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ABSTRACT

A major design driver for marine systems is lifetime performance. How a vessel

responds in harsh environments has stark consequences for safety and operability,

necessitating the consideration of lifetime performance analysis during the design

stage. However, extreme events associated with marine dynamic systems may not be

caused by the most extreme ocean environments, like the largest wave. Some severe

vessel responses may be due to simultaneous combinations of potentially correlated,

non-Gaussian loading, which may be excited by any number of wave profiles.

Di↵erent analytical methods based on extrapolation or solving for threshold ex-

ceedances can examine certain aspects of this problem: extreme system responses,

combined loading, and long exposures to harsh excitation. But these methods, in gen-

eral, do not retain the wave profiles which lead to extreme responses. These waves

profiles can drive high-fidelity codes, like Computational Fluid Dynamics or Finite El-

ement Analysis time-domain simulations, to give pressure and loading distributions.

Such analyses can give an overall account of a system during lifetime events and refine

estimates of system performance due to lifetime loading.

The Design Loads Generator (DLG) was developed to construct wave profiles that

lead to a distribution of linear extreme responses, given an operational profile and

exposure period. However, there are some limitations when applying the DLG method

to non-linear problems. Some marine systems may experience extreme responses due

to varying combinations of non-linear loading. If those loads are strongly correlated,

or have an unknown correlation, it is unclear how the capability of the DLG, which

considers a single linear load, can be utilized. It may also be desirable to consider

lifetime system performance, and not performance conditioned on a specific excitation

input, as is estimated by the DLG framework.

This dissertation addresses those concerns by expanding the DLG method to what

is called the non-linear Design Loads Generator (NL-DLG) process. Given a complex

system, operational profile, and exposure, the NL-DLG process uses the DLG capa-

bility to determine an ensemble of excitation inputs which lead to lifetime extreme

events. Unlike the DLG, which is developed for a single response, the NL-DLG pro-

xix



cess considers the interaction of multiple stochastic processes which excite the system.

These processes, which may be non-Gaussian, are examined so that the resulting en-

semble of excitation inputs are demonstrably exhaustive in generating possible defined

responses. Short excitation inputs are constructed that estimate the same distribu-

tion of responses as would full Monte Carlo Simulations (MCS). Instead of conducting

the necessary large number of full-exposure MCS for converged statistics of joint re-

sponses, the ensemble of short excitation inputs assembled by the NL-DLG process

approximates that same distribution. Various examples are given in this dissertation

where comparisons between MCS and NL-DLG extreme value probabilities validate

the method.

For a complex system with a threshold of allowable responses, the ensemble of

NL-DLG generated inputs can estimate an exceedance probability, given the exposure

and operational profile. This threshold may be multi-dimensional and a non-linear

function of multiple loads. The NL-DLG process examines complex system responses

due to combined loading, and maintains links back to the excitation environment,

without the computational cost associated with brute-force MCS. These capabilities

give deeper insights into system responses, and aid in the design of safer, better

operating systems.
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CHAPTER I

Introduction

1.1 Performance Analysis of Marine Systems

Performance analysis is complex and time-consuming, resulting in design decisions

driven by factors like cost (i.e. the cheapest option) and ease of production, but not

necessarily design reliability. However, with harshening ocean environments and the

push to extend the service life of marine systems, it is desirable to consider earlier in

the design cycle a design’s performance over the intended lifetime. Rationally defined

metrics on the performance of basic design options allow for more informed decisions,

and better understanding of lifetime extreme responses.

For a system excited by multiple potentially correlated and non-Gaussian loads, it

may be di�cult to analytically examine how those loads interact toward extreme de-

sign events. The problem is further complicated if varying combinations of those loads

can lead to an extreme system response. This is a similar problem to determining the

probability that a vector of non-Gaussian loads with an unknown correlation struc-

ture exceeds a multi-dimension complex threshold surface during a long exposure. A

threshold surface of a system or specific design feature may represent an allowable

level of experienced loading. Or, this threshold may represent combinations of loads

that lead to a physical failure or collapse when exceeded. To accurately determine

the probability of threshold exceedance by a vector of random processes given an

operational profile over a set exposure, while preserving the excitation inputs which

lead to extreme responses, suggests a time-domain simulation-based approach. With-

out these excitation inputs, there is no connection to the underlying physics relevant

to the extreme response, which can link hydrodynamic and structural analyses of a

vessel during lifetime events.
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Conducting many simulations is necessary to ensure converged statistics, but may

prove computationally expensive for long exposure periods, or for high-fidelity Com-

putational Fluid Dynamics (CFD) or Finite Element Analysis (FEA) time-domain

simulations. For such analyses to be feasible at an early design stage, simulations

should be directed, meaning that the simulated excitation inputs are representative

of the exposure period and operating environment, but focused on the small subset of

times when threshold exceedances actually occur. In a sense, the desire is to simulate

only the excitation inputs which lead to threshold exceedances, while still maintaining

the overall operating profile.

This directed simulation capability requires information about the system input:

namely, what kind of excitation inputs lead to extreme responses. Information about

the system and response is also required: how combinations of the random processes

may lead to threshold exceedances. For physical loading on marine systems, it may

be necessary to consider di↵erent extreme wave profiles, based on the system in

question. An extreme dynamic event may be due to a single extreme (i.e. rogue)

wave, or a specific pattern of waves, potentially represented by a wave group. To

evaluate lifetime responses without resorting to brute-force Monte Carlo Simulations

(MCS), it is desirable to simulate only the wave forms that are expected to lead to

threshold exceedances.

However, wave profiles associated with extreme responses cannot be separated

from the system dynamics. Additionally, for systems whose extreme responses are

due to varying levels of loads acting on the system, meaning the allowable thresh-

old is multi-dimensional, there may be many excitation input profiles that lead to

threshold exceedances. Such exceedances may be due to a single load extreme, or

simultaneous moderate values of multiple loads. To examine such scenarios within

the global context of the probability of a threshold exceedance implies that extreme

wave profiles, and how such profiles lead to various extreme events, must be consid-

ered. Therefore, this dissertation considers both problems: extreme wave profiles,

and threshold-crossings of a surface by combined stochastic excitation. Some major

findings and methods associated with both problems are reviewed here.

1.2 Literature Review: Extreme Wave Profiles

Di↵erent types of extreme wave profiles, or wave elevation time histories, can be

associated with severe vessel responses. Impact due to a single large-amplitude wave
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may lead to extreme bottom slamming pressure. A di↵erent extreme, or rare, wave

profile may be a sequence of multiple waves that excite a resonant or near-resonant

response, potentially leading to parametric roll. While both types of wave profiles are

of interest, they are fundamentally di↵erent in that rare wave groups may not appear

to be severe, even though they can excite design responses. This section examines

some canonical research relating to single extreme wave profiles and to wave groups.

1.2.1 New Wave Method

The expected wave surface around a wave maximum in a Gaussian seaway has

been developed by multiple authors. Lindgren (1970) showed that this maximum is

a scaled autocorrelation function of the seaway, approximated as:

E[⇣(t)|⇣(0) = a, ⇣̇(0) = 0] = a⇢(t) (1.1)

where

⇣(t) = random time-varying process of the sea surface (assumed Gaussian)

⇢(t) = normalized autocorrelation function of ⇣(t)

Boccotti (2015) showed that the condition the wave maximum be a crest (i.e.

⇣̇(0) = 0) can be relaxed as a goes to infinity.

1.2.2 Wave Groups Defined by a Threshold-Crossing Criteria

Traditional descriptions of wave groups are typically formulated as an envelope

peaks over a threshold (EPOT) problem or a counting of discrete peaks over a thresh-

old problem (e.g. Markov chain model), and often are based on the assumption of

narrow banded spectra (Longuet-Higgins , 1957; Ewing , 1973).

Themelis and Spyrou (2007) considered the probability of encountering a wave

group defined by a strict threshold-crossing, given wave data of a forecasted ship

route, by assuming narrow banded spectra and uncorrelated successive wave up-

crossings over the threshold. The authors also make use of a model based on Markov

chain assumptions for wave-to-wave dependence by Kimura (1980). However, such a

formulation requires joint pdf ’s of significant wave height and wave period in a region

of interest, which are generally di�cult to attain.

Many authors who consider wave groups by the threshold-crossing criterion do so

by employing potentially limiting assumptions. The assumptions may simplify the
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calculations but limit the applicability of results to a physical ocean environment.

A major challenge, then, is how to carefully define what constitutes a wave group.

Bassler et al. (2010) discussed the possibility that a threshold-crossing criterion may

be too strict for the identification of wave groups. Wave groups restricted to a suc-

cessive threshold-crossing requirement will not include the more probable wave group

sequence in which one or two minor down-crossings, below the required threshold,

can occur.

For example, in Figure 1.1, there are two groupings of waves separated in time by

�t, called the 1st and the 2nd group, and some threshold a. The 1st group has three

waves which exceed the threshold a, and therefore would be defined as a wave group,

given the threshold criteria. The 2nd group does not meet this criterion, as the waves

II and V do not exceed a. However, this grouping of six waves may set o↵ interesting

dynamic responses, based on the near-constant period between the waves, and the

relatively large mean amplitude of the six waves.

Figure 1.1: Possible wave group (Bassler et al., 2010).

The threshold-crossing definition of wave groups is also challenging for the iden-

tification of long group runs from field data, due to either the rarity of long runs

exceeding a prescribed high level, or the lack of su�cient data sets containing large

wave groups. In addition, when looking at ship dynamical events such as parametric

roll, this traditional definition does not account for the large role that the forcing

period has on the event. And equally problematic, an ensemble of wave groups re-

stricted to successive threshold-crossings will not include the more probable wave

group sequence, targeted for a critical threshold, that still permits the inclusion of

minor down-crossings within the grouping. This wave group is, through resonant

excitation, also capable of generating extreme responses.

1.2.3 Wave Groups Defined by a Gaussian Derived Process

Kim and Troesch (2013) took advantage of this realization: that wave groups

4



may be identified by a large mean group amplitude, rather than an individual peak

threshold-crossing, with the development of a derived Gaussian process. The authors

showed that group-like behavior of a C11 container hull’s time-varying metacentric

height, GM(t), can lead to parametric roll responses. They found that groups of this

metacentric height like the 2nd group in Figure 1.1, which may satisfy the threshold

requirement in a mean sense but not in total, can cause significant roll response

through resonant, parametric excitation. The derived process, similar in appearance

to a moving average, is a sum of k processes (or the same process), each progressively

shifted in time by (p� 1)⌧ seconds for p = 1, · · · , k:

zk(t) =
kX

p=1

⌘(t+ (p� 1)⌧) (1.2)

The underlying theory is based on the assumption that the water surface elevation,

and by extension the derived process, follows a Gaussian distribution.

1.3 Literature Review: Extreme System Responses due to

Combined Excitation

The most severe loading conditions or motions a vessel experiences over its lifetime

may not be due to the most obvious definition of an extreme wave, or wave profile.

For some vessel responses, it may be clear which wave profiles will lead to extreme

responses, e.g. large sagging bending moments may be expected when there is a large

wave trough at midships and the wavelength is of order of the ship’s length. But for

non-linear responses or for vessels with complicated geometry, the connection between

wave profile and extreme response may not be so clear. Additionally, for systems

whose severe responses are due to various combinations of stochastic loading, the most

extreme wave will not, in general, lead to simultaneous extreme load combinations.

These sorts of problems require analysis methods that are not limited to obvious

cause-and-e↵ect observations.

The interaction of a non-linear threshold with combined, potentially correlated,

non-Gaussian, stochastic loading may describe a range of extreme responses for a ma-

rine system. Considering the probability of lifetime threshold exceedances, and the

wave inputs which lead to such responses, requires the examination of the threshold-

crossing problem. This section reviews multiple methods to examine the interac-

tions of combined loading and threshold surfaces, and determine the probability of
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threshold-crossings by a vector of random processes.

1.3.1 Threshold-Crossings of Stochastic Load Combinations

The threshold-crossing of a surface by a vector of stochastic inputs has been

considered by multiple authors. Following the notation of Madsen et al. (2006),

given some exposure, T , failure is defined as the first up-crossing of ⇠(t) by the

process b(Q(t)). Here, ⇠(t) is a “strength threshold,” Q(t) is a vector of stochastic

loads, and the function, b, relates the loads to the system response based on the

strength threshold. Then, the probability of failure, p(F), or probability of threshold

exceedance within the exposure [0, T ], based on the number of up-crossings of ⇠(t) by

b(Q(t)), N⇠(T ), is given by Eq.(1.3):

p(F) = p(F at t=0) + p(N⇠(T ) � 1)� p(F at t=0 \N⇠(T ) � 1) (1.3)

The probability of failure is bounded as:

p(F)  p(F at t=0) + p(N⇠(T ) � 1)

 p(F at t=0) +
1X

n=1

p(N⇠(T ) = n)

 p(F at t=0) +
1X

n=1

np(N⇠(T ) = n) = p(F at t=0) + E[N⇠(T )]

(1.4)

Madsen et al. note that Eq.(1.4) is a good approximation for “practical situations

with high-reliability structures when clustering of crossings can be neglected,” and if

Eq.(1.5) is satisfied, i.e. if:

p(N⇠(T ) = 1) �
1X

n=2

np(N⇠(T ) = n) (1.5)

The expected number of up-crossings of ⇠(t) by b(Q(t)), E[N⇠(T )], is given by

Eq.(1.6), where ⌫(⇠, t) is the mean up-crossing rate of ⇠(t):

E[N⇠(T )] =

TZ

t=0

⌫(⇠, t)dt (1.6)

This mean up-crossing rate ⌫(⇠, t) can be solved by Rice’s formula (Rice, 1944),

where S(t) = b(Q(t)):

⌫(⇠, t) =

1Z

ṡ= ˙⇠

(ṡ� ⇠̇)fS ˙S(⇠, ṡ, t)dṡ (1.7)
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However, very few closed-form solutions for the up-crossing rate of di↵erent pro-

cesses are known, and the joint distribution of a time-varying load vector may be

di�cult to attain. Naess and Moan (2014) follow a similar method to determine

the probability of a threshold exceedance by a load vector, but by solving the null

problem. The authors also note that the structure of the load vector can be very

complicated, which coupled with a high-dimension threshold definition, “makes a

direct analytical approach virtually impossible.” They suggest pursuing MCS-based

approaches to circumvent these analytical challenges.

1.3.2 First & Second Order Reliability Methods

The First and Second Order Reliability Methods (FORM and SORM) are widely-

vetted methods from structural reliability theory to consider the interaction of a multi-

variate random process with a failure surface or threshold definition. These methods

calculate the reliability of a system, considered for a specific response output, via safe

and unsafe regions defined by a failure surface. An excitation profile, here for the

example of a stochastic wave profile, may be constructed as:

⇣(x, t) =
NX

j=1

aj�jcos(!jt� kjx) + bj�jsin(!jt� kjx) (1.8)

where

⇣(x, t) ⌘ random time-varying process of the sea surface (assumed Gaussian)

aj & bj = uncorrelated standard normal random variables

!j = discretized wave frequency

kj = discretized wave number

�2

j = S(!j)�!j

S(!) = input wave spectrum

The number of components, N , must be large else the representation will su↵er

repeatability and resolution issues. The response of the system, which may be non-

linear, due to the given wave input, ⇣(x, t), is given as �(t|a1, b1, a2, b2, ..., aN , bN).
Then, a pre-determined response of interest is given as �0. The most probable wave

sequence which leads to this pre-determined extreme response, �0, is solved for iter-

atively. A limit state surface G may be defined which represents an infinite number

of potential wave inputs (or combinations of amplitudes and phases) that lead to this
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pre-determined response:

G = �(t|a
1

, b
1

, a
2

, b
2

, · · · , aN , bN )|t=t
0

� �
0

= 0 (1.9)

The point on this surface closest to the origin defines the most probable wave

profile which leads to the pre-determined response, �0. Jensen (2007) employed the

FORM method to generate the most probable wave sequence which leads to a given

design event for multiple problems, such as extreme roll of a containership. FORM/

SORM are complicated, though, because they require a joint pdf of the random

variables which make up the extreme response of the vessel.

The joint pdf of the random variables may have a complex definition and is sim-

plified for the iterative solution of the most-probable wave sequence that lead to

�0. This simplification comes from transforming the marginal distributions of the

random variables into a standard normal space, where the cumulative distribution

function (cdf) remains unchanged after the transformation. After this transforma-

tion, the variable distributions are zero-mean, unit-variance normal, and have a unit

correlation matrix, meaning the transformed variables are independent. The choice

of transformation depends on the amount of information known about the random

variables.

If the joint distribution is known, a Rosenblatt Transformation may be used to

transform the random variables into independent, unit-variance, zero-mean normal

random variables (Rosenblatt , 1952). In the case where the joint distribution of the

incoming random variables is unknown, but their marginal densities and correlations

are known, the Nataf Transformation may be applied (Hurtado, 2004), similar to the

copula method discussed in Section 1.3.5. Regardless of the transformation used,

the transformed joint density function is easily integrated as the transformed ran-

dom variables are independent standard normals, making the contours of the joint

distribution concentric circles.

FORM/ SORM also simplifies the evaluation by using a first/ second order Taylor

Series Expansion to approximate the limit surface G at the most probable point, or

the point of G closest to the origin. Finding this point requires iteration, and the

accuracy is best when the surface is linearized around the point which has the highest

contribution to the probability integral, i.e. the most probable point. However, it is

unclear how useful a most probable wave input which leads to an extreme response

is for the consideration of non-linear systems. Without ensembles of statistically
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equivalent inputs which lead to design responses, the statistics of a non-linear response

cannot be directly determined, but only inferred.

Beyond these challenges, it may be desirable to find the overall reliability of a

system, not conditioned on a specific pre-determined output. Specifically, if a system

has a multi-dimension allowable threshold, indicating that varying combinations of

multiple loads lead to an extreme response, it may be required to link together many

FORM/ SORM analyses, potentially diminishing the computational advantages of

these methods.

1.3.3 Inverse FORM

Winterstein et al. (1993) introduced inverse FORM to calculate a failure surface

that is a function of multiple environmental variables and that has a given determin-

istic response return period. The authors give the specific example of inverse FORM

applied to find contours of significant wave height and peak wave period which lead

to a 100-year deterministic response. Inverse FORM was developed to give design-

ers environmental input data that leads to pre-determined return-period responses,

which can be translated to a design with a required probability of non-exceedance for

failure or load responses. This may be a preferable result than that from FORM or

SORM, because inverse FORM allows designers to find a “known response capacity,”

or response value, given a reliability index that must be satisfied.

One potential limitation of the applicability of inverse FORM, though, is that some

input variable which dominates the others in uncertainty must be chosen. Then, the

conditional distributions of the other inputs, given the dominating random input,

are found. The system response is then approximated by its median value, given

the environmental input, plus some random error term to account for assuming a

deterministic response. This FORM omission sensitivity factor is most accurate for

“linear/Gaussian safety margins,” which may limit the application for non-linear sys-

tems. All the other input variables are modeled as conditioned on the dominating

random variable, but these conditional distributions may not be known for some non-

linear loads. This conditional modeling may not be valid for load extremes and may

not be feasible to obtain for multiple inputs.

It also may not be true that an extreme response is the result of a single extreme

input, as inverse FORM assumes. For stochastic responses, even the “inflated” envi-

ronment contours provided by inverse FORM, which are the result of a deterministic
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response and a random error term, may not give an accurate estimate of a com-

plex system’s extreme responses due to non-linear loading. Many methods, including

MCS, assume a deterministic response based on the system model and stochastic

input. However, inverse FORM deals with this by assuming the response takes its

median value plus some error term based on the random input, whereas simulations

recover a distribution of responses based on stochastic excitation.

1.3.4 Max-Stability of Asymptotic Distributions & the Conditional Ex-

treme Model

To overcome some of the limitations of inverse FORM, but with a similar idea of

finding contours of joint environmental inputs that have a specified response return

period, Ewans and Jonathan (2014) employ the concept of max-stability of asymp-

totic distributions. The use of max-stable distributions means that the distributions

of the loads do not need to be known at the analysis onset. Scaled and shifted max-

ima from this class of distributions can be modeled by a generalized extreme value

distribution because they share a similar distribution and statistical characteristics.

Ewans and Jonathan improve the max-stable concept for multi-dimension problems

by incorporating the conditional extreme model from He↵ernan and Tawn (2004).

The conditional extreme model is based on an assumption about the asymp-

totic forms of conditional distributions for an extreme response. The distributions

of environmental loads are given conditioned on a single input being an extreme.

Multi-dimensional problems are considered, where the variables may be asymptoti-

cally dependent or independent, and semi-parametric models are used to estimate the

joint conditional distribution of the variables.

Ewans and Jonathan applied this model to the joint estimation of significant wave

height and peak period for extreme storm conditions in the North Sea. This method

gave a distribution of these two variables but may not be applicable for problems in

which interesting responses come from other load combinations, rather than extremes

of individual variables. As well, the tail behavior of the multivariate distribution must

be given an assumed form, which may introduce error into the probability estimation

for rare responses. Despite advancing extreme response determination, it is unclear

how the conditional extreme model, coupled with max-stable asymptotic distribu-

tions, could tackle problems in which simultaneous moderate values of di↵erent loads

interact toward failure.
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1.3.5 Copulas

Copulas are utilized in many fields to consider joint distributions of multiple ran-

dom processes (e.g. de Waal and van Gelder (2005); Bastian et al. (2009); Bartoli

et al. (2011); Knight et al. (2017)). Gong et al. (2014) employed copulas to consider

multivariate extremes of dependent loads. A copula assembles a multivariate pdf

in which each marginal distribution is continuous and uniformly distributed. This

property can be automatically satisfied by using as marginals the cdf of any random

variable, which is by definition uniformly distributed between [0,1]. Therefore, cop-

ulas can establish a joint distribution of multiple variables, based on their marginal

distributions and some assumed correlation structure. This formulation allows the

generation of samples from a multivariate joint pdf .

The dimension of the copula complicates the problem, though, with a potential

solution being to assume the copula belongs to a parametric family. The use of copulas

presents complex challenges, however, specifically because the copula’s asymptotic

properties strongly a↵ect the evaluation of small probabilities. Results from a copula

analysis are dependent on the choice of the random process correlation structure

(Renard and Lang , 2007), which may be problematic if the choice of the copula

structure is not well-founded.

1.3.6 The Design Loads Generator

The Design Loads Generator (DLG) was developed by Alford (2008) and Kim

(2012) to direct simulations for extreme responses, while retaining the excitation pro-

files that lead to these responses. The DLG method, explained in-depth in Chapter

2.3, constructs ensembles of short input profiles which are representative of a spec-

ified operational profile and exposure period, that lead to extreme responses of an

associated linear response. The quick construction of short inputs which lead to ex-

treme values means that no brute-force simulations are required to analyze lifetime

responses. This capability allows designers to examine specific marine system lifetime

responses, because the wave profiles constructed by the DLG can generate pressure

and other load distributions on the system. However, the DLG capability is limited

to considering a single system response, and system responses are conditioned on the

specific excitation input. For systems whose extreme responses may be due to varying

levels of combined loading, a single DLG analysis cannot give a general probability

of exceeding a defined threshold.
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1.4 Overview of Thesis

The above methods each focus on a specific challenge associated with analyzing

the extreme responses of a complex marine system. However, these methods, in

general, cannot estimate a threshold exceedance probability due to the interaction of

combined, non-Gaussian loading with a complex threshold over a long exposure. And,

apart from the DLG, the methods do not generate or retain an ensemble of stochastic

inputs which lead to lifetime extreme responses. However, the DLG is yet unsuited

to consider the interaction of a combined loading vector with a complex threshold

surface. This thesis addresses that gap through the development of the non-linear

Design Loads Generator (NL-DLG) process, which combines extreme value theory,

non-linear load combination cases, surrogate processes, and directed simulations from

the DLG. The NL-DLG process grew naturally from the work of Alford (2008) and

Kim (2012), and specifically from interesting results associated with the analysis of

extreme system inputs and responses. Therefore, the dissertation, as presented here in

the following chapters, is truly the chronological progression toward the development

of the NL-DLG process.

Chapter I gives an overview of research concerning extreme wave profiles, and

the analysis of system responses, or the threshold-crossing of a surface by a vector of

combined loads. Chapter II develops the background used in this dissertation, namely:

Gaussian random processes, extreme value theory, and the Design Loads Generator

(DLG). This chapter also gives an overview of the development of the expected shape

of a rare wave group, defined as the maximum of a derived Gaussian process, as first

published by Sey↵ert et al. (2016), with the major theoretical derivation by Troesch.

Chapter III uses the derived Gaussian process to mine through vast amounts of

physical oceanographic data from the Pt. Reyes Buoy to determine if group-like

structures exist in an irregular wave environment. Wave groups in an ensemble sense,

and individual time records containing these wave groups, are compared with the

theoretical wave group formulation, showing strong agreement. This indicates that

excitation inputs constructed by the DLG to lead to extreme values of linear surrogate

processes do exist in a physical oceanographic environment. This is an important

validation of the DLG and gives confidence in using the DLG to construct physically

realizable wave profiles that lead to extreme system responses.

Individual time series from the Pt. Reyes Buoy are then used as excitation in

a spar platform model in Chapter IV. Spar platforms may experience extreme pitch

12



responses due to parametric excitation, which in idealized testing cases is usually

represented by a regular wave train tuned to the platform heave natural period.

Wave groups in individual physical wave records, which were shown to exhibit this

group-like behavior in Chapter III, provide the excitation for the spar model. The

connection between wave group occurrence in the excitation and a resulting large

pitch response some pre-determined period later is examined. The probability of

experiencing an extreme pitch response conditioned on the occurrence of a large wave

group is given. Specifically, it is found that wave groups of 7, 8, or 9 waves are most

likely to set o↵ large pitch responses of the spar.

However, wave groups of similar group index (i.e. wave groups of 7, 8, or 9

waves) may not be mutually exclusive, and performance metrics conditioned on such

excitation inputs may not be useful for designers. Therefore, Chapter V develops the

NL-DLG process to address these concerns. Namely, the NL-DLG process estimates

the probability that a complex threshold, representing a complex system response,

is exceeded by combined, potentially correlated, non-Gaussian loading over a long

exposure, potentially thousands of hours long. The threshold surface may be exceeded

due to varying combinations of the non-linear loads. The NL-DLG process assembles

an ensemble of excitation inputs which lead to the threshold exceedances the system

is most likely to experience over its exposure period. A hypothetical example is given

in Chapter VI to show the utility of the NL-DLG process in a more general sense,

and to highlight specific features about system design brought up during an NL-DLG

process analysis.

Chapter VII uses the NL-DLG process to determine the probability of sti↵ened

ship panel collapse over a 1000-hour exposure to Hurricane Camille-like conditions.

Sti↵ened panel failure is due to combined lateral and in-plane loading, which are non-

linear functions of the wave excitation. The NL-DLG process estimates the failure

probabilities and distributions of most-likely failures for 6 panel designs, and both

results are verified by full MCS. Due to the far-reduced computational e↵ort of the

NL-DLG process, it is then possible to quickly change design features and re-evaluate

the panel performance, to determine the panels’ sensitivity to failure, based on a small

design change. The NL-DLG process illustrates why some panels are more susceptible

to failure than others based on panel properties.

Chapter VIII uses the NL-DLG process to examine lifetime combined loading

on a trimaran. The DLG assembles distributions of seven global loads, based on a
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specific operational profile and sea state. These distributions of combined loading

experienced by a single trimaran are compared to combined loading cases based on

Lloyd’s Register rule load and alternative load approaches, which are o↵ered to eval-

uate trimaran structural adequacy. The NL-DLG process examines the applicability,

conservatism, and exhaustiveness of the rule load and alternative load approaches

applied to a specific trimaran hull. It is ultimately found neither the rule load, nor

the alternative load method recommended by Lloyd’s Register for trimaran struc-

ture testing realistically describe the combined loading experienced by the specific

trimaran examined. The NL-DLG process is used to determine the probability of

simultaneously exceeding all load combination bounds, and is then used to o↵er more

realistic, conservative, and exhaustive loading combination cases.

Finally, Chapter IX concludes the work, and o↵ers some steps for future work. In

summary, the major focus of this thesis is to e�ciently solve the threshold-crossing

problem for non-Gaussian, potentially correlated loading interacting with a multi-

dimension non-linear threshold surface over a long exposure and link these threshold-

crossings to wave excitation inputs.
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CHAPTER II

Background

2.1 Gaussian Random Processes

A random process x(t) can be represented as a sum of cosine functions:

x(t) =
NX

j=1

ajcos(!jt+ ✏j) (2.1)

where

aj =
q
2S(!j)�!j

!j = discretized frequency

S(!) = single-sided spectrum of the process

✏j = uniformly distributed phase angles from �⇡ to ⇡

The random variable X, represented by the random process x(t), approaches a

Gaussian distribution as the number of cosines, N , goes to infinity, as explained by

the central limit theorem. The probability density function (pdf) of a zero-mean

Gaussian function is:

f(x) =
1

�
p
2⇡

e�x2/(2�2

) (2.2)

where

� = standard deviation of the process

=

1Z

0

S(!)d! ⇡
NX

j=1

S(!j)�!j =
NX

j=1

1

2
a2j

The Gaussian cumulative density function (cdf) may be expressed as:

FX(x) =

xZ

�1

1

�
p
2⇡

e�t2/(2�2

)dt =

x/�Z

�1

1p
2⇡

e�t2/2dt = �(
x

�
) (2.3)
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2.2 Extreme Value Theory

The ocean environment may well be described as a Gaussian process, specifically

for deep-water waves (see, e.g., Kinsman (1965)). Many marine system loads can

be represented, or at least approximated, by some linear function. Therefore, these

loads may also be described as a Gaussian process. To consider the probability that

a load exceeds some allowable threshold over its lifetime, the lifetime responses must

be examined. This is equivalent to considering the distribution of extreme events of a

Gaussian random variable for a specific exposure period. Here, these extreme events

can be found by simulating the random variable for a given time, T, and finding the

largest event (i.e. largest excursion of the process). This process is repeated n times.

Ochi (1990) describes the dimensionless pdf of the positive maxima as:

f
⌅

(⇠) =
2

1 +
p
1� ✏2

"
✏p
2⇡

e�⇠2/(2✏2) +
p

1� ✏2⇠e�⇠2/2�

 p
1� ✏2

✏
⇠

!#
(2.4)

where

⇠ = normalized positive maxima x̃/�

x̃ = positive maxima

✏ = bandwidth parameter =

s

1� m2

2

m
0

m
4

mk =

1Z

0

!kS(!)d!

(2.5)

The extreme value distribution is the distribution of extreme responses that a

system experiences for a given exposure. A set of order statistics from a random

sample (x1, x2, · · · , xn) with size n is defined as Y1, Y2, · · · , Yn. This random sample

is drawn from a distribution with the pdf, fX(x). The joint pdf of Y1, Y2, · · · , Yn is

called g(y1, y2, · · · , yn):

g(y
1

, y
2

, · · · , yn) = nf(y
1

)f(y
2

) · · · f(yn) (2.6)

where
�1 < y

1

< y
2

< · · · < yn

The pdf of the largest value, Yn, is found by successive integration of Eq.(2.6),

and is given by Eq.(2.7) for �1 < yn < 1:

g(yn) = nfY (yn){FY (yn)}n�1 (2.7)
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The cdf of the largest value, Yn, is then:

G(yn) =

ynZ

�1

g(yn)dyn = {FY (yn)}n (2.8)

The most probable extreme value, byn, is defined as the solution to Eq.(2.9). The

most probable extreme value, byn, is related to the number of samples, n, in the limit

as n ! 1 by Eq.(2.10):

d

dyn
g(yn) = 0 (2.9)

1

n
⇡ 1� FY (byn) (2.10)

The most probable extreme value, byn, for a given number of cycles per unit time

with ✏ < 0.9 is then given by Ochi (1990) as:

byn =
p
m

0

"
2 ln

 
2
p
1� ✏2

1 +
p
1� ✏2

n

!# 1

2

(2.11)

where

n =
1

4⇡

 
1 +

p
1� ✏2p

1� ✏2

!r
m

2

m
0

, per unit time (2.12)

✏ =

s

1� m2

2

m
0

m
4

= broadness/ bandwidth parameter

mk =

1Z

0

!kS(!)d! = kth moment of the process spectrum

Combining Eq.(2.11) and (2.12), the most probable extreme maximum for a given

exposure time, T in seconds, is found by Eq.(2.13). Note this equation is the same for

both narrow and broad band spectra because the broadness parameter is considered

by the number of cycles and the spectral moments.

byn =
p
m

0


2 ln

✓
T

2⇡

p
m

2

/m
0

◆� 1

2

(2.13)

An issue with using the most probable extreme value as a design value for engi-

neering purposes is that there is a high probability that an exposure-period-maximum

value is greater than the value byn. For large n and byn, Ochi estimates that the prob-
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ability of exceeding the most probable value over the exposure T is:

p(X > byn) ⇡
1

n
(2.14)

The probability that the largest value, Yn, over the exposure exceeds this most

probable maximum is approximately 63.2%:

lim
n!1

p(Yn > byn) = 1�G(byn)

= lim
n!1

[1� {F (byn)}n]

= lim
n!1


1�

✓
1� 1

n

◆n�

= 1� e�1 = 0.632

(2.15)

Therefore, a risk parameter ↵ can be defined. Then, there is an extreme value ỹn

that satisfies Eq.(2.16)-(2.18):

ỹnZ

0

g(yn)dyn = {F (ỹn)}n = 1� ↵ (2.16)

p(X > ỹn) = 1� FY (ỹn) ⇡
↵

n
(2.17)

p(Yn > ỹn) ⇡ ↵ (2.18)

This formulation allows the definition of an extreme value associated with an

exposure (which can be expressed by the number of cycles or samples n) and a risk

parameter ↵ (i.e. with a given probability of exceedance). Risk parameters can

be used when combining an exposure length in a certain sea state with a design

probability of exceedance, which is related to a longer exposure length.

For example, given an extreme value distribution based on a 1000-hour exposure

for a process with a mean cycle period of 10 seconds (meaning the number of cycles

is n = 3.6e5), the probability that the maximum value over an exposure exceeds

byn is approximately 0.632, as by Eq.(2.15). Therefore, a designer could apply a

risk parameter ↵ = 0.1, leading to a new extreme value ỹn, as by Eq.(2.16)-(2.18).

The probability that the largest response in the 1000-hour exposure exceeds ỹn is

approximately p(Yn > ỹn) = ↵ = 0.1, by Eq.(2.18).

This extreme value, ỹn, could be used to define a new extreme value distribution,

with ỹn as the most probable value. Since the extreme value, ỹn, of this new distribu-

tion can be related to an exposure T , by Eq.(2.13), the addition of the risk parameter
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↵ to the original 1000-hour exposure is equivalent to considering the extreme value

distribution associated with the longer exposure period T↵ = 10, 000 hours. This new

extreme value distribution could be used to design a system so that the probability

that the largest response during the 1000-hour exposure exceeds this new most prob-

able maximum, ỹn, is 0.1⇥ 0.632 = 0.0632. A smaller risk parameter ↵ could further

lower this probability for the design of more reliable systems for the given 1000-hour

exposure.

Designing for a more reliable system is essentially equivalent to designing for a

longer exposure period. To examine the reliability of a system over a longer exposure

via simulation leads to a larger computational expense. This presents a similar chal-

lenge as the problem of estimating small probabilities, in which the number of samples

needed to accurately estimate this small probability, p(S), is proportional to 1/p(S).
For smaller failure probabilities, i.e. a more reliable system, the exposure length and

associated computational expense increases. Di↵erent variance-reduction techniques

like subset simulation (Au and Beck , 2001; Papaioannou et al., 2015) are designed

to improve the e�ciency of brute-force MCS, specifically for estimating such small

probabilities through cascading conditional less-rare events. However, these methods

do not keep the inputs leading to extreme responses. As noted in Chapter I, it may

be desirable to reserve the inputs which lead to the distribution of extreme responses,

indicating the need for simulation. These competing interests: e�ciently simulating

extreme responses while retaining the inputs which lead to the extreme responses,

provided the motivation toward the development of the Design Loads Generator.

2.3 The Design Loads Generator

A possible method to balance such competing concerns: e�ciently simulating

extreme responses associated with long exposures while preserving the inputs that

lead to those responses, is found in the Design Loads Generator (Alford , 2008; Kim,

2012). The DLG generates ensembles of phases for use in Eq.(2.1), to assemble wave

profiles which lead to extreme linear responses at time t = 0 that are members of the

exposure-period extreme value distribution. Whereas in Eq.(2.1) the phases, ✏, are

uniformly distributed from �⇡ to ⇡, the DLG finds the phase distribution that tunes

waves to lead to extreme linear system responses. By (arbitrarily) assuming that the
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extreme event in question occurs at time t = 0, Eq.(2.1) may be simplified to:

x(0) =
NX

j=1

ajcos(✏j) (2.19)

If multiple realizations are considered, the distribution of maximum events, Yn,

all centered around t = 0, may be approximated by Eq.(2.7). The empirical pdf

of Yn approaches the theoretical pdf from Eq.(2.7) as N approaches infinity. The

work of finding the distribution of phases ✏j leading to extreme events began with

Alford (2008), who theorized that these phases are independent and non-identically

distributed (inid). Alford modeled the distribution of the random variable Ej, from

the phases ✏j, with a modified Gaussian distribution:

fEj
(z) =

1

�j

p
2⇡

e�z2/(2�2

j ) +
1

2⇡

 
1� erf

 
⇡

�j

p
2

!!
, � ⇡  z < ⇡ (2.20)

where

erf(x) = standard error function

=
2p
⇡

xZ

0

e�t2dt

�j  10

The characteristic function of the theoretical Gaussian extreme value distribution

(Eq.(2.7)) is:

E[eisYn ] =

1Z

�1

n

�
p
2⇡

e�y2/(2�2

)

⇣
�
⇣x
�

⌘⌘n�1

eisydy (2.21)

This characteristic function should be equivalent to the characteristic function of

the values of Eq.(2.19) associated with Ej. Therefore, Alford iteratively solved for the

desired phases ✏j by setting equal the characteristic function of the modified Gaussian

distribution (from Eq.(2.20)) with the characteristic function of the distribution of

maximum events Yn from Eq.(2.7):

NY
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⌘⌘n�1
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(2.22)
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Although Alford ’s solution phases did not perfectly follow the theoretical extreme

value distribution, Kim (2012) later simplified the expression using a change of vari-

able and Bessel functions. To fix the issue of the discrepancy between the resulting

phases and extreme value theory, Kim employed the Acceptance-Rejection Algorithm.

The Acceptance-Rejection Algorithm is utilized within the DLG framework by the

following steps:

1. Generate a random sample, y, from the random variable, Y, generator by pro-

ducing a set of phase angles, ✏j, that follow the modified Gaussian distribution

(Eq.(2.20)) based on � that approximately satisfies Eq.(2.22), and a uniform

random number, u, from the uniform distribution between 0 and 1, U [0, 1].

2. If u  fX(y)/cgY (y), accept y as a sample x from the random variable X

and store the associated set of phase angles ✏j. If not, repeat the first step.

Here, gY (y) is the distribution of phases predicted from the modified Gaussian

distribution (Eq.(2.20)), c is a constant, and fX(x) is the desired Gaussian

extreme value distribution for the phases (Eq.(2.7)).

3. Repeat the above two steps until nr sets of N phase angles are collected. Here,

nr is the required number of realizations.

Readers should refer to Kim (2012) to a full explanation of the DLG method.

2.4 Expected Shape of a Rare Wave Group

Due to their significant, possibly critical, e↵ect on the performance of marine

systems, wave groups have long been a popular topic in oceanographic and ocean

engineering research. Anecdotal observations, such as referring to successive large

wave peaks as ‘the three sisters,’ describe wave groups or runs of large waves that

were claimed to cause damage, sometimes severe, to ships or marine platforms1. Wave

groups can be identified by the Gaussian derived process, which was shown by Kim

and Troesch (2013) to provide parametric excitation which can lead to extreme roll.

This expected shape of the Gaussian derived process was first presented by Sey↵ert

et al. (2016) (with the derivation of the theoretical wave group by Troesch). An

overview of that derivation is given here.

1‘But do not despise the lore that has come down from distant years; for oft it may chance that old
wives keep in memory word of things that once were needful for the wise to know.’ - J. R. R. Tolkien.
The Fellowship of the Ring: Being the First Part of The Lord of the Rings. Allen & Unwin, 1954.
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2.4.1 Fourier Transforms & Expected Values

Below is the standard definition used in this thesis of the Fourier Transform pair

of a function x(t), where F{•} denotes the Fourier Transform of “•”:

X(!) =
1

2⇡

1Z

�1

dt x(t)e�i!t

x(t) =

1Z

�1

d! X(!)ei!t

(2.23)

Given a continuous, stationary, and ergodic random process x(t), the expected

value in terms of the time-dependent function, referenced to a particular time to, and

mean in terms of ensemble averages of realizations of the time-dependent function,

again referenced to to, are related by:

E[x(t)] =

1Z

�1

dz z fx(t)(z) = lim
N!1

1

N

NX

j=1

xj(t) (2.24)

Note that time in the pdf , defined as fx(t)(z), must be related to time in the

ensemble averages for Eq.(2.24) to be consistent. This will become apparent when the

conditional expected value of the time series, x(t), is compared to ensemble averages of

the realizations of the same function. For relevant discussions on conditional expected

values, refer to Boccotti (2015); Lindgren (1970, 1972a,b); Tromans et al. (1991);

Jensen (1996, 2005). Taking the Fourier Transform, F{•} Eq.(2.23), of the expected

value and ensemble average, Eq.(2.24), yields:

1

2⇡

1Z

�1

dt e�i!tE[x(t)] =
1

2⇡

1Z

�1

dt e�i!t 1

N

NX

j=1

xj(t)

=
1

N

NX

j=1

1

2⇡

1Z

�1

dt e�i!txj(t)

=
1

N

NX

j=1

Xj(!)

