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ABSTRACT 

Digital breast tomosynthesis (DBT) has been developed to reduce the issue of overlapping 

tissue in conventional 2-D mammography for breast cancer screening and diagnosis. In the DBT 

procedure, the patient’s breast is compressed with a paddle and a sequence of x-ray projections is 

taken within a small angular range. Tomographic reconstruction algorithms are then applied to 

these projections, generating tomosynthesized image slices of the breast, such that radiologists 

can read the breast slice by slice. Studies have shown that DBT can reduce both false-negative 

diagnoses of breast cancer and false-positive recalls compared to mammography alone. 

This dissertation focuses on improving image quality for DBT reconstruction. Chapter I 

briefly introduces the concept of DBT and the inspiration of my study. Chapter II covers the 

background of my research including the concept of image reconstruction, the geometry of our 

experimental DBT system and figures of merit for image quality. Chapter III introduces our 

study of the segmented separable footprint (SG) projector. By taking into account the finite size 

of detector element, the SG projector improves the accuracy of forward projections in iterative 

image reconstruction. Due to the more efficient access to memory, the SG projector is also faster 

than the traditional ray-tracing (RT) projector. We applied the SG projector to regular and 

subpixel reconstructions and demonstrated its effectiveness. Chapter IV introduces a new DBT 

reconstruction method with detector blur and correlated noise modeling, called the SQS-DBCN 

algorithm. The SQS-DBCN algorithm is able to significantly enhance microcalcifications (MC) 

in DBT while preserving the appearance of the soft tissue and mass margin. Comparisons 

between the SQS-DBCN algorithm and several modified versions of the SQS-DBCN algorithm 

indicate the importance of modeling different components of the system physics at the same time. 

Chapter V investigates truncated projection artifact (TPA) removal algorithms. Among the 

three algorithms we proposed, the pre-reconstruction-based projection view (PV) extrapolation 

method provides the best performance. Possible improvements of the other two TPA removal 

algorithms have been discussed. Chapter VI of this dissertation examines the effect of source 



xxii 

 

blur on DBT reconstruction. Our analytical calculation demonstrates that the point spread 

function (PSF) of source blur is highly shift-variant. We used CatSim to simulate digital 

phantoms. Analysis on the reconstructed images demonstrates that a typical finite-sized focal 

spot (~ 0.3 mm) will not affect the image quality if the x-ray tube is stationary during the data 

acquisition. For DBT systems with continuous-motion data acquisition, the motion of the x-ray 

tube is the main cause of the effective source blur and will cause loss in the contrast of objects. 

Therefore modeling the source blur for these DBT systems could potentially improve the 

reconstructed image quality. The final chapter of this dissertation discusses a few future studies 

that are inspired by my PhD research. 
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CHAPTER I.  

Introduction 

 

I.1 Breast cancer and mammography 

Breast cancer is the most common non-skin cancer and second deadliest cancer in women.  

1,677,000 new cases of breast cancer were diagnosed in 2012 [3]. The incidence rate of breast 

cancer is especially high in the United States that about one in eight women will be diagnosed 

with breast cancer at some point during their lifetime [4]. 

 

Figure 1.1. A typical full-field digital mammography system. An anti-scatter grid and a flat panel 

detector are enclosed inside the breast support structure.  

The stage of breast cancer is the dominant prognostic factor [5]. A reliable breast cancer 

screening technique that can detect breast cancer at early stages can potentially save thousands of 

lives all around the world. Currently, the commonly used breast cancer screening technique is 
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mammography [6-9]. Mammography is a low-cost, high-resolution, fast and non-invasive breast 

imaging technique with low radiation dose. The mammography system is shown in Figure 1.1. 

During the mammography procedure, the breast of the patient is compressed along two 

directions, providing two dimensional (2-D) x-ray projection images of the breast from two 

views, the cranial-caudal (CC) view and the mediolateral-oblique (MLO) view. In this procedure, 

the compression of the breast reduces the breast tissue thickness that x-ray penetrates, which 

helps to reduce the noise and the scattered radiation. Radiologists use the scanned x-ray 

projection images to check whether there exist any abnormal growths in the breast. 

Despite the high incidence rate of breast cancer and importance of early detection in 

treatment, the benefits of breast cancer screening are controversial due the relatively low 

sensitivity and specialty of mammography [9-11]. Standard mammography is known to suffer 

from the problem of overlapping tissue because of the 2-D nature of the method. The 

overlapping of lesion and dense glandular tissue can lead to false negative diagnosis, while 

overlapping normal features can appear to be lesion and result in false positive diagnosis. For 

women with heterogeneously or dense breast, the sensitivity of mammography could be lower 

than 70% [12]. It is also known that the sensitivity of mammography is low for young women 

[12]. As a result, in the United States screening of breast cancer is only recommended every two 

years in women between the ages of 50 to 74 who are at normal risk for breast cancer [13]. 

 

I.2 Digital breast tomosynthesis 

To overcome the limitations of traditional mammography, researchers have proposed using 

tomosynthesis to enhance the quality of breast imaging for both screening and diagnosis by 

reducing the issue of overlapping tissue in mammography. When the concept of tomosynthesis 

first appeared, it was not proposed for medical use. The concept of tomosynthesis was derived by 

Ziedses des Plantes [14] in 1930s, which was referred to as ‘geometric tomography’. In 

conventional geometric tomography, the x-ray tube and the film were moved in opposite 

directions. By choosing the shift of the x-ray tube and the film, a certain plane inside the imaged 

object is in focus such that only features within this plane will get enhanced. Therefore, this 

technique can be used to reduce the issue of overlapping structures of the 2-D mammography. 

Instead of enhancing the image at one specific depth, digital tomosynthesis enhances all 

slices of the imaged volume at the same time to generate a three dimensional (3-D) reconstructed 
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image. Digital tomosynthesis acquires a series of projections of the imaged object within a 

narrow angular range. A tomographic reconstruction algorithm is applied to the projections to 

generate a 3-D image of the object. This is equivalent to arbitrarily adjusting the shift of the x-

ray tube and the film in conventional geometric tomography to choose an arbitrary focal plane. 

Because of the limited scan angle, the spatial resolution of tomosynthesis is anisotropic with high 

in-plane resolution and low in-depth resolution. The data acquisition is incomplete, such that 

tomosynthesis is sometimes called pseudotomographic imaging, in comparison with computed 

tomography (CT) where the source and detector make at least a complete 180 degree rotation to 

obtain a complete set of projections.  

 

Figure 1.2. Principle of the DBT system (image source: Fujifilm website). 

The application of tomosynthesis on breast imaging was first demonstrated by Niklason et al. 

in 1997 [15] after the invention of flat-panel detectors capable of measuring high-resolution x-

ray projection images. The newer procedure is called digital breast tomosynthesis (DBT). The 

acquisition geometry of DBT is similar to mammography, as shown in Figure 1.2. In the DBT 

procedure, the breast of the patient is compressed in the same way as mammography. The x-ray 

tube swings to collect a set of digital projection images with lower x-ray dose. After image 

reconstruction, image slices will be obtained at each depth of the compressed breast, as shown in 
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the lower right corner of Figure 1.2. The overlapping tissue on the mammography image (lower 

left corner of Figure 1.2) now clearly displays a cluster of dots, a network of lines and a star-

shaped area of dense tissue on three different slices with tomosynthesis. The clear structures of 

breast tissue on the DBT slices will help radiologists to make more accurate diagnosis. The DBT 

slices, on the other hand, can also be summed to produce an image similar to mammography. In 

fact, because of the similarity and connection between mammography and DBT, DBT is 

sometimes called ‘3D mammography’ in the commercial systems and these systems are usually 

able to perform traditional mammography procedure at the same time. Clinically, the DBT 

procedure is usually done to assist traditional mammography. Studies have shown that a 

combination of DBT and mammography can reduce both false-negative diagnoses of breast 

cancer and false-positive recalls compared to mammography alone [16-24]. 

 

I.3 Limitations of DBT and the inspiration of this dissertation 

Despite the advantages of DBT, it also has limitations in practice. The total dose of DBT is 

comparable with mammography; therefore each projection image of DBT is acquired with low 

x-ray dose, making them much noisier. The motion of the x-ray source in DBT can cause 

blurring for projections, especially for DBT systems using the continuous-motion data 

acquisition [25-27]. The acquisition time of DBT is also longer than mammography, increasing 

the discomfort of the patient due to breast compression and making the motion of the breast more 

likely to happen to cause blurring of the image. In fact, the DBT procedure has not been accepted 

as a reliable breast imaging technique and is usually used to assist the traditional mammography. 

Considering DBT’s potential in the diagnosis of breast cancer and its limitations, my PhD 

study aims to overcome the limitations of DBT to make it a more reliable breast imaging 

technique. In x-ray CT, studies have demonstrated the possibility of lowering the dose while 

maintaining the image quality with statistical image reconstruction methods [28, 29]. For DBT, 

studies have also shown the promise of iterative reconstruction (IR) methods in improving image 

quality [30-36]. Among the IR methods, model-based image reconstruction (MBIR) methods 

incorporate the physics model of the system and the statistical model of signal detection. Studies 

on different 3D modalities [37-45] have demonstrated the benefits of modeling the system 

physics to improve the image quality. Although some studies on MBIR methods for DBT have 
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been conducted [41, 42], they considered only limited aspects of the system model. The idea of 

MBIR needs further investigation to show its potential in DBT applications. 

My PhD research focuses on improving the reconstructed image quality for DBT by 

developing improved post-acquisition reconstruction methods. The idea of MBIR inspires many 

studies introduced in this dissertation, as introduced in following chapters. 

 

I.4 Outline of the dissertation 

In this dissertation, Chapter II introduces the background of my study, including the concepts 

of tomographic reconstruction, statistical image reconstruction and MBIR, the geometry of our 

experimental DBT system, the projection compensation multiplier, the truncated projection 

artifact (TPA) and the figures of merit (FOM) for image quality in DBT. The concepts, notations 

and equations in this chapter will be used in the following chapters. 

Chapter III introduces the segmented separable footprint projector (SG projector) and 

subpixel image reconstruction. The SG projector improves the accuracy and speed of forward 

and backward projections in DBT, which improves the accuracy of the system model and 

enhanced reconstructed image quality as demonstrated with the simulated phantoms. The 

advantage of the SG projector over the traditional ray-tracing (RT) projector is especially 

significant when used in subpixel reconstruction. This study also demonstrates that a better 

match between the digital implementation and the actual system physics can improve image 

quality in DBT reconstruction. 

Chapter IV introduces the SQS-DBCN algorithm, a new image reconstruction algorithm for 

DBT that accounts for detector blur and correlated noise (DBCN). This method is inspired by 

MBIR. By incorporating the system physics, the SQS-DBCN method significantly enhanced the 

contrast-to-noise ratio (CNR) of the reconstructed microcalcifications (MC) in our experimental 

phantom. The SQS-DBCN method also controls the noise and preserves the image quality of soft 

tissue. Further tests with modified versions of the SQS-DBCN algorithm demonstrated the 

importance of incorporating different model components at the same time. 

Chapter V introduces our comparative study on TPA removal. We proposed and tested three 

TPA removal methods based on the extrapolation of the measured projection images or the 

regularized image reconstruction. Among the three methods, the pre-reconstruction-based 
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projection view (PV) extrapolation method provides the best performance. Potential 

improvements of the other two methods have been discussed in this chapter. 

Chapter VI investigates the effect of source blur on DBT reconstruction. We first studied the 

spatial shift-variance of the point spread function (PSF) of the source blur. Then we used 

simulated phantoms to demonstrate that for DBT systems with a typical focal-spot size (~0.3mm) 

and stationary data acquisition, the influence of the finite-sized focal spot can be neglected. For 

DBT systems with continuous-motion data acquisition, the motion of the x-ray tube is the main 

source of the effective source blur and might cause obvious degradation in image quality. 

Modeling the source blur could potentially improve image quality for these systems. 

Chapter VII briefly summarizes the studies in the dissertation and discusses potential future 

studies based on the conclusions and limitations of this dissertation. 
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CHAPTER II.  

Background 

 

This chapter introduces the background of my PhD study. The concepts, notations, figures, 

equations and system parameters introduced in this chapter will be used in the following chapters 

of this dissertation. 

 

II.1 Introduction to DBT image reconstruction 

DBT is a type of X-ray tomographic imaging technique. By taking use the penetrating power 

of X-ray, it allows the user to see inside the scanned object. In the DBT procedure, cone-shaped 

x-ray beams are generated by the x-ray source to penetrate the scanned object from different 

angles. The attenuated x-ray beams are measured by a detector to create 2-D projection images 

or projection views (PV) of the scanned object at different angles. By processing the PVs, the 

distribution of the x-ray attenuation coefficient can be estimated in the 3-D volume. This 3-D 

distribution is the reconstructed image that reveals the structure inside the scanned object. 

The procedure of estimating the 3-D distribution of the x-ray attenuation coefficient from the 

PVs is called tomographic reconstruction. Mathematically, tomographic reconstruction is a type 

of inverse problem. Let 𝑓(𝑥, 𝑦, 𝑧) denote the 3-D distribution of the x-ray attenuation coefficient. 

If we neglect the fluctuation of x-ray radiation and the scattered radiation, the attenuation of the 

x-ray beam inside the breast follows the Lambert-Beer law: 

 𝑌(𝑡, 𝑠; 𝑖) = 𝑌0(𝑡, 𝑠; 𝑖) exp (−∫ 𝑓(𝑥, 𝑦, 𝑧)d𝑙
𝐿(𝑡,𝑠;𝑖)

), (2.1) 

where (t, s) denotes a location on the detector, (𝑥, 𝑦, 𝑧) denotes a location in the 3-D volume, 𝑖 

denotes the index of the projection angle, 𝐿(𝑡, 𝑠; 𝑖) denotes the line from the x-ray source to the 

location (t, s) for the ith projection angle, 𝑌(𝑡, 𝑠; 𝑖) denotes the projection value at (t, s) and 
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𝑌0(𝑡, 𝑠; 𝑖) denotes the projection value if there is no object is in the 3-D volume. 𝑌0(𝑡, 𝑠; 𝑖) can be 

measured with an air scan and is usually considered known. In this dissertation we focus on the 

case where this (mono-energetic) Lambert-Beer law (Equation 2.1) holds for the measured or 

simulated data from a poly-energetic x-ray source with beam hardening [46].  

By taking log transform to both sides of Equation 2.1, we have: 

 𝑦(𝑡, 𝑠; 𝑖) = ∫ 𝑓(𝑥, 𝑦, 𝑧)𝑑𝑙
𝐿(𝑡,𝑠;𝑖)

, (2.2) 

where 

 𝑦(𝑡, 𝑠; 𝑖) = log (
𝑌0(𝑡, 𝑠; 𝑖)

𝑌(𝑡, 𝑠; 𝑖)
). (2.3) 

The right-hand side of Equation 2.2 is known as the Radon transform of 𝑓(𝑥, 𝑦, 𝑧), which is a 

linear transform [47]. Since both 𝑌(𝑡, 𝑠; 𝑖)  and 𝑌0(𝑡, 𝑠; 𝑖)  are known, 𝑦(𝑡, 𝑠; 𝑖)  can be easily 

calculated with Equation 2.3. Therefore the problem of tomographic reconstruction is to estimate 

the unknown distribution of 𝑓(𝑥, 𝑦, 𝑧) from the known values of 𝑦(𝑡, 𝑠; 𝑖) at different locations 

measured from different projection angles. 

Equation 2.1-2.3 explains the concept of image reconstruction for a continuous 3-D image 

and continuous projections. In the practical implementation of image reconstruction, both the 

PVs and the reconstructed image are digitalized. We denote the discrete array of x-ray 

attenuation coefficients as f. Although f is a 3D distribution, we write it as a column vector such 

that a linear operation on f can be written as multiplying it by a matrix. Denoting the number of 

voxels in the imaged volume to be N, f is a length-N column vector. Assuming the number of 

pixels of one PV to be M, which is the same for all projection angles, we can use a length-M 

column vector 𝐘𝑖 to denote the ith measured projection image. Let 𝑁p denote the total number of 

projection angles; we write all the projection images as one column vector, denoted as 𝐘: 

 𝐘 = (

𝐘1

⋮
𝐘𝑁p

). (2.4) 

The log-transformed PVs are written as: 

 𝐲 = log (
𝐼0
𝐘
) = (

𝐲1

⋮
𝐲𝑁p

), (2.5) 

where the length-M column vector 𝐲𝑖 denotes the log-transformed PV at the ith projection angle. 

For simplicity we assume that 𝑌0(𝑡, 𝑠; 𝑖) = 𝐼0, that 𝐼0 is a constant. In fact due to the heel effect 
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of the anode and the non-uniform incident angle of x-rays, 𝑌0(𝑡, 𝑠; 𝑖) is usually non-uniform. To 

consider the non-uniformity of 𝑌0(𝑡, 𝑠; 𝑖), one can simply replace the scalar 𝐼0 with the measured 

air scans or an estimated distribution of the air scans. 

With the digitalized 𝐲𝑖 and f, the linear Radon transform in Equation 2.2 can be written in the 

form of matrix multiplication: 

 𝐲𝑖 = 𝐀𝑖𝐟. (2.6) 

𝐀𝑖 is called the system matrix at the ith projection angle. The size of 𝐀𝑖 is M×N. Since 𝐲𝑖 is the 

2-D projection generated by the 3-D image 𝐟, the operation 𝐀𝑖𝐟 is called the forward projection. 

𝐀𝑖 is also known as the forward projector in tomographic reconstruction. We call 𝐀𝑖𝐟 ‘forward 

projection’ instead of just ‘projection’ to differentiate it from the backward projection. The 

backward projection applied to a PV 𝐲𝑖 can be written as: 

 𝐟𝑖 = 𝐀𝑖′𝐲𝑖, (2.7) 

where 𝐀𝑖′ is the transpose of the matrix 𝐀𝑖. 𝐟𝑖 is the result of the backward projection, which is a 

length-N vector (same size as 𝐟). 𝐀𝑖′  is called the backward projector. Obviously Equation 2.7 is 

not the inverse operation of Equation 2.6. In fact, 𝐀𝑖 is usually not a square matrix and its inverse 

does not exist. The backward projection is commonly used in tomographic reconstruction to 

update the values of 𝐟 from the measured data. The details will be discussed in the next section. 

The value of the matrix element 𝐀𝑖(𝑚, 𝑛) represents the contribution of the nth voxel of the 

image 𝐟 to the mth pixel of the PV 𝐲𝑖 . In many studies on DBT reconstruction, 𝐀𝑖(𝑚, 𝑛) is 

assumed to be the intersection length of the x-ray from the source to the center of the mth 

detector element with the nth voxel of the 3-D image. In Chapter III, we will show the derivation 

of 𝐀𝑖(𝑚, 𝑛). The derivation indicates that assuming 𝐀𝑖(𝑚, 𝑛) to be the intersection length is 

equivalent to using the simplified detection model that each detector element has infinite 

sensitivity at the center and zero sensitivity at all other locations. We will also introduce our new 

calculation of 𝐀𝑖(𝑚, 𝑛) that improves the accuracy and speed of both the forward and backward 

projections in iterative DBT reconstruction. 

According to Equation 2.6, the image reconstruction problem in DBT is to find a solution to 

the following set of linear equations: 

 𝐲 = 𝐀𝐟, (2.8) 

where 𝐀 is the system matrix corresponding to all projection angles: 



10 

 

 𝐀 = (

𝐀1

⋮
𝐀𝑁p

). (2.9) 

Due to the huge total number of voxels in DBT reconstruction (𝑁~108), Equation 2.8 is a 

large-scale inverse problem. Multiple methods to solve Equation 2.8 have been proposed and 

studied, as introduced in the next section. 

 

II.2 Image reconstruction algorithms 

The image reconstruction in Equation 2.8 is a simplified form of the problem. In practical 

DBT, the projection images are highly noisy due to the limited x-ray dose of each projection. In 

this section, we will discuss three categories of image reconstruction algorithms that have been 

studied or are practically used in commercial DBT systems. These three categories of algorithms 

are: (1) filtered back-projection (FBP); (2) the algebraic reconstruction algorithms; (3) the 

statistical reconstruction algorithms.  

The FBP algorithm is a type of Fourier-domain reconstruction algorithm [45, 48-52]. Simply 

speaking, the FBP method is a frequency-domain-based transform applied to 𝐲  that can be 

briefly written as: 

 𝐟 = FBP(𝐲), (2.10) 

where the operation FBP(∙) consists of high-pass filters and backward projections. 

The FBP reconstruction has been used in commercial DBT systems by Hologic and Siemens 

[44]. The high-pass filters needs to be carefully designed to preserve image quality without 

severely amplifying the noise. The details of the filters used in commercial DBT systems cannot 

be found in literatures. In the following chapters of this dissertation, we mainly focus on iterative 

reconstruction methods for DBT. As result, we will not discuss the FBP algorithm in detail. 

Different from the FBP method that directly applies a transform to the projection images, the 

algebraic reconstruction algorithms [53-55] try to solve Equation 2.8 with iterative methods. The 

original algebraic reconstruction algorithm is known as the algebraic reconstruction technique 

(ART). It updates the distribution of the x-ray attenuation coefficients (f) ray by ray to satisfy 

one row of the Equation 2.8 at a time. Due to the existence of noise, Equation 2.8 does not have a 

precise solution and the ART algorithm is known to generate highly noisy reconstructed images 

[31]. Several modified versions of the ART algorithm have been proposed such as the 
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simultaneous iterative reconstruction technique (SIRT) [53, 55] and the simultaneous algebraic 

reconstruction technique (SART) [56, 57]. The comparative study previously conducted by our 

lab demonstrated the effectiveness of SART in DBT reconstruction [31]. SART is an iterative 

reconstruction method that the update of the image 𝐟 can be written as: 

 𝐟(𝑖SART,𝑖+1) = 𝐟(𝑖SART,𝑖) + 𝜆𝑖SART
(𝐀𝑖′((𝐲𝑖 − 𝐀𝑖𝐟) ⊘ (𝐀𝑖𝟏𝑁))) ⊘ (𝐀𝑖′𝟏𝑀), (2.11) 

where 𝑖 is the index of the projection angle and 𝑖SART is the index of the SART iteration. 𝟏𝑁 and 

𝟏𝑀  denote length-N and length-M all-one vectors. The symbol ⊘  denotes the element-wise 

division. 𝑖SART  is increased by one after all PVs (𝑖 = 1,2, … ,𝑁p) have been used once. The 

forward projector 𝐀𝑖  and its transpose, the backward projector 𝐀𝑖′ , were introduced in the 

previous section. 𝜆𝑖SART
 is the relaxation factor that is equal to or smaller than 1 to control the 

amplification of the noise. 

We use SART to reconstruct the simulated digital phantoms in Chapter III and VI. SART is 

also used as a reference algorithm in Chapter IV to compare with our new reconstruction method. 

Although not state-of-the-art, SART has been shown to provide good image quality for 

reconstructing DBT acquired with our prototype DBT system [31] and has been evaluated by 

other investigators [44, 58]. SART will also be used to test our artifact removal methods in 

Chapter V. 

One disadvantage of algebraic methods is the lack of statistical model of the noise. When 

using algebraic methods, it is also difficult to apply regularization to control the amplification of 

noise when using the iterations. For this reason, in the image reconstruction for our experimental 

DBT system, we usually do only 1 or 2 SART iterations [31]. The statistical reconstruction 

algorithms, on the other hand, allow the probability model of the noise to be considered and 

flexible choice of regularizations. For statistical image reconstruction algorithms, we include a 

noise vector 𝛜𝑖 in Equation 2.6 for the ith projection angle. Therefore we have the following 

expression for the measurement model: 

 𝐲𝑖 = 𝐀𝑖𝐟 + 𝛜𝑖. (2.12) 

Here, the noise 𝛜𝑖 has the same size as 𝐲𝑖. It is a realization of a random vector with a known 

probability distribution function (PDF) that represents the statistical model of the noise. 

Therefore 𝐲𝑖 is also a realization of a random vector. The PDF of this random vector can be 

derived from the noise model if f is given. We also include a probability model 𝑃𝐟(𝐟) for 𝐟 that 
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represents our prior knowledge or expectation for the image to be reconstructed. The statistical 

image reconstruction tries to find 𝐟 such that: 

 𝐟 = argmax
𝐟

𝑃(𝐟|𝐲) = argmax
𝐟

𝑃𝐲|𝐟(𝐲|𝐟)𝑃𝐟(𝐟), (2.13) 

where 𝑃𝐲|𝐟(𝐲|𝐟) is the PDF of 𝐲 given 𝐟. The function 𝑃𝐟(𝐟) serves as a regularization term when 

we formulate the optimization problem. 

A common choice of the probability model for 𝛜𝑖 is the multivariate Gaussian distribution 

with zero mean. Let 𝐊𝑖 denote the covariance matrix of this distribution. Assume that 𝑃𝐟(𝐟) can 

be written as the exponent of a function: 𝑃𝐟(𝐟) = exp(−𝑅(𝐟)), then Equation 2.13 simplifies to 

be a regularized quadratic optimization problem: 

 𝐟 = argmin
𝐟

∑
1

2
‖𝐲𝑖 − 𝐀𝑖𝐟‖𝐊𝑖

−1
2

𝑁𝐩

𝑖=1
+ 𝑅(𝐟), (2.14) 

This is the commonly used form of the optimization problem in statistical image 

reconstruction. Similar to the algebraic image reconstruction, Equation 2.14 must be solved with 

iterative methods. 

Compared with Equation 2.7, the expression of Equation 2.14 allows us to include a 

covariance matrix for the noise, which can be estimated from the measured data given the 

assumptions on the correlation of the noise. Equation 2.14 also allows us to choose 𝑅(𝐟) based 

on our expectation of the image 𝐟. The linear operation 𝐀𝑖  can include the modeling of the 

physics of the imaging system, such as the blurring of the detector. In summary, Equation 2.14 

allows us to incorporate different model components into the image reconstruction. When these 

model components are incorporated based on the realistic system physics, the resulting 

reconstruction algorithm is called a model-based image reconstruction (MBIR) algorithm. 

Modeling system physics in image reconstruction has been investigated in CT and other 3D 

modalities and improvement in image quality has been observed [37-46, 59-62]. The idea of 

MBIR is a major inspiration of many studies introduced in this dissertation. The connection 

between the studies and the idea of MBIR will be discussed in details in each of the following 

four chapters. 

The regularization term 𝑅(𝐟) in Equation 2.14 is especially important for DBT reconstruction. 

The system matrix 𝐀 usually has more columns than rows in DBT, making Equation 2.14 an 

underdetermined problem without regularization. Due to the narrow scan angle of DBT, the 

unregularized image reconstruction is an ill-posed inverse problem that small measurement 
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fluctuation such as noise could cause large perturbations of the reconstructed. Several studies 

have been conducted on regularization of limited-angle reconstruction. For example, the total 

variation (TV) method was applied to DBT reconstruction [32, 63]. We have also proposed a 

spatially weighted non-convex (SWNC) regularization for enhancing microcalcifications (MC) 

in DBT reconstruction; this work was published as an SPIE proceedings paper [64]. Considering 

the limited practical value of this method, it is not included in this dissertation. In Chapter III and 

VI, we use noiseless simulated projections so unregularized SART provides satisfactory 

reconstruction results. In Chapter IV where we use the experimental data, the edge-preserving 

regularization has been demonstrated to play an important role in our new reconstruction method. 

Before ending this section, we introduce a more general form for statistical image 

reconstruction. In Equation 2.12, the noise is considered to be additive to the log-transformed 

projection 𝐲𝑖. In fact, a more general form of Equation 2.12 considers the noise to be additive to 

the originally measured projection images 𝐘 before the log transform. This will give us the 

following expression for statistical image reconstruction: 

 𝐟 = argmax
𝐟

𝑃(𝐟|𝐘) = argmax
𝐟

𝑃𝐘|𝐟(𝐘|𝐟)𝑃𝐟(𝐟), (2.15) 

where 𝑃𝐘|𝐟(𝐘|𝐟) is the PDF of Y given 𝐟. 𝑃𝐲|𝐟(𝐲|𝐟) in Equation 2.14 sometimes can be derived 

from 𝑃𝐘|𝐟(𝐘|𝐟) with approximations, as shown in Chapter IV. Chapter IV starts from Equation 

2.15 to derive our cost function. With approximations, the optimization problem formulated is 

similar to Equation 2.14. 

 

II.3 The experimental DBT system 

The DBT system studied in our lab is the GE second generation (GEN2) prototype DBT 

system. Most of our experimental DBT scans, including the phantom scans and the human-

subject cases, were collected with this DBT system. The experimental data will be used in 

Chapter IV to test our SQS-DBCN reconstruction method for DBT. The CatSim simulation of 

projections of the digital phantoms in Chapter III matches the geometry of this DBT system. In 

Chapter VI we simulated projections with the same geometry as the prototype DBT but with 

enlarged size for the detector to match the commercial DBT systems by GE Healthcare. 

Figure 2.1 shows the imaging geometry of the GE GEN2 prototype DBT system. We use x-y-

z coordinate for the imaged volume and t-s coordinate for the detector. In our DBT system, the 
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source rotates in a plane. We use the term ‘rotation center’ to denote the point where the rotation 

axis intersects with the rotation plane of the source. The origin x,y,z = 0 (marked as O in Figure 

2.1) is the rotation center and t,s = 0 is its perpendicular projection on the detector. The x-ray 

tube rotates in 3° increments to acquire 21 projection images within ±30°. In Chapter IV, we 

used the 9 central projections for reconstruction to simulate the DBT acquired with narrow-angle 

DBT system, corresponding to DBT of 24
o
 scan angle with 3

o
 increments, which was close to the 

25
o
 scan angle and 3

o
 increments for the GE commercial system. The x-ray exposure for each 

DBT was therefore reduced to less than half of the original values. 

 

Figure 2.1. Geometry of the GE GEN2 prototype DBT system. 

The digital detector is stationary during the acquisition. The system uses a CsI phosphor/a:Si 

active matrix flat panel detector with a resolution of 1920 × 2304, and the pixel size is 0.1 × 

0.1mm
2
. The distance from the source to rotation center is 64cm. There is a 2cm gap between the 

imaged volume and the digital detector. Different DBT systems may have different geometry 

(e.g., scan angle, angular increments) but the approaches introduced in this dissertation should be 

applicable to other geometries. 
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The patient stands in front of the system with the chest wall against the edge of the detector. 

In most cases, the x-direction width of the detector is larger than the width of the compressed 

breast. The patient's breast usually will not reach the anterior (nipple) side of the detector. As a 

result, we can trim projection measurements on the anterior side to save computation time. For 

example, if we trim 520 pixels, we would actually use PVs of resolution 1400 × 2304 in 

reconstruction.  

Since DBT scans only cover a limited angular range around the normal to the detector plane 

(z-direction), there is not sufficient information from the projection images to determine the 

breast thickness without adding fiducial markers in the volume being imaged. On the other hand, 

the distance between the compression paddle and the breast support plate is recorded by the 

mammography/DBT system and can be used as the thickness of the imaged volume for 

reconstruction. In clinical DBT systems, the thickness of the imaged volume is usually set to be 

slightly larger than the recorded distance to allow for uncertainty in the thickness measurement. 

In DBT reconstruction, the x- and y-direction resolution of the voxel size is usually set to be the 

same as the detector pixel size although some systems use pixel binning to reduce reconstruction 

time and space at the expense of image resolution. The z-dimension of the voxel is usually 

chosen to be 1mm because the z-direction resolution is inherently low. An imaged volume with a 

voxel size of 0.1 × 0.1 × 1mm
3
 is therefore used in most part of this dissertation. As an example, 

if the breast thickness is 6 cm and we trim 520 pixels of projection measurements, we will 

reconstruct an image of the size 1400 × 2304 ×60. An exception is the subpixel reconstruction in 

Chapter III where we used smaller voxel size and demonstrated that super-resolution can be 

achieved in DBT. Details of the subpixel reconstruction will be introduced in Section III.4.   

 

II.4 Simulation of digital phantoms by CatSim  

In additional to the experimental data, we also used digital phantoms in the studies in 

Chapters III, IV and VI. The simulation of the digital phantoms was completed by CatSim [65, 

66], a computer assisted tomography simulation environment developed by GE Global Research. 

In this section, I briefly introduce the functions of CatSim and the advantages of using CatSim 

simulated phantoms. The configurations of the digital phantoms and the simulation will be 

introduced in details respectively in each chapter. 
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In our studies on DBT reconstruction, using the simulated phantoms by CatSim has two main 

advantages. First, CatSim allows us to configure digital phantoms based on the purpose of our 

study. Since the configuration of the digital phantoms is known, we can define reliable figures of 

merit (FOM) to quantitatively evaluate the reconstructed image quality. While this is a common 

advantage of digital phantoms, CatSim can simulate the complicated physics in x-ray imaging. 

The physics modeling includes x-ray polychromaticity, realistic quantum and electronic noise 

models, finite focal spot size and shape, finite detector cell size, detector cross-talk, scatter etc. 

[65]. Therefore the projections generated by CatSim are closer to a real DBT experiment than the 

projections generated by a simple Radon transform, as used in many researches on tomographic 

reconstruction. Second, CatSim allows us to flexibly control different components (e.g., detector 

blur, source blur, noise correlation etc.) of the physics modeling. By purposely turning off the 

other components, we can focus on the model components that we are interested in. This 

approach has been used in Chapter III and Chapter VI of this dissertation. 

Each CatSim simulation requires a configuration file to specify the geometry and other 

parameters of the tomographic system. In our CatSim simulation, we specified these parameters 

(e.g., system geometry, target/filter material, target angle, peak kilovoltage, detector material etc.) 

to match our experiment conditions with the GE GEN2 prototype DBT system. Although CatSim 

provides the option to simulate multiple projections with one configuration file, the option was 

designed for CT systems that the source and the detector move at the same time. For our DBT 

system with a stationary detector, the rotation of the source is configured by setting an offset 

distance for the x-ray source. As a result, each projection needs a configuration file in our 

simulation. 

In each CatSim configuration file, the phantom is specified with the FORBILD syntax [65]. 

Geometrical shapes including boxes, ellipsoids, elliptical cylinders, cones, and cut planes can be 

specified analytically. The simulation is based on the analytical locations of the geometrical 

shapes rather than a pixelated phantom. As a result, we can configure high spatial-frequency 

objects regardless of the detector pixel size or the voxel size of the imaged volume and use the 

precise locations of the objects to calculate FOMs. 
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II.5 The projection compensation multiplier 

 

Figure 2.2. The projection compensation multiplier. The DBT system is viewed along the axis of 

the rotation of the source (x-direction in Figure 2.1). A conventional forward projection method 

treats the region marked as “Air” as having an attenuation coefficient of 0, while in fact it might 

have breast tissue, especially for the MLO view of the DBT scan. 

This section introduces the projection compensation multiplier that is commonly used in our 

reconstruction methods. Figure 2.2 illustrates the reason that the projection compensation 

multiplier is needed for DBT reconstruction. Given an imaged volume, only the x-ray attenuation 

coefficients inside the imaged volume are stored during the DBT reconstruction. When we 

calculate the forward projection, we only consider the contribution of the imaged volume. In 

other words, a basic forward projector would treat the region outside the imaged volume as 

having an attenuation coefficient of 0, which is equivalent to air. In the DBT geometry that the 

breast is compressed between the compression paddle and the breast support plate, the regions 

beyond the top layer of the imaged volume and under the bottom layer do not contribute to the 

measured projection values. However, the regions on the left and right sides of the imaged 
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volume (marked as “Air” in Figure 2.2) can have breast tissue, especially for the MLO view of 

the DBT scan. A forward projection method that considers only the breast tissue inside the 

imaged volume will likely underestimate the projection values in these regions. For 

reconstruction, this means that we will get abnormally high reconstructed values in the lower-left 

corner and upper-right corner of the imaged volume when using the PV in Figure 2.2 to update 

the image. This is known as the glaring artifact for DBT reconstruction [67, 68]. 

To reduce the glaring artifact and to obtain a more accurate forward projection, we include a 

projection compensation multiplier as part of the forward projection. Six rays are shown in 

Figure 2.2. For these six rays, the segments intersecting inside the imaged volume are colored in 

green. The parts colored blue might contain breast tissue, but are not included in the standard 

forward projection. Assuming the mean x-ray attenuation coefficient is the same for the blue part 

and the green part for each ray, for the location (𝑡, 𝑠)  on the detector plane, we should 

compensate the projection value by multiplying it with a factor of: 

 𝑀(𝑡, 𝑠) =
𝑙green(𝑡, 𝑠) + 𝑙blue(𝑡, 𝑠)

𝑙green(𝑡, 𝑠)
, (2.16) 

where 𝑙green(𝑡, 𝑠) and 𝑙blue(𝑡, 𝑠) denote the sections of x-ray path-length plotted in green and 

blue, respectively, in Figure 2.2. 

Given the geometry of the DBT system, the thickness of the imaged volume and the 

projection angle, this factor can be calculated at any location on the detector plane, even for 

locations outside the digital detector. Usually we need the projection compensation multiplier 

only within the detector. But for our truncated projection artifact (TPA) removal methods 

introduced in Chapter V, where we extrapolate the PVs, we calculate the projection 

compensation multiplier over the area of the extrapolated PVs, which is larger than the digital 

detector. For the rays that do not intersect with the imaged volume, the projection compensation 

multiplier is infinity by Equation 2.16. The projection compensation multiplier is not important 

for these rays since they will not be used in DBT reconstruction. 

For implementation, the projection compensation multiplier is calculated and stored as a real-

value vector of the same size of one PV (mathematically a length-M column vector). We use 

𝐦𝑖  to denote this vector for the ith projection angle. Given the thickness of the imaged volume 

and the projection angle, one can calculate the intersection length with the ‘slab’ between the top 

and bottom planes of the imaged volume for each ray from the source to the detector elements 
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using the imaging system geometry. The result, denoted as 𝐥slab,𝑖, is also a vector with the same 

size of one PV (length-M column vector). Then the vector 𝐦𝑖 is calculated with the following 

equation for the ith projection angle: 

 𝐦𝑖 = min (𝐥slab,𝑖 ⊘ 𝐀𝑖𝟏𝑁,𝑚max), (2.17) 

where 𝟏𝑁 denotes an all-one vector of the same size of the imaged volume (length-N) and ⊘ 

denotes the element-wise division. 𝑚max  is the maximum threshold for the projection 

compensation multiplier since 𝐀𝑖𝟏𝑁 can be very small or zero at some locations as shown in 

Figure 2.2. The value of 𝑚max does not affect the reconstructed image as long as it is not too 

small since it is mostly present in the region of the detector plane not used for image 

reconstruction (the region outside the ‘Range for Non-zero Projection values’ in Figure 2.2). We 

empirically use 𝑚max = 100 . Figure 2.3 shows the calculated projection compensation 

multiplier map with Equation 2.17 for a 6cm-thick imaged volume at the projection angle of -30
o
. 

 

Figure 2.3. Distribution of projection compensation multiplier for a 6cm-thick imaged volume 

with the same size of the digital detector (23.04cm x 19.20 cm) at projection angle of -30o. The 

image is displayed with log-scale grayscale bar. 

For an image 𝐟, the compensated forward projection operation that includes the projection 

compensation multiplier can be expressed in the form of matrix multiplication as: 
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 𝐲𝑖 = 𝐌𝑖𝐀𝑖𝐟, (2.18) 

where 

 𝐌𝑖 = diag{𝐦𝑖}. (2.19) 

To implement Equation 2.18, we simply need to calculate the element-wise product of the 

projection compensation multiplier vector 𝐦𝑖 and the result of applying the forward projector 𝐀𝑖 

to the imaged volume 𝐟. 

The operation of backward projection that includes the projection compensation multiplier 

can be expressed as: 

 𝐟𝑖 = 𝐀𝑖′𝐌𝑖𝐲𝑖, (2.20) 

where we calculate the element-wise product of the projection compensation multiplier vector 

𝐦𝑖 and the projection 𝐲𝑖 before applying the backward projector 𝐀𝑖′. 

In the following chapters, if not specified, the projection compensation multiplier is always 

included in the forward projection and the backward projection. For simplicity, the matrix 𝐌𝑖 

will not be expressed in the following chapters. One can think of it as part of the matrix 𝐀𝑖. 

 

II.6 Truncated projection artifact in DBT reconstruction 

Besides the glaring artifact, another type of common artifact in DBT reconstruction is the 

TPA [67, 69, 70]. Figure 2.4 shows the DBT system viewed along the rotation axis of the x-ray 

source and illustrates the cause of TPA in DBT reconstruction. Given a fixed location (e.g., the 

(i+1)
th

 projection in Figure 2.4) for the x-ray source, a cone can be formed by connecting the 

source to the field-of-view (FOV) of the detector. Since the projection values are measured only 

within the range of the detector, this PV provides no information about the x-ray attenuation 

coefficients outside the cone. As a result, the back-projection step of typical unregularized 

algorithms will introduce discontinuities at the boundary of the cone. The discontinuity will 

appear as step artifacts on the reconstructed DBT slices at the locations marked by the blue stars 

in Figure 2.4. 

Figure 2.5 shows the TPA in a human-subject DBT case, where two (unregularized) SART 

iterations were used to reconstruct the image. The reconstruction used the PVs in the order 

shown in Figure 2.4 that the source moved from the left side (the side with negative y-coordinate 

values) to the right side (the side with positive y-coordinate values). TPA is stronger on the right 

side of Figure 2.5(a) and the bottom side of Figure 2.5(b). Due to the access order of the PVs in 
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image reconstruction, TPA is first created in these areas and gets further enhanced by the 

subsequent updates, making it more obvious for human eyes. 

 

Figure 2.4. Cause of TPA in DBT reconstruction. The blue stars mark the locations where TPA 

will appear on the right side of the volume. TPA also appears on the left side of the volume 

similarly but it is not marked for simplicity.  

As seen on the DBT slice in Figure 2.5(b), TPA will overlap with the reconstructed structures. 

For example, a suspicious region of dense tissue can be seen at around x = 10mm, y = 65mm 

near the chest wall as marked by the red box. For this region of dense tissue, the overlapping 

TPA can potentially affect the diagnosis. In fact, after removing TPA, the dense tissue proves not 

to be a tumor. For DBT scans, especially the ones with large breast thickness and wide scan 

angle, TPA can propagate very deep inside the imaged volume, as shown in Figure 2.5(a). 

Therefore, a reliable TPA removal algorithm is crucial for preserving the image quality in DBT. 

Lu et al. previously developed a TPA removal algorithm that used diffusion to compensate 

for the discontinuity in the gray levels in the region across the step caused by the (i-1)
th

 PV 

updating.  By removing the sharp boundary before updating by the i
th

 PV, the step artifact would 

not be enhanced by the subsequent updates in the same iteration [67]. This TPA removal 

algorithm provides satisfactory results in our iterative DBT reconstructions. In Chapter III, IV 

and VI, we will use Lu’s TPA removal algorithm. In our study on the SQS-DBCN algorithm in 
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Chapter IV, we realized that one of the limitations of this algorithm is that it lacks a convergence 

theory which is crucial for statistical image reconstruction. Chapter V introduces our 

comparative study on TPA removal and our new TPA removal algorithms to overcome this 

limitation. 

 
(a) 

 
(b) 

Figure 2.5. TPA in a human-subject DBT (RCC view) with SART reconstruction. (a) A yz-plane 

of the reconstructed volume at x = 29.95mm. (b) A slice of the reconstructed volume at z = -

45.5mm. The thickness of the breast is 74mm so the slice is at the depth of 28.5 mm from the top. 

Refer to Figure 2.1 for the coordinate system of the reconstruction. The red box on (b) marks a 

suspicious area of dense tissue affected by TPA. 
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II.7 Image quality of DBT image reconstruction  

The quality of a medical image refers to its capacity to convey clinically relevant information. 

When evaluating image quality for DBT, we are most interested in typical features of breast 

cancer that help radiologists to make the diagnosis. The typical features we focus on are the 

microcalcifications (MC) and the spiculated masses. 

MCs are small calcium deposits in the breast of sizes from about 0.1 mm to 0.5 mm. While 

single MC is commonly observed in breast imaging and is most likely benign, clustered MCs are 

important signs of breast cancer [71-74]. Figure 2.6 shows one example of such a lesion that has 

been diagnosed as breast cancer with biopsy. 

Besides MCs, the reconstructed soft tissue is also important in the diagnosis of breast cancer. 

Masses with spiculations are highly suspicious for breast cancer. Figure 2.7 shows one example 

of such a lesion that has been confirmed as breast cancer with biopsy. 

