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Professor Roćıo Titiunik



Gonzalo Vazquez-Bare

gvazquez@umich.edu

ORCID iD: 0000-0002-3175-592X

c© Gonzalo Vazquez-Bare 2018



ACKNOWLEDGEMENTS

I am deeply grateful to Matias Cattaneo, who, since the first years of my PhD,

has been an outstanding advisor, teacher, boss, mentor and friend. This dissertation

would not have been possible without his continued support and encouragement,

endless patience and invaluable advice.

I am indebted to Lutz Kilian, Mel Stephens and Roćıo Titiunik, who sat through
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ABSTRACT

This dissertation studies identification, estimation, inference and experimental

design for analyzing causal spillover effects in randomized experiments. Chapter II

provides a nonparametric framework based on potential outcomes to define spillover

effects in a setting in which units are clustered and their potential outcomes can

depend on the treatment assignments of all units within a group. Using this frame-

work, I provide conditions for identification of average direct and spillover effects

when the treatment is randomly assigned. I then study identification under three

estimation strategies that are commonly employed in empirical work: a regression of

an outcome on a treatment indicator, which calculates a difference in means between

treated and controls, a regression that controls for the proportion of treated peers,

and a regression exploiting variation in treatment probabilities in two-stage designs.

Chapter III analyzes estimation and inference for spillover effects. I start by

illustrating the results from Chapter II using two empirical applications. I then study

nonparametric estimation and inference for spillover effects in a setting in which both

the number of groups and the group size are allowed to grow. This setting allows me

to understand the effect of the number of parameters on the asymptotic properties of

the proposed nonparametric estimators. Finally, I discuss the implications of these

findings for the design of experiments.

Chapter IV discusses some key issues related to the empirical implementation

of the results from the previous chapters: the inclusion of covariates, identification

of spillover effects in experiments with imperfect compliance and optimal design of

experiments.

viii



CHAPTER I

Introduction

Spillover effects, which occur when an agent’s actions and behaviors indirectly affect

other agents’ outcomes through peer effects, social interactions, externalities or other

types of interference, are pervasive in economics and social sciences. The widespread

importance of this phenomenon across fields and disciplines has led to a rich literature

focusing on social interactions (Manski, 1993; Brock and Durlauf, 2001; Graham,

2008; Manski, 2013b), peer effects (Bramoullé, Djebbari, and Fortin, 2009; Epple

and Romano, 2011; Sacerdote, 2014), networks (Graham, 2015; de Paula, 2016),

games with multiple equilibria (de Paula, 2013; Kline and Tamer, forthcoming),

design of experiments (Duflo and Saez, 2003; Hirano and Hahn, 2010; Baird, Bohren,

McIntosh, and Özler, forthcoming), and causal inference (Tchetgen Tchetgen and

VanderWeele, 2012; Halloran and Hudgens, 2016).

A thorough account of spillover effects is crucial to assess the causal impact of

policies and programs (Abadie and Cattaneo, forthcoming; Athey and Imbens, 2017).

However, the literature is still evolving in this area, and most of the available methods

either assume no spillovers or allow for them in restrictive ways, without a precise

definition of the parameters of interest or the conditions required to recover them.

This dissertation studies identification and estimation of direct and spillover ef-

fects of a randomly assigned treatment, and offers three main contributions. First,

I precisely define causal spillover effects and provide conditions to identify them.

Chapter II sets up a causal potential-outcomes based framework that nests several

models commonly used to analyze spillovers. Under the assumption that interfer-

ence can occur within (but not between) the groups in which units are clustered,

direct and spillover effects are defined based on these potential outcomes. I discuss

an interpretable restriction, exchangeability, according to which average potential

outcomes do not change when swapping the identities of the treated neighbors. This
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restriction justifies the commonly employed assumption that outcomes depend only

on the number (or proportion) of treated neighbors, and discuss to what extent this

property reduces the number of spillover effects of interest. Identification of the pa-

rameters of interest when the treatment is randomly assigned is analyzed in Section

2.4. This framework highlights that direct and spillover effects can be identified re-

gardless of the treatment assignment mechanism, as long as the assignments occur

with non-zero probability. I then characterize the parameters that are recovered by

three regression-based specifications that are widely used in empirical work: a regres-

sion of the outcome on a treatment indicator (i.e. a difference in means), a regression

on a treatment indicator and the proportion of treated neighbors (a reduced-form

linear-in-means model) and a regression exploiting variation in treatment probability

across different groups.

Chapter III analyzes nonparametric estimation and inference for average spillover

effects. I provide general conditions that ensure uniform consistency and asymptotic

normality of the spillover effects estimators with special focus on the role of group

size on estimation and inference. This approach formalizes the requirement of “many

small groups” that is commonly invoked in the literature, and specifies the role that

the number of parameters and the assignment mechanism have on the asymptotic

properties of nonparametric estimators. More precisely, consistency and asymptotic

normality require two main conditions that are formalized later on: (i) the number

of parameters should not be “too large” with respect to the sample size, and (ii)

the probability of each treatment assignment should not be “too small”. These two

requirements are directly linked to modeling assumptions on the potential outcomes

and treatment assignment mechanisms. As an alternative approach to inference

based on the normal approximation, the wild bootstrap is shown to be consistent,

and simulation evidence suggests that it can yield better performance compared to

the Gaussian approximation for moderately large groups.

I then show how these results can be used to guide the design of experiments

to estimate spillover effects. Specifically, the rate of convergence of the spillover

effects estimators and the rate of convergence of the distributional approximation are

shown to depend on the treatment assignment mechanism, which gives a principled

criterion to rank different procedures to assign the treatment. I demonstrate that a

two-stage design that fixes the number of treated units in each group can improve

the performance of the estimators in terms of inference, compared to simple random
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assignment, when groups are moderately large. Section 3.4 presents a simulation

setting that studies the performance of spillover effects estimators under simple and

two-stage random assignment.

Finally, Chapter IV discusses several issues related to the empirical implementa-

tion of the findings from the previous chapters: the inclusion of covariates, identifi-

cation of spillover effects under imperfect compliance and optimal design of experi-

ments. The discussion in this chapter highlights some important challenges related to

these issues and points to some directions for future work in the analysis of spillover

effects.
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CHAPTER II

A Framework for Analyzing Spillover Effects in

Randomized Experiments

2.1 Introduction

Situations in which individuals’ actions and behaviors indirectly affect other

agents, a phenomenon usually known as spillovers, externalities or interference,

abound in economics and other social sciences. Spillovers can materialize through

different channels such as general equilibrium and displacement effects, agglomera-

tion and economies of scale, diffusion of information and knowledge through social

interactions, and contagion effects, among others. A large empirical and theoretical

literature has analyzed the existence of spillover effects in different areas such as edu-

cation (Epple and Romano, 2011; Sacerdote, 2011; Carrell and Hoekstra, 2010), labor

(Topa, 2001; Duflo and Saez, 2003; Crépon, Duflo, Gurgand, Rathelot, and Zamora,

2013), firm agglomeration, cluster policies and R&D (Bloom, Schankerman, and

Van Reenen, 2013; Greenstone, Hornbeck, and Moretti, 2010; Figal Garone, Maffioli,

de Negri, Rodriguez, and Vazquez-Bare, 2015), health (Miguel and Kremer, 2004;

Baird, Hicks, Kremer, and Miguel, 2016), development (Banerjee, Chandrasekhar,

Duflo, and Jackson, 2013), crime and law enforcement (Di Tella and Schargrodsky,

2004; Yang, 2008; Rincke and Traxler, 2011).

Despite the longstanding and widespread interest in this phenomenon across

different disciplines, identification of spillover effects of programs and policies has

proven a challenging problem. In economics, most existing identification results rely

on strong parametric assumptions such as the linear-in-means model (Moffit, 2001;

Manski, 1993; Bramoullé, Djebbari, and Fortin, 2009). Moreover, the problem is usu-

ally analyzed from a linear regression perspective without a clear notion of causality,
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so the parameters considered are best linear predictors whose causal interpretation

remains unclear.

On the other hand, researchers have conducted and analyzed experiments in

which treatment is assigned in such a way that some units are subject to spillovers

while some units are not. A popular design in this setting is one in which groups

of individuals (such as classrooms, households or villages) are randomly divided in

categories, and then the treatment is assigned in each category with a different

intensity. Different versions of this experimental design have been implemented, for

example, by Duflo and Saez (2003); Miguel and Kremer (2004); Ichino and Schündeln

(2012); Sinclair, McConnell, and Green (2012) Crépon, Duflo, Gurgand, Rathelot,

and Zamora (2013), Beuermann, Cristia, Cueto, Malamud, and Cruz-Aguayo (2015)

and Giné and Mansuri (forthcoming), among others, and more formally analyzed,

mostly in terms of estimation and inference, by Hudgens and Halloran (2008); Hirano

and Hahn (2010) and Baird, Bohren, McIntosh, and Özler (forthcoming).

A common feature in the existing literature analyzing spillover effects is that the

parameters of interest are defined by the estimation strategy or the experimental

design. In both cases, however, the lack of a general framework leaves the causal in-

terpretation of the parameters unclear. The goal of this chapter is to provide a causal

nonparametric framework based on potential outcomes to define spillover effects and

establish conditions for identification when a treatment is randomly assigned.

In Section 2.2, I describe a setup in which individuals are grouped and their

potential outcomes can depend on the treatment assignments of all the units within

the group. In this setting, different treatment assignment configurations give a rich

set of policy parameters of interest measuring how individual outcomes vary with

own and peers’ treatment assignments. I analyze an assumption, exchangeability,

according to which average potential outcomes are invariant to permutations of peers’

treatment assignments, and show how this restriction can drastically reduce the

dimensionality of the problem, making it more tractable in practice. Section 2.3

offers a comparison between this setup and some of the ones used in previous studies.

Section 2.4 analyzes identification of direct and average spillover effects. I show

that when the treatment is randomly assigned, all the parameters of interest can

be identified using variation on own and peers’ treatment assignments, whenever

the treatment assignment mechanism gives non-zero probability to each possible

treatment configuration. Based on these results, I characterize the estimands from
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some of the most common empirical approaches when analyzing spillover effects in

Section 2.5. Section 2.6 discusses some extensions to the setup in this chapter, and

Section 2.7 concludes.

2.2 Setup, notation and parameters of interest

As a motivating example, consider the study by Barrera-Osorio, Bertrand, Lin-

den, and Perez-Calle (2011). The authors conduct a pilot experiment designed to

evaluate the effect of the program “Subsidios Condicionados a la Asistencia Escolar”

in Bogotá, Colombia. The program aimed at increasing student retention and reduc-

ing drop-out and child labor. Eligible registrants were randomly assigned between

the control status and treatment. In addition to administrative and enrollment data,

the authors collected baseline and follow-up data from students in the largest 68 of

the 251 schools included in the study. This survey data contains attendance data

and was conducted in the household.

As shown in Table 2.1, 1,336 households have more than one registered children,

and since the treatment was assigned at the child level, this gives variation in the

number of treated children per household, as can be seen in Table 2.2. Given the

distribution of treated siblings within households, there are several reasons to expect

spillover effects in this study. On the one hand, the cash transfer may alleviate

a financial constraint that was preventing the parents from sending their children

to school on a regular basis. The program could also help raise awareness on the

importance of school attendance, encouraging parents to worry more about sending

their children to school. In both these cases, untreated children may indirectly benefit

from the program when they have a treated sibling. On the other hand, the program

could create incentives for the parents to reallocate resources towards their treated

children and away from their untreated siblings, decreasing school attendance for

the latter. In all cases, ignoring spillover effects can give an incomplete assessment

of the costs and benefits of this policy. Moreover, these alternative scenarios have

drastically different implications on how to assign the program when scaling it up.

In the first two situations, treating one child per household can be a cost-effective

way to assign the treatment, whereas in the second case, treating all the children in

a household can be more beneficial.

With these ideas in mind, the goal of this chapter is to analyze conditions under
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Table 2.1: Distribution of household size

Frequency
1 3519
2 1171
3 150
4 14
5 1
Total 4855

Table 2.2: Treated per household

Frequency
0 1459
1 2815
2 528
3 50
4 3
Total 4855

which spillover effects can be precisely defined and identified.

In light of the motivating example, consider a sample consisting of independent

and identically distributed groups indexed by g = 1, . . . , G, each with ng + 1 units,

so that each unit in group g has ng neighbors or peers. Some examples could be

students in classrooms, persons in villages, family members in households or firms in

industrial clusters. I assume group membership is observable. Units in each group

are assigned a binary treatment, and a unit’s potential outcomes, defined in the next

paragraph, can depend on the assignment of all other units in the same group. I

refer to this phenomenon as interference, and to the effect of a neighbor’s treatment

assignment on unit i’s potential outcome as spillover effect. Interference can occur

between units in the same group, but not between units in different groups, an

assumption sometimes known as partial interference (Sobel, 2006).

Individual treatment assignment of unit i in group g is denoted by Dig, tak-

ing values d ∈ {0, 1}. For each unit, the vector D(i)g = (D1ig, D2ig, . . . , Dngig) will

collect the treatment assignments of that unit’s neighbors, so that Djig is the treat-

ment indicator corresponding to unit i’s j-th neighbor. This vector takes values

dg = (d1, d2, . . . , dng) ∈ Dg ⊆ {0, 1}ng . As will be discussed in more detail later, this

notation requires assigning identities to neighbors, although this requirement can

be dropped under additional assumptions. For a given realization of the treatment

assignment (d,dg) = (d, d1, d2, . . . , dng), the potential outcome for unit i in group

g is denoted by Yig(d,dg). Throughout the dissertation, I will assume that all the

required moments of the potential outcome are bounded. The observed outcome for

unit i in group g is the value of the potential outcome under the observed treatment

realization, given by Yig = Yig(Dig,D(i)g). Note that in presence of interference, each

unit has 2ng+1 potential outcomes, and this number reduces to the usual case with

two potential outcomes when interference is ruled out. Hence, this setup relaxes
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the Stable Unit Treatment Value Assumption (SUTVA), according to which the po-

tential outcomes depend only on own treatment status, Yig(d,dg) = Yig(d). I will

assume perfect compliance, which means that all units receive the treatment they

are assigned to. I will discuss the possibility of imperfect compliance in Chapter IV.

In what follows, 0g and 1g will denote ng-dimensional vectors of zeros and ones, re-

spectively. The observed potential outcome can be written without loss of generality

as:

Yig =
∑

d∈{0,1}

∑
dg∈Dg

Yig(d,dg)1(Dig = d,D(i)g = dg)

To fix ideas, consider a household containing three children, ng + 1 = 3. In this

household, each kid has two siblings, with assignments d1 and d2, so dg = (d1, d2) and

the potential outcome is Yig(d, d1, d2). The number of possible treatment assignments

(d, d1, d2) is 2ng+1 = 8, giving a total of
(

2ng+1

2

)
= 28 possible treatment effects that

can be defined at the individual level. For example, Yig(1, 0, 0) − Yig(0, 0, 0) is the

effect of the treatment when both of kid i’s siblings are untreated, Yig(0, 1, 0) −
Yig(0, 0, 0) is the spillover effect on unit i of treating kid i’s first sibling, and so on.

The average effect of assignment (d, d1, d2) compared to (d̃, d̃1, d̃2) is thus given by

E[Yig(d, d1, d2)] − E[Yig(d̃, d̃1, d̃2)]. For simplicity, throughout the dissertation I will

assume that outcomes of units within a group have the same distribution of potential

outcomes, so that in particular E[Yig(d,dg)] does not depend on i or g.1

A salient feature of this model is that each unit has a specific identity in the sense

that, for example, with a group of size 3, E[Yig(d, 1, 0)−Yi(d, 0, 0)] 6= E[Yig(d, 0, 1)−
Yig(d, 0, 0)] in general, that is, the effect on unit i of giving treatment to neighbor

1 may differ in general from the effect of giving treatment to neighbor 2. Hence,

allowing for units to have specific identities requires a natural labeling or ordering

between units in each group, which can be given for example by (i) distance according

to some specified metric or (ii) “type” of the relationship. A natural example of (i)

would be geographical distance that orders neighbors from closest to farthest, for

instance, if units are schools in counties and neighbor 1 is the closest school, neighbor

2 is second closest school, etc. Another example would be the case where one can

rank the relationships according to its strength, e.g. closest friend, second-closest

1This assumption can be relaxed by allowing the averages to depend on i, and switching focus
to the within-group average (ng + 1)−1

∑ng+1
i=1 E[Yig(d,dg)].
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friend, etc. An example of (ii) would be kinship: in this case, neighbors would be

mother, father, youngest sibling, oldest sibling, etc. An advantage of this approach

is that it allows the researcher to estimate the within-group network structure, that

is, to identify the subset of units affecting each individual in a group (as long as

the assumption of no interference between groups holds). This issue is analyzed by

Manresa (2016) in linear panel data models.

Allowing for different neighbor identities leaves the structure of within-group

spillovers completely unrestricted. This level of generality, however, may easily in-

troduce a dimensionality problem. The number of potential outcomes increases ex-

ponentially with group size, and it can quickly become larger than the number of

observations. More precisely, with equally-sized groups the number of observations

is (ng + 1)G, whereas the number of potential outcomes is 2ng+1, so there are at

least as many potential outcomes as observations whenever 2ng+1 ≥ (ng + 1)G. As

a simple illustration, with 200 groups, (G = 200), the number of potential outcomes

exceeds the total sample size as soon as ng + 1 ≥ 12. Even when the condition

(ng + 1)G > 2ng+1 holds, the number of potential outcomes may be too high for

estimation results to be reliable. For example, with G = 200 and ng + 1 = 10 the

model has 2000 observations and 1024 potential outcomes.

One way to reduce this dimensionality problem is to impose an “anonymity” as-

sumption under which the spillover effects do not depend on the specific identity of

each treated neighbor. Intuitively, this condition states that, given the number of

treated neighbors for a specific unit, the potential outcome does not change when

swapping the treatment assignment between neighbors, so that neighbors are ex-

changeable. In this case, the number of possible potential outcome values in each

group drops from from 2ng+1 to 2(ng + 1). To formalize this idea, I assume the

following condition.

Assumption II.1 (Exchangeability) Let dg, d̃g ∈ Dg such that 1′gdg = 1′gd̃g.

Then, for each d = 0, 1,

E[Yig(d,dg)] = E[Yig(d, d̃g)]

Assumption II.1 states that the average potential outcome is invariant to permuta-

tions of the neighbor’s assignment vector dg. Several studies have considered stronger

versions of this assumption (see e.g. Hudgens and Halloran, 2008; Manski, 2013b;
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Leung, 2017). The main difference between this assumption and similar restrictions

used in the literature is that Assumption II.1 only imposes exchangeability on the

first moment of the potential outcome, and not on the potential outcome function

itself. On the other hand, the result in Lemma II.1 below is sometimes stated as

an assumption (see e.g. Baird, Bohren, McIntosh, and Özler, forthcoming; Ferracci,

Jolivet, and van den Berg, 2014) without explicitly stating the restrictions on the po-

tential outcomes that this condition requires. The condition that potential outcomes

depend only on the number (or proportion) of treated neighbors is a key assumption

in linear-in-means models (Manski, 1993; Moffit, 2001; Bramoullé, Djebbari, and

Fortin, 2009), as discussed later.

Exchangeability implies the following restriction on the potential outcome.

Lemma II.1 (Potential outcome under exchangeability) For any dg ∈ Dg,
let s := 1′gdg =

∑ng

j=1 dj. Under Assumption II.1, for d = 0, 1, there is a function

µ(d, ·) : {0, 1, . . . , ng} → R such that E[Yig(d,dg)] = µ(d, s).

Lemma II.1 states that, for each unit i in group g, the average potential outcome

only depends on the neighbors’ assignment dg through s :=
∑ng

j=1 dj. In this case,

s = 0 indicates that unit i in group g has no treated neighbors, whereas s = ng

corresponds to the case where all neighbors are treated, and so on. For any pair

of vectors dg and d̃g such that 1′gdg = 1′gd̃g, exchangeability restricts the average

spillover effect to zero, that is,

E[Yig(d,dg)]− E[Yig(d, d̃g)] = 0

This restriction is what reduces the number of parameters in the model.

The plausibility of the exchangeability assumption needs to be considered on

a case-by-case basis. Consider, for example, a program that assigns vaccines to

students in classrooms to prevent some contagious disease. It is possible that this

program prevents the unvaccinated children from getting sick through herd immunity

as long as the number of treated children is large enough. In this case, it may be

reasonable to assume that what matters is not which students receive the vaccine,

but how many of them, since all students share a common closed space. In other

cases, the exchangeability assumption may be less plausible. For example, Banerjee,

Chandrasekhar, Duflo, and Jackson (2013) study the diffusion of information through

social interactions in Indian villages, and show how adoption of a new technology
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(microfinance loans) in a village depends on the degree of centrality of the individuals

who are first informed about it. In such a case, it is clear than the effect of treating a

neighbor will vary depending on whether the neighbor is a “leader” or a “follower”.

