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To that which was there when no one else was.
That warmed my soul when it was cold.

That brought light to the darkness of my mind.
That which brought me joy during my bleakest moments.

That’s right.
To coffee.
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PREFACE

Chapters 2-5 have each been written as separate manuscripts. Given this, there

may be some repetition of presented material, particularly in the methodology of the

studies.
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A.1 Shown is a simplified hand-drawn cartoon illustrating the motion
strategies of a hopper with PEA. In the idealized case of having no
foot mass and no damping, losses arise only through collision losses
in the motor inertia and from negative motor work. The PEA hopper
can eliminate positive motor work (solid lines) by ensuring that the
leg and the main body have the same velocity at touchdown. The
associated motion strategy lets the leg extend passively during flight
until the spring naturally stops it, and then uses the motor force to
‘clutch’ it. This ‘clutching’ is released shortly before touchdown to
match the leg velocity to the main body velocity. When optimiz-
ing for electrical losses (dashed lines) the necessary ‘clutching’ force
would lead to high costs. It is thus more efficient to allow the spring
to oscillate freely during flight. That strategy can lead to collision
losses that require active forces to re-inject energy. Only for selected
values of the no load speed ¯̇u, the leg spring oscillation and ballistic
motion of the main body are matched in phase, such that the leg and
the main body have the same velocity at touchdown (dotted lines). 104

A.2 Comparison of theoretical cost predictions (solid lines) with numeri-
cal optimization results (dots). Shown are: PEA positive motor work
(a), SEA positive motor work (b), PEA electrical losses (c), and SEA
electrical losses (d). Results for hopping with a massless foot are
shown in blue and for a foot with mass in red. The labels I-V refer
to the examplary optimal motions shown in Figures A.3 and A.4. In
general the theoretical predictions closely match the optimizer out-
put. This confirms that the optimizer is outputting realistic results.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

A.3 Shown are optimal motion and force profiles for PEA with a mass-
less foot. When optimizing for positive motor work, the actuator
‘clutches’ the spring during flight (shown for ¯̇u = 1.5

√
log). In con-

trast, when optimizing for electrical losses, the leg is oscillating freely
during flight. For ¯̇u = 1.5

√
log, leg and main body motion are not

matched in phase and a collision occurs. Such a phase matching
can be achieved, for example, when the no-load speed is reduced to
¯̇u = 1.1

√
log. In this case, no collision happens at touchdown and no

energy is lost. Consequently, there is almost no motor force needed to
sustain a continuous hopping motion. These numerical results closely
match the predictions shown in Figure A.1 . . . . . . . . . . . . . . 107

A.4 Shown is the optimal motor position u for SEA with a foot with mass.
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ABSTRACT

There exist many open design questions in the field of legged robotics. Should

leg extension and retraction occur with a knee or a prismatic joint? Will adding

a compliant ankle lead to improved energetics compared to a point foot? Should

quadrupeds have a flexible or a rigid spine? Should elastic elements in the actuation

be placed in parallel or in series with the motors? Though these questions may seem

basic, they are fundamentally difficult to approach. A robot with either discrete choice

will likely need very different components and use very different motion to perform at

its best. To make a fair comparison between two design variations, roboticists need

to ask, is the best version of a robot with a discrete morphological variation better

than the best version of a robot with the other variation?

In this dissertation, I propose to answer these type of questions using an opti-

mization based approach. Using numerical algorithms, I let a computer determine

the best possible motion and best set of parameters for each design variation in order

to be able to compare the best instance of each variation against each other.

I developed and implemented that methodology to explore three primary robotic

design questions. In the first, I asked if parallel or series elastic actuation is the

more energetically economical choice for a legged robot. Looking at a variety of force

and energy based cost functions, I mapped the optimal motion cost landscape as

a function of configurable parameters in the hoppers [134]. In the best case, the

series configuration was more economical for an energy based cost function, and the

parallel configuration was better for a force based cost function. I then took this

work a step further and included the configurable parameters directly within the

optimization on a model with gear friction [133]. I found, for the most realistic cost

function, the electrical work, that series was the better choice when the majority

of the transmission was handled by a low-friction rotary-to-linear transmission. In

the second design question, I extended this analysis to a two-dimensional monoped

moving at a forward velocity with either parallel or series elastic actuation at the hip

and leg [132]. In general it was best to have a parallel elastic actuator at the hip, and

a series elastic actuator at the leg. In the third design question, I asked if there is an

energetic benefit to having an articulated spinal joint instead of a rigid spinal joint

xvii



in a quadrupedal legged robot [135]. I found that the answer was gait dependent.

For symmetrical gaits, such as walking and trotting, the rigid and articulated spine

models have similar energetic economy. For asymmetrical gaits, such as bounding

and galloping, the articulated spine led to significant energy savings at high speeds.

The combination of the above studies readily presents a methodology for simul-

taneously optimizing for motion and morphology in legged robots. Aside from giving

insight into these specific design questions, the technique can also be extended to a

variety of other design questions. The explorations in turn inform future hardware

development by roboticists and help explain why animals in nature move in the ways

that they do.
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CHAPTER I

Introduction

1.1 Motivation

In recent years, the field of legged robots has made remarkable advances. Re-

searchers have made great strides in achieving dynamic locomotion in legged robots

[104, 44, 96, 116]. There have been significant improvements in legged robotic control

[101, 127, 103, 32] and design [61, 43, 121]. Through all of these improvements, the

field is steadily approaching the point where legged robots are able to perform a vari-

ety of tasks that will aid humans. They are approaching the ability to aid on disaster

missions [74] and perform jobs that are unsafe for humans [60]. To continue pushing

the field forward, energetics must also be improved. Though robots are becoming

more energetically economical [13, 83, 58], the more versatile designs still do not yet

approach the energy values of animals of comparable size [107]. Furthermore, the

vast majority of legged robots that exist today depend on a wall outlet to provide

power [81, 114, 93]. To get to the point that robots are able to help humans in our

many tasks, we need to remove this tether.

Improving legged robot energetics is a fundamentally difficult problem. Within a

robot, there are an immense amount of configurable parameters and actuation strate-

gies. Many roboticists, seeking to take advantage of the energetically economical

motion that animals exhibit across a wide range of speeds [57, 51, 85], design their

robots based on animals [80, 10, 64]. The motivating idea is that features that are

useful in nature should be similarly useful in robotics. However, nature has significant

constraints that are not necessarily present in robotics. For example, quadrupedal

animals have little movement in the anterior section of their spines [115], possibly due

to their respiration systems, and favor the synchronization of breathing and locomo-

tion [18]. Evolutionary pressures also constrain animals to particular morphologies
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[36]. Furthermore, there are significant differences in elasticity and actuation between

robotics and nature.

The differences between nature and legged robotics open up a fundamental design

question: how should roboticists improve robotic energetics? There are two primary

avenues that roboticists can take. Roboticists can improve robotic morphology, or,

they can change the motion of the robot.

Broadly speaking, roboticists have two routes within the realm of robotic mor-

phological changes. Within the robot there are many configurable parameters that

can be adjusted to improve energy usage. First, they can change parameters that

are able to vary smoothly. Roboticists can choose the motors that provide the best

trade-off between weight, power, and efficiency. They can choose the transmission

system that allows them to provide large torques without sacrificing speed. Masses

of different segments can be reconfigured to best utilize inertial forces [10]. To avoid

excessive motor torques, large inertias can be avoided, and mass can be moved closer

to the actuation source [61]. Springs can be incorporated to store and release en-

ergy passively [131]. The spring constants and damping ratios can then be adjusted

to obtain desired oscillations. Secondly, roboticists can also conduct discrete design

comparisons. These represent fundamental structural changes in the robot that do

not vary smoothly. For example, changing the configuration of a motor and a spring

in a leg joint [45].

For a given robot, roboticists can also improve energetics by changing the motion

to achieve desirable characeristics. Here they again have two routes. First, they

can choose the best motion within a particular footfall pattern [13]. For example,

choosing to apply increased torque during stance, or allowing the legs to oscillate

during swing. Improved control strategies such as these can also be used to leverage

motions that lower collision losses, decrease damping, and minimize the negative work

performed by the motors. Roboticists can take advantage of the natural dynamics of

their system to minimize motor input [83]. That is, they can use the passive interplay

of gravity, inertia, and spring oscillation to move economically. Second, roboticists

can improve legged robot energetics by utilizing multiple gaits [130]. This practice is

inspired by nature [57], and allows efficient locomotion across a wide range of speeds.

In reality, the way that a robot moves and the way that is built are intrinsically

related. The choice of parameters clearly affects the energetically optimal motion.

Choosing a certain mass distribution affects the ways in which gravity will interact

with the robot. Choosing certain springs will change the natural frequencies of os-

cillation of the robot, which will in turn affect how the springs can be used in an
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economical way. The parameters and motion choice will decide which gaits are opti-

mal at which speeds, and when one should transition among them. The two avenues

mutually affect each other, and therefore, to build the most energetically economical

robots, they must be modified simultaneously.

The central tenet of this proposal is that, to build the best possible legged robots,

we must simultaneously optimize the motion and morphology of robots. In the process

of exploring this simultaneous optimization, the goal is to understand the relationship

between the two avenues and explore a set of basic questions. How do the parameter

choices affect the motion? How much of the motion is driven by natural dynamics?

Why are certain gaits favored over others? How can we compare different morpholo-

gies in order to find the best choice? Through exploring these broad questions, the

goal is to improve legged robots, and also, to gain insight into why humans and

animals move the way they do.

1.2 State of the Art

The vast majority of existing work in improving legged robots has focused on

individually improving either the continuous or discrete aspects of morphology or

motion respectively.

In the realm of improving continuous parameters, for example, different spine

stiffness distributions were explored by [136] during quadrupedal bounding gaits to

find the fastest running speed. [26] looked at the effect of changing passive exoskeleton

spring constant values on metabolic cost. [10] optimized the structure of various leg

components on the MIT Robotic Cheetah to minimize leg weight. [131] looked at

various knee compliance values to improve the energetics of a bipedal robot. Other

researchers have sought to compare discrete morphological variations. [45] compared

different actuation and elasticity configurations to find which was most economical

for a model of a human ankle joint exoskeleton. [49] compared two 2-dimensional

quadrupedal bounding models.

Still others have looked at improving motion. Among the studies that sought to

find the best motion within a particular footfall pattern, [66] optimized the motion of

a central pattern generated bounding gait to optimize performance. [20] used offline

optimization to select a feedback controller that improved the stability of their walking

gait. [12] utilized optimization on a simple event-based controller to achieve human-

like energetic economy in a walking gait. Similar to nature, these type of studies can

take advantage of rigid inverted pendulum motion at low speeds [1] and spring loaded
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inverted pendulum motion at higher speeds [15] to move passively. Researchers have

also looked at utilizing multiple gaits on a single robot. Both humans [29] and horses

[57] transition from one gait to another in order to move economically across a wide

range of speeds. Similar gait changes could prove useful for robotics as well. [25]

and [123] found that simple bipedal models also benefit from walking at low speeds

and running at high speeds. [71, 125] have shown similar benefits to changing gaits

in quadrupedal robot models. In our own work, we have also found a benefit to

transitioning gaits in a conceptual quadrupedal robot model [130].

Ideally, roboticists would be able to, in a single study, simultaneously optimize

for all aspects of robotic motion and morphology. They would be able to, at a given

speed, automatically choose the best discrete morphology, with the best parameters,

and the best motion, moving at the best gait. As far as we know, no studies have

attempted this sort of combined optimization. The reason is because it is an incredibly

complex problem. This section will illustrate that complexity through a discussion

of robotic gait, and, introduce the studies that have begun exploring the notion of

simultaneous optimization of motion and morphology.

Gait

During forward locomotion, humans and animals move in complex patterns. These

patterns, known as gaits, involve a complex interplay of oscillations and precise foot

placement that is periodically interrupted by collisions. The particular choice of gait

depends on the animal, the speed of locomotion, and the terrain [22, 57, 86]. While

the benefits and classification of these gaits have been researched in detail [52, 53],

their origin is not well understood.

One hypothesis is that gaits arise due to energetic considerations. An important

analysis of gait energetics was published by Hoyt & Taylor [57]. Hoyt & Taylor

recorded the cost of transport (COT) of horses walking, trotting, and galloping on

a treadmill. When plotting this COT as a function of locomotion speed and gait,

one can identify three distinct curves. The walking and trotting curves show a clear

minimum for different locomotion velocities (Fig. 1.1). Going faster or slower than

this optimal speed, inevitably increases energy consumption. Furthermore, the curves

intersect, meaning that at different speeds, different gaits require the least amount of

energy. When the horses were allowed to self-select their velocity within a particular

gait, they tended to move near the energetic minima. These experiments have been

repeated by different groups [85], and extend to human locomotion [29], where they

have shown that walking is more energetically economical at low speeds, and running
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Figure 1.1: In this adaptation of a figure from Hoyt and Taylor [57], the metabolic
cost of transport (COT) is shown as a function of forward speed and gait selection
for horses moving on a treadmill. For each gait, an optimal velocity can be identified
for which the COT is minimized. When allowed to self-select their locomotion speed
(shown as the grey histograms), the animals choose velocities that correspond to these
minima.

at higher speeds.

Any experiment like that of Hoyt & Taylor can only show a correlation of preferred

locomotion speeds and energetic minima. It cannot explain causality, and allows for

multiple interpretations of what is observed.

One line of reasoning is that some external factor causes the horses to prefer

certain speeds. Through adaptation, they then become better at locomotion at those

speeds. Such a factor could be, for example, the preferred locomotion speed of a herd

of horses. This external influence would encourage horses to locomote primarily at

certain speeds. Over time, they would learn better how to move at these speeds,

making them inherently more efficient through a neurological adaptation. In this

case, the energetic optima would only be a secondary effect. In this interpretation,

the increase in energetic cost when going faster or slower is caused by forcing the
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horses to execute a motion that they normally do not use and that they have not

learned equally well. This idea requires a process of adaptation, and can be extended

beyond simple learning.

A second line of reasoning is that some external factor causes certain speeds to

be efficient. The horses then move at those speeds to minimize energy usage. This

conclusion implies that this factor has nothing to do with the horses’ preference. This

factor could be a mechanistic explanation. That is, the biomechanical dynamics of

the horses could physically favor certain locomotion speeds. Studies in nature have

provided some evidence for this explanation. These studies state that an animal’s

structure and the way that it moves are closely linked [9, 55, 54]. Animals utilize

the dynamics that arise from their morphology to move economically at a variety

of speeds. For example, at low speeds, humans use a nearly straight stance leg in

an inverted pendulum like motion [23]. At high speeds, they utilize the elasticity in

their joints to move in a spring loaded inverted pendulum like motion [15]. Similarly,

during the swing phase, humans utilize the passive double pendulum dynamics of their

legs to swing forward and extend before touchdown [87]. Utilizing these principles,

entirely passive mechanical walking machines have been made. These were explored

conceptually in [87, 83] and shown in hardware by [27, 94] among others.

Ultimately though, it is difficult to isolate these mechanistic effects by studying

nature. Model based studies could, however, focus exclusively on these effects. We

propose an optimization-based approach. This approach finds the motions that are

most economical for a given structure’s dynamics, with no notion of that legged

system’s preference.

Optimal Control in the Study of Legged Locomotion

The role of energy in determining gait has been explored in a model-based ap-

proach. In these studies, the motion is entirely driven by the interplay of a chosen

controller and the system dynamics; there is no adaptation influence. Optimization

within these model-based studies provides an interesting tool that removes pre-defined

motion bias from the energetics. [25] showed that for a simple actuated bipedal model

with articulated knees, it is most economical to walk at low speeds, and run at high

speeds. [123, 8] showed similar results on simple bipedal models. [71, 125, 92] demon-

strated that quadrupedal robots could also potentially benefit from utilizing multiple

gaits.

In our own work, we have explored the energetic utility of gaits on a significantly

more complex model driven by optimal control [130]. I worked with my colleague
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Weitao Xi as we built on the past studies discussed above, to see if the gait principles

from nature held for a legged robotic model with added complexities such as elasticity,

damping, and a motor model. To keep the results as general as possible, we looked

at conceptual models with prismatic legs (Fig. 1.2). While these models are certainly

simpler than a full robot, they are still capable of realistic robotic motion.
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Figure 1.2: In [130], optimal gaits are identified for the planar models of a series
elastic actuated biped (a) and quadruped (b). The results show that, similar to
nature, switching gaits as locomotion velocity varies leads to considerable reductions
in energy consumption.

For brevity, I will discuss only the quadrupedal model. This model has mass in

the feet and upper legs, and therefore swing leg dynamics. When a contact closes,

a collision happens and velocities change instantaneously. The system is therefore

hybrid and has collision losses. The model has Series Elastic Actuators. For these
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actuators, the proximal end of the spring in these models is driven by a DC motor,

and we model its associated dynamics.

To obtain parameters and constraints necessary for the geared DC motor models,

data was plotted from 132 Maxon motors in the RE and EC series. A logarithmic

regression was then fit to that data. From there relationships were obtained among

motor mass and the speed torque gradient, the rotational inertia of the motor rotors,

the maximum torque of the motor, and the maximum speed of the motor. A motor

mass was then chosen comparable to the value that we used in our previous hardware

[112, 61].

The model also has springs that are capable of passively storing and releasing

energy. These springs have associated damping losses. In total, the quadrupedal

model has 19 generalized coordinates, corresponding to 38 continuous states and

24 parameters. Any optimization problem with a model like this is non-convex,

nonlinear, and again, hybrid. Still, there is yet another difficulty, how are gaits

determined for a model like this?

Choosing the contact sequence is a problem of immense combinatorial complexity.

For example, beginning in flight, the robot can place one of the four feet on the ground.

From there, that foot can either lift off the ground, or any other can be placed on

the ground. The combinations continue to grow immensely from there. Even for this

problem that just considers the continous and discrete aspects of optimal motion,

there is an immensely difficult task ahead.

To deal with these many issues, we chose an optimal control approach. That

ensured that we didn’t bias the results towards a particular motion by picking a

particular control system. Within this optimization, we constrained the model to

move at an average forward velocity. We enforced periodicity as a constraint. We

enforced a number of additional constraints including ground clearance, limits on

the motor velocity and torques, and realistic limits on joint positions. We did all of

this while minimizing the COT. In our case we used the positive mechanical work

performed by the motors, divided by the distance traveled. This cost is equal to

the sum of the damping losses, collision losses, and negative work performed by the

motors. We performed this optimization using two optimization schemes. In the first

we used a modified version of the direct collocation framework proposed by Posa and

Tedrake [98]. The direct collocation scheme, does not require the user to pre-define

a contact sequence. It does that by solving the dynamic equations on a discrete grid

in which impact forces are averaged over an extended time step. This removes the

combinatorial contact problem, but the integrator in this method is not very accurate.
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We therefore supplemented it with the multiple shooting optimization framework

MUSCOD [17, 78, 30]. In that method you have to pre-define the contact sequence,

but, the integrator is much more accurate. We utilized 40 shooting intervals, and the

optimizer was responsible for enforcing continuity at the connection points of those

shooting intervals. Generally, we would find an initial set of solutions and footfall

sequences using Posa and Tedrake’s method, and then confirm the results with the

more accurate multiple shooting method.

In that process, we ended up looking at six different gaits. Four-beat walking, the

traditional walking gait that quadrupeds perform, in which phases of triple stance

alternate with phases of double stance. We also have two beat walking, which is like

a grounded trotting gait, but with double hump ground reaction forces. This is a

gait that we did not initially consider looking for, but was discovered by the direct

collocation optimizer. We have tölting, a gait performed by Icelandic horses in which

phases of double and single stance alternate. We have trotting, which, since our model

is planar, is identical to pacing. These four are symmetrical gaits, for which we can

simulate half of the stride and then mirror it. We also looked at the asymmetrical

gaits: bounding and galloping. In this particular study, this is the traversal gallop

favored by horses. In which there is a single air phase.

We then mapped the cost of transport on the y axis as a function of the average

forward speed (Fig. 1.3). First off, we see that this robot clearly has an energetic

benefit from switching gaits. At low speeds, the traditional quadrupedal walking gait

is optimal, and at higher speeds, the robot should switch to trotting. At the highest

speeds, galloping has similar cost to trotting. We also find that two-beat walking,

while slightly higher in cost, at all speeds, had comparable cost to the more traditional

four-beat walk, explaining why it might have been found naturally by our optimizer.

Similarly, tölting is always slightly worse than trotting, but given its proximity, the

results might explain why it appears naturally for some horses. Lastly we find that

bounding, for this range of speeds, was never the most energetically favorable choice.

Given that these robotic models have no notion of a factor like preferred herd

speed, or the resulting neurological adaptation that would go along with it, we can

say that the energetic preference for different gaits at different speeds is mechanistic.

That is, the dynamics that result from their robotic structure lead to energetics that

favor particular gaits at particular speeds.
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Figure 1.3: The cost of transport of the quadruped robot for different gaits with
varying forward speed. These gaits were discovered using the multiple shooting im-
plementation. Note that for slow velocities (< 0.65

√
log), four-beat walking is the

optimal motion. At intermediate speeds, trotting becomes optimal. Galloping and
trotting have nearly identical cost values at high speeds (> 0.9

√
log). Bounding is

not optimal at any speed.

Simultaneous Optimization of Motion and Morphology

Our prior work [130], and work using similar techniques on more complex models

[120], illustrates the difficulty in conducting an optimization on these highly non-

linear and non-convex systems, even when just optimizing for motion. Still, the most

energetically economical robot must use a motion that is best suited for its param-

eters, which should be optimally chosen to minimize energetic losses. Additionally,

multiple gaits should be exploited to allow economical motion across a wide range

of velocities. The best robotic design must simultaneously be optimal in all aspects

of motion and morphology. As detailed earlier in this section, the vast majority of

existing work in this field seeks to improve upon each of these facets independently.

There is, however, a growing body of work that explores these issues of motion and

morphology simultaneously. For example, [56] optimized the length and position of

segments as well as the motion in a single optimization of a sit-to-stand device to help

elderly patients. In [88] limb lengths, positions, masses, and inertias were optimized

simultaneously with the motion of a humanoid model to improve stability. Similarly,
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[47, 40, 97, 24] work to optimize the motion and morphology of legged robots to a

particular task. Additionally, a number of studies within the field of evolutionary

robotics have conducted morphological optimizations. [119, 19, 90] had discrete mor-

phological variations of creatures compete to satisfy a goal. In automatically creating

discrete variations, and analyzing which variations were best able to complete the

task, they were able to move towards the best design for that task. [97] used a ge-

netic algorithm to simultaneously alter the controls and mass distribution of a biped

to find stable locomotion. Still, to our knowledge there has been no methodology

developed for conducting design comparisons while simultaneously optimizing for the

continuous and discrete aspects of motion and morphology in legged robots.

1.3 Contributions

In this work, I seek to expand on these pioneering efforts by developing a method-

ology for evaluating the best choice in discrete design comparisons using the simul-

taneous optimization of motion and morphology. I developed and implemented that

methodology throughout four projects.

In the first, I compared the two most common implementations of actuation and

elasticity in legged robots. I asked if parallel or series elastic actuation is the more

energetically economical choice for a one-dimensional hopping robot. I compared the

two configurations for three cost functions: the positive work done by the motors, the

thermal losses in the motors, and a combination of the two previous cost functions,

the electrical work. I then mapped the optimal motion cost landscape as a function of

configurable parameters in the hoppers [134]. In the best case, the series configuration

was more economical for the positive motor work, the parallel configuration was better

for thermal losses, and series was best for the electrical work.

In the second project, I took this work a step further and included the configurable

parameters directly within the optimization [133]. Additionally, I included gear fric-

tion in the models. I again conducted the analysis for three cost functions, but this

time, also looked at three transmission cases: frictionless, small rotary-to-linear trans-

mission, and large rotary-to-linear transmission. I found, for the most realistic cost

function, the electrical work, that series was the better choice when the majority of

the transmission was handled by a low-friction rotary-to-linear transmission. Parallel

was the better choice for a smaller low-friction rotary-to-linear transmission.