         

Figure 2.6. An MC cluster indicating a cancerous lesion on a DBT slice (marked with the yellow 

box) and the enlarged region of interest. Image source: [1]. 
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As introduced in Section II.3, for a typical DBT reconstruction of our GE GEN2 prototype 

DBT system, the voxel size is 0.1×0.1×1.0 mm
3
. An MC will only occupy 1 to 5 pixels along 

one direction on the reconstructed slices. Such a small object is very different to be differentiated 

from the reconstruction noise. Therefore, one of the main challenges in the DBT reconstruction 

is to reduce noise while enhancing MCs and preserving the features of mass margins and the 

texture of the parenchyma. 

Since MC is a typical feature that we are interested in, most studies (i.e. Chapter III, IV and 

VI) in this dissertation used FOMs based on MCs. In Chapter III and Chapter VI where we used 

digital phantoms, we configured pairs of small spheres to simulate MCs. The contrast of a pair of 

spheres is calculated with the profile along the center of the two spheres. In Chapter IV, we 

tested our reconstruction algorithms with an experimental phantom with clusters of calcium 

carbonate specks sandwiched between heterogeneous slabs to simulate the MCs. The FOMs 

based on the fitted image of each MC are used to quantitatively evaluate the enhancement of 

MCs for each method. 

 

Figure 2.7. A region of a breast showing a large spiculated mass. The star-shaped spiculations 

are highly suspicious for breast cancer. 
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As previously mentioned, spiculated masses are also important features of the diagnosis of 

breast cancer. Reliable reconstruction algorithms for DBT need to preserve high-quality soft 

tissues while enhancing MCs. Reconstruction algorithms which create artificially looking soft 

tissues are considered to be of poor image quality, even if they can enhance the MCs 

significantly. To our knowledge, there are no reliable methods to quantitatively measure the 

image quality of soft tissue. As a result, the quality of the reconstructed soft tissue is evaluated 

empirically by observing how clearly the spiculations can be seen and whether there exists any 

artificially looking structure (for example, the plastic appearance as observed in CT MBIR 

studies [75, 76]). This empirical evaluation is mainly used in Chapter IV. We also used the noise 

power spectrum (NPS) to analyze the quality of reconstructed soft tissue. Although NPS does not 

reflect the visual clearance of the spiculations, it provides information about the frequency 

response of our reconstructed images. 

Besides FOMs for MCs and visual evaluation of spiculated masses, we also used other FOMs 

to evaluate image quality. In Chapter III and Chapter IV, we configured digital phantoms with 

line pairs of different spatial frequencies to estimate the spatial resolution of the image 

reconstruction. The relative contrast of each set of line pairs is calculated and plotted as a 

function of the spatial frequency. The contrast curves are then used to compare different 

reconstruction methods or conditions. These contrast-to-frequency curves are similar to the 

commonly used modulation transfer function (MTF) in x-ray imaging, but they are calculated 

with rectangular waves instead of sinusoidal waves. Despite the difference, these curves still 

represent the spatial resolution of the reconstruction with the influence of different factors. The 

methods to calculate the contrast of line pairs are different in Chapter III and Chapter VI, based 

on different requirement of the study. 
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CHAPTER III.  

Segmented Separable Projector and its Application for 

Subpixel DBT Reconstruction1  

 

III.1 Introduction to the SG projector 

In this chapter, I introduce our work on improving the accuracy and speed of forward and 

backward projectors in iterative image reconstruction for DBT. A better match between the 

digital implementation and the actual system physics can improve the quality of reconstructed 

images in iterative reconstruction methods, as has been found in other 3D modalities [37-45]. As 

shown in the updating step of SART (Equation 2.11), the inaccuracy of the forward and 

backward projectors 𝐀𝑖 and 𝐀𝑖′ will introduce error in each update of the reconstructed image 

𝐟(𝑖SART,𝑖). Such error will also occur in other iterative image reconstruction algorithms, including 

the SQS-DBCN algorithm in the Chapter IV. 

For DBT reconstruction, the ray-tracing (RT) projector is commonly used. This projector 

calculates the line integral along the ray from the source to the center of each detector element, 

ignoring the detector element size. With a discrete image volume, the integral becomes a 

summation that one can calculate efficiently with Siddon's method or its accelerated 

implementations [78-80]. 

Considering the finite size of the detector element, a more accurate projection model is the 

average of x-ray paths over the entire detector element [81]. In cone-beam CT, the separable 

footprint projector (SF projector) provides an efficient approximate implementation of this 

projection model [39]. However, the separable approximation in the SF projector is inaccurate 

for the DBT geometry. Because of the small scan angle, DBT has limited depth resolution. The 

                                                           
1
 This chapter is a reorganization of our paper on Medical Physics [77]. Part of the content in our published 

paper has been moved to Chapter II that it is also used by other studies discussed in this dissertation. 
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voxel dimension along the depth direction is usually set to be much longer than those parallel to 

the detector plane in DBT reconstruction. The approximation used in the SF projector is 

inadequate for DBT, especially at large projection angles. In this chapter, we present the 

segmented separable footprint projector (SG projector), which is a modified version of the SF 

projector specially designed for the DBT geometry. To evaluate the performance of the SG 

projector, we compared the projection errors of the SG projector and the other projectors. In 

addition, we digitally simulated DBT projections of a phantom embedded with test objects 

without noise and blur, and compared the resolution and contrast in the images reconstructed 

with the different projectors. The projectors were also applied to subpixel reconstruction, in 

which the DBT volume is reconstructed with voxel sizes smaller than the detector element size. 

The quality of the test objects in the reconstructed DBT and the computational efficiency of the 

projectors were evaluated and compared at different subpixel ratios. 

 

III.2  Principle of the SG projector and subpixel reconstruction 

III.2.1  Derivation of the SF projector 

To explain the principle the SG projector, we first review the SF projector [39]. This 

derivation is similar to that described by Long et al.[39] except that the notations are changed to 

match the coordinates defined for our DBT system (Figure 2.1 or Figure 3.1). Same as the 

notations in Section II.1, we let 𝐟 denote the 3D image to be reconstructed, i.e., a discrete array 

of x-ray attenuation coefficient values. More specifically, we use 𝐟[�⃗⃗�] to denote one element of 𝐟, 

where �⃗⃗� = (𝑛𝑥, 𝑛𝑦, 𝑛𝑧) corresponds to one voxel of the imaged volume. Let �⃗⃗⃗� denote the index 

of the array of detector elements, the forward projection in Equation 2.6 can be rewritten as 

𝐲𝑖[�⃗⃗⃗�] = ∑ 𝐀𝑖[�⃗⃗⃗�, �⃗⃗�]𝐟[�⃗⃗�]�⃗⃗� . Letting  Δ⃗⃗⃗ = (Δx, Δy, Δz)  denote the grid spacing of the imaged 

volume, the continuous object 𝐟(𝑟) corresponding to the discrete image array 𝐟[�⃗⃗�] is 

𝐟(𝑟) = ∑ 𝐟[�⃗⃗�]𝛽0(𝑟 − 𝑐[�⃗⃗�]) �⃗⃗� ,     (3.1) 

𝛽0(𝑟) = 𝟏
|𝑟𝑥|<

Δ𝑥
2

𝟏
|𝑟𝑦|<

Δ𝑦

2

𝟏
|𝑟𝑧|<

Δ𝑧
2

,    (3.2) 

where 𝛽0(𝑟) is the basis function of a cuboid voxel and 𝑐[�⃗⃗�] is the center of the nth voxel, and 1 

denotes the indicator function. 
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Let (𝑡�⃗⃗⃗⃗�, 𝑠�⃗⃗⃗⃗�) denote the center of the �⃗⃗⃗� th detector element. The ideal projection model 

assumes the projection value at a detector element to be the average of ray-tracing result 

throughout the detector element: 

𝐲𝑖[�⃗⃗⃗�] = ∬ ℎ(𝑡�⃗⃗⃗⃗� − 𝑡, 𝑠�⃗⃗⃗⃗� − 𝑠)𝑝(𝑡, 𝑠; 𝑖)d𝑡d𝑠,    (3.3) 

where ℎ(𝑡, 𝑠) is the sensitivity response of one detector element. The RT projector treats ℎ(𝑡, 𝑠) 

as a Dirac impulse such that only one ray per detector element is traced with the Siddon’s 

algorithm or its accelerated versions. The sparse sampling of the rays through the imaged volume 

causes numerical errors and artifacts in the reconstructed images. The SF projector reduces the 

sampling errors by approximating the average of the ray paths over each voxel. 𝑝(𝑡, 𝑠; 𝑖) is the 

continuous projection of 𝐟(𝑟) at the ith angle: 

𝑝(𝑡, 𝑠; 𝑖) = ∫ 𝐟(𝑟)d𝑙
𝐿(𝑡,𝑠;𝑖)

,      (3.4) 

where 𝐿(𝑡, 𝑠; 𝑖) is the line from the source to the coordinate (𝑡, 𝑠) of the detector. 

By combining (3.1)-(3.4), we obtain the expression of an element 𝐀𝑖[�⃗⃗⃗�, �⃗⃗�] of the system 

matrix: 

𝐀𝑖[�⃗⃗⃗�, �⃗⃗�] = 𝑄(𝑡�⃗⃗⃗⃗�, 𝑠�⃗⃗⃗⃗�; 𝑖; �⃗⃗�),      (3.5) 

where 𝑄(𝑡, 𝑠; 𝑖; �⃗⃗�) is a continuous function from a 2-D convolution: 

𝑄(𝑡, 𝑠; 𝑖; �⃗⃗�) = ℎ(𝑡, 𝑠) ∗∗ 𝑞(𝑡, 𝑠; 𝑖; �⃗⃗�) ,    (3.6) 

𝑞(𝑡, 𝑠; 𝑖; �⃗⃗�) = ∫ 𝛽0(𝑟 − 𝑐[�⃗⃗�])𝑑𝑙
𝐿(𝑡,𝑠;𝑖)

 .   (3.7) 

𝑞(𝑡, 𝑠; 𝑖; �⃗⃗�) is the continuous projection function of the �⃗⃗�th voxel. We call this the ‘footprint’ 

of the �⃗⃗�th voxel. 𝑄(𝑡, 𝑠; 𝑖; �⃗⃗�) is the ‘blurred footprint’, blurred by the sensitivity response of the 

detector element. In summary, the value of 𝐀𝑖[�⃗⃗⃗�, �⃗⃗�] is equal to the blurred footprint of the �⃗⃗�th 

voxel evaluated at the center of the �⃗⃗⃗�th detector element. 

As a 2-D convolution, 𝑄(𝑡, 𝑠; 𝑖; �⃗⃗�) would be expensive to compute exactly. For typical cone-

beam CT geometries, the footprint function 𝑞(𝑡, 𝑠; 𝑖; �⃗⃗�) is approximately separable [39]: 

𝑞(𝑡, 𝑠; 𝑖; �⃗⃗�) ≈ 𝑙(𝑡, 𝑠; 𝑖; �⃗⃗�)𝑞𝑡(𝑡; 𝑖; �⃗⃗�)𝑞𝑠(𝑠; 𝑖; �⃗⃗�) ,   (3.8) 

where 𝑞𝑡(𝑡; 𝑖; �⃗⃗�)  is a rect function and 𝑞𝑠(𝑠; 𝑖; �⃗⃗�)  is a trapezoid function, both with unit 

amplitude. The amplitude function 𝑙(𝑡, 𝑠; 𝑖; �⃗⃗�) equals the maximum value of 𝑞(𝑡, 𝑠; 𝑖; �⃗⃗�). 

Assuming the detector pixel sensitivity response is uniform over each detector element, then 

we have: 

ℎ(𝑡, 𝑠) = ℎ𝑡(𝑡)ℎ𝑠(𝑠) =
1

Δ𝑡Δ𝑠
𝟏

|𝑡|<
Δ𝑡
2

𝟏
|𝑠|<

Δ𝑠
2

,    (3.9) 
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and 𝐀𝑖[�⃗⃗⃗�, �⃗⃗�] becomes the product of two 1-D convolutions: 

𝐀𝑖[�⃗⃗⃗�, �⃗⃗�] = 𝑙(𝑡�⃗⃗⃗⃗�, 𝑠�⃗⃗⃗⃗�; 𝑖; �⃗⃗�)𝑄𝑡(𝑡�⃗⃗⃗⃗�; 𝑖; �⃗⃗�)𝑄𝑠(𝑠�⃗⃗⃗⃗�; 𝑖; �⃗⃗�) ,   (3.10) 

where 

𝑄𝑡(𝑡�⃗⃗⃗⃗�; 𝑖; �⃗⃗�) = (ℎ𝑡(𝑡) ∗ 𝑞𝑡(𝑡; 𝑖; �⃗⃗�))
𝑡=𝑡�⃗⃗⃗⃗⃗�

 ,    (3.11) 

𝑄𝑠(𝑠�⃗⃗⃗⃗�; 𝑖; �⃗⃗�) = (ℎ𝑠(𝑠) ∗ 𝑞𝑠(𝑠; 𝑖; �⃗⃗�))
𝑠=𝑠�⃗⃗⃗⃗⃗�

 .    (3.12) 

To compute the 1-D convolutions for 𝑄𝑡(𝑡�⃗⃗⃗⃗�; 𝑖; �⃗⃗�) and 𝑄𝑠(𝑠�⃗⃗⃗⃗�; 𝑖; �⃗⃗�) is much faster than a 2-D 

convolution and can be used repeatedly in the implementation of the SF projector. 

 

III.2.2 The SG approximation and the SG projector 

 

Figure 3.1. The box (yellow) illustrates the location of the voxel in the example shown in Figure 

3.2. The parallelogram (blue) illustrates the location of the ‘footprint’ of the yellow voxel. Note 

that both the box and the parallelogram are much larger than their actual size. The breast is 

drawn schematically as a 2D plane to illustrate the positioning of the breast relative to the x-ray 

source scanning and the detector. In reality the breast is a 3D object filling the imaged volume 

between the compression paddle and the breast support plate (the top and bottom of the 

rectangular block) with a curved anterior as shown. 

In DBT, because of the small tomographic angle (11-60 degrees), the depth resolution along 

the z-direction perpendicular to the detector plane is much lower than those on the detector (x-y) 
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plane [82]. For example, a DBT system generally uses a digital mammography detector that has 

pixel pitch ranging from 0.07 × 0.07 mm
2
 to 0.1 × 0.1 mm

2
 for the commercial systems. The 

slice spacing (z-dimension of a voxel) in the reconstructed imaged volume may be set to be 0.5 

mm to 1 mm while the x- and y-dimensions of the voxel are set to be the same as the detector 

pixel pitch. The ratio of the z-dimension and the x- and y-dimension, i.e., the height-to-width 

ratio, of a voxel can be as large as 10:1. We use one voxel as an example to demonstrate why the 

SF approximation is inaccurate for a typical DBT geometry. This voxel is located at (x, y, z) = 

(160.05, 70.05, -10.5) mm, drawn approximately in Figure 3.1. The distance from the center of 

this voxel to the bottom of the imaged volume is 10.5 mm. The analytical projection (footprint) 

of the voxel at the projection angle 𝜃 = −30° is shown in Figure 3.2(a). The long parallelogram-

shape footprint 𝑞(𝑡, 𝑠; 𝑖; �⃗⃗�)  is apparently non-separable. Figure 3.2(e) shows the blurred 

separable footprint that obviously poorly approximates 𝑄(𝑡, 𝑠; 𝑖; �⃗⃗�) as shown in Figure 3.2(d). 

Thus, the original SF projector does not help improve the accuracy of the projector in DBT 

application. 

 

Figure 3.2. Separable footprint (SF) and segmented separable footprint (SG) approximation 

applied to a DBT image voxel located at (x, y, z) = (160.05, 70.05, -10.5) mm at projection angle 

𝜃 = −30°. All images share the same grayscale bar, t- and s-coordinate.  
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The parallelogram-shape of the footprint results from the shape of the voxel in DBT system. 

This problem increases with increasing projection angles. To deal with the shape of voxels in 

DBT, we propose a ‘segmented separable footprint’ (SG) approximation: we equally divide each 

voxel along the z-direction into several segments, apply SF approximation to each segment, and 

sum the footprints of each segment. Figure 3.2(c) shows the summed footprint with 10 segments. 

Although Figure 3.2(c) still differs from Figure 3.2(a), the difference becomes much less 

noticeable after blurring (Figure 3.2(d) and Figure 3.2(f)). Since the value of 𝐀𝑖[�⃗⃗⃗�, �⃗⃗�] depends 

only on the blurred footprint 𝑄(𝑡, 𝑠; 𝑖; �⃗⃗�), the error in the non-blurred footprint 𝑞(𝑡, 𝑠; 𝑖; �⃗⃗�) only 

slightly affects the accuracy of the projector. The proposed projector based on the SG 

approximation is referred to as the SG projector in the following. 

The accuracy of the SG method depends on the number of segments used. More segments 

will improve projection accuracy at the expense of longer computation time. The memory cost of 

the SG projector does not depend on the number of segments and is negligible compared to the 

memory that is needed for the reconstructed volume. The proper number of segments depends on 

the height-to-width ratio of the voxels used in the reconstruction, and on the tomographic scan 

angle of the DBT system. 

The accuracy of the projector also depends on the choice of the form of 𝑞𝑡(𝑡; 𝑖; �⃗⃗�). We used a 

rect function as 𝑞𝑡(𝑡; 𝑖; �⃗⃗�)  in our implementation. Using a trapezoid function would further 

improve the similarity between Figure 3.2(d) and Figure 3.2(f) and reduce the projection error. 

This approach is called the trapezoid-trapezoid (TT) method [39]. However, the decrease in the 

projection error is very small and the trapezoid 𝑞𝑡(𝑡; 𝑖; �⃗⃗�) increases the computation time by a 

factor of about 2.6 times. We consider this extra computation time not worth the slight 

improvement in projection accuracy and use the rect function for the SG projector. 

 

III.2.3 Subpixel DBT reconstruction  

The SG projector not only provides a more accurate projection result than RT, but also makes 

subpixel DBT reconstruction more efficient. The in-plane direction voxel dimensions of the 

imaged volume in DBT reconstruction are commonly set to be the same as the detector pixel 

dimensions along the t- and s-direction. Studies have shown that, by interpolating the PVs and 

using a finer voxel grid, one can reconstruct higher resolution images with better image quality 

[83, 84]. That approach is called subpixel reconstruction or super-resolution reconstruction. For 
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example, assuming the original detector pixel size to be 0.1 × 0.1 mm
2
, we can interpolate each 

pixel into four 0.05 × 0.05 mm
2
 subpixels. Using a 1 mm slice interval, the interpolated 

projections can be used to reconstruct an imaged volume with a 0.05 × 0.05 × 1 mm
3
 voxel size. 

With subpixel reconstruction, super-resolution can be observed in the reconstructed image slices 

with frequency exceeding the Nyquist limit of the detector pixels. 

In the method described above, interpolation of the projections is inevitable when one uses 

the RT projector. The RT back projector contributes only to voxels that intersect the line from 

the source to the center of each detector pixel. If one attempted subpixel reconstruction with non-

interpolated projections, many voxels would not obtain any back-projected value due to the small 

voxel size compared with the pixels of the detector along the in-plane direction. This would 

create a lot of gap artifacts on the reconstructed slices. 

The SG projector overcomes this problem in subpixel DBT reconstruction. We need not 

interpolate the projections since back projection of each detector pixel will affect all voxels that 

intersect with the cone subtended at the source by the detector pixel. Thus, the SG projector 

effectively covers all voxels in the imaged volume, improves the estimate of the x-ray paths 

through the voxels while saves computation time by avoiding interpolation and working with 

only the original detector pixel values in the projections. In this study, we applied both the RT 

and the SG projector to subpixel DBT reconstruction and compared the results qualitatively and 

quantitatively. 

 

III.3 Simulation of the projections for the digital phantom 

We generated a digital phantom using the CatSim simulation program [65, 66] to study 

different projectors and subpixel image reconstruction. We configured the x-ray system in the 

CatSim simulation to match the geometry of the experimental system shown in Figure 2.1. The 

x-ray source was an Rh target/Rh filter x-ray tube and the peak voltage was set to 29 kV. The 

oversampling rate of the detector along t- and s-directions was 20 to simulate the projection of an 

analog object being imaged. A complete set of simulated projections contains 21 projections 

every 3
o
 from -30

o
 to +30

o
, with a detector pixel pitch of 0.1 × 0.1 mm

2
 and an image size of 

1920 × 2304 pixels, corresponding to the experimental DBT system. CatSim was designed for 

CT simulation, where the detector rotates with the source. Since our DBT system has a stationary 

detector, we did not use the rotation option in CatSim and only simulated one projection with 
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one configuration file at a time. The x-ray focal spot was assumed to be a point source; we also 

turned off the quantum noise, detector noise, and scattered radiation in the simulation so that we 

can focus on the investigation of the effects of the projector on the spatial resolution of DBT 

reconstruction. 

 

Figure 3.3. Setup of a digitally generated resolution phantom. Each set (marked by box) contains 

three types of objects: horizontal line pairs, vertical line pairs, and two lead spheres (BBs). The 

sizes of all objects are shown in Table 3.1. 

The geometric features of the digital phantom are analytically specified in a configuration 

file using the FORBILD syntax [66]. The background material is set to 5-cm-thick breast tissue, 

based on data from ICRU report 46 [85]. The phantom contains 15 sets of objects. The distance 

from each object to the bottom of the imaged volume is the same, which is 25.6 mm. As a result, 

all objects are located on the same slice, as shown in Figure 3.3. Each set contains two small lead 

spheres (BBs) and two sets of line pairs along x- and y-direction with the same spatial frequency. 

Each group of line pairs is composed of five lead bars and four spacings, i.e., 4.5 line pairs, with 
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the width of the lead bar same as the width of the spacing. The group of horizontal line pairs and 

the group of vertical lines are offset in the x-direction so that the in-plane reconstruction artifacts 

from one group will not affect the other group. The diameter of the BBs is the same as the width 

of one bar in the line pairs and the center-to-center spacing of the two spheres is equal to one line 

pair. The two spheres are arranged along a 45
o
 line relative to the pixel grid. The pairs of BBs are 

included to demonstrate the spatial resolution for small objects under various reconstruction 

conditions, at a representative angle (e.g., diagonal) to the voxel grid, which combines the effect 

of the spatial resolutions in the x- and y-directions. Table 3.1 shows the line pair frequency and 

the sizes of the individual bars and spheres. The y-direction distance between the centers of two 

sets of line pairs or BBs is 32 mm, which is chosen to minimize the y-direction in-plane 

reconstruction artifacts from two sets of line pairs or BBs to affect each other while keeping the 

entire phantom area to be small enough to be covered by the reconstruction matrix at high 

resolution (see below). The material of all line pairs and BBs is pure lead (Pb). The thickness of 

all line pairs is set to be 0.03 mm, similar to the thickness of commercial lead line pair phantoms 

for testing spatial resolution of mammography systems (e.g., Fluke Medical). The z-direction 

location of all objects is 0.6 mm from the lower boundary of the slice if the reconstruction uses a 

1-mm slice interval. We chose this instead of 0.5 mm because we used half of the original slice 

interval in one set of the subpixel reconstruction; objects located right at the center of the original 

slice will be split into two slices, which would be difficult to analyze. 

Table 3.1. Objects sizes (mm) in the digital phantom. The object set number corresponds to the 

number next to each box in Figure 3.3. The center-to-center distance between the two BBs in a 

pair is equal to the BB diameter. 

Object Set Number 1 4 7 10 13 

line pairs/mm 9.5 8.0 6.5 5.0 3.0 

Line or space width  0.053 0.063 0.077 0.100 0.167 

BB Diameter  0.053 0.063 0.077 0.100 0.167 

Object Set Number 2 5 8 11 14 

line pairs/mm 9.0 7.5 6.0 4.5 2.0 

Line or space width  0.056 0.067 0.083 0.111 0.250 

BB Diameter  0.056 0.067 0.083 0.111 0.250 

Object Set Number 3 6 9 12 15 

line pairs/mm 8.5 7.0 5.5 4.0 1.0 

Line or space width  0.059 0.071 0.091 0.125 0.500 

BB Diameter  0.059 0.071 0.091 0.125 0.500 
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The alignment of the objects to the pixel grid will affect the resolution and contrast of the 

reconstructed objects, especially for objects of sizes close to the pixel size. The alignment affects 

the different objects in the phantom to different degrees because of their different locations 

relative to the pixel grid. To compare different reconstruction methods, it is more useful to study 

the “average” effect when objects are imaged by a DBT system without knowledge of their 

alignment to the pixel grid, as in actual situation. We simulated this average effect by generating 

projections with the test patterns placed at 25 locations with respect to the pixel grid and the 

results were averaged over the different alignments. We shifted the locations of the entire array 

of phantom objects by 1/5 pixel (0.02 mm), 2/5 pixel (0.04 mm), 3/5 pixel (0.06 mm) and 4/5 

pixel (0.08 mm) along both x and y direction. At each phantom location, a set of DBT 

projections (21 projections in 3
o
 increments, 60

o
 total scan angle) was simulated so that a total of 

25 sets of projections were generated for reconstruction. We denote the 25 alignment locations 

by a ‘shift tag’ L𝑑𝑥𝑑𝑦 , where 𝑑𝑥  and 𝑑𝑦  are both integers. For example, the shift tag ‘L23’ 

(𝑑𝑥 = 2, 𝑑𝑦 = 3) means the shift along x-direction was 2/5 pixel and the shift along y-direction 

was 3/5 pixel. The shift tag ‘L00’ represents the non-shifted projections. The simulation of all 

projections angles for all 25 shifted locations took about one week to complete. 

 

III.4 Reconstruction method and the subpixel tag 

We used the SART method [56] for both the original and subpixel reconstructions in this 

study. The updating step of the SART method can be found in Equation 2.11. The TPA is 

removed with the algorithm previously developed in our laboratory [67, 68]. The glaring artifact 

is removed by including the projection compensation multiplier in the forward and backward 

projection, as introduced in Section II.5. The simulated DBT used 21 projections so that each 

SART iteration consisted of 21 updates. The SART reconstruction was initialized with a uniform 

imaged volume with zero values. 

We used the subpixel tag ‘xyαzβ’ to denote the subpixel ratio of a reconstruction, with α 

being the subpixel ratio along the x- and y-directions and β being the subpixel ratio along the z-

direction. For a reconstruction at the subpixel ratio xyαzβ, each 0.1 × 0.1 × 1.0 mm3 voxel was 

divided into α
2
β of (

0.1

𝛼
) × (

0.1

𝛼
) × (

1.0

𝛽
)mm3 voxels. The matrix size of the voxel grid of the 

reconstructed imaged volume increases by a factor of α
2
β for subpixel reconstruction. 
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We used the following 6 subpixel ratios: xy1z1, xy2z1, xy3z1, xy1z2, xy2z2 and xy3z2 in 

this study. xy1z1 denotes the regular reconstruction. When reconstructing with an xy-ratio larger 

than one with the RT projector, the input projections were interpolated to the same xy-ratio using 

2-D bilinear interpolation. For the SG projector, the non-interpolated projections were used as 

input. To demonstrate the effect of the new SG projector, we also reconstructed all subpixel 

ratios with the original SF projector. In summary, with 25 shift locations of the phantom, 6 

subpixel ratios and 3 different projectors, there were a total of 450 image reconstructions. 

 

Figure 3.4.  Relative voxel sizes and segments for xy1z1, xy2z1 and xy1z2 subpixel ratios. The 

entire stack of color blocks indicates a voxel, and each color block indicates a segment. In the 

examples shown, the voxel of xy1z1, xy2z1 and xy1z2 was cut into 6, 12 and 3 segments, 

respectively, to maintain the same height-to-width ratio. 

For the SG projector, the proper number of segments depends on the shapes of the voxel and 

its projection to the detector plane. For narrower voxels, more segments are necessary to make a 

good approximation of the blurred footprint of each voxel. According to our initial 

experimentation with different number of segments, for our DBT system where the detector pixel 

pitch is 0.1 × 0.1 mm2  and the maximum projection angle is ±30°, at a reconstructed slice 

interval of 1 mm, we found that 5 or 6 segments, i.e., a voxel height-to-width ratio of about 2:1 

to 1.7:1, are sufficient. We chose to use 6 segments for two reasons: (1) an even number of 

segments for the xy1z1 case yields an integer value in the number of segments for cases with z2, 
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and (2) to maintain the same height-to-width ratio of the segments and therefore similar accuracy 

of the SG projector for all subpixel ratios studied.  For example, 3 segments were used for xy1z2 

and 6 segments for xy1z1. For the subpixel ratio of xy2z1, 12 segments were used because each 

voxel is half the size of that of xy1z1 in the x- and y-dimension. Figure 3.4 shows the relative 

sizes of one voxel for xy1z1, xy2z1 and xy1z2. 

 

III.5 Results and discussions 

III.5.1 Comparison of projections of single voxels 

To illustrate the difference in the projectors, we compared the projection generated by the 3 

different projectors (RT, SF and SG) when there was only one non-zero voxel in the imaged 

volume. We set the non-zero voxel value to 1. This was equivalent to comparing one column of 

the system matrix 𝐀𝑖. The projections generated by the digital projectors were compared with the 

ideal projection. To simulate the ideal projection, we divided each detector element into a 20 × 

20 mini pixels in a Cartesian grid, calculated the projection value at the center of each mini-pixel 

and then calculated the average of the 400 mini-pixels as an approximation of the surface 

integral over the detector element. The projected location of a given voxel was calculated 

analytically and the ideal projection was only calculated within a small region. The calculation of 

the ideal projection for a full-sized detector would take more than one hour, which is too slow to 

be used in iterative image reconstruction in practice. 

Figure 3.5 and Figure 3.6 show the projections of the single voxel in the imaged volume with 

the ideal projector, RT, SF and SG at projection angle 𝜃 = −30°. The root-mean-square errors 

(RMSE) of RT, SF and SG relative to the ideal projection were given at the top of the figures. 

Visually, the pattern generated by the SG projector is much more similar to the ideal projection 

compared with the RT projector. Compared with the ideal projection, the RT projection is 

narrower and values at several pixels are missing because the analytical footprint does not cover 

the centers of those detector elements, i.e., the ray path between the focal spot and the center of 

each of these detector elements does not intersect the voxel. When reconstructing small objects 

such as subtle MCs, the narrower projections by the RT projector might cause the reconstructed 

objects to be more blurred. Quantitatively, the SG projector reduces the RMSE by 96.4% and 

62.6% at the two locations, respectively, compared with the RT projector. The projections 
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generated by the original SF projector are also shown in Figure 3.5 and Figure 3.6. These 

projections appear symmetric in the s-direction due to the SF approximation, which is inaccurate 

in DBT as seen from the ideal projection. 

  

Figure 3.5.  Projection of a single voxel 

located at (30.05, 0.05, -19.5) mm at 

projection angle 𝜃 = −30°. 

Figure 3.6.  Projection of a single voxel 

located at (160.05, 70.05, -19.5) mm. at 

projection angle 𝜃 = −30°. 

The difference between the projectors depends strongly on the voxel location in the imaged 

volume and the source angle. Generally, the difference is greater when the angle between the z-

direction and the ray from the source to the center of the voxel is larger. In the two examples in 

Figure 3.5 and Figure 3.6, the source angle of the projection was -30
o
. Figure 3.6 shows a voxel 

located near the edge of the field of view of the detector so that it represents an extreme case 

where the voxel is projected at almost the largest angle in the entire imaged volume. Figure 3.5 

shows a voxel essentially at the central ray of the projection.  

 

III.5.2 Error map for voxels at different locations 

In addition to the single voxel examples shown in the previous section, we investigated the 

distribution of the RMSE for voxels over one slice of the imaged volume at different projection 
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angles to further evaluate the accuracy of the SG projector. We chose the slice at z = -29.5 mm as 

an example. The distributions of RMSE, relative to the ideal projector, over the 1920 × 2304 

voxels on this slice at projection angles 𝜃 = 0° and 𝜃 = −30° are shown in Figure 3.7. The 

projection error of a given voxel depends strongly on the alignment of the projection with the 

detector pixels, which leads to periodic patterns in the error maps. Figure 3.7 has been filtered 

with a 7 × 7 sliding maximum window to reduce the periodic pattern, representing the maximum 

error within a 0.7 × 0.7 mm2 patch centered at each pixel. 

 

Figure 3.7.  RMSE map of the RT (left column) and the SG (right column) projectors, relative to 

the ideal projection, of voxels on a slice of the imaged volume at z = -29.5 mm. The upper row 

shows the maps at projection angle 𝜃 = 0°, and the lower row shows the maps at 𝜃 = −30°. 
Note the difference in the scale of the heat maps. 
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The error map is black near the top, bottom and right boundaries, representing an RMSE of 0. 

Due to the diverging x-ray beam, the projection of voxels in this region was already outside the 

field of view of the detector; the projected voxels were ignored so that both the ideal projection 

and the projection by SG or RT were set to zero. For the area where the RMSE is non-zero, the 

SG projector reduces the projection error by 1 to 2 orders of magnitude at most locations, 

especially for the projection angle 𝜃 = 0°. Generally, the error of the RT projector is larger when 

the area of the analytical projection of a voxel is smaller, making it more likely to miss larger 

fraction of pixel values. For 𝜃 = 0° (upper row of Figure 3.7), the minimum non-zero value of 

the RT RMSE map (the upper right corner) is 0.1543, and the maximum value of the SG RMSE 

map (middle point of the right edge) is 0.0386. For 𝜃 = −30° (lower row of Figure 3.7), the 

minimum non-zero value of RT (the upper right corner) is 0.1254, and the maximum value of the 

SG error map (the upper right corner) is 0.0643. Therefore, even in the worst case, the SG 

projector still provides a much more accurate projection. 

As shown in the DBT imaging geometry (Figure 2.1 or Figure 3.1), the center of the cone 

beam is centered at the chest wall of the compressed breast, which corresponds to the left 

boundary of the error maps shown in Figure 3.7. The right side of the DBT slice (anterior of 

breast) where the x-ray incident angle is large is usually outside the breast volume unless the 

compressed breast is very large. The relatively large RMSE of the SG projector near the right 

boundary is therefore less problematic. On the contrary, the error maps of the RT projector show 

larger RMSE on the left side (chest wall) where the main breast volume is located, introducing 

errors into the reconstructed DBT for all breast sizes. 

 

III.5.3 Qualitative comparison of reconstructed images 

To study the effects of the projectors on the DBT image quality, we first made a qualitative 

comparison of the reconstructed images using different projectors at several subpixel ratios. As 

an example, the images reconstructed from the projections with the phantom location at L00 are 

shown. Figure 3.8 shows the in-focus slice (centered at z = - 25.5 mm) reconstructed with the SG 

projector at the original voxel size. Detailed analysis is discussed below. 
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Figure 3.8. The in-focus slice (centered at z = -25.5 mm) of the line-pair phantom (L00, xy1z1, 5 

SART iterations with the SG projector). In-plane artifacts are seen as shadows above and below 

the objects. 

An example to illustrate the difference in the image quality for different projectors is shown 

in the zoomed image patches in Figure 3.9. From left to right, we replaced the RT projector with 

the SG projector and replaced the regular reconstruction with the subpixel reconstruction. The 

spatial resolution dramatically improves after each replacement. The test pattern shown has 6 

line pairs/mm, which is higher than the Nyquist limit of the detector (5 cycles/mm). In the xy1z1 

reconstructions, aliasing can be seen clearly; although the line pairs appear resolved in the image, 

it contains only 3 and a half line pairs while the object actually contains 4 and a half line pairs (5 

bright lines and 4 dark lines). The xy3z2 reconstructions clearly resolve all the line pairs. The 

difference between the SG and RT projectors are also well demonstrated; the SG projector 

provides higher-contrast line pair images in both directions compared to the RT projector. In 

addition, although the simulated projections are noiseless, the RT images appear ‘noisy’, 
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especially for the horizontal line pairs. The ‘noise’ shows regular periodic pattern, indicating it is 

actually periodic numerical error rather than random noise. One possible reason may be that the 

discrete and sparse rays being traced through the voxel grid in the RT projector causes periodic 

sampling errors in the projected values. The images of the BBs further demonstrate the increased 

resolution of the subpixel reconstruction. The BBs are well resolved in the xy3z2 reconstruction 

but they become neighboring voxels in the xy1z1 reconstruction. The BBs are also more blurred 

by the RT projector than the SG projector. This observation is similar to that of a previous study 

by our laboratory [83]. Generally, the subpixel reconstruction provides better image quality 

among the conditions studied. However, the improved resolution is gained at the expense of 

longer computation time and more memory as well as storage space. The SG projector is more 

efficient than the RT projector so that the increase in the computation time is less dramatic. 

 

Figure 3.9. Object set #8 (see Figure 3.3, Figure 3.8, Table 3.1) reconstructed with RT or SG 

projector with subpixel ratios of ‘xy1z1’ and ‘xy3z2’. All line pair images are shown with the 

same window setting. All BB images also share the same window setting (different from that of 

the line pairs). Line pair frequency = 6 line pairs/mm. BB diameter = 0.083 mm. detector pixel 

pitch = 0.1 mm and Nyquist frequency = 5 cycles/mm, SART iterations = 5. Note that the line 

pairs are not correctly resolved in the xy1z1 reconstructions while both the line pairs and the BBs 

are well resolved in the xy3z2 reconstructions. 
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III.5.4 Figures of merit for quantitative analysis of subpixel image reconstruction 

To evaluate quantitatively the performance of the SG projector and the subpixel 

reconstruction, we defined FOMs based on the reconstructed line pairs and BBs. We first 

obtained the profiles of different objects. For each set of line pairs, we extracted 9 profiles at the 

central part of the line pairs and took the average. For BB, we only extracted one profile through 

the line that passed through the centers of the two spheres. The profiles were calculated from the 

analytical locations of the objects as defined in the configuration of the phantom. These “true” 

locations do not change when we perform subpixel reconstructions. A profile was obtained by 

bilinear interpolation from the reconstructed values at the voxel grid points on the in-focus slice. 

For each set of line pairs, one profile contained 81 sampling points, while for each BB, one 

profile contained 51 sampling points. The sampling distance was reduced as the line pair 

frequency increased to allow for adequate sampling of the peaks and valleys of the profiles. The 

actual length of the profiles was therefore inversely proportional to the spatial frequency but 

always covered the entire set of line pairs or the two BBs. 

 

Figure 3.10.  Examples of peak detections (L00, RT projector, subpixel ratio xy2z2). The circles 

mark the detected peaks and the triangles mark the detected valleys. Fewer than 5 peaks are 

detected at the frequency f = 8.5 line pairs/mm, indicating that the line pairs are non-resolvable. 

lpH = horizontal line pairs, f = frequency, LP = line pairs, d = diameter. The profiles of the 

vertical line pairs are analyzed similarly but not shown. 

After extracting the profile, we used automatic peak detection to identify peaks and valleys 

of the profile as shown in Figure 3.10. For each set of line pairs, the numbers of detected peaks 
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and valleys were counted. If 5 peaks and 4 valleys were detected, the contrast was calculated as 

the difference between the mean peak value and the mean valley value, normalized to the 

contrast value of the line pairs in the voxelized image of the analytical phantom, which had the 

same constant value for all line pair frequencies. If less than 5 peaks were detected, the line pairs 

was considered to be non-resolvable and the contrast of the line pairs was assigned 0. The two 

plots in the first row of Figure 3.10 show examples of these two situations. 

For the BB profiles, similarly, if less than 2 peaks were detected the contrast was considered 

to be 0. If 2 peaks and 1 valley were detected, we used the following equation to define the 

relative contrast of the BB: 

Relative Contrast =
(𝑝1+𝑝2)/2−𝑣

max (𝑝1,𝑝2)−𝑏
    (3.13) 

where 𝑝1 and 𝑝2 are the values at two peaks, 𝑣 is the value at the valley and 𝑏 is the background 

voxel value. The relative contrast instead of the absolute contrast is used because BBs with 

different diameters have different thicknesses along the z-direction. For BBs located entirely 

within a single reconstructed slice (diameter < slice interval), the highest voxel values of the BBs 

are approximately proportional to their diameters. Even if the reconstruction is ideal (exactly 

matches the voxelized ground truth), there are large differences between the absolute contrasts of 

BBs of different diameters, making the contrast-versus-diameter curve less meaningful. On the 

contrary, the relative contrast of ideally reconstructed BBs will always be 1, so it better describes 

whether the two BBs can be resolved. When the two peaks are not equal, we use the larger one 

of the two peaks in the denominator to be conservative in estimating the relative contrast. For 

simplicity, the relative contrast is simply referred to as “contrast” in the following discussion. 

 

Figure 3.11. The dependence of the contrast on the frequency of line pairs and the diameter of 

BBs for 3 shifted locations. The RT projector is compared with the SG projector at a given 

subpixel ratio (xy3z2).  
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The contrasts of line pairs and BBs were computed for all 25 shifted locations of the imaged 

objects. When the object was shifted, we shifted the starting point and ending point of profiles by 

the same value to make sure that all profiles represented features of the objects at the same 

location. Figure 3.11 shows an example comparing the SG and RT projectors when the subpixel 

ratio was fixed at xy3z2. The variation of the contrasts of the line pairs and BBs is very large at 

the different alignment of the spheres with the voxel grid, especially for the mid-frequency line 

pairs and small spheres. However, for a given shift location, the SG projector always gives better 

contrast than the RT projector. As a result, the mean contrast over all shifted locations can be 

used to represent the trend when the objects are imaged at random locations by the DBT system. 

For the horizontal (or vertical) line pair objects, only 5 of the 25 shifted locations produces 

different measurements of contrast values because the objects are parallel to the vertical (or 

horizontal) direction. The mean contrasts were obtained by averaging the five values from the 

shifted locations perpendicular to the line pairs. For the BBs, the contrasts at all 25 shifted 

locations were used for the estimate of the mean. The mean contrast will be used in the following 

discussions unless it is specified otherwise. 

 

III.5.5 Quantitative analysis: dependence of contrast on the number of iterations 

 

Figure 3.12. Dependence of mean contrast on number of iterations. All reconstructions used 

SART with the SG projector and xy1z1. Left: horizontal line pairs. Middle: vertical line pairs. 

Right: BBs.  

We first analyzed the dependence of the mean contrast on the number of iterations. Figure 

3.12 shows the contrast-versus-line pair frequency curves of xy1z1 reconstructed with the SG 

projector. The trends shown in Figure 3.12 are similar for reconstruction with other projectors. 
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The contrasts of the objects generally increase with increasing number of iterations. The only 

exception is the vertical line pairs, where the contrast after 1 iteration is higher than that after 2 

iterations for the lowest two frequencies. It can be seen that the increase in contrasts leveled off 

when we performed more iterations, representing convergence of the SART reconstruction [86]. 

In the reconstruction of clinical DBT images, the number of iterations needed may depend on 

the reconstruction method and the imaging techniques used, as well as the acquisition geometry 

(total scan angle, number of projections and angular increments) of the DBT system. In this 

study, we chose to use 5 iterations for SART in the following discussions. We expect that the 

relative trends observed would not change after the reconstruction reaches relatively stable levels. 

  

III.5.6 Quantitative analysis: dependence of contrast on the subpixel ratio 

Figure 3.13 shows the mean contrasts of the line pairs and spherical objects at different 

subpixel ratios for the fixed projector (SG). The contrasts of the line pairs were averaged over 5 

shifted locations of the phantom while the contrasts of the BBs were average over 25 shifted 

locations of the phantom, as explained above. Similar trends can be observed with the RT 

projector. When the z ratio is fixed and a higher xy-ratio is used (first row of Figure 3.13), a 

higher contrast is achieved for the three types of objects. The Nyquist frequency of the detector 

is 5 line pairs/mm. Without the subpixel reconstruction, it is difficult to differentiate line pairs 

with higher frequencies due to aliasing. After increasing the xy-ratio from 1 to 2, the contrasts 

increase dramatically for the vertical line pairs, especially for frequencies higher than 5 line 

pairs/mm. The vertical line pairs with a frequency higher than or equal to 6 line pairs/mm 

become resolvable with the subpixel reconstruction. For the horizontal line pairs, however, they 

are still not resolvable at frequencies higher than or equal to 6 line pairs/mm even with a higher 

xy-ratio. This is because that the DBT reconstruction artifacts spread along the vertical direction 

(y-direction) and subpixel reconstruction cannot alleviate this problem. The two BBs can be 

resolved down to the smallest diameter and spacing (0.053 mm) included in this study, which is 

smaller than the pixel size of the detector and Nyquist limit. When the xy-ratio is increased from 

2 to 3, the improvement in the contrasts of the objects is relatively small.  
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Figure 3.13. Dependence of mean contrast on subpixel ratios. All reconstructions used SART 

with the SG projector and 5 iterations. Left column: horizontal line pairs. Middle column: 

vertical line pairs. Right column: BBs. Upper row: subpixel ratios of xy1z1, xy2z1, xy3z1. 