The plausibility of the exchangeability assumption also depends on the definition

of groups, since social interactions are often endogenous results of individual deci-

sions; in other words, being members of the same group does not imply that two

individuals will interact. By changing the definition of group from, say, classroom to

group of friends, exchangeability may be more likely to hold. There is a growing lit-

erature studying endogenous networks; see for example Christakis, Fowler, Imbens,

and Kalyanaraman (2010), Goldsmith-Pinkham and Imbens (2013), Graham (2015),

Chandrasekhar (2016), de Paula (2016) and Graham (2017). I will not discuss these

issues here, and I assume that groups are known and their size and composition are

unaffected by the treatment.

The exchangeability assumption will be maintained throughout the rest of the

chapter to conserve space, leaving different alternatives to this assumption for Section

2.6.1. I will define two sets of parameters of interest. First, the average direct effect

of the treatment given s treated neighbors is defined as:

τs = µ(1, s)− µ(0, s) (2.1)

so each τs represents the average effect of giving treatment to a unit, holding the

number of treated neighbors fixed at s. For a group of size ng + 1, there are ng + 1

of these parameters, one for each possible value of s. Second, the average spillover

effect of s treated siblings given own treatment status d is:

θs(d) = µ(d, s)− µ(d, 0) (2.2)

so θs(d) captures the average effect of giving treatment to s neighbors, compared to

having no treated neighbors, for a unit under treatment status d. These two sets of

parameters do not exhaust all the possible comparisons between potential outcomes,

but any other effect of interest can be reconstructed as a linear combination of τs

and θs(d). For instance, the marginal effect of an additional treated neighbor can be

constructed as θs+1(d)− θs(d). I provide conditions to achieve identification of these

treatment effects when the treatment is randomly assigned in Section 2.4.
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2.3 Comparison with existing literature

For a direct comparison between the literature and my setup, I will focus on the

case in which the covariate of interest is a binary treatment Dig. I will follow the

notation introduced above.

2.3.1 Econometric models, LIM, response functions

The linear-in-means (LIM) model is arguably the most widely used tool to analyze

peer effects in most areas of economics. In its standard version, a LIM model is given

by the equation:

Yig = α + βDig + γD̄(i)
g + δȲ (i)

g + εig (2.3)

where D̄
(i)
g is the leave-one-out sample average of D (in this case, the proportion

of ones) excluding Dig, and similarly for Ȳ
(i)
g . In this equation, β is the direct

effect of the treatment, γ is the exogenous effect and δ is the endogenous effect.

A “large group” version of this equation replaces D̄
(i)
g and Ȳ

(i)
g with their within-

group population averages Eg[D] and Eg[Y ] (see e.g. Manski, 1993). A LIM model

is often interpreted as the Nash equilibrium of a game in which players maximize a

quadratic utility function (Blume, Brock, Durlauf, and Jayaraman, 2015; Kline and

Tamer, forthcoming):

max
Yig

U
(
Yig, Ȳ

(i)
g

)
= ξigYig −

(1− δ)Y 2
ig

2
− δ

2
(Yig − Ȳ (i)

g )2

In this equation, the first two terms represent a private component of utility, with

marginal private benefit equal to ξig and a convex cost, and the last term captures

a “social pressure” component (Blume, Brock, Durlauf, and Jayaraman, 2015). The

presence of this last term implies that an individual gets higher utility by choosing an

action Yig that is close the the average action in her group. The first-order condition

of this maximization problem yields Equation 2.3 after setting ξig = α + βDig +

γD̄
(i)
g + εig.

Manski (1993) pointed out two identification problems associated with model

2.3. First, the model includes endogenous variables, namely, the outcomes of other

units, as regressors (the reflection problem). Second, the presence of a group-level

fixed effect can generate a correlation between the error term and the regressors (the
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problem of correlated effects). Several approaches have been put forward to ensure

identification of γ and δ, such as exploiting the variation generated by partially-

overlapping groups (Bramoullé, Djebbari, and Fortin, 2009; De Giorgi, Pellizzari, and

Redaelli, 2010), using variation in group sizes (Lee, 2007; Davezies, D’Haultfoeuille,

and Fougère, 2009) or combining the availability of an exogenous instrument with

the panel-like structure of the data (Graham and Hahn, 2005). However, these

methods only work in specific contexts and can be very demanding in terms of

data requirements. A more straightforward approach taken by the literature is to

give up separate identification of γ and δ, and use the fact that under appropriate

restrictions on the model parameters, Equation 2.3 can be solved to obtain a reduced-

form equation (corresponding to a Nash equilibrium):

Yig = λ+ µDig + θD̄(i)
g + uig (2.4)

where the coefficients (λ, µ, θ) are (nonlinear) functions of the structural parameters

(α, β, γ, δ). In this case, θ captures the composite exogenous and endogenous peer

effect. Although Equation 2.4 does not allow separate identification of the exogenous

and endogenous effects, Manski (2013a,b) has argued that the reduced form may

actually be the object of interest from a policy perspective, since a policy intervention

can affect exogenous variables but not outcomes directly.

While Equation 2.4 circumvents the endogeneity generated by the presence of

Ȳ
(i)
g , its parameters remain unidentified when (Dig, D̄

(i)
g ) are correlated with uig.

Such correlation can arise, for example, when units in the same group are subject

to common shocks. If these common shocks are correlated with the regressors, the

reduced-form parameters are not identified. For instance, suppose Dig indicates

whether student i in classroom g has ever failed a grade, and D̄
(i)
g is the proportion

of students excluding i that have failed a grade (repeaters). If classrooms with

a higher proportion of repeaters are assigned better teachers, then teacher quality

is a group-level shock that is correlated with the regressors, and it is impossible

to disentangle the effect of having more repeaters from the effect of having better

teachers.

Again, the literature has offered several alternatives to deal with this issue. A

credible approach has been to rely on random assignment to eliminate the correla-

tion between the regressors and the error term. There are two main ways in which
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randomization is conducted in the peer effects literature. The first one is random as-

signment of group membership. For instance, Sacerdote (2001), Zimmerman (2003)

and Stinebrickner and Stinebrickner (2006) exploit random (or random-like) assign-

ment of college roommates, while Lyle (2007) and Carrell, Fullerton, and West (2009)

study the case of random assignment into peer groups in West Point and the Air

Force Academy, respectively. Graham (2008) takes advantage of the random assign-

ment of students to small and large classrooms in Project STAR to identify peer

effects through variance contrasts. However, random assignment of groups breaks

apart when individuals refuse to interact with the peers they were assigned to (Car-

rell, Sacerdote, and West, 2013). The second method is direct random assignment

of the treatment. Moffit (2001) argued in favor of partial-population experiments, in

which the proportion of treated units is randomized in each group. Some examples

exploiting random assignment of treatment in linear-in-means models are Lalive and

Cattaneo (2009), Bobonis and Finan (2009) and Dieye, Djebbari, and Barrera-Osorio

(2014).

Even when randomization is possible, identification of the parameters still relies

strongly on the linearity imposed on Equations 2.3 and 2.4, and the question remains

of whether (i) the linear model is an appropriate representation of the phenomenon

under study and (ii) it is possible to achieve identification without imposing a lin-

ear structure. Attempts to relax the linearity assumption have been motivated by

both theoretical and empirical considerations. On the one hand, the linear model is

generally incorrect when outcomes are binary or discrete. This observation sparked

a large literature on binary-choice models with social interactions (see e.g. Brock

and Durlauf, 2001). Although this literature removes linearity, it usually does so by

replacing it by alternative (and possibly equally strong) parametric or distributional

assumptions. On the other hand, the linear model has been criticized on empirical

grounds for the unrealistic restrictions that it imposes on the structure of peer effects

(Hoxby and Weingarth, 2005; Carrell, Fullerton, and West, 2009; Sacerdote, 2011,

2014).

On the opposite end of the spectrum, Manski (2013b) and Lazzati (2015) study

nonparametric partial identification of the response function, that is, the reduced-

form relationship between outcomes and treatment assignments, in presence of social

interactions. These papers characterize identification regions for the distribution

of the potential outcomes under different restrictions on the structural model, the
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response functions and the structure of social interactions.

In this dissertation, I focus on identification and estimation of (reduced-form)

response functions under random assignment of the treatment. By considering the

“many small groups” case with an exogenous treatment, I can achieve point iden-

tification in a setting that has wide empirical applicability. On the other hand,

randomization allows me to bypass the endogeneity issues that plague observational

studies and focus on the structure of the response function, with emphasis on the

restrictions that justify the different models that the literature has used in prac-

tice and their causal interpretation. Specifically, after defining a potential outcome

Yig(d,dg), I show how a general, nonparametric potential-outcome model can become

a (reduced-form) LIM model under three conditions, namely (i) exchangeability, (ii)

equal spillover effects under treatment and control status, and (iii) linear spillover

effects. I also analyze the parameters that can be recovered by a misspecified LIM

model.

While Manski (2013a), Manski (2013b) and Angrist (2014) have questioned the

relevance of such models from a causal perspective, it is interesting to ask what type

of structural model can justify the response functions that I study in this dissertation.

To simplify the discussion, consider a setting with groups of size 2, that is, each unit

has one neighbor. Suppose the structural potential outcomes yi are generated by the

following system:

y1 = f(d1, d2, y2, ε1)

y2 = f(d2, d1, y1, ε2)

This implies that

y1 = f(d1, d2, f(d2, d1, y1, ε2), ε1)

y2 = f(d2, d1, f(d1, d2, y2, ε1), ε2)

Depending on the form of f(·), the above system may have one, zero or multiple

equilibria. Suppose that f(·) is such that the system has a unique equilibrium.

Then, the reduced form potential outcome for unit i in group g is given by:

Yig(di, dj) = ϕ(di, dj, εi, εj)
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Integrating over the joint distribution of the error terms,

E[Yig(di, dj)] = φ(di, dj)

for some function ϕ(·), where the shape of this function will depend on the structural

function f(·). Manski (2013b) provides an extensive discussion on the relationship

between these functions in a general nonparametric setting. Now, because di and dj

are binary, we have that, without loss of generality,

ϕ(di, dj) = ϕ00(1− di)(1− dj) + ϕ10di(1− dj) + ϕ01(1− di)dj + ϕ11didj

= ϕ00 + (ϕ10 − ϕ00)di + (ϕ01 − ϕ00)(1− di)dj + (ϕ11 − ϕ10)didj

where ϕdt = ϕ(d, t), so the average (reduced-form) potential outcome is a function

of the treatment indicators and interactions. This shows that in this case,

τs = ϕ1,s − ϕ0,s, θ1(d) = ϕd1 − ϕd0.

Importantly, the nonparametric nature of the reduced form does not rely on para-

metric assumptions on the structural equation. Since the treatment indicators are

binary, the reduced form can always be written in a fully saturated form, which does

not require any assumptions on the structural equations, besides the restrictions that

guarantee a unique equilibrium.

As an illustration, consider the following structural function with constant coef-

ficients (so the treatment and spillover effects are homogeneous):

yi = f(di, yj, εi) = αi + βdi + θyj + δdiyj

where αi = α(εi). Then,

yi = αi + θ(αj + θyi) if di = 0, dj = 0

yi = αi + β + (θ + δ)(αj + θyi) if di = 1, dj = 0

yi = αi + θ(αj + β + (θ + δ)yi) if di = 0, dj = 1

yi = αi + β + (θ + δ)(αj + β + (θ + δ)yi) if di = 1, dj = 1
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which implies the reduced form:

Yig(0, 0) =
αi + θαj
1− θ2

Yig(1, 0) =
αi + (θ + δ)αj + β

1− θ(θ + δ)

Yig(0, 1) =
αi + θαj + βθ

1− θ(θ + δ)

Yig(1, 1) =
αi + (θ + δ)αj + β(1 + θ + δ)

1− (θ + δ)2

as long as θ2, (θ + δ)θ and (θ + δ)2 are different from 1. Then, the reduced-form

causal effects are nonlinear functions of the structural parameters. For example,

τ0 =
αθδ + β(1 + θ)

(1 + θ)[1− θ(θ + δ)]

where α = E[αi].

2.3.2 Analysis of experiments with interference

By “analysis of experiments with interference” I refer to a body of research,

developed primarily in statistics and epidemiology, that studies causal inference in

experiments when the potential outcome of a unit can depend on the treatment

assignments of other units (i.e., a failure of the SUTVA). Rubin (1990) and later

Halloran and Struchiner (1991, 1995) extended the potential-outcomes causal frame-

work by letting each unit’s potential outcome to depend on the vector of treatment

assignments in a sample. In this setting, the literature has mostly focused on four

estimands. Given a sample with units i = 1, . . . ,M , the direct effect is the difference

in potential outcomes for unit i under treatment and control, given a vector of as-

signments for the remaining M − 1 units. The indirect effect is the difference in the

outcomes of unit i, given own treatment assignment, for two possible assignments

of the remaining M − 1 units. The total effect is the sum of the direct and indirect

effects. Finally, the overall effect is the difference between the potential outcomes of

unit i under two alternative vector of treatment assignments. The corresponding av-

erage effects are defined by simply averaging these estimands over the whole sample,

as described below. As it is common in analysis of experiments (see e.g. Imbens and
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Rubin, 2015), potential outcomes are seen as fixed, and all the randomness comes

through the treatment assignment mechanism.

The main complication that arises in a setting with interference is that the number

of potential outcomes for each unit can become very large, taking up to 2M values.

Sobel (2006) introduced the assumption of partial interference, under which units in

a sample are partitioned into groups, and interference can only occur between units

in the same group. This assumption greatly simplifies the problem and seems to

have been adopted by a vast majority of studies in this literature.

Given the focus on finite populations with non-random outcomes, identification

issues are largely absent from this literature, and interest is placed instead on find-

ing unbiased estimators for the estimands of interest, estimating their variance and

performing inference. Hudgens and Halloran (2008) discuss unbiased estimation and

variance calculations under partial interference under two-stage randomization de-

signs. They focus on finite-population versions of the estimands described above, in

which individual potential outcomes are averaged over the distribution of the vec-

tor of neighbors’ assignments. More precisely, given a probability distribution of

treatment assignment parameterized by ψ, the individual average potential outcome

under assignment d is defined as:

Ȳig(d, ψ) =
∑

dg∈Dg

Yig(d,dg)Pψ[D(i)g = dg|Dig = d]

Based on this magnitude, the group average potential outcome and the (finite) pop-

ulation average potential outcome are given by:

Ȳg(d, ψ) =
1

ng + 1

ng+1∑
i=1

Ȳig(d, ψ), Ȳ (d, ψ) =
1

G

G∑
g=1

(
1

ng + 1

ng+1∑
i=1

Ȳig(d, ψ)

)

Then, the population average direct effect is given by Ȳ (1, ψ) − Ȳ (0, ψ); given two

parameterizations of the treatment assignment distribution, ψ and φ, the popula-

tion average indirect effect is Ȳ (0, ψ) − Ȳ (0, φ); the population average total effect

is Ȳ (1, ψ) − Ȳ (0, φ) (which is the sum of the direct and indirect effects). Hud-

gens and Halloran (2008) propose unbiased estimators for the above estimands, and

provide variance estimators under exchangeability. Tchetgen Tchetgen and Van-

derWeele (2012) and Rigdon and Hudgens (2015) propose finite sample confidence
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intervals, while Liu and Hudgens (2014) study confidence intervals in a large-sample

randomization inference context. Basse and Feller (forthcoming) adapt the variance

estimators to the case of varying group sizes and link the randomization inference

framework with the regression framework.

The statistics literature focuses almost exclusively on inference for finite popu-

lations with fixed potential outcomes, in which all the randomness comes through

the assignment mechanism. The super-population approach, under which potential

outcomes are drawn from a certain (infinite) population distribution, has two advan-

tages over the finite population one. First, the parameters are defined with respect

to a population of interest instead of a particular realization of a sample. In this

sense, a super-population parameter has more external validity and more policy rel-

evance than a magnitude which is only defined for a particular sample. Incidentally,

some common population estimands of interest are not well defined when potential

outcomes are fixed; for instance, the average treatment effect on the treated (ATT) is

a random variable in a finite sample. Second, the population approach allows me to

clearly distinguish the assumptions needed for identification from the ones needed for

estimation and inference. This distinction gives a clearer conceptual picture of what

conditions are required to identify the parameters of interest and what conditions

are simplifications that permit estimating them and conducting hypothesis testing.

Among the few studies that analyze interference under a super-population ap-

proach, Philipson (2000) suggests conducting two-stage randomization experiments

to analyze how average outcomes change in response to different shares of treated

units in the population (“external effects”), while Baird, Bohren, McIntosh, and

Özler (forthcoming) perform power calculations for the above estimands (in its super-

population version) under what they call saturation designs. Both studies consider

a setting in which units are partitioned into groups and potential outcomes are ex-

changeable.

Under both the finite-population and the super-population approaches, two-stage

randomization has played a crucial role in the interference literature. In fact, some

estimands of interest like the average indirect effect Ȳ (0, ψ) − Ȳ (0, φ) in Hudgens

and Halloran (2008) are generally undefined under other designs like, for instance,

simple randomization. Furthermore, the few studies discussing identification of pop-

ulation parameters tend to attribute identifying power to the two-stage design. For

example, the abstract from Philipson (2000) states that “two-stage randomization
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schemes, which randomize allocation of treatments across communities and random-

izes the treatments themselves within communities, are useful for identifying private

and external treatment effects.”, while Baird, Bohren, McIntosh, and Özler (forth-

coming) claim: “[w]e show that [randomized saturation] designs identify a set of

novel estimands” (page 2). However, I show below that (i) spillover effects can be

defined without reference to a specific assignment mechanism or experimental design,

and (ii) these spillover effects can be identified as long as the assignment mechanism

puts non-zero probability on each possible assignment. Specifically, I argue that a

simple randomized (Bernoulli) experiment is enough to identify all the parameters

of interest.

While most of this literature assumes partial interference, a recent body of re-

search seeks to adapt the potential outcomes framework to more general structures

of social interactions through arbitrary networks. When allowing for general inter-

ference, potential outcomes can depend on the treatment assignment of the whole

population. In fact, the partial interference assumption can be seen precisely as a

way to simplify this problem; in a networks setting, partial interference corresponds

to the case with many independent networks (or alternatively, a large network with a

block diagonal adjacency matrix). Since estimation and inference can become infea-

sible when the structure of interactions is completely arbitrary, the main challenge

faced by this literature is therefore to provide reasonable restrictions on the type of

interference that can occur between units.

Some studies replace the partial interference by similar but more general restric-

tions on the spillovers structure. For instance, Leung (2017) proposes restrictions

on the structure of dependency graphs, which describe the correlation structure in a

network, to perform asymptotic inference in a super-population framework. On the

other hand, Eckles, Karrer, and Ugander (2017) study the bias of the global ATE es-

timator under different modeling assumptions and experimental designs. Choi (2017)

considers identification under the assumption that the treatment effect is monotone.

Basse, Feller, and Toulis (2018) propose conditional randomization tests under gen-

eral forms of interference.
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2.4 Identification of spillover effects

The key feature of random assignment is that it ensures that potential outcomes

are unrelated to treatment assignment. I formalize this condition as follows.

Assumption II.2 (Independence) For all (d,dg) ∈ {0, 1} ×Dg and for all i and

g,

Yig(d,dg) ⊥⊥ (Dig,D(i)g)

This condition states that potential outcomes are independent of the treatment as-

signment vector, and rules out selection into treatment. Under SUTVA, this con-

dition reduces to (Yig(0), Yig(1)) ⊥⊥ Dig, which means for example that the average

potential outcome under no treatment is equal between treated and control units. In

presence of spillovers, independence needs to be strengthened to ensure that the po-

tential outcomes are independent not only of own treatment assignment, but also of

neighbors’ treatment assignments. This type of independence requires, for example,

that the average potential outcomes that would be observed in absence of treated

units coincide between groups in which nobody is treated and in groups in which at

least some units are treated.

Let Sig :=
∑ng

j 6=iDjg be the observed number of treated neighbors for unit i in

group g. The following result shows identification of average direct and spillover

effects under exchangeability.

Lemma II.2 (Identification under exchangeability) Under Assumptions II.1

and II.2, for d = 0, 1 and s = 0, 1, . . . , ng, for any assignment such that P[Dig =

d, Sig = s] > 0,

E[Yig|Dig = d, Sig = s] = µ(d, s)

Lemma II.2 shows how, under random assignment of the treatment, all the average

potential outcomes can be nonparametrically identified by exploiting variation in all

the possible configurations of own and neighbors’ observed treatment assignments.