=
1

N

NX

j=1

F{xj(t)}

(2.25)
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2.4.2 Linear Systems & Conditional Expected Values

If x(t) and y(t) are the input and output, with Fourier Transforms X(!) and Y (!)

respectively, of a linear system with frequency transfer function of H(!), it can be

shown (e.g. Wirsching et al. (2006)) that:

Y (!) = H(!) X(!) (2.26)

Substituting Eq.(2.26) into Eq.(2.25), it follows that the Fourier Transform of the

expected value of the output is equal to the system transfer function times the Fourier

Transform of the expected value of the input:

F{E[y(t)]} =
1

N

NX

j=1

H(!) Xj(!)

= H(!)
1

N

NX

j=1

Xj(!)

= H(!) F{E[x(t)]}

(2.27)

Now consider conditional expected values. In particular, consider the conditional

expected value of the function, y(t), expressed asE[y(t) |y(to)=by, ẏ(to)=0] where, for

a stationary process, to is arbitrary and can take any value without loss of generality.

If y(t) is Gaussian with zero mean and covariance r(⌧), several authors (e.g. Boccotti

(2015); Lindgren (1970, 1972a,b); Tromans et al. (1991); Jensen (1996, 2005)) have

shown that as by ! 1:

E[y(t) |y(to) = by, ẏ(to) = 0] ! by r(t� to)

r(0)
(2.28)

This expression has been shown to model large waves in the real ocean to a

remarkable degree, e.g. Phillips et al. (1993); Jonathan and Taylor (1995). Boccotti

(2015) (Sect. 8.1) demonstrates that the condition on the function derivative, ẏ(to) =

0 can be relaxed as by ! 1 to give:

E[y(t) |y(to) = by] ! by r(t� to)

r(0)
(2.29)

This is not unexpected since the extreme value pdf ’s for Normal and Rayleigh pro-

cesses, with the same most probable extreme value, by, are asymptotically equivalent

in the limit of infinite by. It is now possible to introduce the spectral density functions

of the expected values of x(t) and y(t) for large by by considering the Wiener-Khinchine

relations. In the derivation of the Wiener-Khinchine relations, the spectral density
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function Sxx(!) is defined in terms of the Fourier Transform of the stochastic process

x(t) as in Eq.(2.30), where X(!) = F{x(t)} and the over-bar denotes the complex

conjugate:

Sxx(!) = lim
T!1

2⇡

T
X(!)X(!) (2.30)

2.4.3 Relationship Between the Derived Process, Group Behavior, and

the Shifted Autocorrelation

A derived Gaussian process zk(t), defined as scaled, shifted sum of a stochastic

input ⌘(t), was first defined by Kim and Troesch (2013). Here, ⌧ is a pre-defined

period of interest and k is the group index (i.e. number of times ⌘(t) is summed).

This is the derived Gaussian process, as first defined by Eq.(1.2) in Chapter 1.2.3:

zk(t) =
kX

p=1

⌘(t+ (p� 1)⌧) (2.31)

Using linear systems theory, conditional expected values, and theWiener-Khinchine

relations, the expected shape of a rare wave group is:

E[⌘(t) |zk(0) = bzk, żk(0) = 0] =
bzk

�2

zk

kX

p=1

r⌘⌘(tp) (2.32)

The expected form of the derived process, conditioned on the kth derived process

being a maximum at to, where to can arbitrarily be set equal to zero, is proportional

to the sum of k autocorrelation functions of ⌘(t), r⌘⌘, separated in time by (p� 1)⌧ ,

p = 1, . . . , k seconds. The constant of proportionality is the value of the maximum

of the derived process, with group index k, divided by its variance, �2
zk . Similarly,

for comparison with ensemble time series conditioned on zk(to) = bzk and żk(to) = 0,

a similar application of Eq.(2.28) yields:

lim
N!1

1

N

NX

j=1

[⌘j(t) |zk(to) = bzkj
, żkj

(to) = 0] =
bzk

�2

zk

kX

p=1

r⌘⌘(tp) (2.33)

Again, Boccotti (2015) removes the condition on the derivative (i.e. żk(to) = 0) in

the limit of infinite bzk. Considering the stochastic input ⌘(t) as a wave elevation, the

Gaussian derived process zk(t) is related to a wave group of k peaks, with each peak

separated in time by ⌧ seconds.
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2.4.4 Estimation of the Derived Process Maximum, bzk

Eq.(2.32)-(2.33) show that the temporal dependence of the expected wave group is

determined by the shifted sum of the autocorrelation function of the wave elevation,

⌘(t), while the mean amplitude of the wave group is related to the variance and

maximum of the derived process, zk(t). An important objective is how to estimate

the maximum, bzk, from the spectral moments of the derived process and the exposure.

A useful way to estimate extreme values of a random process is to assume a

counting process whose arrivals above a certain threshold are Poisson distributed (e.g.

Wirsching et al. (2006), Ochi (1990)). That is, assume the samples are collected from

independent and identically distributed (iid) processes whose arrival times follow a

Poisson distribution. However, successive local maxima in zk(t), and consequently

their arrival rates, are clearly not independent and the dependence increases with

increasing wave group index k. This results in a clumping or clustering of the peaks

which can impact the threshold crossing rate, e.g. Wirsching et al. (2006). Declus-

tering the data can be accomplished by constructing block maxima, but this will

significantly increase the complexity of the analysis (Coles , 2001). The approach

used in this dissertation is to assume that the dependence of successive zk(t) maxima

has a limited e↵ect on extreme value predictions and follow the traditional method

for estimating probable extreme maxima, as shown in Chapter 2.2 (Ochi , 1990).

Given a method for estimating the derived process maxima, the expected shape

of a wave group of k waves separated in time by ⌧ seconds is fully defined for a given

exposure and operating profile. This theoretical ensemble wave group may represent

physical ensembles of group-like behavior. But for use in non-linear systems, the

expected input does not yield the expected output. An ensemble of inputs is required

to determine a distribution of responses. The question then is: is this theoretical

wave group shape representative of a physical ocean environment, and individual

wave records? Can these individual time records be used as the ensemble of inputs

to lead to a distribution of extreme responses? That is next considered.
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CHAPTER III

Identification of Wave Groups in Physical

Oceanographic Data

The Gaussian derived process defined in Chapter 2.4.3 can be used to identify

rare wave groups in physical oceanographic data. The derived process acts as a filter,

similar to a moving average, to quickly sort through wave elevation time series to

find time segments which contain rare wave groups. Wave groups of a pre-described

k wave peaks separated in time by ⌧ seconds are identified by extreme values of the

derived process. These individual time records can be ensemble averaged to compare

to the expected wave group definition developed in Chapter 2.4.3. Individual time

series which contain these derived process maxima contain clear wave group structure,

though ‘hidden’ within the irregular time series. These oceanographic time series

provide a physical basis for constructing ensembles of statistically equivalent time

series by the DLG.1

3.1 Data Collection

The physical oceanographic data used for the wave group identification is collected

by the Pt. Reyes Buoy, which is operated by the Coastal Data Information Program

through the University of California, San Diego (CDIP , 2018). The Pt. Reyes Buoy

operates o↵ the coast of San Francisco, California in approximately 550 m water

depth. It is equipped with a GPS tracker to record its moored location and is designed

to ride the waves so that the buoy motion tracks the wave height. Specifically, the

buoy’s accelerometer captures the accelerations of the body. The data is then filtered

1Portions of the work presented in this chapter were previously published in Sey↵ert and Troesch
(2016a) and Sey↵ert and Troesch (2016c).
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Parameter Value
Heave Range -20 � 20 m
Heave Resolution 1 cm
Period Range 1.6 � 30 sec
Sampling Frequency 1.28 Hz
Digital Filtering Type Phase Linear, combined band-pass

double-integrating FIR filter

Table 3.1: Buoy specifications.

and two integrations yield the buoy displacement (surface elevation). Shown in Figure

3.1 is a schematic of the buoy along with its reference axes. The buoy specifications

are given in Table 3.1. The buoy’s ability to capture high wave frequencies is limited

by its diameter. Conversely, its ability to measure low frequencies is limited by its

mooring. For these limiting cases, the energy is spread over multiple frequencies.

Tracking the pitch and roll indicates wave direction. The mooring for the buoy is a

combination of an anchor weight at the seabed, then polypropylene rope, and then a

stabilizing chain which attaches to the buoy.

Figure 3.1: Orientation of reference axes for Datawell Directional Buoy (CDIP , 2018).

The time series from the buoy are sorted into 30-minute segments (the majority

of the data was reported in 30-minute increments) and then linked with additional

buoy data to attribute a significant wave height Hs and peak modal period Tp to the

temporal elevation data. This allows a filtering of the data to examine rare wave

groups within certain ranges, or ‘bins,’ of Hs and Tp values, for the consideration of

stationary statistics.
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3.2 General Environmental Conditions

Given the time series data from the Pt. Reyes Buoy, it is possible to find the

rarest wave groups for groups of 1 through 15 waves. An initial challenge is the

categorization of the di↵erent ranges of Hs and Tp values that make up the domain

of the 17-year buoy service. In Figure 3.2, the distribution of all recorded time series,

given a particular Hs and Tp, are shown, with the color bar representing the number

of 30-minute time segments that fit in the individual bins. Based on the CDIP

buoy specification sheets, the buoys are only able to resolve certain frequencies, and

therefore can only attribute a discrete number of peak modal period values to the

time series. Some Tp ranges have no time series due to resolution coarseness in the

data process.

Figure 3.2: Distribution of available time series for Hs and Tp ranges for January 1997-December
2013, along with two bins chosen to classify time series with a given range of Hs and Tp values.

Two bin categories, which contain enough time series for converged statistics, are

selected to identify rare wave groups within the available Pt. Reyes Buoy data. These

bins have the same Hs range, but di↵erent Tp ranges. Comparison of time series from

the two bins allows for an initial evaluation of the e↵ects of wave steepness and number

of wave cycles in a 30-minute time series on rare wave groups. Figure 3.3 shows a

representative spectrum corresponding to an individual time series and the ensemble

spectrum for each bin. The parameter ranges of the two bins are given in Table 3.2.

For the two selected bins, the range of significant wave heights remains constant,

but the time series have a range of longer (10.0 to 11.5 sec) and shorter (7.9 to
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Figure 3.3: Single-sided spectrum for bins 1 & 2.

8.6 sec) peak modal periods. This range of periods yields a measurable di↵erence

in the number of oscillations in the two sets of time series as a whole. The time

separation between the points in the derived process, ⌧ , can be changed to match

a particular dynamic problem. Here, ⌧ is chosen as the peak modal period of the

ensemble spectrum for each bin. With the two selected bins, the time series are

sorted, and the derived process identifies wave groups for groups of 1� 15 waves.
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Parameter Value

bin 1

Hs Range 2.6 � 3.0 m
Tp Range 10.0 � 11.5 sec
Number of 30-minute time series 3350
Total Time 1675 hours
4� (Ensemble Average) 2.75 m
Ensemble Peak Period 10.65 sec

bin 2

Hs Range 2.6 � 3.0 m
Tp Range 7.9 � 8.6 sec
Number of 30-minute time series 2430
Total Time 1215 hours
4� (Ensemble Average) 2.81 m
Ensemble Peak Period 8.22 sec

Table 3.2: Bin parameter ranges.

3.3 Derived Process Maxima & Wave Group Statistics

The derived process for index k of 1 through 15, corresponding to wave groups of 1

through 15 waves, Eq.(2.31), is calculated for each 30-minute time series that fits into

either bin, using ⌧ = Tp for the specific bin. From these 30-minute derived process

time series, the maximum zk value for a given wave group index k is determined.

Figure 3.4: Average of derived process maxima for 30-minute time series in bins 1 & 2, normalized by
k, along with lines representing 2� (significant wave amplitude) and 1.25� (mean wave amplitude),
with � as the average of �

bin 1

and �
bin 2

.
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Figure 3.4 shows the maxima of the derived process for all time series in bins 1

and 2, averaged by the wave group index k. This is a valuable measure of the wave

groups since it quantifies the inverse relationship between average group amplitude

and length of group run. Indeed, the largest normalized value for the derived process

occurs for a single wave and decreases as the wave index increases. This indicates that

wave groups with many wave peaks should not be expected to have large mean wave

group heights. These values are plotted along with lines representing 2� (significant

wave amplitude) and 1.25� (mean wave amplitude). Here, � is the average of the �

values for bins 1 and 2.

It is remarkable that for runs even as long as k = 8 waves, the average group

amplitude exceeds the mean wave amplitude value. Note that the average normalized

group amplitudes for bin 2 are slightly larger than for bin 1. This is because the time

series in bin 2 have a range of Tp values which is shorter than in bin 1. A shorter cycle

period means there are more cycles in the 30-minute exposure. The most probable

maximum is proportional to the number of cycles in an exposure, as shown in Chapter

2.2, so it makes sense that the maxima for bin 2 are slightly larger than for bin 1.

Figure 3.5: Empirical histogram (given as a pdf) of wave elevation time series data for all time
series in bins 1 and 2, normalized by the respective �, and overlaid with a zero-mean, unit-variance
Gaussian distribution. The number of cycles in bins 1 and 2 are n = 5.66e5 and n = 5.33e5,
respectively.

The empirical histogram, given as a pdf , of all the wave time series for each bin is

given in Figure 3.5, with the time series all normalized by their respective standard

deviation, �. A zero-mean Gaussian pdf with � = 1 is overlaid and the skewness and
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kurtosis for the respective histograms are given. To compare the empirical histograms

of the time series data with the Gaussian distribution, the Je↵reys divergence, or the

symmetric Kullback-Leibler Divergence, DJ , as given in Eq.(3.1) is calculated for each

bin (Kullback and Leibler , 1951).

DJ(p||q) =
Z

x

(p(x)� q(x))(ln(p(x))� ln(q(x)))dx =
X

i

(p(i)� q(i))ln
p(i)

q(i)
(3.1)

where

DJ(p||q) = Je↵reys divergence, or symmetric Kullback-Leibler divergence

p(x) = a distribution over x

q(x) = a di↵erent distribution over x

This divergence measures how much information is lost if one distribution approx-

imates another distribution. It follows that DJ can give a good measure to determine

if one pdf (e.g. a pdf based on bin 1) is more Gaussian than another (e.g. a pdf

based on bin 2). In Figure 3.5, the two DJ values for bins 1 and 2, (i.e. DJ =

O(10�4)) suggest that the empirical wave elevation samples follow a Normal process,

as is expected for wave elevation data measured in 550 m water depth.

For wave group indices of k = 1, 3, 6 and 9, the time series are lined up such that

the maximum of the derived process for each time series occurs at the same time,

t = t0, and the ensemble average is calculated. Specifically, the ensemble average of

the time series is based on the maximum of zk(t0), defined as bzk, with the results

shown in the left column of Figure 3.6. Two hundred seconds of the wave elevations

are shown; the time of the bzk maxima, t0, has been arbitrarily set equal to 100 sec.

The average is an approximation to E[⌘(t)|zk(t0) = bzk], Eq.(2.32). The top 50 values

of the derived process for each bin are also identified, and those wave groups along

with the ensemble average of those top 50 realizations are shown in the right column

of Figure 3.6.

The maxima of the derived process clearly identify wave groups. The ensemble

averages show little correlation between di↵erent wave elevation time series except

in the time period immediately following t0, i.e. t0 < t < (k � 1)⌧ . In addition,

the mean group amplitude matches the trends shown in Figure 3.4, in which wave

groups of longer runs have progressively smaller mean amplitudes. The mean wave

group amplitudes for the time series with the top 50 derived process values for both

bins, shown in the right column of Figure 3.6, are noticeably larger compared to the

mean group amplitude for all the time series for both bins, shown in the left column
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Figure 3.6: In the left column: wave groups and ensemble average for all time series with arbitrary
50 time series plotted for k = 1, 3, 6, & 9 with ⌧ = Tp for bins 1 & 2. In the right column: time series
containing top 50 maxima of derived process for k = 1, 3, 6, & 9 with ⌧ = Tp and ensemble average
for bins 1 & 2. The time of maximum zk(t), to, is shifted to 100 sec without loss of generality.

of Figure 3.6. This makes sense, as the time series with the top 50 derived process

values for either bin represent the set of wave groups with approximate probability of

exceedance of 50/3350 = 1.49% and 50/2430 = 2.06%, for bins 1 and 2, respectively.

Time series with the maximum value of the derived process for each bin are shown

in Figure 3.7. Wave groups for index k = 1, 3, 6, and 9 are shown along with the

ensemble average of time series containing the top 50 values of the derived process for

that index k. Without the superposition of the ensemble average, it would be di�cult

to identify the individual wave groups in a single realization. In addition, the k = 6

wave group for bin 2 might fail to meet the threshold criteria of the traditional wave

group definition, since the fifth wave peak amplitude is less than the mean group

amplitude.

Figures 3.6-3.7 represent an important validation of the DLG method, because

they show that physical waves which lead to extreme values of linear surrogate pro-

cesses do exist, both in an ensemble and in an individual sense. Therefore, it can be

confidently assumed that the waves constructed by the DLG to lead to extreme linear

responses are realistic wave profiles.
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Figure 3.7: Representative time series containing the maximum of the derived process, for k = 1, 3, 6,
and 9 with ⌧ = Tp and (top 50) ensemble average wave groups of k = 1, 3, 6, and 9 waves with ⌧ = Tp

for bins 1 and 2. The time of maximum zk(t), to, is shifted to 100 sec without loss of generality.

3.4 Order Statistics

Continuing in this section, order statistics for the two bins are examined. The

overall objective is to determine which statistical models reasonably approximate the

various distributions associated with rare wave groups. Figure 3.5, with the low DJ

values, suggests that it is reasonable to assume a Normal process for the initial wave

elevation. However, this modeling assumption may not necessarily be valid for the

tails of the original process histogram. The Gaussian derived process assumes that

the seaway can be approximated as a zero-mean Gaussian process. It follows that the

derived process, Eq.(2.31), is the sum of normal processes and thus a normal process

itself. Given the variance of zk(t), then, it should be possible to estimate various

extreme value statistics and distributions.

Note that Eq.(2.13), which relates the number of cycles, n, over an exposure to

the most probable maximum value, is valid only in an asymptotic sense and may be

a poor approximation for the maxima associated with the relatively short 30-minute

time histories examined here. Therefore, to find the value of n that best describes a

Normal extreme value distribution for the 30-minute maxima, the following strategy
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is employed. The Gaussian extreme value pdf , Eq.(2.7), is evaluated for a range of n

values, g(ynk
), using the derived process ensemble variance for group index k. Then

g(ynk
) is compared with the ensemble extreme value histogram using the Je↵reys

Divergence (i.e. Eq.(3.1)). The best fit is deemed to be the value of n which results

in a minimum value of DJ . This analysis was completed for zk, k = 1, · · · , 15, using
⌧ = Tp for bins 1 and 2, with the results shown in Table 3.3.

k �zk/k bzk/�k nk DJk
bzk/(�zk ⇥ E[ynk

])

bin 1

1 0.693 3.424 1548 0.048 1.018
2 0.553 3.354 1164 0.064 1.021
3 0.478 3.297 902 0.076 1.027
4 0.428 3.241 715 0.090 1.031
5 0.392 3.198 617 0.092 1.032
6 0.363 3.162 534 0.103 1.034
7 0.340 3.132 473 0.115 1.037
8 0.321 3.102 428 0.113 1.038
9 0.305 3.072 384 0.116 1.039
10 0.291 3.047 354 0.112 1.040
11 0.279 3.021 325 0.113 1.041
12 0.267 2.994 298 0.117 1.041
13 0.258 2.974 277 0.118 1.043
14 0.249 2.955 263 0.113 1.042
15 0.241 2.935 247 0.110 1.043

bin 2

1 0.703 3.478 1855 0.062 1.019
2 0.567 3.360 1251 0.044 1.017
3 0.496 3.302 999 0.050 1.019
4 0.443 3.260 840 0.056 1.022
5 0.403 3.230 755 0.061 1.022
6 0.371 3.198 668 0.065 1.024
7 0.345 3.171 602 0.072 1.025
8 0.324 3.144 538 0.074 1.028
9 0.305 3.117 491 0.074 1.028
10 0.290 3.100 464 0.074 1.029
11 0.277 3.082 437 0.075 1.029
12 0.265 3.060 406 0.075 1.029
13 0.255 3.043 382 0.075 1.030
14 0.246 3.026 359 0.076 1.031
15 0.238 3.012 343 0.078 1.031

Table 3.3: Order statistics for bins 1 & 2.

The derived process maxima, bzk, which are based on the physical data samples,

correspond to the Normal random variable ynk
�zk . In this sense, then, the mean of

the empirical histogram, bzk, can be compared to the expected value E[ynk
]. Table

3.3 contains the following statistical information for each wave group index k in

bins 1 and 2: the normalized ensemble � for zk(t), �zk/k, the histogram mean bzk
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normalized by the ensemble �, the value of n corresponding to the minimumDJ value,

the minimum DJ value, and the histogram mean normalized by the corresponding

Gaussian expected extreme value. From Table 3.3, it is observed that:

1. Column 2, �zk/k, follows a similar trend as seen in Figure 3.4. The � of the

derived processes, normalized by the wave group index, k, decreases with in-

creasing group index, k.

2. Column 3, bzk/�zk , shows the e↵ective rarity of the kth wave group in 30 minutes.

The reduction in bzk/�zk as k increases is explained, in part by a finite record (30-

minutes) and the nature of the derived process (zk), including, but not limited

to, its tendency to shorten the record as k increases.

3. Column 4, nk, shows that the number of cycles that best fits the specific group

index k diminishes for increasing k. This indicates that the most probable max-

imum associated with groups of more waves is smaller than the most probable

maximum associated with groups of less waves. This is a similar trend to that of

bzk/�zk , in that the rare wave groups of longer runs seem to be disproportionally

smaller than wave groups of shorter runs.

4. Column 5, DJk . The results for both bins 1 and 2 show that DJk increases with

increasing wave run index, k, although the relative increase is significantly less

pronounced for bin 2 than for bin 1. This may be due to the quality of the data

in the respective bins or may be due to trends related to wave steepness.

5. Column 6, bzk/(�zk ⇥ ynk
), shows that while the DJk comparison suggests a

small, but consistent, deviation from a Normal extreme value pdf , the mean of

the empirical histogram is approximated by the expected value of an equivalent

Normal process to within 2%-4%.

3.5 Rare Wave Groups

In this section, a subset of the Pt. Reyes Buoy time series with large wave heights

(Hs > 6 m) are examined. The subset of significant wave heights and peak modal

periods used here are shown below in Table 3.4 and indicated on the histogram in

Figure 3.8. There is a significant spread in the ranges of peak modal periods, as can

also be seen in the ensemble spectrum of this group of time series in Figure 3.9.
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Parameter Value
Hs Range 6.36 – 8.28 m
Tp Range 10.22 – 19.36 sec
Number of 30-minute time series 70
Total Time 35 hours
4� (Ensemble Average) 7.09 m
Ensemble Peak Period (Tp) 14.88 sec
Ensemble Zero Crossing Period (To) 9.94 sec

Table 3.4: Ranges of significant wave height and peak modal period for examined time series.

Figure 3.8: Available time series for Pt. Reyes
Buoy CDIP (2018), and chosen range of time
series parameters.

Figure 3.9: Seventy selected wave spectra from
the Pt. Reyes Buoy with ensemble average spec-
trum. The ensemble average is based on seventy
30-minute records with mean Hs = 7.09 m and
mean Tp = 14.88 sec.

3.5.1 Comparison with Ensemble Average

In Figure 3.10 the temporal ensemble average wave group for k = 5, ⌧ = Tp =

14.88 sec, is compared with the theoretical result, Eq.(2.32). In the top inset of

Figure 3.10, the blue curves are the seventy time series in the bin range from Table

3.4, with a maximum in the derived process shifted, without loss of generality, to 200

sec. The red curve is the ensemble average of these time series. The middle inset is

the temporal ensemble average overlaid with the theoretical wave group formulation

from Eq.(2.32) for k = 5, ⌧ = 14.88 sec. This theoretical curve was calculated as the

ensemble average of the summed autocorrelation functions of each of the 70 individual

time series, Eq.(2.32), using scaling factors �2
zk

and bzk as defined by Eq.(2.5) and

(2.13). The bottom inset shows the theoretical wave group formulation for k = 5,
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⌧ = 14.88 sec, along with the time series from 01/20/2010 02:39:00. This time series

was chosen as a best representative of the ensemble curves since its value of bz5 is

close to the mean derived process value of all 70 available time series for k = 5 wave

groups.

Figure 3.10: Comparison of Pt. Reyes Buoy wave records and ensemble temporal average with
theoretical wave group formulation (k = 5, ⌧ = 14.88 sec) from Eq.(2.32) using scale factors from
Eq.(2.5) and (2.13). This ensemble record is also compared with the wave elevation time series from
01/20/2010 02:39:00.

Clearly this individual record exhibits strong group-like behavior during the time

of wave group occurrence. Apart from some small variations, this portion of the wave

elevation record exhibits the near-constant 14.88 sec period between wave peaks,

and these peaks are additionally quite large. However, without the ensemble group

structure, it would be di�cult to pick out this time series as one which exhibits strong

group-like behavior.
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3.5.2 Comparison with Various Order Statistics

A relevant calculation is to determine the di↵erence in scaling ratios between

theoretical and empirical values, shown in Table 3.5. The empirical values are based

on data from the Pt. Reyes time series. Here, bzk is calculated as the mean of the

maximum in the derived process of the 70 time series for k waves and �2
zk

is the mean

of the variance of the derived process of the 70 time series. The first column is the

wave index k. The second column is the standard deviation of the kth wave group,

normalized by k. The third and fourth columns are the average non-dimensional

value of the maximum of the derived process, based on Eq.(2.13) for the theoretical

calculation (TH) and empirical data or time series (TS) tabulation, respectively. The

fifth column is the ratio of the third and fourth columns.

k (
p
mzko

/k)TS (bzk/
p
mzko

)TH (bzk/
p
mzko

)TS

(bzk/
p

mzko
)TH

(bzk/
p

mzko
)TS

1 1.773 3.222 3.401 0.947
2 1.456 3.171 3.355 0.945
3 1.270 3.160 3.256 0.971
4 1.139 3.157 3.204 0.986
5 1.040 3.157 3.190 0.990
6 0.963 3.156 3.120 1.012
7 0.900 3.157 3.071 1.028
8 0.847 3.156 3.060 1.032
9 0.802 3.155 3.025 1.043
10 0.764 3.152 2.997 1.052
11 0.731 3.149 2.966 1.062
12 0.701 3.146 2.948 1.067
13 0.675 3.144 2.904 1.083
14 0.652 3.141 2.870 1.095
15 0.631 3.138 2.846 1.103

Table 3.5: Non-dimensional scale factors based on theory (TH) (i.e. Eq.(2.5) and (2.13)) and
empirical time series (TS). Separation period ⌧ = Tp = 14.88 sec.

The increase of (bzk)TH relative to (bzk)TS for increasing k is due to the increasing

dependence between successive zk(t) crests. For a fixed duration or exposure period,

dependence between successive maxima will act to lower extreme value estimates

relative to extreme value estimates for independent maxima.
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3.6 Peak to Trough Variations of Wave Groups

In all considered cases in which well-defined wave groups are identified, there is a

variation in the peak and trough amplitudes, as noted from theory and empirical time

series. Traditionally, this bias towards higher crests and shallower troughs is classified

as a second-order e↵ect. However, considering the autocorrelation function, it is clear

that the mean shift can also be explained as due to the shape of extreme values of the

derived Gaussian process. Based on Eq.(2.32), the structure of the autocorrelation

function is the driving factor in the wave group structure.

Wave groups with wave index k = 8 and ⌧ = Tp = 14.88 sec, as defined in Table

3.4, are identified in the 70 time series considered in this section. Figure 3.11 examines

wave groups of 8 waves separated by ⌧ = Tp = 14.88 sec. The top inset shows the

70 time series (blue lines), where the maximum of zk, for k = 8 and ⌧ = 14.88 sec,

for each time series is shifted to to = 200 sec. The red curve is the ensemble average

of these 70 time series. The middle inset shows this temporal ensemble average with

the expected wave group formulation from Eq.(2.32) with scale factors from Eq.(2.5)

and (2.13). The bottom inset shows a segment from a single time series from January

20, 2010 15:09:00. This record has the largest value of zk for k = 8 and ⌧ = 14.88

sec out of the 70 times series. This record is representative of a rare wave group

with probability of non-exceedance PNE = 0.986 (⇡ 1 � 1/70) when selected from

a sample set of like wave groups taken from 30-minute records. The time series

segment from January 20, 2010 15:09:00 is overlaid with the individual scaled, shifted

autocorrelation function of that singular time series.

With this specific record, one can examine the temporal average wave group crest

maximum (crest height), the average wave group minimum (trough), the ratio of

peak to trough height, and the mean o↵set for 200  t  309.8 sec. These values are

compared with the average o↵set as predicted by a second order Stokes wave, defined

in Eq.(3.2). The results are shown in Table 3.6.

Stokes crest/trough ⇡ ±H

2
+

kH2

8
= ±H

2
+

H2⇡2

2gT 2

(3.2)

Deep water approximations are assumed for simplification, which may be appro-

priate for data measured in 550 m water depth. For the Stokes o↵set, the mean

wave amplitude, H/2, from the physical wave record and the peak modal period (Tp)

are used to define the wave number  for the linear deep water dispersion relation,

 = 4⇡2/(gT 2). For a mean wave amplitude of H/2 = (4.714 + 3.758)/2 = 4.23 m,
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Figure 3.11: Comparison of temporal average and theoretical wave group formulation from Eq.(2.32)
with scale factors from Eq.(2.5) and (2.13) for k = 8. The ensemble average is based on 70, 30-minute
wave records, with mean Hs = 7.09 m, Tp = 14.88 sec. The theoretical wave group formulation is
based on the single 01/20/2010 15:09:00 time series.

the Stokes o↵set is approximately 0.164 m. This is approximately 1/3 of the o↵set

measured in the time series or 1/3 of the o↵set predicted by the theory (Eq.(2.32),

(2.5), and (2.13)) for a similar mean wave height.

It is interesting that the mathematical wave group formulation captures the mean

o↵set measured in physical wave groups much more closely than a Stokes second

order wave, at least for this time series and wave group index. Also of significance

is that the mathematical wave group formulation is based on linear operator theory

but still manages to capture the mean o↵set, which is often thought to be a second

order e↵ect. Note that the mean amplitude and o↵set, based on Eq. (2.5), (2.13),

and (2.32), and ensemble average of the seventy records are scaled up to match the

mean amplitude of the January 20, 2010 15:09:00 record.
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Mean Peak Mean Trough Peak-Trough Mean Mean
Value [m] Value [m] Ratio Amplitude [m] O↵set [m]

01/20/2010 15:09:00 4.714 3.758 1.254 4.23 0.478
Eq.(2.32), (2.5), and (2.13) 2.708 2.171 1.248 4.23* 0.466*

Stokes Wave - - - 4.23 0.164

Table 3.6: Comparison of (absolute value) mean peak and trough values for 01/20/2010 15:09:00
time series, theoretical wave group formulation (k = 8, ⌧ = 14.88 sec) from 01/20/2010 15:09:00,
and ensemble average of 70 samples (Figure 3.11, 200 sec  t  309.8 sec).

3.7 Mutual Exclusivity of Rare Wave Groups with Di↵erent

Group Indices, k

An important consideration in using rare wave groups identified by the derived

process filter as excitation in dynamic systems is that the derived process does not

choose unique time segments for di↵erent wave group indices k. Based on the formu-

lation of the derived process, it is possible that the largest wave group of k waves with

some given ⌧ in a time record also contains the largest wave group of k± 1, k± 2, · · ·
waves. This means that the derived process may be maximized for di↵erent wave

group indices k within the same time interval. An example of this is shown in Figure

3.12.

Figure 3.12: A segment from the Pt. Reyes Buoy 01/19/2010 13:09:00 wave record, which contains
the maximum zk value for k = 1, 2, 3 waves, ⌧ = Tp = 14.88 sec within the same time segment. The
temporal ensemble average wave group for k = 1, 2, 3 is overlaid on each inset to highlight the group
structure. The black circles indicate the onset of the wave groups.
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The derived process maximum in the 01/19/2010 13:09:00 time series occurs at

approximately the same time for wave group index k = 1, 2, and 3, ⌧ = Tp = 14.88

sec. Looking at the wave elevation record, it is clear that the group of one large wave

also looks like a wave group of 2 or even 3 waves. This strongly suggests that wave

groups of similar wave indices k may not be mutually exclusive. Kim and Troesch

(2013) noticed the same challenge, specifically that it may be di�cult to separate

any statistics on dynamics collected due to the occurrence of k or k ± 1 waves in the

excitation, as these wave groups may have a joint occurrence.

Clearly, the mutual exclusivity of wave groups a↵ects the consideration of dynamic

events due to these wave groups. As well, to use maxima of the derived process as

excitation to estimate the probability of extreme responses requires that these derived

processes be exhaustive. It would be unwise to estimate an overall probability of

extreme responses based on a finite number of excitation inputs, especially if other

types of input may also lead to extreme outputs. But clearly this is a competing

concern: estimating probabilities through responses to exhaustive inputs, but inputs

which are mutually exclusive. Parametric pitch response of a spar platform due to

the occurrence of rare wave groups is next considered, which illustrates the challenge

of these competing concerns.
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CHAPTER IV

Spar Platform Pitch Response due to Rare Wave

Groups

Chapter III used the definition of the Gaussian derived process to identify rare

wave groups in physical oceanographic data and noted the potential for these wave

groups to set o↵ interesting dynamic responses in marine systems. A temporal en-

semble average of these wave groups, identified by a maximum in the derived process,

was shown to match well with the theoretical expected wave group shape. Addition-

ally, individual time series containing these wave groups also exhibit strong group-like

behavior, although without the aid of the derived process it would be di�cult to no-

tice the wave sequences with regular characteristics embedded in the irregular time

records.

These individual wave group time series may be interesting inputs to study ex-

treme dynamic responses of marine systems, particularly for marine systems suscep-

tible to parametric excitation. Such system responses are often tested using regular

waves as the excitation to set o↵ extreme responses, but perfectly sinusoidal wave

trains are not representative of an irregular ocean environment. It was shown that

wave groups, which exhibit this regular behavior, can be identified in irregular wave

elevation time series by the derived process, Eq.(2.31). This chapter investigates

whether rare wave groups, as found in individual physical oceanographic time series,

may lead to extreme dynamic responses, specifically extreme pitch responses of a spar

platform.1

1The work presented in this Chapter has been previously published in Sey↵ert and Troesch
(2016b).
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4.1 Parametric Excitation of Spar Platforms

Spar platforms are an attractive option for deep-sea operations due to their mini-

mal motions in ocean waves. Typically, the natural periods for heave and pitch of spar

platforms in the Gulf of Mexico are approximately 28 and 60 sec, respectively (Rho

and Choi , 2005). These long resonant periods protect the spar platform from extreme

motion by normal wave excitation, but risk excitation from longer period swells. The

addition of mooring lines and tensioners can further lower the heave natural period,

closer to what may be experienced in a typical ocean environment. Perryman et al.

(2009) studied the Holstein spar platform, which operates in the Gulf of Mexico, and

found that its mechanical tensioners lower the heave natural period to 18.2-20 sec,

matching periods seen in extreme seas in the region.

Extreme responses due to parametric excitation are fundamentally di↵erent than

those due to a single, episodic (e.g. rogue) wave, as noted in Chapter 1.1. In Taylor

et al. (1997) a Jack-up platform is subjected to a large wave embedded in an otherwise

unremarkable random wave time series. The large wave acts as an impulsive load on a

dynamic system. In contrast, an extreme response in parametrically excited systems

is generally due to a sequence of successive waves with su�cient amplitude and pe-

riod. Rho and Choi (2002) and Haslum and Faltinsen (1999) investigate parametric

resonance, or Mathieu instability, and show that it does occur experimentally for spar

platforms. They also note that extreme heave-pitch coupling, again described as a

Mathieu instability, can occur when the spar platform is excited by regular waves

with a constant wave period. Such a wave train may be well represented as a wave

group.

Rare wave groups may provide the forcing required to set o↵ parametric resonance

in spar platforms. For model tests on spar platforms in irregular waves, even for

long-time simulations, it cannot be known a priori if a simulation period includes

wave trains expected to cause a rare event. Usually, a su�ciently long run-time is

required, and thus assumed to include in the generated seaway wave trains that test

the survivability of the platform. If a designer has detailed physical oceanographic

data for a potential spar location and is conducting model tests, there is no obvious

way to determine which subset of that site-specific data should be used as model test

conditions. It generally is not possible to run exhaustive model tests for, say, 100

hours, and a decision must be made about which time series will su�ciently challenge

a model’s survivability and produce lifetime dynamic responses. A method which can
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link large system responses to some characteristic of the wave excitation would give

valuable direction about which time series to test. The correlation between naturally

occurring wave groups and large pitch responses of a spar platform is examined, the

objective being to provide that predictive measure.

4.1.1 Wave Group Excitation

Physical ocean data from the Pt. Reyes Buoy is used as the excitation for the

spar model. The parameter range is the same as in Table 3.4 (Hs : 6.36 � 8.28 m,

Tp : 10.22 � 19.36 sec), which yields 70, 30-minute time records. These records are

searched for rare wave groups, which are used as the wave input to drive the resulting

heave and pitch responses.

4.2 Parametric Excitation & Mathieu Instability

The Mathieu equation is a second-order di↵erential equation with a time-varying

sti↵ness term. Such a term o↵ers interesting applications for marine dynamics, as

restorative forces may be time-varying based on the body’s orientation with reference

to the wave surface. In this chapter, the Mathieu equation is used to excite one-way

heave-pitch coupling to investigate whether large parametrically-induced responses

can be observed in spar platforms due to wave groups as excitation. First, the transfer

function of a simple spar platform calculates the heave response of the spar due to

irregular wave input from the Pt. Reyes Buoy. The non-dimensional heave transfer

function is given below:

H(!) =
1/K

3

1� !2

!2

n3

+ 2i⇣
3

!
!n3

(4.1)

where

K
3

= ⇢g⇡R2 = heave sti↵ness coe�cient

⇢ = water density

g = gravitational constant

R = platform radius

⇣
3

= heave damping coe�cient

!n3 = heave natural frequency

The heave response is calculated from an incoming wave elevation by Eq.(4.2):

⌘
3

(t) = F�1{H(!)F{⌘
0

(t)}} (4.2)

Here, ⌘3(t) is the heave response, F�1{•} indicates the inverse Fourier Transform,

as in Eq.(2.23), H(!) is the heave transfer function from Eq.(4.2), and F{⌘0(t)} is the
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Fourier Transform of the incoming wave elevation ⌘0(t). Then, the pitch response is

found by using MATLAB’s ode45 solver (MATLAB Release 2015b, The MathWorks,

Inc., Natick, MA.) to integrate Eq.(4.3) below:

⌘̈
5

(t) + 2⇣
5

!n5⌘̇5(t) + !2

n5

✓
1� ⌘

3

(t)

2GM
0

◆
⌘
5

(t) = M
5

(t) (4.3)

In this equation, ⌘5(t) is the pitch response, ⇣5 is the pitch damping coe�cient,

!n5 is the pitch natural frequency, GM0 is the resting metacentric height of the spar

platform, and M5(t) is an external pitch exciting moment due to incident waves

(i.e. a Froude-Krylov e↵ect). This exciting pitch moment is included so that the

solutions are not initial-condition dependent, as small perturbations are continuously

introduced into the system. Representing external noise, M5(t) is physics-based and

is a combination of the incoming wave slope and squared wave horizontal velocity (for

a Morison-type e↵ect). This moment is scaled such that when the parametric forcing

part of the equation is ‘turned o↵’ (i.e. the only forcing comes from this noise term)

the pitch response has �  1�.

4.3 Spar Platform Specifications

The spar platform specifications are the same as those used by Rho and Choi

(2005), shown in Table 4.1. The heave and pitch damping coe�cients are the average

of those for bare hulls and hulls with appendages (damping plate and strakes). The

parameters are scaled such that the heave natural period is 14.88 seconds (to match

physical wave buoy data Tp). Subsequently, the pitch natural period is set to double

the heave period, to test for Mathieu instability in pitch.