In the third project, I extended this analysis to a two-dimensional monoped mov-

ing at a forward velocity with either parallel or series elastic actuation at the hip
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and leg [132]. Yet again, the analysis was carried out for the three cost functions

discussed above. In general it was best to have a parallel elastic actuator at the hip,

and a series elastic actuator at the leg. That configuration also had feasible optimal

solutions at higher velocities.

In the final project, I looked at a discrete morphological comparison that incor-

porated the continuous and discrete aspects of motion. I asked if there is an ener-

getic benefit to having an articulated spinal joint instead of a rigid spine joint in a

quadrupedal legged robot [135]. I found that for asymmetrical gaits, the articulated

spine led to significant energy savings at high speeds, primarily due to improved leg

recirculation. Additionally, the articulated spine allowed for motion at higher speeds.

The combination of the above projects forms a methodology for the simultaneous

optimization of both the discrete and continuous aspects of motion and morphology.

The work presented in this dissertation not only develops this methodology, but also

gives answers about specific design questions that are common in the field of modern

legged robots, and, gives insight into why animals in nature move in the ways they

do.
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CHAPTER II

A Comparison of Series and Parallel Elasticity in a

Monoped Hopper

2.1 Introduction

1 Walking, running, and other modes of legged locomotion are almost exclusively

based on movements that are periodic in nature and accompanied by repeated fluc-

tuations of potential and kinetic energy. Ideally, the associated energetic fluctuations

are contained within the system itself. Such systems can avoid unnecessary negative

actuator work by choosing intelligent motion trajectories, and by passively storing

and recovering excessive energy in compliant elements. Human in-place hopping, for

example, can accommodate 70% of the fluctuations in kinetic and potential energy

through energy storage in the Achilles tendon [79].

There is broad agreement that elastic elements are similarly useful in legged

robotic systems [62] as they are in nature [6]. Springs are used in robots for two

main purposes: at the hip to tune the leg swing dynamics to a desired frequency

[128], and in the legs to mimic the behavior of a Spring Loaded Inverted Pendulum

model (SLIP) which stores large amounts of energy during the stance phase of a run-

ning gait [15]. The efficacy of both approaches has been studied extensively using

conceptual passive dynamic models [117, 39, 111]. Of course, real robots do require

actuation to compensate for friction, negative actuator work, and collision losses,

as well as to enable stabilizing feedback control. This actuation can be included in

parallel or in series to the elastic element. So far, no consensus has been reached

on which is the more energetically efficient of these two alternatives. Robotic im-

plementations exist with both parallel elastic actuation (PEA) [67] and series elastic

1This chapter has been previously published in the 2015 IEEE International Conference on
Robotics and Automation [134].
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actuation (SEA) [46, 59, 113] (Fig. 2.1).

(a) ( )(b)

image courtesy of  J.G.D. Karssen

Figure 2.1: Both parallel and series elastic actuators have been implemented in legged
robotics, but there is still no consensus about which is the more energetically efficient
of the two. ScarlETH (a) makes use of series elastic actuators in the knee and hip
joint [62]. Phides (b) uses a parallel elastic actuator in the knee [67]. Phides also
contains a series elastic element and a clutch to prevent damage during collisions. Our
work looks to gain a deeper understanding of the benefits of each through a detailed
analysis on a conceptual monopod hopper.

The main argument in favor of series elastic actuation is the fact that in SEA, joint

motion and actuator motion are fully decoupled. This decoupling implies that the

actuator inertia does not add to the joint inertia and that gears and other components

are fully protected from impacts. In PEA, on the other hand, the actuators have to

produce only a part of the overall joint torques, as the torques created by the parallel

springs act additively. This might greatly reduce the thermal losses associated with

force creation; particularly for electrically driven systems. On the downside, the

spring torques might counteract the actuator torques when moving a joint actively;

for example, for leg retraction during swing.

At a closer look, the debate becomes more complicated: clutches, small serial elas-

tic elements, and other additional mechanical components, can help overcome some

of the aforementioned shortcomings [48]. The stiffness of the employed compliant

elements will influence the overall energetics and must be chosen differently for SEA

and PEA. Similarly, many effects, such as inertia and thermal losses, depend on the
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selected transmission ratio, and choosing a better suited gear box can thus help al-

leviate their impact. Most importantly, a suitable adaptation of input and motion

trajectories allows for the exploitation of the properties of each actuation concept

and could thus have a huge impact on the overall power consumption. The actuator

inertia in an SEA, for example, can be used to temporarily store kinetic energy [110],

and the need for leg retraction with PEA can be reduced by a smart choice of motion

trajectories. Due to their differing strengths and weaknesses, a SEA driven robot will

hence look and move differently than a PEA driven robot. In other words, rather than

asking if one particular robot with SEA is better than the same robot with PEA, we

must ask whether the most energetically economical robot with SEA is better than

the most energetically economical robot with PEA – given that both are moving in

an optimal fashion.

To answer that question, we applied optimal control and parameter optimization

to compare SEA and PEA in conceptual models of a monoped hopper, which can

be regarded as the archetype of running robots. By choosing energetically optimal

trajectories, and studying an optimal choice of spring stiffnesses and gear ratios, we

show theoretical upper bounds on the energetic economy of each of the concepts.

The conceptual models that we employ allow a broad generalization of the obtained

results, while being detailed enough to produce realistic values of power consumption.

Our work shows that a SEA hopper with optimal ideal transmission and stiffness

values has comparable or better energetic efficiency than the optimal PEA robot

when regarding positive actuator work, electrical losses, and positive electrical work.

These results are in agreement with our theoretical predictions.

2.2 Methods

2.2.1 Model

As the basis of our study, we use the simple model of a vertical hopper [108]. It

consists of a main body with mass m1 and a foot segment with mass m2. The motion

of the hopper is restricted to a pure vertical movement. Its state is described by

the position and velocity of the main body (given by y and ẏ) and the length of the

leg (l and l̇). To create realistic motions, it is assumed that l is constrained to be

0.5lo < l < 1.15lo (where lo is the uncompressed leg length). The motion of the foot is

coupled to the main body by a spring with stiffness k and damping ratio ζ (Fig. 2.2).

Having damping in the springs and a foot with mass means that the system is not

energetically conservative. As a result, positive net work must be performed by the
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actuators over the course of a stride. This work is created by an electric DC motor

that produces a torque of Fmot and has a reflected inertia of jmot. This actuator is

either connected in series with the spring (SEA) or in parallel to the spring (PEA).

In the SEA case, the spring is rigidly attached to the foot on one end, and attached

to a servo-controlled DC motor on the other end. An additional pair of states (u and

u̇) describes the motion of this actuator. To create realistic behaviors, the actuator

motion is constrained within −0.15lo < u < 0.15lo. For the SEA case, the generalized

coordinate vector has three components: qSEA = (y, l, u)T . Since the actuator is in

series with the spring, the joint force, F , is equal to the force produced by the spring:

F = k (lo + u− l) + b
(
u̇− l̇

)
(2.1)

b is the damping coefficient of the spring, which is computed from the damping ratio

ζ. The mass matrix for this system is given by

MSEA =

m1 +m2 −m2 0

−m2 m2 0

0 0 jmot

 . (2.2)

The dynamics are driven by the generalized torques τ SEA = (0, F, Fmot − F )T .

For PEA, the spring is rigidly attached to both the foot and the main body. The

actuator is mounted in parallel to this spring, such that the total joint force, F , is

the sum of the spring force and the actuator force:

F = k (lo − l) + bl̇ + Fmot (2.3)

Since actuator motion and leg motion are coupled, the vector of generalized coor-

dinates qPEA = (y, l)T is only two dimensional. The reflected actuator inertia jmot

acts along the coordinate of l, which leads to the following mass matrix for the PEA:

MPEA =

[
m1 +m2 −m2

−m2 m2 + jmot

]
(2.4)

The dynamics are driven by the generalized torques τ PEA = (0, F )T .

In both variations, all states and parameters are normalized with respect to total

mass mo, uncompressed leg length lo, and gravity g (Table 2.1).

During flight, the motion of the hopper is governed by the equations of motion

Mq̈ = h + τ . The differentiable force vector h includes only the gravitational terms

and is given by hSEA = (−(m1 + m2)g,m2g, 0) and hPEA = (−(m1 + m2)g,m2g),
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respectively.

For both models, the main body velocity and the leg retraction rate must be equal

during ground contact (ẏ = l̇). That leads to the modified EOMs of ÿ = l̈ = F
m1
− g

for SEA and ÿ = l̈ = F
m1+jmot

− m1

m1+jmot
g for PEA. This constraint implies that at the

moment of touch-down, a collision brings the foot velocity vfoot = ẏ+ l̇ to zero. This

collision is associated with energetic losses Ecol., which differ between SEA and PEA:

ESEA,col. =
1

2
m2v

2
foot (2.5)

EPEA,col. =
1

2

(
m2 +

jmotm1

m1 + jmot

)
v2foot.

For PEA, the actuator inertia contributes to the collision.

Since we are interested in the energetic efficiency of the two actuation concepts,

we included a detailed motor model in our simulation. We modeled the actuators as

geared DC-motors [76]. To simplify the analysis, we neglected the electrical dynamics

due to the motor inductance as well as friction in the gears. For a given supply voltage

Uo, the maximal input power of a DC motor is given by Pmax = (Uo)2

R
, and its no-

load-speed by u̇max = Uo
nkT

. In these equations n is the transmission ratio, kT the

motor constant, and R the armature resistance. Rather than explicitly defining Uo,

n, kT , and R, we used Pmax and u̇max to parametrize the motor. Therefore u̇max is a

single parameter that represents the gear box. With this, the electrical losses can be

expressed as a function of the actuator force Fmot:

Ploss = F 2
mot

u̇2max
Pmax

(2.6)

This equation implies that thermal losses are proportional to the square of the no-

load-speed u̇max (and inversely proportional to n2). The no-load-speed is an important

free parameter in the optimization since its value has a direct impact on the thermal

losses as well as on the reflected motor inertia jmot. This inertia can be computed as

jmot =
junsc.
u̇2max

(2.7)

It is based on an unscaled inertia junsc. that is given by junsc. = jrotor
U2
o

k2T
[110]. This

reduces all important motor equations to the two parameters Pmax and junsc., which

were based on an existing robotic hopper [62] (Table 2.1).
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Figure 2.2: Using optimal control, this study investigated whether a legged robot is
more efficient with series elastic actuation (SEA, left) or parallel elastic actuation
(PEA, right). For different values of transmission ratios and spring stiffnesses, we
identified optimal periodic motion trajectories in a numerical optimization framework.
These nominal motions represent upper bounds on the energetic efficiency of each
actuator variation and thus allow a fair comparison between the two concepts.

Table 2.1: Model parameters expressed with respect to total mass mo, leg length lo,
and gravity g.

m1 = 0.95 mo m2 = 0.05mo ζ = 0.2
Pmax = 24mog

√
glo junsc. = 0.6moglo

2.2.2 Cost Functions

To measure the energetic efficiency of each actuation variation, we used three cost

functions: positive actuator work, electrical losses, and positive electrical work. All

cost functions are expressed as an integral over a single hop, from time t = 0 until

t = T .

2.2.2.1 Actuator Work

The positive actuator work refers to the positive mechanical work that is per-

formed by the actuator. For the series elastic actuator, it is defined as:

cact =

T∫
0

max (Fmot · u̇, 0) dt (2.8)
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For the parallel elastic actuator, the actuator velocity is equal to the joint velocity.

Therefore the positive actuator work is defined as:

cact =

T∫
0

max
(
Fmot · l̇, 0

)
dt (2.9)

2.2.2.2 Electrical Losses

The electrical losses cost function expresses the thermal losses in the motor. For

both the parallel and series cases it is given by:

closs =
u̇2max
Pmax

T∫
0

F 2
motdt (2.10)

2.2.2.3 Electrical Work

Electrical work is the integral of the positive electrical power used by the actuator.

It combines mechanical work and electrical losses. For the series case, the electrical

work is equal to:

cel =

T∫
0

max

(
Fmotu̇+ F 2

mot

u̇2max
Pmax

, 0

)
dt (2.11)

and for the parallel case, it is equal to:

cel =

T∫
0

max

(
Fmot l̇ + F 2

mot

u̇2max
Pmax

, 0

)
dt (2.12)

2.2.3 Optimal Control

For these models and cost functions, energy efficient motions were generated via

optimal control. To this end, we analyzed motions from apex transit to apex transit,

and enforced periodic boundary conditions to simulate a continuous hopping motion.

Hopping height was fixed to 1.3 lo. The motor force Fmot (t) was parametrized by a

piecewise linear representation, and both l and u were constrained to be within their

admissible range of motion.

These assumptions and constraints were implemented in the multiple shooting op-

timization package MUSCOD [30] to obtain optimal force inputs and periodic states.

A range of optimizations was conducted for each actuator type and cost function,

while varying the spring stiffness in the range k = 10-100mog/lo and actuator no-

load-speed in the range u̇max = 0.05-5.5
√
log . Within this parameter-grid, successful

19



optimizations were used as initial guesses for neighboring grid points, and optimiza-

tions were initiated multiple times. This process ensured that each parameter com-

bination was tested multiple times with slightly different initial conditions and that

local minima were avoided.

2.3 Theoretical Predictions

This section provides broad theoretical predictions for the comparison between

PEA and SEA. For more detailed predictions and derivations, see Appendix A.

From an energetic point of view, the advantage of SEA is that the actuator inertia

does not contribute to the collision losses, which reduces the need for active actuator

work. The downside is that the full joint force F must be supported by the actuator,

which drives up the thermal losses in the motor. Avoiding this is usually stated

as the main benefit of PEA, in which the motor force acts only in addition to the

spring force. Yet, both collision losses and thermal losses, depend on the chosen

transmission. A larger transmission ratio decreases thermal losses, while driving up

the reflected actuator inertia.

2.3.1 Positive Actuator Work

Minimizing the positive actuator work is equivalent to minimizing the sum of the

collision losses, the negative actuator work, and the damping losses [110]. A variety of

strategies can be used in an optimal motion to minimize these losses (Fig 2.3). These

strategies require different motion profiles for SEA and PEA, and do not work equally

well for both actuator concepts. This difference is caused by the way the two actuator

concepts create net positive work. For SEA, the actuator force is dominated by the

force needed to balance the spring force F . To perform net work, an active actuator

motion u̇ is performed against this force. In contrast, in PEA the actuator motion u̇ is

directly coupled to the leg motion and cannot be chosen freely. Work is consequently

performed by a modulation of the motor force Fmot. Since this has only a small

influence on the compression velocity of the leg, it limits strategies that seek to reduce

damping losses in the spring. In a SEA, for example, the actuator remains at rest

during the first half of stance and then retracts during the second half. This retraction

reduces the expansion velocity of the spring and thus minimizes the damping losses,

which grow with the square of the spring extension Pdamp = b
(
l̇ − u̇

)2
. Since for a

PEA the two motions are coupled, this strategy cannot be applied and the overall

damping losses are larger.
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Figure 2.3: Shown are main body position (y, top), leg length (l, top), and actuator
motion (u, bottom) of a 1D hopper. Positive mechanical work was minimized while
constraining apex-transit to 1.3 m. The resulting motion extends the leg as much
as possible to reduce effective hopping height (I), minimizes damping by moving the
actuator at the end of stance (II), reduces negative work by keeping the actuator at
rest during the first half of stance (III), maximizes vertical momentum by maximally
extending the leg at apex transit (IV), and reduces collision losses by retracting shortly
before touch-down (V).

The actuator losses can be expressed as:

cact,SEA = CSEA + ESEA,col (2.13)

cact,PEA = CPEA + EPEA,col

where CSEA and CPEA are constants representing the sum of the negative actuator

work and damping losses for each case, and ESEA,col and EPEA,col are the collision
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losses as they are defined in eqn. (2.5).

PEA suffers from higher collision losses, as the reflected actuator inertia con-

tributes to the collision. From eq. (2.5), we can directly quantify these additional

losses as:

EPEA,col. − ESEA,col. =
v2foot

2

(
junsc.m1

m1u̇2max + junsc.

)
. (2.14)

These losses scale directly with the no-load-speed u̇max. The only way to compensate

for this is by reducing the impact velocity of the foot. However, this will increase the

negative actuator work and the retraction will pre-load the spring, which will lead

to faster spring compression rate, and therefore increased damping losses. We there-

fore expect that the additional collision losses are directly reflected in the necessary

positive actuator work.

2.3.2 Electrical Losses

Electrical losses are merely a function of motor force and only depend indirectly

on the performed work. To understand the implications of this cost function, let us

assume an energetically conservative motion, with a massless foot (m2 = 0) and no

damping in the springs (b = 0).

To sustain such a loss-less motion, a SEA simply has to hold the motor at a fixed

position (u̇ ≡ 0) while in a PEA the motor does not create any force (Fmot ≡ 0). In

the series actuation case, the optimal no-load-speed is thus u̇max = 0, which precludes

any thermal loss as they are given by eq. (2.10). In the parallel elastic case, on the

other hand, the optimal no-load-speed is u̇max = ∞, which prevents any collision

losses within the actuator (as then the motor inertia is zero, as given by eq. (2.7)).

This shows clearly, that different actuation concepts require different transmission

ratios.

In a more realistic consideration, actuators must perform some net positive work

to compensate for energy losses. This means that the SEA has to create motion

against the spring force F and that the PEA must apply an active force as the leg

is extending. Both requirements lead to a trade-off with respect to the transmission

ratio.

For a SEA that trade-off stems from the motor force needed to accelerate the

reflected inertia jmot of the motor. Since this inertia is inversely proportional to

u̇2max, it prohibits a no-load-speed that is too close to 0. The electrical losses can be

expanded to

closs =
T

Pmax

(
(m1gu̇max)2 +

(
junsc
u̇max

)2

σ2 (üact)

)
(2.15)
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in which the first term accounts for the force required to compensate for gravity over

the course of a hop and the second term accounts for the force required to create net

positive work (see [108], Chapter 4 for a detailed derivation). σ2 (üact) is the variance

of the active actuator acceleration, which is a consequence of the need for positive

net work and an active actuator motion. From this, we can identify an optimal

transmission ratio as:

u̇max =

√
junsc.σ (üact)

m1g
(2.16)

For PEA, the trade-off arises because an infinitly large no-load-speed would lead

to infinite thermal losses if the required motor force is not equal to 0. While u̇max

directly scales closs (eq. (2.10)), decreasing it introduces other unwanted effects. As

shown before, collision losses depend on the reflected actuator inertia according to

eq. (2.5) and increase for smaller u̇max. In addition, a substantial amount of kinetic

energy is stored in the reflected rotor inertia at the instance of lift-off (when the leg is

extending with maximal velocity). This stored kinetic energy scales with jmot = junsc.
u̇2max

,

and can lead to negative actuator work that is required to slow down and reverse the

extension of the leg. All these effects depend on the chosen motion profile and allow

for a large range of compensatory strategies. For example, the negative actuator work

needed to slow down the leg extension during flight can be conducted in part via the

leg spring and could be reused for leg retraction before touch-down. These strategies,

in turn, create secondary effects, such as an increase of the damping losses. This

makes a more detailed analysis of the optimal no-load-speed for PEA very difficult.

Still, we would expect that an optimal no-load-speed can be found that trades off

these requirements.

2.3.3 Electrical Work

Minimizing electrical work represents a trade-off between minimizing actuator

work and electrical losses. We thus expect that the result for this cost function

combines the characteristics of both previously discussed cases. In particular, we

hypothesize, that electrical work has a clear optimum for the no-load-speed.

2.4 Numerical Results

Using optimal control, we minimized each cost function for both SEA and PEA.

While spring stiffness was not considered as a factor in the analytical considerations

presented in the previous section, we included it in the numerical analysis to investi-
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gate potential differences between SEA and PEA.

As expected, SEA clearly outperformed PEA when considering positive actuator

work as a cost function (Fig 2.4). The ability to reduce damping and collision losses

favors the series elastic actuation concept. The losses showed a clear dependence on

the chosen no-load-speed and increased for slower actuators with a higher reflected in-

ertia. To compensate for this inertia, the optimizer discovered strategies that reduced

the amount of energy lost in the collision. For example, by retracting the leg in order

to decrease the relative velocity between the foot and the ground. Still, the general

trend of the resulting cost-values matched the predictions based on collision losses,

as the compensatory motion led to increased negative actuator work and damping

losses.
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Figure 2.4: Optimal values of the positive actuator work of a continuous hopping
motion are shown for varying parameter choices of leg spring stiffness and actuator
no-load-speed. In this comparison, SEA always has a lower value for positive actuator
work than PEA, independent of no-load-speed and stiffness. The increase in the cost
value for PEA at small values of the no-load-speed is indicative of the increased
collision losses that result from a higher reflected inertia. The shown predictions
(PEA: I, SEA: II) are based on eqns. (2.13), with fitted values for CSEA = 0.10moglo,
CPEA =0.13moglo, and v2foot = 0.53 log.

For electrical losses, we discovered a clear minimum for both PEA and SEA

as a function of the no-load-speed (Fig. 2.5). The global minimum PEA value of

0.0059moglo, occuring at a stiffness of 80mog/lo and a maximal no-load-speed of
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0.35
√
log is slightly lower than the minimum SEA value of 0.0136moglo, occuring at

a stiffness of 100mog/lo and a maximal no-load-speed of 0.35
√
log. This is a surpris-

ing result. An often hypothesized advantage of using PEA is that the spring force

and motor force act additively, which can greatly reduce the required motor force.

And since the electrical losses depend explicitly on the square of the motor force F 2
mot,

one would expect that a cost function based on electrical losses would strongly favor

PEA. In practice, however, the thermal losses of both concepts can be made nearly 0

with the correct choice of u̇max.
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Figure 2.5: Optimal values of electrical thermal losses are shown for varying pa-
rameter choices of leg spring stiffness and actuator no-load-speed. The theoretical
prediction of the SEA cost (I) from eq. (2.15) was fitted to the data in the figure
(T = 3.5, σ2 (üact) = 0.005). Overall, the optimal value for PEA is only slightly
better than for SEA, despite the fact that the cost function is based on the integral of
squared torques. To operate optimally, the two actuator concepts require particular
transmission ratios (here represented by the actuator no-load-speed) and the cost can
increase dramatically in the case of a sub-optimal transmission choice.

Electrical work as a cost function essentially combines the results of positive actua-

tor power and electrical losses. Optimal transmission values can be clearly indentified

for both PEA and SEA, and the optimal parameter choices are very similar to those

found when optimizing electrical losses. Since this cost function considers actuator

work, SEA is significantly more energetically efficient than PEA (Fig 2.6); provided

the right transmission is chosen. This result is an indication that the fundamental
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differences in collision and damping losses play a much larger role in differentiating

PEA and SEA than the square of the motor force.
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Figure 2.6: Optimal values of the electrical actuator work are shown for varying
parameter choices of leg spring stiffness and actuator no-load-speed. Similar to elec-
trical losses, we can identify clear minima with respect to the no-load-speed. Overall,
the minimal value for SEA is significantly smaller than for PEA. This reflects that
electrical work combines positive actuator work and electrical losses.

Apart from very low stiffness values, the spring stiffness did not have a significant

influence on any of the cost functions studied. SEA and PEA were always equally

sensitive to the selected spring stiffness, and no dependency between the chosen ac-

tuator concept and an optimal stiffness value were found. This observation largely

confirmed previous results [108].

2.5 Conclusion

For a one-dimensional monoped hopper that is driven by a geared DC motor, our

results show that with the correct choice of the transmission parameter, a hopper

with SEA is more energetically efficient than one with PEA when looking at positive

actuator work and electrical work. Electrical losses can be made to be nearly 0 for

both actuators. This is largely attributed to the fact, that for a hopper with PEA,

the motor inertia contributes to energetic losses due to the ground contact collisions.
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Our optimizations showed that even for a force-squared cost function such as electrical

losses, PEA is not able to overcome the increased collision and damping losses to be

significantly more efficient than SEA.