The main condition to achieve identification under random assignment is that the

treatment assignment mechanism puts non-zero probability on each (d, s), that is,

P[Dig = d, Sig = s] > 0. In absence of spillovers, this condition is trivially satisfied,

since there are only two treatment assignments, treated and control, that occur with
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non-zero probability as long as P[Dig = 1] ∈ (0, 1). In presence of spillovers, this re-

quirement becomes non-trivial because the number of possible treatment assignments

is potentially large, and some assignment mechanisms could place zero probability

in some of them. For example, consider a cluster randomized trial in which groups,

instead of units, are assigned to treatment with probability 1/2, so that in each group

either everybody is treated or nobody is. This assignment mechanism implies that

P[Dig = 1, Sig = ng] = P[Dig = 0, Sig = 0] = 1/2 and P[Dig = d, Sig = s] = 0 for all

assignments (d, s) different from (1, ng) and (0, 0). Hence, the only treatment effect

that can be identified under this assignment mechanism is µ(1, ng)−µ(0, 0), that is,

the effect of being treated with all treated neighbors compared to being untreated

with no treated neighbors. Assigning the treatment at the individual level is there-

fore a necessary (but not sufficient) condition to identify all the direct and spillover

effects.

On the other hand, Lemma II.2 also shows that complex assignment mechanisms

like two-stage designs assignments like the ones discussed by Moffit (2001), Duflo

and Saez (2003), Hirano and Hahn (2010) and Baird, Bohren, McIntosh, and Özler

(forthcoming), among others, are not required for identification purposes (although

they can improve estimation and inference, as discussed in Chapter III).

Lemma II.2 provides a straightforward way to identify both direct and spillover

effects. More precisely, we have that:

τs = E[Yig|Dig = 1, Sig = s]− E[Yig|Dig = 0, Sig = s]

and

θs(d) = E[Yig|Dig = d, Sig = s]− E[Yig|Dig = d, Sig = 0]

In terms of the empirical implementation, there are two ways to estimate these

average treatment effects. The first one is to construct outcome sample means for

each cell defined by the assignments (d, s), and then construct the differences between

estimated average potential outcomes. Equivalently, we can consider a saturated

linear-in-parameters nonparametric regression of the form:

E[Yig|Dig, Sig] = α + τ0Dig +

ng∑
s=1

θs(0)1(Sig = s)(1−Dig) +

ng∑
s=1

θs(1)1(Sig = s)Dig

(2.5)
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where α = µ(0, 0), which provides identical point estimates and standard errors

as the ones estimating cell means after accounting for heteroskedasticity. Because

it is equivalent to estimating averages at each cell separately, Equation (2.5) does

not impose any parametric assumptions. The total number of parameters in this

regression is 2(ng + 1), so the number of coefficients equals the number of average

potential outcomes that we need to estimate. I will discuss this issue in detail in the

next chapter.

2.5 Analysis of common empirical approaches

Although there is a rich set of causal effects of interests that can be identified

under the conditions stated in Lemma II.2, the vast majority of empirical work either

ignores the presence of spillovers or accounts for them in very specific ways. The

setup described in Section 2.2 can be used to understand the performance of some

common empirical approaches. In this section, I will analyze identification of spillover

effects under three approaches that are very commonly employed: a regression of the

outcome on a treatment indicator, which basically ignores the presence of spillovers

by comparing treated and control units, a linear-in-means model that controls for the

proportion of treated siblings, and a regression that exploits variation in treatment

probabilities across groups in two-stage designs.

2.5.1 Difference in means

The population difference in means between treated and controls, defined as

βD = E[Yig|Dig = 1]− E[Yig|Dig = 0], (2.6)

is a standard estimand when analyzing the effects of randomly assigned treatments.

This parameter can be recovered through a regression of the form

Yig = αD + βDDig + uig (2.7)

where by construction (given that the treatment is binary), αD = E[Yig|Dig = 0]

and E[uig|Dig] = 0. In the absence of spillovers, the exogeneity implied by random

assignment ensures that βD equals the average treatment effect. When analyzing
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spillovers, a natural question is what causal parameter can be recovered through βD.

The following result addresses this issue:

Lemma II.3 (Difference in means) Under the conditions for Lemma II.2, βD

can be written as:

βD = τ0 +

ng∑
s=1

θs(1)P[Sig = s|Dig = 1]−
ng∑
s=1

θs(0)P[Sig = s|Dig = 0]

Hence, the population difference in means equals the direct effect without treated

siblings plus the difference in weighted averages of spillover effects under treatment

and under control. Under simple random assignment, the treatment is assigned

independently and with the same probability to each unit in the sample. In this

case, the above expression reduces to:

βD = τ0 +

ng∑
s=1

(θs(1)− θs(0))P[Sig = s]

The effect of the presence of spillovers in the difference in means, captured by the term∑ng

s=1(θs(1)− θs(0))P[Sig = s], is undetermined in general, and it could be positive,

negative or zero depending on the relative magnitudes of the spillover effects under

treatment and control.

In the absence of spillovers, Yig(d,dg) = Yig(d), which implies θs(d) = 0 for all s

and d, and βD = τ0 = E[Yig(1)− Yig(0)] = ATE. If all the spillover effects are equal

under treatment and control, θs(0) = θs(1) for all s, then the difference in means βD

equals the direct effect of the treatment without treated siblings, τ0. On the other

hand, if all the spillovers under treatment are zero and the spillovers under control

have the same sign as the direct effects, the spillover effects will drive the difference

in means towards zero, which captures the idea of “contamination” of the control

group. In this case,

βD = τ0 −
ng∑
s=1

θs(0)P[Sig = s],

so a large treatment effect with an equally large spillover effect of the same sign

would be observationally equivalent to a zero treatment effect.

Intuitively, the presence of spillovers generates a correlation between units’ treat-

ment assignments that is not controlled for in the specification in (2.7). To illustrate
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this intuition, suppose that each household has only two siblings, ng = 1, so that

under simple random assignment,

βD = τ0 + [θ1(1)− θ1(0)]p

where P[Dig = 1] = p. It is easy to see that Cov(Dig, DigDjg) = p2(1 − p) and

V[Dig] = p(1− p), and thus:

βD = τ0 + [θ1(1)− θ1(0)] · Cov(Dig, DigDjg)

V[Dig]

The second term in the above expression equals the well-known omitted variable

bias in OLS, which is the effect of the omitted variable (in this case, the interaction

between own and sibling’s treatment indicators) multiplied by the coefficient from

the regression of the omitted variable on the included regressor. This expression

suggests that the difference in means is biased for the direct effect of the treatment

when spillover effects are non-zero. Interestingly, this bias does not disappear when

the treatment is randomly assigned, since Cov(Dig, DigDjg) can never be zero unless

p = 0 or p = 1.

2.5.2 Linear-in-means models

Equation (2.7) may give an incomplete assessment of the effect of a program

because it completely ignores the presence of spillovers. When trying to explicitly

estimate spillover effects, a common strategy is to estimate a reduced-form linear-in-

means model, which is given by:

Yig = α` + β`Dig + γ`D̄
(i)
g + ηig, D̄(i)

g =
1

ng

∑
j 6=i

Djg (2.8)

that is, a regression of the outcome on a treatment indicator and the proportion of

treated neighbors. In this specification, γ` is usually seen as a measure of spillover

effects, since it captures the average change in outcomes in response to a change in

the proportion of treated neighbors.

Unlike Equations (2.5) or (2.7), which exploit the binary nature of the treatment

indicator, Equation (2.8) imposes parametric assumptions on the type of spillover

effects that are allowed for. In particular, Equation (2.8) requires three conditions to
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be correctly specified: (i) exchangeability, (ii) equal spillover effects under treatment

and control, θs(0) = θs(1) := θs for all s and (iii) linearity of spillover effects in s,

that is, θs = κs for some constant κ. Under these three conditions, Equation (2.5)

reduces to:

E[Yig|Dig, Sig = s] = α + τ0Dig + θngD̄
(i)
g

so that γ` = θng and thus the coefficient on the proportion of treated neighbors

recovers the spillover effect of treating all neighbors (and the remaining effects can

be obtained using linearity of the spillovers). In this case, both coefficients β` and

γ` have clear causal interpretations.

On the other hand, the following result characterizes the coefficient γ` under

general conditions.

Lemma II.4 (LIM regression) Under the conditions for Lemma II.2 and simple

random assignment, the coefficient γ` from Equation (2.8) can be written as:

γ` = ng

ng∑
s=1

[θs(0)(1− p) + θs(1)p]
Cov(Sig,1(Sig = s))

V[Sig]

= ng

ng∑
s=1

[θs(0)(1− p) + θs(1)p]

(
s− E[Sig]

V[Sig]

)
P[Sig = s]

where p = P[Dig = 1].

This results shows that γ` captures a rather complicated linear combination of all

the spillover effects under treatment and control. More precisely, γ` first averages

the spillover effects under treatment and control, θs(0)(1 − p) + θs(1)p, and then

combines all these terms. Importantly, the “weights” assigned to each of the terms

θs(0)(1−p)+θs(1)p are not bounded between zero and one, and they sum to zero. In

fact, these weights are negative for all values s below the mean of Sig, and positive

for all the values above. The reason for this counterintuitive weighting scheme is

that when conditions (i)-(iii) do not hold, the LIM model is misspecified.

A straightforward way to make Equation (2.8) more flexible is to include an

interaction between Dig and D̄
(i)
g to allow for the spillover effects to be different

under treatment and control:

Yig = α` + β`Dig + γ0
` D̄

(i)
g (1−Dig) + γ1

` D̄
(i)
g Dig + ξig (2.9)
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Then the following holds.

Lemma II.5 (LIM with interactions) Under the conditions for Lemma II.2 and

simple random assignment, for d = 0, 1 the coefficients γd` can be written as:

γd` = ng

ng∑
s=1

θs(d)

(
s− E[Sig]

V[Sig]

)
P[Sig = s]

Thus, the only difference is that each γd` combines the spillover effects under a fixed

treatment status d, instead of averaging θs(0) and θs(1). As before, this expression

shows that the coefficients γd` are not weighted averages of the spillover effects θs(d).

More precisely, they assign negative weights to the parameters θs(d) with s below

E[Sig] and positive weights when s is above E[Sig]. Hence, these coefficients will not

in general lie between the true spillover effects.

2.5.3 Variation in assignment probabilities

Researchers in different fields in the social sciences have conducted and analyzed

experiments in which different units are assigned to treatment with varying proba-

bilities, a design that Moffit (2001) called partial population experiments. A popular

design in this setting is one in which groups of individuals (such as classrooms or

households) are randomly divided into two categories, and then the treatment is ran-

domized in one of the categories, leaving the other one as a pure control. This design

was pioneered in an influential study by Duflo and Saez (2003), and later implemented

in different versions by Miguel and Kremer (2004); Ichino and Schündeln (2012); Sin-

clair, McConnell, and Green (2012), Crépon, Duflo, Gurgand, Rathelot, and Zamora

(2013), Beuermann, Cristia, Cueto, Malamud, and Cruz-Aguayo (2015), Beshears,

Choi, Laibson, Madrian, and Milkman (2015) and Giné and Mansuri (forthcoming),

among others. Hirano and Hahn (2010) and Baird, Bohren, McIntosh, and Özler

(forthcoming) study experimental design under two-stage random assignment.

The two-stage randomization mechanism can be executed in the following way.

In the first stage, groups g = 1, . . . , G are randomly assigned to one of K mutually

exclusive categories, denoted by Tg = 0, 1, . . . , K − 1, with P[Tg = t] = qt. In the

second stage, within each group, unit-level treatment is randomly assigned with a

probability that is determined by the category to which the group was assigned,

P[Dig = 1|Tg = t] = pt. Random assignment of the group and treatment indica-
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tors ensure that the potential outcomes are statistically independent of treatment

assignments:

Assumption II.3 (Independence) For all (d,dg) ∈ {0, 1} ×Dg and for all i and

g,

Yig(d,dg) ⊥⊥ (Dig,D(i)g, Tg)

While in principle the way in which the treatment is assigned is irrelevant for

identification as long as the conditions in Lemma II.2 hold, researchers employing

two-stage randomization often exploit the variability the treatment probability to

analyze spillover effects. As described above, a very common approach in this case

is to set K = 2, p0 = 0 and p1 = p ∈ (0, 1), thus obtaining two categories, one of

pure controls and one in which units get the treatment with probability p. In this

case, a popular strategy is to run the regression:

Yig = α + βDig + γTg + uig (2.10)

The intuition this specification is that γ = E[Yig|Dig = 0, Tg = 1]− E[Yig|Tg = 0]

should estimate a spillover effect by comparing the average outcomes of control units

in treated groups with control units in pure control groups. However, it is clear from

the previous setting that there are 2(ng + 1) different average spillover effects, so the

question that arises is what is the relationship between the γ coefficient in Equation

(2.10) and the spillover effects defined in (2.2). The following result addresses this

issue.

Lemma II.6 (Identification through variation in assignment probabilities)

Under Assumptions II.1 and II.3,

E[Yig|Tg = 0] = E[Yig(0)]

and for d = 0, 1 and t = 1, 2, . . . , K − 1,

E[Yig|Dig = d, Tg = t] = E[Yig(d)] +

ng∑
s=1

P[Sig = s|Tg = t]θs(d)

where P[Sig = 0|Tg = 0] = 1.
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The case where pK−1 = 1 can be handled analogously, with the only difference

that E[Yig|Dig = d, Tg = K − 1] = E[Yig(d)] + θng(d).

Following the idea from Equation 2.10, a natural estimand in this context is

the average difference between untreated units in groups assigned to Tg = 0 and

Tg = t > 0,

∆t(d) = E[Yig|Dig = d, Tg = t]− E[Yig|Tg = 0]

which corresponds to the coefficients from a regression of the outcome on indicators

of the form 1(Tg = t). By simple algebra we can see that when comparing untreated

units in treated and control groups, under simple random assignment within groups,

∆t(0) =

ng∑
s=1

θs(0)P[Sig = s|Tg = t]

=

ng∑
s=1

θs(0)

(
ng
s

)
pst(1− pt)ng−s

Thus, each ∆t(0) captures a weighted average of average spillover effects of all the

orders, where the weights are given by the conditional probability of observing each

possible number of treated neighbors. The lower the probability of treatment in

category Tg, the higher the weight given to low order spillover effects, and vice versa.

The main limitation of this approach is that by pooling parameters that are

potentially very different, it may miss important heterogeneity in spillover effects.

For example, consider the case of herd immunity in a vaccination program. When

only a few individuals in a group are vaccinated, it is unlikely that this will prevent

an untreated individual from getting sick, since the probability of contagion will

be high. However, as the number of treated neighbor increases, the probability of

contagion goes down and untreated units will be less likely get sick. In this setting,

we would expect the spillover effects of low orders to be close to zero and the spillover

effects of high orders to be large. Depending on how the two-stage randomization is

conducted, these effects can go undetected. For instance, in the simple case with two

categories, Tg = 0, 1 with p0 = 0, p1 = 0.5, most of the weight will be placed on the

spillover effect of treating half the neighbors, which is possibly small, and the effect

of treating every neighbor, which is expected to be high, would receive a weight close

to zero. A program like the one analyzed by Crépon, Duflo, Gurgand, Rathelot, and

Zamora (2013) can be another example of this phenomenon. Consider a job training
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program aimed at helping unemployed workers to find jobs. If a few individuals

get the treatment in a city or village, that is unlikely to affect the individuals who

did not receive the program. But when a large number of people receive training,

assuming the program has a positive effect, treated individuals will become better at

finding jobs, increasing the competition and displacing the unemployed workers who

did not receive training. Again, these effects are likely to be observed only when the

number of treated neighbors is large enough.

One way to overcome this problem is to increase the number of categories K.

With more variation in the assignment probabilities, the difference in means across

categories ∆t(d) will be better approximations to the average spillover effects cor-

responding to different proportions of treated neighbors. This idea is illustrated in

Figures 2.1 to 2.3. Each figure depicts, for a given group size, the weights given

by each ∆t(d) to the different spillover effects θs(d) using four different two-stage

randomization designs. The upper left subfigure correspond to the case of two cat-

egories, one with probability p0 = 0 and one with probability p1 = 0.5. In this

case, ∆1(d) = E[Yig|Dig = d, Tg = 1]− E[Yig|Tg = 0] gives the highest weight to the

spillover effect corresponding to half (or nearly half) neighbors treated, and almost

zero weights to the spillover effects on the tails (no neighbors treated, all neighbors

treated). The upper right subfigure uses five categories, with probabilities 0, 0.25,

0.50, 0.75 and 1. In this case, ∆1(d) gives highest weight to the θs(d) corresponding

to a fourth of the neighbors treated, ∆2(d) gives highest weights to the θs(d) corre-

sponding to half the neighbors treated and ∆3(d) to three quarters of the neighbors

treated (the weights given by ∆4(d) to the spillover effects are not shown because

by construction it gives weight equal to one to the effect of all neighbors treated).

The subfigures in the bottom panel depict the case with six and ten categories.

These figures illustrate how increasing the number of categories can give a better

approximation to the different average spillover effects.

In fact, an extreme version of two-stage randomization would be one in which

K = ng + 2 and the number of treated units, instead of the probability, is assigned

to each group. For example, in the program studied by Barrera-Osorio, Bertrand,

Linden, and Perez-Calle (2011), one would take all the households with two regis-

tered siblings and randomly assign them to get zero, one or two treated children, and

assign households with three registered children to get zero, one, two or three treated

children. This mechanism is analyzed by Baird, Bohren, McIntosh, and Özler (forth-
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coming), and has the advantage that each difference in means gives all the weight to

one of the spillover effects. I analyze this assignment mechanism in the next chapter.
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Figure 2.1: Weights assigned by ∆t(d) to each θs(0) with n = 20.
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(a) Tg ∈ {0, 1},
p ∈ {0, 0.5}

0 5 10 15 20

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

0.
30

Order of theta (s)

W
ei

gh
t

●

●

●

●

●

●

●

●

●

●

●
● ● ● ● ● ● ● ● ●● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ● ● ●● ● ● ● ● ● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

(b) Tg ∈ {0, 1, 2, 3, 4},
p ∈ {0, 0.25, 0.50, .75, 1}
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(c) Tg ∈ {0, 1, . . . , 5},
p ∈ {0, 0.2, 0.4, 0.6, 0.8, 1}
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(d) Tg ∈ {0, 1, . . . , 10},
p ∈ {0, 0.1, 0.2, . . . , 1}

Notes: each curve plots the weights given by each difference in means
∆t(d) = E[Yig|Dig = d, Tg = t]− E[Yig|Tg = 0] to each E[θkig(d)]. In Panel (a) there are only two
categories, therefore only one difference in means. In Panel (b) there are five categories, one in
which there are no treated units and one in which everybody is treated (so ∆4(d) gives weight
equal to one to the spillover effect of higher order and zero to the remaining ones). Panels (c) and
(d) are interpreted analogously.
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Figure 2.2: Weights assigned by ∆t(d) to each θs(0) with n = 50.
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(a) Tg ∈ {0, 1},
p ∈ {0, 0.5}
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(b) Tg ∈ {0, 1, 2, 3, 4},
p ∈ {0, 0.25, 0.50, .75, 1}
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(c) Tg ∈ {0, 1, . . . , 5},
p ∈ {0, 0.2, 0.4, 0.6, 0.8, 1}
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(d) Tg ∈ {0, 1, . . . , 10},
p ∈ {0, 0.1, 0.2, . . . , 1}

Notes: each curve plots the weights given by each difference in means
∆t(d) = E[Yig|Dig = d, Tg = t]− E[Yig|Tg = 0] to each E[θkig(d)]. In Panel (a) there are only two
categories, therefore only one difference in means. In Panel (b) there are five categories, one in
which there are no treated units and one in which everybody is treated (so ∆4(d) gives weight
equal to one to the spillover effect of higher order and zero to the remaining ones). Panels (c) and
(d) are interpreted analogously.
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Figure 2.3: Weights assigned by ∆t(d) to each θs(0) with n = 100.
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(a) Tg ∈ {0, 1},
p ∈ {0, 0.5}
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(b) Tg ∈ {0, 1, 2, 3, 4},
p ∈ {0, 0.25, 0.50, .75, 1}
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(c) Tg ∈ {0, 1, . . . , 5},
p ∈ {0, 0.2, 0.4, 0.6, 0.8, 1}
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(d) Tg ∈ {0, 1, . . . , 10},
p ∈ {0, 0.1, 0.2, . . . , 1}

Notes: each curve plots the weights given by each difference in means
∆t(d) = E[Yig|Dig = d, Tg = t]− E[Yig|Tg = 0] to each E[θkig(d)]. In Panel (a) there are only two
categories, therefore only one difference in means. In Panel (b) there are five categories, one in
which there are no treated units and one in which everybody is treated (so ∆4(d) gives weight
equal to one to the spillover effect of higher order and zero to the remaining ones). Panels (c) and
(d) are interpreted analogously.
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2.6 Further issues and extensions

2.6.1 Alternatives to the exchangeability assumption

2.6.1.1 Lack of exchangeability

Although the exchangeability assumption can make potential outcomes more

tractable by reducing the dimensionality, it is not necessary for identification and

inference. In this section I show how to extend the results above to the general case

without exchangeability. The potential outcome is given by Yig(d,dg) where d = 0, 1

and dg ∈ D ⊆ {0, 1}ng , with observed outcome Yig =
∑

d

∑
dg
Yig(d,dg)1(Dig =

d,D(i)g = dg). The parameters of interest are the average potential outcomes

E[Yig(d,dg)] for all d and dg ∈ Dg, which allow us to construct all possible treatment

effects,

E[Yig(d,dg)]− E[Yig(d̃, d̃g)]

for any possible pair of treatment assignments (d,dg) and (d̃, d̃g). In particular,

τd = E[Yig(1,dg)]− E[Yig(0,dg)]

θd(d) = E[Yig(d,dg)]− E[Yig(d,0g)]

which are analogous to the direct and average spillover effects defined above.