Parameter Value
Radius 5.21 m
Draft 49.98 m
Heave Natural Period 14.88 sec
Pitch Natural Period 29.75 sec
Heave Damping Coe�cient ⇣

3

0.03
Pitch Damping Coe�cient ⇣

5

0.03
GM

0

1.9 m

Table 4.1: Spar platform specifications.

47



4.4 Time between Maximum Pitch Response & Wave Group

Onset

To determine the degree of correlation between a maximum pitch response and

the occurrence of a wave group in the excitation, 70⇥ 15 tests are carried out. First,

ensemble wave groups of 1 to 15 waves, with 14.88 sec as the time between peaks, are

found from the 70 Pt. Reyes time series. These ensemble wave group of k waves are

identified by locating the maximum of zk(t) with ⌧ = 14.88 sec for each of the 70 Pt.

Reyes time series, shifting those maxima to the same arbitrary time t0 for all time

series, then taking an ensemble average.

4.4.1 Pitch Response due to Ensemble Wave Groups

The ensemble wave group time series for k = 1 to 15 provide the input to the

linear oscillator model of spar heave, Eq.(4.1), providing a heave response time series,

Eq.(4.2), which parametrically excites pitch, Eq.(4.3). The ensemble wave group of k

waves excites the system along with a M5(t) external perturbation from one of the 70

wave time series. This pitch forcing, which is the non-homogenous part of the pitch

equation, acts as a small noise term, is unique for each time series, and ensures the

pitch response is initial-condition independent.

This is repeated for all 70 time series, for each of the 15 ensemble wave groups.

Each pitch time series is then examined for the maximum pitch response and where

this response occurs in relation to the start of the ensemble wave group. Considering

a forced, damped linear oscillator, one would expect a resonant response to initially

grow as long as forcing is present, then to decay when the forcing ends. In this way,

the maximum pitch response is expected to occur roughly when the ensemble wave

group ends (the heave response will be a smoothed version of the wave elevation, with

a slight shift, since the heave transfer function is essentially a band-pass filter). The

system damping will cause some lag between the forcing and response.

It is important to note that this initial analysis identifies qualitative trends, but

not quantitative answers. As the pitch equation is a non-linear equation, the ensem-

ble input does not lead to the ensemble output (as is the case for linear systems).

However, this first step gives a direction on where to look for wave groups based on

locations of maximum pitch responses, in an attempt to determine some correlation

between wave group occurrences and large resulting pitch responses.
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The maximum pitch response and the time between the start of the ensemble wave

group and pitch maximum, ⌧czk , is recorded for each test. ⌧czk is normalized by the

wave group period, Tp = 14.88 sec. Table 4.2 records the ensemble statistics. Column

2 gives the expected number of wave periods between the start of the ensemble wave

group of k waves and a resulting pitch maximum. Column 3 gives the standard

deviation of this time period, �(⌧czk/Tp). Column 4 is the average maximum pitch

response of all 70 tests, E[b⌘5], for each ensemble wave group index k. Figure 4.1 is an

example of a single test for the ensemble wave group of 15 waves, with M5(t) provided

by one of the 70 Pt. Reyes Buoy time series.

k E
h
⌧czk
Tp

i
�
⇣

⌧czk
Tp

⌘
E[b⌘

5

]

1 7.37 3.92 4.47o

2 7.03 2.67 5.13o

3 7.14 2.35 5.97o

4 7.15 2.46 6.92o

5 8.45 2.61 7.37o

6 9.29 3.35 7.17o

7 9.26 2.73 7.39o

8 10.30 2.61 7.66o

9 10.87 3.51 8.10o

10 11.75 2.85 7.77o

11 11.80 2.63 8.22o

12 13.23 2.41 8.27o

13 13.80 2.85 8.24o

14 14.53 2.74 8.52o

15 15.58 3.11 8.60o

Table 4.2: Average time between start of ensemble wave group and maximum pitch response.

4.4.2 Expected Causation Period

By examining the time between the maximum pitch response and the start of an

ensemble wave group of 1 to 15 waves, information is gained on where wave groups

may emerge in time series, relative to large pitch responses in the resulting pitch time

series. A ‘causation period’ is estimated by this process, which looks back in time

from a large pitch response to examine any interesting structures, specifically wave

groups of k waves separated by the heave natural period Tp = 14.88 sec, in the wave

elevation record. This causation period is found for each ensemble wave group of k

waves, meaning that if a large wave group of k waves occurs, one might expect a

correspondingly large pitch response some determined causation period later.
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Figure 4.1: Resulting pitch and heave time series resulting from the ensemble wave group of 15
waves.

Table 4.2 shows that the expected time between the start of the wave group and

the maximum pitch response, E [⌧czk ] (normalized by Tp in column 2), increases with

wave group index k. Clearly a wave group of 15 waves lasts significantly longer than a

wave group of, say, 4 waves, and thus the pitch response will undergo a longer build-

up to its maximum response. For wave groups of 9-15 waves, the expected value of

the time between wave group start and maximum pitch response begins to converge

to the length of the wave group itself.

Considering the nature of the parametric excitation of the model, the pitch re-

sponse will grow as long as it has large forcing. Once this forcing stops, that is,

the wave group ends or the heave motion returns to a low level, the pitch response

will decay accordingly. Note that the maximum pitch response generally occurs after

the wave group ends. This lag between maximum pitch and wave group termination

is a result of continued, albeit decaying, heave motion. Consistent with a damped

Mathieu model, parametric heave forcing above a given threshold will generate an

increasingly larger pitch response. A time range can be estimated from the statistics

of Table 4.2, to consider what, if any, wave groups may be associated with large pitch

responses resulting from the 70, 30-minute Pt. Reyes wave time series.
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4.5 Pitch Excited by Pt. Reyes Buoy Time Series

With some statistics on a causation range based on Table 4.2 to direct where

wave-group-induced pitch responses may occur, a level of correlation can be estimated

between the two events. That is, for a given wave group index, k = 1� 15, the sub-

period, ⌧searchk
, where the local maximum cZk is identified (the maximum of zk(t)

within the time range restricted to ⌧searchk
), is defined by Eq.(4.4). The time of the

maximum pitch response in a time series is denoted as c⌧⌘
5

.

⌧searchk
= c⌧⌘

5

�
✓
E


⌧czk
Tp

�
± �

✓
⌧czk
Tp

◆◆
⇥ Tp (4.4)

Pitch responses are simulated from Eq.(4.1)-(4.3) due to the 70, 30-minute wave

time series from the Pt. Reyes Buoy. These contain physical wave groups whose av-

erage structure is captured by the empirically-based ensemble wave groups, as shown

in Chapter III. However, these wave groups are ‘hidden’ among the irregular struc-

ture of the time series, and not easily detectable without the derived process method.

The maximum pitch response is located within each resulting record, which defines

a causation range, ⌧searchk
, for k = 1 � 15, as dictated by Table 4.2 and Eq.(4.4).

This ⌧searchk
indicates where a wave group of k waves must occur in a wave elevation

record, relative to the maximum resulting pitch response, for there to be any expected

correlation between the occurrence of the two events.

For a given wave group index k, a ratio can be made of the maximum value of the

derived process during the specified range, cZk, and the maximum of the derived pro-

cess within the entire 30-minute record itself, bzk. This cZk/bzk ratio indicates whether

a large value of the derived process (a wave group) may have an e↵ect on the resulting

pitch motion. If there is a high correlation between a large value of the derived process

(a large wave group) occurring and a large resulting pitch response, one might expect

this ratio to converge to 1, meaning the largest wave group in the wave elevation

time series is within the predicted range of time preceding the largest pitch response,

indicating some potential causation. Conversely, if there is no correlation between

pitch response and a wave group occurrence, one might expect this probability to be

around 0.38. This ‘uncorrelated ratio’ comes from the ratio of the expected value

of the wave elevation crest for a 30-minute time series, 1.25� (assuming a Rayleigh

distribution), and the average maximum wave crest in 30 minutes, 3.26� (from the

Pt. Reyes buoy data). This ratio comes to 1.25�/3.26� = 0.38.

For each of the 70 time series, the local derived process maximum, cZk, in the
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search period, ⌧searchk
from Eq.(4.4), is compared to the absolute derived process

maximum for that time series, bzk. Since each time series is considered independent,

the probability the ratiocZk/bzk exceeds some threshold is approximated by the number

of individual time series whose ratio exceeds that threshold, normalized by the total

number of time series examined. Only time series in which the spar does not capsize

(pitch less than 90o) are considered. Additionally, time series with the maximum pitch

occurting so early in the 30-minute time series that the causation period precedes the

start of the record are not considered. In total, 60 out of a possible 70 time series are

examined.

Shown in Figure 4.2 is an example of an incoming wave elevation (specifically from

01/19/2010 12:39:00) which excites a heave and pitch response of the spar platform.

The largest wave group of k waves within each ⌧searchk
is identified, and compared

with the largest wave group of k waves within the entire 30-minute record. For the

example in Figure 4.2, cZ7/bz7 = 1, meaning the largest wave group of 7 waves in the

30-minute record also occurs in the expected time before the largest pitch response,

⌧search
7

which indicates the potential for causation. The ensemble wave group of 7

waves is overlaid on the time series at the wave group onset to highlight the structure.

Without the derived process, it would be di�cult, if not impossible, to pick out a

wave group of 7 waves in this time series. The time series clearly exhibits large waves

slightly before the time of the largest pitch response, but less clear is the near-constant

period between the waves. The period of the wave group, ⌧ , drives the parametric

excitation (i.e. heave), in turn causing a large pitch.

4.5.1 Relationship between Wave Group of k Waves & Extreme Pitch

Responses

In Figure 4.3, the empirical histograms of the ratio cZk/bzk, normalized as a pdf ,

are depicted for wave groups of k = 1, 7, and 15 waves. These three distributions are

representative of the 3 shapes of distributions found for k = 1 � 15. For k = 1 � 5,

the distributions are approximately uniform between 0.5 to 1. For k = 6 � 9, the

distributions all increase sharply near the ratio value of 1. For k = 10 � 15, the

distributions flatten out attaining a shape somewhere between that of the low-number

wave groups and the mid-number wave groups.

These three general distribution shapes reveal how the occurrence of wave groups

of di↵erent group indices are related to large pitch responses. For wave groups of
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Figure 4.2: Resulting pitch and heave time series from incoming wave elevation 01/19/2010 12:39:00.

Figure 4.3: Empirical histograms of cZk/ bzk for k = 1, 7, 15, normalized as a pdf (60 samples for each
histogram).

fewer waves (k = 1� 5) there appears not to be a strong correlation between a large

wave group of k waves exciting the system and a maximum pitch response occurring.

For this subset of wave groups, the maximum pitch response is as likely caused by

a smaller-amplitude wave group as a larger-amplitude wave group (i.e. a low ratio

of cZk/bzk vs. cZk/bzk = 1), indicating that the occurrence of wave groups with index

k = 1� 5 does not have much e↵ect on pitch response. For wave groups of k = 6� 9

waves, there is a much higher correlation between a large wave group occurring in

⌧searchk
, and a maximum pitch response following. For wave groups of more waves (k =
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10� 15) the correlation again decreases. Chapter 3.3 showed that mean wave group

amplitude drops o↵ rapidly as the wave group index k increases, so this physically

makes sense. The wave groups with long runs exhibit more cycles of near-harmonic

forcing but have lower mean wave amplitudes. Similar to the behavior of damped

Mathieu systems, these groups may not exhibit su�cient forcing to overcome the

system damping.

Table 4.3 gives the probabilities that the ratio cZk/bzk exceeds di↵erent threshold

values �. There is a higher probability that the largest wave group in the predicted

time period (⌧searchk
) precedes the largest pitch response, particularly for wave groups

of 7-9 waves, than would be expected if wave groups as excitation and resulting pitch

maxima were uncorrelated. This suggests the conclusion that large pitch responses

due to parametric excitation are not independent of large wave groups occurring in

the excitation. When considering the most likely wave group to be associated with

extreme pitch, wave groups of 7 waves have p(cZk/bzk > 0.999) = 0.3. This means there

is a 30% chance that a wave group of 7 waves found in ⌧search
7

has a mean amplitude

at least 99.9% of the mean amplitude of the largest wave group of 7 waves in the

entire 30-minute record. Equivalently, this means there is a 30% chance that the

largest wave group of 7 waves in a time record will lead the maximum pitch response

by a pre-determined period which implies a level of causation. As the ratio threshold

� is lowered, this probability continues to increase.

It is also instructive to examine the subset of time series in which the largest wave

group of k waves occurs in the expected range before a large pitch response, ⌧searchk
.

Figure 4.4 compares the probability that the largest wave group of k waves in the

30-minute record occurs in ⌧searchk
across di↵erent k values. Analogous to the first

column in Table 4.3, for a wave group of 7 or 8 waves, there is a 30% chance that

the largest wave group occurs in ⌧search
7

or ⌧search
8

, respectively, versus only a 6.7%

chance the largest wave group of 1 wave occurs in ⌧search
1

. This trend corresponds

well to the distributions of k = 1, 7, 15 in Figure 4.3. In both cases, for wave groups

of around 7 waves, the largest wave groups tend to be in the expected time before

the occurrence of a pitch maximum.

Also included in Figure 4.4 is the distribution of the largest pitch responses caused

by those wave groups with ratio cZk/bzk = 1. For wave groups of 1 wave with cZ1/bz1 =
1, the resulting maximum pitch responses are approximately uniformly distributed

between the ranges of 2o � 10o, 10o � 15o, 40o � 50o, and 50o � 60o. For wave groups
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p(cZk/ bzk > �)

k � = 0.999 � = 0.9 � = 0.8 � = 0.5
1 0.067 0.18 0.42 0.93
2 0.083 0.23 0.42 0.92
3 0.15 0.33 0.53 0.97
4 0.22 0.38 0.53 0.97
5 0.22 0.38 0.55 0.97
6 0.25 0.35 0.55 0.98
7 0.30 0.45 0.58 0.93
8 0.30 0.40 0.60 0.93
9 0.27 0.45 0.62 0.90
10 0.25 0.42 0.57 0.90
11 0.25 0.33 0.50 0.90
12 0.22 0.30 0.48 0.83
13 0.22 0.33 0.48 0.83
14 0.18 0.38 0.52 0.83
15 0.10 0.36 0.53 0.90

Table 4.3: Probability of wave group occurring in period before maximum pitch response (range
specified from Table 4.2 and Eq.(4.4)).

Figure 4.4: Probability that the largest wave group of k waves in a time record precedes the largest
resulting pitch response, in the appropriate ⌧searchk

time range. The resulting pitch maxima are
broken up by the magnitude of the response.

of 7 with cZ7/bz7 = 1, approximately 60% of maximum pitch responses are above 20o.

Wave groups of 7 or 8 waves are more likely to cause a large pitch response than a

wave group of 1 wave.

These results can be compared with the empirical histogram of the maximum

pitch response b⌘5 from all 60 time series, normalized as a pdf , shown in Figure 4.5.

Most of the maximum pitch responses are grouped in the 10o�15o range. Conversely,
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by considering time series in which the maximum wave group occurs in the expected

causation period, there is a greater chance of experiencing larger pitch responses.

When considering all time series, the chance of experiencing a pitch maximum larger

than 30o is 33%. But just considering the time series without any connection to

structures in the excitation (i.e. wave groups), it may be di�cult to determine why

the large pitch responses occur.

However, considering more specifically time series which contain large wave groups

of 7 waves can give more predictive information. For the wave records examined in

this chapter, 30% of the largest wave groups of 7 waves in each record indicates the

onset of the 30-minute pitch maximum, implying some causation. As well, 50% of

those resulting pitch maxima are larger than 30o. This indicates that wave records

which contain large wave groups of 7 waves tuned to the spar heave natural period

are good candidates to test the survivability of the platform.

Figure 4.5: Distribution of maximum b⌘
5

for 60 time series.

4.6 Implications of Results

This analysis answered some interesting questions but brought up many more. The

physical oceanographic data from the Pt. Reyes Buoy was examined for rare wave

groups, which provided the excitation for spar parametric pitch responses. Chapter

III showed that a maximum of the derived process identifies rare wave groups within a
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wave elevation record, and that individual time records match well with a theoretical

ensemble structure. This indicates that group-like structure exists in physical wave

elevation records, though that regular behavior is di�cult to notice in an irregular

wave train. However, the derived process identifies these wave groups easily.

Such wave groups provided forcing to a spar model, to determine if there is any

correlation between the occurrence of a rare wave group in the excitation and a large

resulting pitch response. There is a balance between the number of wave peaks in

a wave group, and the mean amplitude of those peaks. A single wave will have the

largest group amplitude but may not be able to set o↵ parametric resonance, as

shown. However, wave groups of longer runs exhibit successively lower mean group

amplitudes and may not be able to overcome system damping to provide su�cient

excitation.

Wave groups of k = 7 � 9 waves were shown to balance these two competing

concerns: group length vs. mean group amplitude. It was shown that for wave groups

of 7 and 8 waves, there is a 30% chance that the maximum pitch response occurs

a pre-determined time after the group onset, indicating some potential causation.

Additionally, for those wave groups of 7 waves, 50% of the resulting pitch maxima

were larger than 30o. This has clear implications for model testing, because specific

wave records which contain large wave groups of 7 waves can be run to test the

performance of a structure, rather than testing for a long exposure with irregular

waves, in hopes of recording extreme responses. The Pt. Reyes Buoy time series used

here, along with the guided search for rare wave groups using the derived process,

can provide directed excitation records which reflect physical operating conditions.

However, not all marine systems operate in regions where there is 17 years worth of

historical physical data to mine. To evaluate the performance of such systems requires

some notion of the operating profile. To e�ciently evaluate system performance

further requires directed simulations of that operation profile. This spar example

showed that extreme responses may be due to excitation which contains extreme

values of the derived Gaussian process. This is a form of looking for extreme values

via reduced-order modeling. For the spar, it would be di�cult, if not impossible,

to simulate the system for a long exposure to record severe responses and try to

infer causation of extreme pitch responses due to interesting wave structures in the

excitation record. Conversely, methods which could analytically solve for a wave form

that sets o↵ a large pitch response, like FORM or SORM, may give wave profiles
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which are not physically realizable. Instead, the physics of parametric resonance was

considered through reduced-order modeling, i.e. searching for group-like behavior

in the excitation. This reduced-order modeling method utilized the fact that regular

waves can set o↵ parametric resonance. This focused the search to wave groups, which

exhibit similar characteristics, but were shown to physically exist in an irregular ocean

environment.

Additionally, this spar example showed that extreme responses may be experi-

enced, given a specific input excitation (i.e. given an input which includes a rare

wave group of 7, 8, or 9 waves separated by the heave natural period). However, for

overall performance analysis, what is of interest is the probability of exceeding some

allowable threshold in general, not conditioned on a specific input. Additionally, it

was noted in Chapter 3.7 that wave groups of close group numbers may not be mu-

tually exclusive. For the example in Figure 3.12, which is a Pt. Reyes Buoy time

series from 01/19/2010 13:09:00, the largest wave group of 1, 2, and 3 waves in the

entire time series occurs within the same time range. It is expected that wave groups

of a higher group index k will exhibit this overlapping behavior, as Figure 3.4 shows

that the di↵erence between mean group amplitudes for sequential k values diminishes

for higher k values. Therefore, some specific challenges associated with analyzing

extreme responses of complex marine systems remain, namely:

• How can numerical simulations be directed toward interesting responses for

systems operating in areas which do not have extensive time history data?

• How can overall system performance be evaluated, and not just conditioned on

the occurrence of specific derived process maxima within the excitation?

• How may di↵erent derived processes be related (i.e. non-mutually-exclusive),

and how does this a↵ect the consideration of lifetime responses?

• Can derived processes be used to define excitation inputs which exhaustively

test the possible allowable threshold exceedances for a complex system?

These challenges are addressed in the following chapter through the development

of the non-linear Design Loads Generator (NL-DLG) process.
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CHAPTER V

The Non-Linear Design Loads Generator Process

Earlier chapters examined the theoretical expected shape of a rare wave group,

with a wave group identified by a maximum in the derived Gaussian process (Chapter

2.4), and the existence of physical wave records that exhibit group-like behavior in

an ensemble sense and individually (Chapter III). Chapter IV examined the pitch

response of a spar platform due to excitation containing wave groups, which pro-

vide parametric excitation, and showed that these wave groups can lead to extreme

responses of a dynamic system.

However, Chapter IV also brought up a few issues associated with e�ciently test-

ing marine systems for extreme responses. First, not all systems operate in areas with

extensive excitation data to mine through. Simulation may be required, but these

simulations should be directed toward extreme responses to minimize the computa-

tional e↵ort. As in that example, the spar platform was not tested with the 17 years’

worth of physical oceanographic data, but specific time segments expected to cause

interesting responses. Additionally, for the spar platform, all statistics on extreme

pitch responses were conditioned on the occurrence of a rare wave group of specific

group index k in the excitation. Chapter 3.7, however, indicated that wave groups of

wave index k, k ± 1, k ± 2, etc. may not be mutually exclusive.

For design purposes, evaluations of system performance should be based on overall

performance, not conditioned on specific events, and certainly not conditioned on

inputs which may not be mutually exclusive. Also, using surrogate processes for

a reduced-order modeling approach, like in Chapter IV should be exhaustive when

considering what sort of inputs may lead to extreme responses. These issues are

addressed here through the development of the non-linear Design Loads Generator
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(NL-DLG) process, which expands the original Design Loads Generator method.1

5.1 NL-DLG Process Motivation

The Design Loads Generator was developed by Alford (2008) and Kim (2012)

to construct ensembles of short excitation time series which lead to extreme linear

responses of a specific output. These inputs from the DLG will also lead to a lower

bound on non-linear extreme responses. This capability allows designers to test a

marine system with an ensemble of statistically equivalent short wave time series

to generate a distribution of extreme linear responses for a given output. These

short wave records from the DLG can considerably improve the e�ciency of high-

fidelity analyses, like Computational Fluid Dynamics or Finite Element Analysis time-

domain simulations because the DLG can direct inputs for these methods, limiting the

simulation of times when no interesting responses occur. However, for the evaluation

of a system in terms of lifetime performance, there are a few additional concerns,

similar to the questions posed at the end of Chapter IV:

• How can the capability of the DLG be used for systems in which extreme re-

sponses are due to varying combinations of a vector of loads?

• What if these combined loads are strongly correlated and/ or non-Gaussian?

• How can system performance be evaluated in general and exhaustively, and not

conditioned on specific excitation inputs?

These concerns became evident in the spar example from Chapter IV. Extreme

spar pitch responses were found to be related to the presence of wave groups in the

excitation, identified by maxima of the derived process. These wave groups were

identified in physical oceanographic data, and the example showed that individual

time series containing group-like behavior in an irregular ocean environment can set

o↵ parametric resonance in a spar platform. Not every system operating location,

though, has extensive physical oceanographic data to use in a testing program. The

DLG could be used to generate these time series for testing the spar response. Specif-

ically, for the spar example, wave environments which lead to a maximum of the

derived process could be constructed by the DLG, and those wave time series would

1Portions of this work were previously published in Sey↵ert and Troesch (2018).
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contain rare wave groups. Chapter III showed that physical oceanographic time series

can exhibit this group-like behavior, identified by a maximum in the derived process.

Then, as in Chapter IV, the probability of an extreme pitch response being set

o↵ by a wave group of k waves could be determined. The spar was shown to exhibit

large pitch responses due to the occurrence of wave groups of 7, 8, or 9 waves tuned

to the spar heave natural period. But, it would be much more useful to know the

probability that the spar experiences large pitch responses in general over its lifetime,

and not conditioned on the occurrence of a wave group of 7, 8, or 9 waves in the

excitation. These concerns: extreme pitch responses due to rare wave groups exciting

the system, and the potential non-mutual-exclusivity of rare wave groups of similar

group index k, are generalized in this chapter to consider the broader implications

associated with performance analysis of complex systems.

5.2 NL-DLG Process Overview

The NL-DLG process is developed to estimate the probability that a non-linear,

multi-dimension threshold surface, which relates to the ‘strength’ of a complex non-

linear system, like in Chapter 1.3.1, is exceeded by a vector of potentially correlated,

stationary, non-Gaussian loading over a long exposure. An m�dimension threshold,

here in this chapter referred to generally as a failure surface, similar to the notation

of Madsen et al. (2006) and Naess and Moan (2014), describes how di↵erent combi-

nations of m non-linear loads relate to system performance. This surface may be a

non-linear function of the m loads acting on the system, and therefore failure, or a

threshold exceedance, may be the result of individual load extremes, or simultaneous

moderate loading values, depending on the failure surface shape. The general steps

of the NL-DLG process to estimate the probability of failure for such a system are as

follows:

1. n non-linear load combination cases are defined to focus on specific regions of

the surface.

2. n surrogate processes are described to be indicators of extreme behavior for the

associated non-linear load combination cases, similar to reduced-order modeling.

3. The DLG is used to construct ensembles of short excitation inputs which lead to

exposure-period-maxima of the surrogate processes. These inputs are candidate
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environments that may lead to exposure-period-maxima of the associated non-

linear load combination cases. It it assumed that these inputs also lead to these

exposure-period-maxima.

4. These excitation inputs constructed by the DLG excite the fully non-linear

system, and the resulting load vector is mapped onto the failure surface to

determine if failure occurs.

5. Conditional probabilities of failure, given the system is excited by an input

record which contains the occurrence of a specific surrogate process maxima,

are estimated from the DLG simulations.

6. The relation between the surrogate processes is estimated from the DLG simu-

lations (no dependence structure is assumed) to develop maxima configurations,

which describe the di↵erent ways n surrogate process maxima may be clustered

over an exposure.

7. The probability of experiencing each maxima configuration is estimated from

the DLG simulations to link together the conditional failure probabilities for a

full exposure described by each maxima configuration type.

8. The resulting estimate of the distribution of most-likely failure occurrences can

provide feedback to update the overall estimate. This iterative approach aims

to cover the failure surface definition in an exhaustive sense. The excitation

profiles which lead to these most-likely failures are also retained.

Using the DLG in this expanded context allows the consideration of systems which

are subject to long exposures (potentially thousands of hours) to a stationary and

stochastic excitation of combined non-Gaussian loading. These combined loads may

be non-Gaussian, and their interaction with a complex failure surface determines fail-

ure occurrences. The resulting probabilistic framework, called the NL-DLG process,

estimates system failure probability. The NL-DLG process also preserves the ensem-

ble of excitation inputs which are representative of the operational condition and that

lead to the distribution of most-likely failure occurrences.
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5.3 General Problem Formulation

Consider a complex system in which some global, Gaussian input drives multiple

processes that excite the system. These processes, or loads, may be non-linear func-

tions of linear transformations of that excitation. The input here is called a ‘global,

Gaussian input’ to emphasize that it is the stochastic input to all of the linear and

non-linear loads which excite the system. The system has a failure surface that de-

scribes all possible combinations of the non-linear loads which result in failure. Note

that the definition of failure might mean that the loads exceed some allowable thresh-

old, or that a physical failure like collapse occurs. Both problems can be considered

by the NL-DLG process. The notation is outlined below to describe the di↵erent

system parameters:

⌘(t) = time series of the global, Gaussian input

S+(!) = single-sided mean-squared spectrum of ⌘(t)

Li(!) = ith linear transfer function

Li(t) = ith time series with single-sided mean-squared spectral definition S+(!)|Li(!)|2

N L j(t) = jth load time series resulting from a non-linear transformation of ⌘(t),

which excites the system

G(N L
1

(t), · · · ,N L m(t)) = 0 ⌘
failure surface, which may be a non-linear function of

the m non-linear loads N L j(t)

An input/output (I/O) process is outlined in Figure 5.1. Here, the global, Gaus-

sian input ⌘(t) drives the complex non-linear system for a specified exposure time,

which may be long. There is a failure surface G, which may be a non-linear function of

the m non-linear loads, N L i(t) i = 1, · · · ,m, that excite the system. Assume that

G is time-invariant, meaning the failure surface remains constant over the exposure

period (i.e. d
dt
G(t) = 0). The interaction of the load vector (NL1(t), · · · ,NLm(t))

with the surface, G, determines whether system failure occurs. This chapter examines

such a system and its probability of failure employing specific system simplifications,

using the NL-DLG process.

5.3.1 Complex System Simplifications

For the motivation behind these system simplifications, consider Figures 5.2 and

5.3. Here, a hypothetical system illustrates how failure is determined by the interac-

tion of a failure surface, G, with two non-linear loads, i.e. m = 2. The loads are driven
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global, Gaussian input ⌘(t) with a given exposure time

Complex non-linear system

Failure Criteria based on the non-linear surface
G(N L 1(t),N L 2(t), · · · ,N L m(t)) = 0

Failure occurs: Y/N

Figure 5.1: Schematic of I/O process for failure assessment.

indirectly by a global, Gaussian input ⌘(t) with spectral definition S+(!) for a 10-hour

exposure. The time when each load experiences its maximum value over the exposure

is marked with a red circle. These loads are non-linear functions of linear transforma-

tions of that global, Gaussian input: N L 1(L1(t)) and N L 2(L2(t)). Figure 5.3 shows

the failure surface G for this system, which is a bi-linear function of N L 1(L1(t))

and N L 2(L2(t)). Failure occurs when the load vector, (N L 2(L2(t)),N L 1(L1(t))),

crosses the failure surface G. The time of failure occurrence is marked with a red

star on the load vector in Figure 5.3, and on the excitation input in Figure 5.2. The

question then is: what is the probability of failure of this system for the 10-hour

exposure period?

The failure surface, G, in Figure 5.3 defines every combination of (NL2(L2(t)),

NL1(L1(t))) which leads to failure. A generally non-conservative simplified defini-

tion of this failure surface is to define failure as when a single value of N L 1(L1(t))

or N L 2(L2(t)) reaches an extreme, corresponding to where G meets the two axes,

respectively. Indeed, the first (and only) failure occurrence during this 10-hour sim-

ulation is when N L 1(L1(t)) experiences its maximum value over the 10 hours. The

value of N L 1(L1(t)) at the time of failure is greater than the value of the failure

surface at the y-axis, meaning that this would still be a failure even if there was no

acting component of N L 2(L2(t)).

Recognizing such behavior suggests an approximate approach. The failure surface

G may be simplified so that the infinite number of load combinations (NL2(L2(t)),

NL1(L1(t))) which lead to failure are condensed to just a few points on G that ap-

proximate the failure surface. These points define specific non-linear load combination

cases on G. For example, in Figure 5.3, the failure surface can be reduced to the two
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Figure 5.2: Global, Gaussian input ⌘(t), result-
ing linear transformations of that input L

1

(t)
and L

2

(t), and non-linear loads NL
1

(L
1

(t)) and
NL

2

(L
2

(t)) over a 10-hour exposure. The time
when failure first occurs is shown as a red
star on the global, Gaussian input. The 10-
hour-maxima of L

1

(t), L
2

(t), NL
1

(L
1

(t)), and
NL

2

(L
2

(t)) are highlighted as a red circle.

Figure 5.3: Failure surface G, with the 10-hour
load vector, (N L

2

(L
2

(t)), N L
1

(L
1

(t))). The
point when failure first occurs is noted as the red
star. This is not precisely on the failure surface,
G, due to discretization of the time series.

non-linear load combinations represented by the points G(0, 1) and G(0.79, 0), where

G meets the two axes. Simplifying the failure surface G to say that failure only

occurs when either of the two load combination cases are exceeded would clearly

under-predict the probability of failure because it ignores the possibility that failures

may occur at other locations along G.

To improve this simplification of G, a third point on G can be selected as another

load combination case, say G(0.5, 0.5). Then an additional criterion for failure would

be those times when NL1(L1(t)) � 0.5 and NL2(L2(t)) � 0.5. This third combination

case can be represented by the sum of the components: 1
2NL1(L1(t)) +

1
2NL2(L2(t)).

While these three non-linear load combination cases do not provide a complete repre-

sentation of all instances leading to failure, they produce a lower bound that becomes

increasingly more accurate as more load combination cases are considered.

The simplification utilized by the NL-LDG process, then, is to consider only seg-

ments of the lifetime exposure excitation that leads to extreme values of the non-

linear load combination casesNL1(L1(t)), NL2(L2(t)), or
1
2NL1(L1(t))+

1
2NL2(L2(t)).

The ⌘(t) inputs leading to these maxima excite short segments of the load vector,
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(NL2(L2(t)), NL1(L1(t))), which are then mapped onto G, allowing an estimation

of the failure probability. The means to generate short, statistically equivalent input

time histories which lead to these load combination maxima may be accomplished

through the use of the Design Loads Generator (DLG) methodology, as described in

Chapter 2.3, with modifications.

Based on one’s understanding of the behavior of the complex system, it is possi-

ble to approximate the inputs which lead to extreme responses of the non-linear load

combination cases using a linear transfer function as a surrogate process. This ap-

proximation exploits the capability of the DLG. A surrogate process may be defined as

a weighted sum of normalized linear functions which approximate an associated non-

linear load combination case. Or a surrogate process may be defined by reduced-order

modeling, like the approach to use wave groups as the excitation to set o↵ parametric

pitch in Chapter IV. The Gaussian input time series constructed by the DLG to lead

to extreme responses of the surrogate processes may be linked to the Gaussian inputs

that lead to extreme responses of the associated non-linear load combination cases.

5.3.2 Impact of System Simplifications

The probability of failure for the system is approximated by assuming that the

Gaussian inputs which lead to the exposure-period-maxima of the surrogate processes

also lead to the exposure-period-maxima of the corresponding non-linear load combi-

nation cases. Instead of running many full-length MCS to estimate the system failure

probability, only the system response to the directed ensemble of excitation times

series which presumably lead to the exposure-period-maxima of the non-linear load

combination cases is examined. The main assumptions used by the NL-DLG process

are:

• A finite number (n) of non-linear load combination cases are defined to focus

on specific regions of the failure surface, G. The system probability of failure

is approximated by the system response to excitation time series which lead to

the maximum value of the non-linear load combination cases experienced during

the exposure period.

• Surrogate processes are defined as linear approximations to the non-linear load

combination cases. The DLG constructs ensembles of the global, Gaussian

input which lead to exposure-period-maxima of the surrogate processes. It is
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assumed that these Gaussian inputs also lead to the exposure-period-maxima

of the associated non-linear load combination cases.

• The system response to these directed simulations is an indicator for the entire

exposure. If the system does not fail due to time series which contain the non-

linear load combination exposure-period-maximum (based on the associated

surrogate process maximum realization), the system is assumed to not fail due

to that particular load combination case at all over the exposure.

5.4 Use of Surrogate Processes

For the NL-DLG process, Gaussian surrogate processes are used for extreme value

estimation, via the DLG methodology. It is assumed that specific segments of Gaus-

sian input time histories which produce extreme Gaussian responses in linear systems

are also capable of producing large non-Gaussian responses in related non-linear sys-

tems. The objective is to identify input sequences that excite a non-linear system such

that the non-linear responses include extreme values which are samples of an extreme

value distribution, with the specified exposure period. The methodology of surrogate

processes has similarities with reduced order modeling in which only essential physics

are retained, thus producing a system that exhibits relevant behavior.

The surrogate process may be either a linearization of a non-linear system or

a characteristic process not directly related to the I/O system, but somehow an

indicator of extreme behavior. As an example of the first: a surrogate based on the

linearization of a non-linear process is given by Kim et al. (2011) in which linear

predictions of extreme ship vertical bending are used as a surrogate for non-linear

design midship vertical bending and impact-induced bending. Some examples of the

second: extreme responses of surrogates that, while not directly related to the output

of the complex system, are indicators of non-linear extreme response are given by Kim

and Troesch (2013); Sey↵ert and Troesch (2016c); Sey↵ert et al. (2016); Sey↵ert and

Troesch (2016b). Those works define surrogates whose extreme values are associated

with incidences of extreme group-like behavior of the input. Chapter IV utilized this

approach, using rare wave groups as a form of parametric excitation for non-linear

systems exhibiting parametric resonance.
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5.4.1 Non-Linear Load Combination Cases

In this chapter, surrogate processes associated with system failure are constructed

from linear approximations to n non-linear load combination cases. Di↵erent regions

of the failure surface, G, can be emphasized through the definition of n non-linear

load combination cases, ⇣i(t). The m non-linear loads, NLi(t), are each normal-

ized by their respective � so that the weighting factors ↵, �, · · · , � capture relative

magnitudes. The general non-linear load combination case ⇣i(t) is given by Eq.(5.1):

⇣i(t) = ↵
NL

1

(t)

�NL
1

+ �
NL

2

(t)

�NL
2

+ · · ·+ �
NLm(t)

�NLm

(5.1)

where

⇣i(t) = time series of a given non-linear load combination case i = 1, · · · , n

NLi(t) = time series of non-linear load i = 1, · · · ,m

�NLi = standard deviation of the non-linear load NLi(t)

↵,�, · · · , � = m weighting factors

Then, n surrogate processes are defined to approximate the n non-linear load

combination cases. These surrogates may be weighted sums of normalized, related

linear functions, shown in Eq.(5.2):

z(t) = ↵
L
1

(t)

�L
1

+ �
L
2

(t)

�L
2

+ · · ·+ �
Lm(t)

�Lm
(5.2)

where

z(t) = surrogate process that approximates the related non-linear load combination case, ⇣i(t)

Li(t) = linear function that best captures the e↵ects of the non-linear load NLi(t),

the ith contributing load associated with failure

�Li = standard deviation of the linear function Li(t)

↵,�, · · · , � = m weighting factors

By varying the weighting factors ↵, �, · · · , � using n di↵erent combinations, it

is possible to emphasize some of the linear functions while de-emphasizing others,

to approximate the n non-linear load combination cases. The flexibility a↵orded by

Eq.(5.1) and (5.2) recognizes that failure may occur when a singular non-linear load

attains an extreme value, or when multiple non-linear loads simultaneously experience

a specific weighting of large, but not extreme, values.

The surrogate processes, combined with the DLG methodology, yield ensembles

of short excitation time series which lead to realizations of surrogate process maxima.
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Note that the global, Gaussian inputs constructed by the DLG to produce exposure-

period-maxima of zi(t) also are inputs to the other surrogate processes zj(t). When

determining the total failure probability, it is possible that extremes of zj(t) also occur

from this input, and the potential overlap between the ith and the jth surrogate process

maxima must be accounted for. To formally derive the extreme value probabilities of

the various surrogate processes, notation is defined:

g(zi,T ) = extreme value distribution of the surrogate process zi(t), based on the

exposure period, T

⌘i(t) = ensemble sample of DLG global, Gaussian input with spectral definition, S+(!),

constructed to lead to an exposure-period-maximum of the ith surrogate process, zi(t)

zii(t) = ensemble sample time series of the ith surrogate process, zi(t), driven by ⌘i(t)

czii = maximum of zii(t), which is a member of the exposure period extreme value distribution

of zi(t), g(zi,T ); i.e. czii 2 g(zi,T )

zij(t) = ensemble sample time series of the jth surrogate process, zj(t), driven by ⌘i(t)

czij = ensemble sample maximum of zij(t)

Figure 5.4 is a schematic illustrating the way the NL-DLG process approximates

the system probability of failure. This figure is similar to Figure 5.1, in which a

global, Gaussian input, ⌘(t), drives the non-linear loads, NLi(t) i = 1, · · · ,m, which

are mapped onto the failure surface, G, to determine if failure occurs. The di↵erence

is that instead of an exposure-length ⌘(t) input, as in Figure 5.1, in Figure 5.4,

ensembles of short ⌘i(t) i = 1, · · · , n time series from the DLG excite the system.

These unique, but statistically equivalent short time series are constructed by the

DLG to produce exposure-period-maxima of zi(t) i = 1, · · · , n.
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Ensembles of short global, Gaussian input ⌘i(t) time series constructed by the
DLG for an exposure period maximum of zi(t) i = 1, 2, · · · , n, which approxi-
mates ⇣i(t) to focus on a specific region of the failure surface G

NL1(t) NL2(t) NL3(t) · · · NLm(t)

Failure occurs: Yes/No

Failure Criteria based on the non-linear surface
G(N L

1

(t),N L
2

(t), · · · ,N L m(t)) = 0, driven by ⌘i(t).

Figure 5.4: Approximation of system’s failure probability from the NL-DLG process using ensembles
of DLG-generated time series.

5.5 Approximations of the NL-DLG Process

To summarize: the estimate of system failure probability is determined through

the consideration of the non-linear system response due to excitation time series

that lead to exposure-period-maxima of the surrogate processes zi(t), i = 1, · · · , n.
These zi(t) approximate the non-linear load combination cases, ⇣i(t), which focus on

specific areas on the failure surface, G. The DLG constructs an ensemble of ⌘i(t) for

i = 1, · · · , n that lead to a maximum value of the surrogate process: bzii 2 g(zi,T ).