Middle row: subpixel ratios of xy1z1, xy1z2. Lower row: subpixel ratios of xy3z1, xy3z2. 

The different observations for the horizontal and vertical line pairs indicate that the DBT 

system has different frequency response along the x and y-direction. However, the difference 

should be less in DBT of human breasts because the in-plane reconstruction artifacts for lower 

contrast tissues will not be as strong as that of the lead line pair patterns, and the artifacts due to 

dense calcifications or metal biopsy clips can be corrected to reduce their influence on the 

visibility of other features in the image [87, 88]. 

When the xy-ratio is fixed at 1 and the z-ratio is increased from 1 to 2 (second row of Figure 

3.13), the contrasts of horizontal line pairs and BBs increase. The increase in the contrasts of 

BBs is similar to what we observed in our previous study [83]. The exception is the vertical line 

pairs, where a z-ratio of 2 appears to reduce the contrasts. The reason is the different locations of 
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the line pairs relative to the voxel along the z-direction. As mentioned in the Section III.3, we 

placed the line pair objects at a depth of 25.6 mm from the bottom of the imaged volume. At the 

reconstruction with a z-ratio of 1 (i.e., slice interval of 1 mm), the line pair objects were 

contained well within the slice between 25.0 and 26.0 mm. When the z-ratio was set to be 2, the 

slice interval was reduced to 0.5 mm, the location of the line pairs was only 0.1 mm from the 

boundary of the sub-voxels along the z-direction, which was 20% of the slice interval. Part of the 

contrast of the line pairs leaked into the neighboring slices. It is impossible to set up a phantom 

where the objects are located at the center of a voxel along the z-direction for all z-ratios studied. 

If we set up two phantoms where the objects are located at the center of the focal slice (along the 

z-direction) for both z-ratios of 1 and 2, the difference in the contrasts for the z-ratio = 1 and z-

ratio = 2 conditions would likely be smaller and not reversed. However, such an approach would 

change the premise of the study that the available DBT projections are the same and only the 

projectors and subpixel ratios are changed. The third row of Figure 3.13 shows the change in 

contrasts when the xy-ratio is fixed at 3 and the z-ratio increases from 1 to 2. For the horizontal 

line pairs, several of the line pairs with spatial frequency higher than 5 line pairs/mm become 

resolvable when a larger z-ratio is used, as observed in Figure 3.9. 

 

III.5.7 Quantitative analysis: dependence of contrast on the projector type 

Figure 3.14 shows the dependence of the contrasts of line pairs and BBs on the projector. The 

SG projector outperforms the RT and the SF projector under most conditions. However, the 

advantage of using the SG projector also depends on the type of the objects, the subpixel ratio 

and the number of iterations. With the subpixel ratio of xy1z1 (first column of Figure 3.14), the 

increase in contrast for the SG projector is not obvious, except for the vertical line pairs. A 

possible reason is that the in-plane “shadow” artifact of DBT due to the limited scan angle is a 

dominant factor on the contrast of the horizontal line pairs, which masks the differences of the 

projectors. For the vertical line pairs, the SG projector shows the advantage of a more accurate 

system model using the SG projector. 
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Figure 3.14. Dependence of mean contrast on the RT, SF and SG projectors. Upper row: 

horizontal line pairs. Middle row: vertical line pairs. Lower row: BBs. Left column: xy1z1, 5 

iterations. Middle column: xy3z1, 5 iterations. Right column: xy3z1, 1 iteration.  

For the subpixel reconstruction, the SG projector substantially improves the contrasts of the 

objects as shown in the second column of Figure 3.14. When using the RT projector for subpixel 

reconstruction, the input projections have to be interpolated to reduce the sparsity of the rays and 

missing elements in the system matrix, which would lead to empty voxels in the reconstructed 

volume. The interpolation increases the number of rays to trace and may cause additional blur 

across sharp edges on the projections. With the SG projector, the original projections are used as 

input and no interpolation is needed. Therefore, there will be no blurring due to interpolation and 

the reconstructed line pairs may be sharper with higher contrasts. 

For xy1z1 reconstruction or the horizontal line pairs, the improvement in resolution by the 

SG projector is not obvious compared to the RT projector. The main advantage of the SG 

projector is reducing noisy artifacts (see example in Figure 3.9) due to numerical imprecision. 
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The contrast of a specific set of line pairs is calculated from the average profile from 9 individual 

profiles for a reconstructed in-focus slice, which has a denoising effect, masking partly the 

problem with the RT projector in terms of contrast.  

Another interesting observation is that the SF and SG projectors perform very similarly for 

the horizontal line pairs. This may be intuitively explained. If we have several consecutive 

voxels with the value of 1, the summed projection of all of them will be the sum of their 

footprints. As shown in Figure 3.5, the SF and the SG footprints are very different when 

projected to the t-axis (parallel to x) and very similar when projected to the s-axis (parallel to y). 

As a result, the sum of several consecutive SF and SG footprints will be similar for consecutive 

voxels along the x-direction and will be different for the voxels along the y-direction. So it is 

reasonable that the horizontal line pairs (along the x-direction) have similar reconstruction results 

with the SF or the SG projector. 

The advantage of the SG projector also depends on the number of iterations, as seen by 

comparing the second and the third column of Figure 3.14. With only 1 iteration, the SF 

projector actually produces slightly higher contrasts than the SG projector. As the number of 

iterations increases, the contrasts of objects increase faster with the SG projector, making it the 

best performing projector at 5 iterations. In fact, although a more accurate projector should 

improve the finally converged reconstructed image, there is no guarantee that it will also 

improve the intermediate reconstruction results. A sufficient number of iterations might be 

necessary to gain advantage from using the SG projector. It is difficult to estimate this number 

analytically. Experiments with different projectors might be necessary for a specific DBT system. 

This also indicates the importance of regularization in DBT image reconstruction [67, 89], which 

allows us to do more iterations without amplifying the noise at the same time. 

 

III.5.8 Image blur in the depth direction 

We evaluated the effect of the projectors on image blur in the z direction. The image blur is 

quantified by the artifact spread function (ASF) of the BBs, which is defined as the ratio between 

the contrast at each depth and the contrast at the focal plane [90] of the object: 

 
ASF(𝑧) =

Contrast(𝑧)

Contrast(𝑧0)
, (3.14) 
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where z0 is the depth of the focal plane. The contrast of a BB at a given depth is defined as the 

value at the pixel nearest to the analytical location of the center of the BB above the background 

value, which is a constant for the phantom images. The ASF is calculated for a single BB rather 

than a pair of BBs. For a given BB diameter, with a pair of BBs at each of the 25 shifted 

locations, we calculated the average of the ASFs over the 50 BB locations to reduce the 

dependence of the alignment of the BB with the pixel grid. The average ASFs were compared for 

the three projectors under different reconstruction conditions. 

 

Figure 3.15. Comparison of ASF along the depth direction (z) from the RT, SF and SG 

projectors for the 0.25-mm-diameter BBs. The images reconstructed with subpixel ratios xy1z1, 

xy2z1, xy2z2 and 5 iterations were analyzed. The depth z0 of the focal plane of the BB is plotted 

at 0 in the graphs. 

Table 3.2. FWHMs (in mm) of the ASFs in Figure 3.15 

Projector xy1z1 xy1z2  xy2z2 

RT 1.03 0.69 0.71  

SF 1.05  0.71  0.67 

SG 1.04 0.72  0.68 

Figure 3.15 shows the ASFs of different projectors for the BBs with a diameter of 0.25 mm. 

Table 3.2 shows the FWHMs of the ASFs in Figure 3.15. The FWHMs were calculated based on 

the linear interpolation of the data points. We found the two z values where the ASF was equal to 

0.5, and calculated the difference between them as the FWHM. For the xy1z1 subpixel ratio, the 

three different projectors give very similar results. For the xy2z2 subpixel ratio, the SG and SF 

projectors show slightly narrower ASFs than that of the RT projector in the midrange but all 

ASFs decrease to near background value at about the same depth. The ASFs for the subpixel 

ratios xy2z1 and xy3z1 (not shown) are similar to the ASF of xy1z1, and the ASF of xy3z2 (not 
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shown) is similar to that of xy2z2. Similar trends were also observed for the 0.5-mm-diameter 

BBs. The difference in the depth resolution among the projectors therefore is negligible for the 

objects studied. 

 

III.5.9 Computation speed 

To save computation time and the space to store the reconstructed images, we reconstructed a 

volume of interest (VOI) of size 5 × 10 × 5 cm
3
 instead of the full volume (19.2 × 23.04 × 5.0 

cm
3
, as shown in Figure 2.1) using the full-size projections as input. We positioned this VOI 

such that it contained all line pairs and spheres in the phantom and was beyond the extent of the 

TPAs [67, 69]. For different subpixel ratios, the reconstructed VOI had the same physical size, 

resulting in more voxels for higher subpixel ratios. The computation times of one iteration for 

reconstructing the same VOI using the different projectors and subpixel ratios are compared in 

Table 3.3. The computation times shown here include the time for outputting the reconstructed 

volume. The RT projector was implemented with the accelerated version of Siddon’s algorithm 

[79], which was about 3 times faster than the original algorithm according to our tests. All 

reconstructions were performed with the same Linux workstation (Intel Xeon(R) CPU E5-2690, 

8 cores, 2.9 GHz, 32 RAM). We used 16 threads for all reconstructions with each projector. 

Table 3.3. Computation time (in seconds) of one iteration. The value in the parenthesis is the 

ratio of computation time relative to that using the RT projection at xy1z1. 

Projector xy1z1 xy2z1  xy3z1 xy1z2 xy2z2 xy3z2 

RT 
16.32 

(1.0) 

76.1 

(4.7) 

263.9 

(16.2) 

19.97 

(1.2) 

91.66 

(5.6) 

278.7 

(17.1) 

SF 
7.16 

(0.4) 

17.59 

(1.1) 

34.31 

(2.1) 

10.62 

(0.7) 

30.66 

(1.9) 

62.0  

(3.8) 

SG 
14.12 

(0.9) 

55.58 

(3.4) 

143.38 

(8.8) 

15.91 

(1.0) 

63.34 

(3.9) 

161.4 

(9.9) 

 

Obviously, a higher subpixel ratio will take more computation time. The xy-ratio affects the 

computation time more than the z-ratio due to the fact that it is squared for the total number of 

voxels in the volume. Despite more computation, both the SF and SG projectors are more 

efficient than the RT projector because they access the memory array of the imaged volume 

sequentially. The SF projector is faster than the SG projector, since it is basically the SG 
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projector with only one segment. For the xy3z1, the SG projector uses 18 segments to maintain 

the same height-to-width ratio as that used for the other subpixel ratios, which cost a substantial 

amount of extra computation time compared with the SF projector. The time saving by the SG 

projector compared with the RT projector increases with increasing xy-ratio, because the SG 

projector does not use interpolated projections, which becomes a more serious problem at high 

xy-ratios.  

 

III.6 Limitations of the study 

III.6.1 Absence of noise and other factors 

In this study, many factors in the imaging system, such as detector blur, correlated noise, 

focal spot blur and other effects were ignored in generating the simulated DBT projections. This 

allows us to focus on the analysis of the role of the projector in the resolution of the 

reconstructed images. We observed improved resolution under this idealized situation, 

reinforcing the idea that a more accurate system model has the potential to improve DBT 

reconstruction. The overall effects of the projectors in the presence of these factors will warrant 

further studies. The study introduced in Chapter IV takes into account the detector blur and the 

correlated noise [91], as a further step towards a model-based DBT reconstruction framework. 

The study introduced in Chapter VI shows the effect of source blur on DBT reconstruction, 

especially for DBT systems with the continuous-motion data acquisition mode [44]. 

 

III.6.2 Comparison with the distance-driven projector  

We used a rect function, 𝑞𝑡(𝑡; 𝑖; �⃗⃗�) , and a trapezoid function, 𝑞𝑠(𝑡; 𝑖; �⃗⃗�),  in our 

implementation of the SG projector (Equation 3.8). This implementation is called the TR method 

[39]. In principle, the distance-driven projector [81] is equivalent to using rect functions in both 

t- and s-directions (the RR method). Compared with the TR method, we expect the RR method to 

reduce the computation time while reducing the projector accuracy. Whether the distance-driven 

approximation (or the RR method) to each segment is adequate for the DBT geometry will be a 

topic of research interest in future studies. 
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III.6.3 Efficient usage of the subpixel reconstruction 

Although the subpixel reconstruction provides better quality images, it costs dramatically 

longer computation time as shown in Table 3.3. It also costs much more memory, since we need 

to store the reconstructed volume at a finer voxel grid. Considering the trade-off between the 

improvement in contrasts and the computation time and storage space, the small gain from xy2 to 

xy3 (Figure 3.13) may not be cost-effective. The projectors we developed, either the RT or the 

SG projector, only cost a small amount of memory compared to that used for the voxel grid. For 

the phantom DBT in this study, if we use a voxel size of 0.1 × 0.1 × 1.0 mm3 for reconstruction, 

the number of voxels in the imaged volume is 1920 × 2304 × 50, which will cost 0.82 GB of 

memory with single precision in floating point format. For the xy3z2 subpixel ratio, the memory 

cost is 14.8 GB. This size is only about that of an average breast and the DBT of many breasts 

can be much larger. As a result, it will be difficult to apply the subpixel method to the full 

imaged volume in clinical practice. An efficient way of using the subpixel reconstruction is to 

perform subpixel reconstruction only within selected VOIs. In fact, all the reconstructions in our 

study were performed based on the VOI-specific reconstruction. We have confirmed that if the 

VOI is properly selected and far from the regions affected by the TPA [67, 69], the reconstructed 

image slices should be identical to the same region from the full volume image reconstruction. 

 

III.6.4 Shift-variance of spatial resolution in DBT  

DBT essentially uses a limited-angle cone-beam CT geometry, the spatial resolution of 

which is known to be shift-variant. In this study, we only used one phantom embedded with a set 

of line pairs and spherical objects at fixed locations arranged centrally and near the chest wall in 

the DBT field of view. Because we used the same phantom projections for the reconstruction 

under all conditions, the relative performance should be a reasonable representation of the 

ranking of the conditions studied. As demonstrated in Figure 3.5 to Figure 3.7, the RMSE values 

of both the SF and SG projectors increase but that of the RT projector decreases as the x-ray 

incident angle increases. The RMSE value of the SG projector remains much lower than those of 

the other two projectors. For objects located at large x-ray incident angles and away from the 

chest wall, it is likely that the quality of the reconstructed images by the SG projector would still 

be superior to those by the other two projectors although the relative ranking of the RT and SF 

projectors is uncertain. In addition, the simulated array of line-pairs was placed parallel to the 
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detector plane and the reconstructed slices. The effects of different projectors on the spatial 

resolution of line pairs or objects that are rotated out of plane relative to the detector and/or the 

reconstructed slices are still unknown. The degree of shift variance of resolution in DBT and the 

spatial and angular dependences of the relative ranking of the different projectors for DBT 

reconstruction will be a topic of research interest in future studies. 

 

III.7 Conclusion 

This chapter proposed an improved digital projector, the SG projector, for DBT 

reconstruction. Theoretically and experimentally, we demonstrated that the SG projector is able 

to generate very good approximations of the ideal projector. The SG projector outperforms the 

RT projector in terms of reconstruction quality without increasing the computation time. We 

applied the new projector to regular and the subpixel DBT reconstructions and illustrated its 

effectiveness. We compared the subpixel DBT reconstruction with the traditional RT projector 

and the SG projector. Results showed that the subpixel reconstruction can significantly improve 

image resolution, especially when it is used with the SG projector. The trade-off of using the 

subpixel reconstruction is the extra computation time and memory, which may be reduced by 

performing subpixel reconstruction only within selected VOIs.  
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CHAPTER IV.  

Detector Blur and Correlated Noise Modeling for Digital 

Breast Tomosynthesis Image Reconstruction2 

 

IV.1 Introduction 

IV.1.1 Introduction to the SQS-DBCN algorithm 

In this chapter, I will introduce the SQS-DBCN algorithm for DBT reconstruction. Inspired 

by the idea of MBIR, the SQS-DBCN algorithm incorporates the detector blur into the forward 

model to improve the reconstructed image quality. The detector blur in DBT causes correlation 

in the measurement noise. By making a few approximations that are reasonable for breast 

imaging, we formulated a regularized quadratic optimization problem with a data-fit term that 

incorporates models for detector blur and correlated noise (DBCN). We derived a 

computationally efficient separable quadratic surrogate (SQS) algorithm to solve the 

optimization problem that has a non-diagonal noise covariance matrix. We evaluated the SQS-

DBCN method by reconstructing DBT scans of breast phantoms and human subjects. The results 

indicate that the contrast-to-nose ratio (CNR) and sharpness of MCs were enhanced by the SQS-

DBCN algorithm compared to SART, while the reconstruction quality for soft tissue is preserved. 

A series of modified versions of the SQS-DBCN algorithms were then compared to explain the 

effectiveness of the original algorithm.  

 

                                                           
2
 This chapter is a reorganization of our paper on IEEE Transactions on Medical Imaging and its supplementary 

material [92]. Part of the content in our published paper has been moved to Chapter II that it is also used by other 

studies discussed in this dissertation. 
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IV.1.2 Inspiration of the study 

Studies have demonstrated the promise of iterative reconstruction methods in DBT [30-36]. 

Among the IR methods, MBIR methods incorporate the physics model of the system and the 

statistical model of signal detection. For DBT, although some studies on MBIR methods have 

been conducted [41, 42], they considered only limited aspects of the system model, such as 

modeling the scattered radiation or the statistical model of the measurement noise. To our 

knowledge, no studies have incorporated the models of image degradation factors of the DBT 

imaging system, including the crosstalk of the flat-panel detector and the resulting noise 

correlation. Our goal is to develop MBIR methods with more comprehensive modeling of the 

system physics and computationally efficient algorithms for DBT reconstruction. 

In a DBT system using an indirect detector, light diffusion in the phosphor or the scintillator 

introduces crosstalk between neighboring pixels. The finite pixel size and light diffusion 

contribute to blurring of the measured image and correlation in noise. Neglecting detector blur 

leads to blurring of the reconstructed objects, strongly affecting small features such as MC. In 

CT applications, several projectors have been proposed that account for the finite pixel size, such 

as the distance-driven projector [81] and the separable footprint projector [39]. In this 

dissertation, I have introduced the SG projector for DBT geometries [77]. Current DBT 

reconstruction algorithms generally treat the measurement at each detector element to be 

independent random variables, which differs from the physical process in the DBT detector. 

Tilley et al. and Stayman et al. studied the effect of modeling the detector blur and correlated 

noise in least-squares reconstruction for CBCT with simulated phantoms and found superior 

noise-resolution trade-offs with their proposed approach [93-95]. Our feasibility study [91] 

showed similar promise for DBT scans. In this chapter, we further refine our implementation of 

DBT reconstruction accounting for detector blur and the resulting noise correlation, incorporate 

adaptive regularization strength, analyze the image quality by the contrast and sharpness of the 

signals and the tissue texture using phantom and human subject DBT scans, and compare the 

reconstructed image quality with and without modeling detector blur and noise correlation. 

We have already discussed the importance of regularization in DBT reconstruction in Section 

II.2. In this chapter, we use a regularization strategy based on a hyperbola potential function, 

which is convex and edge-preserving. We model detector blur and noise correlation and 

formulate the reconstruction as a regularized quadratic optimization problem. The problem needs 
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to be solved with an iterative algorithm. Based on the form of the data-fit term and the 

regularization, we chose to apply a slightly modified separable quadratic surrogate (SQS) [96] 

method. Although the SQS method requires more iterations to converge than coordinate descent 

methods, it enforces non-negativity constraints on the reconstructed image [97, 98]. 

 

IV.2 The reconstruction problem and algorithms 

IV.2.1 Formulation of the reconstruction problem 

We first mathematically formulate the reconstruction problem using a few assumptions based 

on the imaging characteristics of DBT. Similar to Chapter II, we use 𝐀𝑖 to denote the M × N 

projector matrix for the ith projection angle, for i = 1, … , Np. Let M denote the number of pixels 

in a DBT projection image and N the number of object voxels to be reconstructed. Let 𝐟 denote 

the length-N vector corresponding to the unknown array of attenuation coefficients in the imaged 

volume and 𝐘𝑖 the length-N vector corresponding to the measured PV image at the 𝑖th projection 

angle. Considering the detector blur and the Lambert-Beer law for attenuation, a reasonable 

model for the expectation �̅�𝑖 is [94]: 

 �̅�𝑖 = 𝐼0𝐁𝑖 exp ( − 𝐀𝑖𝐟), (4.1) 

where 𝐁𝑖 denotes the blurring operation in M × M matrix form. In this work, we assume that 𝐁𝑖 

is projection-angle-dependent but linear shift-invariant within a given projection. Focal spot blur 

is ignored in the current study. If the incident intensity 𝐼0 is nonuniform over the PV then one 

could replace the scale 𝐼0 with a diagonal matrix. 

One challenge in performing image reconstruction with the model in Equation 4.1 is that the 

matrix 𝐁𝑖 before the exponential is not diagonal [93-95]. To address this challenge for DBT, we 

assume that the image 𝐟  consists of two parts ( 𝐟 = 𝐟𝑏 + 𝐟𝑠 ), where 𝐟b  is a low-frequency 

background whose projections are approximately uniform within the support of the blurring 

kernel (𝐁𝑖𝐀𝑖𝐟b ≈ 𝐀𝑖𝐟b ), and 𝐟s  is a small structure such as MC in DBT whose attenuation 

contributes only a small amount to the projection values (𝐀𝑖𝐟s ≪ 1). These assumptions are 

more reasonable in breast imaging than in CT of body parts that include bone or other high-

attenuation objects. Under these assumptions, we use the following approximation: 
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𝐁𝑖 exp(−𝐀𝑖𝐟) = 𝐁𝑖 exp(−𝐀𝑖𝐟𝑠) exp(−𝐀𝑖𝐟𝑏)

≈ 𝐁𝑖(𝟏 − 𝐀𝑖𝐟𝑠) exp(−𝐁𝑖𝐀𝑖𝐟𝑏)

= (𝟏 − 𝐁𝑖𝐀𝑖𝐟𝑠) exp(−𝐁𝑖𝐀𝑖𝐟𝑏)

≈ exp(−𝐁𝑖𝐀𝑖𝐟𝑠) exp(−𝐁𝑖𝐀𝑖𝐟𝑏)

= exp(−𝐁𝑖𝐀𝑖𝐟). 

(4.2) 

Then we have the following simplification of Equation 4.1 for DBT: 

 �̅�𝑖 ≈ 𝐼0 exp ( − 𝐁𝑖𝐀𝑖𝐟). (4.3) 

The expectation �̅�𝑖 of the log-transformed projection 𝐲𝑖 is approximately:  

 �̅�𝑖 = log ( 𝐼0/𝐘𝑖) = 𝐁𝑖𝐀𝑖𝐟. (4.4) 

Compared with the reconstruction problem without detector blur, we simply need to include 

a blurring operation in the forward projection step. The transpose of 𝐁𝑖 is also relatively easy to 

implement in the back-projection step needed for iterative image reconstruction. 

The cost function of the reconstruction problem should also account for the covariance 

matrix of the noise in the measurements 𝐲𝑖 . DBT systems usually use a flat-panel direct or 

indirect detector. In our model, we assume an indirect CsI phosphor/a:Si active matrix flat panel 

detector. The image noise contains two major components: quantum noise from the x-ray 

photons and electronic noise of the detector. The quantum noise in the imaging process is 

affected by the detector blur but the detector electronic noise is not. 

Accounting for both quantum and electronic noise, we use the following model for the noise 

covariance 𝐊𝑖 of the ith PV:  

 𝐊𝑖 = 𝐁𝑖𝐊𝑖
q
𝐁𝑖

′ + 𝐊𝑖
𝑟 , (4.5) 

where  ′ denotes the transpose of a matrix. 𝐊𝑖
𝑞
 and 𝐊𝑖

𝑟 denote diagonal matrices with elements 

corresponding to the variances of quantum noise and readout noise at each detector element, 

respectively. 

The derivation of the noise covariance 𝐊𝑖 is similar to the Appendix of the paper by Tilley et 

al. [22]. The difference is that our application is for DBT geometry in which the imaged volume 

is very close to the detector. As a result, we neglect the focal spot blur so the blurring operation 

𝐁𝑖 in our study only includes the detector blur. This approximation will be revisited in Chapter 

VI. For the directly measured projection 𝐘𝑖  before the log transform, we treat it as having a 

Gaussian distribution: 
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 𝐘𝑖~𝑁(�̅�𝑖, 𝐊𝑖
𝑌), (4.6) 

where 

 �̅�𝑖 = 𝐼0𝐁𝑖 exp ( − 𝐀𝑖𝐟), (4.7) 

 𝐊𝑖
𝑌 = 𝐁𝑖𝐊𝑖

Q𝐁𝑖
′ + 𝐊𝑖

R, (4.8) 

where the capital letters Q and R in the superscripts denote that these values are for the 

projections before the log transform. Respectively, the lower-case letters q and r in Equation 4.5 

denote that 𝐊𝑖
𝑞
 and 𝐊𝑖

𝑟 are for the projections after the log transform. 𝐊𝑖
𝑞
 and 𝐊𝑖

𝑟 are directly used 

in the reconstruction algorithm since the log-transformed projection images are directly used in 

the implementation of the SQS-DBCN algorithm. 

According to Equation 4.3, the expectation of the log-transformed projection 𝐲𝑖  is 

approximately: 

 �̅�𝑖 = log (
𝐼0

�̅�𝑖

) ≈ 𝐁𝑖𝐀𝑖𝐟. (4.9) 

Similar to Tilley et al. [22], we consider the fluctuation of the random noise to be small 

compared with the mean value: 

 
𝐘𝑖 − �̅�𝑖

�̅�𝑖

≪ 1. (4.10) 

Then we have: 

 

𝐲𝑖 = log (
𝐼0
𝐘𝑖

)

= log (
𝐼0

�̅�𝑖

) − log (1 +
𝐘𝑖 − �̅�𝑖

�̅�𝑖

)

≈ �̅�𝑖 −
𝐘𝑖 − �̅�𝑖

�̅�𝑖

. 

(4.11) 

As a result, 𝐲𝑖 also follows approximately a Gaussian distribution: 

 𝐲𝑖~𝑁(�̅�𝑖, 𝐊𝑖), (4.12) 

where 

 𝐊𝑖 = diag (
1

�̅�𝑖

) 𝐁𝑖𝐊𝑖
Q𝐁𝑖

′diag (
1

�̅�𝑖

) + diag (
1

�̅�𝑖

)𝐊𝑖
Rdiag (

1

�̅�𝑖

). (4.13) 

In our application, the blurring kernel 𝐡𝑖  is symmetric along the horizontal and vertical 

directions. So 𝐁𝑖 is a symmetric matrix. As we discussed previously in this section, we assume 

the low-frequency background to be approximately uniform over the support of the blurring 
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kernel while a small structure such as MC contributes only a small amount of projection values. 

As a result, �̅�𝑖 is approximately uniform over the support of the blurring kernel. Thus we make 

the following approximation: 

 diag (
1

�̅�𝑖

) 𝐁𝑖 ≈ 𝐁𝑖diag (
1

�̅�𝑖

). (4.14) 

The covariance matrix 𝐊𝑖 then simplifies as: 

 
𝐊𝑖 ≈ 𝐁𝑖diag (

1

�̅�𝑖

)𝐊𝑖
Qdiag (

1

�̅�𝑖

)𝐁𝑖
′ + diag (

1

�̅�𝑖

)𝐊𝑖
Rdiag (

1

�̅�𝑖

)

= 𝐁𝑖𝐊𝑖
q
𝐁𝑖

′ + 𝐊𝑖
r, 

(4.15) 

where 

 𝐊𝑖
q

= diag (
1

�̅�𝑖

)𝐊𝑖
Qdiag (

1

�̅�𝑖

), (4.16) 

 𝐊𝑖
𝑟 = diag (

1

�̅�𝑖

)𝐊𝑖
Rdiag (

1

�̅�𝑖

) . (4.17) 

According to Equation 4.12, 𝐲𝑖 follows approximately a Gaussian distribution. We formulate 

for DBT the following regularized image reconstruction problem with non-diagonal weighting:  

𝐟 = argmin
𝐟

1

2
∑ ‖𝐲𝑖 − 𝐁𝑖𝐀𝑖𝐟‖(𝐁𝑖𝐊𝑖

q
𝐁𝑖

′+𝐊𝑖
𝑟)−1

2
𝑁p

𝑖=1
+ 𝑅(𝐟)

= argmin
𝐟

1

2
∑ ‖𝐒𝑖𝐲𝑖 − 𝐒𝑖𝐁𝑖𝐀𝑖𝐟‖2

2
𝑁p

𝑖=1
+ 𝑅(𝐟), 

(4.18) 

where 𝑅(𝐟) denotes the regularization term and the inverse matrix square root of the noise 

covariance is  

 𝐒𝑖 = (𝐁𝑖𝐊𝑖
q
𝐁𝑖

′ + 𝐊𝑖
𝑟)−1/2. (4.19) 

 

IV.2.2 Implementing 𝐒𝑖 

Since (𝐁𝑖𝐊𝑖
𝑞𝐁𝑖

′ + 𝐊𝑖
𝑟)  is non-diagonal, implementing multiplication by 𝐒𝑖  is usually very 

challenging, and this is the key difficulty in using the optimization formulation of Equation 4.18. 

The inverse of (𝐁𝑖𝐊𝑖
𝑞𝐁𝑖

′ + 𝐊𝑖
𝑟)  is non-diagonal with approximately 1013  elements in DBT, 

therefore it cannot be stored. To obtain the result of the linear operation (𝐁𝑖𝐊𝑖
𝑞𝐁𝑖

′ + 𝐊𝑖
𝑟)

−1
𝐯 , 

one has to solve for 𝐮  in the large-scale inverse problem (𝐁𝑖𝐊𝑖
𝑞𝐁𝑖

′ + 𝐊𝑖
𝑟)𝐮 = 𝐯 . In CT 

applications, one possible method is to solve it with a set of conjugate gradient iterations [94]. In 

DBT, we can dramatically simplify the implementation by making some reasonable assumptions. 
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Unlike body CT where there exist large bones and even perhaps metal objects of significant size 

that are strongly attenuating, the compressed breast has a fairly consistent thickness mainly 

composed of soft tissue. As a first-order approximation, we treat quantum noise variance as 

constant across all detector elements in a given projection angle:  

 𝐊𝑖
q

= 𝜎𝑖
q2

𝐈, (4.20) 

where 𝐈 denotes the M × M identity matrix. Equation 4.20 is the key approximation for the SQS-

DBCN algorithm. We will study the influence of this approximation in Section IV.4.3 and 

Section IV.4.7. 

In addition, we treat all detector elements in a given PV as having similar readout noise 

variance:  

 𝐊𝑖
r = 𝜎𝑖

r2𝐈. (4.21) 

Equation 4.16 and 4.17 indicate that when we assume 𝐊𝑖
q

= 𝜎𝑖
q2

𝐈  and 𝐊𝑖
r = 𝜎𝑖

r2𝐈 , it is 

equivalent to assuming diag (
1

𝐘𝑖
)𝐊𝑖

Qdiag (
1

𝐘𝑖
) and diag (

1

𝐘𝑖
)𝐊𝑖

Rdiag (
1

𝐘𝑖
) to be constant along the 

diagonal for the ith projection angle. 

Let 𝐡𝑖 denote the point spread function (PSF) of the detector. We obtained 𝐡𝑖 by the inverse 

Fourier transform of the MTF of the detector for a GE Essential mammography system [99], 

which also agreed with our own measurement on the prototype DBT system using the edge 

method [100]. We diagonalize the blurring operation by 𝐁𝑖 = 𝐐−1𝐇𝑖𝐐, where Q denotes the 

discrete Fourier transform (DFT) matrix, and 𝐇𝑖 = Diag(DFT{𝐡𝑖}) denotes the corresponding 

frequency response. We then implement the operation of multiplying 𝐒𝑖 by a vector using FFT 

operations without needing any iterative method for matrix inversion:  

 𝐒𝑖 = 𝐐−1(𝜎𝑖
q2

𝐇𝑖𝐇𝑖
′ + 𝜎𝑖

r2𝐈)−1/2𝐐, (4.22) 

where 𝜎𝑖
q
 and 𝜎𝑖

r with lower case superscripts q and r denote noise standard deviations for the 

PVs after log transform, or equivalently the noise level relative to the recorded x-ray intensity. 

The corresponding noise standard deviations before log transform are denoted by 𝜎𝑖
Q

 and 𝜎𝑖
R 

with upper case superscripts Q and R. We estimate 𝜎𝑖
R from dark current images without x-ray 

exposure by subtracting two dark current images to remove possible structured noise from the 

detector, then calculating a mean standard deviation 𝜎𝑖
R from noise patches on the subtracted 

image and dividing it by √2. The breast boundary is automatically detected on each PV [101]. 
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We then estimate the mean x-ray intensity �̅�𝑖 incident on the detector as the mean pixel value 

within the breast boundary and calculate 𝜎𝑖
r as the ratio of  𝜎𝑖

R over �̅�𝑖.  

Estimating 𝜎𝑖
q
 is more complicated since it is difficult to remove the heterogeneous tissue 

background from the projection images. Therefore, we use a DBT scan of a uniform Lucite slab 

of approximately the thickness of the phantom or a breast to estimate 𝜎𝑖
q
. For each PV of the 

Lucite slab, we select an array of noise patches and remove the background trend with a 2-D 

second order polynomial fitting. Then we calculate the standard deviation 𝜎𝑖 as the mean of the 

standard deviations estimated from each noise patch. This calculated 𝜎𝑖 contains the contribution 

of both 𝜎𝑖
R and 𝜎𝑖

Q
 as given by: 

 𝜎𝑖
2 = 𝜎𝑖

Q2
‖𝐡𝑖‖2

2 + 𝜎𝑖
R2

. (4.23) 

We then derive 𝜎𝑖
Q

 of the Lucite slab from the above relationship using the estimated 𝜎𝑖 and 

𝜎𝑖
R: 

 𝜎𝑖
Q = √

𝜎𝑖
2 − 𝜎𝑖

R2

‖𝐡𝑖‖2
2 . (4.24) 

Treating 𝜎𝑖
Q

 as approximately Poisson noise, 𝜎𝑖
Q2

 is proportional to �̅�𝑖 and therefore 𝜎𝑖
q2

 is 

inversely proportional to �̅�𝑖. Using the ratio of �̅�𝑖 between a DBT scan and the Lucite slab, we 

estimate 𝜎𝑖
q

 for the DBT scan to be reconstructed. In practical implementation, this may be 

accomplished by predetermining sets of 𝜎𝑖
Q

 (i = 1, … , Np) for all Np projections from Lucite 

slabs over a range of thicknesses and x-ray spectra (anode, filter, kilovoltage) combinations and 

storing them as a library of look up values. For a given DBT scan acquired with a certain 

exposure technique, one can select an appropriate set that approximates the breast thickness and 

exposure technique for reconstruction. 

 

IV.2.3 The regularization 

In the implementation of Equation 4.22, 𝐒𝑖 acts as a filter that boosts high spatial frequencies. 

With the approximations of constant 𝜎𝑖
q
 and 𝜎𝑖

r for a given projection angle, we implemented 𝐒𝑖 

in the frequency domain with fast Fourier transform (FFT). Figure 4.1 shows the normalized 

frequency response of 𝐒𝑖 that corresponds to the central PV of our experimental phantom. The 
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specific frequency response of 𝐒𝑖 will change based on the estimated 𝜎𝑖
q
 and 𝜎𝑖

r, which depend 

on the projection angle. As a typical case, Figure 4.1 shows that the high-frequency response of 

𝐒𝑖 is not extremely high such that noise of the PVs will not be amplified excessively. 

 

Figure 4.1. Normalized frequency response of S𝑖  for the central projection angle of the 

experimental phantom. 

Despite the shape of the curve in Figure 4.1, 𝐒𝑖 would still amplify noise in reconstruction if 

used without regularization. Regularization is important for stable reconstruction. We use a 

regularization term of the following form: 

 

𝑅(𝐟) =
𝛼𝛽

1 + 𝛾
(∑ 𝜂([𝐂𝑥𝐟]𝑗) + 𝜂 ([𝐂𝑦𝐟]𝑗)𝑗

+ 𝛾𝜂 ([𝐂𝑥−𝑦𝐟]𝑗) + 𝛾𝜂 ([𝐂𝑥+𝑦𝐟]𝑗)), 

(4.25) 

where 𝐂𝑥 and 𝐂𝑦 denote matrices that calculate differences between neighboring pixels along the 

x and y-direction of the imaged volume, respectively, as defined in Figure 2.1. 𝐂𝑥−𝑦 and 𝐂𝑥+𝑦 

compute finite differences along the two diagonal directions. j is the index for all neighboring 

pixel pairs along one direction. The distance between two neighboring pixels along the diagonal 

direction is larger, resulting in relatively weaker correlation between their pixel values. We 

therefore use the parameter 𝛾 (𝛾 ≤ 1) to control the weight of regularization in the diagonal 

directions. We chose 𝛾 to be 0.5 for this study following [102]. The parameter 𝛽 controls the 
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strength of the regularization term. From reconstructing DBT at different noise levels, we 

observed that the regularization parameter needs to be adapted to keep an appropriate balance 

between the data-fit term and the regularizer, because the covariance-based weighting of the 

data-fit term in Equation 4.18 depends on the noise level. Therefore we include a scaling factor 𝛼 

to adaptively adjust the regularization strength based on the noise level of the projections. We 

define 𝛼 as: 

 𝛼 =
𝑁p

∑ 𝜎𝑖
q2

‖𝐡𝑖‖2
2 + 𝜎𝑖

r2𝑁p

𝑖=1

. (4.26) 

For the regularizer in Equation 4.25, we use a hyperbola potential function 𝜂(𝑡):  

 𝜂(𝑡) = 𝛿2 (√1 + (𝑡/𝛿)2 − 1). (4.27) 

This form of 𝜂(𝑡) is edge-preserving. 𝜂(𝑡) is also differentiable, making it easy to implement 

the optimization algorithm of the cost function. The parameters 𝛿  and 𝛽  need to be chosen 

properly as discussed in Section IV.4.1. When 𝛿  is large relative to t, Equation 4.27 is 

approximately 𝜂(𝑡) = 𝑡2, which is equivalent to a quadratic regularization. In the result section 

of this chapter, we studied the effect of using a quadratic regularization by setting 𝛿 = 1/𝑚𝑚. 

The details can be found in Section IV.4.8. 

 

IV.2.4 The SQS-DBCN algorithm 

Both the quadratic function of the data-fit term and 𝜂(𝑡) are convex and the second-order 

derivative of 𝜂(𝑡) in Equation 4.27 is  

 �̈�(𝑡) = (1 + (
𝑡

𝛿
)
2

)
−3/2

, (4.28) 

which is less than or equal to 1, enabling the use of the SQS algorithm to solve the optimization 

problem [97]. To apply the SQS algorithm, we need to find an upper bound on the Hessian of the 

cost function 

 Ψ(𝐟) =
1

2
‖�̃� − �̃�𝐟‖

2

2
+ 𝑅(𝐟), (4.29) 

where the whole system matrix and whole (prewhitened) data vector are given by: 

 �̃� = (

�̃�1

. . .
�̃�𝑁p

) = (

𝐒1𝐁1𝐀1

. . .
𝐒𝑁𝑝

𝐁𝑁𝑝
𝐀𝑁𝑝

), (4.30) 
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 �̃� = (

�̃�1

. . .
�̃�𝑁p

) = (

𝐒1𝐲1

. . .
𝐒𝑁p

𝐲𝑁𝑝

). (4.31) 

We first find an upper bound on the Hessian of the regularization term 𝑅(𝒇). Since the 

second-order derivative of the potential function 𝜂(𝑡) is less than or equal to 1, we have 

 ∇2 ∑ 𝜂([𝐂𝐟]𝑗)
𝑗

≤ diag{|𝐂′||𝐂|𝟏} = 4𝐈, (4.32) 

where 𝟏 denotes a length-N all-one vector, | ⋅ | denotes element-wise absolute value, 𝐈 denotes 

the identity matrix and 𝐂 denotes any one of 𝐂𝑥, 𝐂𝑦, 𝐂𝑥+𝑦 and 𝐂𝑥−𝑦. As a result, we have: 

 ∇2𝑅(𝐟) ≤
𝛼𝛽

1 + 𝛾
(4 + 4 + 4𝛾 + 4𝛾)𝐈 = 8𝛼𝛽𝐈. (4.33) 

By finding (derived in Equation 4.35-4.37 below) a diagonal majorizing matrix D such that 

𝐃 ≥ |�̃�′||�̃�| , the modified SQS algorithm for minimizing the DBT cost function is (with 

nonnegativity constraint): 

 𝐟(𝑛+1) = max(𝐟(𝑛) − (𝐃 + 8𝛼𝛽𝐈)−1∇Ψ(𝐟(𝑛)), 0). (4.34) 

The usual choice of 𝐃 would be 𝐃 = diag{|�̃�′||�̃�|𝟏}. However, implementing |�̃�′||�̃�|𝟏 is 

difficult since �̃�  has negative values because of the high-frequency boosting feature of 𝐒𝑖 . 

Instead, note that the blur frequency response matrix 𝐇𝑖 satisfies 𝐇𝑖𝐇𝑖
′ ≤ 𝐈, then we have from 

Equation 4.22: 

 

𝐁𝑖
′𝐒𝑖

′𝐒𝑖𝐁𝑖 = 𝐐−1𝐇𝑖
′ (𝜎𝑖

q2
𝐇𝑖𝐇𝑖

′ + 𝜎𝑖
r2𝐈)

−1

𝐇𝑖𝐐

≤ 𝐐−1 ((𝜎𝑖
q2

+ 𝜎𝑖
r2)

−1

𝐈)𝐐 = (𝜎𝑖
q2

+ 𝜎𝑖
r2)

−1

𝐈. 

(4.35) 

This inequality leads to the following diagonal majorizer: 

 

�̃�′�̃� = ∑ 𝐀𝑖
′𝐁𝑖

′𝐒𝑖
′𝐒𝑖𝐁𝑖𝐀𝑖

𝑁𝑝

𝑖=1

≤ ∑ (𝜎𝑖
q2

+ 𝜎𝑖
r2)

−1

𝐀𝑖
′𝐀𝑖

𝑁𝑝

𝑖=1
≤ 𝐃, 

(4.36) 

where 

 𝐃 = ∑ (𝜎𝑖
q2

+ 𝜎𝑖
r2)

−1

diag{𝐀𝑖
′𝐀𝑖𝟏}

𝑁𝑝

𝑖=1
. (4.37) 

This diagonal majorizer is as easy to implement as the usual SQS majorizer [96]. 
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In iterative DBT reconstruction, usually only one PV is used at a time to update the image. 

We use the ordered subset (OS) approximation [96] to further accelerate the SQS reconstruction: 

 ∇∑ ‖�̃�𝑖 − �̃�𝑖𝐟‖2

2𝑁p

𝑖=1
≈ 𝑁p∇ (‖�̃�𝑖 − �̃�𝑖𝐟‖2

2
). (4.38) 

The OS reconstruction update is given by: 

 𝐟(𝑛,𝑖+1) = 𝐟(𝑛,𝑖) − (𝐃 + 8𝛼𝛽𝐈)−1∇Ψ𝑖(𝐟
(𝑛,𝑖)), (4.39) 

 ∇Ψ𝑖(𝐟
(𝑛,𝑖)) = ∇𝑅(𝐟(𝑛,𝑖)) + 𝑁𝑝�̃�𝑖

′(�̃�𝑖𝐟
(𝑛,𝑖) − �̃�𝑖), (4.40) 

 
∇𝑅(𝐟(𝑛,𝑖)) =

𝛼𝛽

1 + 𝛾
(𝐂𝑥

′ �̇�(𝐂𝑥𝐟
(𝑛,𝑖)) + 𝐂𝑦

′ �̇�(𝐂𝑦𝐟
(𝑛,𝑖))

+ 𝛾𝐂𝑥−𝑦′�̇�(𝐂𝑥−𝑦𝐟
(𝑛,𝑖)) + 𝛾𝐂𝑥+𝑦′�̇�(𝐂𝑥+𝑦𝐟

(𝑛,𝑖))). 