Under the assumption of independence between potential outcomes and treat-

ment assignments (Assumption II.2), we have the following result.

Lemma II.7 (Identification without exchangeability) Under Assumption II.2,

for any assignment (d,dg) such that P[Dig = d,D(i)g = dg] > 0,

E[Yig|Dig = d,D(i)g = dg] = E[Yig(d,dg)]

This result is analogous to Lemma II.2, with the difference that the left-hand side

conditions on the whole vector of neighbors’ assignments, instead of just the total

number of treated neighbors.

2.6.1.2 Reference groups and covariates

Exchangeability fails when each unit in a group is only affected by a strict subset

of neighbors, since in this case some of the spillover effects are automatically zero,

35



while others may not. If unit i’s outcome can be affected by unit j’s assignment

but not by unit k’s, then it is clear that units j and k cannot be exchangeable

for unit i, since switching treatment from unit j to k will change unit i’s outcome.

However, when one has some information on the network structure, this situation is

easy to handle in the above framework by manually setting some coefficients to zero

and assuming exchangeability within each unit’s reference group. More precisely, for

each unit i, let Ri be unit i’s reference group, that is, the set of indices corresponding

to units that are linked to (that is, can potentially affect) unit i (for example, the

set of unit i’s friends). Then, the number of treated neighbors can be redefined as:

SRig =
∑
j∈Ri

Djg

and all the previous results hold replacing Sig by SRig. This condition gives a middle

ground between the case where each neighbor has a specific identity and the case

where all the members in the group are exchangeable. The same reasoning can be

used to make exchangeability hold conditional on a set of observed covariates. Say,

for example, that exchangeability holds only after conditioning a binary covariate

such as gender (so that sisters are exchangeable and brothers are exchangeable),

Xig = 0, 1. Then simply let:

Sig(x) =
∑

j:Xjg=x

Djg

be the observed number of treated siblings with characteristic Xjg = x (such as gen-

der), and the results above can be adapted to this case using E[Yig|Dig, Sig(0), Sig(1)].

2.6.2 Misspecification

There are two types of misspecification that are worth studying in this context,

and both may stem from the need to reduce the dimensionality of the model when the

number of neighbors is large relative to the number of observations. The first type of

misspecification occurs when one or more neighbor assignment indicators are omitted.

For example, suppose that groups are classrooms are units are students. If classrooms

are relatively large, it may be hard to include all indicators and interactions, but the

researcher may have information for instance on friendship relationships. If each
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student only interacts with some of her peers, this additional information can be

used to reduce the number of covariates to include in the regressions. However,

social interactions are hard to measure in practice, so it is likely that the researcher

can omit some of the student’s peers. The second type of misspecification occurs

when one incorrectly imposes exchangeability. I discuss the effect of these two types

of misspecification below.

2.6.2.1 Omitting neighbors’ treatment assignments

Take a group of size n + 1 and partition the vector D(i)g into Dk
(i)g and Dn−k

(i)g .

Then,

E[Yig|Dig = d,Dk
(i)g = dkg ] =

∑
dn−k
g

E[Yig(d,d
k
g ,d

n−k
g )]

× P[Dn−k
(i)g = dn−kg |Dig = d,Dk

(i)g = dkg ]

so omitting a subset of neighbors’ treatment indicators amounts to averaging the

potential outcomes over all possible treatment assignments of the omitted neighbors.

In the exchangeable case, letting

Sig =
k∑
j=1

Dj
ig +

n∑
j=k+1

Dj
ig = Skig + Sn−kig

we have that

E[Yig|Dig = d, Skig = sk] =
n−k∑

sn−k=0

µ(d, sk + sn−k)P[Sn−kig = sn−k|Dig = d, Skig = sk]

Suppose for simplicity that the treatment assignments are independent within group.

Then,

E[Yig|Dig = d, Skig = sk]− E[Yig|Dig = d, Skig = 0] =

n−k∑
sn−k=0

(µ(d, sk + sn−k)− µ(d, sn−k))P[Sn−kig = sn−k].

Hence, in both cases omitting neighbors’ treatment assignments information im-
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plies averaging over their assignments.

2.6.2.2 Incorrectly assuming exchangeability

Incorrectly assuming exchangeability amounts to exploiting variation in (Dig, Sig)

to recover average effects when the average potential outcomes depend on the whole

vector (Dig,D(i)g). In this case we have that:

E[Yig|Dig = d, Sig = s] =
∑

dg∈Dg

E[Yig|Dig = d, Sig = s,D(i)g = dg]

× P[D(i)g = dg|Dig = d, Sig = s]

=
∑

1′gdg=s

E[Yig(d,dg)]
P[Dig = d|D(i)g = dg]P[D(i)g = dg]

P[Dig = d|Sig = s]P[Sig = s]

In particular, when individual treatment assignments are mutually independent

within a group, this expression reduces to:

E[Yig|Dig = d, Sig = s] =

(
ng
s

)−1 ∑
1′gdg=s

E[Yig(d,dg)]

and thus E[Yig|Dig = d, Sig = s] is a simple average of the average potential outcomes

E[Yig(d,dg)] taken over all the possible assignments with s treated neighbors.

2.6.3 Unequally-sized groups

Suppose now group size is a random variable Mg with finite support {2, 3, . . . , M̄}
(if the support contains zero or one, these realizations would need to be excluded

anyway since they do not provide information on spillovers). This implies that the

number of neighbors for each unit is random as well. Let this variable be denoted by

Ng = Mg−1 with maximum value N̄ . Notice that in this case, the vector of neighbors

assignments is also a function of Ng, D(i)g(Ng). Let d(ng) be a realization of this

vector for a given realization ng of Ng, and let 0(Ng) be a vector of zeros of length

Ng. Given a realization Ng = ng, the potential outcome is given by Yig(d,d(ng)).

The results in this chapter can be generalized to this setting by conditioning on
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group size. For example, the exchangeability assumption becomes:

E[Yig(d,d(ng))|Ng = ng] = E[Yig(d, d̃(ng))|Ng = ng]

for any pair of vectors d(ng)) and d̃(ng)) with the same number of ones. This

restriction implies that:

E[Yig(d,d(ng))|Ng = ng] = µ(d, s(ng), ng)

for some function µ(·, ·, ·). The mean independence assumption can also be modified

to hold conditional on group size:

E[Yig(d,d(ng))|Dig,D(i)g(ng), Ng = ng] = E[Yig(d,d(ng))|Ng = ng]

and identification can be established by:

E[Yig|Dig,D(i)g(ng), Ng = ng] = µ(d, s(ng), ng)

In this setting, the easiest approach is to simply run separate analyses for each

group size. This approach is very flexible in the sense that it allows both the baseline

potential outcomes and the average direct and spillover effects to vary with group

size. Equation (2.5) becomes:

E[Yig|Dig, Sig(Ng), Ng] = α(Ng) + τ0(Ng)Dig

+
N̄∑
s=1

θs(Dig, Ng)1(Sig(Ng) = s)1(s ≤ Ng)

where α(Ng) = µ(0, 0, Ng). This is a fully saturated model that includes interactions

between own treatment indicator, indicators by number of treated siblings and groups

sizes.

In practice, there may be cases in which group size has a rich support with only

a few groups at each value ng, so separate analyses may not be feasible. One possi-

bility to overcome this difficulty is to strengthen the conditional mean independence

assumption, and require that the effect of group size be additive:

τ0(ng) = τ0, θs(d, ng) = θs(d)
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Intuitively, this means that group size is allowed to affect the average baseline po-

tential outcomes (when no neighbors are treated), but not the average direct and

spillover effects. This condition rules out cases in which group size is related to

potential gains from the treatment (for example, if larger groups are more likely to

benefit from a program), but allows for the baseline potential outcomes under no

treatment to differ across group sizes. For instance, it could be the case that large

households have lower income and hence would have lower average outcomes com-

pared to smaller households even when no unit gets the treatment, as long as these

differences do not interact with treatment effects. This requirement is analogous to

the identification assumption in difference-in-differences and panel data models, in

which individuals unobserved characteristics are allowed to differ at the baseline, as

long as these differences do not affect the potential outcomes’ time trends. Under

this assumption, group size only affects the baseline average outcome, but not the

average direct and spillover effects. In this case,

E[Yig|Dig, Sig(Ng), Ng] = α(Ng) + τ0Dig +
N̄∑
s=1

θs(Dig)1(Sig(Ng) = s)1(s ≤ Ng)

which can be interpreted as a regression that includes group size fixed effects, where

α(Ng) =
∑
ng∈Ng

α(ng)1(Ng = ng)

where Ng is the support of Ng. Thus, all the identification results and estimation

strategies in this chapter are valid after controlling for group-size fixed effects.

2.7 Conclusion

This chapter develops a potential-outcome-based nonparametric framework to

analyze spillover effects that nests several models used in existing theoretical and

empirical work. Within this framework, I define parameters of interest, provide

identification conditions for these parameters and evaluate the performance of com-

monly applied methods including the difference in means, linear-in-means models

and two-stage designs.

An important takeaway of this setup is that, while the number of parameters of

interest in the presence of spillovers can be large, identification can be established un-
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der mild restrictions on the treatment assignment mechanism. But the large number

of parameters of interest, which make the model very rich in terms of identification,

also make estimation and inference harder. In the following chapter, I analyze esti-

mation and inference for average direct and spillover effects with a special focus on

the effect of group size and the number of parameters.

The setup in this chapter points to several directions for future research. Two

generalizations worth studying are allowing for more complex interaction structures

in a population, for example, when a population cannot be partitioned into groups,

and allowing for the treatment to affect the group structure. In both cases, the grow-

ing literature on networks seems like a natural path to analyze these issues. Other

avenues for future work are problems related to measurement error or treatment

missclasification and misspecification of the network structure.
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CHAPTER III

Estimation and Inference for Spillover Effects

3.1 Introduction

The results in Chapter II showed that when a treatment is randomly assigned,

all the average potential outcomes can be identified under mild restrictions on the

treatment assignment mechanism. The identification result in Lemma II.2 also sug-

gests a simple yet nonparametric strategy to recover all the parameters of interest

by running a regression of the outcome of interest on a set of indicator variables

and interactions. This chapter studies estimation and inference for average spillover

effects. I start by illustrating how to empirically implement the ideas in the previous

chapter in Section 3.2 using two empirical applications: a conditional cash transfer

pilot program in Colombia and an experiment in Ghana aiming at reducing electoral

irregularities.

These illustrations highlight the advantages and disadvantages of estimating the

whole set of average direct and spillover effects nonparametrically, which are formally

analyzed in Section 3.3. To understand the role of group size and the total number

of parameters in estimation and inference, I consider a setting in which both the

number of groups and the group size are allowed to grow. I establish consistency and

asymptotic normality of nonparametric estimators of the average potential outcomes

under the conditions that the number of parameters to be estimated is small relative

to the effective sample size, defined formally below. I also show validity of inference

based on the wild bootstrap, which is found in simulations to perform better in terms

of coverage compared to the normal approximation.

Finally, I show how my results can be used to guide the design of experiments

when estimating spillover effects. Specifically, I show that the performance of the

estimators in terms of inference depends crucially on the treatment assignment mech-
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anism. This finding can be used as a principled criterion to rank among experimental

designs. I compare two specific treatment assignment mechanisms, a Bernoulli trial

and a two-stage design that fixes the number of treated units in each group, and

show that the latter can yield improved inference when the goal is to estimate the

whole set of average spillover effects.

3.2 Empirical applications

3.2.1 Conditional cash transfers in Colombia

Barrera-Osorio, Bertrand, Linden, and Perez-Calle (2011) conduct a pilot exper-

iment designed to evaluate the effect of the program “Subsidios Condicionados a la

Asistencia Escolar” in two localities in Bogotá, San Cristóbal and Suba. The pro-

gram aimed at increasing student retention and reducing drop-out and child labor.

The experiment consisted of a conditional cash transfer with three treatment arms:

1. Basic: participants receive 30,000 pesos per month conditional on attending at

least 80 percent of the days of the month.

2. Savings: participants are paid two thirds of the 30,000 pesos on a bi-monthly

basis, conditional on attendance. The remaining 10,000 pesos are held in a

bank account and made available during the period in which students prepare

to enroll for the next school year (not conditional on attendance).

3. Tertiary: participants are paid two thirds of the 30,000 as in the savings treat-

ment. Upon graduating, students receive 600,000 pesos immediately if they

enroll in a tertiary institution, or one year later if they fail to enroll.

Eligible registrants in San Cristóbal, ranging from grade 6-11, were randomly as-

signed between the control status and first two treatment arms. The tertiary treat-

ment was evaluated separately in Suba, where students were randomly assigned

between control and tertiary treatment. The assignment was performed at the stu-

dent level. In addition to administrative and enrollment data, the authors collected

baseline and follow-up data from students in the largest 68 of the 251 schools. This

survey data contains attendance data and was conducted in the household.
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Table 3.1: Distribution of household size

Frequency
1 3519
2 1171
3 150
4 14
5 1
Total 4855

Table 3.2: Treated per household

Frequency
0 1459
1 2815
2 528
3 50
4 3
Total 4855

Table 3.3: Estimation results

Diff. Means Linear-in-Means Full
coef s.e. coef s.e. coef s.e. coef s.e.

Dig -0.018 0.019 -0.018 0.019 0.072 0.048 0.127* 0.068

D̄
(i)
g -0.020 0.040

D̄
(i)
g (1−Dig) 0.120* 0.072

D̄
(i)
g Dig -0.088* 0.050

1(Sig = 1)(1−Dig) 0.128** 0.063
1(Sig = 2)(1−Dig) 0.119* 0.061
1(Sig = 1)Dig -0.026 0.025
1(Sig = 2)Dig -0.057* 0.030
Constant 0.857*** 0.013 0.866*** 0.026 0.808*** 0.039 0.751*** 0.060
Observations 363 363 363 363

Notes: Cluster-robust s.e. Regressions include school FE. ***p < 0.01,**p < 0.05,*p < 0.1.

As shown in Table 3.1, 1,336 households have more than one registered children,

and since the treatment was assigned at the child level, this gives variation in the

number of treated children per household, as can be seen in Table 3.2.

Barrera-Osorio, Bertrand, Linden, and Perez-Calle (2011) analyzed spillover ef-

fects on enrollment and attendance in households with two registered siblings pooling

the three treatment arms (Table 9 in their paper). The authors find negative and

statistically significant spillover effects of about 3 percentage points for attendance

and 7 percentage points on enrollment, which they interpret as suggestive evidence

that the conditional cash transfer drives family resources toward treated children and

away from their untreated siblings. In this section, I will analyze direct and spillover

effects in households with three registered siblings, which gives a larger number of

possible treatment effects. The outcome of interest will be attendance.
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3.2.1.1 Nonparametric estimation

The results are obtained by estimating Equation (2.5). The estimates are shown

in the right panel of Table 3.3. These estimates suggest a positive direct effect of the

treatment of about 12.7 percentage points, significant at the 10 percent level, with

equally large spillover effects on the untreated units. More precisely, the estimated

effect on an untreated kid of having one treated sibling is 12.8 percentage points,

while the effect of having two treated siblings is 11.9 percentage points. The fact

that the hypothesis that θ1(0) = θ2(0) cannot be rejected suggests some form of

crowding-out: given that one sibling is treated, treating one more sibling does not

affect attendance. These facts could be consistent with the idea that, for example,

the conditional cash transfer alleviates some financial constraint that was preventing

the parents from sending their children to school regularly, or with the program

increasing awareness on the importance of school attendance, since in these cases

the effect occurs as soon as at least one kid in the household is treated, and does not

amplify with more treated kids.

On the other hand, spillover effects on treated children are smaller in magnitude

and negative, with the effect on a treated kid of having two treated siblings being

significant at the 10 percent level. Notice that the fact that these estimates are

negative does not mean that the program hurts treated children, but that treating

more siblings reduces the benefits of the program. For example, the effect of being

treated with two treated siblings, compared to nobody treated, can be written as

µ(1, 2) − µ(0, 0) = µ(1, 0) − µ(0, 0) + µ(1, 2) − µ(1, 0) = τ0 + θ2(1), so it can be

estimated by τ̂0+θ̂2(1) ≈ 0.07. Thus, a treated kid with two treated siblings increases

her attendance in 7 percentage points starting from a baseline in which nobody in

the household is treated.

In all, the estimates suggest large and positive direct and spillover effects on the

untreated, with some evidence of crowding-out between treated siblings.

3.2.1.2 Difference in means

The above results can be used to understand how some specifications commonly

used in empirical studies perform in this type of contexts. Suppose initially that the

experiment was analyzed using a difference in means between treated and controls,

ignoring the presence of spillovers. The left panel of Table 3.3 shows the difference
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in means, which is the estimator that is used when spillovers are ignored, usually

calculated as the OLS estimator for βD in the model:

Yig = αD + βDDig + uig (3.1)

where βD = E[Yig|Dig = 1] − E[Yig|Dig = 0]. The results show that the difference

in means is close to zero and not significant. Hence, by ignoring the presence of

spillover effects, a researcher estimating the effect of the program in this way would

conclude that the treatment has no effect. This finding captures the intuition that in

presence of spillovers, the “contamination” of the control group pushes the difference

between treated and controls towards zero. In Chapter II, I showed that:

βD = τ0 +

ng∑
s=1

(θs(1)− θs(0))P[Sig = s]

From Table 3.3, the estimated spillover effects in this case are much larger under

control that under treatment, and have different signs, so θ̂1(1)− θ̂1(0) = −0.155 and

θ̂2(1)− θ̂2(0) = −0.176. Therefore, the spillover effects push the difference in means

towards zero in this case.

3.2.1.3 Linear-in-means models

When trying to explicitly estimate spillover effects, a common strategy is to

estimate a reduced-form linear-in-means model, which is given by:

Yig = α` + β`Dig + γ`D̄
(i)
g + ηig, D̄(i)

g =
1

ng

∑
j 6=i

Djg (3.2)

that is, a regression of the outcome on a treatment indicator and the proportion of

treated neighbors. In this specification, γ` is usually seen as a measure of spillover

effects, since it captures the average change in outcomes in response to a change in

the proportion of treated neighbors.

The estimates from this specification are given in the first column of the middle

panel in Table 3.3. The estimates suggest slightly negative and not significant direct

and spillover effects, substantially different from results using Equation 2.5. To

better understand this point, in Chapter II I showed that a LIM model requires
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three conditions to be correctly specified: (i) exchangeability, (ii) equal spillover

effects under treatment and control, θs(0) = θs(1) := θs for all s and (iii) linearity of

spillover effects. However, the results from the nonparametric specification suggest

that these conditions do not hold in this case: spillover effects have different signs

for treated and control units, and the effects seem to be nonlinear. In general,

γ` = ng

ng∑
s=1

[θs(0)(1− p) + θs(1)p]

(
s− E[Sig]

V[Sig]

)
P[Sig = s]

where p = P[Dig = 1]. Hence, γ` captures a linear combination of spillover effects

using weights that are negative for all s ≤ E[Sig]. In this case, we have that θ̂1(0)(1−
p̂)+θ̂1(1)p̂ ≈ 0.027 and θ̂2(0)(1−p̂)+θ̂2(1)p̂ ≈ 0.003. On the other hand, Ê[Sig] = 1.3,

so γ̂` will assign negative weight to the first term and positive weight to the second

one, resulting in the negative−0.02 shown in Table 3.3. These results suggest that the

LIM model is in general sensitive to misspecification and may give a poor summary

of spillover effects when the assumptions that justify it are violated.

A straightforward way to make the LIM model more flexible is to include an

interaction between Dig and D̄
(i)
g to allow for the spillover effects to be different

under treatment and control:

Yig = α` + β`Dig + γ0
` D̄

(i)
g (1−Dig) + γ1

` D̄
(i)
g Dig + ξig (3.3)

The third column of the middle panel in Table 3.3 shows that the estimates for the

spillover effects for treated and control are actually quite close to the estimates from

the full model, which could suggest that this strategy can be a good approximation

to the true spillover effects. From Chapter II,

γd` = ng

ng∑
s=1

θs(d)

(
s− E[Sig]

V[Sig]

)
P[Sig = s]

Thus, the only difference is that each γd` combines the spillover effects under a fixed

treatment status d, instead of averaging θs(0) and θs(1). Hence, these coefficients

will not in general lie between the true spillover effects, which can be seen in Table

3.3 from the fact that −0.088 is not a weighted average of −0.026 and −0.057.

