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ABSTRACT

The overarching goal of my research project is to develop a computational model of

the mammalian auditory system to gain a deeper underestimating of the mechanics

of hearing. This model describes the response of the cochlea to both external acoustic

and internal electrical stimulations. The cochlea is the spiral-shaped part of the inner

ear where the fluid-borne vibrations are detected by the auditory sensors and then the

information, in the form of neural signals, are transferred to the brain by the auditory

nerves. The cochlear model will enhance our understanding of failure mechanisms in

the cochlea, answering important questions as to the morphological elements of the

cochlea that fail and why. A mathematical model of the cochlear response to sound

over the entire spectrum will help us understand how important classes of signals are

processed in the cochlea (such as speech and music) which can lead to better speech

processing algorithms or cochlear implant electrical stimulation paradigms.

One important question in the biophysics of the cochlea is the underlying mech-

anism of the cochlear active process which enables sound processing over a broad

range of frequencies and intensities. Two mechanisms are hypothesized as the main

active processes: outer hair cell (OHC) somatic electromotility and hair bundle (HB)

motility. The proposed active mechanisms are implemented into our model and their

relative contribution on the cochlear nonlinear amplifier is investigated. It is shown

that somatic based activity plays a fundamental role in the amplifier while the HB

motility contribution remains elusive. We identify two distinct mechanisms through

xiii



which the HB activity affects the cochlear dynamics. We posit that it is unlikely that

the HB alone is responsible for the amplification seen in the cochlea in vivo.

The extracellular voltage is shown to undergo a phase shift at frequencies slightly

below the peak, that coincides with the onset of the nonlinear amplification. It is hy-

pothesized that this phase difference between the electrical and mechanical responses

gives rise to effective power generation of the OHC somatic force. A three-dimensional

model of the cochlea is utilized along with experimental data and it is shown that

the electro-mechanical phase transition, generated by the tectorial membrane (TM)

shear mechanics, activates the cochlear nonlinear amplifier.

Using the excised cochlear segment experiment conducted by Chan and Hudspeth

[3–5] as our model problem, we develop a quasilinear computational model for study-

ing the active in vitro response of the organ of Corti (OoC) to acoustical stimulation.

It is shown that our model of the electrical, mechanical, and acoustical conditions

of the experimental configuration is able to replicate the important finding of these

experiments while our interpretation of the results contradicts the Chan and Hud-

speth conclusion. It is shown that the OHC somatic electromotility, rather that HB

motility, is sufficient to predict the nonlinearities observed in the these experiments.

xiv



CHAPTER I

Introduction

The cochlea’s primary function is to transduce sound-evoked motions into neural

signals which will be processed by the brain. Sound detection takes place within the

sensory receptors of the organ of Corti (OoC), situated in the center of the cochlea.

The pressure difference across the micro-structure of the OoC produces a vibration

that ultimately gives rise to the sensation of sound. Figure 1.1(a) illustrates an

schematic of the OoC cross section including structural components such as basilar

membrane (BM), tectorial membrane (TM) and hair bundles (HBs). A schematic of

our OoC model is demonstrated in Fig. 1.1(b). The kinematics of the OoC model are

introduced in the Appendix A, where the BM transverse motion is related to the TM

motion in the traverse and radial directions and to the HB rotations.

(b)

Figure 1.1: (a) A schematic transverse section of the organ of Corti. TM, tectorial
membrane; OHC, outer hair cell; RL, reticular lamina; BM, basilar membrane; D,
Deiters cell; AN, auditory nerve fibre; HB, hair bundle; and IHC, inner hair cell
(image from [6]) (b) Micromechanical model for the organ of Corti structures (x-axis
into the page).

1



1.1 Cochlear Active Process

The OoC displacements are boosted by a distinct nonlinear amplification mechanism

that enables sound processing over a broad range of frequencies and intensities. This

is reflective of the electromechanical response of the outer hair cell (OHC) which

are responsible for mediating the active process necessary for normal hearing. The

cochlear active process was first predicted by Gold [7]. Experiments by Johnstone

and Boyle [8] and Rhode [9] revealed active mechanical responses in living animals.

More evidence of the cochlear activity was later presented by Kemp [10] through

the discovery of the otoacoustic emission; physiologically vulnerable sound emission

elicited from a healthy ear after short stimulus.

Two mechanisms are hypothesized to power the cochlear active process: the HB

motility [11–13] and prestin-based OHC somatic electromotility [14–18]. Although

in vitro experiments have shown that both mechanisms are capable of amplification,

the primary source of the nonlinear activity within the complex microstructure of

the OoC remains much debated. The active HB motion has been shown to produce

all hallmarks of the active process in non-mammals [11], while hair cells in these

species do not possess somatic motility [19]. Hence, the active HB motions are likely

responsible for mechanical amplification of low-amplitude signals in non-mammals.

However, contribution of this mechanism in mammals remains debated [20]. Further-

more, efficiency of the HB motility at high frequencies is questioned, as the highest

frequency reported for spontaneous bundle motion is no more than 100 Hz [21]. The

principal argument against somatic motility as the amplifier is that the periodic com-

ponent of the receptor potential will be attenuated by the membrane time constant,

hence, this mechanism is not as effective at high frequencies [22]. This issue, how-

ever, is explained by the voltage-dependent K+ conductance which is activated by

the depolarized resting potential [23].

The cochlear active processes stem from electromoechanical properties of the

2
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Figure 1.2: Schematic of an OHC and the MET apparatus. Deflection of the HB
stereocilia (uhb) relative to the RL gives rise to opening of the MET channels, result-
ing in the transduction current (Imet) flow into the cell. Change in the OHC baso-
lateral membrane potential induces a change in the cells length, due to the OHCs
piezoelectric properties [24], and generates the somatic force Fohc along the cell. The
zoomed-up inset figure illustrates the HB active mechanism based on the adaption
process which produces an active force on the HB (Fhb). The two depicted stereocilia
are connected by a tip link attached to a transduction channel on the apical part of
the shorter stereocilia and the adaptation motor on the taller stereocilia. A circuit
model is introduced to describe the current path in the cochlear cross section through
the electrical resistances (R) and capacitances (C) of the apical (subscripts a) and
basolateral (subscripts m) components of the OHC as well as the SM (sm subscripts)
and ST (st subscripts) ducts.

OHCs. A schematic of the OHC along with an electrical circuit showing the cur-

rent path across the cell are illustrated in Fig. 1.2. The two active processes are

implemented in a comprehensive three-dimensional model of the cochlea and their

relative contribution on the responses are investigated.

1.1.1 OHC Somatic Electromotility

Since the discovery of OHC somatic electromotility [24] these cells have been the focus

of investigation as a mediator of electrical-structural interaction and of amplification.