The results, as they are presented in this chapter merit some further discussion.

To be able to create theoretical predictions of the optimization outcomes (and thus

ensure that the obtained solutions are not merely local minima or otherwise flawed

results), we had to considerably simplify the model. Our analysis did, for example,

not include the effects of gear-friction, or the need for active leg retraction as it is

required in a multi-legged gait. We therefore believe that the value of this chapter is

not in finding a definite answer to the question of which actuation concept is better.

This answer will likely depend on a particular robotic implementation. Rather, we

believe that the theoretical predictions and results help understand the fundamental

processes that are involved in the energetics of robotic running and can thus guide a

detailed system analysis if needed.

With a thorough understanding of the effect of stiffness and maximal no-load-

speed on the monoped hopper, our next goal is to extend this work to more complex

systems. By including morphological parameters directly in the optimization, we will

be able to expand our method for comparing SEA and PEA to systems such as a

planar monoped or biped.
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CHAPTER III

Energy-Optimal Hopping in Parallel and Series

Elastic 1D Monopeds

3.1 Introduction

1 Springs play a fundamental role in legged locomotion. In nature, elastic elements

are used for energy storage, as return springs, and to cushion impacts [7]. Model

based analyses have shown that compliant legs can explain the dynamics of human

walking and running [41], as well as a wide variety of quadrupedal gaits, including

walking, trotting, tölting, and galloping [38, 37]. In all these cases, elastic energy

storage enables the recycling of energy and improves energetic economy. [22] and

[15] observed that during running gaits, animals conserve energy by having the body

undergo an elastic bouncing motion. In human in-place hopping, for example, the

majority of the energetic fluctuations are generated passively through elastic energy

storage in muscles and tendons [79, 28]. Motivated by these biological benefits, elastic

elements have been incorporated successfully in robotic simulations e.g. [8, 129] and

in hardware prototypes e.g. [100, 59, 63, 118, 95].

In robotic hardware, the two primary ways of incorporating elasticity into legs

are to place springs in parallel or in series with the actuation source (Figure 3.1).

In a parallel elastic actuator (PEA) the motor contracts and extends the entire leg

and spring. The spring force and motor force therefore act additively. The motor

inertia moves with the joint and is not isolated from impacts. In a series elastic

actuator (SEA) the motor moves the proximal end of the spring. The motor force

must overcome the spring force. The motor inertia does not directly add to the joint

motion and is isolated from impacts. Both types of actuator have been implemented

in prototypes e.g. [67, 46]. Yet, to date, there is still no detailed understanding of

1This chapter has been previously published in the Journal of Mechanisms and Robotics [133].
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the effect of each actuator type on the energetics and motion characteristics of legged

systems. In particular, there is still disagreement about which actuator solution is

more energetically economical.
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Figure 3.1: This study investigated energetically optimal hopping motions for a one-
dimensional hopper with either parallel elastic actuation (PEA, shown as schematic
in (a) and detailed model in (c)) or series elastic actuation (SEA, (b) and (d)).
For PEA, the motor contracts and extends the entire spring. For SEA, the motor
moves the proximal end of the spring. For both hoppers we simultaneously optimized
motion trajectories, actuator inputs, and actuation parameters for three different cost
functions: positive mechanical motor work, thermal electrical losses, and positive
electrical work. The hoppers have DC motor models with transmissions and reflected
rotor inertia jo. The optimization included main body position y, leg length l, motor
position u (only for SEA), motor force after the transmission To, spring stiffness k,
and rotary gearbox ratio nr (not shown).

There is a broad range of similar questions, that essentially try to determine

the benefits of discrete design choices. Can a compliant ankle joint in a robot’s

leg improve efficiency? Is a quadrupedal robot faster with a spine that is rigid or

deformable? Is a set of swinging arms useful for robotic locomotion? These questions

are fundamentally difficult to answer. One cannot simply swap a particular feature
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in a robotic implementation or robotic model and then compare the performances

of the two different variations. This is because an optimal robot with one of the

two variations will likely have to look and behave very differently than an optimal

robot with the other. For example, a robot with PEA might require a different

spring stiffness and a different transmission ratio than a robot with SEA, and the

two actuator types might need very different ways to power their motion. If we keep

the system parameters of the two robots identical or apply the same type of motion

in both cases, we will implicitly bias the comparison to favor one variation over the

other. After all, we are not interested in the question of whether a certain robot with

a certain motion strategy and a certain choice of parameters performs better with one

design variation or the other. We would like to know if the best possible robot, with

the best possible set of parameters, and the best possible motion strategy can benefit

from the design variation. To answer this question, we have to investigate optimal

motion, optimal parameters, and optimal morphology at the same time. Due to the

complexity of the problem, it is impossible to do this comparison by conducting an

exhaustive search or an analytical evaluation. Instead, we propose to use trajectory

optimization to find the best possible actuator inputs and motion trajectories while

simultaneously optimizing the system parameters.

This approach extends upon existing morphological optimizations in legged robotics

[88, 47, 40, 97]. These past studies optimize parameters to optimally adapt a model

to a particular task, but do not use the technique to compare discrete designs. It

also extends on existing discrete structural comparisons [21] by using trajectory opti-

mization on a realistic motor model and including morphological parameters directly

in the optimization. In particular, this technique has not been applied in previous

studies comparing PEA and SEA. An initial comparison was conducted, for example,

by [65], and found that PEA was more economical. [45] on the other hand, found

SEA to be more economical for a model of a human ankle joint. The difference in

the two studies likely stems from their comparisons of particular implementations of

each actuator type, rather than the best implementation. Furthermore, the studies

significantly simplified the problem. [65] only looks at a single cost function and a

single set of parameters for actuator comparisons. [45] has similar simplifications,

including ignoring the motor inertia and damping in the springs.

In this work, we performed a thorough comparison of PEA and SEA for the ex-

emplary case study of in-place hopping. In a trajectory optimization framework, we

considered inputs, motion trajectories, and system parameters simultaneously to un-

derstand their mutual effects and their full implications on the choice of PEA or SEA.
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As a basis for our study, we used a model that, while simple enough to lead to gen-

eral conclusions, has enough detail to model more realistic motions during hopping,

such as leg dynamics during flight. In particular, our models incorporated feet with

mass, detailed electric DC motor models, damping in the springs, and gearbox fric-

tion. In addition, we enforced realistic constraints on the possible parameter values,

motion trajectories, and motor inputs. We considered two different cases of rotary-

to-linear transmissions that represent common values in modern legged robotics. We

contrasted these two types with the more theoretical scenario of a completely fric-

tionless transmission. Within each of these three cases, we examined a variety of

cost functions quantifying work and force-based efforts. We found that the optimal

actuator type and motion was highly dependent on both the type of rotary to linear

transmission as well as on the chosen cost function.

As hopping is highly relevant in legged locomotion, which often uses the template

of a spring loaded inverted pendulum (SLIP) for bipedal [15] and multi-legged [16]

locomotion, our results are relevant for both a fundamental understanding of the

effect of elastic actuators on legged motion as well as for applied hardware design.

In addition to answering the question of which actuator type is better in different

situations, our study provides a detailed understanding of what optimal motions look

like and can therefore be used to ‘calibrate’ trajectory optimization results in real

hardware. To this end, the chapter represents a culmination of our previous efforts

analyzing optimal actuation [134, 132, 110].

3.2 Theoretical Discussion

In the past, discussions about which actuation concept is better suited for legged

robotics often argued that PEA is better when minimizing motor torque and SEA is

better when minimizing mechanical work e.g. [68]. To illustrate this argument and

to use it as a departure point for our own work, we can formalize this distinction

in terms of two different cost functions: the positive mechanical motor work Cmech

(where the work done by the motor is equal to Tmωm) and the thermal electrical losses

Ctherm (which is proportional to T 2
m). In these expressions, Tm is the torque created

by the motor, ωm is the motor velocity. Since Ctherm is only dependent on Tm, one

could think that this cost function would indeed prefer PEA, where motor force and

spring force act additively and the motor torque is thus reduced. SEA would be at

a disadvantage, as its motor must actively provide the entire force acting on the leg.

For Cmech the situation is reversed. For SEA, the motor and main body components
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are well insulated from impacts, and the inertia of the motor does not add directly

to the joint motion, potentially leading to reduced mechanical losses. PEA seems to

be at a disadvantage, as the rotor inertia now factors into collisions.

Upon closer inspection, however, the situation is not so clearly delineated. For

each actuator type, adaptations in the hardware and in the motion strategy can

alleviate the respective disadvantages. To illustrate the effects of different parameters

and motion strategies, let us examine the simplified case of (nearly) loss-less hopping.

To this end, we consider a hopper model with no foot mass and no damping in the

springs. This hopper is driven by a motor with a rotor inertia of jm that is connected

to the joint via a frictionless gearbox with transmission ratio n. For both the PEA

and SEA version of this hopper, we can, in fact, find entirely lossless solutions for

both cost functions. PEA can achieve Cmech = 0 by having the motor input no torque

(Tm = 0) and therefore having the spring perform the hopping task passively. With

this motion strategy, the only possible source of mechanical losses are collision losses

in the rotor inertia:

Ep,mc =
1

2

(
jom1

m1 + jo

)
· v2foot, (3.1)

where m1 is the main body mass and vfoot represents the velocity of the foot at

touchdown [134]. The reflected rotor inertia of the motor jo scales with the square

of the transmission ratio n: where we assume that the transmission ratio converts

rotary to linear motion, giving jo units of mass. By setting n = 0 and thus jo = 0,

the collision losses can be completely removed, which leads to Cmech = 0. There

are no disadvantages to this choice, since no torque is required from the motor.

This strategy also achieves Ctherm = 0, as Tm = 0. In contrast, SEA can yield

Cmech = 0 by setting ωm = 0. This fixes the location of the proximal end of the

spring, letting the spring perform the hopping task entirely passively. Since in SEA,

the rotor inertia is decoupled from the motion, no losses occur and the motion is

periodic. This solution, however, requires a non-zero force to keep the motor in place

as the leg spring compresses. In order to achieve Ctherm = 0, SEA must thus set the

transmission n to infinity. Since To = nTm, where To is the output torque after the

gearbox, Ctherm is proportional to T 2
o

n2 . Using n = ∞ yields Ctherm = 0. Again, there

are no disadvantages to this choice, since no motion is required from the motor.

Even though the model in this analysis is a contrived example, it shows two

important issues. First, with the right choice of motion and parameters, PEA and

SEA can achieve the same performance for both work-based and torque-based cost

functions. No actuator type is better per se. Second, the two actuator types require
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almost diametrically different strategies and parameters. PEA applies no force as the

motor moves with the spring and utilizes a transmission ratio of n = 0. Choosing

the opposite extreme of n =∞ drives Ctherm to infinity, as the collision losses in the

motor become infinite. SEA keeps the motor at rest and requires a transmission ratio

of n =∞. If SEA were to choose the opposite extreme of n = 0 then Ctherm would be

driven to infinity, as it would take an infinite Tm to keep the motor still. It is clear

that when trying to answer the question of which actuator type is better, we need to

take into account that each actuator requires substantially different motion strategies

and parameters.

The extreme values for n in this example are a consequence of the assumption

that the hopping is otherwise lossless. As soon as we introduce damping and collision

losses, these transmission values become extremely non-optimal. When the motors

must move and apply torques to do positive mechanical work to replace the inevitable

energetic losses, finite non-zero transmission values n are necessary. In particular,

SEA can no longer have an infinite n, as the resulting infinite reflected rotor inertia

would require an infinite Tm to move the motor to replenish losses, which will drive

both cost functions to infinity. PEA can also no longer have n = 0, as it will take

an infinite Tm to transmit force through the gearbox and add energy to the system.

That infinite Tm will again drive both cost functions to infinity. The infinite costs

at both extremes of n suggests that there exist optimal choices for n in between.

For a simplified SEA hopper, for example, such an optimal value has been derived

analytically in [110]. Similar types of dependencies likely exist for other parameters

and must be resolved by including the parameters in an optimization formulation.

Furthermore, there exist a number of complex relationships between optimal pa-

rameter choices and motion strategies. For example, for an actuator with PEA, one

strategy would be to let the leg oscillate freely during flight (Tm ≈ 0), which mini-

mizes Tm and thus Ctherm. Moreover, this oscillation can be timed such that the foot

has zero velocity at touchdown, leading to no collision losses even in the presence of

a foot mass. This timing is achieved by tuning the natural frequency f of the leg

spring

f =

√
k

m2 + jo
, (3.2)

which depends on the choice of stiffness k, transmission ratio n, and foot mass m2.

That is, through this natural dynamic oscillation, the choice of motion and of param-

eters are coupled. Such an exploitation of natural dynamics can happen in a variety

of ways, and must thus be accounted for when trying to answer the question of which
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actuator type is more economical.

The main takeaway of these considerations is that motion and optimal morphology

are strongly coupled and will differ greatly between hoppers with PEA and SEA. In

order to figure out which actuator type is better, we have to investigate optimal

motion and optimal morphology at the same time, such that we can compare the

best possible SEA robot to the best possible PEA robot. In addition to the examples

mentioned above, this question is even further complicated by the presence of friction

in the gearbox and limits on the motor force and joint motion. With torque inputs,

motion trajectories, system parameters, and limits mutually affecting each other in

such complex ways, numerical optimization is the only suitable tool to understand

the full implications of the choice of PEA or SEA.

3.3 Methods

In this chapter we used trajectory optimization to find the most energetically

economical motions and parameters for each actuator configuration and used these

optimal results as a basis for comparison. In particular, we examined optimal, peri-

odic, one-dimensional, in-place hopping, and studied a variety of cost functions in a

model based approach. To this end, we established parametrized models of electri-

cally driven PEA and SEA hoppers that included a dynamical model, a motor model,

a detailed transmission model, and realistic limitations on all states and parameters.

In this section, we outline these models, discuss our parameter choices, describe the

cost functions, and detail our optimization approach. To minimize the number of free

parameters in our analysis, all states and parameters were normalized with respect

to total mass mo, uncompressed leg length lo, and gravity g.

3.3.1 Dynamical Model

Our study was based on the simple model of a hopper (Fig. 3.1). The hopper

consisted of a main body with mass m1 and a point foot segment with mass m2. The

motion of the hopper was restricted to a pure vertical movement; i.e., hopping in

place. Its state was defined by the position and velocity of the main body (given by

y and ẏ) and the length and contraction velocity of the leg (l and l̇). The motion of

the foot was coupled to the main body by a spring with stiffness k and damping ratio

ζ. Having damping in the springs and a foot with mass meant that the system was

energetically non-conservative. As a result, positive net work had to be performed

over the course of a stride. This work was created by an electric DC motor with an
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attached transmission that produced a torque of To and had a reflected inertia of jo.

The mass of the motor is included as part of m1. This actuator was either connected

in parallel to the spring (PEA) or in series with the spring (SEA). During flight, the

motion of the hopper was governed by the equations of motion Mq̈ = h + τ , with

the mass matrix M, the gravitational terms h, and the generalized forces τ .

For PEA the motor was mounted in parallel to the spring, such that the leg force,

F , was the sum of the force in the spring and the motor force:

F = k (`o − `)− b ˙̀ + To. (3.3)

The damping coefficient of the spring b was computed from the damping ratio ζ:

b = 2ζ
√
km2. (3.4)

Since motor motion and leg motion were coupled, the vector of generalized coordinates

qPEA = (y, `)T was only two dimensional. The reflected rotor inertia jo acted along

the coordinate of `, which led to the following mass matrix for PEA:

MPEA =

[
m1 +m2 −m2

−m2 m2 + jo

]
. (3.5)

The system was driven by the generalized forces τPEA = (0, F )T . The differentiable

force vector was given by hPEA = (−(m1 +m2)g,m2g)T .

In the SEA case, the spring was rigidly attached to the foot on one end, and

attached to the motor transmission on the other. An additional pair of states (u and

u̇) described the position of the proximal end of the spring (coordinate origins were

defined such that for u = 0, and an uncompressed spring, the leg length ` was equal to

the resting length `o). The generalized coordinate vector thus had three components:

qSEA = (y, `, u)T . Since the motor was in series with the spring, the leg force, F ,

was equal to the force produced by the spring:

F = k (u+ `o − `) + b
(
u̇− ˙̀

)
. (3.6)

The mass matrix for this system was given by:

MSEA =

m1 +m2 −m2 0

−m2 m2 0

0 0 jo

 . (3.7)

35



The system was driven by the generalized forces τ SEA = (0, F, To − F )T . The dif-

ferentiable force vector was given by hSEA = (−(m1 +m2)g,m2g, 0)T .

For both models, the main body velocity and the leg retraction rate were equal

during ground contact (ẏ = ˙̀). That led to the modified EOMs of ÿ = ῭ = F
m1+jo

−
m1

m1+jo
g for PEA and ÿ = ῭ = F

m1
− g for SEA. This constraint implies that at the

moment of touch-down, a collision brought the foot velocity vfoot = ẏ + ˙̀ to zero.

3.3.2 Motor and Transmission Model

Since we were interested in the realistic trade-offs between thermal losses and

mechanical work within each of the actuation concepts, we included a model of an

electric DC motor in our simulation [76]. To simplify the analysis, we neglected

the electrical dynamics due to the winding inductance. The motor torque is related

linearly to the electrical motor current i via the motor torque constant kT (Tm = ikT ).

The thermal losses in the motor are given by:

Ptherm = i2R =
T 2
m

k2T
R =

T 2
m

kTkb
R =

T 2
m

K
, (3.8)

where R is the armature resistance, kb is the motor speed constant, and Kis the speed

torque gradient of the motor. Here we made use of the fact that in SI units, kT = kb.

The motor rotor had an inertia of jm and was modeled to be connected to a

transmission system. This transmission had two roles. First, it amplified the motor

torque (To = nTm) while reducing the output speed (ωo = 1
n
ωm). Second, it converted

the rotational motion of the motor to a linear motion that allowed the hopper’s leg

to extend and contract. We defined the overall transmission as the combination of a

rotary gearbox with transmission ratio nr (a unitless quantity), and a rotary to linear

transmission with transmission ratio n` (with normalized units of rad
`o

). The overall

transmission ratio n was given by the product of nrn`. For simplicity, we neglected

the inertia associated with the transmission, assuming that the inertia of the actuator

is dominated by the reflected inertia of the rotor:

jo = (nrn`)
2jm. (3.9)

We considered two representative values used for converting rotary to linear mo-

tion in modern legged robotics: a large value of n` = 200 rad
`o

and a small value of

n` = 2 rad
`o

.
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Figure 3.2: The logarithmic regression of the maximum torque conversion efficiency
of the rotary gearbox εmax as a function of the rotary gearbox gear ratio nr. The
regression was based on 809 gearboxes [82].

These values for n` were chosen because they are roughly representative of the

transmission given by a ball screw [124] and a knee joint bent at approximately forty-

five degrees respectively. For both cases, for simplicity, we considered n` to be a

frictionless transmission. This is evident for the knee joint and good approximation

for the ball screw, which can have an efficiency of torque conversion of 90% and

higher [124]. The only source of transmission friction was thus in the rotary gearbox

nr. This was an important consideration. A particular choice of n` may be able

to better avoid nr frictional losses. We modeled these nr losses as being created by

a planetary gearbox with dry friction. The torque output after the transmission is

therefore given by:

To = n` (nrTm − sign(ωm)Tf ) , (3.10)

where Tm is the torque output by the motor, ωm is the motor speed, and Tf is the

coulomb frictional torque of the gearbox. We calculated Tf in Eqn. (3.10) from the

maximum gearbox torque conversion efficiency εmax:

εmax =
To,max

To,max + n`Tf
(3.11)

where To,max is the maximum continuous output torque. Substituting into Eqn. (3.10)
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and rearranging yields:

Tf = To,max
(1− εmax)

n`εmax

. (3.12)

For comparison, we included a third case in our analysis which assumed a com-

pletely frictionless transmission system (with εmax = 1). This was done to understand

which transmission choices would be optimal in the absence of any penalty associ-

ated with larger gearbox friction. Since in this frictionless case, there is no difference

between n` and nr, we simply set n` = 1.

3.3.3 Model Parameters

We found all necessary motor parameters by applying logarithmic regression to

data from 132 Maxon motors in the RE and EC series [82]. We found that:

K ≈ 0.00567 (mm)1.80 1/Nms (3.13)

jrot ≈ 2.85× 10−05 (mm)1.72 Kgm2 (3.14)

Tm,max ≈ 0.570 (mm)1.20 Nm (3.15)

ωm,max ≈ 1350 (mm)−0.182 1/s, (3.16)

where mm is the mass of the motor in kg, Tm,max is the maximum motor torque 2,

and ωm,max is the maximum permissible speed of the motor. Note that the values in

these equations are not yet normalized.

We modeled the maximal efficiency to scale exponentially with the gear ratio nr by

the exponent γ. This decision was motivated by the observation that gear ratio scales

approximately exponentially with stage number, which in turns scales approximately

linearly with efficiency [82]. Our efficiency estimate was based on a logarithmic re-

gression over 809 gearboxes from a major motor and gearbox manufacturer [82]. The

results of the regression are shown in Fig. 3.2b. We found that:

εmax ≈ 0.993 (nr)
−0.0952 ≈ 1 (nr)

−0.0952 = nγr , (3.17)

where the final approximation ensured that the efficiency was 100% when there was

no gearbox (nr = 1).

We assumed that the gearbox was appropriately chosen to be able to handle the

maximum motor torque. As a result, we calculated the maximum continuous output

2This value is twice the maximum continuous torque the motor can provide. It is the maximum
value suggested through personal communication with Maxon Motor
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Table 3.1: Model parameters and bounds expressed with respect to total mass mo,
leg length lo, and gravity g.

m1 = 0.95mo umin = -0.15 `0 nr,min = 1
m2 = 0.05mo umax = 0.15 `0 nr,max = 6285
ζ = 0.2 kmin = 0.0001mog/`o `min = 0.5 `0

`max = 1.15 `0 kmax = 1000mog/`o K = 2.3× 10−04 1/mo

√
g`o

jrot = 1.48× 10−05mo`
2
o Tm,max = 0.0157mog`o ωm,max = 748 rad

√
g/`o

torque after the transmission, To,max, by:

To,max = nrn`Tm,max (3.18)

All parameters and their limits are reported in Table 3.1. They are based off

of our previous hardware [62], as done in [110]. In particular, we chose a value of

mm = 0.6 kg, mo = 5 kg, and `o = 0.4 m.

3.3.4 Cost Functions

To measure the energetic efficiency of each actuation variation, we used three cost

functions: positive mechanical motor work, thermal electrical losses, and positive

electrical work. All cost functions are expressed as an integral over a single hop, from

time t = 0 until t = T .

3.3.4.1 Positive Mechanical Motor Work

The positive mechanical motor work refers to the positive mechanical work that

is performed by the motor. In a periodic motion, it is equivalent to the sum of

the damping losses, collision losses, negative motor work, and frictional losses in the

gearbox. The positive motor work is defined as:

Cmech =

T∫
0

max (Tmωm, 0) dt. (3.19)
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3.3.4.2 Thermal Electrical Losses

The thermal electrical losses cost function expresses the i2R losses in the motor

windings. It is given by:

Ctherm =

T∫
0

T 2
m

K
dt. (3.20)

3.3.4.3 Positive Electrical Work

Positive electrical work is the integral of the positive electrical power used by the

motor. It combines mechanical work and thermal losses. The positive electrical work

is equal to:

Cel =

T∫
0

max

(
Tmωm +

T 2
m

K
, 0

)
dt, (3.21)

As in [110] we assumed that the robot was unable to recover negative electrical work

and store it. Negative motor work could be used, however, to compensate for thermal

losses. This cost function provides a close approximation of the total energy discharge

from a battery that would be required to power the motors.