(4.41) 

The iteration counter n is incremented by 1 after all projections have been used once. 

The OS approximation used in the reconstruction makes the method somewhat similar to 

SART, where also one projection is used in each update, and facilitates their comparison. The 

OS algorithm was proposed for PET and CT reconstruction [103] where the subsets are better 

“balanced” than in DBT. For both CT and DBT, the standard OS-SQS algorithm is not 

guaranteed to converge. The OS algorithm could be made convergent by some relaxation [104], 

which has not been implemented in this study. 

We use SART as a reference algorithm in this chapter; although not state-of-the-art, SART 

has been shown to provide good image quality for reconstructing DBT acquired with our 

prototype DBT system [31] and has been evaluated by other investigators [44, 58]. We 

implemented the SQS-DBCN reconstruction with the SG projector [77] and implemented SART 

with the ray-tracing (RT) projector [31, 78]. We previously compared the effects of RT and SF 

projectors to SG using SART in Chapter III and our paper [77], so here we focus on examining 

the new DBCN effects. Artifact reduction methods [67, 69] were implemented for all 

reconstruction methods in this study.  

Although used in our implementation, the TPA removal algorithm [67, 68] will cause some 

problem to the convergence of the cost function. This issue inspires our comparative study on 

TPA removal and will be introduced in Chapter V. 
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IV.2.5 Reconstruction without detector blur or correlated noise 

We investigated the role of each model component in the SQS-DBCN method. The SQS-

DBCN method includes the detector blur, the corresponding noise correlation and the 

regularization. To examine the effects of the detector blur and the noise correlation, we studied 

the following two reconstruction algorithms: 

 𝐟noDB = argmin
𝐟

1

2
∑ ‖𝐲𝑖 − 𝐀𝑖𝐟‖

(𝐊𝑖
𝑞
+𝐊𝑖

𝑟)
−1

2
𝑁p

𝑖=1
+ 𝑅(𝐟), (4.42) 

 𝐟noNC = argmin
𝐟

1

2
∑ ‖𝐲𝑖 − 𝐁𝑖𝐀𝑖𝐟‖

(𝐊𝑖
𝑞
+𝐊𝑖

𝑟)
−1

2
𝑁p

𝑖=1
+ 𝑅(𝐟). (4.43) 

The no-detector-blur (noDB) reconstruction method neglects the detector blur by setting the 

point spread function to a Kronecker impulse such that 𝐁𝑖 becomes an identity matrix. This is 

equivalent to a common approach to SQS regularized reconstruction that ignores detector blur 

and noise correlation. For the no-noise-correlation (noNC) reconstruction, we kept the detector 

blur in the system model while neglecting the noise correlation caused by the detector blur to 

evaluate the effect of the correlated noise model in SQS-DBCN. Another case we investigated 

was keeping both the detector blur and noise correlation while neglecting the regularization. In 

this case, however, the reconstructed image became extremely noisy after only 2 or 3 SQS 

iterations, making it difficult even to recognize the reconstructed MCs. As a result, we omit the 

no-regularization results. 

 

IV.2.6 Reconstruction with the penalized weighted least-squares cost function 

In addition to the SQS-DBCN, SQS-noDB and SQS-noNC methods, we studied a fourth 

DBT reconstruction method using the penalized weighted least-squares (PWLS) cost function 

[18, 36], which is equivalent to the SQS-noDB method with location-dependent noise variance. 

Such a cost function is widely used in statistical iterative reconstruction for clinical CT systems 

where the detector pixel crosstalk can be ignored. For this implementation, we used the usual 

diagonal weighting matrix based on the estimated statistical variance at each detector pixel. 

Specifically, the PWLS cost function is: 

 𝛹PWLS(𝐟) =
1

2
∑ ‖𝐲𝑖 − 𝐀𝑖𝐟‖𝐃𝑖

2
𝑁p

𝑖=1
+ 𝑅(𝐟), (4.44) 

where 𝐃𝑖 is a diagonal matrix. Let j denote the index of pixels for the ith projection angle, the jth 

element of the diagonal matrix 𝐃𝑖 is: 
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 𝐃𝑖[𝑗] =
1

𝜎𝐲𝑖[𝑗]
2
, (4.45) 

where 

 𝜎𝐲𝑖[𝑗]
=

𝜎𝐘𝑖[𝑗]

𝐘𝑖[𝑗]
= √

1

𝐘𝑖[𝑗]
. (4.46) 

Since we are no longer using constant 𝜎𝑖
q
 and 𝜎𝑖

r in this implementation, the formula for the 

adaptive-regularization scaling factor 𝛼 is different from Equation 4.26: 

 𝛼PWLS =
1

∑ ∑ 𝜔𝐲𝑖
[𝑗]𝜎𝐲𝑖[𝑗]

2
𝑗

𝑁p

𝑖=1
/∑ ∑ 𝜔𝐲𝑖

[𝑗]𝑗
𝑁p

𝑖=1

, (4.47) 

where 𝜔𝐲𝑖
[𝑗] = 1 if 𝑗 is within the detected breast boundary [39] for the ith PV and 𝜔𝐲𝑖

[𝑗] =

0 otherwise.  

We still use the SQS algorithm to minimize the cost function 𝛹PWLS(𝐟). We refer to this 

reconstruction algorithm as the SQS-PWLS method. The SQS-PWLS method is basically the 

SQS-noDB method (Equation 4.42) with detector pixel location-dependent noise variance. 

 

IV.3 Materials and figures of merit 

IV.3.1 DBT system 

We used a GE GEN2 prototype DBT system for image acquisition in this study. Despite the 

difference in geometry, the proposed method should be applicable to other DBT systems. The 

DBT system and its geometry have been introduced in Section II.3. 

 

IV.3.2 Breast phantom and human subject DBT 

The concept of MC has been introduced in Section II.7. Due to their small size, one of the 

main challenges in DBT reconstruction is to reduce noise while enhancing MCs and preserving 

the features of mass margins and the texture of the parenchyma. In this study, we used a breast 

phantom with embedded simulated MCs for evaluating reconstruction methods and parameter 

selection on the image quality of MCs. It is difficult to build mass phantoms with realistic 

spiculated or ill-defined margins that are strong indicators of breast cancer; we therefore used 

real breast DBT for visual evaluation of the image quality of masses. The human subject DBTs 
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were previously acquired with approval of our Institutional Review Board and informed consent 

for a lesion detection project. 

 

Figure 4.2. The experimental phantom to simulate MCs in DBT (figure from [2]). 

The breast phantom is shown in Figure 4.2. It consists of a stack of five 1-cm-thick slabs of 

breast tissue mimicking material [2]. Eight clusters of calcium carbonate specks of nominal size 

range of 0.15-0.18 mm, eight clusters of 0.18-0.25 mm, and five clusters of 0.25-0.30 mm were 

sandwiched at random locations and depths between the slabs to simulate MCs of different 

conspicuity levels. For the human subject DBT, we selected cases with spiculated masses that 

were biopsy-proven to be invasive ductal carcinomas. Both the phantom and human subject DBT 

were acquired with 60
o
 scan angle, 3

o
 increments and 21 projections. The DBT system used an 

Rh-target/Rh-filter x-ray source. In the scan of the breast phantom, the kilovoltage was 29 kVp 

and the total current-time product of all 21 PVs was 50.0 mAs. To simulate the DBT acquired 

with narrow-angle DBT system, we used the 9 central projections for reconstruction, 

corresponding 24
o
 scan angle with 3

o
 increments, which was close to the 25

o
 scan angle and 3

o
 

increments for a GE commercial system. The x-ray exposure for each DBT was therefore 

reduced to less than half of the original values. For the breast phantom, the total current-time 

product of the central 9 projections was 21.4 mAs. 

 

IV.3.3 Figures of merit 

Figure 4.3(a) shows a reconstructed slice of the experimental phantom. The MC clusters on 

this slice are marked with green boxes and numbers. Each MC cluster is enlarged and shown in 

Figure 4.3(b). The reconstruction algorithm used here is SART with 2 iterations with 21PVs. We 
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know the location of all MC clusters in the phantom and use all of them to calculate the average 

detectability of MCs of different sizes. To reduce bias in picking MCs, (e.g. to avoid picking 

relatively bright MCs), all recognizable MCs (including MCs on all slices, not just this slice) 

were used in the calculation of average FOM. 

We use two FOMs for quantitative comparisons of reconstruction quality of MCs: CNR and 

full-width at half maximum (FWHM). We would like reconstructed MCs to be strong and sharp, 

so larger CNR and smaller FWHM are preferable. 

 

 Cluster #1 (0.15-0.18mm) Cluster #2 (0.15-0.18mm) 

 

  

 Cluster #3 (0.15-0.18mm) Cluster #4 (0.18-0.25mm) 

 

 
 

 Cluster #5 (0.25-0.30mm) Cluster #6 (0.25-0.30mm) 

 

  

(a) (b) 

Figure 4.3. A slice of the reconstructed experimental phantom with MC clusters. (a) The whole 

slice with the MC clusters marked with green boxes and numbers; (b) Each marked MC cluster 

and their nominal size range. The image slice and all MC patches are displayed with the same 

window width setting. 

The reconstructed MCs are noisy, especially for the subtlest ones of size 0.15-0.18mm. As a 

result, we apply a 2-D least-square Gaussian fitting to each MC and define CNR and FWHM 
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with the fitted parameters. The fitting is applied to an 13 × 13 patch centered at each MC, where 

the 2-D Gaussian function has 6 parameters: 

𝑔(𝑥, 𝑦) = 𝑎𝑥 + 𝑏𝑦 + 𝐴 exp(−
(𝑥 − 𝜇𝑥)

2 + (𝑦 − 𝜇𝑦)
2

2𝜎MC
2 ). (4.48) 

After the fitting is done for a MC, we remove the linear background 𝑎𝑥 + 𝑏𝑦 from the MC 

patch and define the contrast of the MC to be the largest value of the MC patch after removing 

background. This value is denoted as 𝐴max. Note that under most conditions: 𝐴max ≠ 𝐴. We do 

not use 𝐴 as the contrast of MC since the value 𝐴 is usually achieved between pixels of the MC 

patch. Using 𝐴 instead of 𝐴max will overestimate the contrast of MCs under most conditions. 

We select a 40 × 40 noise patch near each cluster, which contains no recognizable MCs. An 

2-D 2
nd

-order polynomial fitting is applied to the noise patch. The fitted function is subtracted 

from the noise patch to reduce the influence of non-uniform background. Let 𝜎NP denote the 

standard deviation of the corrected noise patch. The CNR of each MC is defined as: 

CNR =
𝐴max

𝜎NP
. (4.49) 

The definition of FWHM is more straightforward. It is decided by the fitted parameter 𝜎MC: 

FWHM = 2.355𝜎MC. (4.50) 

The Gaussian fitting might fail to characterize MCs when the MC patch is too noisy. We use 

the coefficient of determination, denoted as 𝑟2 to measure the quality of fitting. Let the noisy 

MC patch be 𝑔patch and the fitted MC patch be 𝑔fit, 𝑟
2 is defined as: 

𝑟2 = 1 −
∑ (𝑔fit(𝑥, 𝑦) − 𝑔patch(𝑥, 𝑦))

2

𝑥,𝑦

∑ (𝑔patch(𝑥, 𝑦) − 𝑔patch̅̅ ̅̅ ̅̅ ̅̅ )
2

𝑥,𝑦

, (4.51) 

where 𝑔patch̅̅ ̅̅ ̅̅ ̅̅  is the mean value of 𝑔patch(𝑥, 𝑦). If 𝑟2 < 0.8, we consider the fitting to fail and the 

MC will be eliminated in the analysis of mean CNR and FWHM. 

When comparing multiple reconstruction conditions, the MC fitting needs to be done 

separately for each condition. It could happen that one MC fails to fit in only one or more of the 

many conditions. Such a MC will be eliminated in the calculation of mean CNR and FWHM to 

make sure that all the MC fittings are reliable. After eliminating these MCs, we have 30 MCs of 

0.15-0.18 mm size, 48 MCs of 0.18-0.25 mm size and 44 MCs of 0.25-0.30 mm size for the 

FOM calculation for all reconstruction techniques and parameters compared in this study. 
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Although the SQS-DBCN reconstructed DBT is not a linear, shift-invariant system, we 

calculate an average noise power spectrum (NPS) of the heterogeneous phantom background to 

provide a comparison of the relative change in the global texture for the various reconstruction 

techniques and parameters. For each different reconstruction, we calculated the average NPS 

using sixty 200 × 200-pixel noise patches from 4 reconstructed slices at 4 different depths. We 

then took the radial average NPS for each reconstruction condition. The locations of the noise 

patches were chosen such that they did not contain any MC clusters and the same patch locations 

were used for all conditions. There is no FOM to reliably evaluate the fine details of the margin 

or spiculations of a cancerous lesion at present so that these features are compared visually on 

the reconstructed breast images. 

 

IV.4 Results and analyses 

IV.4.1 Effects of regularization parameters 

 
(a)  

 
(b) 

Figure 4.4. Dependence of CNR on reconstruction parameters. The CNR is plotted as a function 

of 𝛽 for a range of 𝛿. The black dashed lines indicate the CNR level of the SART. (a) MCs of 

nominal size 0.15-0.18mm, (b) MCs of nominal size 0.18-0.25mm. 

The performance of the SQS-DBCN method depends on the parameters of the regularization 

term. We reconstructed the phantom DBT with different parameter combinations and plotted the 

corresponding CNR curves for the small-sized (0.15-0.18mm) and medium-sized (0.18-0.25mm) 

MCs, as shown in Figure 4.4. These CNR curves provide some guidance for parameter selection. 

The curves for the large-sized (0.25-0.30mm) MCs have similar trends but they are not shown 



74 

 

because their CNRs are very high and the parameter settings are not expected to have a strong 

influence on their visibility. We did not show the FWHM curves either because they 

monotonically increase as 𝛽  increases due to the increasing blurring effect of regularization, 

which is not useful for guiding parameter selection. 

 
(a) 

 
(b) 

 
(c) 

Figure 4.5. Dependence of NPS on regularization parameters. (a) NPS with different 𝛽 values at 

𝛿 = 0.002/mm. (b) NPS with different 𝛿 values at 𝛽 = 70. (c) Dependence of noise power on 𝛽 

at five different frequencies at 𝛿 = 0.002/mm. 

For the breast phantom, Figure 4.5 shows the rotational average of the 2-D in-plane NPS for 

several sets of parameters. The pixel size of the slices is 0.1mm × 0.1mm, yielding a Nyquist 

frequency of 5 cycles/mm. As the parameters change, the middle and high frequency noise are 

mainly affected, while the low frequency noise almost stays the same. Figure 4.5(c) shows the 

dependence of the NPS values on 𝛽 at several frequencies. When weaker regularization is used 

(𝛽 < 18), the high-frequency NPS is higher than low-frequency NPS. On reconstructed images, 
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the high level of high-frequency noise is superimposed with some salt-and-pepper noise, which 

is a very unfavorable visual feature. As the regularization strength is increased (larger 𝛽 values), 

these noisy spikes become less and less noticeable. 

 (a) (b) (c) 

Example 

#1 

   

Example 

#2 

   

Figure 4.6.  Comparison of reconstruction methods and parameters using human subject DBTs 

with invasive ductal carcinomas. Column (a) SART, (b) SQS-DBCN, 𝛽 = 70, 𝛿 = 0.002/mm, 

(c) SQS-DBCN, 𝛽 = 100, 𝛿 = 0.001/mm. All image patches shown are 180 × 200 pixels in 

size. The CNR of the MCs increases from (a) to (c). However, the spiculations and the tissue 

textures become more patchy and artificial in (c). All images are displayed with the same 

window width setting. 

For each MC size, there is a different ‘optimal’ parameter combination that yields maximum 

CNR. However, the parameter combination that yields the best CNR for MCs may generate 

artificially appearing texture for soft tissues or spurious noise in the background. Combining 

curves for both small-sized and medium sized MCs, the optimal parameter selection is about 

𝛽 = 100  and 𝛿 = 0.001/mm.  Figure 4.6 shows image patches from two DBTs containing 

spiculated invasive ductal carcinoma from a human subject reconstructed using the SART 

algorithm and SQS-DBCN with two sets of parameters as examples, one of which is 𝛽 = 100, 

𝛿 = 0.001/mm. Although this set of parameters provides superior denoising effects compared 

with SART, it gives the texture a patchy appearance (Figure 4.6(c)). After visually comparing 
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the images for a range of 𝛿 and 𝛽 values and considering both the MC enhancement and the 

appearance of the soft tissue structure, we empirically chose 𝛽 = 70 and 𝛿 = 0.002/mm for the 

SQS-DBCN algorithm. This parameter pair has a slightly larger 𝛽 than the “optimal” value for 

MC enhancement at 𝛿 = 0.002/mm, but the soft tissue texture is less patchy as shown in Figure 

4.6(b). 

 

IV.4.2 Effects of detector blur and noise correlation modeling 

  
(a) (b) 

Figure 4.7. Comparison of reconstruction with different model components. CNR is plotted as a 

function of β at δ = 0.002/mm. (a) MCs of nominal size 0.15-0.18mm, (b) MCs of nominal size 

0.18-0.25mm. The SQS-DBCN method yields MCs with higher CNR compared with the SQS-

noDB or the SQS-noNC reconstruction over a wide range of β values. 

We compared the performance of SQS-DBCN with SQS-noDB and SQS-noNC for MC 

enhancement. Figure 4.7 shows the dependence of CNR on 𝛽 values at 𝛿 = 0.002/mm for these 

three different methods, together with the CNR level of SART as a reference. When 𝛿 is fixed at 

other values, 𝛿 = 0.001/mm or 0. 003/mm, the CNR-vs-𝛽 curves of the three methods (not 

shown) have a similar trend as Figure 4.7. Figure 4.7 indicates that, compared with SQS-noDB 

and SQS-noNC, SQS-DBCN can achieve a much higher CNR over a wide range of 𝛽, providing 

more flexible choice of 𝛽 to preserve the texture quality while enhancing the MCs. Compared 

with SART, the SQS-noDB and SQS-noNC can still provide enhancement for MCs within a 

small range of 𝛽 values. Similar to the SQS-DBCN method, by visual evaluation of soft tissue 

texture we observed that using a slightly larger 𝛽 than the optimal value yielded better texture 
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quality with a tradeoff in MC enhancement. Therefore we chose to use 𝛽 = 40 for SQS-noDB 

and 𝛽 = 30 for SQS-noNC in the following discussions. 

 

IV.4.3 Reconstruction with the SQS-PWLS algorithm 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 4.8. Dependence of CNR and FWHM on 𝛽 for SQS-DBCN, SQS-noDB and SQS-PWLS 

at 𝛿 = 0.002/𝑚𝑚. (a) and (c) MCs of nominal size 0.15-0.18 mm, (b) and (d) MCs of nominal 

size 0.18-0.25 mm. The SQS-DBCN, SQS-noDB, SQS-noNC CNR curves are the same as those 

in Figure 4.7. 

As introduced in Section IV.2.6, the PWLS cost function [18, 36], which is equivalent to the 

SQS-noDB method with location-dependent noise variance, is widely used in statistical iterative 

reconstruction for clinical CT systems where the detector pixel crosstalk can be ignored. Figure 

4.8 shows the dependence of CNR and FWHM on 𝛽  at 𝛿 = 0.002/𝑚𝑚 for the SQS-PWLS 
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algorithm. The results of the SQS-PWLS method are very similar to those of the SQS-noDB 

method. The CNRs of the SQS-PWLS method are slightly lower than those of the SQS-noDB 

method, with a maximum difference of 5.3% for the 0.18-0.25 mm MCs at 𝛽 = 50. The FWHM 

curves of SQS-PWLS and SQS-noDB overlap almost completely. We also examined the 

reconstructed image patches of the SQS-PWLS method. There is no visual difference between 

the images reconstructed by SQS-PWLS and SQS-noDB since a CNR difference of 5.3% is 

basically indistinguishable for human eyes. Due to the similarity between the SQS-PWLS and 

the SQS-noDB method, in the following sections we will not include the SQS-PWLS method in 

the comparisons. 

The results of the SQS-PWLS method demonstrate that the MBIR method in CT that does 

not consider detector blur is not sufficient for DBT, where detector blur is one of the major 

image quality degrading factors. The little different between the SQS-noDB method and the 

SQS-PWLS method partially justifies the approximation of using constant noise variance in the 

SQS-DBCN method (Equation 4.20). 

 

IV.4.4 Reconstructed MC clusters breast phantom 

Figure 4.9 shows the reconstructed images for two MC clusters with SART, SQS-DBCN, 

SQS-noDB and SQS-noNC. Because the SART method does not have explicit regularization, we 

stopped with 3 iterations to avoid noise amplification. The mean FWHMs and the CNRs 

calculated for these clusters reconstructed with the different methods are also shown. Compared 

with SART, the MC clusters by the SQS-DBCN method are sharper on a much less noisy 

background. Benefiting from the denoising effect of the regularization, the SQS-noDB and the 

SQS-noNC methods are also able to enhance the MCs. All three methods provide higher CNRs 

than SART. However, the SQS-noDB method generates coarser texture in the background, while 

the SQS-noNC images are more blurred with “bumpy” background texture. The MCs 

reconstructed by the SQS-DBCN method have smaller FWHMs than those by the SART method, 

indicating that the MCs are sharper. On the other hand, the MCs reconstructed by the SQS-noDB 

and the SQS-noNC methods are more blurred, as indicated by the larger FWHMs. Among the 

four different methods, the SQS-DBCN method provides the best CNR enhancement and the 

sharpest MCs along with smoother background texture. 
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 SART  SQS-DBCN SQS-noDB SQS-noNC 

Cluster 

A 

 
CNR = 3.68, 

FWHM = 0.206 

 
CNR = 8.31, 

FWHM = 0.167 

 
CNR = 6.02, 

FWHM = 0.209 

 
CNR = 5.03, 

FWHM = 0.245 

Cluster 

B 

 
CNR = 5.66, 

FWHM = 0.227 

 
CNR=13.9, 

 FWHM = 0.210 

 
CNR=11.90, 

FWHM = 0.230 

 
CNR=10.73, 

FWHM = 0.252 

Figure 4.9.  Comparison of MC clusters reconstructed by four methods. The size of these image 

patches is 180 × 180 pixels. Cluster A: nominal size 0.15-0.18 mm, Cluster B: nominal size 0.18-

0.25 mm. The SART method used 3 iterations. The CNR and FWHM (mm) are mean values of 

MCs from the clusters shown here. The parameters used for the SQS-DBCN method were 𝛽 =
70, 𝛿 = 0.002/mm. The last two columns show the reconstructed MC cluster when one of the 

model components was removed. The parameters used for SQS-noDB were 𝛽 = 40 , 𝛿 =
0.002/mm, and for SQS-noNC were 𝛽 = 30, 𝛿 = 0.002/mm. All SQS reconstructions were 

run for 10 iterations. The images of the same cluster are displayed with the same window width 

setting. 

To make a more quantitative comparison, we calculated the mean CNR and mean FWHM of 

the set of over 30 MCs in each size range. Figure 4.10 shows the mean values of both FOMs and 

their standard deviations for the four reconstructed methods. Compared with SART, SQS-DBCN 

generates more conspicuous and sharper MCs (see examples in Figure 4.9), as indicated by 

higher CNRs and smaller FWHMs. For the small MCs (0.15-0.18mm) the mean CNR increases 

by 90.3% from 4.02 to 7.65 when using the SQS-DBCN reconstruction. The mean CNRs 

increase by 136.0% and 205.5% for the medium and large MCs, respectively. The sharper and 

more conspicuous MCs in the SQS-DBCN images are expected to be detected more easily by 

radiologists or by machine vision. The mean CNRs of MCs reconstructed with the SQS-noNC 

and the SQS-noDB methods are also higher than those with SART, due to the enhancement of 

the signals with more iterations while the regularization controls the noise in the background. 
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The mean FWHMs of these two methods, on the other hand, become almost homogenized for 

three different sized MCs, indicating the blurring of the reconstructed images. 

  
(a) (b) 

Figure 4.10. Comparison of the (a) mean CNR and (b) mean FWHM averaged over MCs 

sampled from all clusters in the phantom. The error bars represent the standard deviations of 

CNR or FWHM for all MC samples of a given size. 

 

Figure 4.11. Dependence of NPS on reconstruction methods: SQS-DBCN ( 𝛽 = 70 , 𝛿 =
0.002/mm), SQS-noDB (𝛽 = 40, 𝛿 = 0.002/mm), SQS-noNC (𝛽 = 30, 𝛿 = 0.002/mm) and 

SART. The NPS curves of SQS-DBCN and SQS-noDB overlaps in the low-frequency range. 
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Figure 4.11 compares the rotationally averaged NPS of the background of the phantom DBT 

reconstructed with the four methods. Compared to SART, the SQS-DBCN, SQD-noDB, and 

SQS-noNC methods reduce the high-frequency noise but increase the lower frequency noise. 

The SQS-noNC method with 𝛽 = 30, 𝛿 = 0.002/mm causes the largest changes in the NPS, 

which result in the blurry and bumpy background texture. The SQS-DBCN method with the 

selected parameters 𝛽 = 70, 𝛿 = 0.002/mm changes the NPS moderately, corresponding to the 

less patchy texture on the images. 

 

IV.4.5 Reconstructed ACR phantom and the uniform Lucite phantom 

In addition to the heterogeneous phantom, we also used the American College of Radiology 

(ACR) phantom and a uniform Lucite phantom to study the difference between SART and SQS-

DBCN. The observations for the ACR phantom are similar to that for the heterogeneous 

phantom. The results are shown in Figure 4.12 and Figure 4.13. Figure 4.13 shows the third 

speck group on the ACR phantom. The visibility of the MCs is enhanced with the SQS-DBCN 

method, as indicated by the increased mean CNR of the six MCs. 

We also compared the noise pattern in DBT slices of a uniform background reconstructed by 

the SART and the SQS-DBCN method. DBT scan of a 2-inch-thick uniform Lucite slab (about 5 

cm) was acquired and reconstructed with the two methods. Figure 4.14 shows noise patches from 

a slice at a depth of 2.7 cm in the Lucite phantom reconstructed by SART and the SQS-DBCN 

( 𝛿 = 0.002/mm , 𝛽 = 70 ). Figure 4.15 compares the noise power spectra obtained from 

averaging the noise power spectra of multiple noise patches at the same depth as the noise 

patches shown in Figure 4.14 for each method. The SQS-DBCN method smooths the high-

frequency noise but the low frequency noise is stronger compared to the SART method. The 

SQS-DBCN method does not generate obvious artifacts on the background with the parameters 

selected in our study. 
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(a) SQS-DBCN 

 
(b) SART 

Figure 4.12. Comparison of reconstructed ACR phantom images. The images are displayed with 

the same window width setting. Figure 4.13 shows a close-up view of the speck group marked by 

the box shown in Figure 4.12. The x-ray source moves along the vertical direction. The 

horizontal artifacts on top and at the bottom of the images are caused by the rectangular block 

shape of the ACR phantom that results in an abrupt transition to air at the edge of the phantom. 

This artifact does not happen in a real breast and is different from the truncation artifacts caused 

by the finite field-of-view coverage by the detector. The stronger enhancement of SQS-DBCN 

compared to SART also causes stronger enhancement of the artifact. 

 
(a) SQS-DBCN 

(CNR = 17.5, FWHM = 0.33 mm) 

 
(b) SART 

(CNR = 7.07, FWHM = 0.38 mm) 

Figure 4.13. MC patches of reconstructed ACR phantom. The images are displayed with the 

same window width setting. 
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(a) SQS-DBCN 

 
(b) SART 

Figure 4.14. Comparison of noise patches from a DBT slice of a uniform Lucite phantom 

reconstructed by SQS-DBCN (𝛿 = 0.002, 𝛽 = 70) and SART. Both image patches are obtained 

from the same location in the two reconstructed DBT volume and the size of is 400 × 400 pixels 

(40 × 40 mm
2
). The images are displayed with the same window width setting. 

 

Figure 4.15. Comparison of noise power spectra of noise patterns for the DBT slice of a uniform 

Lucite phantom reconstructed by SQS-DBCN (𝛿 = 0.002, 𝛽 = 70) and SART at the same depth 

of the noise patches shown in Figure 4.14. 

IV.4.6 Human subject DBT 

To evaluate the visual quality of the tissue texture, we applied SQS-DBCN to the human 

subject DBT images. Figure 4.16 shows examples of masses reconstructed from the four 

different methods. The parameters used here are the same as what have been used for the 
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phantom. Similar to the phantom images, the SQS-DBCN method is able to reduce noise 

compared with SART; the MCs appear to be the sharpest and have the highest contrast among 

the four methods. When one of the model components is ignored, although the contrasts of the 

MCs still appear higher than those of the SART, they are more blurry and the tissue texture 

becomes coarser, affecting the appearance of the mass margin. 

 (a) SART (b) SQS-DBCN (c) SQS-noDB (d) SQS-noNC 

Patient 

case A 

    

Patient 

case C 

    

Figure 4.16.  Comparison of four methods using human subject DBT images with invasive ductal 

carcinomas. The sizes of the image patches are 150 x 160 pixels (top row) and 300 x 360 pixels 

(bottom row). The SART method used 3 iterations. The parameters were 𝛽 = 70 , 𝛿 =
0.002/mm for the SQS-DBCN method, 𝛽 = 40, 𝛿 = 0.002/mm for the SQS-noDB method, 

and 𝛽 = 30, 𝛿 = 0.002/mm for the SQS-noNC method. All SQS methods were run for 10 

iterations. All images are displayed with the same window width setting. 

IV.4.7 Justification of the approximation of constant quantum noise variance 

In the SQS-DBCN algorithm, we treated the quantum noise standard deviation 𝜎𝑖
𝑞

 as 

approximately a constant for a given projection angle. The approximation of constant quantum 

noise is the key approximation in the efficient implementation of the SQS-DBCN algorithm. It 

has been briefly discussed in Section IV.4.3. In this section, we present a more systematic 

justification of this approximation. 
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IV.4.7.1  Estimation of the standard deviation of the readout noise (𝜎𝑖
R) 

With the experimental data, we first justify the approximation of treating the standard 

deviation of the readout noise 𝜎𝑖
R as a constant. As mentioned in Section IV.2.2, we estimated 

𝜎𝑖
R from dark current images without x-ray exposure by subtracting two dark current images to 

remove possible structured noise from the detector. Figure 4.17 (a) shows the subtraction result 

of two dark current images measured during the DBT scan of the uniform Lucite slab. Note that 

the dark current images were acquired by the system before exposing the Lucite slab. For each 

pixel of the subtraction result, we selected a 151 × 151 noise patch centered at the pixel to 

calculate the local standard deviation. The standard deviation was then divided by √2 to obtain 

𝜎𝑖
R since it had the contribution of two dark current images with independent random noise. The 

distribution of the locally estimated 𝜎𝑖
R is shown in Figure 4.17 (b). The maximum and minimum 

estimated 𝜎𝑖
R are 4.03 and 3.88. The average 𝜎𝑖

R of the entire plane in Figure 4.17 (b) is 3.95. 

Therefore the maximum fluctuation of 𝜎𝑖
R is only 2.0%. These results justify the approximation 

of considering all detector elements to have the same 𝜎𝑖
R. We can treat 𝜎𝑖

R as a constant when 

using Equation 4.24 to estimate 𝜎𝑖
q
. 

 
(a) (b) 

Figure 4.17 Estimation of the standard deviation of the readout noise 𝜎𝑖
R. (a) The subtraction 

result of two dark current images. (b) The distribution of the locally estimated standard deviation 

of the readout noise (𝜎𝑖
R). 
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IV.4.7.2  Estimation of the change of 𝜎𝑖
q
 due the x-ray incident angle and the anode heel effect 

We studied the combined influence of the x-ray incident angle and the anode heel effect on 

𝜎𝑖
q
 with a DBT scan of a uniform Lucite slab. The kilovoltage was 29 kVp and the total current-

time product of all 21 PVs was 48.3 mAs, similar to the experiment of the breast phantom as 

introduced in Section IV.3.2. Figure 4.18 and Figure 4.19 show the PVs of the Lucite slab at the 

central projection angle and the projection angle 𝜃 = 12°. Twenty noise patches were selected 

on either of them. We applied a 2-D second order polynomial fitting to each noise patch to 

remove the non-uniform background. The standard deviation of each noise patch was then 

calculated. This standard deviation consists of the contribution of both the readout noise and the 

quantum noise. 𝜎𝑖
Q

 was then estimated by subtracting the contribution of the readout noise (𝜎𝑖
R) 

from the total noise variance as shown in Equation 4.24. Then we obtained 𝜎𝑖
q
 for each noise 

patch by dividing the estimated 𝜎𝑖
Q

 by the mean value of the noise patch. 

 

Figure 4.18 The measured PV of the Lucite slab before the log transform for the central 

projection angle. A brighter pixel indicates a higher measured x-ray intensity. 𝜎𝑖
q
 was estimated 

for each noise patch (marked with a red box and number). The results are shown in Table 4.1. 



87 

 

Table 4.1 Estimated 𝜎𝑖
q
 for each noise patch in Figure 4.18. The maximum and minimum 𝜎𝑖

q
 are 

0.1107 and 0.0826, marked with the red text. Slightly higher quantum noise is observed on the 

anode side (right side) of the image, as expected from the heel effect. 

Patch Number 1 2 3 4 

Estimated 𝜎𝑖
q
 0.0934 0.0936 0.0990 0.1107 

Patch Number 5 6 7 8 

Estimated 𝜎𝑖
q
 0.0874 0.0859 0.0894 0.1026 

Patch Number 9 10 11 12 

Estimated 𝜎𝑖
q
 0.0848 0.0826 0.0879 0.0994 

Patch Number 13 14 15 16 

Estimated 𝜎𝑖
q
 0.0855 0.0840 0.0872 0.0994 

Patch Number 17 18 19 20 

Estimated 𝜎𝑖
q
 0.0917 0.0895 0.0941 0.1039 

 

 

 

Figure 4.19 The measured PV of the Lucite slab before the log transform for the projection angle 

𝜃 = 12°. A brighter pixel indicates a higher measured x-ray intensity. 𝜎𝑖
q
 was estimated for each 

noise patch (marked with a red box and number). The results are shown in Table 4.2. 
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Table 4.2 Estimated 𝜎𝑖
q
 for each noise patch in Figure 4.19. The maximum and minimum 𝜎𝑖

q
 are 

0.1315 and 0.0843, marked with the red text. Slightly higher quantum noise is observed on the 

upper side of the image because x-ray attenuation by the Lucite slab is greater due to the longer 

path lengths at the projection angle  𝜃 = 12°. 

Patch Number 1 2 3 4 

Estimated 𝜎𝑖
q
 0.1127 0.1119 0.1159 0.1315 

Patch Number 5 6 7 8 

Estimated 𝜎𝑖
q
 0.0973 0.0955 0.0988 0.1128 

Patch Number 9 10 11 12 

Estimated 𝜎𝑖
q
 0.0904 0.0873 0.0931 0.1071 

Patch Number 13 14 15 16 

Estimated 𝜎𝑖
q
 0.0856 0.0843 0.0895 0.1016 

Patch Number 17 18 19 20 

Estimated 𝜎𝑖
q
 0.0871 0.0855 0.0882 0.1023 

 

Table 4.1 and Table 4.2 show the estimated 𝜎𝑖
q

 for each noise patch in Figure 4.18 and 

Figure 4.19. For the central projection angle (Figure 4.18 and Tab1e 4.1), the maximum 𝜎𝑖
q
 is 

0.1107 in patch #4. The minimum 𝜎𝑖
q
 is 0.0826 in patch #10. The ratio between the maximum 

and the minimum 𝜎𝑖
q
 is 1.34. For the projection angle 𝜃 = 12° (Figure 4.19 and Tab1e 4.2), the 

maximum 𝜎𝑖
q
 is 0.1315 in patch #4 and the minimum 𝜎𝑖

q
 is 0.0843 in patch #14, giving a ratio of 

1.56 between the maximum and the minimum 𝜎𝑖
q
. These ratios represent the non-uniformity of 

𝜎𝑖
q

 for one projection angle caused by the varying incident angle and the anode heel effect. 

Section IV.7.4 shows the influence of the non-uniformity of 𝜎𝑖
q
 on the image reconstruction. 

To efficiently implement 𝐊𝑖
−1 in the SQS-DBCN algorithm, we treated 𝜎𝑖

q
 as a constant for 

each projection angle. The value of the constant 𝜎𝑖
q
 used in the SQS-DBCN algorithm was the 

mean 𝜎𝑖
q
 for each PV. One approach to obtain the mean 𝜎𝑖

q
 is to calculate the mean 𝜎𝑖

q
 from 

many selected noise patches across the detector. We called this the noise patch approach. In 

practice, we used a more reliable and efficient approach that we subtracted two PVs of the Lucite 

slab at the same projection angle measured from two independent experiments with the same 

conditions (kVp, mAs etc.). The background trend (as shown in Figure 4.18 and Figure 4.19) 

was removed by the subtraction; therefore we did not need to apply the 2-D second order 
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polynomial fitting. For each pixel of the subtraction result, we used a 151 × 151 noise patch 

centered at the pixel to calculate the local standard deviation and divided the value by √2, 

similar to Section IV.4.7.1. Then we used Equation 4.24 to obtain the local 𝜎𝑖
Q

. The mean 𝜎𝑖
q
 

was calculated by dividing the mean 𝜎𝑖
Q

 of the entire PV by the mean pixel value of the entire 

PV. We also took average of the estimated 𝜎𝑖
q
 at symmetric projection angles (e.g., ±3°,±6°, … 

or ±30°) as the final estimation result of 𝜎𝑖
q
 for both angles. The estimated mean 𝜎𝑖

q
 at each 

projection angle is shown in Figure 4.20. As expected, the standard deviation of the relative 

quantum noise 𝜎𝑖
q
 is higher for larger projection angles. The estimated mean 𝜎𝑖

q
 for the first and 

the last projection angles is different from the trend of the rest of the curve since the x-ray tube is 

still ramping up its full current during the acquisition of the first projection image. These mean 

𝜎𝑖
q
 values as a function of the projection angle were implemented in our SQS-DBCN algorithm 

for estimation of the 𝜎𝑖
q
 values for a given breast thickness as described in Section IV.2.2. With 

enough number of noise patches selected, the noise patch approach gave similar results to Figure 

4.20 with a maximum difference of 2% for all projection angles. But the computation time of the 

noise patch approach was much longer due to the 2-D polynomial fitting. 

 

Figure 4.20. Estimated mean 𝜎𝑖
q
 for each projection angle by subtracting two PVs of the Lucite 

slabs from two independent experiments. 
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IV.4.7.3  Estimation of the change of 𝜎𝑖
q
 due to the non-uniformity of the breast tissue 

We simulated a breast phantom with CatSim [65, 66] to estimate the change of 𝜎𝑖
q
 due to the 

non-uniformity of breast tissue. We turned off the readout noise in the simulation so that the 

estimation below simulates the situation where the noise variance is only contributed by the 

quantum noise. The geometry of the simulated DBT system matches the geometry of the 

experimental system shown in Figure 2.1 in Section II.3. The phantom consists of a half cylinder 

of fatty tissue embedded with a small cylinder of glandular tissue (Figure 4.21). The radius of the 

half cylinder is 6 cm and the radius of the small cylinder is 2 cm. The thickness of both blocks of 

material is 5 cm. The phantom simulates a compressed breast of an average thickness with 

glandular and fatty tissue regions such that the dynamic range of the transmitted x-ray intensities 

incident on the detector approximates an extreme situation. In a real breast, the glandular tissue 

and fatty tissue are heterogeneously mixed so that the range will be within this extreme. Figure 

4.22 shows simulated projections at scan angle 𝜃 = −12°, 0°, 12° of the phantom. 

The range of 𝜎𝑖
𝑞
 is estimated from the patches marked with red boxes in Figure 4.22. Table 

4.3 shows the results. According to Table 4.3, the ratio between the maximum and minimum 𝜎𝑖
q
 

for a given projection angle could be as large as 2.09. This ratio represents the non-uniformity of 

𝜎𝑖
q
 caused by the non-uniformity of the breast tissue.  

 

Figure 4.21. The simulated breast phantom with 100% glandular tissue (pink) surrounded by 100% 

fatty tissue (blue). 
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Figure 4.22. Simulated projections at scan angles 𝜃 = −12°, 0°, 12°. The brightness represents 

relative x-ray intensity. The red boxes mark the locations for estimating the range of 𝜎𝑖
q
. All 

three images share the same grayscale bar. 

Table 4.3. The range of 𝜎𝑖
q
 due to the non-uniformity of the breast tissue. 

Projection angle 
𝜎𝑖

q
 behind the  

fatty tissue 

𝜎𝑖
q
 behind the 

glandular tissue 
𝜎𝑖

q(glandular)/𝜎𝑖
q
(fatty) 

-12 0.0666 0.1369 2.06 

0 0.0651 0.1284 1.97 

12 0.0659 0.1378 2.09 

 

 

IV.4.7.4  Influence of the non-uniform 𝜎𝑖
q
 on image reconstruction 

Based on the estimation of the change of 𝜎𝑖
q
 in the previous two sections, 𝜎𝑖

q
 can change by a 

factor of 2.09 × 1.56 = 3.26 for a projection angle under the conditions studied. This is a 

conservative estimate in terms of breast density as it is unlikely that a breast has a 100% 

glandular region through its entire thickness. On the other hand, we obtained the ratio of 2.09 

from a 5-cm breast phantom (section IV.4.7.3), which is only about the average thickness in the 

patient population. In reality the breast can be as thick as 10 cm, resulting in a larger change of 

𝜎𝑖
q
 across the detector. Considering these factors together, we chose a ratio of 3 above and below 

the current estimate of  𝜎𝑖
q

 as a reasonable range to investigate the influence of the non-

uniformity of 𝜎𝑖
q
 on image reconstruction. Therefore when we use the 𝜎𝑖

q
 value averaged over 
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the entire PV to represent the noise in our SQS-DBCN reconstruction for a human breast image, 

the error in treating the noise standard deviation as a constant may range from over-estimating 

𝜎𝑖
q
 by 200% to underestimating 𝜎𝑖

q
 by 67% in local regions of the PV.  

We therefore studied the effect of noise estimation error by an amount varying within this 

range. We multiplied all estimated 𝜎𝑖
q
 by an ‘estimation factor’, denoted as 𝜏, to simulate the 

cases where we overestimate or underestimate the values of 𝜎𝑖
q

. We performed a series of 

reconstructions for our breast phantom with clusters of MCs, by varying the range of 𝜏 from 0.33 

to 3, while keeping the other parameters the same (𝛿 = 0.002/𝑚𝑚, 𝛽 = 70). The CNR and 

FWHM of MCs are shown in Figure 4.23. Examples of reconstructed image patches are shown 

in Figure 4.24. 

     

Figure 4.23. CNR and FWHM curves as the estimated noise varies by a factor of 𝜏. 

Figure 4.23 shows that the reconstructed CNRs of MCs are not strongly affected by small 

deviations from the estimation of 𝜎𝑖
𝑞
. The CNR curves are relatively flat in a wide range of  𝜏. 

The FWHM curves are also relatively flat except for the two cases that we underestimated 𝜎𝑖
q
 by 

50% or 66%. The maximum changes of CNR and FWHM for all values of 𝜏 are 41% and 36%, 

respectively, as observed for the small MCs when 𝜏  changes from 3 to 0.33. This may not 

happen in a real experiment since it is not possible to underestimate 𝜎𝑖
q
 by 66% in some regions 

of the PV while overestimating 𝜎𝑖
q
 by 200% in other regions at the same time. For MCs of other 

sizes, the change in CNR and FWHM is smaller. Figure 4.24 shows examples of reconstructed 

MC patches of three different sizes. It can be observed that the quality does not change 

drastically in the range of 𝜏 = 0.5 to 𝜏 = 3. When 𝜏  =0.33, the small MCs are substantially 
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degraded in contrast and sharpness. As a result, using a constant 𝜎𝑖
q
 for each projection angle is a 

reasonable approximation except when it is underestimated by more than 50%.  

 𝜏 = 0.33 𝜏 = 0.5 𝜏 = 1 𝜏 = 2 𝜏 = 3 

Small 

     

Medium 

     

Large 

     

Figure 4.24. Reconstructed MC patches with a range of estimation factors. The images of the 

same cluster are displayed with the same window width setting. 