When the cochlea is stimulated with sound of a particular frequency, the pressure

gradient across the OoC sets this elastic microstructure into oscillation. The TM

3



shearing movement deflects the HB (see Fig. 1.1) and causes the opening of the

mechanoelectric transducer (MET) channel resulting in a transduction current (Imet)

to flow into the OHC. The HB transduction current varies nonlinearly with the HB

motions and saturates at large deflections. This process is widely accepted as the

main source of the cochlear nonlinearity. A first-order Boltzmann function of the HB

deflection (uhb) can estimate the MET current flow into the OHC as [25]:

Imet = µ∆V 0GmaxP, (1.1)

where Gmax is the maximum saturating conductance of the HB and µ is the MET

scaling factor that controls the nonlinear sensitivity of the channels; µ = 0 represents

the passive model. Moreover, ∆V 0 is the resting value of the potential difference

between scala media and intracellular OHC potential. The MET channel mechanics

is linked to the HB motility through the adaptation mechanism dependency on the

open probability of the channels P modeled by a two state Boltzmann function [26]

Phb(uhb, xa) =
1[

1 + exp(−uhb+xa
∆X

)
] (1.2)

where ∆X = kBT
fgsγ

is a constant displacement that depends on the single channel

gating force (fgs), the Boltzman constant kB and temperature T . The motion of

the adaptation motor xa is coupled to the HB deflection uhb and oscillates along

the stereocilia bundles (see Fig. 1.2). Figure 1.3 demonstrates the HB transduction

current (Eq. 1.1) as a function of the bundle deflection (Eq. 1.1) for various values of

the MET scaling factor µ. The horizontal dashed lines denote the DC currents for

each simulation (differentiated by colors). The sensitivity of the MET channels are

controlled by the parameter µ as evidenced in the curves slopes.

In response to changes in the OHC membrane potential, prestin (a protein present

4
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Figure 1.3: The MET transduction current (Imet) dependence on the HB deflection
relative to the reticular lamina (RL) for a range of MET scaling factors (µ in Eq. 1.1).
The dashed lines denote DC currents for resting probability of P0 = 0.4. Values
for the parameters introduced in the Eq. 1.1 are fgs = 23 pN, ∆X = 0.17 nm,
xa = X0 = 0.07nm, Gmax = 5.1× 10−7 S/cm, ∆V 0 = 140mV .

in the OHC) alters its conformation and, consequently, the length of the cell itself [24].

The OHC active force and current are related using the linearized piezoelectric rela-

tions:

Fohc = Kohcu
comp
ohc + ε3(φohc − φst)

Iohc = (φohc − φst)/Zm − ε3
ducompohc

dt
.

(1.3)

where Zm = Rm/(1−jωRmCm) is the OHC basolateral impedance, ε3 is the piezoelec-

tric coupling coefficient and Kohc represents the OHC stiffness [27]. The piezoelectric

current Ipz = −ε3
ducomp

ohc

dt
represents a current source generated from the OHC elonga-

tion/compression. These set of equations relate the OHC compression ucompohc (a linear

function of the BM and TM displacements as described in the Appendix A) and the

transmembrane potential (difference between the intracellular (φohc) and extracellular
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Figure 1.4: Architecture of a HB of human cochlea. The three rows of the OHC-HB
stereocilias are connected with tip links and form a V-shape pattern. The scanning
electron microscopy image is retrieved from www.medheadarts.wordpress.com

(φst) voltages) to the OHC active force (Fohc) and current (Iohc).

1.1.2 Active HB Motility

Martin and Hudspeth [28], introduced the HB active force as a possible alternative

for OHC electromotility which is only available in mammalian cochlea but lacking

in nonmammals. They reported physiological evidence that HB can be the source of

amplification while still leaving room for other options. A schematic of the HB motil-

ity apparatus is shown in the inset subplot of Fig. 1.2. Deflection of the stereocilia

bundles relative to the RL opens the transduction channel, allowing K+ and Ca2+ to

enter and depolarize the cell. The Ca2+ that enters into the cell causes to re-close the

channel through the slow (myosin motors) and fast adaptations processes [26]. This

process generates a cycle-by-cycle reactive force on th HB (Fhb). Different models

have been proposed to describe the dynamics of the HB motility. In this study we

use a simple two-state model of the active HB motility proposed by Tinevez et.al.

[1]. This model is based on the gating-spring theory of the mechano-transduction

channels [29] that describes the coupled dynamics of the hair bundle and adaptation

motor motions.

The stereocilia are assumed to be attached to an adaptation motor through a tip
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link [1] as shown in the schematic in Fig. 1.4. Equation 1.4 represents the dynamics

interplay between the hair bundle motion (uhb) and the adaptation motor (xa) [1]:

λ
duhb
dt

= −kGS(uhb − xa −DP )− kspuhb + Fext

λa
dxa
dt

= kGS(uhb − xa −DP )− kesxa − γfmax(1− SP )

(1.4)

where, ksp and kes are stiffness of stereocilia pivot and extension spring, respectively,

and kGS = Nkgsγ
2 is apparent combined stiffness of gating springs (kgs) for N number

of transduction elements. D = d/γ, where d is the gating distance and γ is the

geometrical gain constant. γ relates the sliding motion of the stereocilia against

each other to the motion in the uhb direction. fmax is the motor feedback actuation

of the adaptation motor and S is the linear approximation of the calcium feedback

strength. Fext is the external force applied to the HB from the OoC mechanics

(in vivo) or a stimulation probe (in vitro). In this equation, P represents open

probability of the MET channels that can be approximated as a function of the

HB and the adaption motor motions (Eq. 1.2). The resting open probability of the

channels is fixed (P0 = 0.4 [23]) by applying an intrinsic force on the HB. An internal

degree of freedom xa representing the adaptation motor, modulates the open channel

probability (Eq. 1.2).

In this model an active regenerative force is produced through a hysteresis mech-

anism that adds energy to the system. This mechanism stems form the force-

displacement characteristic of the HBs. As shown in Fig. 1.5(a), the HB force varies

nonlinearly with the HB motion when the adaptation mechanism is implemented.

This leads to a negative effective stiffness for the HBs around the equilibrium (il-

lustrated by asterisk marker insider the figure) which in turn generates spontaneous

oscillations (Fig. 1.5(b)) through an Hopf bifurcation mechanism. The parameter

values of the HB model used in this study are listed in the Table 5.4.
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Figure 1.5: HB adaptation mechanism for an isolated HB. (a) Nonlinear force-
displacement relation of a HB; the equilibrium (denoted with an asterisk marker)
is located in the unstable region. (b) Spontaneous oscillation of the positions of the
HB uhb and the adaptation motor xa.

1.1.3 The 3-Dimensional Model

A physiologically-based model of the cochlea is developed and the active processes are

implemented. In this model electrical and mechanical elements of the OoC are coupled

explicitly through kinematic constraints and forces (see [27]). Figure 1.1 depicts a

schematic of the OoC and transverse section of the model. The OoC structure is

loaded by the fluid pressure difference across the BM. The fluid is assumed inviscid

except in the subtectorial space and viscosity is incorporated through damping of the

OoC and the BM. The BM is assumed to be a flexural plate pinned at both ends,

with a single degree of freedom (ubm) corresponding to the first symmetric mode of

vibration. The TM is modeled as a rigid rod attached to the limbal edge, with an

elastic spring resisting motion in the radial direction (utms), and a rotational spring

in the transverse direction (utmb). The transverse motion of the BM is mediated

to the radial and transverse motion of the TM through the HBs.The relative shear

between the TM and the RL deflects the HBs creating tension in the tip links and

opening the MET channels. The kinematics relations between the OoC components

are formulated in the Table A.1.

