
Bridging the Scalability Gap by Exploiting Error
Tolerance for Emerging Applications

by

Parker Hill

A dissertation submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy
(Computer Science and Engineering)

in The University of Michigan
2018

Doctoral Committee:

Assistant Professor Lingjia Tang, Co-Chair
Assistant Professor Jason Mars, Co-Chair
Assistant Professor Hun Seok Kim
Professor Scott Mahlke

Parker Hill

parkerhh@umich.edu

ORCID iD: 0000-0002-6114-6033

c© Parker Hill 2018

ACKNOWLEDGEMENTS

I thank my dissertation committee – Lingjia Tang, Jason Mars, Scott Mahlke,

and Hun Seok Kim – for their feedback while writing this dissertation. I particularly

appreciate the guidance and support I have received by having Lingjia, Jason, and

Scott as co-advisors. My dissertation would not be nearly as exciting or robust if not

for Jason’s ability to make a compelling case for seemingly every research direction

that I’ve pursued and Lingjia’s ability to pinpoint key questions throughout my

research. In addition to those in formal advisory roles, I thank Michael Laurenzano

for always being available and helping refine every aspect of my research.

I am grateful to all of the members of Clarity Lab. Their contagious work ethic

and ambition provided me with the motivation to conduct my work with equally

high determination and standards. Specifically, I owe Animesh Jain gratitude for

invaluable collaboration and enduring countless practice talks.

I thank my parents, Brent and Caroline, for their love and support before and

throughout this process. Architecting the foundation of a computer architecture

researcher is certainly more difficult than being one. You truly instilled the charac-

teristics in me that make me a happy and productive researcher. Finally, I express

gratitude towards my brothers – Spencer, Mason, and Connor – for the innumerable

discussions and debates, providing me with the fortitude to thrive in graduate school.

ii

TABLE OF CONTENTS

ACKNOWLEDGEMENTS . ii

LIST OF FIGURES . vi

LIST OF TABLES . xi

ABSTRACT . xii

CHAPTER

I. Introduction . 1

1.1 Motivation . 3
1.1.1 Output Quality Guarantees 3
1.1.2 Removing Insignificant Computation 5

1.2 Exploiting Error Tolerance 9
1.2.1 NinjaProx: Achieving Accuracy Guarantees for Ap-

proximate Computing 9
1.2.2 DeftNN: Addressing Bottlenecks for DNN Execution

on GPUs via Synapse Vector Elimination and Near-
compute Data Fission 10

1.2.3 Rethinking Numerical Representations for DNNs . . 11
1.3 Summary of Contributions 13

II. Background and Related Work 15

2.1 Output Quality Guarantees 15
2.2 Commodity Hardware . 17

iii

2.3 Customized Hardware . 18

III. Realizing Service Level Agreements on Result Accuracy for
Approximate Data-parallel Programs 19

3.1 Accuracy SLAs . 21
3.1.1 Motivation . 21
3.1.2 Defintion . 22
3.1.3 ASLA Specification 23

3.2 NinjaProx Overview . 23
3.2.1 Programming Interface 24
3.2.2 Compilation . 25
3.2.3 Runtime Support 26

3.3 Guarantee Enforcement . 27
3.3.1 Map-based Model 27
3.3.2 Guarantee Engine Overview 30
3.3.3 Computing an Accuracy Distribution 31
3.3.4 Deriving an Accuracy Guarantee 32

3.4 Evaluation . 40
3.4.1 Experimental Methodology 40
3.4.2 Accuracy Guarantees 44
3.4.3 End-to-end Approximation System 48
3.4.4 Runtime Analysis 51
3.4.5 Comparison to Static Oracle 51

3.5 Summary . 53

IV. DeftNN: Addressing Bottlenecks for DNN Execution on GPUs
via Synapse Vector Elimination and Near-compute Data Fis-
sion . 55

4.1 Challenges . 56
4.1.1 Computation Elimination 56
4.1.2 On-chip Memory Bandwidth 60

4.2 System Overview . 62
4.3 Optimization Techniques . 64

4.3.1 Synapse Vector Elimination 64
4.3.2 Near-compute Data Fission 74

4.4 Evaluation . 79

iv

4.4.1 Methodology . 80
4.4.2 Overall DeftNN System 80
4.4.3 Synapse Vector Elimination 81
4.4.4 Near-compute Data Fission 82
4.4.5 Hardware-accelerated Data Fission 85
4.4.6 Performance-Accuracy Tradeoffs 87
4.4.7 cuDNN with DeftNN Optimization 90
4.4.8 Comparison to Prior Work 90

4.5 Summary . 93

V. Rethinking Numerical Representations for Deep Neural Net-
works . 94

5.1 Customized Precision Hardware 95
5.1.1 Design Space . 95
5.1.2 Customized Precision Types 96
5.1.3 Hardware Implications 97

5.2 Methodology . 99
5.2.1 Accuracy . 100
5.2.2 Efficiency . 100
5.2.3 Training . 101
5.2.4 Efficient Customized Precision Search 102

5.3 Experiments . 103
5.3.1 Experimental Setup 104
5.3.2 Accuracy versus Efficiency Trade-offs 105
5.3.3 Sources of Accumulation Error 107
5.3.4 Customized Precision Search 110

5.4 Summary . 112

VI. Conclusion . 113

BIBLIOGRAPHY . 116

v

LIST OF FIGURES

Figure

3.1 End-to-end NinjaProx: after compiling an approximation-amenable
application written using the NinjaProx programming interface, the
runtime system searches the set of approximations based on the ac-
curacy guarantees supplied by the guarantee engine to select an ap-
proximation. 20

3.2 Original implementation of binarize, an application that seg-
ments pixels based on intensity. 26

3.3 Example of NinjaProx applied to a binarize implementation. The
ninjaprox::approxMap function writes a value to each element
in the output, after automatically finding the approximation param-
eters that fit the ASLA. 28

3.4 Guarantee engine overview comprised of two steps: accuracy infer-
ence and guarantee generation. 28

3.5 Example accuracy distribution derivation. 29
3.6 A comparison between the accuracy resulting from approximations

that pass the NinjaProx guarantee engine (CL=90%) to the accuracy
of all approximations, showing that the guarantee engine catches all
approximations that do not conform to the specified ASLA. 43

3.7 Distributions of how frequently the accuracy guarantee meets the
accuracy target across all applications, inputs and approximations
and 4 confidence levels of 90%, 95%, 99% and 99.9%. By observing
that all such experiments are above the specified CL (i.e., that the
entire violin is within the shaded region), we can verify that the
statistical guarantees made by the NinjaProx guarantee engine work
as expected. 44

vi

3.8 Scatter plots comparing actual accuracy (x-axis) to guarantee ac-
curacy (y-axis) for a confidence level of 90%. A point in the green
shaded region indicates a guarantee that achieves more accuracy
than the target. The white regions should, and do, contain less than
10% of the points in each plot, representing a maximum of 10% out-
side of the CL=90% confidence interval. The accuracy guarantees
heavily skew toward the shaded region and closely track the actual
accuracy. 46

3.9 Speedup achieved per application across all inputs for the NinjaProx
runtime system with CL = {90%, 95%, 99%, 99.9%}, showing that
less strict ASLAs allow for higher performance. 49

3.10 CDFs of accuracy achieved for all application inputs when allowing
NinjaProx to choose approximations, showing that accuracy targets
are always met and that the accuracy approaches the target output
quality limit as a less strict confidence level is used in the ASLA. . . 50

3.11 Time breakdown of the NinjaProx runtime system, showing very
low overhead for selecting approximations and significant time-to-
solution improvements. 52

3.12 Speedup achieved by NinjaProx for CL = 99.9% compared to a static
oracle, showing that NinjaProx outperforms the static oracle. The
accuracy is above the target accuracy in all cases for both techniques. 53

4.1 (a) Original DNN computation resulting in redundant computation,
(b) network pruning [40,41] resulting in underutilized hardware, and
(c) synapse vector elimination showing efficient use of resources. . . 57

4.2 GPU utilization when processing DNNs, showing the on-chip mem-
ory bandwidth bottleneck. 59

4.3 Overview of the DeftNN framework. 59
4.4 High-level view of synapse vector elimination, showing that (a) the

exact computation is an M × K by K × N matrix multiplication,
while (b) synapse vector elimination preprocesses the input to make
the computation an M×(K−D) by (K−D)×N matrix multiplication. 65

4.5 Internal workings of synapse vector elimination, showing compacting
retained synapses so that the matrix can be trivially resized. 66

4.6 Overhead from synapse reordering compared to copying all retained
synapses, showing that DeftNN substantially reduces the overhead of
input transformation by reordering synapses at useful design points
(¿50% retained). 69

vii

4.7 (a) The original design, (b) high level view of a design with near-
compute data fission, (c) fission using the IEEE 754 single precision
floating-point to the half precision variant, (d) fission using the Deft-
16 floating-point format, and (e) fission using the optimized Deft-
16Q floating-point conversion format. 71

4.8 Fission in the DFU, showing hardware to apply fission to an 8-bit,
variable exponent length (N) floating-point value to an IEEE single-
precision value. 77

4.9 Speedup achieved by DeftNN when applying synapse vector discard-
ing, data fission, and the combination of the two, showing the sig-
nificant benefits of each technique and their efficacy when applied in
concert. 81

4.10 Per-layer speedup when applying synapse vector elimination, show-
ing large performance improvements, particularly for the large DNNs
(IMC, FLS, OXF, and SOS). 82

4.11 (a) Speedup from using 16-bit compute (FP16) and fission in three
different formats (IEEE Fission, Deft-16, and Deft-16Q) compared
to 32-bit storage and computation (No Fission) along with (b,c) per-
tinent profiling metrics, showing that Deft-16Q, achieves the highest
performance because of improved effective on-chip memory band-
width. 83

4.12 Comparison of no near-compute data fission, software-only fission
(Deft-16Q), and hardware accelerated 16-bit (Deft-16H) and 8-bit
(Deft-8H) fission, showing that (a) performance is improved as (b) ef-
fective on-chip bandwidth is increased with smaller representations,
without (c) restrictive conversion overhead. 84

4.13 DeftNN runtime performance achieved by employing software-only
(Deft-16Q) and hardware-accelerated (Deft-16H/8H) fission, show-
ing substantial speedup via hardware-accelerated DeftNN. 86

4.14 DeftNN Pareto frontiers, showing a range of advantageous operating
points as the accuracy target is tuned. 88

4.15 Speedup achieved by DeftNN at particular accuracy levels, showing
that DeftNN exposes a range of useful design points for approximate
computing. 88

4.16 Speedup of cuDNN [20] with DeftNN optimizations, showing DeftNN
provides similar speedup for cuDNN as it provides for MAGMA. . . 89

viii

4.17 End-to-end speedup of DeftNN synapse vector elimination, software
executed network pruning [41], and EIE [39] hardware-accelerated
network pruning. 92

4.18 Comparison of DeftNN data fission to off-chip data packing [98]. . 93
5.1 A fixed-point representation. Hardware parameters include the total

number of bits and the position of the radix point. 95
5.2 A floating-point representation. Hardware parameters include the

number of mantissa and exponent bits, and the bias. 95
5.3 Floating point multiply-accumulate (MAC) unit with various levels

of detail: (a) the high level mathematical operation, (b) the modules
that form a floating point MAC, and (c) the signal propagation of
the unit. 97

5.4 Delay and area implications of mantissa width, normalized to a 32-
bit Single Precision MAC with 23 mantissa bits. 99

5.5 Speedup calculation with a fixed area budget. The speedup exploits
the improved function delay and parallelism. 99

5.6 The inference accuracy versus speedup design space for each of the
neural networks, showing substantial computational performance im-
provements for minimal accuracy degradation when customized pre-
cision floating-point formats are used. 104

5.7 The speedup and energy savings as the two parameters are adjusted
for the custom floating point and fixed-point representations. The
marked area denotes configurations where the total loss in AlexNet
accuracy is less than 1%. 106

5.8 The accumulation of weighted neuron inputs for a specific neuron
with various customized precision DNNs as well as the IEEE 754
single precision floating point configuration for reference. FL and FI
are used to abbreviate floating point and fixed-point, respectively.
The format parameters are as follows: M=mantissa, E=exponent,
L=bits left of radix point, R=bits right of radix point. 107

5.9 The linear fit from the correlation between normalized accuracy and
last layer activations of the exact and customized precision DNNs. . 107

ix

5.10 The speedup achieved by selecting the customized precision using
an exhaustive search (i.e. the ideal design) and prediction using
the accuracy model with accuracy evaluated for some number of
configurations (model + X samples). The floating-point (FL) and
fixed-point (FI) results are shown in the top and bottom rows, re-
spectively. The model with two evaluated designs produces the same
configurations, but requires <0.6% of the search time. 109

5.11 The speedup resulting from searching for the fastest setting with less
than 1% inference accuracy degradation. All selected customized pre-
cision DNNs meet this accuracy constraint. 112

x

LIST OF TABLES

Table

3.1 Applications and input sets used in the evaluation. 37
4.1 The set of benchmarks used to evaluate DeftNN. 79

xi

ABSTRACT

In recent years, there has been a surge in demand for intelligent applications.

These emerging applications are powered by algorithms from domains such as com-

puter vision, image processing, pattern recognition, and machine learning. Across

these algorithms, there exist two key computational characteristics. First, the com-

putational demands they place on computing infrastructure is large, with the poten-

tial to substantially outstrip existing compute resources. Second, they are necessarily

resilient to errors due to their inputs and outputs being inherently noisy and impre-

cise.

Despite the staggering computational requirements and resilience of intelligent

applications, current infrastructure uses conventional software and hardware method-

ologies. These systems needlessly consume resources for every bit of precision and

arithmetic. To address this inefficiency and help bridge the performance gap caused

by intelligent applications, this dissertation investigates exploiting error tolerance

across the hardware-software stack. Specifically, we propose (1) statistical machin-

ery to guarantee that accuracy is not compromised when removing work or precision,

(2) a GPU optimization framework for work skipping and bottleneck mitigation, and

(3) exploration of unconventional numerical representations to steer future hardware

designs.

xii

CHAPTER I

Introduction

In the past few years, there has been a surge demand for intelligent applica-

tions, as companies like Apple, Google, Microsoft and Amazon devise increasingly

wide-reaching and sophisticated software offerings [3, 5, 37, 73]. Underlying these

applications are algorithms from domains such as computer vision, image process-

ing, pattern recognition and machine learning. Two characteristics of these domains

have become evident in recent years. First, the computational demands they place on

computing infrastructure are large, with the potential to outstrip available compute

resources by a large margin [45]. Second, their inputs and outputs are inherently

noisy and imprecise. Despite these staggering computational requirements and im-

precise inputs and outputs, current infrastructure uses conventional methodologies

resulting in redundant computations and overly precise arithmetic. However, to

remove insignificant work and precision three key challenges must be addressed.

First, developers and service operators do not trust that accuracy will not be

compromised when computation and precision is removed. To build trust in these

1

approaches, new runtime systems must be designed that can guarantee consistent

output quality. Second, the architecture must be considered in order to exploit er-

ror tolerance to improve performance. For example, cutting raw computation (e.g.,

dynamic floating-point instructions) does not directly map to performance on com-

modity accelerators due to the wide vector units present in the architecture. To

improve performance, the microarchitectural nuances of such accelerators must be

carefully considered. Finally, to improve performance by developing customized ac-

celerators for these emerging application, we must explore a large trade-off space

between performance and accuracy. Specifically, the accelerator’s underlying numer-

ical representation, a critical factor in performance, has not been investigated due to

the difficultly in simulating all of these representations.

This dissertation addresses these challenges to promote the widespread use of

exploiting error tolerance. In the first chapter, it proposes a runtime system that

provides statistical output quality guarantees, allowing approximated computations

to be trusted in deployment. We achieve this by casting the problem of finding an

accurate approximation to a statistical one and design a framework around robust

statistical methods to guarantee output quality. In the next chapter, this dissertation

introduces techniques to efficiently exploit error tolerance for DNNs being executed

on GPUs. It does this by tailoring work skipping and memory compression to the

GPU architecture, requiring (1) skipping work in a very structured manner to fully

utilized GPU vector units and (2) decompressing values with very little overhead

to avoid undermining the benefits of mitigating the on-chip memory bandwidth ar-

chitectural bottleneck. Finally, this dissertation proposes exploring the numerical

2

representation design space to achieve even higher performance benefits for custom

DNN accelerators.

1.1 Motivation

In this section, we motivate the need of runtime systems and approximation

techniques that exploit error tolerance in emerging applications.

1.1.1 Output Quality Guarantees

There has recently been a surge of popularity in intelligent webservices, as com-

panies like Apple, Google, Microsoft and Amazon devise increasingly wide-reaching

and sophisticated software offerings [3,5,37,73]. The underlying computational com-

ponents that are central to such services are often computations that are amenable

to approximation from domains that include computer vision, image processing, pat-

tern recognition and machine learning. Two characteristics of these domains have

become evident in recent years. First, the computational demands they place on

computing infrastructure are large, with the potential to outstrip available compute

resources by a large margin [45]. Second, their inputs and outputs are inherently

noisy and imprecise.

The confluence of these two characteristics make such applications prime candi-

dates for approximate computing, where small, often imperceptible degradations in

output quality can be traded for large improvements in performance or energy. While

there are a number of techniques that have been devised for both hardware and soft-

ware to make this tradeoff [4,46,51,63,98,99], one of the key challenges that remains

3

in this area and holds back the adoption of approximate computing lies in providing

guarantees as to how much accuracy will be lost when applying approximation.

Conventional approximation systems use empirical demonstrations to validate

that their approaches to steering approximation provide the accuracy levels intended

by the designers, often based on devising training sets resembling the input sets that

will be seen in production [29,51,72,102], a notoriously difficult problem to solve [26].

Other systems leverage training-free quality control mechanisms [63, 97, 98], often

by assuming that recent inputs will resemble future inputs and adjusting the level

of approximation accordingly. In all cases, however, this class of systems cannot

provide guarantees of result quality on difficult cases that the system is not trained

or designed to handle.

Prior works have taken steps to address the more fundamental problem of pro-

viding analytical or statistical guarantees of result quality. These works fall into two

classes:

• Static Analysis – This class of techniques uses formal static analysis to reason

about program accuracy under approximation [10,11,16,74,76], an approach that

has two limitations. First, it is difficult to scale such approaches to problems

beyond a limited level of complexity (dozens of lines of code). They can be applied

to simple programs, for particular kinds of approximation techniques, but have

difficulty scaling beyond these narrow cases. Second, these approaches are driven

by the worst-case accuracy, and typically leave significant untapped performance

opportunities on the table when the worst case fails to materialize.

• Customized Solutions – This class of techniques leverage quality guarantee

4

mechanisms that are specific to a set of assumptions around the application(s)

or approximation technique(s), such as database aggregation operations [15] or

reductions in a MapReduce framework [36,84]. Such techniques are important, but

cannot be applied beyond the scope of applications and approximation techniques

they are designed to cover.

Instead of designing application-specific techniques, this paper begins with the

observation that many applications amenable to approximation have similar compu-

tational patterns, coming from the domains of machine learning, pattern recognition,

computer vision, image processing and data mining. Exploiting this commonality,

we describe a solution that provides statistical accuracy guarantees when applying

approximation to a broad class of applications characterized with the property we

describe as map-based. We describe an application as being map-based if parts of the

application can be executed in parallel, and can also be executed out-of-order and

incrementally. We leverage these properties to first compute a randomly-selected

subset of the application output both with and without approximation applied. The

fact that random sampling can be applied to the problem allows us to leverage sta-

tistical techniques to build statistical guarantees about the accuracy of the output

when applying approximation.

1.1.2 Removing Insignificant Computation

This section motivates the use of exploiting error tolerance in emerging applica-

tions, specifically deep neural networks. In the following two subsections, we find

this need for both commodity and customized hardware.

5

1.1.2.1 Commodity Hardware

As user demand for state-of-the-art technologies in the domains of computer

vision, speech recognition, and natural language processing (NLP) continues to in-

crease, system designers are tasked with supporting increasingly sophisticated ma-

chine learning capabilities [44, 45]. An important trend that impacts the design of

current and future intelligent systems is the convergence of industry toward deep

learning as the computational engine providing these services. Large companies,

including Google [104], Facebook [33], and Microsoft [89], among others [65], are

using deep neural networks (DNNs) as the primary technique underpinning machine

learning for vision, speech, and NLP tasks.

With an increasing number of queries requiring DNN computation on the critical

path, a significant challenge emerges vis-à-vis the large gap between the amount of

computation required to process a DNN-based query relative to a traditional browser

centric query such as web search [45].

This work is driven by key insight that, much like biological neural networks,

DNNs are intrinsically resilient to both minor numerical adjustments [27, 53, 92,

120] and eliding spurious neurons and synapses [40, 41]. This characteristic can be

leveraged to achieve performance improvement. However, as we show later in the

paper, reduction of computation and data movement does not directly translate to

performance improvement. Techniques from prior work either create a mismatch

between the algorithm and underlying architecture, or are not designed to address

the real hardware bottlenecks, leaving two open challenges in the way of realizing

performance benefits:

6

• Limitation 1: Irregular Computation – Network pruning [40, 41], a state-of-the-

art machine learning technique that reduces the DNN topology focuses on reducing

the memory footprint. However, their methodology fails to realize performance

benefits on GPUs. Although this technique significantly reduces the amount of

raw computation (i.e. floating-point operations), we show that the hardware-

inefficient irregular DNN topology outweighs the benefits and results in substantial

slowdown (up to 61×) due to increased branch divergence and uncoalesced memory

access on GPUs. We present details on this limitation in §4.1.1. To achieve

performance benefits, the challenge of reducing computation while aligning the

reduced computation with underlying hardware must be addressed.

• Limitation 2: Not Optimized for Bottleneck – Our investigation identifies on-

chip memory bandwidth to be the key bottleneck for DNN execution on GPUs.

However, prior works focus on improving off-chip memory bandwidth using com-

pression [98], removing non-contributing bits to increase the effective bandwidth.

This technique, however, fails to provide significant speedups for DNNs (details

in §4.1.2). We evaluate off-chip data packing and observe a speedup of less than

4%. On the other hand, compared to off-chip techniques, it is more challenging to

perform on-chip compression because frequently reformatting data is difficult to

achieve without introducing significant overhead.

1.1.2.2 Customized Hardware

Recently, deep neural networks (DNNs) have yielded state-of-the-art performance

on a wide array of AI tasks, including image classification [60], speech recogni-

7

tion [42], and language understanding [114]. In addition to algorithmic innova-

tions [79, 113, 116], a key driver behind these successes are advances in computing

infrastructure that enable large-scale deep learning—the training and inference of

large DNN models on massive datasets [24, 30]. Indeed, highly efficient GPU im-

plementations of DNNs played a key role in the first breakthrough of deep learning

for image classification [60]. Given the ever growing amount of data available for

indexing, analysis, and training, and the increasing prevalence of ever-larger DNNs

as key building blocks for AI applications, it is critical to design computing platforms

to support faster, more resource-efficient DNN computation.

A set of core design decisions are common to the design of these infrastructures.

One such critical choice is the numerical representation and precision used in the

implementation of underlying storage and computation. Several recent works have

investigated the numerical representation for DNNs [12,19,27,78]. One recent work

found that substantially lower precision can be used for training when the correct

numerical rounding method is employed [38]. Their work resulted in the design of a

very energy-efficient DNN platform.

This work and other previous numerical representation studies for DNNs have

either limited themselves to a small subset of the customized precision design space

or drew conclusions using only small neural networks. For example, the work from

Gupta et al. 2015 evaluates 16-bit fixed-point and wider computational precision on

LeNet-5 [66] and CIFARNET [58]. The fixed-point representation (Figure 5.1) is only

one of many possible numeric representations. Exploring a limited customized pre-

cision design space inevitably results in designs lacking in energy efficiency and com-

8

putational performance. Evaluating customized precision accuracy based on small

neural networks requires the assumption that much larger, production-grade neural

networks would operate comparably when subjected to the same customized preci-

sion.

1.2 Exploiting Error Tolerance

In this section, we outline the proposed techniques for exploiting error tolerance

for emerging in this work.

1.2.1 NinjaProx: Achieving Accuracy Guarantees for Approximate Com-

puting

Central to our approach of maintaining output quality is a guarantee engine for

efficiently providing accuracy guarantees when applying approximation to map-based

applications. Our approach leverages the well-known central limit theorem (CLT) as

the starting point for generating an accuracy guarantee. However, as its name im-

plies, the CLT provides guarantees that hold only in the limit (that is, with infinite

samples). However, taking infinite (or even very large numbers of) samples is imprac-

tical, particularly when the goal is to improve time-to-solution with approximation.

Instead, we leverage recent advances in the Berry-Esseen theorem [107, 108, 119] —

a framework for adjusting the results of the CLT in the face of finite numbers of

samples — to produce accuracy guarantees that are robust to arbitrary inputs that

have not been anticipated or already seen by the system.

Our approach is in contrast to standard practice in approximate computing which

9

is to use heuristics to drive their approximation strategies [4, 6, 29, 51, 63, 72, 97, 98,

102, 109, 112]. Central to these approaches are intangible accuracy constraints that

lack completely defined and enforceable semantics. Such accuracy constraints take

the form of statements such as “The accuracy target is 99%”, including no require-

ments about how often or on what inputs the accuracy target will be met. Accuracy

constraints of this form lead to systems that produce acceptably-accurate approxi-

mations in the common case, but cannot provide robust guarantees of accuracy for

any particular input or set of inputs. Instead, this work introduces the Accuracy

Service Level Agreement (ASLA), a contract between the programmer or end-user

of an application and the runtime system that computation accuracy will meet a

well-defined set of constraints. Intuitively, these constraints take the form of “Ac-

curacy must be above 99% with 95% confidence”, which will be met by the runtime

system regardless of the characteristics of the input, the desired accuracy level, and

the confidence level specified. This work defines, specifies semantics for, and shows

runtime support for ASLAs.

1.2.2 DeftNN: Addressing Bottlenecks for DNN Execution on GPUs via

Synapse Vector Elimination and Near-compute Data Fission

This work introduces DeftNN, a GPU DNN execution framework that leverages error

tolerance of DNN executions by tailoring the removal of precision and work to the

GPU architecture. Firstly, synapse vector elimination reduces the total problem size

by automatically locating and discarding non-contributing synapses in the DNN –

those synapses having negligible impact on the output results – to improve perfor-

10

mance. To address the limitation of irregular computation, our insight is that it is

necessary to preserve existing architectural optimizations in original GPU-efficient

applications. Utilizing this insight, synapse vector elimination applies a novel trans-

formation to the DNN data layout, producing computations that efficiently leverage

GPU hardware.

The second optimization, near-compute data fission, mitigates the GPU on-chip

memory bandwidth bottleneck by optimizing the utilization of integer units during

DNN execution. To address the prior work’s limitation of providing only off-chip

bandwidth optimization [98], as on-chip memory is closer to the functional units,

we design novel techniques that can support low-overhead very fine-grained data

conversion. The key insight that makes near-compute data fission feasible is that

the focus of data conversion must be shifted from high compression ratio to low

decompression overhead. In addition to the benefits achieved by our carefully op-

timized near-compute data fission technique on commodity hardware, we describe

a small additional unit called the Data Fission Unit (DFU) that can be added to

existing GPU hardware to obviate data fission overhead to realize additional benefits

on future generations of GPU hardware.

1.2.3 Rethinking Numerical Representations for DNNs

In this work, we propose exploring the accuracy-efficiency trade-off made avail-

able via specialized custom-precision hardware for inference and present a method to

efficiently traverse this large design space to find an optimal design. Specifically, we

propose evaluating the impact of a wide spectrum of customized precision settings for

11

fixed-point and floating-point representations on accuracy and computational per-

formance. We propose evaluating these customized precision configurations on large,

state-of-the-art neural networks. By evaluating the full computational precision de-

sign space on a spectrum of these production-grade DNNs, we want to determine:

1. Whether precision requirements generalize across all neural networks or not. The

answer to this question could prompt designers of future DNN infrastructures

to carefully consider the applications that will be executed on their platforms,

contrary to works that design for large networks and evaluate accuracy on small

networks [12,19].

2. Whether many large-scale DNNs require more precision for arithmetic than pre-

viously found from small-scale evaluations [12,19,27]. For example, it is unclear if

a large network such as GoogLeNet requires the same number of bits as opposed

to small networks such as LeNet-5.

3. Whether floating-point representations are more or less efficient than fixed-point

representations when selecting optimal precision settings. For example, a lower

precision floating-point representation may be acceptable, when compared to a

fixed-point representation. Current platform designers may need to reconsider

the use of the floating-point representations for DNN computations in place of

the commonly used fixed-point representations [12,19,27,78].

To make the answers to these questions of customized precision readily actionable

for DNN infrastructure designers, we propose designing a technique to quickly search

12

the large customized precision design space. This technique should leverage critical

values in the computation to capture the propagation of numerical error to build a

model to predict accuracy. Using such a method on deployable DNNs, should provide

infrastructure designers a near-optimal customized precision, without requiring an

exhaustive search of all inputs and configurations.

1.3 Summary of Contributions

This work proposes runtime systems and techniques for exploiting error tolerance

in emerging applications. The specific contributions are as follows:

• Accuracy Service Level Agreements – this work introduces the concept

of the Accuracy Service Level Agreement (ASLA). We describe the specification

and enforcement mechanisms for making use of ASLAs in approximate computing

(described in §3.1).