3.3.5 Trajectory Optimization

For these models and cost functions, energy efficient motions were generated via

trajectory optimization using a multiple shooting approach. To this end, we analyzed

motions from apex transit to apex transit, and enforced periodic boundary condi-

tions to simulate a continuous hopping motion. The optimization problem can be

formulated mathematically as:
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minC (q, q̇, Tm)
T,Tm,q,q̇,k,nr

(3.22)

subject to:

Mq̈ = h + τ (3.23)

q(0) = q(T )

y(T ) = 1.3`0

umin < u(t) < umax

`min < `(t) < `max

− Tm,max < Tm(t) < Tm,max

− ωm,max < ωm(t) < ωm,max

kmin < k < kmax

nr,min < nr < nr,max

A hopping height of y(T ) = 1.3`0 was chosen to ensure that the hoppers had

a flight phase. All bounds are given in Table 3.1. The motor torque Tm (t) was

parametrized as a piecewise linear function. The above optimization problem was

implemented in the optimization package MUSCOD, which utilizes a fourth/fifth-

order Runge-Ketta-Fehlberg numerical integration algorithm [17, 78, 30]. We tried

multiple initial conditions, all leading to the same results.

Note that the gearbox gear ratio nr and the spring stiffness k were free parameters

in the optimization. System properties that were unrelated to the actuator configu-

ration were left fixed. These parameters included the masses (m1 and m2) and the

damping ratio ζ.

In order to obtain a system that behaved better numerically we approximated

discontinuities in the cost functions (as has been done, for example, by [123]). In

particular, we smoothed the max(0, x) function using the equation:

max(0, x) ≈ σlog
(
1 + e

x
σ

)
(3.24)

with σ = 0.001. We also smoothed the function sign(ωm) using the equation:

sign(ωm) ≈ 2

1 + e−αωm
− 1, (3.25)

with α = 100.
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3.4 Optimal Configurations, Motions, and Parameters

As a result of the optimization-based motion generation and parameter identifi-

cation, we found that the ideal actuator type was both dependent on the choice of

rotary to linear transmission and on the selected cost function. For positive electrical

work, which combines mechanical motor work with thermal losses and reflects a real-

istic trade-off between these two contributions, we found that SEA was the optimal

actuator type for an ideal, frictionless transmission as well as for the n` = 200 rad
`o

case. For a hopper with n` = 2 rad
`o

, PEA was the optimal actuator type (Fig. 3.3). In

the following, we elaborate on the optimal actuator type for each configuration and

detail the resulting motion profiles and parameter choices for each case.
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Figure 3.3: The optimal positive electrical work values at a hopping height of h =
1.3 `o. Three cases are shown: a theoretical entirely frictionless transmission, a rotary
to linear transmission of n` = 200 rad

`o
with a rotary gearbox with friction, and a

rotary to linear transmission of n` = 2 rad
`o

with a rotary gearbox with friction. SEA
is the most energetically economical choice for both the frictionless transmission and
n` = 200 rad

`o
cases. PEA is better for the n` = 2 rad

`o
case.

3.4.1 Frictionless Transmission

For a completely frictionless transmission, the energetically optimal actuator type

depended on the cost function (Fig. 3.4). For positive mechanical motor work Cmech,

the SEA hopper was 67% more energetically economical than PEA (.070mog`o vs.

.14mog`o). For both actuator types, energy was primarily lost to damping, accounting

for 85% of Cmech for SEA and 96% for PEA. In terms of thermal electrical losses Ctherm,
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the PEA hopper was 72% more economical than SEA (.017mog`o vs. .036mog`o). For

the electrical work Cel the SEA hopper was 75% more energetically economical than

PEA (.12mog`o vs. .25mog`o). For both actuator types, the Cel cost was primarily

caused by damping and thermal losses in the spring and motor. Negative mechanical

motor work was negligible, indicating a preference for following the natural dynamics

of the system and exploiting passive storage of excess energy.

When optimizing for Cmech and Ctherm individually, the results can largely be

explained by the inherent advantages of each actuator type. SEA’s advantage when

optimizing for Cmech stemmed from the fact that SEA can directly influence the

relative rate of spring motion and therefore decrease damping losses. For example,

during the second half of stance, the actuator u is pushed downwards to inject energy

but also to reduce the extension rate of the spring (as discussed in [108]). Such a

strategy is not possible for PEA during stance where the spring motion is inherently

coupled to the main body motion. PEA can reduce damping losses during flight,

however, by holding the leg at its maximum length. This strategy reduces the effective

hopping height and avoids oscillations with their associated damping losses in the

air. Additionally, the foot is released slightly before touchdown to have its relative

velocity with the ground be approximately zero (i.e. the leg velocity ˙̀ approximately

matched the main body velocity ẏ), minimizing collision losses (we will refer to this

as the clamping strategy). As for minimizing Ctherm, the main advantage of PEA

stemmed from the fact that PEA did not need to support the weight of the robot,

which reduced the required motor forces. Furthermore, the parameters for spring

stiffness and gear ratio were tuned precisely such that when the leg oscillated nearly

freely during flight (without any large peaks in the motor torque Tm) the leg velocity,
˙̀ approximately matched the main body velocity at touchdown (we will refer to this

as the oscillation strategy), which again minimized collision losses (Fig. 3.5).

What is surprising, is that the rather small margins for each of these two cost

functions turned into a large benefit for SEA in the combined cost function of positive

electrical work Cel. This clear advantage of SEA can be explained by the fact that the

optimal motion profiles for Cmech and Ctherm were very similar (Fig. 3.5). The motor

trajectory held the leg length nearly constantly at its maximum extension during

flight and injected energy into the system during stance. It was therefore easy for

SEA to find a strategy that could keep both Cmech and Ctherm small at the same time

when optimizing for Cel. The total Cel effort is merely a sum of the individual cost

functions (Fig. 3.4). For PEA, in contrast, the motion trajectory differed significantly

depending on the chosen cost function. For Cmech, the motion of the leg was similar
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Figure 3.4: An energetic breakdown is shown for the three cost functions in the case
of a frictionless transmission. For both the positive mechanical motor work and the
positive electrical work, SEA is the energetically optimal actuator type. For thermal
losses, PEA is the optimal actuator type. The majority of the losses for both Cmech

and Cel arise from damping losses. For SEA, the Cel cost is approximately the sum
of its Cmech and Ctherm losses, as it utilizes approximately the same motion strategy
for all cost functions. For PEA, however, the Cel losses are much larger than the
combination of the other two cost functions. This increase occurs because PEA
utilizes very different strategies when optimizing for either Cmech or Ctherm. Therefore
it must trade-off between two very different strategies in the combined cost function
Cel.

to SEA, utilizing the clamping strategy ; whereas for Ctherm, the optimal motion is the

oscillation strategy. For the combined cost function Cel, PEA therefore had to resolve

a severe trade-off between two very different actuation strategies. As a result, for Cel,

PEA had both higher mechanical work (primarily driven by an increase in damping

losses) and higher thermal losses than for either Cmech or Ctherm.

The above flight motion strategies indicate an important difference between our

modeling and previous modeling efforts. The presence of foot mass and actuator

inertia in our model allows us to present these optimal actuation strategies during

the flight phase. Those strategies differ, for example, from those presented in [122,

8, 106] which, due to their massless foot, only look at forces during the stance phase.

Furthermore, having massless feet, and no damping, as the above papers do, allows

for entirely lossless hopping strategies. For example, [8] states that for a SEA “it is

possible to find a running gait that requires no work from the telescopic actuators,
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Table 3.2: Optimal stiffness and transmission values for the frictionless transmission.
Here n is the overall transmission ratio (n = nrn`).

Cost Function Actuator
Type

k (mog/`o) n (rad/`o)

Positive Motor Work Cmech PEA 27.5 41.0

Positive Motor Work, Cmech SEA 192 789

Thermal Losses, Ctherm PEA 21.5 193

Thermal Losses, Ctherm SEA 37.8 703

Positive Electrical Work, Cel PEA 7.80 103

Positive Electrical Work, Cel SEA 186 797

for any combination of speed and stride length.” For PEA, the same can be said.

Without collision losses or damping, the spring can passively store and replace all

of the energy during hopping. Having both cases be entirely lossless would make a

comparison of the two types of actuators impossible, and therefore justifies the added

complexity of our model.

For all cost functions, the optimal PEA hopper had a significantly lower transmis-

sion ratio n = nrnl than SEA (Table 3.2). Smaller values for n are better for PEA,

because the reflected rotor inertia directly adds to the collision losses (Eqn. (3.1)).

Since the spring force and motor torque act additively for PEA, the output torques

from the motor are much smaller than for SEA, and there is thus no large penalty for

using a smaller gearbox. Along the same lines of reasoning, SEA required a larger n

to reduce the effective motor torque Tm and the associated thermal losses. Since leg

motion and actuator motion were decoupled, there was no penalty for the resulting

larger reflected rotor inertia.

For both actuation types, n was much smaller for the positive motor work cost

function Cmech than for the other two cost functions. This result reflects again the

fundamental differences that arise when considering Ctherm. For Ctherm, minimizing

motor torques plays a more important role. Increasing n leads to smaller required

Tm. This consideration is not important for Cmech, which is independent of n.
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Figure 3.5: Optimal motions and actuator inputs for the frictionless transmission.
Shown are the results for optimizations based on positive mechanical motor work,
thermal losses, and electrical work. The leg motion for SEA (dashed line) is very
similar for all cost functions. In contrast, for PEA (solid line), the leg motion is
drastically different when optimized for positive mechanical motor work as compared
to thermal losses. As a result, when positive mechanical motor work and thermal
losses are combined into a single cost function, the electrical work, PEA must trade-
off between two very different motion strategies.

3.4.2 Rotary Gearbox With Friction, Large Rotary to Linear Transmis-

sion

Introducing friction in the transmission led to a new trade-off: in addition to

creating a larger reflected rotor inertia, larger transmission ratios were now addition-

ally penalized by larger friction values. For a rotary to linear transmission value of

n` = 200 rad
`o

, this trade-off is not particularly grave.
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Figure 3.6: Shown is the energetic breakdown for the three cost functions in the case of
a rotary gearbox with friction and n` = 200 rad

`o
. Similar to the frictionless transmission

case, for both Cmech and Cel, SEA was the energetically optimal actuator type. For
Ctherm, PEA was the optimal actuator type. The majority of the losses for Cmech arose
from damping losses. For Cel, thermal losses played a large role. For PEA, negative
mechanical motor work compensated for a large proportion of the thermal losses (the
cross-hatched region, indicating that though both losses occurred, they only were
counted once). SEA has significantly higher thermal losses when optimizing for Cel

than Ctherm. It could decrease these thermal losses by increasing nr, but it would
come at the cost of increased gear friction losses. Gear friction was only a significant
source of losses for SEA.

As a result, the energetically optimal actuator type was cost function dependent

in the same way as for the frictionless transmission (Fig. 3.6). For Cmech, the SEA

hopper was 65% more energetically economical than PEA (.096mog`o vs. .19mog`o).

For both actuators, energy was still primarily lost to damping, accounting for 84% of

Cmech for SEA and 97% for PEA. Frictional losses in the gearbox were relatively low,

as both actuators chose small optimal nr values, which therefore had high efficiencies

(Table 3.3). For SEA, the optimizer chose an overall transmission ratio of n = 256 rad
`0

while PEA had n = 200 rad
`0

(i.e., no rotary gearbox at all). As a result, for SEA,

the frictional losses accounted only for 7% of the SEA losses and for none of the

PEA losses. For Ctherm, the PEA hopper was 131% more energetically economical

than SEA (.017mog`o vs. .080mog`o). For Cel , the SEA hopper was 20% more
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Table 3.3: Optimal stiffness and transmission values for the rotary gearbox with
friction, n` = 200 rad

`o
case. Here n is the overall transmission ratio (n = nrn`).

Cost Function Actuator
Type

k (mog/`o) n (rad/`o)

Positive Motor Work, Cmech PEA 16.4 200

Positive Motor Work, Cmech SEA 23.3 256

Thermal Losses, Ctherm PEA 22.9 200

Thermal Losses, Ctherm SEA 25.6 492

Positive Electrical Work, Cel PEA 5.93 200

Positive Electrical Work, Cel SEA 23.4 500

energetically economical than PEA (.28mog`o vs. .35mog`o).

The results for the three cost functions followed the same general trend as in the

completely frictionless transmission. The results held largely because of the advantage

SEA obtains from utilizing a highly efficient rotary to linear transmission with a large

transmission ratio. With the rotary to linear transmission doing most of the reduction

(nl = 200 rad
`0

), only small values for nr are necessary and there is a very small penalty

for SEA to choose a large transmission ratio n = nlnr (Eq. (3.17)). Therefore, the

SEA costs showed only a slight increase due to gear friction. PEA, however, favored

smaller transmission ratios for Cmech and Cel. Here PEA attempted to have as low a

transmission ratio as possible, choosing to have nr = 1 for all cost functions. Still,

with nl = 200 rad
`0

, it was forced to have a minimum transmission ratio that was larger

than its optimal choice for the frictionless transmission. This non-optimal choice of

n drives up PEA costs for Cmech and Cel much higher than the slight gear friction for

SEA, maintaining the trends from the frictionless transmission while increasing costs.

In particular, for PEA, negative mechanical motor work became a significant portion

of the Cel losses, likely to avoid excess collisional losses from the larger transmission

(Eqn. (3.1)). For Ctherm, the PEA cost and transmission ratio are nearly identical to

the frictionless transmission.

For both PEA and SEA, the optimal motion was nearly identical to the friction-

less transmission for Cmech and Ctherm (Fig. 3.7). For Cel there was again a trade-off

between the oscillation strategy and the clamping strategy. The optimal Cel motion,

however, changed. Whereas for the frictionless case, PEA chose the oscillation strat-
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egy, here it chose the clamping strategy. The consequences of the choice to suppress

the natural oscillatory motion of the spring can be seen in the largely increased neg-

ative mechanical motor work for Cel.

Figure 3.7: Optimal motions and actuator inputs for the rotary gear box with friction
and frictionless n` = 200 rad

`o
case. Shown are the results for positive mechanical motor

work (a), thermal losses (b), and electrical work (c). The most notable difference from
the frictionless motion, was that for PEA electrical work, it was no longer optimal to
have the leg oscillate during flight. Instead, PEA and SEA adopted similar strategies
during flight, holding their legs near maximum extension.
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3.4.3 Rotary Gearbox With Friction, Small Rotary to Linear Transmis-

sion

The rotary to linear transmission value of n` = 2 rad
`o

in this case is relatively small.

This case will therefore require substantially larger nr values, which in turn will create

larger friction losses.
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Figure 3.8: The figure shows the energetic breakdown for the three cost functions
in the case of a rotary gearbox with friction with n` = 2 rad

`o
. PEA was now optimal

for all cost functions. The majority of the losses for Cmech arose from frictional and
damping losses. For Cel, thermal losses and gear friction dominated the losses.

This clearly benefited PEA, which was the energetically optimal actuator type

for all cost functions in this case (Fig. 3.8). For Cmech, the PEA hopper was 77%

more energetically economical than SEA (.21mog`o vs. .46mog`o). For PEA, energy

was primarily lost to damping, accounting for 65% of the losses. The frictional losses

in the gearbox accounted for 30% of losses. For SEA, the trend was reversed: 75%

was lost to gearbox friction, whereas 21% was lost to damping. For Ctherm, the PEA

hopper was 41% more energetically economical than SEA (.44mog`o vs. .67mog`o).

For Cel, the PEA hopper was 39% more energetically economical than SEA (.77mog`o

vs. 1.1mog`o). For both actuators, the losses were dominated by thermal losses and

gear friction (Fig. 3.8).

In contrast to the previous cases, there was now a significant penalty for SEA
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Table 3.4: Optimal stiffness and transmission values for the rotary gearbox with
friction, frictionless n` = 2 rad

`o
case. Here n is the overall transmission ratio (n = nrn`).

Cost Function Actuator
Type

k (mog/`o) n (rad/`o)

Positive Motor Work, Cmech PEA 19.8 27.0

Positive Motor Work, Cmech SEA 41.8 306

Thermal Losses, Ctherm PEA 31.2 90

Thermal Losses, Ctherm SEA 91.8 406

Positive Electrical Work, Cel PEA 34.4 63.0

Positive Electrical Work, Cel SEA 119 388

to choose a large n, as it directly led to a large nr and meant that there were sig-

nificant frictional losses (Eq. (3.17)). PEA, with its smaller optimal rotary gearbox

transmission nr therefore suffered far lower frictional losses (Table 3.4).

The optimal motion for both PEA and SEA was now nearly identical for all three

cost functions (Fig. 3.9). For all cost functions, both hoppers used the clamping

strategy. There was no longer any oscillatory behavior by the PEA hopper. This lack

of oscillatory behavior likely results from the presence of significant rotary gearbox

friction. PEA could no longer choose as small of an nr value as in the previous two

cases, meaning that gear friction induced losses whenever the leg moved. Therefore,

the optimizer chose to clutch the leg for all cost functions, avoiding unnecessary leg

oscillation and removing any trade-off for Cel. Cel represented primarily the sum of

Cmech and Ctherm.

3.5 Discussion & Conclusion

In this study, we employed numerical optimization to compare optimal hopping

motions of series and parallel elastic actuated hoppers. To make the comparison be-

tween the two actuation concepts as fair as possible, we compared the best possible

hopper with SEA to the best possible hopper with PEA. To this end, we optimized

actuator forces, motion trajectories, and system parameters simultaneously. The anal-

ysis was performed for three different cost functions: positive mechanical motor work

Cmech, electrical thermal losses Ctherm, and positive electrical work Cel. We studied
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Figure 3.9: Optimal motions and actuator inputs for the rotary gear box with friction
and frictionless n` = 2 rad

`o
case. The motion here was very similar for both PEA and

SEA for all three cost functions. Both hoppers extended their legs to near maximum
extension during flight and held them there until touchdown.

hopping for two representative cases of rotary to linear transmission. In addition, we

compared these results to an idealized case without friction in the transmission. Op-

timizing system parameters such as the rotary gearbox ratio and the stiffness of the

springs was crucial. The different actuator types did require very different parameter

values to perform optimally.

Given that Cel is the most complete cost function, we would conclude that for

electrically driven hoppers, SEA is the most energetically economic actuator solution

when the majority of the transmission ratio is accommodated for by a very high

efficiency rotary to linear transmission, such as a prismatic ball screw. For a hopper

with a smaller transmission (such as a robot hopping with a bent knee), however,

PEA performed better. These optimal choices are primarily a consequence of the

fact that SEA requires larger overall transmission ratios than PEA, as could be seen
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clearly when looking at the frictionless transmission. When the transmission ratios

are achieved in an efficient way, SEA is the better actuator type. If they are subject

to friction losses, PEA becomes the better actuator type.

Throughout our analysis, it became evident, that each configuration had a unique

optimal motion profile and a set of parameters that differed greatly between the

two actuation concepts. This clearly illustrated the necessity of our optimization

approach. From a conceptual point of view, this simultaneous optimization of motion

and morphology extends the paradigm of system-based design to include the future

motion of the robotic system already at the design stage. We strongly believe, that

such a combined and simultaneous optimization of robot and motion will be at the

core of future robotic design. This technique is slowly making its way into robotics,

for example in the optimization of an assistive device for sit-to-stand motions [56], to

create stable running motions in a human-like robot [88], and to optimize limb lengths

for particular tasks [47]. Here, we extended its principle to make a discrete design

comparison between two fundamentally different morphologies. In the future, this

approach can potentially be applied to more complex models and robots to achieve

truly optimal performance during the design phase.

There are further important considerations for the actuator problem that must

be explored before implementation in hardware. For PEA, the motor inertia is not

isolated from collisions, which can lead to significant energetic losses. Therefore, it

is imperative that the foot velocity is near-zero at touchdown. PEA achieves this by

utilizing the oscillation strategy and clamping strategy, which let the spring passively

retract the foot and minimize foot velocity with minimal energetic effect. Overall,

we would argue that these optimal hopping strategies for PEA are more sensitive

to timing issues and would be harder to implement in hardware. These strategies

require a precise tuning of the spring stiffness, rotor inertia, and foot mass to achieve

the correct spring natural frequency. However, small deviations from the optimal

parameter values (e.g., caused by modelling errors or disturbances in the motion) can

get in the way of this phase matching and might result in large collision losses.

In the present study, to avoid biasing the results towards either actuation config-

uration, we did not constrain the hopping frequency. The primary constraint on the

hopping motion was that the hopper had to reach a height of y = 1.3`0. This con-

straint ensured that the hoppers had both a stance phase and a flight phase. Timing

was not considered, however, in finding the energetically optimal motion. From the

motion plots, it is clear that SEA has significantly shorter optimal hopping periods,

suggesting a potential advantage over PEA. In our prior work, the effect of frequency
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was implicitly included by enforcing an average velocity during 2-dimensional motion

[132] and was found to have little effect on the energetics at most speeds. Still, fu-

ture studies could consider exploring hopping at a fixed frequency to see additional

sensitivity effects.

There are additional mechanical and sensing complexities that must be taken into

account when implementing either actuator type in hardware. For example, in PEA,

the gearbox is not isolated from collisions. To prevent unnecessary damage to the

gears, PEA would likely need an additional mechanism that softens these collisions.

Furthermore, the spring could be disengaged to allow for easier leg retraction during

swing. [67], for example, implements a clutch that disengages the spring during

flight, and a small series elastic element that protects the gearbox. SEA would need

additional components as well. Since SEA moves the proximal end of the spring,

which in turn changes the leg length, it would need additional sensors to measure the

location of each. More moving parts for SEA further means that additional bearings

and mechanical components are necessary in practice.

Despite the simplicity of our models compared to a final hardware implementation,

the motion strategies shown here can provide templates for further optimizations with

more complex models and gaits. Given that hopping can be considered the archetype

of legged locomotion [104, 72], one would expect that similar motion patterns will

be found in active running and walking gaits of multi-legged robots. They can thus

be used to systematically initialize optimizations, or be employed as a tool to check

the viability of more complex optimization results. This could enable roboticists to

detect and avoid local minima that do not represent the global optimum in their

optimizations. Finally, the actuation strategies that we observed in the optimal solu-

tions provide an interesting departure point for further hardware development. For

example, the clamping strategy that the optimizer discovered for PEA, where the leg

was held fixed during the flight phase, could be implemented more efficiently with an

actual clutch rather than with a DC motor.

The results presented in this work have been developed for the particular case of

1D hopping with electrically driven actuators. Certain parameters, such as the mass

of the motors, are based off of our previous hardware [62]. The obtained motions,

parameter choices, and cost values are specific to this choice of problem. From the

work presented here, it is clear that even for this particular problem, the optimal

actuation type is case dependent. It is impossible to state conclusively whether in

general SEA or PEA is the better actuation concept for legged robots. Naturally, the

cases presented in this work only represent a sample of a wide range of possible hopper
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configurations, and focus on energetics. There likely is a gradual transition from

hoppers which would benefit from SEA to hoppers which should use PEA as friction

in the transmission becomes more important. That is, ball screws are available with

a wide variety of transmissions, knees can be operated at many different angles, and

hybrids of the two transmission systems even exist [102]. Each of these transmission

types can benefit a particular actuator. Additionally, more complexity has been

introduced by robotic prototypes that utilize both SEA and PEA within a single

design [67]. Future studies should take into account the vast variety of possible

configurations.

The highly complex dependence on actuation type, parameters, and motion profile

emphasizes the necessity of optimization to explore design issues. Still, it is important

here to state that the methods we use are local, and so we are unable to guarantee

their global optimality. In hopes of escaping local minima, all of the results presented

in this chapter represent optima that have been tested from a variety of different

initial conditions.

Given that our evaluation took into account different cost functions that penal-

ized force and work independently, our results can still be considered fairly general.

