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ABSTRACT

Stability of systems with stochastic delays is addressed in this dissertation. A lin-

ear delay differential equation is considered where the delay takes values from a

finite set of numbers according to a probability distribution function. Exact sta-

bility conditions for the resulting system are obtained. These conditions depend

on the parameters of the system, the delay values and the probability distribution

function governing the delay. The stability criteria are first obtained in a discrete-

time setting after discretizing the continuous-time system. Then, the stability con-

ditions are obtained in a continuous-time setting where an operator description of

delay differential equations is used.

The stability results are applied to models of gene regulatory networks. The re-

sults can determine whether a steady state protein production is stable or oscilla-

tions in protein levels may arise as a result of stochastic fluctuations in reaction

times. Finally, the interplay between noise in the gene expression level and noise

in the population level in microbial consortia is investigated. The results suggest

a mechanism for creating robust oscillations in multicellular environments.

xi



CHAPTER 1

Introduction and motivation

Today there are an astonishingly large number of labs where biologists do experiments
on biological entities spanning from bacteria to human cells in order to understand the
principles based on which the living systems function, improve the current medicine, and
explore the frontiers of science. An important question hovering over all areas of life
sciences is: what are the design principles of biological systems allowing them to function
in a remarkably robust manner? To answer this question, one needs to have a quantitative
evaluation of the key biological processes underlying the behaviors of biological systems.
This is where the motivation for this research is stemming from.

One of the most important areas of study of biological systems at the cellular level is
to understand the function of gene regulatory networks—networks of genes and their pro-
tein products that respond to environmental signals and perform logical functions in cells.
Mathematical modeling of these networks is deemed capable of answering questions such
as: why and when do genes turn on or off and how do they influence the functionality of the
cell? Correct mathematical modeling of biological events is, however, not straightforward.
In particular, if one wishes to model every biological process that is involved in a biological
system, one will end up with a highly complicated, large-dimensional model that cannot be
analyzed either analytically or numerically. In an attempt to tackle this issue, a sequence
of consecutive biological events or reactions that lead to a specific product can be replaced
with one delayed reaction where the delay is the total time needed for all the reactions to
take place. This way the complexity of the mathematical model reduces significantly.

This reduction is used in modeling, for instance, transcription and translation processes
that are key processes in gene regulatory networks. Put briefly, transcription is the process
of reading a gene by an enzyme and producing an RNA strand that has the same nucleotide
sequence as the original gene. Translation is the process of reading this RNA strand by
another enzyme and producing a chain of amino acids based on the nucleotide sequence of
the RNA. The chain of amino acids, after some modifications, becomes a protein. Instead
of modeling the process of reading the gene or RNA strand by an enzyme as a series of
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reactions where each reaction represents reading one nucleotide at a time, one can use a
single delayed reaction for the entire transcription or translation process. The delay is the
time it takes for the enzyme to finish reading the genetic sequence of the DNA or RNA.
On the other hand one should note that a very important aspect of biological systems is the
inherent randomness that exists at the molecular level. Whether two reactant molecules are
going to collide or not as well as “when” they collide are probabilistic events by nature. As
a result, the time it takes for all necessary reactions for reading a genetic sequence to take
place is a random quantity.

Using delayed reactions in lieu of many consecutive reactions leads to dealing with
delay differential equations. Even though the theory for the analysis of delay differential
equations is well developed when the delays are known [30, 16], it is lacking when the
delays are random or stochastic. This observation serves as a motivation for us to study the
dynamics and stability of systems described by delay differential equations where the de-
lays are subject to stochastic variations. Mathematical analysis of the dynamics and stabil-
ity of systems with stochastic delays has not gained much attention in literature. Therefore,
not only we study this problem in a mathematically rigorous manner providing theorems
and proofs, but also we provide numerical techniques to investigate different aspects of the
problem in an efficient manner.

We use our developed methods to investigate stability properties of some gene regula-
tory networks and illustrate how our theory can be used to elucidate the effects of stochas-
ticity in signaling times on the dynamics of these systems. Not only in the design of bi-
ological circuits, our theoretical results are expected to be useful for any system where
information flow may experience random delays. Additionally, we also study other aspects
of noise in biological systems; in particular, we study the interplay between intracellular
and population level dynamics in a noisy multicellular environment. The structure of the
thesis is as follows.

In Chapter 2, we consider a nonlinear system of delay differential equations where
the delay is a stochastic process. We study the local stability of the system through lin-
earizing around the steady state. We discretize the continuous-time system using a semi-
discretization process, and obtain necessary and sufficient conditions for the stability of the
discretized system. We characterize the stability of the mean as well as the second moment
of the stochastic system. We illustrate the application of the method on a generic scalar
system. We show that when the discretization time step tends to zero, the stability charts
converge.

In Chapter 3, we consider a linear continuous-time system with stochastic delay. We
study the stability of the system in continuous time directly rather than discretizing the
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system first. The goal is to obtain an expression for the continuous-time version of stability
conditions that we obtained in Chapter 2. We take advantage of the theory of the solution
operators of delay differential equations as well as tensor products of Banach spaces to
achieve this goal.

In Chapter 4, the theoretical tools are applied to some models of gene regulatory net-
works with negative feedback. In particular, we consider an auto-regulatory gene with
single and dual negative feedback pathways.

In Chapter 5, we study the interactions between the intracellular dynamics of gene ex-
pression and the population level dynamics in multicellular systems. In particular, we con-
sider two strains of cells that are in the same container and study their growth dynamics as
they compete in a noisy environment. We propose a model that captures both intracellular
dynamics and intercellular signaling and sheds light on mechanisms that lead to different
dynamic behaviors such as steady-state or oscillations.

In Chapter 6, conclusions are provided.
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CHAPTER 2

Stochastic delays in discrete time

2.1 Introduction

Time delays are a well-known source of instability in dynamical systems and can make con-
trol design a challenging task. When the delays are assumed to be constant or distributed,
there are well established methods to analyze stability and bifurcations of equilibria and
periodic orbits [30, 16, 39, 11]. When the delays depend on time or on the state of the
system, stability analysis becomes more difficult and may require averaging or numerical
techniques [7, 33, 55]. However, in some cases delays vary stochastically in time, making
it very challenging to characterize stability. We target the problem of stability analysis of
systems with stochastically changing delays. In addition to biological systems such as gene
regulatory networks [29, 34], stochastic delays also arise in applications such as networked
control systems [42, 60] and connected vehicle systems [66].

When investigating dynamics under stochastic delay variations, key factors include the
stochastic process describing the time evolution of the delay and the type of stability inves-
tigated. In early works, random delays modeled by continuous-time Markov chains were
incorporated into delay differential equations [36, 47] and Lyapunov stability theorems
were used to obtain sufficient conditions of stability. Lyapunov-based approaches were
extended to nonlinear systems [40] and also were applied to discrete-time systems where
sufficient stability conditions were presented in the form of matrix inequalities [22, 63, 90].
These conditions are typically very conservative making it difficult to evaluate the true ef-
fect of the stochastic delays on the dynamics. Additionally, a design based on the worst case
scenario (e.g. largest delay) can lead to unnecessary conservativeness or may simply give
erroneous results. Even ensuring stability for each value of the delay does not necessarily
give the stability of the stochastic system [24, 69].

We consider a relatively broad class of delay processes and focus on moment (mean and
second moment) stability. We use a time-discretization technique, called semi-discretization
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that is developed in [32], to create a discretized version of the continuous-time system.
Using the discretized system, we obtain stability conditions based on which we classify
different stability losses and draw stability charts.

2.2 Problem statement

Consider a system of the form

χ̇(t) = f
(
χ(t), χ(t− τ(t))

)
, (2.1)

where the dot denotes the derivative with respect to time t, χ ∈ Rn, f : Rn × Rn → Rn,
and the delay τ(t) ∈ R varies in time stochastically. More precisely, we assume that
the delay follows a stationary stochastic process with probability distribution w(σ), σ ∈
[τmin, τmax]. Thus, the initial condition is given by χ(t) = χ0(t), t ∈ [−τmax, 0]. Due to
the stochasticity in the delay, the vector χ(t) is also a stochastic process.

Linearizing Eq. (2.1) about an equilibrium χ(t) ≡ χ∗ results in the system

ẋ(t) = ax(t) + bx(t− τ(t)) , (2.2)

where x(t) = χ(t) − χ∗, a = ∂1f(χ∗, χ∗),b = ∂2f(χ∗, χ∗) ∈ Rn×n, and ∂1 and ∂2

represent derivatives with respect to the first and second variables, respectively. We will
analyze the time evolution of the first and the second moment of the linear system (2.2) by
discretizing it in time. Note that we cannot express in closed form the time evolution of the
first and the second moment of the nonlinear system (2.1) in general.

We consider a class of delay processes where the delay trajectories are piece-wise con-
stant functions of time. Namely, we assume that the delay τ(t) may only take J possible
discrete values from the set Ω = {τ1, τ2, . . . , τJ} where τ1 < τ2 < · · · < τJ , and the
probability density function (pdf) of the delays is P

(
τ(t) = τj

)
= wj where P denotes

probability and
∑J

j=1wj = 1. This pdf can also be expressed in terms of Dirac delta
function, that is,

w(σ) =
J∑
j=1

wj δ(σ − τj) . (2.3)

From here on, we use the term probability density function and delay distribution inter-
changeably. Note that one can approximate continuous delay distributions by increasing
the density of the Dirac deltas, i.e. picking more discrete points from the distribution. Ad-
ditionally, we assume that the delay stays constant for a time td (called switching time or
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dwelling time) before switching to a new value (or possibly staying at the same value). A
sample realization of the delay is shown in Fig. 2.1 for J = 2 delay values. As seen in
Fig. 2.1, the delay is constant in the time intervals [ktd, (k + 1)td), k = 0, 1, 2, . . . that
we call dwelling intervals. Since the probability distribution function (2.3) is not changing
with time, the delay values in different dwelling intervals for k = 0, 1, 2, . . . are indepen-
dent and identically distributed (i.i.d.). We focus on stability analysis of linear systems in
the form of (2.2) with stated assumptions on the delay behavior. The stability of system
(2.2) is a local stability result for the nonlinear system (2.1).

Let us first take the expected value, denoted by E, of system (2.2) which gives us

d

dt
E[x(t)] = aE[x(t)] + b

J∑
j=1

P
(
τ(t) = τj

)
E[x(t− τj)|τ(t) = τj] . (2.4)

If the dwelling time td is smaller than the minimum delay, i.e. td < τ1, then x(t − τj) is
independent of τ(t) due to the i.i.d. assumption on the delay values. To see this, assume
that ktd ≤ t < (k + 1)td for some k. Now if the dwelling time is less than the minimum
delay, then k̃jtd ≤ t−τj < (k̃j+1)td for some k̃j < k. In other words, t−τj will fall in one
of the dwelling intervals proceeding the current interval k. Note that x(t−τj) depends only
on the delay values in the dwelling intervals [k̂td, (k̂ + 1)td), k̂ = 0, 1, . . . , k̃j . Since the
delays are chosen based on a fixed probability distribution at each switching, the delays at
different dwelling intervals are mutually independent. Therefore x(t−τj) is independent of
τ(t) and E

[
x(t−τj)|τ(t) = τj

]
= E

[
x(t−τj)

]
. Hence, introducing the notation x̄ = E[x],

(2.4) reduces to the distributed delay system

˙̄x(t) = a x̄(t) + b
J∑
j=1

wj x̄(t− τj) (2.5)

which describes the dynamics of the mean and it can be analyzed using standard stability
and bifurcation analysis tools [19, 72, 74]. The mean dynamics can provide some informa-
tion about the effect of stochastic delays as they explicitly contain the delay distribution.
However, to characterize the stochastic stability only the mean dynamics are not enough
and one needs to analyze other stochastic stability criteria. We will focus on the stability
of the second moment that is a well-known stability criterion for stochastic systems. Note
that the distributed delay system (2.5) is only valid for the mean x̄(t) in the case when
td < τ1. Nonetheless, our stability analysis method for system (2.2), that will be presented
in Chapters 2 and 3, works for the general case, i.e. for arbitrary td.

In order to analyze the second moment of the continuous-time system (2.2), we dis-
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Figure 2.1: (a) A sample path of the delay with two values τ1 and τ2 and dwelling time td.
(b) The dwelling time td is discretized to ` time steps such that td = `∆t, (` = 3 in this
case).

cretize system (2.2) by dividing the holding intervals of length td into ` ∈ N subintervals
of length ∆t = td/`; see Fig. 2.1b. Then, using semi-discretization technique from [32],
we construct a discrete-time map as a discretization of (2.2) which allows us to obtain con-
ditions for the stability of the mean and the second moment. We also demonstrate, using
a numerical example, the convergence of the stability charts, that are obtained using our
proposed stability conditions, when ∆t→ 0.

2.2.1 Semi-discretization technique

To explain the discretization method, we first discretize the deterministic system

ẋ(t) = ax(t) + bx(t− τ), (2.6)

that has only a single fixed delay. Note that by substituting the trial solution x(t) = κest,
κ ∈ Cn, s ∈ C, in (2.6), we obtain the characteristic equation

sI− a− b e−sτ = 0 (2.7)
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where s is a characteristic root. System (2.6) is stable if and only if all (infinitely many)
characteristic roots are located in the left-half complex plane.

Now consider the mesh ti = i∆t, i = 0, 1, 2, . . .. Let m = bτ/∆tc. In the time interval
[i∆t, (i + 1)∆t), we use the approximation x(t − τ) ≈ x(i∆t − m∆t) (a zeroth-order
approximation) in (2.6), and solve the approximate system

˙̃x(t) = ax̃(t) + bx̃
(
i∆t−m∆t

)
, t ∈ [i∆t, (i+ 1)∆t) (2.8)

that yields

x̃
(
(i+ 1)∆t

)
= αx̃(i∆t) + βx̃

(
(i−m)∆t

)
, (2.9)

where

α = ea∆t , β =
( ∫ ∆t

0

ea(∆t−t)dt
)
b, (2.10)

If a−1 exists, then the second formula in (2.10) results in β =
(
ea∆t − I

)
a−1b, where I is

the n-dimensional identity matrix.
Now we define the augmented state vectorX(i) =

[
x̃T(i∆t), x̃T

(
(i−1)∆t

)
, . . . , x̃T

(
(i−

m)∆t
)]T ∈ Rn(m+1), that contains the history of the state back to the last m time steps.

Here T denotes the transpose. Now using Eq. (2.9), we can write

X(i+ 1) = TX(i), (2.11)

where

T =



α β

I

I
. . .

I


∈ Rn(m+1)×n(m+1). (2.12)

Note that the block sub-diagonal elements are all given by the n× n identity matrix I. The
stability of matrix T determines the stability of the approximate system (2.8)-(2.9), i.e. if all
the eigenvalues of T are inside the unit circle, then the linear system (2.8)-(2.9) is stable. In
fact, the matrix T is a finite-dimensional approximation of the infinite-dimensional solution
operator of the linear system (2.6). Assume z is an eigenvalue of T. Then, as ∆t → 0,
s̃ = 1

∆t
ln z approaches the characteristic roots given by (2.7); i.e. s̃ → s; therefore, the

stable region (in the plain of some parameters) of the approximate system (2.8) converges
to the stable region of the original system (2.6) as the time step goes to zero (∆t → 0). In
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practice, one can obtain stability charts for system (2.6) by making ∆t small until achieving
a desired accuracy. See [32] and [11] for more information on the discretization of the delay
differential equations and approximating their spectra and [16] for more information about
the solution operators and infinitesimal generators of delay differential equations.

2.2.2 Discretization of the stochastic system

Now we use the discretization method explained in the previous section to create a discrete-
time map as a discretization of the stochastic system (2.2). Consider the same mesh ti =

i∆t, i = 0, 1, 2, . . ., and let mj = b τj
∆t
c, j = 1, . . . , J . The delay values are in fact rounded

off to the mesh size ∆t. Here the approximate system is

˙̃x(t) = a x̃(t) + b x̃(i∆t−m(i)∆t), t ∈ [i∆t, (i+ 1)∆t), (2.13)

where m(i) ∈ {m1, . . . ,mJ}, for i = 0, 1, 2, . . .. Solving (2.13) yields

x̃(i+ 1) = α x̃(i) + β x̃(i−m(i)) , (2.14)

where α and β were introduced in (2.10) and the notation x̃(i) = x̃(i∆t) is used. Let us
define X(i) = [ x̃T(i) , x̃T(i− 1) , . . . , x̃T(i−mJ) ]T ∈ Rn(mJ+1) as an augmented state
vector that contains the history of the state up to the last mJ time steps (corresponding to
the largest delay in the system). Note that in the case when td > τJ , i.e. when the dwelling
time is larger than the maximum delay, we define the augmented state vector in a way that
it contains the history of the state up to the last ` time steps. Recall that we choose ∆t

such that td = `∆t. Therefore, in the case of td > τJ , mJ will be replaced with ` in the
formulation in the remainder of this chapter.

Eq. (2.14) can be written in a vector-matrix form

X(i+ 1) = G(i)X(i), (2.15)

where the matrix G(i), i = 0, 1, 2, . . . can take one of the values

Gj =



α 0 · · · β · · · 0

I 0 0 · · · 0 0

0 I 0 · · · 0 0

0 0 I · · · 0 0
...

...
... . . . ...

...
0 0 0 · · · I 0


∈ Rn(mJ+1)×n(mJ+1) , (2.16)
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j = 1, . . . , J , based on the probability distribution P(G(i) = Gj) = wj . The location of
the block element β ∈ Rn×n is in the first block-row and the (mj + 1)-th block-column.
Indeed, G(i) = Gj occurs if m(i) = mj that corresponds to τ(t) = τj in the interval
[i∆t, (i+ 1)∆t).

Now recall that the delay is constant within each of the dwelling intervals
[
ktd, (k +

1)td
)

and td = `∆t. Therefore, from system (2.15) we can write

X((k + 1)`) =
(
Gj

)`
X(k`), k = 0, 1, 2, . . . , (2.17)

given that τ(t) = τj in the time interval [ktd, (k + 1)td). By defining X̃(k) = X(k`), this
yields

X̃(k + 1) = A(k) X̃(k), (2.18)

where A(k) takes values

Aj =
(
Gj

)` ∈ Rn(mJ+1)×n(mJ+1) , (2.19)

based on the probability distribution P
(
A(k) = Aj

)
= wj , j = 1, . . . , J . Since the delays

at different dwelling intervals are i.i.d., the matrices A(k) are i.i.d. and A(k) is independent
of X̃(k).

It should be noted that if one uses different discretization techniques, one will end
up with different finite-dimensional matrices than the ones in (2.16). Other common dis-
cretization techniques used for delay differential equations are Runge-Kutta methods (see
[7]) and linear multi-step methods (see [18] and references therein). Although different
discretization techniques have different convergence properties, the theory developed in
this dissertation works for any type of discretization scheme as long as a constant step-size
mesh is used. We are using the semi-discretization technique from [32] for its simplic-
ity. Also the semi-discretization method converges faster than full discretization methods
with the same order such as forward difference, backward difference, and central difference
schemes as shown in [32].

2.3 Stability conditions

In this section, we establish conditions for stability of the stochastic dynamical system
(2.18), that is a discretization of system (2.2). Let us start with some definitions.

Definition 2.1. A random sequence {X(k) ∈ Rn}+∞
k=0 converges to 0 almost surely if

P
(

lim
k→∞

X(k) = 0
)

= 1 or equivalently P
(
∀ ε > 0, ‖X(k)‖ > ε happens only finitely often

)
=
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1. If sequences generated by a stochastic dynamical system converge to 0 almost surely,
then the trivial solution X(k) ≡ 0 is almost surely stable. Almost sure convergence is also
called convergence with probability one.

Definition 2.2. A random sequence {X(k) ∈ Rn}+∞
k=0 converges to 0 in the mean if

limk→∞ E
[
X(k)

]
= 0 and converges to 0 in the second moment if limk→∞ E

[
X(k)XT(k)

]
=

0. If sequences generated by a stochastic dynamical system converge to 0 in the mean or
in the second moment, then the trivial solution X(k) ≡ 0 is stable in the mean or in the
second moment, respectively.

Stability in the second moment is sufficient for the stability in the mean, but in general,
there is no relationship between second moment stability and almost sure stability. How-
ever, in the special case described by system (2.18) where A(k) are i.i.d., stability in the
second moment does imply almost sure stability (see [44] page 217). We remark that for
vector-valued sequences, moments higher than 2 are rarely used in the literature; see [66].

We begin by characterizing the dynamics of the mean E[X̃(k)] of (2.18). Stability of
the mean provides a necessary condition for the stability of the stochastic system, that is,
if the mean is unstable then the system is unstable. Therefore, the stability region for the
mean in the parameter space contains the true stable region. We next derive the dynamics
of the second moment E[X̃(k)X̃T(k)] and provide a necessary and sufficient condition for
the second moment stability and sufficient for almost sure stability.

Since A(k) is i.i.d., it is independent of X̃(k). Thus, taking the expected value of both
sides of (2.18), we obtain

E
[
X̃(k + 1)

]
= E

[
A(k)X̃(k)

]
= E

[
A(k)

]
E[X̃(k)]

=

( J∑
j=1

P
[
A(k) = Aj

]
Aj

)
E[X̃(k)]

=

( J∑
j=1

wjAj

)
E[X̃(k)].