These short global, Gaussian input time series drive the non-linear loads NLi(t)

i = 1, · · · ,m, which are mapped onto the failure surface, G, presumably in the area

directed by ⇣i(t), to determine if failure occurs. The system’s probability of failure is

approximated based on the system’s response to the short (N L 1(t), · · · , N L m(t))

time series driven by ⌘i(t). Relevant details on the approximation provided by the

DLG and on the resulting time series are:

• The surrogate process maxima constructed by the DLG are a lower bound

on the true exposure-period-maxima for zi(t) and give a lower bound for the

extremes of the corresponding non-linear load combination case. Therefore,

the probability of failure given by the short DLG time series conditioned for

a specific exposure-period-maximum is a lower bound on the probability of

failure from full MCS. This is because only certain parts of the exposure are

simulated, with the assumption that these times are when failure exclusively

occurs, whereas full MCS allow for failure to occur any time during the exposure.
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• The global, Gaussian inputs constructed by the DLG are statistically valid

time series which could be experienced during the exposure, implying that

the response time series are also physically realizable. Therefore, the con-

structed (N L 1(t),N L 2(t), · · · ,N L m(t)) time series are statistically pos-

sible responses within the exposure. The approximation is in the assumption

that these time series contain the maximum value that ⇣i(t) experiences over

the full exposure.

• The global, Gaussian inputs ⌘i(t) which lead to extreme load responses are

approximated, not the non-linear loads. The non-linear loads driven by these

inputs are constructed and compared to the failure surface, G, to determine if

a failure has occurred, as would be the case for full MCS. The only di↵erence

between this method and full MCS is that the surrogate processes are used to

estimate which global, Gaussian inputs are most likely to lead to extremes of

the non-linear load combination cases.

• The global, Gaussian time series ⌘i(t) constructed by the DLG are short, and

the length is user defined, but the length of the time series should be no longer

than a relevant autocorrelation period. Here, the length of ⌘i(t) is limited to

the autocorrelation period of ⌘(t) itself, which comes from its spectral definition

S+(!). Since ⌘i(t) is assembled to produce a maximum bzii, it would not be

constructive to examine the statistics of zii(t) far from the bzii event itself.

5.6 Linking Surrogate Process Maxima to System Failure

Probability, Assuming Un-Clustered Maxima

Surrogate processes are defined as linear approximations, or linear reduced-order

models, to non-linear load combination cases and the DLG generates ensembles of

the global, Gaussian input which lead to exposure-period-maxima of these surrogate

processes. To use the DLG process for the notional system in Figures 5.2-5.3, surro-

gate processes like in Eq.(5.2) would first be defined. Based on the failure surface G

shown in Figure 5.3, one might assume failures are linked to independent extremes

of the non-linear loads - regions represented by extremes of NL1(L1(t)) and by ex-

tremes of NL2(L2(t)). G can be approximated by these two non-linear load combi-

nation cases. Two surrogate processes are defined using the notation of Eq.(5.2) as
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z1(t) = L1(t)/�L
1

and z2(t) = L2(t)/�L
2

to approximate the two non-linear load com-

bination cases ⇣1(t) = NL1(L1(t))/�NL
1

and ⇣2(t) = NL2(L2(t))/�NL
2

, respectively.

Employing the DLG process, two ensembles of many short time series of ⌘1(t) and

⌘2(t) that lead to exposure-period-maxima of z1(t) and z2(t), respectively, would be

constructed. It is assumed that ⌘1(t) constructed to lead to exposure-period-maxima

of z1(t) also lead to exposure-period-maxima of ⇣1(t), and that ⌘2(t) constructed to

lead to exposure-period-maxima of z2(t) also lead to exposure-period-maxima of ⇣2(t).

Indeed, from the single MCS shown in Figure 5.2 with the plotted linear and non-

linear loads (not normalized by the respective �), it can be seen that this is true,

indicating the appropriate choice of surrogate processes for these two non-linear load

combination cases.

More load combination cases could be defined to capture more regions of the

failure surface, but here only two are used for simplicity. Ensembles of the non-

linear system response time series (NL2(L2(t)),NL1(L1(t))), are next generated from

each ensemble of inputs, ⌘i(t), and mapped onto G. Then, the probability of failure

given the system experiences an exposure-period-maximum of the surrogate process,

zi(t), is found. The search for failure is restricted to the time segment containing

one system autocorrelation period of ⌘(t), centered around the instant of extreme

surrogate response. The challenge is now to determine how to patch together these

failure probabilities from di↵erent DLG surrogate processes to a full description of

the system failure probability.

In a full-length MCS, all surrogate processes will experience an exposure-period-

maximum. For unrelated surrogate processes, the probability that multiple surrogate

processes experience their exposure-period-maximum at the same time (or within a

short time window) goes to zero as the exposure length increases. Su�ciently unre-

lated surrogate processes will experience their respective exposure-period-maxima at

di↵erent times over the exposure.

Possible outcomes in the time segments around each surrogate exposure-period-

maximum include one failure, multiple failures, or no failures. This is similar to the

classic probability problem described in Chapter 1.3.1 in which failure is due to the

first excursion above a certain level, and is additionally complicated by combined, non-

linear, and non-Gaussian loading. Rather than determine the order and probability

of multiple failures, which would be problematic if not impossible, it is better to

consider the null problem. That is: what is the probability that the system does not
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fail during its exposure period?

For unrelated surrogate processes whose exposure-period-maxima occur at di↵er-

ent times over the exposure, the system must not fail due to the realization of each sur-

rogate process maximum. The non-failure problem does not include any notion of time

(i.e. which maximum occurs first) and only requires that the (NL1(t), · · · ,NLm(t))

time series driven by the excitation ⌘i(t) for all i = 1, · · · , n which leads to a zi(t)

maximum does not lead to failure. Therefore, for unrelated surrogate processes, the

non-failure events due to the realization of unrelated surrogate process maxima are

independent. The system responses due to excitation time series containing these

un-clustered surrogate process maxima can be viewed as independent trials of an ex-

periment. The experiment here is: does this time series lead to failure or not? This

is similar to estimating the statistics of a system by running many MCS, in which

each individual trial is independent. For unrelated surrogate processes whose max-

ima are not clustered together over an exposure, the system response to excitation

which leads to a single exposure-period-maximum is independent of its response to a

di↵erent time which contains a di↵erent exposure-period-maximum. With this sim-

plification, the system’s probability of failure, based on the conditional probability of

failure from n individual surrogate process exposure-period-maxima as estimated by

the DLG, is defined in Eq.(5.3):

p(F) = p([n
i=1

cziiF )

p(F) = 1� p(Fc)

p(F) = 1� p(([n
i=1

cziiF )c)

p(F) = 1� p(\n
i=1

cziiF
c

)

p(F) = 1� p(cz
11

F c

)p(cz
22

F c

) · · · p(dznnF c

)

(5.3)

where

F ⌘ event that system failure occurs within the exposure period

Fc ⌘ event that system failure does not occur within the exposure period

czii ⌘ maximum of zii(t), which is a member of g(zi,T )

cziiF ⌘ event that the time series of (NL
1

(t), · · · ,NLm(t)), driven by ⌘i(t)

which leads to czii, mapped onto G leads to failure

cziiF
c

⌘ event that the time series of (NL
1

(t), · · · ,NLm(t)), driven by ⌘i(t)

which leads to czii, mapped onto G does not lead to failure

A beneficial consequence of this formulation is that if a non-linear load combina-

tion case, or associated surrogate process, is chosen which is completely unrelated to
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system failure, including it in Eq.(5.3) does not skew the final result. A surrogate

process maximum associated with excitation with a 0% chance of causing failure has

a 100% probability of non-failure, which multiplies the final expression in Eq.(5.3) by

1. In this way, the estimate of the system’s failure probability is una↵ected by the

addition of an unrelated load combination case.

This preliminary expression, Eq.(5.3), links the failure (or non-failure) probabil-

ities from the individual DLG surrogate process time series, ⌘i(t), to an estimate of

overall probability of failure for the system’s full exposure period. The independence

of the non-failure events due to excitation records containing un-clustered surrogate

process maxima allows the simplification of the intersection of the non-failure events

into the individual maxima events. Should the surrogate processes be su�ciently

unrelated, and their maxima occur at separate times over the exposure, meaning that

the exposure-period-maxima of zi(t) i = 1, 2, · · · , n are not clustered, it is straight-

forward to estimate the total probability of system failure using Eq.(5.3). In general,

however, multiple surrogate processes may not produce un-clustered maxima (i.e. as

discussed in Chapter 3.7 and shown in Figure 3.12). Therefore, the next step is to

determine how the di↵erent surrogate processes and their maxima may be related.

5.7 Relation of Surrogate Processes via the Exposure-Period-

Maxima

Eq.(5.3) assumes that all the surrogate process maxima are un-clustered over an

exposure and the independence of the non-failure events associated with the realiza-

tion of these maxima allows for the simple formulation. However, it is possible that

the realization times of the surrogate process maxima are not unrelated. The relation

between surrogate-process-maxima can be estimated by examining the Gaussian in-

puts which lead to the surrogate process extrema. The DLG constructs ensembles of

⌘i(t) which drive time series for all surrogate processes - zii(t), zij(t), · · · , zin(t). By

construction, bzii 2 g(zi,T ). All of the other time series, zij(t), · · · , zin(t), also contain

a maximum: czij, · · · ,czin. If two surrogate processes are related, there may be some

values of czip, p = j, · · · , n with czip 2 g(zp,T ). In this case, it may not be correct to say

that the maxima of the surrogate processes zi(t) and zp(t) occur un-clustered during

the exposure period.
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5.7.1 Clustering of Surrogate Process Maxima

To account for the event that di↵erent surrogate processes experience exposure-

period-maxima due to the same global, Gaussian input, or within the same autocor-

relation period window, more notation is defined. For a total of n di↵erent surrogate

processes that approximate n non-linear load combination cases:

cZi = this event occurs from ⌘i(t), with czii 2 g(zi,T ), and all czij /2 g(zj,T )

where j = 1, · · · , n and j 6= i

[ZiZj = this event occurs in 2 occasions from ⌘i(t) or ⌘j(t):

1) from ⌘i(t): czii 2 g(zi,T ), czij 2 g(zj,T ), and all czik /2 g(zk,T ) where k = 1, · · · , n and k 6= i, j

2) from ⌘j(t): czjj 2 g(zj,T ), czji 2 g(zi,T ), and all czjk /2 g(zk,T ) where k = 1, · · · , n and k 6= i, j

\ZiZjZk = this event occurs in 3 occasions from ⌘i(t), ⌘j(t), or ⌘k(t):

1) from ⌘i(t): czii 2 g(zi,T ), czij 2 g(zj,T ), czik 2 g(zk,T ), and all czip /2 g(zp,T )

where p = 1, · · · , n and p 6= i, j, k

2) from ⌘j(t): czjj 2 g(zj,T ), czji 2 g(zi,T ), czjk 2 g(zk,T ), and all czjp /2 g(zp,T )

where p = 1, · · · , n and p 6= i, j, k

3) from ⌘k(t): czkk 2 g(zk,T ), czki 2 g(zi,T ), czkj 2 g(zj,T ), and all czkp /2 g(zp,T )

where p = 1, · · · , n and p 6= i, j, k

and

cZi

F
, [ZiZj

F
, \ZiZjZk

F
⌘ event that failure occurs due to (NL

1

(t), · · · ,NLm(t))

driven by the time series ⌘i(t), ⌘j(t), or ⌘k(t) which leads

to cZi, [ZiZj , or \ZiZjZk, respectively

cZi

F c

, [ZiZj

F c

, \ZiZjZk

F c

⌘ event that failure does not occur due to (NL
1

(t), · · · ,NLm(t))

driven by the time series ⌘i(t), ⌘j(t), or ⌘k(t) which leads

to cZi, [ZiZj , or \ZiZjZk, respectively

This same notation expands for any and every combination of n surrogate pro-

cesses. Note that all of the above events are mutually exclusive, by definition. Now

the probability of non-failure due to the experience of (NL1(t), · · · ,NLm(t)), driven

by the time series ⌘i(t), ⌘j(t), or ⌘k(t) which leads to bZi,[ZiZj, or \ZiZjZk is determined

by examining the short time series ⌘i(t) from the DLG. The conditional probability
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of non-failure given the system experiences certain types of maxima is found by:

p(cZi

F c

) =
number of cZi

F c

events

number cZi events

p([ZiZj

F c

) =
number of [ZiZj

F c

events

number of [ZiZj events

p( \ZiZjZk

F c

) =
number of \ZiZjZk

F c

events

number of \ZiZjZk events

(5.4)

5.8 Surrogate Process Maxima Configurations

As shown above, it is possible that a system experiences the exposure-period-

maximum of two or more di↵erent surrogate processes clustered at the same time, or

within the same autocorrelation period. This is a separate type of event, and Section

5.7 derived the probability of non-failure due to (NL1(t), · · · ,NLm(t)) driven by the

time series ⌘i(t), · · · , ⌘n(t) associated with these mutually exclusive events. However,

these separate events must be linked back to the fact that over the full exposure pe-

riod, the system experiences the exposure-period-maximum of each defined surrogate

process. Some of these exposure-period-maxima may occur within the same autocor-

relation period and are considered a single joint event rather than separate events

that test the system.

As an example, consider a system characterized by three non-linear load combi-

nation cases ⇣i(t) i = 1, 2, 3, represented by three surrogate processes zi(t) i = 1, 2, 3.

Each surrogate process experiences its maximum over the exposure, but those maxima

may be grouped or clustered, depending on the relationship between the surrogate

processes. For the three surrogate processes z1(t), z2(t), and z3(t), there are five ways

for these maxima to be grouped. All three maxima may occur separately: defined by

the overall event {cZ1,cZ2,cZ3}. Two surrogate process maxima may cluster together

with the third separate: defined by {[Z1Z2,cZ3}, {[Z1Z3,cZ2}, or {[Z2Z3,cZ1}. Or, all

three maxima may cluster together: defined by { \Z1Z2Z3}.
These five possible groupings of the three surrogate process maxima are called

maxima configurations, and are noted ci with i = 1 , 2 , · · · , 5 . For n = 3, these config-

urations are defined c1 : {[Z1Z2,cZ3}, c2 : {[Z1Z3,cZ2}, c3 : {[Z2Z3,cZ1}, c4 : { \Z1Z2Z3},
and c5 : {cZ1,cZ2,cZ3}. These maxima events are defined so that the mutually exclu-

sive sub-groups within a maxima configuration (i.e. [Z1Z2 and cZ3 are sub-groups

within c1 ) are, by definition, un-clustered. Therefore, the probabilities of non-failure
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due to the realization of the sub-groups within a specific maxima configuration are

independent. Then Eq.(5.3) can be expanded for the potential of related surrogate

processes through these maxima configurations.

5.8.1 Possible Maxima Configurations

The next step is to determine the probability of experiencing the possible maxima

configurations. All exposure-period-maxima are experienced over a full exposure, but

they may be clustered. This indicates that for n surrogate processes, the di↵erent

maxima configurations, ci , which describe all possible groupings of the surrogate

process maxima are exhaustive. Every exposure fits the criteria of one single maxima

configuration type. It is clear that:

p(c1 ) + p(c2 ) + · · ·+ p(cBn) = 1 (5.5)

where

c1 ,c2 , · · · , cBn ⌘ maxima configuration 1, 2, · · · , Bn

p(ci) = probability of experiencing the maxima configuration ci with i = 1 , 2 , · · · ,Bn

Bn = total number of possible configurations to group n surrogate process maxima,

given by the Bell number, Bn

=
nX

k=0

⇢
n

k

�
=

nX
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✓
k
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◆
jn

The Bell number, Bn, gives the number of possible maxima configurations for n

surrogate processes (Bell , 1938). The configurations are all possible groupings of n

surrogate process maxima, in which the maxima may all be un-clustered, may all

cluster together, or may be clustered with any non-zero number of other maxima.

For a system represented by three surrogate processes, there are five possible maxima

configurations, i.e. B3 = 5.

The partitioning of these configurations is a possible limitation of the analysis;

the number of configurations increases rapidly with n, as shown in Table 5.1. Clearly

n should be limited to maintain computational advantages over brute-force MCS,

though a high Bn represents a more organizational, rather than computational, chal-

lenge. For example, it would not be a beneficial simplification to reduce the infinite

number of points on a failure surface, G, to 10 representative load combination cases

(making n = 10 surrogate processes), since this would result in an unreasonable

number of maxima configurations to analyze (B10 = 115, 975). The partitioning of
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maxima configurations is not a formidable task for a few surrogate processes, as Bn is

not proportional to the number of DLG simulations which must be run, which is the

only notable computational cost of the NL-DLG process. However, a high Bn means

many maxima configurations to analyze.

Number of Number of maxima configurations
Surrogate Processes n (Bell number Bn)

1 1
2 2
3 5
4 15
5 52
6 203
7 877
8 4,140

Table 5.1: Number of maxima configurations possible for n surrogate process exposure-period-
maxima (Bell number Bn).

With these maxima configurations, the last step in the NL-DLG process is to

determine the probability of experiencing each maxima configuration. Although not

computationally expensive, this requires a strict definition of the problem’s proba-

bility space. Section A.1 in the Appendix contains an in-depth discussion of the

probability space, and the experiment to determine the probability of experiencing

specific maxima configurations. The final result for the probabilities of experiencing

the maxima configurations possible for three surrogate processes is given by Eq.(A.8)-

(A.13).

5.8.2 Probability of Complex System Failure

Expanding Eq.(5.3) to account for the di↵erent possible maxima configurations

produces Eq.(5.6), which is illustrated in Figure 5.5 for a system with a failure surface

G approximated by three non-linear load combination cases. The possibility that the

surrogate process exposure-period-maxima may be clustered is considered by defining

the new notation to account for these events, i.e. {[ZiZj}. The probabilities of non-

failure due to these un-clustered maxima configuration sub-groups are independent.

Eq.(5.6) can be expanded to any number of surrogate processes by taking into account

the number of all possible maxima configurations, Bn. The conditioning for each

configuration is implied in the definition for the di↵erent exposure-period-maxima

events.
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The probability of non-failure given the exposure is represented by the maxima

configuration c1 � c5 is the product of the probabilities of non-failure due to the

individual sub-groups (i.e. Eq.(5.4)). For example, the probability of non-failure due

to configuration c1 is p([Z1Z2

F c

)p(cZ3

F c

). To find the overall system failure probabil-

ity, p(F), the probabilities of non-failures given a specific maxima configuration are

considered in light of experiencing that maxima configuration (i.e. p(c1 )).

p(F) = 1� p(Fc)

p(Fc) = p([Z
1

Z
2

F c

\cZ
3

F c

|c1 )p(c1 ) + p([Z
1

Z
3

F c

\cZ
2

F c

|c2 )p(c2 ) + p([Z
2

Z
3

F c

\cZ
1

F c

|c3 )p(c3 ) + · · ·

p( \Z
1

Z
2

Z
3

F c

|c4 )p(c4 ) + p(cZ
1

F c

\cZ
2

F c

\cZ
3

F c

|c5 )p(c5 )

= p([Z
1

Z
2

F c

)p(cZ
3

F c

)p(c1 ) + p([Z
1

Z
3

F c

)p(cZ
2

F c

)p(c2 ) + p([Z
2

Z
3

F c

)p(cZ
1

F c

)p(c3 ) + · · ·

p( \Z
1

Z
2

Z
3

F c

)p(c4 ) + p(cZ
1

F c

)p(cZ
2

F c

)p(cZ
3

F c

)p(c5 )

(5.6)

where

F ⌘ event that system failure occurs within the exposure

Fc ⌘ event that system failure does not occur within the exposure

p(cZi

F c

), p([ZiZj

F c

), p( \ZiZjZk

F c

) = given by Eq.(5.4)

p(ci), i = 1 , 2 , 3 , 4 , 5 , = given by Eq.(A.8)-(A.13)

5X

i=1

p(ci) = 1
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Figure 5.5: Schematic illustrating Eq.(5.6) for a system with a failure surface, G, where three
regions are emphasized by three non-linear load combination cases, approximated by three surrogate
processes, zi(t) i = 1, 2, 3. Five di↵erent maxima configurations are possible, and the probability
of non-failure is given for each configuration. For configurations with multiple sub-groups (i.e. ci ,
i = 1 �3 , 5 ), the ordering of the sub-group does not matter because of the independence of the non-
failure events associated with un-clustered surrogate process maxima events. The final probability
of failure, p(F), is determined by combining the conditional probabilities of non-failure of the given
maxima configurations with the probability of each maxima configuration occurring.

5.9 Estimated Distribution of Most-Likely Failures

In addition to estimating a system’s probability of failure, it is also helpful to know

the types of failure the system experiences when subjected to combined loading. Given

such a distribution of failure occurrences, a designer can improve the system design
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to protect against certain weaknesses. The distribution of failure modes is implicitly

the distribution of first failure occurrences, because once a system first experiences

failure, it can no longer experience other failures. This is similar to finding the first

out-crossing of the failure surface, G, by the loading vector. Although the NL-DLG

process is formulated so that failures can occur due to excitation containing any of

the surrogate process exposure-period-maxima, an important aspect is to determine

what type of failures are most likely to occur first, which are the most-likely failures.

This distribution is estimated by combining the failures due to the specific maxima

configurations with the probability of experiencing a specific maxima configuration,

p(ci), i = 1 , 2 , · · · , Bn. To estimate a distribution of the failures a system is most

likely to experience over its full exposure, pick a large number of exposure realizations

g (similar to conducting g full-length MCS for converged statistics). Then, the prob-

ability of experiencing each maxima configuration p(ci), i = 1 , 2 , · · · , Bn dictates the

percentage of those g realizations which fall into each of the maxima configurations

ci (i.e. g ⇥ p(ci), i = 1 , 2 , · · · , Bn) to be considered for the distribution estimate.

The question then is, for maxima configurations ci, i = 1 , 2 , · · · , Bn which have

multiple separate maxima sub-groups, which sub-group occurs first? For example,

in Figure 5.5, c1 is the event {[Z1Z2,cZ3}, meaning that the three surrogate process

maxima are grouped into two maxima sub-groups: {[Z1Z2} and {cZ3}. Which one of

these sub-groups occurs first during an exposure? Consider that the DLG constructs

⌘i(t) which lead to bzii 2 g(zi,T ). Regardless of how these exposure-period-maxima

are later partitioned into di↵erent maxima groups (i.e. bZi, [ZiZj, or \ZiZjZk) all of

these maxima have the same return period. This implies that each maxima sub-group

has the same probability of occurring first. The probability of experiencing a specific

maxima sub-group is then defined.

Figure 5.6 gives the probability of experiencing a specific maxima sub-group in a

given maxima configuration first. These probabilities are combined with the number

of exposure realizations, g, the distribution is estimating to give the number of DLG

time series from each maxima sub-group (i.e. bZi, [ZiZj, or \ZiZjZk) that should be

considered for this distribution. Empirical histograms can be constructed of the

DLG time series which fall into each sub-group {cZ1}, {cZ2}, {cZ3}, {[Z1Z2}, {[Z1Z3},
{[Z2Z3}, and { \Z1Z2Z3}. Note that the bZi distributions are univariate histograms,

whereas the [ZiZj and \ZiZjZk distributions are bivariate and trivariate histograms,

respectively. The time series in each sub-group to be considered are selected based
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on the associated histogram distribution. If the chosen time series contain a failure,

that failure is plotted on the distribution of most-likely failures.

Considering the maxima configuration c1 , the number of time series to be consid-

ered from all DLG time series which satisfy the {[Z1Z2} criterion is g ⇥ p(c1 )⇥ 1/2.

The empirical histogram of all {[Z1Z2} values dictates how these g⇥ p(c1 )⇥ 1/2 time

series are selected. Any failures which result from those time series are plotted on

the failure distribution estimate. In the same way, g⇥ p(c1 )⇥ 1/2 times series which

satisfy the {cZ3} criterion are selected, based on the empirical histogram distribution

of those {cZ3} values. Any failures which result are plotted on the distribution esti-

mate. All maxima configurations ci, i = 1 , 2 , · · ·, Bn, and the maxima sub-groups

within those maxima configurations, are considered in the same way to estimate the

distribution of failures the system is most likely to experience over its exposure.

This process gives an overall ensemble of short excitation time series which lead

to the most-likely failure occurrences. These excitation time series could be used as

the input to more high-fidelity models, like Computational Fluid Dynamics, Finite

Element Analysis, or even physical model tests, to determine system performance.

These inputs can be seen as a selected group of excitation records which presumably

lead to the same converged statistics of failure occurrences as would be recorded from

brute-force MCS.
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Figure 5.6: Probability tree outlining the probability of experiencing a specific maxima sub-group
first.

5.10 Implications of the NL-DLG Process

This chapter developed the NL-DLG process to estimate the probability of com-

plex system failure governed by multiple, potentially correlated, non-linear, and non-

Gaussian loading over a long, stationary exposure period without resorting to brute-

force MCS. A finite number of non-linear load combination cases focus on di↵erent

regions of the failure surface, G, which relates non-linear loading to the system re-

sponse.

Then, excitation inputs which lead to the exposure-period-maxima of these load

combination cases are approximated by the DLG using associated linear surrogate

processes. These surrogate processes may be defined by linearization or reduced-order
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modeling and are meant to be an indicator for extreme responses of the non-linear load

combination cases. Subsequently, the DLG constructs short global, Gaussian time se-

ries that lead to exposure-period-maxima of the surrogate processes, and presumably

the associated non-linear load combination cases. The vector of the non-linear loads

(NL1(t), · · · ,NLm(t)) due to these inputs is constructed and plotted on the failure

surface, G, to determine whether or not failure occurs. The probability of system

failure is estimated by the system response due to these short-time non-linear load

vectors. Mutual exclusivity of the surrogate process maxima is not assumed and

any potential overlap between surrogate processes is considered in the analysis. The

assumptions used to develop the NL-DLG process are:

• The global environment that drives the non-linear loads is Gaussian with a

given spectral definition.

• The failure surface G is time-invariant.

• Di↵erent regions of G are emphasized by a finite number, n, of non-linear load

combination cases.

• The Gaussian inputs which lead to exposure-period-maxima of the surrogate

processes also lead to exposure-period-maxima of the associated non-linear load

combination cases.

• Failure occurs exclusively during times in the excitation when the surrogate

processes experience their exposure-period-maxima.

• Over a full exposure, the exposure-period-maximum of each surrogate processes

is experienced, but these maxima may be clustered. When the maxima occur

within a relevant autocorrelation period of each other, they are assumed to

occur together, meaning that their joint occurrence is the only time during the

full exposure either exposure-period-maximum is experienced.

Using the above assumptions, the NL-DLG process was developed to use surrogate

processes to e�ciently estimate a complex system’s probability of failure and estimate

the distribution of failures that a system is most likely to experience over the exposure.

The NL-DLG process allows consideration of a system’s performance earlier in a

design spiral because of reduced computation and allows failure analysis to become a

part of the design process. An illustrative, multi-dimension example is now presented,

utilizing the NL-DLG process to illustrate its capability.
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CHAPTER VI

An Illustrative, Multi-Dimension Example using

the NL-DLG Process

To illustrate the capability of the NL-DLG process, a simple hypothetical example

is presented. This example includes a 3�dimension failure surface and a system

subject to three combined, potentially correlated, non-Gaussian loads over a 1000-

hour exposure. Two iterations of the NL-DLG process are performed to show how the

failure estimate can be improved by considering feedback. Some general notes on the

NL-DLG process are highlighted to indicate strengths of the process and additional

challenges to be considered.1

6.1 Complex System Definition

For this example, a single-sided mean-squared spectrum S+(!) describes the

global, Gaussian input, ⌘(t), which provides the input to the stochastic loading on

the system. This spectrum is given in Figure 6.1. The characteristic period of the

input is 12 seconds suggesting 3⇥ 105 cycles per exposure period.

Non-dimensional magnitude and phase information for three linear transfer func-

tions L1(!), L2(!), and L3(!), are shown in Figure 6.2 and defined by Eq.(8.2). The

three linear transfer functions are di↵erent dynamic oscillators, all of which are ex-

cited by the same global, Gaussian input ⌘(t). L1(!) is a static response, L2(!) has

a resonant frequency near the peak excitation frequency, and L3(!) has a resonant

frequency that leads to a bimodal response for excitation with spectral density of

S+(!). The single-sided mean-squared response spectra are also shown in Figure 6.2.

1Portions of this work were previously published in Sey↵ert and Troesch (2018).
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Figure 6.1: Single-sided mean-squared spectrum, S+(!), of the global, Gaussian input ⌘(t).

Figure 6.2: Non-dimensional magnitude and phase information for linear transfer functions L
1

(!),
L
2

(!), and L
3

(!), along with single-sided mean-squared spectra S+(!)|L
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(6.1)
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6.1.1 Non-Linear Loading on System & Failure Surface

For this system, there are three non-linear loads, defined in Eq.(6.2), whose inter-

action with a failure surface determines system failure. The failure surface, G, for the

system is shown in Figure 6.3 and defined by the bounding planes given in Eq.(6.3).

NL
1

(t) = L
1

(t)3 + L
1

(t)2 + L
1

(t)

NL
2

(t) = L
2

(t)3 + L
2

(t)2 + L
2

(t)

NL
3

(t) = L
3

(t)3 + L
3

(t)2 + L
3

(t)

(6.2)

where

NLi(t) = time series of non-linear load which potentially contributes to failure

Li(t) = time series with spectral definition S+(!)|Li(!)|2 as shown in Figure 6.2

Figure 6.3: Failure surface, G, for illustrative example.
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6.1.2 Probabilistic System Design

There are three stochastic non-linear loads acting on this system, NLi(t), i =

1, 2, 3. In many problems, it is di�cult to define how non-linear loads interact with
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each other and with the system failure surface. This is due to the stochastic nature

of the loading, and the non-linear relationship between the overall environment and

the system’s response to those loads (i.e. the failure surface shape).

The system strength in this example is designed for each load independently in

a ‘divide and conquer’ approach by constraining each individual load with a high

probability of non-exceedance (PNE). This is similar to testing systems with a

conditional maximum approach by bounding individual loads with a high PNE.

The intercept values of G at each axis are designed to correspond to the NLi value

resulting from the input of the 1000-hour maximum of Li associated with PNE =

0.990. These intercepts are defined by Eq.(6.4):

NLi�intercept = NLi(PNE
0.990Li) (6.4)

where

NLi�intercept = axis intercept of NLi, i = 1, 2, 3

NLi(t) = non-linear function described by Eq.(6.2)

PNE
0.99Li = 1000-hour maximum of Li, i = 1, 2, 3 which has PNE = 0.990

This is not an unusual design decision, especially for a system where a long expo-

sure precludes brute-force MCS and the level of dependence between the non-linear

loads is unknown. This illustrative example examines whether or not a failure surface

defined by constraining individual non-linear load maxima, coupled with a high PNE

bound, actually leads to a system with a low failure probability. Of equal interest is

whether the PNE bound a↵ects each load equally, and leads to a balanced design,

where failures are equally distributed across the failure surface.

6.2 Selection of Non-Linear Load Combination Cases & Sur-

rogate Processes

Having defined the complex system, exposure period, failure surface, and the

combined loading, the probability of system failure over the 1000-hour exposure is

evaluated by the NL-DLG process. Non-linear load combination cases are chosen to

focus on specific regions of G. These non-linear load combination cases are weighted

sums of the three non-linear loads acting on the system, as shown by the general load
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combination case in Eq.(6.5):
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(6.5)

Three non-linear load combination cases are chosen to approximate the failure

surface, G. The cases are defined as the individual extremes of the three non-linear

loads which contribute to failure, given by Eq.(6.6):
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Linear functions associated with the Gaussian input leading to the extreme be-

havior of the non-linear load combinations are chosen and constructed as surrogate

processes. The natural choice is weighted sums of the three linear functions of the

global, Gaussian input - L1(t), L2(t), and L3(t). Eq.(6.7) defines the general surrogate

process, and weighting factors are chosen to approximate the di↵erent non-linear load

combination cases given by Eq.(6.6):
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(6.7)

The load cases ⇣i(t) i = 1, 2, 3 are approximated by the surrogate processes z1(t),

z2(t), and z3(t) in Eq.(6.8):
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(6.8)

6.3 Estimation of Target Extreme Value (TEV)

With the defined surrogate processes, three ensembles of short DLG time series,

⌘i(t), are generated which lead to 1000-hour-maxima of zi(t) for i = 1, 2, 3. The DLG

requires information about the surrogate process to link an exposure period to the

magnitude of the exposure-period-maxima. The number of cycles a process experi-

ences in a given exposure period is linked to the most probable extreme maximum for
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the given exposure, as explained in Chapter 2.2. The target extreme value, or TEV ,

expresses the most probable maximum given in terms of the standard deviation of the

process, as shown by Ochi (1990). Chapter 2.2 gives the most probable maximum in

terms of the spectral moments, Eq.(2.13), but this value can also be expressed simply

by the number of cycles in the exposure, as in Eq.(6.9):

TEV =
z

�z
=
p

2ln (N) =

s

2ln

✓
T

Tc

◆
(6.9)

where

TEV = target extreme value

z = most probable maximum of z(t) over the exposure, T

�z = standard deviation of the process z(t)

N = number of cycles that z(t) experiences over the exposure, T

T = exposure, T, in seconds

Tc = calibration period of the process z(t), in seconds

The estimation of the number of cycles experienced over the exposure, N , is

critical in determining the appropriate TEV . If the TEV used for input in the

DLG simulations is significantly di↵erent from what is seen from full MCS, then

the surrogate process maxima given by those DLG simulations may not accurately

represent the true exposure-period-maxima.

All the linear transfer functions Li(!) pass some level of high-frequency content.

Using spectral moments to estimate N for use in Eq.(2.13) may not be the most

accurate, since the higher spectral moments are influenced by frequency truncation.

This leads to the use of Eq.(6.9), and instead of calculating a TEV based on N

from spectral moments, the calibration period Tc which most accurately represents

the process is estimated from short MCS, based on the empirical exposure-period-

maxima. This calibration period can be used, as in Eq.(6.9), to give a TEV estimate

for a 1000-hour exposure.

To do this, 1000, T�length MCS of ⌘(t) are run, where T is of su�cient record

duration for converged averages. For each ⌘(t) simulation, the time series z1(t), z2(t),

and z3(t) are constructed and the T�length-maxima for each zi(t) are collected. Then,

a histogram of the 1000, T�length-maxima for each surrogate process is assembled,

which is the extreme value distribution for exposure length T . The most probable

maximum of these histograms is estimated, and the calibration period, Tc, which

leads to this maximum for the T exposure is calculated using Eq.(6.9). Then, Tc can
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be used in Eq.(6.9) to solve for the TEV associated with a 1000-hour exposure.

The most probable maximum, or TEV , is estimated by assembling closed-form

Gaussian extreme value distributions for a range of TEV values, and finding the

distribution which has the minimum Je↵reys/ symmetric Kullback-Leibler divergence

with the empirical histogram, as described in Chapter 3.3 (Kullback and Leibler ,

1951). This divergence allows the comparison between many closed-form extreme

value distributions for distinct TEV values and the empirical histogram in question,

and is calculated by Eq.(3.1). A minimum divergence value indicates the best fit.

Note the closed-form distribution used for comparison with the empirical histograms

is the extreme value distribution for a Gaussian process (see, e.g., Ochi (1990)), which

is an appropriate comparison as all zi(t) processes are Gaussian.

Using Eq.(3.1), the TEV associated with the best-fit extreme value distribution

for each zi(t), i = 1, 2, 3, T�length empirical histograms is approximated. This

TEV indicates the calibration period, Tc, that best describes the zi(t) process. This

experiment was carried out for exposure periods of 1, 2, 4, 8, 16, and 32 hours, and

the results, along with the computation time2 are tabulated in Table 6.1. Notice

that the calibration period calculated from Eq.(6.9) converges as the length of the

simulation increases. The 1000-hr TEV ’s from the 32-hour MCS are used in the DLG

simulations for the NL-DLG process estimations.

z
1

(t) z
2

(t) z
3

(t)
T Computation Tc 1000-hr Tc 1000-hr Tc 1000-hr

(exposure) time [sec] [sec] TEV [sec] TEV [sec] TEV
1 hr 23.1 10.73 5.04 14.83 4.98 8.26 5.10
2 hr 30.3 11.09 5.04 15.83 4.97 8.80 5.08
4 hr 47.9 12.13 5.02 16.34 4.96 9.23 5.07
8 hr 88.3 11.93 5.02 16.06 4.96 9.55 5.07
16 hr 171.2 12.52 5.01 16.79 4.96 10.09 5.06
32 hr 348.3 12.37 5.02 17.66 4.94 9.89 5.06

Table 6.1: Calibration period, Tc, from 1, 2, 4, 8, 16, and 32-hour MCS, resulting 1000-hour TEV
for surrogate processes zi(t), i = 1, 2, 3 using Eq.(6.9), and computation time. The 1000-hr TEV
values estimated from the Tc from the 32-hr MCS are used in the DLG simulations.

2These computation times reflect running on a MacBook Pro personal laptop, 2.5 GHz Intel Core
i7.
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6.4 First Iteration of the NL-DLG process

With these 1000-hour TEV values for z1(t), z2(t), and z3(t), the DLG was used

to construct 2000 short ⌘i(t) time series which lead to 1000-hour maxima of the

surrogate processes. Then, the NL-DLG process approximated the overall probability

of failure of the system as described by Chapter V. Using the surrogate processes zi(t),

i = 1, 2, 3, the estimate of system’s probability of failure over a 1000-hour exposure

is p(F) = 0.839. Figure 6.4 gives the estimate of the most-likely failure distribution

for this system over the 1000-hour exposure.

Figure 6.4: Estimate of the distribution of most-likely failures from the NL-DLG process using
surrogate processes zi(t), i = 1, 2, 3 from Eq.(6.8).

An initial impression of this result is that the probability of failure is significantly

higher than anticipated given the system constraints (failure surface at PNE = 0.990

intercepts). In addition, even though the non-linear load combination cases focused

on failures due to individual extremes of NL1(t), NL2(t), and NL3(t), most of the

failure occurrences lie on the NL1 �NL3 plane. This unexpected result can be used

to improve the estimate of the system’s probability of failure.

6.5 Second Iteration of the NL-DLG process

The failure probability estimate from the first iteration of the NL-DLG process can

be used to improve the estimate. Figure 6.4 revealed that many failure occurrences
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lie on the NL1�NL3 plane. This information can be used as feedback to update the

estimate by adding another non-linear load combination case. Since many failures

occurred purely on theNL1�NL3 plane, adding another non-linear load combination

case that focuses on this region should improve the failure probability estimate. The

four non-linear load combination cases used by the second iteration of the NL-DLG

process are given by Eq.(6.10):

⇣
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NL
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�NL
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(6.10)

The surrogate process z4(t) approximates this additional non-linear load combi-

nation case, ⇣4(t), giving the four surrogate processes in Eq.(6.11):
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(t))

(6.11)

The new surrogate process z4(t) focuses on failures due to a moderate simultaneous

combination of NL1(t) and NL3(t), since that is where the first analysis revealed

many unexpected failures. A similar test as with Table 6.1 was run to estimate a 1000-

hour TEV for z4(t), and the estimate from the 32-hour MCS is used for the 1000-hour

TEV for z4(t) (TEV = 5.014). The NL-DLG process again estimated the system

probability of failure, this time using the four non-linear load combination cases from

Eq.(6.10). The new estimate of the system’s failure probability is p(F) = 0.929.

Figure 6.5 gives the estimate of the distribution of most-likely failure occurrences.

Again, most of the first failure occurrences are clustered on the NL1�NL3 plane.

A higher probability of failure is estimated by adding the non-linear load combination

case ⇣4(t), with the associated surrogate process z4(t), to focus on this region. The

iterative nature of the NL-DLG process illustrates the natural advantage of using
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Figure 6.5: Estimate of the distribution of most-likely failures from the NL-DLG process using
surrogate processes zi(t), i = 1, 2, 3, 4 from Eq.(6.11).

surrogate processes, coupled with the ability of the NL-DLG process to determine

the relation between them. Mutually exclusive surrogates do not need to be defined,

so surrogates can be added in specific regions of interest.

6.6 Monte Carlo Simulation Validation

For comparison with full MCS, 10,000 1000-hour simulations were conducted.3

The distribution of failure occurrences is assembled in Figure 6.6. Using a full MCS

analysis, the system’s probability of failure is p(F) = 0.908. The final estimate of

the system’s failure probability using four surrogate processes is close to what is seen

from full MCS (p(FNL�DLG) = 0.929 vs. p(FMCS) = 0.908).

The MCS analysis also shows that the majority of the first failure occurrences

are clustered on the NL1 �NL3 plane, just as seen from the NL-DLG process. The

results from the two iterations of the NL-DLG process and the full MCS analysis,

along with computation times, are given below in Table 6.2.

Both the estimate of the system probability of failure and the distribution of

most-likely failure occurrences from the final iteration of the NL-DLG process closely

approximate what is given from a full MCS analysis. Of equal significance, Table 6.2

3The MCS were run on an Ubuntu desktop with 12x Intel(R) Xeon(R) CPU E5-2609 v3 @
1.90GHz.
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Figure 6.6: Estimate of the distribution of most-likely failures from 10,000 1000-hour MCS.

