
A Framework to improve Turbulence Models using
Full-field Inversion and Machine Learning

by

Anand Pratap Singh

A dissertation submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy
(Aerospace Engineering)

in The University of Michigan
2018

Doctoral Committee:

Associate Professor Karthik Duraisamy, Chair
Associate Professor Krzysztof J. Fidkowski
Professor Krishnakumar R. Garikipati
Professor Ken Powell



“The truth is,

most of us

discover where

we are heading
when we arrive.”

Bill Watterson
Calvin and Hobbes



Anand Pratap Singh

anandps@umich.edu

ORCID iD: 0000-0002-1954-6375

c© Anand Pratap Singh 2018

All Rights Reserved



To my mother for her courage and sacrifices

and to my late father for his dreams.

ii



ACKNOWLEDGEMENTS

I have to confess, joining the PhD program, I was not sure about what I was

going to do or what I was really interested in. The only thing I was sure of was that I

loved being a student. However, thanks to my advisor Prof. Karthik Duraisamy and

others, my graduate work has been extremely fruitful. In all honesty, the marathon

of a PhD is never entirely fun, there were both good days and bad days, but it all was

completely worth it. As John Donne said, no man is an island. This work could not

be possible without an amalgamation of support from a number of people. I know I

cannot possibly list everyone in this section.

I could not have asked for a better advisor than Prof. Duraisamy. He is tolerant

towards what I will call productive procrastination, where I could work on a projects

and ideas I loved but were not directly related to my PhD thesis. He was, in hindsight,

kind enough to push me at times, and brutally honest. He was extremely patient

and helpful with my writing. His mentoring style had me be more scientifically

independent. Above everything, I am grateful for his patience during the toughest

time of my personal life.

I would like to thank the committee members, Prof. Garikipati, Prof. Fidkowski,

and Prof. Powell for their guidance and helpful suggestions during the course of this

work and the preparation of this document.

I was fortunate to have a great cohort of colleagues and friends who made this

journey worthwhile. I would like to thank Shivaji Medida for his help getting started

iii



with the TURNS code when I was just starting my PhD and during my internship

at Altair towards the end, which really boosted my graduate work. I thank Helen

for her generous help with all the coursework during the first year - most of which I

was careless enough to miss, and also for her help throughout the projects. I dont

know if I should thank Eric, Nick and Ayoub for all our crazy shenanigans. In

all seriousness, they have been great friends. I especially thank Yaser, Eric, Nick,

and Walt for meticulously proofreading this document. All of the group members

have each contributed in their own way to this work and also towards my personal

development. Special mention and thanks to all of my FXB friends, Yuki, Chris,

Devina for all the happy, fun times and memories. Brad, Wai Lee, and Yuntao were

my first office-mates who really helped me settle were always approachable and warm.

They played an important role as I progressed through my graduate work.

I would have never been able to do this without the unwavering support of my

family. I thank my wife Arushi, who has been a pillar of support during the entire

duration. I thank my parents Kanti and Dr. Ramesh Kumar Deshwali - their inspi-

ration and sacrifices has brought me to where I am today. I am the luckiest person

to be able to look up to them. I thank my sister Dr. Akanksha Deshwali for always

believing in me.

This acknowledgement section took the longest to write, I really didn’t want to

write it at all. In a symbolic way this section probably marks the end of my student

life, however, I will always continue to learn.

Funding for this work was provided by the NASA Aeronautics Research Institute

under the Leading Edge Aeronautics Research for NASA program (technical monitors:

Koushik Datta and Gary Coleman) and DARPA under the EQUiPS project (technical

monitor: Dr. Fariba Fahroo). Computing resources were provided by the NSF via

iv



grant MRI: Acquisition of Conflux, A Novel Platform for Data-Driven Computational

Physics (technical monitor: Ed Walker).

v



TABLE OF CONTENTS

DEDICATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii

ACKNOWLEDGEMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . iii

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

LIST OF ABBREVIATIONS . . . . . . . . . . . . . . . . . . . . . . . . . xvi

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xvii

CHAPTER

I. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Fluid Flow and Turbulence . . . . . . . . . . . . . . . . . . . 3
1.2 Turbulence Modeling . . . . . . . . . . . . . . . . . . . . . . . 4

1.2.1 Direct Numerical Simulation . . . . . . . . . . . . . 5
1.2.2 Large Eddy Simulation . . . . . . . . . . . . . . . . 6
1.2.3 Reynolds-averaged Navier-Stokes . . . . . . . . . . . 7

1.3 Eddy Viscosity-based Models . . . . . . . . . . . . . . . . . . 9
1.3.1 Algebraic Models . . . . . . . . . . . . . . . . . . . 10
1.3.2 One Equation Models . . . . . . . . . . . . . . . . . 11
1.3.3 Two Equation Models . . . . . . . . . . . . . . . . . 12

1.4 Reynolds Stress Closures . . . . . . . . . . . . . . . . . . . . 13
1.5 Other Ideas . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.6 A Case for Data-Driven Turbulence Modeling . . . . . . . . . 14
1.7 Previous Work on Data-Driven Model Improvements . . . . . 16
1.8 Contributions of the Present Work . . . . . . . . . . . . . . . 19
1.9 Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

II. Field Inversion and Machine Learning Framework . . . . . . . 23

2.1 Nature of Modeling Discrepancy . . . . . . . . . . . . . . . . 25

vi



2.1.1 Mathematical representation . . . . . . . . . . . . . 26
2.2 Full Field Inverse Problem . . . . . . . . . . . . . . . . . . . 27

2.2.1 Types of Inverse Problems . . . . . . . . . . . . . . 29
2.2.2 Optimization Problem and Discrete Adjoints . . . . 33

2.3 Machine Learning . . . . . . . . . . . . . . . . . . . . . . . . 37
2.3.1 Problem Setup . . . . . . . . . . . . . . . . . . . . . 39
2.3.2 Feature Selection . . . . . . . . . . . . . . . . . . . 39
2.3.3 Feature Normalization . . . . . . . . . . . . . . . . 40
2.3.4 Cross-Validation . . . . . . . . . . . . . . . . . . . . 41
2.3.5 Measure of Training Quality . . . . . . . . . . . . . 41
2.3.6 Regression Algorithms . . . . . . . . . . . . . . . . 42

2.4 Embedding and Prediction . . . . . . . . . . . . . . . . . . . 46
2.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

III. Numerics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.1 Compressible RANS Equations . . . . . . . . . . . . . . . . . 48
3.2 Spatial Discretization . . . . . . . . . . . . . . . . . . . . . . 52

3.2.1 Calculation of the Inviscid Fluxes . . . . . . . . . . 53
3.2.2 Calculation of the Viscous Fluxes . . . . . . . . . . 56

3.3 Temporal Discretization . . . . . . . . . . . . . . . . . . . . . 57
3.4 Turbulence Models . . . . . . . . . . . . . . . . . . . . . . . . 58
3.5 Discrete Adjoint . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.5.1 Finite Difference . . . . . . . . . . . . . . . . . . . . 59
3.5.2 Complex-Step Differentiation . . . . . . . . . . . . . 60
3.5.3 Automatic Differentiation . . . . . . . . . . . . . . . 61

3.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

IV. Proof-of-concept of Data-driven Turbulence Modeling . . . . 63

4.1 Curvature Correction and Turbulence Models . . . . . . . . . 64
4.1.1 Baseline SA Model . . . . . . . . . . . . . . . . . . 65
4.1.2 SA–RC Augmentation to the SA Model . . . . . . . 65

4.2 Forward Problem . . . . . . . . . . . . . . . . . . . . . . . . . 66
4.3 Application of the FIML Framework . . . . . . . . . . . . . . 67

4.3.1 Field Inversion . . . . . . . . . . . . . . . . . . . . . 73
4.3.2 Machine Learning Training . . . . . . . . . . . . . . 77
4.3.3 Machine Learning Prediction . . . . . . . . . . . . . 80
4.3.4 Learning the Analytic Correction Without Inversion 85

4.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

V. Application to Adverse Pressure Gradient Flows . . . . . . . 87

5.1 Forward Problem . . . . . . . . . . . . . . . . . . . . . . . . . 88
5.2 Application of the FIML Framework . . . . . . . . . . . . . . 91

vii



5.2.1 Field Inversion . . . . . . . . . . . . . . . . . . . . . 92
5.2.2 Machine Learning Training . . . . . . . . . . . . . . 97
5.2.3 Machine Learning Prediction . . . . . . . . . . . . . 98

5.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

VI. Application to Separated Flows over Airfoils . . . . . . . . . . 104

6.1 Forward Problem . . . . . . . . . . . . . . . . . . . . . . . . . 105
6.2 Application of the FIML framework . . . . . . . . . . . . . . 109

6.2.1 Field Inversion . . . . . . . . . . . . . . . . . . . . . 109
6.2.2 Machine Learning Training . . . . . . . . . . . . . . 115
6.2.3 Machine Learning Prediction . . . . . . . . . . . . . 117
6.2.4 Portability of the Trained Model . . . . . . . . . . . 119
6.2.5 Variation Between Models: A Measure of Uncertainty 124

6.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

VII. Conclusions and Future Work . . . . . . . . . . . . . . . . . . . 127

7.1 Summary and Conclusions . . . . . . . . . . . . . . . . . . . 127
7.2 Suggestions for Future Work . . . . . . . . . . . . . . . . . . 131

APPENDIX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

A. Turbulence Models . . . . . . . . . . . . . . . . . . . . . . . . . . 135

A.1 Spalart–Allmaras (SA) Model . . . . . . . . . . . . . . . . . . 135
A.2 Wilcox’s k − ω Model . . . . . . . . . . . . . . . . . . . . . . 136

BIBLIOGRAPHY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

viii



LIST OF TABLES

Table

4.1 List of ML models along with the data and flow-features used for
training. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

6.1 List of airfoil shapes and flow-conditions for which inverse problems
are solved. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

6.2 List of ML models and the inverse solutions used for training. The
main predictive model is labeled P. . . . . . . . . . . . . . . . . . . 117

6.3 Results of 5-fold cross-validation. The error metric is the coefficient
of determination - R2. . . . . . . . . . . . . . . . . . . . . . . . . . 117

ix



LIST OF FIGURES

Figure

1.1 A notional time-line of development in turbulence simulations. . . . 4
2.1 Schematic of the field-inversion and machine-learning (FIML) show-

ing the offline components which includes inference and training of
the machine learning model and the online prediction. . . . . . . . . 24

2.2 Flowchart depicting the connection between the forward and the in-
verse problem. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.3 Bayesian inference involves calculation of posterior probability distri-
bution using prior distribution and the likelihood. . . . . . . . . . . 29

2.4 L-curves are used to fix the value of λ, but it requires solution to
many inverse problems for different values of λ’s. . . . . . . . . . . . 33

2.5 Solving an inverse problem is equivalent to solving an optimization
problem with an appropriate objective function, J , and the discrep-
ancy δ being the design variable. . . . . . . . . . . . . . . . . . . . 34

2.6 Machine learning problem can be classified as either supervised learn-
ing, unsupervised learning, or reinforcement learning. . . . . . . . . 38

2.7 Schematic describing the process of cross-validation (CV). The ex-
ample uses a 3-fold CV. The figure is adapted from https://tex.

stackexchange.com/a/154121. . . . . . . . . . . . . . . . . . . . . 39
2.8 Network diagram for a feed-forward NN with three inputs, two hidden

layers, and one output. . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.1 Characteristics of the actual Euler equations and the HLLC approx-

imation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
3.2 Error in the derivative calculation for a test function function f(x) =

x4 at x = 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
4.1 Flow setup and geometry for the concave curvature case. The inlet

boundary layer is generated using a zero pressure gradient flat plate
simulation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.2 Comparison of the skin friction and the surface pressure coefficients at
the lower wall using the LES, SA model, and SA–RC model. The skin
friction predictions are much improved using SA–RC. S represents
the streamwise distance. . . . . . . . . . . . . . . . . . . . . . . . . 67

x

https://tex.stackexchange.com/a/154121
https://tex.stackexchange.com/a/154121


4.3 Convergence of the steepest descent algorithm for the three inverse
problems. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.4 Inferred non-dimensional discrepancy field (β(x)) using three differ-
ent objective functions and the equivalent term fr1 in the SA–RC
model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.5 Inferred dimensional discrepancy field (δ(x)) using three different ob-
jective functions and the equivalent term in the SA–RC model. . . . 69

4.6 Comparison of the skin friction and surface pressure coefficients at
the lower wall using the SA–RC, baseline SA model, and inverse
SA model using three different objective functions. S represents the
streamwise distance. . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.7 Tangential velocity profile at different streamwise locations. θ = 0◦

marks the onset of the curvature and θ = 90◦ marks its end. . . . . 70
4.8 SA eddy-viscosity profile at different streamwise locations. θ = 0◦

marks the onset of the curvature and θ = 90◦ marks its end. . . . . 71
4.9 Reynolds shear-stress −u′ru′θ profile at different streamwise locations.

θ = 0◦ marks the onset of the curvature and θ = 90◦ marks its end. 72
4.10 Scatter plot of the two features used in SA–RC model. The features

are evaluated at the inverse solution and are colored by: (a) Produc-
tion, (b) analytic fr1, and (c) inferred β. The region of interest is
enclosed in the green rectangle. Outside this region the production
term is zero. Therefore, differences between fr1 and β outside this
region will have minimal impact on the flow solution. . . . . . . . . 76

4.11 Test results for Model 2 using 4-fold cross-validation and the Ad-
aBoost algorithm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.12 Comparison of the skin friction and the surface pressure coefficients
at the lower wall using the SA–RC, the baseline SA model, and the
ML augmented SA model 2. S represents the streamwise distance. . 79

4.13 Reynolds shear-stress profile at different streamwise locations. θ = 0◦

marks the onset of the curvature and θ = 90◦ marks the end of the
curvature. Legends: — SA–RC, — Base SA, — Inverse SA - Cf and
— ML SA model 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.14 Inferred discrepancy field β(x) using Cf and the ML SA model 2
predicted β(η) at the converged solution. . . . . . . . . . . . . . . . 80

4.15 Test results for Model 22 using 4-fold CV and the AdaBoost algorithm. 80
4.16 Comparison of the skin friction and the surface pressure coefficients

at the lower wall using the SA–RC, baseline SA model, and ML
augmented SA model 22. S represents the streamwise distance. . . . 81

4.17 Reynolds shear-stress profile at different streamwise locations. θ = 0◦

marks the onset of the curvature and θ = 90◦ marks the end of the
curvature. Legends: — SA–RC, — Base SA, — Inverse SA - U and
— ML SA model 22. . . . . . . . . . . . . . . . . . . . . . . . . . . 81

4.18 Inferred discrepancy field β(x) using U and the ML SA model 22
predicted β(η) at the converged solution. . . . . . . . . . . . . . . . 82

xi



4.19 Comparison of the skin friction and the surface pressure coefficients at
the lower wall using the SA–RC, baseline SA model, and ensembles
of various ML augmented SA model. S represents the streamwise
distance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

4.20 Reynolds shear-stress profile at different streamwise locations. θ = 0◦

marks the onset of the curvature and θ = 90◦ marks the end of the
curvature. Legends: — SA–RC, — Base SA, and — ML SA model 4. 83

4.21 Comparison of the analytic correction fr1 with the ML reconstruction
of fr1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

4.22 Absolute difference between the analytic correction fr1 and the ML
reconstruction of fr1. . . . . . . . . . . . . . . . . . . . . . . . . . . 84

5.1 Labels for the various flow cases based on variation in the bump
height and inlet momentum thickness. Inverse solutions for the cases
marked in the red box are used to train model P. . . . . . . . . . . 88

5.2 Comparison of the skin friction and pressure for bumps with different
bump heights from LES. . . . . . . . . . . . . . . . . . . . . . . . . 89

5.3 Comparison of the skin friction and pressure for 3 different inlet mo-
mentum thicknesses from LES. . . . . . . . . . . . . . . . . . . . . . 89

5.4 Comparison of X-velocity at different streamwise locations. . . . . . 90
5.5 Comparison of turbulent shear-stress at different streamwise locations. 90
5.6 Contour plots of mean X-velocity and TKE for H20-1. . . . . . . . . 91
5.7 Contour plots of mean X-velocity and TKE for H42-1. . . . . . . . . 91
5.8 The misfit (J1) and the regularization (J2) terms are used to fix the

regularization constant. For this representative case λelbow ≈ 10−6. . 93
5.9 Skin friction for all the 11 cases. Shaded red region contains inverse

solutions for various 10−10 < λ < 10−6. Legend: — LES, — base
k − ω and — inverse k − ω using Cf . . . . . . . . . . . . . . . . . . 94

5.10 Inferred spatial discrepancy field β(x) using skin friction data. The
thick black line marks the boundary layer edge. . . . . . . . . . . . 95

5.11 Comparison of skin friction obtained after inference using data for
the skin friction and the full-field velocity. . . . . . . . . . . . . . . 95

5.12 Flow solution at X/C = −0.16 obtained after inference using data
for the skin friction and the full field velocity. . . . . . . . . . . . . 96

5.13 Flow solution at X/C = 0 obtained after inference using data for the
skin friction and the full field velocity. . . . . . . . . . . . . . . . . . 96

5.14 Flow solution at X/C = 0.33 obtained after inference using data for
the skin friction and the full field velocity. . . . . . . . . . . . . . . 97

5.15 Flow solution at X/C = 0.66 obtained after inference using data for
the skin friction and the full field velocity. . . . . . . . . . . . . . . 97

5.16 Flow solution at X/C = 0.98 obtained after inference using data for
the skin friction and the full field velocity. . . . . . . . . . . . . . . 97

5.17 Flow solution at X/C = 1.31 obtained after inference using data for
the skin friction and the full field velocity. . . . . . . . . . . . . . . 98

5.18 Test results for model P using 2-fold CV and the AdaBoost algorithm. 99

xii



5.19 Skin friction predictions using the baseline k− ω (solid line) and the
AdaBoost-augmented model P (dashed line). . . . . . . . . . . . . . 99

5.20 Skin friction prediction for all the 11 cases. Thin magenta lines repre-
sent predictions using an ensemble of machine-learned models trained
on different combinations of the inverse solutions. Legend: — LES,
— base k − ω and — AdaBoost augmented k − ω using model P. . 100

5.21 Flow solution at X/C = −0.16 using AdaBoost augmented model
P. Thin magenta lines represent predictions using an ensemble of
machine-learned models trained on different combinations of the in-
verse solutions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

5.22 Flow solution at X/C = 0 using AdaBoost augmented model P. Thin
magenta lines represent predictions using an ensemble of machine-
learned models trained on different combinations of the inverse solu-
tions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

5.23 Flow solution at X/C = 0.33 using AdaBoost augmented model
P. Thin magenta lines represent predictions using an ensemble of
machine-learned models trained on different combinations of the in-
verse solutions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

5.24 Flow solution at X/C = 0.66 using AdaBoost augmented model
P. Thin magenta lines represent predictions using an ensemble of
machine-learned models trained on different combinations of the in-
verse solutions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

5.25 Flow solution at X/C = 0.98 using AdaBoost augmented model
P. Thin magenta lines represent predictions using an ensemble of
machine-learned models trained on different combinations of the in-
verse solutions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

5.26 Flow solution at X/C = 1.31 using AdaBoost augmented model
P. Thin magenta lines represent predictions using an ensemble of
machine-learned models trained on different combinations of the in-
verse solutions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

5.27 Pairwise scatter plots of the flow features used for training. Features
for all the cases are shown in red and the features used to train model
P are shown in green. . . . . . . . . . . . . . . . . . . . . . . . . . . 102

6.1 Lift vs. angle of attack plot for the S809 airfoil at a Reynolds number
of 2 Million. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

6.2 Three different airfoil shapes are used for training and testing the
ML-based augmentation. . . . . . . . . . . . . . . . . . . . . . . . . 106

6.3 Samples of figures used to extract data for this work. These figures
are reproduced from [96]. . . . . . . . . . . . . . . . . . . . . . . . . 106

6.4 A body fitted C-mesh is used with 291 points in the wrap around
direction and 111 points in the perpendicular direction. . . . . . . . 107

6.5 Surface pressure using the baseline SA model (green) and experiment
(blue) for the S809 airfoil at Re = 2 Million. . . . . . . . . . . . . . 108

6.6 Velocity fields using the baseline SA model for the S809 airfoil at
Re = 2 Million. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

xiii



6.7 Surface pressure for the S809 airfoil at Re = 2 Million and α = 14◦. 110
6.8 Inferred discrepancy using different data types for the S809 airfoil

at α = 19◦ and Re = 2 Million. The discrepancy deviates from the
baseline value of unity only inside the region marked with the black
curve. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

6.9 Inferred discrepancy fields for the S809 airfoil at Re = 2 Million. The
discrepancy deviates from the baseline value of unity only inside the
region marked with the black curve. . . . . . . . . . . . . . . . . . . 112

6.10 Surface pressure obtained using inferred discrepancy fields for the
S809 airfoil at Re = 2 Million. . . . . . . . . . . . . . . . . . . . . . 113

6.11 Streamline and contour plots of the X-velocity for the S809 airfoil at
Re = 2 Million and α = 14◦. . . . . . . . . . . . . . . . . . . . . . . 114

6.12 Eddy-viscosity for the S809 airfoil at Re = 2 Million and α = 14◦. . 115
6.13 Lift and drag coefficients obtained using inferred discrepancy fields

for the S809 airfoil at Re = 2 Million. . . . . . . . . . . . . . . . . . 116
6.14 Neural network training for model P. x and y axes correspond to the

true and predicted values, respectively. . . . . . . . . . . . . . . . . 118
6.15 Comparison of inverse and NN-augmented predictions (using model

P) for S809 airfoil at α = 14◦ and Re = 2× 106. . . . . . . . . . . 118
6.16 Streamlines and X-velocity contours for the S809 airfoil at Re =

2× 106 and α = 14◦. . . . . . . . . . . . . . . . . . . . . . . . . . . 119
6.17 NN-augmented SA prediction for the S814 airfoil using model P.