• End-to-end Approximation – we introduce NinjaProx, an end-to-end system

for ASLA-enabled approximate computing. NinjaProx presents the user with a

flexible set of knobs to trade off performance and accuracy while providing sta-

tistical accuracy guarantees (§3.2). Through a thorough evaluation that covers

8 map-based applications employing 4 approximation techniques proposed in the

literature, we show that it is the first system to provide both high performance

approximation and robust guarantees of accuracy.

• Robust Accuracy Guarantees – we enable ASLAs for approximate map-based

applications using a set of robust statistical techniques for generating accuracy

13

guarantees (§3.3). These techniques use no offline training or assumptions about

the distribution of input or output data. Nor do they require reasoning about the

semantics of the approximation or the exact computation, allowing them to easily

be leveraged on complex applications for a wide range of approximation techniques

and accuracy metrics.

• DeftNN. We introduce DeftNN, a state-of-the-art GPU DNN execution frame-

work. This framework automatically applies synapse vector elimination and near-

compute data fission optimizations to existing DNN software applications to dra-

matically improve performance on today’s GPUs.

• Synapse Vector Elimination. We introduce a DNN optimization technique

for GPUs, synapse vector elimination, that shrinks the topology of the neural

network. This method is guided by the insight that network pruning techniques in

DNN systems must have computational regularity to achieve significant speedups.

Our experiments show that synapse vector elimination achieves 1.5× average end-

to-end speedups on a set of 6 state-of-the-art DNNs on real GPU hardware.

• Near-compute Data Fission. We introduce near-compute data fission, which

improves performance by efficiently packing on-chip memory. To realize speedup,

we find that the focus must be shifted from minimizing data size to minimiz-

ing unpacking overhead. We find that near-compute data fission provides 1.6×

end-to-end speedup on a set of 6 DNNs on real GPU hardware available today

by performing unpacking in software. We also introduce a lightweight hardware

extension (<0.25% area overhead) to facilitate efficient unpacking, achieving an

additional 1.4× speedup over software-only near-compute data fission.

14

CHAPTER II

Background and Related Work

This chapter presents and compares work related to this dissertation. First, we

examine prior work that investigates runtime systems for parameterizing approxima-

tion techniques. Next, we present prior work that has optimized DNNs on platforms

other than the GPU, which is not directly applicable to GPU acceleration due to

not considering the architecture. Finally, we look at prior work for optimizing DNN

execution with customized numerical representations.

2.1 Output Quality Guarantees

Many approaches have been proposed in prior work to trade accuracy for im-

provements in execution time or energy, ranging from modifying the underlying hard-

ware [100,121], the ISA [28], compiler [47,97,98], programming language [4,8,9,101],

database [1], runtime system [6, 95] or multiple layers of the hardware/software

stack [29,46,71,77,99].

Various techniques have been proposed to develop models of approximation ac-

15

curacy. Offline training and profiling has been used extensively to guide the choice

of how aggressively to approximate [4, 47, 48, 75, 109, 112]. NinjaProx uses no train-

ing phase, instead building accuracy guarantees dynamically for each input to an

application. Dynamic approaches to maintaining high approximation accuracy have

also been proposed in the literature. IRA [63] dynamically tunes the parameters to

software-based approximations based on input, while others tune these parameters

using intermittent accuracy checks [6, 97, 98]. Uncertain<T> [8] takes advantage

of Bayesian networks and sampling to propagate uncertainty through calculations.

Unlike NinjaProx, such approaches make no guarantee of runtime accuracy. May-

hap [101] is a tool to validate that a probabilistic property exists in a program by

sampling Bayesian networks, but does not impact how approximation is applied to

a program.

ApproxHadoop [36] and other recent works [15, 84] devise techniques to bound

the error propagated to the single output value when applying a particular set of

reduction operators in approximate MapReduce computations. These techniques

are applicable to specific reduction operators – sum, count, average, ratio, minimum,

and maximum – and are difficult to extend to more complex scenarios. Instead,

NinjaProx provides accuracy guarantees for a host of common error metrics when

approximating arbitrary map-based computations.

Static analysis of application and approximation semantics has been used to rea-

son about approximation accuracy [10, 11, 16, 103, 111, 124]. Specifically, some have

used semantic analysis to reason about the accuracy of perforated programs [76,94].

Unlike static analysis, NinjaProx uses no semantic analysis of the computation or as-

16

sumptions about the distribution of the input, instead focusing directly on the results

of the computation, which allows it to be applied to applications and approximations

that have complex semantics.

2.2 Commodity Hardware

The computational requirements and applicability of deep neural networks [62]

and convolutional neural networks [66] have prompted researchers to design novel

DNN hardware [2, 13, 14, 31, 39, 56, 69, 90, 105, 117]. Some of these hardware designs

specifically target memory bandwidth [17, 19]. Although these works can provide

substantial speedup upon fabrication, our techniques can operate on current com-

modity hardware.

On the software side, there has been a lot of effort to efficiently implement DNNs

on GPUs [20, 52, 61, 64, 82]. In addition to optimizing for GPUs, some work has

looked at optimizing DNNs at the cluster level [21, 24, 42, 44, 45, 54, 91]. Further

software approaches consider using different types of neural networks to improve

performance [35]. Optimized algorithms can be applied in concert with our opti-

mization techniques.

Many prior works improve performance by exploiting reduced precision [27, 53,

68, 92, 120]. Reducing precision is possible for both floating-point and fixed-point

formats [22, 38]. These works all require substantial hardware modifications to op-

erate. ACME [50], although requiring less modifications to hardware by design, still

requires substantial overhead when applied to a high-throughput accelerator such as

a GPU. The DFU in DeftNN requires ¡0.25% overhead to continuously provide the

17

functional units with data, while scaling ACME to the same number of units would

require over 19% overhead.

2.3 Customized Hardware

To the best of our knowledge, our work is the first to examine the impact of

numeric representations on the accuracy-efficiency trade-offs on large-scale, deployed

DNNs with over half a million neurons (GoogLeNet, VGG, AlexNet), whereas prior

work has only reported results on much smaller networks such as CIFARNET and

LeNet-5 [12,19,23,27,38,78]. Many of these works focused on fixed-point computation

due to the fixed-point representation working well on small-scale neural networks.

We find very different conclusions when considering production-ready DNNs.

Other recent works have looked at alternative neural network implementations

such as spiking neural networks for more efficient hardware implementation [21,25].

This is a very different computational model that requires redevelopment of stan-

dard DNNs, unlike our proposed methodologies. Other works have proposed several

approaches to improve performance and reduce energy consumption of deep neural

networks by taking advantage of the fact that DNNs usually contain redundan-

cies [18, 32].

18

CHAPTER III

Realizing Service Level Agreements on Result

Accuracy for Approximate Data-parallel Programs

A major challenge in approximate computing lies in providing guarantees of result

quality on arbitrary inputs that have not been anticipated or already seen by the

system. It is widely believed that this is one of the key obstacles that has prevented

the adoption of approximate computing in commercial and production environments.

This chapter presents an approach to this challenging problem for a broad class

of computational problems, developing the statistical machinery to provide accuracy

guarantees when approximating applications regardless of the input content and

desired accuracy level. This mechanism builds on the insight that the computation

in applications that are amenable to approximation can be performed both out-of-

order and incrementally. We leverage this fact to (1) cheaply sample the application

output with and without approximation, then (2) dynamically build a statistical

description of the accuracy characteristics, leveraging statistical methods to generate

accuracy guarantees on the approximation.

19

Compiler (§3.2)

Approx.Code

void sgemm(float* a, float* b,

 float* c, int M,

 int N, int K){

 for(int i = 0; i < M; i++){

 for(int j = 0; j < N; j++){

 float v = 0;

 for(int k = 0; k < K; k+=2){

 v += a[i][k] * b[k][j];

 } v[i][j] = v*2;

 }
 }
}

$> np++ app.cxx

Δ(ℬ')
ℬ'ℬ

𝓝(μ,σ²)

Guarantee Engine (§4)

? δ =
E A

(),

Computation of Accuracy
Distribution and Guarantee

Approx.Binary

void sgemm(float* a, float* b,

 float* c, int M,

 int N, int K){

 for(int i = 0; i < M; i++){

 for(int j = 0; j < N; j++){

 float v = 0;

 for(int k = 0; k < K; k+=2){

 v += a[i][k] * b[k][j];

 } v[i][j] = v*2;

 }
 }
}

Programming
Interface (§3.1)

Decision Engine

Compare
22 dB > 20 dB?

✓

void sgemm(float* a, float* b,
 float* c, int M,
 int N, int K){
 for(int i = 0; i < M; i++){

for(int j = 0; j < N; j++){
 float v = 0;
 for(int k = 0; k < K; k+=2){
 v += a[i][k] * b[k][j];
 }
 v[i][j] = v*2;
 }
 }
} Search

Runtime System (§3.3)

approxMap(...)ExactCode

void sgemm(float* a, float* b,

 float* c, int M,

 int N, int K){

 for(int i = 0; i < M; i++){

 for(int j = 0; j < N; j++){

 float v = 0;

 for(int k = 0; k < K; k+=2){

 v += a[i][k] * b[k][j];

 } v[i][j] = v*2;

 }
 }
}

Output

2x2
Tiling

PSNR
22 dB

Input

PSNR: 20dB
99% confidence

ASLA

Figure 3.1: End-to-end NinjaProx: after compiling an approximation-amenable ap-
plication written using the NinjaProx programming interface, the runtime system
searches the set of approximations based on the accuracy guarantees supplied by the
guarantee engine to select an approximation.

Building on this mechanism, we introduce and describe enforcement techniques

for a new class of service level agreement (SLA) called an Accuracy SLA (ASLA).

Like an SLA on tail latency that bounds the likelihood of a computation falling be-

low some latency target, an ASLA is a bound on the likelihood of computational

accuracy falling below some target accuracy. We describe NinjaProx, a language,

compiler, and runtime for enforcing ASLAs in approximate computing. We evaluate

NinjaProx, applying 4 approximation techniques from the recent literature to 8 ap-

plications in the domains of machine learning, image processing, and data mining.

Among thousands of individual experiments leveraging ASLAs that cover a number

of common accuracy metrics and a range of confidence levels, we find that, in prac-

tice with representative approximate applications, NinjaProx never fails to meet the

specified ASLA and achieves speedups that average 2.5×.

20

3.1 Accuracy SLAs

We begin by introducing the concept of the Accuracy Service Level Agreement

(ASLA), motivating their use and defining their semantics.

3.1.1 Motivation

A conventional webservice Service Level Agreement (SLA) is an agreement spec-

ifying a set of constraints on performance. A common approach in specifying such

SLAs is to describe constraints on the latency, such as “the latency of 99% of queries

is under 50ms.” This performance constraint on tail latency has two components –

a performance target and a point in the tail of the latency distribution. Tail latency

is a common metric because it reflects one of the realities of webservice operation

– users observing long latency in their requests may leave for the competition and

never return – thus constraining tail latency minimizes the likelihood of this event.

Similarly, users of an approximate application may seek alternatives if they are

presented with results that are unsatisfactorily poor, and thus a convention similar

to the conventional SLA is needed in dealing with approximation accuracy. There

is a wealth of prior work in approximate computing that demonstrates satisfactory

result accuracy by example, showing on a set of benchmarks that result accuracy

usually satisfies some accuracy target(s) [4,46,51,63,98,99]. These approaches have

resulted in useful systems for enacting approximation, but they do not solve the more

fundamental problem, providing no assurances on result accuracy for difficult cases

that may not have been envisioned by the system designers.

21

3.1.2 Defintion

The simplest form of an ASLA is shown in Equation 3.1.

P [A ≥ T] ≥ CL (3.1)

This expression says that for an approximate application, the result accuracy A

must not fall below the target accuracy T with probability of at least CL. Note that

exact execution of the application (i.e. 100% accuracy with 100% confidence) can

be expressed as an instance of this style of probabilistic guarantee, taking the form

P [A ≥ 100%] ≥ 1.0. Multiple simple ASLAs can be composed to form a compound

ASLA. Consider the k-statement compound ASLA in Equation 3.2, which would

require that all k expressions are satisfied.

P [A ≥ T0] ≥ CL0

P [A ≥ T1] ≥ CL1

. . .

P [A ≥ Tk] ≥ CLk

(3.2)

A compound ASLA may be useful, for example, in expressing a willingness to

drop to 90% accuracy nearly all the time alongside a strict requirement to rarely

drop below 80% accuracy. Such a requirement could be expressed as the 2-clause

compound ASLA shown in Equation 3.3.

22

P [A ≥ 90%] ≥ 95%

P [A ≥ 80%] ≥ 99.999%

(3.3)

3.1.3 ASLA Specification

The ASLA definitions described above are probabilistic constraints. In contrast

to prior work that has focused on validating probabilistic assertions [101], an ASLA

is not a stopping condition of the program, but is instead a set of constraints that

must be met when computing approximate results.

For an ASLA clause with target accuracy T and confidence level α, an accuracy

metric M that gives meaning to the accuracy constraint must also be specified. Our

current implementation provides turnkey support for a variety of common accuracy

metrics that include mean absolute percentage, mean absolute error, mean square

error and peak signal-to-noise ratio (PSNR), as well as the ability to supply additional

customized metrics. We describe these accuracy metrics and how they are supported

in detail in §3.3.4.2.

3.2 NinjaProx Overview

This section introduces NinjaProx, a language, compiler and runtime system for

enforcing ASLAs in map-based applications. An overview of NinjaProx is presented

in Figure 3.1. NinjaProx has two main components: an offline component to compile

support for approximation and the ASLA into the application, and a runtime to

23

select how to approximate in a way that meets the ASLA.

3.2.1 Programming Interface

NinjaProx provides a simple interface that allows programmers to employ accu-

racy guarantees in map-based applications. The programmer defines an ASLA, a

map-based computational kernel, and the dimensions of the problem being solved to

utilize NinjaProx. We use binarize, an application that segments an image based

on pixel intensity, as an example of the programming interface. For comparison,

the original implementation is provided in Figure 3.2, while the NinjaProx imple-

mentation is found in Figure 3.3. NinjaProx currently supports C++11, used in the

example code, but the NinjaProx statistical framework is language independent.

First (lines 5-6 of Figure 3.3), the programmer defines an ASLA, comprising an

accuracy metric, the target accuracy level, and a statistical confidence level. The

example code shows a concrete specification of the target accuracy level (0.90) and

confidence level (0.99), however we envision that a typical NinjaProx deployment

will defer the specification of one or both parameters until runtime. In the exam-

ple, a simple 1-statement ASLA is defined. However, an array of ASLA objects can

used together to build a compound ASLA as described in §3.1.2. Next (lines 8-10),

an approximation parameter space is specified. This denotes the set of approxima-

tion parameters that NinjaProx should investigate, when it searches for an optimal

approximation strategy.

The subsequent code (lines 12-22) is written specifically for the binarize appli-

cation. Approximated binarize is made compatible with NinjaProx by refactoring

24

the code so that each output is computed independently. In code, the operation is

defined by the programmer by using a closure that produces a single output from

loop indices (mapIdx) and approximation parameters (apxParam) (lines 18-22).

Using the defined application kernel, output array, output dimensions, ASLA, and

approximation parameter space, the programmer calls the mapNinjaProx function

(lines 24-27). This function searches the approximation parameter space for the

fastest approximation that meets the ASLA for the application, and then, using this

approximation, writes an approximated value for each element in the output array.

3.2.2 Compilation

The NinjaProx compiler allows assumptions about the computational kernel to

be checked and mitigates overhead introduced by the high-level programming model.

For example, the NinjaProx compiler checks that the map-based computation pro-

vided to mapNinjaProx is pure, since NinjaProx will execute the map-based opera-

tion many times and in random order during its search for an optimal approximation

strategy. When the map-based function is not pure, the compiler does not apply ap-

proximation and produces a warning.

To improve search runtime performance, the NinjaProx compiler orders the ap-

proximation parameters by how fast they are. This ordering is usually an obvious

consequence of the nature of the approximation. For example, in skipping loop it-

erations for loop perforation [47], the technique becomes faster and less accurate as

more iterations are skipped. The NinjaProx compiler applies another key optimiza-

tion that benefits approximations that skip work by reusing output values, as in

25

1 //Input declarations (initialization omitted)
2 int width, height, threshold;
3 uint8_t input[width*height];
4
5 //Original binarize kernel
6 uint8_t output[width*height];
7 for(int x = 0; x < width; x++){
8 for(int y = 0; y < height; y++){
9 output[x+y*width] =

10 input[x+y*width] > threshold ? 255 : 0;
11 }
12 }

Figure 3.2: Original implementation of binarize, an application that segments
pixels based on intensity.

tiling approximation [97]. In this case, the NinjaProx compiler identifies that mul-

tiple output values derive from identical computation, splitting the computation of

the final approximate result into two phases: a first phase to compute each unique

element in the output, and a second phase to copy those results to the remainder of

the output.

3.2.3 Runtime Support

Given the set of available approximations and the ASLA, the goal of the Nin-

jaProx runtime is to select the approximation that is as fast as possible and com-

plies with the ASLA. NinjaProx leverages the ordered list of approximations from

compilation to perform a binary search over the approximations, using the Nin-

jaProx guarantee engine (described shortly in §3.3) to determine whether each of the

searched approximations meets the ASLA. NinjaProx determines whether or not an

approximation meets the ASLA by comparing the target accuracy with an accuracy

guarantee generated by the guarantee engine. If the generated accuracy guarantee

26

is more accurate than the target accuracy, the approximation is deemed to meet

the accuracy constraint. In the case of compound ASLAs, an accuracy guarantee

is generated for each component and the ASLA is said to be satisfied if all of the

components of the guarantee are met.

For example, in Figure 3.1, the user-specified accuracy metric is peak signal-to-

noise ratio (PSNR), the target accuracy is 20dB, and the confidence level is 99%. The

decision engine tests the accuracy of several approximation strategies, guided by the

decision engine. In the example in the figure, a 2×2 tiling approximation [97] results

in an accuracy guarantee of 22dB. Since 22dB represents higher accuracy than the

target accuracy of 20dB, the decision engine deems the 2×2 tiling approximation to

be acceptable. If no faster approximation meeting the accuracy constraint is found,

the 2×2 tiling method would be applied to the input to produce the final output of

NinjaProx.

3.3 Guarantee Enforcement

In this section we provide an overview of the NinjaProx guarantee engine, the

core mechanism designed to enforce ASLAs in approximate map-based applications.

3.3.1 Map-based Model

Central to providing ASLA guarantees lies the insight that computationally in-

tensive applications frequently lend themselves to the map-based pattern, a compu-

tational paradigm that pervades the domains of image processing, machine learning,

27

1 //Include NinjaProx (at top of file)
2 #include "ninjaprox.hpp"
3 using namespace ninjaprox;
4
5 //ASLA(accuracyMetric,accuracyTarget,confidenceLevel)
6 ASLA asla(metrics::MissRate),0.9,0.99);
7
8 //Approximation parameter space definition
9 int tileSizes[] = {1,2,4,8,16};

10 int approxParameters[][] = {tileSizes,tileSizes};
11
12 //Input declarations (initialization omitted)
13 int width, height, threshold;
14 uint8_t input[width*height];
15 int dimensions[] = {width,height};
16
17 //Approximation-parameterized binarize
18 auto binarize = [&](int* mapIdx, int* apxParam){
19 int x -= mapIdx[0] % apxParam[0];
20 int y -= mapIdx[1] % apxParam[1];
21 return input[x+y*width] > threshold ? 255 : 0;
22 };
23
24 //Approximate binarize using NinjaProx
25 uint8_t output[width*height];
26 approxMap(binarize, output, dimensions,
27 asla, approxParameters);

Figure 3.3: Example of NinjaProx applied to a binarize implementation. The
ninjaprox::approxMap function writes a value to each element in the output,
after automatically finding the approximation parameters that fit the ASLA.

Accuracy
Guarantee

Finite Sample
Correction

Metric
Transformation

Confidence Level

Accuracy Guarantees (§4.4)

Accuracy Guarantee
Aggregate Accuracy

Function (Δ)

Δ(ℬ')
ℬ'ℬ

Accuracy Model
Accuracy

ComponentsRandom Samples

Accuracy Distribution (§4.3)

δ =

Exact App. (E) Approx. App. (A)
Component Accuracy Function (δ)

? 𝓝(μ,σ²)

E A
(),

Figure 3.4: Guarantee engine overview comprised of two steps: accuracy inference
and guarantee generation.

28

13
8 20

3 17
96 32

35 71 1
41 65

58 49
23

(a) Random sampling

(b) Exact results

(d) Accuracy of
approx. result

(c) Approximate results

15
10 20

7 16
90 40

36 60 11
42 69

51 53
29

0.15

0.25 0

1.33 0.06

0.06 0.25

0.03 0.15 10

0.02 0.06

0.12 0.08

0.26

∆

f

δ

Figure 3.5: Example accuracy distribution derivation.

and computer vision. Specifically, applications holding this pattern have the char-

acteristic that the application output can be divided into components that can be

efficiently computed, independently of the others. An example of such an appli-

cation is image convolution [106], where output pixel computations do not depend

on one another and the computation of each adds a fixed number of computational

operations.

The two key properties of the map-based model in enforcing ASLAs for approx-

imate computing are its ability to provide both out-of-order and incremental com-

putation. These properties mean that an arbitrary subset of the outputs can be

computed efficiently, which facilitates performing efficient statistical random sam-

pling of the outputs. By applying this random sampling, we get an independent and

29

identically distributed (IID) distribution of the outputs. Even when the application

output is not IID, the distribution produced by randomly sampling from the output

population is IID. For example, adjacent pixels in an image are very likely to be

correlated, but the first randomly selected pixel from the entire image is indepen-

dent of the second randomly selected pixel. In the case of enforcing ASLAs, an IID

distribution of the outputs allows us to apply the central limit theorem to derive an

accuracy guarantee.

The second property of the map-based model, incremental computation, allows

efficient computation of a subset of the output components. A randomly sampled

subset of the output components allows us to reason about the statistical accuracy

of the approximation without computing the entire output. This property is critical

to building a system that enforces ASLAs for approximate computing, since all of

the time spent enforcing accuracy guarantees directly undermines the benefits of

approximation.

3.3.2 Guarantee Engine Overview

We apply the methodology outlined in Figure 3.4 to an approximate computation

to enforce ASLAs. These ASLAs are guaranteed based on a user-specified map-

based exact and approximate computation, an accuracy metric, and a confidence

level. In addition to the exact and approximate computations being map-based,

the approximate computation must be deterministic. This constraint is required to

ensure that the behavior of approximation while analyzing the accuracy matches that

of the final approximation applied to the application input. Given these conforming

30

guarantee engine inputs, the guarantee engine hands back an accuracy guarantee.

For example, with an ASLA confidence level CL ∈ (0, 1] and an approximation X,

this guarantee is a single number Y that takes the form of a statement such as “with

confidence level CL, approximation X has an accuracy of at least Y.”

The two main steps to enforcing ASLAs with NinjaProx are computing an accu-

racy distribution and generating an accuracy guarantee. The accuracy distribution

is a randomly chosen set of accuracy samples, while the accuracy guarantee specifies

an approximation accuracy that will meet the ASLA. In the following sections, we

describe the workings of the guarantee engine in detail. For simplicity, throughout

the description of the guarantee engine we assume that the accuracy metric is mean

absolute percent error (MAPE). Subsequently, in §3.3.4.2 we describe support for a

number of other common accuracy metrics supported by NinjaProx.

3.3.3 Computing an Accuracy Distribution

The guarantee engine first constructs an accuracy distribution for an approxima-

tion through the following steps. We show an example of these steps in Figure 3.5,

illustrating an accuracy distribution computation for mean absolute percent error

(MAPE) in the context of a small 8× 8 result matrix.

1. Random Sampling in the Result Space – we first use simple random sampling

(SRS) to select a subset of size n of the results to compute, yielding a set of indices

in the result space. For notational convenience, we enumerate these randomly

selected indices 1, 2, ..., n. In Figure 3.5(a), the dark cells illustrate the components

of the result that have been randomly selected.

31

2. Exact Result Components – we next compute results for the exact version of

the problem for the subset of the result space chosen in the previous step, denoted

E1, E2, ..., En. In Figure 3.5(b), the exact result components are filled in for the

shaded cells.

3. Approximate Result Components – similar to the previous step, we enact the

approximation to compute approximate result components for the same subset of

the result space, denoted A1, A2, ..., An and shown as shaded cells in Figure 3.5(c).

4. Accuracy Components – finally, given the exact and approximate result com-

ponents for identical component indices of the result space, we compute the com-

ponent accuracy of each such (exact, approximate) component pair εi = δ(Ei, Ai),

where δ is defined according to the accuracy metric being employed. For MAPE,

the component accuracy function is shown in Equation 3.4. Figure 3.5(d) shows

accuracy components as shaded cells.

δ(x, y) =

∣∣∣∣x− yx
∣∣∣∣ (3.4)

The result of these steps is the sampled accuracy distribution S = {ε1, ε2, ..., εn}

of the approximation, telling us how accurate the approximate computation is on a

randomly selected subset of the results.

3.3.4 Deriving an Accuracy Guarantee

The goal of our approach is to enforce the ASLA for an approximation. We cast

this as the problem of deriving a statistical guarantee on the mean of some population

32

{Xi} (we shorthand {Xi} going forward as X), which maps directly to an ASLA for

approximation accuracy.

A set random samples S taken from a set of variables X1, X2, ..., Xn is treated

as the component accuracy distribution of a particular approximation. This distri-

bution is independent and identically distributed (IID) due to the statistical ran-

dom sampling made possible by the out-of-order property of the map-based model

(§3.3.1). To derive a guarantee on the mean of X, we employ the central limit the-

orem (CLT). The CLT states that for sufficiently large values of n, a set of random

samples S = {ε1, ε2, ..., εn} taken from a set of variables {X1, X2, ..., Xn}, the ex-

pected value of the mean of S approaches a normal distribution parameterized by

µX = mean(X), σ2
X = var(X), and n. We summarize the definition of the CLT in

Equation 3.5.

mean(S) = lim
n→∞

1

n

n∑
i

εi ∼ N(µX ,
σ2
X

n
) (3.5)

The CLT has two properties that are critical for our purposes. First, it provides

a principled way to reason about the mean of any distribution. Second, it formulates

the probability distribution of the mean as a normal distribution (the so-called “bell

curve”), which has a number of well-understood features. Namely, we can derive a

one-sided confidence interval for the mean of the accuracy distribution using standard

statistical practices, yielding a probabilistic upper bound on its mean. Computing

such a confidence interval only requires the accuracy distribution of the approxima-

tion to compute its sample mean µ̂S and sample standard deviation σ̂S, along with

an ASLA confidence level CL supplied by the user, and can be computed using the

33

standard formulation shown in Equations 3.6 and 3.7.

CIUB = µ̂S +
z ∗ σ̂S√

n
(3.6)

z := Pr(N(0, 1) ≤ z) = 1− CL (3.7)

This upper bound, CIUB, is a statistical guarantee on the mean of S, telling us

that with probability CL the mean of S is no higher than than CIUB. This statistical

guarantee translates directly to an accuracy guarantee that satisfies an ASLA – with

confidence level CL, the accuracy of the approximation is no worse than CIUB.

3.3.4.1 Finite Sample Correction

To minimize overhead of the guarantee engine, it is desirable to use a small

number of samples to produce accuracy guarantees. However, the definition of the

CLT states that the mean of the samples converges to a normal distribution as

the number of samples approaches infinity. Instead of increasing the sampling rate

until the model is precise, we correct for the difference in distribution between the

theoretically-sound infinite number of samples and the pragmatically-usable finite

number of samples. To make this correction, we use the Berry-Esseen theorem [7].

The Berry-Esseen theorem places a limit on the maximum distance between the

cumulative density functions (CDF) of the theoretical normal distribution that re-

sults from applying the CLT and the distribution resulting from a finite set of sam-

ples. The formula expressing this maximum difference is provided in Equation 3.8.

34

|Fn(x)− Φ(x)| ≤ Cρ

σ3
√
n

(3.8)

Here, Fn(x) is the CDF of a finite-sample distribution, Φ(x) is the CDF of the

infinite-sample distribution, ρ is the skewness of the component accuracy distri-

bution, σ is the standard deviation, and n is the number of accuracy component

samples applied to the CLT for the finite-sample distribution. The constant C

in the Berry-Esseen theorem is part of ongoing research in the statistics commu-

nity [57, 107, 108, 119]. In this work, we use C = 0.4748, the tightest theoretical

bound known at the time of this writing for the upper limit of this constant [108].

Since the Berry-Esseen theorem provides an upper bound on the difference between

the theoretical accuracy distribution and the actual sampled accuracy distribution,

we employ this theorem to correct our derivation of the accuracy guarantee.

To make this finite sample correction, the confidence level is offset by the value

specified by the Berry-Esseen theorem. Essentially, the confidence level represents

the target quantile of the accuracy distribution, so adding |Fn(x)− Φ(x)| to the

confidence level creates an accuracy guarantee that will enforce the ASLA in the

worst-case random sampling given the finite number of samples used to construct

the initial accuracy guarantee. Therefore, the accuracy guarantee with finite sample

correction is provided in Equations 3.9 and 3.10.

CI ′UB = µ̂S +
z′ ∗ σ̂S√

n
(3.9)

35

z′ := Pr(N(0, 1) ≤ z′) = 1−
(

CL +
Cρ

σ̂3
S

√
n

)
(3.10)

3.3.4.2 Other Accuracy Metrics

The NinjaProx guarantee engine includes out-of-the-box support for a number of

commonly used accuracy metrics detailed in the remainder of this section – mean ab-

solute percentage error, mean absolute error, mean square error, peak signal-to-noise

ratio, and miss rate. NinjaProx can also be supplied with a user-defined accuracy

metric of the form shown in Equation 3.11, where Ei and Ai are the exact and

approximate output components.