Despite these results, treating quantum noise variance as a constant is a limitation of our 

current implementation of the MBIR. The fact that the image quality obtained from our SQS-

DBCN method was improved even with the simplifying approximations shows the potential of 

MBIR methods for DBT, but further studies are needed to continue the development and relax 

the assumptions. 

 

IV.4.8 SQS-DBCN with quadratic regularization 

In the implementation of the SQS-DBCN algorithm, we chose an edge-preserving 

regularization method by using the hyperbola potential function 𝜂(𝑡) in Equation 4.27. In this 

section, we use the quadratic regularization instead and study the corresponding performance of 

the SQS-DBCN algorithm. We also compared the SQS-DBCN algorithm using quadratic 

regularization with and without detector blur modeling. The results indicate the importance of 
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the edge-preserving hyperbola regularization and the detector blur modeling for enhancing the 

MCs and preserving tissue texture in DBT reconstruction.  

 
(a) 

 
(b) 

Figure 4.25. Dependence of CNR on reconstruction parameters. (a) MCs of nominal size 0.15-

0.18mm, (b) MCs of nominal size 0.18-0.25mm. These plots are the same as Figure 4.4 with the 

addition of 𝛿 = 1/𝑚𝑚 to approximate quadratic regularization. 

As shown in Equation 4.27, when 𝛿  is very large, the hyperbola potential function is 

approximately a quadratic function 𝜂(𝑡) = 𝑡2 . The quadratic regularization can be simply 

implemented by setting 𝛿  to a very large value in the original SQS-DBCN algorithm. 

Empirically, we found that the value 𝛿 = 1/𝑚𝑚 is large enough for the regularization to be 

considered quadratic. A larger 𝛿 will not obviously change the results in this section. 

Figure 4.25 shows the dependence of CNR of MCs on 𝛽. The peak of the curve moves to the 

lower-left corner when 𝛿 increases. When 𝛿 = 1/𝑚𝑚, the peak CNR is only slightly higher than 

that of SART. The MC enhancement is much weaker when a quadratic regularization is used 

with the SQS-DBCN method. On a DBT slice, small MCs usually only occupy a few pixels. 

From the perspective of image processing, the entire MC may be processed as an ‘edge’ due to 

the high local gradient. So the MCs are strongly suppressed by a non-edge-preserving 

regularization. Figure 4.26 and Figure 4.27 show, respectively, examples of MCs in our phantom 

and soft tissue structures in human breast, such as a spiculated mass, reconstructed by SQS-

DBCN with quadratic regularization for a range of 𝛽. The MCs are much more blurred than 

those by SQS-DBCN with hyperbola regularization as shown in Figure 4.26, especially when 𝛽 

is large, so that small 𝛽 is preferred for MCs. For soft tissue structures in human breast, SQS-
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DBCN with quadratic regularization produces texture that appears increasingly rough and 

“bumpy” when 𝛽 decreases as shown in Figure 4.27 so that large 𝛽 is needed for more smooth 

and natural tissue texture. These results demonstrate that for quadratic regularization a single 𝛽 

cannot provide good image quality for both MCs and tissue texture or mass margin, which is 

crucial for DBT reconstruction. 

 SQS-DBCN (Hyperbola 

Regularization) 

𝛿 = 0.002/𝑚𝑚, 𝛽 = 70 

SQS-DBCN (Quadratic 

Regularization) 

𝛿 = 1/𝑚𝑚, 𝛽 = 20 

SQS-DBCN (Quadratic 

Regularization) 

𝛿 = 1/𝑚𝑚, 𝛽 = 40 

SQS-DBCN (Quadratic 

Regularization) 

𝛿 = 1/𝑚𝑚, 𝛽 = 70 

Cluster 

B 

       

 

SQS-noDB (Quadratic 

Regularization) 

𝜹 = 𝟏/𝒎𝒎, 𝜷 = 𝟓 

SQS-noDB (Quadratic 

Regularization) 

𝛿 = 1/𝑚𝑚, 𝛽 = 20 

SQS-noDB (Quadratic 

Regularization) 

𝛿 = 1/𝑚𝑚, 𝛽 = 40 

SQS-noDB (Quadratic 

Regularization) 

𝜹 = 𝟏/𝒎𝒎, 𝜷 = 𝟕𝟎 

Cluster 

B 

    

Figure 4.26. Comparison of MC clusters reconstructed with different reconstruction conditions. 

The SQS methods (SQS-DBCN or SQS-noDB) use 10 iterations. The images are displayed with 

the same window width setting. 

SQS-DBCN (Hyperbola 

Regularization) 

𝛿 = 0.002/𝑚𝑚, 𝛽 = 70 

SQS-DBCN (Quadratic 

Regularization) 

𝛿 = 1/𝑚𝑚, 𝛽 = 20 

SQS-DBCN (Quadratic 

Regularization) 

𝛿 = 1/𝑚𝑚, 𝛽 = 40 

SQS-DBCN (Quadratic 

Regularization) 

𝜹 = 𝟏/𝒎𝒎, 𝜷 = 𝟕𝟎 

      

Figure 4.27. Comparison of spiculated mass in human subject DBT. The images are displayed 

with the same window width setting. 
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We have shown in Figure 4.7, 4.9 – 4.11 and 4.16 the comparison of the SQS-DBCN model 

to that without modeling detector blur, i.e., SQS-noDB (Equation 4.42), when the same 

hyperbola regularization was used. To further demonstrate the contribution of detector blur 

modeling, independent of the edge-preserving hyperbola regularizer, we compare the SQS-

DBCN model and the SQS-noDB model, both with quadratic regularization, i.e., by setting 

𝛿 = 1/𝑚𝑚. Figure 4.28 shows the CNR of MCs as a function of 𝛽. With or without modeling 

detector blur, the CNR curve reaches its peak value at small 𝛽. The SQS-noDB curves reaches 

its peak at smaller 𝛽, making it even more difficult to find a good trade-off to enhance the MCs 

while preserving the texture of soft tissue. Figure 4.26 shows examples of MCs reconstructed 

with the SQS-DBCN model and the SQS-noDB model using quadratic regularization for a range 

of 𝛽 values. For a given 𝛽, the MCs by the SQS-noDB model are much more blurred and have 

lower contrast than that by the SQS-DBCN model, indicating that the proposed detector blur 

modeling improves both the image sharpness and the CNR values. This experiment shows that 

the advantages of detector blur modeling persist until 𝛽  becomes very small regardless of 

whether edge-preserving regularization is used. 

In summary, the edge-preserving regularization is crucial for the performance of the SQS-

DBCN algorithm. Modeling the detector blur is still important for DBT reconstruction even if a 

sub-optimal regularization is used in the cost function. 

 
(a) 

 
(b) 

Figure 4.28. CNR of MCs of the SQS-DBCN method and the SQS-noDB method when the 

quadratic regularization is used (𝛿 = 1/𝑚𝑚). (a) MCs of nominal size 0.15-0.18mm, (b) MCs of 

nominal size 0.18-0.25mm. 
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IV.5 Discussion and limitations of the study 

In this study, we proposed a new SQS-DBCN reconstruction method for DBT applications. 

By accounting for the detector blur and the correlated noise model, the SQS-DBCN method is 

able to improve the reconstruction quality of DBT images both visually and quantitatively. Based 

on the results, we discuss the significances and limitations of the SQS-DBCN method in this 

section.  

 

IV.5.1 Parameter selection for the SQS-DBCN method 

Parameter selection is a crucial step for achieving good image quality with the SQS-DBCN 

method. We investigated using the CNR of MCs as an FOM for guiding parameter optimization. 

We found that this FOM has limitations. First, CNR does not consider the spurious enhancement 

of noise points that may cause false MCs, which often occurs concurrently with strong 

enhancement of high frequency signals such as MCs. In this study, the CNR values are measured 

at known MC locations. If a reconstruction generates false MCs, it will not be penalized by the 

CNR values. Second, MCs are not the only sign of breast cancer; radiologists also need to 

recognize important signs such as architectural distortion or subtle spiculations from non-

calcified lesions in the breast. Some reconstruction methods or parameter combinations can 

generate strong artifacts on the tissue texture, as observed in CT [75]. As a result, CNR curves 

provide only an approximate guide for selecting parameters. As shown in Figure 4.4, there is a 

wide range of 𝛽  values where the SQS-DBCN method outperforms the SART method for 

enhancing the CNR of MCs. We used the parameters within this range to reconstruct human 

subject images and compared the visual quality of the soft tissue texture among these selections. 

We found that 𝛿 = 0.002/mm, 𝛽 = 70 is a reasonable choice for the SQS-DBCN method that 

does not cause strong artifacts and only trades off a fraction of the MC enhancement. 

One challenge in the parameter selection is that different cases may require different 

parameter combinations for the best image quality due to the variations in the noise level of 

images. For the phantom DBT, we can use the CNR of MCs to guide the parameter selection. 

However, the selected parameters may not work well for some patient cases. It is difficult to 

define an FOM for a patient case to help parameter selection because the target lesion of a given 

patient case is usually unknown. For this reason, we implemented the adaptive parameter 
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adjustment as shown in Equation 4.26. Only 𝛽 is adjusted in the procedure while the value of 𝛿 

is fixed. The meanings of the two parameters (𝛽 and 𝛿) are very different in the SQS-DBCN 

method. 𝛿 serves as a threshold to differentiate MCs from soft tissues. Strictly speaking, its value 

should be decided based on experimental measurement of the x-ray attenuation coefficients of 

MC with different x-ray spectra that depend on the kilovoltage, target material and filter material 

of the x-ray source. Considering that the value of 𝛿 should not change dramatically for different 

cases, two or three 𝛿  values could be used for reconstruction to provide different levels of 

enhancement for MCs. The value of 𝛽 , on the other hand, controls the strength of the 

regularization and needs to be adaptively adjusted for different cases. The adjustment we 

currently implemented in Equation 4.26 is likely not the optimal choice. Further investigation is 

required to design a better strategy for choosing the optimal 𝛽 for the best performance of the 

SQS-DBCN method. 

Another way to simplify the parameter selection is to use the quadratic regularization. A 

quadratic regularization will avoid 𝛿  in the potential function and reduce the number of 

hyperparameters by one. However, our experiments (Section IV.4.8) indicate that the hyperbola 

regularization is superior to quadratic regularization for DBT reconstruction because of the dual 

roles played by the hyperbola potential function  𝜂(𝑡) = 𝛿2(√1 + (𝑡/𝛿)2 − 1) . For 

reconstructing soft tissue, the difference between neighboring pixels is small such that  𝛿 =

0.002/𝑚𝑚 is large enough for the potential function to work in the ‘quadratic’ part of the curve. 

It therefore behaves like quadratic regularization that produces relatively smooth and natural soft 

tissue texture at large 𝛽. For MCs with high gradient between neighboring pixels, the potential 

function behaves like linear regularization such that MCs are preserved even when relatively 

strong regularization with large 𝛽 is used to reduce noise. The property of the hyperbola function 

thus matches well with the requirements for DBT reconstruction. 

 

IV.5.2 The importance of different model components for the SQS-DBCN method 

The comparison of SQS-DBCN, SQS-noDB and SQS-noNC demonstrates that the 

effectiveness of the SQS-DBCN method relies on the completeness of all three model 

components: detector blur, noise correlation and regularization. Although intuitively, the MC 

enhancement might result from the deblurring effect of modeling detector blur, our results with 
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the SQS-noNC method demonstrate that modeling noise correlation is equally important. Our 

comparison of SQS-DBCN with the PWLS reconstruction algorithm used in CT further indicates 

that statistical iterative reconstruction methods developed for CT are not sufficient for DBT 

because they ignore detector blur and noise correlation. Similar to the SQS-DBCN method, 

parameters of SQS-noDB and SQS-noNC methods were chosen based on both the CNR 

performance and the soft tissue texture. We found that over the range of 𝛽 values where the CNR 

is relatively high (𝛽 = 10 to 40 for SQS-noDB and 𝛽 = 10 to 30 for SQS-noNC), it is more 

difficult to find a proper 𝛽 with satisfactory tissue texture. As shown in Figure 4.10(a), with the 

chosen 𝛽 values for these two methods, the mean CNRs for MCs of all three sizes are lower than 

those of the SQS-DBCN method. Figure 4.10(b) shows that with the SQS-noDB or the SQS-

noNC methods, the mean FWHMs become similar for MCs of all three sizes, which is 

undesirable. The image patches in Figure 4.9 also demonstrate that the background texture 

obtained with the SQS-noDB or the SQS-noNC methods looks blurry and coarse and the MCs 

are less sharp compared to those with the SQS-DBCN method. The reconstructed images of 

human subject DBT in Figure 4.16 support the same conclusion. Further comparison of SQS-

DBCN and SQS-noDB with quadratic regularization also leads to similar observations as 

discussed in Section IV.4.8. These results indicate that both the detector blur and the correlated 

noise modeling in the SQS-DBCN method are important components in the reconstruction and 

that its superior CNR performance is not simply a result of the regularization. 

Another interesting observation is that the SQS-noDB method generally performs better than 

the SQS-noNC method. Figure 4.9 shows that the SQS-noNC images looks more blurry 

compared with the SQS-noDB images. Figure 4.10 shows that the SQS-noNC method gives 

lower CNR values and larger FWHM values for all three different-sized MCs. In fact, the SQS-

noDB method is equivalent to the SQS-DBCN method if the true point spread function of the 

detector blur is a Kronecker impulse. For the SQS-noDB method, although the detector blur is 

ignored, the noise model still matches the forward model in the data-fitting term of Equation 

4.18. On the other hand, the SQS-noNC method incorporates the detector blur in the forward 

model and ignores the corresponding noise correlation. The results reveal that such a mismatch 

in the modeling degrades image quality. The comparison between SQS-noDB and SQS-DBCN 

indicates the importance of the noise correlation model. 
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IV.5.3 Inverting the noise covariance matrix 𝐊𝑖 with the matrix inversion lemma 

The SQS-DBCN algorithm treats the quantum noise and readout noise as having constant 

variance for each projection angle such that the inversion of the covariance matrix 𝐊𝑖 can be 

efficiently implemented. While using a constant variance for the readout noise is reasonable, 

treating the quantum noise as having a constant variance might be questionable. The results in 

Section IV.4.7 demonstrate that 𝜎𝑖
q
 can vary by a factor 3 for a given projection view but this 

does not have strong influence on the reconstructed image. One might consider using the matrix 

inversion lemma to transform 𝐊𝑖 in hopes that the approximation of the constant quantum noise 

could be relaxed. We discuss this approach in this section. 

We still assume the readout noise to have constant variance: 𝐊𝑖
𝑟 = 𝜎𝑖

r2𝐈. By applying the 

matrix inversion lemma to 𝐊𝑖
−1, we have: 

 𝐊𝑖
−1 = (𝐁𝑖𝐊𝑖

q
𝐁𝑖

′ + 𝐊𝑖
𝑟)

−1

= (𝜎𝑖
r2𝐈)

−1
− (𝜎𝑖

r2𝐈)
−1

𝐁𝑖 (𝐊𝑖
q−1

+ 𝐁𝑖
′(𝜎𝑖

r2𝐈)
−1

𝐁𝑖)
−1

𝐁𝑖
′(𝜎𝑖

r2𝐈)
−1

=
1

𝜎𝑖
r2

𝐈 −
1

𝜎𝑖
r2

𝐁𝑖 (𝜎𝑖
r2𝐊𝑖

q−1
+ 𝐁𝑖

′𝐁𝑖)
−1

𝐁𝑖
′. 

(4.52) 

𝐁𝑖
′𝐁𝑖 is a circulant matrix and 𝜎𝑖

r2𝐊𝑖
q−1

 is a diagonal matrix with changing diagonal elements.  

The summation of these two matrices cannot be inverted analytically [105]. As a result, our 

approximation of constant quantum noise is still necessary to efficiently implement the inversion 

of 𝐊𝑖. 

Despite the conclusion, if we consider the diagonal elements of 𝐊𝑖
q
 to be slowly changing, 

(𝜎𝑖
r2𝐊𝑖

q−1
+ 𝐁𝑖

′𝐁𝑖)
−1

 could be implemented as a piecewise shift-invariant filter. This is a 

potential way to relax the approximation of constant quantum noise. The results in Section 

IV.4.7 indicate that treating 𝜎𝑖
q
 as a constant does not have strong influence on the reconstructed 

image. Therefore the influence of using the piecewise shift-invariant filter to implement 𝐊𝑖
−1 on 

the reconstructed image quality is yet to be investigated. 

 

IV.5.4 Other limitations of the study 

There are a number of limitations for this preliminary study of an MBIR method for DBT. 

The SQS-DBCN method depends on several approximations. We approximate the detector blur 
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as linear shift-invariant for a given projection and as independent of the x-ray incident angle to 

the detector. The reconstructed object approximately consists of a relatively uniform background, 

where the fibrous tissue and MCs are treated as high-frequency structures embedded in the 

background. We also treat the quantum noise to be relatively constant over the field of view for a 

given projection angle. The model for the SQS-DBCN method only includes the detector blur 

and the corresponding noise correlation. Other factors such as x-ray focal spot blur, beam 

hardening and scatter are not considered in our current model. However, even with such a 

simplified model and approximations, the SQS-DBCN method enhances MCs and suppresses 

noise compared to SART reconstruction, while preserving tissue texture and mass spiculations 

for low-dose DBT scans. The SQS-DBCN implementation not only provides a practical DBT 

reconstruction method, but also indicates the potential value of MBIR for DBT. 

 

IV.6 Conclusion 

We proposed a DBT reconstruction method that incorporates detector blur and a correlated 

noise model. We have shown quantitatively and qualitatively that the new SQS-DBCN method 

can better enhance MCs compared with SART while preserving the image quality of mass 

spiculations and tissue texture. We have also demonstrated the effectiveness of the SQS-DBCN 

method as a result of incorporating the detector blur, the noise correlation and the regularization 

at the same time, indicating that a more complete model-based reconstruction may further 

improve the DBT image quality. 
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CHAPTER V.  

Truncated Projection Artifact Removal for DBT 

 

V.1 Introduction 

This chapter introduces our work on TPA removal algorithms. Unlike other studies in this 

dissertation where we try to provide insight for the DBT image reconstruction, this study focuses 

on solving a crucial technical problem commonly observed in DBT reconstruction. TPA removal 

is important not only for the practical use of DBT in breast cancer screening and diagnosis, but 

also for other research on improving the DBT reconstruction quality that could be distracted by 

the reconstruction artifacts.  

 

V.1.1 Existing TPA removal algorithms for CT and DBT systems 

We first review existing TPA removal algorithms developed for CT and DBT systems. 

Generally speaking, these TPA removal algorithms can be classified into two categories: (1) 

methods that extrapolate the PVs and use the extrapolated PVs for reconstruction; (2) methods 

that compensate for the TPA in the imaged volume during the reconstruction. 

The first category of TPA removal algorithms is more thoroughly studied and more 

commonly used in commercial CT systems. The idea is to use the measured PVs to estimate the 

projection values outside the detector, such that the extended PV is large enough that TPA is 

outside the volume of interest. The idea can be implemented in different ways [106-110], 

including the methods used in commercial CT systems by GE [111] and Siemens [112]. A 

principle commonly used in the PV extrapolation algorithms is that for parallel-beam CT, the 

total attenuation should remain constant if all PVs are fully captured by the detector without 

truncation. The total attenuation is calculated by integrating each PV. If the integral is found to 

be smaller for a few PVs, these are the truncated PVs that need to be extrapolated. The PV 
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extrapolation algorithm should complete these PVs such that their total attenuation reaches the 

same level as the non-truncated PVs. The parallel-beam geometry is not used in modern 

commercial CT systems. To use the principle of the constant total attenuation, the measured PVs 

are first converted to parallel-beam geometry before the PV extrapolation and then converted 

back to the original geometry if needed. Using this approach, many studies first set up an 

archetype function (e.g. a polynomial function with parameters) for the projection values outside 

the detector based on experience. Then they fit the parameters of the archetype function such that 

a smooth transition near the detector boundaries is achieved and the total attenuation reaches the 

same level as the non-truncated PVs. The method by Ohnesorge et al. [112] replicated the shape 

of the PV near and inside the detector boundaries to extrapolate the PV. For many algorithms, 

patch-up steps are necessary to generate natural-looking extrapolated PVs. Considering that 

some of these methods have been used in commercial CT scanners, apparently the empirical 

parts of these algorithms do not affect the diagnosis. 

The first category of TPA removal methods allows flexible choice for reconstruction 

algorithms because the extrapolated PVs can simply be used in image reconstruction as if they 

were directly measured with a larger detector without truncation. The second category of TPA 

removal algorithms, on the other hand, is usually designed for a specific reconstruction algorithm 

or a type of reconstruction algorithms. For example, Kunze et al. proposed to optimize a cost 

function with the regularization to control TPA in CT reconstruction [113]. Such a method 

cannot be used in other iterative or analytical reconstruction methods. Li et al. studied TPA in 

DBT slices reconstructed with filtered back-projection. For a location in the imaged volume, the 

reciprocal of the total number of PVs that affected this location was used as the weight 

compensate for TPA [114]. In our laboratory, Lu et al. previously developed a TPA removal 

algorithm that used diffusion to compensate for the discontinuity in the gray levels in the region 

across the step caused by the (i-1)
th

 PV updating. By removing the sharp boundary before 

updating by the i
th

 PV, the step artifact would not be enhanced by the subsequent updates in the 

same iteration [67]. Lu’s method is efficient and reliable that it generates satisfactory TPA 

removal results without causing other artifacts. One can apply it to any iterative reconstruction 

method that accesses the PVs in successive order. 

We used Lu’s method in our work on the SWNC regularization [64] and the SQS-DBCN 

reconstruction [91, 92]. At the same time, there are limitations of Lu’s method for MBIR. First, 
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Lu’s method is implemented as an extra processing step after each update, which greatly 

complicates any analysis of the convergence of the cost function. As a result, although we can 

prove mathematically that our DBT reconstruction algorithms converge without the TPA 

removal method [64, 91, 92], including Lu’s method precludes known algorithm convergence 

guarantees. Second, Lu’s TPA removal method requires all PVs to be used in successive order. If 

ordered subset acceleration is not used in our SQS-DBCN reconstruction, Lu’s TPA removal 

method cannot be applied since all PVs are used at the same time to update the image. If one 

wants to use the PVs in an arbitrary order, Lu’s TPA removal method cannot be used either. 

These limitations inspired us to develop and investigate more universal TPA removal methods 

for DBT. 

 

V.1.2 Organization of this chapter 

In this chapter, we will introduce the algorithms and results of three different TPA removal 

methods we proposed and tested. Since these methods share some principles and algorithms, we 

will first discuss them in Section V.2. In Section V.3, we will describe each method step by step 

with two examples that represent CC view and MLO view DBT scans. The first and the second 

methods belong to the first category of TPA removal algorithms introduced in Section V.1.2. For 

these two methods, we will mainly focus on the PV extrapolation algorithms. The third method 

belongs to the second category of TPA removal algorithms, where we attempt to use 

regularization to control TPA. In Section V.4 of this chapter, we will present the results of the 

three methods and discuss their effectiveness and possible improvements. Section V.5 is a 

summary of this chapter. 

 

V.2 Principles and Algorithms for PV Extrapolation in DBT 

V.2.1 Regions to be extrapolated 

We first calculate the regions that need to be extrapolated for the PV extrapolation-based 

TPA removal methods. The purpose of PV extrapolation is to move the TPA outside our VOI. 

Using the imaging system geometry, we can calculate the cone formed by connecting the 

boundaries of the extrapolated PV and the x-ray source. The cone needs to be large enough to 

cover the entire imaged volume for a given breast thickness. Figure 5.1 shows the source rotation 
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plane of the DBT system (Figure 2.1 viewed along the x-direction). The region to be extrapolated 

is decided by the location of the source and the corners of the imaged volume and it is different 

for different projection angles. The region to be extrapolated can be on one side of the digital 

detector as shown by the first and the last PV or on both sides as shown by the ith PV. The 

maximum extents of the extrapolated area are decided by the first and the last projection angle. 

We can either extrapolate every PV up to the maximums on both sides, or we can extrapolate 

every PV up to the required region of the corresponding projection angle. In fact, even if we 

extrapolate the PVs beyond the required region, the extra extrapolation will not affect the 

reconstruction since its backward projection does not affect the imaged volume. 

 

Figure 5.1. Regions to be extrapolated for different projection angles. The green region is needed 

by the first projection angle. The blue region is needed for the last projection angle. The red 

region represents the situation where an extrapolated region is needed on both sides of the digital 

detector. 

V.2.2 The weighted k-means breast boundary detection algorithm 

Since the breast boundary on each PV is used in both of our PV extrapolation methods, we 

introduce the breast boundary detection algorithm in this section. We consider the breast 

boundary detection as a binary image segmentation problem. Image segmentation has been 
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studied extensively in the past fifty years. Established methods include thresholding [115, 116], 

gradient-based edge detection methods [117, 118], model-based active contour [119-121], and 

texture-based algorithms [122, 123]. Among these methods, thresholding is simple but it works 

well for segmenting the breast boundary from the air region outside the breast. Considering that 

x-ray is attenuated while penetrating the breast, the projection of the breast generally has a lower 

x-ray intensity value compared with the projection of air. Practically, the x-ray projection of air 

is not uniform due to the heel effect of the x-ray anode and the varied path-length from the x-ray 

source to the detector plane, especially for cone-beam x-ray systems such as DBT. This non-

uniformity varies slowly over for the entire projection, so it can be fitted and removed before the 

image segmentation. After removing the non-uniform background, the segmentation algorithm is 

simplified to finding a proper threshold to segment the projection. 

 
 

 
(a) (b) (c) 

Figure 5.2. A typical PV in DBT (RMLO view), its histogram and two detected breast contours 

based on different thresholds. (a) The PV image. (b) The histogram. The red bar marks a 

threshold of 1.28, which is given by the classic k-means clustering with 2 clusters. The green bar 

marks a threshold of 0.42. (c) The breast contours when the two thresholds on the histogram are 

used. The color of the contour matches the color of the threshold in (b). 

Our breast boundary detection is based on the PV after log-transform. Figure 5.2(a) shows a 

typical PV of DBT, which is basically a low-dose mammography image. This PV is the central 

projection of an RMLO view human-subject DBT. Figure 5.2(b) is the histogram of the PV, 

showing two groups of pixel values, one inside and the other outside the breast boundary. To 

distinguish the two clusters of values, we used the classical k-means method with k = 2. This 

method gives us a threshold of 1.28, marked as the red bar in Figure 5.2(b). The threshold is unit-
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less since the displayed PV in Figure 5.2(a) is after the log transform. The red curve in Figure 

5.2(c) shows the breast contour if this threshold is used. The contour is obtained from the 

processed breast mask after thresholding. The processing of the breast mask is described in Step 

(5) of Algorithm 5.1 that will be introduced later. 

Obviously, the red curve is not our desired breast contour because the relative dark area near 

the breast boundary is not correctly included. Our desired contour, shown as the green curve in 

Figure 5.2(c), actually requires a threshold of 0.42, marked as the green bar in Figure 5.2(b). 

Such a threshold ensures that the cluster on the right side of Figure 5.2(b) includes the long tail 

between the two peaks.  

 

Figure 5.3. Schematic illustration of the shape of a compressed breast (upper) and its 

corresponding PV profile (lower, the x-ray intensity profile after log-transform). 

Similar result was observed when we applied the k-means clustering method to many PV 

images. On the PV gray level histogram, we observe that the right cluster usually has a long tail 

with contributions from the gray area right inside the breast boundary (Figure 5.2(c)). The k-

means clustering tends to split the tail into two clusters and does not provide good segmentation 

results. The reason that the gray area appears can be explained from the shape of the compressed 

breast as shown in Figure 5.3. The PV profile, which is the projected x-ray attenuation 

coefficient in the compressed breast, drops to zero gradually with a discontinuous first-order 

derivative at the boundary, creating the gray area near the breast boundary. Therefore, the 

traditional k-means clustering is suboptimal for breast boundary detection. 
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Based on these considerations, we propose a weighted-k-means breast boundary detection 

algorithm. Given a set of observations (𝒗1, 𝒗2, … , 𝒗𝑛), the k-means clustering aims to partition 

the n values into k sets 𝐒 = {S1, S2, … , S𝑘} such that: 

 �̂�k−means = argmin
𝐒

∑ ∑‖𝒗 − 𝝁𝑖‖2
2

𝒗∈S𝑖

𝑘

𝑖=1

, (5.1) 

where 𝝁𝑖 is the mean of the observations within the set S𝑖. 

The weighted k-means approach is defined by generalizing the traditional k-means clustering: 

 �̂�weighted k−means = argmin
𝐒

∑𝑤𝑖 ∑‖𝒗 − 𝝁𝑖‖2
2

𝒗∈S𝑖

𝑘

𝑖=1

, (5.2) 

where we include a user-specified weight 𝑤𝑖 to each set. 

The weighted k-means clustering is solved iteratively similarly to the traditional k-means 

clustering. The only difference is that when updating the cluster index 𝑙𝑖 for the observation 𝒗𝑖, 

we set the updated cluster index 𝑙𝑖
(𝑚+1)

 to the value that minimizes the weighted distance: 

 𝑙𝑖
(𝑚+1) = argmin

𝑙
 𝑤𝑙‖𝒗𝑖 − 𝝁𝑙

(𝑚)
‖

2

2

, (5.3) 

where 𝑚 is the iteration index and 𝝁𝑙
(𝑚)

 is the mean of the lth cluster after the previous iteration.  

Obviously, giving a cluster a larger weight will make observations less likely to be included 

in this cluster. We therefore adjust the weights to assign more values to the cluster with higher 

mean value (Figure 5.2(b)). More specifically, we use the minimum and maximum value of the 

entire PV as the initial mean values of the two clusters. Then we assign the cluster with the 

smaller mean value a weight that is larger than 1. We use 𝑤1 to denote this value. The weight of 

the cluster with the larger mean value is fixed at 1. In fact, the green bar in Figure 5.2(b) with a 

threshold value of 0.42 is obtained using the weighted k-means clustering with 𝑤1 = 50. 

In summary, we propose the weighted k-means breast boundary detection algorithm, as 

shown in Algorithm 5.1: 

Algorithm 5.1. Weighted k-means breast boundary detection 

(1) Let 𝐲 denote the log-transformed PV. For all pixel values of 𝐲, we apply the weighted k-

means clustering with 𝑤1 = 𝑤1𝑠𝑡  to obtain the threshold 𝑡1𝑠𝑡 . The area with smaller pixel 

values than 𝑡1𝑠𝑡 is denoted as 𝐁. 

(2) Perform a 2D 2
nd

-order polynomial fitting for 𝐲 in the area 𝐁. The fitted 2D polynomial 
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background is extended to the entire PV. Let 𝐛fit to denote this image (same size as 𝐲) 

(3) Calculate 𝐲fit = 𝐲 − 𝐛fit 

(4) Apply the weighted k-means clustering with 𝑤1 = 𝑤2𝑛𝑑 to all pixel values of 𝐲fit to obtain 

the threshold 𝑡2𝑛𝑑. The area with larger pixel value than 𝑡2𝑛𝑑 is denoted as 𝐌. 

(5) Eliminate all connected areas of 𝐌 with fewer than 80 pixels. For the remaining connected 

areas, fill in all the holes and apply a morphological opening with a disk-shaped structuring 

element of diameter = 9 pixels. The boundary of the processed area 𝐌processed yields the final 

breast boundary. 

 

 

 
(a) 𝑤2𝑛𝑑 = 1 

 
(b) 𝑤2𝑛𝑑 = 2 

 
(c) 𝑤2𝑛𝑑 = 4 

 
(d) 𝑤2𝑛𝑑 = 8 

 
(e) 𝑤2𝑛𝑑 = 500 

 
(f) 𝑤2𝑛𝑑 = 1000 

Figure 5.4. Boundary detection results with different weight 𝑤2𝑛𝑑 . 𝑤1𝑠𝑡 = 50 is used for all 

results. 
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The purpose of step (1)-(3) of Algorithm 5.1 is to eliminate the influence of the non-uniform 

background. In principle, we recommend using a larger value for 𝑤1𝑠𝑡  to make sure that no 

pixels within the breast boundary are used in the polynomial fitting of step (2). In this work, we 

actually used the same value for 𝑤1𝑠𝑡 and 𝑤2𝑛𝑑, which actually generates good breast boundary 

detection result. 

We empirically evaluated the sensitivity of the detected breast boundary to 𝑤1𝑠𝑡 and 𝑤2𝑛𝑑 

and found that the breast boundary detection result is very insensitive to the weights, as shown in 

Figure 5.4. Any 𝑤2𝑛𝑑 values between 8 and 500 generate similar breast boundary results. 

We tested Algorithm 5.1 with 1407 PV images from 67 DBT scans (21 PVs for each scan), 

the parameter 𝑤1𝑠𝑡 = 𝑤2𝑛𝑑 = 50 can correctly detect the breast boundary for 1401 PV images. 

For the other 6 PV images, the parameter 𝑤1𝑠𝑡 = 𝑤2𝑛𝑑 = 100  generates satisfactory breast 

boundary results. As the focus of this work is not to develop a fully automatic breast boundary 

detection algorithm, we consider Algorithm 5.1 to be adequate for TPA removal. With an 

adaptive strategy for choosing 𝑤1𝑠𝑡 and 𝑤2𝑛𝑑, Algorithm 5.1 has the potential to be developed 

into a reliable breast boundary detection algorithm for more general applications. 

 

V.3 The TPA removal algorithms 

V.3.1 TPA removal with contour-extension-diffusion PV extrapolation  

This section introduces our TPA removal algorithm based on contour-extension-diffusion PV 

extrapolation. We will first introduce our contour extension algorithm to complete the truncated 

breast boundaries. Then we will introduce the algorithm to fill pixel values in the extended 

regions. We will mainly use the contours of breast boundaries in this section. For simplicity, we 

call them breast contours. In the result section, we used SART to reconstruct the DBT image 

with the extrapolated PVs. Since SART has been discussed previously and in principle the 

extrapolated PVs can be used for any reconstruction algorithms, we will not repeat the details of 

image reconstruction. 

The first step of the contour-extension-diffusion PV extrapolation is to extend the breast 

contours beyond the FOV of the detector. Figure 5.5 shows the detected breast contours of all 21 

PVs for an RCC view and an RMLO view. For both views, all contours are not complete since 

they are truncated at the top, at the bottom, or on both sides. However, for the part of the contour 
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that has not been cut, all contours have similar shapes. This observation is not limited to these 

two examples. In fact, because of the geometry of the DBT system, all breast contours of the 

same view are similar but shifted sequentially as the x-ray projection angle changes in small 

increments. We have checked the all 67 human-subject DBT scans (CC view or MLO view) and 

confirmed this observation for all cases.  

  
(a) (b) 

Figure 5.5. Breast contours of all PV images for an RCC view and an RMLO view. (a) RCC 

view. The red contours are cut at the top, the magenta contours are cut at the bottom and the blue 

contours are cut on both sides. (b) RMLO view. The red contours are cut at top. All contours are 

cut at bottom.  

Based on the observation, we propose to use the uncut breast contours or relatively more 

complete breast contours to estimate the breast contours beyond the FOV of the detector. The 

idea is based on the fact that neighboring breast contours are even more similar since their scan 

angles only have a 3 degree difference. The same idea also applies to the DBT systems by other 

manufacturers since the angle between neighboring projections is even smaller. For example, the 

angle between neighboring projections is 2°, 1° and 1° for the FDA-approved commercial DBT 
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systems by Siemens, Hologic [44] and Fujifilm [124]. If one breast contour is cut but its 

neighboring contour is uncut, we can estimate its missing part from the neighboring complete 

contour. We will use the examples in Figure 5.5 to explain the idea. 

Figure 5.5(a) represents a typical CC-view DBT scan (LCC or RCC). Its 21 contours have 

been labeled with a number in the order that the PVs are acquired in the DBT scan. All 21 

contours can be classified into three categories. The nine magenta contours (#1 – 9) are cut at the 

bottom and not cut at the top, the ten red contours (#12 – 21) are cut at the top but not cut at the 

bottom, while the blue ones (#10, 11) are cut on both sides. As a result, on the bottom side of the 

CC view, contour #12 can be used to extend contour #11 to complete it. After contour #11 is 

extended, we use the extended contour #11 to complete contour #10. The extended contour #10 

therefore takes a part from contour #11 and a part from contour #12. We repeat the same 

operation for contours #9, 8, …, 2, 1 in successive order. The last contour #1 is extended with 

the information from contour #2 – contour #12. The same method is then applied to the top part 

to extend contour #10 – 21 in order. After all extensions are done, all contours are complete at 

both the top and the bottom side. 

Figure 5.5(b) represents a typical MLO-view DBT scan (LMLO or RMLO). The MLO views 

are different from CC views since all breast contours are cut on the side of the pectoral muscle 

(at the bottom for RMLO view and at the top for LMLO view). As a result, we do not have a 

breast contour that is complete on the side of the pectoral muscle. In this case, we use the most 

complete contour to extend the others. We start by using contour #21 to extend contour #20. 

Then we use the extended contour #20 to extend the next contour and repeat this for all of the 

remaining contours. In the end, contour #1 is extended with the information from all the other 20 

contours. Extending the top part of the contours is similar to the CC view, where we start by 

extending contour #14. After all extensions are done, all contours are complete at the top but 

incomplete at the bottom. It is possible that the extended contours are not enough to reach the 

required size shown in Figure 5.1. This exception will be discussed later. 

With the idea introduced above, we propose the contour extension algorithm that uses one 

contour to estimate another. Before describing the algorithm, we need to introduce the 

expression of a contour and the definition of the distance from one contour to another one. A 

contour, denoted as C, is described with parametric equations: 

 𝐶 = (𝑡𝐶(𝑞), 𝑠𝐶(𝑞)), (5.4) 
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where q is the arc distance from a point to the starting point of the contour: 

 𝑞 ∈ [0, 𝑞𝐶]. (5.5) 

We will use the operation Shift(∙) to shift a contour, defined as: 

 Shift(𝐶; 𝑡0, 𝑠0) = (𝑡𝐶(𝑞) + 𝑡0, 𝑠𝐶(𝑞) + 𝑠0), (5.6) 

where 𝑞 is the same as that defined in (5.5). 

The distance from a point (𝑡, 𝑠) to a contour 𝐶 is defined as the minimum Euclidean distance 

from the point to the contour: 

 𝑑𝐶(𝑡, 𝑠) = inf
𝑞

 ((𝑡𝐶(𝑞) − 𝑡)2 + (𝑠𝐶(𝑞) − 𝑠)2). (5.7) 

Naturally, the distance from one contour 𝐶1 to another contour 𝐶2 is defined as: 

 𝑑𝐶1→𝐶2
= ∫ 𝑑𝐶2

(𝑡𝐶1
(𝑞), 𝑠𝐶1

(𝑞))d𝑞
𝑞𝐶1

0

. (5.8) 

The distance between the two contours is asymmetric that 𝑑𝐶2→𝐶1
 is different from 𝑑𝐶1→𝐶2

 in 

most situations. 

 
(a) 

 
(b) 

Figure 5.6. The matching sections before and after the shifting for (a) RCC view. (b) RMLO 

view 
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We extend an incomplete contour with another contour by shifting the more complete 

contour along the vertical direction such that the two contours can connect. The contour to be 

extended is called the target contour, denoted as 𝐶target. The more complete contour is called the 

source contour, denoted as 𝐶source. By definition, the source contour does not have to be uncut, 

as shown in Figure 5.6. The shifting distance is determined by minimizing the distance from a 

matching section of the target contour to the source contour. The matching sections, denoted as 

𝐶match, are shown as the blue curves in Figure 5.6. They start from the point where a contour is 

cut and propagate towards the direction that the contour is not cut. The number of matching 

sections for a contour can be more than one, as shown in Figure 5.6(b). Even for the CC view, 

the number of matching sections can be two or more, depending on the shape of the contour. The 

distance of the shift is estimated by minimizing the distance from the shifted matching sections 

to the source contour: 

 
�̂�𝐶match→𝐶source

= argmin
𝑠∈[0,𝑠max] 

𝑑Shift(𝐶match;0,𝑠)→𝐶source
, (5.9) 

where 𝑠max is the maximum shifting distance that is allowed. We empirically choose 𝑠max =

2cm in our study. This value has been found to suffice even for the thickest breast in the studied 

data set. We solved the optimization problem in Equation 5.9 with an exhaustive search method 

that calculates the values of 𝑑Shift(𝐶match;0,𝑠)→𝐶source
 for all values of 𝑠 every 0.1mm within the 

range of [0, 𝑠max] and finds the minimizer. With 𝑠max = 2cm, the exhaustive search takes less 

than 2 seconds to find the shifting distances for all PVs for all the cases we have tested. The time 

cost can be neglected compared with the time cost of the DBT reconstruction. The shifted 𝐶match 

curves (colored green in Figure 5.6) almost overlap with the 𝐶source curves (the red curves in 

Figure 5.6) for both the CC view and the MLO view, which indicates the similarity between  

𝐶target and 𝐶source. 

After finding the optimal distance �̂�𝐶match→𝐶source
, we shift 𝐶source in the opposite direction. 

The operation can be written as Shift(𝐶source; 0, −�̂�𝐶match→𝐶source
). The shifted source contours 

are shown as the blue curves in Figure 5.7. As we expected, the shifted source contours connect 

smoothly with the target contours. Then we find the part of the shifted source contours outside 

the detector region and use that part to complete cut part of the target contours. 
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(a) 

 
(b) 

Figure 5.7. The shifted source curves in comparison with the target curves for (a) RCC view. (b) 

RMLO view. 

Based on the algorithm described above, for all contours in Figure 5.5(a), we extend contour 

#11 to contour #1 at the bottom consecutively and contour #10 to contour #21 at the top 

consecutively. The extended contours are shown in Figure 5.8(a), following the same color 

schemes as that of Figure 5.5. It can be seen that all contours are smooth after the extension. 

For the RMLO view, the process is similar but one additional step needs to be done. Since 

none of the contours is complete at the bottom, it is possible that the extended contours have not 

reached the location to eliminate the TPA. There is no guarantee that the extended contours can 

cover the required extended detector size in Figure 5.1. For a final step, we further extend all 

contours in Figure 5.8(b) vertically to cover the maximum required extended region. The final 

extended contours for the RMLO view is shown in Figure 5.8(c).  
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(a) 

 
(b) 

 
(c) 

Figure 5.8. All extended breast contours for an (a) RCC view and an (b) RMLO view after the 

contour extension. (c) RMLO view after the complete extension. 

To summarize the algorithm, given two contours 𝐶target  and 𝐶source , we define two 

operations ExtUp(𝐶target, 𝐶source)  and ExtDown(𝐶target, 𝐶source) . ExtUp(𝐶target, 𝐶source)  is 

defined as: 

Algorithm 5.2. ExtUp(𝐶target, 𝐶source) 

(1) If 𝐶target is uncut at top, ExtUp(𝐶target, 𝐶source) = 𝐶target 

(2) Otherwise, find the matching sections 𝐶match on 𝐶target.  

(3) Calculate �̂�𝐶match→𝐶source
 based on Equation 5.9 

(4) ExtUp(𝐶target, 𝐶source) = {
𝐶target, in the measured detector region

Shift(𝐶source; 0, −�̂�𝐶match→𝐶source
), in the extended region

. 
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For implementation, step (2) of Algorithm 5.2 uses the second derivative of the first row of 

the breast mask 𝑀target (corresponding to 𝐶target). The first row of 𝑀target is a 1-D vector with 

values of 0 or 1. We use 𝑀target,1st row to denote this 1-D vector. As shown in Figure 5.6, at each 

location where the value of 𝑀target,1st row changes from 0 to 1 or from 1 to 0, a matching section 

needs to be created. These locations are indicated by a negative value of the second derivative of 

𝑀target,1st row. Step (4) of Algorithm 5.2 is implemented by shifting the breast mask 𝑀source 

(corresponding to 𝐶source) and combining it with 𝑀target. 

Similarly, ExtDown(𝐶target, 𝐶source) is defined as: 

Algorithm 5.3. ExtDown(𝐶target, 𝐶source) 

(1) If 𝐶target is uncut at bottom, ExtDown(𝐶target, 𝐶source) = 𝐶target 

(2) Otherwise, find the matching sections 𝐶match on 𝐶target.  

(3) Calculate �̂�𝐶match→𝐶source
 based on Equation 5.9 

(4) ExtDown(𝐶target, 𝐶source) = {
𝐶target, in the measured detector region

Shift(𝐶source; 0, −�̂�𝐶match→𝐶source
), in the extended region

. 