Legend: — Experiment, — base SA and — neural network SA model
P. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

6.18 NN-augmented SA prediction for the S805 airfoil using model P.
Legend: — Experiment, — base SA and — neural network SA model
P. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

6.19 NN-augmented SA prediction for the S809 airfoil using model P.
Legend: — Experiment, — base SA and — neural network SA model
P. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

6.20 Surface pressure for the S809 airfoil at Re = 2 × 106 and α =
{16◦, 18◦, 20◦}. Refer Fig. 6.15(c) for legend. Not to scale. . . . . . 121

6.21 Surface pressure for the S805 airfoil at Re = 1 × 106 and α =
{12◦, 14◦}. Refer Fig. 6.15(c) for legend. Experimental pressure
is shown only for the upper surface. Not to scale. . . . . . . . . . . 122

6.22 Surface pressure for the S814 airfoil at Re = 1.5 × 106 and α =
{16◦, 18◦, 20◦}. Refer Fig. 6.15(c) for legend. Experimental pressure
is shown only for the upper surface. Inversion is not performed for
this case. Not to scale. . . . . . . . . . . . . . . . . . . . . . . . . . 122

6.23 Pressure and skin friction (using model P) for the S809 airfoil at
Re = 2 × 106 and α = 14◦ using grids of different spatial resolu-
tions. Solutions of both the base SA model and the neural network
augmented SA are grid converged. . . . . . . . . . . . . . . . . . . . 123

6.24 Predicted surface pressure for the S809 airfoil at Re = 2× 106 using
8 different NN-based models listed in table 6.2. . . . . . . . . . . . . 123

xiv



6.25 NN-augmented SA prediction using AcuSolve for the S809 airfoil us-
ing model P. Legend: — Experiment, — base SA and — neural
network SA model P. . . . . . . . . . . . . . . . . . . . . . . . . . . 124

6.26 AcuSolve’s convergence history for S809 airfoil at Re = 2 × 106,
α = 12◦ (dashed) and α = 14◦ (solid). . . . . . . . . . . . . . . . . . 125

xv



LIST OF ABBREVIATIONS

APG adverse pressure gradient

CV cross-validation

DES detached-eddy simulation

DNS direct numerical simulation

FANN fast artificial neural network

FIML field-inversion and machine-learning

LES large-eddy simulation

MAP maximum a-posteriori

MCMC Markov-chain Monte Carlo

ML machine-learning

NN neural-network

NS Navier-Stokes

RANS Reynolds-averaged Navier-Stokes

SA Spalart-Allmaras

TKE turbulence kinetic energy

UQ uncertainty quantification

xvi



ABSTRACT

Accurate prediction of turbulent flows remains a barrier to the widespread use of

computational fluid dynamics in analysis and design. Since practical wall-bounded

turbulent flows involve a very wide range of length and time scales, it is intractable

to resolve all relevant scales, due to limitations in computational power. The usual

tools for predictions, in order of their accuracy, includes direct numerical simulation

(DNS), large-eddy simulation (LES), and Reynolds-averaged Navier-Stokes (RANS)

based models.

DNS and LES will continue to be prohibitively expensive for analysis of high

Reynolds number wall-bounded flows for at least two more decades and for much

longer for design applications. At the same time, the high-quality data generated by

such simulations provides detailed information about turbulence physics in affordable

problems. Experimental measurements have the potential to offer limited data in

more practical regimes. However, data from simulations and experiments are mostly

used for validation, but not directly in model improvement.

This thesis presents a generalized framework of data-augmented modeling, which

we refer to as field-inversion and machine-learning (FIML). FIML is utilized to develop

augmentations to RANS-based models using data from DNS, LES or experiments.

This framework involves the solution of multiple inverse problems to infer spatial dis-

crepancies in a baseline turbulence model by minimizing the misfit between data and

predictions. Solving the inverse problem to infer the spatial discrepancy field allows

xvii



the use of a wide variety and fidelity of data. Inferring the field discrepancy using this

approach connects the data and the turbulence model in a manner consistent with

the underlying assumptions in the baseline model. Several such discrepancy fields are

used as inputs to a machine learning procedure, which in turn reconstructs corrective

functional forms in terms of local flow quantities. The machine-learned discrepancy is

then embedded within existing turbulence closures, resulting in a partial differential

equation/machine learning hybrid, and utilized for prediction.

The field-inversion and machine-learning (FIML) framework is applied to augment

the Spalart-Allmaras (SA) and the Wilcox’s k − ω model and for flows involving

curvature, adverse pressure gradients, and separation. The value of the framework is

demonstrated by augmenting the SA model for massively separated flows over airfoil

using lift data for just one airfoil. The augmented SA model is able to accurately

predict the surface pressure, the point of separation and the maximum lift – even for

Reynolds numbers and airfoil shapes not used for training the model. The portability

of the augmented model is demonstrated by utilizing in-house finite-volume flow solver

with FIML to develop augmentations and embedding them in a commercial finite-

element solver. The implication is that the machine-learning (ML)-augmented model

can thus be used in a fashion that is similar to present-day turbulence model.

While the results presented in this thesis are limited to turbulence modeling, the

FIML framework represents a general physics-constrained data-driven paradigm that

can be applied to augment models governed by partial differential equations.
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CHAPTER I

Introduction

Driven by an exponential growth in computational power, reliance on simulations

has grown in every scientific field and the trend is expected to continue. Computa-

tional models are increasingly being used to drive design and development of engi-

neering products. The rise in high fidelity simulations has led to better understanding

of physical processes, which is being used to fill gaps in existing knowledge and to

improve lower order theories/models.

Simulations of physical systems involve the solution of mathematical equations in

their discretized forms. The accuracy of the solution depends on the correctness of

the underlying mathematical model and the accuracy of the discretization approach.

In other words, to obtain accurate results, the right set of equations should be solved

using the right techniques.

Physical modeling involves the development of a mathematical relationship to

describe a system. Such relationships may be derived based on first principles. For

example, the governing equations of fluid dynamics, the Navier-Stokes (NS) equations,

are the embodiments of the conservation of mass, momentum, and energy. In some

cases, the models are purely empirical and are estimated by fitting the model to

the data. Most practical models lie between the two extremes, with a blend of first

principles and a few empirical relationships. All the examples discussed in the present
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work belong to this last category.

The quality of the solution of a discretized model often requires a trade-off between

computational power and accuracy – particularly in the simulation of turbulent flows,

where the difference between the smallest and the largest flow structures can be

many orders of magnitude. Currently available computational power is not sufficient

to resolve all the scales in such flows, and a fully-resolved simulation will not be

attainable for the next few decades. Even when viable, it will require months of

runtime on the world’s most powerful computers, which will restrict its utility in an

iterative design process.

Accurate prediction of turbulence is important as an increase in turbulence leads

to enhanced mixing, heat transfer, and momentum transfer. These are quantities of

interest in many situations and can affect critical design decisions. The inability of

accurately simulating turbulent fluid flow in an affordable manner has led to lower-

fidelity models, where the unresolved physics (small-scale) is modeled in terms of

the resolved quantities (large scale). Examples of such models include large-eddy

simulation (LES) and Reynolds-averaged Navier-Stokes (RANS) based models.

This chapter highlights properties of turbulent flows which lead to modeling diffi-

culties. Various levels and methods of turbulence modeling are discussed along with

some of their strengths and weaknesses. A case is made for data-driven augmentation

of turbulence models. We discuss previous and ongoing efforts of using data-driven

techniques to improve the prediction of turbulence. Against this backdrop, the mo-

tivation and the contribution of this work are presented. This discussion is tailored

to provide context to the current work and is by no means exhaustive. Readers are

referred to [74] for a more detailed discussion of turbulence modeling.
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1.1 Fluid Flow and Turbulence

Turbulent flows are characterized by seemingly random structures or eddies. A

non-dimensionless quantity, Reynolds number Re, describes the capability of the flow

to transition from a laminar to a turbulent state. The Reynolds number, Re, is

defined as the ratio of the momentum of the flow to the viscous force and is given by

Re =
UL

ν
, (1.1)

where U and L are characteristic velocity and length scales and ν is the kinematic

viscosity of the fluid.

In a high Reynolds number flow, the size of the smallest and the largest eddies

can differ by many orders of magnitude. Most flows of practical interest in the

aerospace community are high Reynolds number flows, which are inherently turbulent

or transition to turbulence from a laminar state. The typical Reynolds number of the

flow over the wing of a commercial jet, based on the wing chord, is O(108).

The smallest scales in a turbulent flow were first estimated by A.N. Kolmogorov

in 1941[50]. According to the Kolmogorov hypothesis, at sufficiently high Reynolds

numbers, small-scale turbulent motions are statistically isotropic and the statistics of

the small-scale motion is uniquely determined by the laminar kinematic viscosity ν

and specific dissipation ε. The associated scales, also know as Kolmogorov microscales

can then be defined by dimensional analysis

η ≡
(
ν3

ε

)1/4

, uη ≡ (εν)1/4 , τη ≡
(ν
ε

)1/2

, (1.2)

where, η, uη and τη are the length, velocity and time scale, respectively. Further, the

small scales dissipate the energy, and therefore the relationship between the larger

scales and smaller scales can be estimated as ε = U3/L, where U and L are the large
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Figure 1.1: A notional time-line of development in turbulence simulations.

scale velocity and length scales. This results in the following relationships,

η/L ∼ Re−3/4, uη/U ∼ Re−1/4, τη/T ∼ Re−1/2. (1.3)

The smallest length and time scales therefore depend on the Reynolds number of the

flow. These range of scales makes it hard to solve the NS equations numerically with

sufficient resolution for high Reynolds number flows.

1.2 Turbulence Modeling

The Navier-Stokes (NS) equations are non-linear partial differential equations and

the non-linearity leads to a complex interaction between different scales of the flow.

We solve the NS equations computationally, by discretizing them in some form. For

this work, we focus on a mesh-based discretization.

The mesh resolution–the distance between two neighboring mesh points–governs

the quality of the solution along with the numerical scheme. If all the scales in

a flow are resolved, both in space and time, the solution is fully resolved and can

be considered on par with the analytical solution1. However, most high Reynolds

number simulations are not fully resolved because of excessive requirements of the

1Numerical errors associated with finite precision of the computers are always present.
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computational resources. Such under-resolved simulations requires modeling of the

unresolved scales, as they interact and affect the resolved scales via transfer of en-

ergy and momentum. An under-resolved simulation without such modeling would be

inaccurate.

Models of turbulence range from fully-resolved to resolving only the ensemble

average of the inherently unsteady turbulent flow. All the models of turbulent flows

are however based on the NS equations. Various levels of models are discussed in the

following sections.

1.2.1 Direct Numerical Simulation

In a direct numerical simulation (DNS), the NS equations are solved numerically,

on a computational mesh, which is fine enough to resolve all the turbulent scales.

Using the Einstein notation, the unsteady incompressible NS equations are given by,

∂ui
∂xi

= 0 (1.4)

∂ui
∂t

+
∂uiuj
∂xj

= −1

ρ

∂p

∂xi
+ ν

∂2ui
∂xj∂xj

i = 1, 2, 3 (1.5)

where, u is the velocity vector, p and ρ are the pressure, and density, respectively.

In three dimensions, in order to resolve the smallest length scale, η, the number

of grid points grows as (Re3/4)3 ≡ Re9/4 (using equations 1.3). The number of time

steps to resolve the time scale, τη, grows as Re1/2. Therefore the effective work units

increase as ≈ Re3. A doubling in Reynolds number requires eight times increase in

the work units which translates to a proportional increase in computational time and

resources. This simple estimation does not include the complexity of the algorithm

used to numerically solve the NS equations, which adds to the overall complexity.

The cost associated with a DNS renders it impractical for high Reynolds num-

ber flows, such as those encountered in the Aerospace industry. DNS solutions can
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however, provide a very detailed description of the flow and are used to understand

turbulence phenomena for simple canonical flows at low Reynolds numbers. Hence,

DNS for simpler flows in channels, or pipes have been performed, and the knowledge

has been extrapolated to improve lower order models[66, 53, 52, 30].

Fig. 1.2 shows an estimate of various milestones in the field of turbulence compu-

tations along with the increase in the processing power of the computers, calculated as

floating-point operations per second (FLOPS). Also, marked is the processing power

required for a full airplane simulation. It is expected that the milestone will not be

reached for at least next few decades. Therefore, models which do not resolve all the

scales will maintain their importance in engineering predictions.

Even if fully-resolved simulations are achievable, a design process which requires

multiple solutions for perturbed geometry or flow conditions will maintain the need

for less expensive models. In such situations, data from fully-resolved simulations

could be used to augment the lower order models, and both levels of models can

co-exist in symbiosis.

1.2.2 Large Eddy Simulation

In a large-eddy simulation (LES), the larger turbulent scales are resolved while

the effects of the small scales are modeled. A filtering operation is defined and applied

to the NS equations, which results in the following filtered continuity and momentum

equations

∂ūi
∂xi

= 0, (1.6)

∂ūi
∂t

+ ūj
∂ūi
∂xj

= −1

ρ

∂p̄

∂xi
+ ν

∂2ūi
∂xj∂xj

− ∂τij
∂xj

, (1.7)

where φ̄ represents the filtered (or resolved) φ, and τij = uiuj − ūiūj. The filtering is

typically implicitly performed by the mesh, as the resolution of the mesh governs the

lowest length scale that can be resolved.
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The filtered momentum equation contains a tensorial term τij, referred to as the

Smagorinsky (SGS) stress tensor, which is a function of the unresolved scales uiuj.

This leads to a closure problem. The tensor τij is therefore modeled to close the equa-

tions. A simple model, referred to as the Smagorinsky, calculates effective viscosity

νt such that,

τij = −2νtS̄ij, (1.8)

where S̄ij = 1
2

(
∂ūi
∂xj

+
∂ūj
∂xi

)
. The eddy-viscosity is assumed to be the function of mesh

resolution and is given by the following relation,

νt = (Cs∆g)
2
√

2S̄ijS̄ij, (1.9)

where Cs is a model constant and ∆g is a measure of mesh spacing. The model is a

function of the mesh spacing as the filtering operation depends on the mesh resolution.

The filtered equations, along with the closure model are then solved numerically.

In the near-wall region, the number of required mesh points increases as≈ Re1.8[16],

which renders LES for high Reynolds number flows involving walls computationally

intractable. Wall models have been proposed to model the near wall region to relax

the resolution requirements. A robust and accurate modeling of wall effects remains

a research problem. Performing a well-resolved and accurate LES requires signifi-

cant computational resources and expertise, which has prevented it from becoming

an industry workhorse.

1.2.3 Reynolds-averaged Navier-Stokes

RANS-based models are the most popular and widely used turbulence models.

RANS-based models are relatively inexpensive, numerically robust, and require a low

level of user expertise when compared to LES. Over a half-century of research and
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development has led to sufficiently accurate models in many flow problems.

In a RANS setting, the flow variables are decomposed as the sum of two compo-

nents: ensemble average, and fluctuation. The former part is resolved both in space

and time and the effects of the later part is modeled. The decomposition has the

following property,

φ = φ̄+ φ
′

(1.10)

φ̄′ = 0 (1.11)

where, φ̄ is the ensemble average of φ and φ
′

is the fluctuation. The ensemble av-

eraging operation, when applied to the NS equations, results in the following RANS

equations

∂ūi
∂xi

= 0, (1.12)

∂ūi
∂t

+ ūj
∂ūi
∂xj

= −1

ρ

∂p̄

∂xi
+ ν

∂2ūi
∂xj∂xj

−
∂u′iu

′
j

∂xj
. (1.13)

Similar to LES, the averaging leads to a closure problem because of the term u′iu
′
j.

This term requires knowledge of the fluctuations in velocity–which are not resolved–

and therefore needs to be modeled in terms of the averaged quantities.

The unclosed term u′iu
′
j referred to as the Reynolds stress tensor, has some charac-

teristics analogous to the viscous stress. The addition of this term leads to an effective

increase in the diffusivity in the flow. Consequently, the term has been modeled based

on analogies to kinetic theory, which leads to a model similar to molecular diffusion.

It is also possible to derive transport equations for the Reynolds stresses starting with

the NS equations. However, such equations are also unclosed as they require further

higher order correlations (sec 1.4).

The various models for the Reynolds stresses are discussed in the following sec-

tions.
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1.3 Eddy Viscosity-based Models

The simplest models for the Reynolds stresses are derived based on analogies

between the Reynolds stress and the viscous stress. An effective additional viscosity,

eddy-viscosity or turbulent viscosity, is defined. The Reynolds stresses are then given

by a relation identical to the viscous diffusivity,

− u′iu′j = 2νtSij, (1.14)

where Sij is the mean strain rate tensor and νt is the eddy-viscosity. Consequently,

the problem is transformed into that of estimating the eddy-viscosity instead of six

Reynolds stress components.

While the analogy between the molecular viscosity and the eddy-viscosity reduces

the complexity in modeling, it is built on assumptions which are not strictly valid in

a turbulent flow. The molecular timescale is much smaller than the flow timescale,

while the turbulence timescale and the flow timescale can be comparable. Therefore,

the implicit assumption of stress being proportional to strain or equilibrium is almost

never valid.

The eddy-viscosity assumption also assumes that the turbulent Reynolds stresses

are isotropic, which is rarely valid (for instance, in the near-wall region). In wall-

bounded flows, the blocking effects of the wall inhibits the wall-normal component of

the Reynolds stresses more than the other components.

Despite overarching simplifications and its shortcomings, eddy-viscosity based

models provide sufficiently accurate results for simple attached flows. Because of

their simplicity, eddy-viscosity-based models form the workhorse of the industrial

design and analysis.

In the subsequent sections, we discuss different types of eddy-viscosity models.

The models range from simple algebraic relationships to those containing multiple
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transport equations with highly non-linear source terms. Full Reynolds stress closures

and other ideas in the field of turbulence modeling are also discussed briefly. In this

thesis, unless specified, the term “turbulence model” refers to an eddy-viscosity based

model.

1.3.1 Algebraic Models

The simplest of turbulence models relates the eddy-viscosity to the flow properties

by means of dimensional analysis. The eddy-viscosity νt has dimensions of velocity

times length. Prandtl[77] assumed the velocity scale to be lm

∣∣∣∂ū∂y ∣∣∣, where, lm is the

turbulence length scale. Following this assumption, the eddy-viscosity can be written

as

νt =

∣∣∣∣∂ū∂y
∣∣∣∣ l2m. (1.15)

The constant of proportionality is absorbed in the length scale. The mixing length

lm depends on the flow setup.

The Prandtl length scale model is incomplete as it requires the determination of

the mixing length lm, which can be tractable for parallel shear flows but difficult for

more complex flows. Other notable algebraic models include the Cebeci-Smith [94]

and the Baldwin-Lomax[5] model. Both these models have different eddy-viscosity

expressions for the inner and outer layer of a boundary layer flow along with a damping

function to ensure the Reynolds stresses asymptotically vanish at the wall with the

correct slope.

Algebraic models lack information about the history of the flow which is known to

be important. The problem can be addressed by adding history effects using transport

equations as presented in the next section.
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1.3.2 One Equation Models

The calculation of eddy-viscosity (Eq. 1.15) requires two scales: velocity and

length. Prandtl [78] proposed the use of the turbulent kinetic energy as a measure

of the velocity scale, hence replacing the relation used in the algebraic models. The

governing equation of the turbulent kinetic energy can be derived by taking the trace

of the Reynolds stress equations and is given by

∂k

∂t
+ uj

∂k

∂xj
= ∇ ·

[(
ν +

νt
σk

)
∇k
]

+ P − ε (1.16)

where P = τt,ij
∂ui
∂xj

is the production term and ε = ν
∂u′i
∂xk

∂u′i
∂xk

is the dissipation term.

σk is a constant which takes into account the pressure diffusion and the turbulence

transport terms present in the equation of the kinetic energy. This equation is still

unclosed as it requires the specification of ε and the Reynolds stresses τt,ij. The eddy-

viscosity assumption is used to define the Reynolds stress and Prandtl[78] derived an

estimate ε = CDk
3/2/lm based on assumption of thin shear layer flow, where, CD is a

model parameter. The eddy-viscosity is then given by

νt = ck1/2lm. (1.17)

This model is also incomplete as it requires the specification of the length scale lm

similar to the algebraic models. Several variations to the original model have been

proposed including [33, 38, 9]. More notable among the one-equation models is the

Baldwin-Barth [4] model which does not require the specification of the length scale.

A popular and notable one-equation model is the Spalart-Allmaras (SA) model which

is described below.
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Spalart-Allmaras model

The Spalart-Allmaras (SA) model[99] is a complete one equation model, which was

developed primarily with attached flows in mind. The model solves for an effective

eddy-viscosity ν̃ and is not derived from existing turbulence kinetic energy (k) based

models. The eddy-viscosity is derived from ν̃. The equation for the ν̃ has the following

form,

∂ν̃

∂t
+ uj

∂ν̃

∂xj
= ∇ ·

(
νt
σν̃
∇ν̃
)

+ P −D. (1.18)

where P and D are the production and the dissipation terms, respectively.

1.3.3 Two Equation Models

Most two equation models are based on transport equations for turbulent kinetic

energy k and a second auxiliary quantity. The relationship between the dissipation

and length scale is replaced by a differential equation of dissipation, which can again

be derived by taking appropriate moments of the NS equations. One such form is

given by

∂ε

∂t
+ uj

∂ε

∂xj
= ∇ ·

(
νt
σε
∇ε
)

+ Cε1
Pε
k
− Cε2

ε2

k
, (1.19)

with eddy-viscosity given by

νt = Cµk
2/ε. (1.20)

This model is complete as it does not require knowledge of a specific problem except

for the boundary conditions. Many models have been proposed based on the same

idea with some modifications. Some popular examples of other two-equation models

include Wilcox’s k − ω[113] which uses an equation of ω = ε/k and k − τ [103] where

τ = 1/ω and Menters k − ω SST[63].

