.860 0.810 0.000 0.856 0.922 0.001
M21u:20 0.211 0.953 0.921 0.465 0.208 0.131 0.593 0.612 0.000 0.404 0.990 0.856 0.253 0.002
M42u:2 0.485 0.000 0.920 0.602 0.567 0.923 0.950 0.790 0.816 0.965 0.000 0.860 0.192 0.009
M42u:5 0.485 0.225 0.755 0.602 0.192 0.923 0.950 0.320 0.685 0.965 0.000 0.906 0.472 0.000
M42u:14 0.383 0.958 0.000 0.602 0.192 0.923 0.950 0.394 0.224 0.965 0.097 0.823 0.609 0.001
M42u:15 0.485 0.958 0.055 0.000 0.192 0.644 0.950 0.175 0.816 0.965 0.998 0.469 0.472 0.960
M42u:16 0.712 0.958 0.755 0.602 0.567 0.605 0.950 0.790 0.816 0.965 0.000 0.457 0.245 0.029

Table 3.2: Enrichment analysis of identified modules. Selected modules were tested
for enrichment in notable classes and for saturated fatty acids (SFA),
monounsaturated fatty acids (MUFA) and polyunsaturated fatty acids
(PUFA). P -values are corrected column-wise for multiple testing using
the Benjamini-Hochberg False Discovery Rate adjustment procedure [1].
Results for all modules in CG21u and CG42u available in Supplemental
Table A4.

Comparison tested M21u:2 M21u:3 M21u:4 M21u:6 M21u:20 M42u:2 M42u:5 M42u:14 M42u:15 M42u:16

d21 < d0 0.000 0.000 0.000 0.997 0.000 0.000 0.032 0.000 0.000 0.000
d42 < d0 0.993 0.993 0.013 0.993 0.013 0.993 0.993 0.061 0.027 0.993
d42 < d21 1.000 1.000 1.000 0.000 1.000 1.000 1.000 1.000 1.000 1.000
d21 > d0 1.000 1.000 1.000 0.053 1.000 1.000 1.000 1.000 1.000 1.000
d42 > d0 0.107 0.018 0.993 0.200 0.993 0.018 0.064 0.993 0.993 0.190
d42 > d21 0.000 0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000 0.000

Table 3.3: Differential abundance in modules from CG21u and CG42u tested via GSA.
End of PUFA (d21) and end of CHO (d42) tested against baseline (d0),
and each other. Values presented are fdr adjusted p-values for a subset
of modules. Results from all modules in CG21u and CG42u available in
Supplemental Table A2.

We primarily focus our analysis on a subset of modules from CG21u and CG42u.

3.3.2 Module metabolite participants and dynamics under different di-

etary conditions

We examined the properties of the metabolites that were identified as covarying

under the two dietary conditions. Following consumption of a PUFA diet for 21 days,

several modules were identified that were significantly enriched in some metabolite

classes (Table 3.2). There was a large overlap between M21d:3, M21u:2, M42u:16 (Ap-

pendix C), indicating that these metabolites are dynamically changed under each

feeding condition. We focus first on M21u:2, which was overall decreased by PUFA
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Figure 3.2: All nodes present in either M21u:2 or M42u:16. Nodes in left and right
halves of image arranged identically. Edges on left taken from CG21u:1,
edges on right taken from CG42u:16. Only edges connecting nodes within
the figure are shown. Nodes colored by module label from CG21:u (left)
and CG42:16 (right). Clockwise from upper left, A: M21u:2, B: Nodes
in M21:3 that are brought in as a group when transitioning to CHO, C:
Subset of nodes shed as a group into M42u:2 when transitioning to CHO D:
M42u:16, E: Subset of nodes shed as a group into M42u:4 when transitioning
to CHO, F: Nodes which are shed into many different modules when
transitioning to CHO, G: Nodes with varying module memberships under
PUFA, incorporated into M42u:16

feeding and increased following CHO diet (select results in Table 3.3, complete re-

sults in Supplemental Table A2). The module was enriched in PCs and triglycerides

(TGs), which we observe to be primarily shorter chain species, with relatively few

saturated fatty acids (Table 3.2), likely reflecting the increase in de novo lipogenesis

seen after consumption of a carbohydrate diet. This module contained 2 untargeted

metabolites, carnitine and 3-hydroxy-3-methylbutryric acid. The latter is generated

during leucine degradation and is found elevated in individuals with insulin resistance

and diabetes [79]. Leucine was not associated with a module under either dietary con-

dition. However, it has been previously observed that carbohydrate can reduced the

oxidation of leucine [80] and dietary carbohydrates also reduce leucine catabolism

[81], suggesting that the higher levels of its intermediate breakdown product is due to
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Comparison tested M21u:3 M21u:4 M21u:6 M21u:20 M42u:2 M42u:5 M42u:14 M42u:15 M42u:16

HCR-AL < LCR-AL 0.011 0.025 0.108 0.000 0.090 0.089 0.040 0.011 0.170
HCR-CR < LCR-CR 0.381 0.278 0.278 0.493 0.278 0.278 0.278 0.278 0.493
LCR-CR < LCR-AL 0.000 0.000 0.033 0.013 0.000 0.017 0.000 0.063 0.033
HCR-CR < HCR-AL 0.213 0.213 0.213 0.870 0.213 0.213 0.200 0.748 0.213
HCR-AL < LCR-CR 0.853 0.511 0.853 0.483 0.853 0.783 0.853 0.133 0.853

Table 3.4: Module dynamics in animal model. Modules from CG21u and CG42u which
had at least 70% overlap with animal data were tested for differential abun-
dance in animal data using GSA. None of the tests in the opposite direction
(HCR-AL > LCR-AL, HCR-CR > LCR-CR, etc) were significant. Values
presented are fdr adjusted p-values for a subset of modules. Results from
all modules in CG21u and CG42u available in Supplemental Table A3.

inhibition of the later part of leucine catabolism (see Discussion). Interestingly, the

single metabolite whose levels covaried inversely to the others in M21u:2 was carnitine.

A previous study observed that carnitine levels rose significantly on a high fat diet

compared to a high carbohydrate diet [82], suggesting that the increased oxidation of

carbohydrates results in greater consumption of carnitine.

The majority of TG species in M21u:2 overlap substantially with M42u:16; the latter

also being highly enriched in TGs (Figure 3.2). The 23 overlapping lipids are almost

exclusively shorter chain, relatively saturated TGs (Figure 3.2, box A). The retention

of a highly connected subset of TGs suggests that these lipids are generated and

consumed in a highly parallel manner, allowing them to be maintained in synchronous

plasma levels despite varying in concentration.

As module M21u:2 transitions to module M42u:16 following CHO feeding, longer

polyunsaturated DGs and TGs, as well as some saturated PCs and TGs are shed

(removed from the module) (Figure 3.2, boxes C and E). These lipids ’join’ two

large modules M42u:2 and M42u:4, the former enriched in DGs and TGs and the latter

enriched in PCs (Table 3.2). These lipids were replaced by some shorter, mostly

low saturated chain PCs and interestingly, some short, unsaturated PCs and TGs

(PC 38:8, PC 40:4, TG 51:4, TG 52:7) (Figure 3.2, box B). Also shed were the two

untargeted metabolites. The addition of the new lipid species in the module after
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CHO diet suggests that these are newly formed lipids which have incorporate de

novo generated fatty acids into a polyunsaturated lipid. A variety of other nodes

have varying memberships after leaving M21u:2 (Figure 3.2, box F) or before joining

M42u:16(Figure 3.2, box G).

Modules M21u:4 and M42u:14 were of interest as they were both enriched only in

LPCs in which nearly half showed reciprocal changes under the different dietary con-

ditions (Appendix C),. Module M42d:7 was also enriched in these LPCs. Paradoxically,

PUFA-diet associated Module M21u:4 was enriched in saturated and monounsaturated

fatty acids while the CHO-associated M42u:14 was statistically enriched in polyunsat-

urated fatty acids. Plasma LPC is thought to be derived from phosphatidylcholine in

lipoproteins acyltransferases and phospholipases [83]. LPC as well as its metabolite,

lysophosphatidic Acid (LPA, generated by the removal of the choline headgroup),

can differentially signal through cell surface receptors by depending on chain length

and degree of saturation [84]. No specific pattern of increase and decrease in the

levels of other LPCs in the data set were found; we do note that PCs populated

Module M42u:14, though it was not significantly enriched in this class. Module M21u:4

also contained 4 notable untargeted metabolites, guanosine and threonine as well as

palmitoylcarnitine decreased between baseline and d21, while cholesterol increased

over the same time. As with leucine, higher levels of threonine are found in insulin

resistance and are reduced by weight loss [85, 86]. The reduction in palmitoylcarnitine

is likely due to reduced entry of palmitic acid into mitochondria during PUFA feeding.

These metabolites were shed in M42u:14. Further exploration of these modules will be

necessary to understand its unique behavior, but we note that the modules were also

perturbed in the rat model (see discussion below).

We also recognized M42u:15 as being unique. This 33 member module, visualized in

Figure 3.3, was enriched in LPE and was devoid of triglycerides (Appendix C). The

module contains long-chain acylcarnitines, derivatives of saturated and mononunsatu-
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rated fatty acids, which decrease in PUFA diet as well as medium chain acylcarnitines,

which increase in PUFA diet. The lower abundance of long-chain acylcarnitines sug-

gests reduced entry of saturated and monounsaturated fatty acids into the mitochon-

dria [87], potentially through competition by polyunsaturated fatty acids. This is

supported by the observed increase in levels of octenoylcarnine, which is derived from

polyunsaturated omega-6 fatty acids. In addition, M42u:15 contained a number of

acetylated amino acids. There is a dearth of literature on n-acetylated amino acids

outside of N-acetylaspartate (NAA), which an abundant metabolite in the brain and

is synthesized enzymatically from aspartate and acetyl-CoA in neurons [88]. We note

that NAA was only found in M42d:3, which also increases following the CHO diet.

Non-enzymatic acetylation of lysine residues in the mitochondrial is well described

[89] and it is tempting to suggest that under higher carbohydrate flux, excess acetyl-

CoA generated in the mitochondria may modify amino acids. Finally, kynurenine,

a product of mitochondrial tryptophan metabolism, is also associated with M42u:15.

Like many of the other metabolites found associated with modules elevated in the

plasma following CHO diet, kynurenine (KYN) and its direct precursor tryptophan

(TRP) are elevated in the plasma of insulin resistant individuals [90, 91]. However,

unlike the other metabolites, KYN terminal metabolic fate is not oxidation, rather

is used for niacin biosynthesis. The reason for an increase in kynurenine in insulin

resistance has been attributed to increased expression of indoleamine 2,3-dioxygenase

1 [IDO1] by chronic inflammation [90, 92], increasing the conversion of TRP to KYN.

The finding that KYN is associated with other presumptively mitochondrially gen-

erated metabolites could suggest that alteration in KYN mitochondrial metabolism

may underlie its association with insulin resistance.
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Figure 3.3: Visualization of M42u:15 Nodes are colored according to their classes -
most notably, the medium chain acylcarnitines in bright green and the
long chain acylcarnitines in red. Terminal nodes are represented as tri-
angles while steiner nodes (those which are not differentially abundant,
but are brought into the consensus graph via their associations with dif-
ferentially abundant nodes) are represented by circles. Note that only
two acylcarnitines, Hexanoylcarnitine and Palmitoylcarnitine are termi-
nal nodes; the other acylcarnitines in this module are brought in by their
associations with these two nodes. Out of 11 acylcarnitines in the entire
untargeted metabolomics dataset, 7 are incorporated into this module,
with the remainder not being incorporated into any module from any
consensus graph.

3.3.3 Module dynamics in animal model of differential metabolite utiliza-

tion

The above results suggest that modules of plasma metabolites and lipids can be

identified that change in a concordant manner following dietary changes. To answer

the question as to whether these metabolite/lipid modules related under divergent

dietary conditions, remain associated in different biological contexts, we examined the

identified modules in a rat model which demonstrates differences in the utilization of

fatty acids and carbohydrates at rest and during acute exercise [93]. Two lines of rats,
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high capacity runners (HCR) and low capacity runners (LCR), were selectively bred

for high and low intrinsic exercise capacity based on untrained aerobic capacity to

create a model for studying aerobic exercise and its relationship to metabolic health

[93]. We have shown that the HCR, compared to the LCR rats, have a higher fatty

acid utilization, both at rest and during exercise. Specifically, the enhanced fatty

acid utilization appears to underlie the enhanced running capacity of the HCR. An

apparent inefficiency in the oxidation of fatty acids likely plays a role in the reduced

weight gain observed in the HCR line [93], and may also play a role in the increase

in lifespan in the HCR compared to the LCR [94]. Thus, to test whether the plasma

metabolome would respond to alterations in fuel utilization (fatty acids v. CHO),

as opposed to alterations in fuel input through dietary consumption, we identified

PCST-identified human modules which had more than 70% of their members observed

in the rat model. These modules were tested for differential abundance in the rat

plasma using the GSA pathway enrichment methodology [24]. In addition, we also

assess enrichment in HCR and LCR rat plasma following a 12-month period of caloric

restriction (CR) to assess whether the lines had a similar metabolomic response.

Few plasma metabolites show differential levels between the HCR and LCR in

either the ad lib fed or CR state. Only 49 lipids/metabolites were differentially abun-

dant between LCR-AL and LCR-CR, having an fdr-corrected p-value ¡ 0.1. Between

LCR-AL and HCR-AL, 26 lipids/metabolites were differentially abundant with the

same cutoff. No lipids/metabolites were differentially abundant between any other

2-way comparison of interest. Each module found in the rats, however, was lower in

the HCR (Table 3.4) and among the comparisons, the most statistically significant

changes were seen in LCR-CR compared to the LCR-AL followed by HCR-AL com-

pared to HCR-AL. The modules identified in the rat comparison are reduced in the

plasma of PUFA diet and increased in the CHO diet. This may suggests that the

increased utilization of fatty acids as fuel (or reduction of CHO utilization), is what
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is impacting the levels of the modules.

Of considerable interest is the finding that none of the modules were changed

between the HCR-CR compared to HCR-AL or the LCR-CR, suggesting that the

perturbation in metabolism induced by caloric restriction ”preexists” in the HCR

such that there is not further change following CR. Importantly, as is found in caloric

restriction in rodents, HCR rats have an extended lifespan in the ad libitum fed state

[94], suggesting biological mimicry in the enhanced utilization of fatty acids in both

high oxidative capacity and caloric restriction, both associated with improved health

and longevity humans [95].

3.4 Discussion

In this paper we present a data-driven method for integrative analysis of lipids

and untargeted metabolites. We focused on named untargeted metabolites as a first

step, but the method can readily be extended to unnamed untargeted metabolites, or

applied to other Omics settings where one wishes to identify modules outside of canon-

ical pathways. Our method identifies modules of biologically relevant biomolecules,

centered around those which are differentially abundant between conditions, while

incorporating related biomolecules which did not reach a significance cutoff. Many

potentially interesting modules were identified beyond the most biologically interest-

ing ones highlighted here. While competing methods based only on the correlation

matrices uncover some of the same features, our method identifies additional subtle

features that other methods do not.

In our controlled human dietary intervention, each of the dietary feeding peri-

ods caused a significant change in the levels of multiple lipid species. Many were

expected due to the anticipated influx of polyunsaturated fatty acids into lipids dur-

ing the PUFA diet and a reduction in saturated and monounsaturated fatty acids;

the converse happening during CHO diet. Additional Steiner nodes were identified

48



in each condition through the addition of lipids and untargeted metabolites due to

their consistent interactions with the terminal nodes in each module. Though few

of the metabolites detected in the untargeted platform were significantly different in

transitioning from baseline to PUFA to CHO, the metabolites added to the modules

using the data-driven PCST algorithm were both biologically consistent with previous

observations and provided some potentially novel insights into alterations in whole

body metabolism in people under fat and carbohydrate feeding.

The changes in the untargeted metabolites in modules identified via CG21u and

CG42u were consistent with changes in handling of metabolites in the mitochondria

(Figure 3.4). Our findings are consistent with increasing carbohydrate utilization

following the change from the high fat PUFA diet to CHO. It is known that a rela-

tive increase in flux of glucose-derived pyruvate into the mitochondria increases the

levels of acetyl-CoA which leads to increased malonyl-CoA [96] production and re-

duction of fatty acid uptake through CPT-1 [96, 97], reducing the levels of long- and

short-chain acyl-CoAs. Increased acetyl-CoA production will also reduce oxidation

of branched chain amino acids [80, 98], reflected in the elevated levels of 3-hydroxy-

3-methyglutarate, an intermediate in leucine metabolism (Figure 3.4). Though spec-

ulative, the fall in carnitine levels during CHO feeding may be due to utilization in

formation of medium chain acylcarnitines in the cell, accumulating in the plasma.

Excess mitochondrial acetyl-CoA is associated with an increase in mitochondrial

protein acetylation [98]. Our finding relative increased N-acetylated amino acids in

CHO vs. PUFA diet suggests that excess acyl-CoA formed during CHO diet can lead

to accumulation of n-acetylation amino acids, potentially making N-acetylated amino

acids markers of high carbohydrate intake. Whether this occurs in the mitochondria

or in the cytoplasm or whether they are formed enzymatically is unclear. Finding the

TRP metabolite KYN in a module with the medium chain acylcarnitines and n-acetyl

amino acids is more puzzling. The degradation of TRP is complex and regulated in
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large part by Indoleamine 2,3-dioxygenases (IDO) and as mostly been studied in

relationship to inflammation-related metabolism [99]. One speculative reason for

the finding of increased TRP and KYN in CHO is a an increase in mitochondrial

redox, lowering FAD/FADH and reducing the FAD-dependent conversion of KYN to

3-hydroxykynurenine by IDO1. Our proposed model outlined in Figure 3.4 assumes

that diet-induced alteration in mitochondrial metabolism, produces a signature in

plasma. Studies of plasma following inherited disruption of mitochondrial enzymes

support that this is a reasonable assumption [100].

The changes identified in the module metabolites in the HCR/LCR rat model

under two different feeding conditions show that even across species, the metabolites

identified in humans covary under different physiological states. We note that the

NIH31 diet used in the HCR/LCR studies has a very high CHO and low fat content

(72.2% and 7.4% of calories, respectively), which is similar to the CHO diet provided

in the human studies. Despite this, we observe changes in metabolite modules in

the HCR and during calorically restricted feeding that parallel the high PUFA diet.

This intriguing result suggests that alterations in the modules may be more related

to an increase in fatty acid vs. glucose utilization. Many of the alterations in plasma

metabolites that we observe in individuals under a high carbohydrate diet have been

seen in insulin resistance. Data supports the idea that a principal defect in people

with insulin resistance is an impaired capacity to upregulate muscle lipid oxidation in

the face of high fatty acid supply, principally in skeletal muscle [101, 102]. We suggest

that the insulin resistance signature may be due to alterations in fuel selection that

may be modified by changes in oxidative capacity observed in the HCR/LCR rat

model.