NL-DLG process
10,000 MCS

zi(t), i = 1, 2, 3 zi(t), i = 1, 2, 3, 4
p(F) = p(fail) 0.839 0.929 0.908

computation time 8.07 min 10.86 min 46.14 hours

Table 6.2: System failure probability over 1000-hour exposure from the NL-DLG process using zi(t)
i = 1, 2, 3, zi(t) i = 1, 2, 3, 4, and 10,000 MCS, along with computation time.

shows a major savings in computation time for the NL-DLG process vs. MCS. As

an auxiliary benefit, using the NL-DLG process allows users to update the estimate

using feedback from earlier iterations, giving a quick method to check how design

changes a↵ect the system’s performance. For example, a user could easily change the

failure surface, which would reflect a change in design for continued analysis. This

would require no new DLG simulations, only a mapping of the same simulations onto

a new failure surface, meaning the added computation is negligible.

6.7 Remarks on System Design Aspects

From this illustrative example, it is clear that the NL-DLG process closely recov-

ers a system’s probability of failure over a long exposure. This method also gives

a reasonable estimate of the distribution of most-likely failures with a significantly

smaller computational expense than a traditional MCS analysis. The DLG simula-

tions associated with assembling this distribution form an ensemble of wave profiles
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which could be used in a more high-fidelity analysis and are representative of the op-

erating profile and exposure. Beyond these capabilities, there are multiple interesting

aspects of complex system failure analysis that the NL-DLG process reveals, some of

which are discussed in the following sections.

6.7.1 Individual Load PNE Bounds

Recall that the failure surface, G, was sized so that the failure surface value at

each individual load axis is the NLi(t) value, using as input the 1000-hour maximum

Li(t) value associated with a PNE = 0.990. However, even with this seemingly

stringent design criteria, many failures were recorded. The question is, do any of the

loads exceed the design criteria? Figure 6.5 shows an estimate of the distribution of

most-likely failure occurrences for a 1000-hour exposure using the surrogate processes

in Eq.(6.11). The vast majority of these failures occur nowhere near the extremes of

a single non-linear load (i.e. the intersection of G at the three axes). The only failure

occurrences that can be classified as due to an extreme of a single load occur near

the NL2(t) axis.

Figures 6.7 and 6.8 are projections of Figure 6.5 on the NL1 � NL2 plane and

NL3 � NL2 plane, respectively. Note that the failures near the extremes of the

NL2(t) axis do not occur with a contribution due to only NL2(t). They all have

some component, regardless how small, of NL1(t) and NL3(t). This shows that none

of the failure occurrences exceed any NLi(t) i = 1, 2, 3 PNE = 0.990 value, which

was the original design criteria. Despite the fact that no non-linear load exceeded the

1000-hour PNE = 0.990 criteria, this high PNE bound did not translate to a safe

design, as was expected.

6.7.2 (In)dependence of Loads

The system failure surface was designed by assuming that all three loads act

independently and that failure occurs only if any individual load exceeds its PNE =

0.990 value in a 1000-hour exposure. A valid independence assumption, along with

assuming that the non-linear loads have a negligible impact when a di↵erent non-linear

load is maximized, would suggest the system should have a probability of failure of

about 0.03 (p(F) = 1 � p(Fc) = 1 � 0.99 ⇥ 0.99 ⇥ 0.99 = 0.0297). The NL-DLG

process estimated that the system’s failure probability for the exposure is over 90%,

and the full MCS analysis confirmed the high system failure probability. How did the
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Figure 6.7: Estimate of the distribution of most-likely failures from the NL-DLG process using 4
surrogate processes zi(t) i = 1, 2, 3, 4. This is a projection of Figure 6.5 on the NL

1

�NL
2

plane.

Figure 6.8: Estimate of the distribution of most-likely failures from the NL-DLG process using 4
surrogate processes zi(t) i = 1, 2, 3, 4. This is a projection of Figure 6.5 on the NL

3

�NL
2

plane.

PNE = 0.990 criteria lead to such a high failure probability?

The system design in this example satisfied the criterion that no non-linear load

which contributes to failure exceeds its axis value. Despite satisfying this criterion,

the system still has a probability of failure higher than 90%. Every failure on the

estimate of the most-likely failure distribution has a component of NL1(t), NL2(t),

and NL3(t). This is especially apparent for the failures clustered on the NL1�NL3

plane. The failure surface, G, was designed without considering how the non-linear

loads may interact, specifically the values of the non-linear loads when a di↵erent
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load is maximized, and how simultaneous moderate load combinations may lead to

extreme system responses. The resulting system was significantly prone to failures due

to such moderate simultaneous loading, resulting in an unacceptably high probability

of failure.

Many of the system failures are on the NL1 � NL3 plane, and have an equally

weighted sum of NL1(t) and NL3(t). Also, many of these failures have a small

NL2(t) component. If this NL2(t) contribution were absent, many of these failures

would not be failures at all. However, it would be di�cult to quantify the dependence

of these non-linear loads using other methods which rely on extrapolation, or even

conditional maxima.

Since the surrogate processes are sums of linear functions of a Gaussian input, ev-

ery surrogate process is also Gaussian. The DLG constructs excitation inputs leading

to their extreme responses, and the NL-DLG process estimates the relation between

the surrogate processes, regardless of the level of relation. Clearly, the interaction of

the non-linear loads has a major impact on the ability of a design to withstand failure.

This example is a cautionary note illustrating the danger of assuming independence

among loads for system design, and how that assumption can lead to a dramatically

non-conservative estimate of a system’s probability of failure.

6.7.3 Unbalanced Design

With the same PNE = 0.990 criteria for all non-linear loads driving the failure

surface, it would seem a balanced design should result, where any failures are equally

spread across the failure surface. Clearly this was not the case. In the estimated

distributions of most-likely failure occurrences assembled from both the NL-DLG

process and the full MCS validation, the majority of failures are clustered on the

NL1�NL3 plane. This at first seems unexpected, until the linear transfer functions

which are inputs to the non-linear loads are considered.

The linear input to NL1(t) is the result of a unit gain filter, the input to NL2(t)

is filtered to emphasize the peak frequency of the original Gaussian process, and the

input to NL3(t) is filtered to yield a bimodal response spectrum. The majority of

the failures have a large component of NL1(t) and NL3(t), and a small component

of NL2(t) present. The failure surface along the NL2 axis is designed to withstand

large values of the resonant response. On the other hand, the NL1 axis is sized

against the static response, and the NL3 axis is sized against a bimodal response of
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the excitation. All of these axes, corresponding to the three non-linear loads, had

the same applied PNE = 0.990 bound, but clearly this did not a↵ect all three loads

equally. This illuminates the di�culty of joint environmental inputs: they may have

di↵erent probabilities of occurrence. Constraining multiple loads with the same high

PNE bound does not a↵ect each load equally and does not translate to a low overall

system failure probability.

The iterative nature of this analysis allows a quick design reformulation. To

evaluate a new design, a new failure surface can be created, and evaluated with the

same method as explained above. The same DLG simulations can be used because

they are based on the operating profile and not the system design, which allows the

quick testing of new designs, or families of designs. As well, it may be desirable to

design the way a system fails. Failure in some modes may not be as catastrophic

as failure in others, and this can be accommodated by varying the failure surface.

When all competing designs can be quickly compared, it is possible to determine the

trade-o↵s between designs.

6.7.4 Bounds of the NL-DLG Process Estimation

It is important to determine what bounds, if any, exist for the probability of failure

estimated by the NL-DLG process. For this illustrative example, the probability of

failure from the NL-DLG process using the three surrogate processes in Eq.(6.8) is

less than the probability of failure from the MCS validation. However, the probability

of failure from the NL-DLG process using the four surrogate process in Eq.(6.11) is

greater than the MCS validation. One potential reason that these probabilities are

not on the same bound of the MCS failure probability is based on the estimate of the

TEV for use in the DLG simulations as compared to full MCS.

Figure 6.9 shows the 1000-hour distributions of the maxima for the four surrogate

processes from Eq.(6.11), from the DLG simulations and MCS. For each surrogate

process, the TEV used in the NL-DLG process, as well as the TEV estimated from

1000-hour MCS, is given. For all surrogate processes, the TEV used in the DLG

simulations, which was estimated by a representative period, Tc, from 32-hour MCS,

is slightly higher than the 1000-hour TEV found from full 1000-hour MCS. This

inflated TEV is equivalent to a slightly longer exposure, as discussed in Chapter 2.2,

and means that the loads on the system analyzed by the NL-DLG process are more

intense than those from the MCS analysis. This can explain why the probability
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of failure estimated from the NL-DLG process using the four surrogate processes in

Eq.(6.11) is higher than the estimate from the MCS analysis.

Figure 6.9: Comparison of the empirical histograms of the 1000-hour maxima of surrogate processes
zi(t) i = 1, 2, 3, 4, normalized as a pdf , from DLG simulations (2000 samples) and MCS (10,000
samples), along with the 1000-hour TEV .

An interesting test is to compare the probability of failure from the NL-DLG pro-

cess to that from the MCS validation if the TEV values used in the DLG simulations

are the same as those seen in full 1000-hour simulations. The TEV values for the

surrogate processes from Eq.(6.11), as found from the MCS (shown in Figure 6.9) are

used to drive new DLG simulations. This ensures that the distributions of assembled

surrogate process maxima constructed by the DLG are statistically equivalent to ex-

trema from full MCS. The ‘original TEV ’ values that were estimated from 32-hour

MCS, which gave the results found in Figures 6.4, 6.5, 6.7, and 6.8, along with the

‘new TEV ’ values found from 1000-hour MCS, are given in Table 6.3. With the

updated ‘new TEV ’ values, the new probability of system failure can be calculated.

The results are shown in Table 6.4.

surrogate process
original TEV values new TEV values
from 32-hour MCS from 1000-hour MCS

z
1

(t) 5.016 4.993
z
2

(t) 4.945 4.931
z
3

(t) 5.061 5.039
z
4

(t) 5.014 5.002

Table 6.3: The original TEV values for surrogate processes zi(t) i = 1, 2, 3, 4 from Eq.(6.11) which
are estimated from 32-hour MCS, along with the new TEV values estimated from 1000-hour MCS.
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NL-DLG process
zi(t) i = 1, 2, 3 zi(t) i = 1, 2, 3, 4 10,000 MCS

original TEV new TEV original TEV new TEV
p(F) = p(fail) 0.839 0.797 0.929 0.905 0.908

Table 6.4: System failure probability over 1000-hour exposure from the NL-DLG process using three
surrogate processes zi(t) i = 1, 2, 3, four surrogate processes zi(t) i = 1, 2, 3, 4, both the original
TEV and new TEV values from Table 6.3, along with the result from 10,000 1000-hour MCS.

Using the new TEV values estimated from 1000-hour MCS to drive the new DLG

simulations, the probability of system failure for both the three and four surrogate

processes case (Eq.(6.8) vs. Eq.(6.11)) is less than the original failure probabilities

which use the TEV values estimated from 32-hour MCS. This is an expected result,

as a lower TEV results in a distribution of surrogate process maxima whose most

probable value is of smaller magnitude, meaning the system experiences less intense

loading. With these updated TEV values, the probability of system failure for both

NL-DLG process iterations is a lower bound on the probability of failure seen from

the full MCS analysis for this example. This indicates that a NL-DLG process result

based on accurate TEV values gives a lower probability bound on the result from full

MCS.

Another potential area that a↵ects the bound of the NL-DLG process estimate

are the estimates of the probabilities of experiencing di↵erent maxima configurations,

from Eq.(A.8)-(A.13). The NL-DLG process assumes that the sum of these probabil-

ity estimates is unity, i.e. that these are the only notable surrogate processes which

describe the system. However, if a major system non-linear load combination case/

surrogate process is neglected, these maxima configuration probabilities may be in-

flated. Adding another surrogate process necessarily increases the number of possible

maxima configurations (i.e. Table 5.1). If this surrogate process is su�ciently unre-

lated to the other surrogates, meaning there are an appreciable number of times when

this surrogate process exposure-period-maxima occur un-clustered with other surro-

gate process exposure-period-maxima, the probability of experiencing the maxima

configurations will change to accommodate the addition of the new surrogate. The

addition of the new surrogate, though, does not guarantee that the failure probability

estimate will increase. How the addition, or neglect, of surrogate processes leads to

the NL-DLG process estimate being an upper or lower bound on a MCS result is an

area of active research.

It is noted, though, that even with the marginally inaccurate estimate of the

101



TEV values shown in Table 6.3, and with the assumption that four non-linear load

combination cases/ surrogate processes su�ciently describe the system, the NL-DLG

process still estimated a failure probability that is within 2% of the MCS value.

6.8 A Cautionary Note on the NL-DLG Process

The NL-DLG process, like any analysis method, gives results that are implicitly

conditioned on the system, method assumptions, and user-input. While the iterative

nature of the NL-DLG process allows updated estimates of system failure probability

based on feedback from earlier results, it is possible that only considering early iter-

ations of the NL-DLG process will give misleading information. The ability to use

feedback to improve the failure probability estimate highlights a potential danger of

not using the NL-DLG process thoughtfully. Essentially, any result from the NL-DLG

process is conditioned on the choice of non-linear load combination cases and associ-

ated surrogate processes. While a low estimated failure probability may well indicate

a robust system, this estimate could also be due to a poor choice of non-linear load

combination cases.

This is a somewhat obvious conclusion. For example, in the presented example,

the non-linear loads which interact toward failure are functions of dynamic oscilla-

tors. A designer could choose non-linear load cases which focus on the humidity and

temperature describing the system environment over its exposure. However, it is

rather unlikely that extremes of humidity and temperature would lead to failures on

the surface G. In this case, a low estimate of failure probability would be due to an

errant choice of non-linear load combination cases. In reality, this system has a high

probability of failure, and such a low estimate of that probability would be due to a

focus on the wrong non-linear load combination cases.

In the same way, a designer might choose non-linear load combination cases which,

though more applicable than humidity and temperature, do not truly test the system.

Or, the cases may not include all of the possible failure modes. Again, for the example,

a designer may only be concerned about the resonant response of the system, and

therefore focus solely on NL2(t). As seen in Figures 6.4-6.6, very few failures occur

due to extremes of the resonant response. Only considering NL2(t) as a load case

would give a falsely conservative view of the system’s failure probability.

These challenges highlight the danger of considering the NL-DLG process as a

black-box-method, as is the case for most analysis methods. For systems with a
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defined failure surface, it is possible for a designer to consider many di↵erent non-

linear load combination cases to cover the whole failure surface. In this example,

that is how many failures were discovered on the NL1 �NL3 plane, which directed

another iteration of the NL-DLG process to utilize this unexpected result. For a

system with a more ambiguous or expansive failure definition, it may be di�cult to

choose non-linear load combination cases which are exhaustive. However, the quick

computation of the NL-DLG process allows a designer to trawl the design space in

search of important non-linear load combination cases. This may be a necessary

first step to gain confidence in the choice of load cases used for the NL-DLG process

estimation.

The capability of the NL-DLG process is further highlighted in two examples in the

next two chapters. Chapter VII examines sti↵ened ship panel collapse for six di↵erent

panel designs. The failure surface is two-dimensional, so the choice of non-linear load

combination cases is straightforward. The NL-DLG process evaluates the design

performances, and some design changes are made to evaluate the sensitivity of the

panels to failure. This iteration allows failure analysis to help drive design decisions.

Chapter VIII considers combined loading on a trimaran hull and evaluates load cases

suggested by the Lloyd’s Register rule load and alternative load procedures for the

structural design of trimarans. Here, there is no obvious failure surface definition, and

threshold surfaces defining allowable load exceedances are at least three-dimensions,

requiring some investigative work to examine the load cases. The iterative nature of

the NL-DLG allows a probabilistic assessment of these load cases to evaluate whether

the cases are su�ciently conservative, exhaustive, and realistically applicable for the

trimaran hull in question.
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CHAPTER VII

Combined Stochastic Lateral & In-Plane Loading

on a Sti↵ened Panel Leading to Collapse

Sti↵ened panel collapse is governed by the interaction of combined lateral and in-

plane loading e↵ects. In this chapter, the performances of six di↵erent panel designs,

related to the probabilities of collapse over a set exposure and operational profile,

are compared using the NL-DLG process. The information gained from the NL-

DLG process allows a designer to evaluate the panel design options, based on the

performance characteristics of the designs.1

7.1 Sti↵ened Panel Collapse

Sti↵ened panel failure can occur due to e↵ects from combined lateral and in-

plane loading (Hughes , 1988). Figure 7.1 shows an example of a failure surface for

a sti↵ened ship panel, with the y-axis as lateral loading, and the x-axis as in-plane

loading. There are multiple modes of failure, corresponding to di↵erent combinations

of simultaneous lateral and in-plane loading e↵ects which can lead to collapse. Given

specific loading combinations, the panel will collapse in di↵erent ways. Tensile yield

of the sti↵ener flange occurs due to large lateral loading e↵ects, while compression

failure of the plating is caused by large in-plane loading e↵ects. The panel can also

fail due to compression yield of the sti↵ener flange. All of these failure modes are

possible over a lifetime for a sti↵ened panel, though some sti↵ened panel designs may

be more vulnerable to certain modes of failure than others. The NL-DLG process

developed in Chapter V is used here to estimate the probability of failure for di↵erent

panel designs, given a specific operational profile and exposure period.

1Portions of this work are in preparation to be published in Sey↵ert et al. (2018a).

104



14.1 BOUNDARY CONDffiONS, LOAD TYPES,; 

® 

o.s 

compression 
yield of 
stiffener 
flange 

-0.5 

© 
@ 

m \ 
\ 

tensile yield of \@ -~iff 'r flange 

Mode II "Ci _c::=;:;;---. 
compression f f 
failure of 
plating 

tripping or / 
flexural-
torsional / 
buckling/ 

'y 

-1.0 ® 
Figure 14.2 Collapse mechanisms in a stiffened panel under lat-
eral and in-plane loads. 
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Figure 7.1: Collapse mechanism of a sti↵ened panel due to lateral and in-plane loading e↵ects
(Hughes, 1988).

7.2 Sti↵ened Panel Design Options

In the design process, di↵erent design options must be evaluated and compared

to choose the optimal design. However, not all designs perform equally well. As an

example, consider a sti↵ened panel on the external shell strake at the inner bottom

of the David Taylor Model Basin vessel 5415 (DTMB 5415), which is representative

of a modern destroyer-like hull. The proceedings of the 17th International Ship and

O↵shore Structures Congress (committee V.5 Naval Ship Design) compared strength

calculations from existing naval rules of di↵erent classification societies for this panel

on the DTMB 5415 (Ashe et al., 2009). Six di↵erent classification societies designed

ship scantlings resulting from their respective structural rules. These di↵erent scant-

ling designs allow an interesting design comparison, namely in that all designs have

been vetted by some classification society but may perform di↵erently. The panel

specifications are given below in Table 7.1.

A designer choosing a panel structure for this vessel might assume that all of these

designs perform equally well. This chapter examines the validity of that assumption

using the NL-DLG process to evaluate and compare the performance of each panel

design when subject to a specific sea state, operating profile, and exposure. An

assumed operating profile for the DTMB 5415 is defined in Table 7.2, and the details
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Panel from Class Society 1 2 3 4 5 6

Design Pressure [kPa]
p
sti↵ener

= 60.6
103.6

p
sti↵ener

= 59.75
86.6 127.45 174.55

p
web

= 33.6 p
web

= 33.89
Plate Thickness [mm] 9 11 8.1 7 8 10
H

web

x T
web

[mm] 160 x 6.2 150 x 9 154.4 x 6 113.64 x 6.35 246.9 x 5.8 220 x 6
H

flange

x T
flange

[mm] 120 x 9.8 90 x 14 101.8 x 8.9 63 x 13.36 101.6 x 6.9 200 x 6
Sti↵ener Spacing [mm] 672 700 500 364 600 400
Plate determining fac-
tor

buckling
sti↵ener

buckling buckling yield buckling
compression

Sti↵ener determining
factor

minimum sti↵ener min. required local
yield buckling

required compression web thickness pressure

Table 7.1: Panel and sti↵ener design from 6 classification societies (class societies are anonymous in
ISSC report) (Ashe et al., 2009).

of the full-scale DTMB 5415 geometry are in Table 7.3:

Parameter Value
Lifetime 20 years
Exposure in specific condition 1000 hours
Spectrum Type ITTC 2-parameter (Hs & Tp)
Significant Wave Height Hs 12.2 m
Peak Modal Period Tp 13.4 sec
Ship Speed 5 kts
Heading head seas

Table 7.2: Operating profile for the DTMB 5415.

Principal Characteristics Value
Length between perpendiculars (Lpp) 142 m
Length on water line (Lwl) 142.18 m
Beam on water line (Bwl) 19.06 m
Draft (T) 6.15 m
Displacement (r) 8424.4 m3

Block Coe�cient (CB) 0.507
Longitudinal Center of Buoyancy (LCB) (% Lpp fwd+) -0.683
Panel Location (fwd of midships +) 13.96 m
Midship section modulus (s) 3.34 m3

Web frame spacing 1905 mm
Sti↵ener Yield Stress �Ys 320 MPa
Plate Yield Stress �Yp 320 MPa

Table 7.3: Specifications of the DTMB 5415 (Ashe et al., 2009).

7.3 Construction of the Failure Surface

For the sti↵ened panel, only failure caused by in-plane loading e↵ects from com-

pressive global bending moments and lateral loading e↵ects which put the flange into
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tension are considered (i.e. failure modes 2 and 3 in Figure 7.1). Mode 2 (compres-

sion failure of the plating) and mode 3 (tensile yield of the sti↵ener flange) collapse

lines are calculated based on the panel properties and a given value of initial loading

on the panel. This process is iterated until the collapse lines intersect. This inter-

section point is the value of the moment due to lateral pressure and stress due to

in-plane bending which simultaneously cause both mode 2 and mode 3 failure. A full

description of this process is given by Hughes (1988).

7.4 Origin of Loading E↵ects on the Panel

With the failure surface defined, the next step is the determination of the loading

e↵ects acting on the panels. Lateral loading e↵ects are assumed to be caused by

impact pressure from slam events at the sti↵ened panel location, and in-plane loading

e↵ects are assumed due to global bending of the main hull girder. These load e↵ects

are calculated based on the vessel geometry and panel properties. The vessel’s velocity

relative to the water surface excites the lateral loading due to impact pressure and

the global bending moment drives the in-plane loading. Linear transfer functions

of the relative velocity and bending moment at the given ship panel location (13.96

m forward of midships) are determined using SHIPMO.BM, a linear, slender-body

motions program (Beck and Troesch, 1990).

These transfer functions transform the stochastic wave excitation into time series

of relative velocity and bending moment at the panel location. The time series are

constrained to only consider relative velocity when the panel is entering the water

(i.e. relative velocity is negative and relative motion is positive) and when the panel is

under compressive bending load (i.e. hogging condition, corresponding to a negative

bending moment). Any point in the relative velocity and bending moment time series

that does not satisfy those sign conditions is not considered as a potential time for

failure to occur. This corresponds to considering only failure modes 2 and 3.

7.4.1 Lateral Load E↵ect Determination

The relative velocity of the sti↵ened ship panel determines the lateral load e↵ect

due to potential slam events, specifically an applied lateral bending moment normal-

ized by the plastic hinge moment. The relative velocity is converted to strain follow-

ing the model from Faltinsen (2005). Faltinsen conducted experiments by dropping
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a one-third scale elastic hull with wedge-shaped cross sections into an initially calm

water surface. These experiments indicate when fluid-structure interaction has an ap-

preciable e↵ect based on the wedge deadrise angle and impact velocity. These results

produced a functional relationship between impact velocity (i.e. relative velocity be-

tween hull and water surface) and the resulting maximum strain. This velocity/ strain

relationship is given by Eq.(7.1), with the corresponding stress found by Eq.(7.2). The

lateral load e↵ect is a lateral moment due to a lateral stress, normalized by the plastic

hinge moment, as shown in Eq.(7.3).

✏(t) =
✏ND(t)YcRV (t)2⇢a2

EI
3

tan(�)
(7.1)

where

✏ND(t) = ‘non-dimensional’ strain value,

from Faltinsen (2005) Figure 8.20

Yc = location of neutral axis from plate

RV (t) = time series of relative velocity

at panel location

⇢ = water density

� = panel deadrise angle = 5�

a = panel length between transverse

frames (web frame spacing)

E = Young’s modulus = 190 GPa

I
3

= panel moment of inertia about

neutral axis, normalized by breadth

of sti↵ener flange, bf

�lateral(t) = ✏(t)E (7.2)

where

✏(t) = strain time series, from Eq.(7.1)

E = Young’s modulus = 190 GPa

The time series of the applied moment due to the lateral load e↵ect, normalized

by the plastic hinge moment, M
0

MP
(t), is found from Eq.(7.3):

M
0

MP
(t) =

�lateral(t)Itr
YfMP

(7.3)

where

�lateral(t) = lateral stress time series, from Eq.(7.2)

Itr = transformed moment of inertia about neutral axis, from Eq.(7.5)

Yf = distance to the neutral axis as measured from the flange

MP = plastic hinge moment, from Eq.(7.4)

The plastic hinge moment MP is given by Eq.(7.4):

MP = �Y ZP (7.4)
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where

ZP = Zf + Zw + Zp

Zf = Af (Hw + g + 0.5Tf )

Zw = Aw(0.5Hw + g)

Zp = ApTpC2

C1 =
Ap +Aw +Af

2Ap

C2 = C12 + C1 + 0.5

g = C1Tp

T• = thickness of •

H• = height of •

Ap = plate area = HpTp

Aw = web area = HwTw

Af = flange area = HfTf

AT = total e↵ective area = Aw +Af +Ap

�Y =
�Ys(Af +Aw) + �YpAp

AT

�Ys = yield stress of sti↵ener

�Yp
= yield stress of plate

The transformed moment of inertia about the neutral axis, used in Eq.(7.3), is

calculated the same way as the normal moment of inertia about the neutral axis,

except that it uses a transformed flange height, Hftr , and transformed total e↵ective

area, ATtr , as given below in Eq.(7.5):

Hftr = HfT

ATtr = ATT
(7.5)

where

T = secant modulus

=
1

4

✓
2 + ⇣ �

r
⇣2 � 10.4

�2

◆

� = slenderness parameter =
bf
Tp

r
�Y

E

⇣ = 1 +
2.75

�2

AT = total e↵ective area = Aw +Af +Ap

bf = breadth of sti↵ener flange

7.4.2 In-Plane Load E↵ect Determination

The global midship bending moment excites the in-plane loading e↵ect, �a,u

�Y
(t),

by converting the vertical main-hull girder bending moment at the longitudinal coor-

dinate of the panel to an applied stress, as shown below in Eq.(7.6):

�a,u

�Y
(t) =

�F (t)

�Y
(7.6)
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where

�F (t) = �A(t)

✓
1 +

AT
a

750

y�

I

◆

�A(t) =
BM(t)

s

BM(t) = time series of global midship bending

moment at sti↵ened panel

s = midship section modulus of the vessel
a

750
= estimate of original plate deflection

from Hughes (1988)

y = neutral axis, as measured from the plate

� =
1

1� �A(t)
�E

�E = Euler column buckling stress =
⇡2EI

ATa2

AT = total e↵ective area = Aw +Af +Ap

a = panel length between transverse

frames (web frame spacing)

The panel specifications a↵ect both the shape of the failure surface, including the

intersection of the two failure modes and their slopes, and how the relative velocity

and bending moment time series are non-linearly transformed to the lateral and in-

plane loading e↵ects, as shown above in Eq.(7.1)-Eq.(7.6).

7.5 Non-Linear Load Combination Cases & Surrogate Pro-

cesses

Given a vessel, operating profile and conditions, sea spectrum, and exposure pe-

riod, stochastic time series of relative velocity and global bending moment at the

panel location are defined. Then, the di↵erent sti↵ened panel designs from Table 7.1

define failure surfaces and transformations of the relative velocity and bending mo-

ment time series to the lateral and in-plane loading e↵ects, respectively. The NL-DLG

process determines the probability of failure for each panel design and estimates a

distribution of most-likely failure occurrences grouped into the possible failure modes.

Di↵erent regions of the failure surface, G, for each panel are emphasized by n

non-linear load combination cases which are weighted sums of the two non-linear

load e↵ects, �a,u

�Y
(t) and M

0

MP
(t) as in Eq.(7.7):

⇣i(t) = ↵
M

0

MP
(t) + �

�a,u

�Y
(t) (7.7)

where

⇣i(t) = time series of a given non-linear load combination case i = 1, · · · , n
M

0

MP
(t) = time series of lateral loading e↵ect from Eq.(7.3)

�a,u

�Y
(t) = time series of in-plane loading e↵ect from Eq.(7.6)

↵,� = weighting factors
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For this example, three non-linear load cases are defined to estimate the total

failure probability of each sti↵ened panel. The choice of three (and not more, or

fewer) non-linear load combination cases is somewhat arbitrary but is based on the

intuition that three points may be a reasonable approximation to a 2-dimensional bi-

linear curve in a single quadrant. These load combination cases are given by Eq.(7.8)

and focus on three areas of the failure surface: the failure surface intersect on the

y-axis (failures due to pure lateral loading e↵ect), the failure surface intersect on the

x-axis (failures due to pure in-plane loading e↵ect), and the ‘middle’ region of the

failure surface (failures due to moderate, equally weighted, simultaneous lateral and

in-plane loading e↵ects):

⇣
1

(t) =
M

0

MP
(t)

⇣
2

(t) =
�a,u

�Y
(t)

⇣
3

(t) =
1

2

M
0

MP
(t) +

1

2

�a,u

�Y
(t)

(7.8)

Three surrogate processes, meant to capture relevant physics of the associated

non-linear load combination cases, are defined. Each surrogate process is defined as

a weighted sum of linear functions that best reflects the corresponding weighted sum

of non-linear load e↵ects. The three surrogate processes are given as z1(t), z2(t), and

z3(t):

z
1

(t) =
RV (t)

�RV
(which approximates ⇣

1

(t))

z
2

(t) =
BM(t)

�BM
(which approximates ⇣

2

(t))

z
3

(t) =
1

2

RV (t)

�RV
+

1

2

BM(t)

�BM
(which approximates ⇣

3

(t))

(7.9)

Note that the relative velocity and bending moment time series are the excitation

inputs to the lateral and in-plane loading e↵ects in Eq.(7.1) and (7.6), respectively.

This makes RV (t) and BM(t) potential indicators of extreme behavior for the lateral

and in-plane load e↵ects. The RV (t) and BM(t) time series are normalized by their

respective standard deviation to reflect the relative percentage of each load for the

surrogate process. Since the lateral and in-plane load e↵ects are normalized by an

ultimate value, this preserves the relative weighting of the weighting factors ↵ and �

from Eq.(7.8).
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7.6 TEV of Relative Velocity and Bending Moment

To generate the DLG simulations for use in the NL-DLG process, the exposure

period must be considered to construct the global, Gaussian inputs ⌘i(t) i = 1, 2, 3

that lead to exposure-period-maxima of the associated surrogate processes. This

information comes from the target extreme value, TEV , of each surrogate process.

As in Chapter 6.3, 32-hour MCS are conducted to estimate a calibration period, Tc,

to estimate the number of cycles over the exposure, and to calculate a 1000-hour

TEV for each surrogate process, using Eq.(6.9). These values are given in Table 7.4,

along with the computation time to run these short MCS2:

Surrogate Process 1000-hr TEV
z
1

(t) 5.2400
z
2

(t) 5.0519
z
3

(t) 5.1846

Table 7.4: Estimated calibration period, Tc, from 1000 32-hour MCS (computation time about 5
minutes) and resulting 1000-hour TEV , using Eq.(6.9), for the surrogate processes zi(t), i = 1, 2, 3
from Eq.(7.9).

7.7 Failure Probability from the NL-DLG Process

Given the non-linear load combination cases from Eq.(7.8) that focus on three

common regions of each failure surface, 2000 DLG simulations are run for each sur-

rogate process from Eq.(7.9). Note that these wave excitation inputs do not need to

be constructed for each panel, since the relative velocity and bending moment time

series are based on global vessel properties, not panel properties. Each panel design

dictates how those relative velocity and bending moment time series are non-linearly

transformed to lateral and in-plane loading e↵ects, respectively.

The constructed ⌘i(t), i = 1, 2, 3 time series are then assigned to the possible

categories {cZ1}, {cZ2}, {cZ3}, {[Z1Z2}, {[Z1Z3}, {[Z2Z3}, or { \Z1Z2Z3}, as defined by

Chapter 5.7. The probability of failure given such an event is calculated as in Eq.(5.4).

Given the number of surrogate processes, the total number of possible maxima config-

urations is expressed by the Bell number, Eq.(5.5). The probabilities of experiencing

these mutually exclusive and exhaustive configurations are discussed in detail and

derived in Appendix A.

2These computation times reflect running on a MacBook Pro personal laptop, 2.5 GHz Intel Core
i7.
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Then, the overall failure probability for each panel due to the three non-linear load

combination cases from Eq.(7.8) is found using Eq.(5.6). The failure probabilities for

panels 1-6 are tabulated below in Table 7.5. 10,000 1000-hour MCS were conducted

to validate these results, which are also tabulated in Table 7.53. Clearly, the NL-DLG

process very closely recovers the probability of failure for each panel design with a

significant reduction in computation time from full MCS.

Panel Probability of Failure
Panel NL-DLG process MCS
1 0.8738 0.8883
2 0.5916 0.5955
3 1.0000 1.0000
4 1.0000 1.0000
5 0.1192 0.1166
6 0.0288 0.0273

Computation time ⇠13 minutes ⇠42 hours

Table 7.5: Probability of failure for sti↵ened panels 1-6 using the NL-DLG process, compared with
10,000 1000-hour MCS, given the operating and environmental conditions in Table 7.2.

It is also interesting to consider an estimate of the distribution of most-likely

failure occurrences for each panel. The histograms of estimated most-likely failures

for panels 1-6 from the NL-DLG process, and from full MCS, are given in Figure

7.2. These histograms, normalized as a probability distribution, are given in Figure

7.3. In Figures 7.2-7.3, the number of samples for each distribution is proportional to

the probability of failure for each panel and analysis method (i.e. NL-DLG process

vs. MCS). The MCS distributions of most-likely failures have significantly more

occurrences due to pure lateral loading e↵ect (on the y-axis), and pure in-plane loading

e↵ect (on the x-axis) than do the distributions assembled by the NL-DLG process.

7.7.1 Comparisons between the NL-DLG Process & MCS

To understand this di↵erence, a few comparisons between the NL-DLG process

and MCS can be made. First, it is helpful to compare the TEV values for the sur-

rogates used in the NL-DLG process to construct the simulations, and those values

estimated from 1000-hour MCS. Figure 7.4 shows the empirical histograms of the

1000-hour maxima of the surrogate processes z1(t), z2(t), and z3(t) from 2000 DLG

simulations per surrogate, and from 10,000 MCS, both normalized as a pdf . The

3The MCS were run on an Ubuntu desktop with 12x Intel(R) Xeon(R) CPU E5-2609 v3 @
1.90GHz. The NL-DLG process computation times are from running on a MacBook Pro personal
laptop, 2.5 GHz Intel Core i7.
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Figure 7.2: Estimate of the most-likely failure occurrences for panels 1-6 from the NL-DLG process
and 10,000 MCS, given the operating and environmental conditions in Table 7.2.

TEV of each histogram, as estimated by the closed-form Gaussian extreme value

distribution with the minimum Je↵reys divergence, Eq.(3.1), is given for each distri-

bution. The DLG distributions for all surrogate processes have higher TEV values

than the MCS distributions. Recall that the TEV values for the DLG simulations

were estimated from a calibration period, Tc, from 32-hour MCS, as in Chapter 6.3.

As in the example in Chapter 6.3, these TEV estimates are a bit higher than the

TEV estimates from full 1000-hour MCS. Despite this, the NL-DLG process esti-

mates of the failure probabilities of panels 1-6 are generally slightly smaller than the

MCS estimates. This may be due to the estimation of the probability of experiencing

the maxima configurations, and due to only using three non-linear load combination

cases/ surrogate processes in the NL-DLG process, as discussed in Chapter 6.7.4.

However, this does not explain why the MCS estimate of most-likely failures have

significantly more failures due to pure lateral and pure in-plane loading e↵ects than

do the NL-DLG process estimates.

As in the DLG simulations used in the NL-DLG process, the most-likely failure is

the failure which occurs first during an exposure. The NL-DLG process assumes that

failure occurrences are exclusively associated with times when one of the surrogate
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Figure 7.3: Estimate of the probability distribution of most-likely failure occurrences for panels 1-6
from the NL-DLG process and 10,000 MCS, given the operating and environmental conditions in
Table 7.2.

processes experiences an extreme value. Out of the 10,000 MCS, 3326 exposures have

the 1000-hour maximum of z1(t) occur first, 3333 simulations have the 1000-hour

maximum of z2(t) occur first, and 3341 simulations have the 1000-hour maximum of

z3(t) occur first. That each surrogate process exposure-period-maximum has nearly

the same probability of occurring first makes sense, as each surrogate process maxi-

mum has the same 1000-hour return period. This confirms the logic used to construct

the estimate of most-likely failures, as described in Chapter 5.9, but does not explain

why the MCS exhibit significantly more failures due to pure lateral loading than what

the NL-DLG process estimates.

This deviation between the NL-DLG process and the MCS validation is examined

further in Section 7.8.1.1. It is an area of active research, and future work, to further

understand this di↵erence and improve the accuracy of the estimations from the NL-

DLG process.
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Figure 7.4: 1000-hour maxima of for surrogate processes z
1

(t), z
2

(t), and z
3

(t), from 2000 DLG
simulations and 10,000 MCS, given the operating and environmental conditions in Table 7.2.

7.8 Vulnerability of Panel Designs

Clearly the di↵erent panel designs from Table 7.1 do not perform equally well for

the same operational profile and exposure. A natural question is: are there certain

design aspects which makes some of these panels perform better than others? It may

be di�cult to determine which specific panel properties lead to a better or worse

performance, mainly because these properties are inputs to both the lateral and in-

plane loading e↵ects, as well as the failure surface definition. Varying these properties

may lead to opposing trends in how a wave excitation leads to the lateral and in-plane

loading e↵ects, and how a panel bears those loads via the failure surface definition.

It is possible, though, to compare how the di↵erent panels handle the lateral and

in-plane loading e↵ects, and to compare the failure surfaces for the di↵erent panel

designs. The lateral and in-plane load e↵ects are non-linear functions of the panel

properties and the relative velocity and bending moment at the panel location, which

are driven by the stochastic wave excitation. The failure surface definition is also a

non-linear function of the panel properties. There are two major factors which relate

the panel failure probabilities over the exposure with the panel properties, those

being:
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1. How the wave excitation is non-linearly transformed to lateral and in-plane

loading e↵ects for the di↵erent panels, via the panel properties.

2. The level of lateral and in-plane loading e↵ects which is required for each panel

to fail (i.e. the failure surface definition).

These two aspects are closely related, and are both based on the panel properties,

but it is possible to control one aspect and examine the e↵ect of the other. In this way,

di↵erent aspects of the panel designs which make the panels more or less susceptible

to failure may become apparent.

7.8.1 Ensemble Wave Excitations

The relative velocity and bending moment at the panel location are defined by

the vessel properties and the excitation environment. This means that for a given

wave excitation, each panel design experiences the same relative velocity and bending

moment. Then, based on the panel properties, each panel experiences di↵erent lateral

and in-plane loading e↵ects due to that relative velocity and bending moment. The

way the di↵erent panels experience di↵erent loading e↵ect magnitudes based on the

same wave excitation can be compared by considering ensemble wave records as the

excitation input.

Figure 7.5 shows the wave elevations ⌘1(t) constructed by the DLG to maximize

z1(t), with the ensemble average ⌘1(t) in red. The time series of z1(t), z2(t), and z3(t)

are plotted, along with the ensemble averages of these curves, z1(t), z2(t), and z3(t)

in red. Note that z3(t) is normalized by �z
3

so that all surrogate process values are

given in terms of the respective �.

Even though the ⌘1(t) waves are constructed for maximum z1(t) response, resulting

in the clear ensemble structure of z1(t), z2(t) and z3(t) also have a clear ensemble

structure. The same can be said for wave elevations ⌘2(t) constructed to maximize

z2(t) in Figure 7.6 and for ⌘3(t) constructed to maximize z3(t) in Figure 7.7. All

z1(t) time series have noticeable high-frequency content, because the relative velocity

transfer function passes significant high-frequency wave energy. However, the z1(t)

time series driven by all the ensemble waves ⌘i(t) i = 1, 2, 3 exhibit a strong ensemble

structure. Likewise, z3(t), which has a weighted component of the relative velocity

leading to noticeable high-frequency content, still has a clear ensemble structure.
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Figure 7.5: Wave elevations from the DLG, ⌘
1

(t), constructed to maximize z
1

(t) = RV (t)/�RV ,
along with resulting time series of z

1

(t), z
2

(t), and z
3

(t)/�z
3

. The ensemble averages are shown as
the red curves.