(2.20)

Using the notation
¯̃X(k) := E[X̃(k)] ∈ Rn(mJ+1) , (2.21)

we can write the discretized mean dynamics (2.20) in the form

¯̃X(k + 1) = Ā ¯̃X(k), (2.22)
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where

Ā =
J∑
j=1

wj Aj =
J∑
j=1

wj
(
Gj

)`
, (2.23)

and Ā ∈ Rn(mJ+1)×n(mJ+1); cf. (2.19). Thus,

lim
k→∞

¯̃X(k) = 0 if and only if ρ
(
Ā
)
< 1, (2.24)

where ρ(.) denotes the spectral radius. Note that

ρ(A) = max
i
{|λi|}, (2.25)

where λi are the eigenvalues of A. Condition (2.24) is a necessary and sufficient condition
for the stability of the mean of the stochastic system (2.18) that is a discretization of the
continuous-time system (2.2).

To analyze the second moment of (2.18), we proceed as follows

E
[
X̃(k + 1)X̃T(k + 1)

]
= E

[
A(k)X̃(k)X̃T(k)AT(k)

]
=

J∑
j=1

P
[
A(k) = Aj

]
E
[
A(k)X̃(k)X̃T(k)AT(k)|A(k) = Aj

]
=

J∑
j=1

wjAjE
[
X̃(k)X̃T(k)|A(k) = Aj

]
AT
j

=
J∑
j=1

wjAjE
[
X̃(k)X̃T(k)

]
AT
j ,

(2.26)

where in the last step we used the independence of X̃(k) and A(k). In order to vectorize
Eq. (2.26), we introduce the vec operator. Let H = [ h1 h2 · · · hm ] ∈ Rn×m, where
hi ∈ Rn denotes the i-th column vector. Then,

vec(H) =


h1

h2

...
hm

 ∈ Rnm . (2.27)

The following is a property of the vec operator. Assume A, B, and C are matrices such
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that the product ABC is defined. Then,

vec(ABC) =
(
CT ⊗A

)
vec(B), (2.28)

where ⊗ denotes the Kronecker product.
Now using the vec operator, we define the vectorized form of the second moment as

¯̃̄
X(k) := vec

(
E
[
X̃(k)X̃T(k)

])
∈ Rn2(mJ+1)2 . (2.29)

Then using (2.27), (2.28), and (2.29), Eq. (2.26) becomes

¯̃̄
X(k + 1) = ¯̄A

¯̃̄
X(k) , (2.30)

where

¯̄A =
J∑
j=1

wjAj ⊗Aj =
J∑
j=1

wj
(
Gj

)` ⊗ (Gj

)`
, (2.31)

and ¯̄A ∈ Rn2(mJ+1)2×n2(mJ+1)2 . From (2.30), we know that

lim
k→∞

¯̃̄
X(k) = 0 if and only if ρ

( ¯̄A
)
< 1. (2.32)

Condition (2.32) is a necessary and sufficient condition for the stability of the second mo-
ment of the stochastic system (2.18) that is a discretization of the continuous-time system
(2.2). Moreover, condition ρ

( ¯̄A
)
< 1 is a sufficient condition for the almost sure stability

of the stochastic system (2.18).

Remark 2.1. In the case when td > τJ , the size of the corresponding matrices in (2.16)
will be n(` + 1) × n(` + 1), while they will have the same structure. However, we state
without proof that the eigenvalues of the matrices Ā in (2.23) and ¯̄A in (2.31) with the size
n(` + 1)× n(` + 1) will be the same as the eigenvalues of the matrices Ā and ¯̄A with the
size n(mJ + 1)× n(mJ + 1), respectively. This observation is especially beneficial in the
case that the dwelling time is very large, td � τmax, as it can reduce the computational
burden significantly. Also note that if J = 1, conditions ρ

(
Ā
)
< 1 and ρ

( ¯̄A
)
< 1 reduce

to the asymptotic stability condition of a deterministic system with one single delay, i.e.

ρ(G1) < 1.

Remark 2.2. We provided necessary and sufficient stability conditions for the mean and the
second moment (conditions (2.24) and (2.32), respectively) of the stochastic system (2.18)
that is a discretization of the continuous-time system (2.2). The stable parameter domain of
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the stochastic discretized system (2.18) converges to that of the stochastic continuous-time
system (2.2) as ∆t → 0. We demonstrate this convergence using spectra of operators Ā

and ¯̄A and stability charts for an example provided in the next section.

2.3.1 Convergence of spectra and stability charts – an illustrative ex-
ample

Let us consider an example in order to illustrate the stability analysis method established
in the previous section. Consider the scalar case of system (2.2), that is

ẋ(t) = a x(t) + b x(t− τ(t)) , (2.33)

where a and b are scalars. Assume that the delay takes the values τ1 = 0.2, τ2 = 0.3, and
τ3 = 0.4 with equal probability w1 = w2 = w3 = 1/3, and assume the dwelling time is
td = 0.1. We want to obtain stability charts for system (in the (a, b) parameter space. Here
the matrix in (2.16) is

Gj =



α 0 · · · β · · · 0

1 0 0 · · · 0 0

0 1 0 · · · 0 0

0 0 1 · · · 0 0
...

...
... . . . ...

...
0 0 0 · · · 1 0


∈ R(m3+1)×(m3+1), (2.34)

where m3 = bτ3/∆tc and

α = ea∆t , β =
(
ea∆t − 1

) b
a
, (β = b∆t if a = 0), (2.35)

cf. Eq. (2.10). To evaluate the stability of the mean of system (2.33), we study the eigen-
values of matrix Ā in (2.23), and to evaluate the stability of the second moment of system
(2.33), we study the eigenvalues of matrix ¯̄A in (2.31).

As shown in Eq. (2.5), the mean dynamics of system (2.33) can also be described by

˙̄x(t) = a x̄(t) + b
3∑
j=1

wj x̄(t− τj) , (2.36)

as condition td < τ1 holds in this example. We also study the stability of system (2.36)
directly (without using the semi-discretization method) for comparison. The characteristic
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equation of system (2.36) can be obtained by plugging the trial solution x̄(t) = κest, κ, s ∈
C in (2.36) that yields

s− a− b
3∑
j=1

wj e−sτj = 0 . (2.37)

Here, two different kinds of stability losses may occur. (i) When a real eigenvalue crosses
the imaginary axis at 0 that is referred to as fold stability loss. Substituting s = 0 into the
characteristic equation (2.37), we find that the fold stability loss occurs when crossing the
boundary

b = −a . (2.38)

(ii) When a pair of complex conjugate eigenvalues crosses the imaginary axis at ±iω that
is referred to as Hopf stability loss. Substituting s = iω into the characteristic equation
(2.37), the Hopf stability loss boundary is obtained as

a =
ω
∑3

j=1wj cos(ωτj)∑3
j=1wj sin(ωτj)

,

b =
−ω∑3

j=1wj sin(ωτj)
.

(2.39)

The parameter ω is varied continuously to obtain the Hopf stability boundary (2.39). The
stability curves corresponding to (2.38) and (2.39) are plotted as dashed black curves in the
left column of Fig. 2.2. These curves are exact mean stability boundaries as we obtained
them analytically. Next we obtain the mean and second moment stability boundaries using
the semi-discretization method.

In order to obtain the stable region for the mean of system (2.33) using the correspond-
ing discretized system (2.22), we study the characteristic equation

det
(
zĪ− Ā

)
= 0 , (2.40)

where Ī is the (m3 + 1)-dimensional identity matrix where m3 = bτ3/∆tc. The charac-
teristic equation (2.40) can be obtained by substituting the trial solution ¯̃X(k) = Kzk,
K ∈ Cm3+1, z ∈ C, in (2.22). Equation (2.40) has m3 + 1 solutions for the eigenvalues z.
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Figure 2.2: Left column: stability charts for system (2.33) with delay distribution w(σ) =
1
3
δ(σ−0.2)+ 1

3
δ(σ−0.3)+ 1

3
δ(σ−0.4) and the dwelling time td = 0.1 for different values of

the discretization step ∆t as indicated on the left. Blue curves are the stability boundaries
for the mean while the red curves are the stability boundaries for the second moment. The
dashed black curves are stability boundaries for the mean in the continuous limit (system
(2.36)). Light gray shading indicates mean stability and dark gray shading indicates second
moment stability. Middle column: Eigenvalues for the discretized mean dynamics (matrix
Ā) corresponding to point P located at (a, b) = (−1,−6.5). Right column: Eigenvalues
for the second moment dynamics (matrix ¯̄A) at point P. Stable eigenvalues are plotted as
green while unstable eigenvalues are plotted as red.
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To investigate stability bounds in the (a, b) parameter space, we note that there can be
three different kinds of stability losses defined by the movement of eigenvalues across the
unit circle: (i) a real eigenvalue crosses the unit circle at 1; (ii) a real eigenvalue crosses the
unit circle at−1; (iii) a pair of complex conjugate eigenvalues crosses the unit circle at e±iφ,
φ ∈ (0, π). We refer to these as fold, flip, and Hopf stability losses, respectively, based on
the nomenclature of the corresponding bifurcations in nonlinear systems. A Hopf bifurca-
tion for discrete-time systems is often called a Neimark-Sacker bifurcation. To obtain the
corresponding stability curves in cases (i) and (ii), we substitute z = 1 and z = −1 into the
characteristic equation (2.40) and solve for b as a function of a. This may not be obtained
analytically, therefore we use numerical continuation to obtain the solution. Considering
a fixed value for a, we make an initial guess for b and then correct this initial guess using
the Newton-Raphson method. Once we found a solution for b, we can use it as an initial
guess for a nearby value of a. Be varying a and continuing this process, one can obtain
the desired boundary in (a, b) parameter domain. To do this continuation process, we use
the software package DDE-BIFTOOL that is implemented in Matlab; see [17] and [71] for
more details about this software. In case (iii), we substitute z = eiφ into the characteristic
Eq. (2.40), separate the real and imaginary parts, and solve the equations for a and b as a
function of φ. Again, we use numerical continuation to trace the curves in the (a, b)-plane
while varying φ.

The corresponding curves are plotted on the (a, b) parameter plane in the left column of
Fig. 2.2 for different values of ∆t as indicated. The dashed blue curve corresponds to fold
stability loss and the solid blue curve corresponds to Hopf stability loss. The zero solution
is mean stable in all shaded domains. The corresponding angular frequency ω = φ/td

increases along the Hopf curve when moving away from the dashed blue curve. Notice
that as ∆t decreases the boundary moves but it converges to the dashed black curve. The
convergence can be further observed by looking at the eigenvalues in the second column
of Fig. 2.2 corresponding to the point P located at (a, b) = (−1,−6.5). Indeed the number
of eigenvalues increases but the leading eigenvalues converge with decreasing ∆t while
more and more eigenvalues appear in the vicinity of the origin. To better visualize the
convergence of the leading eigenvalues, we plot the spectral radius of Ā as a function
of 1/∆t in Fig. 2.3(a). We also calculate the leading eigenvalues of the continuous-time
mean dynamics (2.36) from the characteristic equation (2.37) using the package DDE-
BIFTOOl for point P; these are s1,2 = −0.037102 ± i 5.781085. Then the corresponding
leading eigenvalues of Ā shall converge to z1,2 = es1,2td as ∆t→ 0 and consequently ρ(Ā)

converges to |es1,2td | = 0.996297 (dashed horizontal red line in Fig. 2.3(a)). Note that while
the parameters α and β depend on ∆t in matrix Gj in (2.34), the size of the matrix Gj is
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Figure 2.3: The spectral radii of the matrices Ā and ¯̄A as functions of 1/∆t shown in
panels (a) and (b), respectively. The horizontal dashed red line in (a) shows the value of∣∣es1,2td∣∣ where s1,2 are the leading characteristic roots of (2.37).

also proportional to 1/∆t. Therefore, we see discontinuities in the spectral radius of Ā as
∆t changes. We remark that in the case td > τ1, the mean dynamics are not described by
system (2.36) anymore. However, we still observe that the leading eigenvalues and stability
charts converge to a limit as ∆t → 0. An example for the case td > τ1 is given in Section
2.4.

In order to obtain the stable region for the second moment of system (2.33), we use the
corresponding discretized system (2.30) and study the characteristic equation

det
(
z¯̄I− ¯̄A

)
= 0 , (2.41)

where ¯̄I is the (m3 + 1)2-dimensional identity matrix. The characteristic equation (2.41)
can be obtained by substituting the trial solution

¯̃̄
X(k) = Kzk, K ∈ C(m3+1)2 , z ∈ C, in

(2.30). Here we have (m3 +1)2 solutions for the eigenvalues z. Again, one may investigate
the three possible stability losses but it turns out that only fold type occurs in this case.
The corresponding curves are plotted as red curves in the (a, b)-plane in the left column
of Fig. 2.2 where the second moment stable region is indicated by dark gray shading. The
eigenvalues of matrix ¯̄A at point P are plotted in the right column, showing convergence
of the leading eigenvalues with decreasing ∆t. The spectral radius of ¯̄A is also plotted in
Fig. 2.3(b). By decreasing ∆t the spectral radius converges. However, since the size of
¯̄A grows with (1/∆t)2, the smallest value of ∆t for which we could compute ρ( ¯̄A) was
0.005 due to our hardware limitations. More details about the computational limitations
of the method are given in Section 4.3. Unlike the case of the mean for which Eq. (2.36)
describes the continuous-time mean dynamics, we do not have an equation to describe the

18



continuous-time second moment dynamics. Although, we still observe that the spectral
radius of ¯̄A converges to a limit. In Chapter 3, we will find this limit. In the next section,
we provide a useful observation regarding the differences between systems with stochastic
delay and systems with distributed delay.

2.4 Stochastic versus distributed delay

In stability analysis and control design for a system with stochastic delay, it might seem in-
tuitive to approximate the stochastic system with a deterministic, distributed-delay system
where the weights of the delayed terms are the same as the probability distribution func-
tion of the stochastic delay. In particular, as mentioned in Section 2.2, one might consider
system (2.5) as an approximation for the mean of system (2.2). In Section 2.2, we showed
that this approximation is valid when td < τ1. In this section, by considering a scalar linear
system, we show that the above mentioned approximation loses its grounds when the delay
dwelling time td gets larger than the minimum delay in the system.

Consider the scalar case of the linear system (2.2) which we repeat here for easy refer-
ence

ẋ(t) = a x(t) + b x(t− τ(t)), (2.42)

where the delay τ(t) stochastically changes in a finite set Ω = {τ1, τ2, . . . , τJ} following a
probability distribution P(τ(t) = τj) = wj , j = 1, . . . , J , and resides at each value for a
constant time td. One might speculate that one would get satisfactory approximate results
if one considers, instead, the deterministic, distributed-delay system

ẋ(t) = a x(t) + b

J∑
j=1

wj x(t− τj), (2.43)

where the delays have the same weights wj . In the following, using a simple scalar linear
system, we show that this approximation can be completely misleading.

In particular, assume that the delay τ(t) switches between only two delay values τ1 and
τ2 where 0 < τ1 < τ2; see Fig. 2.1 where an example realization of the delay is shown. The
probability distribution is P(τ = τ1) = w1 , P(τ = τ2) = w2, where w1 + w2 = 1. Using
this simplistic behavior for the delay, we aim to show that the dwelling time td can have a
substantial effect on the stability of the stochastic system (2.42) that cannot be captured by
the corresponding deterministic, distributed-delay system (2.43). To highlight this effect
from a computational point of view, we use the discretizations of systems (2.42) and (2.43)
and compare their corresponding spectra (in particular, leading eigenvalues).
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2.4.1 Evolution matrices

We first apply the discretization method described in Section 2.2.2 to the stochastic system
(2.42). Therefore, by choosing ∆t such that td = `∆t, ` ∈ N, assuming τ1 = m1∆t and
τ2 = m2∆t, m1,m2 ∈ N, and defining the augmented vector X(i) =

[
x(i∆t), x

(
(i −

1)∆t
)
, . . . , x

(
(i −m2)∆t

)]T, the evolution matrix of system ẋ(t) = ax(t) + bx(t − τ1)

becomes
column m1 + 1

↓

G1(∆t) =



α β

1

1
. . .

1


(m2+1)×(m2+1)

,

(2.44)

and the evolution matrix of system ẋ(t) = ax(t) + bx(t− τ2) becomes

column m2 + 1

↓

G2(∆t) =



α β

1

1
. . .

1


(m2+1)×(m2+1)

,

(2.45)

where α and β were introduced in (2.10). Here we have used the notation G1(∆t) and
G2(∆t), rather than G1 and G2 to emphasize on the fact that these matrices depend on
∆t. Now recall that the delay changes every ` time steps (see Fig. 2.1). Therefore, sim-
ilar to Section 2.2.2, we define X̃(k) = X(k`), so that X̃(k + 1) = Gj(`∆t)X̃(k) =

(Gj(∆t))
`X̃(k) given that τ(t) = τj in [k`∆t, (k + 1)`∆t], j = 1 or 2. Then, system

X̃(k + 1) = A(k)X̃(k), (2.46)

k = 0, 1, 2, . . . , is a discretization of system (2.42), where A(k) = (Gj(∆t))
` with prob-

ability wj , j = 1 and 2. Now taking the expectation of both sides of (2.46), similar to
Section 2.2.2, we arrive at

¯̃X(k + 1) = Msd
¯̃X(k), (2.47)
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where ¯̃X = E
[
X̃(k)

]
and Msd = E

[
A(k)

]
, and

Msd = w1

(
G1(∆t)

)`
+ w2

(
G2(∆t)

)`
. (2.48)

System (2.47) describes the mean dynamics of system (2.46) that is a discretization of
system (2.42). Therefore one can analyze the stability of the mean of the stochastic system
(2.42) by investigating if all of the eigenvalues of matrix Msd fall inside the unit circle
(stable) or not (unstable). In practice, this is done by making ∆t small enough to observe
convergence up to a desired accuracy. Note that the matrix Msd is the same as the matrix
Ā in (2.23) for J = 2. Here we used the notation Msd to emphasize that it is associated
with a stochastic delay system.

Note that if ` > m2, i.e. if the dwelling time td is larger than the maximum delay in the
system, we define the augmented state vector asX(i) =

[
x(i∆t), x

(
(i−1)∆t

)
, . . . , x

(
(i−

`)∆t
)]T, that contains the history of the state back to the last ` time steps. In this case, the

evolution matrices G1(∆t) in (2.44) and G2(∆t) in (2.45) will have the same structure
with the same places for elements α and β except that the sub-diagonal of 1’s will extend
further such that the size of the matrices becomes (`+ 1)× (`+ 1).

Now consider system (2.43) with two delays τ1 and τ2. Applying the discretization
method described in Section 2.2.2 to system (2.43), and in the same fashion used to obtain
matrices in (2.44) and (2.45), we obtain the evolution matrix for system (2.43) as

column: m1 + 1 m2 + 1

↓ ↓

Gdd(∆t) =



α w1β w2β

1

1
. . .

1


(m2+1)×(m2+1)

.

(2.49)

To compare the stability of system (2.43) with that of the mean of system (2.42), we
consider the `-step evolution matrix Mdd = Gdd(`∆t) =

(
Gdd(∆t)

)`. Observe that
Gdd(∆t) = w1G1(∆t) + w2G2(∆t), and thus

Mdd =
(
w1G1(∆t) + w2G2(∆t)

)`
. (2.50)

Our goal is to demonstrate the effect of the delay dwelling time td on the spectra, and
thus on the stability, of the stochastic delay system (2.42) and the corresponding determin-
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istic, distributed-delay system (2.43). To this end, we compare the spectra of matrices Msd

defined in (2.48) (associated to system (2.42)) and Mdd defined in (2.50) (associated to
system (2.43)) for a fixed time step ∆t while changing ` (recall that td = `∆t).

For ` = 1 it is easy to check that Msd = Mdd. In fact, owing to the cyclic-like structures
of matrices G1(∆t), G2(∆t) and Gdd(∆t), we have

Msd = Mdd for ` = 0, 1, . . . ,m1 + 1. (2.51)

For instance, for ` = 2

column: m1 + 1 m2 + 1

↓ ↓

Msd = Mdd =



α2 w1β αw1β w2β αw2β

α w1β w2β

1

1
. . .

1



,

(2.52)

and for ` = 3

Msd = Mdd =



α3 w1β αw1β α2w1β w2β αw2β α2w2β

α2 w1β αw1β w2β αw2β

α w1β w2β

1

1
. . .

1



. (2.53)

Once ` gets larger than m1 + 1 the equality (2.51) does not hold anymore. For ` >
m1 + 1, Msd 6= Mdd and therefore their spectra are different. Note that this observation

22



holds independent of ∆t. Moreover, observe that

` ≤ m1 + 1 ⇒ `∆t ≤ (m1 + 1)∆t ⇒ td ≤ τ1 + ∆t. (2.54)

Since ∆t can be made arbitrarily small, we conclude from (2.54) that

td ≤ τ1. (2.55)

Eq. (2.55) provides a condition under which Msd = Mdd. Therefore if the delay dwelling
time is less than the smallest delay value, the spectra of (the mean of) the stochastic system
(2.42) and the deterministic system (2.43) are equal and so are their stability properties.
However if td > τ1, the spectra of the two systems (2.42) and (2.43) are different. In fact,
the difference between matrices Msd and Mdd gets larger as td increases further. In Section
2.4.2, we provide a numerical example to further demonstrate this observation.