We were limited by the relatively small sample size in defining covariant modules,

but the human studies were aided by the sequential feeding in the same individuals,

reducing inter-individual variations. We also incorporated only annotated metabolites
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in the untargeted metabolomics data set in our analysis. Further studies demonstrat-

ing association of unannotated metabolites in ”modules” in different metabolic states

could potentially help in identifying these unknown metabolites.

Figure 3.4: Schematic of mitochondrial metabolism of untargeted metabolites identi-
fied by PCST. Arrows preceding metabolites indicate the direct of change
from PUFA to CHO diet. TRP = tryptophan; KYN = kynurenine; LEU
= leucine; FAD = flavin adenine dinucleotide; CoA = Coenzyme A; AA
= amino acid

3.5 Methods

3.5.1 Dietary intervention

All studies were approved by the Institutional Review Board of the University of

Michigan and all participants provided written, informed consent. All methods and

procedures were performed in accordance with the relevant guidelines and regulations.

Twelve healthy participants (6 women, 6 men, Table 3.5) were provided two sequential

isocaloric diets for 21 days each. The first diet was enriched in polyunsaturated fatty
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Females (n = 6) Males (n = 6) p-value

Age (yr) 29.3 ± 7.4 27.17 ± 4.1 0.55
Body mass index (kg/m2) 21.9 ± 2.6 27.08 ± 4.0 0.02

Cholesterol (mg/dl) 163.3 ± 24.6 157.00 ± 28.9 0.69
Triglyceride (mg/dl) 68.2 ± 66.0 81.50 ± 57.9 0.72

High Density Lipoprotein Cholesterol (mg/dl) 63.7 ± 9.8 54.0 ± 10.9 0.13
Low Density Lipoprotein Cholesterol (mg/d) 92.3 ± 27.8 86.5 ± 30.2 0.74

Glucose (mg/dl) 86. 3 ± 9.8 86.7 ± 5.0 0.94
Homeostatic Measure of Insulin Resistance (HOMA) 2.5 ± 1.0 3.1 ± 1.4 0.40

Table 3.5: Subject characteristics Values given are mean ± standard deviation.

acids (PUFA) consisting of 12 − 15% protein, 35 − 50% carbohydrate, 40 − 50%

fat (25 − 30% polyunsaturated fatty acids, 5 − 10% monounsaturated and < 10%

saturated followed immediately by a diet enriched in carbohydrate (CHO) with 10−

15% protein, 70 − 80% carbohydrate and 10 − 15% fat (< 10% fat as SFA with 2%

polyunsaturated fatty acids). All meals and snacks were provided by the Nutrition

Assessment Laboratory (NAL) of Nutrition Obesity Research Center at the University

of Michigan. Participants came to the facility at least twice per week during this 6-

week controlled feeding trial for food pick-ups and weigh-ins. The diet was adjusted

to maintain initial body weight. This resulted in a mean relative weight standard

deviation of 0.8% throughout the study period. Fasting blood was drawn in the

morning at baseline (Day 0) and at days 2, 7, 21 (PUFA), and 23, 28 and 42 days

(CHO) and EDTA plasma was collected and aliquoted for analysis.

3.5.2 HCR/LCR rat model

These studies were approved by the University of Michigan Institutional Animal

Care and Use Committee. All methods and procedures were performed in accordance

with the relevant guidelines and regulations. In the present study, generation 20 male

HCR and 20 LCR were randomly selected to receive a fortified NIH31 diet (Taconic,

Rensselaer, NY) ad libitum (ADLIB) or a calorically restricted diet (CR) for 12

months. Plasma was obtained from cardiac puncture between 5 and 6 pm and frozen
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LCR-ADLIB (n = 11) LCR-CR (n = 12) HCR-ADLIB (n = 10) HCR-CR (n = 11)
Start weight (gm) 93.8 ± 5.1 93.6 ± 4.9 78.6 ± 4.2 78.8 ± 4.2
End weight (gm) 517.3 ± 15.9 331.3 ± 10.7 388.5 ± 15.2 286.5 ± 8.6

Body weight gain (gm) 440.4 ± 15.4 245.9 ± 9.3 330.7 ± 14.7 208.8 ± 7.4

Table 3.6: Animal model subject characteristics. Values given are mean ± standard
deviation.

at -80◦C until analysis. Additional details on animals subjects in Table 3.6 and further

details of the entire study are the subject of another publication.

3.5.3 Lipodomic profiling

Lipids were extracted from 50 µl of plasma using a modified Bligh-Dyer Method.

The extraction was performed using water/methanol/dichloromethane (2:2:2 v/v/v)

at room temperature after spiking internal standards. The organic layer was then

collected and dried under a stream of nitrogen before being re-suspended in 100µL

of Buffer B [acetonitrile/water/isopropanol (10:5:85 v/v/v) containing 10mM am-

monium acetate]. The lipid extract was injected onto a 1.8µm particle 50x2.1mm

internal diameter Waters Acquity HSS T3 column (Waters, Milford, MA) that was

heated to 55◦C. Four injections were performed with either 60% or 2% of a solution

of acetonitrile/water/isopropanol (10:5:85 v/v/v) for each sample. This produced

a total run-time of 20 minutes. Data were acquired in positive and negative mode

using data-depended MS/MS with dynamic mass exclusion. Pooled human plasma

sample and pooled experimental sample (prepared by combining small aliquots of all

experimental samples) were used to control for the quality of sample preparation and

analysis. Furthermore, a randomization scheme was used to distribute pooled samples

within the set. A mixture of pure authentic standards was used to monitor instru-

ment performance on a regular basis. Lipids were identified using the LIPIDBLAST

computer-generated tandem MS library [103]. This database contains 212,516 spec-

tra covering 119,200 compounds representing 26 lipid classes, including phospholipids,

glycerolipids, bacterial lipoglycan, and plant glycolipids. Quantification of lipids was
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completed using AB-SCIEX MultiQuant software. The nomenclature used for indi-

vidual lipids begins with the abbreviation of the lipid class followed by the number

of carbon atoms in the molecule, and, finally, by the number of double bonds.

3.5.4 Untargeted metabolite profiling

Fasting plasma (50 µl) was extracted by adding 280 µl of extraction solvent (1:1:1

methanol: acetonitrile: acetone) containing internal standards; vortexing for 10 sec,

allowing to rest on ice for 5 min, and then centrifuging at 4◦C for 10 min. The su-

pernatant was dried by vacuum centrifuge at 45◦C and resuspended in 200 µl of 8:2

methanol:water. Metabolites were analyzed by LC-MS using an Agilent 1260 infin-

ity LC connected to an Agilent 6520 quadrupole time-of-flight MS. MS parameters

were as follows: full-scan negative ion mode (m/z 50 to 1,200), acquisition rate 1

spectrum/sec, capillary voltage 3500 V, gas temperature 350◦C, drying gas 10 l/min,

nebulizer pressure 20 psig, and reference mass correction enabled. RPLC was per-

formed using a Waters Acquity HSS T3 column, 1.8 µm particle size, 2.1 x 100 mm

i.d. (Milford, MA), with a flow rate of 0.25 ml/min. The gradient consisted of a

7-min linear ramp from 0 to 99% B, 3 min at 99% B, and 5 min of re-equilibration

at 0% B. Mobile phase A was 0.1% of formic acid in water and mobile phase B was

0.1% of formic acid in 8:2 of isopropanol:acetonitrile.

Untargeted feature peak areas were initially quantified using Profinder version

B.08.00 (Agilent Technologies, Santa Clara, CA) and re-quantified using Agilent

Masshunter Quantitative Analysis software for quadrupole time-of-flight MS version

B.07.00. Peaks were re-quantified by peak area using the ”Agile2” or ”spectrum sum-

mation” peak integrator. Untargeted metabolite identification was performed using

accurate mass and retention time from authentic standards by MS or using MS/MS

fragmentation pattern referenced from

www.lipidmaps.org/resources/lipidmapspresentations/EB2009/BrownEB2009.pdf. Un-
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targeted metabolite annotation was performed using Human Metabolome Database

(www.hmdb.ca) and LIPID MAPS Lipidomics Gateway (www.lipidmaps.org).

3.5.5 Data normalization

Lipidomics data were normalized to remove batch and run order effects. Each

lipid was normalized individually, without the use of internal standards. Positive and

Negative modes treated separately, until the final step of removing duplicate lipids.

Pooled samples are the pooled samples from the test data. Lipids which were missing

excessive data from either the pooled samples or the subject samples were removed.

Robust regression on the pooled data was used to calculate an adjustment ratio

between batches; this ratio was then used to remove batch effects. For each lipid i,

we calculate a batch-adjustment factor βi. If there are two batches, this is essentially

the slope from the robust regression of one batch on the other, without an intercept.

Let b1
i be the measurements for lipid i in batch 1 and b2

i be the measurements for

lipid i in batch 2. We want to calculate b2
i = βib

1
i .

If there are more than two batches, then one batch is picked as the reference, and

all other batches are regressed against the reference batch, one at a time. We use the

lmrob function from the R package robustbase for calculating the adjustment ratio

between batches. Once the adjustment factors have been calculated, missing data

are imputed using the knn function from the R pamr package. Imputation takes into

account the batch number, run order and sample label. Then, the adjustment factor

is used to remove batch effects by updating b2
i to be 1

β
b2
i .

Next, loess smoothing is used to remove the remaining effects of run order. Loess

tuning parameters are calculated on the pooled samples, and then used to smooth

the original samples. Once all batch and run order effects have been adjusted for,

positive and negative modes are combined and repeated lipids are removed. If a lipid

is present in only one mode, but with multiple ions, we keep the ion with lowest
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variability as measured by relative standard deviation (RSD), where RSD of the ith

lipid, li, is equal to 100stdev(li)/mean(li). If a lipid is present in both modes, we pick

the mode that has the most lipids of that lipid’s class, and keep the ion w/ the lowest

RSD within that mode. If a lipid is present in both modes, and there are the same

number of ions/lipids in both modes, we keep the ion with the lowest RSD across

both modes After normalization and the elimination of duplicates, there were 458

lipids in the controlled feeding experiment. All data was then log2-transformed.

The untargeted metabolomics were normalized similarly. We started with 1588

untargeted metabolites, run in one batch. We removed metabolites that had fewer

than 5 pooled samples, had an RSD over 30, or were missing more than 25% of

their samples across all timepoints. Where there were multiple instances of a single

metabolite, we retained the instance with the lowest RSD and discarded the oth-

ers. Additionally, we chose to analyze only named, non-lipid untargeted metabolites.

Selected exogenous compounds (acetaminophen and caffeine) were removed. The re-

sulting set of untargeted metabolites had 147 members. Missing data were imputed,

positive and negative modes were combined, the data was median centered by subject

and finally log2 transformed.

Animal data (lipids and untargeted metabolomics) were normalized with the

lipidomics normalization workflow. After normalization, the data had 478 lipids and

188 untargeted metabolites, out of which, 304 and 75 overlapped with the human

data, respectively.
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CHAPTER IV

Consensus Correlation Modules for Discovery and

Insight

4.1 Introduction

In this chapter, we present a variation on the method presented in Chapter III.

Previously, we showed that condition specific modules could be discovered by using the

Prize Collecting Steiner Tree to integrate differentially abundant lipids and untargeted

metabolites via a data driven network, while also incorporating a small number of

related biomolecules that were not differentially expressed. This new method creates

a robust, consensus co-expression network by combining information from multiple

correlation matrices. Modules are then identified in this new network, and treated

similarly to the modules in Chapter III.

The method presented here has two main differences compared to the method of

Chapter III. The first being that instead of anchoring the modules with differentially

abundant biomolecules, we examine the entire interactome for modules, considering

only the biomolecules’ patterns of co-expression. Focusing on differentially abundant

variables requires one to impose a significance cutoff, which could leave important

and relevant features out of a module simply because they were not differentially

abundant. Analysis techniques that consider only biomolecules having the largest
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differences between conditions have several major limitations. The most pertinent to

this chapter is that after correcting for multiple testing relatively few features may

be differentially abundant, especially if the biological differences are small relatively

to the noise in the assay. A range of techniques have been developed to counter this

problem, such as Gene Set Enrichment Analysis (GSEA) [23] and GSA [24]. These

techniques also address a related problem - many biological processes involve a set of

biomolecules working in concert. In such a setting, a small increase in the abundance

of many members of a biological pathway could result in a more meaningful biological

difference than a very significant increase in a single member of that pathway. Our

method is similarly motivated, though we start with the aim of summarizing patterns

of co-expression, not differential expression.

The second main difference is that instead of creating a co-expression network

from a single dataset, we use a variation on the Hedges-Olkin method [104] for com-

bining estimates of correlation coefficients to create a consensus correlation network

on which modules are identified. Combining correlation coefficients in this fashion

allows one to find common patterns across datasets while decreasing the influence

of noise in a single dataset. Examples in the literature include Lee et al [20], who

perform a large-scale analysis of 60 human mRNA microarray datasets, combining

the co-expression profiles to create a high-confidence network of genes which contains

functionally coherent modules of genes. Choi et al [18] use gene expression datasets

from cancers of 13 different tissues to construct 2 distinct co-expression networks

(tumor and normal).They compare these networks to elucidate the ways in which

cancer affects many co-expression relationships leading to functional changes in en-

ergy metabolism, promotion of cell growth and immune activity. Gillis and Pavlidis

[19] present another variant of this concept, summing individual co-expression ma-

trices from microarray data to illuminate the role of indirect connections in gene

networks in predicting function.
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Protein Carbohydrate Fat SFA MUFA PUFA
PUFA, n=35 15.42 (2.38) 40.54 (2.02) 44.02 (2.02) 5.55 (0.86) 11.38 (2.04) 24.24 (2.13)
CHO, n=36 15.37 (2.15) 71.66 (3.33) 13.06 (2.67) 4.17 (1.31) 4.2 (0.94) 3.22 (0.83)

B, n=72 14.71 (0.83) 49.48 (0.89) 35.74 (0.96) 14.26 (0.93) 11.19 (0.86) 7.08 (0.75)
HF, n=231 15.21 (1.04) 24.72 (0.84) 60.03 (0.97) 27.87 (1.87) 18.16 (1.85) 8.89 (2.12)
HC, n=273 14.89 (0.65) 74.72 (0.62) 10.38 (0.61) 3.56 (0.52) 3.11 (0.32) 2.35 (0.39)

US diet 15.8 (0.1) 48.5 (0.2) 33.7 (0.1) 10.8 (0.1)

Table 4.1: Summary statistics for percent calorie intake from select macronutrients.
US diet data taken from dietary recall interviews for 2011-2014, reported in
[106]. Remainder of data taken from NDSR output. Values are mean(sd)
or mean(se) for the US diet data.

We are interested in identifying modules in the PUFA/CHO dietary intervention,

described in Chapter III, based only on the common patterns of co-expression between

lipids across all days of each dietary intervention. We use this new method to identify

consensus modules in PUFA and CHO, which are then used to identify differences in

the lipidomes of subjects on a second dietary intervention. This second intervention

has some notable differences from the first - 24 healthy adults are fed for 3 days on a

standardized diet (represented by B), meant to reflect the median standard American

diet [105]. Subjects were then randomized to either a high fat (HF, n=11) or a high

carbohydrate (HC, n=13) diet. While the HF/HC diets are more extreme in the

percentage of total calories from fat or carbohydrates (compared to the PUFA/CHO

diets), the more notable difference comes from the relative proportions of saturated

(SFA), monounsaturated (MUFA) and polyunsaturated (PUFA) fatty acids.

As shown in Table 4.1, the PUFA diet is high in polyunsaturated fatty acids,

while the HF diet has an even greater percentage of calories coming from saturated

fatty acids. While humans cannot make polyunsaturated fatty acids, saturated and

monounsaturated fatty acids can come either directly from dietary intake, or indi-

rectly from dietary intake through de novo lipogenesis when excess carbohydrates are

consumed [72]. As a result, it is anticipated the HF/HC dietary interventions will

present a more complex and potentially subtle signal (relative to each other) than the

PUFA/CHO dietary interventions.
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4.2 Consensus Correlations Networks

4.2.1 Theory background

Let (X, Y ) be a pair of random variables with a bivariate normal distribution and

true correlation ρ,

 X

Y

 ∼ N(µ,Σ)

where

µ =

 µX

µY

 , Σ =

 σ2
X ρσXσY

ρσXσY σ2
Y


Given a set of N sample pairs (Xi, Yi), i ∈ {1, · · ·N}, let r be the sample correla-

tion coefficient,

r =
cov(X, Y )

σXσY

Fisher’s z-transformation [76, 107] of r, fz(r) and the inverse transformation are

defined as

fz(r) = z :=
1

2
ln

(
1 + r

1− r

)
= arctanh(r)(4.1)

r = tanh(z)(4.2)

With (X, Y ) as described above, and Xi, Yi being independent and identically
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distributed, then z is approximately normally distributed z ∼ N(µz, σ
2
z),

µz =
1

2
ln

(
1 + ρ

1− ρ

)
and σz =

1√
N − 3

where N is the number of samples and ρ the true (population) correlation coefficient.

Also of use is the fact that given zi, i ∈ {1, · · · , K} where zi ∼ N(0, 1), the

weighted sum, Z, has a standard normal distribution -

Z :=

∑K
i=1wizi√∑K
i=1w

2
i

∼ N(0, 1)(4.3)

4.2.2 Consensus Correlation Network

Suppose that one had K related data sets, Xk, k ∈ {1, · · ·K}, each with Nk

observations and sample correlation matrix Sk. These could be multiple datasets

from the same experiment, or datasets from separate experiments investigating similar

phenomena (as in the case of meta-analysis).

Let rkij be the sample correlation between variables i and j in dataset k. Fisher’s

z-transformation is used to transform Sk into Zk by applying Equation 4.1 to each

rkij in Sk. For simplicity, the elements of Zk are standardized.

fz(rkij) = zkij =
arctanh(rkij)− 1

2
ln
(

1+ρ
1−ρ

)
√
Nk − 3

∼ N(0, 1)(4.4)

We then create a consensus Z matrix, ZK, from the weighted sum of the Zk

matrices.

ZK =

∑K
k=1 wkZk√∑K

k=1w
2
k

The weights wk allow flexibility in how the Zk matrices are combined- all datasets
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could count equally, or emphasis could be placed on certain data sets which were

more important or had more reliable data.

For each zKij
, we can test whether this z variable is significantly different from 0.

Formally, the hypothesis of interest is given by:

H0 : ρ = 0(4.5)

Hα : ρ 6= 0(4.6)

which is tested by calculating

p(zKij
) = P(zKij

6= 0|zKij
∼ N(0, 1))(4.7)

Testing this hypothesis for each element of ZK gives us p(ZK) = P ′K. This matrix of

probability values can then be corrected for multiple testing. Let PK be the version of

this matrix with p-values corrected for multiple testing using the Benjamini-Hochberg

procedure [1].

The inverse Fisher’s z-transformation can be applied to ZK to give us a consensus

correlation matrix SK := tanh(ZK). SK can be sparsified by setting to 0 any SKij

which has corresponding PKij
> c for some significance cutoff c. This sparsified

matrix can be thought of as a network, GK, with nodes corresponding to the original

variables observed in the data. Nodes i and j are connected by an edge with non-zero

weight eij = |SKij
| if PKij

< c, and are unconnected otherwise. This network is then

used for all future analyses.