∂ω

∂t
+ uj

∂ω

∂xj
= ∇ ·

(
νt
σω
∇ω
)

+ Cω1
Pω

k
− Cω2ω

2, (1.21)
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and where νt = Cµk/ω.

1.4 Reynolds Stress Closures

The exact transport equation for the Reynolds-stresses can be derived by taking

appropriate moments of the NS equations. These equations are of the form,

∂u′iu
′
j

∂t
+ uj

∂u′iu
′
j

∂xj
+
∂Tkij
∂xk

= Pij +Rij − εij. (1.22)

In the Reynolds stress model, the production term is known, but the dissipation

tensor, pressure-rate-of strain tensor and Reynolds stress flux require closure. These

equations are usually closed with the help of an additional equation of some form of

specific dissipation ε resulting in a total of 7 transport equations.

The Reynolds-stress models have explicit terms to characterize flows with sig-

nificant streamline curvature, flows with a swirl or mean rotation. Reynolds-stress

models are also anisotropic and can capture secondary flows such as the ones found

in a duct. Examples of such models are LRR[31] and Wilcox’s stress-ω[113].

1.5 Other Ideas

Deficiencies in linear eddy-viscosity models and second moment closures have led

to more complex ideas for turbulence modeling. To combat the isotropy of the linear

eddy-viscosity models Spalart et al. [98, 57] proposed a variant of the SA model

with quadratic constitutive relations. The model is built on the SA model, but in

place of the linear relationship between the stress and strain a non-linear expression

is used, which, in principle can capture secondary flows. Transition models[51] have

been proposed to replicate the transition of the flow from a laminar state to fully-

turbulent. Such models are also built on existing baseline models.

The eddy-viscosity based models presented so far are based on quasi-homogenous
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flow assumptions. The eddy-viscosity is often calculated using turbulence kinetic en-

ergy k. However, wall-bounded flows are not homogeneous and such models predict

inaccurate Reynolds stresses in the near wall region. Historically, such discrepan-

cies have been corrected using exponential damping functions, which are based on

calibration with the experimental data. Durbin [28] proposed an elliptic relaxation

model v2 − f . In the model, the non-homogeneous effects are modeled by solving a

governing equation for a scalar measure of anisotropy (v2), which in turn, depends

on a variable f governed by an elliptic equation.

Detached-eddy simulation (DES) [101, 107] combines RANS and LES by appro-

priate switching between the two levels of models. In a DES, the RANS model is

used in the regions where the turbulent length scale is lower than the grid resolution

and LES is used in the rest of the regions. This leads to a tractable computational

cost for the wall-bounded flows while resolving larger eddies away from the wall.

The presented material is not an exhaustive review of turbulence models. Other

novel ideas include structure-based turbulence models[12], probability distribution

function based models[49] and closures based on third and fourth order correlations

of the velocity[123, 76].

1.6 A Case for Data-Driven Turbulence Modeling

Based on the discussion, it is clear that many turbulence models with varying

degrees of complexity are in existence. Such a plethora of models exists because no

single model is known to predict all kinds of flow accurately. Whether such a universal

model exists is a questionable idea in itself. For long, it was predicted that LES would

eventually replace RANS, but it has not yet happened. In fact, in constrast to fading

away, with an increase in computational power, RANS is increasingly being used for

more complicated flow cases.

There is no consensus on whether high-quality models, like full Reynolds stress
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closures, are viable alternatives. They have not resulted in any distinct improvement

despite their theoretical advantages over eddy-viscosity models[102]. As a result,

on top of baseline eddy-viscosity models, many corrections have been proposed to

make the model respond to effects such as curvature and rotation[88, 93, 23], near-

wall anisotropy[28], and transition from laminar to fully turbulent flows[51]. These

corrections have not yet become mainstream because they perform well for a limited

set of problems, and performance is only mediocre for general flows.

Despite the well-known deficiencies and empirical nature of RANS models, they

are expected to remain the industry workhorse in the absence of a viable alternative.

Meanwhile, data-science has gained enormous traction in the last decade. The

growth in data-science is driven by the need for automated processing, and classifi-

cation of the vast amount of data generated and collected by the world wide web.

Existing algorithms are improved, and new algorithms have been developed to sat-

isfy the need of processing a large amount of data, also terms as big-data. Popular

applications of such algorithms include language translation, speech recognition, and

image recognition. At the same time, the increase in computing power and memory

has made the application of these algorithms to process massive datasets a routine

task.

Diffusion of ideas between the data-science community and the physical sciences

have led to fascinating techniques of problem-solving. These early exploratory ex-

periments have shown optimistic outcomes. Translation of ideas is not direct as the

concepts from data-science have to be adapted to respect the known laws of physics.

Such constraints do not exist in applications like facial recognition.

While high fidelity direct numerical simulations of turbulence, albeit for simple

geometries and low Reynolds numbers, have been performed, they have not been used

systematically to improve RANS models. The utility has been confined to calibrating

parameters at best or to evaluate the quality of RANS solutions.
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This availability of data and the growth in the field of data-science has led re-

searchers to use data in an organized way to improve turbulence models. A brief

survey of the literature in data-driven turbulence modeling is presented in the next

section.

1.7 Previous Work on Data-Driven Model Improvements

The concept of using data to improve turbulence models is not new. In fact, it

can be argued that turbulence modeling has always been data-driven as it involves

calibration of parameters, for instance by matching the velocity log-layer or the skin

friction prediction for zero pressure gradient flat-plate flows.

More sophisticated strategies have evolved over the last two decades. In 1998,

Pareneix et al.[70] proposed the use of DNS datasets to evaluate the accuracy of

second moment closure equations apriori by solving for one variable by fixing others to

their DNS values. Based on the evaluation, the equations are modified to improve the

model prediction. On the same line, Raiesi et al.[79] calculated the turbulence model

variable using DNS and LES datasets for one and two-equation models. The authors

report that the “...use of exact values of the turbulent kinetic energy and dissipation

rate in the modeled eddy-viscosity did not improve its performance...” and “...the

use of exact values of the turbulent kinetic energy deteriorates its performance...”.

It can be argued that the dissipation or the turbulent kinetic energy used in the

models are operational variables and not the real turbulent dissipation or the real

turbulent kinetic energy. Therefore, using data to replace the terms in turbulent

models directly is a futile strategy. Any correction to a model has to be suggested in

a more comprehensive manner, and, it has to be consistent with all other assumptions

involved with the turbulence model.

Milano and Koumoutsakos[65] used NNs to recreate the behavior of near-wall

structures in a turbulent channel flow. The authors also augmented a second order
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wall model by using NN to represent the higher order terms as a function of only the

wall quantities. Several researchers[122, 45, 29, 82, 15, 68] have used data to infer

model parameters, probability distributions or joint probability distribution of the

model parameters to quantify and reduce model errors. The probability distributions

of the model parameters are used to predict the bounds on the model solution and

provides a measure of uncertainty. Cheung et al.[15, 68] employed Bayesian model

averaging[14] to calibrate model coefficients. Edeling et al.[29] used statistical infer-

ence on skin-friction and velocity data from a number of boundary layer experiments

to quantify parametric model error. These methods provide insight into paramet-

ric uncertainties and address some of the deficiencies of a priori processing of data.

However, they do not account for the model form uncertainties.

Dow and Wang[19, 20] made progress towards addressing non-parametric uncer-

tainties by inferring the spatial structure of the eddy-viscosity required to match the

DNS velocity. The discrepancy between the inferred and the k − ω eddy-viscosity

was represented as a Gaussian random field and propagated to obtain uncertainty

bounds on the mean flow quantities. The research group of Iaccarino[34, 39, 35] in-

troduced ad-hoc, but realizable perturbations to the non-dimensional Reynolds stress

anisotropy tensor aij to quantify structural errors in eddy-viscosity models. Tracey et

al.[105] applied neural networks to large eddy simulation data to learn the functional

form of the discrepancy in the eigenvalues of aij and injected these functional forms

in a predictive simulation in an attempt to obtain improved predictions.

A natural precursor of the present work was performed by Tracey[106] at Stanford

University. The work involved evaluating the SA turbulence model for a set of cases

including flow over a flat plate, flow in a channel, and flow over an airfoil. A database

of the analytical production and destruction terms are used to train their NN coun-

terpart. The NN-based terms are then used for prediction replacing the analytical

terms. While the predicted solution contains the same discrepancy present in the SA
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model, the exercise is a proof-of-concept of using machine learning based terms in an

iterative RANS solver.

The work performed in this dissertation has been reported in a number of journals

[89, 91] and conferences [90, 92, 27, 24, 26]. Several ideas have emerged, a year from

the start of this dissertation (2014). They are presented below to differentiate from

state of the art before 2015.

Post-2015

Xiao and co-workers[120, 110] calculated the spatial distribution of the perturba-

tions in the anisotropy tensor aij = u′iu
′
j − 2

3
kδij using DNS data. The perturbations

to the anisotropic tensor are calculated by transforming the eigenvalues to barycen-

tric coordinate to ensure the realizability of the resulting perturbed stresses. The

perturbations are then reconstructed using a machine learning algorithm as a func-

tion of local flow variables. The reconstructed machine-learned model, along with the

RANS equations is used for prediction for a marginally difference flow setup. Xiao et

al.[119] used metrics such as kernel density estimation and Mahalanobis distance to

for a priori estimation of the quality of a machine-learned model.

Weatheritt[112] used evolutionary algorithms on DNS data to construct algebraic

non-linear stress-strain relationships for RANS models to capture the anisotropic

effect in an eddy-viscosity based model. The anisotropy tensor is evaluated using

DNS data and formulated as a function of four linearly independent basis of aij and

two scalar invariants. The final output of this strategy is an algebraic expression

in contrast with a black-box model is most cases. The asymptotic behavior of an

algebraic relationship is easy to analyze and also add to the confidence compared to

a black-box model.

Ling and Templeton[54] used ML-based classifiers to ascertain regions of the flow

in which commonly-used assumptions break down. Ling et al.[56] embedded the
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Galilean invariance property of the Reynolds stress tensor in a neural network ar-

chitecture and observed better training and prediction compared to generic neural

network architecture.

Previous work on Model-form discrepancy

A popular approach to address model-form uncertainty is based on the work by

Kennedy & O’Hagan[46]. In their work, the output quantity of interest is represented

by

Gd = Gm(Q, λ) + δ(Q) + ε,

where δ is the model discrepancy, ε represents measurement errors, and λ contains

the model hyper-parameters. Gaussian processes are assumed for Gm, δ, and ε and

Bayesian inference is used to infer the posterior distribution of the hyper-parameters

λ. The approach can be applied to any model without the knowledge of the underlying

physical system, which is both an advantage and also a disadvantage. Other concerns

with this approach include the inability to discern the effects of λ and δ independently,

the physically unconstrained approach of modeling δ, the dependence of the model

discrepancy on the observable d, and its inability to accurately model non-Gaussian

phenomena. To address these shortcomings, in this work, model discrepancies are

embedded within the governing equations (rather than added to the output. Thus,

physics constraints can still be satisfied using the underlying governing equations and

causality can be better established.

1.8 Contributions of the Present Work

Most of the previous work for model improvement involves the use of data to

calibrate parameters in existing models. However, the error in the models is structural

which cannot be eliminated by recalibration. Further, all the previous work involves
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the use of full-field LES or DNS data. Such datasets are limited in availability and

are confined to low Reynolds number flows and simple geometries. Moreover, model

variables such as turbulent kinetic energy k and dissipation ε are not real quantities.

They are just operational variables, and therefore direct extraction of these quantities

from a LES or DNS have not lead to more accurate models. Past work also overlooked

the existence of experimental data which can be sparse (measurements of surface

pressure, lift, etc.) but are available for high Reynolds number flow and realistic

geometries.

The focus of this work is to address the shortcomings of the previous work and

propose a method for functional augmentation using data of varying quality and

quantity. The specific contributions are as follows:

• A framework of FIML is proposed and developed to augment existing RANS

based turbulence models. The framework builds on existing turbulence models,

and uses inversion and ML to augment them. The existing approaches of ap-

plying machine learning connects the data directly to the model. For example,

the turbulent kinetic energy (k) from DNS or LES data can be reconstructed

using machine learning and be used to replace k in the k − ω model. However,

the real k and ω in DNS and LES are different from the k and ω used in the

RANS model, where they are operational quantities. In the current approach,

inverse problems are solved to connect these operational quantities with data.

We look for the additional correction/discrepancy term, in the context or the

baseline model, which is required for the model prediction to lie closer to the

data. The advantages of using inversion are two-fold:

1. The introduced correction is consistent with existing turbulence models.

2. Any data can be used to solve the inverse problem, from full-field velocity

to integral quantity of lift. Knowledge of quantities like k and ω, which
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appear in the model explicitly, is not required.

• Proof of concept: The framework is evaluated on three different flow setups.

In the first configuration, data is synthetically generated using a known ana-

lytic curvature correction to the SA model and the FIML framework is used to

reconstruct the correction. Since all the information is known for this setup,

there are no uncertainties related to flow conditions, discretization and hence in

data. It is shown that the complete flow field, including Reynolds-stresses, can

be precisely predicted by the FIML based augmentation if the full-field velocity

is used as data. The quality of the prediction reduces if skin-friction is used as

the data, but skin-friction, near wall Reynolds stresses, and velocities are still

predicted accurately.

• Model improvement via ensemble data: Wilcox’s k−ω model is augmented

using data from LES for a set of flows over a bump, which serves as a proxy

for adverse pressure gradients. It is shown that the inverse solution for just

two different bump heights can be used to reconstruct an augmented model

which works on other bump heights and different incoming flow conditions.

The prediction using full-field velocity data and skin-friction are found to be

similar.

• Limited data, extrapolation, portability: The potential of the FIML

framework is demonstrated by augmenting the SA model using only the data

for the lift coefficient for one airfoil. Improvements in pressure, the location of

separation, and maximum lift coefficient are achieved for different airfoil shapes

and Reynolds number not used for training. It is shown that using pressure and

lift as data results in almost identical FIML augmentation and hence prediction.

This opens up the opportunity of widely available experimental data to be used

for augmentation of RANS-based models.
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1.9 Organization

This thesis is organized as follows:

• Chapter 2 describes the proposed framework of FIML and describes the details

of the two important steps of full field inversion and ML.

• In Chapter 3, the compressible form of the governing equations and the tech-

niques of spatial and temporal discretization are described. Details about the

discrete adjoint framework are presented.

• As a proof-of-concept, in Chapter 4, the FIML framework is applied to flow in a

curved channel, where the data is generated synthetically by using an analytic

correction. The resulting solution and the augmented model result from the

FIML are compared with the analytical correction.

• Chapter 5 presents the application of the FIML framework on adverse pressure

gradient flows. Data from LES simulations are used to improve the Wilcox’s

k − ω model for such flows.

• Chapter 6 shows the potential of the FIML framework by using experimental

data for flow over an airfoil to improve prediction over a set of airfoils over a

range of Reynolds number.

• Conclusions and recommendations for future work are presented in Chapter 7.

22



CHAPTER II

Field Inversion and Machine Learning Framework

This chapter introduces the field-inversion and machine-learning (FIML) frame-

work for model augmentation. The framework consists of three key steps:

1. Solution of inverse problems to infer discrepancies in an existing model by min-

imizing the differences between data and predictions

2. Training ML algorithms to construct a model of the inferred discrepancy, as a

function of local flow solution

3. Using the ML based model of discrepancy in an iterative RANS solver for pre-

dictions.

Inverse problems are required to establish the relationship between available data

and discrepancies in existing models. Machine learning algorithms are used to find

patterns in the discrepancies, which can then be used for predictions. The first two

steps are analogous to the (1) transformation of data into useful information, and (2)

transformation of the information into knowledge. In the third step, the knowledge

is used to make predictions. Fig. 2.1 shows a schematic of the complete framework,

distinguishing the offline (inversion and training of machine learning model) and the

online (prediction) component.
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Figure 2.1: Schematic of the field-inversion and machine-learning (FIML) showing
the offline components which includes inference and training of the machine learning
model and the online prediction.

We start with discussing the form of discrepancies present in physical models,

which is followed by a discussion to infer such discrepancies. We examine the need

for inference or inversion and present two different perspectives of framing an inverse

problem: Bayesian and deterministic. Details of the methodology used to solve an

inverse problem are presented. An introduction to machine learning is presented

followed by a discussion of important considerations when using a machine learning

based model. Two machine learning algorithms used in this work, neural-network

(NN) and AdaBoost, are discussed.

To preserve the generality of the approach, we restrict to a level of abstraction.

We leave the implementation-related details for specific RANS models in subsequent

chapters. While analogies and examples are borrowed from turbulence modeling, the

approach can be applied to any physical situation.
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2.1 Nature of Modeling Discrepancy

Most practical models of physical problems combine theoretical foundations with

empirical calibration of a few parameters. For example, ideal gas law relates pressure,

density, and temperature using a simple algebraic relationship with the gas constant as

a calibrated (or estimated) parameter. A pertinent example is a differential equation

based turbulence model. Such models contain source terms based on theoretical

understanding of the flow physics, and these terms contain constants calibrated on

canonical flows. These models suffer from both: the inadequate understanding of

theory, and the errors associated with calibration. Simple recalibration can address

the discrepancy with the calibration, but it is not sufficient to mitigate the missing

knowledge of the theory. For example, the missing real gases effects in the ideal gas

equation cannot be mitigated by using a different constant. In the context of the

turbulence model equations, the discrepancies are in the functional form of the

source terms. While data-driven parameter calibration [122, 15, 68, 29] is not new,

this work focuses on the discovery of this functional discrepancy.

The novelty of this work lies in the introduction of discrepancy and techniques used

to recover it from data. Data is used to augment and fill gaps in existing theories–

which are based on decades of research–and not to replace them. The discovered

form of discrepancy may be used to gain physical insight; however, sometimes it is

purely a mathematical construct. An example of the latter case is a two-dimensional

separated flow over an airfoil. We can recover a model form, from data, such that the

model output agree with the data, but it is well known that the flow separation is an

inherently three-dimensional phenomenon. In such cases, it would be overreaching to

derive a physical interpretation.
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2.1.1 Mathematical representation

The mathematical description of the functional discrepancy is discussed in the

context of a representative model. Consider the following model:

R(Q,G) = 0, (2.1)

DG

Dt
= T1(Q,G) + T2(Q,G) + T3(Q,G), (2.2)

where R(Q,G) is the base model equation, Q is the model solution, G is an oper-

ational variable, and Ti’s are the source terms. In the turbulence modeling context,

equation 2.1 refers to the RANS equations. For the SA turbulence model [99] G is the

operational eddy viscosity, T1 is the production term, T2 is negative of destruction,

and T3 is the turbulent transport term. For the Wilcox’s k − ω model [114], G is a

vector containing k and ω and all the source terms are also vectors.

Applications of the presented framework are not restricted to models of the form

mentioned above. However, this form is representative of turbulence models, which

are the primary subject considered in this work. Among others, the formulation can

be applied to models which are not differential in nature, and can also be used to

introduce discrepancies in boundary conditions.

As argued in the previous section, the discrepancy in the model is functional in

nature, and hence we introduce a functional correction term or a discrepancy term

to correct for it. The discrepancy is required to be a function of the model solution.

After the introduction of the functional correction term, δ(Q,G), the new model

equation has the form,

DG

Dt
= T1(Q,G) + T2(Q,G) + T3(Q,G) + δ(Q,G). (2.3)

This work deals with discovering the form of the function δ(Q,G), such that the
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Figure 2.2: Flowchart depicting the connection between the forward and the inverse
problem.

model output agrees with the data, and predictions can be improved.

We infer the spatial distribution of the δ(Q,G) ≡ δ(x) required to minimize

some measure of the misfit between the model output and the data. Such spatial

distributions are sought for a number of problems. As solution to inverse problems

are required to infer field distributions of δ, we term the process as full field inversion.

For the inversion, δ is a spatial function, but the final goal of the process is to get δ

as a function of locally non-dimensional flow features. That is achieved by training

a machine learning model on many inverse solutions. The next sections cover these

aspects of the FIML framework.

2.2 Full Field Inverse Problem

Inverse problems, as the name suggests, are opposite to forward problems (Fig 2.2).

In a typical forward problem, a set of mathematical equations are solved conditional

on a few parameters and boundary conditions. In the inverse problem, the output is

known, and parameters or boundary conditions includes the unknowns. Consider a

forward system of equations

u = R(m) (2.4)
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where m includes model parameters and boundary conditions. The inverse problem

involved obtaining a map F(u) such that

m = F(u) | u ≈ udata (2.5)

In a full-field inverse problem a spatial distribution for δ (in equation 2.3) is

sought in order to match the model output with data, and not a few parameters.

When the model equations are discretized, the discrepancy term is transformed from

infinite dimensional to finite dimensional and is defined at every grid point or cell

volume depending on the type of discretization. Therefore after discretization, the

problem can be seen as a parameter inference problem, with a very large number of

parameters. The large numbers of unknowns add to the complexity in obtaining the

solution of the inverse problem. The difficulty in obtaining the inverse solution also

comes from noise in the data, non-uniqueness of the inverse solution, and non-linear

nature of the forward problem.

In this work, many inverse problems are solved, to infer the discrepancy δ in an

existing model, for different flow setups.

Rationale Behind Solving an Inverse Problem

The rationale behind solving an inverse problem is not clear at first glance. In the

presence of high-fidelity data, it is reasonable to calculate δ directly using equation 2.3

by evaluating the various terms using data. However, we emphasize that the source

terms present in the model are not real physical terms. For example, the production

of eddy viscosity is not actual production–it is an operational term designed to match

some criteria. Therefore, direct calculation of δ(Q,G) may not provide the correction

required for a model to produce more accurate solutions. In fact, it may deteriorate

the solution[75, 79, 70].
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Figure 2.3: Bayesian inference involves calculation of posterior probability distribu-
tion using prior distribution and the likelihood.