An important result of the observation above is that one may consider the distributed-
delay, deterministic system (2.43) an approximate version of the stochastic delay system
(2.42) (in the sense of average), if the delay dwelling time is less than the minimum delay
in the system, i.e. td ≤ τ1. However, this approximation is groundless for dwelling time
td > τ1. In fact it can lead to completely erroneous results as will be demonstrated in
Section 2.4.2. Before proceeding to the next section, we shall make some remarks.

Remark 2.3. We showed that the spectra of (the mean of) the stochastic-delay system
(2.42) and the deterministic, distributed-delay system (2.43) are equal when td ≤ τ1, using
evolution matrices of the corresponding systems. This fact no longer holds, when td > τ1.
This observation can also be verified by taking the expectation of both sides of (2.42) that
yields

d

dt

(
E[x(t)]

)
= aE[x(t)] + bE[x(t− τ(t))]

= aE[x(t)] + b

J∑
j=1

P(τ(t) = τj)E
[
x(t− τj)|τ(t) = τj

]
; (2.56)

cf. (2.4). Now as described in the paragraph after (2.4), if the dwelling time is less than the
minimum delay, i.e. td ≤ τ1, system (2.56) reduces to

˙̄x(t) = a x̄(t) + b

J∑
j=1

wj x̄(t− τj), (2.57)

where x̄ = E[x(t)] and wj = P(τ(t) = τj); cf. (2.5). System (2.57) is indeed the same as
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system (2.43). Note that this reduction is not possible if td > τ1.

Remark 2.4. We showed that one may consider the deterministic system (2.43) as an ap-
proximate system for the stochastic system (2.42) when the delay dwelling time is less than
the smallest delay in the system. This approximation is based on the fact that the stability
of the mean of a stochastic system is a necessary condition for the stability of the system.
Exact stability regions of the stochastic system (2.42), that lie inside the region of mean
stability, can be obtained by investigating the stability of the second moment that provides
a stronger stability condition. Therefore one should note that even under the assumption
of the delay dwelling time being less than the minimum delay, the exact stability regions
of system (2.42) can be quite smaller than the ones obtained by the approximate system
(2.43).

Remark 2.5. All the results in Section 2.4 hold in the vector case too, i.e. if x ∈ Rn where
n is the dimension of the vector x. Additionally, all the results hold if there are more than
two delays, i.e. J > 2 in (2.43), and also if τj/∆t is not an integer for some j (in which
case one can use mj = bτj/∆tc). In this section, we used a scalar system with only two
delays for brevity and simplicity of the notation .

2.4.2 A numerical example

In this section, we consider the linear system (2.42) with two delays τ1 = 0.4 and τ1 =

0.8 with probability distribution function w1 = w2 = 1/2. Then, for different dwelling
times td = 0.3, td = 0.6, td = 1, and td = 2, we construct stability charts in the (a, b)

parameter space using the spectra of matrices Mdd (associated with the distributed-delay
system (2.43)) and Msd (associated with the mean of the stochastic-delay system (2.42)).
The goal is to demonstrate the effect of the parameter td on the fidelity of the approximation
of system (2.42) by system (2.43).

Fig. 2.4(a–d) show the spectra of matrices Mdd (indicated by ◦) and Msd (indicated
by ×) for (a, b) = (−1.2,−5.5) (marked by P in the bottom panels). Note that only the
first 10 leading eigenvalues are shown. The value ∆t = 0.005 is used for all panels. When
the dwelling time td = 0.3 is less than the smallest delay τ1 = 0.4, the matrices Mdd

and Msd are equal and their spectra are the same, as shown in Fig. 2.4(a). In this case,
the approximation of system (2.42) by system (2.43) is meaningful, since system (2.43)
is indeed the average of the stochastic system (2.42). As Fig. 2.4(e) shows, the stable
area of the mean of system (2.42), enclosed by the solid blue boundary, is the same as the
stable area of system (2.43), enclosed by the dashed green boundary. The stable region is
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Figure 2.4: (a–d) Comparison of the spectra of the matrix Mdd in (2.50) (indicated by ◦),
associated with the distributed-delay system (2.43), and the spectra of the matrix Msd in
(2.48) (indicated by ×) associated with the mean of the stochastic-delay system (2.42),
for different dwelling times td as indicated. The spectra are obtained for point P shown
in the bottom panels and only the 10 largest eigenvalues in magnitude are shown in the
complex plane. (e–f) Stable regions of the distributed-delay system (2.43) obtained using
the eigenvalues of the matrix Mdd in (2.50) (bounded by dashed green curves) and the
mean of the stochastic-delay system (2.42) obtained using the eigenvalues of the matrix
Msd in (2.48) (bounded by solid blue curves), for different dwelling times. The light gray
area is a parameter domain where both (2.42) and (2.43) are stable. The dark gray area is
where (2.42) is stable but (2.43) is not. The red area is where (2.42) is not stable but (2.43)
is stable.

shaded light gray. Note that the crossing of the boundary from stable to unstable region is
equivalent to the crossing of the unit circle by the leading eigenvalue from inside to outside.

When the dwelling time is td = 0.6, we have τ1 < td < τ2. In this case the matrices
Mdd and Msd are different and so are their spectra, as shown in Fig. 2.4(b). This is because
when td > τ1, system (2.43) is no longer the average of system (2.42). Therefore, the stable
area obtained through investigating the eigenvalues of Mdd (the dashed green boundary)
is different than the stable area obtained using matrix Msd (the solid blue boundary). The
region shaded as dark gray is the parameter domain where the distributed-delay system is
unstable but the mean of the stochastic-delay system is stable.

As the dwelling time td gets larger relative to the delay values, the approximation of
system (2.42) by system (2.43) gets worse. Fig. 2.4(c–d) show the cases td = 1 and
td = 2 for which the dwelling time is larger than the maximum delay, td > τ2. In these
cases, the spectra of matrices Mdd and Mdd are very different. Correspondingly, the stable
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areas of systems (2.43) and the mean of system (2.42), shown by Fig. 2.4(g–h), are sig-
nificantly different. The region shaded by dark gray is again a parameter domain where
the distributed-delay system (2.43) is unstable but the mean of the stochastic-delay system
(2.42) is stable. On the other hand, the region shaded by red is where the distributed-delay
system is stable but the mean of the stochastic-delay system is not.

The example given in this section is simple in the sense that the system is scalar with
only two delay values. Despite this simplicity, we observed a big difference between stabil-
ity properties of systems (2.42) and (2.43). One may expect that for vector-valued systems
and a larger number of delay values, one would find bigger differences between systems
(2.42) and (2.43). This example may therefore act as a warning if one wants to use a
distributed-delay system as an approximation of a stochastic-delay system.

2.5 Generalization to random dwelling times and Markov
jumps

So far in this chapter, we assumed that the delay dwelling time is fixed. In this section, we
consider the case where the dwelling time td is a random variable. The delay process there-
fore has two sources of randomness: randomness in switching between delay values and
randomness in the duration of the times the delay dwells at a value. Moreover, we assume
that the switchings in the delay values follow a Markov rule which is more general than
i.i.d. assumption. We again consider a linear continuous-time system that is discretized
using the semi-discretization technique in the same fashion as the previous sections in this
chapter. We then find stability conditions for the mean and the second moment of the
system. We show the results by studying an example at the end of the section.

2.5.1 Problem setup

The probability transition matrix which governs the jumps between the delay values is
given by

Q =


q11 q21 · · · qJ1

q12 q22 · · · qJ2

...
... . . . ...

q1J q2J · · · qJJ

 , (2.58)

where the probability of jumping from τ = τi to τ = τj is denoted by qij , i, j = 1, 2, . . . , J .
Note that, for each column, the sum of the elements is 1. We assume that the matrix Q is
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not changing with time.
Here we assume that the dwelling time td is a random variable. Fig. 2.5a shows a sample

realization of the delay with a random dwelling time where the dwelling time follows some
probability distribution function. Let td(k) = tk+1 − tk where tk, k = 0, 1, 2, . . ., are the
times at which a switch occurs in the delay value. Suppose that at time t = 0 the delay
is τs(0), s(0) ∈ {1, . . . , J}. Then a random real number td(0) = t1 is generated from
a probability distribution function governing td, and the delay is kept constant along the
time interval 0 ≤ t < t1. Then it switches to a new value τs(1), s(1) ∈ {1, . . . , J}. The
new delay value τs(1) is chosen based on the transition probabilities qs(0)j, j = 1, . . . , J ,
introduced in Eq. (2.58). Now another random number td(1) is generated, independently
of td(0), based on the probability distribution function governing td. The delay is held at
the new value during the interval t1 ≤ t < t2, and so forth. Note that t2 = td(0) + td(1).
The random variable s(k), k = 0, 1, 2, . . ., is a Markov chain with the transition probability
matrix Q in (2.58) that determines the delay values at the next switchings.

Recall that we discretize system (2.2) to obtain stability conditions. We use the mesh
ti = i∆t, i = 0, 1, 2, . . .. To use the same discretization technique presented in the previ-
ous sections, we need to discretize the delay process too. We do this by assuming that the
dwelling times are multiples of ∆t, i.e. td(k) ≈ `(k)∆t where `(k) is a random integer;
see Fig. 2.5(b). We assume that `(k) ∈ {1, 2, . . . , L} is a random integer with a fixed prob-
ability distribution function at each k, k = 0, 1, 2, . . .. After applying the approximation
td(k) ≈ `(k)∆t, we denote the switching times by t′k, that is, t′k+1 − t′k = `(k)∆t. The
delay remains constant at the value τs(0) along the time interval 0 ≤ t < `(0)∆t = t′1 and
at τs(1) along the interval `(0)∆t ≤ t <

(
`(0) + `(1)

)
∆t = t′2, and so on.

The assumption that the dwelling times are td(k) = `(k)∆t, where `(k) is a random
variable, changes system (2.18)-(2.19) to the following system

X(k + 1) =
(
Gs(k)

)`(k)
X(k), (2.59)

where Gs(k) ∈ {Gj, j = 1, . . . , J}, and Gj are defined in (2.16). Note that here the
augmented vector X(k) ∈ Rn(M+1) where M = max{mJ , L}. In the following section,
we derive equations for the first and second moments of system (2.59).

2.5.2 Moment equations

Here, we establish conditions for the stability of the trivial solution of the stochastic system
(2.59) that is a discretization of system (2.2) when the delay has random dwelling times and
follows a Markov switching rule. First we derive equations for the time evolution of the
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Figure 2.5: (a) A sample realization of the time evolution of the delay τ with J = 3 possible
values. (b) A sample realization of the approximated delay process.

mean. Then the dynamics of the second moment are derived from which necessary and
sufficient stability conditions for the second moment are obtained.

2.5.2.1 Dynamics of the mean

First we characterize the dynamics of the mean of system (2.59), i.e. E[X(k)]. Recall
that stability of the mean provides a necessary condition for the stability of the stochastic
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system. Using (2.59) we proceed as follows

E
[
X(k + 1)| s(k + 1) = j

]
= E

[
(Gs(k))

`(k)X(k)| s(k + 1) = j
]

=
J∑
i=1

E
[
(Gs(k))

`(k)X(k)| s(k + 1) = j, s(k) = i
]

× P
(
s(k) = i| s(k + 1) = j

)
. (2.60)

We exploit the independence of `(k) and X(k) along with Bayes’ rule in (2.60) to obtain

E
[
X(k + 1)| s(k + 1) = j

]
=

J∑
i=1

E
[
(Gi)

`(k)| s(k + 1) = j, s(k) = i
]
E
[
X(k)| s(k + 1) = j, s(k) = i

]
× P

(
s(k + 1) = j| s(k) = i

)
P
(
s(k) = i

)
P
(
s(k + 1) = j

) . (2.61)

Now, we note that `(k), k = 0, 1, . . ., are independent, identically distributed (i.i.d.),
and they are also independent of s(k), k = 0, 1, . . .. Hence, E

[
(Gi)

`(k)| s(k + 1) =

j, s(k) = i
]

= E
[
(Gi)

`(k)
]
. Further note that based on Eq. (2.59), X(k) depends on

s(k − 1). Moreover, since the jump occurs from s(k − 1) to s(k), information about s(k)

gives information about s(k − 1). However, due to the Markov property of the jump pro-
cess, information about s(k+ 1) gives no extra information about s(k− 1), given that s(k)

is already known. This yields E
[
X(k)| s(k + 1) = j, s(k) = i

]
= E

[
X(k)| s(k) = i

]
.

Thus, (2.61) simplifies to

E
[
X(k + 1)| s(k + 1) = j

]
=

J∑
i=1

E
[
(Gi)

`(k)
]
E
[
X(k)|s(k) = i

] qij P(s(k) = i)

P(s(k + 1) = j)
, (2.62)

where we used the substitution qij = P
(
s(k + 1) = j| s(k) = i

)
; cf. (2.58).

Now we define

f(Gi) := E
[
(Gi)

`(k)
]

=
L∑
`=1

(Gi)
`P
(
`(k) = `

)
. (2.63)
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Using (2.63) in (2.62), we obtain

E
[
X(k + 1)| s(k + 1) = j

]
P(s(k + 1) = j)

=
J∑
i=1

f(Gi) qij E
[
X(k)| s(k) = i

]
P(s(k) = i). (2.64)

Let x̄j(k) := E
[
X(k)| s(k) = j

]
P
(
s(k) = j

)
. Then, Eq. (2.64) can be written as

x̄j(k + 1) =
J∑
i=1

qij f(Gi) x̄i(k), j = 1, . . . , J. (2.65)

Now defining ˆ̄x(k) :=
[
x̄1(k)T, . . . , x̄J(k)T

]T ∈ RnJ(M+1), we can write (2.65) in the
compact form

ˆ̄x(k + 1) = M ˆ̄x(k), (2.66)

where M ∈ RnJ(M+1)×nJ(M+1) is given by

M =


q11f(G1) q21f(G2) · · · qJ1f(GJ)

q12f(G1) q22f(G2) · · · qJ2f(GJ)
...

... . . . ...
q1Jf(G1) q2Jf(G2) · · · qJJf(GJ)


=
(
Q⊗ In(M+1)

)
diag

(
f(Gi)

)
. (2.67)

Here⊗ denotes the Kronecker product, In(M+1) is the n(M+1)×n(M+1) identity matrix,
and diag

(
f(Gi)

)
is a block diagonal matrix with f(G1), · · · , f(GJ) as diagonal elements.

Now notice that

E
[
X(k)

]
=

J∑
j=1

E
[
X(k)| s(k) = j

]
P
(
s(k) = j

)
=

J∑
j=1

x̄j(k). (2.68)

Hence, if the spectral radius of matrix M in (2.67), i.e. ρ(M), is less than 1, then system
(2.66) is stable meaning that ˆ̄x(k)→ 0 as k →∞. This implies E

[
X(k)

]
→ 0 as k →∞

in light of (2.68). We summarize these results as the following.
Consider system (2.59) that is a discretization of system (2.2) when the delay has ran-

dom dwelling times and the switches in the delay values occur based on a Markov chain
rule. The variable s(k) that represents delay values is a Markov chain with transition
matrix Q in (2.58) and domain {1, . . . , J}. The dwelling times are `(k)∆t where `(k),
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k = 0, 1, 2, . . ., are i.i.d. random variables with domain {1, . . . , L}. We assume that `(k)

are independent of s(k) and X(k). Then,

E[X(k)]→ 0 as k →∞ if ρ(M) < 1, (2.69)

where M is defined in (2.67). Condition (2.69) provides a necessary condition for the
stability of the mean of system (2.59).

2.5.2.2 Dynamics of the second moment

Our main quest is to find necessary and sufficient criteria for the stability of the stochastic
system (2.59). We use the second moment stability, that is, system (2.59) is second moment
stable if for any initial probability distributions on X(0) and s(0) we have

E
[
X(k)X(k)T

]
→ 0 as k →∞, (2.70)

where E
[
X(k)X(k)T

]
is the second moment matrix of system (2.59). To derive the dy-

namics of the second moment, we proceed as follows

E
[
X(k + 1)X(k + 1)T|s(k + 1) = j

]
= E

[
(Gs(k))

`(k)X(k)X(k)T
(
(Gs(k))

`(k)
)T| s(k + 1) = j

]
=

J∑
i=1

E
[
(Gs(k))

`(k)X(k)X(k)T
(
(Gs(k))

`(k)
)T| s(k + 1) = j, s(k) = i

]
× P

(
s(k) = i

∣∣ s(k + 1) = j
)
. (2.71)

Now we use the law of total probability along with the Bayes’ rule to write (2.71) as

E
[
X(k + 1)X(k + 1)T|s(k + 1) = j

]
=

J∑
i=1

L∑
`=1

E
[
(Gi)

`(k)X(k)X(k)T
(

(Gi)
`(k)
)T∣∣∣s(k + 1) = j, s(k) = i, `(k) = `

]
× P

(
`(k) = `|s(k + 1) = j, s(k) = i

) qijP(s(k) = i)

P(s(k + 1) = j)
. (2.72)

Similar to the derivation of (2.62), observe that `(k) is independent of X(k) and s(k), and
the statistical properties of X(k) given s(k) do not change by further knowing s(k + 1).
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Then, (2.72) simplifies to

E
[
X(k + 1)X(k + 1)T|s(k + 1) = j

]
=

J∑
i=1

L∑
`=1

(Gi)
`E
[
X(k)X(k)T| s(k) = i

](
(Gi)

`
)TP

(
`(k) = `

)
× qijP(s(k) = i)

P(s(k + 1) = j)
. (2.73)

Now define Sj(k) := E
[
X(k)X(k)T| s(k) = j

]
P(s(k) = j) ∈ Rn(M+1)×n(M+1). Then

(2.73) becomes

Sj(k + 1) =
J∑
i=1

L∑
`=1

qij(Gi)
`Si(k)

(
(Gi)

`
)TP

(
`(k) = `

)
, j = 1, 2, . . . , J. (2.74)

Notice that

E
[
X(k)X(k)T

]
=

J∑
j=1

E
[
X(k)X(k)T|s(k) = j

]
P
(
s(k) = j

)
=

J∑
j=1

Sj(k). (2.75)

The second moment is a matrix-valued quantity and further transformations are needed
in order to characterize its stability. We again use the vec operator defined in (2.27) and
form the following augmented vector

Ŝ(k) =

[(
vec
(
S1(k)

))T

, . . . ,
(

vec
(
SJ(k)

))T
]T

, (2.76)

where Ŝ(k) ∈ RJ(n(M+1))2 . Using the definition (2.76) we reformulate Eq. (2.74) as

Ŝ(k + 1) = D Ŝ(k), (2.77)

where the matrix D ∈ RJ(n(M+1))2×J(n(M+1))2 is given by

D =
(
Q⊗ I(n(M+1))2

)[ L∑
`=1

diag
(

(Gi)
` ⊗ (Gi)

`
)
P
(
`(k) = `

)]
. (2.78)

Using definition (2.63) and noting that
(
G`
i ⊗G`

i

)
=
(
Gi ⊗Gi

)`, (2.78) can be written as

D =
(
Q⊗ I(n(M+1))2

)
diag

(
f
(
Gi ⊗Gi

))
. (2.79)
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If ρ(D) < 1, system (2.77) is stable meaning that Ŝ(k) → 0 as k → ∞, which,
using (2.75) and (2.76), implies E

[
X(k)X(k)T

]
→ 0 as k → ∞. The reverse is also

true: if E
[
X(k)X(k)T

]
→ 0 for any initial condition E

[
X(0)X(0)T

]
, then ρ(D) < 1. To

prove this, we note that in (2.75) all Sj(k), j = 1, 2, . . . , J , are positive semi-definite and
symmetric. Therefore, from (2.75) we have

0 ≤ Sj(k) ≤ E
[
X(k)X(k)T

]
for j = 1, . . . , J, k = 0, 1, 2, . . . . (2.80)

Now if E
[
X(k)X(k)T

]
→ 0, then (2.80) implies that Sj(k) → 0 as k → ∞ for j =

1, . . . , J . Hence, (2.76) implies that Ŝ(k) → 0 as k → ∞ for any initial Ŝ(0). Conse-
quently, the spectral radius of D must be less than 1, i.e. ρ(D) < 1, since Ŝ(k) = DkŜ(0).
We summarize these results as the following.

Consider system (2.59), that is a discretization of system (2.2), where s(k) is a Markov
chain with transition matrix Q in (2.58) and domain {1, . . . , J}, and `(k) are i.i.d. random
variables with domain {1, . . . , L}. Assume further that `(k) is independent of s(k) and
X(k). Then,

E
[
X(k)X(k)T

]
→ 0 as k →∞ if and only if ρ(D) < 1, (2.81)

where D is defined in (2.79).
Condition (2.81) is a necessary and sufficient condition for the second moment stability

of the stochastic system (2.59).

