
Towards Power- and Energy-Efficient Datacenters

by

Chang-Hong Hsu

A dissertation submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy
(Computer Science and Engineering)

in The University of Michigan
2018

Doctoral Committee:

Assistant Professor Jason Mars, Co-Chair
Assistant Professor Lingjia Tang, Co-Chair
Assistant Professor Hun-Seok Kim
Associate Professor Thomas F. Wenisch



Chang-Hong Hsu

hsuch@umich.edu

ORCID iD: 0000-0001-8107-122X

© Chang-Hong Hsu 2018



ACKNOWLEDGEMENTS

First and foremost I want to thank my advisers, Professor Lingjia Tang and Profes-

sor Jason Mars. You kindly welcomed me to the Clarity Lab when I feel directionless,

and introduced me to an area full of excitement and challenges. During the past four

years, you have helped me find where my interests are, learn how to establish hy-

potheses, and defend my works. Without your guidance, all of these would have been

much more difficult. Lingjia, you make the strongest case for a rigorous researcher

and a logical thinker. You have been and remains my best role model for a scientist

and a mentor. Jason, you are one of the most encouraging and motivating people I

have ever met. Your passion deeply impacts me and makes me always willing to take

one step further to pursue the things I really want.

I must also express my gratitude to Professor Thomas Wenisch and Professor Hun-

Seok Kim for their valuable discussion and guidance in constructing this dissertation.

Completing this work would have been much more difficult were it not with the

support provided by the members of Clarity Lab – Mike, Yunqi, Animesh, Shih-

Chieh, Austin, Parker, Ram, Matt, Yiping, Johann, Steve, Md, Vini, Hailong, Quan,

Jeongseob, Arjun. The group has been a wonderful source of friendship as well as

collaboration. It was through our countless brainstorming, debating, and discussion

with you all that I grow and improve tremendously and become a better scientist.

Anna, my dear wife – thank you for your unconditional love and support that

carry me through all the ups and downs throughout the years. It was you who guided

me through the deepest darkness, and helped me realize that there will always to I

ii



would not have been able to come to this far without you.

My parents, Hsin-Jung Lee and Chia-Chiao Hsu, and my dearest family members

– thank you for always being by my side and respect my decisions. Thank you for

always being thoughtful and caring about me and my well-being.

To my friend and all those who wished me well and who have helped me throughout

this journey, thank you.

iii



TABLE OF CONTENTS

ACKNOWLEDGEMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . ii

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xii

CHAPTER

I. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Motivation and Challenges . . . . . . . . . . . . . . . . . . . 3
1.1.1 Inefficient Datacenters . . . . . . . . . . . . . . . . 3
1.1.2 Inefficient Servers . . . . . . . . . . . . . . . . . . . 6
1.1.3 Inefficient Computing Fabrics . . . . . . . . . . . . 9

1.2 Summary of Proposed Systems and Contributions . . . . . . 11

II. Background and Related Work . . . . . . . . . . . . . . . . . . . 14

2.1 Improving Power Budget Utilization for Clusters and Datacenters 14
2.2 DVFS and Server-level Power Management . . . . . . . . . . 16

2.2.1 Tail Latency . . . . . . . . . . . . . . . . . . . . . . 17
2.3 FPGAs and Hardware Acceleration . . . . . . . . . . . . . . . 17

III. SmoothOperator: Reducing Power Fragmentation and Im-
proving Power Utilization in Large-scale Datacenters . . . . . 20

3.1 Power budget fragmentation and inefficiency . . . . . . . . . 20
3.1.1 Multi-level power infrastructure in datacenters . . . 20
3.1.2 Power budget fragmentation . . . . . . . . . . . . . 21
3.1.3 Peak heterogeneity in datacenters . . . . . . . . . . 24

3.2 Workload-aware service instance placement and remapping . 27
3.2.1 Service and service instance . . . . . . . . . . . . . 29

iv



3.2.2 Overview of placement framework . . . . . . . . . . 29
3.2.3 Constructing power traces . . . . . . . . . . . . . . 30
3.2.4 Asynchrony score function . . . . . . . . . . . . . . 32
3.2.5 Service instance placement . . . . . . . . . . . . . . 33
3.2.6 Adapting to workload changes . . . . . . . . . . . . 36

3.3 Exploiting power budgets with dynamic power profile reshaping 37
3.3.1 Challenges . . . . . . . . . . . . . . . . . . . . . . . 38
3.3.2 History-based server conversion . . . . . . . . . . . 39

3.4 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.4.1 Experimental setup . . . . . . . . . . . . . . . . . . 41
3.4.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

IV. Pinpointing and Reining in Long Tails in Warehouse-Scale
Computers with Adrenaline . . . . . . . . . . . . . . . . . . . . . 51

4.1 The Design Principle of Adrenaline . . . . . . . . . . . . . . . 51
4.2 Motivation and Opportunities . . . . . . . . . . . . . . . . . . 52
4.3 Quick V/f Boosting: An Enabling Technology . . . . . . . . . 56

4.3.1 Shortstop . . . . . . . . . . . . . . . . . . . . . . . . 59
4.4 Adrenaline Framework . . . . . . . . . . . . . . . . . . . . . . 60

4.4.1 Decision Engine . . . . . . . . . . . . . . . . . . . . 62
4.4.2 Defining the Boost Policy . . . . . . . . . . . . . . . 63
4.4.3 Rapidly Identifying Query Characteristics . . . . . . 64
4.4.4 Boosting and Unboosting the Core . . . . . . . . . . 64
4.4.5 Clock Distribution . . . . . . . . . . . . . . . . . . . 65
4.4.6 Adrenaline for Energy Efficiency . . . . . . . . . . . 65
4.4.7 Responding to Load Changes . . . . . . . . . . . . . 66

4.5 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
4.5.1 Evaluation Methodology . . . . . . . . . . . . . . . 66
4.5.2 Reining in the Tail . . . . . . . . . . . . . . . . . . 70
4.5.3 Energy Saving . . . . . . . . . . . . . . . . . . . . . 76
4.5.4 Overall Comparison . . . . . . . . . . . . . . . . . . 78
4.5.5 The impact of boost threshold . . . . . . . . . . . . 78
4.5.6 Tail at Scale . . . . . . . . . . . . . . . . . . . . . . 90

4.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

V. Slingshot: Fine-grain Resource Scheduling for Reconfigurable
Datacenter Hardware . . . . . . . . . . . . . . . . . . . . . . . . . 93

5.1 Goal of Study . . . . . . . . . . . . . . . . . . . . . . . . . . 94
5.2 System and Workload Characterization . . . . . . . . . . . . 96

5.2.1 CPU-FPGA System Architecture . . . . . . . . . . 96
5.2.2 Interconnect Sharing . . . . . . . . . . . . . . . . . 96
5.2.3 FPGA Fabric Sharing . . . . . . . . . . . . . . . . . 98

v



5.2.4 Workload Characterization . . . . . . . . . . . . . . 99
5.3 System Architecture . . . . . . . . . . . . . . . . . . . . . . . 103

5.3.1 Cluster-Level Architecture . . . . . . . . . . . . . . 104
5.3.2 Server-Level Architecture . . . . . . . . . . . . . . . 106

5.4 Resource Management . . . . . . . . . . . . . . . . . . . . . . 107
5.4.1 Query Scheduling . . . . . . . . . . . . . . . . . . . 107
5.4.2 Repartition Scheduling . . . . . . . . . . . . . . . . 111

5.5 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
5.5.1 Evaluation Methodology . . . . . . . . . . . . . . . 113
5.5.2 Scheduling Prediction Accuracy . . . . . . . . . . . 116
5.5.3 Full Systems . . . . . . . . . . . . . . . . . . . . . . 118

5.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

VI. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

BIBLIOGRAPHY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

vi



LIST OF FIGURES

Figure

1.1 Grouping servers with synchronous power consumption patterns to-
gether often lead to rapid local peaks, which consume the local power
budgets quickly and lead to significant amount of power budget being
un-usable. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2 Query latency distributions without boosting (top), with conven-
tional DVFS boosting (center), and with Adrenaline (bottom). . . . 8

1.3 An example of FPGA fabric partitioning with multiple accelerators.
Each GMM uses one tile, and AES and JPEG use hierarchical parti-
tioning to use another tile. . . . . . . . . . . . . . . . . . . . . . . . 10

3.1 Multi-level power delivery infrastructure deployed in Facebook’s dat-
acenter. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.2 Careful service instance placement can extract significant power head-
room for housing more servers, which improves the overall computing
capacity of the datacenter without changing the underlying power in-
frastructure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.3 Power Slack, defined as the difference between the current power
consumption at time t and the power budget. It quantified the power
utilization efficiency. . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.4 The breakdown of the 30-day average power consumption of the top
10 power consumer workloads measured in three of the datacenters
under study. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.5 Servers serving different types of workload has very distinctive diurnal
patterns. Servers included in this distribution is sampled from one of
DC1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.6 The overview of workload-aware service placement. . . . . . . . . . 28
3.7 The production service instances in one of the suites of DC1 are

embedded into the |B|-dimensional asynchrony-score space. k-means
clustering is applied to classify asynchronous servers (shown in differ-
ent colors). This figure shows the projected result onto a 2-dimensional
space via t-SNE [93]. . . . . . . . . . . . . . . . . . . . . . . . . . . 35

vii



3.8 The comparison between the children power trace generated by the
oblivious and workload-aware placement in a production suite of
DC1. The workload-aware placement generates smoother power traces,
greatly alleviating fragmentation. Power peaks are reduced at the
child node thus more servers can be supported at each node. . . . . 43

3.9 The peak-power reduction achieved at each level of the power infras-
tructure in the three datacenters under study. There is significant
peak reduction at RPP level, which directly translates to the per-
centage of extra servers that can be hosted. . . . . . . . . . . . . . . 44

3.10 Required power budget achieved by previous work and SmoothOper-
ator. StatProf(u, δ) refers to the result of previous work with a degree
of under-provisioning u and a degree of overbooking δ. SmoOp(u, δ)
refers to the SmoothOperator counterpart. . . . . . . . . . . . . . . 45

3.11 Server conversion’s impact on per-LC-server load, LC and Batch
throughput. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.12 The breakdown of throughput improvement of LC and Batch services. 48
3.13 Average power slack reduction and off-peak phase power slack reduc-

tion achieved at three of Facebook’s production datacenters. . . . . 49
4.1 The cumulative distributions of query latency in Memcached for GET,

SET, and DEL requests. . . . . . . . . . . . . . . . . . . . . . . . . . 53
4.2 The cumulative distributions of query latency in Web Search for

queries with different numbers of search keywords. . . . . . . . . . . 55
4.3 Adrenaline’s Query Level V/f scaling vs. Coarse-grain Sliding Win-

dow based V/f scaling. . . . . . . . . . . . . . . . . . . . . . . . . . 57
4.4 Shortstop’s Dual-Vdd chip configurations. (a) shows normal opera-

tion, where all cores are connected to the low voltage network and the
cap networks are in parallel. (b) shows the cores in boost transition
where the core boosting is connected to the output of the serially
connected cap network. (c) shows the system once the transition
stabilizes where the cap network returns to parallel, and the boosted
core runs off the external high voltage. (d) shows the die photo of
the 28nm Shortstop test chip [119]. . . . . . . . . . . . . . . . . . . 58

4.5 Measured chip results [119] of Shortstop compared to a standard
dual-rail baseline. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.6 The Adrenaline framework. Adrenaline makes fine-grain boost deci-
sions based on the characteristics of each incoming query, and con-
trols the Shortstop circuit to switch between the high/low voltage
rails (VRs) quickly. Meanwhile, Adrenaline also monitors long-term
loading information, and makes proper adjustments to the voltage on
the high/low VRs periodically. . . . . . . . . . . . . . . . . . . . . . 61

4.7 Selection of Tight/Medium/Loose power budget and Tight/Medium/Loose
latency target for our evaluation. . . . . . . . . . . . . . . . . . . . 70

viii



4.8 Tail latency reduction for Memcached using coarse-grain DVFS vs.
Adrenaline. The row presents three load levels and the column rep-
resents three energy budgets for boosting. Adrenaline achieves much
higher tail latency reduction at various load levels, across workload
compositions and energy budgets. (Row 1 to 3 – low, medium, and
high load. Column 1 to 3 – 10%, 20%, and 30% energy budget.) . . 71

4.9 Tail latency reduction for Web Search by relaxing energy budget at
various load levels using Adrenaline and DVFS. (Row 1 to 3 – low,
medium, and high load. Column 1 to 3 – 10%, 20%, and 30% energy
budget.) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.10 Latency probability density function of Memcached when applying
DVFS and Adrenaline respectively. . . . . . . . . . . . . . . . . . . 74

4.11 The scatter plot of Memcached, in which each data point represents
the normalized power/latency performance of a single CPU V/f con-
figuration with load composition APP and low traffic. . . . . . . . . . 75

4.12 Energy saving for Memcached by relaxing the tail latency target at
various load levels using Adrenaline and coarse-grain DVFS. (Row 1
to 3 – low, medium, and high load. Column 1 to 3 – 10%, 20%, and
30% latency budget.) . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.13 Energy saving for Web Search by relaxing the tail latency target at
various load levels using Adrenaline and DVFS. (Row 1 to 3 – low,
medium, and high load. Column 1 to 3 – 10%, 20%, and 30% latency
budget.) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.14 Improvement of Adrenaline over coarse-grain DVFS for Memcached. 78
4.15 Improvement of Adrenaline over coarse-grain DVFS for Web Search. 78
4.16 Sensitivity analysis of the effect of different boost thresholds on tail

latency reduction of Memcached. Row 1 to 3 are the results of sen-
sitivity analysis with low, medium, and high load, respectively. Col-
umn 1 to 3 are the results with 10%, 20%, and 30% energy budget,
respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.17 Percentage of non-candidate Memcached queries (GETs and DELs)
boosted when optimizing for tail latency. (Row 1 to 3 – low, medium,
and high load. Column 1 to 3 – 10%, 20%, and 30% energy budget.) 80

4.18 Sensitivity analysis of the effect of different boost thresholds on en-
ergy reduction of Memcached. (Row 1 to 3 – low, medium, and high
load. Column 1 to 3 – 10%, 20%, and 30% latency budget.) . . . . . 83

4.19 Percentage of non-candidate Memcached queries (GETs and DELs)
boosted when optimizing for energy saving. (Row 1 to 3 – low,
medium, and high load. Column 1 to 3 – 10%, 20%, and 30% la-
tency budget.) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

4.20 Sensitivity analysis of the effect of different boost thresholds on tail
latency reduction of Web Search. (Row 1 to 3 – low, medium, and
high load. Column 1 to 3 – 10%, 20%, and 30% energy budget.) . . 85

ix



4.21 Percentage of non-candidate Web Search queries (MEDIUMs and LONGs)
boosted when optimizing for tail latency. (Row 1 to 3 – low, medium,
and high load. Column 1 to 3 – 10%, 20%, and 30% energy budget.) 85

4.22 Sensitivity analysis of the effect of different boost thresholds on en-
ergy saving of Web Search. (Row 1 to 3 – low, medium, and high
load. Column 1 to 3 – 10%, 20%, and 30% latency budget.) . . . . . 86

4.23 Percentage of non-candidate Web Search queries (MEDIUMs and LONGs)
boosted when optimizing for energy saving. (Row 1 to 3 – low,
medium, and high load. Column 1 to 3 – 10%, 20%, and 30% la-
tency budget.) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

4.24 Effectiveness of Adrenaline in reducing the tail latency at service level
comparing to DVFS. . . . . . . . . . . . . . . . . . . . . . . . . . . 91

5.1 Measured data transfer time from the CPU to FPGA (lower is bet-
ter). PCIe has dedicated upstream/ downstream channels whereas
QPI is bidirectional. . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

5.2 An example of FPGA fabric partitioning with multiple accelerators.
Each GMM uses one tile, and AES and JPEG use hierarchical parti-
tioning to use another tile. . . . . . . . . . . . . . . . . . . . . . . . 98

5.3 Average execution latency and data transfer latency for each work-
load. Averages were derived from 100k samples on each platform. . 101

5.4 FPGA area (measured) and partial reprogramming time (derived
from measurements of bitstream size and program time). . . . . . . 102

5.5 Server-level query flight diagram for Slingshot. The Slingshot sched-
uler estimates service time (including queuing, transfer and execution
time) for the FPGA and CPU, then schedules the query. . . . . . . 105

5.6 Example configuration space of an FPGA with 3 accelerator options,
searching to depth=1 (left) and depth=2 (right). Each node repre-
sents a possible configuration of accelerators that would fit on the
FPGA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

5.7 Load patterns used in evaluation. . . . . . . . . . . . . . . . . . . . 117
5.8 QoS improvement for dynamic scheduling over static scheduling on a

simulated FPGA system with QPI (top) and PCIe (bottom) . . . . 118
5.9 Comparison of the fast changing workload on HARP without Sling-

shot (a) and with Slingshot (b). . . . . . . . . . . . . . . . . . . . . 120
5.10 Load improvement of Slingshot-equipped servers over their static

baselines on the same platform. A normalized total tail latency of 1
indicates QoS parity with the baseline. . . . . . . . . . . . . . . . . 122

x



LIST OF TABLES

Table

2.1 Comparison between SmoothOperator and prior approaches for im-
proving datacenter power efficiency . . . . . . . . . . . . . . . . . . 16

4.1 Request type composition of Memcached. . . . . . . . . . . . . . . . 68
4.2 Request type composition of Web Search. . . . . . . . . . . . . . . . 68
5.1 System specifications . . . . . . . . . . . . . . . . . . . . . . . . . . 96
5.2 Workload Characteristics . . . . . . . . . . . . . . . . . . . . . . . . 100
5.3 FPGA resource utilization for accelerators and interconnects . . . . 102
5.4 Latency estimation model components (Bidirectional arrows repre-

sent round-trip). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

xi



ABSTRACT

As the Internet evolves, cloud computing is now a dominant form of computation

in modern lives. Warehouse-scale computers (WSCs), or datacenters, comprising the

foundation of this cloud-centric web have been able to deliver satisfactory perfor-

mance to both the Internet companies and the customers. With the increased focus

and popularity of the cloud, however, datacenter loads rise and grow rapidly, and

Internet companies are in need of boosted computing capacity to serve such demand.

Unfortunately, power and energy are often the major limiting factors prohibiting dat-

acenter growth: it is often the case that no more servers can be added to datacenters

without surpassing the capacity of the existing power infrastructure.

This dissertation aims to investigate the issues of power and energy usage in a

modern datacenter environment. We identify the source of power and energy inef-

ficiency at three levels in a modern datacenter environment and provides insights

and solutions to address each of these problems, aiming to prepare datacenters for

critical future growth. We start at the datacenter-level and find that the peak provi-

sioning and improper service placement in multi-level power delivery infrastructures

fragment the power budget inside production datacenters, degrading the compute ca-

pacity the existing infrastructure can support. We find that the heterogeneity among

datacenter workloads is key to address this issue and design systematic methods to

reduce the fragmentation and improve the utilization of the power budget. This dis-

sertation then narrow the focus to examine the energy usage of individual servers

running cloud workloads. Especially, we examine the power management mecha-

xii



nisms employed in these servers and find that the coarse time granularity of these

mechanisms is one critical factor that leads to excessive energy consumption. We

propose an intelligent and low overhead solution on top of the emerging finer gran-

ularity voltage/frequency boosting circuit to effectively pinpoints and boosts queries

that are likely to increase the tail distribution and can reap more benefit from the

voltage/frequency boost, improving energy efficiency without sacrificing the quality

of services. The final focus of this dissertation takes a further step to investigate how

using a fundamentally more efficient computing substrate, field programmable gate

arrays (FPGAs), benefit datacenter power and energy efficiency. Different from other

types of hardware accelerations, FPGAs can be reconfigured on-the-fly to provide

fine-grain control over hardware resource allocation and presents a unique set of chal-

lenges for optimal workload scheduling and resource allocation. We aim to design a

set coordinated algorithms to manage these two key factors simultaneously and fully

explore the benefit of deploying FPGAs in the highly varying cloud environment.
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CHAPTER I

Introduction

With the evolution of the Internet, we have witnessed major advances, one of

the most significant and recent being cloud computing. This increased focus on

cloud computing has led to the rapid rise and growth of datacenter loads [2, 1].

Datacenter load is an important issue because it is directly related to datacenter

profitability and customer satisfaction. A central issue in datacenter load is, with

the power and energy supplied by the power delivery infrastructure in datacenters,

how to manage the amount of computation that can be deployed to handle the ever

growing load. Indeed, power has become one of the most contentious resources in

datacenter management. Building new datacenters and power infrastructure would

help accommodating the increased traffic, but the costly and time-consuming nature

of this solution renders it infeasible. Another possibility is to address the power

inefficiency that exists in datacenters and maximize the utilization of the existing

power infrastructure. Research has shown that most datacenters suffer from power

inefficiency[44, 150, 115, 54]. Fortunately, we are seeing new opportunity as new

hardware and software technologies emerge[3, 74, 119, 121, 73]. It is worthwhile

to investigate how these new technologies can be applied to help improve power

efficiency.

This dissertation takes a top-down approach, presenting three works to examine

1



and address power and energy inefficiency at three different levels inside datacenters.

The first work begins by invesitgating Facebook’s production datacenters, and find

that datacenter operators’ oblivious choice of grouping servers serving the similar

kinds of applications together creates rapid peaks of power consumptions at local

power delivery devices. The power budgets of the local devices are consumed quickly

during certain hours of a day, but are highly underutilized during other period of

time. This inbalance use of power budget degrades the overall utilization of power

budgets supplied by the power delivery infrastructure, leading to datacenter-wise

power inefficiency.