Furthermore, the inverse framework provides a generalized approach of using data

of various levels of fidelity. The data can be as sparse as a lift coefficient or as dense

as full velocity fields. Inverse problem theoretically does not differentiate between

the two cases, and therefore both can be used to infer a discrepancy field. It is, of

course, expected that the effectiveness of the inferred discrepancy will be dependent

on whether the data is sufficiently informative of the model discrepancy.

2.2.1 Types of Inverse Problems

An inverse problem can be formulated from two different perspectives: (1) Bayesian

and (2) deterministic. The Bayesian perspective allows for a rigorous consideration

and treatment of uncertainties associated with the inverse solutions. It provides a

means for propagating the uncertainties in data to the inferred solution. The deter-

ministic perspective does not account for the uncertainties. The two perspectives are

discussed below in detail.
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2.2.1.1 Bayesian Inverse Problem

While the majority of the computational science work centers on models which

are deterministic, the models and hence the solutions always have some level of un-

certainty. Uncertainties may arise from imperfect equations, boundary conditions, or

numerical methods. In a Bayesian setting, both the data and the spatial discrepancy

are assumed to be random variables. The objective is to infer the posterior probabil-

ity distribution of the discrepancy, given a prior distribution of the discrepancy and

the distribution of the data.

Equation 2.6 is the mathematical representation of the Bayes theorem, which

states that the posterior probability distribution of a random variable, δ ∈ <n, is

proportional to the prior distribution of δ times the likelihood h, h ∈ <m and d ∈ <m.

Note that δ is a vector and d is a vector.

p(δ|d) ∝ h(d|δ)p(δ), (2.6)

The traditional process of solving this problem involves the use of sampling al-

gorithms. In a typical sampling algorithm, samples are drawn from the prior and

likelihood is evaluated, which is then used to update the posterior. Such methods

suffer from the curse of dimensionality, and the number of samples required for such

cases increases exponentially with the size of the δ vector.

A further assumption of Gaussian nature of data and the prior can be used to

simplify the general problem to that of obtaining a maximum a-posteriori (MAP)

solution followed by calculation of the posterior covariance by inverting the Hessian of

the objective function[2]. Calculation of the MAP involves solution of an optimization

problem with the following objective function,
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δMAP = arg min
δ

1

2

[
(d− h(δ))TC−1

obs(d− h(δ)) + (δ − δprior)
TC−1

prior(δ − δprior)
]
,(2.7)

= J(δ), (2.8)

where Cobs and Cprior are the observation and the prior covariance matrices re-

spectively. δprior is the prior (initial) value of δ, which is always zero for our problems.

Following this, the posterior covariance matrix is calculated using

Cposterior =

[
d2J(δ)

dδdδ

]−1
∣∣∣∣∣
δMAP

. (2.9)

Once the posterior covariance is known, the samples of posterior discrepancies are

evaluated by Cholesky factorization of the covariance

RTR = Cposterior (2.10)

and

δ = δMAP + RT s, (2.11)

where s is a vector of normally distributed random numbers with a mean of zero and

a standard deviation of unity.

Further assumption of constant diagonal covariances, Cobs = σ2
obsI and Cprior =

σ2
priorI, simplifies the objective function to[2],

J(δ) =
1

2

[
1

σ2
obs

(d− h(δ))T (d− h(δ)) +
1

σ2
prior

(δ − δprior)
T (δ − δprior)

]
. (2.12)

Turbulence models constitute complex nonlinear systems, and thus the posterior

distribution and the likelihood cannot be expected to be Gaussian. The error in-
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troduced by the Gaussian assumption is challenging to estimate without the use of

sampling strategies, which are very expensive for the problems considered in this

work.

Parish & Duraisamy[69] studied the effects of different levels of assumptions for

a synthetic heat conduction problem. While the calculation of uncertainties is a

theoretically appealing process, it is typically prohibitively expensive in problems

involving many parameters. The prior distribution of the parameters has a significant

impact on the posterior. However, the approach of selecting the prior is not well

understood and is subjective. For these reasons, we employ a deterministic strategy

to frame and solve the inverse problem for the examples presented in this work.

2.2.1.2 Deterministic Inverse Problem

In a deterministic setting, the objective is to minimize a measure of discrepancy

between the model output and the data. The formulation is ill-posed because of

noise in the data and a high degree of freedom in the model compared to the number

of data points. The problem is regularized by an additional term in the objective

function. The selection of the regularization term is not unique. For this work, we

use a regularization which biases the solution to lie near to the prior (initial) solution;

this is a particular case of Tikhonov regularization[7] with a diagonal prior covariance

matrix. The optimization problem, in this case, is given by:

δinverse = arg min
δ

1

2
(J1(δ) + λJ2(δ)) (2.13)

= arg min
δ

1

2

[
(d− h(δ))T (d− h(δ)) + λ(δ − δprior)

T (δ − δprior)
]
(2.14)

It can be seen that this objective function is identical (except for a scaling) with the

Bayesian objective function (Eq. 2.12) with diagonal co-variance and λ = σ2
obs/σ

2
prior.

Setting a value for λ requires engineering judgment. A higher value of λ leads to

32



higher misfit

ov
erfittin

g

J1
J
2

λelbow

Figure 2.4: L-curves are used to fix the value of λ, but it requires solution to many
inverse problems for different values of λ’s.

a high misfit while a low value of λ leads to over-fitting. In case the confidence in the

data is high, we can choose a very small value of λ. For other cases, λ can be selected

by estimating the trust in the observation and the model. For problems without such

information, the value of λ is chosen by solving multiple inverse problems for different

values of λ and plotting the two parts of the objective function. This results in an “L

curve” as shown in Fig. 2.4. The value corresponding to the elbow is selected, which

represents a balance between over-fitting and the discrepancy.

In the examples presented in this work, the value of λ does not affect the qual-

itative distribution of inferred discrepancy, but it does affect the absolute values to

some degree.

2.2.2 Optimization Problem and Discrete Adjoints

Recent efforts have been made to accelerate Markov-chain Monte Carlo (MCMC)

by using structure-exploiting proposal densities[41, 109, 58, 11] and dimensional

reduction[17, 18]. Despite the progress, many practical challenges remain before it

can be used for problems of our interest, which involves tens of thousands of vari-

ables and moderately expensive RANS solver for evaluation of the forward problem.
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Figure 2.5: Solving an inverse problem is equivalent to solving an optimization prob-
lem with an appropriate objective function, J , and the discrepancy δ being the design
variable.
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Therefore, irrespective of the choice of the problem setup, the inverse problem in-

volves the solution of an optimization problem. We use a discrete adjoint approach

to calculate the sensitivities required to solve the optimization problem efficiently.

Examples presented in this work use a simple steepest-descent algorithm, because of

its ease of implementation. Steepest-descent algorithm suffers from a relatively slow

convergence rate, but we found it to be satisfactory for our work.

A steepest descent update is given by

δn+1 = δn − κdJ
dδ

(2.15)

where, κ represents the step size. κ can be fixed to a small value or appropriate line

search [118, pg. 30-65] strategies can be used to estimate κ. The gradient of the

objective function
dJ

dδ
is calculated using discrete adjoint as discussed below.

2.2.2.1 Discrete Adjoint Formulation

A discrete adjoint[37] formulation is used to calculate the gradient. Discrete ad-

joints provide gradients which are consistent with the discretized form of the governing

equations. The finite difference approximation of the gradients involves at least N

forward solves, where N is the number of unknowns. The number of unknowns in

our work is same as the number of grid points, which can be in the order of tens of

thousands even for a two-dimensional problem. The calculation of discrete adjoint

based sensitivity requires a solution of a linear system and few matrix-vector mul-

tiplications. Because of its efficiency, adjoints are a popular tool for calculation of

sensitivities in the field of design and optimization. From an optimization viewpoint,

the discrepancy δ can be seen as the design variables. The derivation of the discrete

adjoint formulation for the present optimization setup is discussed below.

The optimization problem is framed as that of minimizing the objective function
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while satisfying the governing equation. Mathematically,

min
δ
J(U, δ) (2.16)

R(U, δ) = 0 (2.17)

where R includes the RANS equations and the turbulence model, and U includes the

flow variables and the turbulence models variables. All the cases presented in this

work are for steady flows and therefore no time derivative is present in the governing

equation. The discrete adjoint formulation is derived by differentiating equations 2.16

and 2.17 with respect to the design variable δ, which results in,

dJ

dδ
=
∂J

∂U

dU

dδ
+
∂J

∂δ
(2.18)

and

dR

dδ
=
∂R

∂U

dU

dδ
+
∂R

∂δ
= 0 (2.19)

⇒ dU

dδ
=

(
∂R

∂U

)−1(
−∂R

∂δ

)
(2.20)

The term dU
dδ

is then substituted in 2.18, which gives

dJ

dδ
=
∂J

∂δ
− ∂J

∂U

(
∂R

∂U

)−1(
∂R

∂δ

)
(2.21)

Now, we define the adjoint variable Ψ as

Ψ =

[
∂J

∂U

(
∂R

∂U

)−1
]T

(2.22)

Following which, the computation of the sensitivity of the objective function with
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respect to the design variables is calculated by

1. Solving the linear system

[
∂R

∂U

]T
ψ =

[
∂J

∂U

]T
(2.23)

2. Computing

dJ

dδ
=
∂J

∂δ
− ψT ∂R

∂δ
(2.24)

The partial derivatives in equations 2.23 and 2.24 can be calculated either using

finite difference [83], complex step differentiation [60], or automatic differentiation

[80]. The adjoint equation (Eq. 2.23) is independent of the design variables, therefore

the cost of solving the linear system does not depend on the size of the design variables.

Next, we delve into the details of machine learning, which forms the second part

of the FIML framework.

2.3 Machine Learning

Machine-learning (ML), in simple terms, constitutes a set of methods and tools

to discover patterns in data and then use the patterns to predict a future or perform

decision-making. Machine learning has gained popularity in recent years because of

advances in computing and also a rise in quantity of data in the technology indus-

try. For example, it is expected that by the year 2020, about 1.7 megabytes of new

information will be created every second for every human being on the planet[32].

This vast quantity of data needs automatic methods of finding patterns and useful

information: machine learning.

Machine-learning (ML) algorithms can be divided into three main categories: su-

pervised learning, unsupervised learning, and reinforcement learning. Given pairs of

input-output D = {(ηi, δi)}Ni=1 supervised learning is used to learn a mapping between
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Machine learning

Unsupervised learningSupervised learning Reinforcement learning

- Classification
- Regression

- Clustering

Figure 2.6: Machine learning problem can be classified as either supervised learning,
unsupervised learning, or reinforcement learning.

the inputs η and outputs δ. The process of constructing this mapping is referred to

as training and evaluating the built mapping or model for a given input is referred

to as testing. Usually the input ηi is a vector of fixed size; they are also termed as

features or attributes, and the output δi is a scalar. When δi can take values from a

fixed discrete set, the problem is known as classification. Facial recognition and spam

filters for email are simple examples of the classification problem. In the turbulence

modeling setting Ling et al.[55] used classification algorithms and DNS data to mark

region of uncertainty in a RANS simulation. When δi can be any real number, the

problem is termed as regression. Predicting the age of a viewer watching a youtube

video is an example of regression, and so is predicting turbulent kinetic energy in a

fluid flow.

Unsupervised learning, on the other hand, considers no information about the

output. It utilizes the input data D = {ηi}Ni=1 to extract useful information about the

data. A simple example of unsupervised learning is the clustering of e-commerce users

into groups based on their purchasing habits, which can then be used for targeted

advertising. In turbulence, unsupervised learning can be used to categorize flows

based on their characteristics. Reinforcement learning constitutes a set of methods

to build models which can adapt themselves to a given situation.
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CV fold-2
CV fold-1

Original Data

•• • •••• • ••••• •••Data used for training
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••••••• •Data used for testing

Figure 2.7: Schematic describing the process of cross-validation (CV). The example
uses a 3-fold CV. The figure is adapted from https://tex.stackexchange.com/a/

154121.

This work focuses on supervised learning, specifically regression algorithms on

pairs of flow features and the model discrepancy, which is derived from the inverse

solution. The goal is to build a generalized regression model of the discrepancy. The

following sections discuss the various aspects of machine learning in the context of

the current work.

2.3.1 Problem Setup

The inverse approach presented in the previous section results in an optimal spa-

tial discrepancy field for a given problem setup. In predictive modeling, the problem-

specific information encoded in δ1(x1), δ2(x2), . . . , δn(xn) must be transformed into

modeling knowledge. This is done by extracting the functional relationship δ(η),

where η = [η1, η2, . . . , ηm] are input features derived from the solution. The functional

relationship must be developed by considering the output of many inverse problems

representative of the modeling deficiencies relevant to the predictive problem. Fur-

thermore, as will be explained in the following, elements of the feature vector η are

chosen to be locally nondimensional quantities such that the functional relationship

δ(η) is useful for different problems in which the flow-features are realizable.

2.3.2 Feature Selection

The input features ηi plays a crucial role in any machine learning process; they

should be carefully selected to represent all the major traits of the data. Two desired
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properties in the selected features are their locality and non-dimensionality. These

allow the use of learned discrepancy in a general setting, for example, use of a different

geometry or Reynolds number than that used for training. The features should be

able to characterize the discrepancy function and at the same time they should be

kept to a minimal number to reduce the cost associated with training and prediction.

Standard practice is to input a large number of features and use existing algorithms

to rank their importance using algorithms[10]. However, using a large number of

features increases the requirements on the number of data points required for training

without over-fitting. We have also observed that automatic selection of features can

be misleading. For instance, in a trial utilizing over 20 different flow-features including

density, velocity gradient, strain rate and vorticity, a random forest-based regressor

ranks density to be the most critical feature. Therefore, we use domain knowledge

to select the features. Examples of such relevant features include appropriately non-

dimensionalized strain-rate, vorticity, wall-distance, and eddy-viscosity.

2.3.3 Feature Normalization

Normalization of the features contained in η is required when there are differences

in their orders of magnitude, which is often the case with flow features used in turbu-

lence. Differences in magnitude may result in poor or slow training[44]. The features

are normalized before training using

ηjnormal =
ηj − ηj
σηj

(2.25)

where, ηj and σηj are the mean and the standard deviation, respectively, of the j’th

component of the flow-feature vector η. The same normalization process is used for

the testing data (features) when querying a trained ML model.
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2.3.4 Cross-Validation

An important consideration when training a machine learning model is the ten-

dency of highly flexible regression models to over-fit the data. As we do not have

an infinite amount of data covering all the possible scenarios, it is possible for the

model to be very accurate for the data used for training, while it may be poor in

generalizing to other inputs not used for training. While some degree of over-fitting

is unavoidable, its effects can be mitigated by following some simple strategies. A

popular approach is to use cross-validation (CV)[48]. In CV, the training data is

split into K folds, then for each k ∈ {1, . . . , K}, the model is trained on all the folds

except k’th and tested on the k’th. Fig 2.7 demonstrates the strategy graphically.

The final error is an average of the errors over all the folds. Also, the prediction for

any data point is taken to be the average of predictions of all the K ensembles of

models. CV is also used to select optimal values for the hyper-parameters associated

with an algorithm.

2.3.5 Measure of Training Quality

The quality of a trained ML model can be measured in a number of ways. In

this work, we use coefficient of determination, which is also represented by R2. Given

a set of truth values {δ1,true, δ2,true, . . . , δn,true} and corresponding predictions by the

machine learning model {δ1,pred, δ2,pred, . . . , δn,pred}, the coefficient of determination is

given by:

R2 ≡ 1− SSres

SStot

(2.26)

where SStot is proportional to the variance of the truth values and is given by:

SStot =
∑
i

(δi,true − ȳ)2 (2.27)

ȳ =
1

n

∑
i

δi,true (2.28)
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and SSres is sum of squares of residuals

SSres =
∑
i

(δi,true − δi,pred)2. (2.29)

A perfect machine learning mode will result in R2 = 1. The R2 is a measure of

quality of the ML model but whether a model is acceptable for a certain R2 requires

human judgement. Most of the results presented in this work have R2 > 0.9.

2.3.6 Regression Algorithms

The algorithms to extract the relationship between flow features and the discrep-

ancies can be as simple as linear regression. More sophisticated algorithms exist to

extract the relationship. The specific algorithm selected depends on many factors

including the distribution of data and the scales in the data. There is no rigorous

method to determine a suitable algorithm a priori. However, they can be evalu-

ated based on properties such as scalability, number of hyper-parameters, the cost of

evaluation and ease of training.

The objective of this work is not to compare different algorithms but to use them

to derive functional relationships between model discrepancies and non-dimensional

flow features. The algorithms used for this work are discussed in the following sec-

tions. Other algorithms explored but not discussed here include Random Forest

Regression[10] and Gaussian Processes[81].

2.3.6.1 Neural Network

The standard NN algorithm operates by constructing linear combinations of in-

puts and transforming them through nonlinear activation functions. The process is

repeated once for the input layer and each hidden layer (marked in blue in Fig. 2.8)

in the network, until the output layer is reached. Fig. 2.8 presents a sample NN.
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For this sample network, the values of the hidden nodes z1,1 through z1,H1 would be

constructed as

z1,j = a(1)

(
3∑
i=1

w
(1)
ij η

i

)
(2.30)

where a(1) and w
(1)
ij are the activation function and weights associated with the first

hidden layer, respectively. Similarly, the second layer of hidden nodes is constructed

as

z2,j = a(2)

(
H1∑
i=1

w
(2)
ij z1,i

)
(2.31)

Finally, the output is given by:

δ ≈ f(η) = a(3)

(
H2∑
i=1

w
(3)
ij z2,i

)
. (2.32)

Some common activation functions includes the sigmoid function a(x) = 1/(1 +

e−x), hyperbolic tangent a(x) = tanh(x), and ReLU a(x) = max(0, x).

Algorithm 1 Training a Neural Network using Simple Backpropagation algorithm
Inputs: η1, η2, . . . , ηn
Desired Outputs: δ1, δ2, . . . , δn
Initialize: wkij with small random values
Error function: E(δprediction, δ)

for t← 1 to T do
Evaluate δprediction (equation 2.32) and E(δprediction, δ)
Evaluate ∂E

∂wk
ij

wkij(t+ 1) = wkij(t)− η ∂E
∂wk

ij

end for

A simple approach to train a neural network is the use of a gradient-based opti-

mization method to estimate the model weights, w
(n)
ij , by minimizing differences be-

tween prediction and data (as shown in Algorithm 1). However, more sophisticated

strategies are required to handle a large amount of data and to prevent overfitting of

the model.
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η1

η2

η3

δ

z1,1

z1,H1

z2,1

z2,H2

Figure 2.8: Network diagram for a feed-forward NN with three inputs, two hidden
layers, and one output.

Once the weights are found, computing the output depends only on the number of

hidden nodes, and not on the size of the training data. Hyperparameters of the NN

method include the number of hidden layers, the number of nodes in each hidden layer,

and the forms of the activation functions. The fast artificial neural network (FANN)

[67] is used for this work. This library uses resilient back-propagation (RPROP) [59].

Typically, four layers (including the input and output layers) and 128 neurons (total)

were employed with a sigmoid activation function.

2.3.6.2 AdaBoost

In the context of machine learning, boosting refers to the process of combining

multiple weak learners to create a single strong learner. Neural-networks (NN) are

classified as strong learners, whereas simple techniques which are only better than a

random prediction are classified as weak learners. Examples include algorithms based

on thresholds (like algorithms based on decision trees).

AdaBoost [36, 21] works by training weak learners for different sets of training

data. Weights are assigned to individual training data points and updated to reflect

the goodness of the fit. The initial weights are the same for all the data points. The

training set is then selected from the training data, with a probability of selection
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being proportional to the weights. The data points with low weights are used less than

the data points with higher weights. Hence, in the current iteration, the model will

improve for data points with high weights. A weak learner is trained on the training

set and added to the model from the previous iteration with the weight of the weak

learner calculated by the error in prediction by the weak learner. The weights for the

data points–for which the model performed well–are then reduced. The quality of the

trained model is measured by an appropriate norm of error. The training steps are

listed in Algorithm 2.

Hyperparameters for the AdaBoost method include the number of weak learners,

the type of weak learner, and the measure of error (loss function). Typically, 1000

decision tree based weak learners are used with a maximum depth of 24. A square

loss function is used to measure the error. A Python based library scikit-learn[73] is

used to train and test the AdaBoost algorithm.

Algorithm 2 Training AdaBoost model
Inputs: η1, η2, . . . , ηn
Desired Outputs: δ1, δ2, . . . , δn
Initial Weights: w1,1, w2,1, . . . , wn,1
Error Function: E(f(x), y, i) = e−δif(ηi)

Weak Learners: h : x→ [−1, 1]

for t← 1 to T do

1. Find weak learner ht(x) that minimizes εt =
n∑

i=1

ht(ηi) 6=δi

wi,t

2. Choose αt =
1

2
ln

(
1− εt
εt

)
3. Add to ensemble Ft(x) = Ft−1(x) + αtht(x)
4. Update weights wi,t+1 = wi,te

−δiαtht(ηi)

5. Renormalize wi,t+1 such that
∑
i

wi,t+1 = 1

end for
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2.4 Embedding and Prediction

Once the machine learning model is trained on the output of the inverse problems,

the augmented model has the following form,

DG

Dt
= T1(Q,G) + T2(Q,G) + T3(Q,G) + δ(η(Q,G)). (2.33)

The last term in the equation 2.33 involves a call to the machine learning eval-

uation. Except for the last term being non-analytic, there is no difference between

the form of the augmented model and the baseline model. This model can be used

in place of the baseline model for prediction for any setup not used for training. The

quality of the prediction will depend on how well the training data represents the

test flow unless there is a universal correction term δ and we are able to recover that

correction. Whether such a universal correction exists is a philosophical question in

the field of turbulence. In this work, we use the augmented model for predictions on

setups similar to the ones used for training, and show that it is possible to improve

the model prediction for such cases.

2.5 Summary

This section summarizes the material presented in the chapter.