A possible concern with the above analysis is that the exchangeability assump-

tion may not hold in this case, since the spillover effects may differ depending on
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several factors such as siblings’ age, gender or school they attend. While the results

in Chapter II suggests that incorrectly imposing exchangeability still allows the re-

searcher to recover weighted averages of the effects of each sibling, I explore this

possibility by defining distance between siblings in terms of age. I order siblings

in terms of the age difference, so that for each child, sibling one will be the sibling

closest in age (older or younger) and sibling two will be the farthest in age (older or

younger). The rationale for this ordering is that we could expect that siblings with

similar ages go to similar grades and can affect each other more than siblings that

are far away in terms of age. Other ordering criteria are possible and would identify

different dimensions of effect heterogeneity.

The effects are estimated using the following fully-saturated regression:

Yig = α + τDig + γ1D1g(1−D2ig)(1−Dig) + γ2(1−D1g)D2ig(1−Dig)

+ γ12D1igD2ig(1−Dig)

+ λ1D1g(1−D2ig)Dig + λ2(1−D1g)D2igDig

+ λ12D1gD2igDig

(3.4)

where γk recovers the spillover effect of sibling k for an untreated kid, γ12 is the

effect of having both siblings treated on an untreated kid, λk is the spillover effect

of sibling k on a treated kid, and λ12 the effect of having both siblings treated on a

treated kid.

The results are shown in Table 3.4. The estimates are qualitatively similar to

the ones under exchangeability, but suggest a larger spillover effect for the closest

sibling on an untreated kid. The above specification gives a straightforward way to

test exchangeability, by evaluating whether γ1 = γ2 and λ1 = λ2. In this particular

case, exchangeability is rejected at the 5 percent level, so the estimates in Table 3.3

should be interpreted as weighted averages of the individual effects in Table 3.4.

In sum, the empirical results in this section reveal how the saturated regression

given by Equation (2.5) is a fully nonparametric yet easily implemented regression-

based strategy that recovers all the treatment effects of interest. On the other hand,

both the difference-in-means regression and the linear-in-means regression impose

strong restrictions on the spillover effects that may be violated in many contexts,

and can be sensitive to misspecification.
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Table 3.4: Estimation results - non-exchangeable case

Saturated
coef s.e.

Dig 0.129* 0.068
D1ig(1−D2ig)(1−Dig) 0.151** 0.064
(1−D1ig)D2ig(1−Dig) 0.110* 0.063
D1igD2ig(1−Dig) 0.118* 0.061
D1ig(1−D2ig)Dig 0.008 0.026
(1−D1ig)D2igDig -0.082* 0.042
D1igD2igDig -0.060** 0.030
Constant 0.751*** 0.059
Observations 363

Notes: Cluster-robust s.e. Regressions include school FE. ***p < 0.01,**p < 0.05,*p < 0.1.

3.2.2 Electoral irregularities in Ghana

To illustrate the results in Chapter II under two-stage designs, I will use the data

from Ichino and Schündeln (2012). This experiment aims at assessing the effect of

assigning observers to voter registration sites in Ghana. The hypothesis is that if

observers reduce electoral misconduct in voter registration, the change in the number

of registered voters in locations where observers are assigned should be smaller than

the change in locations without observers. To test this hypothesis, the authors

propose a two-stage experimental design:

1. In the first stage, 39 constituencies (administrative units) are assigned to the

treatment group with probability 1/3. For this stage, constituencies were

grouped in blocks of three in each of which one was assigned to treatment

and two to control status.

2. In the second stage, electoral areas (ELAs) in treated constituencies are selected

with probability 0.25 to be visited by registration observers.

Registration observers randomly visited their assigned centers in treated ELAs

during the registration period. Each ELA was visited at least twice during this

period (twice for rural areas, three times or more in urban areas); each first visit

lasted between one and two hours, while follow up visits lasted up to a whole day.

The sample consists of 868 ELAs in 39 constituencies, divided in 13 treated and

26 controls. In the 13 treated constituencies, 77 ELAs are treated. Average group
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Table 3.5: Distribution of number of treated neighbors

Frequency
0 592
1 2
2 7
3 19
4 34
5 59
6 33
7 8
8 35
9 47
10 32

Figure 3.1: Distribution of group size and number of treated units.
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size (number of ELAs in each constituency) is 22.3, and the distribution is plotted

in Figure 3.1. Table 3.5 reports the distribution of the number of treated neighbors.

We see from the table that 592 out of the 868 ELAs have no treated neighbors; these

correspond to the ELAs in the 26 control constituencies. On the other hand, ELAs

in treated constituencies can have up to 10 treated neighbors.

Unlike in the Barrera-Osorio, Bertrand, Linden, and Perez-Calle (2011) data, in

this case group size varies too much to perform separate analyses for each group size.

For this reason, I will run regressions pooling all group sizes together and controlling

for group-size fixed effects. The assumption that justifies this approach is that the

effect of group size in average potential outcomes is additive, that is, that changing

the size of a group generates a constant shift in the potential outcomes without

affecting the spillover effects, as described in Chapter II. Furthermore, because the

sample sizes are small, there are several assignments that are not observed in the

sample, and therefore the estimators for the corresponding effects are not defined.

I will focus on estimating average spillover effects for untreated units assuming

exchangeability. Specifically, I run the regression

Yig = αng +
n̄∑
s=1

θs1(Sig = s)1(s ≤ ng) + ηig

on the sample of untreated units, where n̄ is the maximum group size and αng are

group-size fixed effects. I will compare these estimates to the ones obtained by the

pooling approach:

Yig = α + γTg + εit

on the sample of untreated units, where Tg = 1 if constituency g is selected to

received treatment.

The results are depicted in Figure 3.2. Figure 3.2(a) shows the estimated average

spillover effect as a function of the number of treated neighbors. The dotted blue line

corresponds to the estimate of the pooled parameter γ, and the dots are estimates

of θs. Following Ichino and Schündeln (2012), a positive effect can be interpreted

as a displacement effect, suggesting that electoral irregularities move from treated

towards untreated ELAs. According to Figure 3.2(a), having more treated tends to

increase voter registration, providing some evidence of displacement effects.

Since closer ELAs are more likely to affect neighboring areas, the exchangeability
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Figure 3.2: Results under exchangeability.
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assumption may be too strong in this case. To study this possibility, in Figure 3.2(b)

I estimate separate effects for treated ELAs within a 5km radius and outside the

5km radius. The figure clearly shows that the effect is positive for close treated

neighbors and negative for treated neighbors far away. A possible interpretation is

that there are two opposing effects, deterrence and displacement. When treating a

neighbor that is close to an untreated unit, the displacement effect is stronger and

the estimated effects are positive. On the other hand, for neighbors that are located

outside the 5km radius, there is no displacement effect and hence the deterrence

effect is stronger. However, it is important to keep in mind that small sample sizes

the estimates are very noisy and only a few of them are statistically significant.

3.3 Estimation and inference

The previous chapter showed how, under random assignment of the treatment,

all the parameters of interest can be recovered using a fully-saturated regression

with the number of coefficients equal to the number of average potential outcomes

to estimate, which assuming all groups are equally-sized, is 2(ng + 1).1 However,

as shown by the empirical applications described above, the main challenge for es-

1As stated in Assumption III.1, I will assume in this section that groups are equally sized.
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timation and inference arises when groups are large. A large number of units per

group requires estimating a large number of means in each of the cells defined by

the assignments (d, s). When groups have many units (as in households with many

siblings or classrooms with a large number of students), the probability of observing

some assignments can be close to zero and the number of observations in each cell can

be too small to estimate the average potential outcomes. For example, suppose the

treatment is assigned as an independent coin flip with probability p = 1/2. Under

this assignment we would expect most groups to have about half its units treated,

so when groups have, say, 10 units, 5 of them would be treated on average. The

probability of observing groups with zero or all treated units, on the other hand,

will be close to zero, and thus the average potential outcomes corresponding to these

“tail assignments” will be very hard to estimate.

So far, the analysis has been done taking group size as fixed. When group size is

fixed, small cells are a finite sample problem that disappears in a large enough sample.

To account for this phenomenon asymptotically, in this section I will generalize this

setting to allow group size to grow with the sample size. The goal is to answer the

question of how large can groups be, relative to the total sample size, to allow for valid

estimation and inference. More formally, I will provide conditions for consistency and

asymptotic normality in a setting in which group size is allowed to grow with the

sample size. The key issue will be to ensure that the number of observations in all

cells grows to infinity as the sample size increases.

I will start by defining two concepts that will play a crucial role in estima-

tion and inference. First, let An be the set of effective treatment assignments for

unit i in group g, that is, the set of assignments that are possible under a cer-

tain potential outcome model. Denote by |An| the cardinality of An. For ex-

ample, under SUTVA (no spillovers), An = {0, 1}. When exchangeability holds,

An = {(d, s) : d ∈ {0, 1}, s ∈ {0, 1, . . . , ng}} and |An| = 2(ng + 1). In the general

case without assuming exchangeability, An = {(d,dg) : d ∈ {0, 1},dg ∈ {0, 1}ng}
and |An| = 2ng+1. Hence, the less restrictive the potential outcome modeling as-

sumptions, the larger the number of average potential outcomes that need to be

estimated. The observed effective assignment for unit i in group g is denoted by Aig,

taking values in the set An. The potential outcome under effective assignment a is

given by Yig(a) with expected value E[Yig(a)] = µ(a), and the observed outcome is

Yig = Yig(Aig).
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Second, each treatment assignment mechanism determines a distribution π(·)
over An where π(a) = P[Aig = a] for a ∈ An. For example, in an experiment

without spillovers in which the treatment is assigned independently as a coin flip,

π(1) = P[Dig = 1] = p and π(0) = 1 − p. Under the same assignment, by allowing

for spillovers with exchangeability, π(d, s) = P[Dig = d, Sig = s] =
(
ng

s

)
ps+d(1 −

p)ng+1−s−d. In the latter case, as group size increases, |An| → ∞ and π(a) → 0 for

all a. Finally, define:

πn = min
a∈An

π(a)

which is the probability of the least likely treatment assignment. This probability,

together with the total sample size, will determine the number of observations in the

smallest assignment cell, that is, the number of observations available to estimate

the “hardest” average potential outcome.

Let Ag = (A1g, . . . ,Ang+1,g), A = (A1, . . . ,AG), and let yg(ag) = (Y1g(a1g),

Y2g(a2g), . . . , Yng+1,g(ang+1,g))
′ be the vector of potential outcomes in group g. I will

assume the following sampling scheme.

Assumption III.1 (Sampling and design)

(i) For g = 1, . . . , G, (yg(ag)
′,A′g) is a random sample.

(ii) Within each group g, the potential outcomes Yig(a) are independent and iden-

tically distributed across units for all a ∈ An, conditional on Ag.

(iii) ng = n for all g = 1, . . . , G.

(iv) |An| = O(G(n+ 1)πn), as G→∞ and n→∞.

Part (i) in Assumption III.1 states that the researcher has access to a sample of G

independent groups. As usual, potential outcomes are only observed for the real-

ized treatment assignments, so the vector of observed variables is (Y′g,A
′
g) where

Yg = yg(Ag). Part (ii) requires that the potential outcomes have the same distri-

bution within a group, and are independent conditional on the vector of treatment

assignments. This assumption rules out the presence of within-group correlations

or group-level random effects, but can be relaxed to arbitrary covariance structures

when the group size is fixed using standard cluster variance estimators, as discussed

later. Part (iii) imposes that all groups have equal size. When groups may have

different sizes (for example, households with 3, 4 or 5 siblings), the analysis can be
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performed separately for each group size. Section 2.6.3 in Chapter II further dis-

cusses the case of unequally-sized groups. Finally, part (iv) requires that the total

number of parameters does not grow faster than the effective sample size, that is,

the expected sample size in the smallest cell.

Random assignment of the treatment implies that potential outcomes are statisti-

cally independent of the treatment assignments. I restate this assumption as follows

to match the notation in this section.

Assumption III.2 (Independence) For all a ∈ An and for all n, i, and g,

Yig(a) ⊥⊥ Ag.

Given a sample of G groups with n + 1 units each, let 1ig(a) = 1(Aig = a),

Ng(a) =
∑n+1

i=1 1ig(a) and N(a) =
∑G

g=1Ng(a), so that Ng(a) is the total number of

observations receiving effective assignment a in group g and N(a) is the total number

of observations receiving effective assignment a in the sample. The estimator for µ(a)

is defined as:

µ̂(a) =


∑G

g=1

∑n+1
i=1 Yig1ig(a)

N(a)
if N(a) > 0

@ if N(a) = 0

Thus, the estimator for µ(a) is simply the sample average of the outcome for obser-

vations receiving assignment a, whenever there is at least one observation receiving

this assignment.

The following assumption imposes some regularity conditions that are required

for upcoming theorems.

Assumption III.3 (Moments)

(i) inf
n

min
a∈An

σ2(a) ≥ σ2 > 0, (ii) sup
n

max
a∈An

E[Yig(a)6] ≤ τ̄ 6 <∞

Then we have the following result.

Theorem III.1 (Effective sample size) Suppose Assumptions III.1,III.2 and III.3

hold, and consider an assignment mechanism π(·) such that π(a) > 0 for all a ∈ An.

If
log |An|
Gπ2

n

→ 0 (3.5)
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then for any c ∈ R,

P
[

min
a∈An

N(a) > c

]
→ 1.

Theorem III.1 says that, under condition (3.5), the number of observations in the

smallest cell will go to infinity, which implies that all the potential outcome esti-

mators are well defined asymptotically. This expression can be interpreted as an

invertibility condition for the design matrix of a linear regression model, in the spe-

cific case in which the regressors are mutually exclusive indicator variables. Condition

(3.5) formalizes the meaning of “large sample” in this context, and states that the

number of groups has to be large relative to the total number of parameters and

the probability of the least likely assignment. Because this condition implies part

1 of the above theorem, it is a low-level condition that justifies the assumption of

invertibility of the design matrix (see e.g. Assumption 2 in Cattaneo, Jansson, and

Newey, forthcoming).

Next, conditional on N(a) > 1 (which occurs with probability approaching one

under previously stated conditions), let

σ̂2(a) =

∑G
g=1

∑n+1
i=1 (Yig − µ̂(a))2

1ig(a)

N(a)

be the standard error estimators. Then we have the following result.

Theorem III.2 (Consistency and asymptotic normality) Under the conditions

of Theorem III.1,

max
a∈An

|µ̂(a)− µ(a)| = OP

(√
log |An|

G(n+ 1)πn

)
,

max
a∈An

∣∣σ̂2(a)− σ2(a)
∣∣ = OP

(√
log |An|

G(n+ 1)πn

)
,

(3.6)

and

max
a∈An

sup
x∈R

∣∣∣∣∣P
[
µ̂(a)− µ(a)√
V[µ̂(a)|A]

≤ x

]
− Φ(x)

∣∣∣∣∣ = O

(
1√

G(n+ 1)πn

)
(3.7)

where Φ(x) is the cdf of a standard Gaussian random variable.
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Equation (3.6) shows that both the average potential outcome and standard error

estimators converge in probability to their true values, uniformly over treatment as-

signments, at the rate
√

log |An|/(G(n+ 1)πn). The denominator in this rate can

be seen as the effective sample size in the smallest cell, whereas the numerator is a

penalty for having an increasing number of parameters. Equation (3.7) bounds the

difference between the distributions of the standardized potential outcomes estima-

tors and the standard normal distribution, uniformly over the treatment assignments.

Under condition (3.5), G(n+ 1)πn → 0, which gives asymptotic normality. However,

this bound also reveals the rate at which the distribution of the standardized esti-

mator approaches the standard normal, namely,
√
G(n+ 1)πn, where G(n+ 1)πn is

the minimum expected number of observations across cells, mina∈An E[N(a)].

Importantly, both the rate of convergence and the rate of the distributional ap-

proximation depend on the assignment mechanism through πn, and this finding has

key implications for the design of experiments to estimate spillovers, as discussed in

section 3.3.2.

Remark. The case of fixed group size corresponds to a setting in which the number

of units per group is small compared to the total sample size, so that the effect of

group size disappears asymptotically. In this context, condition (3.5) holds automat-

ically as long as the number of groups goes to infinity. Consistency and asymptotic

normality of the estimators can be achieved under the usual regularity conditions

as G → ∞, and the variance estimator can easily account for both heteroskedas-

ticity and intragroup correlation using standard techniques. The particular case

with homoskedasticity and a random-effects structure is analyzed by Baird, Bohren,

McIntosh, and Özler (forthcoming).

3.3.1 Bootstrap approximation

An alternative approach to perform inference in this setting is the bootstrap.

Since the challenge for inference is that cells can have too few observations for the

Gaussian distribution to provide a good approximation, the wild bootstrap (Wu,

1986; Mammen, 1993; Kline and Santos, 2012) can offer a more accurate approxima-

tion when groups are relatively large. This type of bootstrap can be performed by

defining weights wig ∈ {−1, 1} with probability 1/2 independent of the sample. The
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bootstrap estimator for µ(a) is given by:

µ̂∗(a) =

∑
g

∑
i Y
∗
ig1ig(a)

N(a)

whenever the denominator is non-zero, where

Y ∗ig1ig(a) = (Ȳ (a) + (Yig − Ȳ (a))wig)1ig(a) = (Ȳ (a) + ε̂igwig)1ig(a)

In what follows, P∗[·] denotes a probability calculated over the distribution of wig,

conditional on the sample, and E∗[·] and V∗[·] the expectation and variance calculated

over P∗[·]. The validity of the wild bootstrap is established in the following theorem.

Theorem III.3 (Wild bootstrap) Under the conditions of Theorem III.2,

max
a∈An

sup
x∈R

∣∣∣∣∣P∗
[
µ̂∗(a)− µ̂(a)√

V∗[µ̂∗(a)]
≤ x

]
− P

[
µ̂(a)− µ(a)√
V[µ̂(a)|A]

≤ x

]∣∣∣∣∣→P 0.

This theorem shows that the wild bootstrap can be used to approximate the distri-

bution of the estimator as an alternative to the standard normal, which may not be

accurate when cells have few observations. The performance of the wild bootstrap

will be illustrated in Section 3.4 using simulation data.

3.3.2 Implications for experimental design

Theorem III.2 shows that the quality of the standard normal as an approximation

to the distribution of the t-statistics depends on the treatment assignment mechanism

through πn. The intuition behind this result is that our ability to estimate each µ(a)

depends on the number of observations facing assignment a, and this number depends

on π(a). Since in principle all average potential outcomes are equally important, the

binding factor will be the number of observations in the smallest cell, controlled by

πn. When an assignment sets a value of πn that is very close to zero, the Gaussian

distribution may provide a poor approximation to the distribution of the estimators.

When designing an experiment to estimate spillover effects, the researcher can

choose distribution of treatment assignments π(·). Theorem III.2 provides a way

to rank different assignment mechanisms based on their rate of the approximation,

which gives a principled way to choose between different assignment mechanisms.
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The results below consider two treatment assignment mechanisms. The first one,

simple random assignment (SR), consists on assigning the treatment independently

at the individual level with probability P[Dig = 1] = p. This mechanism is used

in the experiment analyzed in the empirical illustration. The second mechanism

will be two-stage randomization. Although there are several ways to implement a

two-stage design, I will focus on the case in which each group is assigned a fixed

number of treated units between 0 and n + 1 with equal probability. For example,

if groups have size 3, then this mechanism assigns each group to receive 0, 1, 2 or

3 treated units with probability 1/4. This mechanism will be referred to as two-

stage randomization with fixed margins (2SR-FM). This mechanism is analyzed in

Baird, Bohren, McIntosh, and Özler (forthcoming), although its benefits in terms of

asymptotic inference have not been previously studied.

When required, it will be assumed that exchangeability holds on the first 6 mo-

ments of the potential outcomes, that is, for k = 1, . . . , 6, E[Y p
ig(d,dg)] = E[Y p

ig(d, d̃g)]

for any pair of vectors such that 1′gdg = 1′gd̃g. In particular, V[Yig(d,dg)] = σ2(d, s)

where s = 1′gdg.

Corollary III.1 (SR) Under simple random assignment, condition (3.5) holds when-

ever:
n+ 1

logG
→ 0 (3.8)

Corollary III.2 (2SR-FM) Under a 2SR-FM mechanism, condition (3.5) holds

whenever:
log(n+ 1)

logG
→ 0 (3.9)

In qualitative terms, both results imply that estimation and inference for spillover

effects require group size to be small relative to the total number of groups. Thus,

these results formalize the requirement of “many small groups” that is commonly in-

voked, for example, when estimating LIM models (see e.g. Davezies, D’Haultfoeuille,

and Fougère, 2009; Kline and Tamer, forthcoming).

Corollary III.1 shows that when the treatment is assigned using a simple random

assignment, group size has to be small relative to logG. Given the concavity of the

log function, this is a strong requirement; for instance, with a sample of G = 300

groups, having n = 5 neighbors already gives n + 1 > logG. Hence, groups have to

be very small relative to the sample size for inference to be asymptotically valid. The
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intuition behind this result is that under a SR, the probability of the tail assignments

(0, 0) and (1, n) decrease exponentially with group size, and thus they become very

small very rapidly.