The second work narrows our focus onto examining the efficiency of power man-

agement mechanism employed in individual servers. Commodity servers employs con-

ventional coarse-grain dynamic frequency and voltage scaling (DVFS) based mecha-

nisms and policies as their tool for power management. This coarse-grain mechanism,

however, fails to identify long running queries and fails to selectively boost processor

performance only for the urgent situations. With these failures, processors wastes

significant amounts of power and energy boosting the already-fast-enough queries,

leading to server-level power inefficiency.

The third work takes one step further, investigating and addressing the ineffi-

ciency of the computing fabrics. In datacenter environment, general-purpose

computing fabrics such as CPU and GPGPU are commonly deployed because these

computing units are designed to be capable of performing a wide spectrum of com-

putation tasks. This flexibility, however, is achieved by generalizing all kinds of com-

putation into some standard steps, each of which is performed by a pipeline stage in

processor. In this situation, unfortunately, even the simplest operation needs to trig-

ger most stages of the processor pipeline and potentially involves significant amounts

of data movement in the memory hierarchy. Hardware accelerators are designed to

address this type of efficiency issue by building specialized modules to accelerate cer-

2



tain computation tasks, eliminating the unnecessary execution and data movement.

However, in datacenter environment, hardware accelerators suffer from its low flexi-

bility and are difficult to be deployed to handle the fast changing datacenter workload.

Our third work aims to achieve the best of both worlds, trying to realize dynamic and

flexible computation on highly power efficient and reconfigurable hardware platform.

In the following subsections, we describes the motivation and the challenges of

addressing the power inefficiency at each of these three levels in details.

1.1 Motivation and Challenges

1.1.1 Inefficient Datacenters

We investigate the power delivery infrastructure at Facebook production datacen-

ters, and observe that the power provisioning in these datacenters faces two major

challenges:

1. Challenge 1: Peak provisioning leads to low power budget utilization.

For modern large-scale datacenters that mostly serve user-facing workloads, their

total power consumption usually follows a diurnal pattern [102, 117], which reflects

the highly fluctuating user activity level throughout a day. To ensure sustainabil-

ity and safety, datacenter managers need to ensure that the peak aggregate power

consumption can be accommodated under the given, fixed power budget supplied

by power infrastructure. Peak provisioning, however, usually leads to highly un-

derutilized power budgets during the rest of the day.

2. Challenge 2: Multi-level power delivery infrastructure leads to power

budget fragmentation. Most modern datacenters deploy a multi-level power

delivery infrastructure. These infrastructures have a tree-like structure, each node

being a power delivery device, or we call a power node. Servers are directly supplied

by lowest-level (leaf ) power nodes, which are supplied by higher-level power nodes.
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Figure 1.1: Grouping servers with synchronous power consumption patterns
together often lead to rapid local peaks, which consume the local power
budgets quickly and lead to significant amount of power budget being un-
usable.
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Such hierarchical infrastructure improves reliability and is a common practice in

large-scale datacenters. Unfortunately, it also leads to negative effects on power

budget utilization because peak provisioning occurs at all levels of power nodes.

Power budget fragmentation problem, as illustrated in Figure 1.1, frequently oc-

curs in multi-level power infrastructures. For instance, in Figure 1.1, we show two

simplified datacenters, each of which is equipped with a two-level power infrastruc-

ture, and the same set of servers and service instances. The only difference between

these two datacenters is how service instances are placed under the leaf power nodes.

In the first datacenter, servers having synchronous power consumption patterns are

connected to the same leaf node. This creates rapid peaks with high amplitudes at the

leaf nodes, which consume the local power budget quickly. In such a datacenter, while

there is still an abundant amount of power headroom at the root node, there is no

room to connect any more servers to these leaf power nodes. Since servers can only be

supplied by the leaf power nodes, if the power budget is highly fragmented at the lower

level of power delivery infrastructure, the abundant power headroom at the root node

can never be utilized, making the datacenter inefficient. In the second datacenter, on

the contrary, servers are mixed in a manner that service instances with synchronous

power consumption patterns are spread out. Our insight is when carefully spreading

out synchronous service instances, rapid peaks at leaf power nodes are eliminated,

and power headrooms at the leaf nodes are increased. These increased local power

headrooms allow more servers to be supplied, which improves the utilization of the

power budget and the overall datacenter efficiency.

A large body of prior solutions, including power capping [24, 44, 83, 123, 49, 31,

125, 57, 25, 16, 150, 148], were proposed to solve Challenge 1. When applying these

prior works in a datacenter with oblivious service placement, however, their potentials

are largely limited by power budget fragmentation. In such a datacenter, instances of

the same services are typically placed together. Since these instances reach their peaks
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around the same time, the corresponding leaf nodes that supply these latency-critical

servers consume their power budgets much faster than the other leaf nodes. In this

case, unfortunately, they need to be largely capped, even when there are still ample

amounts of power headroom at other leaf nodes. A few techniques [78, 47, 115, 54]

were proposed to address Challenge 2 in order to make power capping more efficient.

These solutions, however, either require modifications to the power infrastructure

[78, 115, 54], or due to the battery capacity can only handle peaks that span at most

tens of minutes, making it unsuitable for Facebook type of workloads whose peak

may last for hours. [47].

1.1.2 Inefficient Servers

Managing high-percentile tail latency is one of the chief performance concerns

for web services in modern datacenters [32]. These online data-intensive (OLDI)

services traverse multi-terabyte data sets for user-facing latency-sensitive queries by

dividing (“sharding”) their datasets over thousands of servers (“leaf nodes”) acting

in concert [12]. A complete query response is formed by aggregating the responses

from the individual leaf nodes. However, at hundred- to thousand-node scale, the

overall latency distribution to respond to the user is often dominated by a single

straggling leaf node. For example, if an individual leaf node has only a 1-in-100

chance of exceeding a one-second response time, when aggregating parallel requests

to 100 nodes, 63% of queries will take longer than one second [32]. Due to this

service-level sensitivity to leaf-node tail latency, optimizations to reduce the long

tail are paramount. Indeed, sacrificing mean latency for improved tail latency is

encouraged [32].

Recently proposed workload- and latency-aware mechanisms, such as PEGA-

SUS [90], adjust voltage/frequency to the large diurnal variations in service load to

conserve energy while respecting a tail latency constraint. Such approaches similarly
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fail to distinguish between typical and tail queries, instead modulating performance

of the entire query latency distribution to meet the tail latency constraint. Coarse-

grain uniform boosting leads to energy-inefficient tail reduction; energy is wasted

accelerating queries that are not in the tail.

Considering that the query latency for many OLDI services is in the range of mil-

liseconds and microseconds [88, 12], the emerging class of fine-grain (10s of nanosec-

onds) voltage boosting (i.e., quick boosting) techniques [72, 71, 119, 106, 53] has the

potential to enable precise query-level boosting approaches. Given an energy budget,

an intelligent quick boosting strategy could precisely pinpoint and boost queries that

contribute to the tail as well as those whose latency is more likely to benefit from

frequency/voltage boosting. Figure 1.2 illustrates the limitation of prior work and

our insight. The top graph illustrates a typical heavy-tailed latency distribution of a

leaf node. Coarse-grain boosting techniques such as those mentioned above accelerate

all queries, compressing the entire latency distribution until the 99% latency meets

the target, unnecessarily accelerating the bulk of requests near the mean. Instead, by

applying fine-grain boosting to queries that are both sensitive to frequency and lie in

the tail, our approach skews the distribution, significantly reducing the tail latency.

However, several open questions remain to realize this approach, including:

1. Investigating whether tail queries are amenable to frequency/voltage

boosting. If tail queries in representative OLDI workloads are not bottlenecked on

computation, V/f boosting will not be effective in reducing their time to completion

and thus would not be able to pull in the tail.

2. Determining whether tail queries are predictable. If the queries that push

out the long tail share common characteristics, we can use these characteristics to

develop per-query indicators to pinpoint these queries for boosting.

3. Identifying an effective system design to pinpoint tail queries and pre-
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cisely boost them. To realize quick pinpointed boosting of tail queries, a mech-

anism must be in place to enable the identification and boosting of likely tail

queries.

1.1.3 Inefficient Computing Fabrics

Despite declining CPU performance gains generation over generation, the com-

putational requirements of cloud service datacenters are rapidly increasing. Current

CPU-centric models will soon no longer be able to keep up with the demand placed

on them by compute intensive, power-hungry workloads such as deep learning [58]

and intelligent personal assistants [59].

Recent studies [59, 121, 21, 94] show that FPGA acceleration can close this gap

between computing capacity and demand. FPGAs offer a number of benefits over

other hardware accelerators: they boast significantly higher computational density

for many emerging workloads and, unlike ASICs, can be reprogrammed to support

alternate workloads and algorithms [88, 133, 20, 149].

Additionally, because the algorithm is explicitly implemented in hardware, FPGAs

deliver extremely predictable performance [121, 21] (one of the most desirable charac-

teristics in a cloud infrastructure [32, 136, 160, 80, 118, 61, 97, 134, 99, 26]). FPGAs

are highly energy efficient and, unlike power- and space-hungry GPUs, FPGAs can

be easily integrated into existing datacenter and server architectures [121].

There are several promising industry efforts to make FPGAs more accessible in

the datacenter environment: Intel recently purchased Altera, (one of the two leading

FPGA manufacturers) for $16.7 billion [73], and Xilinx (the other leader) is reportedly

building close ties with Qualcomm [100] and IBM [63] to develop FPGA solutions for

datacenters. Intel, following closely on the heels of their acquisition, released the first

server prototype integrating a memory coherent FPGA with a Xeon processor over

QPI. Called HARP, this unique platform is one of the systems we characterize in this
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work.

In this rapidly growing design space of FPGA-enabled datacenter computing, prior

work statically assigns FPGAs to accelerate single workloads [121] or allocates entire

FPGAs to be used for different workloads [21]. Statically allocating accelerators can

leave FPGAs vastly underutilized, and allocating entire FPGAs for a workload can

leave significant portions of the FPGA fabric unused while incurring a high repro-

gramming cost. This is both inefficient and expensive.

Modern datacenters must support many different types of jobs, and the demand

for each type of job varies over multiple timescales (e.g., the diurnal utilization pattern

reported by Google [103] as well as transient load spikes [142, 56]). As such, FPGAs

need to be able to dynamically and quickly respond to both short-term and long-term
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load changes across multiple workloads.

To solve this problem we create Slingshot, a resource management system that

enables FPGA reconfiguration in response to real-time demand (Figure 1.3). Resource

sharing is a particularly challenging problem because sharing the resources of an

FPGA presents fundamentally different challenges from resource sharing on a chip

multicore processor (CMP) with both spatial and temporal partitioning aspects:

• Spatial Resource Sharing - FPGAs offer a much finer degree of spatial resource

sharing than CMPs, where the logical core is the smallest unit of spatial partition-

ing. An FPGA can be subdivided down to the individual logic components, and

computing resources can be shared and allocated at a much finer degree.

• Temporal Resource Sharing - Modern CPUs can quickly switch between appli-

cation contexts on the fly, however FPGA accelerators are limited to cooperative

multitasking; that is, FPGAs can only reprogram to switch applications in be-

tween jobs. Additionally, the partial reprogramming time on an FPGA is over

100× higher than context switching time in a CPU [39, 85].

1.2 Summary of Proposed Systems and Contributions

This dissertation contains three major systems, each of which aims to address the

power and energy inefficiency at a specific level. The summary of the systems and

their contributions are stated as follows:

1. Improving datacenter efficiency with SmoothOperator – we aim to improve

the efficiency of power usage in datacenters, allowing datacenters to achieve higher

throughput without changing the existing power infrastructure. To this end, we

propose SmoothOperator, a framework that analyzes the temporal heterogene-

ity of power consumption patterns and derives a highly power efficient service

placement. SmoothOperator leverages a novel approach to systematically model
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and scores the temporal heterogeneity among different services. Based on the anal-

ysis, SmoothOperator uses a clustering-based approach to identify instances that

create high peaks when being placed together, and spreads them out across the

datacenter.

This framework increases power headroom at all levels of the power delivery in-

frastructure, allowing hosting more servers and increasing the throughput of the

datacenter. Meanwhile, we also observe that simply adding servers in a straightfor-

ward way can lead to resource underutilization and there are further opportunities

to improve the throughput. We leverage a new type of disaggregate servers that

decouple the compute and the storage components, recently deployed in produc-

tion. We design a set of history-based server conversion and proactive throttling

and boosting policies to fully utilize the newly-added servers to further increase

the resource and power utilization.

2. Addressing server inefficiency with Adrenaline – We characterize query la-

tency distributions for latency-sensitive datacenter applications running on real

systems and identify query-level indicators. We then propose Adrenaline to ad-

dress the limitations of traditional DVFS and achieve tail-sensitive voltage boost-

ing to significantly reduce the tail latency with high energy efficiency. Adrenaline

leverages the recently proposed Shortstop [119], a circuit design for quick volt-

age/frequency scaling, and the knowledge of per-query characteristics to achieve

query-level fine-grain V/f scaling. Adrenaline’s fine-grain query-level V/f boost-

ing pinpoints the long-running queries and reduces the tail latency when needed,

while still be able to significantly improve energy efficiency by only lowering V/f

for queries that are less likely to increase the tail or less affected by the V/f scaling.

3. Workload scheduling on low-power and dynamically configurable fab-

ric – Hardware acceleration provides both high power efficiency and highly pre-
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dictable latency. We characterize the state-of-the-art dynamically-configurable

CPU-FPGA systems with a set of representative computation kernels. We present

the design of Slingshot, a robust mechanism to share FPGA resources spatially

and temporally across multiple dynamic workloads. Using Slingshot, queries from

different applications can be flexibly served throughout the datacenter without

being restricted by the present configuration of FPGA resources, and each ma-

chine dynamically decides whether to process queries on the CPU or FPGA using

resource-aware scheduling algorithms. The end result is that Slingshot effectively

treats the FPGA as a shared service.

Using Slingshot’s FPGA-as-a-service model, each server dynamically reprograms

its own FPGA on the fly to best cope with changing load patterns (e.g., increasing

the available accelerators of a particular type in response to a sudden spike in

relative load). In this work, we construct a datacenter model based on the real-

system measurements and study the impact of different partitioning and scheduling

policies for dynamically reconfigurable FPGA acceleration.

13



CHAPTER II

Background and Related Work

2.1 Improving Power Budget Utilization for Clusters and

Datacenters

Aside from prior proposals focusing on improving node-level power and energy

efficiency [90, 91, 61], there has been a large body of previous works addressing

power and energy efficiency problems in datacenters from a system architecture’s

perspective.

One class of solutions tries to address the power bottleneck by reducing the power

consumption of computation. Power management problems at the server level and

the small cluster level have drawn significant attention [43, 24, 45, 110, 123, 141, 87,

65, 131, 50, 124, 103, 35, 140]. A popular approach among them relies on using vir-

tual machines (VMs) to achieve work consolidation and performance isolation among

different workloads, and treats VM consolidation as a resource allocation problem

[24, 45, 110, 123, 141, 87]. However, due to strict latency requirement and simplic-

ity of management, large-scale production datacenters, such as Facebook’s and Mi-

crosoft’s [161], deploy their datacenter without virtualization in a more autonomous

manner. In this type of datacenters, each service team deploys their service on their

own, separate set of physical servers, and different major services do not share phys-
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ical servers. This consolidation-based approach is not directly applicable to this type

of datacenters.

Recently, researchers started to consider intelligently charging and discharging

energy storage devices (ESDs) to enable temporary excessive power draw at power

nodes during power emergencies [6, 55, 155, 145, 78, 56]. The problem of this type

of approach is similar to power-capping-based approaches, in that the unbalanced

peaks across the datacenter can make the sharp peaks at some of the nodes deplete

the ESDs quickly, while at some power nodes the power draw never entails the extra

capacity.

There are other proposals for flexible power infrastructure focusing on temporarily

extending (or reallocating) the power budget among power nodes [115, 41] to adapt

to the dynamism of power consumption. Among them, power routing [115] suggests

dynamically connecting rows and racks of servers to different power nodes, in order

to balance the load among power nodes. Dual-corded power supply, however, only

provides limited flexibility (degree of 2) for power routing purpose. To maximize

the flexibility, normal fault-tolerant dual-corded power supply architecture must be

expanded to enable richer connectivity. The costly upgrade to the infrastructure

and a significant change to the power supply topology required by their solution can

further lead to long service downtime during the installation and setup process.

Several prior works [44, 54, 144] showed that by statistically multiplexing the

probability distributions (PDFs) of the power of different workloads, datacenters can

overbook and/or under-provision safely. These works, however, do not take advantage

of time-series power information of workloads. Our insight is that the strong diurnal

patterns and the asynchronous power behavior across workloads provide significant

opportunities for de-fragmenting power budget. Also, their techniques degrade the

performance of user-facing services significantly during the peak time, which is not

ideal for a user-facing datacenter.
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Power Routing
[115]

Stat. Multiplexing
[54]

DistributedUPS
[78]

SmoothOperator

Using temporal information 3 3
Using existing power infra. 3 3
Automated process 3 3 3 3
Balancing local peaks 3 3
Proactive planning 3

Table 2.1: Comparison between SmoothOperator and prior approaches for improving
datacenter power efficiency

In fact, SmoothOperator and a lot of the works mentioned in this section are

not mutually exclusive. The workload-aware service instance placement framework is

complementary to many of the prior solutions.

2.2 DVFS and Server-level Power Management

Dynamic voltage and frequency scaling (DVFS) has been widely studied to im-

prove the energy efficiency of various scales of computational units over the past sev-

eral decades [27, 151, 64, 69, 82, 77, 92, 90]. However, most of the prior works only

look at voltage and frequency scaling decisions at a coarse granularity. In [27, 151, 64],

a decision engine, which leverages measured runtime information, is implemented as

regression models or dynamic compilation mechanisms to find the best voltage and

frequency levels to optimize for energy efficiency. Researchers have also put efforts

into coarse-grain DVFS decisions on modern multi-core processors [64, 82, 77, 92], in

order to achieve better system throughput and energy efficiency. Similarly to DVFS

on processors, some prior works also explore the opportunities of deploying DVFS on

memory systems [35, 30, 37, 36]. Related works on quick voltage boosting techniques

are discussed in Chapter IV.

Recently, there is an increasing research interest on power management in datacen-

ters [122, 84, 92, 90, 101] from different perspectives. Among them, PEGASUS [90]

constantly monitors the workload and the performance statistics of the recent re-

quests within a sliding window, and leverages a feedback controller to minimize the
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power consumption without violating the QoS requirement. This work differs from

theirs by identifying and selectively targeting only the requests that most likely will

fall in the tail of the distribution.

2.2.1 Tail Latency

As reported in prior work [32], tail latency has become a major concern of modern

datacenter applications, which has gained much research attention. Since many dat-

acenter workloads have critical tail latency requirements, many works [80, 160, 154,

137, 98, 135, 96, 33] try to improve the performance predictability of such workloads

to optimize datacenter utilization. This requires precise performance interference

prediction and careful control of resource sharing, in order to make better scheduling

decisions. Another class of optimization tries to reduce the tail latency. DeTail [157]

proposes to exchange package information across multiple network layers to optimize

the scheduling of package processing and distribute the network load evenly. [158, 13]

move the network stack from kernel space to user space to avoid overhead, so that

they can achieve lower query latency, as well as higher system throughput. Adrenaline

differs from these works due to the fact that it specifically accelerates the queries that

tend to appear in the tail, which makes the optimization more efficient than simply

boosting the entire latency distribution.

2.3 FPGAs and Hardware Acceleration

As Moore’s law slows down, new techniques are required to meet the growing

computational needs of datacenter services [59]. Hardware accelerators can reduce

computation time and increase efficiency for many types of algorithms including text

and image processing [8, 120, 22, 66, 156], scientific computing [86, 7, 60, 113, 19],

database transactions [10, 132, 108] and machine learning [112, 162, 79, 107, 5, 159].

FPGAs, ASICs, and GPUs each have their own strengths and weaknesses. GPUs
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offer massive parallel computing capabilities, but use a lot of power [114, 67]. ASICs

are very power efficient but expensive to implement and cannot be changed once built.

FPGAs can be easily modified and are particularly good at accelerating algorithms

that are amenable to a pipelined architecture, have frequent branches, and/or can

benefit from hardware-level architectural optimizations [59, 70, 109].

Prior work demonstrates FPGAs can accelerate numerous workloads seen in dat-

acenters today. Yan et al. showed that FPGAs can be used to accelerate query pro-

cessing for web search engines by a factor of 7 compared to CPU [153] and Shan et al.

demonstrated a greater than 30x speedup accelerating MapReduce on an FPGA [129].

However, the integration of accelerators into a datacenter has many factors besides im-

plementing an algorithm: datacenter designers must account for networking latency,

bandwidth limitations, and power constraints. In order for a datacenter to scale under

load, all of these issues must be managed while scheduling jobs to maximize Quality-

of-Service (QoS), throughput, and energy efficiency [121, 139, 11, 14, 18, 89, 68].

Prior work on multiple FPGAs in a cluster or datacenter focuses on one of two op-

tions: using all the FPGAs for a single task (platform-as-a-service model) or schedul-

ing on bare-metal (infrastructure-as-a-service model).Sano et al. used the platform-

as-a-service model to show that FPGAs can be pipelined together to complete a single

workload [128]. Putnam et al. demonstrated a medium-scale deployment of Stratix

V FPGAs can be used to accelerate the Bing web search engine [121]. Both use a

reconfigurable fabric but statically partition the entire fabric for a single workload,

unlike our proposed system which dynamically partitions the reconfigurable fabric in

response to load needs.