1. The nature of discrepancies found on physical models was discussed. The dis-

crepancies are functional, and hence any model augmentation has to augment

the functional form of existing models; calibration of model constants are not

sufficient.

2. A general method of introducing functional discrepancy in existing models was

discussed and the framework of FIML to discover such discrepancy was pre-

sented. The framework consists of two principal steps. First, data is used
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to infer the spatial distribution of the discrepancy for many configurations by

solving inverse problems. The inverse solutions are then used to construct a

generalized regression model using machine learning.

3. Bayesian and deterministic approaches to frame and solve inverse problems were

discussed. The optimization problem encountered in the solution of inverse

problems was presented, along with discussion of the discrete adjoints required

for sensitivity calculation.

4. Finally, various facets of training a machine learning algorithm were discussed

followed by description of the two algorithms used for this work: neural-network

(NN) and AdaBoost.
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CHAPTER III

Numerics

The compressible form of the Reynolds-averaged Navier-Stokes equations are dis-

cretized using unstructured finite-volume based schemes[72, 116, 22, 25, 111]. This

chapter presents details about the spatial and temporal discretization. Implementation-

related aspects of the discrete adjoint framework are discussed.

3.1 Compressible RANS Equations

In Chapter I, the incompressible Navier-Stokes equations were discussed for sim-

plicity. Fluid flow is inherently compressible and the effects of compressibility increase

with the flow Mach number. Therefore, we solve the compressible form of the NS

equations. The compressible form of the Reynolds-averaged Navier-Stokes equations

is given by,

∂U

∂t
+
∂Fi

∂x
+
∂Gi

∂y
+
∂Hi

∂z
=
∂Fv

∂x
+
∂Gv

∂y
+
∂Hv

∂z
+ S, (3.1)

where, U is the vector of conserved flow variables. Fi, Gi, Hi are the vectors repre-

senting inviscid fluxes and Fv, Gv, and Hv are the vectors representing the viscous
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fluxes. S is the source term vector. The vector U is given by,

U =



ρ

ρu

ρv

ρw

e

ρΦ



, (3.2)

where, ρ is the density, u, v, w, are the three components of velocity, e is the to-

tal energy per unit volume, and Φ is a vector of operational variables used in the

turbulence model. Pressure p is calculated using the following constitutive relation,

e =
p

γ − 1
+

1

2
ρ
(
u2 + v2 + w2

)
, (3.3)

where, γ is the ratio of the heat capacities at constant pressure and volume. The

inviscid and the viscous fluxes are given by,

Fi =



ρu

ρu2 + p

ρuv

ρuw

u(e+ p)

ρuΦ



, (3.4)
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Gi =



ρv

ρvu

ρv2 + p

ρvw

v(e+ p)

ρvΦ



, (3.5)

Hi =



ρw

ρwu

ρwv

ρw2 + p

w(e+ p)

ρwΦ



, (3.6)

Fv =



0

τxx

τyx

τzx

uτxx + vτyx + wτzx − k ∂T∂x
ρΦ′x



, (3.7)

Gv =



0

τxy

τyy

τzy

uτxy + vτyy + wτzy − k ∂T∂y
ρΦ′y



, (3.8)
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Hv =



0

τxz

τyz

τzz

uτxz + vτyz + wτzz − k ∂T∂z
ρΦ′z



. (3.9)

Following the Newtonian fluid assumption and the Boussinesq approximation for

turbulence modeling, the stress tensor (τij) is given by,

τij = 2 (µ+ µt)

[(
∂ui
∂xj

+
∂uj
∂xi

)
− 1

3

∂uk
∂xk

δij

]
, (3.10)

where, µ and µt are the laminar and turbulent viscosity respectively. The temperature

dependence of the laminar viscosity is modeled using the power law,

µ = µref

(
T

Tref

)2/3

, (3.11)

where the reference conditions are specified as a part of the problem setup. Oper-

ational variables contained in Φ are used to evaluate the turbulent viscosity. The

coefficient of the thermal conductivity is related to the viscosity using laminar and

turbulent Prandtl numbers,

k =
µCp
Pr

+
µtCp
Prt

. (3.12)

Pr = 0.72 and Prt = 0.9 are used for this work. Diffusive terms for the turbulence

model are of the form,

Φ′x =
1

ρ
µeff

∂Φ

∂x
,Φ′y =

1

ρ
µeff

∂Φ

∂y
,Φ′z =

1

ρ
µeff

∂Φ

∂z
. (3.13)
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The expression of µeff depends on the specific model. The RANS equations are closed

using the ideal gas law,

p = ρRT,

where R is the gas constant. No body-forces are assumed, therefore, the source term

is nonzero only for the turbulence model and is given by,

S =



0

0

0

0

0

SΦ



, (3.14)

where SΦ is the source term associated with the turbulence model.

3.2 Spatial Discretization

The governing equations are discretized in space using cell-centered finite-volume

schemes. The governing equations are integrated over a cell-volume and the diver-

gence theorem is applied to transform the volume integral of the flux gradients to a

surface integral of fluxes. This results in the following discretized form,

∂U

∂t
+

1

V

∑
f

(Fi(U)−Fv(U))Af + S = 0, (3.15)

where, V is the cell-volume and U is averaged over the cell volume and defined at

the cell center. Fi and Fv are the projections of the inviscid and viscous flux vectors,

respectively, on the area vector of the face f with an area of Af . Si is the source
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term averaged over the cell volume. The governing equation can be written in the

following form,

∂Ui

∂t
= −R(U), (3.16)

with the residual R(U) defined as,

R(U) = − 1

V

∑
f

(Fi(U)−Fv(U))Af − S. (3.17)

The fluxes are evaluated at the faces using the solution U defined at the cell-

centers. The inviscid and viscous fluxes are evaluated differently because of the dif-

ference in the physical and mathematical nature of these fluxes.

3.2.1 Calculation of the Inviscid Fluxes

The inviscid fluxes are calculated by solving a Riemann problem at the cell in-

terface. Given a left (subscript L) and a right (subscript R) solution state at t = 0,

a Riemann problem involves evaluating the solution at the interface for t > 0. The

Riemann problem has an exact solution and requires solving a non-linear algebraic

equation using fixed-point iteration. In practice, the exact solution is expensive as the

Riemann problem is solved at every cell interface. Therefore, approximate Riemann

solvers are used, which are based on approximations of the exact eigenstructure of

the interface solution.

Harten-Lax-van Leer-Contact (HLLC)[104] approximate Riemann solver is used

for this work . Fig. 3.1(a) shows the structure of the exact solution of a Riemann

problem with the interface at x = 0. Fig. 3.1(b) shows the structure for the approx-

imate HLLC flux. The inviscid flux at the interface in HLLC is given by,
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Figure 3.1: Characteristics of the actual Euler equations and the HLLC approxima-
tion.

FHLLC =



FL 0 ≤ SL

F?L = FL + SL(U?L −UL) SL ≤ 0 ≤ S?

F?R = FR + SR(U?R −UR) S? ≤ 0 ≤ SR

FR 0 ≥ SR

(3.18)

where FL and FR are evaluated using the left UL and right UR state respectively. S?

is an approximation to the velocity of the contact discontinuity. U?,L and U?,R are

the solutions to the left and right of the contact discontinuity given by,

U?K = ρK

(
SK − uk
SK − S?

)



1

S?

vK

wK

eK
ρK

+ (S? − uK)
[
S? + pK

ρK(SK−uK)

]
ΦK



(3.19)

for K = L or R. The velocity of the contact discontinuity is given by,

S? =
pR − pL + ρLuL(SL − uL)− ρRuR(SR − uR)

ρL(SL − uL)− ρR(SR − uR)
. (3.20)
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The fluxes are evaluated given the left and right wave speeds, which are calculated

using the Roe averaging of the left and the right state. The expressions for the

wave-speeds are given by,

SL = min{ũ− ã, uL − aL}, (3.21)

SR = min{ũ+ ã, uR + aR}. (3.22)

The Roe average quantities are evaluated using the following relations,

ũ =

√
ρRuR +

√
ρLuL√

ρR +
√
ρL

, (3.23)

hK =
γpK
ρK

+
γ − 1

2
u2
K , (3.24)

,

h̃ =

√
ρRhR +

√
ρLhL√

ρR +
√
ρL

, (3.25)

ã =

√
h̃− γ − 1

2
ũ2. (3.26)

The accuracy of the inviscid flux given by equation 3.18 is governed by the defini-

tion of the left and the right state. A first-order accuracy is obtained by setting the

left and right state as the solution at the left and the right cell. Higher order accuracy

can be achieved by using information of the solution gradients and solution at the

neighboring cells. A second order approximation is obtained by using the following

reconstruction,

φKf = φK + ψf∇φ|K · rf (3.27)
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for K = L or R, φK and ∇φ|K contains the solution and its gradient on the Kth

side of the interface. rf is a vector from the center of the cell to the center of the

face. A limiter ψp preserves the monotonicity of the reconstruction to avoid spurious

oscillations in the solution. The limiter used for this work[108] is given by,

ψf =


ψ
(
δ+
δ−

)
, δ+ = φmax − φp φf > φp

ψ
(
δ+
δ−

)
, δ+ = φmin − φp φf < φp

1 φf = φp

, (3.28)

where δ− = φf − φp, and, φf is the interpolated value of the solution at the face

f .

ψ

(
δ+

δ−

)
=

δ2+
δ2−

+ 2δ+
δ−

+ ε2

δ2−

δ2+
δ2−

+ δ+
δ−

+ 2 + ε2

δ2−

, (3.29)

ε = Kφref , (3.30)

with K = 0.01. The required gradients at the cell centers are calculated using the

Green-Gauss theorem, which results in the follow expression,

∇φ =
1

V

∑
facesi

φf ~Af . (3.31)

3.2.2 Calculation of the Viscous Fluxes

The viscous fluxes do not require special treatment because of their elliptic nature.

Their evaluation requires the projection of gradient of the solution on the face area-

vector, which is calculated using the following expression[47],

∇φ|f ·Af =
φnbr − φp
|xnbr − xp|

+
1

2
(∇φ|p +∇φ|nbr) · (Af − αfsf ) (3.32)
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where, sf is a vector connecting cell center and the center of the face f and

αf = sf ·Af . Neighbor (nbr) is the cell which shares the face f with cell p. x’s are

the cell center coordinates.

3.3 Temporal Discretization

In the semi-discrete form, the governing equation can be written as,

dU

dt
= −R(U). (3.33)

While the evaluation of the residual R(U) is discussed in the previous section, this

section deals with the scheme to evolve the solution in time. A time-marching scheme

is explicit when the residual is evaluated at a known time instant. A simple time-

marching scheme, forward-Euler, is given by,

Un+1 = Un −R(Un)∆t. (3.34)

The forward-Euler has a very limited stability condition which restricts the max-

imum time step ∆t. All the problems in this thesis are steady, therefore we use an

implicit scheme which can support large time steps. A simple implicit time-marching

scheme, backward-Euler, is given by,

Un+1 = Un −R(Un+1)∆t. (3.35)

The residual R(Un+1) cannot be calculated directly as Un+1 is not known. It is

therefore approximate using a Taylor series expansion around Un, which leads to the

following expression,

Un+1 = Un −
(

R(Un) +
∂R

∂U
|Un ∆U +O(∆U2)

)
∆t. (3.36)
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Neglecting the second order terms, the expression can be simplified as,

(
I

∆t
+
∂R

∂U

)
∆U = −R(Un) (3.37)

where I is an identity matrix and ∆U = Un+1 − Un. Note that calculating ∆U

requires solving a sparse linear system and we need the Jacobian of the residual to

build this. The inviscid and viscous flux Jacobians are evaluated exactly[72] while

only the diagonal components of the Jacobian of source terms are used because of

their complex nature.

Linear Solver

The Portable Extensible Toolkit for Scientific Computation (PETSc)[3] linear al-

gebra library is used to solve the linear systems involved with the backward-Euler

time integration and also to solve the discrete adjoint equation (3.38). PETSc pro-

vides a comprehensive set of tools for solving linear and non-linear problems. In most

cases, a generalized minimal residual method (GMRES)[85] with block-Jacobi pre-

conditioner is used. In cases with very high Jacobian matrix condition numbers, ILU

or LU based preconditioners are used. Details about these algorithms can be found

in [84].

3.4 Turbulence Models

A broad set of RANS based turbulence models have been implemented and used

in our in-house solver. This list includes one equation: Spalart-Allmaras[99], two

equation Wilcox’s k−ω[113], k− ε, k−ω SST[63], Menter’s γ−Reθ based transition

model[64], and the Wilcox full Reynolds stress closure stress-ω[113] model. While

the framework used in this chapter has been utilized to enhance many turbulence

models, the results presented in this thesis involves SA and Wilcox’s k−ω. Appendix
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A contains the mathematical formulation of these two models.

3.5 Discrete Adjoint

Solution to an inverse problem requires calculation of the sensitivity of the objec-

tive function J with respect to the introduced discrepancy. As described in section

2.2.2.1, discrete adjoints[37] are used to evaluate these gradients. Calculation of dis-

crete adjoints requires solution of the following linear system,

[
∂R

∂U

]T
Ψ = −

[
∂J

∂U

]T
. (3.38)

where, Ψ is the adjoint variable, note that the dimensions of Ψ are same as that of

U. The exact Jacobian of the residual vector and gradient of the objective function

is required in the adjoint equation. Once these are known, the linear system is

solved using iterative methods. The presence of second-order reconstruction, flux

vector splitting, and non-linear source terms in turbulence models, make the analytical

evaluation of the Jacobian a laborious and error-prone task. In the following sections,

other techniques of evaluating the Jacobian are discussed.

3.5.1 Finite Difference

In the finite difference formulation, partial derivatives involved in the Jacobian

are evaluated by perturbing an element of the solution vector by a small value ε.

One column of the Jacobian matrix using a forward difference formulation has the

following form,

∂R

∂U
|,j=

R(U + εej)−R(U)

ε
(3.39)

where ej is a vector containing zeros except for the j’th element, which is one. The

cost of a finite difference approximation is proportional to the size of the input vector

U. Theoretically, the error in the finite difference approximation reduces with ε.
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Figure 3.2: Error in the derivative calculation for a test function function f(x) = x4

at x = 1.

However, because of the finite precision of the floating point representation, the finite

difference approximation suffers from an increase in error with reduction in ε below

a threshold value of ε. Fig. 3.2 shows the error for a simple test function. In cases

where accuracy upto the machine precision is important, finite difference should be

avoided.

3.5.2 Complex-Step Differentiation

In a complex-step differentiation[61], the function is evaluated by perturbing the

solution in the imaginary space. j’th column of the Jacobian matrix is given by,

∂R

∂U
|,j= Im

[
R(U + ιεej)

ε

]
(3.40)

where ι =
√
−1, and Im[x] returns the imaginary part of x. The formulation is

derived by using a Taylor series expansion of R(U + ιεej) around U. This form

of approximation does not suffer from the cancellation error and therefore the error

reduces with decreasing ε to machine precision, as shown in Fig. 3.2. Implementation

of the complex-step differentiation requires the computer code to be compatible with

60



complex-number arithmetic, which may be easy or difficult based on the programming

language and architecture of the code.

3.5.3 Automatic Differentiation

In automatic differentiation[80] or algorithmic differentiation, the chain rule of

differentiation is applied recursively to evaluate the derivatives. The chain rule can

be applied in a forward or a backward manner resulting in two different modes. The

derivatives obtained using automatic differentiation are exact as it does not involve

any approximation and are precise up to the numerical precision. Because of its sys-

tematic nature, the process of calculating derivatives using algorithmic-differentiation

can be automated. Various tools exist to calculate gradients and the Jacobian of a

general non-linear function. The tools either generate a transformed source code[42, 6]

or use operator overloading[40] to calculate the gradients. We use an operator over-

loading based tool, ADOL-C[40], to calculate the exact Jacobian of the residual and

other partial derivatives required for the discrete adjoints.

3.6 Summary

• The compressible RANS equations are solved using a finite-volume based dis-

cretization on unstructured meshes. HLLC approximate Riemann solver is used

to evaluate the inviscid flux using a second order gradient based reconstruction.

• Implicit backward-Euler temporal scheme is used to obtain the steady solution

of the RANS equations. A linear algebra library PETSc is used to solve the

linear systems using iterative GMRES algorithm.

• Discrete adjoints are used for the calculation of the sensitivities of the objective

function to the design variables. The discrete adjoint framework is based on an
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automatic-differential library, ADOL-C, which is used to calculate the required

intermediate partial derivatives exactly.
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CHAPTER IV

Proof-of-concept of Data-driven Turbulence

Modeling

This chapter presents a proof of concept study of the efficacy of the field-inversion

and machine-learning (FIML) framework. The framework is used with a synthetically

generated data-sets from a new model and thus there is virtually no uncertainty in

the data or the flow setup. The augmented model is then used for prediction for

the same flow-setup used for training. This chapter tests the framework under a

best-case scenario and attempts to establish a benchmark verification case for data-

driven turbulence modeling, while the next two chapters focus on more realistic flow

problems.

We consider an internal flow in a planar channel with a concave curvature. The

objective is to augment the Spalart-Allmaras (SA)[99] model using synthetically gen-

erated data. The data is generated using an analytic rotation curvature correction

SA–RC[100, 88] to the SA model. There are minimal uncertainties as the solver,

mesh, and flow conditions are identical for both the data generation and the FIML

steps. In most practical situations, measurement noise and inconsistencies are always

present due to uncertainties associated with geometry, discretization, governing equa-

tions, boundary conditions, etc. Additionally, as the analytic form of the correction is

known, parallels can be drawn between the FIML results and the analytic correction.
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As the data is synthetically generated, full-field profiles of velocity, eddy-viscosity,

and Reynolds stresses are available which can be used for model augmentation and

evaluation. We compare the inverse solutions obtained using the full-field velocity

to the ones obtained using only the skin friction and pressure. Multiple ML models

are trained using different inverse solutions and combinations of local flow features,

and are compared in a predictive setting. It is shown that the FIML based augmen-

tation is qualitatively similar to the analytic correction used to generate the data.

Turbulent flows over curved surfaces are subjected to streamwise pressure gradients

and additional mean strains. The flow may be stabilized or destabilized depending

on the nature of curvature[8, 71]. Surface curvature can also lead to the creation of

small-scale vortical structures[86], adding complex features to the flow-field.

4.1 Curvature Correction and Turbulence Models

Production terms in the equations of Reynolds stress can intrinsically capture

the rotation and curvature effects. These terms are not present in most linear eddy-

viscosity based models because the trace of the Coriolis forces in the Reynolds stress

equations vanishes, and hence does not contribute to the turbulence kinetic energy

(TKE)1. The modest improvement in accuracy provided by the full Reynolds stress

closure, however, has not justified the cost and complexity associated with such mod-

els. Further, full Reynolds stress closures require explicit rotation and curvature

corrections to match the model output with the observations[102]. Therefore, lin-

ear eddy-viscosity closures are still preferred and have been explicitly sensitized to

capture rotation and curvature effects. Examples of such proposed corrections can

be found in [115, 100, 23]. In this chapter we use the SA–RC correction to the SA

model for generating the data and compare it with the FIML-augmented SA model.

1The production of TKE is exact, but the net result with other approximations lead to inaccu-
racies.
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The forms of the baseline SA model and the SA–RC correction are presented in the

following sections.

4.1.1 Baseline SA Model

The SA model for turbulent flows utilizes a differential equation for an operational

variable ν̃, which is used to estimate the eddy-viscosity. The details of the model are

provided in A.1. The SA governing equation has the following form,

Dν̃

Dt
= P (ν̃,Q)−D(ν̃,Q) + T (ν̃,Q), (4.1)

where P , D, and T are the production, dissipation, and diffusion terms, respec-

tively, and Q is a vector containing flow variables.

4.1.2 SA–RC Augmentation to the SA Model

The SA–RC correction introduced by Spalart & Shur[100] multiplies the produc-

tion term in equation 4.1 with a correction function fr1. fr1 is a function of two

Galilean-invariant non-dimensional variables r? and r̃. The model takes the following

form,

Dν̃

Dt
= fr1P (ν̃,Q)−D(ν̃,Q) + T (ν̃,Q), (4.2)

fr1 = (1 + cr1)
2r∗

1 + r∗
[
1− cr3tan−1(cr2r̃)

]
− cr1. (4.3)

where r∗ = S/ω, r̃ =
2ωikSjk

D4

(
DSij

Dt
+ (εimnSjn + εjmnSin) Ω′m

)
and D = 1

2
(S2 + ω2).

S is the strain rate tensor and ω is the vorticity tensor. More details on the constants

and intermediate functions can be found in [100].
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M∞ = 0.1

µ∞ = 1.7× 10−7

Reθ,inlet ≈ 1500

Inflow

Figure 4.1: Flow setup and geometry for the concave curvature case. The inlet
boundary layer is generated using a zero pressure gradient flat plate simulation.

4.2 Forward Problem

We consider flow in a planar channel with a concave curvature (Fig. 4.1). The inlet

boundary layer thickness is set to match the LES by Arolla & Durbin[1]. The inlet

momentum thickness Reynolds number Reθ is approximately 1500. The incoming

boundary profile is generated by running a zero pressure gradient flat plate simulation

with the baseline SA model. The lower wall is set to a no-slip boundary condition,

whereas the top wall is inviscid. A characteristic based boundary condition is used for

the outlet. The mesh is generated by extracting a plane from the LES and skipping

every other node in the streamwise direction.

The baseline SA model and the SA–RC augmentation are used to obtain the flow

solutions. Fig. 4.2 shows the skin friction and surface pressure at the lower wall

using the two models. The SA–RC predictions are closer to the LES prediction while

the baseline SA model fails to capture the effect of the curvature. While notable

discrepancies are present between the LES and the SA–RC solution, for this chapter,

the SA–RC solution is considered to be the truth. We use this SA–RC solution as the
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(a) Skin friction (b) Surface pressure

Figure 4.2: Comparison of the skin friction and the surface pressure coefficients at the
lower wall using the LES, SA model, and SA–RC model. The skin friction predictions
are much improved using SA–RC. S represents the streamwise distance.
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(c) Inverse – Cp

Figure 4.3: Convergence of the steepest descent algorithm for the three inverse prob-
lems.

data for the data-driven augmentation.