Furthermore, this chapter should also be understood as an introduction of a system-

atic methodology that enables a fair comparison of different robot morphologies. In

a sense, the comparison of PEA and SEA is just an application of this method. In

the future, this methodology can and should be extended to include other models as

well as more complex motions. Moreover, the methodology can be utilized to look at

other cost functions to maximize performance metrics other than energetics, such as

maximizing hopping height.

Overall, the presented work gives a deeper understanding of the optimal motion for

both SEA and PEA driven hopping motions. Understanding this underlying optimal

motion can help designers ensure that they are not losing energy by unintentionally

fighting the natural dynamics of a particular type of actuator. This understanding

also gives insight into the coupling of morphology and motion. By using trajectory

optimization, we can see how the choice of transmission ratio and stiffness change

for a particular implementation and how these parameters and the resulting motion

mutually influence each other. Recognizing these relationships opens the possibility

to make robots more efficient, faster, and more robust.
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CHAPTER IV

Optimal Configuration of Series and Parallel

Elasticity in a 2D Monoped

4.1 Introduction

1 The way that a legged system is built and the way that it moves are funda-

mentally connected. This connection is readily apparent when a legged robot moves

in a way that maximizes its energetic economy. Model based studies have shown

that robots moving in this way take advantage of their natural dynamics [38, 41]

(the intrinsic morphologically based motions that result from the interplay of gravity,

inertia, and elasticity in the springs). For these models, springs play a key role in

explaining the dynamics of legged systems.

Motivated by nature [84, 7] and the passive dynamic results above, we include

elasticity in our models. To understand the energetic considerations of a particular

morphology, we also incorporate actuators. In doing so, we now alter the passive

structure of the robot, and consequently, alter the way in which the legged system

moves efficiently. The optimal motion is further complicated by the fact that we have

many different choices on how to implement the actuators, and, that different motor

and spring parameters are ideal for each case. The two most common implementations

are to place the springs either in series (Series Elastic Actuator, SEA) or in parallel

(Parallel Elastic Actuator, PEA) with the motor. The primary advantage of SEA is

that the motor inertia is coupled by a spring to the joint inertia. As a result, the

motor is well isolated from impacts, and the motor inertia does not interfere with

the joint motion. The primary advantage for PEA is that the motor force and the

parallel spring force act additively, which can decrease the force requirements on the

1This chapter has been previously published in the 2016 IEEE International Conference on
Robotics and Automation [132]
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Figure 4.1: In this chapter we use optimal control to find the most energetically
economical configuration of actuators on a two-dimensional monoped. We compare
four configurations, a parallel elastic actuator (PEA) at both the hip and the leg
(shown on the left), a series elastic actuator (SEA) at both locations (shown on the
right), a SEA at the hip and PEA at the leg, and a PEA at the hip and an SEA at the
leg. In the optimization, we simultaneously optimize for the motion and morphology
of each configuration to ensure that we compare the best possible version of each
monoped. Our models have mass in the legs and feet, damping, and realistic DC
electric motor models. We additionally include realistic constraints on the leg length,
motor force, and motor velocity.

In this chapter we seek to find the optimal configuration of SEA and PEA in a

two-dimensional monoped. While in the past we have worked with one-dimensional

monopedal hopping [134], moving to a second dimension greatly increases the com-

plexity of the problem. Both the hip and the leg can have either PEA or SEA, leading

to four possible actuator configurations. The two-dimensional monoped moves with

a forward velocity, which leads to much more complex motions that require careful

coordination between the hip and leg. The parameter space over which to optimize

morphology is greatly expanded by the addition of a second motor and spring. Lastly,

and perhaps most importantly, we are optimizing for the motion and parameters of

actuators that have very different roles in legged locomotion. The hip actuator coor-

dinates the leg swing dynamics, while the leg springs mimics the behavior of a spring

loaded inverted pendulum (SLIP) [75].

We seek motions that minimize the cost of transport (COT) (the amount of en-
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ergy divided by the distance traveled [35, 126]), for three separate cost functions:

the positive motor work, electrical losses, and the positive electrical work. Utilizing

our prior results [134] and previous model-based studies [110], we hypothesize that

the optimal configuration will be cost function dependent. For the positive motor

work and positive electrical work costs of transport (COT), we predict that the op-

timal configuration will have a series leg, as a SEA was energetically optimal for the

one-dimensional hopper. For the electrical losses COT, we predict that the optimal

configuration will have a parallel leg, as PEA was slightly more economical for in-

place hopping. For all three cost functions, we hypothesize that the two-dimensional

monoped will favor a parallel hip. This prediction is motivated by [42], who found

periodic walking gaits on flat ground with no energy input. As there is no active input

in their bipedal model, the hip spring acts entirely to time the swing leg dynamics

passively. A PEA with no torque applied mimics this situation. Therefore, we predict

that with an optimal stiffness, the parallel spring should largely account for leg swing

timing.

By systematically testing these hypotheses, we show the possibility of using opti-

mization to make design choices on a realistic robot model performing a realistic task.

While our work on the one-dimensional hopper [134] showed how optimization can

be used to compare two distinct legged robot morphologies, the task was intention-

ally simplified to allow us to ensure our methodology worked. The two-dimensional

motion optimized for here represents the motion that each leg of a biped undergoes

during running, with all the complexities of swing-leg coordination. Furthermore, the

choice of actuator is an open question in hardware and simulation. ScarlETH has

SEA in both the hip and the knee [62]. MABEL also makes use of SEA [46] while

Phides utilizes PEA [69]. In prosthetics, the effect of parallel and series elasticity has

also been studied on an ankle joint [45]. In simulation, [65] compare PEA and SEA

for stationary hopping and conclude that PEA is more energetically efficient for typ-

ical robotic properties and motions. This work, however, only looks at the electrical

losses, ignores losses during flight, ignores collision losses, and does not include a de-

tailed electric motor model. With this present work, we include these missing aspects

and we show how our previous methodology can be extended to compare different

configurations of SEA and PEA in order choose the most energetically economical

structure.

To make our optimization procedure relevant for actual hardware design choices,

we use realistic models. These models have mass in the feet and upper leg, realistic

DC electric motor models, and damping in the springs. The models have realistic
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constraints on torques, velocities, leg lengths, and all parameter values. In these

optimizations we include the stiffness and motor parameters as free variables. In

this way we ensure that the optimizer is allowed to choose the best morphology for a

particular actuator configuration. We show that the optimal configuration depends on

the velocity as well as the cost function. The optimal configuration is primarily driven

by damping losses and negative actuator work, with collisions playing a comparatively

small role.

4.2 Methods

4.2.1 Model

The 2D monoped models in this study (Fig. 4.1) are similar to our previous models

[110, 130]. In this section we extend the equations of motion to include PEA. Each

model includes three rigid bodies: the main body, upper limb, and lower limb. The

main body has a mass of m1 and an inertia of j1, with the hip joint located at the

center of mass (COM). It has three degree of freedoms: its horizontal and vertical

position x, y and orientation φ. The upper limb segment connects to the main body

via a rotational hip joint. It has a mass of m2 and an inertia of j2. Its COM is located

at a distance l2 from the hip joint. The lower limb segment, which moves relative

to the upper limb through a prismatic knee joint, has mass m3 and inertia j3. The

COM is located a distance l3 away from the center of the foot. The remaining model

states are the angle of the leg, α, and the length of the leg, l, which is measured from

the COM of the main body to the center of the foot.

In contrast to our previous work [110], in this model both the hip joint and knee

joint can either have PEA or SEA to control the desired motion. These models

are therefore the two-dimensional extension of our previous work on one-dimensional

hoppers [134]. If PEA is chosen for the hip joint, the rotational hip spring is rigidly

attached to the upper leg segment at one end and to the main body at the other end

with an offset angle uoffset,α (this spring pre-compression is introduced to keep the

comparison between SEA and PEA fair). The hip torque is the sum of the torque

produced by the spring and the motor:

TP = kα(αo + uoffset,α − α) + bαα̇ + Tmot (4.1)
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Where αo is the rest angle of the hip spring. Similarly, for the knee joint:

FP = kl(lo + uoffset,l − l) + bl l̇ + Fmot (4.2)

Where lo is the rest length of the leg spring.

For SEA, the motor force is equal to the force produced by the spring. Here the

hip spring is connected directly to the hip motor on one end, and connected to the

upper limb at the other end. The motor position of the hip, uα, is introduced as

an additional generalized coordinate. Similarly, for the leg, the motor position ul is

an additional generalized coordinate. These displacements are driven by the motor

torques τα and τl. The joint forces for the hip and knee joints become:

TS = kα(αo + uα − α) + bα(u̇α − α̇) = Tmot (4.3)

FS = kl(lo + ul − l) + bl(u̇l − l̇) = Fmot (4.4)

The damping coefficients bl and bα are obtained from desired damping ratios ζl and

ζα. Based on the selection of the actuators, four different configurations are tested in

the following section for optimal performance (PEA-hip and PEA-leg, PEA-hip and

SEA-leg, SEA-hip and PEA-leg, SEA-hip and SEA-leg). The number of generalized

coordinates for the model depends on the particular configuration being chosen.

To keep the following analysis general, all states and parameters are normalized

with respect to the total mass mo, gravity g, and relaxed leg length lo. The values of

all of the parameters we use in this study and their bounds are shown in Table 4.1

(these are roughly obtained from previous hardware [62]).

4.2.2 System Dynamics

As described before, the total number of generalized coordinates depends on the

type of actuator chosen for each joint. For example, if PEA is chosen for the hip

and SEA for the knee joint, the generalized coordinates are q = [x, y, φ, α, l, ul]
T and

the generalized forces are τ = [0, 0, 0, TP , FS, τl − FS]T . The continuous dynamics of

the model are governed by the equations of motion (EOM ) which are stated in the

canonical form [109]:

M(q)q̈ + h(q, q̇) = τ + JT (q)λ, (4.5)

where M(q) is the mass matrix and h(q, q̇) represents the Coriolis, centrifugal, and

gravitational terms. The contact Jacobian J maps the vector of contact forces λ
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Table 4.1: Model parameters and limits expressed with respect to the total mass mo,
leg length lo, and gravity g. All values are based roughly on past prototypes [62].

m1 = 0.7mo j1 = 0.4mol
2
o lmin = 0.5 lo

m2 = 0.2mo j2 = 0.004mol
2
o lmax = 1.15 lo

m3 = 0.1mo j3 = 0.004mol
2
o umin,l = -0.15 lo

kmin,l = 0.0001mog/lo lo = 1 lo umax,l = 0.15 lo
kmax,l = 1000mog/lo l2 = 0.25 lo umin,α = −π/4
kmin,α = 0.0001mog/lo l3 = 0.25 lo umax,α = π/4
kmax,α = 1000mog/lo Pmax,α = 9.4mog

√
glo junsc,l = 0.251moglo

rfoot = 0.05 lo Pmax,l = 9.4mog
√
glo junsc,α = 0.251moglo

clim,α = 0.091 ζα = 0.2 ¯̇umin,l = 0.0001
√
log

clim,l = 0.091 ζl = 0.2 ¯̇umax,l = 10
√
log

¯̇umin,α = 0.0001
√
log ¯̇umax,α = 10

√
log

into the generalized coordinate space. The portions of the mass matrix for PEA and

SEA configurations corresponding to the generalized coordinates q = [x, y, φ, α, l]

are identical except for one key difference. For a PEA at the hip, we must add the

reflected motor inertia jmot,α to the term corresponding to (α, α) (in this case M(4,4)),

where jmot,α is given by:

jmot,α =
junsc,α

¯̇u2α
. (4.6)

In the above equation junsc,α is the unscaled inertia and ¯̇uα is the no-load speed of the

motor. To avoid repetition, we refer the reader to our previous work [134] for details

on these terms. Similarly, for a PEA at the leg, we must add the reflected motor

inertia jmot,l to the term corresponding to (l, l) (in this case M(5,5)), where jmot,l is

obtained by replacing α with l in Eqn. (4.6).

4.2.3 Cost Functions

To compare the efficiency of different combinations of the two actuator types for

a 2D monoped hopping over a range of forward velocities, three cost functions are

utilized to quantify the cost of transport. For each optimization we fix the average

forward hopping speed ẋd and quantify the cost of transport. All of the cost functions

can then be expressed as an integral over the stride time (t = 0 until t = T ). The

COT is obtained by dividing the energy consumption in one stride by the total weight

of the model and the distance it traveled over the duration T of that stride.
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4.2.3.1 Positive Motor Work

By minimizing the positive motor work, we minimize the sum of the total energetic

losses in the contact collisions, viscous damping in the springs, and negative motor

work [110]. For the SEA, the total motor work for a single stride is given by:

cmot,l,SEA =

T∫
0

max (Fmot · u̇l, 0) dt (4.7)

cmot,α,SEA =

T∫
0

max (Tmot · u̇α, 0) dt,

In the case of the PEA, the actuator velocities are the same as the joint velocities.

At any moment, the joint power is equal to the generalized joint force multiplying

the joint velocities. Therefore the positive motor work (cmot,l,PEA, cmot,α,PEA) can be

calculated by replacing u̇l and u̇α with l̇ and α̇ respectively.

For all actuation configurations, the final cost function for one stride is the sum-

mation of the positive motor work at both the hip and knee joint.

4.2.3.2 Electrical Losses

The electrical losses represent the thermal losses in the motor. For both the

parallel and series cases, the thermal losses in a single stride can be quantified as:

closs =

T∫
0

( ¯̇u2l
Pmax,l

F 2
mot +

¯̇u2α
Pmax,α

T 2
mot

)
dt (4.8)

where Pmax,l and Pmax,α represent the maximal motor power in the leg and hip motors

respectively.

4.2.3.3 Electrical Work

We can also combine the two previous cost functions and balance the trade-off

between motor work and thermal losses by using a more sophisticated cost function,

the positive electrical work. This cost function is unique in that it allows negative

work in one motor to be used to perform positive work or compensate for losses in

another. For the series hip series leg case, the cost function is:

cel,SEA,SEA =

T∫
0

max

(
Fmot · u̇l + Tmot · u̇α +

¯̇u
2
l

Pmax,l
F 2
mot +

¯̇u
2
α

Pmax,α
T 2
mot, 0

)
dt (4.9)
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For a parallel hip, u̇α is replaced with α̇. For a parallel leg, u̇l is replaced with l̇.

4.2.4 Optimization

We use optimal control to find energetically economical motions for each of the

three cost functions (expressed as COT). In these optimizations we enforced periodic

boundary conditions in order to obtain a continuous hopping motion. The motion ob-

tained represents the ideal energetic cost, obtained during uninterrupted locomotion

without outside disturbances. The results are therefore the upper bound on energetic

economy. They do not take into account the additional energetic cost associated with

stabilizing feedback.

We obtain optimal motor input by conducting velocity parameter studies using

the multiple shooting optimization package MUSCOD [30]. MUSCOD provides a con-

tinuous piecewise linear motor input profile that minimizes the chosen cost function.

For each point in these parameter studies, we fix the velocity, but leave morphological

parameters as free variables. We include the hip and leg stiffness (kα, kl), the no load

speeds of the hip and leg motors (¯̇uα, ¯̇ul), the apex height of the main body, and for

PEA, the hip and leg motor offset (uoffset,l, uoffset,α) directly in the optimization.

The bounds on these parameters (given in Table 4.1) ensure that their values are

realistic. The optimal motion is then obtained by integration of the equations of

motion (Eqn. (4.5)). The above procedure is repeated for each actuator configuration

and each cost function.

To ensure that the motions also remained realistic, we implemented constraints

on the motion and motor input. The leg length was constrained to be 0.5lo ≤ l ≤
1.15lo. For SEA, the leg motor position was constrained to −0.15lo ≤ ul ≤ 0.15lo.

Additionally, the hip motor position was constrained to −π/4 ≤ uα ≤ π/4. For the

motors we utilize the thermal loss conversion factor clim, which limits the available

motor power to avoid overheating. For the SEA leg motor we have:

|Fmot| ≤ clim,l
Pmax,l

¯̇ul
, (4.10)

and

|u̇l| ≤ ¯̇ul (1− clim,l) . (4.11)

A detailed derivation of these equations can be found in Chapter 4.1.4 of [108]. For

the SEA hip motor, l is replaced by α. For PEA, u̇l is replaced by l̇ and u̇α is replaced

by α̇.
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4.3 Results

We found that the optimal actuator configuration is both velocity dependent, and

dependent on the cost function.

For the positive motor work COT, the optimal configuration was parallel for the

hip and series for the leg (Fig. 4.2,a). That configuration has similar COT values

to the other configurations at low velocities (v < 0.325
√
log), but excels as velocity

increases. For intermediate velocities, the monopeds with serial legs outperform those

with parallel legs significantly. At a velocity of v = 1.025
√
log the serial leg monopeds

have roughly the same COT (0.197). The monoped with a serial hip and parallel leg

has a cost that is 13.86% higher, and the parallel hip parallel leg configuration has

a cost that is 31.68% higher. At high velocities (v > 1.125
√
log), the monopeds

with series legs diverge in COT value, with the parallel hip and series leg becoming

significantly more economical. At a velocity of v = 1.425
√
log), the last solution

found by the optimizer for the serial hip and serial leg, the monoped has a cost

that is 38.72% higher than the parallel hip and series leg monoped. The optimizer

found solutions for the PEA hip and SEA leg configuration at larger velocities (up to

v = 1.825
√
log) than the other configurations. The second highest velocity solution

was found for PEA leg and PEA hip (v = 1.525
√
log). The optimality of the series leg

and parallel hip configuration stems primarily from low damping losses and negative

motor work, with collisions playing a small role (Fig. 4.3,b). Fig. 4.3 also shows that

both of the series leg configurations have significantly lower damping losses than the

parallel leg configurations at high velocities.

For the electrical losses COT, the optimal configuration is again a PEA at the hip

and a SEA at the leg (Fig. 4.2,b). As for the positive motor work, at low velocities

(v < 0.325
√
log), all of the configurations have nearly the same cost. At the last

feasible solution for the parallel hip and parallel leg configuration (v = 0.825
√
log),

the monoped has a cost that is 153% higher than the parallel hip and series leg

configuration. Additionally, the latter configuration had the most solutions found

by the optimizer, with solutions found up to a velocity of v = 1.825
√
log. The

second highest velocity solution was found for the series leg and series hip monoped

at v = 1.425
√
log.

For the electrical work COT, there is no clear choice for the best configuration

(Fig. 4.2,c). At low velocities, the series hip and parallel leg configuration is opti-

mal, while at high velocities both the parallel hip series leg and series hip series leg

monopeds are optimal (with both obtaining nearly the same cost).
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4.4 Discussion & Conclusion

In this chapter, we apply optimal control to find the most energetically economical

configuration of parallel and series elasticity on a two-dimensional monoped. In this

process, we simultaneously optimize for motion and morphology. Not only do we

compare the four different configurations of SEAs and PEAs, but we also optimize

the springs, motor parameters, and motor offsets for each configuration. In addition,

we enforce realistic constraints on leg length as well as motor force and velocity. We

can therefore confidently say that we are comparing a realistic version of the best

possible case for each configuration. Using these techniques, we have shown that for

the positive motor work COT and the electrical losses COT, having a parallel hip

and a series leg is the optimal configuration. For the positive electrical work, there is

no consensus on the optimal choice.

While our optimal configuration prediction for the positive motor work COT was

correct, our hypothesis proved incorrect for the other two COT. For electrical losses,

this is not particularly surprising. For in-place hopping, the difference in optimal

electrical losses for a serial leg compared to a parallel leg is small relative to the

other cost functions [134]. It is therefore conceivable that the additional constraints

and free parameters implemented here could lead to a shift in the optimal leg spring

choice. For the positive electrical work, however, the result is entirely unexpected.

The positive electrical work represents a combination of the positive motor work and

the electrical losses. As the parallel hip and series leg is optimal for both positive

motor work and electrical losses, it would seem that it should also be optimal for

the positive electrical work. The discrepancy can likely be attributed to the fact

that the cost function allows the negative work in one motor to be used to perform

positive work or compensate for losses in the other. As this quality is not present for

the positive motor work, the positive electrical work does not accurately represent a

combination of the other two cost functions.

For both the electrical losses and the positive motor work COT, the optimizer was

able to find solutions at higher velocities than the other configurations. At higher

velocities there are increased motor torques and velocities, as well as increased leg

contraction and extension. The limiting factors to finding solutions therefore become

the motor and leg length constraints. That fact implies that the series leg parallel hip

configuration is best able to choose motion strategies that avoid these constraints. As

for the one-dimensional hopper [134], this is a surprising result. The main advantage

of PEA is that the spring and motor torques act additively (Eqns. 4.2,4.1). It would
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seem that therefore the PEA hip and the PEA leg would have a lower electrical loss

COT, particularly at higher velocities where torques are much larger. Despite this,

the PEA hip and SEA leg configuration has lower costs at nearly all velocities.

For the positive motor work, the series leg configurations have lower damping

losses at higher speeds (Fig. 4.3). At first, it would seem that these losses are ac-

counted for by the monoped’s ability to use the motor position to decrease the rate

of leg extension and compression(as in [134] for the one-dimensional hopper). At a

closer look, however, the situation is more complex. The rapid increase in damping

losses for the parallel leg configurations is driven by an increase in damping losses at

the hip at high velocities. The damping loss increase occurs simply because at higher

velocities, the leg is required to swing faster. The fact the the increase is steeper

for the PEA leg configurations implies that there is an inherent coupling that occurs

between actuators when there is a PEA at the leg. That is, the PEA at the leg is very

sensitive to the timing of the leg oscillation. The choice of leg spring and leg motor

mass therefore inherently sets a timing which the hip spring must adhere to. This

coordination evidently leads to non-ideal hip motion, driving up hip costs. The series

leg series hip configuration has lower damping losses than the series leg and parallel

hip configuration at high velocities. Despite this, the lower negative motor work at

high velocities required for the latter configuration drives down its overall cost.

In this work, we simultaneously consider a wide variety of parameters and con-

straints in a single optimization. This wide-ranging study comes at the expense of a

detailed understanding of the fundamental effects of these design choices. As chang-

ing the parameters simultaneously influences the natural dynamics of the system, as

well as the constraints, it is nearly impossible to extricate the effect of any one change

on the system. For example, changing the no load speed in the hip motor will change

the reflected motor inertia (Eqn. 4.6), which will in turn affect the motor dynamics

for both PEA and SEA, collision losses for PEAs, and the ability to store energy in

the motor for SEAs. Additionally, changing the no load speed changes the torque and

velocity limits of the motors (Eqns. 4.10,4.11), directly affecting the constraints and

limiting the possible motion. Every parameter changes the natural dynamics while

simultaneously curtailing them (either by affecting the robots interaction with the

constraints or the constraints directly).

While a fundamental understanding of the effect of PEA and SEA on two-dimensional

legged locomotion is valuable and necessary, it was not our goal here. Instead, we

showed that a complex and realistic design question for future hardware can be an-

swered using optimal control. Despite the interplay of complicated motion and mor-
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phology, our optimization methodology was able to give insight into the best design

choices.
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Figure 4.2: A comparison of cost values for each actuator configuration. For the
positive motor work and electrical loss COTs, the parallel hip and series leg config-
uration is energetically optimal. This configuration has the lowest cost throughout
much of the velocity range. It also has the most solutions, indicating that it is able
to meet realistic motor constraints at the most velocities. For the positive electrical
work COT, there is no clear consensus on the optimal configuration. Series hip and
parallel leg is optimal at low velocities, and both series hip series leg and parallel hip
series leg are optimal at high velocities.
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Figure 4.3: The sources of losses for the positive motor work COT of all actuator
configurations. The losses can come from damping in the leg and hip springs, negative
motor work in the leg and hip motors, and collision losses. The losses primarily come
from damping. Collision losses are generally small in comparison. The influence of
negative motor work varies among the configurations.
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CHAPTER V

Spine Morphology and Energetics: How Principles

From Nature Apply to Robotics

5.1 Introduction

1 Being able to move in an energetically economical fashion is an important re-

quirement for robots and animals alike [57, 126, 29, 105, 25, 123, 8, 130]. In nature,

energy in the form of food can be a scarce resource. Especially for cursorial animals,

this creates a strong incentive to locomote in an efficient manner. Similar constraints

apply to robots. Once they have been deployed for a mission in the field, autonomous

robots typically do not have many opportunities to recharge their batteries. At the

same time, such robots – and in particular legged robots – have only a limited capac-

ity to carry batteries and other fuel sources. To achieve truly autonomous operation,

conserving energy is imperative.