The infrastructure as a service model is a special case of heterogeneous data-

center scheduling, with very diverse hardware choices. Lee et al. showed that for

heterogeneous cloud scheduling, a reasonable scheduling goal is the cost-performance

tradeoff [81]. The cost determines the metrics of hardware cost and execution time,
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and the scheduler must track the utilization of each compute resource to optimize for

performance. We aim to be the first work to utilize and characterize the hardware

heterogeneity of Intel’s HARP for dynamic datacenter workloads, where the FPGA

has a low latency pathway to memory.

For scheduling on hardware, El-Araby et al. proposed a virtualization model

for FPGA-accelerated systems where an FPGA is partitioned and IO pipelined to

different regions [40]. Similar to virtual memory, this allows an application to see

more resources than are currently available and delegates the actual reprogramming

and data transfer work to a scheduling algorithm. However, this does not account

for workloads with different computation-to-data ratios, reprogramming latency, or

contention and latency from other sources in a datacenter that uses to make query

scheduling and FPGA reconfiguration decisions.

For contention-aware workload scheduling in a datacenter, Paragon, a QoS-Aware

scheduler for heterogeneous datacenters, characterized workloads and hardware re-

sources and uses a greedy algorithm to try to match jobs with available resources

[34]. Paragon applicability to an FPGA-accelerated datacenter is limited by the

fact that it cannot characterize accelerated workloads. Dominant Resource Fairness

(DRF) [51] showed that an efficient, fair, and Pareto-optimal scheduling algorithm

that accounts for and distributes all the resources needed by each workload, but can-

not manage the reconfiguration of FPGA resources and does not provide sufficient

support for dynamically changing resource configurations.
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CHAPTER III

SmoothOperator: Reducing Power Fragmentation

and Improving Power Utilization in Large-scale

Datacenters

This chapter presents SmoothOperator, a datacenter-level framework designed

to address the power and energy efficiency in production datacenters. We develop a

workload-aware service placement framework to systematically spread the service in-

stances with synchronous power patterns evenly under the power supply tree, greatly

reducing the peak power draw at power nodes. We then leverage dynamic power pro-

file reshaping to maximally utilize the headroom unlocked by our placement frame-

work.

3.1 Power budget fragmentation and inefficiency

3.1.1 Multi-level power infrastructure in datacenters

Multi-level power infrastructure is commonly deployed in large-scale, production

datacenters. At each level, the total power budget of a power node is shared among

its children nodes. This type of tree-like multi-level power infrastructure is designed

to avoid a single point of failure and for the convenience of management.

20



Substation

Datacenter

Suite

Suite Suite

Suite
MSB MSB

SB SB

RPP

Rack

Rack

RPP RPP

Server

Power Grid

Figure 3.1: Multi-level power delivery infrastructure deployed in Face-
book’s datacenter.

Facebook datacenters feature four-level power infrastructure, consistent with Open

Compute Project specification [4, 150], as shown in Figure 3.1. Each datacenter is

composed of several rooms, which we call suites. Servers are placed onto rows of racks,

allocated into these suites. A suite is equipped with multiple top-level power nodes,

i.e., main switching boards (MSBs), each of which supplies some second-level power

nodes, switching boards (SBs), which further feeds to a set of reactive power panels

(RPPs). Finally, the power is fed into racks, each composed of tens of servers. The

power budget of each node is approximately the sum of the budgets of its children.

3.1.2 Power budget fragmentation

Power budget fragmentation exists because servers hosting the services with syn-

chronous power consumption patterns are grouped together under the same sub-tree

of the multi-level power infrastructure. Such a placement creates rapid, unbalanced

peaks with a high amplitude, which consumes the power budget of the supplying
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Figure 3.2: Careful service instance placement can extract significant power head-
room for housing more servers, which improves the overall computing capacity of the
datacenter without changing the underlying power infrastructure.

power node fast. When the aggregate power at a power node exceeds the power bud-

get of that node, after a short amount of time, the circuit breaker is tripped and the

power supply for the entire sub-tree is shut down. These local power limits, there-

fore, make it harder to efficiently utilize the total power budget that is supplied to

the entire datacenter.

For example, in Figure 3.2, we have a simplified datacenter with a 2-level power

infrastructure and 4 service instances to be placed under the leaf power nodes. We

assume that service instance 1 and 2 have an identical (perfectly synchronous) power

consumption pattern, and service instance 3 and 4 have perfectly out-of-phase pat-

terns. To avoid tripping the circuit, the limiting factor of the number of servers that

can be supplied under a power node is the peak power (maximum aggregated power

across all servers supplied by the same node). When synchronous servers are placed

together, as shown in the left sub-figure of Figure 3.2, it leads to a higher peak power

at the supplying power node than the optimal placement. This higher peak curtails

the number of servers that can be supplied by the datacenter, which indicates a lower
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tion at time t and the power budget. It quantified the power utilization efficiency.

power utilization.

In the following, we define two metrics to quantify the level of power budget

fragmentation and inefficiency of power budget utilization. In this work, we focus on

improving these two metrics:

1. Sum of peaks: Sum of the peaks of the power nodes in a datacenter is an

important indicator of the level of power budget fragmentation. With the same

set of service instances, poor placements can produce very a high peak power value

at leaf nodes, indicating the peaks of the service instances are not evenly spread

out. The sum of the power node peaks is, therefore, much larger than that in the

optimal placement.

2. Power slack and energy slack: Power slack and energy slacks are indicators

for power budget utilization. As illustrated in Figure 3.3, power slack is a mea-
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power consumer workloads measured in three of the datacenters under study.

surement of the unused power budget at a point of time, and is defined as

Pslack,t = Pbudget − Pinstant,t, (3.1)

where Pinstant,t is the instant power consumption of the power node at time t, and

Pbudget is a constant number representing the given power budget of this power

node. The lower the power slack, the higher proportion of the power budget is

utilized at that point of time. Energy slack is simply the integral of power slack

over a timespan T .

Eslack,T =

∫
T

Pslack,tdt (3.2)

A low energy slack means the power budget is highly utilized over the correspond-

ing timespan.

In the following sections, we will use these two metrics to guide the development

of our solutions and measure the quality of our result.

3.1.3 Peak heterogeneity in datacenters

Modern datacenters often provide a wide spectrum of services. Even in highly web-

centric companies such as Facebook, to support a variety of data-centric features and
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the high visit rate, a significant proportion of servers in their production datacenters

are provisioned to serve hundreds to thousands of internal services. Figure 3.4 presents

the breakdown of 30-day average power consumption of the top 10 power consumer

workloads measured in the three datacenters under study.

We observe that the power usage patterns are heterogeneous across these services.

Such heterogeneity indicates abundant opportunities to mitigate the power budget

fragmentation problem by grouping services with complementary power consumption

patterns under the same power node. Figure 3.5 shows the diurnal patterns of three

of the major services that are hosted in one of Facebook datacenters: web, db, and

hadoop. The bands indicate the percentiles of the power reading among all the

servers hosting that service. For example, the darkest band in the top-most sub-

figure indicates the range between the 45th-percentile and the 55th-percentile power

consumption readings among all the web servers at any given time. From this figure

we show that servers hosting different services have very different power consumption

patterns.

The web clusters serve the traffic coming directly from the users and hitting the

production web site. This type of clusters, including web and cache servers, is the

major part of Facebook datacenters, and is one of the largest consumers of the power

budget. Because of its user-facing nature, the servers in these clusters have highly

synchronous power patterns, which follow the typical user activity level. Meanwhile

the latency requirement for this type of workload is high because it directly affects

user experience.

The db clusters are the backend of the web and cache clusters. What distinguishes

backend servers from these front-end servers is that query only hits db servers when

the data needed are missing in the cache servers. Compared to front-end servers,

these servers are more I/O bound, thus not exhibiting high power consumption even

when the frontend servers are experiencing peak usage during daytime. However,
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these servers perform daily backup at night, which involves a lot of data compression.

Therefore, as shown in Figure 3.5, while these servers also have predictable diurnal

pattern, their peaks occur during the night time.

The hadoop clusters serve batch jobs that aim to improve the quality of data that

are needed by the website or the company. Since users don’t directly interact with

this type of servers, these services are not bound by latency requirement; instead,

they are optimized to provide high throughput. To achieve satisfactory throughput,

the execution of this type of jobs highly relies on the job scheduler’s policy, and the

server are running at higher settings of CPU frequencies. Consequently, we find in

Figure 3.5 that their power consumptions are constantly high and less relevant to the

user activity level.

We see from the above that there are abundant opportunities to improve the

datacenter power budget utilization if the datacenter operators take advantage of

different characteristics of different workloads. Recognizing such opportunities, we

design SmoothOperator to capture and leverage the peak heterogeneity identified

among these production services, in order to mitigate the power budget fragmentation

problem by intelligently grouping the servers with asynchronous power consumption

patterns. We will introduce how we design SmoothOperator in Sections 3.2 and 3.3.

3.2 Workload-aware service instance placement and remap-

ping

In this section, we address the power budget fragmentation problem found in

production datacenters, and introduce our workload-aware service instance place-

ment and remapping framework. Our framework takes advantage of the service-level

and service-instance-level heterogeneity, and spreads out service instances with syn-

chronous power patterns under different power nodes.
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3.2.1 Service and service instance

Facebook datacenters house thousands of web and data processing services. Sim-

ilar to Microsoft datacenters[161], for major services, each service team manages its

own service on a separate set of physical servers, and different major services do not

share physical servers. A service is a collection of hundreds to thousands of service

instances. Each of these service instances is a process that runs a copy of the service

or a part of the service. For example, service such as Memcached runs on thousands

of machines, and each Memcached process on a server is a service instance. Facebook

deploys service instances as native processes instead of virtual machines. This policy

not only reduces operational complexity, but also minimizes the variability caused by

the interference due to co-scheduling and colocation.

3.2.2 Overview of placement framework

We illustrate our framework in Figure 3.6, which includes four major steps:

1. Collect traces and extract representative traces We first collect and con-

struct multi-weeks of power traces for each service instance, which we call in-

stance power trace, of the target datacenters (PI i in Figure 3.6). We use these

instance-level traces to further construct a service power trace (PSi) for each of

the top power-consuming services. Each service power trace exhibits the repre-

sentative temporal patterns of a service aggregated across all its instances. The

service-level traces then serve as a set of bases that facilitates the evaluation of

dissimilarity between instance-level power traces (Section 3.2.3).

2. Calculating asynchrony scores We then identify synchronous service in-

stances, namely, the instances whose power consumption peak at the same

time. To achieve that, we calculate a vector of asynchrony scores for each ser-

vice instance based on the corresponding instance power trace and the service
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power traces of all the services (Section 3.2.4). We use the vectors of asynchrony

scores to estimate the impact to the aggregated peak when two or more service

instances are grouped together. This step transforms each server into a data

point in a high dimensional space spanned by the asynchrony scores.

3. Clustering We then apply a clustering method (Section 3.2.5) on these service

instances based on their asynchrony score vectors, identifying the ones with

synchronous power consumption behavior.

4. Placement We place the service instances based on the clustering result, aiming

to maximize the asynchrony score of each power node (Section 3.2.5).

After the initial application, our framework can be continuously applied to the

datacenter to fine-tune the placement when power consumption patterns start to

exhibit middle-term or long-term (e.g., in weeks or longer) shifts or changes.

Note that workload-aware service instance placement also provides benefits from

the power safety aspect of datacenter. In the optimized placement, service instances

that have highly synchronous behaviors are now spread out evenly across all the power

nodes. When bursty traffic arrives, the sudden load change is now shared among

all the power nodes. Such load sharing leads to a lower probability of high peaks

aggregates at a small subset of power nodes, and therefore decreases the likelihood of

tripping the circuit breakers inside certain heavily-loaded power nodes.

3.2.3 Constructing power traces

To be able to derive a workload-aware instance placement for datacenters, we

need to capture the power consumption patterns of service and service instances. As

shown in Section 3.1.3, services exhibit a diversity of power consumption patterns

[161, 48] and such service-level power heterogeneity provides abundant opportuni-

ties for mitigating the fragmentation problem. In fact, in addition to service-level

30



heterogeneity, we observe from the production data significant amounts of instance-

level heterogeneity, even within the same service. Such heterogeneity usually stems

from imbalanced accessing pattern or skewed popularity among different instances

of a same service. SmoothOperator aims to capture both of these two types of het-

erogeneity by constructing instance power traces and service power traces. In the

following, we introduce the details of these two types of power traces.

Constructing Instance Power Traces For every service instance in the datacen-

ter, we construct a log of power readings, i.e., an instance power trace (I-trace), to

represent the corresponding service instance’s history of power consumption. Each

of these I-traces is a time series, which is a vector, containing seven days of the ex-

act power reading recorded by the power sensor on the corresponding machine, one

reading per minute.

PIi,w = 〈pi,t : t ∈ Tw〉, (3.3)

where PI i,w is the instance power trace of server instance i of week w, and pi,t is

the power reading of instance i at time t, and Tw is the series of timestamps within

week w during which the power readings are logged. We choose the length of 7 days

because, in large-scale user-facing datacenters, user traffic has strong day-of-the-week

activity patterns [15, 126]. Note that, since power traces are simply vectors, vector

arithmetic can be directly applied.

SmoothOperator focuses on balancing the power load of the power nodes by in-

vestigating the service instances’ middle-term (e.g., hourly, daily) to long-term (e.g.,

weekly or longer period) power consumption patterns. To prevent SmoothOpera-

tor from overfitting its decisions to any specific week in which significant unusual

short-term variations exist (e.g., bursty traffics due to power failure of neighboring

datacenters), we collect 2-3 weeks of I-traces for each service instance, and use vector

arithmetic to calculate the averaged instance power trace for each service instance.
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That is,

P̄ I i =

∑
w∈W PIi,w

|W |
(3.4)

Each of these averaged I-traces remains to be a 7-day-long vector; each element of

this averaged instance trace is the average of the power reading recorded at the same

time-of-week across these multiple weeks.

Constructing Service Power Traces. We then construct service power traces (S-

traces), one for each of the top power-consumer services running in the datacenters.

For service Y , we calculate the vector sum of the P̄ I’s of all of Y ’s instances, and

divide the vector sum by the number of instances of service Y . This calculation is

formulated as follows:

P̄ SY =

∑
service(i)=Y P̄ I i

|Y |
, (3.5)

where P̄ SY is the service power trace of service Y , and |Y | is the number of instances

of service Y . These S-traces represent the most significant power consumption pat-

terns observed in the datacenters; it means that, when randomly sampling any large

enough group of service instances from the datacenter, the aggregate power trace

of this group of service instances will be close to a linear combination of these top-

consumer S-traces. When considering adding an extra service instance to a group of

instances, we use these S-traces to evaluate whether the new instance’s power con-

sumption pattern will add significantly to the peak of the aggregate power trace of

that group.

3.2.4 Asynchrony score function

To measure how the peaks of the power traces of a set of service instances spread

out over time, we define a metric, namely asynchrony score. We use an asynchrony

score function to evaluate the asynchrony score over a set of power traces M , which
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is defined as follows:

AM = f(M) =

∑
j∈M peak(P̄j)

peak(
∑

j∈M P̄j)
. (3.6)

For example, if we want to evaluate whether two service instances a and b should

be placed together, we would like to know if they peak asynchronously or not. Since

an I-trace is a power trace, we can calculate asynchrony score function over two I-

traces. This is done by calculating the following ratio for P̄ Ia and P̄ Ib, and the

aggregate power trace P̄{a,b} = P̄ Ia + P̄ Ib:

A{a,b} = f({a, b}) =
peak(P̄ Ia) + peak(P̄ Ib)

peak(P̄{a,b})
, (3.7)

where A{a,b} is the asynchrony score between service instance a and service instance

b, and peak(P̄j) is the peak value of the power trace P̄j. The lower the asynchrony

score, the more overlapping the peaks of the component power traces, and therefore

the worse the group is; the higher the score, the less the overlap. For example, in the

poor placement case in Figure 3.2, each leaf node has a asynchrony score of 1.0. If we

exchange server 2 and server 3, each of the leaf power nodes will have a asynchrony

score close to 2.0.

For a set of power traces M , the lowest possible AM is 1.0, meaning that every

component power traces peaks at the same time. The highest asynchrony score, |M |,

occurs when every instance has the same peak value p and the peak of the aggregate

power trace of M is also p, meaning that the aggregation of this group of instances

has zero impact on the peak. This scenario represents the most efficient use of the

power budget.

3.2.5 Service instance placement

Our workload-aware service instance placement mechanism relies on iterative cal-

culation of asynchrony scores to derive a placement of service instances that leads
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to more stable, less varying aggregated power consumption under power nodes. The

resulting placement has a high asynchrony scores at all levels of power nodes, which

maximizes the power headroom and mitigates fragmentation in the datacenter, as we

described in Section 3.1.2. In the following, we dive into the details of our service

instance placement mechanism.

Calculating asynchrony score vectors for service instances. We first calculate

a asynchrony score vector vi for each service instance i. We do this by calculating

the asynchrony score of the averaged I-trace of instance i against all the S-traces;

each element of this asynchrony score vector which is an asynchrony score between

the averaged I-trace of i and one of the S-traces, which we call an instance-to-service

(I-to-S) asynchrony score. This vector evaluates how adding this service instance to

a large mix of other instances potentially impacts the aggregate peak of this group.

We choose to use I-to-S asynchrony scores, instead of instance-to-instance (I-to-I)

asynchrony scores, for the evaluation because of two reasons: 1) the pair-wise I-to-I

asynchrony score calculation could take an unacceptable amount of time since there

are tens to hundreds of thousands of service instances in a datacenter, and 2) after

doing the embedding in the next step, these I-to-I asynchrony score vectors will span

a sparse high-dimensional space (> 104), which can lead to overfitting and is not ideal

for clustering [130].

Classifying and placing instances. Suppose B is the set of the top power-

consumer services, we extract |B| S-traces. Each service instance, hence, has an

asynchrony scores vector of length |B|. We can then embed all the service instances

as data points in a |B|-dimensional space spanned by the |B| asynchrony scores. We

then apply k-means clustering to these points to classify the service instances into

highly-synchronous groups. An example of the clustered result is demonstrated in

Figure 3.7. We then select service instances using a round-robin like heuristic and al-

locate the instances to the power nodes from the top level of the power infrastructure
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K-Mean-clustered servers projected via t-SNE

Figure 3.7: The production service instances in one of the suites of DC1 are embed-
ded into the |B|-dimensional asynchrony-score space. k-means clustering is applied
to classify asynchronous servers (shown in different colors). This figure shows the
projected result onto a 2-dimensional space via t-SNE [93].
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to the bottom.

For example, assume that we want to place a set of service instances I into the

datacenter. We start from the top level l0 and want to allocate service instances to

q second-level nodes. The first step is to extract |B| S-traces out of these servers.

For each server, we calculate one asynchrony score against each S-trace, and have |B|

asynchrony scores for each service instance in the end. Each server is then considered

as a data point in the |B|-dimensional space spanned by the asynchrony scores. We

then apply k-means clustering to these data points and obtain a set of h clusters,

denoted as C = {c1, c2, c3, ..., ch}. We configure h to be a multiple of q. Each of these

clusters have the same number of instances. For each second-level power node, we

iterate through all the clusters, and assign
|cj |
q

service instances from cluster j to that

power node, and so on, until all the service instances are assigned to the second level

power nodes. The process repeats and terminates when all the service instances are

assigned to the last-level power nodes.

3.2.6 Adapting to workload changes

In datacenters, traffic and workload can change over time. Short-term workload

uncertainties such as power spikes caused by traffic bursts are handled by commonly

deployed emergency measures such as power capping solutions [150], and is out of

the scope of this work. On the other hand, mid-term to long-term workload changes

are what we care the most about. These changes are usually caused by the change

of accessing patterns, which might gradually make the power efficiency of the current

deployment suboptimal. Although, according to the past data in Facebook datacen-

ters, significant changes rarely occur within months, we want to be able to identify

when the current placement becomes suboptimal and apply incremental adjustment

to it. To address this issue, our framework continuously records the I-traces and the

S-traces, and dynamically re-evaluate the severity of the fragmentation problem by
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monitoring the sum of peaks of power traces at each level of power infrastructure.

When the placement becomes suboptimal with respect to the changing workload, we

identify the power nodes with the most severe fragmentation problem (i.e., the node

with the lowest asynchrony score or largest sum of peaks), and calculate a differen-

tial asynchrony score for every server. A differential asynchrony score is calculated

between the I-trace of a service instance and the averaged aggregate power trace of a

large group of server. We define

P̄Ai,N =

∑
(j∈SN∧j 6=i) P̄ Ij

|SN − 1|

to be the averaged aggregate power trace of service instance i against power node N ,

where i is the service instance we are evaluating, and SN represents the set of servers

supplied by power node N ; we define the differential asynchrony score of instance i

against power node N to be

ADi,N =
peak(P̄ I i) + peak(P̄Ai,N)

peak(P̄ I i + P̄Ai,N)
,

we can then choose the service instance having the worst (lowest) differential asyn-

chrony score, and swap it with some other service instance from another power node,

if and only if that swap make the differential asynchrony scores higher at both of the

two power nodes involved.

3.3 Exploiting power budgets with dynamic power profile

reshaping

In the previous section, we explore how workload-aware service instance placement

based on temporal power behaviors would help alleviating power budget fragmenta-

tion. Such mitigation of fragmentation allows datacenters to host more servers and
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improve throughput. In this section, we further explore the opportunities of achieving

additional throughput increase by carefully utilizing the extra servers.