The next sections detail the FIML procedure applied to the present case.

4.3 Application of the FIML Framework

As described in Chapter II, the procedure for the model augmentation begins with

the introduction of a functional discrepancy in an existing (or baseline) model. We

add a correction function (or discrepancy), β(x), to the baseline SA model as follows
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(a) SA–RC (b) Inverse SA – U

(c) Inverse SA – Cf (d) Inverse SA – Cp

Figure 4.4: Inferred non-dimensional discrepancy field (β(x)) using three different
objective functions and the equivalent term fr1 in the SA–RC model.
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(a) SA–RC (b) Inverse SA – U

(c) Inverse SA – Cf (d) Inverse SA – Cp

Figure 4.5: Inferred dimensional discrepancy field (δ(x)) using three different objec-
tive functions and the equivalent term in the SA–RC model.
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Figure 4.6: Comparison of the skin friction and surface pressure coefficients at the
lower wall using the SA–RC, baseline SA model, and inverse SA model using three
different objective functions. S represents the streamwise distance.
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Figure 4.7: Tangential velocity profile at different streamwise locations. θ = 0◦ marks
the onset of the curvature and θ = 90◦ marks its end.
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Figure 4.8: SA eddy-viscosity profile at different streamwise locations. θ = 0◦ marks
the onset of the curvature and θ = 90◦ marks its end.
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Figure 4.9: Reynolds shear-stress −u′ru′θ profile at different streamwise locations.
θ = 0◦ marks the onset of the curvature and θ = 90◦ marks its end.
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Dν̃

Dt
= β(x)P (ν̃,Q)−D(ν̃,Q) + T (ν̃,Q). (4.4)

The introduction of the correction function β(x) is equivalent to adding a term

δ(x) = (β(x) − 1)P (ν̃,Q). The form of β(x) makes the correction function non-

dimensional with a prior (baseline) value of unity. This setup also improves the

conditioning of the inverse problem as the magnitude of the correction function will

be O(1) in the entire domain.

The introduction of the discrepancy does not just modify the production term but

changes the net balance of the source terms. Its form does not limit the effectiveness

of the discrepancy as the effects of turbulence are not important in the regions of zero

production. From equations 4.2 and 4.4, it is clear that β(x) and fr1 serves the same

purpose and the FIML can be expected to produce a form of β(x) similar to fr1.

Next, we follow the FIML procedures to discover the form of β(x) which can

improve the prediction for a given flow setup.

4.3.1 Field Inversion

Inverse problems are solved to infer the spatial distribution of the discrepancy

required for the model prediction to match the data. The data for the inverse problems

comes from the SA–RC solution. Since the data has no uncertainty, we set a low value

for the Tikhonov regularization parameter λ ≈ 10−12. A low value of λ reflects a high

level of confidence in the data.

The quality of the inverse solution, measured as the difference in the flow-field

using the inferred discrepancy and the data, is dependent on the nature of the data.

In general, full-field data is expected to be better than using surface data. Moreover,

the surface data is expected to be better than using integral data like lift or drag.

Often the choice of data used for inversion is made by the scarcity of the data. As

the data is synthetically generated, we have access to full fields and various surface

73



quantities. Therefore for the current case, we compare the quality of the inverse

solution using three different data types: (1) full-field velocity (Inverse SA − U),

(2) lower wall skin friction (Inverse SA − Cf ), and (3) lower wall pressure (Inverse

SA− Cp). The objective functions for these cases have the following form,

JU(β) =

Ncells∑
i=1

[Ui − Ui,SA−RC ]2 + λ

Ncells∑
j=1

[βj − 1]2, (4.5)

JCf
(β) =

Nwall∑
i=1

[Cf,i − Cf,i,SA−RC ]2 + λ

Ncells∑
j=1

[βj − 1]2, (4.6)

JCp(β) =

Nwall∑
i=1

[Cp,i − Cp,i,SA−RC ]2 + λ

Ncells∑
j=1

[βj − 1]2. (4.7)

While all the available data, including full-field eddy-viscosity and Reynolds stresses

are used to evaluate the quality of the inverse solutions, we do not use them to inform

the solution.

Steepest descent, with fixed step size, is used to solve the inverse problems and

the inverse iterations are terminated when the objective function attains a steady

state. Fig. 4.3 shows the convergence of the inverse iterations for all the three cases.

A drop in the objective function of at least one order of magnitude is achieved in all

cases.

Fig. 4.4 shows the inferred correction term β for the three cases as well as the

SA–RC correction term fr1. The SA–RC correction terms takes non-zero values away

from the wall, but it does not affect the solution because the production term is zero

in those regions. Accordingly, we compare the net effect of the correction δ, which is

(fr1− 1)P for the SA–RC and (β− 1)P for the inverse solutions. This net correction

term is shown in Fig. 4.5. There are qualitative similarities between the various

cases. In all the cases, the net production is increased in the curved region. This

result is expected based on our physical understanding of the problem. The inferred
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term with full-field velocity data is closer to the SA–RC term, followed by the inverse

solutions using skin friction Cf and surface pressure Cp. This is an expected trend;

more data should lead to a more informed solution.

Fig. 4.6 shows the skin friction and the pressure at the lower wall for the different

inversion cases. The two quantities obtained using the inferred discrepancy fields are

closer to the SA–RC than the baseline SA model. Skin-friction using velocity data

and skin-friction data are nearly identical to the SA–RC solution.

Fig. 4.7 shows the tangential velocity profiles at different streamwise locations.

Improvements in the velocity profiles are observed for all the cases. Fig. 4.8 and

4.9 shows the SA eddy-viscosity and the Reynolds shear-stress profiles at various

streamwise locations. The improvements in the Reynolds shear-stress are more pro-

nounced than the SA eddy-viscosity. These differences are reflective of the fact that

the flow solution is influenced by the derivative of Reynolds shear-stress and not the

eddy-viscosity alone. The inversion using velocity recovers the Reynolds shear-stress

almost perfectly at all the locations. Skin-friction based inversion consistently recov-

ers the shear-stress in the inner layer, but this trend is not so robust in the log-layer

and the outer layer. The pressure based inversion has the poorest performance.

Improvements in the auxiliary field quantities add to the confidence in the inverse

solutions. It shows that the inversion is not just over-fitting the model to the data.

It is especially pertinent to the cases where the surface data is used, and we observe

improvements in the field quantities such as velocity and Reynolds stresses. While

the quality of the three inverse solutions varies, the improvements are substantial in

comparison to the baseline SA model.

The spatial form of the inferred discrepancy β can be used by a modeler to suggest

an analytical correction to the model. However, the ability of a human-modeler to find

patterns in data is limited. Therefore, we use machine-learning (ML) to reconstruct

β as a function of the flow solution.
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(a) Colored by the production term

(b) Colored by the analytic fr1 evaluated at
these points

(c) Colored by the inferred discrepancy β

Figure 4.10: Scatter plot of the two features used in SA–RC model. The features are
evaluated at the inverse solution and are colored by: (a) Production, (b) analytic fr1,
and (c) inferred β. The region of interest is enclosed in the green rectangle. Outside
this region the production term is zero. Therefore, differences between fr1 and β
outside this region will have minimal impact on the flow solution.
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Model Label Training Data Features, η

Model 1 Inverse - Cf r̂, r?, ρ|S|d2
wall/µL

Model 2 Inverse - Cf ρ|S|d2
wall/µL, µT |S|/τwall, dwall

Model 22 Inverse - U ρ|S|d2
wall/µL, µT |S|/τwall, dwall

Model 3 Inverse - Cf r̂, r?, µT |S|/τwall
Model 4 Analytic fr1 r̂, r?

Table 4.1: List of ML models along with the data and flow-features used for training.

4.3.2 Machine Learning Training

In the FIML framework, the ML algorithms are used to project the spatial function

β(x) onto a feature space to obtain β(η(Q)), which can then be used for prediction.

The selection of features η and the data used for training the ML model have a

significant impact on the quality of the ML model. In this work, features are selected

on the basis of domain knowledge. Table 4.1 shows the different ML-based models

with the data and the flow-features used for training. As seen in the previous section,

the quality of the inverse solution depends on the data used for inversion. The same

trend is expected with the ML models as the inverse solutions are used for training

the models. If the training is “perfect”, the prediction using an ML-based model

should be identical to the inverse solution used for training.

The training data for model 2 is the inverse solution obtained using skin friction

Cf . The flow features are

η1 = ρ|S|d2
wall/µL, (4.8)

η2 = µT |S|/τwall, (4.9)

η3 = dwall, (4.10)

where τwall and dwall are the wall shear-stress and distance of the nearest wall. While

other sets and combinations of features are explored, including the features used in the

77



(a) CV − 1 (b) CV − 2 (c) CV − 3 (d) CV − 4

Figure 4.11: Test results for Model 2 using 4-fold cross-validation and the AdaBoost
algorithm.

SA–RC correction (r̂ and r?), these features produced the most optimal ML model.

The ML algorithm AdaBoost is used to find the functional β(η1, η2, η3) using 4-

fold cross-validation. For all the stages of cross validation, the minimum coefficient

of determination for the prediction of test data points was 0.99. Fig. 4.11 shows the

predictions for these test data-points; clearly it represents a good ML training.

Dν̃

Dt
= β(η)P (ν̃,Q)−D(ν̃,Q) + T (ν̃,Q) (4.11)

Once the ML model is trained, the baseline RANS equations along with the ML-

based augmentation (Eq. 4.11) are then solved to obtain predictive results. Theoreti-

cally, it is possible to use these models for any other geometry or flow setup, however,

improvements are expected for the flows which are similar. Since the goal in this

chapter is to present the results for an idealized scenario, we use the augmentation

for prediction on the same flow setup used to generate the training data.

The ML augmentation interacts with the RANS equations in a non-linear and

coupled manner. Even with “perfect” training, it is not necessary that the converged

solution with the ML augmentation will be similar to the inverse solution used for

training. It is especially true with iterative solvers as the intermediate flow-features η

can be radically different from the steady-state features used for training. Therefore,

the ultimate test of a ML-based augmentation is when it is used for prediction in an

iterative solver.
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(a) Skin friction (b) Surface pressure

Figure 4.12: Comparison of the skin friction and the surface pressure coefficients at
the lower wall using the SA–RC, the baseline SA model, and the ML augmented SA
model 2. S represents the streamwise distance.
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Figure 4.13: Reynolds shear-stress profile at different streamwise locations. θ = 0◦

marks the onset of the curvature and θ = 90◦ marks the end of the curvature. Legends:
— SA–RC, — Base SA, — Inverse SA - Cf and — ML SA model 2.
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(a) Inverse SA – Cf (b) Model 2

Figure 4.14: Inferred discrepancy field β(x) using Cf and the ML SA model 2 pre-
dicted β(η) at the converged solution.

(a) CV − 1 (b) CV − 2 (c) CV − 3 (d) CV − 4

Figure 4.15: Test results for Model 22 using 4-fold CV and the AdaBoost algorithm.

4.3.3 Machine Learning Prediction

The ML-based models are used in an iterative solver. Fig. 4.12 shows the predicted

skin friction using model 2. In most regions, the predicted skin-friction is close to the

SA–RC skin-friction. The error is significantly smaller when compared to the baseline

SA model. Similar improvements can be observed in the surface pressure. Fig.

4.13 shows the predicted Reynolds shear-stress at various streamwise locations. The

Reynolds shear-stress predictions are almost identical to the inverse solution. Also,

as with the inverse solution, the predictions are significantly accurate in comparison

with the baseline model. Further, Fig. 4.14 shows the discrepancy field predicted

using model 2, which is a good representation of the corresponding inverse solution.

Model 22 is trained using a setup similar to the model 2. However, for this model,

the inverse solution obtained using velocity is used as training data. Fig. 4.16 shows
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(a) Skin friction (b) Surface pressure

Figure 4.16: Comparison of the skin friction and the surface pressure coefficients at
the lower wall using the SA–RC, baseline SA model, and ML augmented SA model
22. S represents the streamwise distance.
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Figure 4.17: Reynolds shear-stress profile at different streamwise locations. θ = 0◦

marks the onset of the curvature and θ = 90◦ marks the end of the curvature. Legends:
— SA–RC, — Base SA, — Inverse SA - U and — ML SA model 22.
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(a) Inverse SA – U (b) Model 22

Figure 4.18: Inferred discrepancy field β(x) using U and the ML SA model 22 pre-
dicted β(η) at the converged solution.

the skin friction and pressure at the lower wall. The ML augmented model shows

significant improvement in all regions. Moreover, Fig. 4.17 shows the Reynolds stress

profiles at different streamwise locations. It can be seen that the prediction using the

ML augmented model is almost identical to the inverse solution, which is also close

to the SA–RC prediction. Fig. 4.18 shows the discrepancy field predicted using the

ML-based augmentation and again it is a good representation of the inverse solution.

One of the drawbacks of model 2 and 22 is the presence of non-local quantities:

τwall and dwall. The non-local quantities may not be desirable in a parallel solver as

it involves global communications. Further, dwall in itself is not an ideal feature as it

is not Galilean invariant.

The problem of non-local features can be avoided by using features which are local

and locally non-dimensional. Models 1 and 3 are trained on such flow-features. Two

of the features are identical to the ones used in the SA–RC correction. A third feature

is required as the two features were inadequate to train a ML model. The models

are trained on the inverse solution based on skin friction. The predictions using these

models are shown in Fig. 4.19. While the solution is better than the baseline model,

the quality is worse than what is predicted by Model 2. It should be noted that this

set of flow-features involves calculating the second derivative of velocity.
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(a) Skin friction (b) Surface pressure

Figure 4.19: Comparison of the skin friction and the surface pressure coefficients at
the lower wall using the SA–RC, baseline SA model, and ensembles of various ML
augmented SA model. S represents the streamwise distance.
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Figure 4.20: Reynolds shear-stress profile at different streamwise locations. θ = 0◦

marks the onset of the curvature and θ = 90◦ marks the end of the curvature. Legends:
— SA–RC, — Base SA, and — ML SA model 4.
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(a) Analytic evaluation of fr1 (b) Model 4

Figure 4.21: Comparison of the analytic correction fr1 with the ML reconstruction
of fr1.

(a) (b)

Figure 4.22: Absolute difference between the analytic correction fr1 and the ML
reconstruction of fr1.
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4.3.4 Learning the Analytic Correction Without Inversion

As a final test, we use ML to learn the analytical correction function fr1. The

features for the training, r̂ and r?, are extracted at the inverse solution however,

instead of reconstructing the inverse discrepancy field, we evaluate the analytic fr1

at these points and reconstruct the function fr1,ML(r̂, rstar). We label this as model 4

and use it for prediction. The ML training for this reconstruction is almost perfect,

and the coefficient of determination is greater than 0.99. Fig. 4.21 compares the

contour of the analytic fr1 with the ML fr1 at the converged solution. While most of

the characteristics are reproduced accurately, the model fails to provide a flow field

which is similar to the SA–RC.

This failure is apparent in skin friction and pressure in Fig. 4.19 and in the

Reynolds stresses in Fig. 4.20. Reynolds stresses are identical to the SA–RC at three

out of four locations but differ significantly around θ = 60◦. This difference is due to

the differences in the fr1 prediction in the same region as shown in Fig. 4.22. The

reason for this discrepancy even with almost perfect (R2 = 0.99) training is because

of the high gradient of the function fr1 with respect to r̂. Even a small imperfection

in training can set fr1 to a non-zero value in where it should be zero, and vice versa.

In comparison, the inferred β is a relatively well behaved and smooth function and

thus less prone to such issues. This behavior also supports the claim that the real

test of any ML augmentation is when it is used in an iterative RANS solver, and the

quality of ML training is a necessary but not sufficient measure of the quality of the

model prediction.

4.4 Summary

This section summarizes the information presented in the chapter.

1. A rotation and curvature augmentation to the SA model, SA–RC, was used to

85



generate data to test the FIML approach for model augmentation. The SA–RC

augmentation and the discrepancy introduced in the FIML approach have the

same form, and they are expected to have a similar form.

2. Multiple inverse problems were solved using full-field velocity data, surface skin

friction, and surface pressure. In all the cases the inverse solutions were sig-

nificantly more accurate than the baseline solutions. Velocity based inversion

recovers the Reynolds stress field with significant accuracy, while the accuracy

varies for the other two.

3. More comprehensive data (full-field velocity) was found to result in an inverse

solution with more accurate field quantities in comparison to the surface data-

based inversion. Depending on the quantity of interest, however, inference using

sparse surface data can be sufficient. This is useful when only sparse experi-

mental data is available.

4. Inverse solutions were reconstructed using machine-learning (ML) and used for

prediction in the RANS solver. The prediction using ML models were found to

be consistent with the corresponding inverse solution. All the ML based models

showed significant improvements compared to the baseline model.

5. The SA–RC analytic correction fr1 was replaced with its ML reconstruction in

the RANS solver. Prediction using the ML reconstruction was not on par with

the analytic correction, even with perfect training. The difference was because

of the relatively non-smooth nature of fr1 when compared to the inverse solution

β. This further emphasizes the importance of the inversion and avoiding ML

training on ad-hoc functions.
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CHAPTER V

Application to Adverse Pressure Gradient Flows

Turbulence models are often inaccurate in the presence of adverse pressure gradi-

ents (APG) and flow-separation. This largely limits the broader use of computational

fluid dynamics in complex problems. The following two chapters focus on such flows.

In this chapter, the Wilcox k − ω model[113] is augmented for flow over a smooth

bump. The flow over a bump consists of regions of favorable pressure gradients fol-

lowed by regions of adverse pressure gradients. The height of the bump controls the

intensity of the pressure gradients. The forward part of the bump stabilizes the tur-

bulence and reduces mixing, whereas the aft section produces the opposite effects.

The equilibrium-based eddy-viscosity models do not capture the effects of adverse

pressure gradients and underpredict mixing in the aft section, resulting in a lower

skin friction prediction than large-eddy simulations (LES).

In this chapter, the bump height and the incoming boundary layer properties are

varied, resulting in a total of 11 different cases. LES data from these cases is used to

infer discrepancies in the k−ω model. A comparison of the inverse solutions informed

by skin-friction and full-field velocity is presented. Machine-learning (ML) models are

trained on multiple combinations of the 11 inverse solutions, which are then used for

prediction.
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5.1 Forward Problem
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Figure 5.1: Labels for the various flow cases based on variation in the bump height
and inlet momentum thickness. Inverse solutions for the cases marked in the red box
are used to train model P.

The flow setup is based on a set of large-eddy simulations (LES) performed by

Durbin et al.[90]. The problem consists of an incoming turbulent boundary layer

with Reθ varying from 2000 to 4000 and the height of the bump ranging from 7%

to 14% of its length. Fig. 5.1 shows the labels of all 11 forward cases with different

bump heights and momentum layer thickness. Wilcox k − ω model[113] is used as

the baseline RANS model. The k − ω model is used in place of the SA model to

exhibit the generality of the FIML framework. Freestream conditions are selected

to match the LES. The incoming boundary layer is generated by running a zero-

pressure gradient flat-plate simulation and is enforced on the left boundary. A no-slip

boundary condition is used for the bottom wall, and characteristic-based freestream

boundary conditions are used for the top and the right boundaries. The solution is

driven to a steady state starting from a freestream initial condition.

Figs. 5.2 and 5.3 show the LES skin friction and surface pressure exhibiting the

differences in the flow and the adverse pressure gradient between various cases. The

flow over the bump H20-1 does not separate; H26-1 is on the verge of separation; and

H31-1 to H42-1 shows separation, as apparent from the skin friction (Cf ) in Fig. 5.2a.
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Figure 5.2: Comparison of the skin friction and pressure for bumps with different
bump heights from LES.
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Figure 5.3: Comparison of the skin friction and pressure for 3 different inlet momen-
tum thicknesses from LES.

As the bump height is increased, Cf over the bump increases. This is attributable to

a greater flow acceleration (Fig. 5.2b) over the crest. Fig. 5.4 shows the progressive

changes in velocity as the bump height is increased. A similar rise in the turbulent

shear-stress can be seen in Fig. 5.5. A threefold increase in turbulent shear-stress is

observed advancing from H20-1 to H42-1.

Fig. 5.6b shows that the turbulence kinetic energy (TKE) is suppressed in the

favorable pressure gradient regions of the H20-1 bump and enhanced in the adverse

pressure gradient regions. A similar but amplified trend can be seen over the H42-1
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Figure 5.4: Comparison of X-velocity at different streamwise locations.
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Figure 5.5: Comparison of turbulent shear-stress at different streamwise locations.
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(a) Umean (b) Turbulent kinetic energy

Figure 5.6: Contour plots of mean X-velocity and TKE for H20-1.

(a) Umean (b) Turbulent kinetic energy

Figure 5.7: Contour plots of mean X-velocity and TKE for H42-1.

bump (Fig. 5.7b). RANS fails to capture these high TKE regions accurately. The

flow separation in H42-1 case is also apparent in Fig. 5.7a, which shows a region of

backflow.

5.2 Application of the FIML Framework

Transport equations for turbulence kinetic energy (TKE) k and the time scale ω

are solved in the Wilcox k − ω model[113]. The discrepancy term can be introduced

in either or both of these equations. Introducing discrepancy in both the equations

provides more control to drive the inverse solution towards the data, but it also

deteriorates the already ill-conditioned inverse problem. While there is no preference

for one equation over the other, the ω equation is more ad-hoc than the k equation.

Consequently, we introduce the discrepancy to the transport equation of ω. The

discrepancy in the scale equation was sufficient to drive the model solution towards

data.