Figure 7.6: Wave elevations from the DLG, ⌘
2

(t), constructed to maximize z
2

(t) = BM(t)/�BM ,
along with resulting time series of z

1

(t), z
2

(t), and z
3

(t)/�z
3

. The ensemble averages are shown as
the red curves.
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Figure 7.7: Wave elevations from the DLG, ⌘
3

(t), constructed to maximize z
3

(t) = 0.5RV (t)/�RV +
0.5BM(t)/�BM , along with resulting time series of z

1

(t), z
2

(t), and z
3

(t)/�z
3

. The ensemble averages
are shown as the red curves.

Regardless of which surrogate process, zi(t), the waves are constructed to maxi-

mize, all surrogate processes exhibit a clear ensemble structure given that wave input,

⌘i(t). This indicates that the panels can be compared based on their loading e↵ect

responses to the three types of ensemble waves, ⌘1(t), ⌘2(t), and ⌘3(t). Given any

wave excitation, each panel experiences the same relative velocity and bending mo-

ment. The panel design determines how those relative velocity and bending moment

time series lead to the lateral and in-plane loading e↵ects. The ensemble waves, ⌘1(t),

⌘2(t), and ⌘3(t) can be used to compare the di↵erent magnitudes of panel loading

e↵ects given the same excitation input. Even though the lateral and in-plane load

e↵ects are non-linear transformations of the relative velocity and bending moment

(which are based on the wave elevation), it can be instructive to consider how the

di↵erent panels experience loading e↵ects given the same wave excitation input, to

determine any potential trends.
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7.8.1.1 Failures due to ‘Superficial’ Pure Lateral and In-Plane Loading

E↵ects

These ensemble wave profiles partially explain the discrepancy in the most-likely

failure estimate from the NL-DLG process versus the MCS estimate, in which the

MCS result showed significantly more failures due to pure lateral and pure in-plane

loading e↵ects for most panel designs. For the probability of sti↵ened panel failure,

only failure modes 2 and 3 are considered, corresponding to compression failure of

the plating and tensile yield of the sti↵ener flange, respectively. The lateral loading

e↵ect for mode 3 failure is due to negative relative velocities, representing slam events,

while the in-plane loading e↵ect for mode 2 failure is due to negative, hogging global

bending moments. Any times when the bending moment or relative velocity time

series are positive are mapped to zero, because they cannot provide the excitation

required for the loading to cause mode 2 or 3 failure.

However, it is possible that a wave can lead to a hogging (negative) bending

moment, and positive relative velocity at the same instant (see Figure 7.6 between

times 0  t  2.5 sec). This time segment would be mapped to some level of in-

plane loading e↵ect, with zero lateral loading e↵ect (i.e. on the x-axis). In the same

way, a wave can lead to negative relative velocity and positive bending moment at

the same time, like during time �2.5  t  0 sec in Figure 7.5. This time segment

would lead to a positive lateral loading e↵ect, with zero in-plane loading e↵ect, i.e.

mapped to the y-axis. Any failures due to such time series would represent failures

due to ‘superficial’ pure lateral or pure in-plane loading e↵ects. If the entire failure

surface were considered (i.e. more than modes 2 and 3), these failures would not be

in quadrant 1, and would not be due to pure lateral or pure in-plane loading e↵ects.

The wave excitation profiles constructed by the DLG to test the system will exhibit

some instances when loads are superficially mapped to the x-axis or y-axis due to

the signage from the relative velocity or bending moment time series, respectively.

However, these times will always exhibit the ensemble structures shown in Figures

7.5-7.7. In the MCS, any instance when the bending moment or relative velocity

do not have the correct sign to lead to modes 2 or 3 failure is similarly mapped to

zero. However, a full-length MCS will have many more wave profile shapes than

the three ensemble wave profiles from Figures 7.5-7.7. This could potentially lead

to many more instances of failures due to superficial pure lateral or pure in-plane

loading e↵ects from the MCS, simply due to the mapping of positive relative velocity
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and positive bending moment to zero. The NL-DLG process would never simulate

these other wave profiles which could lead to superficial pure lateral or pure in-plane

loading e↵ects, because the DLG is focused only on the three surrogate processes

z1(t), z2(t), and z3(t).

This di↵erence illustrates the potential challenges, described in Chapter 6.8, asso-

ciated with the NL-DLG process. The estimates from the NL-DLG process of failure

probability and most-likely threshold-crossing/ failure occurrence are conditioned on

the failure surface definition, and the choice of the non-linear load combination cases

and surrogate processes. The computational e�ciency of the NL-DLG process comes

from only simulating times when extreme responses of the surrogate processes are

expected to occur. The NL-DLG process assumes that these are the only times when

failure may occur, although that is potentially not the case. This example high-

lights that challenge, because some unexpected MCS results came from times that

the NL-DLG process does not simulate.

As well, this discrepancy between the NL-DLG process and MCS shows how the

NL-DLG process is implicitly conditioned on the failure surface definition. Since

only modes 2 and 3 failure were considered, all other failure types are mapped to

the failure diagram axes. If the NL-DLG process were estimating the probability a

sti↵ened panel experiences mode 1, 2, or 3 failure, meaning the panel can also fail

due to compression yield of the sti↵ener flange (negative lateral loading e↵ect), it is

likely that fewer failures due to pure lateral or pure in-plane loading e↵ects would be

recorded.

On the other hand, there is a minimal di↵erence between the failure probabilities

from the NL-DLG process versus the MCS verification. It is unclear how the NL-DLG

process so accurately estimates the failure probabilities found from full MCS, even

with the di↵erences between the methods, as noted in this section and in Chapter

6.7.4. This is an area of active research.

7.8.2 Lateral Load E↵ect Vulnerability due to Ensemble Wave Excitation

Figure 7.8 shows the ensemble wave excitation ⌘1(t), the resulting z1(t) and z2(t)

time series driven by ⌘1(t), and the lateral and in-plane loading e↵ects for each panel

design driven by ⌘1(t). Given the ensemble excitation ⌘1(t), the panels all experience

nearly the same in-plane loading e↵ect. However, this wave input leads to significantly

di↵erent lateral load e↵ects. The lateral loading e↵ect time series for each panel all
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follow a similar profile but have di↵erent relative magnitudes. Given the same ⌘1(t)

excitation, the lateral loading e↵ect magnitudes for each panel are ranked from largest

to smallest as those experienced by panel: 4, 3, 1, 2, 6, and then 5.

This trend is also clear in Figure 7.9, where the vector of lateral and in-plane

loading e↵ects experienced by each panel, which is excited by ⌘1(t), is plotted on the

left. The right plot of Figure 7.9 shows these same time series normalized by the

maximum experienced lateral load e↵ect for each panel. When normalized by the

maximum lateral loading e↵ect for each panel, these time series all collapse to an

ensemble curve, revealing that the panels all experience about the same in-plane load

e↵ect, and are only di↵erent due to their respective levels of lateral load e↵ect.

Figure 7.8: Ensemble wave elevation ⌘
1

(t) constructed to maximize z
1

(t), along with resulting time
series of z

1

(t) and z
2

(t) driven by ⌘
1

(t). These time series are constant for all panels given a wave
input. The lateral and in-plane loading e↵ects due to the ensemble excitation ⌘

1

(t) are given for
each panel.

Figures 7.8-7.9 indicate that panel 4 experiences the largest lateral loading e↵ect

of all panels, and that panels 5 and 6 experience the least lateral loading e↵ect of all

panels, given the same excitation input. These trends may also partially explain the

discrepancy between the most-likely failure distribution estimate from the NL-DLG

process versus from MCS. Note that in Figure 7.3, MCS predicted that nearly 30%

of failure occurrences are due to pure lateral loading e↵ects for panels 3 and 4. While
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Figure 7.9: Vector of lateral and in-plane loading e↵ects for each panel driven by ⌘
1

(t) (left) and
the same loading e↵ect time series normalized by the maximum experienced lateral loading e↵ect
for each panel (right).

some other panels exhibit many failure occurrences due to pure lateral load e↵ects

from the MCS estimates (i.e. panels 1 and 2), none of the probabilities of experiencing

that kind of failure are nearly as high. Since panels 3 and 4 experience the harshest

lateral loading e↵ects of all panels given a common wave excitation, as evidenced in

Figure 7.9, the findings from Figure 7.3 are unsurprising.

7.8.3 In-Plane Load E↵ect Vulnerability due to Ensemble Wave Excita-

tion

Figure 7.10 shows the ensemble wave excitation ⌘2(t), and the resulting time series

of z1(t), z2(t), lateral, and in-plane loading e↵ects. Here, ⌘2(t) is constructed by the

DLG to maximize z2(t), which relates to the in-plane loading e↵ect. Note that the

same trends from Figures 7.8-7.9 are still apparent, even given a di↵erent ensemble

wave input. Each panel experiences nearly the same in-plane loading e↵ect due to the

⌘2(t) wave excitation, but significantly di↵erent lateral loading e↵ects. The relative

ordering of the lateral loading e↵ect magnitudes due to ⌘2(t) from largest to smallest,

as those experienced by panel: 4, 3, 1, 2, 6, and then 5, is the same ranking as from

the ⌘1(t) input.

Figure 7.11 shows the lateral and in-plane loading e↵ects excited by ⌘2(t) for each

panel design, and those curves normalized by the maximum lateral load e↵ect experi-

enced by each panel. Here, it is clear that the only noticeable di↵erences between the

six load curves is the y-ordinate, or the level of lateral loading e↵ect. All the panels
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Figure 7.10: Ensemble wave elevation ⌘
2

(t) constructed to maximize z
2

(t), along with resulting time
series of z

1

(t) and z
2

(t) driven by ⌘
2

(t). These time series are constant for all panels given a wave
input. The lateral and in-plane loading e↵ects due to the ensemble excitation ⌘

2

(t) are given for
each panel.

Figure 7.11: Vector of lateral and in-plane loading e↵ects for each panel driven by ⌘
2

(t) (left) and
the same loading e↵ect time series normalized by the maximum experienced lateral loading e↵ect
for each panel (right).

experience about the same in-plane loading e↵ects given the ⌘2(t) excitation input.
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7.8.4 Load E↵ect Vulnerability Trends

Figure 7.12 shows the ensemble wave excitation ⌘3(t), and the resulting z1(t),

z2(t), lateral, and in-plane loading e↵ects due to this excitation. Although the ⌘3(t)

waves are constructed to maximize the equally weighted sum of relative velocity and

bending moment, the same trends from Figures 7.8-7.11 are apparent. All panels

experience the same level of in-plane loading e↵ect given a common wave excitation,

but di↵erent levels of lateral loading e↵ect. Panel 4 experiences the harshest lateral

loading e↵ect, while panels 5 and 6 experience the least-harsh lateral loading e↵ect

given the same excitation.

Figure 7.12: Ensemble wave elevation ⌘
3

(t) constructed to maximize z
3

(t), along with resulting time
series of z

1

(t) and z
2

(t) driven by ⌘
3

(t). These time series are constant for all panels given a wave
input. The lateral and in-plane loading e↵ects due to the ensemble excitation ⌘

3

(t) are given for
each panel.

Visual inspection of all the time series ⌘i(t) i = 1, 2, 3 from the DLG confirmed

these trends, indicating that the trends due to the ensemble waves ⌘i(t) i = 1, 2, 3

are representative of the trends due to all the wave records constructed by the DLG

to excite the system. These trends may be related to the di↵erent performance

characteristics of the di↵erent panels. The failure probabilities, ranked from highest

to lowest, are associated with panels: 4 & 3 (tied), 1, 2, 5, and then 6. Note that the

panel ranking by failure probability nearly mirrors the panel ranking by the harshness
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Figure 7.13: Vector of lateral and in-plane loading e↵ects for each panel driven by ⌘
3

(t) (left) and
the same loading e↵ect time series normalized by the maximum experienced lateral loading e↵ect
for each panel (right).

of the lateral loading e↵ect they experience, given a common wave excitation. Panel 4

experiences the harshest lateral loading e↵ect and has the highest failure probability,

while panels 5 and 6 experience the least-harsh lateral loading e↵ect given that same

excitation and have the lowest failure probabilities. This relation is interesting, but

the loading e↵ects must also be related to the failure surface definition for further

understanding of the di↵erent panel performances based on the panel designs.

7.8.5 Failure Surface Vulnerability

Two interesting trends were observed for the di↵erent panel designs given the

same wave excitation input: there is a clear magnitude ordering of how the panels

experience lateral loading e↵ect, and all panels experience nearly the same in-plane

loading e↵ect. These are interesting trends, especially when considered with the

failure surface for each panel. Note that the failure surface separates what may be

considered as a ‘safe’ area from the ‘failure’ area. The non-dimensional area contained

by the failure surface, or the area of the safe region, is tabulated below for the failure

surface for each panel design in Table 7.6 along with the failure probabilities for the

panels.

Table 7.6 reveals an interesting trend related to the panel performances and the

safe region area. The area of the safe region is generally inversely proportional to

the failure probability for each panel design. Panels 5 and 6 have the largest safe

regions given their failure surface definitions and have the lowest failure probabilities.
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Panel Area of Safe Region [units2] Failure Probability
1 0.4642 0.8738
2 0.4944 0.5916
3 0.4766 1.0000
4 0.4346 1.0000
5 0.5031 0.1192
6 0.5501 0.0288

Table 7.6: Area of the safe region and the probability of failure for each panel design.

Panel 4 has the smallest safe region and is tied for the largest failure probability. It is

unsurprising that a smaller safe region area is related to a higher failure probability,

and vise-versa, as the failure surface defines the level of loading a panel can bear

before collapse. But the failure probability is related to the safe region area and the

shape of the failure surface, which describes how the safe area is distributed across

the possible loading combinations a panel may experience. Therefore, the ‘safe’ area

of a failure surface may not be the most important driver for panel performance.

It was observed in Figures 7.8-7.13 that the panels all experience about the same

level of in-plane loading e↵ect for any wave excitation. The only major di↵erence in

the panel responses is related to the lateral loading e↵ect that each panel experiences.

Therefore, it may be interesting to compare the level of lateral loading e↵ect required

for a panel to fail, given a specific in-plane loading e↵ect. This is, by definition, the

failure surface, which defines the lateral loading e↵ect as a function of the in-plane

loading e↵ect a panel can handle before collapse, or vise-versa. All of the failure

surfaces for panels 1-6 are plotted in Figure 7.14. The middle inset of Figure 7.14

magnifies the region of the failure surface where 0  �a,u/�Y  0.4, and the right

inset of Figure 7.14 magnifies the region where 0.4  �a,u/�Y  0.85.

Until the point �a,u/�Y ⇡ 0.37, magnified in the middle inset of Figure 7.14, which

is where the failure surface for panel 3 experiences a change in derivative, there is a

constant ordering of the failure surfaces based on the lateral loading e↵ect each panel

can bear before failure, given an in-plane loading e↵ect. In order from the largest

lateral load e↵ect a panel can bear before collapse to the smallest lateral load e↵ect,

given an in-plane loading e↵ect up to �a,u/�Y ⇡ 0.37, this is panel: 6, 5, 3, 2, 1, and

then 4.

Panels 6 and 5, which can bear the largest lateral loading e↵ect for a given in-plane

loading e↵ect before collapse, have the lowest failure probabilities of any panel design.

As well, panel 4, which can handle the lowest value of lateral loading e↵ect for a given
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Figure 7.14: Failure Surfaces for panels 1-6 with di↵erent ranges of �a,u/�Y to highlight trends.

in-plane loading e↵ect before collapse, has the highest (tied) failure probability. In

fact, up to �a,u/�Y ⇡ 0.75, the failure surface for panel 4 has the lowest lateral load

e↵ect value required for collapse, given an in-plane loading e↵ect, of any panel design.

This means that for any level of in-plane loading e↵ect up to �a,u/�Y ⇡ 0.75, panel 4

requires the lowest magnitude of lateral loading e↵ect of any panel to fail.

As panel 4 experiences the largest lateral loading e↵ect for a given wave excitation

and requires the smallest lateral load e↵ect to fail of all the panels given an in-plane

loading e↵ect, it is unsurprising that this design has the highest failure probability.

It is di�cult to elicit any trends related to the failure probability closer to the x-axis,

mainly because it was shown that the panels all experience about the same level

of in-plane loading e↵ect given a wave excitation. Also, the failure surfaces do not

maintain a ranking of the lateral loading e↵ect required for failure given an in-plane

loading e↵ect closer to the x-axis, as seen in the right inset of Figure 7.14.

7.8.6 Lateral Loading E↵ect due to Global Panel Properties

Recall that the lateral loading e↵ect experienced by each panel, given in Eq.(7.3),

is proportional to the transformed moment of inertia, Itr, and is inversely proportional

to the distance to the neutral axis from the flange, Yf , and the plastic hinge moment,

MP . These panel properties are given below in Table 7.7, along with the e↵ective

panel area, AT , and probability of failure for each panel.

Considering the transformed moment of inertia, Itr, there is a clear trend asso-

ciated with the failure probability: a higher Itr indicates a lower failure probability.

Eq.(7.3) shows the lateral loading e↵ect on a panel is proportional to Itr, though
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Panel
Transformed moment Distance to the Neutral Plastic Hinge E↵ective Panel Failure
of inertia, Itr [cm4] Axis from Flange, Yf [cm] Moment, MP [Nm] Area, AT [cm2] Probability

1 2,543.6 13.50 9.4367e4 82.16 0.8738
2 2,817.1 13.21 1.0629e5 103.1 0.5916
3 1,926.4 12.50 7.3403e4 58.82 1.0000
4 949.99 8.79 4.8168e4 41.11 1.0000
5 4,664.5 20.23 1.1793e5 69.33 0.1192
6 5,385.3 16.28 1.3806e5 65.20 0.0288

Table 7.7: Panel properties relating to the lateral moment, along with the panel failure probabilities.

incorporating Eq.(7.1) indicates that the e↵ect of the moment of inertia may cancel

out, as the strain on the panel is inversely proportional to the panel moment of iner-

tia normalized by the sti↵ener flange breadth. The distance from the neural axis to

the flange, Yf also loosely trends with the failure probability. A larger Yf relates to

panels with lower failure probabilities. As well, panels with lower failure probabilities

have higher plastic hinge moments, MP , which physically makes sense because MP

represents plastic bending, indicating the start of collapse.

It may be di�cult though, to extend these trends to individual panel dimensions,

as there may be no single panel dimension which is the major driver for panel perfor-

mance. This is illustrated by comparing the panel e↵ective area AT with the failure

probability. Panels 3 and 4, which have the lowest AT , have the highest failure prob-

abilities of all panels. However, the e↵ective panel area may not be the sole driving

factor for performance, as panels 5 and 6, which have the lowest failure probabil-

ities, do not have the highest AT values. Structural performance is clearly to the

distribution of panel area (i.e. the moment of inertia), and not just the panel area.

This illustrates the challenge of identifying a single property which drives the

panel performance. All properties a↵ect both the loading e↵ects a panel experiences

given a wave excitation, and how a panel responds to those loading e↵ects before

collapse. These properties may be proportional to one loading e↵ect, and inversely

proportional to the other loading e↵ect, making it di�cult to relate failure probability

trends to specific panel properties. One thing that is clear is that the panel responses

diverge when considering the experienced lateral loading e↵ect, and trends related

to this loading e↵ect became apparent when examining the load e↵ects and failure

surfaces separately. Some trends associated with global panel properties, like those

in Table 7.7, were shown to have strong relations to the panel performance. This sort

of information may be useful for designers to explain why some panels have a higher

failure probability than others.
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7.9 Panel Performance based on Web Frame Spacing

The NL-DLG process was able to compare the performance of panels 1-6, and

these estimates are close to the MCS values. Section 7.8 showed that it may be

di�cult to pick a single panel property which drives the performance characteristics.

However, one design parameter which may be a straight-forward indicator of panel

failure probability is the web frame spacing, a. A larger web frame spacing relates to

both a larger lateral and in-plane loading e↵ect given a wave excitation (see Eq.(7.3)

and (7.6)), implying that the web frame spacing should be proportional to the panel

failure probability. Changing this design parameter may also be an easier design

adjustment than changing other panel properties, which makes it an interesting factor

to consider. It is important to be aware of how the design performance may change

with varying web frame spacing, which could be changed by a designer to improve

performance but may also be inadvertently altered during production or construction.

The NL-DLG process estimates the failure probability for the panels in Table 7.1

with a varying web frame spacing. The probability of failure estimated by the NL-

DLG process for each panel over the 1000-hour exposure, given a specific web frame

spacing and the operating profile in Table 7.2, is shown in Figure 7.15. To calculate the

probability of failure for each web frame spacing for all of the panels, the computation

time is about 3 minutes. No new DLG simulations need to be run, since these time

series are generated based on the operating profile and vessel geometry, not the panel

design. Only the failure surface definition, and the non-linear transformations of the

wave excitation to the lateral and in-plane loading e↵ects changes with an altered

design. The same wave excitation inputs constructed by the DLG excite the lateral

and in-plane loading e↵ects to determine the updated failure probability.

The non-constant decrement in the web frame spacing is due to seeking di↵erent

levels of refinement in Figure 7.15 to capture where the failure probability for each

panel starts to change given a di↵erent a. Figure 7.15 reveals stark changes in the

sti↵ened panel failure probabilities with varying web frame spacing, though not all

panels are as sensitive to this design change as others. Panels 5 and 6 have lower failure

probabilities overall for the varying web frame spacing, and do not exhibit any sharp

changes for the range of a shown. Panel 4 appears insensitive to the reducing web

frame spacing until crossing the a = 1.45 m threshold, where the failure probability

drops sharply. In fact, panels 1-4 all exhibit a sharp drop in failure probability at some

web frame spacing threshold. This means that a potentially small design change may
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Figure 7.15: Probability of failure for each panel over the 1000-hour exposure, given a specific web
frame spacing and the operating and environmental conditions in Table 7.2. Note that the web frame
spacing specified by the ISSC report is a = 1905 mm, which gives the panel failure probabilities in
Table 7.5.

result in a drastically di↵erent panel performance. A designer may take advantage of

this by realizing that only a small change in web frame spacing is required to decrease

the panel failure probability to a more acceptable level. However, the inverse is also

true � failure probability can increase drastically by a small increase in the web frame

spacing, which a designer may not recognize as an important change.

The estimate of most-likely failure occurrences for each panel, given a web frame

spacing, is also quickly assembled by the NL-DLG process. Figure 7.16 gives this

estimate for web frame spacing a = 1.25 m, and Figure 7.17 gives this estimate for

a = 1 m. Figure 7.2 gives this estimate for a = 1.905 m, which is the original web

frame spacing specified by the ISSC report. Note that as the web frame spacing

decreases, the failure probability decreases and the failure occurrences move closer

to the x-axis. This indicates that decreasing the web frame spacing has a favorable

e↵ect on the panel performance, and specifically seems to target failures due to large

lateral loading e↵ects. A smaller web frame spacing means fewer failures due to large

lateral loading e↵ects.

Again, the overall trend relating the web frame spacing and the panel failure

probability can be examined by considering the e↵ect of a on the failure surface

definition, and the loading e↵ects separately.
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Figure 7.16: Most-likely failure occurrences for panels with web frame spacing a = 1.25 m.

Figure 7.17: Most-likely failure occurrences for panels with web frame spacing a = 1 m.
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7.9.1 Failure Surface based on Web Frame Spacing

Given a di↵erent web frame spacing, a panel will have a di↵erent failure surface.

As a representative example, Figure 7.18 shows the failure surface for panel 4, for

di↵erent values of web frame spacing, a, zoomed in to highlight the trends. For this

panel, decreasing the web frame spacing, a, marginally changes the failure surface

by shifting it farther away from the origin (i.e. increasing the safe area enclosed by

the failure surface). This trend is observed for the failures surfaces for all the panel

designs and confirms the trend that for a smaller web frame spacing, all panels have

a lower failure probability. However, Figure 7.18 shows that the panel failure surfaces

do not drastically change given a di↵erent web frame spacing, indicating that this

factor alone may not account for the strongly diminishing failure probabilities given

smaller web frame spacing, seen in Figure 7.15.

Figure 7.18: Failure surface for panel 4, for di↵erent values of web frame spacing, a. The figure is
magnified and focused on a specific area to highlight the trend, which is maintained over the entire
failure surface. This trend is also seen for the other panel failure surfaces.

7.9.2 Lateral & In-Plane Loading E↵ects based on Web Frame Spacing

It was observed in Figures 7.8-7.13 that the di↵erent panel designs all experience

about the same in-plane loading e↵ect given a wave excitation, but very di↵erent

lateral loading e↵ects. Here, it is examined whether changes in the web frame spacing

have a strong e↵ect on the lateral and in-plane loading e↵ects experienced by a panel,

given a wave excitation input. As a representative example, consider Figure 7.19.

In this figure, panel 4, with varying levels of web frame spacing, is excited by the
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ensemble wave ⌘1(t). For this panel, given an excitation input, the experienced in-

plane loading e↵ect is not noticeably di↵erent for the varying web frame spacing,

which matches the trends from Figures 7.8-7.13. However, the experienced lateral

loading e↵ect given a wave excitation changes significantly for di↵erent web frame

spacing.

This specific example is shown for two reasons. The intent is to determine any

trends between the web frame spacing of a panel design and the experienced lateral

loading e↵ect. It has already been observed that panels 1-6 all experience about

the same in-plane loading e↵ect given a wave excitation. First, the ensemble wave

elevation ⌘1(t) is chosen to excite the system because this wave is constructed to

maximize the vessel relative velocity, leading to large lateral load e↵ect values. It will

be easier to determine any trends given the lateral load e↵ects are large to begin with.

Second, panel 4 is examined with varying values of web frame spacing because this

panel experiences the largest lateral load e↵ect of all panels given a wave excitation.

Again, this will make it easier to notice any trends between the web frame spacing

and the experienced lateral load e↵ect. The curve for a = 1.905 m is the time series

vector of lateral and in-plane loading e↵ects experienced by panel 4, with dimensions

in Table 7.1, given the input ⌘1(t), as shown in Figure 7.9.

Figure 7.19: Lateral and in-plane loading e↵ects experienced by panel 4 for di↵erent values of web
frame spacing, a.

Figure 7.19 shows a clear trend between the web frame spacing for a panel design

and the experienced lateral loading e↵ect, given a common wave excitation. Panel 4

with the smallest web frame spacing experiences the smallest lateral loading e↵ect,
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which increases as a increases. This trend was similarly observed using all other panel

designs, and the ensemble waves ⌘2(t) and ⌘3(t).

7.10 Design Implications

Figures 7.18 and 7.19 imply that a smaller web frame spacing, a, results in both

smaller lateral loading e↵ects, and a failure surface with a larger safe region. To-

gether, these trends indicate that a smaller web frame spacing leads to a lower failure

probability, which is reinforced by the results in Figure 7.15. Figures 7.18 and 7.19

are able to explain this trend, giving valuable insight about a panel property that

strongly a↵ects the panel performance. Using the NL-DLG process to examine these

panels explains why certain panel designs are more susceptible to failure.

The ability to generate this sort of information is useful for designers, because

di↵erent panel design aspects can be examined using wave records which are statis-

tically possible excitations to the system. It would be di�cult to determine these

trends from brute-force MCS without significant computational expense and e↵ort.

Since the NL-DLG process starts with ensemble wave structures which are expected

to lead to extreme system responses, there are clear links between wave excitation,

experienced loading e↵ects, system response, and overall performance. This allows

the control of di↵erent aspects, like the failure surface definition and the load e↵ects

driven by ensemble wave excitation profiles, to reveal trends relating panel properties

and panel performance.

Given that MCS test the system for the full exposure, which is long, the temporal

ensemble average of many MCS will likely show no correlation. This would preclude

any possibility of examining system trends due to ensemble wave structures which

lead to extreme responses. Even if these MCS were examined to focus solely on times

when failures occur, it is likely no correlation would be noticed between the excitation

inputs. The NL-DLG process showed that there are multiple excitation input forms

(i.e. ⌘1(t), ⌘2(t), and ⌘3(t)) which can lead to panel failures. But without an explicit

definition of the ensemble waves which excite the system, it might not be possible to

determine the trends found by the NL-DLG process.

Overall, the capabilities a↵orded by the NL-DLG process allow designers to bet-

ter understand sti↵ened panel collapse, and di↵erent aspects of panel designs which

make a panel more vulnerable to failure. This can help assess whether designs are

su�ciently robust and can lead to better-performing systems.
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CHAPTER VIII

Probabilistic Assessment of Combined Loading on

Trimarans

Combined loading presents formidable challenges to the design of multihulls.

Without the canon of anecdotal knowledge, legacy designs, and test data that benefits

monohull design, significant concerns around multihulls remain open-ended questions.

In Lloyd’s Register’s Rules for the Classification of Trimarans, two procedures are

o↵ered to design load combination cases to ensure that the “hull structure complies

. . . with the [LR] acceptance criteria” (Lloyd’s Register , 2017). Seven cases are con-

structed to examine seven global loads acting on the trimaran hull. Each case is

associated with a specific loading combination, conditioned on a single global load

being maximized, to be applied to a FEA model to test structural adequacy given

LR’s acceptance criteria. In the rule load approach, seven standard load cases are

given which apply to any trimaran within a specific geometry range. In the alterna-

tive load procedure, these seven cases are constructed using a deterministic Equivalent

Design Wave (EDW) methodology tailored to the trimaran hull in question.

The load combinations from either the rule load or the alternative load approach,

though, do not explicitly include probabilistic aspects apart from the underlying LR

Rule assumption (20-year load return period, or probability of exceedance at 10�8).

Given that the small number of load combination cases is a “practical attempt to

reduce the number of load cases to a reasonable number,” it is not clear whether

these cases are exhaustive; nor is the degree of conservatism apparent. This chapter

conducts a probabilistic assessment of the lifetime combined loading on a trimaran

hull and the applicability of the two load procedures using the NL-DLG process.1

1Portions of this work were previously published in Sey↵ert et al. (2018b). The author gratefully
thanks Navatek for supplying the trimaran hull form and parameters, and running Aegir to produce
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8.1 Lloyd’s Register Combined Loading Rules for Trimarans

Lloyd’s Register (2017) specifies that seven load combination cases should be con-

structed as testing cases to determine whether the “longitudinal, transverse, and shear

strength of the hull structure complies with the acceptance criteria.” The coordinate

system used by LR and the NL-DLG analysis to evaluate combined loading on a

trimaran is given in Figure 8.1:

MWH/MWS = hogging/ sagging vertical wave bending moment

MSPH/MSPS = hogging/ sagging splitting bending moment

MLT = longitudinal torsional bending moment

MH = horizontal bending moment

MTT = transverse torsional bending moment

Figure 8.1: Coordinate system of trimaran hull used in this chapter. The arrows indicate positive
directions of the specified loads. The vertical wave bending moment, MWH/MWS , is the wave
pressure distribution integrated across the depth of the ship and the horizontal bending moment,
MH , is the pressure distribution integrated across the breadth of the vessel.

8.2 Applicability of Load Procedures to a Specific Trimaran

The major question that arises from the definition of the two LR loading proce-

dures is what, if any, probabilistic basis exists to justify the load cases when applying

the transfer functions used in this chapter.
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these loads to a specific trimaran hull. Regardless of whether the rule load or alter-

native load procedure is utilized, seven load combination cases will be defined, with

each load described by a single representative value. However, individual values may

not accurately describe the distribution of load responses possible due to an irregular

wave environment over a long exposure. It is also unclear how conservative or ex-

haustive the load combination cases are, defined by either the rule load or alternative

load procedure. As well, the standard LR load cases may not be fully applicable for

all hull forms, and an EDW approach may not completely capture the complex load

phasing relationships for a trimaran.

To address the validity of these concerns, the DLG is used to assemble distribu-

tions of lifetime loading for a specific trimaran hull form. These DLG distributions,

normalized by the load design values, are directly comparable to the load cases de-

scribed by the LR rule load and alternative load procedure. The DLG assembles wave

profiles constructed to lead to an exposure-period-maximum of a specific global load

and these wave profiles then can drive the other global loads included in a specific

case to assemble load distributions. This allows a direct comparison to the LR rule

and alternative load cases, as the simultaneous values of all global loads in a specific

case, conditioned on a specific maximized global load, are determined by the DLG.

8.2.1 Trimaran Specifications

The trimaran hull considered in this chapter has the lines plan given by Figure

8.2 and the hull specifications given in Table 8.1. The linear version of the high-order

potential flow code, Aegir, is used to generate transfer functions of multiple loads at

the planes indicated in Table 8.1, with respect to the coordinate frame in Figure 8.1

(Kring et al., 2004). Aegir generates transfer functions of the global loads from Table

8.3 at the planes indicated in Table 8.1, with the relationship between the loads and

load planes given in Table 8.2. The transfer function non-dimensional amplitudes

and phases are shown in Figures 8.3-8.5. For the vertical wave and splitting bending

moments, only the hogging conditions are plotted. The sagging conditions have the

same amplitudes, with phases 180� out of phase with the hogging phases.
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Figure 8.2: Lines of trimaran hull (Knight et al., 2017).

Parameter Value
Hull overall length (LOA) 110.0 m
Hull waterline length (L) 106.4 m
Total Draft 4.897 m
Beam 30.48 m
Origin of midship load plane [x,y,z] [45.14, 0, 3.0] m
Origin of center-hull load plane [x,y,z] [26.75, 5.48, 3.0] m
Water density 1026.06 kg/m3

Vessel mass 3,301,440 kg
Number of wave frequency components 100
Speed (Froude Number) 12.803 m/s (0.4)

Table 8.1: Vessel & Aegir simulation specifications. Note that the [x,y,z] origins of the midship and
center-hull planes are with respect to the coordinate frame given by Figure 8.1.
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Load Transfer Function
MWH/MWS midship vertical bending
MSPH/MSPS center-hull vertical bending

MLT midship torsional bending
MH midship horizontal bending
MTT center-hull torsional bending

Table 8.2: Transfer Functions of Loads from Table 8.3.

Figure 8.3: Head seas transfer functions.
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Figure 8.4: Beam seas transfer functions.

Figure 8.5: Oblique seas transfer functions.
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8.3 Development of Rule Load Cases

The rule load combination cases defined by Lloyd’s Register are designed so that

in each case, a single global load is maximized in the specific heading where the load

(presumably) experiences its largest value. Some of the other global loads have an

acting component as well, which are also included in the load case. Each standard

case is developed using the Equivalent Design Wave approach (Blanchard and Ge,

2007). This design wave is a regular wave which leads to a response with a given long-

term design value. The design value is defined as the largest value a load experiences

over the exposure, associated with the given probability of exceedance, 10�8. The

seven cases give specific load combinations to test structural adequacy; in each case

a single global load on the trimaran is maximized. These cases include head, beam,

and oblique seas headings.

Seven standard load combination cases are defined by LR, shown in Table 8.3.

The total loading that the trimaran structure must survive is the sum of the dynamic

loads (within the respective planes), as a percentage of the respective design value.

A load combination factor, or LCF , indicates the percentage of the design value that

a load experiences in a specific case. The loading condition from each case is to be

applied to a FEA model to determine whether the structural performance is adequate.

Case & Heading Mmax
Dynamic Loads

MWH MWS MH MSPH MSPS MLT MTT

1) Head MWH 1.0 0 0 0.3 0 0 -0.2
2) Head MWS 0 1.0 0 0 0.3 0 -0.2
3) Beam MSPH 0.1 0 0 1.0 0 0.2 0
4) Beam MSPS 0 0.1 0 0 1.0 0.2 0
5) Oblique MLT 0 0 -0.3 0.4 0 1.0 0.3
6) Oblique MH 0 0 1.0 0.4 0 0 -0.2
7) Oblique MTT 0 0.2 -0.2 0.6 0 0 1.0

Table 8.3: Rule load cases, along with heading and load combination factors (LCF ) defined by
Lloyd’s Register (2017). The maximized load, Mmax, is also noted for each case.

Note that for load cases in which the LCF is negative (i.e. LCFMTT
is negative in

Cases 1, 2, and 6, and LCFMH
is negative in Cases 5 and 7), the negative sign indicates

the component is “considered reversible.” To analyze these rule load combination

cases, hogging moments are considered positive and sagging moments are considered

negative, as with the LR coordinate system in Figure 8.1. Any LCF value which

relates to a sagging moment corresponds to a negative value, whereas the negative
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“reversible” LCF values given in Table 8.3 are considered positive in the assessment.

It is important to note that these rule load cases are not meant to be tailored to

a specific trimaran hull. LR calls the cases in Table 8.3 “standard load cases,” and

indicates that the acceptance criteria due to the application of all of these cases is

“for all structure.” It is implied by Blanchard and Ge that these load combination

cases are based on the analysis of “21 trimaran variants.” The authors do say that

the rules are applicable for length ranges between 70�250 m and for trimarans whose

individual side-hull maximum displacement is less than 6% of the total displacement.

The LR rules do allow an “alternative procedure for load development” (Vol. 4, Part

1, Ch. 3, Sec. 4.2), in which the EDW method designs load combination cases

tailored for a specific trimaran hull. However, the Lloyd’s Register rules indicate that

the rule loads procedure, which involves the standard load combination cases from

Table 8.3, is an acceptable approach (Vol. 4, Part 1, Ch. 2, Sec. 3.2.2).

This brings up an important question, that being: are these standard load combi-

nation cases applicable for every trimaran hull form? Or, do these LCF values from

LR accurately describe the lifetime combined loading experienced by all trimaran

hulls? As these load cases and LCF values are meant to test structural adequacy,

they should be both conservative and exhaustive, although it is possible that Lloyd’s

Register encodes conservatism in the acceptance criteria for the structural adequacy

given the application of these loading combination cases.

Whether these standard cases prove applicable and realistic can be considered by

comparing distributions of the loads on a specific trimaran hull assembled by the DLG

with the combined load levels suggested by the LR rule load cases. Then the NL-DLG

process can give a probabilistic assessment of these rule load cases applied to that

trimaran hull to evaluate the conservatism and exhaustiveness of the load cases. It will

be interesting to compare the rule LCF values from LR with distributions constructed

by the DLG. The LR rules do note that the vessel response, and corresponding LCF

values, may vary for di↵erent trimaran hulls, specifically that the fore-aft placement

of the side-hulls can have a major impact. This may lead to a significant di↵erence

in the observed combined loading on a specific trimaran hull.

8.4 Design Value Specification

The LR rules reference Standard Wave Data, IACS Rec. No. 34 (2001), for the

determination of design values. Based on this recommendation, a load design value
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is determined by the 20-year return-period load response (corresponding to 108 wave

encounters) in a North Atlantic environment defined by a Bretschneider spectrum.

It is assumed that all wave headings have an equal probability of occurrence. The

Lloyd’s Register rules stipulate that the evaluation of a long-term load response be

based on a design value with an overall 10�8 probability of exceedance in any heading.

8.4.1 Operational Profile

An operation profile is assigned to match the LR specifications in Table 8.4. To

satisfy the overall required 10�8 probability of exceedance criterion for each load

specified by Lloyd’s Register, the risk parameter ↵ is applied, as demonstrated by

Eq.(2.16)-(2.18) in Chapter 2.2. From the spectrum definition and the Standard Wave

Data specifications, the probability of the sea state occurrence is defined, leading to a

7.71-hour exposure out of the 20-year lifetime. The design value of each load is then

the maximum linear load value in any heading in the 7.71-hour exposure in the given

sea state, with a probability of non-exceedance = 1�↵ = 0.9998. This criterion leads

to the required overall load probability of exceedance 10�8. Each heading is given the

full 7.71-hour exposure to lead to a more conservative estimate, as directed by the

LR rules.

Parameter Value
Spectrum type Bretschneider (Hs & Tz)
Significant Wave Height Hs 12.5 m
Zero-Crossing period Tz 9.5 s
Probability of sea state occurrence (IACS Rec. No. 34 , 2001) 4.4e-5
Lifetime of vessel 20 years
Total exposure of vessel in given sea state 7.71 hours
Risk parameter ↵ 2.27e-4
Probability of Non-exceedance PNE = 1� ↵ 0.9998
Overall load probability of exceedance 10�8

Table 8.4: Operation Profile (North Atlantic).

It is important to note that this overall load probability of exceedance (10�8)

defined by LR seems to be based upon “the number of low stress reversals that

might occur on a period of 20 years” (Blanchard and Ge, 2007), which is a long-term

estimate based on all sea states and operational conditions. A design value could be

defined as the most-probable maximum in 7.71 hours (out of the 20-year service life),

but the maximum load in 7.71 hours has approximately a 63.2% chance of exceeding
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this design value (see Chapter 2.2). This makes necessary the addition of the risk

parameter, ↵, to achieve the required 10�8 probability of exceedance. However, it

is not clear how to relate a short-term analysis, like that performed here, to the

long-term analysis parameters defined by LR. Without applying a risk parameter,

↵, the analysis would be unacceptably non-conservative, while the risk parameter

↵ =2.27e-4 might be extreme.

Ochi (1981) acknowledges the di�culty of choosing an appropriate risk parameter

for a short-term analysis to relate to long-term parameters. Ochi uses the example

of a vessel designed using an extreme design value in a given sea state, associated

with ↵ = 0.01, and notes that if the vessel is expected to encounter that sea severity

20 times during its lifetime, ↵ must be divided by 20 to maintain the 99% criteria.