On the other hand, Corollary III.2 shows that a 2SR-FM mechanism reduces the

requirement to log(n + 1)/ logG ≈ 0, so now the log of group size has to be small

compared to the log of the number of groups. This condition is much more easily

satisfied, which in practical terms implies that a 2SR-FM mechanism can handle

larger groups compared to SR. The intuition behind this result is that, by fixing the

number of treated units in each group, a 2SR-FM design has better control on how

small the probabilities of each assignment can be, hence facilitating the estimation

of the tail assignments.

The superior performance of the 2SR-FM compared to SR, formalized by the dif-

ference in convergence rates, relies crucially on the fact that we aim at estimating all

the average potential outcomes simultaneously. Focusing on all the average potential

outcomes is an agnostic approach that does not place any restrictions or priors on

the different direct and spillover effects. This approach extracts all the information

related to spillover effects, and can be used to test a wide array of hypotheses like

the absence of spillovers for treated units, linearity of spillovers, tipping points, etc.

In practice, however, it is possible that the researcher wants to focus on a subset

of parameters or a function thereof, such as the spillover effect of having half the

neighbors treated. These alternative choices have different implications in terms of

designs. I discuss these issues in Chapter IV.

3.4 Simulations

This section illustrates the above findings in a simulation setting. More precisely,

I will study the performance of the spillover effects estimators under simple random

assignment and 2SR-FM, as described in the previous section. The outcome will be

binary and generated by the following DGP:

P[Yig(d,dg) = 1] = µ(d, s) = 0.75 + 0.13× d+ 0.12× (1− d)1(s > 0)

which corresponds to the case with µ(0, 0) = 0.75, τ = 0.13, θs(0) = 0.12 for all s

and θs(1) = 0 for all s. That is, the spillover effects on an untreated unit is equal to
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0.12 whenever at least one neighbor is treated, and zero for treated units.

The simulations consider two assignment mechanisms: SR with P[Dig = 1] = 0.5

and 2SR-FM in which groups are equally likely to be assigned to have any number

from 0 to n+1 treated units. From Corollary III.2, this assignment mechanism weak-

ens the conditions for consistency and asymptotic normality from (n+ 1)/ logG→ 0

to log(n+ 1)/ logG→ 0.

The parameter of interest will be θn(0) = E[Yig(0, n)]− E[Yig(0, 0)], which is the

average spillover effect for an untreated units with all neighbors treated. In this

simulation, θn(0) = 0.12 This parameters can be seen as a “worst-case scenario”

given that the probability of the assignment (Dig, Sig) = (0, n) is one of the smallest

(in fact, the smallest under 2SR-FM). The estimator will be the difference in cell

means:

θ̂n(0) =

∑
g

∑
i Yig1ig(0, n)

N(0, n)
−
∑

g

∑
i Yig1ig(0, 0)

N(0, 0)

whenever N(0, n) > 1 and N(0, 0) > 1, so that both the estimator and its standard

error can be calculated. When at least one of the cells has one or zero observations,

the estimator is undefined.

Table 3.6 presents the results for a sample with 300 groups, for four group sizes,

n + 1 = 3, 6, 9, 12. The upper panel shows the results under SR while the lower

panel corresponds to the 2SR-FM assignment. In each panel, the first row gives the

value of the condition to achieve consistency and asymptotic normality; intuitively,

the closer this value is to zero, the better the approximation based on the Gaussian

distribution should be. The second and third rows show the bias and the variance

of θ̂n(0), calculated over the values of the simulated estimates conditional on the

estimate being well defined (i.e. when the cells have enough observations to calculate

the estimator). The third row shows the coverage rate of a 95% confidence interval

based on the Gaussian approximation. Finally, the last row, labeled “proportion of

empty cells”, gives the proportion of the simulations in which the estimator or its

standard error could not be calculated due to insufficient number of observations.

The simulations reveal that under both assignment mechanisms, the estimators

perform well for n = 3 and n = 5, with biases close to zero and coverage rate close to

95%. In both cases the coverage rate decreases as group size increases reaching about

92% in both cases. For n = 11, the variance under SR is much larger than the one

under 2SR-FM. These sharp differences in precision are due to the fact that, under
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Figure 3.3: Coverage rate of the 95% confidence interval.
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(a) θ̂n(0), G = 300
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(b) θ̂n(0), G = 600

Notes: the dashed lines show the coverage rate of the 95% confidence interval for θn(0) based on
the normal approximation under simple random assignment (red line) and two-stage randomization
(blue line) for a sample with 300 (left) and 600 (right) groups. The solid lines show the coverage
rates for the confidence interval constructed using wild bootstrap.

simple randomization, when n = 11 the probability of observing observations in the

cells (0, 0) and (1, n) is very close to zero; as shown in the fourth row of the upper

panel, the estimator is undefined in 98% of the simulations, and, when it is defined,

it relies on a very small number of observations. In fact, the expected number of

observations in these cells is about 1.6, not enough to calculate a standard error. On

the other hand, the variance under 2SR-FM is much more stable across group sizes,

and the estimator can be defined in 100% of the cases.

Table 3.7 shows the same results but for the wild bootstrap approach. Under

simple random assignment, the wild bootstrap confidence interval achieves better

coverage compared to the one based on the Gaussian approximation (94.9 versus

92), although both the normal-based and the bootstrap-based confidence intervals

perform similarly under 2SR. These results are also illustrated in Figure 3.3.
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Table 3.6: Simulation results, G = 300 - normal approximation

n = 2 n = 5 n = 8 n = 11

Simple rand.

(n+ 1)/ log(G) 0.5260 1.0519 1.5779 2.1039

Bias −0.0002 −0.0016 −0.0017 −0.0012

Variance 0.0027 0.0128 0.0416 0.0598

95% CI coverage 0.9522 0.9304 0.9152 0.9200

Prop. empty cells 0.0000 0.0083 0.5775 0.9833

Two-stage rand.

log(n+ 1)/ log(G) 0.1926 0.3141 0.3852 0.4357

Bias −0.0003 0.0006 −0.0012 −0.0014

Variance 0.0024 0.0034 0.0046 0.0059

95% CI coverage 0.9447 0.9355 0.9243 0.9147

Prop. empty cells 0.0000 0.0000 0.0000 0.0000

Table 3.7: Simulation results, G = 300 - wild bootstrap

n = 2 n = 5 n = 8 n = 11

Simple rand.

(n+ 1)/ log(G) 0.5260 1.0519 1.5779 2.1039

Bias −0.0002 −0.0015 −0.0016 −0.0017

Variance 0.0027 0.0121 0.0326 0.0312

95% CI coverage 0.9530 0.9361 0.9464 0.9495

Prop. empty cells 0.0000 0.0083 0.5775 0.9833

Two-stage rand.

log(n+ 1)/ log(G) 0.1926 0.3141 0.3852 0.4357

Bias −0.0003 0.0006 −0.0012 −0.0014

Variance 0.0023 0.0034 0.0045 0.0056

95% CI coverage 0.9462 0.9353 0.9178 0.9020

Prop. empty cells 0.0000 0.0000 0.0000 0.0000
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3.5 Conclusion

This chapter provides two empirical applications illustrating how to estimate

the average direct and spillover effects of a randomly assigned treatment based on

the identification results in Chapter II. Nonparametric estimation and inference are

analyzed in a setting in which both the number of groups and group size are allowed to

grow to approximate a setting in which groups can be “moderately” large. I establish

consistency and asymptotic normality of the nonparametric estimators under the

restriction that the number of parameters is small relative to the total sample size,

and show consistency of the wild bootstrap.

Finally, I show how my results can be used to guide the design of experiments to

estimate spillover effects. More precisely, my main result for inference reveals that

the rates at which the distribution of the estimators approach the normal distribution

depend on the treatment assignment mechanism. This finding provides a ranking

among experimental designs based on their performance in terms of asymptotic in-

ference. I illustrate this fact by comparing two commonly employed experimental

designs, a Bernoulli trial and a two-stage design, and show that the latter can provide

improved inference on the whole vector of spillover effects.

The framework in this chapter provides sufficient conditions for consistency and

asymptotic normality of the estimators when the number of parameters grows slowly

enough relative to the total sample size. In intuitive terms, this case corresponds to

the analysis of groups that are “moderately” large, such as households or classrooms.

Several empirically relevant cases may not fit well under this framework, for example,

when groups are villages or large firms. Drawing from the growing literature on high

dimensional models, future work should analyze estimation and inference when the

number of parameters is proportional to, or larger than, the sample size.
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CHAPTER IV

Further Issues in the Analysis of Spillover Effects

4.1 Introduction

This chapter addresses some issues related to the practical implementation of the

results in the previous chapters. Section 4.2 discusses the inclusion of covariates.

In practice, a researcher may want to include covariates in the analysis even when

the treatment is randomly assigned to attenuate finite sample biases and to improve

precision. Covariates can also be used to relax the random assignment assumption,

replacing it by a conditional independence assumption, or to relax the exchangeability

assumption.

Imperfect compliance, which occurs when units do not comply with their treat-

ment assignments, is a pervasive problem in randomized controlled trials. Section

4.3 extends the setup in Chapter II to include this possibility. I define parameters of

interest in this setting and analyze identification of these parameters by considering

two cases: spillovers on treatment take-up and spillovers on outcomes.

Finally, Section 4.4 discusses experimental design for estimating spillover effects,

considering different sets of parameters of interest, assignment mechanisms and op-

timality criteria.

4.2 Including covariates

Because estimation in this dissertation can be performed using linear regressions,

the inclusion of exogenous covariates is straightforward. There are several reasons

why one may want to include covariates when estimating direct and spillover effects.

First, pre-treatment characteristics may help reduce the variability of the estimators

and decrease small-sample bias, which is standard practice when analyzing randomly
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assigned programs. Covariates can also help get valid inference when the assignment

mechanisms stratifies on baseline covariates (Bugni, Canay, and Shaikh, forthcom-

ing). This can be done by simply augmenting Equation (2.5) with a vector of covari-

ates γ ′xig which can vary at the unit or at the group level. The covariates can also be

interacted with the treatment assignment indicators to explore effect heterogeneity

across observable characteristics (for example, by separately estimating effects for

males and females), although this strategy can decrease precision.

A second reason to include exogenous covariates is to relax the mean independence

assumption in observational studies. More precisely, if Xg is a matrix of covariates,

a conditional mean-independence assumption would be

E[Yig(d,dg)|Xg, Dig,D(i)g] = E[Yig(d,dg)|Xg]

which is a version of the standard unconfoundeness condition (see e.g. Imbens, 2004).

The vector of covariates can include both individual-level and group-level character-

istics.

Third, the exchangeability assumption can be relaxed by assuming it holds after

conditioning on covariates, so that for any pair of treatment assignments dg and d̃g

with the same number of ones,

E[Yig(d,dg)|Xg] = E[Yig(d, d̃g)|Xg]

For example, exchangeability can be assumed to hold for all siblings with the same

age, gender or going to the same school.

All the results in previous chapters can be adapted to hold after conditioning on

covariates. In terms of implementation, when the covariates are discrete the param-

eters of interest can be estimated at each possible value of the matrix Xg, although

this strategy can worsen the dimensionality problem. Alternatively, covariates can be

included in a regression framework after imposing parametric assumptions, for exam-

ple, assuming the covariates enter linearly, at the risk of introducing misspecification

bias.
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4.3 Imperfect compliance

Imperfect compliance, which occurs when units do not comply with their treat-

ment assignments, is a pervasive problem when conducting randomized controlled

trials. Imbens and Angrist (1994) showed that, in the absence of spillovers, instru-

menting treatment status with treatment assignment can, under some conditions,

point identify the average treatment effect on the compliers, that is, the subpopula-

tion who is pushed by the instrument to get the treatment.

Very few studies have considered identification and estimation of spillover effects

under imperfect compliance. Duflo and Saez (2003) analyze social network effects

in retirement plans enrollment decisions within a linear regression framework, while

Eckles, Kizilcec, and Bakshy (2016) conduct an experiment encouraging peers to

provide feedback in a large social network. Sobel (2006) studied the performance of

the usual IV strategies in the presence of interference in a finite population setting

with non-random potential outcomes. Within the same framework, Kang and Imbens

(2016) extend the results in Hudgens and Halloran (2008) to account for imperfect

compliance. Their paper considers estimation of spillover effects in two-stage designs

when spillovers occur on outcomes but not on treatment status.

In this section, I generalize the framework in Chapter II to analyze spillovers

under imperfect compliance. Under imperfect compliance, spillovers can occur at

two different stages: treatment take-up and outcomes. The first stage occurs when

the probability of an individual receiving the treatment depends on whether their

neighbors are assigned to the treatment or not. For instance, consider the experiment

in Duflo and Saez (2003), in which they encourage university employees to attend

a retirement benefits fair through a letter and a cash reward. In this setting, it is

possible that an employee does not receive the letter but decides to attend anyway

because many of her coworkers were encouraged to attend. The second stage in

which spillovers can materialize is the outcome stage. In the previous example, an

individual who did not attend the benefits fair can still decide to enroll in a retirement

plan by learning about the plan through social interactions with individuals who did

attend the fair. I will separately discuss the cases in which one of these channels is

assumed away.

67



4.3.1 Setup

Let Zig ∈ {0, 1} denote the (randomized) treatment assignment, with (Zig,Z(i)g)

being the vector of treatment assignments in group g, taking values (z, zg) ∈ {0, 1}×
Zg. Expanding the previous notation, Dig(z, zg) will denote potential treatment

status of unit i in group g, and Djig(z, zg) will be the treatment status of unit i’s

j-th neighbor. Similarly, Zj
ig is unit i’s j-th neighbor’s treatment assignment.

Assumption IV.1 (existence of instruments)

1. (independence) For all i and g, (Yig(d,dg, z, zg), Dig(z, zg)) ⊥⊥ (Zig,Z(i)g) for

all d, dg, z, zg.

2. (exclusion restriction) Yig(d,dg, z, zg) = Yig(d,dg).

3. (relevance) E[Dig|Zig = z,Z(i)g = zg] is a non-trivial function of (z, zg).

This assumption extends the usual instrumental-variables assumption to the case of

spillovers. Part 1 imposes statistical independence between treatment assignment

and potential outcomes and treatment statuses. Parts 2 and 3 assert that the instru-

ment does not have a direct effect on the potential outcome but is correlated with

observed treatment assignment.

Both the potential outcome and the potential treatment status can in principle

depend on the whole vector of treatment assignments, which, as discussed previ-

ously, has the advantage of being very flexible at the cost of a high dimensionality

and strong data requirements. To simplify the setting, I will assume treatment status

depends on own treatment assignment and number of assigned neighbors, and po-

tential outcomes depend on own treatment status and number of treated neighbors.

Let Wig =
∑ng

j=1 Zjig be the number of neighbors assigned to treatment. I will also

consider Bernoulli assignment mechanism in which Zig is assigned as a coin flip.

4.3.2 Case 1: spillovers on treatment status

When spillovers only occur on the treatment take-up stage, individual outcomes

are not affected by neighbors’ treatment status, so that Yig(d,dg) = Yig(d). Assuming

exchangeability in the first stage, the observed outcome is therefore:

Yig = Yig(0) + τigDig(Zig,Wig) (4.1)
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The difference in average observed outcomes for assignments (z, w) and (z′, w′)

is:

∆(z, w, z′, w′) = E[Yig|Zig = z,Wig = w]− E[Yig|Zig = z′,Wig = w′]

= E[τig(Dig(z, w)−Dig(z
′, w′))]

= E[τig|Dig(z, w) > Dig(z
′, w′)]P[Dig(z, w) > Dig(z

′, w′)]

− E[τig|Dig(z, w) < Dig(z
′, w′)]P[Dig(z, w) < Dig(z

′, w′)]

A fact that stems from the above expression is that LATE-type estimands are iden-

tified only for the assignments such that either P[Dig(z, w) > Dig(z
′, w′)] = 0 or

P[Dig(z, w) < Dig(z
′, w′)] = 0, a well-known fact (see e.g. Imbens and Angrist,

1994). The following result formalizes this idea in the presence of spillovers. While

the result is analogous to Theorem 1 in Imbens and Angrist (1994), I state it as a

proposition for future reference.

Proposition IV.1 (Identification of LATE) Under Assumption IV.1, for any

pair of assignments (z, w) and (z′, w′) such that P[Dig(z, w) < Dig(z
′, w′)] = 0 and

P[Dig(z, w) > Dig(z
′, w′)] > 0,

E[τig|Dig(z, w) > Dig(z
′, w′)] =

E[Yig|Zig = z,Wig = w]− E[Yig|Zig = z′,Wig = w′]

E[Dig|Zig = z,Wig = w]− E[Dig|Zig = z′,Wig = w′]

For instance, one may be willing to assume that P[Dig(1, w) < Dig(0, w)] = 0 for

all w so that given a number of neighbors assigned to treatment, being assigned to

treatment can never reduce the likelihood of receiving it, which is analogous to the

monotonicity assumption in Imbens and Angrist (1994). In particular, the following

parameters have clear interpretations. First,

E[τig|Dig(1, w) > Dig(0, w)]

is the average treatment effect for the compliers with w neighbors assigned to treat-

ment. Observe that this is a function of w, so there are in fact ng + 1 of these

parameters. On the other hand, for example,

E[τig|Dig(0, w + k) > Dig(0, w)]
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is the average treatment effect for units assigned to control but are pushed to get

the treatment by k additional neighbors being assigned to treatment.

In fact, Equation 4.1 can be seen as a standard IV setting with a multivalued

instrument and a binary treatment, where the values of the instrument are given

by the different possible combinations of own and neighbors’ assignments. For this

reason, Proposition IV.1 is very similar to the result in Imbens and Angrist (1994).

The main difference is that Proposition IV.1 does not require monotonicity to hold

equally for all treatment assignments. More precisely, it could be the case that for

some values the instrument never decreases the probability of receiving treatment

while for other values the instrument never increases it, and the LATEs for those

assignments are identified (although for different populations). The proposition also

allows for some assignments to violate monotonicity, but the corresponding LATEs

are not identified.

It is also interesting to analyze identification using the methods usually employed

by applied researchers. Under imperfect compliance, the most common estimand of

interest is the Wald estimand:

τW =
E[Yig|Zig = 1]− E[Yig|Zig = 0]

E[Yig|Dig = 1]− E[Dig|Zig = 0]

Without spillovers, this ratio equals the average treatment effect for compliers (Im-

bens and Angrist, 1994). When spillovers can occur at the treatment take-up stage,

and assuming P[Dig(1, w) < Dig(0, w)] = 0 for all w, this estimand becomes:

τW =

ng∑
w=0

E[τig|Dig(1, w) > Dig(0, w)]ρ(w)

where

ρ(w) =
P[Dig(1, w) > Dig(0, w)]P[Wig = w]∑ng

w=0 P[Dig(1, w) > Dig(0, w)]P[Wig = w]

so τW recovers an average of LATEs weighted by the proportion of each type of

complier in the population and the probability of observing each possible number of

neighbors assigned to treatment. This result is similar to the ones in Angrist and

Imbens (1995) for the case of variable treatment intensity.

The presence of spillovers on treatment status is actually straightforward to test

in practice by exploring the variation in Dig induced by (Zig,Z(i)g). By the previous
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results above, assuming exchangeability for treatment take-up,

E[Dig|Zig = z,Wig] = E[Dig(z)] +

ng∑
w=1

δw(z)1(Wig = w)

so the average spillover effects on treatment take-up, captured by the coefficients

δw(z). Then, failure to reject the null that δw(z) = 0 for w = 1, . . . , ng would

indicate the absence of average spillover effects in treatment status.

4.3.3 Case 2: spillovers on outcomes

When spillovers do not affect treatment take-up, we have that Dig(z, zg) = Dig(z)

which reduces the number of potential treatment statuses to two. I will maintain the

assumption that potential outcomes satisfy exchangeability, but I will strengthen the

condition to hold on the potential outcome function, instead of just the first moment,

to simplify the discussion. I will refer to this condition as strong exchangeability.

Assumption IV.2 (Strong exchangeability) For any assignment (d,dg), the po-

tential outcome is given by:

Yig(d,dg) = Yig(d, sg), 1′gdg = sg.

This condition implies that the potential outcome can be written as:

Yig(d, s) = Yig(d, 0) + θsig(d)

where

θsig(d) = Yig(d, s)− Yig(d, 0).

As is customary in the literature, I will assume monotonicity, which means that being

assigned to treatment cannot decrease the probability of receiving treatment.

Assumption IV.3 (Monotonicity) P[Dig(1) < Dig(0)] = 0.