For the baseline Wilcox k−ω model, the transport equation for ω has the following
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form,

Dω

Dt
= P (k, ω,Q)−D(k, ω,Q) + T (k, ω,Q), (5.1)

where Q represents the Reynolds averaged conserved flow variables, P , D, and T

are the production, destruction and transport terms respectively. Details about the

individual terms are presented in section A.2. We introduce a spatially varying dis-

crepancy term, β(x), to the ω transport equation, which results in

Dω

Dt
= β(x)P (k, ω,Q)−D(k, ω,Q) + T (k, ω,Q). (5.2)

As clarified in the previous chapter, this mode of discrepancy introduction does

not restrict our ability to infer appropriate β(x) as the effect of turbulence will be

negligible in the region with zero production. Inverse problems are now solved to

infer the spatial distribution of the discrepancy β(x) for all 11 cases.

5.2.1 Field Inversion

Inverse problems are solved for all the cases shown in Fig. 5.1 using a skin-friction

based objective function. Full-field data and surface data are available from LES, and

hence for one of the cases, H20-1, we compare the inverse solutions informed by the

skin-friction and the full-field velocity. Objective functions using these two datasets

takes the following form

J(β) =

Nwall∑
i=1

(cf,i − cf,i,LES)2 + λ

Ncells∑
j=1

(βj − βj,prior), (5.3)

and

J(β) =

Ncells∑
i=1

(ui − ui,LES)2 + λ

Ncells∑
j=1

(βj − βj,prior), (5.4)

where u is the streamwise velocity and cf is the skin friction coefficient.
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Figure 5.8: The misfit (J1) and the regularization (J2) terms are used to fix the
regularization constant. For this representative case λelbow ≈ 10−6.

In the absence of any useful information regarding the uncertainty associated with

the data, we solve multiple inverse problems (for each case and type of objective) to

select the appropriate regularization factor λ. A very low value of λ leads to ill-

conditioning (and ill-posedness) and over-fitting of the model to data, while a high

λ limits model improvements. A value of λ is selected by obtaining inverse solutions

for a set of λ’s (10−10 < λ < 10−3) followed by plotting the misfit term (J1) and

the regularization term (J2) of the objective function and selecting the value of λ

corresponding to the elbow. Fig. 5.8 illustrates a representative J1 vs J2 curve which

results in λelbow = 10−6.

The inferred discrepancy fields using the skin friction based inversion are shown in

Fig. 5.10 and the corresponding solutions of the skin-friction are shown in Fig. 5.9.

The forward section of the bump results in a favorable pressure gradient, which stabi-

lizes the turbulent flow. The inverse solution captures this stabilization by increased

production of ω (regions with β(x) > 1). The downstream section is dominated by an

increase in turbulence with β(x) < 1. The increase is due to enhanced mixing which

is consistent with the LES as seen in Figs. 5.6b and 5.7b. The resulting skin friction

is almost identical to the LES data and displays the same degree of separation as

the LES. The shaded regions in Fig. 5.9 contain a number of inverse solutions with
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(i) H38-3 (j) H42-1 (k) H42-2

Figure 5.9: Skin friction for all the 11 cases. Shaded red region contains inverse
solutions for various 10−10 < λ < 10−6. Legend: — LES, — base k − ω and —
inverse k − ω using Cf .

λ ∈ [10−10, 10−3] which are used to select the optimal value λ. The solutions are

moderately sensitive to the regularization constant.

All the discrepancy fields in Fig. 5.10 have a qualitatively similar spatial distri-

bution. This trend can be exploited to suggest an analytical correction. However,

ML algorithms view data more comprehensively and can construct more complex

models than a human modeler. The details about the ML training and prediction to

reconstruct the discrepancy as a function of local flow quantities are discussed in the

section 5.2.2.
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(i) H38-3 (j) H42-1 (k) H42-2

Figure 5.10: Inferred spatial discrepancy field β(x) using skin friction data. The thick
black line marks the boundary layer edge.
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Figure 5.11: Comparison of skin friction obtained after inference using data for the
skin friction and the full-field velocity.
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5.2.1.1 Inverse solution using Cf vs. full-field velocity

To investigate the effect of data-type used for inversion, an inverse problem was

solved for H20-1 using the full-field velocity data (using the objective function in

equation 5.4). Fig. 5.11 compares the effect of using skin friction and the full field

velocity on the inverse skin friction. Figs. 5.12-5.17 compares the velocity, Reynolds

shear-stress and eddy-viscosity profiles at different stream-wise locations. The sim-

ilarity observed between the two inverse solutions justifies the usage of skin-friction

data for inversion. When using skin-friction as data, improvements in the field quan-

tities build confidence in the inverse solution. Notably, inversion doesn’t just imply

over-fitting the model to the data but can also infer a more “global” discrepancy.
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Figure 5.12: Flow solution at X/C = −0.16 obtained after inference using data for
the skin friction and the full field velocity.
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Figure 5.13: Flow solution at X/C = 0 obtained after inference using data for the
skin friction and the full field velocity.
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Figure 5.14: Flow solution at X/C = 0.33 obtained after inference using data for the
skin friction and the full field velocity.
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Figure 5.15: Flow solution at X/C = 0.66 obtained after inference using data for the
skin friction and the full field velocity.
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Figure 5.16: Flow solution at X/C = 0.98 obtained after inference using data for the
skin friction and the full field velocity.

5.2.2 Machine Learning Training

In line with Chapter IV, the AdaBoost algorithm is used to reconstruct the dis-

crepancy field as a function of local flow features using a 2-fold CV. We use the
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Figure 5.17: Flow solution at X/C = 1.31 obtained after inference using data for the
skin friction and the full field velocity.

following flow-features for training

η1 = ρ|S|d2
wall/µL, (5.5)

η2 = µT |S|/τwall, (5.6)

η3 = dwall, (5.7)

where τwall is the shear-stress at the nearest wall, dwall is the distance to the nearest

wall, and |S| is the local strain rate magnitude. Different combinations of the 11

inverse solutions are used to train an ensemble of models. These models are then

used in the RANS solver for predictions. Fig. 5.18 shows the training plot for a

model trained on inverse solutions for the H20-1 and the H26-1 case (model P, as

marked in Fig. 5.1). Coefficients of determination R2 for testing of the two folds are

0.92 and 0.91, which indicates a good training.

5.2.3 Machine Learning Prediction

The trained ML-based models are embedded in an iterative RANS solver for

predictions. The predicted skin friction for all the 11 cases are shown in Figs. 5.19

and 5.20. Figs. 5.21-5.26 show the velocity, Reynolds shear-stress, and eddy-viscosity

at different streamwise locations. Model P results in the best prediction over all the
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(a) Fold 1: Testing (b) Fold 2: Testing

Figure 5.18: Test results for model P using 2-fold CV and the AdaBoost algorithm.
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Figure 5.19: Skin friction predictions using the baseline k − ω (solid line) and the
AdaBoost-augmented model P (dashed line).

cases. Just by using the skin friction data in two cases, improvements are observed in

the full field quantities in the inner layer. The quality of predictions using other ML

models varies but demonstrates consistent improvements over the baseline model.

A more rigorous analysis is required to determine a priori the quality of a ML

model trained on a given combination. Nevertheless, some insight can be obtained by

examining the pairwise scatter plots of the flow features (Fig. 5.27). The points in

green, which are used to train model P, are a good proxy of the entire data-set shown

in red. While using the entire inverse data-set would theoretically produce the most
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(i) H38-3 (j) H42-1 (k) H42-2

Figure 5.20: Skin friction prediction for all the 11 cases. Thin magenta lines represent
predictions using an ensemble of machine-learned models trained on different combi-
nations of the inverse solutions. Legend: — LES, — base k − ω and — AdaBoost
augmented k − ω using model P.
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Figure 5.21: Flow solution at X/C = −0.16 using AdaBoost augmented model P.
Thin magenta lines represent predictions using an ensemble of machine-learned mod-
els trained on different combinations of the inverse solutions.

optimal ML model, reducing the number of data points results in a better training of

the ML model.
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(a) Velocity (b) Reynolds shear-stress (c) eddy-viscosity

Figure 5.22: Flow solution at X/C = 0 using AdaBoost augmented model P. Thin
magenta lines represent predictions using an ensemble of machine-learned models
trained on different combinations of the inverse solutions.

(a) Velocity (b) Reynolds shear-stress (c) eddy-viscosity

Figure 5.23: Flow solution at X/C = 0.33 using AdaBoost augmented model P. Thin
magenta lines represent predictions using an ensemble of machine-learned models
trained on different combinations of the inverse solutions.

(a) Velocity (b) Reynolds shear-stress (c) eddy-viscosity

Figure 5.24: Flow solution at X/C = 0.66 using AdaBoost augmented model P. Thin
magenta lines represent predictions using an ensemble of machine-learned models
trained on different combinations of the inverse solutions.
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(a) Velocity (b) Reynolds shear-stress (c) eddy-viscosity

Figure 5.25: Flow solution at X/C = 0.98 using AdaBoost augmented model P. Thin
magenta lines represent predictions using an ensemble of machine-learned models
trained on different combinations of the inverse solutions.

(a) Velocity (b) Reynolds shear-stress (c) eddy-viscosity

Figure 5.26: Flow solution at X/C = 1.31 using AdaBoost augmented model P. Thin
magenta lines represent predictions using an ensemble of machine-learned models
trained on different combinations of the inverse solutions.

(a) (b) (c)

Figure 5.27: Pairwise scatter plots of the flow features used for training. Features for
all the cases are shown in red and the features used to train model P are shown in
green.
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5.3 Summary

• The FIML framework was applied to augment the Wilcox k − ω model for a

set of flows over bumps of varying height and inlet conditions. In this second

test case, data from LES was used. In contrast to almost perfect data in the

previous chapter, the LES data contains some level of uncertainty. Therefore,

a more rigorous approach was taken to estimate the regularization constant.

• Inverse problems were solved using skin-friction and full-field velocity as data.

Both the variations exhibit similar improvements in the inverse solution. The

inferred discrepancy fields displayed universality across all the inverse cases.

The discrepancy fields were also found to be consistent with the expectations

based on flow physics.

• Two inverse solutions were used to train a machine-learning (ML) model P,

which was used for prediction for all the cases. The prediction using the model

P was significantly more accurate than the baseline model. Using the skin

friction data also led to notable improvements in the velocity and Reynolds

shear-stress predictions.

• Ensembles of models were trained on multiple combinations of the inverse so-

lutions. The spread in prediction using these models reflects the uncertainty

associated with the ML-based augmentation based on limited data. All these

models were found to be more accurate than the baseline k − ω model.
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CHAPTER VI

Application to Separated Flows over Airfoils

Airfoil sections form the core elements of any lifting surface. Prediction of aerody-

namic forces over airfoils is complicated by the transition of the flow from laminar to

turbulent, the presence of adverse pressure gradients (APG) in the diffusive portion

of the airfoil, and flow-separation at high angles of attack. Turbulent flow separation

over lifting surfaces is critical to many applications, including high-lift systems, the

off-design operation of new vehicles, airframe noise, wind turbines, turbomachinery

flows, and combustors. A RANS turbulence modeling capability that can confidently

predict separated flows in these various contexts would be a key enabling factor in

the development of aerospace and energy systems of the future. The ability to ac-

curately model the effects of strong APGs is crucial to the prediction of boundary

layer separation in wall-bounded flows; however, most one- and two-equation RANS

turbulence models fail to accurately predict stall onset for airfoils at high angles of

attack, where strong APG is encountered. Consequently, they tend to over-predict

the maximum lift and stall onset angle for a given set of flow conditions.

Fig. 6.1 shows the prediction of lift for an S809 airfoil at a Reynolds number

of 2 Million. The Spalart-Allmaras (SA) turbulence model is used for the RANS

prediction. At low angles of attack (α < 6◦) the prediction and the experimental

measurements are in agreement, but they diverge as the flow starts to separate with
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Figure 6.1: Lift vs. angle of attack plot for the S809 airfoil at a Reynolds number of
2 Million.

increasing α. Linear eddy-viscosity based models have been observed to overpredict

eddy-viscosity, which results in a delayed separation. Previous works[13, 121, 117]

support the observed failure of the RANS-based models to predict the onset of sepa-

ration and maximum lift accurately.

In this chapter, the FIML framework is applied to augment the SA turbulence

model. Experimental lift and surface pressure measurements are utilized to infer

discrepancy in the SA model. Inverse problems are solved for multiple airfoils at

different angles of attack and Reynolds numbers. Inverse solutions are used to train

ML-based augmentations. ML-based augmentations are then used for prediction.

Portability of the ML-based augmentations is demonstrated by embedding and using

them for prediction in a commercial flow solver. Effects of grid refinement and a

measure of uncertainty associated with ML-based augmentation are discussed.

6.1 Forward Problem

The problem setup is based on a set of experiments conducted at the National

Renewable Energy Laboratory (NREL) in 1997 [95, 96, 97]. The experiments mea-
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Figure 6.2: Three different airfoil shapes are used for training and testing the ML-
based augmentation.

Figure 6.3: Samples of figures used to extract data for this work. These figures are
reproduced from [96].

sured aerodynamics forces for three airfoil shapes (S805, S809, and S814) belonging

to the Somers (S-series) family. The maximum thickness of the airfoils varies from

5% to 14% of the chord length. Pressure, lift, and drag measurements are reported

for the experiments. Fig. 6.3 shows plots from the experiment reports which are used

to extract the data. Errors are introduced during the data extraction process which

are in addition to any unpublished.

The forward problem consists of solving for the flow around the S-series airfoils and

then uses the data from the experiments for comparison and model augmentation. For
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Figure 6.4: A body fitted C-mesh is used with 291 points in the wrap around direction
and 111 points in the perpendicular direction.

the computations, a chord-length of unity is used, and the Reynolds number is varied

from 1 to 3 Million. The mesh is resolved sufficiently to ensure a y+ < 1 at the airfoil

surface and 200 grid points are used in the wrap-around direction. Fig. 6.4 shows a

representative mesh. A Mach number of 0.1 is used to emulate near incompressible

flow. The flow solver is used to drive the flow to a steady state starting from a

free-stream based initial condition.

Figs. 6.5 and 6.6 show the surface pressures and velocity fields, using the baseline

SA model, for the S809 airfoil. There are significant differences between the experi-

mental pressures and those calculated using the baseline SA model. These differences

manifest in the lift output, as shown in Fig. 6.1, where the maximum error is over

40%.

The error in aerodynamic force renders RANS an ineffective airfoil design tool

especially for testing at off-design conditions. Any projection based on the baseline SA

solution is bound to contain inaccuracies. These shortcomings provide an opportunity

for model improvements.
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Figure 6.5: Surface pressure using the baseline SA model (green) and experiment
(blue) for the S809 airfoil at Re = 2 Million.

(a) α = 16◦ (b) α = 18◦ (c) α = 20◦

Figure 6.6: Velocity fields using the baseline SA model for the S809 airfoil at Re = 2
Million.
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6.2 Application of the FIML framework

Following the setup in Chapter IV, a discrepancy function β(x) is introduced in

the SA turbulence model. The SA model then takes the following form:

Dν̃

Dt
= β(x)P (ν̃,Q)−D(ν̃,Q) + T (ν̃,Q) (6.1)

where P, D, and T are the production, dissipation, and turbulent transport terms

respectively. Inverse problems are solved to infer spatial distributions of the discrep-

ancy. Following this, the neural-network (NN) algorithm is used to build a generalized

model of the discrepancy, which is then used for prediction. The two steps are dis-

cussed in the following sections.

6.2.1 Field Inversion

A spatial distribution of the discrepancy β(x) is inferred by minimizing the differ-

ence between the prediction and the experimental data. The inverse problem provides

a generalized approach to connect the model discrepancy and data, even when a di-

rect relationship does not exist. The data is available in the form of surface pressure

and lift coefficient for each angle of attack and Reynolds number combination. The

objective functions, when using these two different datasets, have the following form:

J(β) = (cl − cl,exp)2 + λ

Ncells∑
j=1

(βj − βj,prior), (6.2)

and

J(β) =

Nwall∑
i=1

(cp,i − cp,i,exp)2 + λ

Ncells∑
j=1

(βj − βj,prior). (6.3)

where cl is the lift coefficient and cp,i is the coefficient of pressure at the wall grid point

i. The regularization factor λ is fixed to 10−4 for both cases. This relatively higher

factor points to a low-confidence in the data in comparison with the high-quality
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Airfoil Reynolds number (Re) Angle of attack (α)

S805 1 & 2 Million {12◦, 14◦, 16◦, 18◦}
S809 1 & 2 Million {12◦, 14◦, 16◦, 18◦, 20◦}
S814 1 & 2 Million {12◦, 14◦, 16◦, 17◦}

Table 6.1: List of airfoil shapes and flow-conditions for which inverse problems are
solved.
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Figure 6.7: Surface pressure for the S809 airfoil at Re = 2 Million and α = 14◦.

synthetic and LES data used in the previous chapters. This value of λ is estimated

by approximating the experimental error and the error in the prior model.

Inverse problems are solved for all three airfoils at post separation angles of attack

and for two different Reynolds numbers. Inverse problems are not solved for pre-

separation angles of attack as the baseline solution and the experiments are within

the margin of experimental error, and any attempt to infer the β fields for such cases

will lead to solutions dominated by numerical inaccuracies. All the inverse cases are

tabulated in Table 6.1.

Fig. 6.8 shows the inferred β(x) fields for the S809 airfoil at α = 19◦ and Re = 2
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Figure 6.8: Inferred discrepancy using different data types for the S809 airfoil at
α = 19◦ and Re = 2 Million. The discrepancy deviates from the baseline value of
unity only inside the region marked with the black curve.

Million using the two different datasets: surface pressure and the lift. When using

data for the lift, just one number is used to infer a field of thousands of parameters.

However, the two inferred fields are nearly identical. Moreover, this similarity results

in near identical surface pressure distributions as shown in Fig. 6.7. This agreement

can be attributed to a one to one relationship between the lift and the surface pressure

for steady flows.

The similarity of the inferred field using the surface pressure and lift open up the

possibility of using only the lift data to perform the inversion and hence augment a

turbulence model. An enormous amount of experimental lift (and drag) data exists

going back several decades and can be used for the augmentation of turbulence models.

These experimental datasets are available for practical Reynolds numbers in contrast

with restricted DNS or LES data.

The inverse solution is close to the experimental results (Fig. 6.7) and also predicts

the point of separation accurately. The point of flow separation is approximately

marked by the flattening of the surface pressure curve. Similar improvements are

observed for all airfoil shapes, angles of attack, and Reynolds numbers. Fig. 6.10

shows the surface pressure profiles at different angles of attack for the S809 airfoil at
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Figure 6.9: Inferred discrepancy fields for the S809 airfoil at Re = 2 Million. The
discrepancy deviates from the baseline value of unity only inside the region marked
with the black curve.
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Figure 6.10: Surface pressure obtained using inferred discrepancy fields for the S809
airfoil at Re = 2 Million.
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(a) Base SA (b) Inverse SA

Figure 6.11: Streamline and contour plots of the X-velocity for the S809 airfoil at
Re = 2 Million and α = 14◦.

a Reynolds number of 2 Million. Fig. 6.9 shows the inferred discrepancy fields. There

are qualitative similarities between the inferred discrepancy for all the cases.

The reduction in the discrepancy field in the forward section of the airfoil results in

a reduction of turbulence. The profile also bears similarities with the intermittency

field used in transition models[62]. A more detailed physical interpretation of the

discrepancy field is difficult as it corrects for the combined effects of transition, adverse

pressure gradients, and separation, which are difficult to isolate.

Fig. 6.11 shows the velocity contours of the inverse and the base solution. The

separation bubble lengths are significantly different in the two cases. The separation

point is near the mid-chord, which is consistent with the experimental observation.

The exact location of separation is not presented in the experiment; only a qualitative

description is provided. Based on the improvements in the surface pressure and

separation point, it can be argued that the overall velocity field is also improved in

the inversion.

Fig. 6.12 shows the eddy-viscosity contours of the inverse and base solutions. The

eddy-viscosity is reduced in the forward section, which is consistent with the transition
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(a) Base SA (b) Inverse SA

Figure 6.12: Eddy-viscosity for the S809 airfoil at Re = 2 Million and α = 14◦.

from laminar to turbulent flow. The increase in eddy-viscosity in the separation region

points to enhanced mixing, which is not accurately captured by the baseline SA model.

Finally, Fig. 6.13 shows the lift and the drag comparison of the baseline SA and

inverse SA with the experiments. Significant improvements are observed in the lift

and the separation onset angle.

The results presented in this section show that it is possible to infer a turbulence

model producing accurate results for one problem. However, it can be argued whether

such a model actually replicates the relevant physics or is just producing numerical

artifacts. Using the same spatial discrepancy field for a different shape or Reynolds

number may not necessarily lead to an improved solution. The discrepancy fields are

therefore reconstructed as a function of local flow quantities using ML and used for

predictions.

6.2.2 Machine Learning Training

Machine-learning (ML) is used to reconstruct the discrepancy field as a function

of locally non-dimensional flow features. The features are identical to the ones used in

Chapter V. The neural-network (NN) algorithm is used in contrast with the previous
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Figure 6.13: Lift and drag coefficients obtained using inferred discrepancy fields for
the S809 airfoil at Re = 2 Million.

chapter.

All the inverse solutions or their combinations can be used as inputs to train

the ML model. In the absence of a precise approach to a priori quantification of

the quality of the resulting model, we train many ML models using a number of

combinations and use them for prediction.

Table 6.2 shows the different combinations of inverse solutions used to train the

ML models and also the labels assigned to them. Model P results in the most optimal

predictions for a range of shapes, angles of attack, and Reynolds numbers. Model P

contains the most extreme cases in terms of adverse pressure gradients and separation,

therefore the flow-features in all remaining cases are a subset of the features used for

model P.

All the ML models are trained using 5-fold cross-validation. Table 6.3 shows the

coefficient of determination R2 for training the model P. Fig. 6.14 shows the scatter

of prediction and the true values for all the folds for the training and testing data.