The mathematical modeling, gives rise to a set of coupled PDEs which are ap-
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proximated using the finite element method (FEM). The coupled mechanical-fluidic-

electrical equations can be represented in the matrix form as


Kf Qfs 0

Qsf Ks Qse

0 Qes Ke




P

U

Φ

 =


fp

0

0

 (1.5)

In this equation U is the displacement nodal vector of the OoC structural components;

including ubm,utms and utmb for each cross section. Similarly, Φ is the voltage nodal

vector which encompasses φsv, φsm, φohc and φst for each cross section. Moreover,

P vector represents nodal fluid pressure in the scala vestibuli (SV) and scala tym-

pani (ST). These vectors represent the finite element approximation of the cochlear

structural-electrical-acoustical responses calculated by solving the linear matrix of

Eq. 1.5. Structural, electrical and fluid components are denoted by subscripts s ,

e and f , respectively, while Q represents coupling between the domains. On the

right-hand side of this equation, fp represents the stimulation effect on the boundary

conditions.
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CHAPTER II

Nonlinear Dynamics of the Cochlear Activity

2.1 Introduction

Cochlear responses are shown to be nonlinear and tuned such that lower sounds receive

higher gains relative to higher sound pressure level (SPL). This property is called the

cochlear amplifier which enables mammalian auditory system to work over a broad

range input sounds. Recently, there has been growing interest in exploring the relative

contribution of the two candidates active mechanisms (OHC and HB motility) on the

cochlear amplifier [3, 30–33]. It is shown that the two candidate active mechanisms

are linked through the MET channels; hence, conducting experiments to perturb

one mechanism without effecting the other remains elusive [3, 30–32, 34]. The other

approach is to incorporate the active mechanisms into a cochlear model and explore

their relative contribution on the cochlear dynamics.

The models aim to be as simple as possible while being able to predict cochlear

behaviors correctly. Duifhuis et al. [35] developed a network model using a Van der

Pol oscillator. This model is based on the idea that sensitivity to low level sounds is

due to reduction of low level damping and that cubic distortion products dominates

emissions. They argue that spontaneous emissions would arise at points where this

reduction is too strong. This model is not physiologically based, however, is able to

introduce a possible mechanism for amplification.
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The Hopf bifurcation normal form has been introduced [36] as a possible principal

mechanism of the cochlear nonlinear amplification. This model predicts a compressive

nonlinearity when tuned near the stability boundary. Mechanical responses to acous-

tic stimuli in this model are close to a cubic form, as observed from the experimental

data [6]. Magnasco [37] used Hopf bifurcation to explain the shape of the cochlea

tuning curves by analyzing energy flow and dissipation. Kim et al. [38] proposed a

model including both damping and stiffness nonlinearity. They reported the stiffness

nonlinearity, modeled with Duffing equation, increases frequency selectivity at high

levels. Ó Maoiléidigh and Jülicher [2] proposed a model considering somatic motil-

ity, transduction current adaptation nonlinearity and showed it is consistent with the

experimental results by Kennedy et al. [22]. They incorporated myosin motor dy-

namics in their model of OHC which also included electrical domain through charge

dynamics. Later Szalai et al. [39] simplified Maoiléidighh’s model and studied two

different bifurcations that may be the source of amplification. They argued that it is

not necessary for local model of the OHC dynamics to take form of Hopf oscillator

and there is possibility of other type of local bifurcation including saddle-node and

cusp.

Although the Hopf model represents the hallmarks of a healthy cochlea (e.g. com-

pressive amplification, frequency selectivity, sensitivity and otoacoustic emissions),

there are some limitations associated to this model. For instance, the ability of this

model to amplify relies on the dynamics being poised on the edge of an oscillatory

instability characterized by a Hopf bifurcation [40, 41]. Moreover, this model is lim-

ited to low SPL responses hence does predict the cochlear saturation feature that

linearizes the response at hight SPLs.

Tinevez et al., [1] introduced a two-state model of the HB dynamics that includes

the adaptation process. In this model a cycle by cycle mechanism provides power

amplification and gives rise to a regenerative spontaneous oscillation (so called limit
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cycle). This model works near the Hopf stability boundary of the dynamics, generat-

ing a cubic compressive nonlinearity. Ó Maoiléidigh and Julicher [2] incorporated this

model into an integrated system of the OoC that couples the hair bundle motility and

electromotility processes. Although, the model provides good qualitative predictions,

a truly physiological mechanism remains absent.

The Hopf bifurcation model is proposed as the principal mechanism for the HB

activity giving rise to the cochlear amplifier [1, 39, 41]. However, the Hopf bifur-

cation mechanism is not limited to the HB adaptation process. This mechanism

stems from the MET saturating nonlinearity which plays a central role in both active

processes: HB motility [42] and OHC somatic motility [43]. In this study, we incor-

porate both the OHC somatic motility as well as the HB active process in a nonlinear

cross-sectional model of the cochlea to study possible interplay between the active

mechanisms in an integrated system. This study has been performed in collaboration

with PhD student, Aritra Sasmal.

2.2 Cochlear Cross-Section Model

Detail of our cochlear model are introduced in Chapter I and in the Appendix A.

Eq. A.14 describes the linearized electromechanical cross section model. In order to

explore the cochlear amplifier in this model, a harmonic force P sin(Ω t) arising from

fluid loading is applied on the BM. Parameters used for this study are listed in the

Table 2.1.

2.3 Compressive Nonlinearity

Figure 2.1(a) depicts the nonlinear level dependence of the BM response. The sim-

ulations correspond to 1 percent off from the Hopf point (controlled by µ in Eq. 1.1)

while the stimulation frequency (Ω) is the CF of the measured location. The com-
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Table 2.1: Cross section model parameters. x is the distance from the stapes (cm).
The diameter size of an OHC (Dx = 10µm) is used to lump the parameters for the
cross section model.