Then the breast contour extension algorithm is described as: 

Algorithm 5.4. The Breast Contour Extension Algorithm 

(1) Load all 𝑁p PV images. Sort them such that all the projection angles are in ascending order. 

(2) Perform the two-step k-means breast boundary detection for all PV images to obtain all 

breast masks 𝑀1, 𝑀2, …, 𝑀𝑁𝑝
 and breast contours 𝐶1, 𝐶2, …, 𝐶𝑁𝑝

. 

(3) 𝐶1,ext,up = 𝐶1. 

(4) for 𝑖 = 2,3, …𝑁p  

         𝐶𝑖,ext,up = ExtUp(𝐶𝑖, 𝐶𝑖−1,ext,up) 

      end 

(5) 𝐶𝑁p,ext = 𝐶𝑁𝑝,ext,up. 

(6) for 𝑖 = 𝑁p − 1,𝑁p − 2,…1  

         𝐶𝑖,ext = ExtDown(𝐶𝑖,ext,up, 𝐶𝑖+1,ext,up) 

      end 

(7) If the scan is RMLO view, extend 𝐶1,ext, 𝐶2,ext, … . 𝐶𝑁p,ext vertically at the bottom till the 
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bottom of the extended detector. If the scan is LMLO view, extend 𝐶1,ext, 𝐶2,ext, … . 𝐶𝑁p,ext 

vertical at the top till the top of the extended detector. 

(8) 𝐶1,ext, 𝐶2,ext, … . 𝐶𝑁p,ext is the final set of extended contours. 

After obtaining the extended breast boundary contours, we need to fill in values in the 

extended region. We expect the filled values inside the extended breast mask to have a smooth 

transition at the boundaries of the detector FOV. To achieve this, we implemented a diffusion 

algorithm similar to Lu et al. [67]. Given an image 𝐲 and an ROI S, the projection operator P𝐒 is 

defined as: 

 P𝐒𝐲 = {
𝐲     inside the ROI S
0  outside the ROI S

 (5.10) 

Let F denote a 2D low-pass filtering operator. The ROI S is selected to be the extended 

regions. The diffusion is done with the following iterations: 

 𝐲𝑡 = (I − PS)𝐲𝑡−1 + PS(F𝐲𝑡−1) (5.11) 

where t is the iteration index and I is the identity operator. The entire diffusion operation can be 

written as: 

 𝐲diffuse = CS(𝐲; T, F, 𝐲0) (5.12) 

where T denotes the total number of iterations, F denotes the filtering operator and 𝐲0 denotes 

the initial condition of the diffusion. 

The choice of initial condition 𝐲0 is crucial for getting a smooth transition at the detector 

boundaries. Figure 5.9 shows the initialization of the diffusion for the RCC and RMLO views. 

For all three images, the extended regions are the part above the highest colored horizontal line 

and below the lowest colored horizontal line. The first few rows of the measured PV and the last 

few rows are referred to as the boundary bands, as shown in Figure 5.9. The part of the boundary 

band within the breast mask is marked with a pink outline. We take average of the values inside 

this area and use the average pixel values to fill in the extended breast mask nearby. The average 

pixel values of the boundary bands outside the breast mask are used to fill in the extended region 

outside the extended breast mask. In other words, the top boundary band is used to fill in the top 

extended region and the bottom boundary band is used to fill in the bottom extended region. 

Therefore if the PV is truncated on both sides such that there are two extended regions within the 

extended breast mask, the values to fill in the top and bottom regions of the extended breast mask 
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can be different, as shown in Figure 5.9(c). After filling in the values, we have the initial 

condition for the diffusion in Figure 5.9. 

As mentioned above, the purpose of the diffusion is to create a smooth transition at the 

detector boundaries. A long rectangular kernel along the vertical direction can serve the purpose. 

We empirically choose a uniform rectangular kernel of size 7 × 61 pixels (0.7mm × 6.1mm), 

400 iterations for the diffusion, and a width of 20 for the boundary bands. With these parameters, 

the results after diffusion are shown in Figure 5.10. 

 
(a)  

(b) 

 
(c) 

Figure 5.9. Initial condition of the diffusion for (a) RCC view, projection angle = -30
o
. This is 

the PV corresponding to contour #1 in Figure 5.5(a); (b) RMLO view, projection angle = -30
o
, 

corresponding to contour #1 in Figure 5.5(b); (c) RMLO view, projection angle = 15
o
, 

corresponding to contour #16 in Figure 5.5(b). The images are shown with the same scaling so 

the boundary bands are at the same vertical locations. The sizes of extended area are different for 

the RCC view and the RMLO view. 
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(a)  

(b) 
 

(c) 

Figure 5.10. Diffusion results for (a) RCC view, projection angle = -30
o
. This is the PV 

corresponding to contour #1 in Figure 5.5(a); (b) RMLO view, projection angle = -30
o
, 

corresponding to contour #1 in Figure 5.5(b); (c) RMLO view, projection angle = 15
o
, 

corresponding to contour #16 in Figure 5.5(b). 

Figure 5.10 shows that the transition is smooth near the detector boundaries. As a final step, 

we set the values outside the extended breast masks to be the average pixel values in the region 

of the boundary bands between the green lines. Figure 5.11 shows the final PV extrapolation 

results. 

As can be seen in Figure 5.11, the extrapolated PVs have smooth extended breast boundaries 

and smooth transition near the detector boundaries. They also have a trend that the pixel values 

are decreasing near the extended boundaries, which is desired as shown in Figure 5.3. The final 

extrapolated PVs can be used in DBT reconstruction as if they were originally measured with a 

larger detector. The reconstructed images will be shown and analyzed in Section V.4. 
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(a)  

(b) 
 

(c) 

Figure 5.11. Final PV extrapolation results for (a) RCC view, projection angle = -30
o
. This is the 

PV corresponding to contour #1 in Figure 5.5(a); (b) RMLO view, projection angle = -30
o
, 

corresponding to contour #1 in Figure 5.5(b); (c) RMLO view, projection angle = 15
o
, 

corresponding to contour #16 in Figure 5.5(b).
 

V.3.2 TPA removal with pre-reconstruction-based PV extrapolation 

For this method, we use a pre-reconstructed volume to extrapolate the PVs. The 

implementation of this method is much less complicated than the contour-extension-diffusion 

method. The idea of this method is that we first obtain a reconstructed volume without TPA, then 

we re-project this volume to extrapolate the PVs. This volume is called the pre-reconstructed 

volume or the pre-reconstructed image and therefore this method is called the pre-reconstruction-

based PV extrapolation method. The method is comparable to the method by Kinahan et al. [125], 

where the reconstructed image from the first FBP is re-projected onto the regions of missing 

projection data before a second FBP is done. We first introduce a simple and efficient pre-
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reconstruction algorithm. Then we introduce the algorithm for generating the extrapolated PVs 

with the pre-reconstructed volume. 

 

V.3.2.1  Pre-reconstruction with SART 

Empirically, if only one or two SART iterations are used with TPA removal, TPA will be 

more obvious on one side than the other side, as shown in Figure 2.5. The same observation was 

reported by Lu et al. [67]. This can be explained by the sequential updates in SART. On the side 

of reconstructed volume where the PV is moving forward, the step artifacts are updated by the 

subsequent PVs, whereas on the side where the PV is leaving behind, the artifacts will keep their 

values until the next iteration. SART tends to enhance edges during each update. The TPA in the 

forward direction of the reconstruction is therefore stronger than those in the other direction. If 

we access all the PVs in the reverse order, then the TPA will be more obvious on the other side. 

 
(a) 

 
(b) 

 
(c) 

Figure 5.12. One slice ( 𝑧 = −45.5mm ) of the forward-order, reverse-order and merged 

reconstruction slices for RCC view with one SART iteration (a) The forward-order 

reconstruction; (b) The reverse-order reconstruction; (c) The merged reconstruction by taking the 

upper part of the forward-order reconstruction and the lower part of the reverse-order 

reconstruction. 

We take advantage of this property of SART to generate a pre-reconstructed volume for PV 

extrapolation. In SART, all PVs are accessed in successive order. We refer to the reconstructed 
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volume with the PV access order from the negative projection angles to positive projection 

angles as the forward-order reconstruction. The reconstructed volume with the reversed PV 

access order is referred to as the reverse-order reconstruction. Figure 5.12 (a) and (b) show a 

forward-order and a reverse-order reconstruction slice at the same depth after one SART 

iteration for the RCC view. This is the same RCC view as the RCC view used in Figure 5.5 to 

Figure 5.11. The TPA is hardly noticeable on the top part of the forward-order reconstruction 

and the bottom part of the reverse-order reconstruction. As a result, we can simply take the upper 

half of the forward-order reconstruction and the lower half of the reverse-order reconstruction 

slice by slice to create a merged volume, as shown in Figure 5.12(c). Some minor ripples can still 

be seen in Figure 5.12(c). But such a reconstructed image is good enough as a pre-reconstruction 

for PV extrapolation. 

 
(a) 

 
(b) 

  
(c) 

Figure 5.13. One slice (z = -54.5mm) of the forward-order, reverse-order and merged 

reconstruction slices for RMLO view with one SART iteration (a) The forward-order 

reconstruction; (b) The reverse-order reconstruction; (c) The merged reconstruction by taking the 

upper part of the forward-order reconstruction and the lower part of the reverse-order 

reconstruction.
 

Figure 5.13 shows the pre-reconstructed volume for the RMLO view (the same as the MLO 

view used in Figure 5.5 to Figure 5.11). Similar to the RCC view, after merging the forward and 

backward reconstructions, we can obtain a reconstructed volume with very minor artifacts. 
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Different from the RCC view, a transition line as marked in Figure 5.13(c) can be observed for at 

y = 0 (green arrow in Figure 5.13(c)). This transition line is commonly observed for the merged 

reconstruction of many cases but it will not be projected into the extrapolated regions of the PVs 

as shown in the next section. It therefore does not cause any problems when we use the pre-

reconstruction to extrapolate the truncated PVs. 

 

V.3.2.2  Extrapolating the PVs with the pre-reconstructed volume 

 
(a) 

 
(b) 

 
(c) 

Figure 5.14. The procedure of generating extrapolated PVs from the pre-reconstructed volume. 

The detector region and extended region are marked on the image in (a). These marks also apply 

to the images in (b) and (c). (a) Projection of the pre-reconstructed volume; (b) The PV after 

replacing the detector region with the measured PV; (c) The final extrapolated PV after scaling 

the values in the extended regions. 
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After obtaining the pre-reconstructed DBT volume, we use it to extend the PVs. The 

procedure is shown in Figure 5.14. We first generate the forward projections of the pre-

reconstructed volume for the entire extended detector, as shown in Figure 5.14(a). When 

generating the projections, the projection compensation multiplier in Section II.5 is used. As 

shown in Figure 5.14(a), the projection of the pre-reconstructed volume is very blurry, because 

of the low in-depth spatial resolution of DBT reconstruction in nature. This is in fact exactly 

what we need because we do not want the extrapolated PVs to contribute texture to the 

reconstructed volume. After computing the forward projection, we replace the detector region 

with the measured PV. The result is shown in Figure 5.14(b). The intensities of the two regions 

often do not match during this step, resulting in an obvious transition line. This transition line 

can cause step artifacts during the reconstruction and thus needs to be removed. We accomplish 

this by scaling the extrapolated region with a constant, as described below. The result is shown in 

Figure 5.14(c). 

 

Figure 5.15. Scaling of the extrapolated PV with the information of breast boundary.
 

The scaling of the extrapolated region uses the same boundary bands as shown in Figure 5.9. 

Besides the boundary band, we need another band inside the extended region. Figure 5.15 shows 

the enlarged lower part of Figure 5.14(b). The yellow band in the extended region has the same 

width as the boundary band and the same length as the boundary band at the bottom of the breast 

mask. To reduce the discontinuity at the transition in Figure 5.14(b), we scale the extrapolated 

region such that the pink band and the yellow band have the same mean value. If the pink part of 
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the boundary band does not exist (i.e., the PV is not cut), we scale the extrapolated region such 

that the green and the blue bands have the same mean value. As shown in Figure 5.14(c). The 

transition line in Figure 5.14(b) is hardly visible after the scaling. 

 
(a) 

 
(b) 

 
(c) 

Figure 5.16. Final PV extrapolation results with pre-reconstruction for (a) RCC view, projection 

angle = -30
o
. (b) RMLO view, projection angle = -30

o
; (c) RMLO view, projection angle = 15

o
. 

The order of the three images is the same as that in Figure 5.11.
 

To compare with the contour-extension-diffusion PV extrapolation method, Figure 5.16 

shows the extrapolated PVs for the RMLO view. The three images in Figure 5.16 are compared 

with the three images in Figure 5.11. The most obvious difference is that Figure 5.16(c) is 

shorter on the bottom side, leaving a large blank region. As discussed in Section V.2.1, we can 

either extrapolate every PV up to the limits on both sides, or we can extrapolate every PV up to 

the required region of the corresponding projection angle. The contour-extension-diffusion PV 
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extrapolation method takes the first approach and the pre-reconstruction-based PV extrapolation 

method takes the second one. Comparing Figure 5.1 and Figure 2.2, the region we need to 

extrapolate the PVs is exactly the same as the region that we will get non-zero projection values 

in the forward projection. As a result, the region with positive projection values in Figure 5.16 (c) 

is exactly how much we need to extrapolate the PVs to force the TPA out of the VOI. The extra 

extrapolated region at the bottom of Figure 5.11(c) is not used in the reconstruction. For the same 

reason, most part of the extrapolated region with artificial-looking vertical boundary at the 

bottom of Figure 5.11(c) will not create artifact during the reconstruction. 

Another major difference between Figure 5.11 and Figure 5.16 is that Figure 5.11 has much 

sharper boundaries in the extrapolated region. This is in fact an undesired feature since we do not 

want the extrapolated region of the PVs to have strong structure. We consider this to be a 

disadvantage of the diffusion-based method and will discuss this in Section V.4.2. 

 

V.3.3 TPA removal by regularization 

We also tried to use regularization to control TPA for DBT. Instead of extrapolating the PVs, 

this method aims to control TPA by compensating for the imaged volume in each update of the 

image, similar to the second category of TPA removal algorithms introduced in Section V.1.1. 

The idea of this method is similar to the work by Kunze et al. [113]. 

For DBT reconstruction, it is most important to have high reconstructed image quality. We 

cannot sacrifice image quality to control TPA. Any regularization method used to control TPA 

must be an appropriate method for DBT reconstruction. We have already introduced the SQS-

DBCN algorithm in Chapter IV, a method that can enhance MCs and preserve texture in DBT 

reconstruction. In this study, we investigated the same algorithm for its effectiveness for 

controlling TPA. 

When the SQS-DBCN algorithm is applied to DBT reconstruction, we usually perform 10 

iterations with ordered subsets. However, it is possible that the required number of iterations for 

controlling TPA is more than that for practical DBT reconstruction. To alleviate this problem, 

one approach is to initialize the volume in a way that correctly reflects the general trend of the 

true volume. With a good initial condition, TPA will be weaker at the beginning, reducing the 

required number of iterations to control it. On the other hand, a good initial condition does not 

reduce the required number of iterations to achieve good image quality since the initial volume 
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may not contain enough details. The pre-reconstruction approach introduced in Section V.3.2.1 

serves this purpose well. As a result, we will use the SQS-DBCN algorithm with its optimized 

parameters and the pre-reconstructed volume as the initial condition to study how TPA can be 

controlled. 

 

V.4 Result and Discussion 

V.4.1 Image reconstruction with three TPA removal methods 

We first make a general comparison among the three TPA removal methods. Figure 5.17 and 

Figure 5.18 show the reconstructed images without TPA removal, with the three TPA removal 

methods we proposed and with Lu’s TPA removal method as a reference point. The images 

reconstructed with SART (with or without TPA removal) used all 21 PVs with two iterations 

(Equation 2.11 in Section II.2). The SQS-DBCN reconstruction used 𝛿 = 0.002/𝑚𝑚, 𝛽 = 70 

with 10 iterations, which have been demonstrated as the optimal parameters in Section IV.4.1. 

The SART reconstructions start with the same uniform initial condition. 𝐟(0) = 0.05/𝑚𝑚. The 

SQS-DBCN method used the pre-reconstructed volume as the initial condition. For the RCC 

view reconstruction (Figure 5.17), the thickness of the volume is 74mm. The slice shown is at z 

= -37.5mm, which is 36.5mm from the top plane of the imaged volume. For the RMLO view 

reconstruction (Figure 5.18), the imaged volume has a thickness of 83mm. The shown slice is at 

z = -41.5mm, 41.5mm from the top of the imaged volume. For diagnosis, the RCC and the 

RMLO views are usually flipped vertically after the reconstruction because of the clinical 

convention of reading mammograms from lateral to medial and from head to toe, respectively. 

For the current discussion, we do not flip them to be consistent with the previous images shown 

in this chapter (Figure 5.5 – Figure 5.16). 
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Figure 5.17. One slice at about the center of the imaged volume for the RCC view reconstructed 

with (a) SART at two iterations without TPA removal; (b) SART with TPA removal by contour-

extension-diffusion PV extrapolation; (c) SART with TPA removal by pre-reconstruction-based 

PV extrapolation; (d) the SQS-DBCN method at 10 iterations. (e) SART with Lu’s TPA removal 

method. All five images are displayed with the same gray scale and the same window level and 

width settings.
 

(a) (b)

) 

(c)

) 

(d) (e) 
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Figure 5.18. One slice at about the center of the imaged volume for the RMLO view 

reconstructed with (a) SART at two iterations without TPA removal; (b) SART with TPA 

removal by contour-extension-diffusion PV extrapolation; (c) SART with TPA removal by pre-

reconstruction-based PV extrapolation; (d) the SQS-DBCN method at 10 iterations. (e) SART 

with Lu’s TPA removal method. All five images are displayed with the same gray scale and the 

same window level and width settings. 

(a) (b)

) 

(c)

) 

(d)

) 

(e) 
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For both the RCC and the RMLO view, without a TPA removal algorithm the reconstructed 

slices appear to have strong TPA, especially at the bottom. If more iterations are performed, the 

TPA at both the top and bottom will become more obvious. The level of TPA at the top will be 

more similar to that at the bottom with more iterations. The same observation has been reported 

by Lu et al. [67], where the same SART reconstruction was used. On the other hand, if either PV 

extrapolation-based TPA removal method is used, TPA will be mostly removed and is hardly 

visible in Figure 5.17(b)(c) and Figure 5.18(b)(c). Upon close inspection, Figure 5.17(b) and (c) 

have weak ripples at the top, but these ripples are much weaker than the sharp steps in Figure 

5.17(a). Even if three more SART iterations are done, these ripples will not amplify to become as 

obvious as the TPA in Figure 5.17(a). Figure 5.17(e) and Figure 5.18(e) shows that as an 

established and reliable TPA removal algorithm for SART, Lu’s method provides superior TPA 

removal results. For the RCC view, Lu’s method does not generate ripples at the top of the slice 

as the PV extrapolation methods. For the RMLO view, Lu’s method provides the most natural 

transition at the bottom of the slice near the breast boundary. Generally speaking, the TPA 

removal results by our new PV extrapolation methods are comparable with Lu’s method but need 

further improvement to achieve the same image quality. 

The SQS-DBCN method, on the other hand, does not control TPA effectively. We can 

observe very strong TPA in Figure 5.17(d) and Figure 5.18(d), although the transition lines have 

been blurred. The TPA is in fact stronger than that in Figure 5.17(a) and Figure 5.18(a), since 

many more iterations are done with the SQS-DBCN method.  

It is difficult to develop a quantitative figure of merit for TPA. As a result, we applied the 

two PV extrapolation-based TPA removal methods to 67 human-subject DBT volumes (34 CC 

views and 33 MLO views). For image slices that are at least 1cm (ten slices) away from top of 

the volume, TPA was eliminated or mostly reduced such that only weak ripples are left, similar 

to Figure 5.17(b) and Figure 5.17(c). For the first ten reconstructed slices, difference can be 

observed between the contour-extension-diffusion method and the pre-reconstruction-based 

method. The difference will be discussed in the Section V.4.2. We did not apply the SQS-DBCN 

method to most of the human-subject DBT cases because it did not remove TPA effectively for a 

few cases that we tested, as represented by Figure 5.17(d) and Figure 5.18(d). 
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V.4.2 Comparison between the contour-extension-diffusion and the pre-reconstruction-based 

PV extrapolation methods 

As discussed in the previous section, both the contour-extension-diffusion and the pre-

reconstruction-based methods generate high-quality extrapolated PVs to remove TPA for DBT 

reconstruction. However, there are differences between the two methods and the reconstructed 

images will not be the same. Compared with the contour-extension-diffusion method, the 

reconstructed slice with the pre-reconstruction-based method is darker at the top and the bottom. 

This can be observed in Figure 5.17 and Figure 5.18, especially when the bottom parts of Figure 

5.18(b) and Figure 5.18(c) are compared. This is not unexpected because the extended region of 

the PV images by the pre-reconstruction-based method (shown in Figure 5.16(a) and Figure 

5.16(b)) is darker than that by the contour-extension-diffusion method (shown in Figure 5.11(a) 

and Figure 5.11(b)). This difference will not affect the diagnosis for breast cancer because the 

extrapolated part of the PVs is very blurry without any fine structures. For the top and bottom 

parts of the reconstructed slices, the trend of the extrapolated areas of the PVs, either being a 

little darker or brighter, may not add or remove any features that are clinically meaningful.  

Similar to most studies on PV extrapolation for CT, our PV extrapolation methods try to 

recover lost information and are highly empirical. They can extrapolate PVs reasonably but not 

accurately. In fact, different PV extrapolation methods in CT also generate very different trends 

in the image volume affected by the extrapolated data. In addition, the voxel values of DBT are 

not accurate attenuation coefficients in principle, so that the general darker or brighter trend in an 

area is less likely to be interpreted as lower or higher attenuation of the tissue. As a result, based 

on the results shown in Figure 5.17 and Figure 5.18, we consider both methods to be comparable 

since they both serve our purpose to remove the sharp truncation artifacts. 

On the other hand, for the first few slices near the top of the reconstructed volume, the 

contour-extension-diffusion method shows a major disadvantage. An example of a reconstructed 

slice at a depth of 4.5mm from the top of the imaged volume is shown in Figure 5.19. Comparing 

Figure 5.19(a) to Figure 5.19(c), the pre-reconstruction-based method removed TPA without 

changing the shape of the reconstructed volume. The contour-extension-diffusion method, 

however, shrinks the reconstructed breast while removing TPA. Close-up views of the region 

marked by the green box on the three images are shown in Figure 5.20. It can be seen that a 

section of the blood vessel is cut with the contour-extension-diffusion method. The same section 
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of blood vessel is well reserved with the pre-reconstruction-based method. Such a difference can 

potentially change the diagnosis results if the patient has abnormal tissue in this area. 

 
(a) 

 
(b) 

 
(c) 

Figure 5.19. The slice at z = -69.5mm (4.5mm from the top of the imaged volume) for the RCC 

view reconstructed with (a) SART without TPA removal; (b) SART with TPA removal by the 

contour-extension-diffusion PV extrapolation method; (c) SART with TPA removal based on the 

pre-reconstruction-based PV extrapolation method. All three images are displayed with the same 

gray scale and the same window level and width settings. 

 
(a) 

 
(b) 

 
(c) 

Figure 5.20. Close-up views of the region marked by the green box on the images in Figure 5.19 

for (a) SART without TPA removal; (b) SART with TPA removal by the contour-extension-

diffusion PV extrapolation method; (c) SART with TPA removal by the pre-reconstruction-based 

PV extrapolation method. All three images are displayed with the same gray scale and the same 

window level and width settings. 
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The problem with the contour-extension-diffusion method is caused by the underestimation 

of the shifted distance required to recover the truncated region between the consecutive PVs. As 

can be seen in Figure 5.20(a) and Figure 5.20(c), the consecutive PVs are not smoothly 

connected due to the large and discrete angular increments used in the DBT scan.  Because of the 

somewhat round but unknown shape of the breast boundary in the depth direction, we cannot 

calculate accurately the shift distance required to extend the next projection. The criterion of 

smooth connection that we use to determine the shift distance inevitably leads to underestimation. 

The accumulation of the underestimated extension in the PVs causes a contraction of the 

reconstructed volume in the regions where TPA is being removed by using the under-extended 

PVs.  

There are several possible approaches improve the contour-extension-diffusion method. First, 

we can develop better methods to estimate the required shift distance. This can potentially be 

done by using the estimated shape of the 3D breast surface [126]. Second, while keeping the 

current breast contour extension algorithm, we can apply an additional step to stretch the 

extended breast contours vertically. Third, we can keep the breast contour extension algorithm 

but use the extended breast masks in a less definite way. After the diffusion step, instead of 

eliminating the diffused values outside the extended breast contours, we can use the extended 

contours to create a slowly changing trend from the inside of the extended contours to the outside. 

We are investigating the effectiveness of these approaches. For most part of DBT reconstruction, 

the contour-extension-diffusion method still improves the reconstruction quality significantly by 

removing TPA. 

 

V.4.3 Discussion regarding the convergence theory of the PV-extrapolation based TPA removal 

algorithms. 

With the PV-extrapolation methods developed in this chapter, we can treat the extrapolated 

PVs as if they were originally measured by the detector and achieve monotonic decrease of a 

cost function with a data-fit term based on the extrapolated PVs. However, when we use the 

extrapolated PVs in image reconstruction, the importance of the convergence of the cost function 

is uncertain due to the lack of statistical model for the estimated data in the extrapolated regions, 

as shown in the derivation below. 
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Let 𝐲real and 𝐲ext denote the measured data and estimated data of the extrapolated PVs. Let 

𝐀real denote the system matrix for the FOV of the detector and 𝐀ext denote the system matrix for 

the extrapolated regions. If we treat the entire extrapolated PVs as measured PVs and consider a 

penalized weighted least-squares optimization problem, the cost function 𝛹(𝐟) can be written as 

 𝛹(𝐟) = ‖𝐀real𝐟 − 𝐲real‖𝐃real

2 + ‖𝐀ext𝐟 − 𝐲ext‖𝐃ext

2 + 𝑅(𝐟) (5.13) 

where 𝑅(𝐟) is the regularization term.  

Minimizing ‖𝐀real𝐟 − 𝐲real‖𝐃real

2  is equivalent to maximizing the probability of the 

realization of the random noise following a multivariate Gaussian distribution. The form of 𝐃real 

can be decided by the statistical model of the noise. The elements of 𝐃real can be estimated from 

the measured data. The statistical meaning of minimizing ‖𝐀real𝐟 − 𝐲real‖𝐃real

2  is clear in 

statistical image reconstruction. However, the meaning of the second data-fit term ‖𝐀ext𝐟 −

𝐲ext‖𝐃ext

2  in Equation 5.13 is doubtful. The noise model of 𝐲ext depends on the PV extrapolation 

method and this model might not even exist. In fact, 𝐲ext can appear to be nearly noiseless such 

as in our contour-extension-diffusion PV extrapolation algorithm, where the extrapolated regions 

of the PVs are slowly changing without local fluctuations. The form and the elements of 𝐃ext are 

also unclear for the same reason. As a result, the importance of the convergence of 𝛹(𝐟) in 

Equation 5.13 is doubtful. It remains an open question to decide a proper form of data-fit term 

for the extrapolated data when we use extrapolated PVs in statistical DBT reconstruction. 

 

V.4.4 Discussion regarding the regularization-based TPA removal 

The regularization-based TPA removal investigated here provided poor results, as shown in 

Section V.4.1. This section briefly discusses the reason and possible ways to improve the 

regularization-based TPA removal. 

One observation in Figure 5.17 and Figure 5.18 is that the regularization method actually 

enhances rather than reduces the TPA. One of the reasons is that ten iterations are used in the 

SQS-DBCN method instead of two iterations as used in the SART method. Figure 5.21 compares 

SART without TPA removal and the SQS-DBCN method with two or ten iterations. It can be 

observed that with two SQS-DBCN iterations (Figure 5.21(b)), the TPA is comparable to that in 

Figure 5.21(a). The TPA becomes much more obvious using the SQS-DBCN method with ten 

iterations (Figure 5.21(c)).  
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(a) 

 
(b) 

 
(c) 

Figure 5.21. One slice at about the center of the imaged volume for the RMLO view 

reconstructed with (a) SART without TPA removal and with 2 iterations; (b) the SQS-DBCN 

method with 2 iterations; (c) the SQS-DBCN method with 10 iterations. All three images are 

displayed with the same gray scale and the same window level and width settings. 

One possible reason for the SQS-DBCN method not to work well for removing TPA is the 

inaccuracy of the projection data. As described in Section V.3.3, we used the SART pre-

reconstruction result to initialize the SQS-DBCN reconstruction. Ideally with a good initial 

condition, TPA will not be obvious if all PV images after log-transform are accurate. In this 

situation, the discontinuities created by the back-projection step of the reconstruction algorithm 

are minimal. In practice, we used a constant to perform log-transform on all PVs (Equation 4.4), 

which did not consider the non-uniformity of the x-ray radiation due to the heel effect of the 

anode or different incident angles of different rays. This neglected effect is especially strong near 

the detector boundary. As a result, the PVs after log transform used in reconstruction actually do 

not match each other on the general trend of the reconstructed volume. Although a good initial 

condition obtained from the pre-reconstruction is used, the back-projection step of the SQS-

DBCN algorithm still creates discontinuities at the boundaries of the cone connecting the FOV of 

the detector to the current location of the source. The regularization of the SQS-DBCN method is 

not strong enough to smooth the discontinuities before they are strengthened again in the next 

iterations. 
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Another possible reason for the SQS-DBCN method not to work is the lack of convergence 

theory of our implementation. Our SQS-DBCN method uses ordered subsets, therefore the 

convergence of the cost function is not guaranteed. It is unclear whether a convergent regularized 

algorithm could eliminate or reduce TPA without PV extrapolation. Further investigations are 

required to confirm the reason of the poor performance of the SQS-DBCN method in TPA 

removal. 

There are several approaches that could potentially improve the effectiveness of the SQS-

DBCN method in controlling TPA. First, we can alleviate the inaccuracy of the log-transformed 

PVs by collecting the x-ray PVs at each projection angle without any imaged object between the 

plates. This way we can use these air scans in the log-transform to improve the accuracy of the 

PVs used in reconstruction. Since the air scans might not match the breast scans perfectly, 

mismatch among PVs might still exist but such weak artifacts can be controlled by the SQS-

DBCN method. Second, we can use different regularization parameter 𝛽 for different regions. By 

increasing the value of 𝛽  in narrow bands where TPA will appear, TPA could be more 

effectively controlled. The problem this approach brings is the loss of contrast of breast tissue in 

the same area. Other solutions include developing better regularization methods that can control 

TPA while still generating high-quality reconstructed breast images in which subtle target signals 

such as MCs and masses are enhanced without distortion. The latter requirements make these 

“potential” solutions much more challenging in practice. 

 

V.5 Conclusion 

This chapter introduced our study on TPA removal for DBT reconstruction. A breast 

boundary detection algorithm is introduced. Then we introduced three TPA removal algorithms. 

Based on the analysis of the results, the contour-extension-diffusion algorithm, as it is currently 

implemented, removes the artifacts effectively while causing contraction in the reconstructed 

volume on the slices affected by TPA. The pre-reconstruction-based algorithm, however, 

effectively removes TPA without such problems. The investigated regularization-based 

algorithm was not effective due to several reasons. Further improvement in the contour-

extension-diffusion and the regularization-based TPA removal algorithms is needed to make 

these methods practical. 
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CHAPTER VI.  

Effect of Source Blur on DBT Reconstruction 

 

VI.1 Introduction 

In our SART or SQS-DBCN reconstructions in previous chapters, we assumed the x-ray 

source to be an ideal point source. In an actual mammography/DBT system, the focal spot of the 

x-ray tube has a finite size of around 0.3mm [44, 127, 128] that our previous reconstruction 

algorithms neglected. Until now, the U.S. Drug & Food Administration (FDA) has approved four 

breast imaging systems that can perform the tomosynthesis procedure. These systems are 

SenoClaire (or the new model Pristina) by GE Healthcare, Selenia Dimensions by Hologic, 

Mammomat Inspiration by Siemens and Aspire Cristalle by Fujifilm. The GE Pristina system 

operates in the step-and-shoot mode where the x-ray tube essentially stops at each angular 

location and exposes the projection image. The other three systems operate in a continuous-

motion mode where the x-rays are generated within a short pulse at each angle while the gantry 

is continuously moving during the DBT procedure. While the continuous-motion mode can 

potentially reduce the total scan time and the motion of the breast, it introduces extra source blur 

along the direction of the motion of the source. This effect has been found to be an image-quality 

degrading factor in several studies [129-132]. The GE DBT system’s step-and-shoot mode 

alleviates this problem. However, the time that the x-ray tube can be stationary is always limited. 

If the x-ray exposure time is longer than the time that the x-ray tube is stationary, it can still 

result in extra source blur although the amount of motion blur will be much less than the 

continuous-motion DBT systems [27, 131]. This chapter investigates the influence of the effect 

of source blur on DBT reconstruction. 

Several studies can be found regarding the source blur (or more commonly called geometric 

unsharpness in x-ray imaging physics) in CT reconstruction. For fan-beam CT, Hofmann et al. 

studied the effect of modeling the source’s ray profile [66, 133]. They used a simulated phantom 
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to estimate the critical size for the focal spot that affects the image reconstruction quality and 

concluded that for common fan-beam CT systems, the size of the focal spot can be neglected in 

image reconstruction. Tilley et al. studied the effect of modeling the source blur and detector blur 

for the flat-panel cone-beam CT (FP-CBCT) [94, 134]. Since the pixel size of the flat-panel 

detector is very small (~0.1mm), Tilley et al. demonstrated that modeling the source blur can 

significantly improve the reconstructed image quality. The reconstruction method proposed in 

their study considered the source blur to be shift-invariant, which greatly simplified the 

implementation of the effect in the system model. The DBT system also uses cone-beam x-ray 

and a flat-panel detector. But the geometry of DBT is very different from that of FP-CBCT. In 

DBT, since the imaged volume is close to the detector and the imaged object is much thinner 

than those in body CT, the magnification factor and its variation over the depth of the imaged 

volume are smaller than those in CBCT. We will analyze the source blur and its shift variance in 

Section VI.3.1 – VI.3.3. Since calculating the projection images with an accurate point spread 

function (PSF) of source blur is very complex in DBT, we use simulation with oversampled 

source to study the effect of the finite-sized focal spot on DBT reconstruction. 

In this chapter, we first define parameters that describe the geometry of the finite-sized x-ray 

source. We choose our simulation parameters based on the range estimated from the three 

commercial DBT systems that use the continuous-motion data acquisition mode. Then we 

analytically calculate the source blur at different spatial locations over the detector FOV. Next, 

we introduce our work on using CatSim to simulate the effect of the finite-sized focal spot. Two 

phantoms with line pairs and BBs are configured and simulated with four sizes of the focal spot. 

We will discuss the details on the acceleration of the CatSim simulation, the configuration of the 

phantoms and the FOMs used to quantitatively compare the reconstructed images. In the Result 

section, we will show the contrast curves of different types of objects when different-sized 

sources are used to simulate the projections. These results will provide some useful information 

on constraints in designing DBT systems and under what conditions modeling the finite-sized x-

ray source may improve the reconstructed image quality. 
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VI.2 Parameters of the finite-sized focal spot in DBT 

VI.2.1 Definitions of the parameters 

 

  

Figure 6.1. Schematic of the x-ray tube 

in a mammography/DBT system. 

Figure 6.2.  The simplified model for the 

finite-sized focal spot and the definition of 

parameters. 

We review the principles of the x-ray tube. Figure 6.1 shows the structure of an x-ray tube 

used in DBT. The main components are the cathode and the anode. A high voltage is applied 

between the cathode and the anode such that the thermionic electrons generated by the cathode 

are accelerated to be high-energy electrons. When the high-energy electron beam hits the anode, 

x-ray photons are emitted from the surface of the anode. Therefore in the 3D space, the shape of 

the finite-sized focal spot is actually the same as the piece of surface of the anode that is hit by 

the electron beam. As shown in Figure 6.1, the anode is a disk rotating at high speed. At any 

instant of time, the electron beam hits a spot at the disk as if it is static. The rotation spreads the 

heat generated by the electronic bombardment over a circular track so that the anode can produce 

x-rays with a higher current and longer time without overheating. The effective focal spot is of 

the size of the projected beam, which is reduced by a factor that depends on the point of view 
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from the spatial location on the detector plane to the focal spot at the anode. This is known as the 

line focus principle in x-ray imaging. 

As shown in Figure 6.1, in a typical mammography or DBT system, the anode-cathode axis 

is perpendicular to the chest wall edge of the detector with the cathode on the chest wall side. 

The electron beam is accelerated from the cathode to hit the anode. Then the x-ray beam is 

emitted towards the detector. Although the x-ray tube uses a rotating anode, the part of the anode 

hit by the electron beam is relatively small. The shape and the radiation strength distribution of 

the focal spot are unknown and can be very complicated. 

To simplify the problem, we model the x-ray source as a rectangle with uniform x-ray 

emission, shown as the blue rectangle in Figure 6.2. The center of the finite-sized x-ray source is 

at the original location of the ideal point source. The rectangle of the focal spot is described with 

three parameters: its sizes along two directions ℎ1 and ℎ2 and the target angle 𝜙. The target angle 

𝜙 is defined as the angle between the rectangle plane and the direction from the rotation center 

(origin of the Cartesian coordinate system, marked as O in Figure 6.2) to the source. The target 

angle 𝜙 is usually smaller than 45°. Figure 6.2 shows the situation that the projection angle 𝜃 is 

0. Considering the geometry of the DBT system, if the projection angle 𝜃 is not 0, the blue 

rectangle will tilt by the same angle 𝜃 such that the ℎ2 edge of the rectangle is parallel to the 

direction that the x-ray source is moving. 

The rest of this chapter uses this simplified model for the finite-sized x-ray source for both 

the analytical calculation of the PSF and the CatSim simulation. The definition of ℎ1, ℎ2 and 𝜙 

will remain the same as defined in this section. 

 

VI.2.2 Estimation of the ℎ2 for DBT systems with continuous-motion data acquisition 

For DBT systems with continuous-motion x-ray source, the motion of the source during data 

acquisition results in additional blurring of the finite-sized focal spot. The additional blurring 

increases the effective ℎ2 . In this section, we will estimate the effective ℎ2  using the source 

travel distance estimated from the typical exposure techniques of a thick breast for the three 

commercial DBT systems that use the continuous-motion mode. For DBT systems with a 

continuous-motion x-ray source and a detector moving in the opposite direction along a 

concentric arc with the same angle, the focal spot motion will be reduced relative to the detector. 

This geometry slightly reduces the additional blurring from the motion of the source but does not 
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eliminate it since the imaged volume is still moving relative to both the x-ray source and the 

detector. We will compare the source blur of DBT systems with moving detector and stationary 

detector in Section VI.5.4. 

For each of these systems, the nominal size of the focal spot can be found in their technical 

documents (references will be shown in Table 6.1 – 6.3). The nominal focal spot size, denoted as 

ℎnominal, refers to the effective size of the focal spot of the central ray (i.e., the ray perpendicular 

to the detector plane when the scan angle is 0). If the source is stationary during the data 

acquisition, ℎ2 should be equal to ℎnominal. ℎ1 can be calculated given ℎnominal and the target 

angle 𝜙. If we consider the motion of the source, ℎ1 should remain the same. The source blur 

along the direction of the motion is given by the convolution of two rectangle functions, one with 

the width of ℎnominal and the other with the width of the distance that the source moves, denoted 

as ℎmotion . The result of the convolution is trapezoidal and occasionally triangular (when 

ℎmotion = ℎnominal). For the worst-case scenario, we consider the width of the non-zero part of 

the convolution result to be the effective ℎ2: 

 ℎ2 = ℎmotion + ℎnominal. (6.1) 

Assuming the speed of the source is a constant for continuous-motion DBT systems, ℎmotion 

can be estimated given the distance from the source to the rotation center, the total acquisition 

angle and the total exposure time. We obtained the typical total current-time product (mAs) of 

the three commercial systems for different breast thicknesses from their technical documents 

(references can be found in Tables 6.1 – 6.3). The exposure time of one PV can be estimated 

from the total current-time product, the current and the total number of projections. The distance 

that the source travels during the exposure of one PV is then calculated by multiplying the speed 

of the source and the exposure time of one PV. Tables 6.1 – 6.3 show the results for the three 

commercial DBT systems together with other technical details and the references. 

Tables 6.1 – 6.3 show that, for most breast thicknesses, the motion of the x-ray source 

contributes significantly to the effective ℎ2. Although the nominal size of the focal spot is 0.3mm, 

for thick breasts the effective ℎ2  can be as large as 1.6mm according to our estimation. For 

thicker breasts, a high total current-time product is required such that enough penetrated x-rays 

can be measured by the detector to avoid the projection images from being too noisy. Since the 

maximum current or output power of the x-ray tube is limited, a longer single-PV exposure time 

for each PV is required, resulting in a larger ℎmotion. 
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The effective ℎ2 listed in Tables 6.1 – 6.3 is estimated from the quality control documents or 

FDA’s documents on the summary of safety and effectiveness data (SSED) that we can find 

online. The kilovoltage, total current-time product, current and other parameters might differ in 

clinical DBT procedures. Therefore the effective ℎ2 listed in Table 6.1 – 6.3 are only estimates. 

Despite this, Tables 6.1 – 6.3 still provides a range for ℎ2 as a reference. Later in this chapter we 

will use CatSim simulation to study the effect of source blur on DBT reconstruction. Based on 

Tables 6.1-6.3 and considering the uncertainties, we studied ℎ2 from 0.3 mm to 2 mm in our 

simulation to cover the range of possible effective source blur that is estimated from the 

exposure techniques used in DBT. 

Table 6.1. Estimation of the Source Blur ℎ2 for Hologic Selenia Dimensions system. We used 

the maximum current of the x-ray tube in [127] as the current for each thickness of the breast, 

ignoring the possible dependence of the current on kV settings. The Hologic system bins 2 × 2 

pixels during the image reconstruction. Therefore, the pixel size is 0.14mm for this system. The 

detector is rotated with the x-ray source during exposure so that the effective source blur may be 

less than the estimated value here assuming a stationary detector. Section VI.5.4 discusses the 

effect of the moving detector. 

Pixel size 
0.07mm (full resolution) 

0.14mm (2 × 2 binning) 

Number of projections 15 

Distance from source to the rotation center (mm) 700 

Acquisition angle (degree) 15 

Total acquisition time (s) 3.7 

Total motion of the source (mm) 183 

Speed of the source (mm/s) 49.5 

Nominal focal spot size (mm) 0.3 

References [26, 44, 127] 

Thickness 

of Breast 

(mm) 

Kilovolta

ge (kV) 

Total 

Current-Time 

Product 

(mAs) 

Current 

(mA) 

Total 

Exposure 

Time (s) 

Exposure 

Time of 

One PV (s) 

Motion of 

Source of 

One PV 

(mm) 

Source 

Blur ℎ2 

(mm) 

20 26 32 200 0.160 0.011 0.5 0.8 

40 29 43 200 0.215 0.014 0.7 1.0 

60 33 60 200 0.300 0.020 1.0 1.3 

80 38 81 200 0.405 0.027 1.3 1.6 
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Table 6.2. Estimation of Source Blur ℎ2 for Siemens Mammomat Inspiration system. The current 

cannot be found in the technical documents and is therefore estimated with the voltage and the 

fixed power output of the x-ray tube, which is 5 kW according to [128]. 

Pixel size 0.085mm 

Number of projections 25 

Distance from source to the rotation center (mm) 608 

Acquisition angle (degree) 50 

Total acquisition time (s) 25 

Total motion of the source (mm) 530.6 

Speed of the source (mm/s) 21.2 

Nominal focal spot size (mm) 0.3 

References [44, 128] 

Thickness 

of Breast 

(mm) 

Kilovolta

ge (kV) 

Total Current-

Time Product 

(mAs) 

Current 

(mA) 

Total 

Exposure 

Time (s) 

Exposure 

Time of 

One PV (s) 

Motion of 

Source of 

One PV 

(mm) 

Source 

Blur ℎ2 

(mm) 

20 25 50 200 0.250 0.010 0.2 0.5 

30 26 70 192 0.364 0.015 0.3 0.6 

40 26 90 192 0.468 0.019 0.4 0.7 

50 27 110 185 0.594 0.024 0.5 0.8 

60 28 120 179 0.672 0.027 0.6 0.9 

70 29 130 172 0.754 0.030 0.6 0.9 

80 30 140 167 0.840 0.034 0.7 1.0 

90 30 160 167 0.960 0.038 0.8 1.1 

100 31 180 161 1.116 0.045 0.9 1.2 
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Table 6.3. Estimation of Source Blur ℎ2 for the Fujifilm Aspire Cristalle system. The current 

cannot be found in the technical documents and is therefore estimated with the kilovoltage and 

the fixed power output of the x-ray tube, which is 4.9 kW according to [135]. The breast 

thickness is converted from the PMMA phantom used in the Fujifilm quality control manual by 

interpolating curve of the equivalent breast thickness to the PMMA phantom thickness [136]. 