∆
(∑

δ(Ei, Ai)
)

(3.11)

This formulation of accuracy is general enough to support most commonly used

metrics, since most accuracy metrics are a mean or sum of a comparison of output

components, captured by the component accuracy function δ. In some cases, for

example, in peak signal-to-noise ratio, a transformation is applied to the mean of

component accuracies. This transformation is supported by the aggregate accuracy

function, ∆. Here we describe the specific formulations used to underpin each of the

supported error metrics.

Mean Absolute Percentage Error (MAPE). The detailed derivation of accu-

racy guarantees that was shown in Section 3.3.3 is based on MAPE.

36

Application Description Domain(s) Input Set
Approx. Accuracy Accuracy
Technique Method Target

binarize Convert image to black and white computer vision, OCR Images 2D tiling Miss rate 10%

crosscorr
Measure signal/image similarity Image processing, pattern recognition,

Images 2D tiling
Mean abs.

26
over sliding window cryptanalysis, neurophysiology error (MAE)

gamma Apply gamma correction to an image Image processing Images 2D tiling PSNR 20
gaussian Apply a Gaussian filter to an image computer vision, image smoothing Images 2D tiling PSNR 20

inversek2j Inverse kinematics for 2-joint arm Robotics
Arm Truncated Mean abs. %

10%
positions Taylor series error (MAPE)

jmeint Triangle intersection detection 3D gaming Triangles Perforation Miss Rate 10%

matmult Matrix-matrix multiply
Machine learning, scientific

Matrices
Extrapolated Mean abs. %

10%
computing, game theory perforation error (MAPE)

sobel Sobel edge detection Computer vision, edge detection Images 2D tiling PSNR 20

Input Set Description
Images A database of 100 assorted 1024x1024 images

Matrices
102 1024x1024 matrices; Sparsity (3): 25%, 50%, 100%; Shapes (2): full, upper triangular
Probability distributions (17): 2x beta, 1x binomial, 2x chi-squared, 1x exponential, 2x f,
1x gamma, 1x geometric, 1x hyper, 1x log-normal, 1x normal, 2x poisson, 1x uniform, 1x weibull

Triangles 1 ×106 pairs of triangles randomly placed into unit cube; Sizing: 99 different size distributions
Arm positions 1×106 arm positions at different angles; Angles: drawn from 98 probability distributions

Table 3.1: Applications and input sets used in the evaluation.

Mean Absolute Error (MAE). For MAE it suffices to supply the following com-

ponent accuracy function in place of the definition given for MAPE in Equation 3.4.

This change to the component accuracy function places the accuracy components in

the sum of the MAE, allowing use of the CLT.

δ(x, y) = |x− y| (3.12)

Mean Square Error (MSE). Similarly, for MSE we swap the following component

accuracy function for Equation 3.4.

δ(x, y) = (x− y)2 (3.13)

Peak Signal-to-noise Ratio (PSNR). Peak signal-to-noise ratio is a common

37

metric used to measure image quality. We provide the definition of PSNR in Equa-

tion 3.14 for reference.

PSNR = 10 ∗ log(MAX2)− 20 ∗ log(MSE) (3.14)

Note that in the definition of PSNR, MAX is a domain-specific parameter, which

describes the maximum possible value that can be assumed in that domain (e.g., 255

for an image with 8-bit color). In cases where PSNR is the accuracy metric specified

to NinjaProx, a value for MAX be specified along with the selection of this metric.

To apply our methodology when using PSNR, we use the component accuracy

function for MSE shown in Equation 3.13, since the accuracy components that are

averaged match those of the MSE metric. We then directly derive an upper bound

on the confidence interval for the normal distribution derived from the CLT, just

as is done in Equations 3.6 and 3.7. However, instead of using that bound directly,

we plug it into the definition of PSNR to yield a lower bound on the confidence

interval of PSNR1. As shown in Equation 3.15, the aggregate accuracy function, in

our formulation of accuracy metrics, becomes the definition of PSNR.

∆(x = µ̂S +
z′ ∗ σ̂S√

n
) = 10 log

(
MAX2

)
− 20 log (x) (3.15)

Miss Rate. Formulations of accuracy based on miss rate capture an important

class of problems where the component accuracy is binary. This is the case for

1An upper bound on MSE yields a lower bound on PSNR due to the subtraction operation in
the definition of PSNR. This is the desired result, as higher values of PSNR are better.

38

applications with binary output components or, more generally, where the output

components are either entirely correct or incorrect depending on a component accu-

racy threshold. The former scenario applies to two of the applications used in our

evaluation: binarize and jmeint. The binarize image filter, used in optical

character recognition, converts a color or grayscale image into a black and white

image. Approximations to binarize are, at the pixel level, either correct or incor-

rect. Similarly, jmeint computes whether pairs of triangles overlap one another,

and approximations to that computation yield an answer that is either correct or

incorrect for each triangle pair. We use a generalized formulation of miss rate, where

each component is correct (0) if the absolute difference is less than some threshold

T , and incorrect (1) otherwise. NinjaProx allows for the parameter T to be specified

and defaults to using 0 when T is not specified.

δ(x, y, T) =

0 if |x− y| ≤ T

1 otherwise

(3.16)

Replacing the component accuracy calculation shown in Equation 3.4 with the

function shown in Equation 3.16 suffices to allow our CLT-based techniques to apply

to miss rate.

Weighted Accuracy Metrics. For certain applications, the position of the output

components within the output space may be important for computing accuracy.

For example, it may be the case that the pixels near the borders of an image are

less important than those that are centrally located. To address this situation, the

NinjaProx guarantee engine exposes the position of the output component to the

39

component accuracy function. This position-aware formulation, δp, is provided in

Equation 3.17, where the added parameters, w, p, and δ, represent the position

weight function, the position within the output, and the position-unaware component

accuracy function, respectively.

δp(w, p, δ, x, y) = w(p) ∗ δ(x, y) (3.17)

3.4 Evaluation

In this section we evaluate the accuracy and performance characteristics of Nin-

jaProx.

3.4.1 Experimental Methodology

Applications and Approximations We employ four approximation techniques

from the literature upon eight test applications as follows. A summary of the ap-

proximations and applications can be found in Table 3.1.

• Tiling [97] is based on the assumption that, in application domains such as image

and video processing, elements nearby one another (e.g., image pixels) are likely

to have similar values. Instead of computing each element of the output, a tiling

approximation computes a single output element and projects that output value

onto the surrounding elements to form a tile. Tiling can be tuned to be more

aggressive – trading off lower accuracy for better performance – by increasing the

size of the tile. In this work, we employ 64 different tiling approximations with

40

tile sizes {2, 4, 8, ..., 256} × {2, 4, 8, ..., 256} on binarize, crosscorr, gamma,

gaussian and sobel.

• Perforation [47] discards iterations in a loop, and can be used to trade improved

performance for lower accuracy by dropping more iterations. In this work we

use modulo perforation, which discards iterations at regular intervals. Modulo

perforation is parameterized by a rate r, where r > 0 indicates that every rth

iteration is computed and a value of r < 0 indicates that every rth iteration is

skipped. We use 10 such rates on jmeint, where r = {−8,−4, 2, 4, 8, ..., 256}.

• Extrapolated perforation [93] discards iterations in a loop while extrapolating

results to correct for skipped iterations. In the matmult application, we use the

following to compute each result C[i][j] in the exact implementation:

1 for (k = 0; k < N; k++)

2 C[i][j] += A[i][k] * B[k][j];

We use the following extrapolated loop perforation as an approximation:

1 for (k = 0; k < N; k += r)

2 C[i][j] += A[i][k] * B[k][j];

3 C[i][j] *= r;

This approximation is made more aggressive by using larger values of r. We use

r = {2, 4, 8, ..., 256} on matmult.

• Truncated Taylor series [43] uses a small number of terms from the Taylor

series of a mathematical expression in place of the more expensive and accurate

computational method in glibc. For inversek2j, in place of calls to the sin

and cos routines in glibc with, we use the following approximations for the sine

and cosine functions, respectively:

41

1 float apx_sin(float x){ return x; }

2 float apx_cos(float x){ return 1-x*x/2; }

These approximations provide high accuracy for small angles, but become increas-

ingly poor as the input angle gets larger. Therefore we apply the approxima-

tion for angles smaller than a threshold t and increasingly aggressive approxima-

tions by using larger thresholds. On inversek2j we use 10 such thresholds:

{ π
10
, 2π

10
, ..., 9π

10
, π}.

Accuracy SLAs. In approximating applications with NinjaProx in the evaluation,

we specify a 1-statement ASLA for each application consisting of an accuracy metric,

an accuracy target and a confidence level. We employ four different error metrics

across the applications, many of which cover different accuracy ranges. For example,

peak signal-to-noise ratio (PSNR) can assume a value in [0,∞), while miss rate

assumes a value in [0,1]. For three of our metrics, including miss rate, the metric

can assume a particular fixed range in a given application. In such cases, we choose

an accuracy target corresponding to 90% of perfect accuracy. For PSNR we define

the accuracy target based on prior work that has identified acceptable accuracy for

wireless transmission protocols [70, 118]. Table 3.1 describes the accuracy metrics

and targets for each application. We configure NinjaProx to use a flat 0.1% of the

input when generating accuracy guarantees and use confidence levels of 90%, 95%,

99%, and 99.9% when constructing guarantees; the particular confidence levels used

in each experiment are discussed in the context of the particular experiments.

42

binarize
jmeint0.3

0
M

is
s

ra
te

c(
)

crosscorr75

0

M
A

E

c(
)

gamma
gaussian

sobel5

45

P
S

N
R

(a) NinjaProx−selected approximations

c(
)

inversek2j

matmult
0.8

0

M
A

P
E

binarize
jmeint0.3

0

M
is

s
ra

te

c(
)

crosscorr75

0

M
A

E

c(
)

gamma
gaussian

sobel5

45
P

S
N

R

(b) All approximations

c(
)

inversek2j

matmult
0.8

0

M
A

P
E

Figure 3.6: A comparison between the accuracy resulting from approximations that
pass the NinjaProx guarantee engine (CL=90%) to the accuracy of all approxima-
tions, showing that the guarantee engine catches all approximations that do not
conform to the specified ASLA.

Miscellaneous. All of our experimental results are collected on an Intel Xeon

E3-1240v3 Haswell machine running Ubuntu Linux 14.04 (Linux kernel 3.19.0-59).

The performance results presented are averages across 10 runs.

For a fixed input and approximation, NinjaProx makes a statistical accuracy guar-

antee. These statistical accuracy guarantees are produced using a random sampling

43

c(100, 100)

c(
10

0,
 1

00
)

80%

90%

100%
A

ct
ua

l E
rr

or
 <

 B
ou

nd
%

 o
f S

am
pl

in
gs

binarize

crosscorr

gamma

gaussian

inversek2j
jmeint

matmult
sobel

CL = 90%

●
●

● ●

●

●
●

●

c(100, 100)

c(
10

0,
 1

00
)

binarize

crosscorr

gamma

gaussian

inversek2j
jmeint

matmult
sobel

CL = 95%

●
●

● ●

●

●
●

●

c(100, 100)

c(
10

0,
 1

00
)

binarize

crosscorr

gamma

gaussian

inversek2j
jmeint

matmult
sobel

CL = 99%

● ● ● ● ● ● ● ●

c(100, 100)

c(
10

0,
 1

00
)

80%

90%

100%

binarize

crosscorr

gamma

gaussian

inversek2j
jmeint

matmult
sobel

CL = 99.9%

● ● ● ● ● ● ● ●

Figure 3.7: Distributions of how frequently the accuracy guarantee meets the ac-
curacy target across all applications, inputs and approximations and 4 confidence
levels of 90%, 95%, 99% and 99.9%. By observing that all such experiments are
above the specified CL (i.e., that the entire violin is within the shaded region), we
can verify that the statistical guarantees made by the NinjaProx guarantee engine
work as expected.

of the output space for the given input and approximation. The generated guarantee

accuracy for a specific random sampling will be above the actual accuracy with a

probability greater than the user-specified confidence level, so each fixed input and

approximation pair must be evaluated many times to determine whether or not the

statistical accuracy guarantee is met. To capture the variability of random sampling,

the accuracy measurements use 1000 runs (often presented as distributions).

3.4.2 Accuracy Guarantees

We first evaluate the guarantee engine within NinjaProx. The goal of the guar-

antee engine is, given a confidence level CL specified in the ASLA and a candidate

approximation, to provide a statistical accuracy guarantee of the approximation.

Accuracy Guarantee Quality. We start evaluating the NinjaProx guarantee

engine by investigating the accuracy of approximations that the guarantee engine

deems to be acceptable with a confidence level of 90%. In this experiment, we run

each (input, approximation) pair once to measure the actual accuracy of the approx-

44

imation, then run the (input, approximation) through the guarantee engine 1000

times to construct an accuracy guarantee distribution. Figure 3.6(a) presents the

accuracy guarantee distribution for the approximations that the guarantee engine

deems acceptable, in the form of a box plot with whiskers at the 0th and 90th per-

centiles. The green shaded region represents the cases where the generated guarantee

meets the accuracy. Since the confidence level is set to 90%, we expect, and find,

that the lower whisker in Figure 3.6(a) (the 90th percentile) is above the output

accuracy target.

For comparison, we present Figure 3.6(b), which is produced using the same

methodology as the previous experiment, except all (input, approximation) pairs are

shown, representing a baseline scenario where no guarantee engine or other mecha-

nism is present to determine whether each approximation meets the accuracy target.

In this figure, we see that a wide range of output accuracies are produced across

the set of (input, approximation) pairs. The key takeaway from this comparison is

that NinjaProx’s guarantee engine catches all cases within the 90% confidence level

where the target accuracy cannot be met by an approximation, showing that the

NinjaProx guarantee engine provides high quality accuracy guarantees.

Enforcing ASLAs. As the ASLAs enforced by NinjaProx are probabilistic in na-

ture, we evaluate the ability of the guarantee engine to meet the ASLAs by analyzing

how frequently the approximations that are deemed to result in acceptable accuracy

fall below the accuracy target. Our experimental setup to do this evaluation com-

prises running each (input, approximation) pair through the NinjaProx guarantee

engine 1000 times. Each of these 1000 experiments for a given pair represent dif-

45

●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●● ●●● ●●●●●●●●●●●●●●●●●●● ●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●● ●●●●● ●● ●●●●●●●●●●●●●●●● ●●●●●●●●●●● ●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●● ●●● ●●●●●●●●●●●●●●● ●●●●●●●●● ●●●●●● ● ●●●● ●●●●●●●●●●●●●●●●● ●●●●●●●●●●● ●●●●●●●● ●●●●● ●●●●●●●● ●● ●●●●●●●●●●●●●●●●●●●●● ●● ●●●●●●● ●●●●●● ●● ●● ●●●●● ●●●●●●●●●● ●●●● ●● ●●●●● ●●●● ●●●● ●●●● ●●●●●●●● ●●●● ●●●●●●●●●●● ●● ●●●●● ●●●●●● ●●●● ●●●● ●●●●● ●●●●● ●●● ● ●●●●●● ●● ●●● ●●● ● ●● ●●●● ●●●● ●●● ●●● ●● ●●●● ● ●●●●● ●● ●●● ●● ●● ●●● ●●●●● ●● ●● ●● ●● ● ●●●● ●●● ● ●● ●●●● ●●● ●● ●●●●●●● ●● ●●● ●●● ●●●● ●● ●●● ●● ● ●● ●● ●● ●● ●●● ● ●● ● ●● ●● ● ●● ●●● ● ●●●● ●● ●●● ● ●● ● ●● ● ●●● ●● ●●●● ●●● ●● ● ● ●● ●● ● ●● ●●● ● ●●●●● ●●● ● ●● ● ●● ●● ●● ●● ● ●● ●● ● ●● ● ●●●●●● ●● ●● ●●●● ● ●● ●●● ●● ●●●●● ● ●● ●●● ●●● ●● ● ●●●● ● ●●● ●●● ●● ●● ●●● ● ● ●●●● ● ●● ●● ●●● ●● ●●●● ●●● ● ●●●● ●● ●● ●● ●● ●● ●●●● ●● ●●● ●● ●●● ●● ●●● ●●● ●●● ●● ●●● ●●● ●●●● ●● ●● ●● ●●●●● ● ●● ●● ●●● ● ●● ●● ●●●● ●●●● ●●● ● ●●● ●● ●●● ●● ●● ●●● ●● ●●●● ●● ●●● ●●● ●●●●● ●● ● ● ●●●● ●●● ●●●●● ●●● ●●● ●● ●● ●●●●● ●●●●●● ●● ●● ●● ●● ●● ●●● ●●● ●●●●●

●● ●●● ●● ● ●● ●
● ●●

●● ● ●●● ●●
● ●●●

● ●●
●

●
●

● ●●
●

●
●

● ●
●
●
●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●● ●●● ●●●●●●●●●●●●●●●●●●● ●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●● ●●●●● ●● ●●●●●●●●●●●●●●●● ●●●●●●●●●●● ●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●● ●●● ●●●●●●●●●●●●●●● ●●●●●●●●● ●●●●●● ● ●●●● ●●●●●●●●●●●●●●●●● ●●●●●●●●●●● ●●●●●●●● ●●●●● ●●●●●●●● ●● ●●●●●●●●●●●●●●●●●●●●● ●● ●●●●●●● ●●●●●● ●● ●● ●●●●● ●●●●●●●●●● ●●●● ●● ●●●●● ●●●● ●●●● ●●●● ●●●●●●●● ●●●● ●●●●●●●●●●● ●● ●●●●● ●●●●●● ●●●● ●●●● ●●●●● ●●●●● ●●● ● ●●●●●● ●● ●●● ●●● ● ●● ●●●● ●●●● ●●● ●●● ●● ●●●● ● ●●●●● ●● ●●● ●● ●● ●●● ●●●●● ●● ●● ●● ●● ● ●●●● ●●● ● ●● ●●●● ●●● ●● ●●●●●●● ●● ●●● ●●● ●●●● ●● ●●● ●● ● ●● ●● ●● ●● ●●● ● ●● ● ●● ●● ● ●● ●●● ● ●●●● ●● ●●● ● ●● ● ●● ● ●●● ●● ●●●● ●●● ●● ● ● ●● ●● ● ●● ●●● ● ●●●●● ●●● ● ●● ● ●● ●● ●● ●● ● ●● ●● ● ●● ● ●●●●●● ●● ●● ●●●● ● ●● ●●● ●● ●●●●● ● ●● ●●● ●●● ●● ● ●●●● ● ●●● ●●● ●● ●● ●●● ● ● ●●●● ● ●● ●● ●●● ●● ●●●● ●●● ● ●●●● ●● ●● ●● ●● ●● ●●●● ●● ●●● ●● ●●● ●● ●●● ●●● ●●● ●● ●●● ●●● ●●●● ●● ●● ●● ●●●●● ● ●● ●● ●●● ● ●● ●● ●●●● ●●●● ●●● ● ●●● ●● ●●● ●● ●● ●●● ●● ●●●● ●● ●●● ●●● ●●●●● ●● ● ● ●●●● ●●● ●●●●● ●●● ●●● ●● ●● ●●●●● ●●●●●● ●● ●● ●● ●● ●● ●●● ●●● ●●●●●

●● ●●● ●● ● ●● ●
● ●●

●● ● ●●● ●●
● ●●●

● ●●
●

●
●

● ●●
●

●
●

● ●
●
●
●

●

●

binarize

Actual

B
ou

nd
0

0.
59

0 0.59

●●●● ●●●●● ●● ●●●●●● ●● ● ●●●●●●
●●●●●●●●

●●●●●●●●●●●●●● ●● ●●●● ●●●●●●●●●●● ●●●●●● ●● ●●●●●●●●●● ●●●●●●
●●●●●●●●●●● ●●●●●●●●●●●● ●●●●●●●●● ●●●●●●●● ●● ●● ●● ●●●●● ●●● ●●●●●●●●● ●●●● ●● ●●●●● ●●●●●●●●●●●●● ●●●●●●● ●● ● ●●●●●●●●●●●●●●● ●● ●●●●●● ●●● ●● ●● ●●●● ●● ●● ●●●●●● ●● ●●● ●●●●●●●● ● ●●● ●● ●●● ●● ●●●● ●●●● ●●● ●●● ●● ●●● ●● ●● ●●●●● ●●● ●●●● ●● ●●●●●● ●●●●● ●●●●●● ●●● ●●●●● ●●●● ●●●● ●●●● ●●●●●●●●●●●●●● ●●● ●● ●●●●●●●●●●●●●●● ●●●● ●●●●● ●●●● ●●● ●● ● ●● ●● ●● ●●● ●● ●●● ●●●●● ●● ●●●●●● ●●●● ●● ●●●●●● ●● ●●● ●● ●● ●● ●●● ●● ●●●●● ●●●●● ●●●●●● ●●● ●●●● ●● ●●●●●● ●●● ●●●●●●●●●●●●●● ●●●● ●●●●●● ●● ●●●●●●●● ● ●● ●● ●●● ●● ●●●● ●●●●●● ●●● ●●●● ●●●●● ●● ● ●●●●●● ●●●● ● ●●●●● ●●● ●●●●● ●●●●● ● ●● ●●●● ● ●● ●●●●●● ●●●● ●●●● ●●●● ●●●●● ●●● ●● ●●●●● ●● ●●●●●●●●●●●●●●●●●●●●● ●● ●●● ●● ●●●● ●●●●●●●● ●●●● ●●●●●●● ●●●●● ●● ●● ●●● ●● ●●●●● ●●●●●● ●●●● ●●●●● ●●● ●● ●● ●●●●●●● ●●●●●●● ● ●●● ● ●● ●●● ●●● ●● ●● ●●●●● ●●● ●● ● ●●●●●●● ●●●● ● ●●●●● ●●● ●●● ● ● ●● ●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●● ●●● ●● ●● ●●●●●● ●● ●● ● ●● ●●●● ●●● ●● ●●●● ●●●●●●● ●● ●●●●●● ●●●●● ●● ●●● ●●●● ●● ●●●● ●●●● ●●●● ●●● ●● ●●● ●●● ●●●●●●●● ●●● ●●● ● ●● ●●● ●●● ●●●● ●●● ●● ●●●●● ●●● ●●●● ● ●● ●●●● ●● ●●●●●●● ●●● ●●●●●● ●●● ●●●●●●●●● ●●●●● ●● ●●●●● ●●●● ●

● ●●
●

●
●

●
●

●

●●●● ●●●●● ●● ●●●●●● ●● ● ●●●●●●
●●●●●●●●

●●●●●●●●●●●●●● ●● ●●●● ●●●●●●●●●●● ●●●●●● ●● ●●●●●●●●●● ●●●●●●
●●●●●●●●●●● ●●●●●●●●●●●● ●●●●●●●●● ●●●●●●●● ●● ●● ●● ●●●●● ●●● ●●●●●●●●● ●●●● ●● ●●●●● ●●●●●●●●●●●●● ●●●●●●● ●● ● ●●●●●●●●●●●●●●● ●● ●●●●●● ●●● ●● ●● ●●●● ●● ●● ●●●●●● ●● ●●● ●●●●●●●● ● ●●● ●● ●●● ●● ●●●● ●●●● ●●● ●●● ●● ●●● ●● ●● ●●●●● ●●● ●●●● ●● ●●●●●● ●●●●● ●●●●●● ●●● ●●●●● ●●●● ●●●● ●●●● ●●●●●●●●●●●●●● ●●● ●● ●●●●●●●●●●●●●●● ●●●● ●●●●● ●●●● ●●● ●● ● ●● ●● ●● ●●● ●● ●●● ●●●●● ●● ●●●●●● ●●●● ●● ●●●●●● ●● ●●● ●● ●● ●● ●●● ●● ●●●●● ●●●●● ●●●●●● ●●● ●●●● ●● ●●●●●● ●●● ●●●●●●●●●●●●●● ●●●● ●●●●●● ●● ●●●●●●●● ● ●● ●● ●●● ●● ●●●● ●●●●●● ●●● ●●●● ●●●●● ●● ● ●●●●●● ●●●● ● ●●●●● ●●● ●●●●● ●●●●● ● ●● ●●●● ● ●● ●●●●●● ●●●● ●●●● ●●●● ●●●●● ●●● ●● ●●●●● ●● ●●●●●●●●●●●●●●●●●●●●● ●● ●●● ●● ●●●● ●●●●●●●● ●●●● ●●●●●●● ●●●●● ●● ●● ●●● ●● ●●●●● ●●●●●● ●●●● ●●●●● ●●● ●● ●● ●●●●●●● ●●●●●●● ● ●●● ● ●● ●●● ●●● ●● ●● ●●●●● ●●● ●● ● ●●●●●●● ●●●● ● ●●●●● ●●● ●●● ● ● ●● ●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●● ●●● ●● ●● ●●●●●● ●● ●● ● ●● ●●●● ●●● ●● ●●●● ●●●●●●● ●● ●●●●●● ●●●●● ●● ●●● ●●●● ●● ●●●● ●●●● ●●●● ●●● ●● ●●● ●●● ●●●●●●●● ●●● ●●● ● ●● ●●● ●●● ●●●● ●●● ●● ●●●●● ●●● ●●●● ● ●● ●●●● ●● ●●●●●●● ●●● ●●●●●● ●●● ●●●●●●●●● ●●●●● ●● ●●●●● ●●●● ●

● ●●
●

●
●

●
●

●

crosscorr

Actual
B

ou
nd

0
88

0 88

● ●●●●●●●● ●●●●●● ●●●●●●●●●●●●● ●●●●●●●● ●●●●● ●●●●●●●●●●●●●●●●●●●●●●●● ●●● ●●●●● ●●●● ●●●●●●●●●●●●●●●●●●●● ●●●●● ●●●●●●●●●● ●● ●●●●●●●● ●●●●●●●●●●● ●●●●●●●● ●●●●●● ●●● ●●●●●●●●●●●● ●●●●●●●●● ●●●●●●●●●●●●●●●●●● ●●●●●●●●●● ●● ●●● ●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●● ●●●●● ●●● ●●●●●● ●●●●● ●●●●●●●●●●● ●●●●●● ●●●● ●● ●●●●● ●●●●●●●●●●●● ●●●●●●●●●●●● ●●● ●●●●●●●● ●●●●● ●●●●●●●● ●●●●●●●● ●●●●●●●●●●● ●● ●●●●●●●●●●● ●●●●●●● ●●●●●● ●●●● ●●● ●●● ●●●●●●● ●●●●●●● ●●●●●●●●●● ●● ●●●● ●●●● ●●●● ●●●●●●●● ●●●●●●● ●●● ●●● ●●● ●●● ●●● ●●●●● ●●●● ●●●●●● ●●●●●●●●●● ●●● ●●●●● ●●●● ●●●●●●●●● ●●●●● ●●● ●●●●● ●●●●●●●●●●●●●●● ●●● ●●●● ●● ●●●● ●● ●●●●● ●● ●●●●●● ●●●● ●●●●● ●●●●●● ●●●● ●●●●●● ●●●●●● ●● ●● ●●●●● ●●●●●●●●●●●●●●●●● ●●●●●●● ●●● ●● ●●●●●●●● ●● ●●●● ●● ● ●●●● ●● ●● ●● ●● ●●●● ●●● ● ●● ●●● ●●● ●● ●● ●● ●● ●●●●● ●●●●● ●●●●● ●●●●●●● ● ●● ●●●●●●●●●●●●● ●●●●●●●●● ●● ●● ●●● ●●● ●● ● ● ●● ●●● ●● ●● ● ●●● ● ●● ●● ●●● ● ● ●● ●●● ●●●●●●● ● ●●● ●●● ●●●●● ●● ● ●●● ●●●● ● ●● ● ●● ●●●●●● ● ●● ●● ●● ● ●● ●● ● ●● ●●●●●● ●● ●●●● ●●●● ● ●●● ●●●● ●● ●● ●●● ●● ●●● ●●● ●●●●●●● ●● ●● ●● ●●● ● ●●●●● ●●● ●● ● ●●●● ● ●●●●● ●● ●● ● ●● ● ●●● ●●●● ● ●● ● ● ● ●● ●● ●● ●●● ● ●●● ●●●● ●● ●●● ●● ●● ● ●● ●●●● ●●● ● ●● ●● ● ●●● ●● ●●● ●● ●●●● ●●● ●●●●●● ●
●●●