Property Description Value
b BM width 0.008 + (0.018− 0.008)x/1.85 cm
hbm BM thickness 0.0007 + (0.00017− 0.0007)x/1.85 cm
Kbm BM stiffness per unit length 1.732× 106exp(−4x)(1 + (x/1.85)3)Dx dyn/cm

2

Ktms TM shear stiffness 1.65× 105exp(−4x)Dx dyn/cm
Ktmb TM bending stiffness 0.27× 105exp(−4x)Dx dyn/cm
Krl RL stiffness 6× 104exp(−4x)Dx dyn/cm
Kohc OHC stiffness 6× 104exp(−4x)Dx dyn/cm
Kst Stereocilia stiffness 0.6× 105exp(−4x)Dx dyn/cm
Mbm BM mass per unit length 2.8× 10−6Dx gr/cm
Mtms TM shear mass 6× 10−6exp(1.6x)Dx gr
Mtmb TM bending mass 4.5× 10−6exp(1.6x)Dx gr
cbm BM damping coefficient 0.5Dx dyns/cm
ctms TM shear damping coefficient 0.3Dx dyns/cm
ctmb TM bending damping coefficient 0.3Dx dyns/cm

Gmax∆V 0 saturating HB conductance 3× 10−4exp(−4x)(1 + 2(x/1.85)3 + 3(x/1.85)4 + 3.5(x/1.85)5)(150− 10x)Dx

ε3 electromechanical coupling coefficient (−(0.008− (0.008− 0.01)x/1.85)1.3)Dx dyn/mV

pressive nonlinearity (1/3 power-law slope) for a medium range of stimulations and

linearity for the lower and higher levels are in good agreement with the experimental

data [44]. The Hopf normal form model cannot predict the linear region for high

SPLs [6]. Although, our model is proved mathematically to present the local Hopf

bifurcation feature (see Appendix B and [45]), it does not exhibit the shortcoming of

the Hopf model for high intensity stimulations. As shown in subplots of Fig. 2.1(a),

the HB transduction saturation explains the linearity of the model at high level stim-

ulations. Small plots inside Fig. 2.1a demonstrate the HB current transduction for

three different stimulation levels. We can see that HB current transduction nonlin-

earity gives rise to the BM nonlinear response for medium stimulation levels. These

results are consistent with [6] that a physiological coupling between BM and HB

through TM, can exhibit the compressive nonlinear amplification even without active

HB motility.

It is found that two conditions are essential for presence of compressive nonlin-

earity in our model and generally in any model which is based on Hopf normal form.

First, parameters should be tuned to be close enough to the Hopf point and, second,

stimulation frequency should be close to the resonance frequency of the system (called
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Figure 2.1: (a) BM nonlinear response to the input fluid loading for parameters close
to the Hopf point (log-log scale); solid line: cross section model, dashed line: 3-
dimensional global model, thin lines demonstrate the slope for different zones. The
three subplots illustrate the HB current transduction versus displacement fo different
force loadings (noted on top). (b) The BM displacement versus stimulation amplitude
and frequency. The frequency axis is scaled with respect to the imaginary part of
the largest eigenvalue at the Hopf point (ωH). The model is nonlinear for frequency
stimulations near the ωH and linear away from that. The OHC somatic electromotility
is the sole mediator of the active process in this simulation.

characteristic frequency in the global cochlea). Possible physiological mechanisms for

the first condition in the full cochlea is still under debate, while the second condi-

tion is known as the cochlear frequency selectivity. The frequency effect is shown in

Fig. 2.1(b) where a 3-D surface plot of the BM displacements with respect to the input

force and frequency are presented. The stimulation frequencies are normalized with

respect to the CF of the location and it is shown that the compressive nonlinearity

only exists near the CF frequency.

2.4 Stability Analysis of the OHC Somatic Based Model

In this section, stability of the OoC cross section model, when the OHC somatic

motility is the mediator of the active process and in the absence of HB adaptation, is

studied. The MET channels nonlinearity (Eq. 1.1) is linearized (as shown in Eq. A.14)

and stability of the OoC dynamics is explored. Figure 2.2 depicts the stability bound-
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Figure 2.2: Stability chart for the cochlea cross section model with OHC electromotil-
ity. The blue line denotes the stability boundary where a complex conjugate paired
eigenvalues pass the imaginary axis by increasing MET scaling factor (µ) as shown
in the inset plot.

ary in the plane of the MET scaling factor (µ) and the electromechanical coupling

coefficient (ε3 as introduced in Eq. 1.3). It is illustrated that by increasing the MET

sensitivity (controlled by µ as introduced in Eq. 1.1) a conjugate paired eigenvalues

passes the imaginary axes and causes instability by injecting more energy into the

OoC. The values of µ are presented in percentage which indicate the activity level; for

instance µ=0 refers to the passive model. We note that for the passive case (µ = 0),

the system is stable independent from the ε3. Moreover, when ε3=0 (uncoupling

between electrical and mechanical domains) the system is stable independent from

MET sensitivity. Hence, the passive OoC dynamics is stable.

2.5 Bifurcation Analysis; Nonlinear System

Next, a numerical bifurcation analysis of the fully nonlinear model is performed using

a numerical continuation technique [46]. Moreover, the center manifold reduction

technique is also utilized for analytical study of the model (see Appendix B). Fig-

ure 2.3 shows the bifurcation diagram when µ is considered as the bifurcation param-

eter. This figure demonstrates generation of a periodic solution, called limit cycle,
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through a supercritical Hopf bifurcation. Figure 2.3 illustrates the spontaneous oscil-

lation amplitudes of the BM displacements with respect to the bifurcation parameter

µ. As the MET sensitivity is increased beyond µHopf (shown in Fig.2.3 with a square

marker), the static equilibrium (shown in red dashed lines) becomes unstable and

the system undergoes periodic oscillation through a supercritical Hopf bifurcation.

Increasing the MET channel sensitivity, pumps more energy into the system through

the HB transduction current. At a certain value for MET sensitivity (Hopf point) this

energy balances with the damped energy of the system and develops a limit cycle.

The BM time response and phase portrait for two cases, before and after bifurcation

point, are plotted in Fig. 2.4. Although, the limit cycle oscillation of the system is

interesting and has been studied in some detail [45], we shall constrain ourselves to

the stable regime below µHopf , where an external force acting on the BM can amplify

the mechanical motion of the OoC through a feedback loop involving somatic force

generation by the OHCs.
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Figure 2.3: Static and dynamic equilibrium of the BM with µ. Red dashed lines show
the static equilibrium of the BM as the MET sensitivity scaling factor µ is increased.
The MET resting probability is held constant at P0 = 0.4. The static equilibrium is
stable for low µ and is unstable beyond a critical value for µ shown with the black
arrow. Beyond the Hopf point, the system transitions into limit cycle oscillations
through a supercritical Hopf bifurcation. Bifurcation diagram for ε3=-0.04; LC: limit
cycle, solid line: stable; dashed line: unstable
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Property Description Value
kGS(mN/m) gating spring stiffness 0.95
kes(mN/m) extension spring stiffness 4
fmax(pN) motor strength 100
γ Geometric gain 0.25−

[xgauss
1.85

(0.25− 0.11)
]

d(nm) Gating distance 8.7
λ(µNs/m) Effective stereocilia damping 0.28
λa(µNs/m) Adaptation motor damping 1

Table 2.2: Parameters used for the HB active model.
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Figure 2.4: Time response and phase portrait for ε3=-0.04 and MET coefficient factor
below the Hopf point (left panel; µ=0.5) and above the Hopf point (right panel; µ=2).

2.6 Nonlinear Dynamics of the Isolated HB

An active HB model proposed by Tinevez et al., [1] is utilized to simulate the HB

adaptation process. This model represents coupling between the hair bundle motion

(uhb) and the adaptation motor (xa) as described in the Chapter I (see Eq. 1.4).