2.5.3 An example

We repeat a scalar version of system (2.2) here

ẋ(t) = a x(t) + b x(t− τ(t)), (2.82)

Assume the delay τ(t) in (2.82) is stochastic taking values in the set {2, 10, 13} with tran-
sition probability matrix

Q =

 0 0.5 0.5

0.5 0 0.5

0.5 0.5 0

 . (2.83)

Let `(k) follow a geometric distribution with mean `avg = 7 and set ∆t = 0.4. We vary the
parameters a and b in (2.82) and evaluate the stability of the mean using condition (2.69)
and stability of the second moment using condition (2.81). Fig. (2.6) shows the stability
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Figure 2.6: Stability chart in the plane of parameters a and b. Dark shaded area is the region
of stability; i.e. the second moment (and the mean) are stable. Light shaded area shows the
region in which only the mean (but not the second moment) is stable. The black dashed
curve shows the boundary of stability region of a deterministic system with a fixed average
delay τavg ≈ 8.33. Simulations for points A and B are displayed in panels (a) and (b) of
Fig. 2.7, respectively.

region in the (a, b)-plane. The dark shaded area shows the region in which the stochastic
system (2.82) is second moment stable. Light shaded area indicates the region in which
the first moment (mean) is stable, but the second moment is not. The black dashed curve
shows the boundary of the stable region for the deterministic system with a fixed delay
τavg ≈ 8.33 that is equal to the average of delay values. In Fig. 2.7, we show simulations of
system (2.82) with parameters associated with points A and B in Fig. 2.6. The 300 sample
trajectories are plotted as thin gray curves while the mean and the standard deviation are
indicated by thick black and thick red curves, respectively. Indeed, the system is stable in
case A and unstable in case B.

2.6 Discussion

Delay differential equations with stochastic delay were investigated in this chapter. In par-
ticular, we considered linear systems with stochastic delay where the delay trajectories
were piece-wise constant functions of time and the delay dwelt at each value for a con-
stant time. We derived stability conditions by analyzing the mean and the second moment
dynamics of the discretized version of the system. The conditions for the second moment
stability also ensured almost sure stability. We applied the semi-discretization technique

34



0 50 150 250 350

−1

−0.5

0

0.5

1

t

x(t)

(a)

0 40 80 120
−400

−200

0

200

400

t

x(t)

(b)

Figure 2.7: (a) Simulation results for system (2.82) using the parameters at point A in Fig.
2.6. (b) Simulation results using the parameters at point B in Fig. 2.6. The black curve
shows the mean and the red curves show the mean plus and minus the standard deviation
based on the gray sample trajectories.

and demonstrated convergence of stability charts when the size of the discretization time
step tends to zero.

While we were able to derive continuous-time mean dynamics (although only for the
case where the dwelling time is smaller than the minimum delay), such continuous-time
equation does not exist for the second moment dynamics. However, we will obtain continuous-
time versions of the stability conditions in Chapter 3. We remark that the stochastic delay
system studied in this chapter can also be viewed as a hybrid system where switching be-
tween various delayed differential equations happen in a stochastic fashion. Work has been
done on the stability analysis of hybrid systems with constant time delays [48, 52, 87, 89]
or with deterministically time-varying delays [65]; however, modeling stochastic delay sys-
tems such as ours is less explored in the hybrid systems literature.
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We showed that if the delay dwelling time is less than the minimum delay, then the
mean dynamics can be described by a deterministic, distributed delay system. On the
other hand, we showed that approximating a stochastic delay system with a deterministic,
distributed delay system is not always warranted. In particular, this approximation is not
valid if the dwelling time is larger than the minimum delay in the system. Furthermore,
as the dwelling time increases, the approximation gets worse. This finding showed that a
stochastic behavior of the delay can bring about non-intuitive consequences to the stability
of the system.

In the last section of the chapter, we generalized our method to the case where the
dwelling time was a random variable and the delay switchings followed a Markov chain
rule rather than being i.i.d.. This showed that the method we developed in the chapter
can be used in a more general setting and that more complicated delay behaviors can be
analyzed. We obtained necessary and sufficient stability conditions for the second moment
of the system and showed the application of the results with an example.

The results in this chapter show that the stability of a stochastic delay system cannot
be simply speculated from the behavior of a deterministic system with the average delay
or with distributed delay. The results of this chapter find their importance in the stability
analysis and control design in applications such as connected vehicle systems [66], wireless
communication systems [60, 42], and biological circuits [34, 27] where stochastic delays
are shown to exist in the dynamics of the system.
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CHAPTER 3

Stochastic delays in continuous time

3.1 Introduction

The problem of the stability analysis and control design for continuous-time systems with
stochastic delays has been raised in many applications. For instance, in networked control
systems, data are often transferred with random communication delay [60, 42]. In con-
nected vehicle systems, the information from vehicles ahead is received at random times
due to packet loss in wireless communication. Also, driver reaction time may change
stochastically with time [66, 4]. Random delays also arise in gene regulatory networks
since the execution times of transcription and translation processes are influenced by the
noisy cell environment [54, 34, 46].

While the stability analysis of discrete-time systems with stochastic delay has been
investigated thoroughly in literature, e.g. [42, 60, 69, 26], exact stability analysis—finding
necessary and sufficient stability conditions—of continuous-time systems with stochastic
delay is lacking in general. In other words, finding exact boundaries of stable regions in
desired parameter spaces is not solved. It should be mentioned that, the stability analysis
of continuous-time systems with stochastic delay has been studied [36, 47, 40, 37, 76],
using Lyapunov-based theorems. However, such theorems result in only sufficient stability
conditions that are typically very conservative and the results based on them can be far
from real stability boundaries. Moreover, the results based on Lyapunov theorems are
difficult to apply in most cases due to the difficulty of finding suitable Lyapunov functions
or functionals. To overcome these problems, we present necessary and sufficient stability
conditions for continuous-time linear systems with stochastic delay by investigating the
stability of the second moment. One of the works where necessary and sufficient conditions
are derived for a continuous-time system with stochastic delay is [82]. However, the results
of [82] are applicable only for a very specific type of delay behavior. In this chapter, we
consider the same delay behavior described in Chapter 2.
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In Chapter 2, we derived necessary and sufficient stability conditions using discretiza-
tion of the continuous-time system. In this chapter, we provide necessary and sufficient
stability conditions without discretizing the system. We find the stability conditions in
terms of the spectral radius of a particular combination of the solution operators associ-
ated to different delay values. Similar to Chapter 2, the delay can only assume finitely
many values and it switches between these values based on a fixed probability distribution.
We derive the time evolution of the second moment of the state using tensor products of
infinite-dimensional solution operators and by calculating the spectral radii of these oper-
ators we construct necessary and sufficient conditions for stability. To construct stability
charts, one can discretize the solution operators and find finite-dimensional versions of the
stability conditions that can be evaluated numerically. The tools developed in this chapter
are demonstrated with some examples where we use the semi-discretization method that
was described in Chapter 2. In the last section of the chapter, we provide almost sure sta-
bility criteria of the systems under investigation and discuss the differences between second
moment and almost sure stability of such systems with an emphasis on the computational
aspects.

3.2 Problem statement

Consider the linear system

ẋ(t) = ax(t) + bx(t− τ(t)), (3.1)

where x ∈ Rn, a,b ∈ Rn×n, and the delay τ(t) ∈ R changes stochastically with time.
We assume that the delay can take values from a finite set Ω = {τ1, τ2, . . . , τJ} where
0 < τ1 < τ2 < · · · < τJ = τmax. The initial condition is given by

x(θ) = φ(θ), −τmax ≤ θ ≤ 0, (3.2)

where φ ∈ C
(
[−τmax, 0],Rn

)
and C denotes the space of continuous functions.

Before switching to a different value, the delay stays at the current value for a du-
ration of time, td, which we call dwelling time. Therefore the value of the delay at
each interval [ktd, (k + 1)td), k = 0, 1, 2, . . ., is constant. The probability distribution
w = [w1 w2 . . . wJ ] governs the switchings of the delay where wj is the probability of
switching to the delay τj . The probability distribution w is assumed to be stationary which
means the switchings of the delay are independent, identically distributed (i.i.d.). Fig. 3.1a
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Figure 3.1: a Two sample paths of the delay with dwelling time td = 1 and delay values
{0.5, 1, 1.5}. b Trajectories of the scalar version of system (3.1) with a = −1 and b = −2
corresponding to sample paths of the delay shown in Fig. 3.1a and initial condition φ(θ) =
0.1, −1.5 ≤ θ ≤ 0.

shows two sample paths of the delay and Fig. 3.1b shows the corresponding trajectories,
x(t), of a scalar version (i.e. for n = 1) of system (3.1), with parameters and initial condi-
tions stated in the caption of Fig. 3.1.

Our goal is to study the stability of the stochastic system (3.1). In particular, we study
the stability of the mean, E[x(t)], and the second moment, E[x(t)xT(t)], where E[.] denotes
the expected value of a random variable. To this aim, we need a proper representation
of system (3.1) given the delay behavior as described. In the next section, we construct
this representation using solution operator formulation of delay differential equations and
provide a suitable definition of the second moment using tensor products of appropriate
operators.

3.3 Solution operator representation of the system

First we recall the definition of the solution operator for a deterministic delay differential
equation. Consider the linear system

ẋ(t) = ax(t) + bx(t− τ),

x(θ) = φ(θ), −τ ≤ θ ≤ 0,
(3.3)

where φ ∈ C([−τ, 0],Rn). The solution operator for system (3.3) is defined by

(
T (t)φ

)
(θ) = x(t+ θ), −τ ≤ θ ≤ 0, t ≥ 0. (3.4)
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The operator T (t), t ≥ 0, is bounded and linear and the family of operators T (t) is a
strongly continuous semigroup that has the properties

T (t) : C([−τ, 0],Rn)→ C([−τ, 0],Rn), ∀ t ≥ 0,

T (0) = I,
T (t1 + t2) = T (t1)T (t2), ∀ t1, t2 ≥ 0;

(3.5)

see [30] for more details. Now consider the deterministic systems

ẋ(t) = ax(t) + bx(t− τj),
j = 1, . . . , J,

(3.6)

with their respective solution operators Tj(t) : C([−τj, 0],Rn) → C([−τj, 0],Rn), ∀ t ≥ 0.
As described in Section 3.2, the delay is constant in each interval [ktd, (k + 1)td), k =

0, 1, 2, . . .. Therefore, the stochastic system (3.1), in the time interval [ktd, (k + 1)td),
evolves according to one of the systems in (3.6). In other words, if τ(t) = τj in the time
interval [ktd, (k + 1)td), the operator Tj(td) progresses the solution forward from t = ktd

to t = (k + 1)td. In order to obtain an appropriate representation of the stochastic system
(3.1), we extend the operators Tj , j = 1, . . . , J, in a way that the new, extended operators
share a common domain.

Let Γ := max{τmax, td} and denote by C the space C([−Γ, 0],Rn) and by Cj the space
C([−τj, 0],Rn), j = 1, . . . , J . Now, first we define the auxiliary operators Uj : C → Cj by

(Ujφ)(θ) = φ(θ), −τj ≤ θ ≤ 0, ∀φ ∈ C, (3.7)

for j = 1, . . . , J . In other words, the operator Uj acts on a continuous function φ from C
and outputs the segment of φ corresponding to −τj ≤ θ ≤ 0. Now choose h > 0 such that
td = `h where ` ∈ N is a positive integer and h < τj , j = 1, . . . , J , and h < td. Next
define the operators Gj : C → C by

(Gjφ)(θ) =

{ (
Tj(h)Ujφ

)
(θ) −τj ≤ θ ≤ 0

φ(θ + h) −Γ ≤ θ < −τj,
(3.8)

for j = 1, . . . , J . The operators Gj are in fact extensions of the operators Tj(h) from the
domain Cj to domain C. This extension is performed with a shift term—the bottom line in
(3.8). Finally we define the operators

Ajφ = (Gj)`φ, ∀φ ∈ C, (3.9)
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for j = 1, . . . , J . The operatorAj : C → C is ` consecutive applications of the operator T̃j .
Note that the operatorsAj , that are constructed through (3.7)-(3.9), are linear and bounded
because the original operators Tj are bounded and linear. Now assume that the stochastic
system (3.1) is realized up to the time t = ktd. Let us define

xt(θ) := x(t+ θ), −Γ ≤ θ ≤ 0, (3.10)

as the “state” of the system at time t, where xt ∈ C. Then, assuming that τ(t) = τj in
the time interval [ktd, (k + 1)td), we can write x(k+1)td = Ajxktd . Consequently one can
construct the stochastic system

x(k+1)td = A(k)xktd , (3.11)

where

P
(
A(k) = Aj

)
= wj,

j = 1, . . . , J, and k = 0, 1, 2, . . . ,
(3.12)

where
∑J

j=1 wj = 1 and with the initial condition

x0(θ) = φ(θ), −Γ ≤ θ ≤ 0, φ ∈ C. (3.13)

Here P denotes probability. Note that we cannot arrive at a stochastic system of the form
(3.11), if we want to use the original solution operators Tj due to the fact that they don’t
have a common domain. In the next section, we study the stability of the mean and the
second moment of system (3.11).

3.4 Stability analysis

In this section, we derive stability conditions for the mean and the second moment of the
stochastic system (3.11). First we provide a standard definition as well as a standard result
that we will use in this section.

Definition 3.1. System
xk+1 = Axk, (3.14)

where A : X → X is a bounded, linear operator from the Banach space X to itself, is
exponentially stable if for every initial condition x0 ∈ X , there exist M ≥ 1 and 0 ≤ r < 1
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such that
‖xk‖ ≤Mrk, k = 0, 1, 2, . . . ; (3.15)

see for instance [64].

A standard result on the stability of system (3.14) is provided in the following lemma;
see Theorem 2.1 in [64].

Lemma 3.1. Consider system (3.14). Let σ(A) denote the spectrum of A and

ρ(A) = sup
{
|λ| : λ ∈ σ(A)

}
(3.16)

denote the spectral radius of A. Then, system (3.14) is exponentially stable if and only if

ρ(A) < 1. (3.17)

Now we consider the mean of the stochastic system (3.11). By taking the expected
value of (3.11), we have

E[x(k+1)td ] = E[A(k)xktd ]. (3.18)

Note that the operatorA(k) only depends on the delay value in the time interval
[
ktd, (k+

1)td
)
, i.e. if τ(t) = τj in this time interval, then A(k) = Aj . On the other hand, xktd

depends on the delay values in the time intervals
[
k′td, (k′ + 1)td

)
, k′ = 0, 1, 2, . . . , k − 1.

Since the delay value in the time interval
[
ktd, (k+1)td

)
is independent of the delay values

in other time intervals (due to the i.i.d. assumption), the operator A(k) is independent of
xktd . Thus from (3.18), we arrive at

E[x(k+1)td ] = E[A(k)]E[xktd ], (3.19)

where E[A(k)] : C → C is given by

E[A(k)] =
J∑
j=1

wjAj. (3.20)

Now applying Lemma 3.1 on system (3.19) results in a necessary and sufficient condi-
tion for the stability of the mean of the stochastic system (3.11). This is provided in the
proposition below.

Proposition 3.1. Consider system (3.11) with initial condition

x0(θ) = φ(θ), −Γ ≤ θ ≤ 0, φ ∈ C, (3.21)
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and P
(
A(k) = Aj

)
= wj , ∀ j ∈ {1, . . . , J} and ∀ k ∈ {0, 1, 2, . . .}. Then, there exist

M ≥ 1 and 0 ≤ r < 1 such that

∥∥E[xktd ]
∥∥

sup
≤Mrk, ∀ k ∈ {0, 1, 2, . . .} (3.22)

if and only if

ρ
( J∑
j=1

wjAj
)
< 1. (3.23)

Here ‖.‖sup denotes the sup norm on C, i.e.

‖φ‖sup = sup
−Γ≤θ≤0

‖φ(θ)‖∞, φ ∈ C, (3.24)

where ‖.‖∞ denotes the∞-norm (or max norm) on Rn, i.e.

‖x‖∞ = max
1≤i≤n

|xi|, (3.25)

where xi is the ith component of x ∈ Rn.

Proof. The proof is immediately obtained by the application of Lemma 3.1 on system
(3.19). Note that the operator E[Gk], defined in (3.20), is a finite summation of bounded
and linear operators Aj and so is bounded and linear, and moreover it is defined on the
Banach space C.

Our main goal is to derive necessary and sufficient conditions for the stability of the
second moment of system (3.11). For a proper description of the second moment dynamics,
we use the tensor product of the Banach space C with itself equipped with an appropriate
cross norm. The connection between the second moment and the tensor product space lies
in the definition of the norm.

LetX denote a Banach space andX ⊗X the tensor product ofX with itself. A standard
norm on tensor product spaces is the injective norm that is given by

‖u‖inj = sup
{∣∣∣ M∑

m=1

f(xm)g(ym)
∣∣∣ : f, g ∈ BX ∗

}
, (3.26)

where u =
∑M

m=1 xm ⊗ ym is a tensor in X ⊗ X and BX ∗ is the closed unit ball on X ∗
(the normed dual of X ). In other words, f and g are bounded, linear functionals defined
on X with norm less than or equal to 1, and the supremum in (3.26) is taken over all such
f and g. Furthermore, in the definition (3.26), one can substitute BX ∗ with a norming set.
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A subset N of BX ∗ is said to be a norming set if ‖x‖ = sup{|f(x)| : f ∈ N} for every
x ∈ X ; here ‖.‖ is the norm defined on the Banach space X . See [68], chapter 3, for more
details about the injective norm on tensor product spaces.

Now we first define a norm on the tensor space C ⊗C and then show that it is in fact the
injective norm on C ⊗ C.

Definition 3.2. Let u =
∑M

m=1 φm ⊗ ψm belong to C ⊗ C. We define the c-norm on C ⊗ C
to be

‖u‖c = sup
−Γ≤θ1,θ2≤0
1≤i1,i2≤n

∣∣∣ M∑
m=1

φi1m(θ1)ψi2m(θ2)
∣∣∣. (3.27)

In particular, for a simple tensor of the form u = φ⊗ φ, we have

‖φ⊗ φ‖c = sup
−Γ≤θ1,θ2≤0
1≤i1,i2≤n

∣∣∣φi1(θ1)φi2(θ2)
∣∣∣. (3.28)

The connection between the second moment and the c-norm defined in (3.27) can be seen
from (3.28) where ‖φ⊗φ‖c contains the products of the values of the function φ at different
arguments. The second moment in the infinite-dimensional setting of functions may also
be understood as the expected value of the product of a function with itself at different
argument values.

Next we show that the c-norm defined in (3.27) is the injective norm on C ⊗ C.

Lemma 3.2. The norm ‖.‖c, defined in (3.27), is equivalent to the injective norm ‖.‖inj,
defined in (3.26).

Proof. Let φ ∈ C. Consider the linear functionals

δiθ(φ) = φi(θ), (3.29)

where φi(θ) is the ith component of φ(θ), i = 1, . . . , n and −Γ ≤ θ ≤ 0. Define the
set N :=

{
δiθ : −Γ ≤ θ ≤ 0, i = 1, . . . , n

}
. N is a subset of BC∗ , because we have

|δiθ(φ)| = |φi(θ)| ≤ ‖φ(θ)‖∞ ≤ ‖φ‖sup, ∀φ ∈ C, which implies ‖δiθ‖ ≤ 1. Furthermore,
the set N is a norming set, because for every φ ∈ C

‖φ‖sup = sup
−Γ≤θ≤0

‖φ(θ)‖∞ = sup
−Γ≤θ≤0

{
max
1≤i≤n

|φi(θ)|
}

= sup
{∣∣δiθ(φ)

∣∣ : δiθ ∈ N
}
. (3.30)

Therefore, we can substitute BC∗ with N in (3.26). As a result, (3.26) yields (3.27).

We denote by C⊗cC the tensor product space equipped with the c-norm (injective norm)
and by C⊗̂cC the completion of this space under the c-norm. It is important to note that
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one may define other norms on the tensor product space C ⊗ C; however, the connection
between the second moment and the injective norm makes the injective norm a suitable
choice. This connection will be further illuminated in the remainder of this section.

Consider the bounded and linear operator Aj : C → C. For each j = 1, . . . , J , there
exists (see Proposition 3.2 in [68]) a unique, bounded, and linear operator Aj ⊗c Aj :

C⊗̂cC → C⊗̂cC such that

(Aj ⊗c Aj)(φ⊗ ψ) = (Ajφ)⊗ (Ajψ), ∀φ, ψ ∈ C. (3.31)

Now assuming that system (3.11) is realized up to the time t = ktd and in the interval[
ktd, (k + 1)td

)
, the delay is τ(t) = τj , we have

x(k+1)td = Ajxktd . (3.32)

On the other hand, using the operator in (3.31), one can write

(Aj ⊗c Aj)(xktd ⊗ xktd) = (Ajxktd)⊗ (Ajxktd). (3.33)

Eqs. (3.32-3.33) result in

x(k+1)td ⊗ x(k+1)td = (Aj ⊗c Aj)(xktd ⊗ xktd). (3.34)

Therefore, one can construct the stochastic map

x(k+1)td ⊗ x(k+1)td =
(
A(k)⊗c A(k)

)
(xktd ⊗ xktd), (3.35)

where

P(A(k)⊗c A(k) = Aj ⊗c Aj) = wj,

j = 1, . . . , J, and k = 0, 1, 2, . . . ,
(3.36)

with the initial condition x0 ⊗ x0 = φ⊗ φ.
Now we can take the expected value of Eq. (3.35) that results in

E[x(k+1)td ⊗ x(k+1)td ] = E
[(
A(k)⊗c A(k)

)
(xktd ⊗ xktd)

]
. (3.37)

Due to the independence ofA(k) and xktd ,A(k)⊗cA(k) is independent of xktd⊗xktd and
therefore

E[x(k+1)td ⊗ x(k+1)td ] = E
[
A(k)⊗c A(k)

]
E
[
xktd ⊗ xktd

]
, (3.38)
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where

E
[
A(k)⊗c A(k)

]
=

J∑
j=1

wj Aj ⊗c Aj. (3.39)

Note that E
[
A(k)⊗cA(k)

]
is a bounded, linear operator on the Banach space C⊗̂cC. Now

we can state a theorem that provides a necessary and sufficient condition for the stability
of the second moment of (3.11).