4.2.3 Module discovery and analysis

Relevant modules can be identified on GK, the sparse consensus correlation net-

work, by using a community detection algorithm, e.g. leading eigenvector commu-

nity detection (LEVCD) algorithm [46]. By using the entire interactome/graph, the
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method identifies relevant modules based solely on their co-expression patterns. As

there is no pre-selection step (as in Chapter III, where the modules are centered

around a pre-selected subset of biomolecules), the method remains agnostic to any

features of our variables beyond their co-expression patterns.

These modules can then be tested for enrichment in various characteristics using

the hypergeometric test. This test indicates whether, in a given module, there are

more lipids with a certain characteristic than one would expect by chance (in which

case the module is enriched in said characteristic), or if there are fewer than one

would expect (in which case the module is depleted.) See Cao and Zhang [78] for a

good review on the hypergeometric test.

The modules can also be tested for differential abundance DA between pairs of

conditions; our preferred method for this is a custom implementation of the GSA

method [24]. Inspired by the Gene Set Enrichment Analysis (GSEA) procedure of

[23], Efron and Tibshirani developed the maxmean statistic as a more robust means

of detecting group level differences in a wider range of settings. This statistic is

computed in the following way:

Given some test statistic z, define

s(z) = (s(+)(z), s(−)(z)),

 s(+)(z) = max(z, 0)

s(−)(z) = −min(z, 0)


For some set of biomolecules S, containing m biomolecules g, each having a test

statistic z, the maxmean statistic, Smax is defined as

Smax := max


∑
g∈S

s(+)(z)

m
,

∑
g∈S

s(−)(z)

m

(4.8)

As Smax is divided by the total number of molecules m, many small biomolecule

scores will contribute more than a single large score. The statistic is robust by design,
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and does not allow a few large biomolecule scores (positive or negative) to dominate.

4.3 Results

4.3.1 Module discovery in PUFA/CHO

Initial exploratory analysis of the PUFA/CHO data indicates that many lipids

change quite quickly within the first two days of either dietary intervention, while

others take the full 21 days to reach a significant change (see Section 4.3.2 and Figure

4.1 for complete details). The patterns of co-expression also change over time -

some quickly, and others more gradually. By creating a consensus correlation matrix

from each diet, the significance of co-expression patterns which are always strong is

increased, and influence of noise inherent in a single data set is decreased.

Letting Zdi = fz(Sdi) for any i ∈ {0, 2, 7, 21, 23, 48}, consensus correlation matri-

ces for the PUFA and CHO diets are created from an equally weighted sum of the

days for each dietary intervention.

ZPUFA =
Zd2 + Zd7 + Zd21√

3

SPUFA = tanh(ZPUFA)

ZCHO =
Zd23 + Zd28 + Zd42√

3

SCHO = tanh(ZCHO)

The consensus correlation matrices, SPUFA and SCHO, are sparsified using a sig-

nificance cutoff of 0.05 (controlling FDR at the 5% level) giving GPUFA and GCHO.

LEVCD identifies 4 larger modules in both PUFA and CHO; as can be seen in the

module membership contingency table (Table 4.2) most of the lipids fall into one of

these 4 groups, with a handful of remaining lipids clustered into modules with one or

64



C1 C13 C14 C15 singletons/dyads total
P1 90 22 27 8 6 153
P16 26 74 9 30 1 140
P17 20 8 68 8 0 104
P18 10 11 21 1 2 45

singletons/dyads 6 3 5 0 2 16
total 152 118 130 47 11 458

Table 4.2: Contingency table of module membership. PUFA modules are labeled as
Pi and CHO modules as Cj. In each diet, 4 modules with more than 8
members are identified. No module is identical across either diet. Groups
of lipids move together under either diet, joining together with different
other lipid groups to form the larger modules.

two members (singleton/dyad modules).

Table 4.2 also shows us that none of the modules are identical across diets. Rather,

groups of lipids (some quite large, others rather small) move together. These groups

come together with other groups under PUFA to form PUFA modules, then detaching

and associating with other groups of lipids to form CHO modules. This phenomenon

is similar to the one illustrated in Figure 3.2.

Each of the identified modules is tested for enrichment (E) or depletion (D) in

certain classes, saturation levels and behavioral characteristics (Table 4.3). A module

is classified as enriched if it contains more lipids of a particular class of lipid (or

saturation level) than one would expect by chance, and depleted if it contains less of

the same than one would expect by chance. For convenience, the p-values, adjusted

for multiple comparisons using the Benjamini Hochberg procedure [1], are discretized

in the following manner:
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D/E : 0.05 < p < 0.1

DD/EE : 0.001 < p < 0.05

DDD/EEE : 0.0001 < p < 0.001

DDDD/EEEE : p < 0.0001

We can see that P1 is depleted in DGs and TGs, while P16 is highly enriched in

these two classes, as is C13. The PEs and PCs tend to group together in P17 and C14,

but under neither dietary condition do they group with the lysoPCs and lysoPEs.

dd CE DG lysoPC lysoPE PC PE PI plasmenyl-PC plasmenyl-PE SM TG SFA MUFA PUFA
P1 D EEEE EEE D E EEE EEE DDDD EE EE DDD
P16 EEEE DD DDDD DDDD D DD EEEE DD EE
P17 DDD DD EEEE EEEE D DDDD DD DD EEE
P18 D EEEE DD EE DD
C1 EEEE E DDD EEEE EEEE DDDD DD
C13 EE EEEE DDD DDD DD DDDD EEEE
C14 DDD DD EEEE EEEE EEEE DD DD DDDD EE
C15 D DD EEEE DD EEE

Table 4.3: Module characteristics. Modules are tested separately for enrichment (E)
or depletion (D) in each of the classes and saturation levels shown. Classes
with fewer than 9 members observed are not shown (CerP, CL, MG, PA,
PG). P -values, after adjusting for multiple comparisons, are discretized
as follows: D/E:0.05 < p < 0.1, DD/EE: 0.001 < p < 0.05, DDD/EEE:
0.0001 < p < 0.001, DDDD/EEEE: p < 0.0001

4.3.2 Differential Abundance Testing

Using the linear model and hypothesis tests presented in Section 3.2.2, we can test

for differential abundance between any two days measured in the PUFA/CHO exper-

iment. These tests, summarized in Table 4.4, showed us that many lipids changed

quickly, with 28% of the lipids changing significantly within the first 2 days of either

dietary intervention. Most of these lipids decrease over the PUFA dietary interven-

tion ( 35% of the lipids decrease significantly between d21 and d0). In contrast, 35%
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of the lipids increase over the CHO dietary intervention (d42 − d21). We also see

that relatively few lipids change between d42 and d0 (baseline), suggesting that the

individuals were consuming a relatively high carbohydrate diet prior to entry into the

study. Overall, the model in Equation 3.2 does a good job of explaining the variation

seen in the data, with 317/458 models having an adjusted p-value < 0.1.

d2 − d0 d7 − d2 d21 − d7 d23 − d21 d28 − d23 d42 − d28 d21 − d0 d42 − d21 d42 − d0

proportion negative 0.58 0.64 0.68 0.30 0.27 0.83 0.74 0.36 0.54
proportion signif (p < 0.1) 0.28 0.08 0.01 0.35 0.10 0.06 0.39 0.48 0.16

proportion signif & nega 0.21 0.02 0.01 0.04 0.00 0.06 0.35 0.13 0.13

Table 4.4: Summary of time course dynamics in PUFA/CHO. Proportions are calcu-
lated as (# with characteristic)/458.

We can classify the lipids that show a significant change across either PUFA or

CHO as fast or slow, based on how quickly they reach a significant change. Fast

lipids, under either diet, change significantly in the first 2 days, and also change

significantly between the beginning and end of the diet. Slow lipids are classified as

those which do not change significantly within the first 2 days, but reach a significant

change between the beginning and the end of the diet. These labels (PF ,PS, CF , CS)

have a significant association with each other, as can be seen in Table 4.5. We will

use CN and PN to denote the lipids which do not change significantly over the course

of either dietary intervention.

These dynamic changes can be summarized visually in Figure 4.1.

The consensus modules can be tested for enrichment or depletion in these dietary

labels. Table 4.6 shows that modules which are enriched for PF tend to be enriched

for CF , and that some of the modules are enriched for lipids which show no significant

CF Cs CN
PF 62 20 11
PS 25 23 39
PN 39 53 186

Table 4.5: Distribution of DA labels for each diet. PUFA labels have significant as-
sociation with CHO labels (Pearson’s Chi-squared p < 2.2e−16)
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(a) (b)

Figure 4.1: Visual representation of dynamic changes in PUFA/CHO. Tests in each
column are: 1: d2 − d0; 2: d7 − d2; 3: d21 − d7; 4: d21 − d0; 5: d23 − d21;
6: d28 − d23; 7: d42 − d28; 8: d42 − d21; 9: d42 − d0
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changes over either diet.

PF PS PN CF CS CN
P1 DD E DD EE
P16 EEEE DDD EEEE D DD
P17 D E
P18 E
C1 DDDD EE DDD EE
C13 EEEE DD DD EEEE DD
C14

C15

Table 4.6: Module enrichment in dietary labels Modules are tested separately for en-
richment and depletion in the diet labels shown. P -values are summarized
in Table 4.3, after adjusting for multiple comparisons.

4.3.3 Module dynamics

For each consensus module the maxmean statistic, Smax, is computed. P -values

are obtained in the usual fashion by permuting sample labels (see Section 4.6.1 for

additional details). We are particularly interested in whether a given module increases

or decreases between d0 and d21, d0 and d42, and d21 and d42 (results in Table 4.7).

As expected from the linear model results, all modules significantly decrease between

d0 and d21. Likewise, all modules but one, C1, increase between d21 and d42. Module

C1, enriched in lipids which do not change under either diet and several classes of

lipids, decreases significantly across this diet.

In Table 4.4, we saw that relatively few (∼ 16%) of the lipids show a significant

difference between baseline (d0) and the end of the carbohydrate diet (d42). These

modules, however, help us to identify more subtle changes - about half of the identified

modules decrease across the entire course of the experiment, while the other half

increase. Further analysis is necessary to identify which lipids are responsible for

these changes, and what characteristics they might have in common.
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P1 P16 P17 P18 C1 C13 C14 C15

d42 > d0 1 0 1 0.128 1 0 1 0
d21 > d0 1 1 1 1 1 1 1 1
d42 > d21 0 0 0 0 1 0 0 0
d42 < d0 0 1 0.04 1 0 1 0 1
d21 < d0 0 0 0 0 0 0 0 0
d42 < d21 1 1 1 1 0 1 1 1

Table 4.7: GSA analysis in PUFA/CHO data. Modules from PUFA/CHO are tested
for DA using a custom implementation of GSA. End of PUFA (d21) and
end of CHO d42 are tested against baseline (d0) and each other. Values
presented are p-values adjusted for multiple comparisons.

4.4 HF/HC validation

The previous sections illustrate that our method can be used to identify bio-

logically meaningful modules in a controlled feeding experiment where the dietary

interventions are relatively simple and starkly different. In HF/HC experiment, the

dietary interventions are more complex - all subjects are put on standardized diet

for three days, before being randomized to HF or HC conditions. While the overall

mean percent of calories from fat is more extreme in the HF/HC diets than in the

PUFA/CHO diets, the more meaningful difference comes in the percent of calories

from SFA and MUFA. In particular, the HF diet is substantially different from the

PUFA diet in terms of what percentage of calories is coming from SFA vs MUFA

vs PUFA. Given that humans make their own saturated and monounsaturated fatty

acids through de novo lipogenesis when the body takes in more carbohydrates than

necessary, the signal from the HF/HC dietary interventions is more complex and

potentially more difficult to analyze.

4.4.1 Linear Modeling of HF/HC

The dynamics of these dietary interventions can be captured by a linear model

similar to the one used for PUFA/CHO. The abundance of the kth lipid is modeled

70



as:

Lk ∼ µ+ r(4.9)

where µ is a factor with 10 levels:

µ levels: µ−3, µ0, µF2, µF7, µF14, µF21, µC2, µC7, µC14, µC21

All subjects have measurements for levels µ−3 and µ0, which represent the stan-

dardized diet on days -3 and 0. Levels µF2, µF7, µF14, µF21 represent the 3 weeks of

HF diet, and the remaining levels correspond to the 3 weeks of HC diet.

The random effects, represented by r, for subject i on diet j are: ri + rij. Each

subject is on two different diets: B (corresponding to the standardized diet on day

-3 and day 0) and HF or HC, corresponding to the remainder of the days assayed.

Out of 562 models, 281 were significant at the model level (adjusted p-value < 0.1).

Linear model results are summarized in Table 4.8, where it can be see immediately

that the time course dynamics are more complex than in PUFA/CHO. The majority

of lipids which change significantly across either of the diets do decrease (comparing

µF21 and µC21 to either µ0 or µ−3), but when µC21 is compared with µF21 a greater

proportion of lipids are significantly decreasing than what was found in the equiv-

alent comparison in PUFA/CHO. It is interesting to note that more lipids change

significantly when transitioning from the standardized diet to the HC diet (µC2−µ0)

than when subjects transition to the HF diet (µF2 − µ0 ). The total percentage of

macronutrients from fat is reduced by over 66%, in the former case, while almost

being doubled in the latter case. Further investigations into this subset of lipids

may yield further insight into the short term response of the metabolome to dietary

perturbations.
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µ0 − µ−3 µC2 − µ0 µC7 − µC2 µC14 − µC7 µC21 − µC14 µC21 − µ0 µC21 − µ−3 µC21 − µF21

proportion negative 0.75 0.60 0.69 0.43 0.68 0.71 0.57 0.44
proportion signif (p < 0.1) 0.02 0.12 0.03 0.06 0.00 0.23 0.13 0.22

proportion signif & negative 0.02 0.08 0.03 0.01 0.00 0.21 0.10 0.12
µF2 − µ0 µF7 − µF2 µF14 − µF7 µF21 − µF14 µF21 − µ0 µF21 − µ−3

proportion negative 0.65 0.68 0.55 0.40 0.77 0.60
proportion signif (p < 0.1) 0.00 0.00 0.00 0.00 0.19 0.10

proportion signif & negative 0.00 0.00 0.00 0.00 0.17 0.08

Table 4.8: Summary of time course dynamics in HF/HC. Proportions are calculated
as (# with characteristic)/562.

C1 C13 C14 C15 singletons/dyads total
P1 30 11 14 3 3 61
P16 11 60 5 22 0 98
P17 10 3 48 5 0 66
P18 3 8 13 0 1 25

singletons/dyads 3 0 1 0 0 4
total 57 82 81 30 4 254

Table 4.9: Contingency table of module membership in HF/HC data set. Module
membership for PUFA and CHO modules, with only lipids measured in
HF/HC

4.4.2 Module dynamics under more extreme dietary perturbations

Out of the 562 lipids measured in the HF/HC dataset, only 254 overlapped with

the PUFA/CHO dataset. Fortunately, the modules are relatively well preserved, and

the missingness is distributed relatively evenly across modules (Table 4.9.)

The modules defined in Section 4.3.1 can be tested for DA as in Section 4.3.3 to

see if there are more substantial changes in HF/HC data at the module level than at

the individual lipid level. As with the PUFA/CHO data, the three comparisons which

are of most interest are: µC21 vs µ0, µF21 vs µ0, and µC21 vs µF21. These results (Table

4.10) complement and magnify the linear model results, while also providing a more

complex picture than what was originally observed in the PUFA/CHO experiment.

We see that when day 21 is compared against day 0, for HF or HC, the modules

which change significantly decrease, with the exception of P16 and C13 which increase

between across the HC diet. These modules, along with C15 increase between d0 and

d42 in the original CHO diet. P18 and C15 decrease over the HC diet, while remaining
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P1 P16 P17 P18 C1 C13 C14 C15

µC21 > µ0 1 0.016 1 1 1 0.016 1 1
µF21 > µ0 1 1 1 1 1 1 1 1
µC21 > µF21 1 0 0 0.896 1 0 0.1184 0
µC21 < µ0: 0 0.998 0 0.0576 0 0.998 0 0.069
µF21 < µ0 0 0 0 0 0 0 0 0
µC21 < µF21 0 1 1 0.875 0 1 1 1

Table 4.10: GSA analysis in HF/HC data. Modules from PUFA/CHO are tested for
DA in HF/HC data set using a custom implementation of GSA. End
of HC (µC21) and end of HF µF21 are tested against µ0 and each other.
Values presented are p-values adjusted for multiple comparisons.

unchanged (P18) or increasing (C15) in the CHO diet.

It is particularly interesting that while P1 increases from d21 to d42, it decreases

over the equivalent comparison in the HF/HC study. These subtle differences in

module level activity may provide insight into more complex systems level dynamics

regarding the metabolism of SFA, MUFA and PUFA.

4.5 Discussion

In this chapter we present an alternative method for identifying modules of lipids,

one which does not rely on an arbitrary DA cutoff, and which combines data from

multiple data sets to create more robust co-expression networks. This method pri-

oritizes differential edges, instead of differential nodes (as in Chapter III). Ideally

this method is suited to a scenario where one has weak mean differentials between

conditions, and where the patterns of co-expression themselves are of primary interest.

We use the method to identify diet-linked modules, in the PUFA/CHO controlled

feeding study, which are then are used to illuminate more complex dynamic behavior

in a second controlled feeding study (HF/HC).
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4.6 Methods

4.6.1 Gene Set Analysis Implementation

Let β̂i be the estimate of the fixed effects from our linear model and Σ̂i the

associated covariance matrix from solving the appropriate regression equation for the

ith lipid of the relevant dataset. Given a contrast vector c, we can calculate the

appropriate statistic

Di =
c′β̂√
c′Σ̂c

The test statistics Di are used to calculate Smax (Equation 4.8) for a set S, com-

prised of all the lipids in a consensus module (P1, C16, etc.) To calculate a p-value for

each Smax, sample labels are permuted nperm times (we used nperm = 500.) For paired

data (as in PUFA/CHO, or certain comparisons in HF/HC), the labels are shuffled

in pairs. For unpaired tests, all sample labels are permuted together. Sample labels

which are not directly involved in a test remained fixed (ie: if testing d21 - d0, the

sample labels for the observations from d2, d7, d23, d28 and d42 remain unchanged.)

Smax is recomputed on each permuted dataset, giving permuted values S∗1max,S∗2max,· · · ,

S∗nperm
max . For the test di − dj, two p-values are computed:

p− value for di > dj =

nperm∑
k=1

I(S∗kmax > Smax)

nperm
(4.10)

p− value for di < dj =

nperm∑
k=1

I(S∗kmax < Smax)

nperm
(4.11)

P -values are then adjusted for multiple comparisons across all modules tested

using the Benjamini-Hochberg False Discovery Rate adjustment procedure [1].
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4.6.2 Study methods

The diet intervention study was approved the Institutional Review Board of

the University of Michigan (HUM00110543). Participants were recruited through

umclinicalstudies.org website and with posters placed throughout the University of

Michigan community. Subjects were required to have a body mass index (BMI) of

18.5− 27kg/m2 and between the age of 18-45 years. They were required to be weight

stable for 6 months (±5 pounds), have no known food allergies and be willing to

eat provided meals. Exclusions included active cigarette use within the previous 6

months, active cardiovascular disease, diabetes mellitus or other metabolic diseases,

use of any medication known to alter metabolism, such as metformin. After obtaining

informed consent, subjects were randomized within sex to either the a high carbohy-

drate (HC) or high fat (HF) diets (6 HC women, 6 HF women, 7 HC men, 5 HF men).