Different regimes of HB adaptation operation for an isolated HB, with the adapta-

tion motor controlling the resting tension on the tip links, are explored. First, the

fundamental characteristics of the HB activity is studies by linearizing the nonlinear

dynamic of the HB adaptation about equilibrium (Eq. 1.4):
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 ˙uhb

ẋa

 =

−(k̄gs+ksp)

λ

¯kgs
λ

(k̄gs+k̄f )

λa

−(k̄gs+kes+k̄f )

λa


uhb
xa

+

Fext

λ

0

 , (2.1)

where, ε̄ = kGSd
2

kBT
, k̄gs = kgs(1 − ε̄) and k̄f = γfmaxSε̄

D
= αε̄kgs. α = fmaxS

NkGSd
is a

non-dimensional parameter which is the ratio of the feedback strength to the gating

strength, and may change from base to apex if the calcium strength or the feed-

back changes. ε̄ is the sensitivity of the MET channel with respect to stereocilia

displacement for a passive HB and is given by ε̄ = D ∂P
∂uhb

∣∣∣
P0

. The displacement of

the adaptation motor can be written in terms of the HB displacement as

xa =

[
kgs
λaωp

1 + (α− 1)ε̄√
1 + (ω/ωp)2

∠(ω/ωp)

]
uhb, (2.2)

where ωp =

(
kes+kgs(1+(α−1)ε̄

λa

)
is the corner frequency for the adaptation motor re-

sponse. As the calcium feedback α increases, the ωp increases, reducing the adaptation

motor’s response time.

Figure 2.5: Isolated active HB dynamics. Classification of different dynamics of the
isolated active HB in α− ε̄ space for P = 0.4. For ε̄ < 1, the active mechanism does
not generate energy. The region with vertical bars correspond to a region of limit
cycles and the dotted region is bistable. The blue region corresponds to parameters
for phasic adaptation whereas in the green region the HB adaptation is anti-phasic.
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Fig. 2.5 shows the different regimes of HB dynamics in the α − ε̄ space. Below

ε̄ = 1, the adaptation mechanism does not generate any energy. The dotted region

corresponds to a region of bistability, where the static equilibrium at P = 0.4 is

unstable and the steady state open probability of the MET channels is close to 0 or

1. The region marked with vertical bars in Fig. 2.5 is a region where the hair bundle

undergoes spontaneous oscillation and is bounded by a supercritical Hopf boundary

at the top edge and a subcritical Hopf boundary at the bottom edge. For parameters

assumed in this study, the frequency of limit cycle oscillation of the isolated hair

bundles was found to be less than 1.5 kHz.

The region shown in blue corresponds to a region of phasic adaptation. In this

region, the adaptation motor is in phase with the HB displacement at low frequencies,

and leads the HB by a quarter cycle at high frequencies. The green region corresponds

to anti-phasic adaptation, where the adaptation motor lags the hair bundle by a half

cycle at low frequencies and a quarter cycle at high frequencies. The force on the

hair bundle by the adaptation motor is out of phase with the hair bundle velocity

(dissipative).

Although adaptation generates energy at low frequencies (ω << ωp), it is accom-

panied by a loss of low frequency MET sensitivity due to the in-phase motion of the

adaptation motor reducing the tension on the tip-links and consequently decreasing

the MET sensitivity. This leads to reduced current flow through the MET channels in

the hair bundles which will be further investigated in the next section. The reduction

in sensitivity of the MET channels to HB motion is given by

d(P xa − P )

duhb
= − ε̄

D

[
1− kes

ωpλa

1− j ω
ωp

]
. (2.3)

where P xa is the open probability of the MET channels when the adaption process

is included. The interplay between power generation of the HB motility and the
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sensitivity of the MET channels (which controls the somatic power generation) is

further explored in the next section.

2.7 Interplay Between OHC Somatic Electromotility and HB

Motility

In this section we study contribute of the two active processes (HB motility and

OHC somatic electromotility) on the cochlear nonlinear amplifier. Modeling of the

two active mechanisms are introduced in Chapter I. First, we identify the phasic

and anti-phasic regimes for the adaptation process in the plane of the key parameters

of the HB and OHC active processes (S and µ, respectively). The parameter S

controls the feedback strength (Eq. 2.6) while µ is the scaling factor of the MET

channel sensitivity (Eq. 1.1). Fig. 2.6 shows the stability boundary of the system

at an apical location (x = 1.2 cm from stapes) in the S − µ space. The dynamics

retain flavors of both isolated HB adaptation as well as somatic motility. The calcium

feedback parameter, S, divides the space into phasic and anti-phasic HB adaptation

and the MET sensitivity factor, µ, modulates the stability of the system. We choose

two operating points in the stable regime of the S − µ space (near the stability

boundary) corresponding to phasic adaptation and anti-phasic adaptation, to study

the contribution of these mechanisms to power generation and nonlinear compression.

In this study, we shall denote the phasic adaptation parameters (S = 4, µ = 5.5) as

P1, while the anti-phasic adaptation parameters (S = 0.5, µ = 4.7) shall be denoted

as P2. It is noted that the the stability boundary shifts slightly for different locations

along the cochlea as shown in Fig. 2.6(b).
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Figure 2.6: Dynamics of the coupled system in the S−µ space for an apical location
(x = 1.2 cm from stapes). The dynamics of the coupled system retains flavors of
both somatic motility and HB activity. The calcium feedback S primarily controls
the phase of adaptation in the stable region. The MET sensitivity µ controls the
stability of the system, with the system exhibiting limit cycle oscillations beyond a
critical µ, which in the coupled system is calcium feedback (S) dependent. Two sets of
parameters, corresponding to phasic adaptation (P1; S = 4, µ = 5.5) and anti-phasic
adaptation (P2; S = 0.5, µ = 4.7), as discussed in the text are shown in this space.
(b) Dynamics of the coupled system in the S − µ space for apical (x = 1.2 cm) and
basal (x = 0.4 cm) locations along the cochlea.

To ascertain the variation of efficacy of these two adaptation mechanisms through-

out the length of the cochlea, we define Ω(x) as

Ω(x) =
max{uHB+OHC

bm }
max{uOHCbm }

, (2.4)

where max{uHB+OHC
bm } is the peak BM frequency response of the OoC with both

HB activity and OHC somatic motility, and max{uOHCbm } is the peak BM frequency

response of the OoC with somatic motility only, at a distance x cm from the stapes.

Fig 2.7 shows the variation of Ω(x) from base to apex for P1 with blue line and

P2 with red line. For the P1 parameters, while the HB activity adds energy into the

system, the reduction in MET sensitivity and HB current at low frequencies lead to a
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decrease in the somatic force generation (Eq. 1.3), decreasing the BM gain at the apex.

For the P2 parameters, the anti-phasic hair bundle adaptation leads to an increase

in HB current, and consequently somatic motility. However, this is significant only

at low frequencies and is not effective beyond the corner frequency of the adaptation

motor response (∼ 1 kHz).
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Figure 2.7: Variation of Ω with distance x from the stapes. Ω for phasic adaptation
(P1) is shown with blue lines and that for anti-phasic adaptation (P2) is shown with
red lines.