● ●●●
●●

●

● ●

●

●

● ●●●●●●●● ●●●●●● ●●●●●●●●●●●●● ●●●●●●●● ●●●●● ●●●●●●●●●●●●●●●●●●●●●●●● ●●● ●●●●● ●●●● ●●●●●●●●●●●●●●●●●●●● ●●●●● ●●●●●●●●●● ●● ●●●●●●●● ●●●●●●●●●●● ●●●●●●●● ●●●●●● ●●● ●●●●●●●●●●●● ●●●●●●●●● ●●●●●●●●●●●●●●●●●● ●●●●●●●●●● ●● ●●● ●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●● ●●●●● ●●● ●●●●●● ●●●●● ●●●●●●●●●●● ●●●●●● ●●●● ●● ●●●●● ●●●●●●●●●●●● ●●●●●●●●●●●● ●●● ●●●●●●●● ●●●●● ●●●●●●●● ●●●●●●●● ●●●●●●●●●●● ●● ●●●●●●●●●●● ●●●●●●● ●●●●●● ●●●● ●●● ●●● ●●●●●●● ●●●●●●● ●●●●●●●●●● ●● ●●●● ●●●● ●●●● ●●●●●●●● ●●●●●●● ●●● ●●● ●●● ●●● ●●● ●●●●● ●●●● ●●●●●● ●●●●●●●●●● ●●● ●●●●● ●●●● ●●●●●●●●● ●●●●● ●●● ●●●●● ●●●●●●●●●●●●●●● ●●● ●●●● ●● ●●●● ●● ●●●●● ●● ●●●●●● ●●●● ●●●●● ●●●●●● ●●●● ●●●●●● ●●●●●● ●● ●● ●●●●● ●●●●●●●●●●●●●●●●● ●●●●●●● ●●● ●● ●●●●●●●● ●● ●●●● ●● ● ●●●● ●● ●● ●● ●● ●●●● ●●● ● ●● ●●● ●●● ●● ●● ●● ●● ●●●●● ●●●●● ●●●●● ●●●●●●● ● ●● ●●●●●●●●●●●●● ●●●●●●●●● ●● ●● ●●● ●●● ●● ● ● ●● ●●● ●● ●● ● ●●● ● ●● ●● ●●● ● ● ●● ●●● ●●●●●●● ● ●●● ●●● ●●●●● ●● ● ●●● ●●●● ● ●● ● ●● ●●●●●● ● ●● ●● ●● ● ●● ●● ● ●● ●●●●●● ●● ●●●● ●●●● ● ●●● ●●●● ●● ●● ●●● ●● ●●● ●●● ●●●●●●● ●● ●● ●● ●●● ● ●●●●● ●●● ●● ● ●●●● ● ●●●●● ●● ●● ● ●● ● ●●● ●●●● ● ●● ● ● ● ●● ●● ●● ●●● ● ●●● ●●●● ●● ●●● ●● ●● ● ●● ●●●● ●●● ● ●● ●● ● ●●● ●● ●●● ●● ●●●● ●●● ●●●●●● ●
●●●

● ●●●
●●

●

● ●

●

●

gamma

Actual

B
ou

nd
0

44

044

●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●● ●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●● ●●●●●● ●●●●●●●●●●●●●●● ●●●●● ●●●●●● ●●●●●●●●●●●●●●●●● ●●●●●●● ●●●●● ●●●●● ●●●●●● ●●●●●●●●● ●●● ●● ●●●●●● ●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●● ●●●● ●●●●●●●●● ●●●● ● ●●●●●●●●●●●●● ●●●●●●●●● ●●●● ●●●●●●● ●● ●●●●●●●●● ●●●●●● ●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●● ●●●●● ● ●●●●●● ●●●●●●●●●●● ●●●●●●●●●●●●● ●● ●●●●●●●●● ●● ●●●●●●●● ●● ●● ●●●●●●●●●●●●●●●● ●●●●●●●● ●●●● ●●●●●● ●●●● ●●●●●● ●●●●● ●● ●● ●●●●●● ●●●●● ● ●● ●●●●● ●●●●●● ●●●● ●●●● ●●●●● ●●●●●● ●●●●●●●●●●●●●●●●●● ●● ●●● ●●●●● ● ●●●●●●● ● ●●●● ●● ●●●●● ●● ●● ●●●● ●●●●● ●● ●●● ●●●● ●●●● ●●● ●● ●●● ●●●● ● ●● ●● ●●● ●●● ●●●●● ● ●●● ●●●● ●●●●● ●●●●●●●●●● ●● ●●●●●●●●● ● ●●●● ●●●● ●● ●●● ●●●●● ● ●● ●●● ●●● ●●● ●● ● ● ●● ●●● ●●● ●●●●● ●●●●● ●●●● ●●●●●●●●● ●● ●●●● ●● ●●●● ●●● ●●● ●●●●● ●●● ●● ● ●●●● ● ●●● ●●● ●●● ●●●● ●●●●●● ●●●● ●●● ●● ●● ● ●●● ●●● ●●●●● ●● ● ●●● ●● ●● ●● ●● ●● ●● ●● ●●●● ●● ●●● ●● ●● ●●●●● ●● ● ● ● ●● ●●●● ●● ●●● ●● ●● ● ●● ●● ● ●● ●●●● ● ● ●●● ●●●● ●●●● ●●● ●●● ●●●●●●● ● ●●● ●●●●● ● ●●● ● ●●●● ●●● ●● ●● ● ●●●● ●● ●●●● ●● ●●● ● ● ●●● ●●●●● ● ●●● ●● ●● ● ● ●●● ●● ●●●● ●●

●●● ● ● ●●
●●

●
●

●
● ●

●

●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●● ●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●● ●●●●●● ●●●●●●●●●●●●●●● ●●●●● ●●●●●● ●●●●●●●●●●●●●●●●● ●●●●●●● ●●●●● ●●●●● ●●●●●● ●●●●●●●●● ●●● ●● ●●●●●● ●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●● ●●●● ●●●●●●●●● ●●●● ● ●●●●●●●●●●●●● ●●●●●●●●● ●●●● ●●●●●●● ●● ●●●●●●●●● ●●●●●● ●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●● ●●●●● ● ●●●●●● ●●●●●●●●●●● ●●●●●●●●●●●●● ●● ●●●●●●●●● ●● ●●●●●●●● ●● ●● ●●●●●●●●●●●●●●●● ●●●●●●●● ●●●● ●●●●●● ●●●● ●●●●●● ●●●●● ●● ●● ●●●●●● ●●●●● ● ●● ●●●●● ●●●●●● ●●●● ●●●● ●●●●● ●●●●●● ●●●●●●●●●●●●●●●●●● ●● ●●● ●●●●● ● ●●●●●●● ● ●●●● ●● ●●●●● ●● ●● ●●●● ●●●●● ●● ●●● ●●●● ●●●● ●●● ●● ●●● ●●●● ● ●● ●● ●●● ●●● ●●●●● ● ●●● ●●●● ●●●●● ●●●●●●●●●● ●● ●●●●●●●●● ● ●●●● ●●●● ●● ●●● ●●●●● ● ●● ●●● ●●● ●●● ●● ● ● ●● ●●● ●●● ●●●●● ●●●●● ●●●● ●●●●●●●●● ●● ●●●● ●● ●●●● ●●● ●●● ●●●●● ●●● ●● ● ●●●● ● ●●● ●●● ●●● ●●●● ●●●●●● ●●●● ●●● ●● ●● ● ●●● ●●● ●●●●● ●● ● ●●● ●● ●● ●● ●● ●● ●● ●● ●●●● ●● ●●● ●● ●● ●●●●● ●● ● ● ● ●● ●●●● ●● ●●● ●● ●● ● ●● ●● ● ●● ●●●● ● ● ●●● ●●●● ●●●● ●●● ●●● ●●●●●●● ● ●●● ●●●●● ● ●●● ● ●●●● ●●● ●● ●● ● ●●●● ●● ●●●● ●● ●●● ● ● ●●● ●●●●● ● ●●● ●● ●● ● ● ●●● ●● ●●●● ●●

●●● ● ● ●●
●●

●
●

●
● ●

●

gaussian

Actual

B
ou

nd
0

41

041

●●●●
●● ●●●● ●● ●● ●●●●●●●●●●● ●●●●● ●●●● ●● ●●●● ●●●●● ●●● ●●●●● ●●● ●●●●●● ●● ●●●●●● ●●●● ●●●●● ●● ● ●●●●●●●●●● ●●●●●●●●●● ●● ●●●●●●●●●●●●●● ●●●●●●●●● ● ●●●●●● ●●●●●●● ●● ●●●●●●● ●● ●●●●●●●● ●●●●●●●●●●●●●●● ●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●● ●●●●●●●●●●●●●●● ●●●●●●●●●●●●● ●●●● ●● ●●●●●●●●●●●●●●●●●●●●●●●●●● ●● ●●●●● ●● ●● ●● ●● ●●● ●●●●●●●●●●●● ●●●●●●●●●●● ●●●●●●● ●●●●●●●●●●●●●● ●●●●●●●●●● ●●●● ●●●●●●●● ●●●●● ●●●●● ●●●●●●●●● ●●●●●●●●●●●●●●●●●● ●● ●● ●●●●●●●● ●● ●● ●●● ●●●●●●●●●●● ●●● ●●●●●●●● ●●●●●●● ●●●●●●●● ●●●● ●●●●●●●● ●● ●● ●●●●●●● ●●●● ●● ● ●● ●●●●●●●●●●● ●●●● ●● ●● ● ●● ●●●●● ●●●● ●●●●●●●●● ●●●● ● ●●●●● ●● ●●●● ●●●●●●●●●●●● ●● ● ●● ●●●● ●●●●●● ●●●● ●●●●●●●●● ●●●●●● ● ●● ●● ●●●● ●●● ●● ●●● ●●●●●● ●●●● ●● ●●● ●● ●● ●●●●● ●●●● ●● ●●●●● ●●●● ●●●●● ●●● ●●● ●● ●●●●● ●●●● ●●●●● ●● ●●●● ●● ●●●●●● ●●●● ●●● ●● ● ●●●● ●●● ● ●●● ●●●● ●● ●●●●● ●●●● ● ●●●●●●●●● ●●● ●● ●● ●● ●●● ●●●● ● ●● ●●●● ●●●●● ●● ●●●● ●●●● ●● ●●● ●● ● ●●●●●● ● ●● ● ●● ● ●●●●●●● ●● ● ●● ● ●● ●●●● ● ●●●●●● ●● ●● ●●●● ●●●●●● ●●●●●● ●● ●● ●●●●● ●● ●●● ● ●● ●● ●●● ●● ●●●● ● ●● ●●● ●●● ●●● ● ●● ●●●● ●●●●●● ●●●●●●●● ●●● ●●●●● ●● ●●●● ● ●●● ●● ●●●●● ●●● ●● ● ● ●●●●●●●● ●● ●●● ●● ●● ●●●●●● ●●●

● ●● ●
●

●●●●
●● ●●●● ●● ●● ●●●●●●●●●●● ●●●●● ●●●● ●● ●●●● ●●●●● ●●● ●●●●● ●●● ●●●●●● ●● ●●●●●● ●●●● ●●●●● ●● ● ●●●●●●●●●● ●●●●●●●●●● ●● ●●●●●●●●●●●●●● ●●●●●●●●● ● ●●●●●● ●●●●●●● ●● ●●●●●●● ●● ●●●●●●●● ●●●●●●●●●●●●●●● ●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●● ●●●●●●●●●●●●●●● ●●●●●●●●●●●●● ●●●● ●● ●●●●●●●●●●●●●●●●●●●●●●●●●● ●● ●●●●● ●● ●● ●● ●● ●●● ●●●●●●●●●●●● ●●●●●●●●●●● ●●●●●●● ●●●●●●●●●●●●●● ●●●●●●●●●● ●●●● ●●●●●●●● ●●●●● ●●●●● ●●●●●●●●● ●●●●●●●●●●●●●●●●●● ●● ●● ●●●●●●●● ●● ●● ●●● ●●●●●●●●●●● ●●● ●●●●●●●● ●●●●●●● ●●●●●●●● ●●●● ●●●●●●●● ●● ●● ●●●●●●● ●●●● ●● ● ●● ●●●●●●●●●●● ●●●● ●● ●● ● ●● ●●●●● ●●●● ●●●●●●●●● ●●●● ● ●●●●● ●● ●●●● ●●●●●●●●●●●● ●● ● ●● ●●●● ●●●●●● ●●●● ●●●●●●●●● ●●●●●● ● ●● ●● ●●●● ●●● ●● ●●● ●●●●●● ●●●● ●● ●●● ●● ●● ●●●●● ●●●● ●● ●●●●● ●●●● ●●●●● ●●● ●●● ●● ●●●●● ●●●● ●●●●● ●● ●●●● ●● ●●●●●● ●●●● ●●● ●● ● ●●●● ●●● ● ●●● ●●●● ●● ●●●●● ●●●● ● ●●●●●●●●● ●●● ●● ●● ●● ●●● ●●●● ● ●● ●●●● ●●●●● ●● ●●●● ●●●● ●● ●●● ●● ● ●●●●●● ● ●● ● ●● ● ●●●●●●● ●● ● ●● ● ●● ●●●● ● ●●●●●● ●● ●● ●●●● ●●●●●● ●●●●●● ●● ●● ●●●●● ●● ●●● ● ●● ●● ●●● ●● ●●●● ● ●● ●●● ●●● ●●● ● ●● ●●●● ●●●●●● ●●●●●●●● ●●● ●●●●● ●● ●●●● ● ●●● ●● ●●●●● ●●● ●● ● ● ●●●●●●●● ●● ●●● ●● ●● ●●●●●● ●●●

● ●● ●
●

inversek2j

Actual

B
ou

nd
0

0.
78

0 0.78

●
● ●

●● ●● ●● ●●● ●●● ● ●● ●● ● ●● ●●●● ●● ●●● ●●●●●●● ● ●● ●●●● ●● ● ●●●●●● ●● ● ●● ●●●●●● ●● ●●●●● ●●● ●●● ●●● ● ●●●●●●● ●● ●● ●●● ●●● ● ●● ●●●●●● ●● ●● ● ●●● ● ●●● ● ● ●●● ●●● ● ●● ●●● ●● ●● ●● ●● ● ●●●●●● ●● ● ●●●● ●● ● ●● ● ● ●● ●● ●● ● ●● ● ●●● ●●● ●● ●● ●●●● ● ●●● ●● ●● ● ● ●●● ● ●●●● ● ● ●●● ● ●● ● ●●●● ● ●● ● ●● ●● ●●●●●●● ●●●● ● ●●● ●●● ●●● ● ●● ● ●● ●● ●●●●● ● ●●●●●●● ●●●●● ● ●● ●●●● ● ●●●● ●● ● ●●●● ●● ●● ● ●● ● ● ●● ● ●●● ● ● ●● ● ● ●● ● ●● ●● ● ●● ●● ● ●● ●● ●● ●● ●●●● ● ●● ● ●● ●● ● ●●● ●● ●● ● ●● ●●● ●●●● ● ●● ●● ● ●● ●● ●●●● ●●● ●●● ●●● ●● ●● ●●● ●●● ●●●●●● ●●●● ● ●● ●● ● ●● ●● ●●● ●● ●● ●● ● ● ●●● ● ●●● ●● ●● ● ●●● ●● ● ●● ● ● ●● ● ● ●● ●●●●● ● ●●●●● ●● ● ● ●● ●●●●● ●● ● ●● ●●● ●●● ●●●●●● ●● ● ● ●● ● ● ●● ●● ● ●● ●● ●● ●● ● ● ●●●● ●● ● ● ●●●● ●● ● ●● ●●● ●●●●●● ● ● ● ●●● ● ●● ● ● ●● ●●● ●● ●● ● ●● ● ●● ●●●● ●● ● ●● ● ● ●●●● ●● ●● ●● ●● ●●●●● ●● ●●● ● ●● ● ●●● ● ●● ●●● ● ●● ●● ● ●● ●● ● ●● ●●● ● ●●● ●●● ● ● ● ●● ● ●●● ● ●●●●● ●● ●●● ●● ● ●●●●●● ●●●●●● ●● ● ●●● ● ●● ●●● ●●●●●●●● ●● ●● ● ●● ●● ● ● ●●● ● ● ● ●● ●●●●● ● ● ●●●●●● ● ●●●● ●● ● ● ● ● ● ●● ● ● ● ●● ● ●● ● ● ●●● ●●●● ●●● ●● ●● ●● ● ● ●● ● ● ●●● ●●● ● ●● ●● ●● ● ●●●●●●● ●●●●● ● ● ●●●●● ● ● ●● ● ● ●● ●● ●● ● ● ●● ●●●●●●●● ● ●●● ● ●● ●● ●● ● ●● ●●● ●●●● ● ●●● ● ● ●●●● ● ●●●●● ● ●● ●● ● ●● ●● ●●● ●●●● ● ●●● ●●● ● ●●● ● ●●●●● ●●● ● ● ●●● ●● ●●● ●● ●●● ● ● ● ●●● ●● ●●● ●●● ● ●●●●●●● ●●●●●●● ●●● ● ●●● ● ● ●●● ●● ●● ●●● ● ● ● ●●● ●●● ●● ●●● ●● ●●●●●●●● ●●●● ● ● ●●

●
● ●

●● ●● ●● ●●● ●●● ● ●● ●● ● ●● ●●●● ●● ●●● ●●●●●●● ● ●● ●●●● ●● ● ●●●●●● ●● ● ●● ●●●●●● ●● ●●●●● ●●● ●●● ●●● ● ●●●●●●● ●● ●● ●●● ●●● ● ●● ●●●●●● ●● ●● ● ●●● ● ●●● ● ● ●●● ●●● ● ●● ●●● ●● ●● ●● ●● ● ●●●●●● ●● ● ●●●● ●● ● ●● ● ● ●● ●● ●● ● ●● ● ●●● ●●● ●● ●● ●●●● ● ●●● ●● ●● ● ● ●●● ● ●●●● ● ● ●●● ● ●● ● ●●●● ● ●● ● ●● ●● ●●●●●●● ●●●● ● ●●● ●●● ●●● ● ●● ● ●● ●● ●●●●● ● ●●●●●●● ●●●●● ● ●● ●●●● ● ●●●● ●● ● ●●●● ●● ●● ● ●● ● ● ●● ● ●●● ● ● ●● ● ● ●● ● ●● ●● ● ●● ●● ● ●● ●● ●● ●● ●●●● ● ●● ● ●● ●● ● ●●● ●● ●● ● ●● ●●● ●●●● ● ●● ●● ● ●● ●● ●●●● ●●● ●●● ●●● ●● ●● ●●● ●●● ●●●●●● ●●●● ● ●● ●● ● ●● ●● ●●● ●● ●● ●● ● ● ●●● ● ●●● ●● ●● ● ●●● ●● ● ●● ● ● ●● ● ● ●● ●●●●● ● ●●●●● ●● ● ● ●● ●●●●● ●● ● ●● ●●● ●●● ●●●●●● ●● ● ● ●● ● ● ●● ●● ● ●● ●● ●● ●● ● ● ●●●● ●● ● ● ●●●● ●● ● ●● ●●● ●●●●●● ● ● ● ●●● ● ●● ● ● ●● ●●● ●● ●● ● ●● ● ●● ●●●● ●● ● ●● ● ● ●●●● ●● ●● ●● ●● ●●●●● ●● ●●● ● ●● ● ●●● ● ●● ●●● ● ●● ●● ● ●● ●● ● ●● ●●● ● ●●● ●●● ● ● ● ●● ● ●●● ● ●●●●● ●● ●●● ●● ● ●●●●●● ●●●●●● ●● ● ●●● ● ●● ●●● ●●●●●●●● ●● ●● ● ●● ●● ● ● ●●● ● ● ● ●● ●●●●● ● ● ●●●●●● ● ●●●● ●● ● ● ● ● ● ●● ● ● ● ●● ● ●● ● ● ●●● ●●●● ●●● ●● ●● ●● ● ● ●● ● ● ●●● ●●● ● ●● ●● ●● ● ●●●●●●● ●●●●● ● ● ●●●●● ● ● ●● ● ● ●● ●● ●● ● ● ●● ●●●●●●●● ● ●●● ● ●● ●● ●● ● ●● ●●● ●●●● ● ●●● ● ● ●●●● ● ●●●●● ● ●● ●● ● ●● ●● ●●● ●●●● ● ●●● ●●● ● ●●● ● ●●●●● ●●● ● ● ●●● ●● ●●● ●● ●●● ● ● ● ●●● ●● ●●● ●●● ● ●●●●●●● ●●●●●●● ●●● ● ●●● ● ● ●●● ●● ●● ●●● ● ● ● ●●● ●●● ●● ●●● ●● ●●●●●●●● ●●●● ● ● ●●

jmeint

Actual
B

ou
nd

0
0.

28
0 0.28

●●●●● ●●●● ●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●● ●●●●●●●●●●●●●●●●●●●●● ●● ●●●●●●●●●●●●● ●●●● ●●●●●●●● ●●●●●● ●●●●●●●●●● ●●●●●●●●●●●● ●●●●●●● ●●●●●●●●●●●●●●● ●●●●● ●●●● ●●●●●●●●●●●●●●●●●●●●● ●● ●●●●●●●● ●● ●●●● ●● ●●●●● ●●●●● ●●●●●● ●●● ●●●●● ●●●● ●●●●●●●● ●●●●● ● ●● ●● ●●●●●●● ●●● ●●●●● ●● ●●●●● ●●●●●●●●●● ●●●●●●●●●●● ●●●●●● ●●●●●●● ●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●● ●●●● ●●● ●● ●●●●●●●●● ●●●● ●● ●●● ●● ●●●●●●●●●● ●●●●●●● ●●●● ●● ●●●●●●●●●● ●●●● ● ●●●●●●●●●●●●● ● ●● ●●● ●●● ●●● ●●●●●●● ●●● ●●● ●●●●●● ●● ●●●● ●●●●● ●● ●● ●● ●● ●●●●●●● ●●●●●●● ● ●●●●●●●● ●●●●●●●●●●●● ●●●●●●●●●●●● ●●●● ● ●●●●●●●● ●●●●●● ●● ●●●● ●●● ●● ●●● ●● ●●● ●●●● ● ●● ●●●●●●● ●●●●●●●●●● ●● ●●●●● ●●●●●●●●● ●●● ●●●●●●● ●● ● ●●●●●●●●● ●●●●●● ●● ● ●●●●●● ●●● ●●●●●● ●●● ●●● ●●● ●●●● ●● ●●● ●● ●●●●●●● ●●● ● ●●●●●●●●●●● ●●●●●●●●●● ●●●●●● ●● ●●●● ●● ●● ●● ●●● ●●●●●●●●● ●●●●

●●●●●●
●
● ● ●●●

●● ●●●●●
● ●●● ●●● ●●●●●●● ●●●●● ●●●●● ●●●●●●●●●●●●● ●●●●●● ●●● ●● ●●●●● ●● ●● ●●●●●●●●●●●●●●●●●●

●●●
●

●●●●●●
●●● ●●●●●●●●●●●● ●●●●● ● ●●●● ●●●●●●●● ●●●● ●●●● ●●●● ●●●●●●

●●●●●

●
●●●●●

●●●●●●●●●●●●●●●●●● ●●●●
●●●

●●●●● ●●●● ●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●● ●●●●●●●●●●●●●●●●●●●●● ●● ●●●●●●●●●●●●● ●●●● ●●●●●●●● ●●●●●● ●●●●●●●●●● ●●●●●●●●●●●● ●●●●●●● ●●●●●●●●●●●●●●● ●●●●● ●●●● ●●●●●●●●●●●●●●●●●●●●● ●● ●●●●●●●● ●● ●●●● ●● ●●●●● ●●●●● ●●●●●● ●●● ●●●●● ●●●● ●●●●●●●● ●●●●● ● ●● ●● ●●●●●●● ●●● ●●●●● ●● ●●●●● ●●●●●●●●●● ●●●●●●●●●●● ●●●●●● ●●●●●●● ●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●● ●●●● ●●● ●● ●●●●●●●●● ●●●● ●● ●●● ●● ●●●●●●●●●● ●●●●●●● ●●●● ●● ●●●●●●●●●● ●●●● ● ●●●●●●●●●●●●● ● ●● ●●● ●●● ●●● ●●●●●●● ●●● ●●● ●●●●●● ●● ●●●● ●●●●● ●● ●● ●● ●● ●●●●●●● ●●●●●●● ● ●●●●●●●● ●●●●●●●●●●●● ●●●●●●●●●●●● ●●●● ● ●●●●●●●● ●●●●●● ●● ●●●● ●●● ●● ●●● ●● ●●● ●●●● ● ●● ●●●●●●● ●●●●●●●●●● ●● ●●●●● ●●●●●●●●● ●●● ●●●●●●● ●● ● ●●●●●●●●● ●●●●●● ●● ● ●●●●●● ●●● ●●●●●● ●●● ●●● ●●● ●●●● ●● ●●● ●● ●●●●●●● ●●● ● ●●●●●●●●●●● ●●●●●●●●●● ●●●●●● ●● ●●●● ●● ●● ●● ●●● ●●●●●●●●● ●●●●

●●●●●●
●
● ● ●●●

●● ●●●●●
● ●●● ●●● ●●●●●●● ●●●●● ●●●●● ●●●●●●●●●●●●● ●●●●●● ●●● ●● ●●●●● ●● ●● ●●●●●●●●●●●●●●●●●●

●●●
●

●●●●●●
●●● ●●●●●●●●●●●● ●●●●● ● ●●●● ●●●●●●●● ●●●● ●●●● ●●●● ●●●●●●

●●●●●

●
●●●●●

●●●●●●●●●●●●●●●●●● ●●●●
●●●

matmult

Actual

B
ou

nd
0

0.
95

0 0.95

●
●

●●

●
●●

●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●● ●● ●●● ●●●●●● ●●●●●●●●● ●●●●●● ●● ●●●●●●●●●●●●● ●●●●● ●●●● ●●●●● ●●●●● ●●●● ●● ●●●●● ●●●●●●●●● ●●●●●●●●●● ●● ●● ●●●● ●●● ●● ●●● ●●●● ●●● ●● ●●● ●●● ●● ● ●●●●● ●● ●●●●●●●●●●●●● ●●●●●●●● ●●●● ●●●●● ●●●●●●●● ●●● ●● ●● ●●● ●●● ●● ●● ●●●● ●●● ●● ●●● ●● ● ●● ● ●●●●●●● ● ●●●●●●● ●●●●● ● ●● ●●●●● ●●●●●●●●●●●● ●● ●●●● ●●●●● ●●●● ●●● ●●●● ●● ● ●●● ●●● ●●●● ● ●●●● ●● ●● ●●●● ●● ●●● ●● ●●●● ●● ●●●●● ●● ●●●●● ●● ●●● ● ●● ●●●●● ●●● ●● ●● ●● ●●● ●●●●●●●●●●● ●●●●● ●● ●●●● ●●● ●●●●●●●● ●●●● ●● ●● ●●●● ●●●●●●● ●● ●● ●●●●●●● ●●●●●●● ●●●● ●●● ●●●●● ●●●●●● ●●●●● ●●●● ●●●● ●●● ●●●●● ●●●●● ●●●● ●● ●● ●●●● ● ●●● ●●●●●●●● ●●●●●●● ●● ●● ●● ●●●●●●●●●● ●●●●● ● ●● ●●●● ●● ●●● ●●● ●●●●●●●●● ● ●●● ●●●●● ●● ●●●● ●●●● ●●●●● ●●● ●●●● ●● ●● ●●● ● ●●● ●●● ●●●● ●●●●● ●●●●●● ●● ●● ●●●●●●●● ● ●● ●●●●●● ●●●●● ●● ●●● ●●● ●●●● ●● ●● ●● ●●● ● ●●● ●● ●●●● ●●●●●●●●●● ●●●● ●● ●●● ● ● ●● ●●●● ●● ●● ● ●● ●●●● ●● ●●● ●●● ●● ● ●●● ●● ●●●●●● ●● ● ●● ●●● ● ●● ●●●●●●● ●● ●●● ●● ● ●●● ● ●● ●● ● ●● ●●● ●● ●●● ● ●● ●●●● ●● ●●●● ● ●● ●●●●● ●●● ●●● ● ●● ●● ●●● ●●●● ●●●●● ● ●● ●● ●●● ● ●●●●●● ●●●●●● ●● ●●● ●● ●● ●● ● ●●● ●● ●● ● ●● ● ●● ●●●● ●●● ●●●● ●●●● ●●● ●● ●● ● ●●●● ● ● ●● ● ●●● ●● ●●●● ● ●●● ● ●●●● ●● ●●●● ●●● ●●●● ● ●● ● ●● ●●● ●●●●● ●●●●● ●● ●●●● ●●● ●●● ●●● ●
●

●
●

●

●

●
●

●●

●
●●

●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●● ●● ●●● ●●●●●● ●●●●●●●●● ●●●●●● ●● ●●●●●●●●●●●●● ●●●●● ●●●● ●●●●● ●●●●● ●●●● ●● ●●●●● ●●●●●●●●● ●●●●●●●●●● ●● ●● ●●●● ●●● ●● ●●● ●●●● ●●● ●● ●●● ●●● ●● ● ●●●●● ●● ●●●●●●●●●●●●● ●●●●●●●● ●●●● ●●●●● ●●●●●●●● ●●● ●● ●● ●●● ●●● ●● ●● ●●●● ●●● ●● ●●● ●● ● ●● ● ●●●●●●● ● ●●●●●●● ●●●●● ● ●● ●●●●● ●●●●●●●●●●●● ●● ●●●● ●●●●● ●●●● ●●● ●●●● ●● ● ●●● ●●● ●●●● ● ●●●● ●● ●● ●●●● ●● ●●● ●● ●●●● ●● ●●●●● ●● ●●●●● ●● ●●● ● ●● ●●●●● ●●● ●● ●● ●● ●●● ●●●●●●●●●●● ●●●●● ●● ●●●● ●●● ●●●●●●●● ●●●● ●● ●● ●●●● ●●●●●●● ●● ●● ●●●●●●● ●●●●●●● ●●●● ●●● ●●●●● ●●●●●● ●●●●● ●●●● ●●●● ●●● ●●●●● ●●●●● ●●●● ●● ●● ●●●● ● ●●● ●●●●●●●● ●●●●●●● ●● ●● ●● ●●●●●●●●●● ●●●●● ● ●● ●●●● ●● ●●● ●●● ●●●●●●●●● ● ●●● ●●●●● ●● ●●●● ●●●● ●●●●● ●●● ●●●● ●● ●● ●●● ● ●●● ●●● ●●●● ●●●●● ●●●●●● ●● ●● ●●●●●●●● ● ●● ●●●●●● ●●●●● ●● ●●● ●●● ●●●● ●● ●● ●● ●●● ● ●●● ●● ●●●● ●●●●●●●●●● ●●●● ●● ●●● ● ● ●● ●●●● ●● ●● ● ●● ●●●● ●● ●●● ●●● ●● ● ●●● ●● ●●●●●● ●● ● ●● ●●● ● ●● ●●●●●●● ●● ●●● ●● ● ●●● ● ●● ●● ● ●● ●●● ●● ●●● ● ●● ●●●● ●● ●●●● ● ●● ●●●●● ●●● ●●● ● ●● ●● ●●● ●●●● ●●●●● ● ●● ●● ●●● ● ●●●●●● ●●●●●● ●● ●●● ●● ●● ●● ● ●●● ●● ●● ● ●● ● ●● ●●●● ●●● ●●●● ●●●● ●●● ●● ●● ● ●●●● ● ● ●● ● ●●● ●● ●●●● ● ●●● ● ●●●● ●● ●●●● ●●● ●●●● ● ●● ● ●● ●●● ●●●●● ●●●●● ●● ●●●● ●●● ●●● ●●● ●
●