Considering extreme midship bending moments of the MARINER-type ship (Russo

and Sullivan, 1953) Ochi finds that “design extreme values do not increase substan-

tially with increasing ↵�value,” and concludes that a short-term approach can be

adequate for the estimation of extreme values as long as the di↵erence in the num-

ber of encounters is considered. This in some ways indicates that the choice of ↵ is

ambiguous. However, the DLG method and the NL-DLG process are valid for any

choice of ↵, which is likely to be set by classification societies as empirical data is

collected. Therefore, the risk parameter ↵ =2.27e-4 will be used, as given in Table

8.4.

8.4.2 Trimaran Load Design Values

The design values R based on the operation profile in Table 8.4, conditioned

on heading, and associated with ↵ =2.27e-4 are given in Table 8.5, along with the

heading in which the true (i.e. largest) design value occurs. Note that these headings

do not necessarily line up with the LR rule load cases given in Table 8.3. For example,

MSPH/MSPS is predicted to experience its maximum value in beam seas, by LR Cases

3-4, but the design value for MSPH/MSPS occurs in oblique seas for this hull. This

already is an important consideration. Based on the vessel geometry, the load transfer

functions will vary, meaning that the rule load cases may assume a particular load is

maximized in a certain heading, when in reality, the design value occurs in a di↵erent

heading. This indicates that the standard rule load combinations suggested by LR

may not be ‘one size fits all’ for evaluating di↵erent trimarans.
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Load Head Seas Beam Seas Oblique Seas
MWH/MWS 4.311e8 Nm 3.993e7 Nm 3.090e8 Nm
MSPH/MSPS 9.054e7 Nm 3.551e7 Nm 9.159e7 Nm
MLT � 7.264e7 Nm 5.879e7 Nm
MH � � 2.829e8 Nm
MTT 4.224e8 Nm � 3.509e8 Nm

Table 8.5: Design values for loads in all headings associated with a PNE = 0.9998. The values in
bold-face are the largest design value seen in any heading; these are R. Note that “�” indicates no
transfer function was constructed for a load in a particular heading.

8.4.3 TEV of Combined Loads

With the DLG, it is necessary to define the exposure, which dictates the rareness

of the distribution of extreme values. This exposure is captured by the target extreme

value, or TEV . Using the notation of Eq.(2.7)-(2.18), the TEV for the maximized

load, Mmax, TEVmax, is defined in Eq.(8.1), where �max is the standard deviation of

the load, Mmax. Here, the extreme load value, byn, associated with the risk parameter,

↵, is used to define TEVmax:

TEVmax =
byn

�max
(8.1)

TEVmax�max is the design value for the maximized load, Mmax. The DLG con-

structs an ensemble of short wave time series that lead to a distribution of responses

for the maximized load, Mmax, where the TEVmax�max event (e.g. a 5� event) is the

most probable. This distribution follows the Gaussian extreme value distribution as

given in Eq.(2.7) which satisfies Eq.(2.16)-(2.18).

8.5 Assessment of Rule Load Case Applicability using the

DLG

This section assesses the applicability of the standard rule load combination cases

o↵ered by LR in a qualitative sense. Based on the ambiguity of the choice of risk

parameter ↵, it is not constructive to compare dimensional loading values found in

this analysis to those that LR would indicate. Therefore, this section compares the

relative distributions of loads, not specifically load magnitudes.

For each load case in Table 8.3, the DLG constructs an ensemble of wave inputs

that lead to a distribution of responses for the maximized load, Mmax, about the

most probable TEVmax�max event. TEVmax�max is the design value conditioned on
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heading, given in Table 8.5. This design value corresponds to the maximum load

value in 7.71 hours, with the specific heading from Table 8.3, in the sea state out of

the 20-year exposure, with an overall probability of exceedance of 10�8, calculated

by Eq.(2.16)-(2.18) and (8.1). These wave input time series are all representative of

the operation profile spectral definition, and time series of all loads due to those wave

inputs are constructed. At the time of the maximum value of the maximized load,

each load is normalized by its respective design value R (Table 8.5), which gives the

load normalized as a LCF .

8.5.1 Head Seas, Cases 1-2

The load histograms, normalized as probability distributions, constructed by the

DLG for Case 1 are shown in Figure 8.6. Case 2 DLG distributions look the same,

except are reflected across LCF = 0, since all the transfer functions are linear.

The vertical lines are the rule LCF values indicated by LR for each load. While

LCFMWH/MWS
follows a typical extreme value pdf , the other loads are more normally

distributed. The most probable values of the LCFMSPH/MSPS
and LCFMTT

distribu-

tions from the DLG are significantly di↵erent than the rule LCF values from LR,

both in relative ordering and relative value.

Figure 8.6: Empirical histograms, normalized as probability distributions, of LCF values from the
DLG for Case 1, compared with the rule LCF values reported by LR in Table 8.3. For Case 2 (not
plotted), all distributions are reflected across LCF = 0.
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8.5.2 Beam Seas, Cases 3-4

The load histograms, normalized as probability distributions, assembled by the

DLG for Case 3 are shown in Figure 8.7. Case 4 distributions are reflected across

LCF = 0. Again, the vertical lines are the rule LCF values indicated by LR for

the appropriate load. Recall that although the maximized load for Case 3 is the

hogging splitting moment, MSPH , the design value for MSPH for this trimaran occurs

in oblique seas, not in beam seas. That is why the distribution of LCFMSPH
is not

centered around LCF = 1. The splitting moment does not achieve its design value

in beam seas. Even though the DLG is constructing wave environments which lead

to exposure-period-maxima of MSPH , these maxima are not as large as they would

be if the DLG constructed waves in oblique seas meant to maximize MSPH . This

trimaran experiences about 40% of the largest possible splitting moment (i.e. design

value) in beam seas. Conditioned on maximum splitting moments, the distribution

of LCFMWH/MWS
from the DLG is significantly lower than predicted by the LR rules.

The conditioned distribution of LCFMLT
from the DLG is significantly larger than

predicted by LR.

Figure 8.7: Empirical histograms, normalized as probability distributions, of LCF values from the
DLG for Case 3, compared with the rule LCF values reported by LR in Table 8.3. For Case 4 (not
plotted), all distributions are reflected across LCF = 0.

8.5.3 Oblique Seas, Cases 5-7

In Cases 5-7, the maximized loads are the longitudinal torsional, horizontal, and

transverse torsional bending moments, respectively, in oblique seas. These distribu-

tions are shown in Figure 8.8. Note that only MH achieves its design value in oblique
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seas. That is why the distributions of LCFMLT
and LCFMTT

are not centered around

LCF = 1. For Case 5, the distributions of LCFMWH/MWS
and LCFMSPH/MSPS

are

both clustered around LCF = 0. For Case 6, the distributions of LCFMSPH/MSPS
and

LCFMLT
both lie around LCF = 0.3, though the LCFMSPH/MSPS

distribution has a

much higher variance. Note that for none of the cases do the LR rule LCF values

really capture the distributions of loads assembled by the DLG.

Figure 8.8: Empirical histograms, normalized as probability distributions, of LCF values from the
DLG for Cases 5-7, compared with the rule LCF values reported by LR in Table 8.3.

Figures 8.6-8.8 indicate that the rule LCF values suggested by LR in Table 8.3 do

not accurately represent the loads experienced by the trimaran from Figure 8.2. These

standard LCF value are meant to represent lifetime combined loading, conditioned

on a specific maximized global load. The DLG can assemble these distributions,

leading to a fair comparison between the distributions and the suggested LCF values

which are presumably meant to represent them. However, it is clear that the rule

LCF values from LR do not accurately or consistently describe the lifetime combined

loading experienced by this trimaran in the specific operational profile. Considering

that these rule load cases are meant to be applied to a FEA model to determine

structural adequacy, this lack of agreement may be a problem for design purposes.
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8.6 Probabilistic Assessment of Rule Load Cases using the

NL-DLG Process

Figures 8.6-8.8 compared the LCF distributions from the DLG and the LCF

values indicated by the LR rule load combination cases, showing for most of the cases

poor agreement. Since these LCF values are meant to be used in a FEA model for

structural design purposes, it is important to determine whether the rule load cases

are su�ciently conservative and exhaustive for this trimaran hull form.

One way to do this is to examine the probability that the standard LCF values

o↵ered by Lloyd’s Register are exceeded over the vessel’s lifetime, which can give an

estimate of how conservative the LR load cases are. This may be a helpful metric to

add to these loading combination cases, or to help define di↵erent load combination

cases that reflect a more acceptable level of risk. The probability of simultaneously

exceeding all LCF values in a given case can be estimated by the NL-DLG process.

Then, a qualitative assessment of the load distributions from Figures 8.6-8.8 can

assess whether the LR load cases are exhaustive in terms of lifetime extremes of the

seven global loads.

8.6.1 Definition of Threshold Surface

For each standard case i defined by LR, n non-zero LCFMm values are assigned

to loads Mm, m = 1, · · · , n. Consider an n�dimensional Euclidean space with n

axes that correspond to the n non-zero LCFMm values. These axes are called axisMm ,

m = 1, · · · , n, to relate back to each loadMm considered in the case i. An un-bounded

threshold surface, GLR, case i, can be defined as the intersection of the regions where

axis Mm � LCFMm for all m = 1, · · · , n:

GLR, case i = threshold surface defined by the n non-zero LR rule LCFMm
values for case i

= {axisM
1

� LCFM
1

} \ {axisM
2

� LCFM
2

} \ · · · \ {axisMn
� LCFMn

}

Similar notation from Chapter 1.3.1 defines the event that all loads, given as a

LCF , simultaneously exceed GLR, case i for a specific case i:
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LCF(t) = vector of n global load time series included in a particular case i,

each normalized as LCFMm
(t), m = 1, · · · , n

NGLR, case i
(T ) = the number of up-crossings of GLR, case i by LCF(t) in [0,T]

p(NGLR, case i
(T ) � 1) = probability that the threshold GLR, case i is exceeded by LCF(t)

at least once over the exposure T

Whereas in Chapter 1.3.1 the probability that a load vector exceeds some threshold

surface is conditioned on an exceedance not occurring at time t = 0, no such condition

is required for the NL-DLG process estimation of p(NGLR, case i
(T ) � 1). The NL-DLG

process estimates the probability that over the exposure, the vector of global loads

considered in a specific case i, LCF(t), exceeds the threshold surface, GLR, case i. Any

subscript, {•}, of G{•} indicates which LCF values define the threshold surface, and

from which case.

Note that Chapters V-VII developed and applied the NL-DLG process to estimate

failure probabilities. In those chapters, a load vector and failure surface were defined,

with failure occurring when the vector exceeded the failure surface. In Chapter VII, a

physical failure was associated with exceeding specific load combinations. Here, there

is no such association. The NL-DLG process estimates the probability that a load

vector exceeds a defined threshold surface. The intent in this chapter is to examine

the combined loading that this trimaran hull experiences, and not a structural re-

sponse to those load combinations, which would require a FEA model to relate load

combinations to physical failure. The NL-DLG process simply o↵ers metrics on the

lifetime probability of exceeding specific load combinations.

8.6.2 Conservatism of the Rule Load Cases

For the NL-DLG process, load cases and surrogate processes can be defined, like in

Chapter 5.4, to estimate p(NGLR, case i
(T ) � 1) for each case i. It is likely that a wave

time series which leads to loads that simultaneously exceed all rule LCF values for a

specific case will contain an extreme value of a load which experiences its design value

in that heading. Therefore, it is likely that LCF(t) exceeds GLR, case 1 when MWH is

maximized in head seas. It is also possible, though, that LCF(t) exceeds GLR, case 1

when one of the secondary loads from Case 1 is maximized (e.g. when MSPH is

maximized in head seas). This means that waves which lead to extreme values of

each global load considered for a particular case i may lead to an out-crossing of
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GLR, case i by LCF(t). All of the loads in each case, then, are considered as separate

load combination cases, like used in Eq.(5.1), to estimate p(NGLR, case i
(T ) � 1) for

each case i by the NL-DLG process.

The load combination cases used by the NL-DLG process are similar to LR’s

method of considering each global load, maximized within a specific heading. Each

case from LR focuses solely on the simultaneous load combinations due to a wave

which maximizes a specific global load. The NL-DLG process examines simultaneous

load combinations due to waves which lead to extreme values of each individual load

in that case. The NL-DLG process says that LCF(t) may exceed GLR, case i for case i

due to a wave time series which leads to an extreme value of any of the global loads

included in case i. Therefore, for each case from Table 8.3, the NL-DLG process

uses as load cases each global load included in the LR case. Here, only individual

extremes of the global loads are considered for the non-linear load combination cases.

That is, no weighted sums of the global loads are defined as load cases within the

NL-DLG process. As the loads from Aegir are all linear loads, the load cases are

the surrogate processes. Then, the NL-DLG process estimates p(NGLR, case i
(T ) � 1)

given the surrogate processes and threshold surface definition. This is done for all

cases i = 1 � 7, with the results given in Table 8.6. Below for each case i, axisMm ,

m = 1, · · · , n is defined by each load name (i.e. axisMWH
) for clarity.

Table 8.6 indicates that p(NGLR, case i
(T ) � 1), or simultaneously exceeding all LR

rule LCF values from Table 8.3 for a given case i, is very low, except for case 6.

This might indicate to a designer that the LR rule load cases give a conservative

estimate of the lifetime combined loading this trimaran experiences over its lifetime.

However, these exceedance probabilities must also be considered in light of whether

the threshold surfaces defined by the LR rule LCF values for the di↵erent cases

su�ciently bound the combined loading experienced by this trimaran hull.

As discussed in Chapter 6.8, probability estimates from the NL-DLG process are

conditioned on the choice of load cases and surrogate processes, and how well those

relate to the threshold definition. Notice that Cases 3, 4, 5, and 7, which have

p(NGLR, case i
(T ) � 1) = 0, each have a threshold surface, GLR, case i, that bounds

a maximized global load with a design value that cannot occur in that particular

heading (i.e. reference Table 8.3 vs. 8.5). The DLG distributions of these loads,

given in Figures 8.7 and 8.8, already indicate that there is no chance of simultaneously

exceeding all LCF values defined by LR. For example, in Case 3 the distribution of
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Case & Load Cases/
GLR, case i definition: p(NGLR, case i

(T ) � 1)
Heading Surrogate Processes

1) Head
⇣
1

(t) = z
1

(t) = MWH {axisMWH
� 1} \

{axisMSPH
� 0.3} \

{axisMTT
� 0.2}

0.0590⇣
2

(t) = z
2

(t) = MSPH

⇣
3

(t) = z
3

(t) = MTT

2) Head
⇣
1

(t) = z
1

(t) = MWS {axisMWS
 �1} \

{axisMSPS
 �0.3} \

{axisMTT
� 0.2}

0.0577⇣
2

(t) = z
2

(t) = MSPS

⇣
3

(t) = z
3

(t) = MTT

3) Beam
⇣
1

(t) = z
1

(t) = MSPH {axisMSPH
� 1} \

{axisMWH
� 0.1} \

{axisMLT
� 0.2}

0⇣
2

(t) = z
2

(t) = MWH

⇣
3

(t) = z
3

(t) = MLT

4) Beam
⇣
1

(t) = z
1

(t) = MSPS {axisMSPS
 �1} \

{axisMWS
 �0.1} \

{axisMLT
� 0.2}

0⇣
2

(t) = z
2

(t) = MWS

⇣
3

(t) = z
3

(t) = MLT

5) Oblique

⇣
1

(t) = z
1

(t) = MLT {axisMLT
� 1} \

{axisMSPH
� 0.4} \

{axisMH
� 0.3} \

{axisMTT
� 0.3}

0
⇣
2

(t) = z
2

(t) = MSPH

⇣
3

(t) = z
3

(t) = MH

⇣
4

(t) = z
4

(t) = MTT

6) Oblique
⇣
1

(t) = z
1

(t) = MH {axisMH
� 1} \

{axisMSPH
� 0.4} \

{axisMTT
� 0.2}

0.2375⇣
2

(t) = z
2

(t) = MSPH

⇣
3

(t) = z
3

(t) = MLT

7) Oblique

⇣
1

(t) = z
1

(t) = MTT {axisMTT
� 1} \

{axisMWS
 �0.2} \

{axisMSPH
� 0.6} \

{axisMH
� 0.2}

0
⇣
2

(t) = z
2

(t) = MWS

⇣
3

(t) = z
3

(t) = MSPH

⇣
4

(t) = z
4

(t) = MH

Table 8.6: Case, heading, load cases, surrogate processes, threshold GLR, case i definition, and prob-
ability of simultaneously exceeding all rule LCF values defined by LR, p(NGLR, case i

(T ) � 1), es-
timated by the NL-DLG process. The load cases/ surrogate processes are defined by the loads
included in each case in Table 8.3.

LCFMSPH
is centered around 40% of the design value. No MSPH value approaches

its design value in beam seas, so there is no chance that LCF(t) exceeds GLR, case 3

given this load case in beam seas. Cases 3, 4, 5, and 7 defined by the LR rule load

cases have a 0% chance of exceeding GLR, case i, but that does not mean there is a

0% chance of experiencing large combinations of the loads included in those cases in

general. These loads experience larger values in di↵erent headings, but no rule load

cases are defined to capture these responses.

Many of the cases from Table 8.3 are simply not applicable, because they do not

line up each global load in the heading where its design value is experienced. The low

exceedance probabilities, therefore, are due to the mis-direction of the cases, rather

than a conservative definition of load cases. Some of these cases have no chance

of simultaneously exceeding all LCF values, but that doesn’t mean the trimaran

doesn’t experience that sort of loading over its lifetime. It is di�cult to label these
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rule load combination cases from Table 8.3 as conservative, because they do not

bound extreme lifetime load combinations, only those load combinations conditioned

on specific headings. Since these headings do not necessarily line up with extreme

load values, the testing profile does not examine the largest global load values this

trimaran experiences in its lifetime.

It is possible that the conservatism of these load cases is included in the acceptance

criteria for structural adequacy given the loading applied to a FEA model. However,

the Lloyd’s Register rules do not indicate whether that is the case. It may be desirable

for a designer using these rule load cases to be aware of what conservatism is applied,

and where that conservatism is applied (i.e. to the load combination cases, or the

structural response to that loading). Since the rule load cases do not realistically

describe the load distributions actually experienced by this trimaran, these rule load

cases from LR cannot be labeled applicable or conservative in their description of

lifetime loading for this trimaran.

8.6.3 Exhaustiveness of the Rule Load Cases

The LR rule load cases additionally do not appear to be exhaustive concerning the

global loading on this trimaran. This is mainly due to the fact that the cases do not

line up with the headings where each load experiences its design value. Based on this,

not all of the global loads experience their design value in the testing profile o↵ered

by the rule loads. This may be problematic, as structural vulnerabilities to specific

loadings may not be fully examined. With the load cases from Table 8.3, no case

has a MSPH/MSPS value larger than about 80% of its design value. If a structure’s

design is susceptible to the splitting moment, the rule load cases may not truly test

that vulnerability.

The analysis of these rule loads cases highlights the potential pitfall of using

a standard set of load cases for a variety of trimaran designs. Given a di↵erent

placement of the side-hulls, the interaction between the global loads acting on the

vessel can change drastically. The LR rule loads assume relationships between the

global loads. But, since the LR load combination cases are not specifically tailored

to this trimaran hull, the predicted simultaneous load LCF values, conditioned on

a specific maximized global load, were often inaccurate. The rule load cases do not

give an accurate or conservative estimate of the loads experienced by this trimaran

hull with the operational profile defined by Table 8.4.
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8.7 Development of Alternative Load Cases

The rule load values from Table 8.3 do not realistically describe the combined

loading experienced by this specific trimaran hull, which was also examined by load

distributions assembled by the DLG for each specific case. This indicates that the

trimaran hull in this example has a frequency response which is significantly di↵erent

than the hull, or range of hulls, used to generate the standard LCF values in Table

8.3. LR also o↵ers an “alternative procedure for load development” to using the

rule load cases in Table 8.3 (Lloyd’s Register (2017), Vol. 4, Part 1, Ch. 3, Sec.

4.2). The alternative procedure is to tailor load combination cases for the specific

trimaran in question using the EDW methodology. LR says that this alternative

approach “provides more realistic loading scenarios, improving the user’s confidence

in the loads which are to be applied to the finite element model” (Lloyd’s Register ,

2017).

In the EDW methodology, a regular wave is determined which leads to the design

value for a specific global load in the heading where that design value occurs. This

wave then drives the other global loads to determine simultaneous values of all global

loads in the given heading. The LCF for each load, Mi, in a case is calculated by

examining the RAO of the maximized load, Mmax, within the given heading. The

maximum value of thatRAO, amax, is determined along with the corresponding phase,

✏max, and encounter frequency, !e,max. The time, tmax, when Mmax experiences its

maximum value is calculated by Eq.(8.2). The height of the equivalent design wave,

hmax, is then given by Eq.(8.3):

cos(!e,maxtmax + ✏max) = ±1 (8.2)

hmax =
R

amax
(8.3)

R is the design value forMmax. The amplitude, ai, and phase, ✏i, of each secondary

load, Mi, at !e,max are identified. The LCF for the load Mi is calculated by Eq.(8.4).

Note that by construction, the LCF of the maximized load Mmax is 1, as for Mmax,

hmaxai/Ri = hmaxamax/R = 1, and cos(!e,maxtmax + ✏max) = ±1. Ri is the design

value for the given secondary load,Mi. This value reflects the operating profile (speed,

heading, exposure), and specifically the heading that leads to the largest response.

LCF =
hmaxaicos(!e,maxtmax + ✏i)

Ri
(8.4)
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The spirit of the EDW approach and the DLG are the same, as both methods

consider a single maximized load and recover simultaneous responses of other loads

due to the same wave excitation. The di↵erence, though, is that the DLG constructs

ensembles of irregular wave inputs that lead to this maximum load response, giving

a distribution of responses. The other global loads considered in a specific case are

driven by this constructed irregular wave input. The EDW method, on the other

hand, constructs a regular wave to return a single representative value of the loads

in a case at the given maximized instant. Whether the deterministic EDW approach

can accurately capture the simultaneous response of multiple loads, and whether a

single value is even representative of a distribution of responses, will be assessed.

Theoretically, this alternative approach should generate more applicable load cases

than the rule loads, which assume that the global loads are maximized in certain head-

ings and assume specific levels of load dependence. A natural question is: does the

alternative load procedure more realistically describe the combined loading experi-

enced by this trimaran to “improve the user’s confidence in the loads which are to be

applied to the [FEA] model,” as the LR rules suggest? (Lloyd’s Register , 2017)

These alternative LCF values are calculated using the transfer functions from

Figures 8.3-8.5 with Eq.(8.2)-(8.4). In this alternative approach, each global load is

maximized in the heading where it experiences its design value, i.e. Table 8.5. This

indicates that Cases 3, 4, 5, and 7, are in di↵erent headings than in Table 8.3. The

alternative load cases, developed using the EDW method, are given in Table 8.7. In

Table 8.7, all signs represent the physical signs of the loads, and do not imply any

“reversible” e↵ects, as in Table 8.3.

Case & Heading Mmax
Dynamic Loads

MWH MWS MH MSPH MSPS MLT MTT

1) Head MWH 1.0 0 0 0 0.02 0 0.1
2) Head MWS 0 1.0 0 0.02 0 0 -0.1
3) Oblique MSPH 0 0.31 0.51 1.0 0 0.18 -0.59
4) Oblique MSPS 0.31 0 -0.51 0 1.0 -0.18 0.59
5) Beam MLT 0.02 0 0 0 0.25 1.0 0
6) Oblique MH 0 0.8 1.0 0.27 0 -0.03 -0.07
7) Head MTT 0.42 0 0 0 0.62 0 1.0

Table 8.7: Alternative load cases, along with heading and load combination factors (LCF ) defined
using the EDW approach. The maximized load, Mmax, is also noted for each case.
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8.8 Assessment of Alternative Load Cases using the DLG

The DLG can assess how accurately the alternative load LCF values represent the

loading on the trimaran hull from Figure 8.2. The process is the same as in Section

8.5, where the DLG constructs short wave profiles which maximize a specific global

load in each case, Mmax, with the given heading from Table 8.7. Those waves drive

all the loads in the case, and the simultaneous load values, all normalized as a LCF ,

are plotted to give the load distributions.

8.8.1 Head Seas, Cases 1-2

The alternative load Cases 1-2 are in head seas, as in Table 8.3. The empirical

histograms, normalized as probability distributions, for Case 1 are plotted in Figure

8.9. For Case 2, the distributions are reflected across LCF = 0. The DLG distribu-

tions remain unchanged from Figure 8.6 because this case remains in head seas. The

alternative load LCF values, denoted as ‘ALT’ are plotted as the vertical lines. Al-

though these alternative values capture the relative magnitudes of the LCFMSPH/SPS

and LCFMTT
distributions better than the rule load values (i.e. Figure 8.6), LCFMTT

is far larger than the alternative LCF value predicts.

Figure 8.9: Empirical histograms, normalized as probability distributions, of LCF values from the
DLG for Case 1 for maximized MWH in head seas. Case 2 distributions (not plotted) are reflected
across LCF = 0. The alternative LCF values from Table 8.7 are shown as the vertical lines.
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8.8.2 Oblique Seas, Cases 3-4

The alternative Cases 3-4 maximize the splitting moment,MSPH/MSPS, in oblique

seas, leading to the empirical histograms, normalized as probability distributions,

shown in Figure 8.10. For some loads, like MTT and MWS, the alternative LCF

values from Table 8.7 accurately describe the sign and relative magnitude of the

loading distributions assembled by the DLG. However, both the distribution of MLT

andMH are rather significantly smaller than predicted by the alternative LCF values.

Figure 8.10: Empirical histograms, normalized as probability distributions, of LCF values from the
DLG for Case 3 for maximized MSPH in oblique seas. Case 4 distributions (not plotted) are reflected
across LCF = 0. The alternative LCF values from Table 8.7 are shown as the vertical lines.

8.8.3 Beam Seas, Case 5

For Case 5, the longitudinal torsional load, MLT , is maximized in beam seas, with

the empirical histograms, normalized as probability distributions, shown in Figure

8.11. Although the alternative LCF value for MSPS is a bit larger than the DLG dis-

tribution, in general, these alternative LCF values accurately describe the combined

loading experienced by this trimaran hull for this case.

8.8.4 Oblique Seas, Case 6

Figure 8.12 shows the simultaneous load empirical histograms, normalized as prob-

ability distributions, from the DLG whenMH is maximized in oblique seas. Note these

are the same distributions from the middle inset Figure 8.8, as the heading for Case

6 remains in oblique seas. The alternative LCF values seem to be generally more
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Figure 8.11: Empirical histograms, normalized as probability distributions, of LCF values from the
DLG for Case 5 for maximized MLT in beam seas. The alternative LCF values from Table 8.7 are
shown as the vertical lines.

accurate than the rule load LCF values, but do not consistently describe these load

distributions in oblique seas conditioned on maximum MH .

Figure 8.12: Empirical histograms, normalized as probability distributions, of LCF values from the
DLG for Case 6 for maximized MH in oblique seas. The alternative LCF values from Table 8.7 are
shown as the vertical lines.

8.8.5 Head Seas, Case 7

Figure 8.13 shows the empirical histograms, normalized as probability distribu-

tions, of MTT maximized in head seas, with the simultaneous distributions of MWH

and MSPS. The alternative LCF values are generally accurate descriptions of the
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DLG load distributions than the rule load values in Figure 8.8. However, the alter-

native LCF value for MSPS presents a high bound on the most-probable point of the

DLG distribution, while the alternative LCF value for MWH presents a low bound

on the most probable point of the DLG distribution.

Figure 8.13: Empirical histograms, normalized as probability distributions, of LCF values from the
DLG for Case 7 for maximized MTT in head seas. The alternative LCF values from Table 8.7 are
shown as the vertical lines.

8.9 Probabilistic Assessment of Alternative Load Cases us-

ing the NL-DLG Process

A new threshold surface, GALT, case i, is defined by the alternative LCF values for

each case i. The same vector of global loads, LCF(t) is used for each case, but now

to test a potentially more appropriate threshold surface, GALT, case i. The surface,

GALT, case i, is defined the same way as in Section 8.6.1, except using the alternative

load LCF values instead of the rule load LCF values for each case i.

For Cases 1-7, Table 8.8 gives the alternative LCF values calculated using the

EDW method for this trimaran hull, LCFALT , and the most probable LCF of the

assembled DLG distribution, LCFDLG. The NL-DLG process evaluates the proba-

bility that the vector of LCF global load time series in a case i exceeds the thresh-

old surface GALT, case i, p(NGALT, case i
(T ) � 1). For Cases 1 and 2, and for Cases 3

and 4, this probability is specifically from Case 1 and Case 3, respectively. Since

the loads are linear, in the limit of infinite realizations, the exceedance probabili-

ties for Cases 2 and 4 are equal to those of Cases 1 and 3, respectively. This is
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observed in Table 8.6 in which p(NGLR, case 1

(T ) � 1) ⇡ p(NGLR, case 2

(T ) � 1) and

p(NGLR, case 3

(T ) � 1) ⇡ p(NGLR, case 4

(T ) � 1).

Case & Heading Load LCFALT LCFDLG p(NGALT, case i
(T ) � 1)

Case 1-2,
Head Seas

MWH/MWS ±1 ±1
0.3595MSPH/MSPS ⌥0.02 0

MTT ±0.10 ±0.51

Case 3-4,
Oblique Seas

MWH/MWS ⌥0.31 ⌥0.38

0.0904
MSPH/MSPS ±1 ±1
MLT ±0.18 ⌥0.01
MH ±0.51 ±0.34
MTT ⌥0.59 ⌥0.56

Case 5,
Beam Seas

MWH/MWS 0.02 0.04
0.2522MSPH/MSPS -0.25 -0.19

MLT 1 1

Case 6,
Oblique Seas

MWH/MWS -0.8 -0.61

0.001
MSPH/MSPS 0.27 0.36
MLT -0.03 0.37
MH 1 1
MTT -0.07 -0.37

Case 7,
Head Seas

MWH/MWS 0.42 0.51
0.2638MSPH/MSPS -0.62 -0.51

MTT 1 1

Table 8.8: Cases 1-7 alternative LCF values calculated for the specific trimaran hull, LCFALT , the most
probable LCF of the assembled DLG distributions, LCFDLG, and the probability of simultaneously
exceeding all LCFALT values, p(NGALT, case i

(T ) � 1).

Using the EDW method, the alternative LCFALT values for this trimaran hull

are generally more representative of the combined load distributions assembled by

the DLG than the rule load LCFLR values. However, the LCFALT values are not

always accurate, and sometimes predict a di↵erent load sign than what the trimaran

experiences. Even in cases where the LCFALT values are generally accurate, like in

Case 7, the alternative LCFALT values do not give a constant bounding on the most-

probable point of the DLG distributions. In Case 7, the LCFALT value for MSPS

is a upper bound, but the LCFALT value for MWH is a lower bound. Additionally,

even for cases where the LCFALT values are reasonable estimates for the DLG load

distributions, like in Cases 3, 5, and 7, a single LCF value does not capture the

observed variance in those load distributions.

This, along with the high p(NGALT, case i
(T ) � 1) probabilities, makes it di�cult

to definitively say whether these alternative LCF values are su�ciently conservative.

Defining a threshold surface GALT, case i by the LCFALT values for these cases may not

be any more conservative or representative of the lifetime loads than using GLR, case i

for these cases. This is reinforced by the high probabilities p(NGALT, case i
(T ) � 1)
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observed for these cases, using the LCFALT values to define the threshold surface,

GALT, case i. The EDW method tailored to this trimaran hull does not appear to

accurately describe the combined loading experienced for this hull.

8.10 Recommendation on Load Case Definitions

Based on the above sections, it is clear neither the rule load approach (Table 8.3

and 8.6) nor the alternative load approach (Table 8.7 and 8.8) seem to accurately

and consistently describe the combined loading experienced by this trimaran hull.

However, the spirit of load combination cases is still applicable. It is important to

consider the vessel response to the major global loads shown in Figure 8.1. New load

combination cases are defined in Table 8.9 to more accurately represent the combined

loading that this trimaran hull experiences, based on a global load being maximized

in the heading where the design value occurs.

Case & Heading Mmax
Dynamic Loads

p(NG⇤, case i
(T ) � 1)

MWH MWS MH MSPH MSPS MLT MTT

1 ⇤ a) Head MWH 1.0 0 0 0.3 0 0 0.6 0.0016
1 ⇤ b) Head MWH 1.0 0 0 0 0.3 0 0.6 0.0320
2 ⇤ a) Head MWS 0 1.0 0 0.3 0 0 -0.6 0.0346
2 ⇤ b) Head MWS 0 1.0 0 0 0.3 0 -0.6 0.0017
3⇤) Oblique MSPH 0 0.45 0.4 1.0 0 0 -0.6 0.1167
4⇤) Oblique MSPS 0.45 0 -0.4 0 1.0 0 0.6 0.1277
5⇤) Beam MLT 0 0 0 0 0.35 1.0 0 0.0199
6⇤) Oblique MH 0 0.60 1.0 0.40 0 0.40 -0.40 0.0770
7⇤) Head MTT 0.6 0 0 0 0.6 0 1.0 0.0902

Table 8.9: LCF⇤ values for the recommended Cases 1 ⇤ �7⇤ and probability of simultaneously
exceeding those LCF⇤ values, p(NG⇤, case i

(T ) � 1).

The combined load distributions for these recommended Cases 1 ⇤ �7⇤ from the

DLG are given in Figures 8.9-8.13. Based on these distributions of loads from the

DLG, conditioned on the heading where each load achieves its design value, new

LCF values, called LCF⇤ are defined in Table 8.9. These LCF⇤ values are based on

the DLG distributions from Figures 8.9-8.13, coupled with a bounding value. These

values are chosen so that there is a low probability of simultaneously exceeding all

LCF⇤ bounds, defining a new threshold surface G⇤, case i for each case i. For Cases

1⇤�2⇤, two sub-cases are defined to account for the high variance in MSPH/MSPS. It

is important to note that there are an infinite number of possible load combinations
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for each case i that will lead to a given probability, p(NG⇤, case i
(T ) � 1). Therefore,

the LCF⇤ values chosen for these new load cases are somewhat an arbitrary choice and

are simply based on bounding the distributions of loads experienced in the updated

cases. Again, as in Table 8.7, negative signs represent actual load signs, and do not

imply reversibility as in Table 8.3.

8.10.1 Mutual Exclusivity of Load Cases & Threshold Definitions

The load cases in Table 8.9 are designed to be more conservative and exhaustive

than the rule load cases in Table 8.3 and the alternative load cases in Table 8.7.

What may be most interesting to a designer is the probability that over an exposure

in a given heading, a threshold surface defined by any case is exceeded, rather than

considering the probabilities, p(NG⇤, case i
(T ) � 1), separately. This would correspond

to having an overall allowable risk factor, rather than individual risk factors applied

to di↵erent cases. However, to determine this overall probability from the NL-DLG

process, and to define each case separately, requires that each case be disjoint. This

means that during any single wave record constructed by the DLG (during the time

[0, TDLG], where TDLG is the length of each DLG simulation), there can only be one

type of threshold out-crossing, or an out-crossing of only one G⇤, case i by LCF(t).

Essentially, for the probability of exceeding any threshold surface over the exposure,

p(NG⇤, overall

(T ) � 1):

p(NG⇤, overall

(T ) � 1) =
7⇤X

i=1a⇤
p(NG⇤, casei(T ) � 1) i↵:

during the DLG simulation length [0, TDLG]:

p(NG⇤, case i
(TDLG) � 1) \ p(NG⇤, case j

(TDLG) � 1) = 0 for all i = 1a ⇤ �7⇤ and j = 1a ⇤ �7⇤

It may be di�cult, though, to define mutually exclusive load combination cases

that are exhaustive. As an example, consider Cases 3⇤ and 4⇤ which define a di↵erent

type of threshold exceedance. Each of these threshold exceedances are mutually

exclusive at a single instant; i.e. at a single instant, it is impossible for a splitting

moment to exceed both its hogging and sagging design value, since these have opposite

signs. However, these threshold definitions do not require that only that one specific

type of threshold exceedance occurs due to the same short wave excitation input. It

is possible that multiple di↵erent thresholds are exceeded within the same short time

length [0, TDLG].
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In general, a designer may want to know the probability of exceeding a threshold

surface defined by any case over the exposure. This may not be an easy probability to

determine if the wave excitations which lead to these di↵erent threshold exceedance

events are not mutually exclusive. Specifically, consider the threshold exceedance

criteria for Cases 3⇤ and 4⇤. It is possible that a single DLG wave record exceeds

both G⇤, case 3 and G⇤, case 4, as seen below in Figure 8.14.

Figure 8.14: Wave elevation ⌘(t) in oblique seas constructed by the DLG to produce a maximum
MSPH at time t = 0, which drives time series of LCFMSPH/MSPS

(t), LCFMWH/MWS
(t), LCFMH

(t),
and LCFMTT

(t). Lines which indicate the LCF⇤ bound for Cases 3⇤ (red line) and 4⇤ (blue line)
are plotted. This time series has simultaneous LCF⇤ exceedances that fit the criteria for both Case
3⇤ (red stars, when LCF(t) exceeds G⇤, case 3

from time t = 0.18� 0.5 sec) and Case 4⇤ (blue stars,
when LCF(t) exceeds G⇤, case 4

from time t = 2.4� 2.8 sec).

In Figure 8.14, a wave elevation record ⌘(t) in oblique seas is constructed by the

DLG to lead to an exposure-period-maximum of MSPH at time t = 0. Time series of

all loads considered in Cases 3⇤ and 4⇤ are driven by this ⌘(t) time series, normalized

by the respective design value, and plotted as a LCF . The LCF⇤ bounds for Case

3⇤ are plotted as red lines. Between times t = 0.18 � 0.5 sec, marked with red

stars, LCF(t) exceeds G⇤, case 3. The LCF bounds for Case 4⇤ are the blue lines, and

between the times t = 2.4�2.8 sec, marked with blue stars, LCF(t) exceeds G⇤, case 4.
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Note that the short periods of these loads are confirmed by the transfer functions in

Figure 8.5.

The existence of such a time series, like shown in Figure 8.14, illustrates the dif-

ficulty of separately considering seemingly mutually exclusive events. By considering

Cases 3⇤ and 4⇤ separately, both count an exceedance of G⇤, case 3 or G⇤, case 4 by

LCF(t) due to the same DLG wave record, meaning that the two cases are not mutu-

ally exclusive. In fact, there are 20 wave records from the DLG which lead to a Case

3⇤ threshold exceedance and 4⇤ threshold exceedance. This indicates that Cases 3⇤
and 4⇤ should not be considered separately, because they do not represent mutually

exclusive events.

The NL-DLG process was formulated to consider the probability of a threshold ex-

ceedance due to potentially non-mutually-exclusive surrogate processes. However, to

separately use the NL-DLG process to estimate the probability of exceeding di↵erent

case threshold definitions does not consider whether waves which lead to exceedances

of the threshold surfaces G⇤, case 3 or G⇤, case 4 are, or are not, mutually exclusive. The

potential non-mutual-exclusivity of these threshold exceedances can only be consid-

ered in the NL-DLG process estimation if the probability of exceeding G⇤, case 3 or

G⇤, case 4 is considered within the same NL-DLG process estimation.

8.11 Load Cases Conditioned on Vessel Heading

The existence of wave records which contain more than one type of threshold

exceedance defined by the cases in Table 8.9 suggests the necessity of another update

to the recommended load cases. This update is to account for the possibility that

LCF(t) driven by a DLG wave excitation may lead to exceedances of G⇤, case i for

multiple di↵erent threshold definitions. It may be wise to combine all the cases that

share a common heading. In head seas, there are Cases 1 ⇤ a, 1 ⇤ b, 2 ⇤ a, 2 ⇤ b, and

7⇤. It is possible that multiple DLG wave excitation records lead to more than one

type of exceedance event using the LCF⇤ bounds from these cases. Indeed, there are

11 DLG wave records in head seas in which G⇤, case i is exceeded by LCF(t) for at

least one of case i = 1 ⇤ a, 1 ⇤ b, 2 ⇤ a, 2 ⇤ b, or 7⇤. This is not surprising, considering
the loads, and the respective load bounds, examined in these cases. For example,

an LCF⇤ bound for Case 1 ⇤ a and 1 ⇤ b is LCF⇤WH � 1. Case 7⇤ has the bound

LCF⇤WH � 0.6. In this way, Cases 1 ⇤ a, 1 ⇤ b, 2 ⇤ a, 2 ⇤ b, and 7⇤ all ‘trade-o↵’ upper

bounds on the same global loads.
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Therefore, an overall head seas load case is defined, with a threshold surface defi-

nition, Ghead, that considers the maximum load value, positive or negative, examined

by any of Cases 1 ⇤ a, 1 ⇤ b, 2 ⇤ a, 2 ⇤ b, or 7⇤ in head seas. The same can be done

for oblique seas, by combining Cases 3⇤, 4⇤, and 6⇤ for the single threshold surface

Goblique. In beam seas, there is only Case 5⇤ (only MLT experiences its design value

in beam seas), so only the bounds of Case 5⇤ are considered for the threshold surface

Gbeam. The new cases defined by heading, along with the LCF values, are given in

Table 8.10. The threshold definition Ghead/beam/oblique for each heading, and the prob-

ability p(NGhead/beam/oblique
(T ) � 1), estimated by the NL-DLG process, is given below

in Table 8.11. The loading combination cases within each heading, and associated

surrogate processes, are also given.