Based on our investigation of production power traces, we design a proactive dy-

namic power profile reshaping approach, which includes two steps: (1) history-

based server conversion and (2) history-based proactive throttling and boosting to

further utilize the power headroom. In the rest of the sections, we first discuss the

challenges of fully utilizing the unleashed power budget achieved by service place-

ment. We then show how we leverage server conversion with storage disaggregated

servers [74, 75] to improve the throughput by keeping these extra servers well uti-

lized at all times. Lastly, we show how proactive throttling and boosting intelligently

manage power budget allocation, allowing us to deploy extra conversion servers inside

datacenters.

In the rest of the section, we denote latency-critical workload using LC, and

non-latency critical, throughput-oriented workload using Batch.

3.3.1 Challenges

To utilize the unleashed power headroom we can add extra service-specific servers.

This approach, although can improve throughput for the specific service, leaves

throughput opportunities on the table. For example, assuming that we add LC-

specific servers to a datacenter to use the unleashed power headroom and accommo-

date extra traffic. During the off-peak hours, even with the increased traffic, however,

the original set of LC servers are likely to be sufficient to handle the burden without

hurting the QoS of LC servers. In other words, newly added LC-specific servers will

be underutilized during those hours. To address the low utilization issue, we want

the set of ”extra servers” to be able to host batch services to further improve batch

throughput during off-peak hours.
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3.3.2 History-based server conversion

3.3.2.1 Conversion with storage-disaggregated servers

Our insight is that the recently proposed storage-disaggregated servers [74, 75]

is an ideal platform for solving the above issue. Storage-disaggregated servers are

recently widely deployed in Facebook datacenters. In storage-disaggregated servers,

the main storage components (i.e., Flashes) are separated from the compute counter-

parts (i.e., CPUs and memory). The compute nodes access the storage nodes over a

high-bandwidth in-datacenter network instead of local PCIe links. This disaggregate

approach incurs minimum overhead because the network access latency (microsecond-

level) is small compared to disk access latency (millisecond-level) [74].

3.3.2.2 Benefits of server conversion

Using storage-disaggregated servers, we can design server conversion to fully utilize

the newly-added servers during both peak and off-peak hours. Server conversion

switches the service a server hosts, between LC service and batch service, adaptively

based on the load. Server conversion with storage-disaggregated servers offers several

advantages. First, it allows us to accommodate the increased LC traffic at peak hours

by hosting only LC service and improve the Batch throughput during off-peak hours.

Second, these storage-disaggregated servers allow us to maintain a better overall

resource utilization while maintaining the data availability. This is one key advantage

of using storage-disaggregated servers. Because data reside in their dedicated storage

nodes, and is intact and still accessible by other Batch servers even when the server is

converted to LC servers during peak time. Third, the server conversion process is low

overhead and does not require time-consuming data migration. Last but not least,

because server conversion does not require any OS reboots, the OS is always running,

meaning that even during conversion, the converted servers are still controllable by
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other runtime monitors, which ensures that the power safety is maintained during the

conversion process.

3.3.2.3 Design of conversion policy

Inspired by prior proposals [91, 97, 17] which leverage workload colocation on leaf

machines to improve node-level resource utilization, we design a server conversion

policy to allow LC and Batch workloads to safely share the available power budget

throughout the hierarchy of the power infrastructure. We are also inspired by previous

works [161] and design our conversion policy by taking advantage of the clear patterns

found in historical LC load data. The server conversion policy is designed to be

applied on the set of conversion servers econv as follows: First, we learn the guarded

per-LC-server load level from the historical data (training data), namely the load

level of each server when LC achieves satisfactory QoS and define this load level

as the conversion threshold (Lconv). During runtime, we continuously monitor the

LC server load over each original set of LC servers. Based on the average load

level, we distinguish two phases: a Batch-heavy Phase and a LC-heavy Phase. When

the average LC server load over the original LC server is smaller than Lconv, this

datacenter is in Batch-heavy Phase. When this average LC load increases to a level

close to Lconv, our server conversion demands the conversion servers to be converted

to LC instances, and we enter LC-heavy Phase. The threshold Lconv is also used to

manage the load on each LC server. If any of the LC servers experiences a load higher

than Lconv, then our server conversion process will stop sending queries to this server,

and, instead, send the next query to other LC servers or a conversion server.

We can further maximize the throughput improvement by throttling the Batch

clusters’ power consumption during peak hours. Such throttling proactively creates

additional power headroom during the peak hours, allowing us to house an additional

set of conversion servers eth in the datacenter. To achieve further throughput improve-
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ment, we augment the previous policy to leverage this set eth of conversion servers. We

monitor the load of the original set of LC servers and of the LC servers in econv, com-

paring the load with the same conversion threshold Lconv. In this augmented policy,

the definitions of LC-heavy Phase and Batch-heavy Phase remain unchanged. One

distinction between this augmented policy and the previous policy is that, when the

average LC load over the original LC servers and the LC servers in econv approaches to

Lconv, we now first throttle the Batch clusters, and then it starts to convert servers in

eth into LC servers. Another distinction is that, during Batch-heavy Phase, we boost

the performance of Batch servers to compensate for the loss of throughput caused by

the throttling.

3.4 Evaluation

3.4.1 Experimental setup

In this work, we conduct our experiments using the power traces measured in three

of Facebook’s largest datacenters. All of these three datacenters are power supplied by

the multi-level power infrastructure described in Section 3.1. Each datacenter consists

of four suites and tens of thousands of servers. For every server housed in these three

datacenters, we measure and log three weeks of power trace. The averaged instance

power traces constructed by taking the average of the first two weeks of instance

power traces serve as our training data. The third week of power traces serve as our

testing data. We derive SmoothOperator’s power-efficient instance placement and

power profile reshaping policies based on the training data, and evaluate the benefit

of each these two components using the testing data. The time interval of a week

serves well as the unit of evaluation because, in large-scale user-facing datacenters,

user traffic has strong day-of-the-week activity patterns [15, 126].
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3.4.2 Results

In this section, we present evaluation results that demonstrate the effectiveness of

SmoothOperator on improving the efficiency of power usage and on achieving higher

throughput in the three target datacenters. Specifically, we present the following two

studies: 1) We show that SmoothOperator’s workload-aware service instance place-

ment framework reduces the peak power at different levels of power nodes, mitigating

the power budget fragmentation problem and allowing datacenter operators to host

more servers under the same power budget. 2) We show that, with SmoothOpera-

tor’s dynamic power profile reshaping policy, we improve the power utilization during

non-peak hour, which further improves service throughputs.

3.4.2.1 Peak power reduction by workload-aware service placement

We start with the study that shows how SmoothOperator’s workload-aware ser-

vice instance placement reduces the peak power and mitigates the power budget

fragmentation problem. As we described in the previous sections, the distinctive

diurnal patterns of services and the service-level and instance-level heterogeneity pro-

vide abundant opportunities for improving the efficiency of power utilization in these

datacenters.

Figure 3.8 presents how our framework reduces fragmentation using production

power traces. In this figure, we apply SmoothOperator’s workload-aware instance

placement to the sub-tree rooted at a middle-level power node N , including node

N and all the descendent power nodes and the service instances supplied by N .

We demonstrate in the top graph in Figure 3.8 the power trace N . In the middle

graph, we show the power traces of the children power nodes of N , one for each

child, before we apply the workload-aware service instance placement on N . In the

bottom graph, we show the power traces of N ’s children nodes after we apply our

workload-aware service instance placement to N . Note that the power trace at N is
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ous and workload-aware placement in a production suite of DC1. The workload-aware
placement generates smoother power traces, greatly alleviating fragmentation. Power
peaks are reduced at the child node thus more servers can be supported at each node.

43



DC1 DC2 DC3
Datacenters

0.0%

5.0%

10.0%
P

ea
k 

po
w

er
 re

du
ct

io
n 

(%
)

SUITE
MSB
SB
RPP

Figure 3.9: The peak-power reduction achieved at each level of the power infrastruc-
ture in the three datacenters under study. There is significant peak reduction at RPP
level, which directly translates to the percentage of extra servers that can be hosted.

not changed by SmoothOperator because, in the example, our placement policy does

not move service instances into or out of the subtree rooted at N . This figure shows

that SmoothOperator, with the placement step alone, makes the power traces of the

children power nodes less varying and more balanced, and reduces the peak power of

the children power nodes.

Peak power reductions achieved at different levels of power infrastructure

We present the peak power reduction at all levels in all three datacenters in Figure

3.9. Recall from Section 3.1 that, for a same power delivery tree, the sum of peak

powers of power nodes at a certain level is an important indicator of the severity

of power budget fragmentation at that level. As shown in Figure 3.9, we find our

workload-aware service instance placement can reduce the RPP-level peak power

by 2.3%, 7.1% and 13.1% for the three datacenters, respectively. At higher levels,

SmoothOperator achieves less significant reduction. The reason is that each of these

higher level power nodes indirectly supply a group of up to thousands of service

instances with higher degree of heterogeneity within them than the leaf nodes. Note

that, however, the leaf power nodes suffer from fragmentation significantly. In other

words, peak power reductions at the lowest level are of the utmost importance, as

servers can only be directly power supplied by the low-level power nodes. These

reductions translate to the proportion of extra servers allowed to be housed under
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terpart.

the same power infrastructure.

While we can extract power headroom in DC3, the benefit we get in DC1 is

smaller. The reasons are two-fold: First, the degree of heterogeneity among instances

power traces found is DC1 is much smaller than that in DC3. Second, due to the

lower degree of heterogeneity, the baseline (original) placements in DC1 suites are

more balanced compared to DC3. For DC3, synchronous service instances are largely

placed under the same sub-trees of the power infrastructure in the original placement,

allowing us to achieve improvement.

We compare our approach to a previous work [54]. This work aims to optimize

the provisioning of the capacity of power nodes in datacenters. It models power

pattern of instances and power nodes as cumulative distribution functions (CDFs),

and relies on leveraging these probability distributions to aggressively under-provision

and overbook power nodes.

For example, to power supply a set of service instances M , this previous work

models the power profile of each instance i in M as a ci and defines a degree of
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under-provisioning u. The budget of the power node that supplies M will be set to∑
i∈M ci,u, where ci,u denotes the (100− u)-th percentile power of instance i’s power

profile ci. This work also recognizes that, at datacenter-level, they can take advantage

of the heterogeneity among the instances with overbooking, and defines a degree of

overbooking δ, which further reduces the datacenter-level provisioning requirement.

Suppose the datacenter-level power capacity was
∑

i∈dc ci,u; with δ, the capacity can

be further reduced to
∑

i∈dc ci,u/(1 + δ).

The comparison can be found in Figure 3.10, which shows the power budget pro-

visioning required by the three datacenters after applying the two approaches. Since

the under-provisioning and overbooking techniques used in the prior work is indepen-

dent with our techniques, in our experiment, we also add several configurations of

SmoothOperator (SmoOp) in which under-provisioning and overbooking are allowed.

We denote StatProf(u, δ) as the configuration of previous work with a degree of

under-provisioning u and a degree of overbooking δ, and SmoOp(u, δ) as the Smooth-

Operator counterpart. Note that, with such notation, SmoOp(0, 0) represents using

SmoothOperator alone without any under-provisioning nor overbooking.

We can see that SmoOp(0, 0) achieves ¿12% of reduction in the required power

budget provisioning in all cases, and it achieves higher level of improvement over

the prior work as we go down the hierarchy of power infrastructure. When com-

pared to StatProf, across all the levels, SmoOp(0,0) almost always outperforms or

is on par with the most ambitious StatProf (i.e., StatProf(10, 0.1)). If we allow

SmoothOperator to under-provision and overbook, across all levels and datacenters,

it always requires less power budget provisioned than the StatProf counterpart, by

up to ¿10%. For instance, in DC3, while StatProf(10, 0.1) achieves only 13% of

reduction, SmoOp(0, 0) achieves 20% and SmoOp(10, 0.1) achieves 24%.

These results show that, by intelligently leveraging temporal heterogeneity among

instance power traces, SmoothOpeartor lowers the peak of the power profiles at power
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Figure 3.11: Server conversion’s impact on per-LC-server load, LC and Batch through-
put.

nodes, creating the extra headroom that was not available to the prior work. More-

over, since SmoOp(0, 0) always outperforms StatProf(10, 0.1), we conclude that the

benefit we get from SmoothOperator does not need to rely on probabilities, implying

higher level of safety guarantee at power nodes.

3.4.2.2 Benefit of dynamic power profile reshaping

In this subsection, we present evaluation results demonstrating the benefit of using

dynamic power profile reshaping to utilize the power budget unleashed by Smooth-

Operator’s workload-aware service instance placement.

Impact of server conversion We present a segment of our experiment (Figure 3.11)
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Figure 3.12: The breakdown of throughput improvement of LC and Batch services.

to highlight the server conversion’s impact on Batch throughput, LC throughput, and

the load per LC server. In this example, the DC optimized by the workload-aware

service instance placement has 11% of extra power headroom to accommodate extra

traffic. If we add only LC-specific servers, this datacenter can achieve 11% extra LC

throughput. If we use conversion servers to fill in the power gap, we gain extra benefit

for Batch services. As shown in the top subgraph in Figure 3.11, during Batch-heavy

Phase, the per-server load for LC-servers is low and the original set of LC servers are

underutilized. During this time, we do not need extra computing power to handle

the incoming LC queries. As long as the LC servers are under a specified guarded

load level, the added conversion servers can be converted to Batch service instances

to perform Batch workload, as shown in the middle subgraph of Figure 3.11. On the

other hand, during LC-heavy phase, the original set of LC servers do not have the

capacity to handle the increased LC traffic. This is when conversion servers need

to kick in to help reduce the per-server load for LC servers. In the top subgraph of

Figure 3.11 we see such an impact.

Figure 3.12 presents the throughput improvement achieved by both server conver-

sion and proactive throttling and boosting policies throughout the entire experiments.

It shows that, with server conversion alone, we are able to utilize the 13% unlocked

power budget to trade for up to 13% LC throughput plus 8% Batch throughput at

the same time.
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Figure 3.13: Average power slack reduction and off-peak phase power slack reduction
achieved at three of Facebook’s production datacenters.

Impact of proactive throttling and boosting In this section, we evaluate the

benefit we obtain from applying proactive throttling to the Batch instances. The

throttling and boosting policy proactively throttles the Batch services to increase the

power budget allocation for LC services during LC-heavy Phase; during the Batch-

heavy Phase, it only increases the allocation and boosts the performance of Batch

instances, but does not throttle the LC services.

Figure 3.12 demonstrates the extra throughput improvement achieved by the

proactive throttling and boosting policy on top of server conversion. The improvement

of Batch throughput here is small, 1.6%, 1.2%, and 2.4%, for the three datacenters,

respectively. This is as expected because the gain brought by the extra conversion

server barely compensates the loss caused by aggressive throttling during LC-heavy

Phase. On the other hand, we largely improve the capacity of the LC service in 2 of

the 3 datacenters during the peak hours. The extra improvement of LC throughput

is 7.2%, 8%, and 1.8% for DC1, DC2, and DC3, respectively, which translates to a

capacity gain that can accommodate multi-millions extra queries per second.

Power slack reduction In Figure 3.13, we present the result of average power slack

reduction and off-peak hour power slack reduction of the three datacenters. The re-

duction of power slack means that the power budget available during off-peak hours

is used to do more work. From Figure 3.13 and Figure 3.12 we find that the benefit
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gained in DC3 is smaller compared to the other two datacenters. The reason of this

is that DC3 has a large proportion of LC service instances among the top power

consumers compared to the Batch type counterpart. Therefore fewer Batch service

instances can be throttled for LC to borrow power budget from, limiting the im-

provement of Batch throughput. In other two datacenters, power slack reduction are

achieved. As shown in Figure 3.13, the dynamic power profile reshaping achieves 44%,

41%, and 18% average power slack reduction, respectively in the three datacenters.

3.5 Summary

In this work, we investigate three of Facebook’s datacenters and aim to solve the

power budget fragmentation problem found in them. We leverage the knowledge of

the temporal heterogeneity of power consumptions of different workloads, and apply

our workload-aware service instance placement technique to unlock the wasted power

budget, and evaluate the effect of server-conversion-based dynamic power profile re-

shaping runtime in production environment. Our result shows that we are able to

host up to 13% more servers in production environment by applying our placement

technique, without making modification to the underlying power infrastructure. To

this end, we reduce up to 44% of average power slack inside datacenters. Without

incurring significant burden on latency-critical servers, we achieve up to 13% plus 8%

throughput improvement for latency-critical service and batch service, respectively,

by using server conversion alone; or 15% and 11% throughput improvement with the

help of DVFS.
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CHAPTER IV

Pinpointing and Reining in Long Tails in

Warehouse-Scale Computers with Adrenaline

In this chapter, we present Adrenaline – our effort for solving power and energy

inefficiency at the server level by using quick voltage/frequency boosting. First, the

high-level design principle of Adrenaline is presented, then we present the energy-

saving opportunity we identify in datacenter workloads. We then introduce the details

of the design of Adrenaline and provide an empirical evaluation of Adrenaline’s impact

on improving datacenter performance with low power and energy usage.

4.1 The Design Principle of Adrenaline

Adrenaline aims at leveraging knowledge about query-level characteristics and

the emerging class of fine-grain (10’s of nanoseconds) voltage boosting (i.e., quick

boosting) techniques to achieve significant tail latency improvement while still being

highly energy efficient. A key insight underlying Adrenaline is that only a subset

of queries need boosting to pull in the tail latency. Two key factors determine the

subset that should be prioritized: 1) queries that fall in the tail distribution; 2) queries

that can benefit most from the boosting. Our design of Adrenaline tries to address

these two factors. However, several open questions remain to realize this approach,
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including:

• Investigating whether tail queries are amenable to frequency/voltage boosting. If tail

queries in representative OLDI workloads are not bottlenecked on computation, V/f

boosting will not be effective in reducing their completion time and would not be

able to pull in the tail.

• Determining whether tail queries are predictable. If the queries that push out the

long tail share common characteristics, we can use these characteristics to develop

per-query indicators to pinpoint queries for boosting.

• Identifying an effective system design to pinpoint tail queries and precisely boost

them. Considering the query latency for many OLDI services is in the range of

milliseconds and microseconds [88, 12], to realize quick, pinpointed boosting of

tail queries, any purely reactive approach might spend most of the time waiting

and monitoring, rendering the advantage of quick boosting useless. Therefore, an

intelligent, proactive mechanism must be in place to enable the identification and

boosting of likely tail queries.

4.2 Motivation and Opportunities

We begin by examining the query latency distributions of two representative web

services and exploring how frequency impacts query latency. A key insight underlying

Adrenaline is that only a subset of queries need boosting to pull in the tail latency.

Two key factors determine the subset that should be prioritized: 1) queries that

fall in the tail distribution; 2) queries that can benefit more from the boosting. To

understand how we might identify queries that exhibit these factors, we characterize

the query distributions of Web Search and Memcached workloads on a state-of-the-art

Intel Xeon server (described in Section 5.5).

Figure 4.1 presents the cumulative distributions of request latency for the three

most common request types for Memcached (SET, GET and DEL), collected at seven
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Figure 4.1: The cumulative distributions of query latency in Memcached for GET, SET,
and DEL requests.
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CPU frequency steps ranging from 1.2 GHz to 2.4 GHz on the Intel Xeon server.

As shown in the figure, although all three query types have long tails, the latency

distributions of these three types and how they are affected by frequency scaling vary.

SETs’ request latency is in general around 2x greater than GETs or DELs, indicating

that the SET requests may contribute more to the tail latency, especially at low to

medium load levels. In addition, higher frequency can significantly improve SETs’

latency. Increasing the frequency from 1.2 GHz to 2.4 GHz improves SETs’ 90-th

percentile latency from 13µs to 7µs. This indicates that to maximize the benefit of

tail reduction using voltage/frequency boosting under a power budget, boosting SET

requests should be prioritized.

In contrast to Memcached, Web Search (Nutch [46]) does not have multiple query

types that can be directly used to classify queries. After investigating multiple query

characteristics and the effectiveness of using those characteristics to predict the query

latency distribution and the impact of frequency of scaling, we have identified that

the query length (the number of search key words in a Web Search query) is a fairly

effective indicator. Figure 4.2 presents the cumulative distributions of query latency

for three different query lengths at seven frequencies, focusing on the tail part of

the latency (beyond 85-th percentile). As shown in the figure, short queries (queries

with fewer, e.g., 1-5, search key words) in general experience longer latency than long

queries (queries with more search terms). Whereas it may seem counter-intuitive that

adding terms reduces query latency, Nutch returns only documents that contain all

search terms. Hence, additional terms reduce the number of documents that must

be considered in scoring. In addition, the latency of short queries is much more

improved when we increase the frequency, compared to the medium and long queries.

For example, the 95th percentile latency of queries with 1-5 keywords (short) is around

1100ms at 1.2GHz and lower than 700ms at 2.2GHz. On the other hand, the queries

with 11-18 search keywords (long) are not affected by the frequency as much. This
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Figure 4.2: The cumulative distributions of query latency in Web Search for queries
with different numbers of search keywords.
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indicates that queries with fewer terms (short) should be prioritized for boosting to

pull in the tail.

In summary, Figures 4.1 and 4.2 demonstrate that per-query indicators (e.g., query

types and query properties) can help pinpoint a subset of queries that contribute more

to the tail and/or more impacted by the frequency and thus need to be prioritized to

effectively pull in the tail. Based on this, we propose query-level boosting. Figure 4.3

illustrates the difference of our system, Adrenaline, compared with no boosting and

traditional coarse-grain DVFS boosting. As illustrated in the figure, coarse-gain

approaches apply V/f boosting to a sliding window, boosting all queries within a

window. Adrenaline takes advantage of fast boosting (sub 20ns) and uses per-query

indicators to pinpoint individual queries that should be boosted (for example, SETs as

illustrated) to conduct query-level boosting only for these queries to achieve effective

tail reduction with high energy efficiency.