●
●

●

●

sobel

Actual

B
ou

nd
0

25

025

●●●●●●● ●●●●●●●●●●●●● ●●● ●●● ●● ●●● ●●●● ●●● ●● ●●● ●●● ●● ● ●●●●● ●● ●●●●●●●●●●●●● ●●●●●●●● ●●●● ●●●●● ●●●●●●●● ●●● ●● ●● ●●● ●●● ●● ●● ●●●● ●●● ●● ●●● ●● ● ●● ● ●●●●●●● ● ●●●●●●● ●●●●● ● ●● ●●●●● ●●●●●●●●●●●● ●● ●●●● ●●●●● ●●●● ●●● ●●●● ●● ● ●●● ●●● ●●●● ● ●●●● ●● ●● ●●●● ●● ●●● ●● ●●●● ●● ●●●●● ●● ●●●●● ●● ●●● ● ●● ●●●●● ●●● ●● ●● ●● ●●● ●●●●●●●●●●● ●●●●● ●● ●●●● ●●● ●●●●●●●● ●●●● ●● ●● ●●●● ●●●●●●● ●● ●● ●●●●●●● ●●●●●●● ●●●● ●●● ●●●●● ●●●●●● ●●●●● ●●●● ●●●● ●●● ●●●●● ●●●●● ●●●● ●● ●● ●●●● ● ●●● ●●●●●●●● ●●●●●●● ●● ●● ●● ●●●●●●●●●● ●●●●●● ●● ●●●● ●● ●●● ●●● ●●●●●●●●● ● ●●● ●●●●● ●● ●●●● ●●●● ●●●●● ●●● ●●●● ●● ●● ●●● ● ●●● ●●● ●●●● ●●●●● ●●●●●● ●● ●● ●●●●●●●● ● ●● ●●●●●● ●●●●● ●● ●●● ●●● ●●●● ●● ●● ●● ●●● ● ●●● ●● ●●●● ●●●●●●●●●● ●●●● ●● ●●● ● ● ●● ●●●● ●● ●● ● ●● ●●●● ●● ●●● ●●● ●● ● ●●● ●● ●●●●●● ●● ● ●● ●●● ● ●● ●●●●●●● ●● ●●● ●● ● ●●● ● ●● ●● ● ●● ●●● ●● ●●● ● ●● ●●●● ●● ●●●● ● ●● ●●●●● ●●● ●●● ● ●● ●● ●●● ●●●● ●●●●● ● ●● ●● ●●● ● ●●●●●● ●●●●●● ●● ●●● ●● ●● ●● ● ●●● ●● ●● ● ●● ● ●● ●●●● ●●● ●●●● ●●●● ●●● ●● ●● ● ●●●● ● ● ●● ● ●●● ●● ●●●● ● ●●● ● ●●●● ●● ●●●● ●●● ●●●● ●●● ● ●● ●●● ●●●●● ●●●●● ●● ●●●● ●●● ●●● ●●● ●
●

●
●

●

●

●●●●●●● ●●●●●●●●●●●●● ●●● ●●● ●● ●●● ●●●● ●●● ●● ●●● ●●● ●● ● ●●●●● ●● ●●●●●●●●●●●●● ●●●●●●●● ●●●● ●●●●● ●●●●●●●● ●●● ●● ●● ●●● ●●● ●● ●● ●●●● ●●● ●● ●●● ●● ● ●● ● ●●●●●●● ● ●●●●●●● ●●●●● ● ●● ●●●●● ●●●●●●●●●●●● ●● ●●●● ●●●●● ●●●● ●●● ●●●● ●● ● ●●● ●●● ●●●● ● ●●●● ●● ●● ●●●● ●● ●●● ●● ●●●● ●● ●●●●● ●● ●●●●● ●● ●●● ● ●● ●●●●● ●●● ●● ●● ●● ●●● ●●●●●●●●●●● ●●●●● ●● ●●●● ●●● ●●●●●●●● ●●●● ●● ●● ●●●● ●●●●●●● ●● ●● ●●●●●●● ●●●●●●● ●●●● ●●● ●●●●● ●●●●●● ●●●●● ●●●● ●●●● ●●● ●●●●● ●●●●● ●●●● ●● ●● ●●●● ● ●●● ●●●●●●●● ●●●●●●● ●● ●● ●● ●●●●●●●●●● ●●●●●● ●● ●●●● ●● ●●● ●●● ●●●●●●●●● ● ●●● ●●●●● ●● ●●●● ●●●● ●●●●● ●●● ●●●● ●● ●● ●●● ● ●●● ●●● ●●●● ●●●●● ●●●●●● ●● ●● ●●●●●●●● ● ●● ●●●●●● ●●●●● ●● ●●● ●●● ●●●● ●● ●● ●● ●●● ● ●●● ●● ●●●● ●●●●●●●●●● ●●●● ●● ●●● ● ● ●● ●●●● ●● ●● ● ●● ●●●● ●● ●●● ●●● ●● ● ●●● ●● ●●●●●● ●● ● ●● ●●● ● ●● ●●●●●●● ●● ●●● ●● ● ●●● ● ●● ●● ● ●● ●●● ●● ●●● ● ●● ●●●● ●● ●●●● ● ●● ●●●●● ●●● ●●● ● ●● ●● ●●● ●●●● ●●●●● ● ●● ●● ●●● ● ●●●●●● ●●●●●● ●● ●●● ●● ●● ●● ● ●●● ●● ●● ● ●● ● ●● ●●●● ●●● ●●●● ●●●● ●●● ●● ●● ● ●●●● ● ● ●● ● ●●● ●● ●●●● ● ●●● ● ●●●● ●● ●●●● ●●● ●●●● ●●● ● ●● ●●● ●●●●● ●●●●● ●● ●●●● ●●● ●●● ●●● ●
●

●
●

●

●

zoom

10
17

1017

Figure 3.8: Scatter plots comparing actual accuracy (x-axis) to guarantee accuracy
(y-axis) for a confidence level of 90%. A point in the green shaded region indicates
a guarantee that achieves more accuracy than the target. The white regions should,
and do, contain less than 10% of the points in each plot, representing a maximum
of 10% outside of the CL=90% confidence interval. The accuracy guarantees heavily
skew toward the shaded region and closely track the actual accuracy.

46

ferent random samplings of the result space, capturing the distribution of possible

accuracy guarantees produced by the NinjaProx guarantee engine. The metric is

then the percentage of accuracy guarantees that falls short of the actual accuracy.

Figure 3.7 presents a violin plot that shows how frequently the accuracy target is

met as a distribution across each of the approximation methods for confidence level

CL ∈ {90%, 95%, 99%, 99.9%}. In all cases, we are looking to verify that all points

lie above CL (i.e. the entire box sits in the shaded green region in the figure), since

the accuracy guarantee is a statistical guarantee with confidence of CL. In all cases,

the output quality violation rate is above the CL specified in the ASLA, showing that

the NinjaProx guarantee engine can strictly enforce ASLAs for a range of confidence

levels.

Accuracy Guarantee vs. Actual Accuracy. Figure 3.8 shows a detailed illus-

tration of how the accuracy guarantee compares to actual accuracy for all (input,

application) pairs at a confidence level of 90%. In these plots, each point represents

one approximation on one input, where the position on the x-axis is the actual accu-

racy of the approximation and the position on the y-axis is the accuracy guarantee

generated by the guarantee engine. The shaded area in each plot shows points for

which the actual accuracy is lower than the accuracy guarantee. Two important

observations can be made from these plots. First, the points skew heavily toward

the shaded region, corresponding with the large fraction of tests where the accuracy

guarantee holds. The NinjaProx statistical accuracy guarantee requires that 90% of

these points are in the shaded region, since the system is configured for CL=90%,

which is shown to be the case in the CL=90% portion of Figure 3.7.

47

The second observation is that the accuracy guarantee generated by the Nin-

jaProx guarantee engine tracks the actual accuracy of the approximation very closely.

This is important because an accuracy guarantee that is not closely linked to the

actual accuracy will be more likely to cause the NinjaProx decision engine to (incor-

rectly) identify the approximation as being so inaccurate as to not be viable to meet

the accuracy target specified in the ASLA. We examine how closely the guarantee

and actual accuracy track each other by calculating the coefficient of determination

(also called R2) of the accuracy guarantee versus the actual accuracy for the exper-

iments shown in Figure 3.8. The coefficient of determination is a unitless indicator

of how well the accuracy guarantee models the actual accuracy, and can assume a

value between 0 and 1, with 1 being a perfect model. The average value across all 8

applications is 0.987, while the lowest value is for sobel, which has a value of 0.962

and indicates a superb fit between the generated guarantee and the actual accuracy.

3.4.3 End-to-end Approximation System

Utilizing the guarantees produced by the guarantee engine, NinjaProx employs

a decision engine to dynamically choose from among the available approximations

in a way that complies with the ASLA. To evaluate NinjaProx, we perform 10 runs

of each application with each input and present the average results. Recall that the

ASLA consists of both an accuracy target and a confidence level. Together, these

parameters instruct NinjaProx’s decision engine to choose an approximation that

meets a particular accuracy target with a particular confidence. In our evaluation

48

S
pe

ed
up

0.5x

1x

2x

4x

8x

16x

32x

binarize

crosscorr

gamma

gaussian

inversek2j
jmeint

matmult
sobel

GEOMEAN

CL=99.9%
CL=99%

CL=95%
CL=90%

Figure 3.9: Speedup achieved per application across all inputs for the NinjaProx
runtime system with CL = {90%, 95%, 99%, 99.9%}, showing that less strict ASLAs
allow for higher performance.

of the NinjaProx runtime, we use the accuracy targets described in Table 3.1 for

each application, along with CL ∈ {90%, 95%, 99%, 99.9%}. That is, we supply

constraints that instruct the runtime to target an aggressive approximation roughly

equivalent to the accuracy targets employed in prior work [47,97,98] and to hit those

targets with varying confidence.

NinjaProx Performance. We begin by showing the overall speedups realized

when approximating our test applications with NinjaProx across four ASLA confi-

dence levels in Figure 3.9. These speedups encompass the full execution time of the

application running with NinjaProx, including the time taken by the decision engine

to search for the best approximation, which involves calling the guarantee engine

and constructing accuracy guarantees for a number of approximations. We find that

NinjaProx is able to choose aggressive approximations for all of the supplied confi-

dence levels, with a geometric mean ranging from 2.3× for CL=99.9% to 2.7× for

49

●
●
●

●
●

●
●
●
●
●

●
●

●
●
●
●
●

●
●

●
●

●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●

●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●

●
●
●
●
●
●

●
●

binarize

Miss rate

C
D

F
0

1

0 0.12

CL=99.9% CL=99% CL=95% CL=90%

●
●
●

●
●
●
●
●

●
●
●
●
●
●
●
●
●

●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●

●
●

●

crosscorr

MAE
C

D
F

0
1

0 31.2

●
●

●
●

●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●

gamma

PSNR

C
D

F
0

1

1640

●
●

●
●
●
●
●
●
●
●

●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●

●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●

●
●
●
●
●

●
●
●
●

●
●
●

gaussian

PSNR

C
D

F
0

1

1640

●
●

●
●

●
●

●
●
●
●
●

●
●

●
●
●
●

●
●
●
●
●
●
●
●
●
●

●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●

inversek2j

MAPE

C
D

F
0

1

0 0.12

●
●
●

●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●

●
●
●
●
●

●
●
●

●
●

●

jmeint

Miss rate

C
D

F
0

1

0 0.12

● ● ●●●
●●●●●

●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●

●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●

●●●
●●●

●

matmult

MAPE

C
D

F
0

1

0 0.12

●

●

●

sobel

PSNR

C
D

F
0

1

1640

Figure 3.10: CDFs of accuracy achieved for all application inputs when allowing
NinjaProx to choose approximations, showing that accuracy targets are always met
and that the accuracy approaches the target output quality limit as a less strict
confidence level is used in the ASLA.

CL=90%.

Runtime Accuracy. We now evaluate the accuracy of the NinjaProx runtime

system when configured for various confidence levels. Figure 3.10 shows a CDF of the

accuracy achieved for each of an application’s inputs when running the application

approximately with NinjaProx for a sweep of confidence levels. The accuracy of each

applications is provided on the x-axis, with the shaded green region indicating those

final accuracy levels that are at least as good as the accuracy target specified in

the ASLA. In all cases, the approximation chosen by the NinjaProx runtime system

50

meets the target accuracy. However, the worst-case accuracy approaches the output

quality boundary because of the aggressive approximations that NinjaProx is able to

choose. We can also see in the figure that, as the confidence level becomes more strict,

the accuracy CDF becomes further from violating the output quality constraint.

Therefore, NinjaProx is able to choose aggressive approximations while providing a

tunable ASLA.

3.4.4 Runtime Analysis

In Figure 3.11, we divide the runtime spent when approximating applications

with the NinjaProx system into 3 categories: time spent running the selected ap-

proximation, time spent searching for the approximation (including the time spent

computing the accuracy distributions and guarantees) and the amount of time saved

by approximating the application. Our results show the average time of 10 runs

across all inputs for each application. From the yellow region of the stacked bar

graph, we observe that, in all cases, the overhead of generating statistical accuracy

guarantees is very low. Even with statistical guarantees, we find that NinjaProx

substantially reduces the total execution time (orange region). We conclude that the

low overhead of generating accuracy guarantees provides a compelling mechanism

for selecting approximations.

3.4.5 Comparison to Static Oracle

We next compare NinjaProx to a Static Oracle approach to approximation. This

oracle is constructed first by measuring the speedup and accuracy of all available

51

E
xe

cu
tio

n
B

re
ak

do
w

n

0%

20%

40%

60%

80%

100%

binarize
crosscorr

gamma
gaussian

inversek2j
jmeint

matmult
sobel

Run Approx. Search for Approx. Time Saved

Figure 3.11: Time breakdown of the NinjaProx runtime system, showing very low
overhead for selecting approximations and significant time-to-solution improvements.

approximations across all inputs for each application, then by allowing the oracle

to choose the single approximation technique that results in no violations of the

accuracy target, thereby achieving an identical number of accuracy violations as

NinjaProx. This oracle represents a highly idealized scenario, in which all inputs are

known a priori and can be tractably measured before choosing how to approximate

the application.

Figure 3.12 presents the speedups achieved by this oracle. In some cases, as in

inversek2j and sobel, the speedup is similar to the speedup achieved by Nin-

jaProx. However, for a number of applications – binarize, gamma, gaussian,

jmeint and matmult – the speedups achieved by NinjaProx are significantly larger

and for several applications – binarize, gamma, gaussian and matmult – no

speedup is achieved by the oracle. This highlights the benefit of dynamically choosing

how to approximate: different inputs behave differently, and some can be drastically

harder to approximate than others. Dynamic techniques can take advantage of this

52

S
pe

ed
up

0.5x

1x

2x

4x

8x

16x

binarize

crosscorr

gamma

gaussian

inversek2j
jmeint

matmult
sobel

GEOMEAN

Static Oracle
NinjaProx, CL=99.9%

Figure 3.12: Speedup achieved by NinjaProx for CL = 99.9% compared to a static
oracle, showing that NinjaProx outperforms the static oracle. The accuracy is above
the target accuracy in all cases for both techniques.

fact to aggressively approximate certain inputs and conservatively approximate oth-

ers.

3.5 Summary

This chapter introduces the first approach to address the challenging problem of

guaranteeing the accuracy of approximation results for a broad class of map-based

computational problems, developing the statistical machinery to provide accuracy

guarantees when approximating such applications regardless of the input content and

desired accuracy level. This mechanism builds on the insight that the computation

in map-based applications can be performed both out-of-order and incrementally.

Building on this mechanism, we introduce and describe enforcement techniques for a

new class of service level agreement (SLA) called an Accuracy SLA (ASLA). We show

that NinjaProx can achieve significant application performance improvements that

53

average 2.5× while providing strong probabilistic guarantees of high result quality.

54

CHAPTER IV

DeftNN: Addressing Bottlenecks for DNN

Execution on GPUs via Synapse Vector

Elimination and Near-compute Data Fission

Deep neural networks (DNNs) are key computational building blocks for emerging

classes of web services that interact in real time with users via voice, images and video

inputs. Although GPUs have gained popularity as a key accelerator platform for deep

learning workloads, the increasing demand for DNN computation leaves a significant

gap between the compute capabilities of GPU-enabled datacenters and the compute

needed to service demand.

The state-of-the-art techniques to improve DNN performance have significant

limitations in bridging the gap on real systems. Current network pruning techniques

remove computation, but the resulting networks map poorly to GPU architectures,

yielding no performance benefit or even slowdowns. Meanwhile, current bandwidth

optimization techniques focus on reducing off-chip bandwidth while overlooking on-

55

chip bandwidth, a key DNN bottleneck.

To address these limitations, this chapter introduces DeftNN, a GPU DNN exe-

cution framework that targets the key architectural bottlenecks of DNNs on GPUs

to automatically and transparently improve execution performance. DeftNN is com-

posed of two novel optimization techniques – (1) synapse vector elimination, a tech-

nique that identifies non-contributing synapses in the DNN and carefully transforms

data and removes the computation and data movement of these synapses while fully

utilizing the GPU to improve performance, and (2) near-compute data fission, a

mechanism for scaling down the on-chip data movement requirements within DNN

computations. Our evaluation of DeftNN spans 6 state-of-the-art DNNs. By apply-

ing both optimizations in concert, DeftNN is able to achieve an average speedup of

2.1× on real GPU hardware. We also introduce a small additional hardware unit

per GPU core to facilitate efficient data fission operations, increasing the speedup

achieved by DeftNN to 2.6×.

4.1 Challenges

In this section, we describe the key ideas and challenges in applying real-system,

GPU-based optimizations to DNNs.

4.1.1 Computation Elimination

Network pruning [40,41] has been proposed to remove non-contributing synapses

and neurons by removing those with near-zero values. These removed computations

56

(a) (b) (c)

Original
Computation

Network
Pruning

Topological
Compression

Memory
accesses

Cores

Result

Result with redundant
computation in 2 cycles

Result with idle
hardware in 2 cycles Result in 1 cycle

1 1 5 5
7 7 3 3

1 5
7 3 7 1 3 5

Synapse Vector
Elimination

Figure 4.1: (a) Original DNN computation resulting in redundant computation, (b)
network pruning [40,41] resulting in underutilized hardware, and (c) synapse vector
elimination showing efficient use of resources.

occur sporadically throughout the DNN topology, limiting benefits on commodity

architectures.

GPU hardware, requiring contiguous data structures for efficient execution, presents

a significant challenge when omitting arbitrary neurons or synapses. Specifically, for

GPUs, branch divergence [34] and uncoalesced memory access [49] present two per-

formance pitfalls for execution on noncontiguous data structures:

1. Branch divergence is where some of the threads, partitioned into groups by

hardware (e.g., warps in CUDA), need to execute different instructions than the

other threads in its group [80]. The hardware is designed such that all of the

threads in a group execute instructions in lockstep. This requires that divergent

sections of code are executed sequentially, so omitted computation that occurs

irregularly due to noncontiguous data structures results in idle hardware rather

than more efficient execution.

57

2. Uncoalesced memory access is a similar issue in the memory subsystem [49].

When multiple threads in a thread group issue memory instructions, requests

to consecutive addresses, a result of contiguous data structures, can be grouped

together to utilize a wide memory bus. Values stored in noncontiguous data

structures are unlikely to have consecutive addresses, causing substantial under-

utilization of the memory bus.

The challenge faced by network pruning is illustrated in Figure 4.1. An example

baseline computation is presented in Figure 4.1(a). The original computation takes

two cycles to complete because there are eight inputs with four being completed

each cycle. Figure 4.1(b) shows the computational pattern produced by network

pruning where uncoalesced memory accesses, due to the sparse, noncontiguous data

structure, prevent high utilization of the arithmetic cores. Therefore, it still takes

two cycles to process four inputs, since only two inputs are being processed per cycle.

In practice, this kind of sparse computation results in very poor hardware utilization

because it fails to take advantage of the GPU’s very wide vector units. To validate the

necessity of addressing this challenge, we compare the performance of DNN inference

subjected to contiguous and noncontiguous data structures. In our real-system GPU

experiments, we observe that applying noncontiguous data structures, produced by

network pruning, to DNN inference results in a slowdown of 61× (§4.4.8).

To efficiently reduce the DNN topology, we propose synapse vector elimination,

which improves DNN performance during inference by discovering and removing

performance-exploitable non-contributing synapses. Synapse vector elimination over-

comes the sparsity challenge by applying dynamically transformed input data to the

58

Figure 4.2: GPU utilization when processing DNNs, showing the on-chip memory
bandwidth bottleneck.

Data Fission (§4.2)Synapse Vector Elimination (§4.1)Baseline Infrastructure

Training Synapse Search Fine tuning DNN Runtime

Trained DNN Reduced DNN

Epoch

L
os

s

Epoch

L
os

s

Fine-tuned DNNDNN Config
Result

“Dog”

Training
Set

RF

RF

S E M S E M

8 231 8 231

81 7 81 7

Memon

Synapse Vector
Elimination Kernel

Inference with
Data Fission

Input

1

K-D D K-D D

K-D

D

K-D

D

4
2 3

5

Figure 4.3: Overview of the DeftNN framework.

original hardware-efficient computation. As shown in Figure 4.1(c), synapse vec-

tor elimination reduces the total execution time by efficiently utilizing hardware

resources on the transformed input. As shown in the diagram, our methodology

results in only one cycle to process four inputs, since the removed and retained data

is not interleaved. More details on our synapse vector elimination technique are

presented in §4.3.1.

59

4.1.2 On-chip Memory Bandwidth

In contrast to reducing the amount of work with synapse vector elimination, an-

other approach to achieve speedup is to alleviate the DNN processing bottleneck

on GPUs by effectively exchanging one hardware resource for another. There are

three main hardware resources on a GPU that are susceptible to becoming a bottle-

neck: the functional units, the off-chip memory bandwidth, and the on-chip memory

bandwidth. We present kernel-weighted average utilization metrics of these three

components in Figure 4.2, which were produced by profiling 6 state-of-the-art DNNs

(application details are presented in §5.1), using Caffe [52] and running on an Nvidia

Titan X (Pascal) GPU.

The key takeaway from the figure is that the system is greatly limited by on-chip

memory bandwidth. This utilization profile is a result of optimized matrix multi-

plication, the main underlying GPU kernel for DNN inference, which makes use of

loop tiling [20]. Loop tiling optimization allows on-chip memory storage and regis-

ters to be traded for off-chip memory bandwidth and on-chip memory bandwidth,

respectively. While there is sufficient on-chip memory storage to sufficiently reduce

off-chip memory bandwidth, the on-chip memory bandwidth remains a bottleneck

due to the limited number of registers available for loop tiling.

As an example, the state-of-the-art Titan X (Pascal) GPU provides 11 single-

precision TFLOPS (i.e. 44 TB/s), but its on-chip memory bandwidth is limited to

3.6 TB/s (frequency × # shared memory banks × bus width = 1 GHz ×

28 banks × 128 bytes) [87]. While loop tiling at the register level mitigates this

throughput gap, on-chip memory bandwidth is still the limiting resource due to the

60

limited number of registers available for tiling.

To alleviate the on-chip memory bandwidth bottleneck, unused functional unit

cycles can be leveraged to compress on-chip memory. Unfortunately, the most re-

cent GPU memory compression technique only applies to off-chip memory [98]. This

technique works by compressing the data in off-chip memory, while storing the de-

compressed data in on-chip memory. Although this can reduce off-chip memory

bandwidth, it provides no benefit for DNNs because on-chip memory bandwidth is

the performance bottleneck.

Moving existing memory compression techniques closer to the functional units is

more complex than simply applying the compression technique at a different place

in the memory hierarchy. The central challenge when moving the compressed data

closer to the compute is that the decompression overhead can outweigh the gains of

reduced memory bandwidth and storage. The bandwidth for on-chip memory, how-

ever, is much greater than that of off-chip memory, making the size of the compressed

data format less critical. The differences in proximity to functional units and avail-

able bandwidth cause a fundamental shift in the compression design space. While

off-chip data packing focuses on larger reductions in memory bandwidth, a solution

to this problem for DNNs must focus on minimizing decompression overhead.

Our near-compute data fission technique mitigates the GPU bottleneck in the

system by targeting on-chip memory bandwidth. It realizes speedup by treating

fission overhead as the paramount characteristic of the design. More details on our

near-compute data fission technique are presented in §4.3.2.

61

4.2 System Overview

In this section, we present an overview of the DeftNN system, a GPU DNN execu-

tion framework for optimizing DNN inference by tailoring it to the underlying archi-

tecture. The two optimizations, synapse vector elimination and near-compute data

fission, are built upon a standard DNN software framework, comprising an offline

training phase for optimizing the DNN topology and a runtime system. Together,

the offline and runtime systems work in concert to apply optimizations automati-

cally and transparently to unmodified DNN applications. An overview diagram of

the DeftNN framework is presented in Figure 4.3.

1 Initial Training – First, as in all DNN execution frameworks, a set of training

inputs are used along with a DNN configuration that specifies the topology of

the DNN. Using the training inputs, the DNN parameters are adjusted iteratively

until the classification loss function converges. This process produces a trained

DNN model.

2 Synapse Search – After producing the baseline trained DNN model, DeftNN

automatically performs a synapse search to find the non-contributing synapse

vectors – groups of synapses that are architecturally efficient to eliminate on the

GPU. This process, as detailed in §4.3.1.2, locates and removes non-contributing

synapse vectors, which we define as any vector highly correlated with another

vector. As illustrated in the figure, the synapse search results in a DNN model

that has some set of synapse vectors eliminated from the computation.

3 Fine Tuning – Although the retained synapse vectors are chosen to be rep-

62

resentative of those that were eliminated, the nuanced impact of the missing,

eliminated synapse vectors can result in accuracy degradation if used directly.

To remedy this, DeftNN uses fine tuning, a well-known technique used to refine

the DNN weights by applying a small number of DNN training iterations [122].

This process allows the DNN model to fully recover accuracy that is lost from

minor perturbations of the weights or topology. By using fine tuning after apply-

ing synapse vector elimination, DeftNN produces a DNN model with negligible

loss in inference accuracy.

4 Synapse Vector Elimination – Beyond the training mechanism used by

DeftNN to produce an efficient DNN model, DeftNN services DNN applications

using a runtime system that seamlessly allows inputs formatted for the unopti-

mized DNN model to be applied to the DNN model from synapse vector elimina-

tion. The synapse vector elimination kernel, as shown in the figure, reorganizes

input activation values prior to inference so that they can be applied to the op-

timized DNN model. A detailed description of the architecture-efficient synapse

vector elimination kernel are provided in §4.3.1.1, though we note that the reor-

ganization takes a maximum of 5% of kernel execution time (see Figure 4.6), an

overhead dwarfed by the reduction in computation facilitated by synapse vector

elimination.

5 Near-compute Data Fission – In addition to reducing the size of the DNN

using synapse vector elimination, DeftNN optimizes the key GPU bottleneck, on-

chip memory bandwidth, within the inference kernel using near-compute data fis-

sion. Near-compute data fission packs DNN weights and activations into on-chip

63

memory by removing non-contributing bits from the numerical representation.

Since this technique resides in the low-level computational DNN kernels at run-

time, no further changes are required to the baseline infrastructure to utilize this

optimization. A detailed description of near-compute data fission is presented in

§4.3.2.

4.3 Optimization Techniques

In this section, we describe two novel optimization techniques, synapse vector

elimination and near-compute data fission. We present the key insights and chal-

lenges of both techniques when implemented on real GPU systems executing DNN

workloads. In addition to our real-system implementation, we observe that near-

compute data fission is amenable to acceleration and design a lightweight GPU

hardware extension to mitigate overhead. Synapse vector elimination has minimal

overhead when implemented in software, not warranting the costs of additional hard-

ware.

4.3.1 Synapse Vector Elimination

Synapse vector elimination removes non-contributing synapses from DNNs, thereby

reducing the total computation required for the DNN to process its inputs. Previous

network pruning techniques produce an inefficient mapping of operations to hard-

ware. Specifically, these techniques modify the computational kernel to be irregular,

limiting performance benefits due to branch divergence and uncoalesced memory

64

(a)

(b)

K-D

...

K-D

N

MxK

KxN

Mx(K-D)

(K-D)xN

Weight Matrix

...M

K

Input Matrix

...K

N

M

...