The number of treated neighbors for each unit will be given by Sig(zg). Exchange-

ability of potential outcomes is not enough to ensure that Sig(zg) is a function of
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1′gzg = wg. More precisely, without spillovers in treatment take-up we have that:

Sig(zg) =

ng∑
j=1

Djig(zj) =

ng∑
j=1

Djig(0) +

ng∑
j=1

(Djig(1)−Djig(0))zj (4.2)

We see from the above equation that Sig(zg) can be written as a function of wg

only when Djig(1)−Djig(0) does not depend on j, which means that the instrument

has the same effect on all units. The assumption of relevance of the instrument

prevents this difference to be zero for every unit, and hence if the instrument has

the same effect on the treatment status of all units, either all units are compliers (so

there is perfect compliance) or all units are defiers. Hence, Sig(zg) will depend on

the whole vector of treatment assignments whenever compliance is imperfect. The

intuition behind this fact is that neighbor identities cannot be irrelevant as different

neighbors can have different compliance types. As a result, even when the potential

outcome only depends on the treatment status vector through the number of treated

neighbors, in general the number of neighbors assigned to treatment is not enough

to provide identification, and the whole vector Z(i)g has to be used instead.

Under monotonicity, Dig(0) = 1 for always-takers and Dig(0) = 0 for compli-

ers and never-takers. On the other hand, Dig(1) − Dig(0) = 1 for compliers and

Dig(1) − Dig(0) = 0 for always-takers and never-takers. Hence, Sig(zg) equals the

number of unit i’s neighbors that are always-takers plus the number of treated com-

plier neighbors given a treatment assignment zg. Furthermore, monotonicity implies

that Sig(zg) is non-decreasing in 1′gzg = wg, the number of neighbors assigned to

treatment.

Under Assumptions IV.1 and IV.2, we have that

E[Yig|Zig = z,Z(i)g = zg] = E[Yig(0)] + E[τigDig(z)]

+

ng∑
s=1

E[θsig(Dig(z))1(Sig(zg) = s)]
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The difference between units assigned and not assigned to treatment given zg is:

∆10(zg) : = E[Yig|Zig = 1,Z(i)g = zg]− E[Yig|Zig = 0,Z(i)g = zg]

= E[τig(Dig(1)−Dig(0))]

+

ng∑
s=1

E[(θsig(Dig(1))− θsig(Dig(0)))1(Sig(zg) = s)]

= E[τig(Dig(1)−Dig(0))]

+

ng∑
s=1

E[(θsig(1)− θsig(0))(Dig(1)−Dig(0))1(Sig(zg) = s)]

and by monotonicity,

∆10(zg) = E[τig|Dig(1) > Dig(0)]P[Dig(1) > Dig(0)]

+

ng∑
s=1

E[θsig(1)− θsig(0)|Dig(1) > Dig(0), Sig(zg) = s]

× P[Dig(1) > Dig(0)]P[Sig(zg) = s]

The first term is the direct intention-to-treat (ITT) effect, which is the LATE multi-

plied by the proportion of compliers in the population. The second term is a weighted

average of the average difference between spillover effects under treatment and con-

trol for different number of treated neighbors, conditional on being a complier and

on having s treated neighbors given assignment zg. This expression shows that, even

after controlling for neighbors’ treatment assignment, the difference between treated

and control units does not in general capture a treatment effect, but a combination

of average direct and indirect effects. As a result, the usual instrumental-variables

strategy that divides by compliance rates will recover:

E[Yig|Zig = 1,Z(i)g = zg]− E[Yig|Zig = 0,Z(i)g = zg]

E[Dig|Zig = 1]− E[Dig|Zig = 0]
=

E[τig|Dig(1) > Dig(0)] +

ng∑
s=1

E[θsig(1)− θsig(0)|Dig(1) > Dig(0), Sig(zg) = s]

× P[Sig(zg) = s]
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Observe that this expression is similar to the formula for the difference in means

(Equation (2.7)) in that it captures a direct average treatment effect plus a weighted

average of average spillover effects. In both cases, the estimands fail to correctly

control for neighbors’ treatment status: in the difference in means, because neigh-

bors’ treatment status is ignored; in the Wald estimand, because under imperfect

compliance treatment assignment does not completely determine treatment status.

There are some particular cases in which ∆10(zg) can recover an ITT effect. For

example, if for any number of treated neighbors, the spillover effect on the outcome

is the same under treatment and control, θsig(1) = θsig(0), then the second term

disappears. The same would happen if all the terms inside the sum, E[θsig(1) −
θsig(0)|Dig(1) > Dig(0), Sig(zg) = s], are equal to zero. Another case in which the

second term vanishes is when for some assignment zg, P[Sig(zg) = 0] = 1, that is, for

some given neighbors’ assignment zg, no neighbor receives the treatment. When any

of these conditions hold, dividing ∆10(zg) by E[Dig|Zig = 1] − E[Dig|Zig = 0] yields

the direct LATE, E[τig|Dig(1) > Dig(0)].

On the other hand, fixing own assignment and using variation in neighbors’ as-

signment,

∆z(zg, z̃g) : = E[Yig|Zig = z,Z(i)g = zg]− E[Yig|Zig = z,Z(i)g = z̃g]

=

ng∑
s=1

E[θsig(Dig(z))(1(Sig(zg) = s)− 1(Sig(z̃g) = s))]

=

ng∑
s=1

E[θsig(Dig(z))|Sig(zg) = s, Sig(z̃g) 6= s]P[Sig(zg) = s, Sig(z̃g) 6= s]

−
ng∑
s=1

E[θsig(Dig(z))|Sig(zg) 6= s, Sig(z̃g) = s]P[Sig(zg) 6= s, Sig(z̃g) = s]

Unlike the no-spillovers case, monotonicity is not enough to ensure that either

P[Sig(zg) = s, Sig(z̃g) 6= s] = 0 or P[Sig(zg) 6= s, Sig(z̃g) = s] = 0. In fact, these

two probabilities will in general be non-zero for at least some values of s. Suppose

for example that 1′gzg = wg > 1′gz̃g = w̃g so that zg assigns more units to treatment

than z̃g. By monotonicity, Sig(zg) > Sig(z̃g), and thus P[Sig(zg) = s, Sig(z̃g) 6= s]

will be non-zero for larger values of s, whereas P[Sig(zg) 6= s, Sig(z̃g) = s] will be

non-zero for low values of s. This fact highlights why average spillover effects are

not identified without further restrictions.
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Adding more structure to the problem can help give this estimand a clearer

interpretation. In particular, suppose that noncompliance is one sided:

Assumption IV.4 (One-sided noncompliance) P[Dig(0) = 0] = 1.

This assumption asserts that individuals assigned to control will not get the treat-

ment, and thus the only type of noncompliance occurs because units can refuse to get

treatment. In other words, Assumption IV.4 rules out the presence of always-takers,

and therefore under this condition Sig(zg) equals the number of treated complier

neighbors. In particular, Sig(0g) = 0. Therefore,

∆0(zg,0g) : = E[Yig|Zig = 0,Z(i)g = zg]− E[Yig|Zig = 0,Z(i)g = 0g]

=

wg∑
s=1

E[θsig(0)|Sig(zg) = s]P[Sig(zg) = s]

Each term E[θsig(0)|Sig(zg) = s] is an average spillover effect for the subgroup of units

that have s complier neighbors assigned to treatment given assignment zg. These

terms are combined into an average, weighted by the probability of having s complier

neighbors assigned to treatment given zg. Note that the sum goes from 1 to wg, since

when a vector zg assigns wg units to treatment, the number of complier neighbors

assigned to treatment cannot exceed wg. To get a more precise characterization

of the weighs, recall that in this case Sig(zg) =
∑ng

j=1 Djig(1)zj =
∑

zj=1Djig(1) ∼
Binomial(wg, pc) where pc = P[Dig(1) = 1] = P[complier]. Therefore,

P[Sig(zg) = s] =

(
wg
s

)
psc(1− pc)wg−s

While the parameters E[θsig(0)|Sig(zg) = s] are not separately identified, the weights

are, using the fact that under one-sided noncompliance, pc = E[Dig|Zig = 1].

4.4 Experimental design

Given the difficulties that can arise in practice when analyzing spillover effects,

experimental design plays a crucial role for estimation and inference. Among the

few studies on experimental design, Hirano and Hahn (2010) consider variance min-

imization in a two-stage design under a linear model like the one used in Duflo and
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Saez (2003), whereas Baird, Bohren, McIntosh, and Özler (forthcoming) analyze sta-

tistical power for spillover effect estimation in a setting with small groups (that is,

when n is fixed).

In a related but different literature, Toulis and Kao (2013), Kao (2017) and

Eckles, Karrer, and Ugander (2017) study design of experiments in networks. The

main challenge in this literature is to find treatment assignment mechanisms that

ensure that the different potential outcomes of interest can be observed or estimated

in a setting in which a unit’s assignment can affect the assignments of all the other

units in the population.

The results in Chapter III suggests several guidelines and criteria for the design

of experiments to estimate spillover effects. In this section, I start by defining the

parameters of interest and discussing the implications of this choice on the design

of experiments. I then consider two criteria for experimental design. First, MSE

optimality trades off bias and variance of the spillover effects estimators. When

focusing on unbiased estimators, this problem reduces to minimizing an asymptotic

variance, which is the case considered by Hirano and Hahn (2010) and Baird, Bohren,

McIntosh, and Özler (forthcoming). When trying to estimate a possible large number

of spillover effects, however, estimation may be complicated by the possibility of

empty cells as discussed in Chapter III. I propose an approximation to the MSE of

the nonparametric spillover estimators that incorporates this possibility.

Finally, I discuss optimality in terms of the rates of convergence of the estimators.

As suggested by Theorem III.2, the treatment assignment mechanism plays a crucial

role in the asymptotic properties of the estimators, and this fact can be exploited to

improve inference through the design of the experiment.

4.4.1 Defining the parameters of interest

Chapter III showed how a two-stage randomization design that fixes the number

of treated units in each group can provide improved performance compared to simple

random assignment. The intuition behind this result is that the former mechanism

spreads observations more evenly across the cells defined by the treatment assign-

ments. The improvement in terms of inference given by the two-stage design relies on

the fact that we are trying to estimate all average potential outcomes simultaneously,

and hence we need to worry about the probability of observing units under the least

likely assignments.
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More generally, the parameter of interest is a function of the vector of potential

outcomes. Letting E = (E[Yig(0, 0)], . . . ,E[Yig(1, n)]), the parameter of interest is:

β = β(E)

The case analyzed in this dissertation corresponds to β(·) being the identity func-

tion, β(E) = E . More generally, β(·) can select, for example, a subset of potential

outcomes, like the potential outcomes under no treatment, β(E) = (E[Yig(0, 0)], . . . ,

E[Yig(0, n)]). This would be the parameter of interest if previous literature or a

theoretical model suggested no spillover effects on treated units. Another possibility

would be to focus on the total effect of the program, E[Yig(1, n)]−E[Yig(0, 0)], which

is the effect of treating everyone in the group compared to treating nobody. In this

case, β(E) = E[Yig(1, n)]− E[Yig(0, 0)].

Different choices of β(·) have different implications for experimental design, since

each choice determines the importance given to the sample size in each assignment

cell. For instance, a cluster randomized trial in which the treatment is assigned at

the group level may be appropriate when β(E) = E[Yig(1, n)]−E[Yig(0, 0)], whereas a

two-stage randomization with fixed margins can be more appropriate when β(E) = E .

One way to accommodate different choices for β(·) within the framework de-

scribed above is to let the set of effective treatment assignments An defined in Section

3.3 depend on β(·), that is, An = An(β). In this way, An(β) will contain the set of

assignments that are possible under a certain potential outcome model and that are

chosen by the researcher as parameters of interest. For instance, when the goal is to

estimate the effect of everybody being treated versus nobody being treated, the set of

effective treatment assignments can be defined as An = {(0,0g), (1,1g)}. The distri-

bution over the possible treatment assignments contains only two values, π and 1−π,

where π is the probability of a whole group being treated, π = P[Dig = 0,D(i)g = 0g].

In this case, πn = min{π, 1− π}.
Therefore, any possible choice for β(·) can be analyzed by appropriately redefining

the set An to contain only the relevant assignments.

4.4.2 Assignment mechanisms

In this section I will consider two families of assignment mechanisms that are the

most commonly employed in practice. The first one, the Bernoulli trial, assigns the
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treatment independently and with equal probability to each unit in the sample.

Definition IV.1 (Bernoulli trial) a Bernoulli trial is an assignment mechanism

in which:

1. P[Dig = 1] = p ∈ (0, 1) for all i, g.

2. For all (d,dg) ∈ {0, 1}×Dg, P[Dig = d,D(i)g = dg] = P[Dig = d]
∏ng

j=1 P[Djig =

dj].

The first part of Definition IV.1 says that each unit in group g has the same probabil-

ity of treatment, and this probability is neither zero nor one so that both treatment

and control status are possible. The second part imposes independence between the

treatment assignments of units within a group. This assignment mechanism corre-

sponds to the case in which the treatment is assigned as a simple coin toss for each

unit. Other mechanisms like fixed-margins randomization, in which the number of

treated units in each group is fixed, satisfy part 1 but not part 2, since, for example,

the probability of an individual getting the treatment conditional on another unit

having the treatment is lower than the unconditional probability of receiving the

treatment.

The second family of assignment mechanisms that I consider is the family of

two-stage designs. These designs are nowadays common practice when estimating

spillover effects (see e.g. Duflo and Saez, 2003; Hudgens and Halloran, 2008; Crépon,

Duflo, Gurgand, Rathelot, and Zamora, 2013; Baird, Bohren, McIntosh, and Özler,

forthcoming). Generally, a two-stage design consists on dividing the groups g =

1, . . . , G into K mutually exclusive categories, denoted by a random variable Tg =

0, 1, . . . , K − 1, and then assigning treatment at the individual level according to

some distribution that depends on the realized value of Tg.

Definition IV.2 (2SR) A two-stage design (2SR) is a treatment assignment mech-

anism in which:

1. Groups are assigned a value of Tg = 0, 1, . . . , K−1 with probability P[Tg = t] =

qt ∈ (0, 1) where
∑K−1

t=0 qt = 1 and P[T1 = t1, . . . , TG = tG] =
∏G

g=1 qtg .

2. In a group with Tg = t, individual-level treatment is assigned according to some

distribution P[Dig = d,D(i)g = dg|Tg = t].
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Part 1 in Definition IV.2 asserts that group categories Tg are assigned independently

and with the same probability to each group. Part 2 indicates that the realized value

of Tg determines the probability of individual-level treatment assignments within

each group. The literature has considered two variations on the 2SR mechanism. I

will formalize these two versions as follows.

Definition IV.3 (2SR-BE) A two-stage design with Bernoulli trials (2SR-BE) is

a 2SR mechanism in which:

1. P[Dig = d,D(i)g = dg|Tg = t] = P[Dig = d|Tg = t]
∏ng+1

j=1 P[Djig = dj|Tg = t],

2. P[Dig = 1|Tg = t] = pt for all i, g,

3. p0 < p1 < . . . < pK−1.

Part 1 in Definition IV.3 states that within each category Tg = t individual treatment

is assigned following a simple randomization mechanism. Parts 2 and 3 indicate

that all units with the same assignment have the same treatment probability, and

that the categories are ordered in such a way that the probability of treatment

increases (this ordering is without loss of generality). A common way to implement

this randomization scheme is to set K = 2, P[Dig = 1|Tg = 0] = p0 = 0 and

P[Dig = 1|Tg = 1] = p1 > 0. Hence, in this case groups are split into two categories;

group assigned to category Tg = 0 are pure control groups and no unit is treated,

whereas in groups assigned to category Tg = 1 units are assigned to treatment with

probability p1. The extreme case where p1 = 1 corresponds to a cluster-randomized

trial, as in Miguel and Kremer (2004). Duflo and Saez (2003) use this design with

p1 = 0.5, while Ichino and Schündeln (2012) set p1 = 0.25. On the other hand,

Crépon, Duflo, Gurgand, Rathelot, and Zamora (2013) set K = 5, p0 = 0, p1 = 0.25,

p2 = 0.5, p3 = 0.75 and p4 = 1.

The second type of 2SR design fixed the number of treated units in each group,

instead of assignment treatment with a specified probability.

Definition IV.4 (2S-FM) A two-stage design with fixed margins (2SR-FM) is a

2SR assignment mechanism in which:

1. For each t there is an integer mt such that a group with Tg = t will have exactly

mt treated and n+ 1−mt controls,
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2. P[Dig = d,D(i)g = d|Tg = t] =
(
n+1
mt

)−1
1(mt = d+ s) with 1′gdg = s,

3. m0 ≤ m1 ≤ . . . ≤ mK−1.

According to Definition IV.4, in a 2SR-FM each realization Tg = t for group g

determines a fixed number of treated units mt in that group. Part 2 gives the

probability of each assignment implied by this mechanism, and part 3 simply sorts

the values ofmt in increasing order. This mechanism implies that there is no variation

in the number of treated units conditional on Tg = t. Baird, Bohren, McIntosh, and

Özler (forthcoming) study a 2SR-FM mechanism where K = n+ 1.

4.4.3 Optimality criteria for experimental design

4.4.3.1 Point estimation and MSE

The MSE is a natural criterion to decide how to optimally design an experiment

balancing the bias and the variance of an estimator. Start by considering the simple

case in which each group has only two units so that G → ∞ and n = 1. The

parameters can be estimated through the regression model:

Yig = α + τDig + θ0D1ig(1−Dig) + θ1D1igDig + uig

= α + x′igβ + uig

The estimator is conditionally unbiased when the treatment is randomly assigned.

On the other hand, assuming homoskedasticity, under standard conditions,

√
G(β̂ − β)→d N (0,V)

where

V = 2σ2

 p(1− p) p(π11 − p) π11(1− p)
π11(1− p) π01(1− π01) −π01π11

π11(1− p) −π01π11 π11(1− π11)


−1

with p = P[Dig = 1] and πd1 = P[Dig = d,D1ig = 1]. The limiting variance is

therefore a function of the assignment mechanism through (p, π01, π11), and this

assignment can be chosen to minimize some scalar function of the variance such as

its trace. For example, if the treatment follows a Bernoulli trial, the distribution is

determined by p, which can be easily chosen to minimize the trace of the matrix.
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In general, let π(·) be the distribution of the treatment assignments in a family of

distributions Π. The variance matrix of interest V is a function of π(·) and possibly

a vector of nuisance parameters ξ. For instance, under homoskedasticity ξ = σ2, the

variance of the error term, whereas in a random effects scenario ξ = (σ2
u, σ

2
η). More

generally, ξ contains the variances and covariances of the potential outcomes. An

optimal design problem is given by:

min
π(·)∈Π

ψ ([V(π(·), ξ)])

where ψ(·) is a criterion function. A natural choice for a criterion function would be

ψ(A) = trace(V), which corresponds to minimizing the sum of the variances of the

estimators. Another possible choice, more in line with the discussion in the previous

section, is to minimize the largest variance. Other criteria used in the literature of

optimal design are ψ(V) = −det(V) or ψ(V) = −λmin(V), the minimum eigenvalue

of V (see e.g. Silvey, 1980; Melas, 2006). Under a similar approach, Hirano and

Hahn (2010) study variance minimization in two-categories two-stage designs like

the one used by Duflo and Saez (2003), while Baird, Bohren, McIntosh, and Özler

(forthcoming) analyze power in two-stage designs with fixed-margins randomization.

Because under random assignment the average potential outcome estimators are

conditionally unbiased, the MSE reduces to the variance of the estimators. The

approach outlined above is appropriate for the case in which groups are small. When

groups are moderately large, however, the MSE needs to account for the possibility

that the estimator is not defined due to insufficient observations, which can introduce

a bias in finite samples. Following the notation in the previous chapter, define the

estimator:

µ̂(a) =

∑
g

∑
i Yig(a)1ig(a)

N(a)
1(N(a) > 0)

The estimator is set to zero when the cell corresponding to assignment a is empty

(the choice of the number zero is immaterial, and can be changed by any other

constant). In this setting, the conditional bias of the estimator is given by

E[µ̂(a)|A]− µ(a) = −µ(a)1(N(a) = 0)
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and the conditional variance is

V[µ̂(a)|A] =
σ2(a)

N(a)
1(N(a) > 0)

so the MSE can be approximated by

MSE(a) ≈ µ(a)2P[N(a) = 0]2 +
σ2(a)

G(n+ 1)π(a)

Using that P[N(a) = 0] ≤ (1− π(a))G, it follows that:

MSE(a) ≤ max
a

µ(a)2(1− πn)2G +
maxa σ

2(a)

G(n+ 1)πn

where as before πn = mina π(a). The optimal design problem in this case is given by

min
π(·)∈Π

{
max

a
µ(a)2(1− πn)2G +

maxa σ
2(a)

G(n+ 1)πn

}
Although the criterion is different from the one in Section 4.4.3.2, both problems

amount to choosing the distribution π(·) ∈ Π that makes πn as large as possible.