4.3 Quick V/f Boosting: An Enabling Technology

There are existing technologies that enable fast voltage transitions. Per-Core

DVFS was a technique explored by Kim et al. [72, 71]. Per-Core DVFS integrates

a voltage regulator on-die for each core in the system, allowing individual control

and nanosecond scale voltage transition times. The Per-Core DVFS technique comes

at the expense of on-chip inductors and reduced regulator efficiency. Intel’s Turbo-

Boost [28] enables microsecond scale voltage transitions to allow, for example, the

system to exceed thermal budgets for short periods of time. TurboBoost also in-

cludes an integrated Power Control Unit (PCU) which makes boosting decisions in

hardware based on sensors and other hardware performance counters, eliminating

the long latencies associated with OS management. Recently, Godycki et al. have

introduced Reconfigurable Power Distribution Networks (RPDN) [53] as a method

to improve voltage transition times with the use of a configurable on-chip switch-cap
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based voltage regulator. Finally, Shortstop [119] and Booster [106] use dual-rail volt-

age systems to enable fine-grain boosting. They use off-chip voltage regulation for

better efficiency and to remove the need for on-die inductors.

For this work we evaluate Shortstop as the voltage regulation methodology due

to its short transition latency, lack of on-die inductive elements, and better regula-

tor efficiency. However, the other approaches could be adapted as well to support

Adrenaline. For example, the Power Control Unit (PCU) of Turbo Boost could be

augmented to accept query indicators to support the Adrenaline decision engine at

the expense of a longer voltage transition latency.
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4.3.1 Shortstop

Shortstop [119] is a dual-Vdd system with two distribution networks for Vdd sup-

plied by two independent external voltage sources, VddHigh and VddLow. In addition,

there is an internal Vboost supply to aid in the transition of a core from the low to the

high supply. Each core in the system is connected via multiple power gating tran-

sistors (shown as a single transistor in the diagram) to either the VddHigh, VddLow,

or Vboost voltage rails. Decoupling capacitors (decaps) are placed between the high

supply network and the ground node to reduce ripples on the node during transitions.

In addition the Vboost supply has a set of reconfigurable decoupling capacitors to aid

in transitioning the core quickly. This system keeps the voltage regulators off-chip

removing the TDP overheads required for on-chip conversion.

Using Shortstop has several advantages. First, since the boosting decaps are on

chip, they can act quickly and, through charge re-distribution, provide for a rapid

transition. Second, since the boosting decaps are shared by all the processors, their

area overhead is amortized over all the cores. In addition, while the boosting network

does require the distribution of a third supply rail (Vboost), this rail does not need

to have a high level of signal integrity, meaning it can be more sparse. The overall

overhead of adding a boosting rail with reconfigurable decaps is 11%. When consid-

ering advanced technologies, such as deep trench capacitors [146], this overhead can

be reduced to less than 5%. Third, since the boosting network brings the voltage of

the transitioning core to nearly VddHigh, the voltage droop on VddHigh is not nearly as

large as when no boosting network is used. Extra decaps on the high supply further

suppress the droop to a level that is acceptable. The area overhead of the VddHigh rail

is just 5%. So the overall area overhead of Shortstop is ∼10-16%. Finally, Shortstop

can be used to perform both fine- and coarse-grain voltage control. Through boost-

ing Shortstop provides nanosecond scale voltage transitions to adjust to fine-grain

changes in behavior (query level) and can adapt the off-chip voltage regulators over
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longer periods of time to adjust to coarse-grain changes in workload behavior (request

rate level).

Shortstop was fabricated and tested in a 28nm technology by Pinckney et al. [119],

proving the feasibility of the approach. Figure 4.5 provides a summary of the mea-

sured data on transition times of that chip. The baseline for comparison was a stan-

dard dual-rail approach. Shortstop provides nanosecond scale transitions that are 1.7x

faster with a 3.5-6x smaller voltage droop. The original paper also provides results

showing the scalability of the approach across different core sizes/capacitances.

4.4 Adrenaline Framework

This section describes the design of the Adrenaline runtime system, which takes

advantage of the fast V/f switching capability of the Shortstop circuit to rein in tail

latency by boosting precisely those queries that contribute to the tail.

Adrenaline Overview

An overview of the Adrenaline runtime system is presented in Figure 4.6. Adrenaline

is composed of two components, a decision engine and a load monitor. First, the deci-

sion engine chooses from between the low or high V/f settings at the individual query

level to boost the speed of precisely those queries that contribute to tail latency, based

on the query characteristics analyzed by the equipped query identifier, reducing the

latency of those queries to shorten the tail of the query latency distribution. This is

in contrast to conventional V/f scaling techniques that monitor the query load and

distribution over long timescales (usually several seconds) and adjust the V/f settings

for large clusters of queries.

Second, Adrenaline’s load monitor performs lightweight accounting on incoming

queries to measure the load to the system (e.g., to measure queries per second), which

in turn is used to drive a coarse-grain tuning policy that changes the supply voltage

parameters to the off-chip voltage regulators. This gives Adrenaline the capacity to
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Figure 4.6: The Adrenaline framework. Adrenaline makes fine-grain boost decisions
based on the characteristics of each incoming query, and controls the Shortstop circuit
to switch between the high/low voltage rails (VRs) quickly. Meanwhile, Adrenaline
also monitors long-term loading information, and makes proper adjustments to the
voltage on the high/low VRs periodically.
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adapt the Shortstop circuit to address longer-term (milliseconds or longer) changes in

the characteristics of the query profile, such as fluctuations in user demand (queries

per second) or the type and composition of queries.

4.4.1 Decision Engine

The purpose of the decision engine is to rapidly identify the queries that should

be boosted to have the largest impact on reducing tail latency. First, queries that

are amenable to boosting because they are compute-bound but are not in the tail

can have a significant impact on tail latency via the indirect mechanism of reducing

queuing delay for queries that are in the tail of the latency distribution. Second,

queries that are themselves in the tail of the distribution have a direct impact on

tail latency. We therefore design the decision engine to use the following two guiding

principles to determine which queries to boost:

1. Boostability – only those queries that are amenable to boosting should be

boosted. Power spent boosting queries that do not speed up is wasted. Fur-

thermore, queries that are more amenable to boosting confer a larger benefit to

subsequent queries that may be headed for the tail of the distribution.

2. Long-running Queries – as long as they are boostable, queries that are des-

tined to be in the tail of the latency distribution have the most direct impact

on tail latency and therefore should be boosted.

These characteristics may be difficult to directly reason about, particularly at the

short timescale necessary to boost a query quickly after arriving at the host server.

Fortunately, the presence of one or both of these characteristics are often indicated

by other easily identifiable proximate characteristics. Such characteristics include:

• Query Type – different query types, which are easily identifiable as part of

the query metadata, often have very different latency profiles. For example,
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Figure 4.1 shows that Memcached GET queries have around a third of the latency

of SET queries.

• Query Composition – the same type of query may have other easily iden-

tifiable characteristics that correlate well with query latency. For example,

Figure 4.2 shows that Web Search has very different latency profiles for queries

with different number of words.

4.4.2 Defining the Boost Policy

Query type and query composition are used to develop policies that determine

when the Shortstop circuit changes rails, lowering and raising the supply voltage at the

query level to bring down the latency of critical queries. These policies are developed

offline using a short, targeted profiling phase on the application to characterize the

relationship between query latency and the high-level characteristics of the query.

Adrenaline’s boost policies are guided by how different types of requests can affect

the tail the most under different V/f settings. For each application we first analyze the

behavior of requests across varying characteristics, load levels, and chip V/f settings.

The characteristics chosen for the analysis are particular to the application under

study, and are chosen such that they are characteristics that can be rapidly identified

(e.g., by checking a few bits in the header, or the size of the application query packet).

For Memcached, we characterize requests across the different query types: GET, SET

and DEL. For Web Search we characterize across a series of lengths, which correlates

well to the size of the query packet and the latency of the query. For Memcached, we

find that SET queries are highly amenable to boosting the bulk of the high-latency

queries. For Web Search, we find that queries with fewer than 6 keywords are similarly

amenable to boosting and have high latency.

Adrenaline also watches the condition in which a query tend to fall in the tail of

the latency distribution, even if that query does not belong to the types mentioned
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above. Adrenaline’s policy is to keep track of the time a query has spent in the

system, and check if it exceeds a predefined boost threshold. When the threshold

is reached, the query is considered long-running, and has a high probability to end

up falling in the tail; hence, Adrenaline will make boost decisions for this query.

We found by experiment that setting the threshold to 0.5x of the QoS target of the

benchmark gives us good results.

4.4.3 Rapidly Identifying Query Characteristics

Adrenaline is implemented as a runtime engine in the first layer of software that

processes incoming request packets to take advantage of features of advanced NICs

and low-latency networking stacks, such as OS-bypass, zero-copy, and direct cache ac-

cess. These features facilitate extremely low latency packet delivery to the Adrenaline

runtime engine, which can then rapidly examine packet headers to make a per-query

boost decision; prototype systems have demonstrated packet delivery latencies below

1.5us and commercial offerings from vendors like Mellanox have similar performance

characteristics [127]. In addition, by fixing the header lengths of the link, network,

and transport layers, even shorter times can be achieved. In the case of Memcached

the request type field can be attained by inspecting the corresponding bits in the ap-

plication layer of a binary encoded Memcached packet. For the Web Search workloads

a table of sequence numbers and corresponding packet sizes can be used to determine

the total request length, which is used as a proxy for the size of the search.

4.4.4 Boosting and Unboosting the Core

Once a query type is identified, the Adrenaline runtime decision engine makes

a boosting decision based on the profile characteristics obtained from the analysis

of the request behavior. If a decision to boost a core not already boosted is made,

the runtime signals the Shortstop hardware to insert the core into a boosting queue.
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Because Shortstop only allows one core to transition at a time, the queue is serviced

in a FIFO fashion. Note the worst case time spent in the queue will be short, as the

transition times for Shortstop are on the order of 10’s of nanoseconds and the number

of cores on a chip is relatively small. If a decision to boost a core is made while the

core is already boosted, the Adrenaline runtime tracks the additional request. Once

all the requests finish, the Adrenaline runtime signals Shortstop to unboost the core.

4.4.5 Clock Distribution

Clock distribution is another key consideration in this design. Our proposed so-

lution is to distribute a chip-wide clock at the high frequency, but at low voltage. At

each node the clock is divided down to the required frequency before entering each

core. In a typical system the majority of the clock power is consumed at the bottom

of the tree (i.e., flip flops) meaning that running the clock globally at high frequency

has minimal impact on the total power. In boost mode the local clock tree remains at

low voltage and is level converted to VddHigh only in the last driving stage. With this

approach, clock tree synchronizing mechanisms such as delay-locked loops (DLLs)

would not need to re-lock during boosting transitions since the voltage and latency

of the clock tree does not change.

4.4.6 Adrenaline for Energy Efficiency

In addition to reducing the tail latency, when needed, Adrenaline can be configured

to scale down the voltage and frequency at the query level when the tail latency is

much lower than the latency target specified in the service level agreement (SLA).

Similar to improving the tail latency, this mechanism works by leveraging query

characteristics to identify those queries that are unlikely to have a large impact on

tail latency and throttle the voltage during such queries. Adrenaline is flexible enough

to adjust policies dynamically based on high-level characteristics of user load, such
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as using different latency targets or optimization targets for different levels of load

or mixes of query types. Along with the tail reduction approach, we evaluate using

Adrenaline to target energy efficiency in Section 5.5.

4.4.7 Responding to Load Changes

The Shortstop circuit can be configured to use different supply voltages on its two

voltage rails with a penalty on the order of tens of microseconds. To take advantage

of this feature, we employ a load monitor in Adrenaline to monitor the query traffic

over time and use this to switch between supply voltage configurations every few

seconds to provide maximum benefit to the current query traffic pattern. Note that

the fundamental activity of the decision engine is not affected by this tuning, as it

continues to make decisions about which queries should be boosted. Since this tuning

is done in a much coarser granularity, although it imposes a short pause for changing

the voltage on the two voltage rails, it has little impact on the overall distribution of

query latency.

4.5 Evaluation

In this section, we evaluate the effectiveness of Adrenaline in both reining the tail

latency as well as saving energy. We conduct our evaluations at single-server level, as

well as cluster-level for a cluster composed of thousands of servers.

4.5.1 Evaluation Methodology

To accurately evaluate Adrenaline we use the BigHouse simulator [105], which is

a datacenter simulation infrastructure that takes workload characteristics to synthe-

size an event trace to drive a discrete event simulation. We implement Adrenaline

and a conventional DVFS baseline in BigHouse. We evaluate both using various

configurations.
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4.5.1.1 Real system performance characterization

In the BigHouse simulator, two distributions are used to represent a workload:

the service distribution and the inter-arrival distribution. We collect these distri-

butions from real system measurements. We use Memcached and Web Search from

Cloudsuite [46] as our workloads.

The service time distribution describes how fast the server can process each indi-

vidual request without counting the queueing latency. To obtain this distribution, we

first instrument the Web Search and Memcached server-side software to record the

time at the beginning and the end of processing to measure the service time distri-

bution. Then we send requests to the instrumented server one-at-a-time so that no

queueing will occur within the server, and collect the latency statistics as the service

time distribution.

The machine we use for our service-time distribution measurement features an

Intel Xeon CPU E5-2407 v2 @ 2.40GHz CPU, which has 2 sockets with 4 cores

per sockets. The size of the main memory is 136 GB. The kernel of the underlying

operating system is Linux 3.11.0-15-generic. We carefully deploy the server-side of the

benchmarks and the client-side counterpart in a controlled environment to minimize

noise due to resource racing and the varying communication over the network, etc.

We collect the service-time distribution at each of the frequency steps of the core.

Many workloads have multiple request types, rather than a single type. As prior

work suggests [9], there is a big variability in terms of request type composition in

production systems and it has a significant impact on the overall performance. Thus

we capture this by using the same request type composition as reported in prior

work [9] for Memcached, and classifying the requests according to length for Web

Search due to the lack of published characterization. Specifically, APP, ETC and VAR

refer to the same compositions as described in prior work [9] for Memcached. For Web

Search, ORG refers to the composition hard-coded in the Web Search client loader, and
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SHR, LNG, and UNI refers to synthetic compositions of requests that are short-query-

heavy, long-query-heavy, and uniform, respectively. The detailed breakdown of each

composition is listed in Table 4.1 and Table 4.2.

We collect the service time distribution for each type of request separately, and

evaluate our system under various composition configurations.

Table 4.1: Request type composition of Memcached.

Composition GET% SET% DEL%
APP 83.8 4.7 11.5
ETC 68.6 2.7 28.7
VAR 18.3 81.7 0.0

Table 4.2: Request type composition of Web Search.

Composition SHORT% MEDIUM% LONG%
SHR 53.1 28.7 18.2
LNG 12.7 34.4 52.9
ORG 92.0 5.5 2.5
UNI 34.0 33.0 33.0

Different from service time distribution, inter-arrival distribution heavily depends

on the specific configuration and workload. Thus we use the characteristics published

by large companies that run these services in production. For Web Search, we follow

the guideline from prior work [104], which suggests to use an exponential distribution

as an approximation according to the empirical measurement from the production

Google Web Search server node. And we use a Generalized Pareto distribution for

Memcached as suggested in prior work [9], which characterizes the production Mem-

cached traffic at Facebook.
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4.5.1.2 Power modeling

The power equation we are using is adapted based on previous work [101]. We

change the exponent term in the equation from 3.0 to 2.7 to consider the effect of

imperfect components such as the overhead of the global clock distribution network

discussed in Section 4.4.5. The CPU power consumption is described in the following

formula:

P0 = Psta,0 + Pdyn,0

Psta,0 = 0.2× Pdyn,0

Pdyn = Pdyn,0 × (f/f0)
2.7

Psta = Psta,0 × (f/f0),

(4.1)

where P0 is the CPU power consumption measured on a real machine, and Psta,0 is

the static part of P0 and Pdyn,0 is the dynamic counterpart; f0 is the lowest frequency

step the machine can run at. P and f are the power and the frequency the CPU is

currently operating at.

We instrumented BigHouse to simulate the Adrenaline framework by leveraging

multiple service-time distributions in BigHouse on the fly. In addition we model

the boosting and decision latencies as well as the requirement to only transition

one core from low to high voltage at a time. Upon starting to service a request, our

instrumented BigHouse picks the corresponding service-time distribution based on the

type of request and the voltage level (always the low-voltage mode at the beginning

of a request), and sets the instantaneous power number to be the number that is

corresponding to that voltage level. When BigHouse reaches the point of boosting a

request, our instrumented BigHouse will calculate the remaining amount of work of a

request plus the switching overhead, and use the boosted version of the service-time

distribution file to determine the processing time for the rest of the work; the energy
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Figure 4.7: Selection of Tight/Medium/Loose power budget and
Tight/Medium/Loose latency target for our evaluation.

consumption of the elapsed period of time will be summed up, and the instantaneous

power will be updated to the new (boosted) version at the same time. For example, if

BigHouse decides to boost from 1.2 GHz to 1.8 GHz at 50% of a request, it calculates

the energy used for the first half of the request at the 1.2 GHz power number, and

uses the 1.8 GHz service time to process the second half of the request; upon the

request completion, it calculates the energy consumption of the second half of the

request using the 1.8 GHz power number, and switches back to using the 1.2 GHz

service-time distribution for the next incoming request.

4.5.2 Reining in the Tail

In this section, we evaluate the effectiveness of Adrenaline and the conventional

coarse-grain sliding window-based DVFS in optimizing the tail latency. Starting from

the low frequency as the baseline (e.g. core configuration at bottom right as illustrated

in Figure 4.7), which consumes the lowest energy while generating the highest latency,

we gradually increase our energy budget and measure the tail latency reduction at

both the 95%-tile and 99%-tile.
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Figure 4.8: Tail latency reduction for Memcached using coarse-grain DVFS vs.
Adrenaline. The row presents three load levels and the column represents three
energy budgets for boosting. Adrenaline achieves much higher tail latency reduction
at various load levels, across workload compositions and energy budgets. (Row 1 to 3
– low, medium, and high load. Column 1 to 3 – 10%, 20%, and 30% energy budget.)
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Memcached - Figure 4.8 shows the tail latency reduction for Memcached

achieved by both coarse-grain DVFS and Adrenaline. In this figure, each row corre-

sponds to a load level (low-, medium- and high-load) and each column corresponds to

an energy budget for boosting (low-, medium- and high-budget). The low, medium

and high energy budgets are 10%, 20% and 30% of energy increase from the baseline

energy, respectively. In each sub-figure, we present the tail reductions achieved by

both coarse-grain DVFS (the left cluster of bars) and Adrenaline (the right cluster

of bars). Each bar in a cluster represents three real-world workload compositions

described in Table 4.1 and the latency reductions for each composition at two per-

centiles, 95% and 99%. As shown in the first column, given a low energy budget (e.g.,

10% energy increase), the coarse-grain DVFS fails to reduce the tail latency, while

Adrenaline is able to improve the 95%-tile latency by up to 2.20x and the 99%-tile

latency by up to 2.25x. This is due to the fact that the 10% energy budget is too

small for the coarse-grain DVFS to boost to the next frequency step, while Adrenaline

can take advantage of the fine-granularity nature and boost a small percent of the

requests at the tail without consuming much energy. As we increase the energy bud-

gets to 20% and 30%, coarse-grain DVFS starts to show limited improvement on the

tail latency. It slightly outperforms Adrenaline for workload VAR, because GET and

DEL requests are usually surrounded by groups of SET requests in VAR. Adrenaline

still tries to react to these short-term changes by first switching the core to a lower

frequency when the core starts to process these GET and DEL requests. However,

since GET and DEL requests now have high probabilities to queue behind one or more

SET requests, they experience long waiting time, and thus become highly likely to

be at the tail. Therefore, while Adrenaline does not rein in these GETs and DELs

promptly, coarse-grain DVFS luckily benefits from its inertia of switching by running

at the higher frequency for the entire epoch of requests. However, its improvement

on the tail latency is rather limited for the other workload compositions. In general,
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Figure 4.9: Tail latency reduction for Web Search by relaxing energy budget at various
load levels using Adrenaline and DVFS. (Row 1 to 3 – low, medium, and high load.
Column 1 to 3 – 10%, 20%, and 30% energy budget.)

Figure 4.8 shows that, across various request compositions, load levels and energy

budgets, Adrenaline almost always improves the tail latency by a larger amount than

the coarse-grain DVFS.

Web Search - Similarly, Figure 4.9 presents the tail latency reduction for Web

Search at various load levels and across four request composition configurations (spec-

ified in Table 4.2). As demonstrated in the sub-figures, Adrenaline shows an edge over

coarse-grain DVFS across almost all different workload compositions and energy bud-

gets, especially when the system is at medium and high load levels (the last two rows)

where tail reduction is critical. The advantage becomes even more significant when

the system is given a higher energy budget. Adrenaline achieves up to a 3.03x tail

reduction when given a 20% budget. Given a 30% energy budget, while coarse-grain

DVFS starts to take advantage of the large energy head room and show compara-
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Figure 4.10: Latency probability density function of Memcached when applying DVFS
and Adrenaline respectively.

ble tail latency reduction for ORG, Adrenaline still achieves better reduction for the

same composition, and consistently outperforms coarse-grain DVFS across all other

workload compositions.

Latency Distribution - To better understanding the impact of coarse-grain

DVFS and Adrenaline on the overall latency distribution, Figure 4.10 compares the

distributions achieved by both approaches under the same power budget for boosting.