It has been shown that legged animals can achieve this economical motion partly

by moving in ways that are effectively tuned to their natural mechanical dynamics

[79, 28, 38, 22]. That is, animals and humans take advantage of movement that

arises through the passive interplay of gravity, ground contact forces, the elasticity in

their muscles and tendons, and the mechanical inertia in their body segments. Using

these natural dynamic motions allows them to store and recover mechanical energy

and reduce the active work done by their muscles. Animals exploit, for example, the

mechanical dynamics of an inverted pendulum as they walk with relatively straight

legs [22]. When humans switch to running, they utilize the compliance in their ten-

dons and muscles to store energy elastically while using a motion that exploits the

mechanical dynamics of a spring loaded inverted pendulum [15]. Over the past years,

these concepts have been steadily adapted into the world of legged robotics [108], and

1This chapter has been previously published in Bioinspiration & Biomimetics [135]
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a number of robotic prototypes have been built that seek to take advantage of similar

natural mechanical dynamics to achieve economical locomotion [58, 107, 46, 83, 13].

This exploitation of the natural mechanical dynamics has interesting implications

for the design of robotic systems. The desire to move economically inherently couples

the motion of a legged system to its morphology: the mechanical dynamics that

a legged system exhibits are a direct consequence of the way it is built and these

dynamics, in turn, dominate the way that an animal or robot should move in order

to be economical. In this chapter, we investigate a particular aspect of morphology

and its potential usefulness in robotics: the articulation in the spine of quadrupeds.

In nature, the advantages of an articulated spine seem to be closely coupled to the

choice of gait. At lower speeds, quadrupedal mammals generally utilize symmetrical

gaits, in which the legs on the left side perform exactly the same motion as the legs

on the right, just 180◦ out of phase. At higher speeds, they tend to transition to

asymmetrical gaits, in which the two sides of the animal perform different motions

and/or the phase shift differs from 180◦ [5]. Animals primarily utilize the articulation

in their spine for these high speed asymmetrical gaits [3], whereas less spine motion

can be observed in the symmetrical gaits [5]. This is an important observation and

any investigation of the usefulness of an articulated spine in legged robots should thus

incorporate the question of gait as a key factor in its analysis.

It has been argued that, with an asymmetrical gait, an articulated spine provides

a number of dynamical benefits for animals with regard to leg recirculation, elastic

energy storage, and stride length. In particular, [50] pointed out that the articulation

in the spine allows for faster recirculation of the legs. That is, the spinal rotation

that is added in series to the flexion and extension of the hip and shoulder joints,

enables a faster motion of the legs during swing. He further hypothesized that these

additional degrees of freedom allow for longer stride lengths, attributing to a cheetah’s

high maximum speed [51]. [5] built upon Hildebrand’s hypothesis when examining

various models of quadrupedal animals and suggested that muscles and tendons in

the articulation of the spine might act as additional elastic elements to store and

release energy.

A number of studies have tried to assess the potential benefits of an articulated

spine by performing comparative studies among quadrupedal models. [136], for exam-

ple, developed a pneumatic-driven robotic quadruped with a rigid, passive, and active

spine configuration. Using a step-function control pattern to achieve a bounding gait,

they found that when the spinal motions are synchronized with leg movements, the

extension and flexion of the active spine allows the robot to reach higher speeds. [66]
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Figure 5.1: In this work, we investigate the benefits of an articulated spine for the
use in quadrupedal robots. We base our comparison on two physics based models:
one with a rigid main body (a) and one with an articulated main body (b). Both
model instances have four distinct legs and incorporate complexities such as mass and
inertia in all body segments, detailed motor models with limits on available torque
and speed, as well as series elastic actuators. To ensure that we are making a fair
comparison, we use optimal control to find the most energetically economical joint
trajectories, actuator inputs, and footfall timing for each model across a broad range
of gaits and locomotion velocities.

used a central pattern generator controller to obtain bounding gaits for a robotic

simulation comparing rigid, passive articulated, and active articulated spinal config-
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urations. They found that bounding with a series elastic actuated spine performed

better than an articulated passive spine and rigid spine in terms of bounding power

consumption. [49] compared two 2-dimensional quadrupedal bounding models, one

with an articulated spine modeled as 6 rigid segments and one with a rigid spine mod-

eled as 5 rigid segments. With these models, Haueisen analyzed the effects of speed

and stride frequency on the energy requirements of both models for the bounding gait.

She found that, during bounding, the articulated model utilized its articulated spinal

joint in similar ways to that observed in nature and also found energetic benefits at

higher speeds. Using optimal control, [21] found that, at sufficiently high speeds, an

articulated model of a bounding quadruped was more economical than a rigid model.

All of these prior comparative simulation studies considered simplified quadrupedal

models that represented a two-legged planar bounding robot. The comparison of the

two morphologies has also been explored for bounding in hardware [70], where, in

contrast to the above studies, they did not observe an energetic improvement for the

flexible spine.

To extend these comparison studies beyond bounding, in this work, our model

incorporates four independent legs. This design choice allows us to explore the effect

of an articulated spine over the full range of quadrupedal gaits found in nature.

This is an important extension, as bounding rarely appears as the gait of choice [4],

while other gaits such as walking, trotting, tölting, and galloping are employed by a

significant number of quadrupeds of all sizes [11]. Furthermore, our prior work has

shown that bounding was never the most economical gait for robots [130]. In addition

to the four legs, our model incorporates complexities such as feet with mass, inertia

in the legs and torso, detailed motor models with realistic limitations on torque and

speed, as well as series elastic springs with damping that generate the rich natural

mechanical dynamics necessary for efficient locomotion. These complexities allow for

physically realistic motions across a wide range of velocities and gaits.

Utilizing this model, in this chapter we investigate whether and how the benefits of

an articulated spine translate from nature into the world of robotics. We consider the

choice of gait and investigate the three mechanical mechanisms stated above. Our tool

of choice for this investigation is physics based simulation which we use to compare

two model instances – one with and one without an articulated spine. The coupling

of motion and morphology poses a particular challenge in this context: in order to

optimally exploit their respective natural dynamics, each of the two morphologies will

require distinctly different actuation patterns and joint movements to move forward

in an economical fashion. Using the same control strategy for both morphologies
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would implicitly bias the comparison to favor one or the other. To overcome this

issue, we let a numerical optimizer find the best possible joint trajectories, actuator

inputs, and footfall timing to minimize the energetic cost of locomotion. By doing

this individually for each morphology, we effectively remove the question of control

from the comparison. This approach reduces the investigation of the benefits of an

articulated spine solely to the mechanical differences between the two model instances.

In the process, we create a causal relationship between morphology and performance.

In addition to understanding the potential benefits of an articulated spine for robots,

this approach also allows us to add new insight into the hypotheses put forth by

Hildebrand and Alexander [50, 51, 5].

The dimensions and parameters of our model are roughly based off the quadrupedal

robot, StarlETH [61, 112], and are similar to the models used in our previous studies

on robotic gait selection [130, 129]. We created two model instances: one with a rigid

main body and one with an articulated main body composed of two rigid segments

connected by a rotational joint (Fig. 5.1). Similar to our previous work [130], we

used optimal control to generate an energy cost landscape as a function of speed,

using positive mechanical motor work normalized per distance traveled as the cost

function. This was done for both model instances across a broad range of different

gaits to allow for a fair comparison of the two morphological instances.

5.2 Methods

In this study, we compare two different instances of a physics-based model of a

quadrupedal legged robot: one with a rigid spine (Fig. 5.1a) and one with an articu-

lated spine (Fig. 5.1b). We employ optimal control to identify the most economical

motion for each of the two instances across a wide range of locomotion speeds and

gaits, generating a lower bound on the energetic cost of locomotion. As the model and

optimization methods used in this study are similar to the ones used in our previous

work [130], we restate them only briefly while focusing on the aspects most critical

to the comparison of the rigid vs. articulated spine.

5.2.1 Model

The model is planar and consists of a main body and four individual legs with

index i ∈ {LH,LF,RF,RH} (labeled as left L, right R, hind H, and front F ). Its

geometrical dimensions are shown in Figure 5.1. The individual segments of the model

all have distributed masses with associated inertias. Each leg consists of an upper
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(m2, j2) and lower (m3, j3) segment that are connected with a prismatic joint that

yields a variable leg length of li. The upper leg segments are attached to a main body

at hip/shoulder joints (with joint angles αi) at a distance lr from the center of mass

(COM). The main body is either a single rigid segment with mass mr and inertia jr

or – in the case of the articulated spine – consists of two identical segments of half the

size with mass ma = 1
2
mr and inertia ja = 1

8
jr. These two segments are connected

with a rotational joint with joint angle θ. The COM of each segment is a distance la

from this rotational joint. The position of the center of the main body is given by

horizontal and vertical positions x and y, and by the orientation of the main body

ϕ. For the articulated model, we use the orientation of the hind segment ϕH for the

same purpose.

There are three different joint types with index p ∈ {l, α, θ} for leg extension, hip

rotation, and spine rotation. All actuators are modelled as Series Elastic Actuators

(SEAs) [100], as they were used in our existing robotic hardware [63, 62]. Comparable

to ligaments in nature, the series springs give the robot the opportunity to elastically

store and release energy in all joints. Each joint is therefore modelled to consist of

a spring with stiffness kp and damping coefficient bp that connects to the joint at its

distal end while its proximal end is connected to an electrical DC motor and gearbox

with reflected inertia jref,p. For leg extension, this gearbox also converts the motor

rotation into a linear motion.

For clarity, we will omit the indices i and p in the following description of the

actuators. The position of an actuator (after the gearbox) is given by u and its speed

by u̇. The torque after the gearbox is given by T

In the SEAs, the joint torques/forces F are ultimately produced by the springs

according to:

Fl = kl (lo + ul − l) + bl

(
u̇l − l̇

)
(5.1)

Fα = kα (uα −α) + bα (u̇α − α̇) (5.2)

Fθ = kθ (uθ − θ) + bθ

(
u̇θ − θ̇

)
.

With this, the generalized coordinate vector is given by

q = (x, y, ϕ, α, l, uα, ul)
T (5.3)

for the rigid model and by

q = (x, y, ϕH , θ, α, l, uα, ul, uθ)
T (5.4)
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Table 5.1: List of all model parameters. Values are expressed with respect to total
mass mo, leg length lo, and gravity g.

Common Properties:
m2 = 0.05 mo m3 = 0.025 mo j2 = 0.001mol

2
o

bl = 0.14mo

√
g/lo jref,l = 1.796mo bα = 0.09mo

√
g/lo

l2 = 0.25 lo jref,α = 0.449mol
2
o rfoot = 0.05 lo

l3 = 0.25 lo kα = 2.5moglo/rad umax,α = 0.79 rad

Tmax,l = 1.360mog Tmax,α = 0.680moglo u̇max,α = 8.49 rad
√
g/lo

j3 = 0.001mol
2
o lh = 0.75 lo kl = 5.0mog/lo

umax,l = 0.15 lo u̇max,l = 4.24
√
glo

Rigid Model:
mr = 0.7 mo jr = 0.2 mol

2
o lr = 0.93

Articulated Model:
ma = 0.35 mo ja = 0.025 mol

2
o umax,θ = 1.57 rad

Tmax,θ = 0.680moglo bθ = 0.24mo

√
g/lo u̇max,θ = 8.49 rad

√
g/lo

jref,θ = 0.449mol
2
o kθ = 5 moglo/rad la = 0.5lr

for the articulated model. The vector of generalized torques is given by

τ = (0, 0, 0, Fα, Fl,Tα − Fα, Tl − Fl)
T (5.5)

and

τ = (0, 0, 0, Fθ, Fα, Fl, Tα − Fα, Tl − Fl, Tθ − Fθ)T (5.6)

, respectively.

All model parameters are provided in Table 5.1. The parameters used, including

mass, inertia, length, and spring stiffness, are based on our existing hardware [62].

This also holds for the motor/gearbox parameters, such as the reflected inertia jref, the

maximum output torque Tmax limitation, and the speed limitation u̇max. To reduce

the number of free parameters, all values have been normalized with respect to total

mass mo, uncompressed leg length lo, and gravity g.

The equations of motion (EOMs) for this model are stated in a floating base

description using additional contact constraints (as described in detail in [108]). They
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are expressed as a differential algebraic equation:

M (q) q̈ = h (q, q̇) + τ + JTc (q)λ (5.7)

φc (q) = 0, (5.8)

with the mass matrix M, the differentiable force vector h, and the generalized torque

vector τ . The algebraic function φc (q) encodes the currently active contact con-

straints. It ensures that all the feet that are in contact with the ground do not slide

or penetrate into the ground. The partial derivative of this function yields the contact

Jacobian Jc = ∂φc/∂q whose transpose maps a vector of contact forces λ into the

generalized coordinate space.

The sequence of footfalls that happens during locomotion breaks the simulation

into individual phases (with index c) and each phase uses a different contact constraint

function φc. At the end of each phase c (at time tc) a specific number of feet must

get in contact with the ground or leave the ground in order to transition into the next

phase c + 1. This requirement is encoded by an event function ψc that is evaluated

at time tc:

ψc (tc) = 0. (5.9)

Furthermore, at the end of each phase, a collision might happen and velocities change

instantaneously to match the new contact constraints φc+1. This instantaneous

change in speed can be computed from:

M
(
q̇+ (tc)− q̇− (tc)

)
= JTc+1Λc (5.10)

Jc+1q̇
+ (tc) = 0 (5.11)

with Λc being the vector of impulses associated with the collision. Matlab functions to

calculate φc, M, Jc, and h from Eqns. (5.7) and (5.8) are supplied in the supplemental

files.

By prescribing a particular sequence of functions φc and ψc, we determine the

gait of the model. The timing of events t ∈ {to, , · · · , tc, · · · , tend} is left open.

With this, we enforced eight different footfall patterns which can be broadly classified

into a set of symmetrical and asymmetrical gaits (footfall patterns shown in Fig. 5.2).

Symmetrical gaits are those “in which the left and right feet of each pair have equal

duty factors and relative phases differing by 0.5” [4]. Equivalently, for these gaits, we

only simulate half the stride and mirror it to obtain the second half. Asymmetrical

gaits are those that do not meet these criteria. The symmetrical gaits we investigate

77



are four-beat walking, two-beat walking, tölting, and trotting. The asymmetrical gaits

we investigate are bounding, grounded bounding, galloping, and gallop bounding. The

majority of these gaits were chosen based off of our previous work [130]. Grounded

bounding and gallop bounding were included because at high speeds, the optimizer

chose phase durations within bounding and galloping that approached these gaits.

RH

RF

LF

LH

Four-Beat Walking

Two-Beat Walking

Tőlting

Trotting

Bounding

Galloping

Grounded Bounding

Stride�cycle

Gallop Bounding

Stride�cycle

Symmetrical Asymmetrical

RH

RF

LF

LH

RH

RF

LF

LH

RH

RF

LF

LH

Figure 5.2: We explored four symmetrical and four asymmetrical gaits, whose footfall
patterns are shown in this figure. The colored bars indicate when each leg is in
stance (LH: left hind, LF: left front, RF: right front, RH: right hind). While the
footfall sequence was fixed, the duration of each phase of the gait, as well as the total
stride duration was chosen by the optimizer. The terms two-beat walking, grounded
bounding, and gallop bounding were devised by the authors to clearly distinguish
these gaits from trotting, bounding, and galloping. Since the models are planar,
left and right legs are interchangeable, and some gaits could thus be omitted in our
analysis. Pacing, for example, would be indistinguishable from trotting and was hence
not considered.
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5.2.2 Optimization

To compare the energetic economy of both model instances we considered the

positive motor work cost of transport (COT). To this end, the positive motor work is

computed as the integral of positive mechanical power summed over all motors over

the duration of the stride and normalized by total mass and distance traveled:

COT =

∫ tend
t0

∑
i,p max (Ti,p · u̇i,p, 0) dt

mog (x(tend)− x(t0))
. (5.12)

To improve the numerical behavior, we approximated the discontinuity in the cost

function by smoothing the max(value, 0) function using the equation:

max(s, 0) ≈ σlog
(
1 + e

s
σ

)
(5.13)

with σ = 1e− 5.

With this, we can set up the search for the optimal motion to be a constrained

optimization problem, in which we identify optimal joint trajectories q (t), torque

inputs T (t), and event times t:

min COT (q (t) ,T (t) , t) (5.14)

subject to the following constraints:

• The trajectories q (t) and T (t) comply with the dynamics defined in eqs. (5.7) & (5.8).

• For each phase c, it holds:

– tc > tc−1.

– The event is triggered at the end of the phase according to eq. (5.9).

– Velocities q̇ change at the end of each phase as defined by eq. (5.10) & (5.11).

• The motion is periodic; i.e., q(to) = q(tend) and q̇(to) = q̇(tend)

• Motor torques, speed, and positions are within the given limits for all joints i

and p:

– −Tmax,p < Ti,p (t) < Tmax,p.

– −u̇max,p < u̇i,p (t) < u̇max,p.

– −umax,p < ui,p (t) < umax,p.
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Table 5.2: Change in spinal angle at a speed of 1.0
√
log.

Gait ∆θ
Four-Beat Walking 8.04 ◦

Two-Beat Walking 4.14 ◦

Tölting 7.83 ◦

Trotting 5.20 ◦

Bounding 51.5 ◦

Grounded Bounding 56.4 ◦

Galloping 22.4 ◦

Gallop-Bounding 112.7 ◦

• Vertical foot positions are non-negative, yfoot ≥ 0.

This constrained optimization problem was solved through a multiple shooting

optimization framework (MUSCOD) ([30]) with methods illustrated and detailed in

[130]. We examined locomotion velocities between 0.025
√
l0g and 4.5

√
l0g. For

each gait, we conducted an initial optimization at an initial speed and iteratively

conducted optimizations at neighboring velocities in a branching method until the

full range of velocities was covered or no solutions could be found. In this process,

we used previously obtained solutions as the initial conditions of the neighboring

velocities. At each particular speed, the solution with the lowest cost was taken as

the optimal motion and re-used for re-initialization. This procedure was repeated

from a variety of initial seeds to avoid local optima.

5.3 Results

On average, the optimization of a single gait at a particular speed converged in

about 5 minutes on one core of a 2.40 GHz processor. The time it took to process a

given gait over the entire range of velocities varied largely. Depending on how well

neighboring data points could be used for seeding new runs and on how many data

points were recomputed, it took between 2 (trotting) and 28 (gallop-bounding) days

to process a gait with the chosen speed resolution.

We found that the articulation in the spine has been used primarily in the asym-

metrical gaits. The optimal solutions for the bounding and galloping gaits had large

joint motion in the spine, while the spinal joint underwent relatively small deflections

over the course of a stride for symmetrical gaits (Table 5.2). An exemplary motion

(galloping at 2.9
√
log) is shown for both model instances in Figure 5.3. More repre-

80



Table 5.3: Speed range.

Gait Lowest Speed(
√
log) Highest Speed(

√
log)

Min Speed in Search: 0.025 Max Speed in Search: 4.500
Rigid Articulated Rigid Articulated

Four-Beat Walking 0.025 0.081 1.644 1.925
Two-Beat Walking 0.025 0.025 1.413 1.569

Tölting 0.025 0.025 3.394 3.556
Trotting 0.025 0.025 3.294 3.306

Bounding 0.031 0.025 2.994 4.500
Grounded Bounding 0.075 0.131 4.156 4.500

Galloping 0.094 0.106 3.338 4.500
Gallop Bounding 0.106 0.338 3.469 4.500

sentative motions for each gait and model can be found in the supplementary videos.

The resulting cost landscapes are shown in Fig. 5.4. Table 5.3 lists the minimal and

Stride Duration

0[ ]l gGalloping at 2.9

Figure 5.3: Video stills of an animation of a full stride of galloping at a speed of
2.9
√
log. It is evident that the spinal joint is being used heavily in the articulated

model (bottom sequence).

maximal speeds for which a solution for each gait was found for each model instance.

Table 5.4 lists the average changes in energetic cost and stride length between the two

model instances. These averages were computed over the range of speeds at which

solutions were found for both model instances and tested for statistical significance.

Among the symmetrical gaits, only four-beat walking showed a significant dif-

ference (p < 0.05) between the rigid and articulated models in terms of energetics.

Walking with an articulated spine increased energy consumption by 31.8 %. All other

symmetrical gaits had comparable energetic costs between the rigid and articulated

models. Maximal speeds were constrained by the available torque and force capability
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Figure 5.4: The positive mechanical work cost of transport is shown as a function of
forward speed for all gaits that we explored. Solutions for the rigid spine model are
presented as dotted lines, and solutions for the articulated spine model as solid lines.
For symmetrical gaits, the two models have similar costs (a). For asymmetrical gaits,
the articulated model instance has improved energetics and solutions extending to
higher speeds.

in the motors. For all symmetrical gaits, the highest speed at which solutions were

found was slightly higher for the model instance with the articulated spine.

The benefit of the articulated spine was clearly visible for the asymmetrical gaits,

in which the articulation led to improved energetic economy and higher maximal

speeds. Table 5.4 shows that the articulated model was significantly more economical

than the rigid model for all asymmetrical gaits. Furthermore, for all asymmetrical

gaits on the articulated model, we found solutions all the way to the upper bound of

the speed range that we investigated (Table 5.3). For the rigid model, in contrast,

the maximal speed was constrained to lower values (<4.2
√
log) for all gaits, as the

motors ran into torque limits. These torque limits were usually reached by the leg

extension motors during the stance phase and by the hip motors during the swing

phase preempting a particular leg’s stance phase. Motor speed limits were generally

not reached.

Confirming the results from our previous work [130], the combined cost land-

scapes showed that minimizing energy cost required switching from gait to gait as

speed varies (Fig. 5.5). This choice of gait was slightly different for the two model in-

stances. The rigid instance went from four-beat walking at low speeds, to trotting at

intermediate speeds, to galloping at high speeds, to grounded bounding at the highest
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Figure 5.5: The optimal gait choice for each model instance is shown as a function
of forward speed. Rigid solutions are presented as dotted lines, and articulated so-
lutions are shown as solid lines. For clarity, the most economical gait choice at each
speed is highlighted. At low speeds, where walking and trotting are the most energet-
ically favorable gaits, the two model instances have similar costs. At higher speeds,
where galloping, gallop-bounding, and grounded bounding are the most energetically
favorable gaits, the articulated model instance has a much lower COT.

speeds. The articulated instance had the same gait sequence at low, intermediate,

and high speeds, but transitioned to gallop bounding at the highest speeds. The

biggest difference between the two model instances was observed for the transition

speed between trotting and galloping. In particular, the results of the rigid (articu-

lated) model instance indicated a transition from four-beat walking to trotting at a

speed of 0.60
√
log (0.53

√
log) and from trotting to galloping at a speed of 2.05

√
log

(1.28
√
log). The rigid instance transitioned from galloping to grounded bounding at

a speed of 3.34
√
log and the articulated instance transitioned from galloping to gallop

bounding at a speed of 3.63
√
log.

To further investigate the source of the energetic improvements, we focused on the

energetic breakdown for galloping (Fig. 5.6). Similar results were observed for the

other asymmetrical gaits. At a speed of 3.34
√
log, the maximum speed at which we

were able to find a rigid galloping solution, the rigid model had a mechanical COT

of 0.390 and the articulated model had a COT of 0.284 (Note that the COT, which

represents the energy consumed divided by the robot weight and distance traveled

(Sec. 5.2.2), is a unitless quantity). For both models, collisions were the smallest
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Table 5.4: Difference in COT and difference in stride-length for each investigated
gait. p-values are based on a two-sample t-test.