Subjects were assigned a unique identification number for tracking. All collected data

was de-identified prior to analysis using this unique number.

Plasma sampling. Plasma was collected from all subjects was obtained in three

phases: Baseline, Standard Diet, and. was sampled at baseline, after 3 days of a

Standard Diet and at days 2, 7, 14 and 21 of the HC or HF experimental diet.

Dietary intervention. Standard diets reflected the 50th percentile macronutrient

intake (±2%) for the US population, as available in the 2015 Dietary Guidelines

Advisory Committee Report (Committee, 2015) with the target intake of 15% protein,

35% fat, and 50% carbohydrate. Details of the interventions are detailed in past

MCRU-NAL protocols [108, 109, 110].

Experimental Diets. The HF diet target was 60% fat, 25% carbohydrate and

15% protein while the HC diet target was 10% fat, 75% carbohydrate and 15% pro-

tein. Total calories provided during the Standard diet and Experimental diet phases

was calculated to meet macronutrient requirements of the eucaloric diet for each

individual. Weight varied less than 1% during the dietary interventions.
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Dietary Analysis. For PUFA/CHO MCRU Nutrition Assessment Laboratory

dietitians analyzed recorded the content of the diet over a random sample of 3 days

of each study diet using the dietary analysis program Nutrition Data for Research

(NDSR). Each subject had 3 days analyzed for each dietary intervention, except for

subject 17, which only had 2 days for PUFA due to a processing error. For HF/HC,

dieticians analyzed recorded content for each of the 24 subjects for each of the 3

standard diet days (B), as well as for each of the 21 HF or HC diet days.

4.6.3 Lipidomics methods

Lipidomics methods for PUFA/CHO are described in Chapter III.

HF/HC data were processed similar, with additional classes of lipids added to the

insilico library.

4.6.4 Lipid Normalization

Lipids in both studies were normalized as in Chapter III. In HF/HC data, one

subject sample (male, high carb group at day 0) was removed because of an injection

error. After normalization, PUFA/CHO data had 458 lipids in 16 classes; HF/HC

data had 562 lipids in 23 classes.
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APPENDIX A

Supplementary material for Chapter II

A.1 Algorithm Details

In the algorithm for estimating Q̂ and B̂k, (Appendix Algorithm 1), we include

two additional steps, one of which is optional, to help deal with noisy data. The iden-

tification restriction on the Bk
ii’s require them to be positive; hence, B̂k

ii < 0 implies

excessively noisy data for variable i, which in turn can result in the corresponding

entries in the Λ̂k having differing signs. It is possible to have different signs in Λ̂k

without having a B̂k
ii < 0, if the signal is strong enough. If B̂k

ii < 0, we pick the

”correct” sign based on a majority rule, and remove from estimation the entries with

the opposing sign.

If Qij is nonzero, then any corresponding entry Λ̂k
ij which is set to 0 in the course

of the algorithm is done so because of noise. This means that in the calculation of Q̂ij,

this element is not getting the full contribution from each Λ̂k
ij, and will be artificially

low. This can be partially addressed by an optional scaling factor, sij, which was

found to improve performance in some simulation settings.
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sij =
K

K∑
k=1

I(Λ̂k
ij 6= 0)

(A.1)

Q̂ij is then updated to be sijQ̂ij.

If all Λ̂k
ij are nonzero, then the scaling factor is 1. Otherwise, sij > 1, and will

slightly inflate Qij. This adjustment would be included whenever Q̂ was calculated

(immediately after line 1 in Appendix Algorithm 1). A brief discussion of the results

of including this step is included in Appendix Section A.3.4.

Recall that certain constraints are placed on Bk, depending on the overall design

structure, and how one wants to compare data sets. If comparisons between any two

data sets in a 2× 2 experimental design are desirable, one would normalize Bk across

all levels of both design factors. If the first design factor has levels {1, · · ·K1} and

the second {1, · · ·K2}, then

ID0 :

K1∑
k=1

K2∑
j=1

Bkj = I(A.2)

Given a single design factor with unordered levels, this constraint would reduce

to

ID1 :
K∑
k=1

Bk = I(A.3)

If one were primarily interested in comparing across levels of the one design factor

for a single, fixed, level of the second design factor, one might use the following

constraint:

ID2 :

K2∑
k=1

Bik = I (for each fixed i ∈ {1, · · · , K1}.)(A.4)
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Algorithm 1: Estimating Q̂, B̂k

Data: Λ̂k, k ∈ {1, · · · , K};m; d

Result: B̂k, Q̂
begin

1 Q̂← 1
d

∑
k

Λ̂k

1.1 if including sij then

1.2 Q̂ij ← sij(Q̂ij)

2 for k ∈ {1, · · · , K} do

3 B̂k
ii = 1

m

m∑
j=1

Λ̂k
ij/Q̂ij

4 if Q̂ij = 0 then

5 B̂k
ij = 0

6 Normalize B̂k

7 if B̂k
ii < 0 then

8 for j∈ {1, · · · ,m} do

9 np =
K∑
k=1

I(Λ̂k
ij > 0), nn =

K∑
k=1

I(Λ̂k
ij < 0)

10 if np = nn then̂
12 Λk

ij = 0 ∀ k

13 if np > nn and Λ̂k
ij < 0 then

14 Λ̂k
ij ← 0

15 if np < nn and Λ̂k
ij > 0 then

16 Λ̂k
ij ← 0

16-21 repeat lines 1-6

where one is interested in comparing outcomes for each of the K1 levels of D1

across all K2 levels of D2.

In Algorithm 1, normalizing of B̂k is according to design structure and these

constraints. d is equal to 1 if using the constraints in equations A.2 and A.3, and is

equal to K1 if using the constraint in equation A.4.

For the the algorithms calculating Λ̂k, we need a few additional functions. Let

φΛ̂k(Λ̂k′) be the rotation of Λ̂k′ so that it has maximum similarity with Λ̂k (the

Procrustes rotation). The reference condition k can be chosen at random, or with
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some consideration of the experimental design.

Let ψc(Λ̂
k) be the thresholding of Λ̂k where all entries between −c and c are set

to 0.

Finally, let ηs(Λ̂
k) be the function with thresholds Λ̂k by cardinality. Specifically,

let s = (s1, s2, · · · , sm) represent the target cardinality (the target number of non-zero

entries) for each column of Λ̂k. If Λ̂k has p rows, then, for each column j, the p− sj

smallest entries are set to 0.

The estimation of non-sparse Λ̂k via a scaled eigendecomposition is presented in

Algorithm 2. The addition of lines 3.1 and 3.2 are all that is required for a fast,

decent approximation of a sparse Λ̂k via method EDTM. Method EDTC is presented

in Algorithm 3, and the SPCA method for sparse Λ̂k is presented in Algorithm 4.

Algorithm 2: Estimation of non-sparse Λ̂k OR sparse Λ̂k via method EDTM

Data: UkDkUk′ , the eigen-decomposition of Σk, k ∈ {1, · · · , K};m; c

Result: Λ̂k

begin
1 for k ∈ {1, · · · , K} do

2 Λ̂k ← Uk
1:m

√
Dk

1:m

3 Pick k ∈ {1, · · · , K}
3.1 if Q is sparse then

3.2 Λ̂k ← ψc(Λ̂k)

4 for k′ ∈ {1, · · · , K}, k′ 6= k do

5 Λ̂k′ ← φΛ̂k(Λ̂k′)

6 for k ∈ {1, · · · , K} do

7 Λ̂k ← ψc(Λ̂k)

In Algorithm 4, Σspca is the diagonal matrix having entries equal to the variance

of each sparse principal component. In this specific case where we are using the spca

function from elasticnet, the entries are equal to the total variance of the decompo-

sition multiplied by the percent explained variance of each component. We use the

varnum option of spca, in which the user supplies the number of non-zero components
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Algorithm 3: Estimation of sparse Λ̂k, via EDTC

Data: UkDkUk′ , the eigen-decomposition of Σk, k ∈ {1, · · · , K};m; s

Result: Λ̂k

begin
1-3 As in Algorithm 2

4 Λ̂k ← ηs(Λ̂
k)

5 for k′ ∈ {1, · · · , K}, k′ 6= k do

6 Λ̂k′ ← φk(Λ̂k′)

7 Λ̂k′ ← ψc(Λ̂k′)

desired for each sparse principal component to be estimated.

Algorithm 4: Estimation of sparse Λ̂k, via SPCA

Data: Σk, k ∈ {1, · · · , K}, m, (s1, · · · sm)

Result: Λ̂k

begin
1 for k ∈ {1, · · · , K} do

2 Λ̂k ← spca(Σk) with m sparse principal components, having (s1, · · · sm)
non-zero elements in each column.

3 Λ̂k ← Λ̂k
√

Σspca

4 Λ̂k ← ψc(Λ̂k)

5 Pick k ∈ {1, · · · , K}
6 for k′ ∈ {1, · · · , K}, k′ 6= k do

7 Λ̂k′ ← φΛ̂k(Λ̂k′)

8 for k ∈ {1, · · · , K} do

9 Λ̂k ← ηs(Λ̂k)

A.2 Performance review of sparse PCA methods

A.2.1 selecting tuning parameters

For both SPCA and EDTC, we used the leading.eigenvector.community de-

tection algorithm (LEVCD) in the igraph package in R to estimate the number of

latent factors, m, and their cardinalities, (s1, · · · sm). The steps to estimate these
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tuning parameters are presented in Algorithm 5.

Algorithm 5: Number and cardinality of latent factors

Data: Σk ∀k
Result: m, (s1, · · · sm)
begin

for k ∈ {1, · · · , K} do
Convert Σk to an undirected graph with weighted edges, Gk.
Calculate the number, ck and size, sk1, · · · skck , (ski > ski+1), of
communities present in Gk.

m = min
k∈{1,···K}

ck

(s1, · · · sm) = (sm1 , · · · smcm)

A.2.2 Performance Review

In the case where we believe that the underlying Q is sparse, our first challenge

is in calculating an accurate sparse eigen-decomposition. We began by investigating

SPCA ([43] [44]), implemented in the spca function of the R package elasticnet.

In principal this method should work well when tuned appropriately. The default

setting uses two different λ penalty parameters;in our investigations we were unable

to come up with a good heuristic for guiding the tuning of these parameters.

The spca function in R has a second option, one which allows the user to put in

the number of principal components to estimate, and the number of non-zero elements

in each. When given the true values for these parameters, the method worked quite

well. This raises another question though - how to estimate the values for those

parameters? It turns out that LEVCD can be used quiet reliably to estimate those

parameters.

The first quantity LEVCD needs to estimate is the number of communities (which

we take as equivalent to the number of latent factors). Over all iterations of all the 2-

factor simulation settings that we ran, LEVCD returned the correct number of factors

99.94% of the time. In the few cases where it mis-estimated the number of factors, it
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added an additional factor.

For the 3-factor simulation settings, the performance was also quite good, return-

ing the correct number of factors 99.6% of the time. Here too the method usually

over-estimated the number of latent factors, most commonly when the factors only

explained 50% of the observed variance and the communities all had similar sizes.

In both the 2 and 3 factor simulation settings, when LEVCD over estimated the

number of factors/communities, the additional community was estimated to be very

small. For the 2-factor settings, this third community was never estimated to have

more than 2 members; for the 3-factor settings, the fourth community was never

estimated to have more than 7 members (the majority of the time it was estimated

as having only one member.)

Across all 2 factor simulation settings, LEVCD estimates the first and second

community within ±1 of their true size 98.3% of the time. In the 3 factor simulation

settings, LEVCD estimates the first, second and third community sizes within ±1 of

their true size over 99.2% of the time.

While SPCA yielded good performance, the algorithm often took some time to

run. Given that we had already estimated the number and cardinality of each of

the factors, we wondered if there was a simpler method for creating the sparse eigen-

dcomposition which could use these parameters, but offered improved performance or

speed over SPCA. For this purpose, we developed an alternative eigen-decomposition

method, where the eigenvectors were truncated by their cardinality (EDTC method,

Algorithm 3), which also yields good results.

After close examination of the results from EDTC method, it was observed that

many of the ”incorrect” values were quite small, and would have been truncated if

a simple cutoff had been used. This led us to test a simple eigen-decomposition,

truncated by magnitude in the usual way (method EDTM). To make a fairer com-

parison, we used the number of communities estimated via LEVCD (so there would
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be the same number of factors as the other methods), but truncated with a simple

0.1 threshold, the same as we used for the non-sparse eigen-decomposition.

Intuitively, whichever method has the best reconstruction of Λ̂k, is also going to

give us the best results for B̂k and Q̂. We used a modified version of the reconstruc-

tion loss (Equation A.5) as a proxy for how well each method would perform in the

algorithm over all.

Reconstruction- loss v2:
1

K

K∑
k=1

|| |Λk| − |Λ̂k| ||F
||Λk||F

(A.5)

We can compare this reconstruction loss for the three methods in Appendix Fig-

ures A.7, A.8 and A.9. We note that for the EDTM, we did use the number of

communities generated by the LEVCD method, though this number could also be

obtained from a scree plot. It can be seen that both of the eigen-decomposition

methods outperform the spca method. Closer inspection shows that EDTC slightly

outperforms EDTM, based on this reconstruction loss, but the performance differ-

ences is quite small. In summary, simple eigen-decomposition, truncated by cardi-

nality, yields results just as good as the SPCA, with the advantage of being much

faster to compute. Furthermore, if one did not want to go through the additional

work of estimating parameters via LEVCD, one could get a decent sparse principal

component approximation simply by truncation by magnitude.

A.3 Simulation Results

A.3.1 additional simulation details

For each Bk ∈ {1, · · · , K} we generate a random bk ∼ Unif(0.15, 0.85). The set

of Bk are then normalized according to the design structure, as discussed in Section

A.1.
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The factors F are generated from a N(0, 1) distribution, while the non-zero entries

in Q are generated uniformly from (−1,−0.5) ∪ (0.5, 1).

Once we have generated our Bk, F and Q, we generate our distribution for E.

For each realization of E we sample from a N(0,Ψ) distribution, where Ψ is designed

so that Λk explains, on average, 50% or 75% of the variance in the observed data.

In the context of our motivating example, lipids in a certain class are more likely

to have variances which are more similar to each other than to lipids from another

class, due to technical reasons. With an eye towards this application, we also design

Ψ as a block-diagonal matrix. In all of our simulations, Ψ has three blocks, each

representing approximately 1/3 of the total variables. If the target variance (cal-

culated as described below) is σ2
t , then we set the variance within the blocks to be

((σt − 0.05)2, σ2
t , (σt + 0.06)2), respectively.

The proportion of variance in our dataset, having p variables, explained by our

factors can be written as:

p∑
i=1

(
ΛkΛk′

)
ii

p∑
i=1

(ΛkΛk′)ii + Ψii

(A.6)

If we want our factors to account for 50% of the total variance in the dataset, then

σ2
t =

1

p

1

K

K∑
k=1

p∑
i=1

(
ΛkΛk′

)
ii

If we instead want our factors to account for 75% of the total variance in the

dataset, then

σ2
t =

1

3

1

p

1

K

K∑
k=1

p∑
i=1

(
ΛkΛk′

)
ii

Each application of the algorithm includes an additional step in which we use
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a procrustes rotation to align the Λ̂k with Λk, so that we accurately measure the

performance of the algorithm, not the accuracy of the eigen-decomposition or spca

in picking the correct orientation. We used the procrustes function in vegan package

in R, with the scale=false option, which ensures that the transformation is only a

rotation, and therefore orthogonal.

The performance of the algorithm is evaluated via the following equations:

B-loss:
||B − B̂||F
||B||F

(A.7)

Q-loss:
|| |Q̂| − |Q| ||F
||Q||F

(A.8)

Reconstruction-loss:
1

K

K∑
k=1

|| |B̂kQ̂| − |BkQ| ||F
||BkQ||F

(A.9)

where B is a p×K matrix whose kth column is the diagonal entries in Bk.

In the non-sparse simulation settings we used a threshold of c = 0.1 for the final

truncation step in estimating Λ̂k (step 7 in Algorithm 2). We ran the algorithm with

and without the sij scaling factor on the same datasets; in general, the adjustment step

decreased the error in estimating B, while slightly increasing the error in estimating

Q. These two effects combined to have a minuscule decrease in the error of Λ̂ in some

settings. Overall, this step was shown to yield no increase in performance in the non-

sparse settings (likely due to the strong signal), while yielding some improvements in

the sparse scenario (possibly due to the difficulty in correctly estimating the sparse

structure.) While the step increases the error in Q̂ slightly, it also serves to decrease

the number of entries in Q̂ which have small loadings. This may be an advantageous

in an application setting, as it was in our application on the AI data. Depending on

which component was of greater interest in an application, Bk or Q, a researcher may

wish to include the adjustment step or not.
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A.3.2 Results for non-sparse Q, without sij

Overall, we have quite good results across all simulation settings, as can be seen

in Figures A.1, A.2, and A.3. We see that in many ways that algorithm behaves

as our intuition tells us it should - loss goes down as the error decrease and as

the percentages of variance explained by the latent factors increases. Loss generally

decreases with increasing sample or variable size, but increases (particularly in Q)

with an increasing number of latent factors. Performance across all metrics tends to

increase as the number of datasets increases, regardless of the experimental design

structure. We also observe that the standard deviations of the loss values are quite

small - indicating that the algorithm consistently has good performance.

The mean B-loss is always < 0.233, with half of the instances even below 0.11.

Mean Q-loss values are also quite good- always below 0.23, with the majority of the

settings having loss values < 0.17, and a quarter below 0.12. Mean Reconstruction-

loss values are slightly higher, but still below 0.29, with half of the simulation settings

having loss values between 0.083 and 0.174.

A.3.3 Results for sparse Q, without sij

Our preferred method for estimating sparse Λ̂k is the EDTC method, as it yielded

the best results, shown in Figures A.4, A.5, and A.6. ”Qload: 1” and ”Qload: 2” refer

to Q having (0.55p, 0.45p) and (0.7p, 0.3p) non-sparse elements respectively, when

m = 2, or Q with (0.39p, 0.33p, 0.28p) and (0.5p, 0.3p, 0.2p) non-sparse elements,

respectively, for m = 3.

Again we have quite good results across all simulation settings. With the addition

of sparsity, the overall picture is somewhat more complex than previously. Overall, we

see similar trends to the non-sparse case - loss decreases as the percentage of variance

explained by our factors increases, or as sample size increases. Now however, we see

that as the number of factors increases, the loss also tends to increase very slightly.
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For two factors and either experimental design structure, the algorithm performs

slightly better in the Qload: 1 settings than in the Qload: 2 settings for all of the

performance metrics. This is also true for most of the three factor settings, but the

performance increase is so slight as to be negligible.