4.4.3.2 Inference and rates of convergence

The results in Section 3.3 reveal that (i) estimators for each µ̂(a) have different

rates and (ii) both the rates of convergence and the rate at which the normal dis-

tribution approaches the distribution of the estimators depend on the assignment

mechanism. In particular, when the goal is to estimate and conduct inference on the

whole vector of average potential outcomes, the assignment mechanism enters the

rates through the term πn = mina π(a). These facts suggest a principled criterion

for experimental design: choose the assignment mechanism π(·) that makes these

rates as fast as possible. In practical terms, this criterion corresponds to choosing

the assignment mechanism such that (i) the estimators are “as close as possible” to

their true values (in terms of consistency) and (ii) the normal is as good as possible

an approximation to the distribution of the estimators. Given that normal-based

asymptotic inference is the most common approach to conduct inference in many

fields in the social sciences, these feature has a large practical appeal.
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Given a family of distributions Π, an optimal design problem is given by:

max
π(·)∈Π

πn

that is, choose the distribution π(·) within the family Π to make the minimum prob-

ability as large as possible. Top simplify the discussion, consider the case under

exchangeability, so that An = {(d, s); d ∈ {0, 1}, s ∈ {0, 1, 1, . . . , n}} and a distribu-

tion π(d, s) over An. Consider a Bernoulli trial:

ΠBE =

{
π(d, s) =

(
n

s

)
pd+s(1− p)n+1−d−s, d ∈ {0, 1}, s ∈ {0, 1, . . . , n}

}
Under this assignment, πn = min{p, 1 − p}n+1 so the optimal assignment sets p∗ =

1/2.

Next, consider a 2S-FM assignment mechanism like the one described in Defini-

tion IV.4

Π2S−FM =

{
π(d, s) = qd+s

(
s+ 1

n+ 1

)d(
1− s

n+ 1

)1−d

1(d+ s = t for some t),

d ∈ {0, 1}, s ∈ {0, 1, . . . , n}, t ∈ {0, 1, . . . , K − 1}

}

In this case, the design problem requires choosing values q0, q2, . . . , qK−1.

Finally, in a 2SR-BE,

Π2S−BE =

{
π(d, s) =

K−1∑
t=1

qt

(
n

s

)
pd+s
t (1− pt)n+1−d−s,

d ∈ {0, 1}, s ∈ {0, 1, . . . , n}, t ∈ {0, 1, . . . , K − 1}

}

so the problem requires choosing both q0, q2 . . . qK−1 and p0, p1, . . . pK−1.

4.5 Conclusion

In this chapter I discuss three key issues related to the empirical implementation

of randomized control trials to estimate spillovers. The first one is the inclusion of
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covariates, which is a standard practice to improve finite sample performance of the

estimators or to relax the assumption of independence between potential outcomes

and treatment assignments. The second issue is imperfect compliance, which occurs

almost inevitably in practice since units in an experiment can be offered treatment

but cannot be forced to accept it. The third issue is experimental design, which

plays a crucial role in solving or at least alleviating the difficulties that arise when

estimating spillover effects.

This chapter does not attempt to provide a definitive analysis of the issues men-

tioned above, but rather setting up a framework and pointing out the main challenges

that need to be addressed in future work. Section 4.3 reveals that point identification

of spillover effects in the presence of imperfect compliance is difficult and may require

strong assumptions. Partial identification can be a valid alternative that should be

considered in the future. On the other hand, Section 4.4 provides some optimality

criteria for the design of experiments that can be appealing in practice, but further

thought should be devoted to issues such as existence and uniqueness of optimal

designs.
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APPENDIX A

Proofs for Chapter II

Proof of Lemma II.1 Fix d ∈ {0, 1}. Let ξd(·) : Dg → R be a function such that

ξd(dg) = E[Yig(d,dg)] for any dg ∈ Dg. For s ∈ {0, 1, . . . , ng}, let As = {dg ∈ Dg :

1′gdg = s}, and note that ∪ng

s=0As = Dg and As ∩ As̃ = ∅ for s 6= s̃. By Assumption

II.1, the image set of each As, ξd(As), is a singleton. Call the only element of this

image set µd(s), and collect all these elements in Fg = {µd(s)}ng

s=0, and note that

ξd(Dg) = Fg. Next, let Sg = {0, 1, . . . , ng} and define a function µ(d, ·) : Sg → R by

setting µ(d, s) = µd(s) for each s ∈ Sg. Then, µ(d,Sg) = Fg and for any dg ∈ Dg
such that 1′gdg = s, we have that µ(d, s) = E[Yig(d,dg)]. �

Proof of Lemma II.2 First, for all assignments with non-zero probability,

E[Yig|Dig = d, Sig] = E
{
E[Yig|Dig = d,D(i)

g , Sig]
∣∣Dig = d, Sig

}
= E

∑
dg

E[Yig(d,dg)|Dig = d,D(i)
g , Sig]1(D(i)

g = dg)

∣∣∣∣∣∣Dig = d, Sig


= E

∑
dg

E[Yig(d,dg)]1(D(i)
g = dg)

∣∣∣∣∣∣Dig = d, Sig


=
∑
dg

E[Yig(d,dg)]P[D(i)
g = dg|Dig = d, Sig]
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Then, since P[D
(i)
g = dg|Dig = d, Sig = sg] = 0 if 1′gdg 6= s,

E[Yig|Dig = d, Sig = s] =
∑

dg :1′gdg=sg

E[Yig(d,dg)]P[D(i)
g = dg|Dig = d, Sig = s]

= µ(d, s)
∑

dg :1′gdg=sg

P[D(i)
g = dg|Dig = d, Sig = s]

= µ(d, s).

The second equality follows from the definition of θs(d). �

Proof of Lemma II.3 Use the fact that

E[Yig|Dig = d] =
∑
s

E[Yig|Dig = d, Sig = s]P[Sig = s|Dig = d]

=
∑
s

E[Yig(d, s)]P[Sig = s|Dig = d]

= τ0 +
∑
s

θs(d)P[Sig = s|Dig = d]

where the second equality uses the independence assumption. �

Proof of Lemma II.4 By independence between Dig and Sig under simple random

assignment,

γ` =
Cov(Yig, D̄

(i)
g )

V[D̄
(i)
g ]

= ng
Cov(Yig, Sig)

V[Sig]
= ng

Cov(E[Yig|Sig], Sig)
V[Sig]

but E[Yig|Sig] = pE[Yig|Dig = 1, Sig] + (1− p)E[Yig|Dig = 0, Sig], and

E[Yig|Dig = d, Sig] = µ(0, 0) + τ0d+
∑
s

θs(d)1(Sig = s)

and calculating the covariance gives the result. �

Proof of Lemma II.5 Follows by the same argument as the previous lemma but

conditioning on Dig = d. �
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APPENDIX B

Proofs for Chapter III

Lemma B.1 Let π̂(a) :=
∑

g

∑
i 1ig(a)/G(n + 1). Then under the assumptions of

Theorem III.1,

max
a∈An

∣∣∣∣ π̂(a)

π(a)
− 1

∣∣∣∣→P 0.

Proof of Lemma B.1 Take ε > 0, then

P
[

max
a∈An

∣∣∣∣ π̂(a)

π(a)
− 1

∣∣∣∣ > ε

]
≤
∑
a∈An

P
[∣∣∣∣ π̂(a)

π(a)
− 1

∣∣∣∣ > ε

]
≤ |An|max

a∈An

P [|π̂(a)− π(a)| > επ(a)]

≤ 2|An|max
a∈An

exp

{
−2G2ε2π(a)2

G

}
= 2|An| exp

{
−2ε2Gπ2

n

}
= 2 exp

{
−Gπ2

n

(
2ε2 − log |An|

Gπ2
n

)}
→ 0

where the second line uses Hoeffding’s inequality. �

Proof of Theorem III.1 Take a constant c ∈ R. Then

P
[

min
a∈An

N(a) ≤ c

]
≤ |An|max

a∈An

P[N(a) ≤ c].
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Now, for any δ > 0,

P[N(a) ≤ c] = P
[
N(a) ≤ c,

∣∣∣∣ π̂(a)

π(a)
− 1

∣∣∣∣ > δ

]
+ P

[
N(a) ≤ c,

∣∣∣∣ π̂(a)

π(a)
− 1

∣∣∣∣ ≤ δ

]
≤ P

[∣∣∣∣ π̂(a)

π(a)
− 1

∣∣∣∣ > δ

]
+ P[N(a) ≤ c,G(n+ 1)π(a)(1− δ) ≤ N(a) ≤ π(a)G(n+ 1)(1 + δ)]

≤ P
[∣∣∣∣ π̂(a)

π(a)
− 1

∣∣∣∣ > δ

]
+ 1(G(n+ 1)π(a) ≤ c/(1− δ))

≤ P
[∣∣∣∣ π̂(a)

π(a)
− 1

∣∣∣∣ > δ

]
+ 1(G(n+ 1)πn ≤ c/(1− δ))

which implies

|An|max
a∈An

P[N(a) ≤ c] ≤ |An|max
a∈An

P
[∣∣∣∣ π̂(a)

π(a)
− 1

∣∣∣∣ > δ

]
+ |An|1(G(n+ 1)πn ≤ c/(1− δ))

which converges to zero under condition 3.5 and using Lemma B.1. �

Lemma B.2 Under the assumptions of Theorem III.1,

max
a∈An

{∣∣∣∣π(a)

π̂(a)
− 1

∣∣∣∣ · 1(N(a) > 0)

}
→P 0

Proof of Lemma B.2 follows from Lemma B.1 and Theorem III.1 using that

P[mina∈An N(a) = 0]→ 0. �

Proof of Theorem III.2 All the estimators below are only defined when 1(N(a) >

0). Because under the conditions for Theorem III.1 this event occurs with probability

approaching one, the indicator will be omitted to simplify the notation. For the

consistency part, we have that∑
g

∑
i εig(a)1ig(a)

N(a)
=

∑
g

∑
i(εig(a)1(|εig| > ξn)− E[εig(a)1(|εig| > ξn)])1ig(a)

N(a)

+

∑
g

∑
i(εig(a)1(|εig| ≤ ξn)− E[εig(a)1(|εig| ≤ ξn)])1ig(a)

N(a)
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for some increasing sequence of constants ξn whose rate will be determined along the

proof. Let

εig(a) = εig(a)1(|εig(a)| ≤ ξn)− E[εig(a)1(|εig(a)| ≤ ξn)]

and

ε̄ig(a) = εig(a)1(|εig(a)| > ξn)− E[εig(a)1(|εig(a)| > ξn)]

For the first term,

P
[

max
a∈An

∣∣∣∣
∑

g

∑
i εig(a)1ig(a)

N(a)

∣∣∣∣ > Mrn

∣∣∣∣A] ≤
|An|max

a∈An

P
[∣∣∣∣
∑

g

∑
i εig(a)1ig(a)

N(a)

∣∣∣∣ > Mrn

∣∣∣∣A]
For the right-hand side, by Bernstein’s inequality

P

[∣∣∣∣∣∑
g

∑
i

εig(a)1ig(a)

∣∣∣∣∣ > N(a)Mrn

∣∣∣∣∣A
]
≤ 2 exp

{
−1

2

M2r2
nN(a)2

σ2(a)N(a) + 2ξnMrnN(a)/3

}
= 2 exp

{
−1

2

M2r2
nN(a)

σ2(a) + 2Mξnrn/3

}
≤ 2 exp

{
−1

2

M2r2
n mina∈An N(a)

σ̄2 + 2Mξnrn/3

}
Set

rn =

√
log |An|

G(n+ 1)πn

Next, use the fact that
mina∈An N(a)

G(n+ 1)πn
→P 1

which follows from Lemma B.1, since

P[π(a)(1− ε) ≤ π̂(a) ≤ π(a)(1 + ε), ∀ a]→ 1
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for any ε > 0 and

P[π(a)(1− ε) ≤ π̂(a) ≤ π(a)(1 + ε), ∀ a] ≤ P[πn(1− ε) ≤ min
a
π̂(a) ≤ πn(1 + ε)]

= P
[∣∣∣∣mina π̂(a)

πn
− 1

∣∣∣∣ ≤ ε

]
.

Then,

P

[∣∣∣∣∣∑
g

∑
i

εig(a)1ig(a)

∣∣∣∣∣ > N(a)Mrn

∣∣∣∣∣A
]
≤ 2 exp

{
−1

2

M2 log |An|(1 + oP(1))

σ̄2 + 2Mξnrn/3

}

and therefore

P
[

max
a∈An

∣∣∣∣
∑

g

∑
i εig(a)1ig(a)

N(a)

∣∣∣∣ > Mrn

∣∣∣∣A] ≤
2 exp

{
log |An|

(
1− 1

2

M2(1 + oP(1))

σ̄2 + 2Mrnξn/3

)}
which can be made arbitrarily small for sufficiently large M as long as rnξn = O(1).

For the second term, by Markov’s inequality

P

[∣∣∣∣∣∑
g

∑
i

ε̄ig(a)1ig(a)

∣∣∣∣∣ > N(a)Mrn

∣∣∣∣∣A
]
≤

E[ε2
ig(a)1(|εig(a)| > ξn)]N(a)

M2r2
nN(a)2

≤ σ̄2

M2ξδn

1

r2
n mina∈An N(a)

=
σ̄2

M2

1

ξδn log |An|(1 + oP(1))

so that

P

[
max
a∈An

∣∣∣∣∣∑
g

∑
i

ε̄ig(a)1ig(a)

∣∣∣∣∣ > N(a)Mrn

∣∣∣∣∣A
]
≤ σ̄2

M2

|An|
ξδn log |An|(1 + oP(1))

Finally, set ξn = r−1
n . Then, the above term can be made arbitrarily small for M

sufficiently large, as long as

|An|
log |An|

(
log |An|

G(n+ 1)πn

)δ/2
= O(1)
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Setting δ = 2, this condition reduces to:

|An|
G(n+ 1)πn

= O(1)

Therefore,

max
a∈An

|µ̂(a)− µ(a)| = OP

(√
log |An|

G(n+ 1)πn

)
The proof for the standard error estimator uses the same reasoning after replacing

εig(a) by ε̂2
ig(a) and using consistency of µ̂(a).

For the second part, we want to bound

∆ = max
a∈An

sup
x∈R

∣∣∣∣∣P
[
µ̂(a)− µ(a)√
V[µ̂(a)|A]

≤ x

]
− Φ(x)

∣∣∣∣∣

∆ = max
a∈An

sup
x∈R

∣∣∣∣∣P
[
µ̂(a)− µ(a)√
V[µ̂(a)|A]

≤ x

]
− Φ(x)

∣∣∣∣∣
= max

a∈An

sup
x∈R

∣∣∣∣∣E
{
P

[
µ̂(a)− µ(a)√
V[µ̂(a)|A]

≤ x

∣∣∣∣∣A
]
− Φ(x)

}∣∣∣∣∣
≤ E

{
max
a∈An

sup
x∈R

∣∣∣∣∣P
[
µ̂(a)− µ(a)√
V[µ̂(a)|A]

≤ x

∣∣∣∣∣A
]
− Φ(x)

∣∣∣∣∣
}

Then,∣∣∣∣∣P
[
µ̂(a)− µ(a)√
V[µ̂(a)|A]

≤ x

∣∣∣∣∣A
]
− Φ(x)

∣∣∣∣∣ =

∣∣∣∣∣P
[∑

g

∑
i εig1ig(a)

σ(a)
√
N(a)

≤ x

∣∣∣∣∣A
]
− Φ(x)

∣∣∣∣∣
By the Berry-Esseen bound,

sup
x∈R

∣∣∣∣∣P
[∑

g

∑
i εig1ig(a)

σ(a)
√
N(a)

≤ x

∣∣∣∣∣A
]
− Φ(x)

∣∣∣∣∣ ≤ Cτ̄ 3

σ3
· 1√

N(a)

But

1

N(a)
= OP

(
1

G(n+ 1)π(a)

)
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Therefore,

max
a∈An

sup
x∈R

∣∣∣∣∣P
[∑

g

∑
i εig1ig(a)

σ(a)
√
N(a)

≤ x

∣∣∣∣∣A
]
− Φ(x)

∣∣∣∣∣ ≤ Cτ̄ 3

σ3
·OP

(
1√

G(n+ 1)πn

)

and the result follows. �

Proof of Theorem III.3 We want to bound:

∆∗(a) = sup
x

∣∣∣∣∣P∗
[
µ̂∗(a)− µ̂(a)√

V∗[µ̂(a)]
≤ x

]
− Φ(x)

∣∣∣∣∣
uniformly over a, where

µ̂∗(a) =

∑
g

∑
i Y
∗
ig1ig(a)

N(a)

when the denominator is non-zero, which occurs with probability approaching one,

and where

Y ∗ig1ig(a) = (Ȳ (a) + (Yig − Ȳ (a))wig)1ig(a) = (Ȳ (a) + ε̂igwig)1ig(a)

Then,

E∗[µ̂∗(a)] = µ̂(a)

V∗[µ̂∗(a)] =

∑
g

∑
i ε̂

2
ig1ig(a)

N(a)2

The centered and scaled statistic is given by:∑
g

∑
i ε̂ig1ig(a)wig√∑
g

∑
i ε̂

2
ig1ig(a)
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By Berry-Esseen,

sup
x

∣∣∣∣∣∣P∗
∑g

∑
i ε̂ig1ig(a)wig√∑
g

∑
i ε̂

2
ig1ig(a)

≤ x

− Φ(x)

∣∣∣∣∣∣ ≤
C

∑
g

∑
i |ε̂ig|31ig(a)/N(a)(∑

g

∑
i ε̂

2
ig1ig(a)/N(a)

)3/2
· 1√

N(a)

We also have that∑
g

∑
i |ε̂ig|31ig(a)

N(a)
≤
∑

g

∑
i |Yig − µ(a)|31ig(a)

N(a)
+ |Ȳ (a)− µ(a)|3 +OP(N(a)−2)

= E[|Yig − µ(a)|3] +OP(N(a)−1)

and ∑
g

∑
i ε̂

2
ig1ig(a)

N(a)
=

∑
g

∑
i(Yig − µ(a))2

1ig(a)

N(a)
+ (Ȳ (a)− µ(a))2

= σ2(a) +OP(N(a)−1)

Then,

∆∗(a) ≤ sup
x

∣∣∣∣∣∣P∗
∑g

∑
i ε̂ig1ig(a)wig√∑
g

∑
i ε̂

2
ig1ig(a)

≤ x

− Φ(x)

∣∣∣∣∣∣
= C

E[|Yig − µ(a)|3] +OP(N(a)−1)

[σ2(a) +OP(N(a)−1))]3/2
· 1√

N(a)

and the result follows Lemma B.1. �

Proof of Corollary III.1 Without exchangeability, π(a) = π(d,dg) = pd(1 −
p)1−d∏n

j=1 p
dj(1 − p)dj = pd+s(1 − p)n+1−s−d where s = 1′gdg. On the other hand,

under exchangeability π(a) = π(d, s) = pd(1 − p)1−d(n
s

)
ps(1 − p)n−s =

(
n
s

)
ps+d(1 −

p)n+1−s−d. Observe that both distributions are minimized at πn = pn+1 ∝ pn where
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p = min{p, 1− p}. Thus,

log |An|
Gp2n

= exp

{
− logG

(
1− n+ 1

logG
2 log p− log log |An|

logG

)}
and since |An| is at most 2n+1, if (n+ 1)/ logG→ 0 the term converge to zero. �

Proof of Corollary III.2 Without exchangeability, P[Dig = d,D
(i)
g = dg] =(

n+1
mw

)−1
qw where w = d + 1′gdg, which in this case reduces to

(
n+1
mw

)−1
/(n + 1). This

function has a unique minimum at (n + 1)/2 when n is odd, and two minima at

b(n + 1)/2c and b(n + 1)/2c + 1 when n is even. For simplicity, assume n is odd

(otherwise, take m∗ = b(n + 1)/2c to be the minimizer of the function, and use the

fact that (n + 1)/2 ≤ m∗ ≤ (n + 1)/2 + 1). The smallest probability is given by

πn = [(n+1)/2)!]2

(n+1)!(n+1)
. Using Stirling’s formula, we have that

π =
π(n+ 1)((n+ 1)/2)n+1e−(n+1)√

(2π(n+ 1))(n+ 1)n+1e−(n+1)(n+ 1)
(1 + o(1)) =

√
π

2
· 1

2n+1
√
n+ 1

(1 + o(1))

Then,

log |An|
Gπ2

n

= exp

{
− logG

(
1− n+ 1

logG
log 2− 3

2
· log(n+ 1)

logG
+ o(1)

)}
→ 0

when (n + 1)/ logG → 0. With exchangeability, P[Dig = d, Sig = s] = qd+s

(
s+1
n+1

)d
×
(
1− s

n+1

)1−d
which in this case equals 1

n+1

(
s+1
n+1

)d (
1− s

n+1

)1−d
. This function

has two minima, one at (d, s) = (0, n) and one at (d, s) = (1, 0), giving the same

minimized value of πn = (n+ 1)−2. Then,

log |An|
Gπ2

n

= exp

{
− logG

(
1− log(n+ 1)

logG
4− log log 2(n+ 1)

logG
+ o(1)

)}
→ 0

if log(n+ 1)/ logG→ 0. �
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