Theorem 3.1. Consider system (3.11) which is repeated below

x(k+1)td = A(k)xktd , (3.40)

where

P
(
A(k) = Aj

)
= wj,

j = 1, . . . , J, and k = 0, 1, 2, . . . ,
(3.41)

with initial condition

x0(θ) = φ(θ), −Γ ≤ θ ≤ 0, φ ∈ C. (3.42)

There exist M ≥ 1 and 0 ≤ r < 1 such that

sup
−Γ≤θ1,θ2≤0
1≤i1,i2≤n

∣∣∣E[xi1ktd(θ1)xi2ktd(θ2)
]∣∣∣ ≤Mrk, (3.43)

∀ k ∈ {0, 1, 2, . . .} if and only if

ρ
( J∑
j=1

wj Aj ⊗c Aj
)
< 1, (3.44)

where Aj’s are given by (3.9).

Proof. By application of Lemma 3.1 to system (3.38), we can say that there exist M ≥ 1

and 0 ≤ r < 1 such that ∥∥∥E[xktd ⊗ xktd ]
∥∥∥
c
≤Mrk, (3.45)

∀ k ∈ {0, 1, 2, . . .} if and only if

ρ
( J∑
j=1

wj Aj ⊗c Aj
)
< 1. (3.46)
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On the other hand, from the definition of the c-norm in (3.27), we have∥∥∥E[xktd ⊗ xktd]∥∥∥
c

= sup
−Γ≤θ1,θ2≤0
1≤i1,i2≤n

∣∣∣E[xi1ktd(θ1)xi2ktd(θ2)
]∣∣∣, (3.47)

that completes the proof.

Theorem 3.1 provides a necessary and sufficient condition, i.e. condition (3.44), for
the second moment stability of system (3.11). The second moment stability is expressed
by Eq. (3.43). Note that using the tensor product provided us with appropriate means to
construct a linear map such as (3.35) for the second moment stability analysis. While
E[xktd ⊗ xktd ] may be interpreted as the “second moment,” it is not exactly the case. How-
ever, the norm defined on the tensor product space C⊗̂cC enables us to provide a supremum
norm on the second moment of system (3.11); cf. (3.47).

Now we recall that the original question in Section 3.2 was concerned with the stability
of E[x(t)xT(t)], i.e. the second moment of the stochastic system (3.1). In the following
corollary, we show that condition (3.44) of Theorem 3.1 is truly a necessary and sufficient
condition for the second moment stability of system (3.1).

Corollary 3.1. Consider system (3.1) with the delay behavior as described in Section 3.2.
There exists M ≥ 1 and ω > 0 such that

sup
1≤i1,i2≤n

∣∣∣E[xi1(t)xi2(t)]∣∣∣ ≤Me−ωt, ∀ t ≥ 0, (3.48)

if and only if

ρ
( J∑
j=1

wj Aj ⊗c Aj
)
< 1, (3.49)

where Aj’s are given by (3.9).

Proof. Assume ρ
(∑J

j=1 wj Aj ⊗ε Aj
)
< 1. Then from Theorem 3.1, there exists M ≥ 1

and 0 ≤ r < 1 such that (3.43) holds for any k ∈ {0, 1, . . .}. Now for any t ≥ 0, there
exists k̃ ∈ {1, 2, . . .}, such that (k̃−1)td ≤ t < k̃td. Thus, by choosing θ1 = θ2 = −k̃td +t

in (3.43) and recalling that xk̃td(θ) = x(k̃td + θ), we have

sup
1≤i1,i2≤n

∣∣∣E[xi1(t)xi2(t)]∣∣∣ ≤Mrk̃. (3.50)
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Also, since t/td < k̃, then rk̃ < rt/td = e
( 1
td

log r)t. Thus, (3.50) can be written as

sup
1≤i1,i2≤n

∣∣∣E[xi1(t)xi2(t)]∣∣∣ ≤Me−ω̃t, ∀ t ≥ 0, (3.51)

where ω̃ = − 1
td

log r.
To show the reverse, assume that there exists M ≥ 1 and ω > 0 such that (3.48) holds.

Choose M1 > 0 such that sup1≤i1,i2≤n
∣∣φi1(t)φi2(t)∣∣ ≤ M1, ∀ t ∈ [−Γ, 0]. Note that

since φ ∈ C (φ is the initial condition of system (3.1)), we know that such M1 exists. Let
M2 = max{M,M1}. Hence,

sup
1≤i1,i2≤n

∣∣∣E[xi1(t)xi2(t)]∣∣∣ ≤M2e−ωt, ∀ t ≥ −Γ. (3.52)

In fact (3.52) is the extension of (3.48) to the interval t ≥ −Γ. Now consider any k ∈
{0, 1, 2, . . .} and the time interval [ktd−Γ, ktd]. Setting i1 = i2 = i in (3.52) and using the
notation xktd(θ) = x(ktd + θ), we get∣∣∣E[xiktd(−ktd + t)xiktd(−ktd + t)

]∣∣∣ ≤M2e−ωt, (3.53)

∀ t ∈ [ktd − Γ, ktd] and ∀ i ∈ {1, . . . , n}. Observe that since t ≥ ktd − Γ, then e−ωt ≤
e−ω(ktd−Γ) = eωΓ(e−ωtd)k. Therefore, by defining θ = −ktd + t, (3.53) can be written as∣∣∣∣E[(xiktd(θ)

)2
]∣∣∣∣ ≤ M̃ r̃k, (3.54)

∀ θ ∈ [−Γ, 0] and ∀ i ∈ {1, . . . , n}, where M̃ = M2eωΓ and r̃ = e−ωtd . On the other hand,
from Cauchy-Schwarz inequality, we have

∣∣∣∣E[xi1ktd(θ1)xi2ktd(θ2)
]∣∣∣∣ ≤ (E[(xi1ktd(θ1)

)2
]
E
[(
xi2ktd(θ2)

)2
]) 1

2

(3.55)

∀ θ1, θ2 ∈ [−Γ, 0] and ∀ i1, i2 ∈ {1, . . . , n}. Substituting (3.54) in the right hand side of
(3.55), we get ∣∣∣E[xi1ktd(θ1)xi2ktd(θ2)

]∣∣∣ ≤ M̃ r̃k, (3.56)

∀ θ1, θ2 ∈ [−Γ, 0] and ∀ i1, i2 ∈ {1, . . . , n}. Hence,

sup
−Γ≤θ1,θ2≤0
1≤i1,i2≤n

∣∣∣E[xi1ktd(θ1)xi2ktd(θ2)
]∣∣∣ ≤ M̃ r̃k, (3.57)
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∀ k ∈ {0, 1, 2, . . .}. According to the result of Theorem 3.1, (3.57) implies

ρ
( J∑
j=1

wj Aj ⊗c Aj
)
< 1. (3.58)

Condition (3.23) in Proposition 3.1 and condition (3.44) in Theorem 3.1 are, respec-
tively, necessary and sufficient conditions for the stability of the mean and the second
moment of the stochastic system (3.1). However, in practice these conditions cannot be
investigated directly due to the infinite-dimensional nature of the relevant operators. In the
next section, we provide finite-dimensional versions of the stability conditions obtained in
this section.

3.5 Finite-dimensional approximations

By discretizing system (3.1) in time, one can obtain a finite-dimensional approximation
of system (3.1) and finite-dimensional approximations of the operators Aj given by (3.9).
There are many well-established time discretization techniques for delay differential equa-
tions, such as Runge-Kutta techniques [7] and semi-discretization technique [32], that one
can use. In this section, we provide finite-dimensional approximations of the stability con-
ditions obtained in Section 3.4 independent of the specific discretization method used.

Assume that one applies a discretization method with a constant step-size mesh and
obtains

X(k + 1) = A(k)X(k), (3.59)

as a finite-dimensional approximation of system (3.11) where X(k) ∈ RN and A(k) ∈
RN×N , k = 0, 1, 2, . . .. Note that in Section 2.2.2 one way for how to obtain a finite-
dimensional system such as (3.59) is provided (see (2.18)). However, one may use other
discretization methods to obtain a finite-dimensional system, too. The integer N ∈ N is
a parameter of the discretization method that is a function of the step size ∆t, the largest
delay τmax or the dwelling time td (whichever is greater), and the dimension n of the vector
x in system (3.1). Similar to system (3.11), here P(A(k) = Aj) = wj , j = 1, . . . , J .
Moreover, the matrix A(k) and vector X(k) are independent (due to the i.i.d. assumption
on the delay switchings). Therefore, by taking the expected value of (3.59), we arrive at

E[X(k + 1)] = E[A(k)]E[X(k)], (3.60)
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where

E[A(k)] =
J∑
j=1

wjAj. (3.61)

Based on (3.60-3.61), we know that E[X(k)] is exponentially stable if and only if

ρ
( J∑
j=1

wjAj

)
< 1; (3.62)

cf. (2.23) and (2.24). Condition (3.62) is a finite-dimensional approximation of the mean
stability condition (3.23) given by Proposition 3.1.

To derive a finite-dimensional approximation of the second moment stability condi-
tion, observe that the tensor product becomes the Kronecker product in finite dimensional
spaces. Therefore, from (3.59) one can write

X(k + 1)⊗X(k + 1) = A(k)X(k)⊗A(k)X(k)

=
(
A(k)⊗A(k)

)(
X(k)⊗X(k)

)
,

(3.63)

where ⊗ denotes the Kronecker product, X(k) ⊗ X(k) ∈ RN2 , and A(k) ⊗ A(k) ∈
RN2×N2 . System (3.63) is a finite-dimensional approximation of system (3.35), where
P
(
A(k) ⊗ A(k) = Aj ⊗ Aj

)
= wj , j = 1, . . . , J . By taking the expected value of

Eq. (3.63) and using the independence of A(k) and X(k), we have

E
[
X(k + 1)⊗X(k + 1)

]
= E

[
A(k)⊗A(k)

]
E
[
X(k)⊗X(k)

]
, (3.64)

where

E
[
A(k)⊗A(k)

]
=

J∑
j=1

wjAj ⊗Aj. (3.65)

Based on (3.64-3.65), we know that E[X(k)⊗X(k)] is exponentially stable if and only if

ρ
( J∑
j=1

wjAj ⊗Aj

)
< 1; (3.66)

cf. (2.31) and (2.32). Condition (3.66) is a finite-dimensional approximation of the second
moment stability condition (3.44) given by Theorem 3.1.

After discretization of system (3.1) and obtaining the matrices Aj , one can use con-
dition (3.62) and (3.66) to evaluate the stability of the mean and the second moment of
system (3.1), respectively. Conditions (3.62) and (3.66) can, for instance, be used to ob-
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tain approximate stability boundaries in desired parameter spaces. The stability boundaries
obtained using conditions (3.62) and (3.66) converge by decreasing the time step of the
underlying discretization technique. Note that the convergence properties, such as the or-
der of convergence, of ρ

(∑J
j=1 wjAj

)
to ρ
(∑J

j=1 wjAj
)

and ρ
(∑J

j=1 wj Aj ⊗Aj

)
to

ρ
(∑J

j=1 wj Aj ⊗cAj
)

follow the convergence properties of the individual matrices Aj to
the operators Aj and thus depend on the discretization technique used. We refer the reader
to [10] (for Runge-Kutta techniques) and [32] (for semi-discretization technique) for more
details about the convergence of the matrices Aj to the operators Aj and other approxima-
tion properties. We remark that a full characterization of the convergence properties is a
subject of future work. In the next section, we demonstrate the application of the stability
conditions using some examples.

3.6 Examples

In this section, we provide two examples demonstrating the application of the stability
criteria obtained in Sections 3.4 and 3.5.

3.6.1 Scalar system

Consider the scalar version of system (3.1), that is,

ẋ(t) = a x(t) + b x(t− τ(t)), (3.67)

where x, a, b ∈ R. Assume that the delay can take two values from the set Ω = {0.5, 1}
with probability distribution w1 = w2 = 0.5, and the dwelling time of the delay is td =

0.25. We use the semi-discretization technique with a step size of ∆t = 0.025 to discretize
system (3.67) and obtain matrices A1 and A2 associated with the two delay values (see
Section 2.2.2 for how to obtain these matrices). We want to draw stability charts in the
space of parameters a and b. Note that matrices A1 and A2 are functions of the parameters
a and b. For the stability of the mean of system (3.67) we check the condition given by
Proposition 3.1 that reduces here to

ρ
(1

2
A1 +

1

2
A2

)
< 1, (3.68)
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Figure 3.2: Stability charts for system (3.67). The blue curve is the boundary of the mean
stable area. The red curve is the boundary of the second moment stable area. For compari-
son, the stable areas of deterministic versions of system (3.67) with delays equal to τ = 0.5
and τ = 1 are shown with dashed and solid black boundaries, respectively.

and for the stability of the second moment of system (3.67) we check the condition given
by Theorem 3.1 that reduces here to

ρ
(1

2
A1 ⊗A1 +

1

2
A2 ⊗A2

)
< 1. (3.69)

In Fig. 3.2, the stable and unstable areas of the mean (based on condition (3.68))
and the second moment (based on condition (3.69)) are shown with blue and red curves,
respectively. Note that the area on the left of the boundaries that is limited by the line b =

−a from top is the stable region. The second moment stable region is inside the mean stable
region as the second moment stability is sufficient for the mean stability. For comparison,
the stable regions of a deterministic version of system (3.67) with deterministic delays
τ = 0.5 and τ = 1 are shown by dashed black and solid black curves, respectively.

3.6.2 A vector (2-D) system

In this section, we consider a linear second order system in the general canonical reachable
form

ẋ(t) =

[
0 1

−a2 −a1

]
x(t) +

[
0

1

]
u(t− τ(t)), (3.70)
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where x ∈ R2 and u ∈ R is the control action that is applied with a delay τ(t). Using
feedback control law

u(t) = [−k1 − k2]x(t), (3.71)

the closed-loop system is
ẋ = ax(t) + bx(t− τ(t)), (3.72)

where

a =

[
0 1

−a2 −a1

]
, b =

[
0 0

−k1 −k2

]
. (3.73)

Let us assume that the delay takes values from the set Ω = {0.7, 0.85, 1, 1.15, 1.3} with
equal probabilities wi = 1/5, i = 1, . . . , 5 and the dwelling time is td = 0.5. We use the
semi-discretization technique with time step ∆t = 0.05 to obtain matrices A1, . . . ,A5 as-
sociated with 5 delay values. Refer to Section 2.2.2 for how to obtain matrices A1, . . . ,A5.

To investigate the second moment stability of system (3.72-3.73) with the given delay
parameters, we use the finite-dimensional version of the second moment stability condition
given by Eq. (3.66), that is,

ρ
( 5∑
j=1

1

5
Aj ⊗Aj

)
< 1. (3.74)

First we pick point (a1, a2) = (0.25, 30) in the (a1, a2) parameter space and seek for the
values of control gains (k1, k2) for which the closed loop system (3.72) is second moment
stable (by condition (3.74)). The red curve in Fig. 3.3a encircles the stable area. Note
that such a boundary can be obtained by checking the (k1, k2) space point by point or
by finding an initial point on the boundary and obtaining the rest of it using numerical
continuation. Here we have used the latter exploiting the continuation routine embedded in
the software package DDE-BIFTOOL [17],[71]. The black curve encloses the stable area
of a deterministic version of system (3.72) with delay τ = 1 that is the average delay in
the set Ω. Note that in the case of the deterministic system, condition (3.74) can still be
applied using matrix G3 that corresponds to the delay value τ = 1. In this case since there
is only one delay value, condition (3.74) reduces to ρ(A3) < 1. The difference between the
red and black boundaries in Fig. 3.3a shows that the control gains that stabilize the system
with stochastic delay do not necessarily stabilize the same system with the average delay,
and vice versa.

Next we choose the control gains (k1, k2) = (10,−0.25) (indicated by point P in
Fig. 3.3a) and investigate the values of system parameters (a1, a2) for which these con-
trol gains stabilize the closed loop system (3.72). The condition (3.74) is used again to
assess stability. In Fig. 3.3b, the red curve is the boundary between second moment stable
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Figure 3.3: Stability charts for system (3.70-3.71). The red curve is the boundary of the
second moment stable area. For comparison, the stability boundary of a deterministic ver-
sion of system (3.70-3.71) with delay τ = 1 (the average delay) is also shown by a black
curve. a Stable and unstable areas in the (k1, k2) space for system parameters associated
with point Q in panel b. b Stable and unstable areas in the (a1, a2) space for control gains
indicated by point P in panel a.

and unstable regions. For comparison the black curve shows the stability boundary for a
deterministic system with delay τ = 1 (the average delay). The point Q in Fig. 3.3b cor-
responds to the parameters (a1, a2) for which the stabilizing control gains in Fig. 3.3a are
obtained.

Note that as the time step ∆t used in the time discretization technique gets smaller, the
size of matrices Aj in condition (3.66) gets larger (cf. Section 2.2.2). In both examples in
this section, we used values of ∆t that are, while being computationally affordable, small
enough so that the boundaries shown in Figs. 3.2 and 3.3 converged to a desired accuracy.
One may make ∆t values even smaller to obtain more precise boundaries, if one has access
to stronger computational resources.

3.7 Note on almost-sure stability

In this section we discuss the differences between almost sure stability and second moment
stability of system (3.1) from a computational point of view. To this end, we first give a
well-known result about almost sure stability.

Consider system (3.59) that is the discretized version of system (3.1). The following
theorem is a well-known result on almost sure stability of system (3.59); for example, see
[14].
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Theorem 3.2. Consider system

X(k + 1) = A(k)X(k), k = 0, 1, . . . , (3.75)

with X(0) = x0 ∈ RN and A(k) ∈ RN×N where P
(
A(k) = Aj

)
= wj , for j = 1, . . . , J

and k = 0, 1, . . .. System (3.75) is almost surely stable if and only if there exists q ∈ N
such that

J∏
i1,i2,...,iq=1

∥∥Ai1Ai2 · · · Aiq

∥∥wi1
wi2
···wiq < 1, (3.76)

where ‖.‖ is an induced matrix norm.

Condition (3.76) can be checked for the values of q = 1, 2, . . . , in a consecutive man-
ner. One can see that condition (3.76) for each individual value of q is in fact a sufficient
condition for almost sure stability. In practice as q increases, the computational burden
blows up exponentially as the number of matrix products to be calculated is Jq.

Let us consider the scalar system given in the example in Section 3.6.1. In this example,
there are two delay values, so J = 2, and A1 and A2 are the two matrices, obtained
through time discretization, associated with the two delay values. To investigate almost
sure stability of this system at a particular set of parameter values, we check condition
(3.76) for q = 1, 2, . . . , qmax = 15, in a consecutive manner. If condition (3.76) holds
for a specific value of q, we stop and declare the system almost sure stable; otherwise,
we continue up to qmax = 15 (we could not exceed q = 15 due to our computational
limitations). If condition (3.76) does not hold for any value q = 1, . . . , qmax, we cannot
still conclude that the system is not almost sure stable, due to the fact that larger values of
q are not checked yet. Therefore, the collection of conditions provided by Eq. (3.76) for
individual values q = 1, . . . , qmax, is still a sufficient stability condition.

In Fig. 3.4a, the cyan curve is the boundary of the almost sure stable area obtained by
the procedure described above. The red curve is the boundary of the second moment stable
area (same as in Fig. 3.2). Note that the true almost sure stable area is larger than the one
shown in Fig. 3.4a, because we only checked a series of sufficient conditions. As a matter
of fact, in the linear switched system (3.59), that is a discretized version of system (3.1), the
second moment stability implies almost sure stability; see [44] or [13] for this established
result. Consequently, the second moment stable region must be inside the true almost sure
stable region. As another example, Fig. 3.4b shows the second moment stable and almost
sure stable regions of the same system except that the dwelling time is larger: td = 2 (rather
than td = 0.25 used in Fig. 3.4a). In this case, the almost sure stable area, obtained using
condition (3.76) for q = 1, . . . , qmax = 15, is a bit larger than the second moment stable
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Figure 3.4: Stable and unstable regions of system (3.67) in the sense of the second moment
and almost sure stability where the red curve is the boundary of the second moment stable
area and the cyan curve is the boundary of the almost sure stable area. a The parameters
are the same as in Fig. 3.2. b The parameters are the same as in Fig. 3.2 except that td = 2
(slower delay switchings). For comparison, stable regions of the deterministic version of
system (3.67) with delays τ = 0.5 and τ = 1 are also shown by dashed and solid black
curves, respectively.

area. However, since we haven’t checked the larger values of q, we still do not know how
conservative our estimate of the almost sure stable region is.