The quality of the training is not as good when compared to the previous examples.

The ML training suffers from extreme values of the flow features, especially near the

stagnation region. The real measure of quality, however, is when the ML model is
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Model label Training data

P S814 at Re = 1× 106, 2× 106

1 S805 at Re = 1× 106

2 S805 at Re = 2× 106

3 S809 at Re = 1× 106

4 S809 at Re = 2× 106

5 S805 at Re = 1× 106, 2× 106

6 S809 at Re = 1× 106, 2× 106

7 S805, S809, S814 at Re = 1× 106, 2× 106

Table 6.2: List of ML models and the inverse solutions used for training. The main
predictive model is labeled P.

CV-fold Training error Validation error

1 0.9403 0.8832
2 0.9272 0.8665
3 0.9293 0.8572
4 0.9404 0.8847
5 0.9401 0.9033

Table 6.3: Results of 5-fold cross-validation. The error metric is the coefficient of
determination - R2.

used in the iterative RANS solver for prediction.

6.2.3 Machine Learning Prediction

The trained ML models are used in an iterative RANS solver for prediction.

Figs. 6.15 and 6.16 compare the inverse solution and the machine learning predic-

tion using model P for the S809 airfoil at α = 14◦ and Re = 2 × 106. Except for

minor differences, the predicted pressure using model P is in agreement with the

inverse solution and the experimental data. The inverse and the model P predicted

velocity field are also qualitatively similar. Overall the model P shows significant

improvement over the baseline model in terms of lift, drag, and the location of flow-

separation. The training data-set was based on assimilating lift information only.

Fig. 6.17 shows the lift and drag prediction using model P for all Reynolds numbers
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ing

(b) Fold-2 : Train-
ing

(c) Fold-3 : Train-
ing

(d) Fold-4 : Train-
ing

(e) Fold-5 : Train-
ing

(f) Fold-1 : Test-
ing

(g) Fold-2 : Test-
ing

(h) Fold-3 : Test-
ing

(i) Fold-4 : Testing (j) Fold-5 : Test-
ing

Figure 6.14: Neural network training for model P. x and y axes correspond to the
true and predicted values, respectively.
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Figure 6.15: Comparison of inverse and NN-augmented predictions (using model P)
for S809 airfoil at α = 14◦ and Re = 2× 106.
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(a) Base SA (b) Inverse SA (c) NN-augmented SA (predic-
tion)

Figure 6.16: Streamlines and X-velocity contours for the S809 airfoil at Re = 2× 106

and α = 14◦.

for the S814 airfoil, including Re = 3 × 106, which was not used in the training

set. Significant improvement in stall prediction is evident in the lift curve. As a

consequence, the drag rise is predicted to occur at lower angles of attack than in

the baseline model, a trend that is qualitatively correct. There is no evidence of

deterioration of accuracy in the low angle of attack regions, where the original model

is already accurate. The model Performs equally well for airfoil shapes not used in

the training set, i.e. S805 and S809 (Figs. 6.18, 6.19).

The improvement in the quality of the predictions is further emphasized in Figs. 6.20, 6.21,

and 6.22, in which pressure predictions are shown for the S809, S805 and S814 airfoils.

These results confirm that the NN-augmented model offers considerable predictive

improvements in surface pressure distributions.

Fig. 6.23 shows the base SA, and the NN-augmented SA solutions for two different

grid resolutions. The solutions using both models suggest that the variability in the

solutions between the two grids is much smaller than the corrections introduced by

the data augmentation.

6.2.4 Portability of the Trained Model

The entire modeling framework was developed and tested using an in-house un-

structured finite-volume flow solver. To demonstrate the portability of this approach,
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Figure 6.17: NN-augmented SA prediction for the S814 airfoil using model P. Legend:
— Experiment, — base SA and — neural network SA model P.
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Figure 6.18: NN-augmented SA prediction for the S805 airfoil using model P. Legend:
— Experiment, — base SA and — neural network SA model P.
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Figure 6.19: NN-augmented SA prediction for the S809 airfoil using model P. Legend:
— Experiment, — base SA and — neural network SA model P.

α= 16◦

α= 18◦

α= 20◦

Figure 6.20: Surface pressure for the S809 airfoil at Re = 2 × 106 and α =
{16◦, 18◦, 20◦}. Refer Fig. 6.15(c) for legend. Not to scale.
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α= 12◦

α= 14◦

Figure 6.21: Surface pressure for the S805 airfoil at Re = 1× 106 and α = {12◦, 14◦}.
Refer Fig. 6.15(c) for legend. Experimental pressure is shown only for the upper
surface. Not to scale.

α= 16◦

α= 18◦

α= 20◦

Figure 6.22: Surface pressure for the S814 airfoil at Re = 1.5 × 106 and α =
{16◦, 18◦, 20◦}. Refer Fig. 6.15(c) for legend. Experimental pressure is shown only
for the upper surface. Inversion is not performed for this case. Not to scale.
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Figure 6.23: Pressure and skin friction (using model P) for the S809 airfoil at Re =
2× 106 and α = 14◦ using grids of different spatial resolutions. Solutions of both the
base SA model and the neural network augmented SA are grid converged.
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Figure 6.24: Predicted surface pressure for the S809 airfoil at Re = 2 × 106 using 8
different NN-based models listed in table 6.2.

the NN-augmented SA model P is embedded into AcuSolve, a commercially available

unstructured flow solver based on the Galerkin/Least-Squares (GLS) stabilized finite-

element method [43, 87]. Therefore, developing the neural network model based on

a feature set consisting of locally non-dimensional flow variables, as presented in this

work, is essential for portability across flow solvers.

Fig. 6.25 shows the lift and drag coefficient predictions from AcuSolve for the

S-809 airfoil at three Reynolds numbers. The NN-augmentation shows significant

improvement in predictions and its effectiveness is comparable to that observed in

the in-house code. It should be noted that the AcuSolve uses a variation of the SA

model which corrects for the rotation and the curvature effects. These corrections are
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Figure 6.25: NN-augmented SA prediction using AcuSolve for the S809 airfoil using
model P. Legend: — Experiment, — base SA and — neural network SA model P.

not used in the in-house solver and therefore the solutions from these two codes are

not expected to be identical, even for the baseline model.

Fig. 6.26 shows the rate of convergence for the base SA and the NN-augmented

SA for a sample problem. The initial condition is set to uniform free-stream for

all runs. The NN-augmented model displays comparable convergence characteristics

to the baseline model. Additional overhead exists in passing the features η to the

NN and obtaining β at grid locations, this was confirmed to add less than 10% of

additional compute time compared to the baseline calculation in AcuSolve.

6.2.5 Variation Between Models: A Measure of Uncertainty

It is desirable that any new modifications introduced into a turbulence model do

not affect the solution at flow conditions for which the base model is accurate. The

results suggest that the NN-augmented SA model satisfies this requirement. Fig. 6.24

shows this feature for the S809 airfoil at a Reynolds number of 2×106. The predicted

surface pressure using neural networks trained on the different data-sets listed in
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Figure 6.26: AcuSolve’s convergence history for S809 airfoil at Re = 2× 106, α = 12◦

(dashed) and α = 14◦ (solid).

Table 6.2 is shown in red lines. Model augmentations show variability as is apparent

in Figs. 6.24 (b) and (c). Overall, the neural network-augmented models are more

accurate than the base SA model for all the cases, and more importantly, none of the

NN-augmented predictions diverge from the base SA model at α = 0◦. While this

ensemble approach does not qualify as a formal uncertainty quantification technique,

it is nevertheless a useful test to ascertain the sensitivity of the model output to the

training set. If significant variabilities are revealed in the model predictions, it serves

as a warning to the user that models may be operating far from the conditions in

which they were trained.

Fig. 6.24 shows that the quality of the NN-augmented model is sensitive to the

selection of the training-data. In this work, the best model P is selected by exploring

several combinations of the data–sets. This observation is subjected to the uncertainty

involved with the intermediate steps (feature selection, ML algorithm, etc.).

6.3 Summary

• The FIML framework was applied to augment the Spalart-Allmaras (SA) model

for separated flows over airfoils. The application presented in this chapter used

low fidelity experimental data in contrast to relatively high-quality data in the
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previous chapters. All the inverse problems used for model augmentation uti-

lized the lift coefficient exclusively.

• The inverse solutions using lift and surface pressure were found to be nearly

identical. The inverse solution using lift leads to improvements in the surface

pressure and location of separation. This opens up the use of experimental lift

data for augmentation of RANS models. Such data are more readily available

for practical cases than high-fidelity DNS or LES data.

• The inferred discrepancy fields in all the cases bear similarities to the intermit-

tency field used in transition models and are in line with the expectations based

on the physics of the problem.

• Machine-learning (ML) was used to train an augmented model using the inverse

solutions for the thickest airfoil, S814. The machine-learned model was used for

the prediction of other airfoil shapes and Reynolds numbers with improved

results.

• A number of ML models were trained using combinations of the inverse solu-

tions and all the models were shown to perform significantly better than the

baseline model. The ensembles of the prediction represent a way of measuring

uncertainties associated with the FIML framework.

• The portability of the ML model was demonstrated by embedding the model

designed using an in-house finite-volume compressible solver to a finite-element

incompressible solver. Improvements in prediction similar to the ones observed

in the in-house solver were produced with the finite-element code, demonstrating

model portability.
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CHAPTER VII

Conclusions and Future Work

7.1 Summary and Conclusions

Most popular RANS models in practice today were developed more than two

decades ago. While elegant ideas such as elliptic relaxation have emerged since, their

penetration has been limited because of a lack of generality in the predictive capability

of a given model. As a consequence, many of the problems with RANS models which

existed two decades ago continue to persist today. It remains an open question in the

turbulence community whether it is possible to create a universal turbulence model,

which produces acceptable results for all flow cases.

The thesis proposes a new paradigm to augment turbulence models with the goal

of improving them in flow configurations of a similar class. The proposed framework

of FIML uses data to infer discrepancy in existing models. These discrepancies from

many problems were generalized using machine learning to propose an augmentation.

The method is different from similar attempts in three significant ways:

1. Instead of directly learning from the data, the approach creates information

from data via inverse problems and learns from the information. This way,

consistency is established between the embedded model discrepancies and the

model.
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2. The method introduces a functional discrepancy rather than the discrepancy in

a parameter.

3. The method can use any amount of data of any level of fidelity (as long as

the data is informative for the model discrepancy), whereas most past works

required high-fidelity datasets.

The use of inverse problems to infer discrepancies in existing models instead of

directly calculating discrepancy from the data recognizes the fact that all the variables

used in RANS based models are modeled quantities and not real quantities. For

example, the turbulence kinetic energy k and dissipation ε used in RANS models

are not the real k and ε. These variables serve to estimate the length and time

scale associated with the flow, which in turn is used to estimate the eddy-viscosity.

Therefore, these variables cannot be directly extracted from a DNS or LES. Further,

solving an inverse problem does not require access to model related data (like k and

ε), it is possible to solve an inverse problem with a wide range of data–from full-

field velocity to integral lift. Inverse problems can also be used to propagate the

uncertainty associated with the data to the model discrepancy.

The field-inversion and machine-learning framework was presented in Chapter II.

Two different perspectives of framing an inverse problem were discussed. In the

Bayesian setting, a probability distribution of the discrepancy is sought using data,

while in a deterministic setting only the mean discrepancy is sought. The discrete

adjoint formulation required to calculate the sensitivities was presented. The utility

of the machine learning was examined in the context of the FIML framework. Neural-

networks and Adaboost, the two machine learning algorithms used in this work were

presented. Methods to prevent overfitting and to select flow features for the machine

learning were discussed in the chapter.

The utility of the FIML framework was demonstrated by using it to augment

the SA and the Wilcox’s k − ω model for a set of flow configurations. As a proof
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of concept of the data-driven model augmentation, synthetically generated data was

used to augment the SA model. This setup has virtually no uncertainty and tests

the approach under a best-case scenario. The setup consisted of flow in a concavely

curved channel. The synthetically generated data, which was based on an analytic

correction to the SA model, was used to recover the form of discrepancy in the SA

model. The impact of using just surface data or full-field data on the inverse solution

was discussed, and it was shown that while more data is beneficial, surface data such as

skin-friction can improve the velocity and Reynolds stress fields. The inverse solutions

were reconstructed as functions of local flow solution using a machine-learning (ML)

algorithm. The ML reconstructions were embedded in iterative RANS solver with

improved predictions. ML models trained using various combinations of flow-features

and inverse solutions were compared.

Chapter V utilizes data from LES of flows over bumps of varying heights to aug-

ment the Wilcox’s k − ω model. Such flows include regions of flow stabilization and

enhanced mixing, which is under-predicted by existing models. Full-field velocity and

skin friction were used to infer the discrepancy in the k − ω model. It was shown

that using only the skin-friction data, it is possible to improve the velocity fields

and the Reynolds stress prediction. Ensembles of models were trained using the Ad-

aboost algorithm and used for prediction for all the cases. Prediction using all the

ML augmented models were found to be more accurate than the baseline k−ω model.

In chapter VI, experimental lift data, for a family of airfoils, was used to augment

the SA model. The flow contains regions of transition, adverse pressure gradient,

and separation. The discrepancy field inferred using data for lift and surface pressure

were found to be similar. Using data for just lift coefficient the FIML framework can

construct an augmented SA model which predicts not only lift but surface pressure

and point of separation much more accurately than the baseline SA model. The

portability of the augmented model was demonstrated by embedding the augmenta-
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tion developed using an in-house finite volume solver and the FIML approach into a

commercially available incompressible finite-element solver.

The augmentation produced by the FIML framework in all the cases was found

to be consistent with the expectation based on the understanding of the flow physics.

While this thesis presents a new paradigm with optimistic results, the presented

results also raise additional questions. Certainly, a better model augmentation which

works for all classes of problem was not created. Whether a universal model exists is

itself a disputed question in the RANS community. However, at the same time, the

data-driven techniques offer a way to drive the existing models to a higher level of

accuracy. Data-driven techniques can be particularly useful when the representative

flow physics is well-captured in the data sets. This approach will be relevant in an

industrial setting as the focus is typically on a class of flows and data is usually

available for at least a few flow-conditions, as is domain expertise that can be used

to solidify the model improvement process.

There is no consensus among the turbulence community, whether there is an

ultimate barrier in turbulence modeling or that we have reached it. Results shown

in the present work suggest that, if there is indeed a barrier, it either has not yet

been reached or it can be moved conditional on how informative the data is to a

class of flows. It has to be mentioned that the inaccurate results could be because

of the functional form of the models and not necessarily due to the inadequacy of

Reynolds-averaging or even the eddy viscosity assumption.

An online platform Turbulence Modeling Gateway1 was created as a part of this

work. All the ensembles of models used in Chapter V along with application program-

ming interface (API) to use them are available for a user to download. The platform

will eventually serve as one point place for users to upload data, run the inversion

and create the ML augmented model for their application. This work marks the first

1http://turbgate.engin.umich.edu
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step in that direction.

7.2 Suggestions for Future Work

While a universal augmentation seems a far-reaching goal, many insights can be

learned in continuing the pursuit, which in turn, contribute to turbulence modeling.

Some extensions of the present work and future directions are discussed below:

• Feature selection: In the present work, the features used for training and test-

ing machine-learning (ML) models are selected based on the understanding of

turbulence modeling. The choices served well for the cases presented in the the-

sis. Indeed, this set of features is by no means unique or optimal. Augmenting

expert knowledge with automatic feature selection will go a long way in general-

izing the approach, especially in problems where the physics is complicated. It

would be desirable to have an automatic approach to select flow-features which

are non-dimensional and satisfy Galilean invariance principles. Moreover, the

number of features has to be minimized to limit the quantity of data required

to train a ML model with a high degree of confidence.

• Uncertainty quantification: Uncertainty quantification (UQ) is not just a

buzzword in the fluid dynamics community–the need for UQ cannot be empha-

sized more. Errors and uncertainties in a RANS simulation arise from many

sources including flow conditions, numerical discretization and the turbulence

model. In many complex flows, the uncertainty due to the turbulence model is

typically the most dominant, and estimating a measure of such uncertainty will

help a user weigh the prediction for decision making. In theory, uncertainties in

the FIML process appear naturally. Uncertainty in the data can be propagated

to the inverse solution through Bayesian inversion, which in turn can be prop-

agated to the machine learning utilizing algorithms like Gaussian processes. In
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practice, it is difficult because of the computational expense associated with

proper Bayesian inversion and propagation of the uncertainties. Efforts have

been made by making assumptions regarding the form of the uncertainties, but

more work is needed. One of the possible paths would be to construct the in-

ferred solution in a low dimensional manifold using dimension reduction, which,

may make the Bayesian inversion tractable.

• Standards for data-driven augmentations: The ultimate goal of this work

is to highlight the potential of data-driven models in improving prediction of tur-

bulence models and help in decision making or improve the design process. The

results presented in the thesis should be considered to be a proof-of-concept of

the ideas. Any practical use of the strategy would require standards and bench-

marks to ensure the confidence in data-driven models. Standards regarding the

format of input and output to the machine learning, a measure of confidence

and standards for easy sharing of such models for reproducibility will be as

important as the quality of the predictions. In the absence of such standards

or consensus, we will be adding to the clutter which is already abundant in the

turbulence modeling community.

• Augmenting the model for multiple classes of problems: In all the re-

sults pursued in the thesis, a turbulence model is augmented and used for pre-

diction of flows which are similar to the one used to construct the augmentation.

An extension towards a more universal augmentation would be to use different

classes of problems. Any such attempts are constrained by the availability of

informative data. Ideally, the Reynolds number of the cases used for inversion

and the nature of discrepancy should be comparable for a good augmentation.

• Application to more sophisticated models: The FIML framework can be

applied to more sophisticated turbulence models such as the v2 − f and non-

132



linear eddy-viscosity models which can capture secondary flows and anisotropy

in the Reynolds stresses in the near-wall region. These models contain bene-

ficial ideas which are shadowed by calibration of few parameters. The FIML

framework can be used to correct for the error due to calibrations and build on

additional physics introduced by these models.

• Application to other physical models: While presented in the context

of turbulence modeling, the FIML framework can be used to augment differ-

ent physics (such as materials modeling). The framework requires no domain-

specific modifications and can utilize a wide range of data-sets.
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APPENDIX A

Turbulence Models

Following sections contain details of the two turbulence models used in this work.

A.1 Spalart–Allmaras (SA) Model

The SA model[99] is a one equation model and it solves for the modified Eddy

viscosity, ν̃, which relates to kinematic Eddy viscosity νt as follows:

νt = ν̃fv1; fv1 =
χ3

χ3 + c3
v1

; χ =
ν̃

ν
. (A.1)

The governing equation of the SA model without the trip terms is given by,

∂ρν̃

∂t
+
∂ρuj ν̃

∂xj
= P −D +

1

σ

[
∇.((µ+ ρν̃)∇ν̃) + cb2ρ(∇ν̃)2

]
, (A.2)

where, P and D are the production and destruction respectively and are given by,

P = cb1Ω̃ρν̃ and D = cw1fwρ[
ν̃

d
]2. (A.3)

Ω̃ is a function of the vorticity magnitude, Ω, and is defined as,

Ω̃ = Ω +
ν̃

κ2d2
fv2, fv2 = 1− χ

1 + χfv1

. (A.4)
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The function fw is defined as,

fw = g

[
1 + c6

w3

g6 + c6
w3

] 1
6

, g = r + cw2(r6 − r), r =
ν̃

Ω̃κ2d2
. (A.5)

The model constants are: cb1 = 0.1355, σ = 2/3, cb2 = 0.622, κ = 0.41, cw1 = cb1/κ
2 +

(1 + cb2)/σ, cw2 = 0.622, cw3 = 2.0, cv1 = 7.1. The freestream boundary is set to fully

turbulent with ν̃/ν∞ = 3 and ν̃ is set to zero at the no-slip walls.

A.2 Wilcox’s k − ω Model

The two-equation Wilcox’s k−ω model[113] solves the transport equations of the

turbulence kinetic energy (k) and the dissipation (ω). The transport equations are

given by,

∂(ρk)

∂t
+
∂(ρujk)

∂xj
= P − β∗ρωk +

∂

∂xj

[(
µ+ σk

ρk

ω

)
∂k

∂xj

]
, (A.6)

and

∂(ρω)

∂t
+
∂(ρujω)

∂xj
=
γω

k
P − βρω2 +

∂

∂xj

[(
µ+ σω

ρk

ω

)
∂ω

∂xj

]
+
ρσd
ω

∂k

∂xj

∂ω

∂xj
. (A.7)

The eddy-viscosity is then defined by,

µt =
ρk

ω̂
, (A.8)

where,

ω̂ = max

ω,Clim
√

2SijSij
β∗

 . (A.9)
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The production term is given by,

P = τij
∂ui
∂xj

(A.10)

with,

τij = µt

(
2Sij −

2

3

∂uk
∂xk

δij

)
− 2

3
ρkδij, (A.11)

Sij =
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
, (A.12)

and,

Sij = Sij −
1

3

∂uk
∂xk

δij. (A.13)

The constants and the intermediate functions are given by,

σk = 0.6, σω = 0.5, β∗ = 0.09, γ =
13

25
, Clim =

7

8
, β = β0fβ, β0 = 0.0708, (A.14)

fβ =
1 + 85χω
1 + 100χω

, (A.15)

χω =

∣∣∣∣∣ΩijΩijŜki
(β∗ω)3

∣∣∣∣∣ , (A.16)

Ŝki = Ski −
1

2

∂um
∂xm

δki, (A.17)

Ωij =
1

2

(
∂ui
∂xj
− ∂uj
∂xi

)
, (A.18)

and

σd = 0, for
∂k

∂xj

∂ω

∂xj
≤ 0. (A.19)

At the viscous wall k = 0 and ω takes an asymptotic value of 6νwall

β0d2
. The freestream
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k and ω are evaluated by specifying the freestream turbulence intensity and the ratio

of the turbulent to laminar viscosity.
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