In this figure, the request type composition is APP (Table 4.1), composed of 4.7% SET,

11.5% DEL and 83.8% GET requests. This figure presents two probability density

functions (PDFs) of the measured request latency of all requests: one measured when

using coarse-grain DVFS (red), and the other one using Adrenaline (blue). The

dotted lines indicate the 95% and 99%-tile latency of each distribution. For the

distributions both coarse-grain DVFS and Adrenaline show GET and DEL requests are

tightly clustered on the left, whereas SET requests have a much higher latency and

compose the long tail.

Compared to the no-boosting scenario, the coarse-grain DVFS shifts the entire
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Figure 4.11: The scatter plot of Memcached, in which each data point represents the
normalized power/latency performance of a single CPU V/f configuration with load
composition APP and low traffic.

distribution to the left, reducing both the mean and 99%-tile latency by a small

amount. However, Adrenaline spends the limited power budget for boosting in a

more effective way. Instead of boosting all requests including both the fast requests

and the tail requests, it only boosts the requests that have high probability to be in

the tail. The mean latency Adrenaline achieves is slightly slower than that achieved

by the coarse-grain DVFS, but it is still faster than the no-boosting scenario. More

importantly, Adrenaline achieves a much more significant reduction on the tail latency

than the coarse-grain DVFS.

Figure 4.11 shows a Pareto-optimal curve for the power versus 99% latency tradeoff

of different V/f configurations for both DVFS and Adrenaline. At extremely tight

SLA targets the DVFS approach is necessary, but as soon as the latency target is

loosened the Adrenaline approach offers either significant reductions in tail latency

(further to the left at a given power budget) or a gain in power efficiency (lower in

the graph for a given target latency).
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Figure 4.12: Energy saving for Memcached by relaxing the tail latency target at
various load levels using Adrenaline and coarse-grain DVFS. (Row 1 to 3 – low,
medium, and high load. Column 1 to 3 – 10%, 20%, and 30% latency budget.)

4.5.3 Energy Saving

In addition to reining the tail latency by fine-grain boosting, Adrenaline can also

be used to take advantage of the latency slack, especially at low load, to improve

energy efficiency. As illustrated in Figure 4.7, we start at the highest CPU frequency,

which generates the lowest possible latency, and evaluate the effectiveness of coarse-

grain DVFS and Adrenaline in improving the energy efficiency as we gradually relax

the tail latency target. Specifically, we refer 10% latency lack as the strict target,

20% as the moderate target and 30% as the relaxed target in our experiments.

Figure 4.12 presents the energy savings for Memcached achieved by coarse-grain

DVFS and Adrenaline, respectively. As demonstrated in the figure, given the same

latency target, Adrenaline can significantly reduce the energy consumption, especially

at low load. It achieves up to a 2.12x energy savings over the no-DVFS baseline,
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Figure 4.13: Energy saving for Web Search by relaxing the tail latency target at
various load levels using Adrenaline and DVFS. (Row 1 to 3 – low, medium, and high
load. Column 1 to 3 – 10%, 20%, and 30% latency budget.)

whereas DVFS can only save 1.56x in the best scenario. At high load, both Adrenaline

and coarse-grain DVFS cannot achieve much energy savings. This is to be expected

because at the high load, there is not much latency slack due to the queuing delay. It is

very hard to achieve energy savings unless we are willing to sacrifice a great amount of

tail latency slack. Similarly, Figure 4.13 shows that Adrenaline can achieve significant

energy savings across all three different load levels, especially at low and medium

load levels, for Web Search. In addition, Adrenaline often achieves greater energy

savings compared to coarse-grain DVFS. This is because Adrenaline leverages the

observation demonstrated in Figure 4.1 and Figure 4.2, and prioritizes the boosting

of those requests which give the most benefits, which effectively prevents Adrenaline

from wasting energy on those requests with low boostability.
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Figure 4.14: Improvement of Adrenaline
over coarse-grain DVFS for Memcached.
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Figure 4.15: Improvement of Adrenaline
over coarse-grain DVFS for Web Search.

4.5.4 Overall Comparison

Figures 4.14 and 4.15 present Adrenaline’s improvement of tail latency and energy

savings over DVFS, averaged across all workload compositions. Overall, Adrenaline

outperforms coarse-grain DVFS in almost all the situations. When optimizing for tail

latency, Adrenaline achieves up to 22.7% improvement over DVFS by dynamically

scaling the frequency at a finer granularity to target only the most important requests.

4.5.5 The impact of boost threshold

We analyzed the time non-candidate queries spent in the system and use a boost

threshold to predict long-running queries that should be boosted. This boost thresh-

old is the product of the QoS target and a coefficient, as shown in Equation 4.2:

Tthreshold = ct × TQoS. (4.2)

For example, for the previous studies in Section 4.5.2 and Section 4.5.3, our choice of

boost threshold was 0.5x of the QoS target. This choice translates into a threshold

coefficient ct of 0.5.

While our results shown in the previous sections show that we achieve significant

improvement in both tail latency reduction and energy saving with a straightforward

selection of ct = 0.5, we observe that the choice of ct can have significant impacts on

performance and efficiency of Adrenaline for benchmarks with different characteris-
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tics. To understand the effects, we evaluate Adrenaline under a range of threshold

coefficient settings, and study their impact on the reduction of the 95th percentile

latency given certain energy consumption constraints. Note that the coefficient ct

determines only the boost threshold for non-candidate types of queries (i.e., GET and

DEL for Memcached and MEDIUM and LONG for Web Search), whereas the candidate

types of queries (i.e., SET for Memcached and SHORT for Web Search) will always be

boosted at the onset of core processing.

4.5.5.1 A general principle

The goal of Adrenaline is to rein in the tail queries to meet the QoS target. To

accomplish this, it is desirable for the boost threshold to be smaller than the QoS

target. This allows tail queries to be identified before they miss the target. But one

challenge here is that rather than ignoring those queries that are fast enough, when

the threshold is too small, Adrenaline boosts most of the queries. This failure to

consider query characteristics leads to energy waste.

4.5.5.2 Memcached vs. Threshold Coefficient

To study the impact of boost threshold on the performance of Memcached, we

sweep ct within the range of 0.0001 to 0.5, which translates to a range from 1 mi-

crosecond to 5 milliseconds for the boost threshold Tthreshold. Figure 4.16 shows the

effect of choosing different ct on tail latency reduction for Memcached, given certain

energy budgets. We prefetch and conclude our major findings as follows:

• Finding 1 Adrenaline’s performance is sensitive to the choice of ct. The perfor-

mance variation, with the same workload, in tail latency reduction and energy

saving can be as large as 5x and 1.78x, respectively.

• Finding 2 Adrenaline configured with optimal ct can extract up to 4.82x im-

provement over coarse-grain DVFS in the reduction of the 95th-percentile la-
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Figure 4.16: Sensitivity analysis of the effect of different boost thresholds on tail
latency reduction of Memcached. Row 1 to 3 are the results of sensitivity analysis
with low, medium, and high load, respectively. Column 1 to 3 are the results with
10%, 20%, and 30% energy budget, respectively.
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Figure 4.17: Percentage of non-candidate Memcached queries (GETs and DELs) boosted
when optimizing for tail latency. (Row 1 to 3 – low, medium, and high load. Column
1 to 3 – 10%, 20%, and 30% energy budget.)
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tency, even under the tightest energy budget.

• Finding 3 The optimal choice of ct is within the range of 0.0005 and 0.001.

This optimal choice range remains almost constant across different loads and

energy/latency budgets.

Choosing an optimal ct that minimizes the tail latency while remaining within the

energy budget can be challenging. Too low a threshold wastes considerable amounts

of energy to boost queries that are natively fast enough. Too high a threshold fails to

effectively reduce query latency due to the limited percentage of the execution that

is boosted.

To explain the importance of a proper threshold, we refer to both Figure 4.16 and

Figure 4.17. Figure 4.16 shows Adrenaline’s impact on tail latency reduction with

different choices of ct across different load levels and energy budgets. Figure 4.17

gives the percentage of boosted non-candidate queries. When ct is large, Adrenaline

boosts very few or no non-candidate queries, generating little positive effect on tail

latency. As we decrease ct, Adrenaline boosts an increasing amount of non-candidate

queries and therefore yields better performance. When ct = 0.0005 and ct = 0.001,

Adrenaline achieves the optimal improvement across different load levels and energy

budgets. As can be seen in Figure 4.17, Adrenaline properly boosts a large portion,

but not all, of the queries. This indicates that the small threshold coefficients allow

Adrenaline to boost queries early enough and therefore reduce the probability of

forming a long queue, resulting in shorter queueing delays for queries in the queue.

This outcome is highly correlated to the characteristics of different request types

of Memcached shown in Figure 4.1. While the service times of all types of Memcached

queries are generally short and the coefficients of variation are small, there is a clear

distinction between the latency distribution of the candidate type (SET) and the

distributions of the two non-candidate types (GET and DEL). If we set ct to 0.0005

or 0.001, Adrenaline can save energy by using the lower voltage to serve the queries
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when the queue is short and is composed of mostly non-candidate queries; when the

queueing delay becomes critical, Adrenaline can agilely enter the boost mode. If we

further lower ct to 0.0001, however, the benefit on tail latency reduction disappears.

We can conclude from Figure 4.17 that, Adrenaline with ct = 0.0001 boosts almost

100% of the queries. Under this condition, the energy overhead incurred by running

the majority queries with high-performance configuration is simply too high for the

energy budget to afford. The choices of supply voltage on the two voltage rails

in Shortstop are, therefore, restricted to the lower ones, which limits the speedup

Adrenaline can achieve.

Figure 4.17 reveals some cases where the result of ct = 0.0001 is missing. For

example, the results of ct = 0.0001 of all the three query compositions with 10%

energy budget at low load, of APP and ETC with 10% energy budget at medium load,

and of ETC with 20% budget at medium load are absent. The absence of these

results indicates that the low threshold makes Adrenaline boost queries too early,

largely increasing the overall energy consumption, making Adrenaline violate the

given energy budget no matter which CPU V/f configuration is used.

Figure 4.18 and Figure 4.19 show boost threshold’s impact on energy saving. We

see from these two figures that, when the system is under medium and high load,

there is a trend similar to what we have seen in the previous experiments. However,

one counter-intuitive finding for workload ETC at low load is that, as we decrease

ct from 0.001 to 0.0005 and Adrenaline is given a 20% latency target, the energy

saving becomes more significant even though the percentage of boosted non-candidate

queries increases. This is due to the fact that Adrenaline is using a different of supply

voltages for the Shortstop voltage rails. When ct = 0.001, because the threshold is

high and the workload ETC contains only a very small percentage of SET queries, only

a few queries get boosted; under this condition, Adrenaline is not able to meet the

20% tail latency budget without using the highest V/f setting for its boost mode.
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Figure 4.18: Sensitivity analysis of the effect of different boost thresholds on energy
reduction of Memcached. (Row 1 to 3 – low, medium, and high load. Column 1 to 3
– 10%, 20%, and 30% latency budget.)
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Figure 4.19: Percentage of non-candidate Memcached queries (GETs and DELs) boosted
when optimizing for energy saving. (Row 1 to 3 – low, medium, and high load.
Column 1 to 3 – 10%, 20%, and 30% latency budget.)
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But once we decrease ct to 0.0005, Adrenaline enters boost mode much earlier, which

mitigates the queueing effect; a V/f configuration with a lower boost-mode frequency

(i.e., the frequency used when Shortstop is supplied by its high-voltage rail) is now

sufficient for Adrenaline to meet the tail latency target.

We also see from the two figures that, larger energy budgets sometimes lead to

fewer boostings compared to smaller energy budgets at the same load. This is because

the larger energy budget gives Adrenaline the flexibility to use a more aggressive

V/f configuration which enables a higher normal-mode frequency (i.e., the frequency

used when Shortstop is supplied by its low-voltage rail). This higher normal-mode

frequency benefits all of the queries in the incoming query stream and shortens their

latency, leading to fewer needs for boostings.

4.5.5.3 Web Search vs. Threshold Coefficient

We conduct a similar sensitivity analysis for Web Search. For Web Search, we

sweep the threshold coefficient ct from 0.001 to 0.5, which translates to a range from

50 microseconds to 250 milliseconds for the boost threshold Tthreshold. We again

prefetch our findings and present them as follows:

• Finding 1: For Web Search, Adrenaline’s impact on latency reduction and

energy saving is also sensitive to the choice of ct. For a same workload, the

performance variation across different choices of ct can be up to 3.17x in tail

latency reduction and up to 1.62x in energy saving.

• Finding 2: The optimal choice of ct for Web Search is within the range of 0.1

to 0.5, which is much larger than that for Memcached. This distinction results

from the different characteristics the Web Search queries have. However, the

optimal choice still remains almost constant across different load and different

energy/latency budgets.
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Figure 4.20: Sensitivity analysis of the effect of different boost thresholds on tail
latency reduction of Web Search. (Row 1 to 3 – low, medium, and high load. Column
1 to 3 – 10%, 20%, and 30% energy budget.)
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Figure 4.21: Percentage of non-candidate Web Search queries (MEDIUMs and LONGs)
boosted when optimizing for tail latency. (Row 1 to 3 – low, medium, and high load.
Column 1 to 3 – 10%, 20%, and 30% energy budget.)
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Figure 4.22: Sensitivity analysis of the effect of different boost thresholds on energy
saving of Web Search. (Row 1 to 3 – low, medium, and high load. Column 1 to 3 –
10%, 20%, and 30% latency budget.)
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Figure 4.23: Percentage of non-candidate Web Search queries (MEDIUMs and LONGs)
boosted when optimizing for energy saving. (Row 1 to 3 – low, medium, and high
load. Column 1 to 3 – 10%, 20%, and 30% latency budget.)
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As can be seen in Figure 4.20, Adrenaline, again, provides significant improvement

over coarse-grain DVFS for Web Search at medium load and high load. When we

study Adrenaline’s effectiveness in tail latency reduction across the different choices of

ct, however, we find that the system behavior is drastically different from what we’ve

seen in the Memcached experiments. As shown in Figure 4.20, the larger ct’s such as

0.1 and 0.5 now have a better chance to provide significant tail latency reduction over

coarse-grain DVFS. The optimal ct for Web Search is higher compared to Memcached,

because Web Search service queries usually need a much longer time to process, as

shown in Figure 4.2. The non-candidate Web Search queries, and especially the

LONG queries, are very insensitive to the change of the frequency boosting. This

means that when Adrenaline enters the boost mode too early when processing non-

candidate queries, it wastes significant amounts of energy but only yields little latency

reduction. So ct should be set to a higher value so that the cores stay at the normal

mode, and boost only when urgent conditions occur. Similar findings are made when

we use Adrenaline to optimize for energy saving. Figure 4.22 and Figure 4.23 show

that, under the same load level and the same tail latency target, Adrenaline achieves

more significant energy saving when using larger ct’s.

Seeing this significant improvement, one might find it surprising in Figure 4.21

that the boost percentages of higher ct’s are low. The reason why such low boost

percentages can lead to significant tail latency reduction is that Adrenaline is using

higher voltage values for Shortstop’s high-voltage rail. With these higher boost-

mode voltages, Adrenaline is able to use higher boost-mode frequencies to effectively

shorten the latency of candidate queries and some of the long-running non-candidate

queries, which compensates for the low boost percentages. Due to the low boost

percentage, even though Adrenaline uses a higher boost-mode voltages, the energy

budget constraints are not easily violated.
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4.5.5.4 Strategy for choosing the right boost thresholds and V/f config-

urations

In this section, we discuss the strategy for choosing the right boost thresholds and

voltage configurations at runtime when deploying Adrenaline for an application.

During runtime, Adrenaline makes two types of decisions for different purposes.

The first type of decision is the per-query boost decision. This type of decisions,

as we discussed in the previous sections of the chapter, aims to determine whether

to boost processor performance for each query. Since user-facing applications have

strict latency requirement and have an enormous amount of user queries hitting the

servers every second, the fine-grain decision engine needs to be low-overhead. Any

significant extra latency added by this engine builds up non-negligible delays and

slow down all the queries drastically in a loaded system. Adrenaline achieves low

overhead by looking for simple query-level indicators to make fast decisions which

switch the underlying Shortstop circuit between its high/low voltage rails, incurring

only nano-second-level delays.

The second type of decisions reacts to the change of traffic level and query compo-

sition, determining the voltage configuration of the underlying Shortstop circuit and

the boost threshold used for accelerating non-candidate queries. The decision engine

needs to collect enough information over a sliding window before it can explore a

suitable next configuration to adapt to. In addition, changing the voltage configura-

tion incurs significant overhead; instead of switching quickly between the high and

low voltage rails, executing this type of decision involves adapting the voltages on the

two voltage rails via an off-chip regulator. The delay of such an operation is within

the range of tens of microseconds [42], easily comparable or even exceeding the aver-

age service time of shorter queries, such as GET, SET, DEL queries in Memcached. This

type of decisions, therefore, should only be triggered at a coarser time granularity.

However, it is challenging to develop a generalized decision-making runtime algo-
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rithm suitable for multiple applications. As shown in Section 4.5.5, the optimal boost

threshold and the optimal V/f configuration of Adrenaline vary significantly under

different situations. Since the decision highly depends on the characteristics of queries

of the target application, as well as the current traffic level and query composition,

the construction of such a generalized algorithm might involve designing complicated

control-theoretic mechanisms, which is out of the scope of this work.

In this work, we advice to construct such a decision engine on top of profiling

results of the target application, which can be done as discussed in Section 4.5.5.2

and Section 4.5.5.3. We provide some guideline as follows:

Strategy for choosing boost threshold. From the results shown in the previ-

ous section, we observe that boost threshold is highly related to the target applica-

tion’s typical service time, typical query arrival rate (in terms of query-per-second,

QPS), and non-candidate queries’ responsiveness to core frequency. Boost threshold

is rather insensitive to the change in query composition and traffic level. As shown in

Figure 4.16 and Figure 4.22, the optimal threshold coefficients for an application is

almost always the same under different combinations of query compositions and traf-

fic levels. For Memcached, ct = 0.0005 or ct = 0.001 is always the choice for threshold

coefficient. For Web Search, ct = 0.5 or ct = 0.1 is almost always superior than other

ct’s; in the cases where neither of them is the best, their performance still comes

close to the optimal ones. Such a characteristic greatly simplifies the strategy for

choosing a suitable boost threshold at runtime. For example, for applications similar

to Memcached, which feature short query service time, high QPS, and non-candidate

queries that are highly core-frequency-responsive, boost decisions should be made

early enough to prevent long queues from building up. In this situation, smaller ct’s

should therefore be prioritized over larger ct’s. On the other hand, applications sim-

ilar to Web Search have long query service time, much lower QPS, and unresponsive

non-candidate queries. Adrenaline takes advantage of this characteristic and use a
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larger threshold which boosts non-candidate queries later, gaining significant energy

saving without building up a long queue.

Strategy for choosing V/f configuration. After we conduct an off-line profiling

on the target application, for each combination of traffic level and query composition,

we identify the most beneficial V/f configuration, and record this information in a

lookup table. During runtime, we use a sliding window to monitor the most recent

history of workload. According to workload observed in the window, the decision

engine chooses the next configuration by searching for the V/f configuration associated

with the closest combination of traffic level and query composition in the lookup table.

For user-facing applications, since their traffic usually follow a diurnal pattern

[104] and are rather stable within a short period of time, meaning that the choice

for the next decision is more predictable and reliable if given the recent history of

traffic. For these applications, datacenter operators can quantize traffic and query

compositions into many levels, and create a fine-grained lookup table, which provides

more precise V/f decisions. On the other hand, if the target application features

a varying and unpredictable traffic pattern, datacenter operators can use a coarser-

grain lookup table to prevent the decision engine from overfitting to sudden bursts of

traffic.

4.5.6 Tail at Scale

Many large-scale web services including Memcached and Web Search use one or

even many clusters of machines to serve user queries. As presented in prior work [12,

111], such web services tend to have a large amount of inter-communications and high

fan-out. For example, a single user HTTP request can result in hundreds of Memcached

data fetches and many round trips within a cluster at Facebook. As the number of

servers involved in serving a user request increases, the probability of violating the

Quality of Service target (e.g., request latency target) grows significantly [32].

90



0 200 400 600 800 1000
Number of Servers

0.0%

20.0%

40.0%

60.0%

80.0%

100.0%

P(
se
rv
ic
e 
le
ve
l l
at
en
cy
 >
 Q
oS
 ta
rg
et
) Memcached

DVFS
Adrenaline

0 200 400 600 800 1000
Number of Servers

0.0%

20.0%

40.0%

60.0%

80.0%

100.0%
Web Search

DVFS
Adrenaline

Figure 4.24: Effectiveness of Adrenaline in reducing the tail latency at service level
comparing to DVFS.

In this section, we evaluate the effectiveness of Adrenaline in reducing the service-

level tail latency violations by reducing the tail latency at each leaf node. We use the

99% tail latency measured when the coarse-grain DVFS is enabled as the service-level

latency target, and compare the probabilities of one request in a fan-out cluster vio-

lating the service-level QoS target when using coarse-grain DVFS versus Adrenaline.