The results shown in Fig. 3.4 demonstrate that the second moment stability criteria pro-
posed in this chapter, that are necessary and sufficient, may be more practical for linear
switched systems than almost sure stability criteria, that are just sufficient. The reason is
that the second moment stability provides a sufficient condition for almost sure stability.
Therefore by finding the second moment stable region, we also obtain an estimate of the
almost sure stable region. However, finding the almost sure stable region does not give us
any information about the second moment stable region as the almost sure stability criteria
are not exact. Furthermore, the condition for almost sure stability, due to its higher compu-
tational burden, may become too conservative especially if the dimension of matrices Aj

in (3.76) is large. As a result, the estimate for almost sure stable region obtained using con-
dition (3.76) can be even more conservative than the estimate given by the second moment
stable region itself.
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3.8 Discussion

We obtained necessary and sufficient conditions for a class of continuous-time linear sys-
tems subject to stochastic delay. We considered the stability of second moment of the
system as stability criteria. The stability conditions are in the form of checking the spectral
radius of an operator that is a linear combination of tensor products of augmented solution
operators associated with each individual delay. We presented finite-dimensional approxi-
mations of the proposed stability criteria which can be used to draw stability charts in the
parameter space. The class of systems we considered has one delayed term where the delay
is stochastic. The method can be generalized to the case where there are one or more terms
with deterministic delays and one or more terms with stochastic delays in a straightforward
fashion.

For the linear systems considered, the stability of the second moment also provides a
sufficient condition for almost sure stability. Therefore, if an assessment of almost sure
stability is desired, the result of this chapter can be useful. Moreover, as shown through an
example, the almost sure stability region obtained by assessing the second moment stability
might be less conservative than the region obtained by using the established results for
almost sure stability due to the higher computational burden of the almost sure stability
conditions.

The assumed delay behavior is flexible to approximate different kinds of stochastic
behavior in the sense that there are three parameters to tune: delay values, the probability
distribution, and the dwelling time. Furthermore, the generalization of this delay behavior
to the case where the dwelling time is a random variable as well as the case where the
jump probabilities follow a Markov rule can be done using the same machinery presented
in this chapter. However, we also remark that the type of the problem of the stability
analysis of a continuous-time system with stochastic delay depends on the form of the
delay variations. In other words, if one assumes a different type of stochastic process for
the delay trajectories, such as Gaussian noise, etc., one may end up with an essentially
different problem at hand.
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CHAPTER 4

Applications of the method on gene regulation
dynamics

4.1 Introduction

In this chapter, we apply the mathematical tools developed in Chapters 2 and 3 to investigate
the stability properties of a negative feedback auto-regulatory gene. The model describing
the auto-regulation through negative feedback is a delay differential equation where the
delay, that is the protein production time, is a stochastic variable. In the Appendix, a
traditional mass-action kinetic model of the auto-regulatory gene, that is obtained based
on instantaneous molecular reactions, is given and it is shown that how one can obtain the
model used in this chapter from chemical kinetics. We produce stability charts for equilibria
on the plane of some model parameters for different distributions of the stochastic delay.
The stability results are also validated by numerical simulations of linearized and nonlinear
models.

4.2 Stochastic delays in a gene regulatory network

We analyze the stability of genetic circuits where a protein regulates its own production.
The two major processes involved are called transcription and translation [15]. During
transcription, a gene (a section of the DNA) is copied into messenger RNA (mRNA) one
nucleotide at a time by an enzyme called RNA polymerase. Then during translation, ribo-
somes “read” the genetic code from the messenger RNA to sequentially assemble proteins
from amino acids. That is, transcription and translation involve sequential biochemical
reactions [2]. Although each individual reaction generally happens on a fast time-scale,
the large number of reactions required and their sequential nature can result in significant
delays [83]. Further processes, such as protein folding and modification, can also impact
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the time it takes to produce a fully mature protein [58, 62]. Proteins can regulate (activate
or repress) the production of other proteins by binding to the promoter region of the cor-
responding genes. Here we study the case where a protein represses its own production
as shown by the diagram in Fig. 4.1. It has been shown that this single feedback system
may produce oscillatory behavior and that time delays play a crucial role in the dynamics
[75]. We construct two different models: a simpler model where the mRNA dynamics are
neglected and another one where they are included. These examples allow us to highlight
nontrivial dynamics caused by the stochastic delay variations.

We begin by describing how delays arise in protein production. We model the sequen-
tial biochemical reactions involved in protein production by the chain of reactions

P0
c1−→ P1 ,

P1
c2−→ P2 ,

...

PN−1
cN−→ PN ,

(4.1)

where Pi denotes the number of molecules in the i-th state of the process and N is the
number of reactions in the chain. For example, one may consider P0 as the transcription
initiation state and PN as the fully mature protein. The parameter ci is the reaction rate of
the i-th reaction. The probability of reaction i happening during the time interval [t, t+dt]

is proportional to the firing rate ci and the number of proteins Pi−1 in the (i− 1)-th state.
In Appendix A, we assume that the time elapsed between reactions are independent and

exponentially distributed and we consider the simplification ci = c for i = 1, . . . , N and
the initial condition P0 = 1, Pi = 0, for i = 1, . . . , N . Then we show that the stochastic
delay, i.e. the total time elapsed between the first reaction and the last reaction in system
(4.1) follows the Erlang distribution

we(σ) =
cNσN−1e−cσ

(N − 1)!
; (4.2)

see also [21]. Numerically, we find that Eq. (4.2) still describes the delay distribution well
for different initial conditions. To demonstrate this we consider N = 50 reactions, c = 5

reactions per second, the initial condition P0 = 10000, Pi = 0, for i = 1, . . . , N , and
we simulate the reactions using a Gillespie algorithm [25]. The corresponding normalized
histogram of the delay is overlaid with the distribution (4.2) in Fig. 4.2(a). We remark that
in this case we still measure the delay as the time difference between the first reaction and
the N -th reaction rather than tracing individual molecules in the simulation.
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Figure 4.1: An auto-regulatory gene network. The target gene codes for the protein LacI
that represses its own production by blocking the RNA polymerase from binding.

To characterize the Erlang distribution (4.2) we calculate its mean

E :=

∫ ∞
0

we(σ)σ dσ =
N

c
, (4.3)

and variance
V :=

∫ ∞
0

we(σ) (σ − E)2dσ =
N

c2
. (4.4)

Notice that the relative variance
R :=

V

E2
=

1

N
, (4.5)

is inversely proportional to the number of reactionsN but does not depend on the transcrip-
tion rate c; see [1].

4.3 Model of an auto-regulatory gene circuit

After characterizing the stochastic delay arising from sequential reactions, we analyze
the dynamics of the auto-regulatory gene circuit (also called auto-repressor) depicted in
Fig. 4.1 under such stochastic delay variations. Neglecting the mRNA dynamics, we con-
sider the model

ṗ(t) = −γ p(t) +
κ

1 +
(
p
(
t− τ(t)

)
/ph

)2 , (4.6)

where p denotes the concentration of fully matured proteins. The linear term on the right
hand side accounts for the protein degradation while the nonlinear term represents the pro-
tein production. Here, γ denotes the degradation rate, κ is the maximum production rate,
and ph is the protein concentration corresponding to half repression. The nonlinearity is
in the form of a Hill function where the power 2 in the denominator represents repres-
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Figure 4.2: (a) A normalized histogram of the delay obtained with running a Gillespie
simulation for system (4.1) with N = 50 reactions and c = 5 reactions per second using
the initial condition P0 = 10000, Pi = 0, for i = 1, . . . , N . The black curve shows
the Erlang distribution (4.2) for the same parameters with mean E = N/c = 10 [s] and
variance V = N/c2 = 2 [s2]. (b) Discretization of the Erlang distribution using Dirac
deltas separated by ∆t = 1 [s].

sion strength. This model has been studied in the literature [15, 75] with constant delay
τ(t) ≡ τ and can be shown to admit one of two behaviors: asymptotic convergence to
a positive equilibrium or convergence to a limit cycle [51] depending on the parameters
γ, κ, and ph. Here, we assume that the delay follows a stationary stochastic process with
Erlang distribution (4.2) and show that this system demonstrates similar behavior in the
stochastic sense. More details about the reactions involved in system (4.6) can be found
in Appendix A where the parameters γ, κ, and ph are related to reaction rates using mass-
action kinetics. For the stability charts shown in the following section, we set ph = 100

proteins per cell and vary γ and κ while assuming γ > 0 and κ > 0.
The model (4.6) has a unique equilibrium p(t) ≡ p∗ where p∗ is the real solution of the

cubic equation

p3
∗ + p2

h p∗ −
κp2

h

γ
= 0. (4.7)

To study the stability of this equilibrium, we define the perturbation x(t) = p(t) − p∗ and
linearize the system (4.6) about the equilibrium. This yields

ẋ(t) = a x(t) + b x(t− τ(t)) , (4.8)
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with

a = −γ ,

b =
−2κ p2

h p∗
(p2

h + p2
∗)

2
.

(4.9)

Indeed, Eq. (4.8) has the same form as Eq. (2.33) but here the delay follows the Erlang
distribution (4.2) instead of the uniform distribution used in Sec. 2.3.1.

As shown in Chapter 2, if td ≤ τmin, system (2.5) describes continuous-time mean
dynamics. While τmin = 0 for the Erlang distribution, for the examples considered in this
section the distribution is very close to zero for σ ≤ E−3

√
V ; see Fig. 4.2(a) as an example

and also the Appendix for some quantitative details. Thus, we assume td < E − 3
√
V and

use (2.5) with continuous distribution (4.2). Using the trial solution x̄(t) = κest, κ, s ∈ C,
we obtain the characteristic equation

s− a− b cN

(s+ c)N
= 0 , (4.10)

which has finitely many (in particularN+1) solutions for the eigenvalues s. It can be shown
that when the Erlang distribution is perturbed with perturbation size ε, additional spectra
appear in the neighborhood of these eigenvalues such that the size of the neighborhood
is proportional to ε. Additional eigenvalues may also appear to the left of a vertical line
located at <(s) = −1/ε; see [20] for more details.

We check for two types of stability loss. First we substitute s = 0 into (4.10) which
results in b = −a. But when using equations (4.7) and (4.9) no feasible solutions can be
found in the (γ, κ) parameter plane. Second, we substitute s = iω into (4.10) and we obtain
the stability boundary

a =
ω cos(Nθ)

sin(Nθ)
,

b =
−ω

sin(Nθ)

(
1 +

ω2

c2

)N
2

,

(4.11)

where
θ = tan−1

(
ω

c

)
. (4.12)
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Now using equations (4.7) and (4.9) one may obtain

γ = −a ,

κ = −2ph
a2

b

(
b

2a− b

)3/2

,
(4.13)

which result in a stability curve in the positive quadrant in (γ, κ)-plane; see black dashed
curves in Fig. 4.3.

In order to apply the stability analysis developed in Section 2.3, the delay distribution
must have finite support. To achieve this, we truncate and discretize the Erlang distribution
we(σ) given in (4.2). Again, noticing that the distribution is close to zero when σ is more
than three standard deviations away from the mean, we set weights at σi = E − 3

√
V +

(i− 1)∆t to be

w̃i =

∆t we(σi) , if |σi − E| ≤ 3
√
V ,

0 , if |σi − E| > 3
√
V ,

(4.14)

for i = 1, 2, . . . such that w̃i 6= 0 only for i = q, . . . , Q. Finally, we normalize the distribu-
tion by

wj =
w̃q+j−1∑Q
k=q w̃k

, (4.15)

for j = 1, . . . , J where J = Q− q + 1. Fig. 4.2(b) depicts the discretization of the Erlang
distribution shown in Fig. 4.2(a) with ∆t = 1 [s].

Once the delay distribution w is characterized for system (4.8),(4.9), we may construct
the discretized systems (2.22),(2.23) for the mean and (2.30),(2.31) for the second moment
to analyze their stability using the characteristic equations (2.40) and (2.41), respectively.
The results are shown in Fig. 4.3 in the (γ, κ) parameter plane. The blue and red curves
show the stability boundaries of the mean and the second moment, respectively. The dark
gray region is where the second moment (and the mean) is stable. The light gray region
is where the mean is stable but not the second moment. We vary the mean E and the
relative variance R, as indicated, in order to inspect the effects of changing the probability
distribution of the delay. Note that the delay distribution used in Fig. 4.3(g) corresponds to
the case shown in Fig. 4.2(b). We kept ∆t constant for all plots in Fig. 4.3 so that the effect
of changing the delay values is reflected accurately. When we discretize the continuous
delay distribution (4.2), we use the same time step as the time discretization step ∆t. In all
panels in Fig. 4.3, we set ∆t = 1[s] and also td = 1[s].

As explained above, the mean loses stability only via Hopf stability loss where the
angular frequency ω increases along the stability boundary from left to right (blue curves
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Figure 4.3: Stability charts for system (4.8),(4.9) when the delay follows the Erlang dis-
tribution (4.2) for different values of the mean delay E = N/c and relative variance
R = 1/N . The dwelling time is set to td = 1 [s] and ∆t = 1 [s]. The dark gray region
is where the second moment and the mean are stable. The light gray region is where the
mean is stable but not the second moment. The dashed black curve is the boundary of the
stability for the continuous-time mean dynamics described by Eqs. (4.13).

obtained by the semi-discretization and the black dashed curves obtained through (4.10)-
(4.13)). For the second moment, only fold stability loss occurs and the corresponding
red curves are obtained by the semi-discretization. In general, the stability regions shrink
when increasing the mean delay E = N/c and when decreasing relative variance R =

1/N . Also, when decreasing R the difference between mean stability and second moment
stability decreases as indicated by the size of the light gray area. This corresponds to
the fact that as the delay distribution is getting narrower, the dynamics get closer to the
dynamics of a system with a single delay τ ≡ E. Moreover, notice that the size of the
dark gray domain, where the second moment is stable, increases with R indicating that the
stochasticity in the delay may stabilize the system. Similar results relating to noise induced
stability have been shown in other works [3, 6, 45, 50].

We remark that our stability analysis may require large computational effort when cal-
culating the largest eigenvalues (i.e. the spectral radius) of the matrix ¯̄A in (2.31). This
may cause problems especially if both large and small delays exist in the system. In partic-
ular, ∆t should be smaller than the minimum delay τmin in the system so that b τmin

∆t
c ≥ 1.

Otherwise all the delays that are smaller than ∆t will be neglected in the analysis. On the
other hand, if τmax � τmin the size of matrix ¯̄A, that is proportional to (b τmax

∆t
c)2, gets un-
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Figure 4.4: (a–c) Numerical simulations of the linear model (4.8),(4.9) for points A
(γ, κ) = (1.5, 600), B (γ, κ) = (2.5, 600), and C (γ, κ) = (3.5, 600) marked in Fig. 4.3(g).
(d–f) Corresponding simulation results of the nonlinear model (4.6). In each panel (a–f),
the black trajectory indicates the mean while the red trajectories enclose mean ± standard
deviation for 1000 runs and the gray curve shows a sample realization.

manageably large. In panels (b-d) and (f-h), ∆t = 1[s] is small enough. Consequently, the
blue curves obtained by the semi-discretization approximate well the black dashed curves
obtained using the continuous-time mean dynamics (4.11)-(4.13). On the other hand for
the wide distributions used in Fig. 4.3(a,e), ∆t = 1[s] is not small enough. In particular, in
case (a), we have τmin = E − 3

√
V ≈ 0.26. Therefore ideally ∆t should be smaller than

0.26.
In order to demonstrate the time evolution of the linear system (4.8),(4.9) and the origi-

nal nonlinear system (4.6), we use numerical simulation that is based on semi-discretization,
i.e. we assume the delayed term stays constant in the time interval [i∆t, (i + 1)∆t]. Since
in (4.6), the delayed term is contained in the only nonlinearity, the resulting ODE can still
be solved analytically in each interval. The Erlang distribution is also discretized as in
(4.14)-(4.15). We set E = 10 [s] and R = 0.02 and choose three points marked as A
(γ = 1.5, κ = 600), B (γ = 2.5, κ = 600), and C (γ = 3.5, κ = 600) in different regions in
Fig. 4.3(g). The initial condition is set to x(t) ≡ 0.1p∗ in the linear system (4.8) (that cor-
responds to p(t) ≡ 1.1p∗ in the nonlinear system (4.6)) along the time domain t ∈ [−τJ , 0]
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where p∗ is the equilibrium obtained from (4.7).
The results are summarized in Fig. 4.4 where the black curve indicates the mean and

the red curves bound the mean plus and minus the standard deviation computed from 1000

simulations. A sample realization is shown by a gray curve in each panel. Fig. 4.4(a–c)
show the results for the linear system (4.8),(4.9). In case A, the equilibrium is unstable
and both the mean and the standard deviation diverge. In case B, the mean converges to
zero while the standard deviation diverges. In case C, both the mean and the standard
deviation converge to zero corresponding to almost sure stability of the equilibrium. The
corresponding simulation results for the nonlinear system (4.6) are displayed in Fig. 4.4(d–
f). The results are qualitatively similar to the linear ones except that in cases A and B the
standard deviation does not go to infinity but saturates due to the saturating nonlinear terms.
The corresponding nonlinear oscillations shown by the gray sample trajectories resemble
those found for a deterministic system with distributed delay in [51]. For example, by doing
Fast Fourier Transform (FFT) analysis, the main frequency of the nonlinear oscillations is
found to be close to the Hopf frequency at which the continuous-time mean dynamics lose
stability. Note that in case C, almost sure stability of the equilibrium is ensured by our
analysis at the linear level only, but the nonlinear system also demonstrates almost sure
stability.

4.4 Auto-regulatory gene network with mRNA dynamics
and dual delayed feedback

We now consider a model where we incorporate mRNA dynamics, resulting in a non-scalar
example. Additionally, we assume that the system has two distinct regulatory pathways
with distinct signaling delays [49, 81].

In particular, we consider the model

˙̂m(t) = −γm m̂(t) +
αm

1 + (p(t− τ(t))/ph)2

ṗ(t) = −γp p(t) + αp m̂(t),
(4.16)

where m̂ is the concentration of mRNA in the transcriptional initiation phase, p is the con-
centration of fully matured protein, and γm and γp are mRNA and protein degradation rates,
respectively. The nonlinear term in the first equation in (4.16) incorporates the feedback
due to self-repression where the delay τ(t) still represents the total delay in the feedback
loop and αm is the maximum mRNA production rate. According to the second equation
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in (4.16), the protein production is assumed to be proportional to the mRNA concentration
with rate αp. Assuming that mRNA dynamics are fast relative to the protein dynamics, i.e.

assuming that the first equation in (4.16) approaches steady state quickly, the model (4.16)
can be reduced to (4.6) with κ = αpαm/γm as shown in Appendix A.

As mentioned above, we assume two distinct signaling pathways. Thus, the delay τ(t)

will have a bimodal distribution where each mode resembles an Erlang distribution. To
simplify the model we consider a bimodal distribution with two distinct delay values τ1

and τ2, that is, the probability density function

w(σ) = u δ(σ − τ1) + (1− u) δ(σ − τ2), (4.17)

where 0 ≤ u ≤ 1 represents the likelihood of the protein being produced through pathway
1 and it can be tuned through a combination of relative plasmid copy numbers, promoter
strengths, and ribosome binding strengths. The steady state protein concentration is the
real solution of the cubic equation

p3
∗ + p2

hp∗ −
αmαpp

2
h

γmγp
= 0, (4.18)

that is, the equilibrium point of (4.16) is the same as that of (4.6) since κ = αmαp/γm.
The steady state mRNA concentration is m∗ = (γp/αp)p∗. Defining the perturbation x =

[m̂−m∗, p− p∗], we linearize (4.16) around the steady state obtaining the form (2.2) with
matrices

a =

[ −γm 0

αp −γp

]
, b =

[
0

−2κ p2h p∗
(p2h+p2∗)2

0 0

]
. (4.19)

Figure 4.5(a–c) show stability plots for different values of the parameter u of the dis-
tribution (4.17). The delay dwelling time is assumed to be td = 5 [s] and a time step of
∆ t = 1 [s] is used for the semi-discretization. Figure 4.5(a) and (b) show the second mo-
ment stable region (the dark grey shaded area) for u = 1 and u = 0, respectively. The
values u = 1 and u = 0 correspond to the deterministic systems with delays τ = 10 [s] and
τ = 20 [s], respectively. Figure 4.5(c) shows the stable region for the stochastic system
with u = 0.75.