The digital detector uses an array of hexagonal pixels of a side width of 0.05mm. The area of a 

hexagonal pixel is the same as a square pixel of 0.08mm, therefore we estimate the equivalent 

pixel size to be 0.08mm.  

Pixel size 
0.05mm (Hexagonal), 0.08mm 

(Square) 

Number of projections 15 

Distance from source to the rotation center (mm) 650 

Acquisition angle (degree) 15 

Total acquisition time (s) 4.0 

Total motion of the source (mm) 170 

Speed of the source (mm/s) 42.5 

Nominal focal spot size (mm) 0.3 

References [124, 135-137] 

Thickness 

of Breast 

(mm) 

Kilovolt

age (kV) 

Total Current-

Time Product 

(mAs) 

Current 

(mA) 

Total 

Exposure 

Time (s) 

Exposure 

Time of 

One PV (s) 

Motion of 

Source of 

One PV 

(mm) 

Source 

Blur ℎ2 

(mm) 

21.0 26 36 188 0.191 0.013 0.5 0.8 

33.0 28 32 175 0.183 0.012 0.5 0.8 

45.0 30 40 163 0.245 0.016 0.7 1.0 

52.5 32 40 153 0.261 0.017 0.7 1.0 

60.0 33 42 148 0.283 0.019 0.8 1.1 

75.0 36 50 136 0.367 0.024 1.0 1.3 

90.0 37 63 132 0.476 0.032 1.3 1.6 

 

 

VI.3 The point spread function of the source blur in DBT 

In this section, we describe the analytical calculation to evaluate the spatial dependence of 

the source blur (i.e., geometric unsharpness) on the detector plane. We will first describe the 

concepts of the pinhole array, the magnification factor and the source blur scaling factor. Then 

we use theorems in solid geometry to calculate the projection of a rectangular source on the 

detector plane through a pinhole. The pinhole array and analytically calculated source blur will 

also be used in Section VI.4.1 to validate the CatSim simulation. 
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VI.3.1 The pinhole array and the source blur scaling factor 

We use the pinhole array to calculate the effective shape and size of the focal spot as seen on 

the detector plane. A pinhole is an ideal point object. We refer to it as a pinhole since 

traditionally pinholes are used to experimentally measure the size of the x-ray focal spot [138, 

139]. The pinholes we use in this simulation study serve the same purpose. 

As shown in Figure 6.3, the pinhole array is an array of pinholes that is parallel to the 

detector plane. When a finite-sized source is used, its projection through the pinhole represents 

the blurring for a point object at the pinhole’s location due to geometric unsharpness. Since the 

ideal projection of a point object (with and ideal point source) should be a point, the projection of 

the finite-sized source through the pinhole can be considered to be the source blur PSF for the 

location of the point object. Such a PSF depends on the depth and the spatial location on the x-y 

plane of the object. Therefore, the projection image with source blur cannot be obtained by 

convolution of a PSF with the ideal projection image of a whole volume. For simplicity, we will 

use the term ‘source blur PSF’ in the following discussion but it actually means ‘source blur PSF 

for objects at a specific spatial location’. Alternatively, the pinhole array can be considered an 

array of pinhole cameras, the projections of the focal spot through the pinhole array generates the 

images of the focal spot (i.e., the size and shape of the focal spot) as seen at different locations 

on the detector plane at a magnification determined by the distances from the pinhole array to the 

focal spot and to the detector plane. In x-ray imaging, the ratio of the distance between the focal 

spot and the detector plane to the distance between the focal spot and the object plane is called 

the magnification factor (M). If the pinhole array is placed midway between the source and 

detector (i.e., magnification factor M = 2), the pinhole image of the focal spot will represent the 

physical size of the focal spot at the anode level seen at a given spatial location on the detector 

plane if the focal spot is parallel to the image plane (magnification of focal spot = M - 1 = 1). 

Conventionally the nominal focal spot size of an x-ray imaging system is measured at the central 

ray (the ray perpendicular to the detector plane) with a pinhole camera at midway. For 

mammography systems, the central ray is almost tangential to the chest wall edge of the detector, 

so the nominal focal spot size may be specified at a few centimeters from the chest wall, 

depending on the manufacturer. At an object magnification M = 1 (i.e., the object is in contact 

with the detector plane), the projected focal spot becomes a point so that there is no geometric 

unsharpness or source blur.  
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Figure 6.3. The pinhole array used to calculate the PSF of the source blur. 

In Figure 6.3 all pinholes are drawn inside the imaged volume. However, they can be located 

at any location or any depth to obtain the distribution of PSFs in any region of the detector plane 

that we are interested in. 

To facilitate discussion, we define the ratio of the distance from the array to the detector and 

the distance from the source to the array as the source blur scaling factor, which is equal to (M - 

1). If the rectangular source shown in Figure 6.2 is parallel to the detector (𝜙 = 90°), the PSF of 

the source blur can be easily obtained by scaling the rectangle with the source blur scaling factor. 

If the source is not parallel to the detector plane, the source blur scaling factor is less meaningful 

but it still approximately reflects the size of the PSF of the source blur. When a pinhole is placed 

in the middle between the source and the detector plane to measure the size of the focal spot, the 

source blur scaling factor is 1 [138, 139]. Such a pinhole array will be used in Section VI.3.3 to 

illustrate the shift-variance of the source blur PSF. 
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VI.3.2 Algorithm to calculate the source blur PSF of the DBT system 

With the simplified source blur model described in Section VI.2.1, the projection of the 

rectangular source through a pinhole can be analytically calculated on the detector plane. We 

first introduce the following lemma: 

Lemma 1: The projection of a straight line segment 𝑙1  on a plane P through a point O is 

contained in a straight line. 

Proof: Let A denote an arbitrary point on 𝑙1. The projection of A on the plane P through O is 

contained in the plane determined by 𝑙1 and O. Let Q denote this plane. Obviously the projection 

of A on P is contained in P. Because the intersection of P and Q is a straight line and A is an 

arbitrary point on 𝑙1, the projections of all the points on 𝑙1 are contained in the same straight line. 

Because of Lemma 1, the projection of a rectangular source on a plane through a pinhole can 

be obtained by calculating the projections of only the four corners. We simply need to connect 

the projections of the four corners to get the shape of the PSF of the source blur. 

We derive the locations of the four corners of the rectangular focal spot and their projections. 

The finite-sized focal spot shown in Figure 6.2 is enlarged in Figure 6.4 to illustrate the locations 

of its corners. Let 𝑑𝑆𝑂 denote the distance from the center of the source (denoted as S) to the 

rotation center (denoted as O) and 𝑑𝑂𝑃 denote the distance from the rotation center to the origin 

of the detector (denoted as P). The center of the source (S) is located at: 

 𝑟𝑆 = (0, 𝑑𝑆𝑂 sin 𝜃 ,−𝑑𝑆𝑂 cos 𝜃). (6.2) 

The locations of the four corners (A, B, C and D in Figure 6.4) of the rectangular source are: 

 

𝑟𝐴 = 𝑟𝑆 − 𝑑1 − 𝑑2, 

𝑟𝐵 = 𝑟𝑆 + 𝑑1 − 𝑑2, 

𝑟𝐶 = 𝑟𝑆 + 𝑑1 + 𝑑2, 

𝑟𝐷 = 𝑟𝑆 − 𝑑1 + 𝑑2, 

(6.3) 

where 𝑑1 and 𝑑2  are vectors of lengths 
ℎ1

2
 and 

ℎ2

2
 along the ℎ1 and ℎ2  directions in Figure 6.2, 

shown as red arrows in Figure 6.4: 

 

𝑑1 = (
ℎ1

2
sin𝜙 , −

ℎ1

2
cos𝜙 sin 𝜃 ,

ℎ1

2
cos𝜙 cos 𝜃), 

𝑑2 = (0,
ℎ2

2
cos 𝜃 ,

ℎ2

2
sin 𝜃). 

(6.4) 
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Figure 6.4. Derivation of the vectors along the edges of the rectangular source (𝑑1 and 𝑑2). The 

blue rectangle shows the location of the digital detector. 

The expressions of 𝑑1  and 𝑑2  are derived based on solid geometry. Obviously we have: 

𝐴𝐵⃗⃗⃗⃗  ⃗ ∥ 𝐷𝐶⃗⃗⃗⃗  ⃗ and 𝐴𝐷⃗⃗ ⃗⃗  ⃗ ∥ 𝐵𝐶⃗⃗⃗⃗  ⃗. 𝑑1 are 𝑑2 are along the directions of 𝐴𝐵⃗⃗⃗⃗  ⃗ and 𝐵𝐶⃗⃗⃗⃗  ⃗. They are perpendicular 

to each other and their lengths are 
ℎ1

2
 and 

ℎ2

2
. If we can derive the direction vectors of 𝐴𝐵⃗⃗⃗⃗  ⃗ and 𝐵𝐶⃗⃗⃗⃗  ⃗, 

denoted as �⃗⃗�𝐴𝐵⃗⃗ ⃗⃗  ⃗ and �⃗⃗�𝐵𝐶⃗⃗⃗⃗  ⃗ , 𝑑1 and 𝑑2 can be obtained by multiplying these direction vectors with 

ℎ1

2
 and 

ℎ2

2
. 

We first derive �⃗⃗�𝐵𝐶⃗⃗⃗⃗  ⃗ . 𝐵𝐶⃗⃗⃗⃗  ⃗ is parallel to the y-z plane and perpendicular to 𝑂𝑆⃗⃗⃗⃗  ⃗. The direction 

vectors of the y-z plane and 𝑂𝑆⃗⃗⃗⃗  ⃗ are: 

 �⃗⃗�𝑥 = (1,0,0), (6.5) 

 �⃗⃗�𝑂𝑆⃗⃗⃗⃗  ⃗ = (0, sin 𝜃 ,− cos 𝜃). (6.6) 

Therefore �⃗⃗�𝐵𝐶⃗⃗⃗⃗  ⃗ can be obtained by calculating their cross product: 

 �⃗⃗�𝐵𝐶⃗⃗⃗⃗  ⃗ = �⃗⃗�𝑥 × �⃗⃗�𝑂𝑆⃗⃗⃗⃗  ⃗ = (0, cos 𝜃 , sin 𝜃). (6.7) 
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Next we derive �⃗⃗�𝐴𝐵⃗⃗ ⃗⃗  ⃗. �⃗⃗�𝐴𝐵⃗⃗ ⃗⃗  ⃗ is perpendicular to �⃗⃗�𝐵𝐶⃗⃗⃗⃗  ⃗ . We also know that the angle between �⃗⃗�𝐴𝐵⃗⃗ ⃗⃗  ⃗ 

and �⃗⃗�𝑆𝑂⃗⃗⃗⃗  ⃗ is 𝜙. Therefore we have the follow equations: 

 �⃗⃗�𝐴𝐵⃗⃗ ⃗⃗  ⃗ ∙ �⃗⃗�𝐵𝐶⃗⃗⃗⃗  ⃗ = 0, (6.8) 

 �⃗⃗�𝐴𝐵⃗⃗ ⃗⃗  ⃗ ∙ �⃗⃗�𝑆𝑂⃗⃗⃗⃗  ⃗ = cos𝜙, (6.9) 

 �⃗⃗�𝐴𝐵⃗⃗ ⃗⃗  ⃗ ∙ �⃗⃗�𝐴𝐵⃗⃗ ⃗⃗  ⃗ = 1, (6.10) 

where Equation 6.10 is the constraint for the length of the direction vector. �⃗⃗�𝑆𝑂⃗⃗⃗⃗  ⃗ is the opposite 

direction of �⃗⃗�𝑂𝑆⃗⃗⃗⃗  ⃗: �⃗⃗�𝑆𝑂⃗⃗⃗⃗  ⃗ = −�⃗⃗�𝑂𝑆⃗⃗⃗⃗  ⃗, where �⃗⃗�𝑂𝑆⃗⃗⃗⃗  ⃗ is known as shown in Equation 6.6. �⃗⃗�𝐵𝐶⃗⃗⃗⃗  ⃗ is shown in 

Equation 6.7. Therefore by solving Equations 6.8 – 6.10, we have: 

 �⃗⃗�𝐴𝐵⃗⃗ ⃗⃗  ⃗ = (sin𝜙 ,− cos𝜙 sin 𝜃 , cos 𝜙 cos 𝜃). (6.11) 

Multiplying �⃗⃗�𝐴𝐵⃗⃗ ⃗⃗  ⃗ and �⃗⃗�𝐵𝐶⃗⃗⃗⃗  ⃗  with 
ℎ1

2
 and 

ℎ2

2
 leads to the expressions of 𝑑1 and 𝑑2 in Equation 6.4. 

Using solid geometry, the projection �⃗� of an arbitrary location 𝑟 on the detector plane is: 

 �⃗� = 𝑟 +
(𝑟detector − 𝑟) ∙ �⃗⃗�detector

(𝑟pinhole − 𝑟) ∙ �⃗⃗�detector

(𝑟pinhole − 𝑟), (6.12) 

where the operator ∙ denotes inner product, 𝑟pinhole is the known location of the pinhole and the 

two vectors that describe the detector plane are: 

 �⃗⃗�detector = (0,0,1), (6.13) 

 𝑟detector = (0,0, 𝑑od). (6.14) 

With Equation 6.2-6.4 and 6.12-6.14, we can analytically calculate the PSF of the source blur 

given the location of the pinhole 𝑟pinhole. 

 

VI.3.3 The source blur PSF for the GE GEN2 prototype DBT system 

In this section, we calculate the source blur PSF for our GE GEN2 Prototype DBT System 

because all DBT scans used as examples in the dissertation were acquired with this system. The 

analyses in this section are applicable to other similar DBT systems with stationary detectors, 

except for the differences in the geometric parameters. For DBT systems in which the detector is 

rotated about the fulcrum in opposite direction to the x-ray source such as the Hologic DBT 

system [44], the geometry relative to the compressed breast is slightly different at projection 

angles other than 0 degrees and the degree of blurring may be reduced but the principle is still 

applicable with appropriate modifications.  
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Instead of using the detector size 192.0 × 230.4 mm2 of the prototype system, the size of the 

detector is assumed to be 240.0 × 300.0 mm2, which is closer to the detector size of commercial 

DBT systems. The detector plane is parallel to the breast support plate and the compression 

paddle. The parameters 𝑑so and 𝑑od  of the system are the same as the GE GEN2 prototype: 

𝑑so,GEN2 = 640𝑚𝑚 , 𝑑od,GEN2 = 20𝑚𝑚 . The target angle is 𝜙GEN2 = 22.5° . For the GE 

SenoClaire system, these values are: 𝑑so,SenoClaire = 620𝑚𝑚 , 𝑑od,SenoClaire = 40𝑚𝑚  and 

𝜙SenoClaire = 22.5° according to [44, 140], which is the close to the GE GEN2 prototype system. 

The nominal size of the x-ray source is 0.3mm, which is assumed to be measured at the central 

ray that is perpendicular to the chest wall edge of the detector plane at the projection angle 

𝜃 = 0°. Therefore we can derive the values for ℎ1 and ℎ2: 

 
ℎ1,GEN2 =

0.3

sin𝜙GEN2
= 0.78 mm, 

ℎ2,GEN2 = 0.3 mm. 

(6.15) 

 

Figure 6.5. The array of locations to calculate PSF of source blur on the detector. 
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We are interested in the PSF of source blur over the detector plane as shown in Figure 6.5. 

Starting from the point t = 10 mm, s = 0 mm, we set up an array of locations every 20 mm along 

both the t- and s-direction. Given the array in Figure 6.5, the depth of the pinhole array and the 

projection angle, the in-plane locations of the pinholes can be easily derived. 

To illustrate the spatial variations in the source blur PSF, we first calculate the PSFs for a 

large source with the nominal size of 6 mm. Such a large source will make the shape of the PSFs 

visible even when the entire detector is displayed. Given the projection angle 𝜃, we set the depth 

of the pinhole array to be 𝑧pinhole = −(𝑑so,GEN2 cos 𝜃 − 𝑑od,GEN2)/2 such that the source blur 

scaling factor is 1. The contours of the calculated PSFs are shown in blue in Figure 6.6. 

 
(a) 

 
(b) 

Figure 6.6. The source blur PSFs for a source of nominal size of 6mm for pinholes at depth 

𝑧pinhole = −(𝑑so,GEN2 cos 𝜃 − 𝑑od,GEN2)/2  with different projection angles: (a) 𝜃 = 0° ; (b) 

𝜃 = 30°. 

Figure 6.6(a) shows the source blur PSF at the projection angle 𝜃 = 0°. As expected, the 

distribution of the PSF is symmetrical along the s = 0 axis. The PSF closest to the central ray at t 

= 10mm, s = 0mm is approximately the shape of a square. This is reasonable considering that the 

nominal focal spot size is measured with the central beam at t = 0mm, s = 0mm. For most PSFs 
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that are not close to the rotation axis, their shape is more similar to a parallelogram. The area of 

the PSF gets smaller and smaller when t increases. If the detector is larger along the t-direction 

and this trend continues, the size of the PSF will eventually reach zero when the viewing 

direction is tangential to the anode surface. This observation can be intuitively understood 

considering the structure of the DBT system shown in Figure 6.2. If a point on the detector plane 

is too far away from the chest wall, it will not receive any radiation due to the self-absorption of 

the emitted x-rays photons by the anode material, and because the scattered radiation, off-focus 

radiation and small penetration through the anode are all neglected. Figure 6.6(b) shows the 

source blur PSF at a projection angle 𝜃 = 30° . Most PSFs are of the shape similar to a 

parallelogram. For this projection angle, the shape of the PSF is difficult to intuitively estimate. 

But it can be observed that the PSF of the source blur changes gradually throughout the detector 

plane and is highly shift-variant. 

Next we calculate PSF with the nominal focal spot size of 0.3 mm, which is a typical focal 

spot size in all four FDA-approved DBT systems. Instead of setting a source blur scaling factor 

of 1, now we set the pinhole array at a depth within the imaged volume for DBT reconstruction, 

e.g., 𝑧pinhole = −50mm (i.e., 50 mm above the breast support plane). The PSF of source blur is 

too small if we display the entire detector as Figure 6.6. Therefore we only show the enlarged 

PSF at four locations: (a) t = 10 mm, s = 0 mm, (b) t = 230 mm, s = 0 mm, (c) t = 10 mm, s = 140 

mm and (d) t = 230 mm, s = 140 mm. The PSFs for the projection angles 𝜃 = 0° and 𝜃 = 30° 

are shown in Figure 6.7 and Figure 6.8. 

As can be observed in Figure 6.7 and Figure 6.8, the shape of each of the PSFs is similar to 

that at the same location in Figure 6.6. Similar to Figure 6.6, the PSFs shown in Figure 6.7 and 

Figure 6.8 are highly shift-variant. The PSFs in Figure 6.8 are generally larger than that of Figure 

6.7, since the distance from the source to the detector is smaller for Figure 6.8, resulting in a 

larger source blur scaling factor. 
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(a) (b) (c) (d) 

Figure 6.7. The source blur PSFs for a source of nominal size of 0.3 mm for pinholes at depth 

𝑧pinhole = −50𝑚𝑚 at the projection angle 𝜃 = 0°  at four different locations: (a) t = 10 mm, s = 

0 mm; (b) t = 230 mm, s = 0 mm; (c) t = 10 mm, s = 140 mm; (d) t = 230 mm, s = 140 mm. 

    
(a) (b) (c) (d) 

Figure 6.8. The source blur PSFs for a source of nominal size of 0.3 mm for pinholes at depth 

𝑧pinhole = −50𝑚𝑚 at the projection angle 𝜃 = 30°  at four different locations: (a) t = 10 mm, s 

= 0 mm; (b) t = 230 mm, s = 0 mm; (c) t = 10 mm, s = 140 mm; (d) t = 230 mm, s = 140 mm. 

In both Figure 6.7 and Figure 6.8, we can observe that the size of the PSFs is at most about 

0.02mm along one direction. Considering that the pixel size of our detector is 0.1mm, it is 

possible that the source blur PSF does not strongly affect the projection images for DBT systems 

if the effective ℎ2 stays as 0.3 mm such as an ideal step-and-shoot system. On the other hand, for 

DBT systems designed with continuous scanning motion and pulsed x-ray exposure during the 

acquisition of the projections, the effective ℎ2 can be as large as 1.6mm, as shown in Table 6.1 

and Table 6.3. The x-ray pulse width depends on the tube current-time product required for the 

projection, which in turn depends on a number of factors, such as the beam quality (target/filter 

and kilovoltage), the output current of the x-ray system at the given target and kilovoltage, the 

detective quantum efficiency (DQE) of the detector, the breast thickness and density, and the 
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preferred glandular dose. Given the large number of variables, we will not be able to simulate 

specific systems and imaging techniques. We will use our prototype DBT system geometry as an 

example. A range of effective focal spot sizes (0.3 mm to 2 mm) that is estimated from possible 

exposure techniques used in DBT (Section VI.2.2) will be used to simulate projections of objects 

at different spatial locations for a wide range of projection angles. The reconstruction results 

from these projection images will demonstrate our approach and provide useful information for 

estimating the tolerance limits of the effective focal spot size (or source motion) for the design of 

DBT systems and the potential need of correcting source blur in DBT reconstruction under 

certain imaging conditions. In the next section, we will use CatSim simulation [65, 66] to study 

the influence of the source blur PSF on DBT reconstruction. 

 

VI.4 Simulating the effect of source blur with CatSim: materials and methods 

VI.4.1 Configuration and validation of CatSim simulation 

The CatSim simulation is configured similarly as our study on the SG projector. The x-ray 

source is an Rh target/Rh filter x-ray tube and the kilovoltage is set to 29 kV. We simulated a 

complete set of 21 projections every 3° from −30° to 30°. The detector pixel pitch is 0.1 × 0.1 

mm
2
, and has a size of 2400 × 3000 pixels, which is close to the FOV size of clinical DBT 

systems. We used an oversampling rate of 10 for the detector. The oversampling rate for the 

source is set to 6 due to the limited available memory. According to the study by Carvalho [141], 

an oversampling rate of 5 for the source is enough to generate accurate projection values for the 

focal spot without additional contribution of the x-ray source motion. As a result, an 

oversampling rate of 6 is enough for Source 1. For Source 2 and Source 3, a higher oversampling 

rate along the ℎ2  direction might improve the accuracy of the simulation. To use a higher 

oversampling rate for Source 2 and Source 3, CatSim needs to be configured in a more memory-

efficient way; for example, instead of simulating the entire detector, only the area for the 

projected objects is simulated at the different projection angles. 

Because the detector is stationary in the simulated DBT, we shifted the x-ray source to 

implement the rotation of the source instead of using the default rotation option in CatSim. 

Therefore one configuration file is needed for each projection angle. CatSim supports the usage 

of a rectangular finite-sized x-ray source. However, since CatSim is designed for CT simulation, 
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there is no option to tilt the source such that the ℎ2  edge of the rectangle is parallel to the 

direction that the x-ray source is moving, as mentioned in Section VI.2.1. To solve this problem, 

we wrote a new source callback function in CatSim that allows us to rotate the source with 

regard to the x-direction. By setting this rotation angle the same as the projection angle 𝜃, we 

were able to implement the tilting of the rectangular source such that its ℎ2 edge is perpendicular 

to the line from the center of the source to the center of rotation (origin of the coordinate system 

in Figure 6.2). 

Before simulating the phantoms with objects, we first use the pinhole array phantoms to 

validate the results of CatSim for a finite-sized rectangular source. We configured two pinhole 

phantoms for the two cases shown in Figure 6.6, where the nominal size of the source is 6mm 

and the pinholes are located at 𝑧pinhole = −(𝑑so,GEN2 cos 𝜃 − 𝑑od,GEN2)/2. We use the nominal 

size of 6 mm rather than 0.3 mm since the pixelated PSF for the 0.3mm source is only as large as 

about 3 × 3 pixels at the same depth 𝑧pinhole = −(𝑑so,GEN2 cos 𝜃 − 𝑑od,GEN2)/2, which is too 

small to show a meaningful pattern. For this simulation, we set the background material of the 

phantoms to be air. Each pinhole is configured as a lead sphere with the diameter of 0.01mm. 

The simulation results are shown in Figure 6.9 and Figure 6.10. The simulated PSFs are 

displayed as the pixelated images. We also displayed the white contours of the analytically 

calculated PSFs at the same locations. As observed in Figure 6.9 and Figure 6.10, the simulated 

PSFs are 6 × 6 dot arrays. This is because we used a source oversampling rate of 6 in the 

configuration. According to the CatSim manual [66], if the oversampling rate for the source is 𝛾s, 

the rectangular x-ray source is simulated by equally dividing the rectangle into 𝛾s × 𝛾s pieces and 

putting a sub point source at the center of each piece, where the strength of each sub point source 

is 1/𝛾s
2 of the total strength of the x-ray source. Obviously, if we equally divide each analytical 

PSFs in Figure 6.9 and Figure 6.10 into 6 × 6 small pieces, the dots of the 6 × 6 dot arrays of the 

simulated PSFs will be located at exactly the center of each small piece. The only exception 

might be Figure 6.10(d) that the analytical PSF is very narrow and the simulated PSF is pixelated. 

But we can still observe in Figure 6.10(d) that the dot pattern aligns with the contour of the 

analytical PSF very well. Therefore this comparison validates that CatSim can correctly simulate 

the PV images when a finite-sized rectangular x-ray source is configured. 
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(a) (b) (c) (d) 

Figure 6.9. The simulated and the analytical source blur PSFs for a rectangular source of nominal 

size 6 mm at depth 𝑧pinhole = −(𝑑so,GEN2 cos 𝜃 − 𝑑od,GEN2)/2 for the projection angle 𝜃 = 0°  

at four different locations: (a) t = 10 mm, s = 0 mm; (b) t = 230 mm, s = 0 mm; (c) t = 10 mm, s 

= 140 mm; (d) t = 230 mm, s = 140 mm. The analytical source blur PSFs (white contours) are the 

same as the PSFs at the same locations in Figure 6.6 (a). 

    

(a) (b) (c) (d) 

Figure 6.10. The simulated and the analytical source blur PSFs for a rectangular source of 

nominal size 6 mm at depth 𝑧pinhole = −(𝑑so,GEN2 cos 𝜃 − 𝑑od,GEN2)/2  at projection angle 

𝜃 = 30°  at four different locations: (a) t = 10 mm, s = 0 mm; (b) t = 230 mm, s = 0 mm; (c) t = 

10 mm, s = 140 mm; (d) t = 230 mm, s = 140 mm. The analytical source blur PSFs (white 

contours) are the same as the PSFs at the same locations in Figure 6.6 (b). 

One might wonder that the sampling of the source is too sparse as shown in Figure 6.9 and 

Figure 6.10. This is not a problem in our simulation for digital phantoms since our simulation 

does not use a source of the size 6 mm as in Figure 6.6. In addition, the depth of the objects in 

our simulation will not be located at 𝑧 = −(𝑑so,GEN2 cos 𝜃 − 𝑑od,GEN2)/2. Instead the distance 

between the objects and the detector plane is much smaller. The PSFs in our simulation of digital 

phantoms will be more similar to the cases shown in Figure 6.7 and Figure 6.8, where generally a 

source oversampling rate of 6 is enough to generate accurate projection images. For largest 
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source that we simulated in the next section (Source 3 in Table 6.4), the maximum length of its 

PSF is about 0.2mm, which is equivalent to 2 pixels. Sampling 6 points within 2 pixels is likely 

to be accurate enough, but further investigations are needed to confirm this assumption. 

 

VI.4.2 Configuration of different sources  

We used four sets of parameters for the source in the simulation to study the effect of source 

blur on DBT reconstruction. The parameters of the four sources are specified in Table 6.4. As a 

reference point, Source 0 is the ideal point source. Since CatSim simulates the source blur with 

an array of sub point sources, setting the oversampling rate to 1 is equivalent to using an ideal 

point source. The other parameters are trivial for Source 0. Source 1 uses the standard nominal 

size and the target angle of a GE GEN2 prototype DBT System [141], as introduced in Section 

VI.3.3 and expressed in Equation 6.15. The comparison between Source 0 and Source 1 will 

indicate the importance of modeling the source blur in DBT reconstruction for DBT systems 

with step-and-shoot data acquisition. For Source 2 and Source 3, we increased the value of ℎ2 to 

1.0 mm and 2.0 mm. The purpose of these two sources is to simulate the influence of the motion 

of the source during the image acquisition, since the effective ℎ2 can be as large as 1.6 mm 

according to Table 6.1 and Table 6.3. The values in these tables are not accurate since we could 

not obtain all technique details. Therefore we used ℎ2 = 2.0mm  instead of 1.6 mm as a 

conservative choice. The comparison of Source 1, Source 2 and Source 3 will demonstrate the 

effect of the source motion on the reconstructed image quality. 

Table 6.4. Sources simulated in this study. Note that Source 0 is simulated with an oversampling 

rate of 1, for which any finite-sized focal spot is equivalent to a point source in CatSim. 

Name Source 0 Source 1 Source 2 Source 3 

Oversampling rate 1 6 6 6 

Target angle (𝜙) 22.5° 22.5° 22.5° 22.5° 
ℎ1 (mm) 0.784 0.784 0.784 0.784 

ℎ2 (mm) 0.3 0.3 1.0 2.0 

 

VI.4.3 Configuration of the LPBB phantom and the MC phantom 

We configured two digital phantoms to study the influence of source blur on DBT 

reconstruction. The first phantom is similar to the phantom we used for studying the SG 
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projector [77] and introduced in Section III.3 (Figure 3.3), which contains lead line pairs (LP) 

and lead beads (BBs). We refer to this phantom as the LPBB phantom. The second phantom only 

contains BBs of calcium carbonate (the same material we used to simulate MCs in the 

experimental phantom [142] as shown in Section IV.3.2 (Figure 4.2)). The purpose of this 

phantom is to simulate the MCs in DBT. This phantom is referred to as the MC phantom. Both 

phantoms are analytically specified in configuration files using the FORBILD syntax [66]. The 

quantum noise, detector noise, and the scattered radiation are turned off so that we can focus on 

the investigation of the effects of the source blur on DBT reconstruction. 

 

Figure 6.11. The base group is shifted to create the derived group in the phantom. Every object in 

the base group is shifted by the same distance along the x- and the y-direction. The relative 

locations of the objects are the same within each group.  

Different from how we configured the phantom for the study on the SG projector, we need to 

configure multiple groups of objects in the current study. As shown in Figures 6.6 - 6.8, the PSF 

of the source blur is highly shift-variant and location-dependent. We therefore analyze the spatial 
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resolution for high-contrast objects by placing line pairs and BBs at different locations. To 

configure such a phantom, we first configure a group of objects called the base group. Then we 

shift all the objects of the base group to create a derived group of objects, as shown in Figure 

6.11. The shifting is only along the in-plane directions so the depth of objects in the derived 

group is the same as the ones in the base group. 

We first introduce the configuration of the LPBB phantom. For this phantom, the in-plane 

locations of the objects in the base group are the same as the objects in the phantom we used for 

the study on the SG projector (Figure 3.3 and Table 3.1). The background material is configured 

as breast tissue with 50% glandular/50% fat based on the data from ICRU report 46 [143]. The 

thickness of the background material is set to be 6 cm. The distance from the objects to the 

bottom of the volume is set to be 50.6mm. Four derived groups are created by shifting the base 

group, as shown in Figure 6.12. 

 

Figure 6.12. The in-plane locations of the objects for the LPBB phantom. Group 1 is the base 

group and Group 2-5 are the derived groups. 
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In Figure 6.12, Group 1 is the base group. Group 2 is created by shifting Group 1 by 75 mm 

along the x-direction and by -48 mm along the y-direction. Group 3 is created by shifting Group 

1 by 75 mm along the x-direction and by 48 mm along the y-direction. Both Group 4 and Group 

5 are shifted from Group 1 by 150 mm along the x-direction. Their vertical locations are the 

same as Group 2 and Group 3. We chose these shift distances such that all derived groups are 

right within the ‘valid area’ of the slice. If an object is too far from the rotation center (outside 

the valid area), it will not be imaged within the detector FOV at some or all of the projection 

angles. Their reconstructed images will be in the region of truncation artifacts that will change its 

contrast. The ‘valid area’ refers to the area where an object will image within the detector FOV 

at all projection angles. The valid area depends on the size of the detector, the maximum 

projection angles and the depth of the objects. The yellow line in Figure 6.12 shows the valid 

area based on the depth of the objects and the geometrical parameters of the system. 

Next we introduce the configuration of the MC phantom. This phantom only contains BBs of 

calcium carbonate to simulate MCs in DBT. The in-plane locations of the objects in the base 

group of the MC phantom are shown in Figure 6.13. Similar to the LPBB phantom, we 

configured 15 pairs of BBs for this phantom. The diameters of the BBs are identical to the 

configuration of the LPBB phantom, as shown in Table 6.5. 

For the MC phantom, the background material is also set to be breast tissue with 50% 

glandular/50% fat, based on the data from ICRU report 46 [143]. The thickness of the 

background material is set to be 6 cm. The distance from the objects to the bottom of the volume 

is set to be 50.6mm. These configurations are the same as the LPBB phantom. The base group of 

objects and the four derived groups are shown in Figure 6.14. The valid area is the same as that 

shown in Figure 6.12. For the MC phantom, Group 2 is created by shifting Group 1 by 75 mm 

along the x-direction and by -56 mm along the y-direction. Group 3 is created by shifting Group 

1 by 75 mm along the x-direction and by 56 mm along the y-direction. Both Group 4 and Group 

5 are shifted from Group 1 by 150 mm along the x-direction. Their vertical locations are the 

same as Group 2 and Group 3. The shift distances along the y-direction for Group 2-5 are 

different from that of the LPBB phantom. The area that each group occupies is smaller in the MC 

phantom than that of the LPBB phantom. Therefore for the MC phantom we can shift the base 

group farther along the y-direction to take better use of the valid area. 
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Figure 6.13. The base group of the MC phantom. The background is displayed as black to make 

the BBs more visible. The background material of this phantom is the same as that of the LPBB 

phantom, i.e., breast tissue with 50% glandular/50% fat, in Figure 6.12. 

Table 6.5. Objects sizes (mm) in the MC phantom. The object set number corresponds to the 

number next to each box in Figure 6.13. The center-to-center distance between the two BBs in a 

pair is equal to the BB diameter. 

Object Set Number 1 4 7 10 13 

BB Diameter  0.053 0.063 0.077 0.100 0.167 

Object Set Number 2 5 8 11 14 

BB Diameter  0.056 0.067 0.083 0.111 0.250 

Object Set Number 3 6 9 12 15 

BB Diameter  0.059 0.071 0.091 0.125 0.500 
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Figure 6.14. The in-plane locations of the objects for the MC phantom. Similar to Figure 6.13, 

we use the black background to make the BBs more visible. 

VI.4.4 Accelerating CatSim with the hybrid simulation 

After configuring the phantoms, we need to run CatSim to generate the PV images. Similar 

to our discussion for the SG projector (Section III.3), the alignment of the objects to the pixel 

grid will affect the resolution and contrast of the reconstructed objects. To analyze the average 

effect of source blur on an object randomly aligned with the pixel grid, we simulated projections 

with the test patterns placed at 25 locations with respect to the pixel grid and the results were 

averaged over the different alignments. These 25 locations are identical to the study on the SG 

projector (Section III.3) and the same definition of the “shift tag” L𝑑𝑥𝑑𝑦 is used. 

Before using CatSim for the simulation, we estimate the computation time for the current 

study. Compared with the simulation for the SG projector, we decrease the oversampling rate of 
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the detector from 20 to 10. But the oversampling rate of the source has been increased from 1 to 

6. These two changes combined result in 9 times of computation time since both the projection 

images and the rectangular finite-sized source are two dimensional. The size of the detector has 

increased from 1920 × 2304 to 2400 × 3000, resulting in a 62% increase in the computation time. 

In addition, in this study we need to simulate two phantoms with four sources as shown in Table 

6.4. Although Source 0 uses an oversampling rate of 1, the other three sources all have an 

oversampling rate of 6. Considering all these factors together and that the previous simulation for 

the SG projector took a week to finish, the CatSim simulation in this study will take 87.9 weeks, 

which is obviously impractical. 

To solve this problem, we proposed a hybrid simulation method to accelerate CatSim. The 

basic idea of the method is to use different oversampling rates for different areas with different 

resolution requirements. For area of the PV images with only uniform breast tissue and no 

objects, smaller oversampling rates are acceptable to simulate accurate projection values. High 

oversampling rates are only used for area with the projection of test objects. The hybrid 

simulation method is derived as below. 

We consider the x-ray source to be mono-energetic with energy 𝐸 . Let 𝛾s  denote the 

oversampling rate of the source and 𝛾d denote the oversampling rate of the detector (𝛾s and 𝛾d 

must be integers in CatSim). Then the rectangular source will be simulated as an array of 𝛾s × 𝛾𝑠 

points. Similarly, one pixel on the detector will be simulated as the average of a 𝛾d × 𝛾d point 

array. As a result, there exist 𝛾s
2𝛾d

2 sub-rays that the projection values need to be calculated. We 

use 𝑖sd as an index for the sub-rays (𝑖sd = 1,2, … , 𝛾s
2𝛾d

2). For each sub-ray, the projection value 

𝐼p(𝑖sd, 𝐸) is calculated based on the Lambert-Beer law. The projection value of the entire pixel 

with the entire source, denoted as 𝐼p(𝐸), is the average of the projection values of all sub-rays: 

 𝐼p(𝐸) =
1

𝛾s
2𝛾d

2 ∑ 𝐼p(𝑖sd, 𝐸)
𝛾s

2𝛾d
2

𝑖sd=1
. (6.16) 

The phantoms we simulate are slabs of the breast tissue embedded with fine objects. We use 

𝑑t(𝑖sd) to denote the path-length of the 𝑖sdth sub-ray in the slab of the breast tissue if there are no 

fine objects. We use 𝑑o(𝑖sd) to denote path-length of the 𝑖sdth sub-ray within the fine objects. 

Let 𝜇t(𝐸)  and 𝜇o(𝐸)  denote the linear attenuation coefficients of the breast tissue and fine 

objects, we have: 
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 𝐼p(𝑖sd, 𝐸) = 𝐼a(𝑖sd, 𝐸) exp (−(𝑑t(𝑖sd) − 𝑑o(𝑖sd))𝜇t(𝐸) − 𝑑𝑜(𝑖sd)𝜇o(𝐸)) , (6.17) 

where 𝐼a(𝑖sd, 𝐸) denotes the projection value for the 𝑖sdth sub-ray when no phantom is present. 

The subscript ‘a’ represents ‘air’, ‘t’ represents ‘tissue’ and ‘o’ represents ‘object’. 

We then have the following expression for 𝐼p(𝑖sd, 𝐸): 

 

𝐼p(𝑖sd, 𝐸) = 𝐼a(𝑖sd, 𝐸) exp (−(𝑑t(𝑖sd) − 𝑑o(𝑖sd))𝜇t(𝐸) − 𝑑𝑜(𝑖sd)𝜇o(𝐸))

= 𝐼a(𝑖sd, 𝐸) exp (−𝑑t(𝑖sd)𝜇t(𝐸) − 𝑑o(𝑖sd)(𝜇o(𝐸) − 𝜇t(𝐸)))

=
𝐼a(𝑖sd, 𝐸) exp(−𝑑t(𝑖sd)𝜇t(𝐸)) 𝐼a(𝑖sd, 𝐸) exp (−𝑑o(𝑖sd)(𝜇o(𝐸) − 𝜇t(𝐸)))

𝐼a(𝑖sd, 𝐸)

=
𝐼t(𝑖sd, 𝐸)𝐼o/t(𝑖sd, 𝐸)

𝐼a(𝑖sd, 𝐸)
, 

(6.18) 

where 

 𝐼t(𝑖sd, 𝐸) = 𝐼a(𝑖sd, 𝐸) exp(−𝑑t(𝑖sd)𝜇t(𝐸)), (6.19) 

 𝐼o/t(𝑖sd, 𝐸) = 𝐼a(𝑖sd, 𝐸) exp (−𝑑o(𝑖sd)(𝜇o(𝐸) − 𝜇t(𝐸))). (6.20) 

The physical meanings of 𝐼𝑡(𝑖sd, 𝐸)  and 𝐼o/t(𝑖sd, 𝐸) are clear. 𝐼𝑡(𝑖sd, 𝐸)  is the projection 

value for the 𝑖sdth sub-ray if the phantom only has the slab of breast tissue. 𝐼o/t(𝑖sd, 𝐸) is the 

projection value for the 𝑖sdth sub-ray if the phantom only has the fine objects, but made of a 

different material that has the attenuation coefficient of 𝜇o(𝐸) − 𝜇t(𝐸). 

The value 𝑑t(𝑖sd), which denotes the path-length of the 𝑖sdth sub-ray within the slab of breast 

tissue, is slowly changing and is approximately constant given the small size of the source and 

the pixel. Similarly, the air scan value 𝐼a(𝑖sd, 𝐸) is also slowly changing and approximately 

constant. So we have: 

 𝐼t(𝑖sd, 𝐸) = 𝐼t(𝐸), (6.21) 

 𝐼a(𝑖sd, 𝐸) = 𝐼a(𝐸), (6.22) 

where 𝐼t(𝐸) and 𝐼a(𝐸) denote the averaged projection value for the entire pixel with only the 

slab of breast tissue or with only air. 

Combining Equations 6.16, 6.18, 6.21 and 6.22, we have: 
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𝐼p(𝐸) =
1

𝛾s
2𝛾d

2 ∑ 𝐼p(𝑖sd, 𝐸)
𝛾s

2𝛾d
2

𝑖sd=1

=
1

𝛾s
2𝛾d

2 ∑
𝐼𝑡(𝑖sd, 𝐸)𝐼o/t(𝑖sd, 𝐸)

𝐼a(𝑖sd, 𝐸)

𝛾s
2𝛾d

2

𝑖sd=1

=
1

𝛾s
2𝛾d

2 ∑
𝐼t(𝐸)𝐼o/t(𝑖sd, 𝐸)

𝐼a(𝐸)

𝛾s
2𝛾d

2

𝑖sd=1

=
𝐼t(𝐸)

𝐼a(𝐸)

1

𝛾s
2𝛾d

2 ∑ 𝐼o/t(𝑖sd, 𝐸)
𝛾s

2𝛾d
2

𝑖sd=1

=
𝐼t(𝐸)𝐼o/t(𝐸)

𝐼a(𝐸)
 

(6.23) 

where 𝐼o/t(𝐸) denote the averaged projection value of the entire pixel if the phantom only has 

fine objects of a material with the attenuation coefficient of 𝜇o(𝐸) − 𝜇t(𝐸). 

In summary, to get the simulation value 𝐼p(𝐸), we need to use simulation to calculate three 

values: 𝐼a(𝐸), 𝐼t(𝐸) and 𝐼o/t(𝐸). 𝐼a(𝐸) can be calculated without the phantom and with low 

oversampling rates. 𝐼t(𝐸)  can be calculated with low oversampling rates with a phantom 

configuration that only has the slab of breast tissue. On the other hand, 𝐼o/t(𝐸) needs to be 

calculated with high oversampling rates. CatSim has been optimized such that if a pixel on the 

detector is not affected by any objects, it will not be oversampled. Since 𝐼o/t(𝐸) is calculated 

with a phantom of only fine objects, most pixels on the detector plane will not be oversampled so 

that the calculation of 𝐼o/t(𝐸)  is much faster than directly simulating 𝐼p(𝐸)  with high 

oversampling rates. Therefore, by calculating 𝐼a(𝐸) , 𝐼t(𝐸)  and 𝐼o/t(𝐸)  separately, we 

implemented the simulation with low oversampling rates for the breast tissue and high 

oversample rates for the fine objects. We call this the hybrid simulation method for CatSim. 