Figure 4.24 presents the probability that at least one leaf node misses its QoS tar-

get as a function of the number of leaf nodes for a service that must wait for all

leaves to respond. As shown, the probability of a request violating the service level

QoS target increases drastically as the number of servers in the fan-out cluster in-

creases. With 100 servers, the probability of one request violating the service-level

target has increased to 63% for the coarse-grain DVFS. By enabling Adrenaline to

reduce the tail latency at leaf nodes, we are able to reduce the probability with 100

servers significantly, by 19% for Memcached and by 11% for Web Search. With 200

servers, Adrenaline achieves an 18% improvement over DVFS for Memcached and a

13% improvement for Web Search.
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4.6 Summary

In this chapter, we present the Adrenaline methodology that adjusts the volt-

age/frequency at query-level granularity to rein in the tail latency as well as to save

energy. By evaluating our methodology under various realistic workload configu-

rations, we demonstrate the effectiveness of our methodology. With a naive boost

threshold for non-candidate queries, we achieve up to a 2.50x tail latency improve-

ment for Memcached and up to a 3.03x for Web Search over coarse-grain DVFS given

a fixed boosting power budget. When optimizing for energy reduction, Adrenaline

achieves up to a 1.81x improvement for Memcached and up to a 1.99x improvement for

Web Search over DVFS. By using the carefully chosen boost thresholds, Adrenaline

further improves the tail latency reduction to 4.82x over coarse-grain DVFS.
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CHAPTER V

Slingshot: Fine-grain Resource Scheduling for

Reconfigurable Datacenter Hardware

This chapter outlines the motivation and design of a novel CPU-FPGA system

to achieve high power efficiency and low latency for the highly dynamic cloud envi-

ronment. Prior works [121, 21] have reported successes in using FPGA to accelerate

cloud workload in large-scale datacenters; however, the FPGAs deployed in prior

works are statically configured during runtime, leading to limited utilization, and

need to be taken offline for reconfiguration when workload changes. To fully exploit

the potential of the state-of-the-art CPU-FPGA system, in this chapter, we introduce

Slingshot: a combined workload scheduler and FPGA resource manager to enable

FPGA resource sharing. We begin by characterizing two state-of-the-art CPU-FPGA

platforms: Intel’s Heterogeneous Architecture Research Platform (HARP) that pro-

vides low-latency communication over Intel’s QuickPath Interconnect (QPI), and a

high bandwidth solution connecting the CPU and FPGA over PCIe. We use these

real-system measurements to design a datacenter model to study FPGAs as a shared

service. We design scheduling policies to maximize load capacity while minimizing la-

tency when dispatching queries to CPU and FPGA accelerator units and dynamically

repartitioning the FPGA. Slingshot achieves a 96% prediction accuracy in assigning

queries to the optimal resource. In addition, Slingshot can either improve the 99th
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percentile tail latency by 1.7×-8× over statically-configured systems, or increase the

server load capacity by 23-70% while maintaining the same 99th percentile tail latency

as statically configured systems.

5.1 Goal of Study

The aspects of FPGA resource sharing are particularly challenging to study in the

dynamic datacenter environment. Compared to other general-purpose platforms such

as CPUs and GPUs, resource sharing for FPGAs has a much larger design space due

to the complex heterogeneity in resource requirement among different accelerators,

and there has not been an explicit mechanism to handle this type of resource sharing.

In this chapter, we aim to address this limitation by proposing a resource sharing

system specifically for FPGAs. We present the design of Slingshot, a robust mech-

anism to share FPGA resources spatially and temporally across multiple dynamic

workloads. Using Slingshot, queries from different applications can be flexibly served

throughout the datacenter without being restricted by the present configuration of

FPGA resources, and each machine dynamically decides whether to process queries

on the CPU or FPGA using resource-aware scheduling algorithms. The end result is

that Slingshot effectively treats the FPGA as a shared service.

Using Slingshot’s FPGA-as-a-service model, each server dynamically reprograms

its own FPGA on the fly to best cope with changing load patterns (e.g., increasing

the available accelerators of a particular type in response to a sudden spike in relative

load). In this chapter, we present a datacenter model we construct based on the real-

system measurements and study the impact of different partitioning and scheduling

policies for dynamically reconfigurable FPGA acceleration.

We design a robust methodology to share FPGA resources across multiple dynamic

workloads. Using the proposed system, queries from different applications can be

served throughout the datacenter with regard to the present configuration of FPGA
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resources, and each machine dynamically decides whether to process queries on CPU

or on FPGA based on resource-aware scheduling algorithms, effectively treating the

FPGA as a shared service. Using such an FPGA-as-a-service model, each server can

dynamically reprogram the FPGA to better cope with rapidly changing load patterns

(e.g., increasing the logic elements allocated an accelerator in response to increasing

load). Specifically, we make the following contributions:

• In-Depth Characterization of Resource Sharing on FPGAs - We character-

ize two FPGA server systems to understand how applications can share hardware

resources both spatially and temporally. One system connects the CPU to FPGA

via PCIe, and the other is Intel’s HARP prototype, which connects the CPU and

FPGA via a memory-coherent QPI bus (Section 5.2).

• Datacenter Architecture - We present a datacenter architecture design with

FPGAs integrated at the server level, and discuss the resource allocation and job

scheduling considerations that must be addressed to efficiently utilize FPGAs in a

dynamic datacenter environment (Section 5.3).

• Scheduling Algorithm Quantitative Study - We present Slingshot, a set of

resource-aware algorithms to dynamically allocate work between the host CPU and

FPGA accelerator and choose when to reprogram the FPGA fabric at runtime for

the best throughput and latency (Section 5.4).

• System-level Results - Using the performance measurements from real hardware

platforms, we evaluate Slingshot’s effectiveness in a datacenter environment and

show improvements in colocated workloads. We show that Slingshot can be used

to either increase the Quality of Service (QoS) of multiple workloads colocated on a

CPU-FPGA system over a statically programmed system, or increase the maximum

load capacity of over a static system (Section 5.5).
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5.2 System and Workload Characterization

Prior works statically provision FPGAs in datacenters to accelerate single work-

loads, which heavily underutilizes the FPGA resource as illustrated in Figure 1.3.

To investigate whether and how we can leverage FPGAs as a shared resource among

applications, there are several critical questions we need to answer.

• How are modern CPU-FPGA systems architected?

• How can the FPGA fabric be shared?

• How do real-world datacenter workloads perform on modern CPU-FPGA sys-

tems?

5.2.1 CPU-FPGA System Architecture

To answer these questions, we characterize two state-of-the-art CPU-FPGA sys-

tems: a memory-coherent CPU-FPGA system connect via QPI (Intel’s Heterogeneous

Architecture Research Platform (HARP)), and a CPU-FPGA system connected via

PCIe. The full system specifications are outlined in Table 5.1.

Table 5.1: System specifications

HARP System Stratix System
CPU Xeon E5-2680v2 Xeon E5-2680v2
CPU Freq. 2.80 GHz 2.80 GHz
Cores 10 10
FPGA Stratix V Stratix V
FPGA Freq. 200 MHz 200 MHz
Interconnect QPI PCIe

5.2.2 Interconnect Sharing

To enable resource sharing on FPGAs, the interconnect needs to be shared among

applications. Therefore, we characterize the performance of the interconnect on the

two CPU-FPGA systems in this section.
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Figure 5.1: Measured data transfer time from the CPU to FPGA (lower is better).
PCIe has dedicated upstream/ downstream channels whereas QPI is bidirectional.

In Figure 5.1, we plot the measured data transfer time from the CPU to the FPGA

for different packet sizes. For both QPI and PCIe, we measured the total transfer time

from main memory (CPU DRAM) to the FPGA’s on-chip cache. Each datapoint in

Figure 5.1 represents the average of 1000 samples.

From our characterization, we measured QPI’s peak read speed at 5.5 GByte/s

and peak write speed at 4.9 GB/s. We measure the minimum memory latency at 310

ns. For PCIe 3.0, we measure the peak read and write speeds both at 6.8 GB/s and

the minimum transfer latency at 3.0 ms.

Our measurements show that overall, QPI provides a very low minimum transfer

latency and therefore a lower latency for small transfers. However, PCIe 3.0 edges

out QPI for larger transfers. For simultaneous reads and writes, PCIe 3.0 far out-

performs QPI in bandwidth because PCIe has dedicated upstream and downstream

channels, totaling an aggregate 13.6 GB/s. QPI has a single bidirectional bus, which

we measured at 6.6 GB/s for sustained reads/writes.
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Figure 5.2: An example of FPGA fabric partitioning with multiple accelerators. Each
GMM uses one tile, and AES and JPEG use hierarchical partitioning to use another
tile.

5.2.3 FPGA Fabric Sharing

FPGA fabric can be shared both spatially (i.e., by programming multiple appli-

cations onto the same fabric) and temporally (i.e., by reprogramming the fabric over

time to server different applications). While spatial sharing is fairly easy to do with

the standard software tool chain, temporally sharing can be much more complex and

expensive.

A naive way of sharing the FPGA fabric is to reprogram the entire fabric to reallo-

cate resources for different applications. However, this approach results in significant

reprogramming latency because the entire fabric needs to be reprogrammed, and the

entire FPGA needs to be taken offline during reprogramming. To address this issue,

partial reprogramming has been proposed by prior work. With the capability of par-

tial reprogramming, recent works [29, 76, 95] use tile-based reprogramming to dynam-

ically swap out bit streams at runtime. This significantly reduces the reprogramming

latency because only a small region of the fabric needs to be reprogrammed, and also
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keeps the other already programmed accelerators on the fabric available during the

reprogramming.

Tile-based partial reconfiguration works well when the applications that are shar-

ing the same FPGA fabric have similar amounts of utilization in terms of hardware

resources (e.g., look up table, block memory). However, it can lead to inefficient

hardware usage when the different modules have drastically different amounts of re-

source utilization, because the tile size has to accommodate the largest module. To

address this issue, we apply the same tile-based partial reconfiguration technique in

a hierarchical fashion, where partially reprogrammable regions are embebbed inside

each other. In particular, we tile the fabric by first partitioning it into static regions

and top-level reprogrammable tiles, where the static region contains the off-chip in-

terface and static routing, and the top-level reprogrammable tiles are equally sized to

accommodate the largest module. Within each tile, we apply the same tile-based re-

configuration technique recursively to continue partitioning resources, and break the

recursion after two levels to avoid generating excessively high number of bit streams

to store. For instance, suppose we have four different applications GMM, JPEG, AES

and Stem, and the amount of resources need by each application is ranked as GMM

> JPEG > AES > Stem. Figure 5.2 shows an example of how the fabric might be

partitioned.

5.2.4 Workload Characterization

To understand how real-world datacenter applications perform on these CPU-

FPGA systems, we implement four popular datacenter workloads on both systems

and character their behaviors in terms of resource sharing.
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5.2.4.1 Workloads

GMM – Gaussian Mixture Model is commonly used for automatic speech recog-

nition in Intelligent Personal Assistant (IPA) services [59] (e.g., Apple Siri, Google

Now, Amazon Echo). GMM is used to transcribe the words from a recorded sound

waveform by comparing the speech against pre-trained models and returning the most

likely result.

AES – Advanced Encryption Standard (AES) is a symmetric key algorithm used

by SSL and TLS in almost all web services [21] (e.g., HTTPS). We use AES-128 with

a 128-bit key length incorporating ten rounds with a ten stage pipeline, one stage per

each round.

JPEG – JPEG is one of the most commonly deployed image compression algo-

rithm used in image hosting services [62] (e.g., Facebook, Pinterest, Instagram). It

compresses grids of 8x8 pixels by applying a discrete cosine transform to convert a

2D image to the frequency domain.

Stem – Word Stemming is used for document filtering in latency-sensitive web

search [116] and IPA applications [59]. Stem finds the root word of an input word

via a set of language rules, and it composes a significant portion of computation time

simply because it must be executed for every word in a document.

5.2.4.2 Interconnect Sharing

Table 5.2: Workload Characteristics

Job Function Job Size Data Size
AES Encryption 128 KB document 128.00 KB

GMM Speech processing 1 speech frame 0.11 KB

JPEG Image encoding 256x256 image 192.00 KB

Stem Word stemming 300 English words 4.69 KB

We characterize how the interconnect is being shared on real systems by profiling

these applications on a CPU-only system, a QPI interconnected CPU-FPGA system,
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Figure 5.3: Average execution latency and data transfer latency for each workload.
Averages were derived from 100k samples on each platform.

and a PCIe interconnected CPU-FPGA system. We run each application 100K times,

and the results are shown in Figure 5.3. On both the QPI interconnected system

(denoted as “HARP”) and the QPI interconnected system (denoted as “PCIe”), the

latency is dominated by the processing, while the communication latency from and to

FPGA is negligible except for Stem on PCIe. Despite the communication overhead,

all four applications get significant speedup (i.e., at least 2× and 27.7× on average)

running on the FPGA. The data to compute ratio for Stem is much greater than

the other workloads, and here we observe the impact of QPI’s lower latency: the

end-to-end latency for Stem is 1.8× faster on QPI versus PCIe.

Then we also characterize the amount of data each application needs to transfer to

verify if sharing FPGA resource can potentially result in bandwidth saturation on the

interconnect. Table 5.2 summarizes the amount of data needed by each application.

Comparing to the bandwidth we characterize in Section 5.2.2, the interconnect will

not be saturated even if the FPGA is processing tens of thousands of executions of

these applications.

Given the low communication latency and the high available bandwidth, it is very
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Figure 5.4: FPGA area (measured) and partial reprogramming time (derived from
measurements of bitstream size and program time).

feasible to allow many applications running on the same FPGA without incurring

significant performance overhead on the interconnects.

5.2.4.3 FPGA Fabric Sharing

Table 5.3: FPGA resource utilization for accelerators and interconnects

Stratix V (Utilization %)
Module LU BM DSP Blocks

AES 1.33 0.65 0.00
GMM 10.2 0.03 19.9
JPEG 12.9 0.01 0.00
Stem 0.44 0.00 0.00

QPI Interface 28.7 1.97 0.00
PCIe Interface 6.91 1.98 0.00

As we mentioned in previous sections, FPGA fabric can be shared in two ways:

spatial sharing and temporal sharing.

Spatial sharing: To characterize spatial sharing, we synthesize the FPGA im-

plementation of each workload for both the QPI and PCIe systems and tabulate the

FPGA utilization (percent of FPGA resources used by the workload) in Table 5.3,

in which LU denotes look up table, BM denotes block memory, and DSP denotes

digital signal processing blocks. None of the applications consumes more than 20%
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of one single type of resource, which means several applications can be programmed

on the same FPGA fabric by sharing the resources spatially. In addition, we observe

that applications have drastically different characteristics in their hardware resource

utilization, which means sharing the FPGA fabric among various applications can

improve the resource utilization (e.g., applications with high LU utilization can share

the FPGA fabric with applications with high DSP block utilization to achieve high

utilization on both LU and DSP blocks).

Temporal Sharing: The FPGAs can be reprogrammed from on-board flash

memory or JTAG. Flash memory is very slow to write data into, but the flash memory

can hold many configuration bit streams and reprogram the FPGA from pre-stored bit

streams much faster than JTAG. To study temporal sharing, we partial reprogram the

FPGA fabric using bitstreams stored in the on-board flash memory and measure the

reprogramming time for all four applications. Figure 5.4 presents the reprogramming

time, which is on the order of 10s of milliseconds. Although this is still relatively high

comparing to the latency of running applications on FPGA as shown in Figure 5.3,

it is similar or sometimes lower than the latency of running applications on CPU.

Therefore, dynamically reprogramming the FPGA to enable temporal sharing of the

FPGA fabric can potentially improve the application performance.

In summary, spatial sharing FPGA fabric among applications can further improve

FPGA resource utilization due to the diversity in application characteristics, and tem-

poral sharing by reprogramming the fabric dynamically is fast enough to potentially

improve application performance.

5.3 System Architecture

Prior work statically provision FPGA resources for single workloads [121], which

does not cope with the dynamic nature of modern datacenter workloads and thereby

heavily underutilizes the FPGA resources as shown in Figure 1.3. To improve resource
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utilization, co-location of applications on the same servers has already been commonly

employed to enable resource sharing in modern datacenters [143, 161, 52]. Several key

characteristics we discovered through real system characterization in Section 5.2 of

the emerging tightly coupled CPU-FPGA systems present us an unique opportunity

to leverage FPGA as a shared resource among applications to improve FPGA resource

utilization.

• Low Communication Overhead: Both QPI and PCIe provide low latency and

high bandwidth communication between CPU and FPGA, which allows different

applications to share the same interconnect without incurring significant commu-

nication latency.

• Fine-Grained Spatial Resource Sharing: Different workloads have drastically

different characteristics in FPGA resource utilization as shown in Table 5.3, so we

can achieve high resource utilization by sharing FPGA resource spatially at fine

granularity among workloads (i.e., high LU utilization applications can share the

same FPGA with applications with high DSP block usage).

• Rapid Partial Reprogramming: With the capability of rapidly partial repro-

gramming the FPGA fabric, we can dynamically reallocate resources among the

applications that are sharing the same FPGA to cope the dynamism of modern

datacenter workloads.

Therefore, we present a novel datacenter architecture, in which FPGAs are shared

among different co-locating applications in both spatial and temporal fashions.

5.3.1 Cluster-Level Architecture

To improve resource utilization, it is a common practice for large datacenter op-

erators like Microsoft [161], Google [143], and Facebook [52] to employ co-locations

of different applications (e.g., interactive services, and batch processing workloads).
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Figure 5.5: Server-level query flight diagram for Slingshot. The Slingshot scheduler
estimates service time (including queuing, transfer and execution time) for the FPGA
and CPU, then schedules the query.

Similarly, allowing different applications to share the same FPGAs can significantly

improve resource utilization as illustrated in Figure 1.3. Therefore, we allocate a pool

of FPGA-CPU systems as acceleration servers in each cluster to serve as a shared

resource, which can be utilized by the application servers that serve specific applica-

tions.

When a user query/job hits our data center, the application servers will first house

the top-level application (e.g., web search, intelligent personal assistant (IPA), and

MapReduce batch processing jobs). During the execution of the query/job, there are

certain components (e.g., computational expensive kernels like GMM and Stem in

IPA applications [59]) can be accelerated by FPGAs, which we refer as a microservice

query. These microservice queries will be sent over to the shared acceleration servers

for processing. Every acceleration servers in the shared pool are logically identical,

which means each server is capable of executing any microservice query.
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5.3.2 Server-Level Architecture

Each server in the shared acceleration pool runs a CPU-FPGA system, where

both the CPU and the FPGA accelerator are shared among the microservice queries

issued by various applications.

Figure 5.5 presents a flow diagram of how each microservice query is being handled

at server-level. When a microservice query is issued by application servers, the query

is put into a system queue on the acceleration server. Then a scheduler will schedule

the query to CPU or FPGA by moving the microservice query to the corresponding

queue, which introduces the first question we need to answer.

• When should a query be scheduled to FPGA? Although FPGA execution

can often provide speedup over CPU execution for a single query as shown in

Section 5.2, making this scheduling decision dynamically in a complex queue-

ing system is quite challenging. For example, scheduling too many queries to

FPGA can result in long queueing latency, or even saturate the interconnect

bandwidth, in which case the CPU becomes the preferential target for schedul-

ing. In addition, the FPGA may not already have the scheduled microservice

programmed on the fabric, causing additional reprogramming overhead.

When a microservice query is scheduled to the FPGA accelerator, the query will be

pushed into the FIFO queue, which waits on both FPGA interconnect and accelerator

to become available. If the microservice has not been programmed on the FPGA yet, a

repartitioning manager needs to reprogram the FPGA fabric, which raises the second

question we need to answer.

• When should the FPGA fabric be repartitioned? Reprogramming FPGA

fabric to handle certain types of microservice queries incurs overhead in short

term, but may improve overall system performance in longer term. For exam-
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ple, increasing the resources allocated for GMM may improve overall system

performance when the load of IPA service is increasing.

Note that these two questions are not independent from each other. In fact, they

actually have complex interactions. Reprogramming decisions can affect scheduling

decisions due to the resource availability (e.g., more queries can be scheduled to

the FPGA when increasing amount of resources is allocated for the corresponding

microservice). On the other hand, scheduling decisions can also affect reprogramming

decisions (e.g., repartitioning more resources for a microservice can improve system

performance when there are many queries scheduled to FPGA). Care must be taken

to coordinate the two components.

5.4 Resource Management

To answer the two questions raised in Section 5.3.2, we introduce a resource man-

agement system, Slingshot, that complements the dynamism of modern datacenter

workloads and better utilizes datacenter resources. Specifically, we present a query

scheduling algorithm in Section 5.4.1 to decide when a query should be scheduled to

FPGA for acceleration, and a repartition scheduling algorithm in Section 5.4.2 to

choose when and how to repartition the FPGA fabric.

5.4.1 Query Scheduling

The main goal of query scheduling is to identify the resource that will offer the

lowest service time. The key idea of Slingshot’s query scheduler is to use latency

estimation to estimate the lowest-latency resource. The following sections discuss the

challenges and implementation of our scheduler.
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5.4.1.1 Challenges

The Slingshot query scheduler has the option of assigning a query to any available

computation resource (CPU cores or FPGA accelerator units). Based on the char-

acterization from Section 5.2, we find that the FPGA is usually the optimal choice,

if available. The FPGA accelerators have a substantially smaller service time, which

significantly increases the machine’s maximum throughput provided there are accel-

erators available for the given query type. However, the FPGA still faces queuing

latency issues under heavy load. If too few acclerators are available or the queue

is too long, queuing effects can raise FPGA service time to exceed the CPU service

time.

Previous works have explored estimating latency as an algorithm for resource

scheduling. Craeynest et al. and Duggan et al. leverage profiling information to

estimate latencies [138, 38], however profiling is impractical with accelerator units that

constantly change and have on the order of O(mn2) possible accelerator combinations

(where n is the number of accelerator types and m is the number of accelerators that

can fit on the FPGA simultaneously). The analytical models of Wu et al. and

Chandramouli et al. [152, 23] suffer similar problems handling large numbers of

possible reconfiguration states. Because the available resources in a dynamically

allocated FPGA change over time, our platform is fundamentally different than prior

works and requires new techniques to maximize resource utilization.