Across all settings, the mean Q-loss ranges between 0.067 and 0.158, with half of

the settings having loss values below 0.1. The mean B-loss is higher here, ranging

from 0.042 to 0.24, but the majority of the settings have loss values below 0.15. Mean

Reconstruction-loss values are similar in range to the B-loss values, 0.766 to 0.269,

with most < 0.17.

A.3.4 Results for sparse Q with sij

The results for the sparse scenarios with the additional adjustment step have the

same general trends as without that adjustment step, as can be seen in Figures A.10,

A.11 and A.12.

There are some slight differences - mean Q-loss ranges between 0.068 and 0.193,

with most of the entries having loss < 0.139. Mean B-loss ranges from 0.042 to 0.183,

with about half of the loss values being below 0.1. Mean Reconstruction-loss values

are still fairly good, between 0.076 and 0.27, with 75% of those being < 0.171.
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(a) 3× 1 design

(b) 2× 2 design

Figure A.1: Q-loss, non-
sparse Q

(a) 3× 1 design

(b) 2× 2 design

Figure A.2: B-loss, non-
sparse Q

(a) 3× 1 design

(b) 2× 2 design

Figure A.3: Reconstruction-
loss, non-sparse
Q
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(a) 3× 1 design

(b) 2× 2 design

Figure A.4: Q-loss with
sparse Q

(a) 3× 1 design

(b) 2× 2 design

Figure A.5: B-loss with
sparse Q

(a) 3× 1 design

(b) 2× 2 design

Figure A.6: Reconstruction-
loss with sparse
Q
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(a) 3× 1 design

(b) 2× 2 design

Figure A.7: Reconstruction-
loss v2, SPCA

(a) 3× 1 design

(b) 2× 2 design

Figure A.8: Reconstruction-
loss v2, EDTC

(a) 3× 1 design

(b) 2× 2 design

Figure A.9: Reconstruction-
loss v2, EDTM
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(a) 3× 1 design

(b) 2× 2 design

Figure A.10: Q-loss with
sparse Q and
sij

(a) 3× 1 design

(b) 2× 2 design

Figure A.11: B-loss with
sparse Q and
sij

(a) 3× 1 design

(b) 2× 2 design

Figure A.12: Reconstruction-
loss with
sparse Q and
sij
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A.4 Materials and Methods

A.4.1 Lipid background

Lipids are small biomolecules comprised of a head group attached to a fatty acid

tail. The structure of the head group separates lipids into classes (such as diglycerides

(DGs), triglycerides (TGs), and sphingomylins (SMs), among others). The fatty acid

tail is comprised of chains of carbon atoms, connected by single or double bonds.

Lipids can be classified by the length of these tails as short, medium or long chain

lipids. They can also be classified as saturated (0 double bonds), monounsaturated

(1 double bond) or polyunsaturated (2 or more double bonds).

A.4.2 Metabolomics methods

Plasma samples were spiked with internal standards lipids (LPC 17:0/0:0, PC

17:0/17:0, PE 17:0/17:0, SM 17:0/17:0, Ce 17:0/17:0, PG 17:0/17:0, PS 17:0/17:0,

PA 17:0/17:0, PI 17:0/20:4, d5-DAG, TG 17:0/17:0/17:0 and D31-TAG, Avanti Polar

Lipids (Alabaster, AL)) and lipids extracted using a modified Bligh-Dyer method [111]

using 2:2:2 volume ratio of water/methanol/dichloromethane at room temperature as

described previously [112]. The organic phase was collected and dried under nitrogen

and reconstituted in 100µL of a buffer (10:85:5 ACN/IPA/H2O) containing 10mM

ammonium acetate and analyzed using LC-MS based lipidomics. The data acquisition

was performed in both positive and negative ionization modes, using a TripleTOF

5600 equipped with a DuoSpray ion source (AB Sciex, Concord, Canada). The lipids

were identified using Lipid Blast [113] [114] ,software by matching MSMS spectra to

different library and the data files were processed using MultiQuant 1.1.0.26 [115]

(ABsciex, Concord, Canada).
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A.4.3 Normalization procedure

Data was normalized to remove batch and run order effects, and log2 transformed.

One case sample had lipid data, but no FFA or eicosanoid data, and so was removed

(giving us 24 cases and 25 controls). There were 442 lipids, 9 eicosanoids and 16 FFA

in the dataset.

Lipidomics data was normalized to remove batch and run order effects. Each

lipid was normalized individually, without the use of internal standards. Positive and

Negative modes treated separately, until the final step of removing duplicate lipids.

Pooled samples are the pooled samples from the test data.

Each batch had 7 pooled samples. Lipids that were missing more than 2 pooled

samples across both batches were removed (35 lipids in the positive mode, 5 lipids in

the negative mode).

Robust regression on the pooled data was used to calculate an adjustment ratio

between batches; this ratio was then used to remove batch effects.

For each lipid i, we calculate a batch-adjustment factor βi. If there are two

batches, this is essentially the slope from the robust regression of one batch on the

other, without an intercept. Let b1
i be the measurements for lipid i in batch 1 and b2

i

be the measurements for lipid i in batch 2. We want to calculate

b2
i = βib

1
i

If there are more than two batches, then one batch is picked as the reference, and

all other batches are regressed against the reference batch, one at a time. We use the

lmrob function from the R package robustbase for calculating the adjustment ratio

between batches.

Once the adjustment factors have been calculated, and missing data imputed

(using the knn function from the pamr package. Imputation was done taking into
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account the batch number, run order and sample label (cases at baseline, controls at

3 months, etc). ) we can then use the adjustment factor to remove batch effects by

updating b2
i to be 1

β
b2
i .

Next, loess smoothing is used to remove the remaining effects of run order. Loess

tuning parameters are calculated on the pooled samples, and then used to smooth

the original samples.

Once all batch and run order effects have been adjusted for, we combine the

positive and negative modes and remove any duplicate lipids which appear more

than once.

If a lipid is present in only one mode, but with multiple ions, we keep the ion with

lowest variability as measured by relative standard deviation (RSD), where RSD of

the ith lipid, li, is equal to 100stdev(li)/mean(li).

If a lipid is present in both modes, we pick the mode that has the most lipids of

that lipid’s class, and keep the ion w/ the lowest RSD within that mode.

If a lipid is present in both modes, and there are the same number of ions/lipids

in both modes, we keep the ion with the lowest RSD across both modes.

The FFA data was normalized in the same way as the lipidomics data. The

eicosanoid data was run in a single batch and was median centered after being log2

transformed.

A.4.4 Case Study Details

A.4.4.1 Patient Characteristics

Samples were derived from a prospective clinical trial - all postmenopausal women,

had completed surgery, radiation, and chemotherapy as indicated, participating in

a randomized clinical trial (Exemestane and Letrozole Pharmacogenomics (ELPh))

comparing two aromatase inhibitors (letrozole and exemestane). Patients were fol-

lowed prospectively during treatment to assess tolerance of medication, completed
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Cases (n=25) Controls (n=25)
Median age (range) 60 (48-79) 60 (44-77)

Race
White 22 (88%) 23 (92%)
Black 3 (12%) 2 (8%)

Body mass index (kg/m2), mean (SD) 30.5 (5.6) 29.3 (5.1)

Aromatase inhibitor (AI)
Exemestane 16 (64%) 15 (60%)
Letrozole 9 (36%) 10 (40%)

Time on AI, months, median (range) 5.5 (2.9-6.0) 24.2 (23.6-25.1)
Prior chemotherapy 12 (48%) 11 (44%)
Prior tamoxifen 13 (52%) 12 (48%)

Table A.1: Baseline Demographic and Medical Characteristics. Data presented as
n(%), n(max,min), or mean (standard deviation)

the HAQ/VAS questionnaire at baseline, 1, 3, 6, 12, and 24 months. Those patients

who discontinued therapy by 6 months because of increased pain were ”cases” and

those who didn’t report a pain level > 2/10 during the 24 month follow-up on AI

therapy were the ”controls” [48]. A summary of subject characteristics can be seen in

Appendix Table A.1. Serum was collected at baseline and after 3 months of therapy

on subjects enrolled on this clinical trial.

A.4.4.2 Application of method

Based on scree plots of the covariance matrices for each of our 4 data sets, we

decided on a 2-factor model with a non-sparse underlying Q. We chose the controls

at time 0 as the reference condition for the Procrustes rotation. The rotated Λ̂k, were

then truncated with a threshold of ±0.1 to remove small loadings.

We used constraint ID2 (equation A.4) to normalize the B̂k values, normalizing

the B̂k for the controls together, and the B̂k for the cases together.

We chose to include the sij adjustment step for several reasons. It moves the

metabolites further away from the axis of Q̂ and therefore helps make the grouping

more clear. Additionally, the step makes it it so fewer metabolites are truncated

because of low loadings.

After applying the method, 6 lipids were removed for having Q̂i1 = Q̂i2 = 0, and
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additional 15 lipids and one FFA removed for having |Q̂i1| < 0.2 and |Q̂i2| < 0.2,

leaving us with 445 metabolites.

A.5 Enrichment and differential abundance analysis

For the over representation/enrichment analysis, we tested whether a particular

class of metabolite or saturation level was over represented in a given group - (ie: if

there were more saturated lipids in group 1 than we would expect by chance, given

the total number of saturated lipids in the set of all metabolites, and the size of

group 1) by using the hypergeometric distribution (see [78] for a good review on the

hypergeometric test in enrichment analysis). These results are summarized in Table

A.2.

To test whether a higher expression in a given group was correlated with one of

the two conditions in our two-way contrasts of interests (the same two-way contrasts

as in the t-tests), we used the GSA function from the GSA package in R. We used the

”maxmean” method, with s0 = 0 and no restandardization. P -values for these tests

can be seen in Table A.3.
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Group 1 2 3 4 a b c d

Saturated 0.0022 0.9277 0.7693 0.9872 0.9277 0.3887 0.7693 0.3887
Monounsaturate 0.9913 0.0196 0.9913 0.9913 0.9913 0.0038 0.0244 0.2723
Polyunsaturated 0.9984 0.9984 0.015 1e-04 0.1471 0.9984 0.9984 0.9984

ffa 4e-04 0.9573 0.9573 0.342 0.4839 0.89 0.89 0.4102
CE 4e-04 0.9941 0.9941 0.342 0.8384 0.4496 0.4496 0.4102
CL 0.9878 0.0575 0.5414 0.8454 0.3212 0.5414 0.8454 0.8454
DG 0.9913 2e-04 0.0919 0.9913 0.9913 0.8252 0.9913 0.9913
lysoPC 0.9741 0.9741 1e-04 0.9741 0.9741 0.0462 0.1548 0.9741
lysoPE 0.8906 0.8906 0.0894 0.8906 0.0894 0.0045 0.8906 0.8886
MG 0.2613 0.7406 0.2613 0.2613 0.2876 0.194 0.2876 0.2822
PA 0.0362 0.953 0.5367 0.5367 0.2786 0.5367 0.0774 0.5367
PC 0.9997 0.9997 0.0291 0.5607 0.1042 0.1193 0.4632 0.0291
PE 0.7149 0.0174 0.9558 0.9576 0.9558 0.3951 0.7149 0.9558
PG 0.0014 0.7695 0.7695 0.7695 0.7063 0.7063 0.7063 0.0175
PI 0.3613 0.3613 0.7622 0.9248 0.0652 0.7622 0.4065 0.3613
plasmenyl-PC 0.5366 0.7406 0.3355 0.3355 0.3355 0.3355 0.3355 0.0028
plasmenyl-PE 0.5582 0.9941 0.5582 0.0079 0.5359 0.5359 0.3145 0.596
SM 0.0648 1 1 0.2449 0.9608 0.9608 4e-04 0.0026
TG 0.9995 0 0.9995 0.0382 0.9995 0.9995 0.9995 0.9995
eico 0 0.953 0.9241 0.9241 0.4179 0.7697 0.7697 0.7697

LA 0.0053 0.0408 0.9982 0.9982 0.984 0.984 0.984 0.984
ALA 0.9889 0.11 0.0436 0.3093 0.9889 0.9889 0.9889 0.9889

Table A.2: Enrichment analysis for AI data set. Variables are partitioned into 8
groups (1, 2, 3, 4, a, b, c, d), based on their loadings onto Q̂. Each group is
then tested for over representation in a class or saturation level. P -values
presented in the table are adjusted row-wise for multiple comparisons,
using the Benjamini-Hochberg procedure [1]

Group 1 2 3 4 a b c d

higher exp corr w/ controls at t 3 vs t 0 0.99 0.2 0.99 0.99 0.99 0.99 0.99 0.99
higher exp corr w/ cases at t 3 vs t 0 0.91 0.91 0.91 0.91 0.91 0.91 0.91 0.91
higher exp corr w/ controls vs cases at t 0 0.8571 0.925 0.8571 0.8571 0.8571 0.8571 0.8571 0.16
higher exp corr w/ controls vs cases at t 3 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67

lower exp corr w/ controls at t 3 vs t 0 0.27 0.975 0.27 0.06 0.3543 0.336 0.3543 0.06
lower exp corr w/ cases at t 3 vs t 0 0.72 0.4333 0.32 0.32 0.4333 0.32 0.32 0.72
lower exp corr w/ controls vs cases at t 0 0.8457 0.6 0.68 0.8457 0.68 0.68 0.792 0.98
lower exp corr w/ controls vs cases at t 3 0.68 0.5543 0.5543 0.5543 0.5543 0.5543 0.5543 0.5543

Table A.3: GSA analysis for AI data set. P -values for using GSA to test for group
level differences of abundance in AI data. Variables are partitioned as in
Table A.2. P -values are adjusted row-wise using the Benjamini-Hochberg
procedure.
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APPENDIX B

Supplementary material for Chapter III

B.1 Module nomenclature

The jth module from CGi is referred to as Mi:j (i.e. M21u:2 refers to the second

identified module from CG21u.)

B.2 PCST node and edge frequencies

PCST solution set 0 (0.0,0.05] (0.05,0.1] (0.1,0.15] (0.15,0.2] (0.2,0.25] (0.25,0.3] (0.3,0.35] (0.35,0.4] (0.4,0.45] (0.45,0.5] (0.5,0.55] (0.55,0.6] (0.6,0.65] (0.65,0.7] (0.7,0.75] (0.75,0.8] (0.8,0.85] (0.85,0.9] (0.9,0.95] (0.95,1]
G42d edges 77128 836 347 135 130 50 59 42 37 15 22 20 31 9 15 15 16 9 16 15 56
G21d edges 59640 445 145 60 64 37 46 27 32 15 30 13 12 13 12 8 18 11 10 20 68
G42u edges 96321 929 340 120 139 60 66 30 45 33 26 16 21 12 24 10 23 9 22 25 75
G21d edges 89209 496 185 68 79 36 57 28 36 21 36 19 23 14 21 18 24 26 18 27 84
G42d nodes 27 11 6 6 6 6 3 5 0 9 4 7 2 3 6 6 2 6 11 272
G21d nodes 26 14 10 8 4 7 9 5 5 5 5 4 6 7 5 5 5 5 7 207
G42u nodes 36 7 4 3 4 8 2 3 2 4 3 4 2 10 1 5 4 6 8 328
G21d nodes 26 17 4 7 5 4 6 9 2 3 2 3 3 4 5 3 6 7 6 304

Table B.1: Prize Collecting Steiner Tree output summary. Prize Collecting Steiner
Tree node and edge frequencies over all 50 noisy runs on each graph. Table
contains the total number of nodes/edges contained in > 50X and ≤ 50Y
solutions for column (X, Y ]. In each scenario, all terminal nodes are chose
in 100% of the runs.

B.3 Module differential abundance

B.4 Full enrichment/depletion tables
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Comparison tested M21u:1 M21u:2 M21u:3 M21u:4 M21u:6 M21u:7 M21u:20 M42u:2 M42u:3 M42u:4 M42u:5 M42u:6 M42u:7 M42u:14 M42u:15 M42u:16

d21 < d0 0.000 0.000 0.000 0.000 0.997 0.000 0.000 0.000 0.000 0.000 0.032 0.000 0.000 0.000 0.000 0.000
d42 < d0 0.993 0.993 0.993 0.013 0.993 0.013 0.013 0.993 0.993 0.021 0.993 0.013 0.100 0.061 0.027 0.993
d42 < d21 1.000 1.000 1.000 1.000 0.000 1.000 1.000 1.000 1.000 1.000 1.000 0.027 1.000 1.000 1.000 1.000
d21 > d0 1.000 1.000 1.000 1.000 0.053 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
d42 > d0 0.018 0.107 0.018 0.993 0.200 0.993 0.993 0.018 0.064 0.993 0.064 0.993 0.993 0.993 0.993 0.190
d42 > d21 0.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000 0.000

Table B.2: Complete module DA results. Modules from CG21u and CG42u were tested
for differential abundance using GSA. End of PUFA (d21) and end of CHO
(d42) tested against baseline (d0), and each other. Values presented are
row-wise fdr adjusted p-values for all of modules from CG21u and CG42u.

Comparison Tested M21u:2 M21u:3 M21u:4 M21u:6 M21u:20 M42u:2 M42u:5 M42u:14 M42u:15 M42u:16

HCR-AL < LCR-AL 0.17 0.011 0.025 0.108 0.000 0.090 0.089 0.040 0.011 0.170
HCR-CR < LCR-CR 0.4933 0.381 0.278 0.278 0.493 0.278 0.278 0.278 0.278 0.493
LCR-CR < LCR-AL 0.0286 0.000 0.000 0.033 0.013 0.000 0.017 0.000 0.063 0.033
HCR-CR < HCR-AL 0.2125 0.213 0.213 0.213 0.870 0.213 0.213 0.200 0.748 0.213
HCR-AL < LCR-CR 0.8533 0.853 0.511 0.853 0.483 0.853 0.783 0.853 0.133 0.853

Table B.3: Complete module dynamics in animal model. Modules from CG21u and
CG42u which had at least 70% overlap with animal data were tested for
differential abundance in animal data using GSA. None of the tests in
the opposite direction (HCR-AL > LCR-AL, HCR-CR > LCR-CR, etc)
were significant. Values presented are row-wise fdr adjusted p-values for
all modules with requisite coverage.