There are some details to clarify for the actual implementation of the hybrid simulation: 

First, in CatSim a material is defined with its density and mass ratio of each chemical 

element. The attenuation coefficient of the material is then derived with these parameters, given 

the x-ray photon energy E. It is difficult to define a material that satisfies 𝜇o/t(𝐸) = 𝜇o(𝐸) −

𝜇t(𝐸) for arbitrary E. To solve this problem, we modified the main script of CatSim that allows 

us to specify an “offset” material. During the simulation, the attenuation coefficient of the offset 

material is subtracted from the attenuation coefficient of the material of the objects. By using 

breast tissue as the offset material, we can simulate 𝜇o/t(𝐸) easily. 
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Second, the hybrid simulation method can only be applied for mono-energetic x-ray. To get 

the simulation results for the full polyenergetic x-ray spectrum, we need to apply the hybrid 

simulation to each energy bin of the x-ray spectrum and combine all of the results to get the final 

simulated PV image. CatSim allows outputting the simulation results of each energy bin. So we 

do not need to create a CatSim configuration file for each energy bin. 

Third, as we mentioned at the beginning of this section, we need to shift the fine objects at 25 

locations with respect to the pixel to simulate the PVs. Since 𝐼a(𝐸) and 𝐼t(𝐸) are not affected by 

the shifts of the objects, they are only calculated once for the 25 locations, saving a lot of 

computation time. 

Fourth, as observed in the study on the SG projector, shifting the horizontal line pairs 

horizontally does not affect their contrast. The contrasts of horizontal line pairs with shift tags 

‘L0dy’, ‘L1dy’, …, ‘L4dy’ are identical, where dy denotes an arbitrary integer from 0 to 4. 

Similarly, for the vertical line pairs, the contrasts for shift tags ‘Ldx0’, ‘Ldx1’, …, ‘Ldx4’ are also 

identical, where dx denotes another arbitrary integer from 0 to 4. In our simulation, each shift of 

the digital phantom is specified by a phantom configuration file. To save simulation time without 

changing the shift-averaged contrasts, we only simulate both the line pairs and BBs for 9 shift 

tags: ‘L00’, ‘L10’, ‘L20’, ‘L30’, ‘L40’, ‘L01’, ‘L02’, ‘L03’ and ‘L04’. The phantom 

configuration files of the other 16 shift locations do not include the line pairs to save 

computation time. But they still include the BBs, since all 25 location shifts are required to 

obtain reliable location-averaged contrasts for BBs. 

With the hybrid simulation method for CatSim and the implementation details we introduced 

above, the simulation for all sources and location shifts took about two weeks to complete. 

 

VI.4.5 Figures of merit for line pairs and BBs 

To quantitatively analyze the image quality with different source blurs, we need to define 

FOMs for the line pairs and BBs. For the BBs, we use the same definition for the contrast as our 

study on the SG projector (Equation 3.13 in Section III.5.4). For the line pairs, we use the same 

method as our study on the SG projector to obtain their profiles as described in Section III.5.4. 

But after obtaining the profiles, a different method is used to calculate their contrasts. 
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(a) (b) 

Figure 6.15. The profiles of the reconstructed horizontal line pairs of spatial frequency f = 

4.5/mm in Group 1 for the shift L00 for (a) Source 1; (b) Source 2. The circles mark the detected 

peaks and the triangles mark the detected valleys. 

The reason we changed the calculation of contrast for line pairs can be explained with Figure 

6.15. Figure 6.15(a) shows the profile of a set of reconstructed horizontal line pairs when Source 

1 was used to simulate the projections. For this set of line pairs, only four peaks are detected. 

Therefore its contrast is considered to be zero with our previous calculation and criterion. Figure 

6.15(b) shows the results with Source 2. The same set of line pairs has an additional detectable 

peak in the center. Although this peak has a small voxel value, the values of the other four 

detectable peaks are high enough such that a high contrast will be obtained for this set of line 

pairs. The same four peaks are much stronger in Figure 6.15(a), but their contribution to the 

contrast is neglected because of the undetectable peak in the center, leading to the conclusion 

that Source 2 makes the line pairs more resolvable than Source 1. In fact, the center of the profile 

in Figure 6.15(a) is almost a detectable peak. If the value at the green arrow in Figure 6.15(a) 

decrease by 0.01/mm, it is possible that we will get a non-zero contrast and will find that Source 

1 generates more resolvable line pairs than Source 2. In summary, our previous calculation of the 

contrast for line pairs is too sensitive to barely detectable peaks of the profiles and could result in 

misleading conclusions when comparing different conditions. 

The new method for calculating the contrast of line pairs is explained in Figure 6.16. In our 

phantoms, the line pairs are analytically configured. Their exact locations are known so we can 

calculate the ideal profile based on the true locations of the line pairs. The magenta curves in 
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Figure 6.16 show the ideal profile with the voxel value of 1. As expected, the peaks of the 

reconstructed profile match the peaks of the ideal profile. So we can use the ideal profile to help 

calculate the contrast of the reconstructed line pairs. The part of the ideal profile with the voxel 

value of 1 is called the ‘peak region’, which consists of 5 sections. Between the first and the last 

sections of the peak region, 4 sections of the ideal profile have the voxel value of 0. These 4 

sections are called the ‘valley region’. We calculate the mean values of the reconstructed profile 

in the peak region and in the valley region. The contrast is then calculated as the difference 

between these two mean values, normalized to the contrast value of the line pairs in the 

voxelized image of the analytical phantom, which had the same constant value for all line pair 

frequencies. With this new calculation, the contrast of line pairs is insensitive to weak peaks as 

shown in Figure 6.15. 

 
(a) 

 
(b) 

Figure 6.16. The blue curve shows the profile of the reconstructed horizontal line pairs for the 

shift L00 for Source 2. The magenta curve shows the ideal profile of the line pairs with the peak 

voxel value of 1. The spatial frequencies are (a) f = 4.5/mm, (b) f = 1/mm. 

In the next section, we will use our new method to calculate the contrast for the line pairs. 

Similar to our study on the SG projector, the contrast of line pairs will be plotted as a function of 

the spatial frequency of the line pairs for each condition we included in the study. These 

contrast-verse-frequency curves are similar to the commonly used MTF in x-ray imaging, but 

they are calculated with rectangular waves instead of sinusoidal functions. Despite the difference, 

these curves still reflect the spatial resolution of the reconstruction with the influence of source 

blur and other factors. 
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VI.5 Simulating the effect of source blur with CatSim: results and discussions 

In this section, we will quantitatively analyze the objects reconstructed from projection 

images simulated with different sources. Five SART iterations were performed for all 

reconstructions. The three types of objects (horizontal line pairs, vertical line pairs and BBs) will 

be analyzed one by one. The FOM we described in Section VI.4.5 are calculated for all objects 

and all shifts relative to the pixel grid. All curves we show in this section are the average result 

of all the shifted locations for the objects. The mean contrast curves are compared for the 

different test objects and different source blur conditions. 

 

VI.5.1 The horizontal line pairs in the LPBB phantom  

Figure 6.17 shows the curves of mean contrast as a function of the spatial frequency for the 

horizontal line pairs in the LPBB phantom. The horizontal line pairs are perpendicular to the 

source motion direction. As shown in Figure 6.17(a), for Source 0, the reconstructed line pairs in 

different groups of object present similar contrast at different spatial frequencies, indicating that 

the contrast does not depend on the locations. For Source 3, the observation is similar as shown 

in Figure 6.17(b). We did not show the curves for Source 1 and Source 2, but the same 

observation has been confirmed. When a set of horizontal line pairs is shifted horizontally, the 

contrast of a set of line pairs does not change. As a result, it is reasonable that the horizontal line 

pairs will have the same contrast in Group 3 and Group 5, or in Group 2 and Group 4. The 

interesting finding is that although Group 2 and Group 3, or Group 4 and Group 5 are vertically 

shifted from Group 1 by 48 mm in the opposite directions, they all have very similar curves of 

contrast for all the sources we simulated. This observation could be explained by the relatively 

large scan angle we used in the simulation. As described in Section VI.4.1, the distance from the 

rotation axis to the source is 640 mm and that our maximum projection angle is ±30°. The 

motion of the source is ±320 mm along the y-direction between the maximum projection angles 

on both sides. A distance of 48 mm is small compared with the total motion of the source, which 

is 640 mm. As a result, for the same spatial frequency, the contrast of a set of horizontal line 

pairs does not change much among different groups of objects. Because of the limited “valid” 

region that we can prevent TPA from influencing the reconstructed images of the test objects, we 

are not able to compare the horizontal resolution in the regions near the two ends of the imaged 

volume so that it is unclear whether this observation still holds in those regions. 
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(a) (b) 

  
(c) (d) 

   
(e) (f) 

Figure 6.17. Dependence of the mean contrast of the horizontal line pairs on the group of the 

objects and the source in the LPBB phantom: (a) The dependence on the group of the objects for 

Source 0; (b) The dependence on the group of objects for Source 3; (c) The dependence on the 

source for Group 1; (d) The dependence on the source for Group 5; (e) Contrast of Source 1, 2 

and 3 relative to Source 0 for Group 1; (f) Contrast of Source 1, 2 and 3 relative to Source 0 for 

Group 5. 
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Figure 6.17(c) and (d) show the dependence of the contrast on the source for the horizontal 

line pairs in Group 1 and Group 5. Figure 6.17(e) and (f) show the contrast curves of Source 1, 2 

and 3 relative to Source 0 at different spatial frequencies, representing how much spatial 

resolution along the vertical direction is preserved with the finite-sized sources compared with 

the ideal point source. The curves in Figure 6.17(e) and (f) are plotted up to the Nyquist 

frequency (5 line pairs/mm) since the line pairs with Source 0 are almost non-resolvable at 

higher spatial frequencies. For the spatial frequencies above the Nyquist frequency, the 

resolution of the line pairs is mainly constrained by the pixel size, rather than the influence of the 

source blur. Comparing different sources in this frequency range does not provide much 

meaningful information. 

Figure 6.17(c) shows that the contrast of horizontal line pairs is almost identical for Source 0 

and Source 1 at different spatial frequencies. Since Source 0 is the ideal point source and Source 

1 has a finite size, the green curve is slightly lower than the red curve, indicating a small 

decrease in the contrast. Figure 6.17(d) shows very similar results, which is expected considering 

that the contrast curves of different groups almost overlap in Figure 6.17(a) and (b). Figure 

6.17(e) and (f) show that Source 1 preserves most of the contrast of the ideal point source, 

ranging from 92.1% to 99.5%. Since Source 1 has a typical focal spot size of a DBT system 

(~0.3 mm) if the source is stationary at exposure, Figure 6.17(c)-(f) indicate that treating the 0.3 

mm source as a point source does not affect the reconstructed quality for the horizontal line pairs 

if the pixel size of the detector or at reconstruction is 0.1 mm. 

Figure 6.17(c) and (d) also show that the contrast of horizontal line pairs decreases 

significantly if Source 2 or Source 3 is used. As shown in Figure 6.17(e) and (f), the relative 

decrease of the contrast for Source 2 and Source 3 is substantial at higher spatial frequencies, 

indicating that the source blur has stronger influence on small objects. For the spatial frequencies 

higher than about 5 line pairs/mm, the horizontal line pairs are not resolvable with Source 3. The 

negative relative contrasts for Source 3 near the Nyquist frequency indicate a phase shift of 180° 

compared with the ideal profile. If Source 2 is used, the horizontal line pairs are resolvable near 

the Nyquist frequency although the contrast has decreased compared with Source 0. We can also 

see that the difference between Source 0 and Source 2 is smaller than the difference between 

Source 2 and Source 3. Figure 6.17(e) and (f) show that the contrast loss with Source 2 compared 

with the point source is between 4.0% and 60% in the frequency range of 1 to 5 line pairs/mm. 
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Since the motion of the x-ray source is along the vertical direction, the horizontal line pairs 

are more sensitive to the extra source blur from the motion than the vertical line pairs and the 

BBs. In summary, if the focal spot is not stationary such that the effective size of the x-ray 

source is 1mm (Source 2) or 2mm (Source 3) along the direction of the motion of the x-ray tube, 

the reconstructed contrast of horizontal line pairs, i.e., the spatial resolution in the direction of 

source motion, will decrease. Compared with Source 3 where the horizontal line pairs are non-

resolvable at 5 line pairs/mm, Source 2 preserves about 40% of the contrast of Source 0 but such 

a decrease in resolution can have a substantial impact on small objects such as MCs. 

 

VI.5.2 The vertical line pairs in the LPBB phantom 

  
(a) (b) 

  
(c) (d) 

Figure 6.18. Dependence of the mean contrast of the vertical line pairs on the group of the 

objects and the source in the LPBB phantom: (a) The dependence on the group of the objects for 

Source 0; (b) The dependence on the source for Group 1; (c) The dependence on the source for 

Group 3; (d) The dependence on the source for Group 5. 
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Figure 6.18 shows the contrast curves as a function of the frequency for the vertical line pairs 

in the LPBB phantom. Figure 6.18(a) shows the dependence of the contrast of the vertical line 

pairs on the group of the object with Source 0 used in the simulation of the projection images. 

We can observe that the curves of Group 2 and Group 3 are identical. This is expected since 

Group 2 can be moved vertically to overlap with Group 3 or vice versa as shown in Figure 6.14. 

For the same reason, the curves of Group 4 and Group 5 are also almost identical in Figure 

6.18(a). We can also observe that the contrast curve of Group 1 is very different from the 

contrast curves of Group 2 and Group 3. The contrast curves of Group 4 and Group 5 are more 

different with negative contrasts for spatial frequencies higher than 2 line pairs/mm. The 

meaning of the negative contrast is that the reconstructed line pairs has a phase shift of about 

180° compared with the ideal profile of the line pairs, such that the bright lines become dark and 

the dark lines become bright. Generally, Figure 6.18(a) shows that the vertical line pairs of high 

spatial frequencies are less resolvable if they are farther away from the chest wall even though 

the focal spot dimension perpendicular to the line pairs decreases as the distances from the chest 

wall (x-direction) increases. The comparison in Figure 6.18(a) for the other three sources is not 

shown since the contrast of vertical line pairs is almost independent of the source, as shown in 

Figure 6.18(b) – (d). 

Figure 6.18(b) – (d) show the dependence of contrast on the source size for the vertical line 

pairs in Group 1, Group 3 and Group 5. Different from the horizontal line pairs, the contrast of 

the vertical line pairs is not obviously affected by the source sizes used in the simulation, as 

indicated by the overlapping curves. The curves for Group 2 and Group 4 are very similar to the 

curves for Group 3 (Figure 6.18(c)) and Group 5 (Figure 6.18(d)), respectively as shown in 

Figure 6.18(a) and explained above. This observation is reasonable since compared with Source 

1, the extra blur caused by the motion of the source for Source 2 and Source 3 is mainly along 

the vertical direction. Blurring a set of vertical line pairs along the vertical direction will not 

affect its contrast.  

The only noticeable difference among the sources can be observed in Figure 6.18 (b), where 

the contrast curve with Source 0 is slightly higher than the overlapping contrast curves with 

Source 1, Source 2 and Source 3. This is because Source 1, Source 2 and Source 3 have the same 

target angle 𝜙 and the same value of ℎ1 as shown in Table 6.4. The finite ℎ1 value results in a 

source blur along the horizontal direction and will therefore affect the vertical line pairs. 



175 

 

Therefore, for Source 1, Source 2 and Source 3, a small decrease in the contrast compared with 

the ideal point source (Source 0) is observed. Such an effect is weaker for Group 3 (Figure 

6.18(c)) and Group 5 (Figure 6.18(d)) since the effective source blur along the horizontal 

direction is smaller for locations farther away from the chest wall. 

To summarize our observations, if the source is of a typical focal spot size (~0.3 mm) and is 

stationary during exposure, treating the finite-sized source as a point source does not affect the 

reconstructed quality for the vertical line pairs if the pixel size of the detector or at reconstruction 

is 0.1 mm. Even if the source is not stationary such that the effective size of the source blur is as 

large as 1mm (Source 2) or 2mm (Source 3) along the direction of the motion of the x-ray tube, 

there is essentially no change in the reconstructed contrast of vertical line pairs. 

 

VI.5.3 The BBs in the LPBB phantom and the MC phantom 

Figure 6.19 shows the dependence of the contrast of BBs on the group of the object for 

Source 0 and Source 3 in the LPBB phantom and the MC phantom. For both sources in both 

phantoms, the contrast of the BBs has strong dependence on the group of objects or the locations 

of objects. Generally speaking, the contrast of the BBs is higher in Group 1 than in Group 

2/Group 3 and it further decreases in Group 4/Group 5. In summary, the contrast of the BBs 

decreases as their distance from the rotation center increases. The dependence of the contrast of 

the BBs on the group of objects is not as obvious as that of the vertical line pairs shown in Figure 

6.18(a). In Figure 6.19(a) - (d), the difference between the curves of Group 1 and Group 5 is 

smaller than the difference between Group 1 and Group 5 in Figure 6.18(a). But the difference 

between Group 1 and Group 5 in Figure 6.19 is much more obvious than that in Figure 6.17(a), 

where the contrast of horizontal line pairs is almost independent of the group of objects. 

Therefore the level of dependence of the contrast of the BBs on the location of objects falls 

between the level of the horizontal line pairs and the level of the vertical line pairs as expected 

because the contrast of BBs is affected by the resolution of the imaging system in both the 

horizontal and the vertical directions. 

Another interesting observation in Figure 6.19 is the difference in contrast curves between 

Group 2 and Group 3 and the difference between Group 4 and Group 5. In Figure 6.19, we can 

see that with either source or with either phantom, the contrast of the BBs in Group 3 is higher 

than that in Group 2. The contrast of BBs in Group 5 is also consistently higher than that in 
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Group 4. Group 2 and Group 4 are in the upper half of the reconstructed slice. Group 3 and 

Group 5 are in the lower half as shown in Figure 6.14. In Figure 6.17 (a)(b) and Figure 6.18(a), 

we did not observe the difference between Group 2 and Group 3 or between Group 4 and Group 

5 for the horizontal or the vertical line pairs.  

  
(a) (b) 

  
(c) (d) 

Figure 6.19. Dependence of the mean contrast of the BBs on the group of objects for: (a) Source 

0, the LPBB phantom; (b) Source 0, the MC phantom; (c) Source 3, the LPBB phantom; (d) 

Source 3, the MC phantom. 

The difference between Group 2 and Group 3 or between Group 4 and Group 5 may be 

explained with Figure 6.20. We use Group 4 and Group 5 as an example but the explanation for 

Group 2 and Group 3 is similar. The configuration of the phantom has been described in Section 

VI.4.3 that Group 4 and Group 5 are generated by shifting Group 1. No vertical flip is done after 

the shifting. As a result, the alignments of BBs in Group 4 and Group 5 are not symmetrical 
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about the x-axis. This asymmetry may have resulted in the difference in the contrast of the 

reconstructed BBs. For example, during reconstruction, more PVs will cast a shadow of the BBs 

to the gap between the BBs for the pair in Group 4 than that for the pair in Group 5, thereby 

reducing the contrast between the BB and the gap and therefore the resolution. If Group 5 were 

arranged as shown by Group 6, it would be symmetrical about the x-axis with Group 4 and might 

have similar contrast curves. Since we have not studied an arrangement like Group 6, this is yet 

to be proven. 

 

Figure 6.20. Alignment of BBs in Group 4 and Group 5. The Alignment of BBs in Group 2 and 

Group 3 are similar.  

  
(a) (b) 

Figure 6.21. Comparison between Source 0 and Source 1 for BBs in three groups of objects for: 

(a) the LPBB phantom; (b) the MC phantom. 



178 

 

Figure 6.21 shows the comparison between Source 0 and Source 1. As can be seen, for any 

one of the three groups of objects (Group 1, Group 3 and Group 5), the contrast curves of Source 

1 are just slightly lower than the contrast curves of Source 0. Group 2 and Group 4 are not shown 

since the observation is similar. We already observed in Figure 6.17(c)(d) and Figure 6.18(b)-(d) 

that the difference between Source 0 and Source 1 is minimal. So Figure 6.21 once again 

supports the observation that treating a finite-sized source of 0.3mm as a point source may not 

degrade the reconstructed quality substantially if the x-ray tube is stationary during the exposure 

of the projections. 

 
(a) 

 
(b) 

  
(c) (d) 

Figure 6.22. Dependence of the mean contrast of the BBs on the source for: (a) Group 1 of the 

LPBB phantom; (b) Group 1 of the MC phantom; (c) Group 5 of the LPBB phantom; (d) Group 

5 of the MC phantom.  

Figure 6.22 shows the dependence of the contrast of the BBs on the source for Group 1 and 

Group 5. In each graph, we fix the group number and compare the four sources. We observe that 
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for BBs with a diameter larger than 0.15 mm, the two BBs in the pair are highly resolvable with 

a contrast close to or higher than 0.8. The difference of the four sources is small and not 

significant for these BBs. For BBs with a diameter smaller than 0.15 mm but larger than 0.10 

mm, the decrease in contrast with Source 2 and Source 3 becomes noticeable. For BBs with a 

diameter of 0.10 mm or smaller, the contrast of BBs decreases more significantly, especially 

with Source 3. For example, in the LPBB phantom, the contrast of the BBs of the diameter 

0.1mm is 0.347 when Source 0 is used. The contrast decreases by 12% to 0.306 when Source 2 is 

used and by 37% to 0.219 when Source 3 is used in the simulation. Similar to the horizontal line 

pairs (Figure 6.17(c) and (d)), we can observe in Figure 6.22(a) and (b) that the difference 

between Source 0 and Source 2 is smaller than the difference between Source 2 and Source 3. 

Figure 6.22 (c) and (d) show the comparison of four sources for Group 5. The contrast of the 

BBs of diameter 0.167mm is much lower than that in Group 1. For BBs of diameter equal to or 

smaller than 0.167mm, the decrease in contrast is large when Source 3 is used. The difference 

between Source 0 and Source 2 is still smaller than the difference between Source 2 and Source 

3. Comparing the contrast curves for Source 0 and Source 2, the contrast of the BBs in Group 5 

is reduced by 16% to 33% for BB diameters from 0.053mm to 0.125mm in the LPBB phantom 

and by 5% to 33% for the same diameter range in the MC phantom. Overall, the dependence of 

the resolution of the BBs on the spatial location on the image plane is stronger than the 

dependence on the source blur over the range of source sizes studied. 

 

VI.5.4 Comparison between the moving detector and the stationary detector 

This section discusses the influence on source blur of a moving detector compared with a 

stationary detector. We will use the geometry of the Hologic Selenia Dimensions system, which 

uses a moving detector, as example for our analysis. For this system, the distance between the 

rotation center and the detector is 0, which means that the rotation axis is within the detector 

plane [44]. Assuming that the detector is moved synchronously with the source, the detector will 

rotate about the rotation axis by the same angle of the source and the central ray of the x-ray 

beam remains normal to the detector plane during image acquisition. 

We investigate the influence of the moving detector on source blur by applying a small 

motion to a point source along the direction of the motion of the source. For a given projection 

angle, we slightly move the point source from its original location by ±0.65mm, corresponding 
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to the maximum motion of 1.3 mm in Table 6.1. In other words, the finite-sized source we use in 

this section to compare the two detectors is a 1.3-mm-wide one-dimensional line source parallel 

to the motion of the source. At the central projection angle, the line source is parallel to the y-

direction. Given that the distance from the source to the rotation center is 700 mm, a motion of 

±0.65mm corresponds to a rotation angle of ±0.053° and the detector should also rotate by 

±0.053° in the process. The location of the projection of a point in the imaged volume on the 

detector plane will change with the small motion of the source. This location can be 

geometrically calculated before and after the motion, and the distance between these two points 

can be obtained. This distance represents the level of source blur for one point in the imaged 

volume due to the motion of the source. For convenience, we call it the blurring distance in the 

following discussion. The blurring distance can be calculated as a distribution in the imaged 

volume for the moving detector. If a stationary detector is used that is parallel to the x-y plane 

(refer to Figure 6.2 for the coordinate system), we can also calculate the distribution of the 

blurring distance in the imaged volume. 

The distributions of the blurring distance for two projection angles (0 and 7.5°) and two y-z 

planes (x = 0 and x = 200 mm) are calculated and shown in Figure 6.23 and Figure 6.24. Similar 

to Figure 6.2, we still use the rotation center as the origin of the coordinate system. The z-

coordinate of the imaged volume then starts from -25 mm, since the distance from the rotation 

center to the imaged volume is 25 mm according to [44]. The sizes of the imaged volume along 

the y- and z-directions are 290 mm and 100 mm, respectively, assuming that the thickness of the 

imaged volume is 100 mm and that the imaged volume has the same size as the detector in image 

reconstruction [44]. 

The first rows of Figures 6.23 and 6.24 show the distribution of the blurring distance with a 

stationary detector. The second rows show the distribution with a moving detector. The first and 

second rows all use the same color bar settings. The third rows show their relative difference 

calculated by subtracting the first rows from the second rows (moving detector – stationary 

detector) and dividing the results by the maximum blurring distance with the stationary detector. 

A negative value in the third rows therefore means that the moving detector reduces the blurring 

distance. The third rows also use the same color bar settings in Figure 6.23 and 6.24. 
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(a) (b) 

Figure 6.23. Spatial dependence of the blurring distance on a y-z plane for the central projection 

angle (𝜃 = 0°) plotted with contours for (a) x = 0; (b) x = 200 mm. The third row shows the 

relative difference of the blurring distance between the moving detector and the stationary 

detector. A negative relative difference means that the moving detector reduces the blurring 

distance. 

Figure 6.23 shows the distribution of the blurring distance for the central projection angle. As 

expected, the distribution is symmetric about y = 0 for both detectors on both y-z planes. For the 

stationary detector, the distribution of the blurring distance does not depend on the x- or y-

coordinate. This is because for the central projection angle, the 1-D line source blur is parallel to 

the detector plane for the stationary detector. The blurring distance increases when the location is 

farther away from the detector plane, reaching a maximum value of 0.28 mm at z = -125 mm. 

This is expected considering that the source blur scaling factor reaches its maximum value at z = 

-125 mm. If the moving detector is used, for the x = 0 plane, the blurring distance reduces by 0% 

to 29.3% compared with the stationary detector. The average relative reduction of the blurring 

distance is 8.4%. As shown in the second row of Figure 6.23(a), the blurring distance is still 

substantial and cannot be neglected even with the moving detector, especially for the top slices. 
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With the moving detector, the maximum blurring distance is 0.28 mm at y = 0, z = -125 mm, 

which is the same as the stationary detector. 

Comparing the second row in Figure 6.23(a) and (b) indicates that the distribution of the 

blurring distance depends on the x-location of the plane if the moving detector is used. The 

blurring distance is larger for planes farther away from the chest wall. For x = 200 mm, the 

blurring distance of the moving detector is actually larger than that of the stationary detector in 

the bottom slices, as indicated by a positive relative difference. On average, the moving detector 

reduces the blurring distance by 3.2%. In summary, for the central projection angle, the moving 

detector slightly reduces the source blur caused by its motion. 

  
(a) (b) 

Figure 6.24. Spatial dependence of the blurring distance on a y-z plane for the maximum 

projection angle (𝜃 = 7.5°) plotted with contours for (a) x = 0; (b) x = 200 mm. The third row 

shows the relative difference of the blurring distance between the moving detector and the 

stationary detector. A negative relative difference means that the moving detector reduces the 

blurring distance. 
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Figure 6.24 shows the comparison for projection angle 𝜃 = 7.5° (the maximum projection 

angle of the Hologic DBT system). For the x = 0 plane, the moving detector can reduce the 

blurring distance by as much as 52.0%, as observed in the upper-left corner in the third row of 

Figure 6.24(a). The average relative reduction of the blurring distance is 9.1%. The maximum 

blurring distance with the moving detector is 0.29 mm, which is larger than that at the central 

projection angle. For the x = 200 mm plane, the blurring distance of the moving detector is larger 

than that of the stationary detector in the right half of the plane, as shown in the third row of 

Figure 6.24(b). The average reduction of the blurring distance is 4.1%, mainly contributed by the 

left half of plane shown in the second row of Figure 6.24(b). As a result, at this projection angle, 

the moving detector reduces the source blur more than the central projection angle, but the 

remaining source blur is still significant. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

Figure 6.25. Spatial dependence of the blurring distance in an x-y plane (z = -105 mm) plotted 

with contours for: first row: projection angle 𝜃 = 0°; second row: projection angle 𝜃 = 7.5°. (a) 

does not show the contours since it is uniform with blurring distance = 0.229 mm. 
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Figure 6.25 shows the comparison between the moving detector and the stationary detector in 

an x-y plane at z = -105 mm, which is 80 mm from the bottom of the imaged volume. The 

distribution of the blurring distance for the stationary detector is uniform at the central projection 

angle, as shown in Figure 6.25(a). This observation is similar to the first row of Figure 6.23, for 

the same reason that the equivalent finite-sized source is 1-D and is parallel to the detector. 

While the distribution of the blurring distance is generally uniform with the stationary detector, it 

is non-uniform with the moving detector that the blurring distance is reduced at the top and 

bottom of the slice. For the central projection angle, the average reduction of blurring distance is 

9.2%. At a projection angle of 7.5 degrees, the average reduction is 11.4%, but the blurring 

distance actually increases locally by more than 5% in the lower-right corner in Figure 6.25(f).  

In summary, our calculation indicates that the additional source blur caused by the motion of 

the x-ray tube during data acquisition cannot be neglected even if one uses a moving detector in 

synchrony with the source. It is likely that the general trends of our analysis of spatial resolution 

with the CatSim simulation (Section VI.5.1-VI.5.3) that uses the stationary detector also apply to 

the situation where a moving detector is used. To confirm this, simulations with a moving 

detector need to be performed and analyzed. 

 

VI.5.5 Summary of the influence of source blur 

In this section we summarize our observations of the impact of x-ray focal spot blur on the 

spatial resolution of high-contrast objects. Our simulation results indicate that for a stationary 

source of a typical focal spot size (~0.3 mm), treating the finite-sized source as a point source has 

negligible effect on the reconstructed image resolution in both the directions parallel and 

perpendicular to the source motion direction as shown by the horizontal and vertical line pairs 

and BBs (with 5 SART iterations). If the source is not stationary such that the effective size of 

the source blur (ℎ2) increases to about 1mm (Source 2), the spatial resolution in the direction 

parallel to the source motion (the contrast of horizontal line pairs) and BBs will have a noticeable 

decrease. If the effective size of the source blur is 2mm (Source 3), the contrast of horizontal line 

pairs and BBs will decrease substantially, especially for BBs that are far away from the rotation 

center. How much source blur is tolerable will depend on the specific imaging task and other 

factors in the imaging and reconstruction processes. 
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Although we made a rough estimation of the potential source blur of the commercial DBT 

systems (Tables 6.1-6.3) based on the published system parameters, typical exposure techniques, 

and simple constant motion of the x-ray source, we cannot investigate the different combinations 

of parameters for the various systems. For example, the number of PVs, acquisition angle, 

detector pixel size, reconstruction voxel size and reconstruction algorithm etc. differ from one 

vender’s system to another. The Hologic system uses a moving detector (non-stationary) and the 

Fujifilm system uses a detector with hexagonal elements, which are very different from our 

CatSim simulation. For any DBT systems, the selection of the system design parameters involves 

many other factors in addition to minimizing the source blur and much of the information is 

proprietary. In addition, we do not include other image quality degrading factors such as noise or 

scattered radiation, making it more difficult to predict the relative influence of source blur on the 

reconstructed image quality and the overall benefit of modeling the source blur in image 

reconstruction in practice for a specific system. Nevertheless, we will make some general 

discussion based on our simulation results as a reference that might be helpful for other 

researchers and DBT manufacturers. 

For DBT systems that use a step-and-shoot scanning mode such as the GE 

SenoClaire/Pristina DBT system, our simulation shows that treating a finite-sized source as a 

point source causes minimal loss in resolution if the focal spot size is about 0.3mm and the 

detector has a pixel size of 0.1mm. Neglecting the source blur may not affect the reconstructed 

image quality. The benefit of modeling the source blur in reconstruction for this type of systems 

is therefore limited. 

For narrow-angle DBT systems that use a continuous-motion scanning x-ray source with a 

moving detector such as the Hologic Selenia Dimensions system, our simulation shows that the 

source motion blur is substantial and the moving detector does not significantly reduce the 

source blur, especially if small pixel size such as 0.07mm is used. If the detector pixel size is 

binned to 0.14 mm as in the Hologic system [44], the relative impact of the source motion blur is 

reduced. According to our estimates in Table 6.1, the effective ℎ2 is about 1.3mm for 6-cm-thick 

breasts and 1.6mm for 8-cm-thick breasts. If we consider the size of the source blur relative to 

the pixel size, a source blur of 1.3 mm is comparable to a source blur of about 0.8 mm and 

1.6mm is about 1 mm (Source 2) in our simulation that uses a pixel size of 0.1mm. The source 

blur is therefore not negligible in DBT for slightly above average to thick breasts and modeling 
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the source blur in reconstruction may be beneficial. The experimental study in [144] supports our 

conclusion, where replacing the rotating x-ray tube in the Hologic Selenia Dimensions DBT 

system with a stationary carbon nanotube x-ray source array demonstrates increased system 

spatial resolution. 

For wide-angle DBT systems with a continuous-motion scanning x-ray source and a 

stationary detector, the impact of motion source blur is strong unless the source is moved at a 

relatively slow speed such as the Siemens Mammomat Inspiration system. According to our 

estimates in Table 6.2, the effective ℎ2 is 1.2 mm for thick breasts (thickness ~ 10cm). The pixel 

size is 0.085mm for this system [44]. For a 10-cm-thick breast, an effective ℎ2 of 1.2 mm is 

between Source 2 and Source 3 in our simulation. For a 5-cm-thick breast, the effective ℎ2 is 0.8 

mm, which is comparable to Source 2. Our simulation shows that Source 2 causes noticeable 

decrease in the spatial resolution. Roughly speaking, the source motion might result in image 

quality degradation for average to thick breasts. For this system, modeling the source blur may 

be beneficial for improving the image quality. Modeling the source blur may also allow the 

system to scan with faster motion of the x-ray source, which will decrease the potential motion 

blur of the breast and improve the comfort of DBT imaging.  

For narrow-angle DBT systems with continuous x-ray source motion and a stationary 

detector the source motion blur can be substantial, especially when the detector is stationary and 

the pixel size is small such as the Fujifilm Aspire Cristalle system. This system has a detector 

with hexagonal pixels with a side length of 0.05mm [124, 137], which is equivalent by pixel area 

to a square pixel of 0.08mm. If we simply assume a square pixel of 0.08mm for the system, then 

the effective ℎ2 = 1.6mm for thick breasts (thickness ~ 9cm) is comparable to Source 3 in our 

simulation and could result in significant degradation in spatial resolution. Modeling the source 

blur in reconstruction may therefore improve the image quality. In general, increasing the total 

scan time or reducing the x-ray pulse width will alleviate the problem of source motion blur but 

it depends on other system design considerations. Furthermore, increasing the total scan time 

also increases the possibility of motion blur of the breast.  

In summary, our simulation results indicate that the step-and-shoot approach may suffice to 

preserve the resolution of objects despite the finite size of the focal spot in typical DBT systems. 

The continuous motion approach will be the main contributor to the source blur and may result in 

different levels of image quality degradation depending on the thickness of the breast and other 



187 

 

parameters of the DBT system. The latter type of DBT systems may benefit from modeling 

source blur in reconstruction but the specific gain in image quality should be studied by taking 

into account other system design and imaging parameters. 

 

VI.6 Limitation of the study 

Although our simulation results provide some meaningful conclusions on the effect of source 

blur in DBT reconstruction, the study introduced in this chapter has several limitations. First, the 

simulation introduced in this chapter needs more sampling points for the size of the source. As 

shown in Tables 6.1-6.3, the effective ℎ2 of the source varies in a range as the thickness of the 

breast changes. More sampling points for the size of the source need to be simulated for a 

systematic analysis to find the tolerance of the motion of the x-ray tube for the continuous-

motion systems. Second, we only used SART with 21PVs in reconstruction. Simulating DBT 

systems with different geometries and reconstructions by other algorithms need to be studied to 

give a better prediction of the influence of source blur on the image resolution. Third, 

simulations with different pixel sizes for a fixed source need to be performed to understand how 

the detector pixel size will affect the effect of source blur. Finally, our simulation neglects 

quantum noise, readout noise, scattered radiation and other factors. A comparison between the 

ideal point source and a finite-sized source taking into account these factors will better indicate 

the significance of modeling source blur in DBT reconstruction.  

 

VI.7 Conclusion 

In this study, we used analytical calculation and CatSim simulation to study the effect of the 

source blur on the spatial resolution of reconstructed DBT. Our analytical calculation 

demonstrates that the PSF of source blur is highly shift-variant. The shape of the PSF of the 

source blur also strongly depends on the spatial location over the image plane, making it 

challenging to be implemented precisely in the system model. We used CatSim to simulate 

phantoms that contain line pairs and BBs at different locations with sources of four different 

sizes. To make the simulation practical in terms of computation time, we proposed the hybrid 

simulation method for CatSim. The reconstructed results of the simulated phantoms demonstrate 

that a typical finite-sized focal spot (~ 0.3 mm) will not affect the image quality if the x-ray tube 
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is stationary during data acquisition. If the x-ray tube is moving, the extra source blur due to the 

motion of the source may degrade image resolution, depending on the effective size of the source 

along the direction of the motion. By analyzing the available technical parameters of the 

clinically available DBT systems and our simulation results, we roughly estimated the influence 

of source blur on the reconstructed image quality and the potential benefit of modeling the 

source blur in image reconstruction. 

  



189 

 

 

CHAPTER VII.  

Summary and Proposed Future Work 

 

VII.1 Summary 

This dissertation introduced my studies to improve the reconstructed image quality for DBT. 

The idea of MBIR inspires many studies we have conducted. This section is a brief summary of 

this dissertation. 

Chapter III introduced the SG projector and its application for the subpixel reconstruction. 

By theory and simulation, we demonstrated the superior accuracy of the SG projector compared 

with the traditional RT projector. The SG projector outperforms the RT projector in terms of 

reconstruction quality without increasing the computation time. With the simulated projections 

of a digital phantom, we demonstrated that the SG projector improves the image quality for 

regular and the subpixel DBT reconstructions. We also showed that the subpixel reconstruction 

can significantly improve image resolution, especially when it is used with the SG projector. 

Chapter IV proposed the SQS-DBCN reconstruction algorithm that incorporates detector blur 

and a correlated noise model for DBT. We have shown quantitatively and qualitatively that the 

SQS-DBCN method can better enhance MCs than SART while preserving the image quality of 

mass spiculations and tissue texture. We have also demonstrated the effectiveness of the SQS-

DBCN method as a result of incorporating the detector blur, the noise correlation and the 

regularization at the same time, indicating that a more complete model-based reconstruction may 

further improve the DBT image quality. 

Chapter V introduced our study on TPA removal for DBT reconstruction. Three TPA 

removal algorithms were introduced. The results show that our contour-extension-diffusion PV 

extrapolation algorithm removes TPA effectively while causing contraction in the reconstructed 

volume on the top few slices. The pre-reconstruction-based PV extrapolation algorithm 

effectively removes TPA without such problems. The investigated regularization-based 
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algorithm was not effective due to the inaccuracy of the log-transform of the PVs and other 

factors. Further improvement in the contour-extension-diffusion PV extrapolation and the 

regularization-based TPA removal algorithms is needed to make these methods more practical. 

Chapter VI used analytical calculations and CatSim simulations to study the effect of the 

source blur on DBT reconstruction. We first used analytical calculations to demonstrate that the 

PSF of source blur is highly shift-variant. Then we used CatSim to configure phantoms that 

contain line pairs and BBs and to simulate projections with sources of four different sizes. The 

analysis of the reconstructed digital phantoms demonstrates that a typical finite-sized focal spot 

(~0.3 mm) will not affect the image quality if the x-ray tube is stationary during data acquisition. 

For DBT systems with the continuous-motion scanning mode, the continuous motion of the x-ray 

tube might cause significant loss in the resolution. Modeling the source blur for these DBT 

systems could potentially improve the reconstructed image quality. 

 

VII.2 Proposed future studies 

Based on the studies introduced in this dissertation, I propose the following future studies: 

(1) Modeling of the scattered radiation in DBT reconstruction – 

In Chapter III and Chapter IV, our study on the SG projector and the SQS-DBCN algorithm 

both support the idea that modeling the physics of the DBT system can improve the 

reconstructed image quality. For DBT systems that use a flat-panel detector without an anti-

scatter grid, removing the scattered x-ray intensity or modeling this effect in the 

reconstruction might improve DBT image quality. 

(2) A comparative study of TPA removal algorithms – 

In Chapter V, we tested three TPA removal algorithms. The contour-extension-diffusion PV 

extrapolation method and the regularization-based TPA removal algorithm both have their 

own problems. The contour-extension-diffusion method tends to underestimate the shift 

distance of the contour. For the regularization-based TPA removal method, more tests need 

to be done to determine the reason of the ineffectiveness of this method. We have proposed 

possible improvements of these two algorithms. The pre-reconstruction-based PV 

extrapolation method provides the best performance. We used two SART iterations to obtain 

the pre-reconstruction DBT volume. For the case that we perform two SART iterations to 

obtain the final reconstructed image, using the pre-reconstruction method will double the 
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computation time. In addition, using the extrapolated PVs also make the execution time of 

forward and backward projections longer. The time cost of the pre-reconstruction-based PV 

extrapolation method will need to be evaluated and compared with other TPA removal 

methods. As discussed in Section V.4.3, the PV extrapolation methods will complicate the 

form of the cost function and therefore might not be appropriate for statistical image 

reconstruction. A TPA removal algorithm satisfying a convergence theory for statistical 

image reconstruction is yet to be established. TPA removal is crucial for improving the 

appearance of the reconstructed images in DBT. A thorough study on this topic could 

provide researchers more options to control this type of reconstruction artifact.  

(3) A systematic analysis of the effect of source blur on image reconstruction – 

Although our study in Chapter VI provides some valuable conclusions, due to the limit of 

time we were not able to finish more simulations to provide a systematic analysis of the 

effect of source blur. In this dissertation, we have described the hybrid simulation 

acceleration for CatSim that can efficiently simulate the projections of fine objects with high 

oversampling rates of the detector and the source blur. In the future, a thorough analysis of 

the source blur effect in combination with other system design parameters and image quality 

factors could make a valuable reference for researchers and the manufacturers to optimize 

their DBT systems. 

(4) A DBT reconstruction algorithm that models the motion of the x-ray source – 

In Chapter VI, we demonstrated the shift-variance of the source blur in DBT. The shift-

variance makes source blur very challenging to be incorporated in the reconstruction. Our 

simulation results also demonstrate that for a step-and-shoot DBT system with a typical focal 

spot size, the effect of source blur is insignificant. As a result, for the continuous-motion 

DBT systems, it is possible that we can ignore the physical shape of the finite-sized focal 

spot and only model the source blur contributed by the motion of the source, which is a 1-D 

effect that is much easier to implement than the complicated 2-D source blur PSF. If this 

effect were incorporated in the DBT reconstruction, it might significantly improve the image 

quality. It would allow the manufacturers of DBT systems to reduce the total scan time to 

reduce the potential motion blur of the breast during the scan and to improve the comfort of 

DBT imaging. 

(5) A quantitative FOM for the soft tissue –  
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In our study on the SQS-DBCN algorithm, we visually assessed the reconstructed quality of 

the soft tissue. An FOM needs to be established to quantitatively measure the image quality 

of the reconstructed soft tissue. Such an FOM has to take into account the effect of artificial 

and patchy images generated by over-regularized image reconstructions. The currently 

available FOMs such as the various formulations of detectability indices and model observers 

are not sensitive to the subtle texture changes and distortions although some already include 

the power spectrum of the structured background. 

(6) Fast and convergent iterative reconstruction for DBT – 

In this dissertation, all our DBT images were reconstructed with limited number of iterations. 

We used SART with a limited number of iterations to avoid the amplification of noise since 

no regularization is applied. For the SQS-DBCN algorithm, we also performed a limited 

number of iterations. Due to the usage of the ordered-subset acceleration and Lu’s TPA 

removal algorithm, the cost function of the SQS-DBCN algorithm does not converge even 

after many iterations. The regularization of the SQS-DBCN algorithm is applied to each 2-D 

slice separately. A well-designed 3-D regularization method might further improve the 

quality of the converged DBT image. Such an algorithm also needs to be optimized to be 

computationally efficient so the computation time to obtain the converged image is practical 

in clinical settings. 
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