Gait Mean COT Diff. Mean Stride Length Diff.

From Rigid p-value lo From Rigid p-value

Four-Beat Walking 0.078 < 0.001 0.257 < 0.001
Two-Beat Walking 0.001 0.895 -0.007 0.862

Tölting -0.012 0.320 0.157 0.072
Trotting 0.004 0.578 0.110 0.386

Bounding -0.106 < 0.001 0.464 < 0.001
Grounded Bounding -0.034 < 0.001 0.316 < 0.001

Gallop Bounding -0.054 < 0.001 1.413 < 0.001

source of losses. At this speed, collision losses accounted for 0.041 of the losses for

the rigid model, and for 0.034 of the losses for the articulated model. Damping losses

contributed approximately equally to the COT for both models: 0.187 for the rigid

model and 0.182 for the articulated model. With these losses being similar, the dif-

ference in energetic cost was thus driven primarily by negative motor work. Starting

at a speed of around 1.5
√
log, the negative motor work in the rigid model instance

increased relative to the articulated model instance, coinciding directly with the wors-

ened energetic economy of rigid galloping. At a speed of 3.34
√
log, for the rigid model,

negative work accounted for a partial COT of 0.162 and for the articulated model for

a partial COT of 0.068.

The primary source of this increased negative motor work were the hip motors

used in leg recirculation (Fig. 5.7). At a speed of 3.34
√
log, the hips performed 0.154

of the total negative motor work for the rigid model, while only performing 0.033 of

the total negative motor work for the articulated model. At that same speed, the legs

performed 0.008 of the total negative motor work for the rigid instance and 0.007 of

the total negative motor work for the articulated instance. For the articulated model,

the motor at the spine performed 0.028 of the total negative work.

For asymmetrical gaits, the articulated model used the spinal joint to perform

significant amounts of positive work. Table 5.5 shows the breakdown of positive work

performed by the spinal joint for each asymmetrical gait at its maximum speed. It

shows the total positive work done by the spinal joint, the portion done actively by

the motor, the portion performed passively by the spring, and the portion done by the

reflected motor inertia. Note that because the quadrupedal model is not energetically

conservative, the value for the joint is less than the sum of the motor, spring, and

inertia contributions. The spring performs a relatively small proportion of the positive
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Figure 5.6: Breakdown of energy losses during galloping as a function of speed. For
both model instances, collision losses play only a minor role. Damping losses are
comparable for the two instances. The primary difference is an increase in negative
work by the rigid model instance relative to the articulated model instance, beginning
at a speed of around 1.5

√
log.

work compared to the motor and inertia. It is not used to store large amounts of

energy. This lack of energy storage is true across all speeds. Galloping is shown as an

exemplary case in Figure 5.8. The joint produces a much larger amount of positive

work than it absorbs negative work.

Among the symmetrical gaits, only four-beat walking showed a significant differ-

ence (p < 0.05) between the rigid and articulated models in terms of stride length.

Walking with an articulated spine increased step length by 10.4 %. All other symmet-

rical gaits had comparable stride lengths between the rigid and articulated models.

For all asymmetrical gaits the articulated model employed significantly longer stride

lengths than the rigid model (Table 5.4).

5.4 Discussion & Conclusion

In this paper, we explored the energetic benefits of including an articulated spine in

the torso of a quadrupedal robot. We compared the positive mechanical work COT

for two model instances – one with and one without an articulated spine – across
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Figure 5.7: Breakdown of negative motor work during galloping as a function of
speed. The negative work performed by the leg motors is comparable for both model
instances. At high speeds, the motors at the hips perform much more negative work
for the rigid model instance, driving up the overall costs. The articulated model’s
spinal motor performs additional negative work, but the overall total is still consid-
erably lower than the rigid instance at high speeds

multiple gaits and a wide range of locomotion velocities. Using optimal control, we

determined the best possible joint trajectories, actuator inputs, and footfall timing

to minimize this COT individually for each gait, speed, and model instance. This

was done to allow an adaptation of the motion to the respective morphology and

to remove the question of control from the comparison. The model that we used

built upon the large body of prior work comparing rigid and articulated spines by

implementing a number of realistic characteristics, including series elastic actuation,

an actuator model with limits on available torques and speeds, and most importantly,

four independent legs that allowed us to explore the full range of quadrupedal gaits

found in nature.

At higher locomotion velocities (>1.28
√
log), our comparison revealed large ener-

getic improvements for the articulated spine. In this speed range, asymmetrical gaits

(in particular grounded bounding, galloping and gallop bounding) were the most ef-

ficient way of locomoting. For the four asymmetrical gaits that we explored, the

86



Table 5.5: Positive work done at the spinal joint at a speed of 4.5
√
log is broken into

contributions by motor, series spring, and rotor inertia. All power values have units
of (moglo)

.

Gait Joint Motor Spring Inertia
Bounding 0.93 1.14 0.11 0.34

Grounded Bounding 0.66 0.93 0.11 0.30
Galloping 0.80 1.00 0.095 0.32

Gallop Bounding 0.77 1.10 0.095 0.40

Speed
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W
o
rk

0

0.4
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1.2
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Joint

0[ ]l g
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Figure 5.8: Breakdown of the work performed by the spinal joint during galloping as
a function of speed. The positive work is shown as darkly colored lines. The negative
work is shown as transparent lines. The joint performs much more positive work than
negative work. The spring performs relatively little positive work at all speeds.

average savings (within the speed range in which solutions were found for both model

instances) were between 17.3% (galloping) and 38.0% (bounding). Furthermore, for

the model with the articulated spine, we were able to find solutions at much higher

speeds than for the model with the rigid spine, whose maximal speed was limited by

the torque limits in the actuators. At lower speeds, symmetrical gaits, in particular

four-beat walking and trotting, were optimal. In this speed range, the articulated
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spine had no positive effect. For symmetrical gaits, the cost values were nearly iden-

tical for all gaits. The only exception was four-beat walking with an articulated spine,

which was, on average 31.8% more energetically costly than four-beat walking with

a rigid spine. Comparing the most economical gaits at each speed, the articulated

spine reduced the positive mechanical COT on average by 20.5 % across the entire

range of velocities.

The benefits of the articulated spine have clearly been a function of the choice

of gait. Improvements have primarily been observed for asymmetrical gaits. For

symmetrical gaits, the energetic economy was similar for both models. In fact, these

symmetrical gaits tend to not use the articulation in the spine and the angle of the

spinal joint underwent relatively small changes over the course of a stride (Table 5.2).

This is not particularly surprising, since for the symmetrical gaits, the legs of a pair

move in opposite directions. That is, any rotation of the spine would only aid one of

these legs, while hindering the other. Consequently, the optimizer choose almost no

motion in the spine for symmetrical gaits. The same reasoning was put forth by [5].

He stated that animal energy storage in the longissimus aponeurosis ligament of the

spine would not be useful for symmetrical gaits, as in these gaits, “the left leg of a

pair swings forward while the right leg swings back.”

We further found that our robot model benefited from the same mechanistic ef-

fects that facilitate asymmetrical gaits in nature: the model exhibited improved leg

recirculation, elastic energy storage in the spine, and enlarged stride lengths [50, 51, 5].

Leg Recirculation: The articulated model’s improved leg recirculation manifested

itself in two ways: it increased the top speeds that the model was able to achieve

(Table 5.3) and it decreased the amount of negative work performed by the motors

(Fig. 5.6). In the rigid model, the main body can only pitch in one direction. During

phases of the gait in which the hind and front legs are moving in opposite directions

(e.g. when the hind legs move backwards during stance to push off while the front

legs move forwards to extend the stride and prepare for impact), the main body pitch

can only aid one of these motions while impeding the other (Fig. 5.9). This leads to

an increase in work that needs to be done by the hips, and eventually results in an

increase in negative work that is done by the hip motors (Fig. 5.7). This negative work

drives up the mechanical cost of transport for the rigid model. The decoupling of the

front and back halves of the torso in the articulated model reduces the negative work

done by the hip motors and minimizes the overall energetic cost. It further allowed

the articulated model to move its legs quicker without violating torque constraints on

the motors; resulting in higher maximal speeds than the rigid model instance. This
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argument builds upon the hypothesis by [50] about leg recirculation where he states

that the flexible spine helps by “advancing the limbs more rapidly.” Here it is clear

that the articulated spine also helps by slowing the limbs without removing excess

energy from the system.

hind legs 
rotate CW

front legs 
rotate CCW

main body 
rotates CW

hind legs rotate too quickly
due to main body rotation

negative work must be performed
to slow the hind legs

front leg rotation is slowed by
main body rotation

hind legs 
rotate CW

front legs 
rotate CCW

hind main body 
rotates CW

front main body 
rotates CCW Spring slows rotation of hind and

front main bodies

Rotation of both legs is slowed to
prepare for leg recirculation

Each pair of legs is slowed without
excess negative work by motors 

Figure 5.9: The figure shows an annotated version of a typical Galloping gait for both
the rigid and articulated model instances at high speeds. For the rigid model (shown
in the top row) the main body is only able to rotate in a single direction, moving
the hind legs too quickly. As a result, excess negative work is performed by the hips
to slow the legs. The articulated model (shown in the bottom row), in contrast, can
have each half of the main body rotate, utilizing the spinal spring to slow the legs
without performing excess negative work at the hips.

Elastic Energy Storage in the Spine: The articulated model was able to use the

spinal spring to store and recover energy (Table 5.5), however, this value was small

when compared to other sources of work in the joint. This is a surprising result, as

quadrupedal mammals utilize their longissimus aponeurosis tendon to store energy

[5]. Still, despite this lack of energy storage, the spinal joint still largely improves

energetics. It achieves this improvement by producing a great deal more positive work

than negative work (Fig. 5.8). That is, the joint is powering the gait by compensating

for losses elsewhere. It is possible that a different string stiffness, one that is better

tuned to the frequency of spine oscillation, would be more heavily utilized as an

energy storage element.

Enlarged Stride Length: On average, the model instance with the articulated spine

used longer strides than the model with the rigid spine (Table 5.4). This choice of
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the optimizer, as compared for example to achieving higher speed motions by using

the legs at a higher stride frequency, is also in agreement with what was observed

in nature [51]. Hildebrand argues that this stride extension happens in concert with

the improved leg recirculation. He states that by increasing the swing speed of the

limbs, they cover more distance during the swing phase, and extend the duration of

the stance phase, leading to longer strides.

Beyond the optimal control based approach, one of the main differences be-

tween this study and the existing work was the inclusion of four distinct legs in

our model. While past studies have already indicated that a flexible spine is useful

for quadrupedal robots, they have all lumped together the two front legs and two

hind legs, and could thus only consider a bounding gait [5, 136, 66, 49, 21]. Our

results support the finding that bounding with the articulated model is more eco-

nomical than bounding with the rigid model. Yet, bounding was never the most

economical gait for the articulated model instance. In fact, it was 6.26 % more costly

than galloping on average. Having four legs was thus a crucial extension, as it al-

lowed us to explore a broader variety of gaits. Confirming the results of our past

work [130], minimizing energetic cost required switching between these different gaits

as forward speed increased. The optimal gait sequence differed for the two model

instances, but both required distinct motions for all four legs. For the rigid instance,

the optimal gait sequence was walking, trotting, galloping, and grounded bounding.

For the articulated instance, the optimal gait sequence was walking, trotting, gallop-

ing, and gallop bounding. The main difference between the two model instances was

that, with the articulated spine, it paid off to switch from trotting to galloping at a

much lower speed. This is a direct consequence of the fact that the articulated spine

improved only the asymmetrical gaits (galloping) while leaving the energetics of the

symmetrical gaits (trotting) unchanged.

Our simulation results strongly suggest that an articulated spinal joint can provide

an energetic benefit for legged robots. Yet, before adding a spine to a robotic proto-

type, additional considerations should be taken into account. The addition of another

motor, gearbox, spring, and mechanical joint will add complexity and weight to the

robot which has to be compared to the potential energetic benefits. In particular the

positive effects of the articulated spine did only manifest themselves at higher speeds,

so hardware designers should carefully choose their desired operating speeds before

implementing an articulated spinal joint. At low speeds the joint provided no benefit,

and for four-beat walking, actually increased costs. In a hardware implementation,

it might thus be useful to employ a physical clutch to disable the spinal joint during
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slow and intermediate velocities, when using symmetrical gaits such as walking and

trotting.

It is important to note that it was not a priori given that our optimization based

approach would yield the same locomotion strategies that have been observed in

nature. The optimizer did not know, for instance, how a typical galloping gait looks.

It was not made aware of the differences between symmetrical and asymmetrical gaits

and it could have chosen, for example, to not use the motor or spring in the spine

or to not increase the articulated model’s step length. Still, the optimizer found the

exact same gaits to be optimal and discovered the same gait characteristics that are

found in nature. For example, similar to quadrupeds in nature, both model instances

transitioned from walking to trotting at normalized speeds between 0.5
√
log and

0.7
√
log [2]. Additionally, many quadrupeds in nature transition from symmetrical to

asymmetrical gaits at normalized speeds between 1.4
√
log and 1.7

√
log [2]. The rigid

and articulated model instances were slightly above and below this range respectively.

While our initial objective was to learn from nature how to build better robots,

these findings let us also learn something about nature from robotics. These sim-

ilarities add strong support to the mechanistic hypotheses that have been used to

explain the observed motions of animals. By comparing the best possible motion

of each model instance, we essentially removed the question of motion generation

and control from the investigation, and our optimization approach thus established

a direct causality between the mechanical dynamics of a certain morphology and the

resulting motion. Such a causality is almost impossible to establish in comparative

biology. In particular, animals have many considerations that can act as confounding

factors. These other factors include reducing skeletal stresses [33], improving stabil-

ity [14], and even predation evasion tactics [91]. For example, a cheetah may utilize

its spine heavily at high speeds to facilitate compression of its lungs for oxygen ex-

change. By using optimization on robotic model instances, we were able to remove

such physiological and neurological effects and could focus exclusively on the dynami-

cal advantages of an articulated spine as they have been proposed by Hildebrand and

Alexander. Our results seem to verify their hypotheses and highlight the importance

of the natural mechanical dynamics in the spine.

Still, it is important to note that our model reflects just one out of many different

possible implementations of a quadrupedal robot (see for example [34, 31, 99, 77]).

In the process of developing the study presented in this paper, we made a substantial

number of decisions when selecting model structure, specific model parameters, and

the employed cost function. These choices affect the optimal motion. It is likely,
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for example, that a different morphology would favor different asymmetrical gaits at

high speeds. For example, in nature, bounding gaits tend to be preferred by animals

with torsos that are relatively long when compared to leg length. These gaits can be

particularly useful at high speeds, when the force output of the leg muscles is near

saturation, as simultaneous push off of the hind feet provides a greater propulsive force

(perhaps indicating why grounded bounding was favored by the rigid model instance

at high speeds). Animals with shorter torsos compared to leg lengths, however, tend

to prefer galloping gaits [54]. The effect of an articulated spine on gait energetics

for these various morphologies is an area ripe for exploration. Still, regardless of the

specific morphology, quadrupedal animals generally favor symmetrical gaits at low

speeds and asymmetrical gaits at high speeds [54].

Therefore, even with the specific choices that we have made, our results seem to

point in a more general direction. Despite the vast differences between our robot

model and animals, our results closely resembled what has been observed in nature.

These similarities point to fundamental causes for the improved performance with an

articulated spine. This also likely means that our results will extend to a wide range of

robotic prototypes beyond the specific model considered in this work. Future studies

could aim to verify this claim and explore the range of possible parameter values

and robot structures. However, we would actually advocate to go one step further

and include these properties directly in the optimization. With the development of

suitable optimization tools and computational power, this approach would turn the

investigation of the benefit of a certain morphology directly into a design process that

tells us how a quadrupedal robot should be built.
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CHAPTER VI

Conclusions and Future Directions

Throughout this dissertation work, I have developed and implemented a method-

ology for the simultaneous optimization of motion and morphology in legged robots.

I have investigated this methodology on sample legged robotic design questions. The

explorations in these design questions inform future hardware development by roboti-

cists and help explain why animals in nature move in the ways that they do. I first

explored the notion of optimal motion and morphology in an initial comparison of

series and parallel elasticity in a monoped hopper (Chapter II, published in [134]).

In that work, the optimal motion cost landscape was mapped as a function of con-

figurable parameters in the hoppers. I found that series was the better choice when

optimizing for the positive motor work and the positive electrical work, and paral-

lel was the slightly better choice when optimizing for electrical losses. I then built

on this work by performing the comparison with parameters being chosen by the

optimizer (Chapter III, published in [133]). Additionally, this project incorporated

gear friction into the model. I found that for the most complete cost function, the

positive electrical work, series was the better choice when the majority of the trans-

mission was handled by a low friction rotary-to-linear transmission. Parallel was

the better choice for smaller rotary-to-linear transmissions. The next study I per-

formed extended this project to two dimensions and additional configurations, as I

analyzed the optimal configuration of series and parallel elasticity in the hip and leg

joints of a two-dimensional monoped (Chapter IV, published in [132]). In general,

the most energetically economical configuration had a parallel elastic actuator at the

hip, and a series elastic actuator at the leg. In the last study, I performed a discrete

morphological comparison, comparing rigid and articulated spinal configurations in a

four-legged quadrupedal robot (Chapter V, published in [135]). This study focused

on a comparison of two discrete morphologies with fixed parameters, but included

gait in the comparison. I found that the articulated spine led to large energetic sav-
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ings for asymmetrical gaits at high speeds. The combination of these studies readily

forms a methodology for the simultaneous optimization of motion and morphology.

In this chapter I will focus on the significance of this work and discuss future research

directions.

6.1 Discussion of Contributions

The study of the optimization of legged robot motion and morphology has three

primary roles. First, it leads to answers to practical legged robot questions. The

work in this dissertation addresses debates that have gone on in the legged robotic

community for many years. Is series or parallel elasticity the more energetically

favorable choice? Is an articulated spine in a quadruped energetically beneficial? If

so, for which gaits? Furthermore, the methodology in this papers opens the door to

letting researchers answer any question such as these. Broad questions such as, should

legs be prismatic or articulated? Should robots have point feet or extended ankles?

Not only does it provide a technique to obtain answers, though, it provides a way to

make fair comparisons. Rather than comparing a particular implementation of one

discrete morphological design to another particular implementation, researchers can

instead compare the best version of each.

Second, it provides a methodology for fairly answering a broad range of design

questions. While in this work, this tool has been applied specifically to legged robots,

it can be expanded to a large variety of questions. Optimization is a tool that has

expanded to use in fields as diverse as medicinal regimens [89] and exoskeleton control

[73]. As these fields continue to advance, they will need a means by which to fairly

compare different designs. The work presented here can be extended to aid in those

efforts.

The third role of this type of legged robotic work is to provide insight into the

way in which humans and animals move. Animal motion is subject to a variety of

motivations. Animals have to simultaneously consider predator avoidance, stability,

breathing technique, and force minimization, among many other driving factors. It

can be difficult to isolate the role of a particular morphological variation. Moreover,

often in nature, a perfect experiment is impossible to conduct. In the case of the

articulated spine study, there is no animal that is identical to a cheetah in every way

except for having a rigid spine. Optimization of legged robots does not suffer from

these drawbacks. Morphological variations can be, in a sense, looked at completely

independently from other driving factors. A particular structure’s effect on energetics,
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or any other cost function, can be explored.

6.2 Overview of Presented Work

The way that a legged system moves and the way that it is built are inherently

coupled. Despite that, the vast majority of robotic work today seeks to improve

these two facets independently [136, 10, 131, 45, 20]. In general, either the motion is

optimized on a particular piece of robotic hardware, or, a specific hardware parameter

is modified within a fixed motion strategy. The work that I have presented in this

dissertation seeks instead to optimize these two facets simultaneously.

The simultaneous optimization of motion and morphology is a fundamentally

difficult problem. Because the two are so intricately related, there is an overlap in

their effect. For example, different mass and spring values can lead to the same

natural frequencies, which in turn, will lead to similar preferred motion. As a result,

any optimization method has to approach this problem with sufficient caution to

assure that local minima are averted.

The work presented in Chapter II began a preliminary exploration into the ques-

tion of simultaneous optimization of motion and morphology in legged robots. In that

work, I compared one dimensional hoppers with series elasticity to those with parallel

elasticity. Rather than include parameters directly within the optimization, and as

a result being unsure of the particular effect of a set of parameters, I instead sought

to map the optimal cost landscape as a function of parameters. These cost mappings

were compared to theoretical predictions to ensure their accuracy. The contributions

of this work were two-fold. First, it showed that the common mode of thinking about

series and parallel elasticity required more nuance. Typically, a roboticist picks one of

the two and justifies it by its respective advantage. For parallel, they often state that

it is the better choice for minimizing motor torques. For series, they often state that it

is the better choice for minimizing mechanical energy. In mapping the cost landscape,

however, we were able to show that the argument is more subtle. For a variety of

cost functions, the better choice between series and parallel elasticity depends on the

parameter choice. The second main contribution is that this cost landscape mapping

technique can be extended to any discrete morphological comparison. In the study,

I performed a two-dimensional parameter sweep, finding the optimal motion cost as

a function of no-load velocity and spring stiffness. This same technique could readily

be performed for any cost function or parameter choice within the legged robot, such

as mass distribution. Furthermore, it could be extended to other systems outside of
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the legged robot domain to help understand the relationship between optimal motion

and structure.

The work described in Chapter III builds on the preliminary exploration in Chap-

ter II. In that work, I again looked at a simultaneous optimization of motion and

morphology to compare serial and parallel elasticity in monoped hoppers, but this

time, included morphological parameters directly within the optimization. Taking ad-

vantage of the lessons learned from Chapter II, I was able to look at a more complex

model, now incorporating gear friction, in order to fairly compare the best possible

parallel hopper to the best possible series hopper for a variety of cost functions. Yet

again, the contribution is two-fold. First, it investigates the two most common motor

and elasticity configurations, and gives a definitive method for deciding which is the

most energetically economical configuration for an implementation. Second, it de-

scribes a methodology that allows future researchers to, within a single optimization,

find the best possible motion and parameters simultaneously. Yet again, this is a

technique that extends beyond incorporating transmission and stiffness parameters.

It further extends beyond legged robots. Similar techniques, for example, were im-

plemented by [56] for the optimal mass configuration and control of a sit-to-stand

assistive device. This work extended on their efforts by incorporating a simultane-

ous optimization to perform a discrete design comparison. Researchers for any field

can perform a similar fair comparison for any problem that can be formulated as a

model-based optimization.

The work described in Chapter IV represents another step in the evolution towards

a single optimization that incorporates both the continuous (motion within a partic-

ular gait) and discrete (a particular footfall sequence) aspects of motion, as well as

both the continuous (parameters) and discrete (a discrete morphological comparison)

aspects of morphology. In this study, I investigated the optimal motion and morphol-

ogy of a two-dimensional monoped. There were now four possible configurations of

series and parallel elasticity, and, forward speed was included as yet another element

in the optimization. The work yet again lends insight into a practical question for

roboticists. It also shows the potential for expanding the technique to more complex

problems than simple in-place hopping.

The work discussed in Chapter V incorporates the last element, gait choice, into

the simultaneous optimization of motion and morphology in legged robots. In that

work, I compared two instances of a quadrupedal model, one with a rigid spine and

one with an articulated spine, across a variety of common gaits. By incorporating

gait, the work allows roboticists to see the types of motions for which the articulated
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spine is energetically beneficial. Additionally, since there are no biological effects

in my relatively simple robotic models, we can isolate the mechanistic effect of the

spine, lending insight into its utility in nature. Lastly, the project represents the

last element in a study that combines the simultaneous optimization of motion and

morphology. By combining this study with the techniques from the previous studies

detailed above, a roboticist could, in a single methodology, find the best discrete

morphology, with the best continuous parameters, moving at the best possible gait,

with the best motion strategy within that gait.