Module CE DG lysoPC lysoPE MG PC PE PI plasmenyl-PC plasmenyl-PE SM TG untarg SFA MUFA PUFA
M21u:1 0.211 0.707 0.921 0.714 0.583 0.338 0.001 0.733 0.008 0.632 0.615 0.990 1.000 0.887 0.922 0.001
M21u:2 0.795 0.106 0.921 0.728 0.595 0.338 0.886 0.585 0.523 0.928 0.859 0.000 1.000 0.426 0.008 0.366
M21u:3 0.648 0.000 0.921 0.627 0.595 0.558 0.886 0.746 0.523 0.928 0.404 0.137 1.000 0.977 0.922 0.004
M21u:4 0.441 0.707 0.000 0.361 0.057 0.251 0.886 0.746 0.523 0.860 0.429 0.990 1.000 0.009 0.017 0.720
M21u:6 0.441 0.735 0.921 0.465 0.282 0.595 0.886 0.585 0.523 0.860 0.810 0.000 1.000 0.856 0.922 0.001
M21u:7 0.183 0.735 0.921 0.361 0.129 0.297 0.593 0.000 0.523 0.860 0.404 0.990 1.000 0.856 0.008 0.720
M21u:20 0.211 0.953 0.921 0.465 0.208 0.131 0.593 0.733 0.612 0.000 0.404 0.990 1.000 0.856 0.253 0.002
M42u:2 0.485 0.000 0.920 0.602 0.567 0.923 0.950 0.551 0.790 0.816 0.965 0.000 1.000 0.860 0.192 0.009
M42u:3 0.614 0.909 0.936 0.602 0.589 0.036 0.000 0.352 0.790 0.816 0.965 0.998 1.000 0.860 0.472 0.000
M42u:4 0.614 0.958 0.755 0.602 0.589 0.000 0.950 0.352 0.790 0.000 0.486 0.998 1.000 0.397 0.557 0.039
M42u:5 0.485 0.225 0.755 0.602 0.192 0.923 0.950 0.551 0.320 0.685 0.965 0.000 1.000 0.906 0.472 0.000
M42u:6 0.123 0.958 0.755 0.602 0.192 0.923 0.950 0.538 0.205 0.482 0.000 0.998 1.000 0.397 0.192 0.960
M42u:7 0.499 0.225 0.755 0.602 0.310 0.036 0.950 0.516 0.175 0.762 0.002 0.998 1.000 0.469 0.245 0.106
M42u:14 0.383 0.958 0.000 0.602 0.192 0.923 0.950 0.551 0.394 0.224 0.965 0.097 1.000 0.823 0.609 0.001
M42u:15 0.485 0.958 0.055 0.000 0.192 0.644 0.950 0.352 0.175 0.816 0.965 0.998 0.290 0.469 0.472 0.960
M42u:16 0.712 0.958 0.755 0.602 0.567 0.605 0.950 0.551 0.790 0.816 0.965 0.000 1.000 0.457 0.245 0.029

Table B.4: Complete enrichment analysis of identified modules. Modules from CG21u

and CG42u were tested for enrichment in the classes and saturation levels
listed (SFA: saturated fatty acids, MUFA: monounsaturated fatty acids,
PUFA: polyunsaturated fatty acids). P -values are adjusted for multiple
comparisons column-wise.
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APPENDIX C

Supplementary table for Chapter III
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Table C.1: Summary details for PCST results. Saturation levels (sat) are abbreviated as

SFA (saturated fatty acid), MUFA (monounsaturated fatty acid) and PUFA (polyunsat-

urated fatty acid). Columns d21 − d0 and d42 − d21 contain the sign of this difference.

Consensus graph nodes are terminal (T), or steiner (S). Columns labeled M21u and similar

contain module numbers from associated consensus graph. A 1 in the column HCR/LCR

indicates the compound was present in HCR/LCR data, 0 indicates otherwise.

Compound Name class sat d21 − d0 d42 − d21 CG42d node CG21d node CG42u node CG21u node M42d M21d M42u M21u HCR/LCR

(-)-salsolinol untarg -1 -1 0

(s)-3-methyl-2-oxopentanoate untarg -1 1 0

1-aminocyclopropane-1-carboxylate untarg 1 -1 1

1,7-dimethyl uric acid untarg -1 -1 S 10 0

11-deoxycortisol untarg -1 1 1

2-acetylpyrrolidine untarg 1 -1 0

2-deoxy-d-glucose untarg 1 1 0

2-hydroxy-3-methylbutyric acid untarg -1 1 T T T 4 4 2 1

2-hydroxybutyrate untarg 1 -1 1

2-piperidinone untarg -1 1 T T T 10 6 3 0

3-(4-hydroxyphenyl)lactate untarg -1 1 1

3-dehydroxycarnitine untarg 1 -1 0

3-hydroxy-3-methylglutarate untarg -1 1 S 3 1

3-methoxytyrosine untarg 1 -1 S 7 0

3,4-dihydroxybenzoate untarg 1 -1 0

3beta-hydroxyandrost-5-en-17-one untarg 1 -1 0

3beta-hydroxyandrost-5-en-17-one 3-sulfate untarg 1 1 0

4-acetamidobutanoate untarg -1 1 S 3 1

4-methyl-2-oxovaleric acid untarg -1 1 0

4-nitrophenol untarg -1 1 1

4-pyridoxate untarg 1 -1 1

5-hydroxytryptophan untarg -1 1 0

5-oxoproline untarg -1 1 S 6 1

5-tetradecenoylcarnitine (myristoyl) untarg -1 -1 0

5-valerolactone untarg 1 1 1

5’-methylthioadenosine untarg 1 -1 1

allose untarg -1 1 0

alpha-tocopherol untarg 1 -1 0

ascorbate untarg 1 1 1

103



Table C.1: Summary details for PCST results. Saturation levels (sat) are abbreviated as

SFA (saturated fatty acid), MUFA (monounsaturated fatty acid) and PUFA (polyunsat-

urated fatty acid). Columns d21 − d0 and d42 − d21 contain the sign of this difference.

Consensus graph nodes are terminal (T), or steiner (S). Columns labeled M21u and similar

contain module numbers from associated consensus graph. A 1 in the column HCR/LCR

indicates the compound was present in HCR/LCR data, 0 indicates otherwise.

Compound Name class sat d21 − d0 d42 − d21 CG42d node CG21d node CG42u node CG21u node M42d M21d M42u M21u HCR/LCR

betaine untarg 1 -1 0

biliverdin untarg -1 1 1

butyrylcarnitine untarg -1 -1 0

c17 sphinganine untarg 1 -1 0

carnitine untarg 1 -1 T T T 3 4 2 1

CE 16:0 CE SFA 1 -1 1

CE 16:1 CE MUFA -1 1 T T T T 1 1 1 1 0

CE 16:2 CE PUFA -1 1 0

CE 17:1 CE MUFA -1 1 T T T T 4 6 8 4 1

CE 18:0 CE SFA -1 1 S S 6 6 1

CE 18:1 CE MUFA -1 1 S 5 1

CE 18:2 CE PUFA 1 -1 T T T 6 14 20 1

CE 18:3 CE PUFA -1 1 T T T T 4 21 4 20 1

CE 20:1 CE MUFA -1 1 0

CE 20:2 CE PUFA 1 -1 T T T 4 6 7 1

CE 20:3 CE PUFA -1 1 T T T T 3 9 15 4 1

CE 20:4 CE PUFA 1 -1 T T T 16 2 3 1

CE 20:5 CE PUFA -1 1 T T T T 3 21 3 1 0

CE 22:2 CE PUFA 1 -1 T T T 7 14 7 1

CE 22:4 CE PUFA -1 1 1

CE 22:5 CE PUFA -1 1 1

CE 22:6 CE PUFA 1 -1 0

CerP 32:1 CerP MUFA 1 -1 T T T 4 4 7 0

CerP 34:1 CerP MUFA -1 -1 1

cholate untarg 1 -1 1

cholesterol untarg 1 -1 T T T 6 4 0

choline untarg -1 -1 1

cis-7,10,13,16-docosatetraenoic acid untarg -1 1 1

citramalate untarg 1 1 1
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Table C.1: Summary details for PCST results. Saturation levels (sat) are abbreviated as

SFA (saturated fatty acid), MUFA (monounsaturated fatty acid) and PUFA (polyunsat-

urated fatty acid). Columns d21 − d0 and d42 − d21 contain the sign of this difference.

Consensus graph nodes are terminal (T), or steiner (S). Columns labeled M21u and similar

contain module numbers from associated consensus graph. A 1 in the column HCR/LCR

indicates the compound was present in HCR/LCR data, 0 indicates otherwise.

Compound Name class sat d21 − d0 d42 − d21 CG42d node CG21d node CG42u node CG21u node M42d M21d M42u M21u HCR/LCR

citrate untarg 1 -1 0

CL 70:5 CL PUFA -1 1 T T T 3 3 1 0

CL 72:7 CL PUFA -1 1 T T T T 3 9 3 1 1

CL 74:3 CL PUFA 1 -1 S S 3 3 0

CL 74:7 CL PUFA 1 -1 S S 3 3 0

CL 78:3 CL PUFA -1 1 1

corticosterone untarg 1 -1 0

cortisol untarg 1 1 S 3 0

cortisone untarg -1 1 1

cycloheptanecarboxylic acid untarg 1 1 1

decanoate untarg -1 1 S S 21 12 0

decanoyl-l-carnitine untarg 1 -1 S S 6 15 0

deoxyadenosine untarg -1 1 1

deoxycholic acid untarg -1 1 1

deoxyuridine untarg -1 1 1

DG 30:0 DG SFA -1 1 T T T T 16 21 2 1 0

DG 30:1 DG MUFA -1 1 1

DG 32:0 DG SFA 1 1 1

DG 32:1 DG MUFA -1 1 T T T T 16 3 2 2 1

DG 32:2 DG PUFA -1 1 T T T 16 2 3 0

DG 33:0 DG SFA -1 1 T T T 3 3 7 0

DG 33:1 DG MUFA -1 1 T T T 16 2 2 1

DG 33:2 DG PUFA -1 1 T S T T 4 4 4 3 1

DG 34:0 DG SFA 1 -1 1

DG 34:2 DG PUFA -1 1 T T T 16 2 3 1

DG 34:3 DG PUFA -1 1 T T T 16 2 2 0

DG 34:4 DG PUFA -1 1 T T T 2 16 4 0

DG 35:0 DG SFA 1 -1 0

DG 35:1 DG MUFA -1 1 T T T 16 2 3 1
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Table C.1: Summary details for PCST results. Saturation levels (sat) are abbreviated as

SFA (saturated fatty acid), MUFA (monounsaturated fatty acid) and PUFA (polyunsat-

urated fatty acid). Columns d21 − d0 and d42 − d21 contain the sign of this difference.

Consensus graph nodes are terminal (T), or steiner (S). Columns labeled M21u and similar

contain module numbers from associated consensus graph. A 1 in the column HCR/LCR

indicates the compound was present in HCR/LCR data, 0 indicates otherwise.

Compound Name class sat d21 − d0 d42 − d21 CG42d node CG21d node CG42u node CG21u node M42d M21d M42u M21u HCR/LCR

DG 35:2 DG PUFA -1 1 T T T T 16 3 2 2 1

DG 35:3 DG PUFA -1 1 T T T 16 2 2 1

DG 36:0 DG SFA 1 -1 1

DG 36:1 DG MUFA -1 1 1

DG 36:2 DG PUFA -1 1 T T T T 16 4 2 3 1

DG 36:3 DG PUFA 1 1 S T T T 16 4 2 3 1

DG 36:4 DG PUFA 1 -1 T T T T 3 4 2 3 0

DG 36:5 DG PUFA 1 -1 S 2 0

DG 36:6 DG PUFA -1 1 0

DG 37:0 DG SFA 1 -1 0

DG 37:5 DG PUFA -1 1 0

DG 38:0 DG SFA 1 -1 1

DG 38:1 DG MUFA -1 1 T T T T 6 21 5 4 0

DG 38:2 DG PUFA -1 1 T T T T 3 17 3 3 1

DG 38:3 DG PUFA -1 1 T T T 16 2 3 1

DG 38:4 DG PUFA -1 1 T T T T 3 4 3 3 1

DG 38:5 DG PUFA -1 1 T T T 16 2 3 1

DG 38:6 DG PUFA 1 1 S S 6 5 0

DG 38:7 DG PUFA 1 1 T T T 6 5 1 0

DG 39:0 DG SFA 1 -1 S 4 0

DG 40:0 DG SFA 1 -1 T T T 8 7 4 0

DG 40:1 DG MUFA -1 1 S S 7 4 0

DG 40:2 DG PUFA -1 1 S 3 0

DG 40:5 DG PUFA -1 1 T T T 16 2 2 0

DG 40:6 DG PUFA -1 1 T T T T 8 3 14 2 1

DG 40:7 DG PUFA -1 1 T T T 7 5 3 1

DG 40:8 DG PUFA -1 1 T T T 7 2 3 0

DG 41:0 DG SFA 1 -1 T T T 8 7 1 0

DG 42:0 DG SFA -1 1 0
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Table C.1: Summary details for PCST results. Saturation levels (sat) are abbreviated as

SFA (saturated fatty acid), MUFA (monounsaturated fatty acid) and PUFA (polyunsat-

urated fatty acid). Columns d21 − d0 and d42 − d21 contain the sign of this difference.

Consensus graph nodes are terminal (T), or steiner (S). Columns labeled M21u and similar

contain module numbers from associated consensus graph. A 1 in the column HCR/LCR

indicates the compound was present in HCR/LCR data, 0 indicates otherwise.

Compound Name class sat d21 − d0 d42 − d21 CG42d node CG21d node CG42u node CG21u node M42d M21d M42u M21u HCR/LCR

DG 42:10 DG PUFA -1 1 T T T T 2 7 16 3 0

dodecenoylcarnitine untarg 1 -1 1

gamma-butyrolactone untarg -1 1 S S 3 4 0

gamma-l-glutamyl-l-cysteine untarg 1 1 0

glu-ile/leu / l-gamma-glutamyl-l-isoleucine untarg 1 -1 0

gluconic acid untarg 1 -1 1

glucose untarg -1 1 1

glutamate untarg 1 1 0

glutamine untarg 1 1 0

glutamyl-phenylalanine untarg -1 1 1

glutarate untarg -1 1 S S 10 7 0

glyceraldehyde untarg -1 1 0

glycochenodeoxycholate untarg 1 1 1

glycocholate untarg 1 1 0

guanosine untarg -1 1 T T T 4 4 4 1

heptadecanoate untarg -1 1 0

hexadecasphinganine untarg 1 1 0

hexanoylcarnitine untarg 1 -1 T T T 5 15 1 1

hippurate untarg 1 -1 0

histidinyl-tryptophan untarg -1 -1 0

hypaphorine untarg -1 -1 T T T 7 4 7 0

hypoxanthine untarg -1 1 S S 7 1 0

ile-ile untarg -1 1 1

indole-3-acetate untarg 1 1 0

inosine untarg -1 1 T T T 4 4 3 1

isoleucine untarg 1 -1 1

isovalerylcarnitine untarg 1 -1 1

krynurenic acid untarg -1 -1 S 4 1

kynurenine untarg -1 1 T T T 3 15 3 0
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Table C.1: Summary details for PCST results. Saturation levels (sat) are abbreviated as

SFA (saturated fatty acid), MUFA (monounsaturated fatty acid) and PUFA (polyunsat-

urated fatty acid). Columns d21 − d0 and d42 − d21 contain the sign of this difference.

Consensus graph nodes are terminal (T), or steiner (S). Columns labeled M21u and similar

contain module numbers from associated consensus graph. A 1 in the column HCR/LCR

indicates the compound was present in HCR/LCR data, 0 indicates otherwise.

Compound Name class sat d21 − d0 d42 − d21 CG42d node CG21d node CG42u node CG21u node M42d M21d M42u M21u HCR/LCR

l-carnitine untarg 1 -1 1

l-histidine untarg 1 -1 0

l-rhamnose untarg 1 1 1

lauroylcarnitine untarg -1 -1 S S 6 15 1

leucine untarg -1 1 1

lignoceric acid untarg 1 -1 T T T 2 6 3 1

lysine untarg 1 1 1

lysoPC 14:0 lysoPC SFA -1 1 T T T T 2 10 16 3 1

lysoPC 15:0 lysoPC SFA -1 1 T T T T 7 9 15 4 1

lysoPC 16:0 lysoPC SFA -1 1 T T T 9 14 4 1

lysoPC 16:1 lysoPC MUFA -1 1 T T T T 7 13 15 9 1

lysoPC 17:1 lysoPC MUFA -1 1 T T T T 7 8 15 4 1

lysoPC 18:0 lysoPC SFA -1 1 T T T 4 14 3 1

lysoPC 18:1 lysoPC MUFA -1 -1 S T T T 7 9 14 4 1

lysoPC 18:2 lysoPC PUFA 1 -1 T T T 7 14 4 1

lysoPC 18:3 lysoPC PUFA -1 1 T T T T 7 9 14 4 1

lysoPC 19:0 lysoPC SFA -1 -1 T T T 9 15 4 1

lysoPC 20:0 lysoPC SFA 1 -1 T T T T 7 9 14 4 1

lysoPC 20:1 lysoPC MUFA -1 -1 T T T 7 5 4 1

lysoPC 20:2 lysoPC PUFA 1 -1 T T T 7 14 4 1

lysoPC 20:3 lysoPC PUFA -1 1 T T T T 7 9 14 4 1

lysoPC 20:4 lysoPC PUFA -1 1 T T T 9 14 4 1

lysoPC 20:5 lysoPC PUFA 1 -1 T T T 7 14 4 1

lysoPC 22:0 lysoPC SFA 1 -1 T T T 4 4 4 1

lysoPC 22:1 lysoPC MUFA -1 1 S T T T 7 9 14 4 1

lysoPC 22:4 lysoPC PUFA -1 1 T T T T 7 9 14 4 1

lysoPC 22:5 lysoPC PUFA -1 1 T T T T 7 9 14 4 1

lysoPC 22:6 lysoPC PUFA -1 1 S 4 1

lysoPC 23:0 lysoPC SFA -1 -1 1

108



Table C.1: Summary details for PCST results. Saturation levels (sat) are abbreviated as

SFA (saturated fatty acid), MUFA (monounsaturated fatty acid) and PUFA (polyunsat-

urated fatty acid). Columns d21 − d0 and d42 − d21 contain the sign of this difference.

Consensus graph nodes are terminal (T), or steiner (S). Columns labeled M21u and similar

contain module numbers from associated consensus graph. A 1 in the column HCR/LCR

indicates the compound was present in HCR/LCR data, 0 indicates otherwise.