It is noted that the OHC and HB active processes can interact through the MET

apparatus. Hence, the MET sensitivity is influenced by the HB motility. The MET

sensitivity is calculated as:

Sen = ∂P/∂uhb = |Cp (1− ∂xa/∂uhb) | (2.5)

where Cp = P0(1− P0)/∆X is a function of the resting probability of the MET

channels P0 = 0.4 and the displacement constant ∆X introduced in Eq. 1.1. A time

dependence of e−jωt is assumed (where ω is the angular frequency) and the las term

of Eq. 2.5 is calculated from the HB dynamics (see Eq. 1.4) as:
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∂xa/∂uhb =
−kgs +DCpkgs + γfmax(1− SCp)

−kgs +DCpkgs − kes − γfmaxSCp + jλaω
, (2.6)

The MET sensitivity of the active HB model is calculated from Eq. 2.5 while for

the passive HB we set ∂xa/∂uhb = 0. Figures 2.8 and 2.9 illustrate variations of the

displacement gain (Ω) and MET sensitivity (ratio of Sen of the active to passive HB)

with respect to µ and distance from stapes for two values of S=4 (panel a) and S=0.5

(panel b). Moreover, the stability boundary for the active and passive HB models

are denoted with dashed and dot-dashed lines, respectively. It is noted that the S=4

gives rise to higher gain at basal locations (higher frequencies) while S=0.5 shows an

opposite effect. As shown in Fig. 2.9 the change on gain is linked to the alteration

of the MET sensitivity such that decreasing the sensitivity gives rise to lower gains.

We also note that the HB motility when S=4 decreases the MET sensitivity for all

locations (frequencies) while S=0.5 increases the sensitivity (sensitivity ratio greater

than 1).
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Figure 2.8: Contour plot of the HB gain Ω in the plane of the activity levels (controlled
by µ) and locations along the cochlea (x0) for (a) S=4 (b) S=0.5. The stability
boundary for the active and passive HB models are denoted with dashed and dot-
dashed lines, respectively.
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Figure 2.9: Contour plot of the MET sensitivity ratio between active and passive HB
simulations in the plane of the activity levels (controlled by µ) and locations (x0)
along the cochlea for (a) S=4 (b) S=0.5

2.7.1 Active Power

The work done per cycle by the HB activity and the OHC somatic motility nor-

malized to the work done by the BM external force F ext
bm is given by:

P ∗hb =

∫ T
0
−kgs(uhb −Xa −DP )u̇hbdt

Pext
, (2.7)

P ∗ohc =

∫ T
0
−ε3∆φohcu̇

comp
ohc dt

Pext
, (2.8)

where Pext =
∫ T

0
−F ext

bm u̇bmdt and T is the time period. In Eq. 2.8, the OHC active

force Fohc = −ε3∆φohc is multiplied by velocity of the OHC compression u̇compohc (defined

in Appendix Table A.1) and integrated over time. A positive power gain represents

power addition whereas a negative power gain represents power dissipation.

Fig. 2.10 shows the normalized power gain of the HB (P ∗hb) for varying levels of

external stimulation on the BM (F ext
bm ). Blue curve shows the power gain for the

OoC with both HB activity and OHC somatic motility and red curve shows the

corresponding quantities for the OoC with somatic motility only. Since the two
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adaptation mechanisms (phasic and anti-phasic adaptation) are effective at different

locations along the cochlea, we study the power gain for parameters P1 at the base

(x = 0.4 cm) and for parameters P2 at the apex (x = 1.2 cm). The HB power gain

is zero for both P1 and P2 for the OoC without HB activity (red lines) by definition.

For P1 (Fig. 2.10(a)), the phasic adaptation adds power into the system, and the

power gain decreases monotonically as the stimulation amplitude is increased. On

the other hand, the HB anti-phasic adaptation (P2) dissipates power (Fig. 2.10(b)).
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Figure 2.10: Power gain of HB activity for (a) P1 parameters at 0.4 cm from stapes
and (b) P2 parameters at 1.2 cm from stapes. The blue curve shows the simulation
with both active processes (HB and somatic motility) while the red curve shows the
passive HB model (by setting the adaptation motor xa to be stationary).

The normalized power gain by the OHC somatic motility for P1 and P2 are shown

in Fig. 2.11(a) and Fig. 2.11(b), respectively. The power gain by the OHC somatic

motility without HB adaptation is shown with red lines. When hair bundle adaptation

is added to the system, the power gain by the somatic motility (blue lines) increases

by around 4dB for P1 at the base and 10 dB for P2 at the apex. The dramatic increase

in power gain at the apical region is due to the anti-phasic HB adaptation increasing

the MET current and consequently the OHC somatic force (Eq. 1.3).
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Figure 2.11: Power gain of OHC somatic motility for (a) P1 parameters at 0.4 cm
from stapes and (b) P2 parameters at 1.2 cm from stapes. The blue curve shows the
simulation with both active processes (HB and somatic motility) while the red curve
shows the passive HB model (by setting the adaptation motor xa to be stationary).

2.8 HB Motility Contribution on the Compressive Nonlin-

earity

Non-linear compression is a key signature of an active cochlea which enables it

to operate over a dynamic range of stimuli encompassing many orders of amplitude.

The primary cochlear nonlinearity is thought to be that due to the nonlinearity of

the MET channels (Eq. 1.1). Fig. 2.12(a) and Fig. 2.12(b) shows the variation of

peak BM displacement, for parameters P1 and P2, respectively, with amplitude of

external force (F ext
bm ). The peak BM displacement for the OoC with no HB activity

is shown with red lines and the peak BM displacement for the OoC with both HB

activity and somatic motility is shown with blue lines. Both adaptation mechanisms

lead to increased low stimulus BM displacement and an earlier onset of nonlinear

compression. The phasic adaptation (Fig. 2.12(a) blue line) achieves this by injecting

power generated by the HB activity whereas the anti-phasic adaptation mechanism

(Fig. 2.12(b) blue line) increases the somatic power gain.
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Figure 2.12: The variation of peak BM displacement with amplitude of external
stimulation for (a) P1 parameters at 0.4 cm from stapes and (b) P2 parameters
at 1.2 cm from stapes. The peak BM displacement amplitude for the OoC with
somatic motility only is shown in red. When HB activity is added to the system, the
low stimulation BM displacement is increased along with a markedly earlier onset
of nonlinear compression (blue). The dashed lines illustrates the linear (magenta)
and nonlinear (1/3 power low; green) slopes for lower and medium frequency ranges,
respectively.

2.9 Discussion

The relative importance of the HB and somatic force generation to amplification

of the OoC motion has been long debated. Lagarde et. al. [47] and Santos-Sacchi et

al., [17] have proposed that the somatic motility is the basis of OoC amplification.

However, more recently, Nin et al., [48] have shown that by blocking the hair bundle

motility, the onset of nonlinear is shifted to higher stimulus level along with a decrease

in the low stimulus gain. In this study, we have found that the power gain by hair

bundle motility is 103-105 times smaller than the somatic force. Hence, it is unlikely

that hair bundle motility itself can amplify OoC motions and that OHC somatic

motility is the the primary driver for cochlear amplification. However, Fig. 2.12

shows that by coupling active hair bundle motility to somatic motility, it is possible to

hasten the onset of compressive nonlinearity along with an increase in the low stimulus

gain. Experiments by Zheng [49] and Cooper [50] have shown that the nonlinear
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compression in an active cochlea starts close to 20 dB SPL. Earlier modeling work by

Meaud and Grosh [51] has shown that with somatic motility alone, the nonlinearity

can be achieved around 40 dB SPL. As shown in Fig. 2.12, the coupling of HB activity

with somatic motility can reduce the onset of nonlinearity.