Mx(K-D)xN
operations

Matrix
Multiplication

MxK

KxN

Weight Matrix

...M

K

Input Matrix

...K

N

MxKxN
operations N

Output
Matrix

Matrix
Multiplication

Sy
na

ps
e

V
ec

to
r

E
lim

in
at

io
n N

Output
Matrix

M

M

Figure 4.4: High-level view of synapse vector elimination, showing that (a) the exact
computation is an M ×K by K×N matrix multiplication, while (b) synapse vector
elimination preprocesses the input to make the computation an M × (K − D) by
(K −D)×N matrix multiplication.

65

(a) Synapse
 Reordering

(b) Matrix
 Truncation

To be retainedTo be eliminated

Synapse Vector Elimination

Weight Matrix

...M

K
K-D D K-D D

Preprocessed

Weight Matrix

K-D

...M

Input Matrix

...K

N

K-D

D

K-D

D

Preprocessed
Input Matrix

K-D

N

...

R
un

tim
e

In
fe

re
nc

e
O

ff
lin

e
T

ra
in

in
g

Figure 4.5: Internal workings of synapse vector elimination, showing compacting
retained synapses so that the matrix can be trivially resized.

access. Instead, synapse vector elimination retains a hardware-efficient design by

transforming DNN inputs for similarly-structured but smaller DNN computations.

Many DNNs have a large number of synapses that can potentially be eliminated.

Without considering the underlying architecture, the selection of non-contributing

synapses is fairly straightforward: network pruning techniques simply select the

synapses with the lowest weights [40, 41]. One of the insights motivating this work

is that the granularity of synapses that should be removed is constrained by the ar-

chitecture, thus the selection of synapses becomes a multi-dimensional optimization

problem. We devise a novel search technique to solve this problem based on the

correlation matrix formed by the architectural groups of synapse weights.

66

4.3.1.1 Architecture-efficient Design

Here, we present the GPU architecture-efficient design of synapse vector elimi-

nation, our technique that avoids the performance pitfalls associated with network

pruning, as described in §4.1.1, by applying a preprocessing step to efficiently rear-

range computation. First, we show a high-level view of the approach in Figure 4.4.

The original neural network computation (Figure 4.4(a)) is carried out by multiply-

ing the M×K weight matrix by the K×N output matrix of the previous layer. The

synapse vector elimination variant of this operation (Figure 4.4(b)) preprocesses the

input and weight matrices to reduce the total problem size. The weight matrix is

preprocessed offline since it is reused many times, while the input matrix is prepro-

cessed during runtime to allow seamless switching between the original computation

and the synapse vector elimination optimized computation. These smaller matrices

are then given to a standard matrix multiplication algorithm. The performance ben-

efits are realized by applying an inexpensive transformation that reduces the size of

the inner dimension (i.e. K in the figure) of the matrix multiplication.

There are two main steps for our synapse vector elimination transformation,

as shown in Figure 4.5: synapse reordering and matrix truncation. First, synapse

reordering efficiently repositions rows and columns of the neural network matrices

so that they are easier to manipulate. Next, matrix truncation reduces the amount

of computation required for matrix multiplication while preserving its uniform data

structure. Finally, a correction factor is applied to the matrices to retain the scale

of the output values.

Synapse Reordering. First, we reorder synapses to simplify the task of discarding

67

unwanted synapses. The central goal of reordering is to preserve the data struc-

ture’s uniformity without diminishing the gains of skipping synapses, so a quick

method of grouping the retained and discarded synapses is necessary. We group

the synapses (rows in the weight matrix and columns in the input matrix) together

based on whether they will be discarded or retained. For brevity, we only describe

the reordering of the weight matrix, but an equivalent reordering is applied to the

transpose of the input matrix. Since the number of discarded synapse weights, D, is

known before we start reordering synapses, we partition the matrix at column K−D

so that the K −D columns on the left represent the retained synapse group and the

D columns on the right represent the discarded one.

After defining this partition point, some of the synapses that are to be retained

are already contained in the retained synapse partition. In fact, there is an equal

number of synapses to be retained as discarded that are in the incorrect partition.

By using this observation, we create a pairing between misplaced retained synapses

and misplaced discarded synapses. The matrix is then reordered by swapping the

two columns for each of these pairs. After swapping all of the misplaced columns,

the retained and discarded synapses are strictly separated at column K −D.

To determine the benefits of our synapse reordering method compared to naively

copying all retained synapses into a separate buffer, we evaluate the overhead of these

two methods in Figure 4.6 as a percentage of end-to-end execution time for AlexNet

(the same trend is present for all of our evaluated applications). In our experiments,

we found that more than 50% of synapses are needed to retain accuracy. Using this

discarding rate, we observe that synapse reordering is at least 1.4× faster than copy-

68

Figure 4.6: Overhead from synapse reordering compared to copying all retained
synapses, showing that DeftNN substantially reduces the overhead of input transfor-
mation by reordering synapses at useful design points (¿50% retained).

ing retained synapses. We find that it is impractical to design hardware for synapse

reordering, since there is little overhead involved in synapse vector elimination.

Matrix Truncation. Next, we reduce the dimensions of the input matrices to

reduce the required amount of computation. To describe the matrix truncation step,

we supply the formula for computing the value of a neuron (i.e. a cell of the output

matrix) in Equation 4.1, where Out is the output matrix, W is the weight matrix, In

is the previous layer matrix, i is the input index (e.g., the convolution kernel index

or the fully connected input vector index), and j represents the input neuron index.

Outi,j =
K∑
k=1

Wi,kInk,j (4.1)

Note that, after reordering the matrices, the output of matrix multiplication is the

same as it would be without reordering; only the order of the weighted sum is

changed. Thus, the output is equivalently shown in Equation 4.2, where the K −D

69

retained synapses in the reordered matrices, W ′ and In′, are summed first and then

the D discarded synapses are summed.

Outi,j =
K−D∑
k=1

W ′
i,kIn

′
k,s +

K∑
k=K−D+1

W ′
i,kIn

′
k,j (4.2)

In order to remove the computation for the discarded synapses, the summation is

stopped at K −D instead of at K. In terms of the DNN matrix multiplication, we

cut the last D columns from the input neuron matrix and the last D rows from the

weight matrix.

Scale Adjustment. To compensate for the discarded synapses in each summation,

we increase the magnitude of the retained synapses so that the expected value of the

original and optimized results match. If we assume that the synapses are all drawn

from a similar distribution, then the expected value is equal to the expected value

of any single synapse multiplied by the number of synapses, shown in Equation 4.3.

E(Outi,j) = E(
K∑
k=1

Wi,kInk,s) = KE(Wi,xInx,j) (4.3)

The expected value of this sum, after removing the discarded synapses, can be rep-

resented similarly (Equation 4.4).

E(Out′i,j) = E(
K−D∑
k=1

W ′
i,kIn

′
k,s) = (K −D)E(Wi,xInx,j) (4.4)

70

S E M

8 231
S E M

Off-chip
Memory

Register
File

On-chip
Memory

Register
File

Off-chip
Memory

8 231

S E M S E M

RF

RF

RF

8 231 8 231
S E M

8 231
S E M

Memoff

RF

Memon

RF

8 231

Data packing

Data unpackingRF

RF

RF

S E M S E M

RF

RF

RF

8 231 8 231

RF

RF

RF

RF

5 1015 101 81 7 81 7

S E M S E M

RF 8 231 8 231

81 7 81 7

(a)

(b)
(c)

(d) (e)

Original Computation

IEEE Half

Memon

Memon Memon

Deft-16 Deft-16Q
Near-compute
Data Fission

Off-chip
Memory

Compute

Compute

Figure 4.7: (a) The original design, (b) high level view of a design with near-compute
data fission, (c) fission using the IEEE 754 single precision floating-point to the half
precision variant, (d) fission using the Deft-16 floating-point format, and (e) fission
using the optimized Deft-16Q floating-point conversion format.

To match the expected value from synapse vector elimination to the original expected

value, the weighted sum is scaled by the ratio between the unadjusted expected value

from synapse vector elimination and the original expected value. This produces our

final expression for the synapse discarded summation, as shown in Equation 4.5.

Out′′i,s =
E(Outi,s)

E(Out′i,s)

K−D∑
k=1

W ′
i,kIn

′
k,s =

K

K −D

K−D∑
k=1

W ′
i,kIn

′
k,s (4.5)

4.3.1.2 Synapse Search

Equipped with a method to efficiently discard synapses, we now describe how we

find which synapses are not contributing to the final output. Trying all combinations

of synapses is not tractable, since there are thousands of synapses and each synapse

71

is a binary variable that can be either retained or discarded (i.e. there are 2#synapses

possibilities). When reducing the DNN at a per-synapse granularity, prior works

discard synapses with near-zero weights [40,41], avoiding the need for a sophisticated

search mechanism. Although this pruning strategy is effective for pruning sporadic

synapses, our insight is that GPU-efficient optimizations must discard synapses in

groups to exploit wide vector unit hardware. We evaluate the necessity of this insight

by comparing to these prior works that discard sporadic synapses in §5.8. A synapse

vector pruning search mechanism must choose to retain or discard each architectural

group of synapses, referred to as synapse vectors, rather than single ones. This

presents a new challenge, since no synapse vectors have enough near-zero weights to

be discarded as is done in these prior works.

Instead of discarding synapses with weights nearest to zero, we aim to retain a

subset of the synapse vectors that are representative of the entire set of synapses.

To select contributing synapses, synapse vector elimination starts by computing the

correlation matrix, ρ, for the synapse vectors, as shown in Equation 4.6, where Sx is

the synapse vector for the group of synapses at index x.

ρi,j =
covariance(Si, Sj)√
var(Si)var(Sj)

(4.6)

For each synapse vector, Si, we find the set of synapse vectors that it can represent.

We define Si to be representative of Sj if the correlation between the two synapse

vectors (ρi,j) is above the representative correlation threshold, α. This is shown in

Equation 4.7.

72

Ri =
N∑
j=1

1 ρi,j > α

0 otherwise
(4.7)

The synapse vector that represents the most synapse vectors, Ri, is selected to

be retained in the output DNN from synapse vector elimination, while the non-

contributing synapse vectors represented by the retained one are removed. This

process is repeated on the remaining synapse vectors, until all synapse vectors are

either retained or discarded.

4.3.1.3 Exposing Further Performance Opportunities

In addition to selecting non-contributing synapse vectors, synapse vector elim-

ination can be parameterized to discard marginally-contributing ones by adjusting

the representative correlation threshold. As the correlation threshold is lowered, the

number of synapse vectors that can be represented by a single synapse increases.

This capability can be used to enact approximate computing, essentially shedding

small amounts of accuracy to realize improved performance.

The number of such readily available performance-accuracy trade-off configura-

tions is limited due to large DNN memory footprints, if each configuration is stored

in memory separately. To greatly increase the flexibility of synapse vector elimina-

tion, applied to marginally-contributing synapses, DeftNN dynamically builds DNNs

using combinations of layers that were trained with varying correlation thresholds.

Each <layer, correlation threshold> pair is fine-tuned independently of the others,

allowing arbitrary combinations of these pairs to be composed during runtime with-

73

out requiring a new DNN model for each combination.

Given a performance or accuracy constraint, DeftNN must quickly select an ap-

propriate set of correlation thresholds for each of the layers. To do this, DeftNN

is configured to build a Pareto frontier of configurations during training and to se-

lect the configuration that is nearest to the user-specified goal during runtime. We

evaluate the idea of using DeftNN for approximation in §4.4.6.

4.3.2 Near-compute Data Fission

In this section, we present our near-compute data fission technique, which fuses

multiple values into a single value of lesser size in on-chip memory to improve effective

bandwidth. Near-compute data fission directly improves performance, since DNN

computation is bottlenecked by on-chip memory bandwidth.

Although on-chip memory bandwidth is the key limitation of DNN performance,

fission at this level of the memory hierarchy requires very frequent data reformatting,

causing excessive overhead, unless the data format is carefully chosen. We start with

a standard CUDA-supported half precision format, but find that it is insufficient

for near-compute data fission and devise a new format that results in far better

performance due to reduced reformatting overheads. To exploit the non-contributing

bits further, by reducing the reformatting overhead, we introduce hardware to allow

conversion to narrower numerical representations.

74

4.3.2.1 Technique

Before addressing the challenge of efficient near-compute data fission, we describe

each of the GPU components that are relevant to our near-compute data fission

method. Figure 4.7(a) shows a baseline implementation, in a GPU context, with

no fission. The data is first loaded from off-chip memory into registers. To improve

performance, the values in registers are stored into an on-chip memory scratchpad

for future reuse. The application reads from and computes on the data stored in

scratchpad memory many times. Finally, the result is written to off-chip memory.

Figure 4.7(b) shows an extension of this baseline with near-compute data fission

added to the system. As before, data is loaded from the off-chip memory into the

register file. Instead of writing directly to the scratchpad memory, multiple values

are fused into a single element. Similarly, each time the application reads from the

scratchpad memory, fission is applied to the value before it is computed on. This

process removes the non-contributing bits from the numerical representation in the

on-chip memory. We do not store fused data into the off-chip memory because, as

shown before, the off-chip memory utilization is already very low.

4.3.2.2 Format Optimization

We investigate 3 near-compute data fission formats, as shown in the figure. The

formatting process for these types are shown in Figure 4.7(c-e). All 3 of the fused

data formats are reduced precision floating-point representations with a sign (S), a

mantissa (M) that specifies the precision, and an exponent (E) that denotes dynamic

range. In Figure 4.7(c), we start with the IEEE 754 half precision data format. In

75

our evaluation, we find that this format results in excessive reformatting overhead,

resulting in slowdown, due to the complex conversion taking several cycles.

The next technique shown in Figure 4.7(d), Deft-16, takes advantage of a special

floating-point format defined to be the 16 most significant bits of the IEEE single

precision floating-point format. This format is a data type with 8 exponent bits and 7

mantissa bits, which provides sufficient precision and dynamic range for DNN work-

loads. To apply fission to this value, only inexpensive shift and bitwise operations

are necessary.

Finally, we observe that we can reduce another instruction from the fission process

by allowing the most significant bits of one value to spill into the least significant bits

of the other value. We call this the Deft-16 quick format (Deft-16Q) and show the set

of operations for fission in Figure 4.7(e). Despite only reducing the fission process by

a single logical AND instruction, we find substantial performance difference between

Deft-16Q and Deft-16.

Nevertheless, while this optimized fission process can be applied to today’s com-

modity hardware, its design is specific to 16-bit data and introduces a non-trivial

amount of overhead. To address both of these limitations, we next describe a small

additional hardware unit to perform the fission operation.

4.3.2.3 Hardware Acceleration

Since the fission operation is on the critical path when applying near-compute

data fission, we introduce a lightweight GPU hardware extension called the Data

Fission Unit (DFU) to accelerate fission. The DFU is replicated for each floating-

76

128 -2
N-1

S E M

>>

7-N

<<

N

1 per thread group 1 per value in fused format

...
+

S E M

Deft-8H

IEEE-32

+

Figure 4.8: Fission in the DFU, showing hardware to apply fission to an 8-bit,
variable exponent length (N) floating-point value to an IEEE single-precision value.

point unit to maintain high throughput, so our central design goal of the DFU

is minimizing area overhead. For this reason, the DFU is specialized for the data

representations that are most likely to be beneficial. The DFU is specifically targeted

to accelerate the fission of custom 8-bit floating-point and Deft-16Q representations.

ISA Extension. DFU fission operations are accessed with a parallel thread execu-

tion (PTX) [88] ISA extension. We add two new instructions to PTX, dfu cvt 16

and dfu cvt 8, which provide the ability to invoke the 16-bit and 8-bit DFUs,

respectively. The 16-bit DFU operation is parameterized with a source .b32 (a 32-

bit conversion-only data type in PTX) register and two contiguous .f32 (a 32-bit

floating-point data type in PTX) destination registers. The 8-bit DFU operation is

similar, except it is parameterized by four destination registers and an immediate

floating-point exponent bitwidth. The flexibility of variable-width exponent allows

low-precision 8-bit values to be more versatile, outweighing the negligible area cost

(provided in §5.5).

77

Architecture Integration. The dfu cvt instructions are executed by the DFU,

which is integrated into the microarchitecture as an extension of the ALU. This

extension adds a DFU to each floating-point unit, so the conversion throughput is

sufficiently high to provide enough data for all of the floating-point units. In §5.5,

we find that the area-efficient design of the DFU requires only 0.22% area overhead

when replicated for each floating-point unit. In addition to allocating a DFU for each

floating-point unit, we increase the throughput of the DFU by requiring that the 32-

bit floating-point destination registers are contiguous. Using contiguous registers

allows the DFU to use 64-bit and 128-bit register write operations when writing two

and four 32-bit values, as produced by 16-bit and 8-bit data fission, respectively.

Conversion Details. The hardware design for applying 16-bit fission in the Deft-

16Q format is straightforward, as it requires only a single zero-padded bitwise shift

to prepare two values for computation. The hardware for 8-bit fission is illustrated

in Figure 4.8. The 8-bit floating-point representation is shown at the top of the

figure, with the sign bit denoted by ”S”, the exponent bits denoted by ”E”, and the

mantissa bits denoted by ”M”.

The size of the exponent can be adjusted from 7 bits to 1 bit, denoted by N

in the figure, depending on the exponent length encoded into the DFU instruction.

Floating-point representations encode the exponent with a fixed offset, the bias,

based on the bit width of the representation. Since this bias is different between

the 32-bit representation and the 8-bit DeftNN representations, the DFU finds the

difference between the two biases (adder on the left side of the figure), and then adds

this difference to the exponent bits of the fused values. Because the GPU architecture

78

Name Neural Network # Classes Dataset

IMC AlexNet [61] 1000 ImageNet [96]

FLS Flickr Style [55] 20 FS-20 [55]

OXF Flower Species [83] 102 Flower-102 [83]

SOS SOS CNN [123] 5 SOSDS [123]

C10 CifarNet [59] 10 CIFAR-10 [59]

DIG LeNet-5 [66] 10 MNIST [67]

Table 4.1: The set of benchmarks used to evaluate DeftNN.

executes threads in each thread group in lockstep, we reuse the bias difference when

applying fission to all of the fused values in a given thread group.

The mantissa bits, also of variable length, of the fused representation are shifted

to the left, so that the most significant bit is aligned with the most significant bit of

the 32-bit value. After alignment, the value is zero-padded to 23 bits and used as the

mantissa of the 32-bit representation. The sign bit is directly transferred from the

8-bit representation to the 32-bit one. Leveraging the DFU, which provides single-

cycle fission operations, we can significantly reduce the cost of performing DeftNN

near-compute data fission.

4.4 Evaluation

We evaluate DeftNN to determine its efficacy on improving DNN performance.

We examine each of the key components of the system: synapse vector elimination,

near-compute data fission, and the complete DeftNN runtime system.

79

4.4.1 Methodology

DeftNN is evaluated using a real-system GPU implementation with robust open

source frameworks. Our implementation is built upon Caffe [52], a neural network

framework developed by the Berkeley Vision and Learning Center. Caffe provides

the high-level neural network functionality and offloads the computational kernels

to BLAS. We use MAGMA [81] as the BLAS implementation, a fast open source

CUDA implementation. We take measurements on a machine containing a Xeon E5-

2630 v3 CPU and an Nvidia Titan X (Pascal) GPU, a configuration representative

of state-of-the-art commodity hardware.

Table 4.1 summarizes the set of applications used in our evaluation. To gain an

accurate representation of real DNN workloads, we use the trained neural network

models deployed in Caffe and designed by the machine learning community. For

each benchmark, we use the given machine learning task’s canonical validation and

training datasets. We randomly select 500 inputs from the validation set for speedup

and accuracy measurements and use the entire training set for fine tuning.

4.4.2 Overall DeftNN System

We begin by evaluating the end-to-end real-system GPU performance character-

istics of DeftNN when applying both synapse vector elimination and near-compute

data fission. In these experiments, we follow the steps outlined in §4.2 to automat-

ically and transparently optimize the 6 DNNs covered in the evaluation. Figure 4.9

shows the results of these experiments. We first observe that applying each of the

80

Figure 4.9: Speedup achieved by DeftNN when applying synapse vector discarding,
data fission, and the combination of the two, showing the significant benefits of each
technique and their efficacy when applied in concert.

two optimization techniques in isolation provides significant speedup, 1.5× and 1.6×

geometric means across the applications for synapse vector elimination and near-

compute data fission, respectively. When both techniques are applied, DeftNN pro-

vides an average speedup of 2.1×, showing the substantial performance benefit of

deploying DeftNN.

4.4.3 Synapse Vector Elimination

We next evaluate synapse vector elimination in isolation to provide insight into

its workings and characteristics, focusing on the layer-by-layer speedup achieved by

synapse vector elimination. We present the per-layer performance improvements in

Figure 4.10, showing that synapse vector elimination is capable of optimizing nearly

every individual layer across the DNNs. We note that C10 and DIG observe the

smallest performance improvements from synapse vector elimination. These networks

are the smallest of our evaluated applications in terms of the number of layers as

81

Figure 4.10: Per-layer speedup when applying synapse vector elimination, showing
large performance improvements, particularly for the large DNNs (IMC, FLS, OXF,
and SOS).

well as the size of each layer. Small DNN topologies limit the available parallelism

on GPU architectures, causing lower utilization of hardware. As a consequence,

substantial reductions in the topology of the DNN may result in under-utilization of

GPU resources and limit the speedup that can occur. Nevertheless, synapse vector

elimination is able to improve the performance by at least 1.5× for all but the smallest

layers (the input layers).

4.4.4 Near-compute Data Fission

To evaluate our near-compute data fission technique, we compare the three fission

formats described in §4.3.2.2, the baseline computation, and the computation with

16-bit compute and storage. The baseline computation is produced without fission,

which uses the IEEE 754 single precision 32-bit floating-point format for computation

and storage throughout the memory hierarchy. Comparisons of these near-compute

data fission strategies are shown in Figure 4.11.

82

Figure 4.11: (a) Speedup from using 16-bit compute (FP16) and fission in three
different formats (IEEE Fission, Deft-16, and Deft-16Q) compared to 32-bit storage
and computation (No Fission) along with (b,c) pertinent profiling metrics, showing
that Deft-16Q, achieves the highest performance because of improved effective on-
chip memory bandwidth.

Speedup. Figure 4.11(a) presents the speedup achieved during end-to-end DNN in-

ference for each of the three fission formats. First, we consider the 16-bit computation

and storage configuration, FP16 in the figure. We observe that 16-bit computation

results in a 14× slowdown due to state-of-the-art GPUs having many more 32-bit

ALUs than 16-bit ALUs.

Next, we consider the IEEE half precision format. The IEEE Fission results

represent a CUDA mechanism to convert the fused IEEE half precision values into

single precision values, which leverages specialized bit-convert hardware. Due to the

limited amount of hardware allocated for these conversion instructions, the IEEE

conversion process imposes significant overhead, resulting in slight slowdown rather

than speedup. Our novel fission formats, Deft-16 and Deft-16Q, result in the same

change in data size, but both achieve over 50% improvement in end-to-end perfor-

mance showing that the complexity of data type conversion is critical.

83

Figure 4.12: Comparison of no near-compute data fission, software-only fission (Deft-
16Q), and hardware accelerated 16-bit (Deft-16H) and 8-bit (Deft-8H) fission, show-
ing that (a) performance is improved as (b) effective on-chip bandwidth is increased
with smaller representations, without (c) restrictive conversion overhead.

Profiling Details. All three of the near-compute data fission formats yield half

of the storage requirements for on-chip memory, shown in Figure 4.11(b), since the

values in each format occupy 16 bits instead of 32 bits. The key benefit of fusing

data into on-chip memory is the increased effective on-chip memory bandwidth. In

Figure 4.11(b), we note that the on-chip memory bandwidth is not equivalent to

speedup, since the increase in register pressure required for format conversion causes

registers to spill to on-chip memory. Spilling registers increases the total amount of

data that must traverse the on-chip memory bus, so the measured effective bandwidth

will exceed the speedup. As expected from the speedup of the other two fission

formats, we see substantially increased on-chip memory effective bandwidth.

The ALU utilization, presented in Figure 4.11(c), shows the utilization of the four

relevant functional units. The utilization of the functional units is normalized to the

floating-point unit utilization of the configuration without fission. The single preci-

84

sion floating-point unit (FP32 in the figure), which is used for the core computation

of the neural network, only serves as a rough proxy for performance due to fission

using the floating-point unit. The integer and bit conversion functional units provide

more insight into the speedup differences, representing overhead of data fission.

4.4.5 Hardware-accelerated Data Fission

We now evaluate DeftNN with the addition of the DFU, a lightweight GPU

architectural extension to accelerate near-compute data fission. We implemented

and synthesized the DFU for an Nvidia Titan X (Pascal) using the ARM Artisan

IBM SOI 45 nm library, showing that the DFU has an area overhead of 1.20mm2

(0.25% area overhead), and an active power consumption of 2.48W (0.99% power

overhead).

We evaluate end-to-end performance of DeftNN atop a DFU-enabled Titan X

using an in-house GPU simulation tool. This tool emulates end-to-end execution

by modifying the GPU kernel to mimic the performance behavior of the modified

hardware. Specifically, the fission instructions are automatically replaced by a set of

instructions that have the same register dependencies, but throughput and latency

characteristics matching the DFU (i.e. single cycle using single-precision floating-

point ALUs).

Benefits Over Software Fission. We first evaluate the efficacy of the DFU by

comparing it to software-implemented fission in isolation (i.e., no synapse vector

elimination is involved). Figure 4.12(a) shows the speedup when the DNN compu-

tation is subjected to fission. Accelerated 16-bit fission (Deft-16H) yields a modest

85

Figure 4.13: DeftNN runtime performance achieved by employing software-only
(Deft-16Q) and hardware-accelerated (Deft-16H/8H) fission, showing substantial
speedup via hardware-accelerated DeftNN.

performance improvement over software-implemented fission (Deft-16Q), improving

speedup from 1.6× to 1.8× by mitigating the overhead of performing the fission

operations. The speedup of 8-bit accelerated fission (Deft-8H) is 2.3×, significantly

higher than Deft-16H because the amount of data moved is dramatically reduced

when using 8-bit values.

These sources of speedup are explored further in Figure 4.12(b) and (c). In (b), we

observe comparable decreases in the effective on-chip memory bandwidth among the

fission techniques. Moreover, in Figure 4.12(c) we observe that both of the hardware-

accelerated configurations use less than half of the data conversion time compared to

the software-only configuration. Although the DFU hardware for 16-bit conversion

is far simpler than the hardware for 8-bit conversion, we note that it results in more

total overhead due to the fact that twice as many conversions are made – only two

values are produced per instruction using 16-bit conversions, rather than four values

per instruction for 8-bit conversions.

86

End-to-end Performance. We next examine the impact of leveraging the DFU for

accelerated data fission in the end-to-end DeftNN system. The speedup for all appli-

cations of the end-to-end system for Deft-16Q, Deft-16H and Deft-8H are presented

in Figure 4.13, which shows that the system improving performance substantially

when leveraging the DFU to facilitate efficient near-compute data fission. We ob-

serve that the end-to-end speedup averages 2.1× with Deft-16Q and that it increases

to 2.5× with Deft-16Q and 2.6× with Deft-8H. As Deft-16Q and Deft-16H have

the same data movement characteristics, the difference between the two represents

the removal of (most of) the overhead of performing data fission in software. The

additional speedup achieved by Deft-8H is due to the substantial reduction in the

amount of data moved compared to Deft-16Q and Deft-16H.

4.4.6 Performance-Accuracy Tradeoffs

In addition to removing only non-contributing synapses that do not impact ac-

curacy, recall from §4.3.1.3 that synapse vector elimination parameterizations for

higher performance, but slightly degraded accuracy, are also possible. The corre-

lation parameter used for synapse vector elimination can be relaxed to allow the

system to eliminate synapses that contribute in a small way to the output result. By

relaxing the correlation parameter, we can be selective about the resulting DNN den-

sity and thus the amount of speedup achieved by synapse vector elimination. This

section explores using this feature of synapse vector elimination within a runtime

system that facilitates approximate computing, trading off small levels of accuracy

87

Figure 4.14: DeftNN Pareto frontiers, showing a range of advantageous operating
points as the accuracy target is tuned.

Figure 4.15: Speedup achieved by DeftNN at particular accuracy levels, showing that
DeftNN exposes a range of useful design points for approximate computing.

88

Figure 4.16: Speedup of cuDNN [20] with DeftNN optimizations, showing DeftNN
provides similar speedup for cuDNN as it provides for MAGMA.

for larger performance improvements.

Figure 4.14 presents the accuracy versus speedup Pareto frontier for each of the

evaluated neural networks. As the correlation parameter is relaxed (going from left to

right), the accuracy degradation is initially minimal due to the resilience of the DNN,

but as more contributing synapses are removed the accuracy decreases more quickly.

Beyond the precise configuration, where no loss in accuracy is permitted, which is

used in the other sections of the evaluation, tuning the correlation parameter allows

synapse vector elimination to achieve further speedups for small accuracy losses. We

observe in Figure 4.15 that a spectrum of useful design points that are commonly

focused on in approximate computing are available to the system [36,63,72], allowing

DeftNN to service a wide range of use-cases where there is tolerance in end-user

accuracy or a more aggressive performance target.

89

4.4.7 cuDNN with DeftNN Optimization

To demonstrate the applicability of DeftNN and its underlying optimization

strategies, we apply DeftNN to cuDNN [85] by implementing the cuDNN convolu-

tion algorithm [20]. This algorithm is similar to the standard matrix multiplication

algorithm, except that the preprocessing step of translating the DNN input and con-

volution weights into a matrix (known as im2col) is interleaved with the matrix

multiplication. This optimization reduces off-chip memory storage requirements by

lazily evaluating the contents of the input matrix. The only adjustment in synapse

vector elimination to handle cuDNN is that, as the input matrix is being produced

in on-chip memory, the synapse vector elimination takes place.