Compound Name class sat d21 − d0 d42 − d21 CG42d node CG21d node CG42u node CG21u node M42d M21d M42u M21u HCR/LCR

lysoPC 24:0 lysoPC SFA -1 -1 T T T 4 4 20 1

lysoPC 24:1 lysoPC MUFA -1 -1 S 4 0

lysoPC 26:0 lysoPC SFA -1 1 1

lysoPC 26:1 lysoPC MUFA -1 -1 0

lysoPC 26:2 lysoPC PUFA 1 -1 S S 5 4 1

lysoPE 16:0 lysoPE SFA -1 1 T T T T 4 9 4 16 0

lysoPE 16:1 lysoPE MUFA 1 1 1

lysoPE 18:0 lysoPE SFA -1 1 T T T 19 15 15 1

lysoPE 18:1 lysoPE MUFA -1 -1 S 4 1

lysoPE 18:2 lysoPE PUFA 1 -1 T T T 7 15 4 0

lysoPE 18:3 lysoPE PUFA -1 1 T T T T 5 7 3 9 1

lysoPE 20:3 lysoPE PUFA -1 1 T T T T 2 10 16 3 1

lysoPE 20:4 lysoPE PUFA -1 1 T T T T 7 10 15 7 0

lysoPE 20:5 lysoPE PUFA -1 -1 0

lysoPE 22:4 lysoPE PUFA -1 1 T T T T 3 9 3 4 0

lysoPE 22:5 lysoPE PUFA -1 1 T T T T 7 8 15 5 1

lysoPE 22:6 lysoPE PUFA -1 1 T T T T 7 15 15 20 0

lysoPE 24:1 lysoPE MUFA -1 1 0

lysoPE 26:0 lysoPE SFA 1 -1 1

malate untarg -1 -1 1

mandelic acid untarg 1 1 1

methionine untarg 1 1 1

methyl beta-d-galactoside untarg 1 1 T T T 7 4 1 0

methyl indole-3-acetate untarg -1 1 0

MG 16:0 MG SFA -1 1 T T T T 6 20 6 7 1

MG 17:0 MG SFA -1 -1 1

MG 18:0 MG SFA -1 -1 T T T 9 5 4 0

MG 18:1 MG MUFA -1 -1 T T T 9 15 4 0

MG 18:2 MG PUFA 1 -1 T T T T 6 16 14 4 0
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Table C.1: Summary details for PCST results. Saturation levels (sat) are abbreviated as

SFA (saturated fatty acid), MUFA (monounsaturated fatty acid) and PUFA (polyunsat-

urated fatty acid). Columns d21 − d0 and d42 − d21 contain the sign of this difference.

Consensus graph nodes are terminal (T), or steiner (S). Columns labeled M21u and similar

contain module numbers from associated consensus graph. A 1 in the column HCR/LCR

indicates the compound was present in HCR/LCR data, 0 indicates otherwise.

Compound Name class sat d21 − d0 d42 − d21 CG42d node CG21d node CG42u node CG21u node M42d M21d M42u M21u HCR/LCR

MG 18:4 MG PUFA 1 -1 T T T 10 9 20 0

MG 19:0 MG SFA 1 -1 0

MG 24:0 MG SFA 1 1 0

myo-inositol untarg -1 1 0

n-acetyl-d-tryptophan untarg 1 1 1

n-acetyl-dl-methionine untarg -1 1 T T T 6 15 3 0

n-acetyl-dl-serine untarg -1 1 S S 6 15 1

n-acetyl-l-alanine (-h+na) untarg -1 1 0

n-acetyl-l-aspartic acid untarg -1 1 S 3 0

n-acetyl-l-leucine untarg -1 1 1

n-acetyl-l-phenylalanine untarg -1 1 T T T 7 15 1 1

n-acetylglycine untarg -1 1 1

n-alpha-acetyl-l-lysine untarg 1 -1 0

n-cyclohexylformamide untarg 1 -1 0

n-gamma-l-glutamyl-l-methionine untarg -1 1 0

n-methyl-l-glutamate untarg 1 1 1

n2 n2-dimethylguanosine untarg -1 1 0

n6,n6,n6-trimethyl-l-lysine untarg 1 -1 1

nicotinamide untarg -1 1 1

o-acetylcarnitine untarg 1 -1 0

octanoylcarnitine untarg 1 -1 S S 6 15 1

octenoylcarnitine untarg 1 -1 0

oleoylcarnitine untarg -1 -1 S 15 1

PA 34:0 PA SFA -1 -1 0

PA 34:2 PA PUFA -1 -1 0

PA 40:1 PA MUFA 1 1 0

palmitoylcarnitine untarg -1 1 T T T 9 15 4 1

pantothenate untarg -1 1 1

paraxanthine untarg -1 1 T T T 7 14 15 0
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Table C.1: Summary details for PCST results. Saturation levels (sat) are abbreviated as

SFA (saturated fatty acid), MUFA (monounsaturated fatty acid) and PUFA (polyunsat-

urated fatty acid). Columns d21 − d0 and d42 − d21 contain the sign of this difference.

Consensus graph nodes are terminal (T), or steiner (S). Columns labeled M21u and similar

contain module numbers from associated consensus graph. A 1 in the column HCR/LCR

indicates the compound was present in HCR/LCR data, 0 indicates otherwise.

Compound Name class sat d21 − d0 d42 − d21 CG42d node CG21d node CG42u node CG21u node M42d M21d M42u M21u HCR/LCR

PC 19:2 PC PUFA -1 -1 S 4 1

PC 21:0 PC SFA -1 -1 0

PC 26:0 PC SFA -1 1 T T T T 4 3 4 2 0

PC 28:0 PC SFA -1 1 T T T T 5 7 4 2 0

PC 29:0 PC SFA -1 1 T T T T 5 3 4 2 0

PC 30:0 PC SFA -1 1 T T T T 1 8 4 18 1

PC 30:1 PC MUFA -1 1 T T T T 4 3 4 2 1

PC 30:2 PC PUFA -1 1 T T T T 4 10 4 3 1

PC 30:3 PC PUFA -1 1 T T T T 4 7 4 4 0

PC 31:0 PC SFA -1 1 T T T 7 15 3 1

PC 31:1 PC MUFA 1 -1 T T T 3 3 7 0

PC 32:0 PC SFA -1 1 T T T T 3 7 3 6 1

PC 32:1 PC MUFA -1 1 S S 3 2 1

PC 32:2 PC PUFA -1 1 S T T T 2 4 16 3 1

PC 32:3 PC PUFA -1 1 T T T T 3 9 4 4 1

PC 32:4 PC PUFA -1 1 T T T T 4 3 4 2 0

PC 33:0 PC SFA 1 1 1

PC 33:1 PC MUFA -1 1 T T T T 3 13 3 20 1

PC 33:2 PC PUFA -1 -1 T T T 7 4 3 1

PC 33:3 PC PUFA -1 1 T T T T 2 7 16 4 1

PC 34:0 PC SFA 1 -1 0

PC 34:1 PC MUFA -1 1 T T T T 3 7 3 7 1

PC 34:2 PC PUFA -1 1 T T T T 2 8 5 20 1

PC 34:3 PC PUFA -1 -1 1

PC 34:4 PC PUFA -1 1 T T T T 5 9 4 1 1

PC 34:5 PC PUFA -1 1 T T T T 2 4 4 3 1

PC 35:0 PC SFA -1 1 T S T T 4 6 4 10 1

PC 35:1 PC MUFA -1 1 T T T T 6 3 15 2 1

PC 35:2 PC PUFA -1 -1 1
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Table C.1: Summary details for PCST results. Saturation levels (sat) are abbreviated as

SFA (saturated fatty acid), MUFA (monounsaturated fatty acid) and PUFA (polyunsat-

urated fatty acid). Columns d21 − d0 and d42 − d21 contain the sign of this difference.

Consensus graph nodes are terminal (T), or steiner (S). Columns labeled M21u and similar

contain module numbers from associated consensus graph. A 1 in the column HCR/LCR

indicates the compound was present in HCR/LCR data, 0 indicates otherwise.

Compound Name class sat d21 − d0 d42 − d21 CG42d node CG21d node CG42u node CG21u node M42d M21d M42u M21u HCR/LCR

PC 35:3 PC PUFA 1 -1 T T T 4 4 1 1

PC 35:4 PC PUFA -1 1 T T T T 11 9 3 3 1

PC 35:5 PC PUFA -1 1 0

PC 35:6 PC PUFA -1 1 T T T 3 3 1 0

PC 36:0 PC SFA -1 1 T T T T 6 21 15 4 1

PC 36:1 PC MUFA -1 1 T T T T 2 21 16 20 1

PC 36:2 PC PUFA -1 -1 T T T 2 16 4 1

PC 36:3 PC PUFA 1 -1 T T T 7 15 1 1

PC 36:4 PC PUFA -1 1 S S 6 7 1

PC 36:5 PC PUFA -1 1 T T T T 2 3 5 2 1

PC 36:6 PC PUFA -1 1 1

PC 36:7 PC PUFA -1 1 S T T T 2 9 4 3 0

PC 37:1 PC MUFA 1 -1 T S T T 6 9 6 4 1

PC 37:2 PC PUFA 1 1 1

PC 37:3 PC PUFA -1 1 1

PC 37:4 PC PUFA -1 -1 S S 8 14 1

PC 37:5 PC PUFA -1 1 T T T T 4 4 4 1

PC 37:6 PC PUFA -1 1 T T T 3 4 14 1

PC 37:7 PC PUFA -1 1 T T T 3 3 1 1

PC 38:0 PC SFA 1 -1 T T T T 3 9 3 4 0

PC 38:1 PC MUFA -1 1 1

PC 38:2 PC PUFA -1 -1 S S 3 3 1

PC 38:3 PC PUFA -1 1 T T T T 2 4 16 2 1

PC 38:4 PC PUFA -1 1 T T T T 8 7 7 1 1

PC 38:5 PC PUFA -1 1 T T T T 6 15 7 20 1

PC 38:6 PC PUFA -1 1 T T T 3 14 14 1

PC 38:7 PC PUFA -1 1 T T T 21 4 3 1

PC 38:8 PC PUFA -1 1 T T T T 2 9 16 3 1

PC 38:9 PC PUFA -1 1 T T T T 4 14 4 13 0
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Table C.1: Summary details for PCST results. Saturation levels (sat) are abbreviated as

SFA (saturated fatty acid), MUFA (monounsaturated fatty acid) and PUFA (polyunsat-

urated fatty acid). Columns d21 − d0 and d42 − d21 contain the sign of this difference.

Consensus graph nodes are terminal (T), or steiner (S). Columns labeled M21u and similar

contain module numbers from associated consensus graph. A 1 in the column HCR/LCR

indicates the compound was present in HCR/LCR data, 0 indicates otherwise.

Compound Name class sat d21 − d0 d42 − d21 CG42d node CG21d node CG42u node CG21u node M42d M21d M42u M21u HCR/LCR

PC 39:2 PC PUFA 1 -1 0

PC 39:3 PC PUFA -1 1 1

PC 39:4 PC PUFA -1 1 T T T T 6 7 4 1 1

PC 39:5 PC PUFA -1 1 T T T T 3 18 3 19 1

PC 39:6 PC PUFA -1 1 T T T T 7 9 8 4 1

PC 39:7 PC PUFA -1 1 0

PC 39:8 PC PUFA -1 1 0

PC 40:1 PC MUFA 1 -1 T T T 4 7 4 0

PC 40:10 PC PUFA -1 1 S S 4 4 1

PC 40:2 PC PUFA 1 -1 T T T 5 13 4 1

PC 40:3 PC PUFA -1 1 T T T 8 14 20 1

PC 40:4 PC PUFA -1 1 T T T T 2 7 16 7 1

PC 40:5 PC PUFA -1 1 T T T T 16 6 2 20 1

PC 40:6 PC PUFA -1 1 T T T T 8 3 7 20 1

PC 40:7 PC PUFA -1 -1 1

PC 40:8 PC PUFA -1 -1 T T T 14 11 4 1

PC 41:6 PC PUFA -1 1 1

PC 42:1 PC MUFA -1 1 1

PC 42:10 PC PUFA -1 1 T T T T 3 10 3 4 1

PC 42:11 PC PUFA -1 -1 S 10 1

PC 42:2 PC PUFA 1 -1 T T T 3 3 20 1

PC 42:3 PC PUFA 1 -1 T T T T 6 15 20 1

PC 42:4 PC PUFA -1 -1 S S 6 20 0

PC 42:5 PC PUFA -1 1 T T T T 4 7 3 7 1

PC 42:6 PC PUFA -1 1 T T T 12 2 11 0

PC 42:7 PC PUFA -1 -1 S S 4 4 1

PC 42:8 PC PUFA 1 -1 T T T 3 3 7 1

PC 42:9 PC PUFA 1 -1 T T T T 8 9 14 16 0

PC 44:4 PC PUFA -1 -1 1
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Table C.1: Summary details for PCST results. Saturation levels (sat) are abbreviated as

SFA (saturated fatty acid), MUFA (monounsaturated fatty acid) and PUFA (polyunsat-

urated fatty acid). Columns d21 − d0 and d42 − d21 contain the sign of this difference.

Consensus graph nodes are terminal (T), or steiner (S). Columns labeled M21u and similar

contain module numbers from associated consensus graph. A 1 in the column HCR/LCR

indicates the compound was present in HCR/LCR data, 0 indicates otherwise.

Compound Name class sat d21 − d0 d42 − d21 CG42d node CG21d node CG42u node CG21u node M42d M21d M42u M21u HCR/LCR

PC 44:5 PC PUFA -1 1 1

PC 46:5 PC PUFA -1 1 0

PE 32:1 PE MUFA 1 1 T T T 3 3 20 0

PE 32:2 PE PUFA 1 1 0

PE 33:0 PE SFA 1 -1 0

PE 33:1 PE MUFA -1 1 T T T 3 3 8 0

PE 33:2 PE PUFA -1 1 S S 3 3 0

PE 34:0 PE SFA 1 -1 1

PE 34:1 PE PUFA -1 -1 T S T T 7 6 5 20 0

PE 34:2 PE PUFA -1 -1 0

PE 34:3 PE PUFA -1 1 T T T T 4 21 4 3 1

PE 35:0 PE MUFA 1 1 0

PE 35:1 PE PUFA -1 1 0

PE 35:2 PE PUFA -1 1 1

PE 35:3 PE PUFA -1 1 S S 4 4 0

PE 35:4 PE SFA -1 1 S S 3 3 0

PE 36:0 PE MUFA 1 1 1

PE 36:1 PE PUFA -1 -1 S S 8 20 0

PE 36:2 PE PUFA -1 -1 1

PE 36:3 PE PUFA 1 -1 S S 3 3 1

PE 36:4 PE PUFA -1 1 T T T 3 3 1 0

PE 36:5 PE PUFA -1 1 T T T T 3 14 3 2 1

PE 37:2 PE PUFA -1 -1 S 4 0

PE 37:3 PE PUFA -1 1 T T T 3 3 7 0

PE 37:4 PE PUFA -1 1 T T T T 3 9 3 1 0

PE 37:6 PE PUFA -1 1 S S S S 4 7 4 4 0

PE 38:1 PE MUFA -1 1 T T T 7 10 7 0

PE 38:2 PE PUFA -1 1 1

PE 38:3 PE PUFA -1 -1 0
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Table C.1: Summary details for PCST results. Saturation levels (sat) are abbreviated as

SFA (saturated fatty acid), MUFA (monounsaturated fatty acid) and PUFA (polyunsat-

urated fatty acid). Columns d21 − d0 and d42 − d21 contain the sign of this difference.

Consensus graph nodes are terminal (T), or steiner (S). Columns labeled M21u and similar

contain module numbers from associated consensus graph. A 1 in the column HCR/LCR

indicates the compound was present in HCR/LCR data, 0 indicates otherwise.

Compound Name class sat d21 − d0 d42 − d21 CG42d node CG21d node CG42u node CG21u node M42d M21d M42u M21u HCR/LCR

PE 38:4 PE PUFA -1 1 T T T T 3 5 3 1 1

PE 38:5 PE PUFA -1 1 T T T 3 3 1 0

PE 38:6 PE PUFA -1 1 T T T 3 3 1 0

PE 38:7 PE PUFA -1 1 0

PE 39:6 PE PUFA -1 1 T T T T 3 7 3 3 0

PE 40:3 PE PUFA -1 1 T T T 21 3 1 0

PE 40:4 PE PUFA -1 1 S S S S 3 4 3 1 1

PE 40:5 PE PUFA -1 1 T T T T 3 4 3 1 1

PE 40:6 PE PUFA -1 1 T T T 3 3 1 0

PE 40:7 PE PUFA 1 -1 S S 3 3 0

PE 40:8 PE PUFA 1 -1 S S 3 3 1

PE 42:8 PE PUFA -1 1 S S S 9 4 4 0

PE 42:9 PE PUFA 1 -1 0

PG 33:0 PG SFA -1 -1 1

PG 34:1 PG MUFA -1 1 0

PG 34:2 PG PUFA 1 -1 0

PG 36:0 PG SFA -1 1 T T T 8 4 20 0

PG 36:3 PG PUFA -1 1 0

PG 38:4 PG PUFA -1 -1 S 7 0

phenyl acetate untarg -1 1 1

phenylalanine untarg 1 1 1

phenylephrine untarg 1 -1 S S 9 3 0

phytanate untarg -1 1 T T T 7 15 3 0

PI 34:1 PI MUFA -1 1 T T T T 4 7 4 7 0

PI 34:2 PI PUFA 1 1 1

PI 36:1 PI MUFA 1 -1 0

PI 36:2 PI PUFA 1 -1 T S T T 3 7 3 7 1

PI 36:3 PI PUFA 1 -1 T T T T 4 7 4 7 0

PI 36:4 PI PUFA -1 1 T T T 2 3 7 1
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Table C.1: Summary details for PCST results. Saturation levels (sat) are abbreviated as

SFA (saturated fatty acid), MUFA (monounsaturated fatty acid) and PUFA (polyunsat-

urated fatty acid). Columns d21 − d0 and d42 − d21 contain the sign of this difference.

Consensus graph nodes are terminal (T), or steiner (S). Columns labeled M21u and similar

contain module numbers from associated consensus graph. A 1 in the column HCR/LCR

indicates the compound was present in HCR/LCR data, 0 indicates otherwise.

Compound Name class sat d21 − d0 d42 − d21 CG42d node CG21d node CG42u node CG21u node M42d M21d M42u M21u HCR/LCR

PI 38:3 PI PUFA -1 1 1

PI 38:4 PI PUFA -1 1 1

PI 38:5 PI PUFA -1 1 1

PI 40:5 PI PUFA -1 1 T T T 6 15 2 1

PI 40:6 PI PUFA 1 1 0

pipecolate untarg 1 1 1

piperine untarg -1 1 T T T 8 8 1 0

plasmenyl-PC 18:0 plasmenyl-PC SFA -1 1 T T T 9 14 4 1

plasmenyl-PC 20:0 plasmenyl-PC SFA 1 -1 S S 10 9 1

plasmenyl-PC 29:0 plasmenyl-PC SFA -1 1 T T T 12 8 1 0

plasmenyl-PC 34:1 plasmenyl-PC MUFA -1 -1 0

plasmenyl-PC 34:2 plasmenyl-PC PUFA -1 1 T T T 9 7 4 0

plasmenyl-PC 36:3 plasmenyl-PC PUFA -1 -1 S S 3 2 0

plasmenyl-PC 36:4 plasmenyl-PC PUFA 1 -1 0

plasmenyl-PC 38:1 plasmenyl-PC MUFA -1 -1 T T T 9 5 3 0

plasmenyl-PC 38:3 plasmenyl-PC PUFA 1 -1 T T T 6 15 1 0

plasmenyl-PC 38:5 plasmenyl-PC PUFA -1 -1 T T T 3 15 1 0

plasmenyl-PC 40:5 plasmenyl-PC PUFA 1 -1 0

plasmenyl-PC 40:6 plasmenyl-PC PUFA 1 -1 S 8 0

plasmenyl-PC 42:5 plasmenyl-PC PUFA 1 -1 S T T T 6 5 6 1 0

plasmenyl-PC 44:4 plasmenyl-PC PUFA -1 1 0

plasmenyl-PE 32:1 plasmenyl-PE MUFA -1 1 0

plasmenyl-PE 34:0 plasmenyl-PE SFA 1 -1 0

plasmenyl-PE 34:1 plasmenyl-PE MUFA -1 -1 T T T 14 20 1

plasmenyl-PE 34:2 plasmenyl-PE PUFA -1 -1 T T T 4 4 20 1

plasmenyl-PE 34:3 plasmenyl-PE PUFA -1 -1 T T T 6 6 1 0

plasmenyl-PE 36:0 plasmenyl-PE SFA -1 1 S T T T 3 16 3 4 0

plasmenyl-PE 36:1 plasmenyl-PE MUFA -1 -1 T T T 8 4 20 1

plasmenyl-PE 36:2 plasmenyl-PE PUFA -1 -1 T T T 4 14 20 0
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Table C.1: Summary details for PCST results. Saturation levels (sat) are abbreviated as

SFA (saturated fatty acid), MUFA (monounsaturated fatty acid) and PUFA (polyunsat-

urated fatty acid). Columns d21 − d0 and d42 − d21 contain the sign of this difference.