More recently, Nin et al., [48] has shown that the nonlinear compression persists

but is reduced when the somatic motility is perturbed or the tip links are broken.

This is in line with our results as blocking the somatic motility or the transduction

current destroys the coupling of the hair bundle adaptation mechanism to the somatic

motility. In this case, the somatic motility can still induce nonlinear compression,

albeit at a larger stimulus level and with reduced low stimulus gain. We conclude

that the somatic force is the primary force transducer in the OoC and that the hair

bundle adaptation mechanism most likely controls the larger somatic force by fine

modulation of the gating force and MET current.
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CHAPTER III

TM Shear Mechanics Activates the Cochlear

Amplifier

3.1 Introduction

Cochlear mechanical responses show a nonlinear characteristic such that the lower

SPLs produce higher gains relative to higher sounds [44, 52, 53]. Although nonlinear

responses of the cochlea to input sounds are well-known hallmarks of normal hearing,

the OoC contribution on the nonlinear amplification is still poorly understood. The

onset of the nonlinearities are observed to occur ∼ 1/2 octave below the characteristic

frequency (CF), as shown in the Fig. 3.1 for mice measurements [53].

Table 3.1 shows the frequency corresponding to the onset of the nonlinearity (we

will call this frequency fshift) compared to the CF of the measurement location for

different experimental data. It is noted that the fshift/CF ratio varies among differ-

ent experiments (animals), however, it is in the range of 0.6 to 0.7, suggesting that

the principal working mechanism could be similar. This observation reveals that a

mechanism at the shift frequency possibly activates the cochlear amplifier, serving to

localize and thus sharpen the frequency region for lower SPLs.
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Figure 3.1: BM displacement gain measured from mice cochlea [53]. Gains are cal-
culated by normalizing the displacement magnitudes of the BM for a range of SPLs
(10 to 80 dB SPL with 10 dB increment)to the middle ear displacements. At low
frequencies BM responses are linear while the nonlinearity onsets at a frequency ∼
1/2 octave below the CF=10 kHz

Table 3.1: Comparison frequency of the onset of nonlinearity (fshift) to the CF of the
measurement location from different experimental data.

Animal CF(kHz) fshift(kHz) fshift/CF Source
Chinchilla 10 7 0.7 [44]
Gerbil 13 22 0.6 [52]
Mouse 6 10 0.6 [53]
Guinea pig 15 10 0.66 [54]

Dong and Olson [52] explored the underlying mechanism of the cochlear amplifier by

measuring sound-evoked electrical and mechanical responses in vivo. They showed

that the frequency dependence of relative phase between the OoC motion, intra-

cochlear pressure, and extracellular potential in the ST are related to the conversion

of electrical to mechanical energy and to amplification. The extracellular voltage is

shown to undergo a phase shift at frequencies slightly below the peak [52, 55], that

coincides with the onset of the nonlinear amplification. This phase shift is not ob-

served in the pressure and displacement responses. It is hypothesized that this phase
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Electrode

Figure 3.2: Voltage measurements inside the ST. An electrode is inserted inside the
ST and positioned close to the BM to measure the receptor potential responses to
sound stimulation in gerbil.

difference between the electrical and mechanical responses gives rise to an effective

power generation of the OHC somatic force [52]. However, the origin of this phase

shift within the mechanics of the cochlea is not well understood. The purpose of

this study is to test this hypothesis (phase transition) and identify the underlying

mechanism using a mathematical cochlear model.

3.2 Method

The experimental data in conjunction with simulations are used to study nonlinear

amplification in the cochlea. The sound-evoked voltage inside the scala tympani was

measured for a range of frequencies and pressure levels. The experimental data are

from in vivo measurements of the gerbil cochlea. Animal preparation and single tone

stimulation were as described in Dong and Olson [52] using procedures approved by

the Columbia University Medical Center Institutional Animal Care and Use Commit-

tee (IACUC). A small hole (diameter ∼100 µm) was hand-drilled through the bony
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wall of the ST at the first turn of the gerbil cochlea with best frequency (BF) around

15.5 kHz. To ensure a healthy cochlea after cochleostomy, compound action potential

(CAP) was measured before and after the fenestration. A tungsten electrode, 75 µm

in diameter (FHC Inc, Bowdoin Maine), was inserted into the ST and advanced close

to the BM (based on experience with the anatomy, the distance was ∼20 - 100 µm)

using a micropositioner. The electrode was coated to its tip and had a resistance of ∼

1M Ω. The voltage responses to acoustical stimuli were measured. Figure 3.2 shows

a schematic of the experimental configuration.

We have used a 3-dimensional model of the cochlea in order to interpret the ex-

perimental data and proposed an underlying mechanism. The parameters used for

this study are the same as those introduced in [56] except for the parameters listed in

Table 3.2. The active process in this model is incorporated by the piezoelectric-like

behavior of the OHCs, arising from their somatic electromotile properties.

Table 3.2: Parameter values that are changed from [56]; x is the longitudinal distance
from the stapes (cm)

Parameter Description Value
Ktms TM shear stiffness per unit length 3× 104exp(3.75x) N/m2

Ctms TM shearing damping coefficient per unit length 0
Ctmb TM bending damping coefficient per unit length 0.1 Ns/m2

Cbm BM damping coefficient per unit length 0.085 Ns/m2

3.3 Notch in the Electrical Responses

Figure 3.3 shows the in vivo measurements of the sound-evoked electrical responses

inside the ST for a range of frequencies and sound pressure levels (SPLs). The frequen-

cies in this plot are normalized to the characteristic frequency (f expCF or CF) defined

as the peak frequency of the lowest SPL response. The voltage responses show peaks

near to CF (resembling the BM response). The amplitude peak and corresponding
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Figure 3.3: In vivo measurements of the electrical responses to pure tone stimuli
varying from 0 to 80 dB relative to 20 µPa SPL with 10 dB increment (higher SPLs
generates larger voltages). The voltages are measured inside the ST, close to the BM.
Frequencies are normalized to the peak frequency of the lowest SPL; CF=15.5 kHz.
The dashed lines illustrate the frequency where the notches and the associated phase
shift occur near f expshift = 0.78CF .

traveling wave phase accumulation verified that within a frequency region where these

are present, the responses are predominantly generated by local OHCs. To further

support this statement, in [52] electrical and mechanical responses were recorded to-

gether and showed similar tuning and similar traveling wave phase accumulation.

This would not happen if the electrical responses were due to current from remote

OHCs, in regions with different tuning and phase. The notches and an attendant

phase shift occur at frequencies near f expshift = 0.78f expCF , illustrated by vertical dashed

lines, and are not observed in the mechanical and intracochlear pressure responses

[52, 55]. This frequency does locate the lowest frequency of the nonlinear portion

of the input-output relations of the BM displacement and pressure in response to

acoustic stimuli [52, 55].