Heading
Dynamic Loads

|MWH/MWS | |MH | |MSPH/MSPS | |MLT | |MTT |
Head 1.0 0 0.3 0 1.0
Beam 0 0 0.35 1.0 0
Oblique 0.6 1.0 1.0 0 0.6

Table 8.10: Load cases by heading with load combination factors.

Note that these overall heading cases implicitly consider each maximized global

load through the definition of the load cases. In this way, the maximum value of each

global load is considered, plus the simultaneous values of the other loads. The new

threshold definitions Ghead/beam/oblique just ensure that the heading cases are mutually

exclusive in terms of allowable load values. Additionally, these three cases based on

heading are exhaustive for the seven global loads, because each load is maximized

in the heading where its design value occurs, and these headings cover all operating

conditions for the trimaran in the given sea state.

Chapter 5.8 noted the di�culty of using the NL-DLG process to estimate an ex-

ceedance probability using many surrogate processes, due to the number of surrogate

process maxima configurations which must be examined, given by the Bell number.

The oblique seas case in Table 8.11 has seven surrogate processes, to account for the

seven global loads considered in oblique seas. However, using all seven surrogate pro-

cesses would require examining 877 maxima configurations. Even the head and beam

seas cases, which have five surrogate processes, would result in too many maxima

configurations to consider (B5 = 52). The formulation to consider the maxima con-

figurations given more than four surrogate process maxima has not been attempted,
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Heading
Load Cases/ Ghead/beam/oblique p(NGhead/beam/oblique

(T ) � 1)
Surrogate Processes definition:

Head Seas

⇣⇤
1

(t) = z⇤
1

(t) = MWH

{|axisMWH/MWS
| � 1} \

{|axisMSPH/MSPS
| � 0.3} \

{|axisMTT
| � 1}

0.0029
⇣⇤
2

(t) = z⇤
2

(t) = MWS

⇣⇤
3

(t) = z⇤
3

(t) = MSPH

⇣
4

(t) = z
4

(t) = MSPS

⇣⇤
5

(t) = z⇤
5

(t) = MTT

Beam Seas

⇣⇤
1

(t) = z⇤
1

(t) = MLT

{|axisMLT
| � 1} \

{|axisMSPH/MSPS
| � 0.35} 0.0312

⇣⇤
2

(t) = z⇤
2

(t) = MSPH

⇣⇤
3

(t) = z⇤
3

(t) = MSPS

⇣
4

(t) = z
4

(t) = MWH

⇣⇤
5

(t) = z⇤
5

(t) = MWS

Oblique Seas

⇣⇤
1

(t) = z⇤
1

(t) = MSPH

0.0003

⇣⇤
2

(t) = z⇤
2

(t) = MSPS {|axisMSPH/MSPS
| � 1} \

⇣
3

(t) = z
3

(t) = MWH {|axisMWH/MWS
| � 0.6} \

⇣
4

(t) = z
4

(t) = MWS {|axisMH
| � 1} \

⇣⇤
5

(t) = z⇤
5

(t) = MH {|axisMTT
| � 0.6}

⇣⇤
6

(t) = z⇤
6

(t) = MTT

⇣
7

(t) = z
7

(t) = MLT

Table 8.11: Loading cases defined by heading, including the threshold definition, G
head/beam/oblique

,
and the individual load cases and associated surrogate processes used by the NL-DLG process to
estimate p(NGhead/beam/oblique

(T ) � 1) for each heading. Only load cases/ surrogate processes marked
with a ‘⇤’ are considered in the NL-DLG process estimation.

due to the complexity.

Therefore, these cases are simplified to consider only four surrogate processes.

The load cases/ surrogate processes for each heading case which are used in the NL-

DLG process estimation are noted as ⇣⇤i (t) = z⇤i (t). The other surrogate processes

are not considered in the NL-DLG process estimate of p(NGhead/beam/oblique
(T ) � 1)

for each case. Neglecting some surrogate processes may be fair, as the surrogate

processes which are not examined for each case lead to few, if any, exceedances of

Ghead/beam/oblique by LCF(t) within the DLG simulation length TDLG, as shown in

Table 8.12. Including these surrogates in the NL-DLG process estimation for each

heading would likely increase the exceedance probability (if the surrogate leads to

any threshold exceedances), but not significantly.

8.11.1 Conservatism of Load Cases Conditioned on Vessel Heading

Given the three threshold surfaces based on heading, Ghead/beam/oblique, and the

probabilities, p(NGhead/beam/oblique
(T ) � 1), from Table 8.11, an overall probability of

exceeding any threshold definition over the exposure can be determined. Since the

cases are defined by heading, which are mutually exclusive, the probabilities can be
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Heading
Neglected Load Cases/ NGhead/beam/oblique

(TDLG)
Surrogate Processes (out of 2000 DLG simulations)

Head Seas ⇣
4

(t) = z
4

(t) = MSPS 1
Beam Seas ⇣

4

(t) = z
4

(t) = MWH 1

Oblique Seas
⇣
3

(t) = z
3

(t) = MWH 0
⇣
4

(t) = z
4

(t) = MWS 0
⇣
7

(t) = z
7

(t) = MLT 0

Table 8.12: Neglected surrogate processes from the cases in Table 8.11, along with the number of
threshold exceedances, NGhead/beam/oblique

(TDLG), due to these neglected surrogate processes, out of
2000 wave excitation records, ⌘i(t), of length TDLG constructed by the DLG to lead to the exposure-
period-maximum of each surrogate process zi(t).

summed. The probability of the trimaran being in each heading is equal, as by the

LR rules. Therefore, the probability of exceeding any of the load combinations given

in Table 8.10 in the 7.71-hour exposure given the operational profile in Table 8.4 is:

p(NGoverall, 7.71-hours

(T ) � 1) = p(NGhead
(T ) � 1)p(head seas) + · · ·

p(NGbeam
(T ) � 1)p(beam seas) + · · ·

p(NGoblique
(T ) � 1)p(oblique seas)

p(head seas) = p(beam seas) = p(oblique seas) = 1/3

p(NGoverall, 7.71-hours

(T ) � 1) = 0.0029(1/3) + 0.0312(1/3) + 0.0003(1/3) = 0.0202

(8.5)

The probability in Eq.(8.5) is implicitly conditioned on the exposure defined in

Table 8.4, that being a 7.71-hour exposure in the given sea state out of 20 years,

associated with a PNE = 0.9998, or risk parameter ↵ = 2.27e-4. Therefore, the

20-year lifetime probability of exceeding any load combination case defined by Table

8.10 is:

p(NGoverall, 20-years

(T ) � 1) = p(NGoverall, 7.71-hours

(T ) � 1|sea state \ ↵)p(sea state)↵

= 0.0202⇥ 4.4e� 5⇥ 2.27e� 4

= 2.017e� 10

(8.6)

where

p(sea state) = 4.4e-5 from Table 8.4

↵ = 2.27e-4 from Table 8.4
(8.7)

The design values for both the rule load and alternative load procedure are based

on the criterion that the probability of experiencing any global load design value is

10�8 (“the operating life is generally to be taken as 20 years, which is assumed to
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correspond to 108 wave encounters or a long-term probability level of 10�8” (Lloyd’s

Register , 2017)). This appears to be the only explicit probabilistic basis associated

with either the rule load or alternative load procedures. Recall that the risk pa-

rameter, ↵, was defined so that the most-probable global load value in the 7.71-hour

exposure out of the 20-year service life has a 10�8 probability of exceedance, as by the

LR rules. If this 10�8 probability of exceedance criterion is also meant to be applied

to the load combinations, i.e. the probability of exceeding the load combinations over

the exposure must be less than 10�8, Eq.(8.6) indicates that the load combination

cases defined by heading in Table 8.10 satisfy this overall probabilistic requirement.

Given the risk parameter ↵ applied to the loads with the operational profile in Table

8.4, to still satisfy the overall 10�8 probability of exceedance criterion, it is required

that p(NGoverall, 7.71-hours

(T ) � 1)  1.

Since the waves which lead to these load values in this chapter are so rare, all

the load combination cases for Table 8.10 could be exceeded, and the overall 10�8

load probability of exceedance requirement would still be satisfied. Note that due to

the rareness of the waves which excite these loads, all the load cases in this chapter,

i.e. those from Table 8.3, 8.7, 8.9, and 8.10, satisfy the overall 10�8 probability of

exceedance. However, not all of these cases realistically describe the lifetime combined

loading experienced by this trimaran, and clearly some of the load case definitions

are more conservative and exhaustive than others. As well, this 10�8 probability of

exceedance bound did not equally a↵ect all of the global loads. A similar result was

also noted in Chapter 6.7.3, in which a high PNE bound applied to all loads acting on

a system did not a↵ect those loads equally or lead to a safe design. Therefore, it may

be more useful to define a probability of exceedance based on the load combinations,

and not individual load values. The NL-DLG process o↵ers an e�cient way to define

load cases chosen for a desired lifetime probability of exceedance, while retaining the

wave inputs which lead to extreme loading combinations. Then, it is clear where any

built-in conservatism exists for a group of load combination cases.

8.12 Estimate of Most-Likely Load Exceedances in Head Seas

Based on the finalized cases from Table 8.10, directed by vessel heading, it is pos-

sible to visualize the most-likely exceedances of Ghead/beam/oblique by LCF(t) for each

case, generated by the NL-DLG process. The head seas case is shown as an example,

because its threshold surface, Ghead, can be visualized in three dimensions. Figure 8.15
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shows the load vector (LCFMWH/MWS
(t), LCFMSPH/MSPS

(t), LCFMTT
(t)) along with

some of the Ghead threshold surface regions, particularly those where LCF(t) exceeds

Ghead. Each blue line is a single (LCFMWH/MWS
(t), LCFMSPH/MSPS

(t), LCFMTT
(t))

load vector driven by an ⌘(t) time series chosen by the NL-DLG process for this

most-likely exceedance estimate. The red stars are times when LCF(t) crosses Ghead.

The arrows indicate that the threshold regions are unbounded out from the specific

corner origin, which marks the intersection of the LCF bounds from Table 8.10 for

the global loads.

From this visualization of the load vector time series, it is clear that exceedances of

Ghead by LCF(t) only occur due to the simultaneous signs of the loads: (LCFMWH
(t),

LCFMSPS
(t), LCFMTT

(t)) or (LCFMWS
(t), LCFMSPH

(t), LCFMTT
(t)). Note that these

signs are opposite of the signs from the rule load Cases 1-2 in Table 8.3. In the LR

rule load cases, the vertical wave and splitting bending moments are grouped to-

gether with the same sign (i.e. both are either hogging or sagging). The shape

of the curve LCF(t) indicates the correlation between the di↵erent loads. Figures

8.16, 8.17, and 8.18 are projections of Figure 8.15 on the (LCFMSPH/MSPS
, LCFMTT

),

(LCFMWH/MWS
, LCFMSPH/MSPS

) and (LCFMWH/MWS
, LCFMTT

) planes, respectively.

Figure 8.15: Vector of (LCFMWH/MWS
(t), LCFMSPH/MSPS

(t), LCFMTT
(t)) and threshold regions

where exceedances of Ghead by LCF(t) occur. Some parts of Ghead where no exceedances occur are
not shown for clearer visualization.
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8.12.1 Correlation between Transverse Torsional & Splitting Bending

Moment

Figure 8.16 shows that positive lifetime extreme transverse torsional bending mo-

ment values are correlated with lifetime extreme sagging splitting bending moment

values. This behavior is reinforced by the distributions in Figure 8.13, in which max-

imized MTT values in head seas correspond to a distribution of MSPS values. This

correlation structure would be di�cult to determine simply from the distributions in

Figure 8.6, because those distributions are conditioned on maximized MWH/MWS in

head seas. Additionally, in Figure 8.6 the simultaneous load values across the di↵erent

distributions are not explicitly linked.

Figure 8.16: Projection of Figure 8.15 on the (LCFMSPH/MSPS
, LCFMTT

) plane.

8.12.2 Correlation between Vertical Wave & Splitting Bending Moment

Figure 8.17 shows that there is little correlation, potentially implying indepen-

dence, between the vertical wave bending and splitting moment based on the near-

circular structure of the load vector curve. This is reinforced by the distributions

shown in Figures 8.6, though the distributions in Figure 8.10 for oblique seas indi-

cate that this is not a symmetric relationship, due to the di↵erent headings where

MWH/MWS andMSPH/MSPS experience their respective design values. WhenMWH/MWS
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is maximized in head seas (Figure 8.6), the corresponding MSPH/MSPS values are

about uniformly distributed around zero, while when MSPH/MSPS is maximized in

oblique seas (Figure 8.10), the MWH/MWS values take on rather significant negative

values.

Figure 8.17: Projection of Figure 8.15 on the (LCFMWH/MWS
, LCFMSPH/MSPS

) plane.

8.12.3 Correlation between Vertical Wave & Transverse Torsional Bend-

ing Moment

Figure 8.18 shows a positive correlation between the vertical wave bending and

the transverse torsional bending moments, as evidenced by Figure 8.6 in which large

positive MTT values are simultaneously recovered for maximized MWH . In the load

distributions for MTT in head seas (where MTT experiences its design value, Figure

8.13), there is also a strong connection between large positive MTT values and MWH

values.

8.12.4 Events of Interest

Figures 8.15-8.18 show that in the head seas condition, this trimaran hull ex-

periences large loading due to the vertical wave, splitting, and transverse torsional

bending moments. Based on the threshold surface defined in Table 8.11, there is a
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Figure 8.18: Projection of Figure 8.15 on the (LCFMWH/MWS
, LCFMTT

) plane.

low probability that the load vector LCF(t) exceeds Ghead over the given exposure,

relating to times when all LCF bounds are simultaneously exceeded. However, there

are many times when at least one load exceeds its individual LCF bound, again

evidenced from Figures 8.15-8.18. Even the splitting moment, which experiences its

largest values in oblique seas, still experiences 100% of its design value in the head seas

condition. Any region that is not included in the blue threshold surfaces which make

up Ghead can be considered the ‘safe’ region. However, the safe region includes many

load combinations which could also be severe conditions to test structural adequacy.

The value of the NL-DLG process is that lifetime load combinations can be visu-

alized. Such visualizations immediately relay to designers what kind of loading the

trimaran will experience, and at what levels. A discrete number of load combina-

tion cases may not fully or accurately describe the information that can be gleaned

from Figures 8.15-8.18. The many di↵erent load combination cases o↵ered in this

chapter illustrate the di�culty of choosing the right set of load combination cases to

exhaustively describe the lifetime combined loading experienced by a trimaran hull.

In general, there may be no right set of load combination cases to accomplish this

aim. But the NL-DLG process can clearly illustrate the lifetime loading experienced

by a trimaran hull. The load visualizations from Figures 8.15-8.18 may be more useful

to designers than any set of load combination cases, which are, in general, an attempt
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to describe lifetime loading.

8.13 Relevance

Using the NL-DLG process to examine combined loading for a specific trimaran

hull reveals key features of these combined loads, specifically how these loads interact

in di↵erent headings during lifetime responses. The DLG assembled distributions of

the simultaneous load combinations for seven global loads, conditioned on heading and

a single load being maximized. These distributions indicate that combined loading

on trimarans may be strongly a↵ected by geometry and side-hull location. Neither

the rule load approach (i.e. Table 8.3), nor the alternative loading procedure (i.e.

Table 8.8) gave a realistic depiction of the lifetime combined loading experienced by

the trimaran hull considered in this chapter.

The NL-DLG process was able to evaluate the probability of exceeding all LCF

values for each case in a specific approach, which o↵ered guidance on more appro-

priate load combination cases. The final recommended load combination cases were

chosen to evaluate each global load in the heading where it experiences its design

value. Additionally, these cases were designed for a low probability of exceeding all

LCF values, to be exhaustive in terms of the seven global loads, and to be mutually

exclusive. This allows a designer to constrain a testing profile with an allowable risk

factor considering load combinations, rather than individual load values.

The NL-DLG process is useful for defining load combination cases with an explicit

probabilistic basis. This gives clear information on the conservatism associated with

loading combination cases. There are an infinite number of load combination cases

which will lead to a given probability of simultaneously exceeding all load bounds. In

a way, then, the final load cases from Table 8.10 are meant to illustrate the capability

of the NL-DLG process when examining combined loading.

The visualization of load vector time series, like shown in Figures 8.15-8.18 shows

the load relationships conditioned on lifetime extreme values. This may be helpful for

a designer when considering the structural design of a trimaran hull, and how di↵erent

structures may be vulnerable to certain loading combinations. The NL-DLG process

determined conservative, exhaustive, and realistic load combination cases, associated

with a given probability of exceedance, to test the structural integrity of the given

trimaran. This is useful information for connecting allowable risk for a vessel design

with load combination cases meant to evaluate structural integrity.
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CHAPTER IX

Conclusions

9.1 Summary

For complex marine systems, the evaluation of lifetime extreme loads and re-

sponses is crucial for safe and well-performing designs. However, it is di�cult to

e�ciently estimate these loads and responses without employing major system sim-

plifications which limit the applicability to realistic physical scenarios, or lower-order

methods which lose relevant physics. For complex systems in which the excitation is

a vector of potentially correlated and non-Gaussian loading, it is a major challenge to

analyze the interaction of that load vector with a non-linear, multi-dimension thresh-

old definition, which defines allowable system responses, over a long exposure. To link

a specific system response to an overall depiction of the system during a lifetime event

requires profiles of the excitation input. But to maintain the excitation environment

generally precludes most analytical methods which consider threshold-crossings of a

vector of random processes.

This dissertation developed the non-linear Design Loads Generator process to

utilize the capability of the DLG for systems governed by combined loading. The

NL-DLG process is geared toward complex systems in which:

• Extreme system responses are defined by exceedances of a complex threshold

surface.

• The multi-dimension threshold surface is a non-linear function of the combined

non-linear loading.

• These loads may be correlated and non-Gaussian.
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Given some threshold surface, the NL-DLG process can estimate the probability

that a vector of non-Gaussian stochastic loads exceeds that threshold over a given ex-

posure period. For marine systems, this can mean the probability of physical failure,

or simply the probability of exceeding certain allowable combined load thresholds.

Examples of these threshold exceedances were examined: structural collapse of a

sti↵ened ship panel due to combined lateral and in-plane loading and combined load-

ing on trimarans. Both examples included a vector of combined loads, long exposures

in harsh environments, and a threshold definition. The NL-DLG process was able to

estimate the probability of threshold exceedance and maintain an ensemble of short

wave environments that lead to the most-likely threshold crossings.

9.2 Contributions

This dissertation makes contributions in the following specific areas. First, Chap-

ter III showed that waves which lead to extremes of surrogate processes exist in phys-

ical oceanographic data (Sey↵ert and Troesch, 2016c). As an example, a maximum

in the Gaussian derived process, which is similar to a moving average and samples a

single random processes k times separated by ⌧ seconds, identifies rare wave groups

in a wave elevation record. Chapter III showed that the expected shape of a rare

wave group matches physical wave profiles, both in an ensemble and individual sense

(Sey↵ert and Troesch, 2016a; Sey↵ert et al., 2016).

This is an important validation for the DLG method, which constructs wave pro-

files that lead to extreme values of surrogate processes. These surrogate processes

describe some linear input/ output function and are a form of reduced-ordering mod-

eling to indicate extreme behavior in a related non-linear system. Presumably, waves

which lead to extreme values of these surrogate processes indicate extreme behav-

ior of the non-linear system in question. For a surrogate process like the Gaussian

derived process, extremes of the surrogate process indicate the onset of a rare wave

group. It was shown that wave profiles which lead to these surrogate process maxima,

i.e. wave records which contain wave groups of prescribed period and group index,

can be identified in an irregular ocean environment. This strongly implies that the

wave records constructed by the DLG to lead to extreme linear system responses are

physically realizable.

Chapter V used the capability of the DLG to develop the NL-DLG process (Seyf-

fert and Troesch, 2018). The NL-DLG process can consider a system in which extreme
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responses are due to varying combinations of non-Gaussian combined loading, gener-

alized by the exceedance of a complex threshold surface by a vector of non-Gaussian

loads. The NL-DLG process estimates the probability that a vector of non-linear

excitation exceeds a multi-dimension non-linear threshold over a long exposure. For

the examples shown in Chapters VI and VII, in which the combined loading vector

has di↵erent levels of non-linearity, the NL-DLG process accurately estimates thresh-

old exceedance probabilities when compared to a full MCS analysis (Sey↵ert et al.,

2018a). The NL-DLG proved accurate with significant computational savings.

The NL-DLG process also considers a range of extreme responses, represented by

a threshold surface, and assembles an ensemble of excitation inputs which lead to

the most-likely exceedances. This allows an estimate of the probability of thresh-

old exceedance given the operational profile, and not a probability conditioned on a

single excitation input. The result reflects the information gained from brute-force

MCS without the computational expense: excitation inputs that lead to a converged

probability estimate of complex system threshold exceedance over a long exposure.

This advancement indicates the potential for applying the NL-DLG process to deter-

mine short excitation inputs for use in non-linear structural and seakeeping models.

Based on the formulation, the statistics of responses from these directed high-fidelity

simulations should converge to the statistics collected from brute-force simulation.

These excitation inputs can also illustrate the correlation structures between the

random processes considered in the excitation vector (Sey↵ert et al., 2018b). This in-

formation directs the construction of allowable design thresholds, given an acceptable

probability of non-exceedance. As shown in Chapter VIII, the NL-DLG process o↵ers

metrics on combined loading exceedances to construct load boundaries based on an

allowable level of risk. These contributions, coupled with the low computational cost

of the NL-DLG process, can e�ciently evaluate specific design options, as shown in

Chapter VII, or can evaluate lifetime loading scenarios, as in Chapter VIII.

9.3 Future Work

The development of this dissertation came from specific unexpected and curious

results of intermediate analyses. Many of those unexpected results drove the growth

of the NL-DLG process, but there were a few ideas that were not implemented, but

should be considered in the future.

Within the NL-DLG process, it would be useful to consider more than four non-
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linear load combination cases/ surrogate processes. For the examples considered, four

surrogates accurately estimate performance statistics validated from full MCS. But for

higher-dimension or more complicated threshold surfaces, more surrogate processes

may be required for an accurate probabilistic assessment.

The combinatorial challenge of including more surrogate processes currently lim-

its the maximum number of surrogate processes included in the NL-DLG process

estimation to four. Many combinatorial problems utilize the same set partitioning

associated with the Bell number as in the NL-DLG process, indicating the likelihood

that methods and algorithms exist which could enable the e�cient consideration

of more surrogate processes within the NL-DLG process. The computational cost

associated with additional surrogate processes is mainly associated with generating

DLG realizations, which is not significant. Clearly, the computational advantages of

the DLG and the NL-DLG process will diminish in the limit of a large number of

surrogate processes. But, the ability to consider more than four surrogates would

represent a major improvement of the NL-DLG process. This addition would im-

prove the accuracy of the estimations and expand the applicability to more complex

or high-dimension systems.

Further improvements to the NL-DLG process are related to relaxing assumptions

required for the framework. For some dynamic responses, initial-conditions and cycle-

counting may be significant drivers to threshold exceedances. The NL-DLG process

assumes that the system threshold surface is time-invariant. For fatigue or dynamic

responses heavily impacted by initial conditions, this assumption must be modified

to utilize the capability of the NL-DLG process.

It is also of interest to consider what e↵ects the non-linearity of a stochastic

excitation has on the return period of an extreme response. Currently, the exposure

period drives the DLG’s construction of inputs which lead to the distribution of

extreme responses for the linear surrogate processes. These inputs give a lower bound

on the distribution of associated non-linear responses. In the example of Chapter VI,

it was shown that with an accurate TEV estimate, the NL-DLG process gives a

lower bound on the probability of exceeding the threshold definition. The probability

estimate was within 1% error from the full MCS verification, but for systems with

other types of non-linearities, the estimate from the NL-DLG process could lead to a

significant under-prediction of the probability of threshold exceedances.

It may be possible to increase the exposure length so that the excitation inputs
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constructed by the DLG more closely bound the non-linear response distributions.

This would be a useful improvement, especially for systems with a given exposure

and specified risk parameter or probability of non-exceedance. For linear systems,

this explicitly relates to a longer exposure period, as explained in Chapter 2.2. But for

non-linear functions, the addition of risk parameters to the linear response distribution

may not translate to the same reliability for the non-linear distributions. It may be

worthwhile to examine what sort of non-linearities require an increased exposure for

the associated linear surrogate process to closely bound the non-linear responses. It

would also be useful to know how this increased exposure relates to an imposed risk

parameter on the non-linear system.

These areas of future work would improve the capability of the NL-DLG process,

and expand its applicability to more complex and non-linear marine systems.
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APPENDIX A

Probability Space of Maxima Configurations for

Related Surrogate Processes

A.1 Probability Space of Maxima Configurations

To determine the probability of experiencing the specific maxima configurations

ci , like shown in Figure 5.5, the probability space is first defined. Three regions of

the failure surface, G, are emphasized by three non-linear load combination cases.

These cases are approximated using three surrogate processes, zi(t) i = 1, 2, 3, and

for clarity here, n = 3 will be used for the definitions.

The NL-DLG process generates many ⌘1(t), ⌘2(t), and ⌘3(t) for a threshold sur-

face, G, with three regions emphasized by three non-linear load combination cases,

approximated by three associated surrogate processes z1(t), z2(t), and z3(t). Using

the notation from Chapter 5.4.1, consider that the ⌘1(t) time series are constructed

so that z11(t) has a maximum cz11 2 g(z1,T ). These ⌘1(t) time series also drive z12(t)

and z13(t) time series, which may contain maxima cz12 2 g(z2,T ) and cz13 2 g(z3,T ),

respectively. In this way, the maxima cz11 can be classified into disjoint and exhaustive

groups depending on whether the ⌘1(t) time series which leads to cz11 2 g(z1,T ) also

leads to cz12 2 g(z2,T ) and/ or cz13 2 g(z3,T ).

Using similar notation from Chapter 5.7.1, each ⌘1(t) time series constructed from

the DLG can be seen as an individual trial of an experiment with the possible out-

comes: {cZ1, [Z1Z2, [Z1Z3, \Z1Z2Z3}. Here the order of the subscripts matters. The first

subscript indicates which ⌘i(t) time series are being examined. This means that the
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event {[Z1Z2} comes from a ⌘1(t) time series, constructed to produce cz11 2 g(z1,T ),

that also contains cz12 2 g(z2,T ), and cz13 /2 g(z3,T ). Conversely, the event {[Z2Z1} re-

sults from a ⌘2(t) time series, constructed to produce cz22 2 g(z2,T ), that also contains

cz21 2 g(z1,T ), and cz23 /2 g(z3,T ). Note also that the event { \Z1Z2Z3} comes from ⌘1(t),

whereas { \Z2Z1Z3} comes from ⌘2(t) and { \Z3Z1Z2} comes from ⌘3(t). A measurable

probability space, (⌦1,F1, P1), for the possible event outcomes from the ⌘1(t) time

series is defined as:

⌦
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(A.1)

where

⌦
1

= sample space of all possible outcomes when considering a ⌘
1

(t) time series

F
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= event space, which is a �-algebra

P
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= probability measure
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The probability measure for any union of the events in the (⌦1,F1, P1) space is a

simple sum because all of the events are by definition disjoint. Similarly, measurable

probability spaces for the possible event outcomes from the DLG time series for z2(t)

and z3(t) are defined as:

(⌦
2

,F
2

, P
2

) (A.2)

where

⌦
2

= {cZ
2

, [Z
2

Z
1

, [Z
2

Z
3

, \Z
2

Z
1

Z
3

}
F

2

= {cZ
2

, [Z
2

Z
1

, [Z
2

Z
3

, \Z
2

Z
1

Z
3

,cZ
2

[ [Z
2

Z
1

,cZ
2

[ [Z
2

Z
3

,cZ
2

[ \Z
2

Z
1

Z
3

, [Z
2

Z
1

[ [Z
2

Z
3

,

[Z
2

Z
1

[ \Z
2

Z
1

Z
3

, [Z
2

Z
3

[ \Z
2

Z
1

Z
3

,cZ
2

[ [Z
2

Z
1

[ [Z
2

Z
3

,cZ
2

[ [Z
2

Z
1

[ \Z
2

Z
1

Z
3

,

cZ
2

[ [Z
2

Z
3

[ \Z
2

Z
1

Z
3

, [Z
2

Z
1

[ [Z
2

Z
3

[ \Z
2

Z
1

Z
3

,⌦
2

, ;}

P
2

= (p({cZ
2

}), p({[Z
2

Z
1

}), p({[Z
2

Z
3

}), p({cZ
2

[ [Z
2

Z
1

}), · · · )

182



(⌦
3

,F
3

, P
3

) (A.3)

where

⌦
3

= {cZ
3

, [Z
3

Z
1

, [Z
3

Z
2

, \Z
3

Z
1

Z
2

}

F
3

= {cZ
3

, [Z
3

Z
1

, [Z
3

Z
2

, \Z
3

Z
1

Z
2

,cZ
3

[ [Z
3

Z
1

,cZ
3

[ [Z
3

Z
2

,cZ
3

[ \Z
3

Z
1

Z
2

, [Z
3

Z
1

[ [Z
3

Z
2

,

[Z
3

Z
1

[ \Z
3

Z
1

Z
2

, [Z
3

Z
2

[ \Z
3

Z
1

Z
2

,cZ
3

[ [Z
3

Z
1

[ [Z
3

Z
2

,cZ
3

[ [Z
3

Z
1

[ \Z
3

Z
1

Z
2

,

cZ
3

[ [Z
3

Z
2

[ \Z
3

Z
1

Z
2

, [Z
3

Z
1

[ [Z
3

Z
2

[ \Z
3

Z
1

Z
2

,⌦
3

, ;}

P
3

= (p({cZ
3

}), p({[Z
3

Z
1

}), p({[Z
3

Z
2

}), p({cZ
3

[ [Z
3

Z
1

}), · · · )

The individual probability measures for the events in probability spaces (⌦2,F2, P2)

and (⌦3,F3, P3) are calculated in the same way as for (⌦1,F1, P1). Note that the

events in the (⌦i,Fi, Pi) spaces are equivalent to the sub-groups within the maxima

configurations (i.e. c3 : {cZ1, [Z2Z3}). What is of interest here is to find the probability

of experiencing each maxima configuration c1 � c5 during an exposure.

This problem is similar to a 3-stage probability experiment of varying-length.

A trial is drawn successively from each of the 3 stages and the experiment may

prematurely terminate (may not include all three stages) and be labelled a ‘success’

if some criteria is satisfied during one of the three stages. A success may occur on

the 1st, 2nd, or on the 3rd stage. It is also possible that the three stages go by and

no success occurs. For example, imagine the experiment is that a coin (heads {H} or

tails {T}) is flipped up to three times. A success occurs, and the experiment ends,

the 1st time a heads is flipped. A success may occur on the 1st flip: {H}, on the 2nd

flip: {T,H}, on the 3rd flip: {T,T,H}, or not at all: {T,T,T}.
For the NL-DLG process, the criterion for success is the occurrence of a maxima

configuration in which each surrogate process maximum occurs exactly once. This

happens if each maximum occurs separately: {cZ1,cZ2,cZ3}, two maxima cluster to-

gether with the third separate: {[Z1Z2,cZ3}, {[Z1Z3,cZ2}, or {[Z2Z3,cZ1}, or all maxima

cluster together: { \Z1Z2Z3}. These are the five maxima configurations c1 � c5 pos-

sible that describe how the maxima of three surrogate processes may be clustered.

Note these five configurations have di↵erent lengths and can occur with di↵erent or-

ders (e.g. the maxima of surrogate processes z1(t) and z3(t) may be clustered, with

the maximum of z2(t) occurring separately, and this event may come from di↵erent

types and orderings of DLG simulations ⌘i(t): {[Z1Z3,cZ2}, {[Z3Z1,cZ2}, {cZ2, [Z1Z3},
or {cZ2, [Z3Z1}). The aim of this appendix is to answer the questions:

• If a trial is drawn from each (⌦i,Fi, Pi) with i = 1, 2, 3, what is the probability of
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experiencing a successful maxima configuration in which each maximum occurs

exactly once during the 3-stage experiment?

• What is the probability of experiencing each specific successful maxima config-

uration c1 � c5?

To answer these questions, first dictate that the order of the three stages matters.

For the overall probability of threshold exceedances, the ordering of the surrogate

process maxima over an exposure does not matter, but the ordering assumption

makes each configuration distinct, which simplifies the 3-stage experiment. With

an ordering of the stages, there are six equally likely orders, corresponding to the

six di↵erent ways that three surrogate process probability spaces can be ordered

(order· · · = o123, o132, o213, o231, o312, o321). The probability of experiencing each

ordering is the same because each surrogate process maximum has the same return

period (this is confirmed from MCS results in Chapter 7.7.1). Each probability space

ordering represents another probability space given this ordering. As an example, the

overall probability space for the ordering o123 is (⌦123,F123, P123), defined as:
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This is a measurable probability space because the individual probability spaces
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for each DLG time series ⌘i(t), (⌦i,Fi, Pi), are measurable probability spaces:
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(A.5)

The overall probability spaces for the other orderings are similarly defined. These

distinct orderings imply that a successful maxima configuration can occur with dif-

ferent probability space orderings. For example, {cZ1, [Z2Z3}, {[Z2Z3,cZ1}, {[Z3Z2,cZ1},
and {cZ1, [Z3Z2} are di↵erent events due to the distinct orderings. But these events all

lead to the same successful maxima configuration c3 , in which the surrogate process

maxima of z2(t) and z3(t) cluster together and the maximum of z1(t) occurs sepa-

rately over the exposure. {cZ1, [Z2Z3} comes from drawing {cZ1} from the (⌦1,F1, P1)

space, and then {[Z2Z3} from the (⌦2,F2, P2) space. {[Z2Z3,cZ1} comes from drawing

{[Z2Z3} from the (⌦2,F2, P2) space then {cZ1} from the (⌦1,F1, P1) space. {[Z3Z2,cZ1}
comes from drawing {[Z3Z2} from the (⌦3,F3, P3) space, then {cZ1} from (⌦1,F1, P1)

space. {cZ1, [Z3Z2} comes from drawing {cZ1} from the (⌦1,F1, P1) space, then {[Z3Z2}
from the (⌦3,F3, P3) space.

Similarly, the definitions of the five successful maxima configurations for n = 3 are

expanded to consider all possible probability space orderings, as below. The uppercase

and boldface C indicates the ordering distinction to distinguish the configurations

from those referenced in Figure 5.5, which do not have an ordering distinction.
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(A.6)

With the ordering distinction, next choose a surrogate process probability space

ordering, say o123, which indicates the 1st trial is drawn from (⌦1,F1, P1), the 2nd

from (⌦2,F2, P2), and the 3rd from (⌦3,F3, P3). What is probability of experiencing

one of the five successful maxima configurations with this ordering?
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For the probability of experiencing a successful maxima configuration for n =

3, these configurations may be up to 3-stages long (i.e. { \Z1Z2Z3}, {cZ1, [Z2Z3},
{cZ1,cZ2,cZ3}, · · · ). For the probability space for specific orderings like (⌦123,F123, P123),

the experiment requires a trial be drawn from each individual probability space.

(⌦123,F123, P123) is only a valid probability space because each possible outcome is 3-

stages long. The sum of the probabilities of each possible triplet is unity, i.e. Eq.(A.5).

But, if a trial is less than 3-stages long, the sum of the probabilities of all possible

trials is not unity.

With the order configuration o123, the only successful maxima configurations

are {cZ1,cZ2,cZ3}, {cZ1, [Z2Z3}, {[Z1Z3,cZ2}, or { \Z1Z2Z3}. But, the outcomes for the

(⌦123,F123, P123) are all 3-stages long. Therefore, the definition of a successful se-

quence is altered include to all 3-trial sequences possible given that the experiment

continues if a successful configuration occurs in less than three draws with the given

ordering. The definitions of the successful combinations with the ordering o123 are

expanded below:
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This expansion defines the successful maxima configurations as members of the
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64 possible triplet events from the (⌦o···,Fo···, Po···) with the given probability space

ordering o · · · . This expansion, however, does not alter the probability of experiencing

a successful maxima configuration within a given ordering. For example, with the

ordering o123, the successful maxima configuration {cZ1, [Z2Z3} expands to include

each possible draw from (⌦3,F3, P3). The probability of experiencing this successful

configuration within the ordering o123 is the sum of the probabilities of experiencing

the expanded group of sequences {cZ1, [Z2Z3,cZ3}, {cZ1, [Z2Z3, [Z3Z1}, {cZ1, [Z2Z3, [Z3Z2},
and {cZ1, [Z2Z3, \Z3Z1Z2}.

The probability of experiencing a specific outcome during a stage of the experiment

is estimated from the DLG simulations, as in Eq.(A.1). Each stage in the 3-stage

trial is assumed independent because each considers a di↵erent ⌘i(t) time series, so

the probabilities of experiencing specific sub-groups within the maxima configuration

given a ⌘i(t) trial are also independent. The validity of this assumption is an area of

active research. With this assumption, the probability of experiencing the successful

maxima configuration {cZ1, [Z2Z3} within the ordering o123 is:
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(A.7)

The probability of experiencing the expanded definition of {cZ1, [Z2Z3} to include

each possible draw from (⌦3,F3, P3) collapses back to the probability of experiencing

simply {cZ1, [Z2Z3}, because
P4

k=1 p({⌦3k}) = 1. Therefore, the expanded definitions

are simplified for assessing the probability of experiencing a successful maxima con-

figuration.

Finally, the probability of experiencing each maxima configuration requires the

consideration of all successful maxima configurations with any possible orderings of

draws (o123, o132, · · · , o321). The successful maxima configurations, as referenced in

the main paper, have been expanded to include all possible orderings of the maxima

groups (meaning, e.g. c5 , in which all surrogate process maxima occur separately

includes the events from the orderings o123 : {cZ1,cZ2,cZ3}, o132 : {cZ1,cZ3,cZ2}, o213 :
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{cZ2,cZ1,cZ3}, o231 : {cZ2,cZ3,cZ1}, o312 : {cZ3,cZ1,cZ2}, and o321 : {cZ3,cZ2,cZ1}).
This expansion estimates the probability of experiencing each maxima configura-

tion, within the earlier confines of the independence of the non-failure events assump-

tion, which means the order of events does not matter. However, not all maxima

configurations are possible given a probability space ordering. The successful max-

ima configurations were also expanded to be 3-stages long, to be defined as possible

events in the given probability space (⌦o···,Fo···, Po···) for the ordering o · · · . As shown
in Eq.(A.7), the addition of the expansion is required only for relation to the 3-stage

probability spaces, and this expansion simplifies in the probability calculation. The

probability of experiencing each maximum configuration Ci with i = 1 , 2 , 3 , 4 , 5 is

given by Eq.(A.8)-(A.12):
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The final step to finding the probability of experiencing each maxima configu-

ration c1 � c5 as referenced in Eq.(5.6) is to condition all the above probabilities

from Eq.(A.8)-(A.12) on being a successful configuration (that being each surrogate

process maximum occurs exactly once). This is necessary because the only maxima

configurations which have physical meaning as related to the NL-DLG process formu-

lation in Chapter 5.8.2 are the successful configurations. For each 3-stage probability

space, (⌦o···,Fo···, Po···) with order o · · · , there are many triplets of events which are
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not successful maxima configurations. These non-successful maxima configurations

are not physically realizable, because each surrogate process maxima can only be

experienced once during an exposure.

Each exposure can be classified as exactly one of c1 � c5 . These configurations

express the only ways that 3 surrogate process maxima may be clustered over a full

exposure. The 3-stage probability experiment shown here reflects the p(c1 ) + · · · +
p(c5 ) = 1 criterion when Eq.(A.8)-(A.12) are conditioned on a successful configura-

tion being experienced (i.e., with p(C1 |success) + p(C2 |success) + p(C3 |success) +
p(C4 |success) + p(C5 |success) = 1). This is adjusted as below in Eq.(A.13). Terms

of the form p(Ci \ success) simplify to p(Ci ) because the configurations C1 -C5

are by definition successful configurations. The final expressions, p(ci), are what is

referenced in Eq.(5.6) in Chapter 5.8.2.

p(ci) = p(Ci |success) = p(Ci \ success)

p(success)
=

p(Ci)

p(success)

p(success) = p(C1 ) + p(C2 ) + p(C3 ) + p(C4 ) + p(C5 )

(A.13)

This entire process generalizes to any number of surrogate processes, but more

surrogate processes, n, require an analysis of more maxima configurations, defined

by the Bell number, Bn, and more probability space orderings, which is of order n!.

Adding more surrogate processes requires conducting more DLG simulations, but

this is computationally cheap (about 3 minutes per surrogate process, to construct

2000 simulations). The di�culty of considering more surrogate processes is related to

the organization of the probability space for the n�stage experiment, the increased

number of possible probability space orderings, and the number of possible maxima

configurations.
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