In Figure 4.16, we show the speedup achieved when DeftNN is applied to cuDNN.

In applying DeftNN to cuDNN, we observe a geometric mean speedup of 2.0×, a sim-

ilar speedup to what is achieved when applying DeftNN to MAGMA. Since DeftNN is

similarly effective on both MAGMA and cuDNN algorithms, the fundamental GPU

DNN bottlenecks being addressed by DeftNN are common to the most popular GPU

DNN implementations.

4.4.8 Comparison to Prior Work

We next compare the novel optimizations introduced in this work and leveraged

by DeftNN to prior work.

Network Pruning. Network pruning is a technique that iteratively prunes synapses

from the neural network [41]. This technique reduces the number of synapses in the

DNN, but it produces an irregular sparse matrix because it places no performance-

90

aware constraints on which synapses are removed. In comparison, our synapse vector

elimination technique maintains a regular dense matrix by removing entire rows or

columns of synapses, allowing synapse vector elimination to map efficiently to GPU

hardware.

We compare synapse vector elimination to network pruning for IMC in Fig-

ure 4.17, presenting network density achieved versus speedup. Network pruning [40]

achieves matrix densities between 9% and 100% across IMC’s layers, and a weighted

average of 28%. Using the network pruning approach for IMC, we execute the pruned

networks using both dense and sparse kernels via cuBLAS [85] and cuSPARSE [86].

With the sparse kernel we observe that network pruning is 60× slower than the dense

kernel baseline computation and 91× slower than synapse vector elimination, while

with the dense kernel we observe that network pruning results in no speedup over

the baseline. We performed a sweep of density levels on the sparse kernel, finding

that the density must be reduced to 2.5% before the sparse kernel outperforms the

dense kernel baseline. On the other hand, synapse vector elimination achieves 50%

density and a 1.5× speedup on this kernel, illustrating the benefit of synapse vector

elimination’s architecturally-aware design.

Recent work also proposed EIE, a custom ASIC to execute network pruned

DNNs [39]. While this ASIC achieves impressive results on fully connected layers,

those components account for only a fraction of the end-to-end execution time in

many modern DNNs, including for the IMC network. Figure 4.17 includes the den-

sity and speedup achieved by EIE for the end-to-end IMC network, which achieves a

1.1× speedup. Meanwhile, synapse vector elimination’s speedup of 1.5× is achieved

91

Figure 4.17: End-to-end speedup of DeftNN synapse vector elimination, software
executed network pruning [41], and EIE [39] hardware-accelerated network pruning.

on a real GPU system.

Off-chip Data Packing. Off-chip data packing is similar to near-compute data fis-

sion, except data is packed into off-chip memory and unpacked into on-chip memory,

saving off-chip memory storage and bandwidth [98]. Certain applications are able to

benefit substantially from off-chip data packing, but we found that, for DNN appli-

cations, off-chip bandwidth is only slightly utilized, while on-chip bandwidth is satu-

rated. We compare the performance improvements of off-chip and near-compute data

fission in Figure 4.18. As expected, off-chip data packing yields modest speedups,

since off-chip memory is already underutilized and the bottleneck lies elsewhere in

DNN execution.

92

Figure 4.18: Comparison of DeftNN data fission to off-chip data packing [98].

4.5 Summary

This chapter described DeftNN, a system for optimizing GPU-based DNNs. DeftNN

uses two novel optimization techniques – synapse vector elimination, a technique that

drops the non-contributing synapses in the neural network, as well as near-compute

data fission, a mechanism for scaling down the data movement requirements within

DNN computations. Our experimental results show that DeftNN can significantly

improve DNN performance, improving performance by over 2.1× on commodity GPU

hardware and over 2.6× when leveraging a small additional hardware unit that ac-

celerates fission.

93

CHAPTER V

Rethinking Numerical Representations for Deep

Neural Networks

With ever-increasing computational demand for deep learning, it is critical to in-

vestigate the implications of the numeric representation and precision of DNN model

weights and activations on computational efficiency. In this work, we explore un-

conventional narrow-precision floating-point representations as it relates to inference

accuracy and efficiency to steer the improved design of future DNN platforms. We

show that inference using these custom numeric representations on production-grade

DNNs, including GoogLeNet and VGG, achieves an average speedup of 7.6× with

less than 1% degradation in inference accuracy relative to a state-of-the-art baseline

platform representing the most sophisticated hardware using single-precision float-

ing point. To facilitate the use of such customized precision, we also present a novel

technique that drastically reduces the time required to derive the optimal precision

configuration.

94

integer fraction

11001.01110
||||||||||

......

Figure 5.1: A fixed-point representation.
Hardware parameters include the total
number of bits and the position of the
radix point.

x2

mantissa

1.01101
|||||

...

exponent

10011
|||||

... - bias

Figure 5.2: A floating-point representa-
tion. Hardware parameters include the
number of mantissa and exponent bits,
and the bias.

5.1 Customized Precision Hardware

We begin with an overview of the available design choices in the representation of

real numbers in binary and discuss how these choices impact hardware performance.

5.1.1 Design Space

We consider three aspects of customized precision number representations. First,

we contrast the high-level choice between fixed-point and floating-point representa-

tions. Fixed-point binary arithmetic is computationally identical to integer arith-

metic, simply changing the interpretation of each bit position. Floating-point arith-

metic, however, represents the sign, mantissa, and exponent of a real number sepa-

rately. Floating-point calculations involve several steps absent in integer arithmetic.

In particular, addition operations require aligning the mantissas of each operand. As

a result, floating-point computation units are substantially larger, slower, and more

complex than integer units.

In CPUs and GPUs, available sizes for both integers and floating-point calcula-

tions are fixed according to the data types supported by the hardware. Thus, the

second aspect of precision customization we examine is to consider customizing the

95

number of bits used in representing floating-point and fixed-point numbers. Third,

we may vary the interpretation of fixed-point numbers and assignment of bits to the

mantissa and exponent in a floating-point value.

5.1.2 Customized Precision Types

In a fixed-point representation, we select the number of bits as well as the po-

sition of the radix point, which separates integer and fractional bits, as illustrated

in Figure 5.1. A bit array, x, encoded in fixed point with the radix point at bit l

(counting from the right) represents the value 2−l
∑N−1

i=0 2i ·xi. In contrast to floating

point, fixed-point representations with a particular number of bits have a fixed level

of precision. By varying the position of the radix point, we change the representable

range.

An example floating-point representation is depicted in Figure 5.2. As shown

in the figure, there are three parameters to select when designing a floating-point

representation: the bit-width of the mantissa, the bit-width of the exponent, and

an exponent bias. The widths of the mantissa and exponent control precision and

dynamic range, respectively. The exponent bias adjusts the offset of the exponent

(which is itself represented as an unsigned integer) relative to zero to facilitate pos-

itive and negative exponents. Finally, an additional bit represents the sign. Thus,

a floating-point format with Nm mantissa bits, Ne exponent bits, and a bias of b,

encodes the value 2(
∑Ne−1

i=0 2i·ei)−b(1 +
∑Nm

i=1 2−i ·mi), where m and e are the segments

of a bit array representing the mantissa and exponent, respectively. Note that the

leading bit of the mantissa is assumed to be 1 and hence is not explicitly stored,

96

Sign Exponent Mantissa Sign Exponent Mantissa

Comparator

Sign Exponent Mantissa

8 7 6 5 4 3 2 1 0

Delay

+

×
FSM

Controller

Alignment

Alignment

Addition/

Subtraction

Alignment
Increment/

Decrement

8 7 6 5 4 3 2 1 0

(a) (b) (c)

Figure 5.3: Floating point multiply-accumulate (MAC) unit with various levels of de-
tail: (a) the high level mathematical operation, (b) the modules that form a floating
point MAC, and (c) the signal propagation of the unit.

eliminating redundant encodings of the same value. A single-precision value in the

IEEE-754 standard (i.e. float) comprises 23 mantissa bits, 8 exponent bits, and a

sign bit. IEEE-754 standardized floating-point formats include special encodings for

specific values, such as zero and infinity.

Both fixed-point and floating-point representations have limitations in terms of

the precision and the dynamic ranges available given particular representations, man-

ifesting themselves computationally as rounding and saturation errors. These errors

propagate through the deep neural network in a way that is difficult to estimate

holistically, prompting experimentation on the DNN itself.

5.1.3 Hardware Implications

The key hardware building block for implementing DNNs is the multiply-accumulate

(MAC) operation. The MAC operation implements the sum-of-products operation

that is fundamental to the activation of each neuron. We show a high-level hardware

97

block diagram of a MAC unit in Figure 5.3 (a). Figure 5.3 (b) adds detail for the

addition operation, the more complex of the two operations. As seen in the figure,

floating-point addition operations involve a number of sub-components that compare

exponents, align mantissas, perform the addition, and normalize the result. Nearly

all of the sub-components of the MAC unit scale in speed, power, and area with the

bit width.

Reducing the floating-point bit width improves hardware performance in two

ways. First, reduced bit width makes a computation unit faster. Binary arithmetic

computations involve chains of logic operations that typically grows at least loga-

rithmically, and sometimes linearly (e.g., the propagation of carries in an addition,

see Figure 5.3 (c)), in the number of bits. Reducing the bit width reduces the length

of these chains, allowing the logic to operate at a higher clock frequency. Second, re-

duced bit width makes a computation unit smaller and require less energy, typically

linearly in the number of bits. The circuit delay and area is shown in Figure 5.4

when the mantissa bit widths are varied. As shown in the figure, scaling the length

of the mantissa provides substantial opportunity because it defines the size of the

internal addition unit. Similar trends follow for bit-widths in other representations.

When a unit is smaller, more replicas can fit within the same chip area and power

budget, all of which can operate in parallel. Hence, for computations like those in

DNNs, where ample parallelism is available, area reductions translate into propor-

tional performance improvement.

This trend of bit width versus speed, power, and area is applicable to every

computation unit in hardware DNN implementations. Thus, in designing hardware

98

5 10 15 20

0.0

0.2

0.4

0.6

0.8

1.0

Normalized Area
Normalized Delay

Mantissa Bits

Figure 5.4: Delay and area implications
of mantissa width, normalized to a 32-bit
Single Precision MAC with 23 mantissa
bits.

32-bit MAC 11-bit
MAC

11-bit
MAC

11-bit
MAC

11-bit
MAC

D
el

ay
: 1

0τ

D
el

ay
: 4
τ

Parallelism: 1v Parallelism: 4v

1v / 10τ 4v / 4τ
10x speedup

Figure 5.5: Speedup calculation with a
fixed area budget. The speedup exploits
the improved function delay and paral-
lelism.

that uses customized representations there is a trade-off between accuracy on the

one hand and power, area, and speed on the other. Our goal is to use precision that

delivers sufficient accuracy while attaining large improvements in power, area, and

speed over standard floating-point designs.

5.2 Methodology

We describe the methodology we use to evaluate the customized precision design

space, using image classification tasks of varying complexity as a proxy for computer

vision applications. We evaluate DNN implementations using several metrics, classi-

fication accuracy, speedup, and energy savings relative to a baseline custom hardware

design that uses single-precision floating-point representations. Using the results of

this analysis, we propose and validate a search technique to efficiently determine the

correct customized precision design point.

99

5.2.1 Accuracy

We evaluate accuracy by modifying the Caffe [52] deep learning framework to

perform calculations with arbitrary fixed-point and floating-point formats. We con-

tinue to store values as C floats in Caffe, but truncate the mantissa and exponent

to the desired format after each arithmetic operation. Accuracy, using a set of test

inputs disjoint from the training input set, is then measured by running the forward

pass of a DNN model with the customized format and comparing the outputs with

the ground truth. We use the standard accuracy metrics that accompany the dataset

for each DNN. For MNIST (LeNet-5) and CIFAR-10 (CIFARNET) we use top-1 ac-

curacy and for ImageNet (GoogLeNet, VGG, and AlexNet) we use top-5 accuracy.

Top-1 accuracy denotes the percent of inputs that the DNN predicts correctly after

a single prediction attempt, while top-5 accuracy represents the percent of inputs

that DNN predicts correctly after five attempts.

5.2.2 Efficiency

We quantify the efficiency advantages of customized floating-point representations

by designing a floating-point MAC unit in each candidate precision and determin-

ing its silicon area and delay characteristics. We then report speedup and energy

savings relative to a baseline custom hardware implementation of a DNN that uses

standard single-precision floating-point computations. We design each variant of the

MAC unit using Synopsys Design Compiler and Synopsys PrimeTime, industry stan-

dard ASIC design tools, targeting a commercial 28nm silicon manufacturing process.

The tools report the power, delay, and area characteristics of each precision vari-

100

ant. As shown in Figure 5.5, we compute speedups and energy savings relative to

the standardized IEEE-754 floating-point representation considering both the clock

frequency advantage and improved parallelism due to area reduction of the narrower

bit-width MAC units. This allows customized precision designs to yield a quadratic

improvement in total system throughput.

5.2.3 Training

Given a network trained with full precision, a standard approach for speed-up

is to round the weights to a customized precision network. An intriguing question

is whether the inevitable loss of classification accuracy can be minimized by train-

ing with customized precision. We thus experiment with three training strategies:

(1) training with full precision, (2) training with full precision followed by fine-

tuning—another round of training with customized precision, and (3) training with

customized precision from scratch. Note that in both cases of training with cus-

tomized precision, only the forward pass is performed in customized precision. The

backward pass—weight representation and updates—is still done with full precision.

Intuitively, each of these approaches appear to have features that could cause

them to perform more effectively than the others. When a pre-trained model with

weights outside of the range of values that can be encoded is immediately approx-

imated, an anomalous percentage of weights at the limits of the numeric represen-

tation (i.e. ±saturation point and 0) will be present. On the other hand, training

entirely with small numeric representations may prevent the model from learning

due to insufficient precision. Finally, fine-tuning will avoid the high output density

101

of extreme values by making adjustments to these neurons, but it may also cause

degradation if the remaining precision is insufficient to yield meaningful training.

5.2.4 Efficient Customized Precision Search

To exploit the benefits of customized precision, a mechanism to select the correct

configuration must be introduced. There are hundreds of designs among floating-

point and fixed-point formats due to designs varying by the total bit width and the

allocation of those bits. This spectrum of designs strains the ability to select an op-

timal configuration. A straightforward approach to select the customized precision

design point is to exhaustively compute the accuracy of each design with a large

number of neural network inputs. This strategy requires substantial computational

resources that are proportional to the size of the network and variety of output clas-

sifications. We describe our technique that significantly reduces the time required to

search for the correct configuration in order to facilitate the use of customized pre-

cision.

The key insight behind our search method is that customized precision impacts

the underlying internal computation, which is hidden by evaluating only the NN

final accuracy metric. Thus, instead of comparing the final accuracy generated by

networks with different precision configurations, we compare the original NN activa-

tions to the customized precision activations. This circumvents the need to evaluate

the large number of inputs required to produce representative neural network accu-

racy. Furthermore, instead of examining all of the activations, we only analyze the

last layer, since the last layer captures the usable output from the neural network

102

as well as the propagation of lost accuracy. Our method summarizes the differences

between the last layer of two configurations by calculating the linear coefficient of

determination between the last layer activations.

A method to translate the coefficient of determination to a more desirable met-

ric, such as end-to-end inference accuracy, is necessary. We find that a linear model

provides such a transformation. The customized precision setting with the high-

est speedup that meets a specified accuracy threshold is then selected. In order

to account for slight inaccuracies in the model, inference accuracy for a subset of

configurations is evaluated. If the configuration provided by the accuracy model

results in insufficient accuracy, then an additional bit is added and the process re-

peats. Similarly, if the accuracy threshold is met, then a bit is removed from the

customized precision format.

5.3 Experiments

In this section, we evaluate five common neural networks spanning a range of

sizes and depths in the context of customized precision hardware. We explore the

trade-off between accuracy and efficiency when various customized precision rep-

resentations are employed. Next, we address the sources of accuracy degradation

when customized precision is utilized. Finally, we examine the characteristics of our

customized precision search technique.

103

0x 5x 10x 15x 20x 25x

Speedup

0%

20%

40%

60%

80%

100%

A
cc

ur
ac

y

(a) GoogLeNet

●

●

●

●●

●

●

●

●●

●

●

●

●●

●

●

●

●●

●

●

●

●●

●

●

●

●●

●

●

●

●●

●

●

●

●●

●

●

●

●●

●

●

●

●●

●

●

●

●●

●

●

●

●●

●

●

●

●●

●

●

●

●● ●

●

●

●● ●

●

●

●●
●

●

●●●

●

●

●

●●

●

●

●

●●

●

●

●

●●

0x 5x 10x 15x 20x 25x

Speedup

0%

20%

40%

60%

80%

100%

A
cc

ur
ac

y

(b) VGG

●●

●●●

●●

●●●

●●

●●●

●●

●●●

●●

●●●

●●

●●●

●●

●●●

●●

●●●

●●

●●●

●●

●●●

●●

●●●

●●

●●●

●●

●●●

●●●●● ●●

●●●

●●

●●●

●●

●●●

●●

●●●

●●

●●●

●●

●●●

0x 5x 10x 15x 20x 25x

Speedup

0%

20%

40%

60%

80%

100%

A
cc

ur
ac

y

(c) AlexNet

●●●●●●●●●●●●● ●●● ●

●

●

●

●●●●●●●●●●●●● ●● ●●

●

●

●

●●●●●●●●●●●●● ●● ●● ●

●

●

0x 5x 10x 15x 20x 25x

Speedup

0%

20%

40%

60%

80%

100%

A
cc

ur
ac

y

(d) CIFARNET

●●●●●●●●●●●●● ●●● ● ●

●

●●●●●●●●●●●●● ●● ●● ●

●

●●●●●●●●●●●●● ●● ●●

●

●

●●●●●●●●●●●●● ●● ● ● ●
●

0x 5x 10x 15x 20x 25x

Speedup

0%

20%

40%

60%

80%

100%

A
cc

ur
ac

y

(e) LeNet−5

●●●●●●●●●●●●● ●●● ● ● ●

●

●●●●●●●●●●●●● ●● ●● ● ●

●

●●●●●●●●●●●●● ●● ●● ● ●

●

●●●●●●●●●●●●● ●● ● ● ● ● ●●●●●●●●●●●●●● ●● ● ● ● ● ●

● Custom Floating Point Custom Fixed Point IEEE 754 Single Prec.

Figure 5.6: The inference accuracy versus speedup design space for each of the neural
networks, showing substantial computational performance improvements for minimal
accuracy degradation when customized precision floating-point formats are used.

5.3.1 Experimental Setup

We evaluate the accuracy of customized precision operations on five DNNs:

GoogLeNet [115], VGG [110], AlexNet [60], CIFARNET [58], and LeNet-5 [66]. The

implementations and pre-trained weights for these DNNs were taken from Caffe [52].

The three largest DNNs (GoogLeNet, VGG, and AlexNet) represent real-world work-

loads, while the two smaller DNNs (CIFARNET and LeNet-5) are the largest DNNs

evaluated in prior work on customized precision. For each DNN, we use the canonical

benchmark validation set: ImageNet for GoogLeNet, VGG, and AlexNet; CIFAR-10

for CIFARNET; MNIST for LeNet-5. We utilize the entire validation set for all ex-

periments, except for GoogLeNet and VGG experiments involving the entire design

space. In these cases we use a randomly-selected 1% of the validation set to make

the experiments tractable.

104

5.3.2 Accuracy versus Efficiency Trade-offs

To evaluate the benefits of customized precision hardware, we swept the design

space for accuracy and performance characteristics. This performance-accuracy trade

off is shown in Figure 5.6. This figure shows the DNN inference accuracy across the

full input set versus the speedup for each of the five DNN benchmarks. The black star

represents the IEEE 754 single precision representation (i.e. the original accuracy

with 1× speedup), while the red circles and blue triangles represent the complete set

of our customized precision floating-point and fixed-point representations, respec-

tively.

For GoogLeNet, VGG, and AlexNet it is clear that the floating-point format is

superior to the fixed-point format. In fact, the standard single precision floating-

point format is faster than all fixed-point configurations that achieve above 40%

accuracy. Although fixed-point computation is simpler and faster than floating-point

computation when the number of bits is fixed, customized precision floating-point

representations are more efficient because less bits are needed for similar accuracy.

By comparing the results across the five different networks in Figure 5.6, it is

apparent that the size and structure of the network impacts the customized preci-

sion flexibility of the network. This insight suggests that hardware designers should

carefully consider which neural network(s) they expect their device to execute as

one of the fundamental steps in the design process. The impact of network size on

accuracy is discussed in further detail in the following section.

The specific impact of bit assignments on performance and energy efficiency are

illustrated in Figure 5.7. This figure shows the the speedup and energy improvements

105

3 6 9 12 15 18 21 24

Mantissa Bits

(a) Floating−point speedup

4

6

8

10

E
xp

on
en

t B
its <1% Accuracy

Degradation

0.7x

3.9x

7.2x

10.4x

13.6x

16.8x

20x

4 8 12 16 20 24 28 32

Integer Bits

(b) Fixed−point speedup

4

8

12

16

20

24

28

32

F
ra

ct
io

n
B

its

<1% Accuracy
Degradation

0.2x

4.3x

8.5x

12.6x

16.8x

21x

25.1x

3 6 9 12 15 18 21 24

Mantissa Bits

(c) Floating−point energy

4

6

8

10

E
xp

on
en

t B
its <1% Accuracy

Degradation

0.8x

1.7x

2.6x

3.5x

4.4x

5.3x

6.2x

4 8 12 16 20 24 28 32

Integer Bits

(d) Fixed−point energy

4

8

12

16

20

24

28

32

F
ra

ct
io

n
B

its

<1% Accuracy
Degradation

0.3x

1.4x

2.5x

3.7x

4.8x

5.9x

7x

Figure 5.7: The speedup and energy savings as the two parameters are adjusted for
the custom floating point and fixed-point representations. The marked area denotes
configurations where the total loss in AlexNet accuracy is less than 1%.

over the single precision floating-point representation as the number of allocated bits

is varied. For the floating-point representations, the number of bits allocated for the

mantissa (x-axis) and exponent (y-axis) are varied. For the fixed-point representa-

tions, the number of bits allocated for the integer (x-axis) and fraction (y-axis) are

varied. We highlight a region in the plot deemed to have acceptable accuracy. In this

case, we define acceptable accuracy to be 99% normalized AlexNet accuracy (i.e., no

less than a 1% degradation in accuracy from the IEEE 754 single precision accuracy

on classification in AlexNet).

The fastest and most energy efficient representation occurs at the bottom-left

corner of the region with acceptable accuracy, since a minimal number of bits are

used. The configuration with the highest performance that meets this requirement

is a floating-point representation with 6 exponent bits and 7 mantissa bits, which

yields a 7.2× speedup and a 3.4× savings in energy over the single precision IEEE 754

floating-point format. If a more stringent accuracy requirement is necessary, 0.3%

accuracy degradation, the representation with one additional bit in the mantissa can

106

0 500 1000 1500 2000 2500 3000

−1000

−500

0

500

1000

[1]
[2]

[3]

[4]

[5]

of Accumulated Values

R
un

ni
ng

 A
cc

um
ul

at
or

 T
ot

al

[1] IEEE 754 Single Prec.
[2] Custom FL M=8/E=6
[3] Custom FL M=2/E=14
[4] Custom FL M=10/E=4
[5] Custom FI L=8/R=6

Figure 5.8: The accumulation of weighted neuron inputs
for a specific neuron with various customized precision
DNNs as well as the IEEE 754 single precision floating
point configuration for reference. FL and FI are used
to abbreviate floating point and fixed-point, respectively.
The format parameters are as follows: M=mantissa,
E=exponent, L=bits left of radix point, R=bits right of
radix point.

Figure 5.9: The linear
fit from the correlation
between normalized ac-
curacy and last layer
activations of the exact
and customized preci-
sion DNNs.

be used, which achieves a 5.7× speedup and 3.0× energy savings.

5.3.3 Sources of Accumulation Error

In order to understand how customized precision degrades DNN accuracy among

numeric representations, we examine the impact of various reduced precision compu-

tations on a neuron. Figure 5.8 presents the serialized accumulation of neuron inputs

in the third convolution layer of AlexNet. The x-axis represents the number of in-

puts that have been accumulated, while the y-axis represents the current value of the

running sum. The black line represents the original DNN computation, a baseline

for customized precision settings to match. We find two causes of error between the

customized precision fixed-point and floating-point representations, saturation and

excessive rounding.

In the fixed-point case (green line, representing 16 bits with the radix point in

107

the center), the central cause of error is from saturation at the extreme values. The

running sum exceeds 255, the maximum representable value in this representation,

after 60 inputs are accumulated, as seen in the figure. After reaching saturation, the

positive values are discarded and the final output is unpredictable. Although floating-

point representations do not saturate as easily, the floating-point configuration with

10 mantissa bits and 4 exponent bits (orange line) saturates after accumulating 1128

inputs. Again, the lost information from saturation causes an unpredictable final

output.

For the next case, the floating-point configuration with 2 bits and 14 bits for the

mantissa and exponent (blue line), respectively, we find that the lack of precision

for large values causes excessive rounding errors. As shown in the figure, after ac-

cumulating 120 inputs, this configuration’s running sum exceeds 256, which limits

the minimum adjustment in magnitude to 64 (the exponent normalizes the man-

tissa to 256, so the two mantissa bits represent 128 and 64). Finally, one of the

customized precision types that has high performance and accuracy for AlexNet, 8

mantissa bits and 6 exponent bits (red line), is shown as well. This configuration al-

most perfectly matches the IEEE 754 floating-point configuration, as expected based

on the final output accuracy.

The other main cause of accuracy loss is from values that are too small to be

encoded as a non-zero value in the chosen customized precision configuration. These

values, although not critical during addition, cause significant problems when mul-

tiplied with a large value, since the output should be encoded as a non-zero value

in the specific precision setting. We found that the weighted input is minimally

108

Figure 5.10: The speedup achieved by selecting the customized precision using an
exhaustive search (i.e. the ideal design) and prediction using the accuracy model
with accuracy evaluated for some number of configurations (model + X samples).
The floating-point (FL) and fixed-point (FI) results are shown in the top and bot-
tom rows, respectively. The model with two evaluated designs produces the same
configurations, but requires <0.6% of the search time.

impacted, until the precision is reduced low enough for the weight to become zero.

While it may be intuitive based on these results to apply different customized pre-

cision settings to various stages of the neural network in order to mitigate the sud-

den loss in accuracy, the realizable gains of multi-precision configurations present

significant challenges. The variability between units will cause certain units to be

unused during specific layers of the neural network causing gains to diminish (e.g.,

11-bit units are idle when 16-bit units are required for a particular layer). Also,

the application specific hardware design is already an extensive process and multiple

customized precision configurations increases the difficulty of the hardware design

and verification process.

109

5.3.4 Customized Precision Search

Now we evaluate our proposed customized precision search method. The goal

of this method is to significantly reduce the required time to navigate the cus-

tomized precision design space and still provide an optimal design choice in terms of

speedup, limited by an accuracy constraint.

Correlation model. First, we present the linear correlation-accuracy model in Fig-

ure 5.9, which shows the relationship between the normalized accuracy of each setting

in the design space and the correlation between its last layer activations compared to

those of the original NN. This model, although built using all of the customized pre-

cision configurations from AlexNet, CIFARNET, and LeNet-5 neural networks, pro-

duces a good fit with a correlation of 0.96. It is important that the model matches

across networks and precision design choices (e.g., floating point versus fixed point),

since creating this model for each DNN, individually, requires as much time as ex-

haustive search.

Validation. To validate our search technique, Figure 5.10 presents the accuracy-

speedup trade-off curves from our method compared to the ideal design points. We

first obtain optimal results via exhaustive search. We present our search with a

variable number of refinement iterations, where we evaluate the accuracy of the

current design point and adjust the precision if necessary. To verify robustness, the

accuracy models were generated using cross-validation where all configurations in

the DNN being searched are excluded (e.g., we build the AlexNet model with LeNet

and CIFARNET accuracy/correlation pairs). The prediction is made using only

ten randomly selected inputs, a tiny subset compared that needed for classification

110

accuracy, some of which are even incorrectly classified by the original neural network.

Thus, the cost of prediction using the model is negligible.

We observe that, in all cases, the accuracy model combined with the evaluation

of just two customized precision configurations provides the same result as the ex-

haustive search. Evaluating two designs out of 340 is 170× faster than exhaustively

evaluating all designs. When only one configuration is evaluated instead of two (i.e.

a further 50% reduction is search time), the selected customized precision setting

never violates the target accuracy, but concedes a small amount of performance.

Finally, we note that our search mechanism, without evaluating inference accuracy

for any of the design points, provides a representative prediction of the optimal cus-

tomized precision setting. Although occasionally violating the target accuracy (i.e.

the cases where the speedup is higher than the exhaustive search), this prediction

can be used to gauge the amenability of the NN to customized precision without

investing any considerable amount of time in experimentation.

Speedup. We present the final speedup produced by our search method in Fig-

ure 5.11 when the algorithm is configured for 99% target accuracy and to use two

samples for refinement. In all cases, the chosen customized precision configuration

meets the targeted accuracy constraint. In most cases, we find that the larger net-

works require more precision (DNNs are sorted from left to right in descending order

based on size). VGG requires less precision than expected, but VGG also uses smaller

convolution kernels than all of the other DNNs except LeNet-5.