6.3 Limitations and Need for Future Research

The work presented in this dissertation presents a methodology for the simul-

taneous optimization of motion and morphology in legged robotic simulation. The

methodology is a tool that gives roboticists a way to fairly compare discrete design

variations in legged robots. Still, the methodology is not without its limitations, and

there is room for exploration among future researchers.

The first area for future exploration is to continue to work on the techniques

used for the conceptual models throughout the dissertation. In particular, future

researchers could look to improve the optimization techniques used within this work.

While these gradient-based tools are incredibly powerful, they are susceptible to lo-

cal minima. In finding the solutions presented in the dissertation, I took great care

to test all points with a variety of initial conditions. That included using motion

found from other cost functions and gaits as initial seeds. Furthermore, many of my

motions were compared to theoretical predictions to ensure that they were indeed

reasonable. Still, ultimately there can be no guarantee of global optimality for the

techniques we used. One source of future work could be to improve upon these op-

timization techniques. That improvement could also seek to incorporate the discrete

aspects of motion directly within the optimization. That is, the footfall sequence of

the legged robot could be chosen by the optimizer. While we attempted to do just

that in our previous work [130], we found that the existing techniques were generally

less accurate than the multiple shooting technique I used throughout the dissertation.

Still, even with the improved multiple shooting technique, when I attempted to in-

clude morphological parameters directly within the optimization for a more complex

problem, such as the quadrupedal work in Chapter V, we found that the optimizer

had poor convergence. As a result, utilizing improved optimization techniques could

allow researchers to leverage the methodology presented in this work for even more
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complex design questions.

Improved techniques could open the door for researchers to build on the results

of the studies presented throughout the dissertation. They could explore additional

projects that can make use of the methodology presented. For example, these re-

searchers could seek out the single set of parameters that is best, on average, for a

large speed range. Or, they could see what single set of parameters are best across

multiple gaits. Researchers could also consider exploring different cost functions. The

variety of cost functions explored in Chapters II-IV could also be explored for more

complex projects such as the work presented in Chapter V. These studies could in-

corporate the gear friction model from Chapter III and therefore quantify the effect

of those frictional losses. Within any of these cost functions, sensitivity studies could

also be conducted to see the effect of changes on a single parameter on the cost. For

example, researchers could look at the effect of the ratio of main body to leg length on

gait choice, and see if it has a similar effect as in nature [54]. The projects presented

throughout this dissertation all look at energy-optimal motions. It is possible, how-

ever, that a roboticist, or an animal in nature, has different motivations. Researchers,

could, for example, consider stability within the optimization. This stability could be

explored through a Floquet analysis or could be implemented with stabilizing feed-

back controllers. The cost of this added stability could be incorporated into the cost

functions.

The conceptual models used throughout this dissertation are of intermediate com-

plexity. They are complex enough that they can model realistic robotic motion, such

as swing leg dynamics and ground clearance. They are also simple enough that they

can be used to make generalizable conclusions about robotic hardware as well as hu-

man and animal motion. Still, exploring the connection of these conceptual models

to the simple and complex models around them would strengthen the utility of the

results.

Exploring the connection of the conceptual models presented in this work to sim-

pler models would help to shed more light on the interdependence of motion and

morphology. There is a vast body of work that uses simplified models to find passive

or nearly passive motions [15, 38, 41]. From these works, as well as from the various

motions presented throughout the dissertation, it is clear that legged systems take

advantage of their natural dynamics to move in an energetically economical manner.

In a sense, the work presented here can be viewed as an optimal tuning of these natu-

ral dynamics. Optimizing the morphology can in turn lead to more favorable passive

dynamics, which then lead to reduced energy costs. This area is ripe for exploration.
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A detailed understanding of how the lossless motions that arise from the interplay

of gravity, inertia, and oscillation are taken advantage of by more complex systems

could open the door to not only building better robots, but to understanding why

humans and animals move in the ways that they do. One means of exploring this

connection is to add a parameter that scales all of the sources of loss in the concep-

tual models presented in this work. This parameter can then be varied to see how

removing complexity from the models, and approaching a passive model, changes the

motion. That is, researchers can see how more complex models take advantage of

their natural dynamics to move economically. Ultimately, once this connection is un-

derstood, roboticsts can tune parameters in the natural dynamics, to obtain desired

motion in the full robot.

It is also necessary to explore the connections of the conceptual models to more

complex models and hardware. While the simulations discussed in this work can

certainly give insight to roboticists, and motivate hardware development, it is simply

impossible to fully capture the complexity of a hardware implementation in simu-

lation. For example, implementing an articulated spine into a quadrupedal robot

requires additional mechanical equipment and sensors. Moreover, many of the mo-

tion strategies chosen by the optimizer are sensitive to very specific parameter values.

In reality, parameter values vary. We further assume in simulation that foot contacts

can’t slip, though in reality they might. There are also energetics associated with

on-board computing performance and stabilizing feedback, among many other fac-

tors. Ultimately, all of these additional complexities can only be fully explored in a

hardware implementation. One direction is to see if, despite all of these complexities,

the same trends from the optimization can be seen in a robot. That is, a roboticist

could map the optimal trajectories from simulation onto a hardware design, and see

if a gait transition is still energetically beneficial. Another direction would be to have

the hardware learn optimal motions. Through a reinforcement learning scheme, the

hardware could explore motions within gaits, as well as different gaits, and find the

most energetically favorable motion. The resulting hardware-optimal gaits could then

be compared to simulation to see its utility. In these explorations, modeling is still

a very powerful tool, and can used as a starting point towards a full implementation

on hardware (see [120] for example).
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6.4 Concluding Remarks

The combination of the project methodologies presented in this work gives robotic

and animal researchers an important tool. The simultaneous optimization of motion

and morphology paves the way for building better legged robots. It also provides

a tool that can be extended to a variety of other fields. With it, researchers can

compare not just particular versions of designs, but rather, the best versions of those

designs. Lastly, it allows for a deeper understanding of nature and the fundamental

principles that drive legged locomotion.
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APPENDIX A

Detailed Theoretical Predictions of Parallel and

Series Elastic Actuated Hoppers

Detailed Theoretical Predictions

In order to determine whether PEA or SEA is more energetically economical, we

must simultaneously optimize for the motion and morphology. Even for our simple

hopper models, this is a convoluted task. Due to the interdependence of the many

factors at play (type of actuator, cost function, spring stiffness, motor transmission,

motor force, and hopper motion) the effect of an individual aspect, or of the basic

principles of the underlying motion, can be inextricably lost in those highly interwoven

relationships. Therefore, before analyzing a full optimization (where morphological

parameters can be chosen by the optimizer), we begin with a simpler study that

allows us to understand the underlying motion strategies that are optimal for each

cost function. In this study, parameters were set to predefined values; the only

exception is the no load speed of the motor ¯̇u, which was systematically varied. For

a wide range of no load speeds and for three different cost functions, we developed

predictions of the hopping motion that the optimizer output. These predictions begin

with an analysis of a simpler model with a mass-less foot and no damping. We then

extend those predictions to the actual model presented earlier.

The mass-less foot was approximated in the numerical optimizations by a very

small mass: m2 = 0.0001 mo (with m1 = 0.9999 mo), as compared to the regular mass

distribution of m2 = 0.05 mo and m1 = 0.95 mo. Removing the foot mass eliminates

foot collision losses as well as damping in the springs. The remaining parameter
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values were fixed at the following values: hopping height h = 1.3 lo, spring-stiffness k

= 20mog/lo, damping ratio ζ = 0.2 , and motor offset uoffset = 0 lo.

Positive Motor Work

PEA

For PEA with a massless foot, the only source of losses is the touchdown collision

that acts on the inertia of the motor:

Ep,mc =
1

2

(
jmotm1

m1 + jmot

)
· (ẏTD − l̇TD)2. (A.1)

This equation expresses the energy that is needed to make the leg velocity equal to

the main body velocity at touch-down. ẏTD (l̇TD) is the velocity of the main body

(leg) right before touch-down. The collision losses thus vanish when the leg velocity is

equal to the main body velocity. With PEA, there is a simple strategy to ensure this:

‘clutching the leg’. This strategy initiates at the moment of lift-off, when the leg is

extending exactly as fast as the main body is moving upwards. Right after lift-off, the

parallel spring will passively slow down this leg extension while storing the associated

kinetic energy. Once l̇ has reached a value of zero, the motor ‘clutches’ the spring at

this extended length by applying a constant force to keep its length fixed. No work

is required in the process, since there is always either no force or no velocity. Shortly

before touchdown, the motor ‘unclutches’ by applying zero force. This allows the

spring to passively contract the leg. The stored energy is converted back into kinetic

energy and the leg will reach the same velocity that it had at lift-off. In the mean

time, the main body was undergoing a purely ballistic flight and will thus also have

the same velocity at touch-down as it had at lift-off. When the ‘unclutching’ is timed

right, the leg velocity will thus equal exactly the main body velocity at the moment

of touch-down. No collision losses occur and Ep,mc = 0. This process is illustrated in

Figure A.1.

Since we enforce limits on maximal leg extension, this strategy does fail for low no-

load speeds (and a high associated reflected motor inertia). In these cases, the spring

cannot stop the leg extension passively before the leg length limit (lmax = 1.15 lo) is

violated. In other words: there is more kinetic energy in the leg than can be stored

in the spring. The motor must perform negative work to remove excess energy from

the system. That energy must be replaced later. By taking the difference between

the kinetic energy stored in the motor 1
2
jmotl̇

2
LO and the potential energy that can be
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Figure A.1: Shown is a simplified hand-drawn cartoon illustrating the motion strate-
gies of a hopper with PEA. In the idealized case of having no foot mass and no
damping, losses arise only through collision losses in the motor inertia and from neg-
ative motor work. The PEA hopper can eliminate positive motor work (solid lines)
by ensuring that the leg and the main body have the same velocity at touchdown.
The associated motion strategy lets the leg extend passively during flight until the
spring naturally stops it, and then uses the motor force to ‘clutch’ it. This ‘clutching’
is released shortly before touchdown to match the leg velocity to the main body ve-
locity. When optimizing for electrical losses (dashed lines) the necessary ‘clutching’
force would lead to high costs. It is thus more efficient to allow the spring to oscillate
freely during flight. That strategy can lead to collision losses that require active forces
to re-inject energy. Only for selected values of the no load speed ¯̇u, the leg spring
oscillation and ballistic motion of the main body are matched in phase, such that the
leg and the main body have the same velocity at touchdown (dotted lines).

stored in the spring 1
2
k(lmax − lo)2, we can compute this negative motor work as:

Ep,nm = max

(
1

2

(
jmot l̇

2
LO − k (lmax − lo)2

)
, 0

)
, (A.2)
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where jmot is the reflected motor inertia, l̇LO is the leg velocity at liftoff, and lmax

is the maximum leg length. Since during stance, the leg and the main body move

together, the lift-off velocity of the leg is equal to the lift-off velocity of the main body.

For simplicity, we assume that lift-off and touchdown happen with an un-extended

leg of length lo. This velocity can then be computed from the hopping height h as:

l̇LO = ẏLO =
√

2g (h− yTD) =
√

2g (h− lo), (A.3)

Overall, the positive motor work for PEA with a massless foot is given by:

C̃p,mot = Ep,nm, (A.4)

where Ep,nm is defined by Equation (A.2). Figure A.2a compares this prediction with

the cost values obtained from the numerical optimization. The motion that resulted

from the optimization with ¯̇u = 1.5
√
log is shown in Figure A.3. In both cases, the

numerical results closely match the theoretical prediction.

When we add mass to the foot, we also introduce foot collision losses and damping

in the spring. Following the same strategy as above can completely eliminate the foot

collision losses. The damping losses can be approximated by assuming that during

stance the hopper undergoes a sinusoidal motion of frequency ωo =
√

k
jmot+m1

. We can

represent these losses cp,1 (¯̇u) as a function of the no-load speed ¯̇u. To calculate cp,1 (¯̇u),

we begin by assuming that lift-off and touchdown happen with an unextended leg of

length lo. To calculate the damping losses for the PEA hopper with a foot with mass,

we assumed that the hopper undergoes a purely sinusoidal motion during stance. The

leg velocity for the sinusoidal motion is given by:

l̇o = Aoωo cos (ωot+ αo) , (A.5)

where

Ao =
m1g

k sin(αo)
, (A.6)

and

tan (αo) =
ωom1g

kẏTD
. (A.7)

The natural frequency is given by ωo =
√

k
jmot+m1

. The damping losses are calculated
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Figure A.2: Comparison of theoretical cost predictions (solid lines) with numerical
optimization results (dots). Shown are: PEA positive motor work (a), SEA positive
motor work (b), PEA electrical losses (c), and SEA electrical losses (d). Results for
hopping with a massless foot are shown in blue and for a foot with mass in red. The
labels I-V refer to the examplary optimal motions shown in Figures A.3 and A.4. In
general the theoretical predictions closely match the optimizer output. This confirms
that the optimizer is outputting realistic results.
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Figure A.3: Shown are optimal motion and force profiles for PEA with a massless
foot. When optimizing for positive motor work, the actuator ‘clutches’ the spring
during flight (shown for ¯̇u = 1.5

√
log). In contrast, when optimizing for electrical

losses, the leg is oscillating freely during flight. For ¯̇u = 1.5
√

log, leg and main body
motion are not matched in phase and a collision occurs. Such a phase matching can
be achieved, for example, when the no-load speed is reduced to ¯̇u = 1.1

√
log. In

this case, no collision happens at touchdown and no energy is lost. Consequently,
there is almost no motor force needed to sustain a continuous hopping motion. These
numerical results closely match the predictions shown in Figure A.1

by integrating the damping power (Pdamp = bl̇2o) over the stance time:

cp,1 =

Tstance∫
0

Pdampdt (A.8)
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The positive motor work for PEA with a foot with mass is thus given by:

Cp,mot = Ep,nm + cp,1 (¯̇u) , (A.9)

which is compared to the numerical results in Figure A.2a. The approximation is an

overestimate of the mechanical work. This is to be expected, since a smart choice of

actuation can likely reduce damping losses; for example, by injecting energy only at

the very end of stance.

SEA

For SEA, no collision losses can occur in the motor inertia. The positive motor

work Cs,mot can be driven to zero simply by keeping the motor at rest (u ≡ 0). Since

there is also no inertia added to the leg, the hopper will not approach the leg length

limits and no negative motor work is necessary. We therefore have:

C̃s,mot = 0 moglo (A.10)

The numerical optimization reveals that the positive motor work is indeed close to

zero (Figure A.2b). The small differences can be attributed to the foot having a

slightly non-zero mass in the numerical model.

Giving the foot mass introduces collision and damping losses. We approximate

these losses with a constant value that is fit to the optimization results:

Cs,mot = 0.086 moglo, (A.11)

The comparison of theoretical and numerical results in Figure A.2b shows that the

assumption of a constant loss term fails for low no-load speeds. Similar to the PEA

case (Equation (A.2)), this is due to negative work that becomes necessary when a

higher motor inertia causes the leg length limits to be violated.

With respect to the optimal motion profile, [108] argues that in order to avoid

collision losses, a SEA hopper should retract its leg shortly before impact. To avoid

excess negative motor work and damping losses, the motor must also stay motionless

during the first half of stance, and then move to keep (l̇ − u̇) constant during the

second half of stance. All these strategies are implemented in the solution obtained

by the optimizer (Figure A.4). In addition, we observe that the motor stays near its

maximum position during flight to decrease the effective hopping height. Since SEA

is able to move its motor up to a distance of 0.15 lo, its effective hopping height is
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half that of PEA. The positive motor work is thus roughly twice as high for PEA as

for SEA.

IV. Positive Motor Work (   = 4.9        )

V. Electrical Losses (   = 0.3       )
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Figure A.4: Shown is the optimal motor position u for SEA with a foot with mass.
For positive motor work, the foot remains motionless during the first half of stance
and injects energy in the second half. It is also almost maximally extended towards
the limit of umax = 0.15 lo. This motion is in close agreement with the predictions
in [108]. When optimizing for electrical losses, the motor moves in a much smoother
way and inputs energy throughout the entirety of stance.

Electrical Losses

PEA

The electrical losses as defined by Equation (2.10) are solely a function of the

motor force Fmot. Actuator work is only accounted for indirectly, as motor forces are

needed to perform work.

For PEA, ’clutching’ the leg (as discussed earlier) would require significant motor

force Fmot during flight. Consequently, it is not an option when electrical losses

constitute the cost function. Instead, it is better to let the leg oscillate freely. For a

massless foot (without damping), the leg undergoes a natural spring-mass oscillation

109



with a velocity l̇n(t) of:

l̇n (t) = −Anωn sin (ωnt− αn) . (A.12)

The amplitude An and phase αn are derived by again assuming that lift-off and

touchdown happen with an un-extended leg of length lo. Equation A.12 is derived

from solving the equations of motion of an undamped spring-mass oscillator with

mass equal to jmot. As the foot is massless, we ignore the fact that the oscillator is

in an accelerated frame. The amplitude is defined by:

An =

√√√√l2o +

(
l̇TD
ωn

)2

(A.13)

and the phase offset is defined by

tan (αn) =
l̇LO
ωnlo

(A.14)

and ωn =
√

k
jmot

.

The natural frequency of this oscillation is ωn =
√

k
jmot

. From this equation, the

leg velocity at touchdown l̇TD can be computed using the time of flight:

Tflight = 2
ẏLO
g

(A.15)

The collision losses in the motor inertia depend on the relative phase of leg motion

and main body motion. They can be computed from Equation (A.1) using l̇TD =

l̇n (Tflight). The result depends on ωn and jmot, and is thus a function of ¯̇u. As ¯̇u

varies, the size of the collision losses in the motor fluctuates. Figure A.1 sketches

out two examples of such a free oscillation in which the phase is matched (dotted

lines) and not matched (dashed lines). For the matched phase, the hopping motion is

loss-less and does not require any force input. In this case, C̃P,loss is zero. Otherwise,

the lost energy must be replaced to reach back to the same original height at the

end of the hop. This replacement requires a force input, which will lead to electrical

losses.

In approximation, we can assume that the required motor force Fmot is propor-

tional to these energetic losses. This assumption is true if the motion of the hopper

is not changed substantially from the ideal case in the presence of losses (approxi-
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mately free oscillation during flight, followed by a sinusoidal stance phase). We further

assume that the thermal electric losses are proportional to (Fmot ¯̇u)2 (motivated by

Equation (2.10)). We can thus approximate the electrical losses as:

C̃p,loss = c̃p,2 ¯̇u2 (Ep,nm + Ep,mc)
2 , (A.16)

in which Ep,nm and Ep,mc are calculated from Equations (A.1) and (A.2), respectively.

Applying Equation (A.16) with c̃p,2 = 0.12moglo yields the comparison shown in

Figure A.2c. Our theory can accurately predict the fluctations in C̃p,loss as a function

of ¯̇u. The prediction only fails for low no-load speeds. This is not surprising, given

that for these cases the larger amounts of negative motor work violate our earlier

assumption that l̇(t) is not substantially changed. Sample optimal motions are shown

in Figure A.3. The motion strategy is very similar to the predictions presented in

Figure A.1. The notable exception is that the motor force is not zero as predicted,

but rather, oscillates slightly. These small force inputs are likely a way to shift the

phase of the leg while simultaneously injecting energy without applying a large force.

When giving the foot mass, we represent the sum of damping and collision losses

by cp,3, a constant chosen to fit the optimizer output. l̇(t) is calculated assuming that

we have a mass-spring damper.

Yet again assuming that lift-off and touchdown happen with an un-extended leg

of length lo. The leg velocity l̇dt is derived from solving the equations of motion of a

damped spring-mass oscillator with mass equal to mtot = jmot +m2

l̇d(t) = −Ade−γt (ωd sin (ωdt− αd) + γ cos (ωdt− αd)) . (A.17)

The amplitude is given by:

Ad =

(
(lLO − lo)2 +

(l̇LO + γ(lLO − lo))2

w2
d

)1/2

(A.18)

and the phase offset is given by:

tan (αd) =
l̇LO

wd(lLO − lo)
+

γ

wd
(A.19)

where the damping coefficient is given by γ = b
2(mtot)

, the natural frequency is ωn =√
k

mtot
, and the natural damped frequency is given by wd =

√
w2
n − γ2.

Note that the effects of gravity and main body acceleration are neglected, as the
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foot mass is significantly smaller than the main body.

Following the same reasoning as in the massless foot case, the thermal electric

losses are given by:

Cp,loss = cp,2 ¯̇u2 (Ep,nm + Ep,mc + cp,3)
2 (A.20)

Applying Equation (A.20) with cp,2 = c̃p,2 = 0.12 , and cp,3 = 0.18moglo yields the

results shown in Figure A.2c. Once again, a high motor inertia accounts for the

differences at low values of ¯̇u.

SEA

For SEA, the leg force must balance the weight of the robot on average, and -since

there is no net motion- the average actuator acceleration must be zero:

T∫
0

Fdt =

T∫
0

(Fmot − jmotü) dt =

T∫
0

Fmotdt = m1gT. (A.21)

The force-square optimal actuation strategy is to have a nearly constant motor

force Fmot = m1g+F act
mot (t), in which F act

mot is only a small fluctuating force that creates

a net-positive work to compensate for losses [108]. The electrical losses associated

with this strategy are:

C̃s,loss = Cs,loss =
T

Pmax

(
(m1g ¯̇u)

2
+

(
junsc

¯̇u

)2

σ2 (üact)

)
, (A.22)

in which üact is the acceleration caused by F act
mot. T is the time of a hop, and σ2 (üact)

is the variance of the active motor acceleration. If there are no mechanical losses

associated with the motion, no active forces are required and σ̃2 (üact) = 0m2
o

√
g3lo.

Applying Equation (A.22) with T̃ = 2.5
√
lo/g yields the results in Figure A.2d.

This prediction underestimates the electrical losses at higher no load speeds. This

results from the fact that in addition to the ‘active’ motor acceleration üact (caused by

F act
mot), there is also a ‘passive’ motor acceleration üpas that is caused by the difference

between the constant motor force term m1g and the leg force F :

üpas =
1

jmot
(m1g − F ) . (A.23)

This passive acceleration scales inversely with the reflected motor inertia and is thus

proportional to ¯̇u2. For higher values of ¯̇u, this motor acceleration would lead to

violations of the motor position limits, which requires the motor to deviate from the

optimal force profile causing σ̃2 (üact) > 0m2
o

√
g3lo.
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Giving the foot mass leads to losses, meaning that σ2 (üact) must be non-zero.

Applying Equation (A.22) with T = 2.5
√
lo/g and σ2(üact) =0.01m2

o

√
g3lo yields

the results in Figure A.2d. Again the prediction underestimates electrical losses at

high no load speeds where motor position limits come into play.

Contrary to the positive motor work optimization, the motor motion should now

be distributed over the full stride, as is confirmed in Figure A.4.

When the foot has mass, both actuator types have an energetic minimum with

respect to ¯̇u. This minimum implies that there is a trade-off between low and high

no-load speeds. For SEA, that trade-off stems from the motor force needed to acceler-

ate the reflected inertia jmot of the motor. Since this inertia is inversely proportional

to ¯̇u2, it prohibits a no-load-speed that is too close to 0. A high no-load speed leads

to increased losses because ¯̇u2 directly scales closs (Equation (2.10)). For PEA, the

trade-off arises because a large no-load-speed would lead to large thermal losses if the

required motor force is non-zero. Decreasing the no-load speed, however, introduces

other unwanted effects. Collision losses depend on the reflected motor inertia accord-

ing to Equation (A.1) and increase for smaller ¯̇u. Also, as detailed above, higher

values of ¯̇u lead to increased negative motor work.

Positive Electrical Work

Due to the complexity of positive electrical work as cost function, it is not possi-

ble to perform a detailed theoretical analysis. However, minimizing positive electrical

work represents a trade-off between minimizing positive motor work and electrical

losses. We thus expect that the result for this cost function combines the character-

istics of both previously discussed cases.
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