We mark point Q at (γp, αm) = (0.5, 70) in the parameter space, which pertains to
instability of system (4.16) for the single delay feedback with τ = 10 [s] and τ = 20 [s].
However, our stability analysis predicts a stable system for u = 0.75 where the delay
stochastically varies between these two values. Fig. 4.5(d–f) shows the simulations of the
nonlinear model (4.16) where the protein concentration is shown as a function of time for
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Figure 4.5: Top panels: stability boundaries for the linearized system (2.2,4.19) with τ1 =
10 [s] and τ2 = 20 [s] and probability distribution w1 = u, w2 = 1 − u for (a) u = 1, (b)
u = 0, and (c) u = 0.75. Bottom panels: simulation results of the nonlinear model (4.16)
for parameter values associated with point Q: (γp, αm) = (0.5, 70). A sample trajectory of
proteins as a function of time for (d) u = 1, (e) u = 0, and (f) u = 0.75. Note that panels
(d) and (e) correspond to the deterministic systems with the single delay τ = 10 [s] and
τ = 20 [s], respectively.

the parameter values associated with point Q for dwelling time td = 5 [s]. We use the semi-
discretization to simulate the continuous-time nonlinear system (4.16) with the parameters
γm = 0.25 [1

s
], αp = 1 [1

s
], ph = 100 proteins per cell, and initial conditions m̂(ξ) = 1.1m∗,

p(ξ) = 0.2p∗, for −τmax ≤ ξ ≤ 0. In panels (d) and (e), the simulations with a single
deterministic delay τ = 10 [s] and τ = 20 [s] are shown, respectively. In these cases, the
equilibrium point is unstable and we see oscillations in the protein concentration. Panel
(f) shows the simulation when the delay varies stochastically between the two values with
u = 0.75. In this case, the equilibrium becomes stable.

Fig. 4.6(a) shows the spectral radius of matrix ¯̄A as a function of the distribution pa-
rameter u. Notice that as u decreases from 1 to 0 the spectral radius initially decreases (that
is, the stable regime grows), but then begins to increase again (the stable regime shrinks
again). In the parameter regime 0.59 < u < 0.88 the stochastic system is stable. Fig. 4.6(b)
shows the spectral radius of matrix ¯̄A as a function of the dwelling time td. It is seen that
system (4.16) can be destabilized by increasing the delay dwelling time td. This may be
explained noting that for large td values the system dwells in an unstable system pertaining
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Figure 4.6: (a) The spectral radius of ¯̄A versus the weight u in the probability distribution.
(b) The spectral radius of ¯̄A versus the dwelling time td.

to each delay value. The dynamics are only stabilized by the switching events between the
two unstable systems.

4.5 Discussion

The theoretical tools developed in Chapters 2 and 3 were applied to simple auto-regulatory
gene networks where stochastic delays appear due to sequential biochemical reactions. We
showed that the resultant delay distribution is well approximated by an Erlang distribution.
We first investigated an auto-regulatory gene circuit described by a scalar model. We found
that increasing the stochasticity in the delay (characterized by the relative variance of the
distribution) increased the size of the almost sure stable region indicating that stochasticity
in the delay may stabilize unstable equilibria. Our findings were justified using numerical
simulations of the linearized and full nonlinear system. We also investigated the auto-
regulatory circuit taking into account mRNA dynamics where we included a bimodal delay
distribution. We found that even if both the regulatory delays are individually destabilizing,
the stochastic combination of these two delays can make the system stable. Furthermore,
we found that the longer the dwelling times, the more unstable the network became. The
developed tools are anticipated to be useful in analyzing the dynamics of more complicated
synthetic and natural gene regulatory networks.
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CHAPTER 5

Dynamics of microbial consortia

5.1 Introduction

A major goal of synthetic biology is the construction of genetic circuits that endow cells
and organisms with novel functions. Synthetic gene circuits provide the basis for technolo-
gies such as gene therapy [86], biofuel and biopharmaceutical production [91], and have a
range of environmental applications [53]. In addition, they allow for unprecedented control
of biological systems thus opening new avenues in biological research [73]. The majority
of currently available synthetic gene circuits have been built within a single strain and op-
erate at the single-cell level. However, to realize the full potential of synthetic biology we
need to be able to design consortia of interacting cells and organisms. Cooperating cells can
specialize and assume different responsibilities within a consortium [84]. This allows bac-
terial consortia to be more efficient, and have a wider range of functions than monocultures.
In such consortia, the signals within and between bacterial populations shape the response
of genetic networks within cells. The activity of the population, in turn, arises from the
coordinated activity of individuals [12, 28]. Consortia can thus perform computations and
make decisions that are far more sophisticated than those of a single bacterium [67, 41].

To understand the behaviors of naturally occurring microbial consortia and to engineer
synthetic consortia for practical applications, it is necessary to develop mathematical and
computational models that describe their behavior. Such multi-scale models must simul-
taneously describe transcriptional dynamics within cells, interactions between cells due to
cell-to-cell communication, and population-level dynamics that arise as different cell types
compete for limited resources [35, 9]. To further complicate matters, each of these levels
of organization is linked to the others. Transcriptional dynamics within single cells are
affected by intercellular signaling molecules. The concentrations of signaling molecules,
in turn, are determined by gene network activity and total strain density. Strain density
is also affected by transcriptional dynamics, as protein production can affect the growth
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rate of cells [78, 70, 59]. Therefore, to understand and predict the dynamics of microbial
consortia, one must consider the dynamic interplay of multiple levels of organization.

In this chapter, we introduce a class of models describing the dynamics of synthetic
microbial consortia in which two strains transcriptionally repress each other. We first intro-
duce a deterministic model to describe the average behavior of cells within each population,
their global interactions, and the resulting emergent dynamics. Furthermore, we show how
to extend this model to include stochastic effects due to small population size and small
molecular counts within each cell. This stochastic model has the deterministic model as
its mean field approximation while it is able to capture fluctuations within cells and across
strains as well as strain extinctions.

The co-repressive microbial consortium is a generalization of the well-known synthetic
toggle switch that operates in a single bacterium [23] (See Fig. 5.1a). In single cells, the co-
repressive toggle switch can exhibit transcriptional bistability with two mutually exclusive
gene expression states: 1) expression of tetR and repression of lacI; or 2) expression of lacI

and repression of tetR. The analogous synthetic co-repressive microbial consortium, shown
in Fig. 5.1b, might be constructed with two strains using two orthogonal quorum sensing
systems (here cinI/R and rhlI/R) [56, 85], and two transcriptional inverters [77]. When
one strain is active, it produces an intercellular signal that transcriptionally represses the
opposing strain. Unlike its bistable single strain counterpart, the co-repressive consortium
may exhibit more complicated behaviors. In particular, we show that the co-repressive
consortium can oscillate if the growth rates of the strains depend on their transcriptional
state, which can occur when heterologous protein is produced [78, 70].

While we only consider the dynamics of co-repressive microbial consortia, our model-
ing approach proposed in this chapter can be extended to any consortia of fixed size when
spatial effects are negligible. Both our deterministic and stochastic models can be easily
modified to describe different gene circuits and cell-to-cell interactions. We thus provide a
general framework for modeling and analyzing the interplay between population and gene
circuit dynamics that drives the behavior of microbial consortia.

5.2 Dynamics of a two-strain co-repressive consortium

We first consider the deterministic dynamics of a two-strain consortium growing in a small,
well-mixed turbidostat, such as a microfluidic trap [8]. Since such traps have fixed volume,
we assume that the total population size and cellular volume of the consortium remain
constant. To maintain a fixed population size whenever a cell divides, we assume that a
randomly chosen cell from the consortium exits the chamber. For simplicity, we assume
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Figure 5.1: Single- and two-strain toggle switch. a Gene circuit diagram of a single cell
co-repressive toggle switch [23]. b Proposed synthetic microbial consortium with a co-
repressive network. Each strain contains a transcriptional inverter (mediated by LacI) and
an enzyme that creates a quorum sensing molecule. Repression occurs when the quorum
sensing molecule from one strain diffuses into the other strain, up-regulating the target
transcriptional inverter (green dashed arrows). That inverter down-regulates production of
the second, orthogonal quorum sensing molecule.

that all cells in the consortium have equal size. The fraction of strain 1 within the chamber
is then defined by the ratio r = V1/V = n1/N where V1 is the volume occupied by strain
1, V is the total volume, n1 is the number of cells in strain 1, and N is the total number
of cells. Note that the ratio r is treated as a real number that can vary between 0 and 1.
Moreover, denoting the volume occupied by strain 2 by V2 and the number of cells in strain
2 by n2, we have V1 + V2 = V and n1 + n2 = N . Therefore, the fraction of strain 2 in the
chamber is given by 1− r = V2/V = n2/N .

We model the dynamics of a single gene within each strain. We assume that the pro-
duction of an enzyme that creates a signaling molecule is repressed by the presence of the
signaling molecule produced by the other strain. Further, the concentration of a signaling
molecule is assumed to be spatially homogeneous and directly proportional to the total
concentration of its enzyme within the culture (i.e., the product of the average intracellular
concentration of the enzyme and the number of cells containing it). Therefore the time
evolution of the average concentrations x1 and x2 of the corresponding enzymes can be
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described by

ẋ1 = αf1(x2, r)− β1x1,

ẋ2 = αf2(x1, r)− β2x2,
(5.1)

where
f1(x2, r) =

1

1 +
(
(1− r)Nx2/θ

)n , f2(x1, r) =
1

1 +
(
rNx1/θ

)n . (5.2)

Here α is the maximal production rate of the proteins, β1 and β2 are the growth rates of
strains 1 and 2, respectively, θ is a scaling parameter that determines half-maximal repres-
sion, and n is the Hill coefficient. The proteins are assumed to be stable and decrease
in concentration only through cellular growth and division at a rate proportional to the
growth rates. It is assumed that the volume is measured in units of single cells so that
the total cellular volume is V = N . Moreover, we assume that there is a linear relation
between the expression of the signaling molecule and protein within a single cell. There-
fore protein production in strain 2 is repressed in proportion to the total protein signal
V1x1 = rV x1 = rNx1 from strain 1. Similarly, the protein production in strain 1 is re-
pressed by the total protein signal (1−r)Nx2 from strain 2. Note that this approximation for
the amount of signaling molecule assumes that: 1) the transient dynamics of the signaling
molecule are fast with respect to changes in the corresponding protein concentration xi, and
2) the quasi-equilibrium concentration of the signaling molecule is linearly proportional to
the amount of enzyme making it. The first approximation is generally valid provided that
the growth chamber is small enough and that diffusion across cell walls is fast. The second
approximation is valid provided that the presence of the signaling molecule does affect the
enzyme’s ability to make it.

Next, we describe a deterministic model of the dynamics of the population ratio r as-
suming that the number of cells within each strain can be described by a birth–death pro-
cess. A new cell is born at cell division, while a “death” occurs when a cell is removed from
the chamber. Recall that n1 and n2 are the number of cells in strains 1 and 2, respectively,
so that n1 + n2 = N is constant. Left on their own, the two strains would grow exponen-
tially with rates β1n1 and β2n2, respectively. To keep the total population size constant,
we set the total rate at which cells are removed from the population to β1n1 + β2n2. If all
cells are equally likely to be removed, the probability that a cell is removed from strain i is
ni/N , giving a death rate of (β1n1 + β2n2)ni

N
. The deterministic birth-death process of the

strain 1 can then be described by the differential equation

ṅ1 = β1n1 − (β1n1 + β2n2)
n1

N
. (5.3)
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Substituting n1 = rN and n2 = (1− r)N into (5.3), we obtain the logistic equation

ṙ = (β1 − β2)r(1− r), (5.4)

for the ratio r of the strain 1 in the chamber.

5.2.1 Bistability in the absence of metabolic loading

There are many reasons why protein production might influence the growth rate of a cell.
For instance, heterologous protein expression may slow growth due to metabolic loading
[78, 70], or transcription of a suicide gene may be linked to one of the two states [88, 5].
For simplicity, we will refer to these phenomena collectively as “metabolic loading” – a
burden imposed by the production of heterologous protein.

In the absence of metabolic loading, the growth rates of the two strains are not affected
by the production of the enzymes and hence will remain constant. If the two strains grow
at the same rate β1 = β2, Eq. (5.4) implies that the ratio r will remain fixed at its initial
value. Then we can treat r as a parameter in system (5.1) and the equilibria x1(t) = x∗1 and
x2(t) = x∗2 are given by

β1x
∗
1 = αf1(x∗2, r),

β2x
∗
2 = αf2(x∗1, r).

(5.5)

Indeed, the equilibria are the solutions of x∗1 = h1(h2(x∗1)), where hi = αfi/βi. Since
h1 and h2 are monotonically decreasing sigmoidal functions, h1 ◦ h2 is a monotonically
increasing sigmoidal function and it intersects the diagonal in 1, 2, or 3 points which cor-
respond to the equilibria.

Fig. 5.2a shows a typical example of how x∗1 changes with the ratio r. If the ratio r is
high or low, there exists a unique equilibrium (solid line) and one of the strains dominates
the trap; the dominant strain will be expressed and the opposite strain repressed. For mid
values of r, the system is bistable with two stable equilibria (solid lines) and an unstable
equilibrium in the middle (dashed line). This region of bistability is bounded by bifur-
cations at which two of the equilibria disappear in a saddle-node collision. That is, the
consortium behaves like a toggle switch for a range of strain ratios. Unlike switches that
operate on the level of single cells, bistability in the present case depends on the ratio of
the strains in the trap.

Fig. 5.2b shows simulations of system (5.1) with equal growth rates β1 = β2 for two
different sets of initial conditions where the ratio r is chosen from the bistable domain. If
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Figure 5.2: Two-strain population toggle with equal growth rates. a The equilibrium x∗1 as
a function of population ratio r. The dashed and solid lines correspond to unstable and sta-
ble equilibria, respectively. b Two trajectories of Eq. (5.1) approaching one of the two sta-
ble equilibria marked by � and � based on the initial conditions. The third, unstable equi-
librium is denoted by ◦. The gray dashed line shows the separatrix between the two basins
of attraction of the stable equilibria. The parameters are chosen as β1 = β2 = 0.023 [min−1]
corresponding to E. coli’s cell cycle of approximately 30 minutes, α = 10 [min−1],
θ = 500, N = 200, and n = 2. The simulations are carried out for constant popula-
tion ratio r = 0.4 and initial conditions

(
x1(0), x2(0)

)
= (100, 200) proteins per cell and(

x1(0), x2(0)
)

= (300, 100) proteins per cell.

the initial conditions fall below the gray dashed separatrix (given by the stable manifold
of the unstable equilibrium denoted by ◦), the system approaches the equilibrium denoted
by �. The simulations starting above the separatrix approach the other stable equilibrium
denoted by �. Note that the slope of the separatrix is equal to 1 for ratio r = 0.5, and
decreases with decreasing r.

When the difference β1 − β2 between the growth rates of the two strains is small, r
changes slowly according to Eq. (5.4). Let us assume that

β1 = β0(1 + ε),

β2 = β0,
(5.6)

where ε reflects the relative difference between the growth rates of the two strains. We only
consider ε ≥ 0, since if ε < 0 the roles of strains 1 and 2 can be reversed. When ε is small,
(5.1), (5.2), and (5.4) form a slow-fast system. Thus, the concentrations x1 and x2 track
a stable equilibrium until it disappears in a saddle-node bifurcation [31] (see Fig. 5.2a).
Once an equilibrium disappears, the system jumps to the other stable equilibrium, and a
switch in expression levels occurs. For example, as shown in Fig. 5.3b,c, when ε > 0 and r
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Figure 5.3: Two-strain population toggle with different growth rates. Simulations of
system (5.1),(5.2),(5.4),(5.6) with β0 = 0.023 [min−1] and different ε values as indi-
cated. Other parameters are the same as in Fig. 5.2. Initial protein concentrations are(
x1(0), x2(0)

)
= (100, 200) proteins per cell and initial population ratio is r(0) = 0.1.

is initially close to 0, the concentration x1 initially approaches the lower equilibrium value
(repressed state) and stays close to it as r increases slowly due to the larger growth rate of
the first population. After the ratio r passes through the critical value at which the lower
equilibrium disappears, x1 switches to the higher equilibrium (expressed state). Fig. 5.3b,c
show such transitions for small and intermediate differences in growth rates. Notice that
the transition occurs earlier in time as ε increases. On the other hand, when the growth
rates are equal, no transition occurs as the ratio r remains constant; see Fig. 5.3a. While
the dynamics for different values of ε > 0 are similar, the slow-fast approach is valid only
when ε is small.

When the two strains have identical growth rates, the two-strain microbial consortium
behaves like a single-strain toggle switch: gene expression in the two strains is bistable for
a range of population ratios r. However, if one strain has a larger growth rate, the opposite
strain eventually disappears from the trap. Even before it is driven to extinction, the less
numerous strain becomes fully repressed.

5.2.2 Impact of metabolic loading on population toggle dynamics

We next investigate the dynamics of the co-repressive consortium in the presence of metabolic
loading, i.e., when the growth rates of the two strains depend on their transcriptional states.
If a balance of population sizes is necessary to maintain a particular behavior then any
change in the growth rates can affect the dynamics of the consortium. To imagine how
metabolic loading in the two-strain toggle consortium can lead to relaxation oscillations,
assume that the cells with higher expression rate experience an increased metabolic burden,
and thus grow slower. This, in turn, allows cells in the repressed state to increase their rel-
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Figure 5.4: Metabolic loading leading to relaxation oscillations. Simulations of sys-
tem (5.1),(5.2),(5.4),(5.7) for different values of ε and ρ as indicated. Parameters are
β0 = 0.023 [min−1], α = 10 [min−1], θ = 500, N = 200, and n = 2. Initial conditions are(
x1(0), x2(0)

)
= (100, 200) proteins per cell and r(0) = 0.4.

ative population size. Once these cells dominate the trap, they are no longer repressed. As
they reach high expression levels, they experience higher metabolic load and the process
repeats.

To demonstrate such relaxation oscillations in the co-repressive consortium, we assume
that the growth rates of both strains depend on the rate of expression of each gene, f1 and
f2 defined in Eq. (5.2). In particular Eq. (5.6) is replaced by

β1 = β0(1 + ε)
(
1− ρf1(x2, r)

)
,

β2 = β0

(
1− ρf2(x1, r)

)
,

(5.7)

where the parameter 0 < ρ < 1 determines the impact of the metabolic load on the growth
rates, such that ρ ≈ 0 corresponds to a low and ρ ≈ 1 corresponds to a high impact. The
growth rate of a strain is therefore largest when gene expression is at its minimum. Here the
parameter ε determines the difference between the maximal growth rates of the two strains.

Fig. 5.4 shows solutions of system (5.1),(5.2),(5.4),(5.7) for different values of the pa-
rameters ε and ρ. When ε = 0, the system exhibits oscillations for all values of ρ > 0, see
Fig. 5.4a–c (recall that for the case ρ = 0, we have the bistable system shown in Fig. 5.2a).
The frequency and amplitude of these oscillations increase with the impact of the metabolic
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Figure 5.5: Bifurcation diagrams for the two-strain toggle under metabolic load. In panels
a,b,d,e, solid and dashed lines denote stable and unstable equilibria, respectively. In panels
d,e,f, the markers × and ∗ indicate transcritical and Hopf bifurcations, respectively. The
solid magenta line in panels c,f shows the amplitude of the periodic solution. In panel f the
periodic solution emerges from a Hopf bifurcation. Parameters are the same as in Fig. 5.4.

loading ρ. Fig. 5.5a–c show the bifurcation diagrams while using ρ as the bifurcation pa-
rameter for the case ε = 0. In Fig. 5.5a, three unstable equilibria are shown as a function of
ρ. Fig. 5.5b shows the value of the population ratio r for these unstable equilibria. Fig. 5.5c
shows the amplitude of the oscillations as a function of ρ.

Fig. 5.4d–f shows numerical simulations of (5.1),(5.2),(5.4),(5.7) for different ρ values
where ε = 0.25 is kept fixed. We observe that when ε > 0, oscillations occur only when
metabolic loading is sufficiently large. The bifurcation diagrams for the case ε = 0.25 are
shown in Fig. 5.5d–f. When ρ is close to zero the equilibrium r∗ = 1 is stable. An increased
metabolic load, ρ, leads to the appearance of a stable equilibrium for which 0 < r∗ < 1 (the
red curve that emerges via a transcritical bifurcation indicated by × in Fig. 5.5d,e). This
equilibrium is stable over a small range of the parameter ρ, then undergoes a supercritical
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Hopf bifurcation (marked by ∗) leading to stable oscillations. Note that if we continued the
equilibrium shown by the red branch to lower ρ values, the corresponding population ratio
r∗ would be larger than 1 and physically not meaningful. Therefore, this branch section is
not shown here. The amplitude of the periodic orbit is shown in Fig. 5.5f where the middle
equilibrium (red branch) is included with zero amplitude. The amplitude of the oscillations
arising from the Hopf bifurcation grows explosively over a small parameter range after the
bifurcation. We conjecture that this is due to a canard explosion [43].

5.3 Small population effects

In smaller traps, or confined geometries, the number of cells may be sufficiently small for
stochastic fluctuations in population size and gene expression to become appreciable. We
therefore describe a stochastic model of the dynamics of intracellular proteins, as well as
the birth and removal of cells in the two strains. We work under the same assumptions
as in the previous section: the number of cells, n1 + n2 = N , in the trap is fixed, and
is maintained by following each birth by a removal of a randomly chosen cell. We again
neglect spatial effects.

We model protein dynamics separately in each cell. Let xi,j be the number of proteins
in cell j of strain i, so that i ∈ {1, 2}, and j ∈ {1, 2, · · · , ni}. We therefore have a set of N
birth processes modeling protein production

∅ αf1−→ x1,1, ∅ αf2−→ x2,1,

∅ αf1−→ x1,2, ∅ αf2−→ x2,2,
...

...