111

Figure 5.11: The speedup resulting from searching for the fastest setting with less
than 1% inference accuracy degradation. All selected customized precision DNNs
meet this accuracy constraint.

5.4 Summary

This chapter introduced the importance of carefully considering customized pre-

cision when realizing neural networks. We show that using the IEEE 754 single

precision floating point representation in hardware results in surrendering substan-

tial performance. On the other hand, picking a configuration that has lower precision

than optimal will result in severe accuracy loss. By reconsidering the representation

from the ground up in designing custom precision hardware and using our search tech-

nique, we find an average speedup across deployable DNNs, including GoogLeNet

and VGG, of 7.6× with less than 1% degradation in inference accuracy.

112

CHAPTER VI

Conclusion

A widespread interest in artificial intelligence in applications has grown in recent

years, including from companies such as Apple, Google, Microsoft and Amazon. To

provide this intelligence, these applications employ algorithms from domains such

as computer vision, image processing, pattern recognition and machine learning.

Across these algorithms, two common characteristics have emerged. First, the mas-

sive datasets and computationally intensive logic required to execute these algorithms

present a significant challenge for existing infrastructure. Second, these datasets are

gathered from inherently noisy and imprecise inputs, resulting in computation of

outputs that are statistical in nature. Although these algorithms necessarily require

resilience to inaccuracies, each output is computed with as much precision as in con-

ventional applications. This substantial fraction of redundant computations leads

existing infrastructure to struggle to deliver the throughput for emerging intelligent

applications. There remain three key challenges that must be addressed in order to

remove this redundant computation and help bridge the performance gap.

113

First, removal of redundant computation cannot widespread adoption until prac-

titioners can trust that the final output will be sufficiently accurate. Second, many of

these emerging applications rely on hardware acceleration in order to meet through-

put demands. However, existing approaches to removing redundant computation

only consider conventional CPU architectures. We find that the underlying archi-

tecture must be carefully considered in order to remove computation without com-

promising the software’s efficiency when executing on accelerator hardware. Finally,

even further exploration is required when cutting redundant work from custom ac-

celerators. We find a void in existing work in regards to the numerical representation

being employed on custom accelerators, leaving untapped performance gains for these

accelerators.

In this dissertation, we address these challenges to increase the adoption of ex-

ploiting error tolerance. In the first chapter, we present a statistical mechanism to

provide statistical accuracy guarantees. This statistical machinery, integrated into

a runtime system, allows practitioners to provide statistical accuracy bounds on the

approximations applied in their applications. In the second chapter, we consider

how to remove computation efficiently when executed on GPU accelerators. We find

that work skipping must be done in a very structured way in order to find bene-

fits due to the wide vectors units present on the GPU. Additionally, we find that a

central bottleneck for these computationally intensive algorithms lies in the on-chip

memory. Using these insights, we develop two techniques to substantially improve

performance on GPUs with negligible loss in accuracy. Finally, in the third chapter,

we explore the numerical representation landscape to vastly improve performance.

114

We find that a customized-precision floating-point representation offers significant

performance improvements with little loss in accuracy.

115

BIBLIOGRAPHY

116

BIBLIOGRAPHY

[1] Sameer Agarwal, Barzan Mozafari, Aurojit Panda, Henry Milner, Samuel Mad-

den, and Ion Stoica. BlinkDB: Queries with bounded errors and bounded re-

sponse times on very large data. In European Conference on Computer Systems

(EuroSys, 2013.

[2] Jorge Albericio, Patrick Judd, Tayler Hetherington, Tor Aamodt, Natalie En-

right Jerger, and Andreas Moshovos. Cnvlutin: Ineffectual-neuron-free deep

neural network computing. In International Symposium on Computer Archi-

tecture (ISCA), 2016.

[3] Amazon. Amazon Echo. https://www.amazon.com/

Amazon-Echo-Bluetooth-Speaker-with-WiFi-Alexa/dp/

B00X4WHP5E, 2016. [Online; accessed 15-August-2016].

[4] Jason Ansel, Yee Lok Wong, Cy Chan, Marek Olszewski, Alan Edelman, and

Saman Amarasinghe. Language and compiler support for auto-tuning variable-

accuracy algorithms. In Code Generation and Optimization (CGO), 2010.

[5] Apple. Siri. https://www.apple.com/ios/siri, 2016. [Online; ac-

cessed 15-August-2016].

117

[6] Woongki Baek and Trishul M. Chilimbi. Green: a framework for supporting

energy-conscious programming using controlled approximation. In Program-

ming Language Design and Implementation (PLDI), 2010.

[7] Andrew C Berry. The accuracy of the gaussian approximation to the sum

of independent variates. Transactions of the American Mathematical Society,

49(1):122–136, 1941.

[8] James Bornholt, Todd Mytkowicz, and Kathryn S McKinley. Uncertain<T>:

A first-order type for uncertain data. In Architectural Support for Programming

Languages and Operating Systems (ASPLOS), 2014.

[9] Brett Boston, Adrian Sampson, Dan Grossman, and Luis Ceze. Probability

type inference for flexible approximate programming. In Object-Oriented Pro-

gramming, Systems, Languages and Applications (OOPSLA), 2015.

[10] Michael Carbin, Deokhwan Kim, Sasa Misailovic, and Martin C Rinard. Prov-

ing acceptability properties of relaxed nondeterministic approximate programs.

In Programming Language Design and Implementation (PLDI), 2012.

[11] Michael Carbin, Sasa Misailovic, and Martin C Rinard. Verifying quantita-

tive reliability for programs that execute on unreliable hardware. In Object-

Oriented Programming, Systems, Languages and Applications (OOPSLA),

2013.

[12] Lukas Cavigelli, David Gschwend, Christoph Mayer, Samuel Willi, Beat

118

Muheim, and Luca Benini. Origami: A convolutional network accelerator.

In Great Lakes Symposium on VLSI (GLSVLSI), 2015.

[13] Lukas Cavigelli, Michele Magno, and Luca Benini. Accelerating real-time em-

bedded scene labeling with convolutional networks. In Design Automation

Conference (DAC), 2015.

[14] Srimat Chakradhar, Murugan Sankaradas, Venkata Jakkula, and Srihari

Cadambi. A dynamically configurable coprocessor for convolutional neural net-

works. In International Symposium on Computer Architecture (ISCA), 2010.

[15] Surajit Chaudhuri, Gautam Das, and Vivek Narasayya. Optimized stratified

sampling for approximate query processing. Transactions on Database Sys-

tems., 2007.

[16] Swarat Chaudhuri, Sumit Gulwani, Roberto Lublinerman, and Sara Navid-

pour. Proving programs robust. In Foundations of Software Engineering

(FSE), 2011.

[17] Tianshi Chen, Zidong Du, Ninghui Sun, Jia Wang, Chengyong Wu, Yunji Chen,

and Olivier Temam. Diannao: A small-footprint high-throughput accelera-

tor for ubiquitous machine-learning. In Architecture Support for Programming

Languages and Operating Systems (ASPLOS), 2014.

[18] Wenlin Chen, James Wilson, Stephen Tyree, Kilian Q Weinberger, and Yixin

Chen. Compressing neural networks with the hashing trick. In 32nd Interna-

tional Conference on Machine Learning, pages 2285–2294, 2015.

119

[19] Yunji Chen, Tao Luo, Shaoli Liu, Shijin Zhang, Liqiang He, Jia Wang, Ling

Li, Tianshi Chen, Zhiwei Xu, Ninghui Sun, and Olivier Temam. Dadiannao:

A machine-learning supercomputer. In International Symposium on Microar-

chitecture (MICRO), 2014.

[20] Sharan Chetlur, Cliff Woolley, Philippe Vandermersch, Jonathan Cohen, John

Tran, Bryan Catanzaro, and Evan Shelhamer. cudnn: Efficient primitives for

deep learning. 2014.

[21] Francesco Conti and Luca Benini. A ultra-low-energy convolution engine for

fast brain-inspired vision in multicore clusters. In Design, Automation & Test

in Europe Conference & Exhibition (DATE), 2015.

[22] Matthieu Courbariaux, Yoshua Bengio, and Jean-Pierre David. Low precision

arithmetic for deep learning. 2014.

[23] Matthieu Courbariaux, Yoshua Bengio, and Jean-Pierre David. Low precision

arithmetic for deep learning. CoRR, abs/1412.7024, 2014.

[24] Jeffrey Dean, Greg Corrado, Rajat Monga, Kai Chen, Matthieu Devin, Mark

Mao, Marc extquotesingle aurelio Ranzato, Andrew Senior, Paul Tucker,

Ke Yang, Quoc V. Le, and Andrew Y. Ng. Large scale distributed deep net-

works. In Neural Information Processing Systems (NIPS), 2012.

[25] Peter U Diehl and Matthew Cook. Efficient implementation of stdp rules

on spinnaker neuromorphic hardware. In International Joint Conference on

Neural Networks, 2014.

120

[26] Yufei Ding, Jason Ansel, Kalyan Veeramachaneni, Xipeng Shen, Una-May

O’Reilly, and Saman Amarasinghe. Autotuning algorithmic choice for input

sensitivity. In Programming Language Design and Implementation (PLDI),

2015.

[27] Zidong Du, Avinash Lingamneni, Yunji Chen, Krishna Palem, Olivier Temam,

and Chengyong Wu. Leveraging the error resilience of machine-learning ap-

plications for designing highly energy efficient accelerators. In Asia and South

Pacific Design Automation Conference (ASP-DAC), 2014.

[28] Hadi Esmaeilzadeh, Adrian Sampson, Luis Ceze, and Doug Burger. Archi-

tecture support for disciplined approximate programming. In Architectural

Support for Programming Languages and Operating Systems (ASPLOS), 2012.

[29] Hadi Esmaeilzadeh, Adrian Sampson, Luis Ceze, and Doug Burger. Neural

acceleration for general-purpose approximate programs. In International Sym-

posium on Microarchitecture (MICRO), 2012.

[30] Clement Farabet, Camille Couprie, Laurent Najman, and Yann LeCun. Learn-

ing hierarchical features for scene labeling. Pattern Analysis and Machine In-

telligence, IEEE Transactions on, 35(8):1915–1929, 2013.

[31] Clément Farabet, Berin Martini, Benoit Corda, Polina Akselrod, Eugenio Cu-

lurciello, and Yann LeCun. Neuflow: A runtime reconfigurable dataflow pro-

cessor for vision. In Computer Vision and Pattern Recognition Workshops

(CVPRW), 2011.

121

[32] Michael Figurnov, Dmitry Vetrov, and Pushmeet Kohli. Perforatedcnns: Ac-

celeration through elimination of redundant convolutions. 2015.

[33] Klint Finley. Facebook open-sources a trove of AI tools, 2015.

[34] Wilson W. L. Fung, Ivan Sham, George Yuan, and Tor M. Aamodt. Dynamic

warp formation and scheduling for efficient gpu control flow. In International

Symposium on Microarchitecture (MICRO), 2007.

[35] Ross Girshick. Fast r-cnn. 2015.

[36] Inigo Goiri, Ricardo Bianchini, Santosh Nagarakatte, and Thu D Nguyen. Ap-

proxhadoop: Bringing approximations to mapreduce frameworks. In Architec-

tural Support for Programming Languages and Operating Systems (ASPLOS),

2015.

[37] Google. Google Now. https://www.google.com/landing/now, 2016.

[Online; accessed 15-August-2016].

[38] Suyog Gupta, Ankur Agrawal, Kailash Gopalakrishnan, and Pritish

Narayanan. Deep learning with limited numerical precision. 2015.

[39] Song Han, Xingyu Liu, Huizi Mao, Jing Pu, Ardavan Pedram, Mark A

Horowitz, and William J Dally. Eie: efficient inference engine on compressed

deep neural network. In International Symposium on Computer Architecture

(ISCA), 2016.

122

[40] Song Han, Huizi Mao, and William J Dally. Deep compression: Compressing

deep neural network with pruning, trained quantization and huffman coding.

2015.

[41] Song Han, Jeff Pool, John Tran, and William Dally. Learning both weights

and connections for efficient neural network. 2015.

[42] Awni Y. Hannun, Carl Case, Jared Casper, Bryan Catanzaro, Greg Diamos,

Erich Elsen, Ryan Prenger, Sanjeev Satheesh, Shubho Sengupta, Adam Coates,

and Andrew Y. Ng. Deepspeech: Scaling up end-to-end speech recognition.

2014.

[43] John F Hart. Computer approximations. Krieger Publishing Co., Inc., 1978.

[44] Johann Hauswald, Yiping Kang, Michael A Laurenzano, Quan Chen, Cheng

Li, Trevor Mudge, Ronald G Dreslinski, Jason Mars, and Lingjia Tang. Djinn

and tonic: Dnn as a service and its implications for future warehouse scale

computers. In International Symposium on Computer Architecture (ISCA),

2015.

[45] Johann Hauswald, Michael A. Laurenzano, Yunqi Zhang, Cheng Li, Austin

Rovinski, Arjun Khurana, Ronald G. Dreslinski, Trevor Mudge, Vinicius

Petrucci, Lingjia Tang, and Jason Mars. Sirius: An open end-to-end voice

and vision personal assistant and its implications for future warehouse scale

computers. In Architectural Support for Programming Languages and Operat-

ing Systems (ASPLOS), 2015.

123

[46] Henry Hoffmann, Jonathan Eastep, Marco Santambrogio, Jason Miller, and

Anant Agarwal. Application heartbeats for software performance and health.

In Architectural Support for Programming Languages and Operating Systems

(ASPLOS), 2009.

[47] Henry Hoffmann, Sasa Misailovic, Stelios Sidiroglou, Anant Agarwal, and Mar-

tin Rinard. Using code perforation to improve performance, reduce energy

consumption, and respond to failures. In MIT Tech Report (MIT-CSAIL-TR-

2009-042), 2009.

[48] Henry Hoffmann, Stelios Sidiroglou, Michael Carbin, Sasa Misailovic, Anant

Agarwal, and Margin Rinard. Dynamic knobs for responsive power-aware com-

puting. In Architectural Support for Programming Languages and Operating

Systems (ASPLOS), pages 199–212. ACM, 2011.

[49] Sunpyo Hong and Hyesoon Kim. An analytical model for a gpu architecture

with memory-level and thread-level parallelism awareness. In International

Symposium on Computer Architecture (ISCA), 2009.

[50] Animesh Jain, Parker Hill, Shih-Chieh Lin, Muneeb Khan, Md E. Haque,

Michael A. Laurenzano, Scott Mahlke, Lingjia Tang, and Jason Mars. Concise

loads and stores: The case for an asymmetric compute-memory architecture for

approximation. In International Symposium on Microarchitecture (MICRO),

2016.

[51] Animesh Jain, Parker Hill, Shih-Chieh Lin, Muneeb Khan, Michael A. Lauren-

zano, Scott Mahlke, Lingjia Tang, and Jason Mars. Concise loads and stores:

124

The case for an asymmetric compute-memory architecture for approximation.

In International Symposium on Microarchitecture (MICRO), 2016.

[52] Yangqing Jia, Evan Shelhamer, Jeff Donahue, Sergey Karayev, Jonathan Long,

Ross Girshick, Sergio Guadarrama, and Trevor Darrell. Caffe: Convolutional

architecture for fast feature embedding. 2014.

[53] Patrick Judd, Jorge Albericio, Tayler Hetherington, Tor Aamodt, Natalie En-

right Jerger, and Andreas Moshovos. Proteus: Exploiting numerical precision

variability in deep neural networks. In International Conference on Supercom-

puting (ICS), 2016.

[54] Yiping Kang, Johann Hauswald, Cao Gao, Austin Rovinski, Trevor Mudge,

Jason Mars, and Lingjia Tang. Neurosurgeon: Collaborative intelligence be-

tween the cloud and mobile edge. In International Conference on Architectural

Support for Programming Languages and Operating Systems (ASPLOS), 2017.

[55] Sergey Karayev, Matthew Trentacoste, Helen Han, Aseem Agarwala, Trevor

Darrell, Aaron Hertzmann, and Holger Winnemoeller. Recognizing image style.

2013.

[56] Joo-Young Kim, Minsu Kim, Seungjin Lee, Jinwook Oh, Kwanho Kim, and

Hoi-Jun Yoo. A 201.4 gops 496 mw real-time multi-object recognition processor

with bio-inspired neural perception engine. In Journal of Solid-State Circuits

(JSSC), 2010.

[57] V Yu Korolev and IG Shevtsova. On the upper bound for the absolute con-

125

stant in the berry-esseen inequality. Theory of Probability & Its Applications,

54(4):638–658, 2010.

[58] Alex Krizhevsky and Geoffrey Hinton. Learning multiple layers of features from

tiny images. Computer Science Department, University of Toronto, Tech. Rep,

1(4):7, 2009.

[59] Alex Krizhevsky and Geoffrey Hinton. Learning multiple layers of features

from tiny images. 2009.

[60] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classifica-

tion with deep convolutional neural networks. In Advances in neural informa-

tion processing systems, 2012.

[61] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classifica-

tion with deep convolutional neural networks. In Neural Information Process-

ing Systems (NIPS), 2012.

[62] Hugo Larochelle, Dumitru Erhan, Aaron Courville, James Bergstra, and

Yoshua Bengio. An empirical evaluation of deep architectures on problems

with many factors of variation. In International Conference on Machine learn-

ing (ICML), 2007.

[63] Michael A Laurenzano, Parker Hill, Mehrzad Samadi, Scott Mahlke, Jason

Mars, and Lingjia Tang. Input responsiveness: using canary inputs to dynam-

ically steer approximation. In Programming Language Design and Implemen-

tation (PLDI), 2016.

126

[64] Andrew Lavin. maxdnn: An efficient convolution kernel for deep learning with

maxwell gpus. 2015.

[65] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. 2015.

[66] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-

based learning applied to document recognition. In Proceedings of the IEEE,

1998.

[67] Yann LeCun, Corinna Cortes, and Christopher JC Burges. The mnist database

of handwritten digits, 1998.

[68] Yongsoon Lee, Younhee Choi, Seok-Bum Ko, and Moon Ho Lee. Performance

analysis of bit-width reduced floating-point arithmetic units in fpgas: a case

study of neural network-based face detector. In EURASIP Journal on Embed-

ded Systems, 2009.

[69] Boxun Li, Yuzhi Wang, Yu Wang, Yuanfeng Chen, and Huazhong Yang. Train-

ing itself: Mixed-signal training acceleration for memristor-based neural net-

work. In Asia and South Pacific Design Automation Conference (ASP-DAC),

2014.

[70] Xiangjun Li and Jianfei Cai. Robust transmission of jpeg2000 encoded images

over packet loss channels. In International Conference on Multimedia and

Expo, 2007.

[71] Song Liu, Karthik Pattabiraman, Thomas Moscibroda, and Benjamin G. Zorn.

Flikker: Saving DRAM refresh-power through data partitioning. In Architec-

127

tural Support for Programming Languages and Operating Systems (ASPLOS),

2011.

[72] Divya Mahajan, Amir Yazdanbakhsh, Jongse Park, Bradley Thwaites, and

Hadi Esmaeilzadeh. Towards statistical guarantees in controlling quality trade-

offs for approximate acceleration. In International Symposium on Computer

Architecture (ISCA), 2016.

[73] Microsoft. Microsoft Cortana. https://www.microsoft.com/en-us/

mobile/experiences/cortana, 2016. [Online; accessed 15-August-

2016].

[74] Sasa Misailovic, Michael Carbin, Sara Achour, Zichao Qi, and Martin C Rinard.

Chisel: Reliability-and accuracy-aware optimization of approximate compu-

tational kernels. In Object-Oriented Programming, Systems, Languages and

Applications (OOPSLA), 2014.

[75] Sasa Misailovic, Deokhwan Kim, and Martin Rinard. Parallelizing sequential

programs with statistical accuracy tests. In Transactions on Embedded Com-

puting Systems (TECS), 2013.

[76] Sasa Misailovic, Daniel M Roy, and Martin C Rinard. Probabilistically accu-

rate program transformations. In Static Analysis. 2011.

[77] Thierry Moreau, Mark Wyse, Jacob Nelson, Adrian Sampson, Hadi Es-

maeilzadeh, Luis Ceze, and Mark Oskin. Snnap: Approximate computing on

128

programmable socs via neural acceleration. In High Performance Computer

Architecture (HPCA), 2015.

[78] Lorenz K Muller and Giacomo Indiveri. Rounding methods for neural networks

with low resolution synaptic weights. arXiv preprint arXiv:1504.05767, 2015.

[79] Vinod Nair and Geoffrey E Hinton. Rectified linear units improve restricted

boltzmann machines. In International Conference on Machine Learning

(ICML), 2010.

[80] Veynu Narasiman, Michael Shebanow, Chang Joo Lee, Rustam Miftakhutdi-

nov, Onur Mutlu, and Yale N. Patt. Improving gpu performance via large

warps and two-level warp scheduling. In International Symposium on Microar-

chitecture (MICRO), 2011.

[81] Rajib Nath, Stanimire Tomov, and Jack Dongarra. Accelerating gpu kernels

for dense linear algebra. In High Performance Computing for Computational

Science (VECPAR), 2010.

[82] Jiquan Ngiam, Adam Coates, Ahbik Lahiri, Bobby Prochnow, Quoc V Le, and

Andrew Y Ng. On optimization methods for deep learning. In International

Conference on Machine Learning (ICML), 2011.

[83] M-E. Nilsback and A. Zisserman. Automated flower classification over a large

number of classes. In Indian Conference on Computer Vision, Graphics and

Image Processing (ICVGIP), 2008.

129

[84] Nitin, Mithuna Thottethodi, TN Vijaykumar, and Milind Kulkarni. Stratified

online sampling for sound approximation in MapReduce. 2015.

[85] Nvidia. cuBLAS, 2017.

[86] Nvidia. cuSPARSE, 2017.

[87] Nvidia. GeForce GTX TITAN X, Specifications, 2017.

[88] Nvidia. Parallel Thread Execution ISA Version 5.0, 2017.

[89] Kalin Ovtcharov, Olatunji Ruwase, Joo-Young Kim, Jeremy Fowers, Karin

Strauss, and Eric Chung. Accelerating deep convolutional neural networks

using specialized hardware, 2015.

[90] Eustace Painkras, Luis A Plana, Jim Garside, Steve Temple, Simon Davidson,

Jeffrey Pepper, David Clark, Cameron Patterson, and Steve Furber. Spinnaker:

a multi-core system-on-chip for massively-parallel neural net simulation. In

Custom Integrated Circuits Conference (CICC), 2012.

[91] Robert Preissl, Theodore M Wong, Pallab Datta, Myron Flickner, Raghaven-

dra Singh, Steven K Esser, William P Risk, Horst D Simon, and Dharmendra S

Modha. Compass: a scalable simulator for an architecture for cognitive com-

puting. In International Conference on High Performance Computing, Net-

working, Storage and Analysis (SC), 2012.

[92] Brandon Reagen, Paul Whatmough, Robert Adolf, Saketh Rama, Hyunkwang

Lee, Sae Kyu Lee, José Miguel Hernández-Lobato, Gu-Yeon Wei, and David

130

Brooks. Minerva: Enabling low-power, highly-accurate deep neural network

accelerators. In International Symposium on Computer Architecture (ISCA),

2016.

[93] Martin Rinard. Probabilistic accuracy bounds for fault-tolerant computations

that discard tasks. In International Conference on Supercomputing (ICS),

2006.

[94] Martin Rinard. Probabilistic accuracy bounds for perforated programs. In

Workshop on Partial Evaluation and Program Manipulation, 2011.

[95] Michael Ringenburg, Adrian Sampson, Isaac Ackerman, Luis Ceze, and Dan

Grossman. Monitoring and debugging the quality of results in approximate

programs. In Architectural Support for Programming Languages and Operating

Systems (ASPLOS), 2015.

[96] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh,

Sean Ma, Zhiheng Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein,

Alexander C. Berg, and Li Fei-Fei. ImageNet Large Scale Visual Recognition

Challenge. 2015.

[97] Mehrzad Samadi, Davoud Anoushe Jamshidi, Janghaeng Lee, and Scott

Mahlke. Paraprox: pattern-based approximation for data parallel applications.

In Architectural Support for Programming Languages and Operating Systems

(ASPLOS), 2014.

[98] Mehrzad Samadi, Janghaeng Lee, D Anoushe Jamshidi, Amir Hormati, and

131

Scott Mahlke. SAGE: Self-tuning approximation for graphics engines. In In-

ternational Symposium on Microarchitecture (MICRO), 2013.

[99] Adrian Sampson, Werner Dietl, Emily Fortuna, Danushen Gnanapragasam,

Luis Ceze, and Dan Grossman. Enerj: Approximate data types for safe and

general low-power computation. In Programming Language Design and Imple-

mentation (PLDI), 2011.

[100] Adrian Sampson, Jacob Nelson, Karin Strauss, and Luis Ceze. Approximate

storage in solid-state memories. Transactions on Computer Systems (TOCS),

2014.

[101] Adrian Sampson, Pavel Panchekha, Todd Mytkowicz, Kathryn S McKinley,

Dan Grossman, and Luis Ceze. Expressing and verifying probabilistic asser-

tions. In Programming Language Design and Implementation (PLDI), 2014.

[102] Joshua San Miguel, Jorge Albericio, Natalie Enright Jerger, and Aamer Jaleel.

The bunker cache for spatio-value approximation. In International Symposium

on Microarchitecture (MICRO), 2016.

[103] John Sartori and Rakesh Kumar. Branch and data herding: Reducing control

and memory divergence for error-tolerant GPU applications. In Transactions

on Multimedia. 2013.

[104] Kaz Sato, Cliff Young, and David Patterson. An in-depth look at Google’s

first Tensor Processing Unit (TPU), 2017.

132

[105] Johannes Schemmel, Johannes Fieres, and Karlheinz Meier. Wafer-scale inte-

gration of analog neural networks. In International Joint Conference on Neural

Networks (IJCNN), 2008.

[106] Linda Shapiro and George C Stockman. Computer vision. 2001. ed: Prentice

Hall, 2001.

[107] Irina Shevtsova. An improvement of convergence rate estimates in the lyapunov

theorem. Doklady Mathematics, 82(3):862–864, 2010.

[108] Irina Shevtsova. On the absolute constants in the berry-esseen type inequalities

for identically distributed summands. arXiv preprint arXiv:1111.6554, 2011.

[109] Stelios Sidiroglou-Douskos, Sasa Misailovic, Henry Hoffmann, and Martin Ri-

nard. Managing performance vs. accuracy trade-offs with loop perforation. In

Foundations of Software Engineering (FSE), 2011.

[110] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks

for large-scale image recognition. 2014.

[111] Joseph Sloan, David Kesler, Rakesh Kumar, and Ali Rahimi. A numerical

optimization-based methodology for application robustification: Transforming

applications for error tolerance. In Dependable Systems and Networks (DSN),

2010.

[112] Jacob Sorber, Alexander Kostadinov, Matthew Garber, Matthew Brennan,

Mark D. Corner, and Emery D. Berger. Eon: A language and runtime system

133

for perpetual systems. In Conference on Embedded Networked Sensor Systems,

2007.

[113] Nitish Srivastava, Geoffrey E Hinton, Alex Krizhevsky, Ilya Sutskever, and

Ruslan Salakhutdinov. Dropout: a simple way to prevent neural networks

from overfitting. 2014.

[114] Ilya Sutskever, Oriol Vinyals, and Quoc VV Le. Sequence to sequence learning

with neural networks. In Advances in Neural Information Processing Systems,

pages 3104–3112, 2014.

[115] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed,

Dragomir Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew Ra-

binovich. Going deeper with convolutions. In Proceedings of the IEEE Con-

ference on Computer Vision and Pattern Recognition, pages 1–9, 2015.

[116] Yaniv Taigman, Ming Yang, Marc’Aurelio Ranzato, and Lars Wolf. Deepface:

Closing the gap to human-level performance in face verification. In Computer

Vision and Pattern Recognition (CVPR), pages 1701–1708, 2014.

[117] Olivier Temam. A defect-tolerant accelerator for emerging high-performance

applications. In International Symposium on Computer Architecture (ISCA),

2012.

[118] Nikolaos Thomos, Nikolaos V Boulgouris, and Michael G Strintzis. Optimized

transmission of jpeg2000 streams over wireless channels. Transactions on Im-

age Processing, 2006.

134

[119] I. S. Tyurin. On the accuracy of the gaussian approximation. Doklady Mathe-

matics, 80(3):840–843, 2009.

[120] Vincent Vanhoucke, Andrew Senior, and Mark Z Mao. Improving the speed of

neural networks on cpus. In Deep Learning and Unsupervised Feature Learning

Workshop, 2011.

[121] Thomas Y. Yeh, Petros Faloutsos, Milos Ercegovac, Sanjay J. Patel, and Glenn

Reinman. The art of deception: Adaptive precision reduction for area efficient

physics acceleration. In International Symposium on Microarchitecture (MI-

CRO), 2007.

[122] Jason Yosinski, Jeff Clune, Yoshua Bengio, and Hod Lipson. How transfer-

able are features in deep neural networks? In Neural Information Processing

Systems (NIPS), 2014.

[123] Jianming Zhang, Shuga Ma, Mehrnoosh Sameki, Stan Sclaroff, Margrit Betke,

Zhe Lin, Xiaohui Shen, Brian Price, and Radomı́r Mĕch. Salient object subitiz-

ing. In Computer Vision and Pattern Recognition (CVPR), 2015.

[124] Zeyuan Allen Zhu, Sasa Misailovic, Jonathan A. Kelner, and Martin Rinard.

Randomized accuracy-aware program transformations for efficient approximate

computations. In Principles of Programming Languages (POPL), 2012.

135