5.4.1.2 Design

When performing query scheduling, Slingshot estimates the end-to-end latency

based on standalone job profiling (Section 5.2) to predict the latency of issuing a

query to a target compute resource. The latency model is then broken down into into

three components: processing latency, transfer latency, and queuing latency (Table

5.4).
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One of the largest benefits of FPGA accelerators is that the processing time can

be predicted to an exact number of cycles. Data transfer to the FPGA data transfer is

also highly predictable using both PCIe and QPI, and does not change as the FPGA is

reconfigured. Thus, the total FPGA latency is highly predictable for a single query’s

end-to-end latency. The queuing latency is much more variable because our system

pipelines data transfer and query processing. In the worst case, the queuing time will

be no greater than the sum of all of the latencies of queries in the queue. However,

the real queuing time is much smaller than the worst case because of pipelining and

parallelization, but it is also highly variable because individual queries can contend

processing or interconnect resources from other queries, making the queuing latency

highly dependent on the workload composition and ordering of the queue.

Table 5.4: Latency estimation model components (Bidirectional arrows represent
round-trip).

Latency Term Symbol Representation
Process (CPU) tproc memory 
 processing

Process (FPGA) tproc FPGA cache 
 processing

Transfer ttrans memory 
 FPGA cache

Queue tqueue queue insert → queue pop

For a first-order latency estimation given n workloads, the latency of a given query

tquery can be estimated as:

tquery = tproc,query + ttrans,query + tqueue

tqueue ≈
n∑

i=1

(tproc,i + ttrans,i)×mi

where mi is the number of queued queries for workload i in a specific queue. Our

query scheduler can keep track of mi for the CPU queue and the FPGA queue by in-

crementing a counter when the queries enter the queue and decrementing the counter

when the queries exit the queue, which leads to an extremely small constant overhead

per query.
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However, this model assumes each query in the queue is processed serially. Queries

executed on CPU can be distributed to each available core, reducing the queue time

significantly over serial execution. On the FPGA side, data transfers can be pipelined

with processing while processing is parallelized across multiple accelerator units. As

a result, this naive model performs poorly in a complex system. Therefore, Slingshot

requires a second order model to account for the specific architecture of a system with

multiple execution paths.

Slingshot’s second order model focuses on the average case for queries in the queue.

Because the difference between the service paths on CPU and FPGA is significant,

Slingshot must consider different models for each. For the CPU, each query can

be serviced by any processing resource. Therefore, the latency can be estimated by

multiplying the average query latency by the number of processing batches it will

take to process the entire queue:

tqueue,CPU ≈
⌈m
r

⌉ 1

m

n∑
i=1

tproc,i ×mi

where r is the number of processors, and m is the total number of queries in the

CPU queue. On the FPGA, there are more factors to consider. Each query can only

be serviced by an accelerator of the approperiate workload type, unlike the CPU.

Because different workload types can be parallelized across each type’s accelerator

units, however, the queue processing latency will only be limited by the total pro-

cessing latency of the longest latency workload. In addition, the data transfer can be

pipelined with the data processing, so the queue time can be estimated by whichever

is longer, the total transfer time or total processing time:

tqueue,FPGA ≈ max

(
n∑

i=1

ttrans,i ×mi,max
i

(⌈
mi

ri

⌉
tproc,i

))
where ri is the number of processing resources for workload i. These approximations
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Figure 5.6: Example configuration space of an FPGA with 3 accelerator options,
searching to depth=1 (left) and depth=2 (right). Each node represents a possible
configuration of accelerators that would fit on the FPGA.

assume the overall queue for the CPU will only be bottleneck on processing resources,

whereas the FPGA can bottleneck on either interconnect bandwidth or processing

resources.

In a real system, the actual bottlenecks will be a combination of resources and

bandwidth at different points during execution. However, the only way to effectively

estimate the latency to a higher degree would require iterating through the entire

queue and estimating the bottleneck on a query-by-query basis. While this model

would likely offer increased accuracy, we show in Section 5.5 that the second order

latency model offers a high degree of accuracy with a low, queue-length-independent

overhead.

5.4.2 Repartition Scheduling

The main goal of repartition scheduling is to properly match the allocated FPGA

accelerators to the current datacenter demand. The key idea of Slingshot’s repar-

tition scheduler is to use the recent history of queries to estimate demand and then

evaluate the benefits of repartitioning. The following sections discuss the challenges

and implementation of our scheduler.
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5.4.2.1 Challenges

The Slingshot resource manager is unique to FPGAs due to two key factors: (1)

the fine-grained control over the hardware resources and (2) the high and variable

resource scheduling delays caused by reprogramming accelerator units.

FPGAs have an inherently high-risk, high-reward tradeoff when repartitioning

resources. Accelerator units offer very fast processing time compared to CPUs even

with the memory transfer overhead; however, the time to switch from one workload

type to another is two orders of magnitude higher on an FPGA than it is on a

CPU [39, 85]. The reprogramming time (milliseconds) is also much higher than

the compute latency (microseconds) so Slingshot’s resource manager cannot make

decisions based upon individual queries, and must weigh the resource cost of switching

against the benefits for switching for a distribution of queries.

5.4.2.2 Design

The first step in making a decision to reconfigure the FPGA fabric is to understand

the domain of configuration states. Because of the restrictions applied to accelerator

placement in Section 5.2.3, there is a finite number of configuration states to which the

FPGA can be reprogrammed. After eliminating impossible and underutilized states,

we can create a domain of possible configuration states that lie an a Pareto-optimal

curve of peak throughput for each workload. This curve lies in an n-dimensional

space, where n is the number of workloads.

The next step in the algorithm is to perform a search for the Pareto-optimal

configuration node based on the current workload demand. Because searching the

entire configuration domain becomes unwieldy as the number of nodes increases,

we perform a depth-limited breadth-first search where we originate at the current

configuration node and traverse k edges. Figure 5.6 displays an example of a search

over a domain of 3 workloads with a search depths of 1 and 2, however the algorithm
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can be performed with an arbitrary depth. At each node, the scheduler estimates

the benefits and costs of changing the configuration state to the new node. The

benefits are calculated by subtracting the current node’s normalized throughput from

the target node’s estimated throughput, and the costs are estimated by multiplying

the drop in throughput by the reconfiguration time. If the benefits exceed the costs,

the repartitioning schedules will attempt to initiate a partial reconfiguration. In the

event that queries are queued up to run on the FPGA but the reconfiguration process

would remove all applicable accelerators, the repartitioning scheduler will wait until

the queue is clear and also notify the query scheduler not to schedule more queries of

that type on the FPGA.

5.5 Evaluation

To evaluate our system, we first present the details of our evaluation methodology

in Section 5.5.1. Then we quantify the prediction accuracy of our latency estima-

tion used for managing resources in Section 5.5.2. Last, we evaluate the full system

performance in terms of both QoS improvement and throughput improvement in

Section 5.5.3.

5.5.1 Evaluation Methodology

5.5.1.1 Experimental Setup

We evaluate Slingshot using BigHouse [105], an event-driven, queuing-based dat-

acenter simulator that uses workload characteristics to synthesize an event trace. We

use BigHouse for two key reasons: firstly, a BigHouse allows us to vary system pa-

rameters such as FPGA area and bandwidth and project how Slingshot can apply to

future systems or systems with different constraints. Secondly, current FPGAs are

designed to hold only a small number of bitstreams in the on-board flash memory.
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We do not need significantly more memory: our test system requires around 4 copies

of each partial-board accelerator bitstream for the Stratix V (approximately 200 MB

of memory in total), however the highest capacity Stratix V dev board currently only

comes equipped with 64 MB of flash. For these reasons, we modify BigHouse to

suit our needs. We incorporate several new features, based on measurements from

real hardware, to allow for precise modeling and analysis of Slingshot running on a

CPU-FPGA platform such as adding interconnect and accelerator devices and queues.

Modeling system architecture - Our model is built from the architecture

discussed in Section 5.3.2. We model the incoming query queue (system queue), as

well as the CPU, FPGA, and interconnect queues as described in Section 5.3. When

a query arrives, it is placed in the main system queue until the query scheduler can

assign it to either the CPU or the FPGA. If the query is assigned to the CPU, it

is dispatched to the CPU queue to wait for an available CPU core. Otherwise, it is

dispatched to the FPGA queue until both the interconnect is available and the target

accelerator is free.

Modeling CPU latency - We model CPU execution time from creating a cumu-

lative distribution function (CDF) of 100k service times measured on real hardware.

This CDF captures variability from compute, memory, cache, and other variation

sources.

Modeling FPGA latency - We model the FPGA latency through the com-

bination of an interconnect model and a processing latency model. The processing

latency model is a CDF composed of 100k measurements and captures the (very low)

processing variability. The interconnect model is composed of the 1000 interconnect

transactions measured on our real system, and captures the variability associated

with memory access at the host machine side and data transfer latency from the host

machine to the FPGA over the interconnect.

Modeling workload traffic pattern - To accurately model the inter-arrival
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rate of queries, we use inter-arrival time distributions from a production Google web

cluster [103]. Our load patterns (discussed in the next section) include two synthetic

workloads and a real web datacenter query trace from search provider SoGou [147].

To simulate a wide range of load patterns hitting a datacenter, we extend BigHouse

with the ability to update the the query-per-second (QPS) parameter of the query-

arrival stochastic process on the fly. We also alter BigHouse to enable transient

simulation that run for a specific amount of time, in addition to steady state load

patterns that converge as dynamic reconfiguration of resources in the face of varying

traffic cannot produce a steady state service distribution.

Modeling scheduling and repartitioning overhead - To model the dynamic

aspects of our system, we implement both the query scheduling and repartitioning

algorithms from Section 5.4. For both query scheduling the FPGA repartitioning, we

include the overhead of making and executing the decisions. For query scheduling,

we model the latency overhead incurred by the query scheduler by adding the average

execution time of the scheduler measured in real system tests.

To account for FPGA repartitioning, we model the reconfiguration overhead by

using the reprogramming time data shown in Figure 5.4. Our simulator mimics the

real-system reconfiguration process: we take the reconfiguring accelerators offline for

the duration of the corresponding reprogramming time, and then bring the repro-

grammed accelerator online once reprogramming is complete. During this period of

time, the part of FPGA resource involved in the reprogramming is not available to

process queries. We measured the average repartition scheduling latency at 72 µs,

with the 99-th percentile of 76 µs.

5.5.1.2 Workloads

To evaluate our systems, we use 3 different load patterns that showcase different

behaviors representative of a real datacenter environment (Figure 5.7). The first load
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is a trace over 60 seconds of a relatively “slow changing” load. The load is composed

of approximately 400k queries with the instantaneous load ranging from 5k to 8k

Queries Per Second (QPS). This pattern was selected because it represents the low

end of dynamic load changes in a datacenter, such as off-peak times in the SoGou

dataset.

The second load is an evaluation over 60 seconds of a relatively “fast changing”

load. The load is composed of approximately 390k queries with the instantaneous

load ranging from 5k to 8k QPS. This pattern was selected because it represents the

high end of dynamic load changes in a datacenter, such as peak times in the SoGou

trace.

The third load is a based off of a real datacenter request trace obtained from the

BigDataBench dataset [147], which was sourced from web search provider SoGou.

The load pattern is composed of approximately 400M queries over 24 hours. The real

24-hour trace was converted into a load pattern by taking the peak instantaneous load

in the trace and scaling it to 8k QPS after ignoring outliers to maintain consistency

with the other load patterns (there are in total 10 data points that lie above 8k QPS

after scaling, with each datapoint lasting 1 second). This load pattern displays the

traditional datacenter diurnal load cycle, as well as the real noise associated with

datacenter traffic. We have performed curve smoothing on the trace shown in Figure

5.7 in order to observe the load pattern, however we performed no alterations to the

data used to run our experiments.

5.5.2 Scheduling Prediction Accuracy

To evaluate our latency prediction model, we run our fast and slow load patterns on

our QPI and PCIe systems for both dynamic (partially-reconfiguring) and static (non-

reconfiguring) systems. We evaluate the prediction accuracy by sampling every 100

queries and comparing the execution latency on the two devices. Results show that

116



2000

4000
AES GMM JPEG Stemmer

2000

4000

2000

4000

0 10 20 30 40 50 60
Time (s)

0

2000

4000L
o
a
d

 (
Q

P
S

)

(a) Slowly changing load pattern.

2000

4000
AES GMM JPEG Stemmer

2000

4000

2000

4000

0 10 20 30 40 50 60
Time (s)

0

2000

4000L
o
a
d

 (
Q

P
S

)

(b) Quickly changing load pattern.
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(c) Load trace from SoGou [147]

Figure 5.7: Load patterns used in evaluation.

our proposed query scheduler is able to correctly predict the lower-latency resource for

more than 96% of queries. In the cases where our algorithm does not make the correct

prediction, the difference in actual latencies is less than 7%. Our query scheduler is

extremely effective at correctly predicting latencies at lower loads due to the length of

the queue being relatively small. At higher loads, the queuing time becomes harder

to predict without precise information about the composition and ordering of the

queues because queries will contend for resources.
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Figure 5.8: QoS improvement for dynamic scheduling over static scheduling on a
simulated FPGA system with QPI (top) and PCIe (bottom)

5.5.3 Full Systems

Using our system, we evaluate 2 key metrics across both our HARP and PCIe

platforms: 1) We evaluate the QoS improvements over a static system by implement-

ing dynamic reprogramming for each load pattern. 2) We evaluate the per-machine

efficiency improvement by measuring the additional load capacity of a dynamically

reprogrammed system over a statically programmed system. For each of these exper-

iments, both our baseline systems and our evaluation systems use the specifications

from Section 5.2. Our evaluation compares the systems using a statically programmed

design (similar to prior work) to the systems using our dynamic reprogramming al-

gorithms from Section 5.4. Our static systems are partitioned such that the FPGA

resources are maximized and each workload’s peak throughput is matched as closely

as possible (i.e. the peak GMM, JPEG, AES, and Stem query throughputs match).
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5.5.3.1 QoS Improvement

In Figure 5.8, we show the improvement of our dynamic system over a baseline

static system for QPI and PCIe. To measure the QoS of these systems, we employ

3 metrics to evaluate latency. First, we use average latency, which is the arithmetic

mean of the latency across the entire experiment. We use total tail latency, which

is the 99% latency of the entire experiment. Lastly, we use a metric called average

tail latency. Tail latency is usually used in a static context, where the tail latency is

a function of a static load (e.g. fixed queries per second). Because the experiment

employs dynamic loads and systems, we also utilize an average tail latency metric,

where the 99% latency is sampled over a 5 second window and stepped across the

experiment at 5 ms intervals. We then take the arithmetic mean of these tail latencies

to give a better view of the short term worst case latency as the load changes.

Figure 5.8 shows that the dynamically programmed system improves QoS across

all of our metrics. Average latency is improved by 1.9× on our QPI system and 2.3×

on our PCIe system (geometric mean). Average tail latency is improved by 1.5× for

QPI and 2.0× for PCIe, and total tail latency is improved by 4.2× for QPI and 7.0×

for PCIe.

From these results, we observe that QoS improves across the board, but the orders

of magnitude processing speedup seen in Section 5.2 do not translate proportionally

into QoS improvement. We find that the major contributor to QoS degradation stems

from transfer queue blockages: when a relatively large number of queries arrive in a

short interval, the FPGA interconnect must transfer the queries one at a time. Our

dynamic system is able to relieve a majority of slowdowns due to processing resource

allocation, which are seen on the static system.

An example of this scenario is shown in Figure 5.9, which shows the windowed

tail latency and total queue lengths for the fast changing workload with and without

Slingshot. At about 11 seconds into the workload, both systems encounter a latency
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spike, which we found was caused by a sharp increase in the GMM queries per second.

Slingshot (Figure 5.9b) was able to reallocate a group of Stem and AES modules for an

additional GMM accelerator, whereas the static system could not. The queue length

for the dynamic system peaks at 214 queries and then declines as the additional

accelerator is able to process new queries. The static system is not able to allocate

new units, so although it begins distributing queries to the CPU, the tail latency

spikes as the load increases.
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(a) Windowed tail latency and total queue length without Slingshot.
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(b) Windowed tail latency and total queue length with Slingshot.

Figure 5.9: Comparison of the fast changing workload on HARP without Slingshot
(a) and with Slingshot (b).
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5.5.3.2 Load Capacity Improvement

For our second experiment, we examine the improvement in per-machine through-

put gained from Slingshot when compared to a static system. We linearly scale the

load of our slow and fast load patterns, and then compare the total tail latency of the

scaled load to a static system with an unscaled load. Figure 5.10 shows a sweep of

our platforms and load patterns normalized to a static system baseline. The red line

represents parity in total tail latency to the static baseline. From the figure, we can

achieve up to a 26% increase in load for our HARP system compared to the static

baseline, and we can achieve up to a 70% increase in load for our PCIe system while

maintaining the same QoS as our static baseline.

Through these experiments, we observe that Slingshot can effectively use resources

to accommodate dynamic datacenter load. We observe that PCIe both obtains better

speedup over the static baseline than HARP and also can support more load than

HARP for a given QoS, despite HARP having an extremely low latency interconnect.

As shown in Figure 5.3, the difference in transfer latency is negligible compared to

the total processing time. The major contributing factor to the performance increases

are due to the differences in area: the PCIe system has a hard PCIe controller block

that consumes only 6.91% of the FPGA fabric, whereas HARP uses approximately

29% of the fabric for the communication interface. This difference in area allows us

to fit an additional top-level tile on the FPGA, which can fit another GMM or JPEG

accelerator, as well as several additional AES or Stem accelerators. These additional

accelerators allow Slingshot more flexibility in partitioning its resources and to better

accommodate its load, especially during peak loads.
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Figure 5.10: Load improvement of Slingshot-equipped servers over their static base-
lines on the same platform. A normalized total tail latency of 1 indicates QoS parity
with the baseline.

5.6 Summary

In this chapter, we presented a characterization of two real FPGA accelerated

servers: a PCIe attached FPGA and Intel’s HARP prototype with an FPGA attached

to a server-class Xeon CPU over QPI, a low-latency memory-coherent bus. We char-

acterize the performance and resource utilization of four real datacenter workloads

accelerated on these real FPGA systems, and use our characterization to present

Slingshot, an FPGA-accelerated datacenter design. We model Slingshot in the Big-

House simulator suite and explore real and synthetic load datacenter patterns. We

find that dynamic scheduling offers significantly increased average throughput and

increases average QoS metrics by 1.7× to 8× over a static FPGA management sys-

tem, or provides a 23-70% increase in server load capacity while maintaining the same

99th percentile tail latency as a static management system.
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CHAPTER VI

Conclusion

When building and running modern, massive-scale datacenters, power and energy

have become first-class concerns. They not only impact the cost of building the

infrastructure and the electricity bill, but also directly relates to the computation

capacity a datacenter can deliver, which plays a critical role in gaining profit and

ensuring the quality of services.

This dissertation investigates the power and energy utilization of datacenters run-

ning modern cloud and machine learning workloads, and identifies the sources of ineffi-

ciency at three levels of the datacenters: datacenter level, server level, and computing

fabric level. It then provides insights and approaches to mitigate the inefficiency at

each of these levels.

At the datacenter level, I identify the power budget fragmentation problem found

in three Facebook production datacenters. To solve the fragmentation problem and

improve the power efficiency, I leverage the knowledge of the temporal heterogeneity of

power consumptions of different workloads, and design the SmoothOperator frame-

work to unleash the once wasted power budgets. Firstly, SmoothOperator applies

workload-aware service instance placement technique to distribute service instances

with similar power consumption pattern across the datacenter, unlocking the frag-

mented power budget. It then learns from the history of power consumption patterns
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and applies server-conversion-based dynamic power profile reshaping runtime in the

production environment to further improve the power budget utilization at datacenter

level.

At the server level, I characterize the latency distributions two most commonly

deployed workloads, and found that different types of queries not only have differ-

ent latency distributions, but also are impacted differently by voltage and frequency

scaling. My insight is that, we can achieve better tail latency without increasing the

overall energy consumption when there exist tail queries – the types of queries whose

latency not only are highly likely to fall into the tail of the overall distribution, but

also can be significantly impacted by voltage and frequency of the core. I design the

Adrenaline methodology that adjusts the voltage/frequency at query-level granularity

to rein in the tail latency as well as to save energy. Adrenaline pinpoints these tail

queries and proactively raise the V/f setting for them to reduce their latency, which

reins in the tail of the entire distribution. At the same time, it leaves those ”already

fast enough” queries running at lower V/f setting, trading the mean latency for lower

overall energy consumption.

Lastly, I find that the mainstream CPU-centric datacenters are overlooking signif-

icant energy saving opportunity. These general purpose computing units are designed

for highest flexibility but not for achieving high energy efficiency. On the contrary,

application specific accelerators have limited programmability in exchange for signif-

icantly higher efficiency. Among these accelerator platforms, FPGA strikes a balance

among programmability, performance, and efficiency. To explore how FPGA adapts

to the highly dynamic cloud environment, I investigate the partial reconfigurabil-

ity and the hierarchical partial reconfigurability of modern FPGAs. I characterize

the performance and resource utilization of four real datacenter workloads acceler-

ated on these real FPGA systems, and use our characterization to present Slingshot,

an FPGA-accelerated datacenter design. With all the real system measurements, I
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model Slingshot in the BigHouse simulator suite and explore real and synthetic load

datacenter patterns. We find that dynamic scheduling offers significantly increased

average throughput and increases average QoS metrics, and improves server load ca-

pacity while maintaining the same 99th percentile tail latency as a static management

system.
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