∅ αf1−→ x1,n1 , ∅ αf2−→ x2,n2 .

(5.8)

The rate of protein production in each cell in strain i is αfi, where

f1 =
1

1 +
(x2,1+x2,2+···+x2,n2

θ

)n , and f2 =
1

1 +
(x1,1+x1,2+···+x1,n1

θ

)n , (5.9)

cf. (5.2). Note that we do not model protein degradation explicitly, as we assume that pro-
teins are relatively stable. Approximately fixed concentrations are maintained by dilution
through division, as explained further below.

We separately model the division (birth) and removal (death) of cells from the trap. The
rates of these processes are as described in the derivation of (5.3). The number of cells n1
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and n2 in each strain is governed by the coupled birth and death processes

∅ β1n1−→ One cell in strain 1 divides and

{
a cell from strain 1 is removed with probability n1/N,

a cell from strain 2 is removed with probability n2/N,

∅ β2n2−→ One cell in strain 2 divides and

{
a cell from strain 1 is removed with probability n1/N,

a cell from strain 2 is removed with probability n2/N.
(5.10)

The two population sizes therefore follow Moran dynamics [57, 61]: whenever a cell di-
vides, another randomly chosen cell is removed.

We use Gillespie algorithm to sample trajectories of the system described by (5.8),(5.10).
At each step of the Gillespie algorithm, the possible events and their probabilities are given
by these two equations. There are N + 2 possible events that can occur in each step of
the algorithm: a birth (division) in either strain, accompanied by the removal of a random
cell, and a birth (formation) of a protein in one of the N cells. The rate at which a division
occurs in strain i is given by βini where βi were given by (5.7), i.e.

β1 = β0(1 + ε)(1− ρf1),

β2 = β0(1− ρf2),
(5.11)

where the protein production rates, f1 and f2, are defined in (5.9).
When a cell divides, its cellular material, including all proteins, is divided between the

two daughter cells. Let the index pair (i, j) correspond to cell j in strain i, so that i ∈ {1, 2}
and j ∈ {1, 2, . . . , ni}. If an event corresponds to division in strain 1, we pick a random cell
in that strain with index (1, b), to be divided into two. If the cell to be removed comes from
the same strain, say it has index (1, d), we replace cell (1, d) with a new cell, and divide
the proteins from cell (1, b) into two groups by sampling from a binomial distribution. One
of the two groups is assigned to cell (1, b), while the other is transferred to the new cell
with index (1, d). In this case, the cell counts n1 and n2 remain constant. If one of the
cells in the strain 2 is chosen to be removed, say cell (2, d), we add an additional cell with
index (1, n1 + 1) to strain 1. We again partition the proteins from the dividing cell (1, b)

between the mother and daughter cell. We then remove the cell (2, d) from strain 2 and
renumber the remaining cells in strain 2 to close the resulting gap, that is, x2,j → x2,j+1,
for j = d, d+ 1, . . . , n2. In this second case, n1 increases by 1 and n2 decreases by 1. The
algorithm is equivalent if a cell divides in strain 2. Also, a modeling assumption in this
algorithm is that the birth and removal of cells happen concurrently, not allowing for the
cell that is just born to be removed.

Next we explore stochastic dynamics of the two-strain consortium.
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Figure 5.6: Stochasticity in the dynamics of the two-strain toggle consortium. a,b Simu-
lations of system (5.8)-(5.11) with no metabolic loading (ρ = 0) and equal growth rates
(ε = 0) for different population sizes as indicated. The blue and green curves show the
mean number of proteins in strains 1 and 2, respectively. The red curve shows the popu-
lation ratio. Simulations of the deterministic system (5.1),(5.2),(5.4) are also shown using
gray curves. Parameters are the same as in Fig. 5.4. Initial protein counts are x1,i(0) = 100,
i = 1, . . . , n1, x2,j(0) = 200, j = 1, . . . , n2, and initial ratio of strain 1 is r(0) = 0.4. c,d
Stochastic simulations of the population ratio r corresponding to the parameters in pan-
els a,b, respectively. The mean of the simulations (µr) and the mean plus and minus the
standard deviation (µr ± σr) are also shown as functions of time.

5.3.1 Stochastic dynamics in the absence of metabolic loading

With no metabolic loading, i.e. when ρ = 0, the growth rates of the two strains are constant.
The slower growing strain is more likely to disappear from the trap. However, even if the
two growth rates are equal, random fluctuations eventually lead to the extinction of one
strain.

When the two strains of bacteria have equal growth rates, the probability of a strain
dominating the whole population is equal to the initial proportion of that strain in the trap
[61]. For example, the probability that the strain 1 will take over is n1(0)/N . Fig. 5.6 shows
simulations of the stochastic model (5.8)-(5.11) with ρ = 0 and when the two strains have
equal growth rates, i.e. ε = 0, for different population sizes N . In Fig. 5.6a,b, the blue and
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green curves show the mean number of proteins in strains 1 and 2, respectively. The gray
curves represent the solutions of corresponding deterministic system (5.1),(5.2),(5.4) with
the same parameters. When the population size is smaller the effects of random fluctuations
are more pronounced. This can be observed when comparing Fig. 5.6a and Fig. 5.6b. In
Fig. 5.6a, where the total cell number N is larger, the protein concentrations x1 and x2

follow the deterministic model (shown by the gray curves) fairly close so that x1 approaches
the repressed state and x2 approaches the expressed state. The ratio r oscillates around the
initial value of r = 0.4. In Fig. 5.6b, initially the genes in strain 2 are expressed while
the genes in strain 1 are repressed. However, as the total cell population is smaller, the
fluctuations in the population ratio r are larger and the likelihood of a switch taking place
in the gene expression states is bigger. Therefore, we observe more switches between the
gene expression states. This behavior cannot be predicted by the deterministic model. In
larger cell populations, the fluctuations in the population ratio are not strong enough and
a switch in the gene expression states is less likely to occur. Furthermore, in a stochastic
model random fluctuations always drive one population to extinction. However, in the
deterministic model when growth rates are equal, no extinctions occur as the ratio remains
constant.

Fig. 5.6c,d show the time evolution of the population ratio r obtained by running 50 sim-
ulations of the stochastic model (5.8)-(5.11). ForN = 200, the variability in the population
ratio is observed to be smaller than that for N = 40. In the bottom plots in Fig. 5.6c,d, the
mean of the population ratio (µr) is shown by a black curve and the mean plus and minus
the standard deviation (µr ± σr) is shown by a magenta curve. When the total population
size is smaller (panel d), the variance of population ratio grows faster with time.

When the two strains have different growth rates, the likelihood that the strain with a
lower growth rate goes extinct increases. Fig. 5.7 shows the simulations of the stochastic
model (5.8)-(5.11) for cases ε = 0.1 and ε = 0.25 each with population sizes N = 200

and N = 40. Simulations of the corresponding deterministic model (5.1),(5.2),(5.4),(5.6)
with the same parameters are also shown as gray curves. As predicted by the deterministic
model, starting from 0.1, the population ratio r increases and crossing a critical value a
switch happens in the gene expression states. However, the time at which this switch occurs
depends on the random fluctuations in the population ratio and could be either before or
after the time predicted by the deterministic model. It can also be the case that strain 1

goes extinct (r becomes 0) and no switches occur. When ε is larger (Fig. 5.7c,d), the switch
occurs faster and the stochastic dynamics are closer to those of the deterministic model.
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Figure 5.7: Simulations of the stochastic system (5.8)-(5.11) with unequal growth
rates of the strains and no metabolic loading (ρ = 0) with different ε and N values
as indicated. The gray curves show the simulations of the corresponding deterministic
model (5.1),(5.2),(5.4),(5.6). Parameters are the same as in Fig. 5.4. Initial conditions are
x1,i(0) = 100 proteins, i = 1, . . . , n1, x2,j(0) = 200 proteins, j = 1, . . . , n2, and initial
ratio of strain 1 is r(0) = 0.1.

5.3.2 The impact of metabolic loading on stochastic growth dynamics

We next simulate the stochastic model (5.8)-(5.11) taking into account the effect of metabolic
loading on the growth rates of the bacterial strains by setting 0 < ρ < 1 in (5.11). As
Fig. 5.8 shows, oscillations occur when the metabolic load is taken into account. How-
ever, when the total population size is small, the likelihood that one of the strains goes
extinct increases. Therefore, as shown in Fig. 5.8(b), the oscillations can stop early due to
extinction.

Next we ask whether metabolic loading affects the extinction time. Our deterministic
analysis showed that metabolic loading increases the frequency of the oscillations in the
population ratio r. Therefore, for smaller populations, one expects that the chance of ex-
tinction increases as the population ratio gets close to 0 or 1 more frequently. To test this
hypothesis numerically, for each of the cases ρ = 0 (no metabolic loading), ρ = 0.5, and
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Figure 5.8: Effects of the metabolic load on the stochastic dynamics of the two-strain
toggle. Simulations of the stochastic system (5.8)-(5.11) with metabolic loading ρ = 0.5
and ε = 0 for different populations sizes as indicated. The gray curves show the simulations
of the corresponding deterministic model (5.1),(5.2),(5.4),(5.7). Parameters are the same
as in Fig. 5.4. Initial conditions are x1,i(0) = 100 proteins, i = 1, . . . , n1, x2,j(0) = 200
proteins, j = 1, . . . , n2, and initial ratio of strain 1 is r(0) = 0.4.

ρ = 0.9, we run 500 simulations of the stochastic model (5.8)-(5.11). The histograms of
the extinction times are shown in Fig. 5.9. Note that the extinction time is determined when
either one of the populations goes extinct, i.e. the time at which r = 0 or r = 1. We see
that the distribution of the extinction times gets narrower as the metabolic load increases.
For higher metabolic loads, the change in the mean and variance of the distribution is more
pronounced.

5.4 Discussion

We showed in this chapter that population growth can significantly alter the dynamics of
synthetic microbial consortia. Differential growth between the strains which constitute the
consortium, whether due to random fluctuations or changes in growth rate due to protein
production, can lead to an imbalance in population sizes and alter the strength of signals
between cells. Further, when the growth rates of cells are directly affected by protein pro-
duction, “hidden” feedback loops arise that can change the dynamical landscape of the con-
sortium. For instance, the regulatory structure of the two-strain co-repressive consortium
forms a positive feedback loop. Positive feedback loops generally do not permit oscillatory
solutions. However, we showed that growth rate changes due to metabolic load can create
a “hidden” negative feedback loop that acts on a slow time scale. Therefore, the entire
system has a fast positive feedback loop (due to signaling) and a slow negative feedback
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Figure 5.9: Effects of the metabolic load on the extinction times of the two-strain con-
sortium. Normalized histograms of the extinction times for different values of metabolic
loading ρ obtained from 500 simulations of the stochastic model (5.8)-(5.11) with N = 40
and ε = 0. Parameters are the same as in Fig. 5.4. Initial conditions are x1,i(0) = 100
proteins, i = 1, . . . , n1, x2,j(0) = 200 proteins, j = 1, . . . , n2, and initial population ratio
is r(0) = 0.5.

loop (due to metabolic loading) – the hallmark of relaxation oscillators [79]. A two-strain
toggle consortium where the growth rates of the strains are affected by the metabolic load
on the cells can therefore exhibit relation oscillations, a behavior that cannot be observed
in the single-strain toggle switch. It is also shown that under the circumstances where
the strains have an identical growth rate not affected by metabolic loading, the consortium
shows bistability similar to the single-strain counterpart.

The perturbations due to the random partitioning of proteins at the time of cell division
can have a strong effect on internal cell dynamics [80]. With metabolic loading internal and
external fluctuations are even more strongly coupled. Variations in the ratio between the
strains can change the expression within each cell. On the other hand, internal fluctuations
within cells can affect growth, and thus the ratio between strains. Our model captures this
interaction of fluctuations across scales, and can be extended to describe more details of
local and global processes, or different dynamical behaviors.

In particular, our analysis could be extended to include spatial effects. Such effects will
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be most important for consortia that are not well-mixed or are large enough to limit inter-
cellular signaling. As strains grow and compete for space within the colony, their spatial
arrangement within the colony will change in time. Therefore, the regulatory “topology” of
such a system will depend on both time and space, significantly complicating resulting dy-
namics. Any model that accurately recapitulates such a situation must include the internal
dynamics of proteins within cells, the spatiotemporal dynamics of intercellular signals, the
growth rate dynamics of the strains, and the time-dependent rearrangement of boundaries
between cell types.
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CHAPTER 6

Conclusion

A stability theory was developed in this dissertation for systems with stochastic delays.
Linear continuous-time systems with stochastic delay were considered. The delay was as-
sumed to take values from a finite set of numbers according to some probability distribution
function. The stability results were obtained in terms of spectral radii of some operators
or matrices governing moment dynamics that can be used to construct stability charts in
parameter domains of interest. The main strength of the stability criteria proposed in this
dissertation is that they are exact—necessary and sufficient—stability conditions; however,
existing stability results in literature, that are obtained from Lyapunov-based theorems,
are conservative sufficient conditions. The proposed stability results can be easily imple-
mented in Matlab or other programming software and therefore are easy to use for design
purposes. While the main stability results were in terms of the stability of the second mo-
ment, almost-sure stability conditions were also discussed. In particular, we showed that
from a computational point of view, the second moment stability criteria are more useful
than the almost sure stability criteria for linear systems with stochastic delay. By studying
generic examples, we showed that the stochasticity in the delay may have significant effects
on the stability that might not be captured using approximating deterministic systems.

The stability analysis tools were applied to models of simple gene regulatory networks.
The effects of stochasticity in protein production times on the stability of the steady state
protein production were characterized. In particular, it was found that the stochasticity
in the delay times can improve the stability of the steady state. Moreover, designing a
stochastic combination of two distinct regulatory pathways with distinct delays, where each
individual pathway alone is oscillatory, can lead to a stable steady state in a self-regulatory
gene.

The interactions between intracellular gene expression and population dynamics in mul-
ticellular environments were investigated using deterministic and stochastic approaches.
We found that in a two-strain microbial consortium, metabolic loading may provide a mech-
anism to create sustained oscillations in both gene expression and population levels.
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APPENDIX A

Mass-action kinetics of auto-regulatory gene

Here, we use mass-action kinetics to provide some details regarding the origin of the pa-
rameters such as degradation and production rates that appear in the auto-regulatory net-
work models (4.6) and (4.16). We first take mRNA dynamics into account to derive model
(4.16). Then we show how one can simplify (4.16) to (4.6) using quasi steady state approx-
imations. We assume that the proteins produced through transcription and translation form
dimers which bind to the promoter site of the gene and repress their own transcription by
blocking the RNA polymerase from binding.

The set of reactions we consider are

P + P
k+


k−
D ,

G+D
r+


r−
Gd ,

G
ν−→ G+M0 ,

M0
c−→M1 ,

...

MN
c−→M , (A.1)

M
γm−→ ∅ ,

M
ν̃−→M + P0 ,

P0
c̃−→ P1 ,

...

PÑ
c̃−→ P ,

P
γp−→ ∅ ,

where P represents the number of the fully mature proteins (often called transcription fac-
tors), M represents the number of mRNA transcripts, D is the number of dimers, G is the
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number of genes without dimers bound to them, andGd is the number of genes with dimers
bound. Finally, the symbols Mi, i = 0, . . . , N , and Pi, i = 0, . . . , Ñ are the numbers of
molecules of mRNA and protein in the intermediate stages of synthesis in the transcription
and translation processes, respectively. The variables k+ and k− are the associative and
dissociative rate constants for dimerization, while r+ and r− are the reaction rates for bind-
ing and unbinding of a dimer to the promoter site. The initiation of the transcription that
occurs when an RNA polymerase binds to a gene with an unoccupied promoter site occurs
with reaction rate ν. For each reaction in the following sequence the reaction rate is set to c
(transcription rate). The initiation of the translation occurs at rate ν̃ and each reaction in the
following sequence happens with rate c̃. The symbols γm and γp represent the mRNA and
protein degradation rates, respectively. We remark that further details may be considered
regarding the binding of the RNA polymerase [38] that are omitted here for simplicity.

Using the generalized mass-action kinetics for (A.1), we arrive at the following set of
ordinary differential equations

dd

dt
= k+ p

2 − k− d− r+ g d+ r− gd ,

dg

dt
= −r+ g d+ r− gd ,

dm0

dt
= νg − cm0 ,

dmi

dt
= cmi−1 − cmi , for i = 1, . . . , N ,

dm

dt
= −γmm+ cmN ,

dp0

dt
= ν̃m− c̃ p0 ,

dpi
dt

= c̃ pi−1 − c̃ pi , for i = 1, . . . , Ñ ,

dp

dt
= −γp p+ c̃ pÑ − 2k+ p

2 + 2k− d ,

(A.2)

where the lower case letters denote the corresponding concentrations and the plasmid copy
number g + gd is assumed to be constant. Notice that the set of linear equations for mi,
i = 1, . . . , N and pi, i = 1, . . . , Ñ can be solved analytically to obtain mN(t) and pÑ(t) as
a function ofm0(t) and p0(t), respectively. In particular, considering zero initial conditions
we have

mi(t) =

∫ t

0

c e−c(t−u)mi−1(u) du , (A.3)
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for i = 1, . . . , N . Substituting the solution

m1(t) =

∫ t

0

c e−c(t−u)m0(u) du , (A.4)

into the formula of m2(t) gives

m2(t) =

∫ t

0

c e−c(t−v)m1(v) dv =

∫ t

0

∫ v

0

c2 e−c(t−u)m0(u) du dv =

∫ t

0

c2 σe−cσm0(t−σ) dσ ,

(A.5)
where we changed the order of integration and defined the new variable σ = t−u to obtain
the result. Similarly, we can obtain

m3(t) =

∫ t

0

c3σ2e−cσ

2!
m0(t− σ) dσ. (A.6)

Repeating the integration in the same manner we arrive at

mN(t) =

∫ ∞
0

cNσN−1e−cσ

(N − 1)!
m0(t− σ) dσ =

∫ ∞
0

we(σ)m0(t− σ) dσ , (A.7)

wherewe(σ) is the Erlang distribution (4.2) and we extended the integration limit to infinity
since we consider m0(t) ≡ 0 for t ≤ 0. Similarly, for pÑ(t) we have

pÑ(t) =

∫ ∞
0

c̃ÑσÑ−1e−c̃σ

(Ñ − 1)!
p0(t− σ) dσ =

∫ ∞
0

w̃e(σ) p0(t− σ) dσ , (A.8)

where w̃e(σ) is the Erlang distribution with order Ñ and rate c̃. Using (A.7) and (A.8), we
can reduce (A.2) to

dd

dt
= k+ p

2 − k− d− r+ g d+ r− gd ,

dg

dt
= −r+ g d+ r− gd ,

dm0

dt
= ν g − cm0 ,

dm

dt
= γmm+ c

∫ ∞
0

we(σ)m0(t− σ) dσ ,

dp0

dt
= ν̃ m− c̃ p0 ,

dp

dt
= −γp p+ c̃

∫ ∞
0

w̃e(σ) p0(t− σ) dσ − 2k+ p
2 + 2k− d .

(A.9)
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This may be further reduced by using quasi-steady state approximations and singular per-
turbation methods. In particular, assuming that the kinetics of dimerization, promoter bind-
ing, transcription initiation, and translation initiation happen on a fast time-scale, the cor-
responding equations can be assumed to reach equilibrium quickly, allowing us to replace
d(t), g(t), m0(t), and p0(t) with their respective steady-state values yielding

ṁ(t) = −γmm(t) +

∫ ∞
0

we(σ)
αm

1 +
(
p(t− σ)/ph

)2 dσ ,

ṗ(t) = −γp p(t) +

∫ ∞
0

w̃e(σ)αpm(t− σ) dσ ,

(A.10)

with constants αm = ν(g + gd), ph =
√

r−k−
r+k+

, and αp = ν̃.
Note that equations (A.10) are the mean dynamics of the auto-regulatory network as

they are obtained through mass-action kinetics. Thus, we may assume a single delay σ̄ for
the transcription and a single delay ¯̃σ for the translation to obtain

ṁ(t) = −γmm(t) +
αm

1 +
(
p(t− σ̄)/ph

)2 ,

ṗ(t) = −γp p(t) + αpm(t− ¯̃σ) .

(A.11)

We can further simplify (A.11) by using the change of variables m̂(t) = m(t − ¯̃σ). This
allows us to absorb the two delays into one single delay τ = σ̄ + ¯̃σ and obtain

˙̂m(t) = −γm m̂(t) +
αm

1 +
(
p(t− τ)/ph

)2 ,

ṗ(t) = −γp p(t) + αp m̂(t),

(A.12)

which is the same as (4.16).
Finally assuming that the mRNA dynamics are fast and replacing m̂(t) in the second

equation in (A.12) with its steady-state value we arrive at

ṗ(t) = −γp p(t) +
κ

1 +
(
p(t− τ)/ph

)2 , (A.13)

where κ = αmαp/γm that is the same as (4.6).
We remark that one may also obtain (A.13) by neglecting the mRNA dynamics in (A.1)

and following the steps above yielding

ṗ(t) = −γp p(t) +

∫ ∞
0

we(σ)
κ

1 +
(
p(t− σ)/ph

)2 dσ (A.14)
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for the mean protein dynamics.
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