Consensus graph nodes are terminal (T), or steiner (S). Columns labeled M21u and similar

contain module numbers from associated consensus graph. A 1 in the column HCR/LCR

indicates the compound was present in HCR/LCR data, 0 indicates otherwise.

Compound Name class sat d21 − d0 d42 − d21 CG42d node CG21d node CG42u node CG21u node M42d M21d M42u M21u HCR/LCR

plasmenyl-PE 36:3 plasmenyl-PE PUFA -1 -1 T T T 4 4 20 1

plasmenyl-PE 36:4 plasmenyl-PE PUFA -1 -1 T T T 4 4 20 1

plasmenyl-PE 36:5 plasmenyl-PE PUFA -1 1 T T T 9 4 1 0

plasmenyl-PE 38:1 plasmenyl-PE MUFA -1 1 1

plasmenyl-PE 38:2 plasmenyl-PE PUFA 1 -1 1

plasmenyl-PE 38:3 plasmenyl-PE PUFA -1 1 T T T T 4 8 4 20 1

plasmenyl-PE 38:4 plasmenyl-PE PUFA -1 -1 T T T 8 4 20 1

plasmenyl-PE 38:5 plasmenyl-PE PUFA -1 -1 S T T T 4 8 4 20 1

plasmenyl-PE 38:6 plasmenyl-PE PUFA -1 -1 T T T 4 4 20 1

plasmenyl-PE 40:3 plasmenyl-PE PUFA 1 -1 S S 4 4 0

plasmenyl-PE 40:4 plasmenyl-PE PUFA -1 -1 1

plasmenyl-PE 40:5 plasmenyl-PE PUFA -1 -1 T T T 8 14 20 1

plasmenyl-PE 40:6 plasmenyl-PE PUFA -1 -1 T T T 7 4 20 1

plasmenyl-PE 42:5 plasmenyl-PE PUFA -1 -1 1

plasmenyl-PE 42:6 plasmenyl-PE PUFA 1 -1 T T T 7 5 4 0

possible peptide-262.1341-6.151 untarg -1 1 0

possible peptide-310.1151-2.804 untarg -1 1 0

possible peptide-414.2046-18.389 untarg 1 -1 0

proline untarg -1 1 S 8 1

propionylcarnitine untarg -1 1 1

pyridoxamine untarg 1 1 S S 3 3 0

raffinose untarg -1 1 0

s-allyl-l-cysteine untarg -1 1 0

sarcosine untarg 1 -1 1

serine untarg 1 1 1

serinyl-leucine untarg -1 1 S S 10 6 0

SM 21:0 SM SFA -1 -1 0

SM 21:1 SM MUFA -1 -1 T S T T 7 9 14 4 1

SM 29:1 SM MUFA -1 1 T T T 14 15 17 0
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Table C.1: Summary details for PCST results. Saturation levels (sat) are abbreviated as

SFA (saturated fatty acid), MUFA (monounsaturated fatty acid) and PUFA (polyunsat-

urated fatty acid). Columns d21 − d0 and d42 − d21 contain the sign of this difference.

Consensus graph nodes are terminal (T), or steiner (S). Columns labeled M21u and similar

contain module numbers from associated consensus graph. A 1 in the column HCR/LCR

indicates the compound was present in HCR/LCR data, 0 indicates otherwise.

Compound Name class sat d21 − d0 d42 − d21 CG42d node CG21d node CG42u node CG21u node M42d M21d M42u M21u HCR/LCR

SM 30:0 SM SFA -1 1 T T T T 14 3 4 2 0

SM 30:1 SM MUFA -1 1 T T T T 4 7 4 3 0

SM 31:1 SM MUFA -1 1 T T T T 4 7 4 7 1

SM 32:0 SM SFA -1 1 S T T T 4 6 4 20 1

SM 32:1 SM MUFA -1 1 T T T T 4 7 4 7 1

SM 32:2 SM PUFA -1 1 T T T T 4 7 4 3 1

SM 33:0 SM SFA -1 -1 S S 8 20 0

SM 33:1 SM MUFA -1 1 T T T 7 4 20 1

SM 33:2 SM PUFA -1 -1 0

SM 34:1 SM MUFA 1 1 1

SM 34:2 SM PUFA -1 -1 1

SM 35:0 SM SFA -1 1 0

SM 35:1 SM MUFA 1 -1 T S T T 3 5 3 3 1

SM 35:2 SM PUFA -1 1 T T T 7 7 1 1

SM 36:0 SM SFA -1 1 1

SM 36:1 SM MUFA -1 1 T T T T 9 7 7 1 1

SM 36:2 SM PUFA -1 -1 S S S 9 16 3 1

SM 37:0 SM SFA -1 1 0

SM 37:1 SM MUFA -1 -1 T T T 7 7 7 1

SM 37:2 SM PUFA -1 1 T T T 8 7 20 1

SM 38:0 SM SFA -1 -1 1

SM 38:1 SM MUFA 1 -1 1

SM 38:2 SM PUFA -1 -1 T T T 9 8 3 1

SM 38:4 SM PUFA 1 -1 T T T 8 7 1 0

SM 39:0 SM SFA -1 -1 0

SM 39:1 SM MUFA -1 -1 T T T T 6 7 6 3 1

SM 39:2 SM PUFA -1 -1 T T T 6 15 10 1

SM 39:4 SM PUFA -1 -1 0

SM 39:5 SM PUFA -1 1 0
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Table C.1: Summary details for PCST results. Saturation levels (sat) are abbreviated as

SFA (saturated fatty acid), MUFA (monounsaturated fatty acid) and PUFA (polyunsat-

urated fatty acid). Columns d21 − d0 and d42 − d21 contain the sign of this difference.

Consensus graph nodes are terminal (T), or steiner (S). Columns labeled M21u and similar

contain module numbers from associated consensus graph. A 1 in the column HCR/LCR

indicates the compound was present in HCR/LCR data, 0 indicates otherwise.

Compound Name class sat d21 − d0 d42 − d21 CG42d node CG21d node CG42u node CG21u node M42d M21d M42u M21u HCR/LCR

SM 40:0 SM SFA 1 -1 T T T 6 6 4 0

SM 40:1 SM MUFA -1 -1 T T T 6 6 3 1

SM 40:2 SM PUFA -1 -1 T T T T 3 3 3 2 1

SM 40:4 SM PUFA 1 1 1

SM 40:5 SM PUFA -1 1 0

SM 41:1 SM MUFA -1 -1 T T T 6 3 4 1

SM 41:2 SM PUFA -1 -1 S 6 1

SM 41:4 SM PUFA -1 -1 T T T 7 6 4 1

SM 41:5 SM PUFA 1 -1 0

SM 42:0 SM SFA 1 -1 T T T 6 6 4 0

SM 42:1 SM MUFA -1 -1 T T T 6 6 4 1

SM 42:2 SM PUFA 1 -1 1

SM 42:4 SM PUFA 1 1 T T T 6 6 4 1

SM 42:5 SM PUFA 1 1 1

SM 43:1 SM MUFA -1 -1 T T T 7 3 20 1

SM 43:2 SM PUFA -1 1 1

SM 43:4 SM PUFA -1 -1 0

SM 43:5 SM PUFA -1 1 0

SM 44:1 SM MUFA -1 1 1

SM 44:2 SM PUFA -1 -1 1

stearoylcarnitine untarg -1 -1 S 15 1

succinate untarg -1 1 1

sucrose untarg -1 1 1

TG 40:0 TG SFA -1 -1 1

TG 42:0 TG SFA -1 1 T T T 3 16 2 1

TG 42:1 TG MUFA -1 1 S T T T 16 3 2 2 1

TG 42:2 TG PUFA -1 1 S S 16 2 1

TG 44:1 TG MUFA -1 1 T T T T 2 11 16 2 1

TG 44:2 TG PUFA -1 1 T T T T 16 4 2 2 1
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Table C.1: Summary details for PCST results. Saturation levels (sat) are abbreviated as

SFA (saturated fatty acid), MUFA (monounsaturated fatty acid) and PUFA (polyunsat-

urated fatty acid). Columns d21 − d0 and d42 − d21 contain the sign of this difference.

Consensus graph nodes are terminal (T), or steiner (S). Columns labeled M21u and similar

contain module numbers from associated consensus graph. A 1 in the column HCR/LCR

indicates the compound was present in HCR/LCR data, 0 indicates otherwise.

Compound Name class sat d21 − d0 d42 − d21 CG42d node CG21d node CG42u node CG21u node M42d M21d M42u M21u HCR/LCR

TG 46:0 TG SFA -1 1 T T T T 2 3 16 2 1

TG 46:1 TG MUFA -1 1 T T T T 16 3 16 2 1

TG 46:2 TG PUFA -1 1 T T T T 16 3 16 2 1

TG 46:3 TG PUFA -1 1 T T T T 16 4 16 2 1

TG 48:0 TG SFA -1 1 T T T T 2 3 16 2 1

TG 48:1 TG MUFA -1 1 T T T T 2 3 16 2 1

TG 48:2 TG PUFA -1 1 T T T T 2 3 16 2 1

TG 48:3 TG PUFA -1 1 T T T T 2 3 16 2 1

TG 49:0 TG SFA -1 1 T T T T 2 3 16 2 1

TG 49:1 TG MUFA -1 1 T T T T 2 3 16 2 1

TG 49:2 TG PUFA -1 1 T T T T 2 3 16 2 1

TG 49:3 TG PUFA -1 1 T T T T 2 3 16 2 1

TG 50:0 TG SFA -1 1 T T T T 16 3 16 2 1

TG 50:1 TG MUFA -1 1 T T T T 16 3 2 2 1

TG 50:2 TG PUFA -1 1 T T T T 5 3 4 2 1

TG 50:3 TG PUFA -1 1 T T T T 2 3 16 2 1

TG 50:4 TG PUFA -1 1 T S T T 16 4 16 3 1

TG 50:5 TG PUFA -1 1 T S T T 2 4 16 3 1

TG 51:1 TG MUFA -1 1 T T T T 2 3 16 2 1

TG 51:2 TG PUFA -1 1 T T T T 2 3 16 2 1

TG 51:3 TG PUFA -1 1 T T T T 2 3 16 2 1

TG 51:4 TG PUFA -1 1 S S S S 2 4 16 3 1

TG 51:5 TG PUFA -1 1 1

TG 52:0 TG SFA -1 1 T T T T 16 10 2 4 1

TG 52:1 TG MUFA -1 1 T T T T 16 3 2 2 1

TG 52:2 TG PUFA -1 1 T T T T 3 3 3 2 1

TG 52:3 TG PUFA -1 1 T S T T 15 4 1 3 1

TG 52:4 TG PUFA 1 -1 T T T 4 3 3 1

TG 52:5 TG PUFA -1 1 T T T 13 5 2 1
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Table C.1: Summary details for PCST results. Saturation levels (sat) are abbreviated as

SFA (saturated fatty acid), MUFA (monounsaturated fatty acid) and PUFA (polyunsat-

urated fatty acid). Columns d21 − d0 and d42 − d21 contain the sign of this difference.

Consensus graph nodes are terminal (T), or steiner (S). Columns labeled M21u and similar

contain module numbers from associated consensus graph. A 1 in the column HCR/LCR

indicates the compound was present in HCR/LCR data, 0 indicates otherwise.

Compound Name class sat d21 − d0 d42 − d21 CG42d node CG21d node CG42u node CG21u node M42d M21d M42u M21u HCR/LCR

TG 52:6 TG PUFA 1 -1 S S 2 5 1

TG 52:7 TG PUFA 1 1 S S S 2 16 3 1

TG 53:0 TG SFA -1 1 T T T 2 16 4 1

TG 53:1 TG MUFA -1 1 T T T T 2 3 16 2 1

TG 53:2 TG PUFA -1 1 T T T T 16 3 16 2 1

TG 53:3 TG PUFA -1 1 T S T T 2 4 16 2 1

TG 53:4 TG PUFA 1 -1 T T T T 6 4 5 3 1

TG 53:5 TG PUFA 1 1 1

TG 53:6 TG PUFA -1 1 T T T 6 5 3 1

TG 53:7 TG PUFA -1 1 1

TG 54:1 TG MUFA -1 1 T T T T 2 4 2 3 1

TG 54:2 TG PUFA -1 1 T T T T 16 4 2 3 1

TG 54:3 TG PUFA 1 -1 S S 2 16 1

TG 54:4 TG PUFA 1 -1 T T T T 16 6 16 6 1

TG 54:5 TG PUFA 1 -1 T T T T 6 6 5 6 1

TG 54:6 TG PUFA 1 -1 T T T T 6 6 5 6 1

TG 54:7 TG PUFA 1 -1 T T T T 6 6 5 6 1

TG 54:8 TG PUFA 1 1 S S S 2 5 6 1

TG 54:9 TG PUFA -1 1 T T T 6 5 3 0

TG 55:0 TG SFA -1 1 1

TG 55:1 TG MUFA -1 1 T T T T 6 13 6 9 1

TG 55:2 TG PUFA -1 1 T T T T 16 10 2 20 1

TG 55:3 TG PUFA -1 1 1

TG 55:4 TG PUFA 1 -1 1

TG 55:5 TG PUFA 1 -1 0

TG 55:6 TG PUFA -1 1 T T T T 6 2 5 15 1

TG 55:7 TG PUFA 1 1 S 14 1

TG 55:8 TG PUFA -1 1 T T T T 6 2 5 1 1

TG 56:0 TG SFA 1 1 1
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Table C.1: Summary details for PCST results. Saturation levels (sat) are abbreviated as

SFA (saturated fatty acid), MUFA (monounsaturated fatty acid) and PUFA (polyunsat-

urated fatty acid). Columns d21 − d0 and d42 − d21 contain the sign of this difference.

Consensus graph nodes are terminal (T), or steiner (S). Columns labeled M21u and similar

contain module numbers from associated consensus graph. A 1 in the column HCR/LCR

indicates the compound was present in HCR/LCR data, 0 indicates otherwise.

Compound Name class sat d21 − d0 d42 − d21 CG42d node CG21d node CG42u node CG21u node M42d M21d M42u M21u HCR/LCR

TG 56:1 TG MUFA -1 1 T T T T 16 10 2 4 1

TG 56:10 TG PUFA 1 1 S S 6 5 1

TG 56:2 TG PUFA -1 1 T T T T 16 4 2 3 1

TG 56:3 TG PUFA -1 1 S S 3 3 1

TG 56:4 TG PUFA 1 1 S S 16 2 1

TG 56:5 TG PUFA 1 1 S S S 7 6 5 1

TG 56:6 TG PUFA 1 -1 S S S S 7 6 14 6 1

TG 56:7 TG PUFA 1 1 1

TG 56:8 TG PUFA 1 -1 T T T 6 5 6 1

TG 56:9 TG PUFA 1 -1 S T T T 6 6 5 6 1

TG 57:1 TG MUFA -1 1 1

TG 57:2 TG PUFA -1 1 T T T 16 12 4 1

TG 57:3 TG PUFA 1 1 1

TG 57:6 TG PUFA -1 1 T T T 20 4 15 0

TG 57:8 TG PUFA -1 1 0

TG 58:0 TG SFA -1 1 T T T 16 2 4 1

TG 58:1 TG MUFA -1 1 1

TG 58:10 TG PUFA 1 -1 T T T T 4 6 14 6 1

TG 58:11 TG PUFA 1 1 S T T T 6 7 5 6 1

TG 58:12 TG PUFA -1 1 T T T 6 5 4 0

TG 58:2 TG PUFA -1 -1 S S S S 16 4 2 3 1

TG 58:3 TG PUFA 1 -1 T T T 16 2 3 1

TG 58:4 TG PUFA 1 1 S S 3 3 1

TG 58:5 TG PUFA -1 1 0

TG 58:6 TG PUFA -1 1 1

TG 58:7 TG PUFA -1 1 T T T 7 14 6 1

TG 58:8 TG PUFA 1 1 S S 7 14 1

TG 58:9 TG PUFA 1 -1 S T T T 7 6 14 6 1

TG 60:10 TG PUFA -1 1 S S 7 14 1
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Table C.1: Summary details for PCST results. Saturation levels (sat) are abbreviated as

SFA (saturated fatty acid), MUFA (monounsaturated fatty acid) and PUFA (polyunsat-

urated fatty acid). Columns d21 − d0 and d42 − d21 contain the sign of this difference.

Consensus graph nodes are terminal (T), or steiner (S). Columns labeled M21u and similar

contain module numbers from associated consensus graph. A 1 in the column HCR/LCR

indicates the compound was present in HCR/LCR data, 0 indicates otherwise.

Compound Name class sat d21 − d0 d42 − d21 CG42d node CG21d node CG42u node CG21u node M42d M21d M42u M21u HCR/LCR

TG 60:11 TG PUFA -1 1 T T T T 7 8 14 20 1

TG 60:12 TG PUFA 1 1 1

TG 60:13 TG PUFA -1 1 S 2 1

TG 60:3 TG PUFA 1 -1 S S 16 2 1

TG 60:8 TG PUFA -1 1 T S T T 7 8 14 20 0

TG 60:9 TG PUFA -1 1 T T T 7 14 3 1

TG 62:1 TG MUFA -1 1 S 16 1

TG 62:12 TG PUFA -1 1 0

TG 62:13 TG PUFA -1 1 T T T 4 4 1 1

TG 62:14 TG PUFA 1 1 1

theobromine untarg -1 1 T T T 7 14 7 0

theophylline untarg -1 1 0

threonine untarg -1 -1 S S 7 4 1

thymine-d4(methyl-d3,6-d1) [istd] untarg -1 1 0

thyroxine untarg -1 1 S S 4 3 1

tryptophan untarg 1 1 1

tyrosine untarg -1 1 1

urate untarg 1 1 1

uridine untarg -1 -1 1

ursodiol untarg -1 1 T T T 4 3 3 1

valine untarg 1 1 1

xanthine untarg -1 1 0

xylose untarg 1 -1 0
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