Figure 3.4 shows the control test results where the ST voltages are measured for

two different electrodes and it is verified that the notches are not artifacts depending
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Figure 3.4: Control test measurements. Two different microelectrodes (solid: FHC
Inc, Bowdoin Maine and dashed: AM Systems, SequimWA [52]) are tested and it is
verified that the notches are not artifact of the electrode type.

on the electrodes characteristics (e.g. impedance).

In Fig. 3.5, the model predictions of the ST electrical potential (φst), BM trans-

verse motion (ubm), and the TM shear (utms) and TM bending (utmb) motions as well

as the OHC HB rotation relative to the RL (uhb) are presented. The amplitudes in this

plot are normalized to their individual peak values and the frequencies are normalized

to the CF of the BM in our model. The ST voltage shows a peak slightly below the

CF and a notch (and corresponding phase shift) at fmodshift = 0.77fmodCF . As found in

the experimental data [52, 55], the notch is not observed in the BM responses. Our

model predicts a notch in both the HB motion and the ST potential.

In Fig. 3.5, the responses of all variables are seen to be in phase with one another at

low frequencies. Above fmodshift the phase relations bifurcate. Predictions of the relative

phases between φst and the mechanical response variables are shown at 0.8fmodshift in

Fig. 3.6(a) and at CF in Fig. 3.6(b), using the same color code as in the legend of
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Figure 3.6: The model predictions of relative phases between electrical and mechanical
responses at frequencies (a) 0.8 CF and (b) CF. The color code is as in Fig. 3.5; ubm
(blue), utms (green), φst (black), uhb (red).
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Figure 3.7: Phase difference of the extracellular potential and the BM displacement;
experimental data (40 dB SPL, from Dong and Olson [52]) and simulation results.

Fig. 3.5. At 0.8fmodshift, slightly above the shift frequency, the ST voltage is shown to

lead the BM and TM shear motions by ∼1/4 cycle (Fig. 3.6(a)) and nearly maintain

this difference at CF (Fig. 3.6(b)). The phase difference between the HB rotation and

the voltage monotonically increases from a 1/4 cycle at (Fig. 3.6(a)) to nearly a full

cycle (i.e., in phase) at CF (Fig. 3.6(b)). Therefore, while there is a bifurcation point

at the shift frequency which results in differences in the phases, the phase difference

of all quantities remains nearly constant except for that of the HB, which varies with

a different dependence on frequency. As an additional note relating the data of Fig.

3.3 and the model of Fig. 3.5: Fig. 3.5 shows that the voltage notch (black curve)

occurs when the BM and TM motions (blue and green curves) are nearly equal in size

and phase. The depth of the notch is sensitive to these two conditions and variations

in notch depth, as observed in Fig. 3.3, could be produced by very small variations

in BM or TM motion. This likely led to the deeper notch observed at 40 dB SPL.

To study the phase transition, we plot the frequency dependence of the measured

(from [52]) and predicted phase difference between φst and ubm in Fig. 3.7. Both

measurements and theory are seen to undergo a dramatic phase transition of 35%

of a cycle (theory) and a measured shift of nearly 45% of a cycle for frequencies
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greater than the shift frequency. A phase transition between the HB deflection and

BM transverse motion occurs at the notch frequency which is similar to the in vivo

measured data by Lee et al., [53]. They show a phase shift of their estimate of the

HB rotation relative to the transverse motion of the BM of the mouse at a frequency

roughly 70 % of the CF (CF=10 kHz) of the measurement location.

3.4 Mechanism of the Notch

Our model predicts both the experimentally measured phase relation between

the ST voltage and BM displacement (Fig. 3.7) and the location of the notch in

the voltage amplitude (cf. Figs. 3.3 and 3.5). The notch frequency in our model

corresponds to the resonance frequency of the uncoupled TM in the radial direction

(2πfmodshift =
√
Ktms/Mtms) where Ktms is the stiffness of the attachment of the TM to

the spiral limbus and Mtms is the TM mass (see Fig. 1.1). This finding is tested in

our 3-dimensional cochlear model by varying the TM shear stiffness and tracking the

notch frequency as shown in Figure 3.8; increasing Ktms shifts the notch to higher

frequencies. Moreover, Fig. 3.12 denotes that increasing damping of the TM motion

(for instance, subtectorial viscosity loss) decreases the notch depth.

As described by Gummer et al., [57] and our present analysis, the uncoupled

resonance of the TM and its limbal attachment produces a phase shift of the shear

force applied onto the apical pole of the HB. This shift occurs as the uncoupled TM

impedance looking in from the HB attachment shifts from stiffness controlled to mass

controlled at higher frequencies. At resonance, the force that can be applied to the

tip of the HB is minimal (zero in the undamped case). Experimental evidence from

mutant mice with TM unattached to the OHC HBs indicates that the resonance

frequency of the uncoupled TM is near to or below the local CF [53]. Of course, the

in situ response of the OoC is more complicated as it is comprised of a multi-degree-

of-freedom system with damping, which could slow some of the frequency dependence
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Figure 3.8: Notch location depends on the TM stiffness. The TM shear stiffness is
changed from the default value (Ktms) and it is observed that the notch frequencies
(denoted by markers) shifts up when the Ktms increases.

phase transitions.

3.5 What is TM Resonance?

While the concept of the resonant TM has been speculated upon for many years,

its the importance on the mechanics of the cochlea is still debated. The idea of the

TM resonance first was introduced by Zwislocki [58] in a model of the cochlea. He

proposed that a resonance mechanism in which the mass is the mass of the TM and

the compliance is the stiffness of the outer hair cell stereocilia occurs inside the mi-

crostructure of the OoC. Allen [59] discussed this idea further and introduced a model

assuming that the compliance is the elastic TM material rather than the stiffness of

the stereocilia, as assumed by Zwislocki [58]. In the Allen model a spectral zero (an

anti-resonance) is located below the CF and it is argued that any measured neural

tuning curve may be closely matched by adjustment of the model spectral zero. The

spectral zero is not realizable in a model without mechanical interaction between the

TM and stereocilia [59]. Subsequent studies by other researchers (e.g [56, 57, 60]

indicated that the TM resonance hypothesis is capable of explaining some important

features of the cochlear mechanics. It should be stressed that the expression of TM
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resonance is somewhat ambiguous as it is not the resonance of the TM within the fully

coupled OoC (electrical, mechanical, and fluid loaded) system. As with any complex

multi-degree of freedom system, the coupling stiffness and active forces affect the

system resonant frequency. The resonance frequency of the TM should be measured

when uncoupled from OHCs as don by Lee [53]. They measured the TM frequency

response when detached from the OoC and they found the resonance frequency to be

slightly below the CF which is consistent with findings of modeling efforts [56]. At

the resonance frequency of the uncoupled TM the mechanical impedance is minimal

(zero for undamped system), hence, TM cannot transfer a load to the stereocilias.

Furthermore, they demonstrate that the unattached TM undergoes a resonance be-

tween 5kHz and 8 kHz (most evident in the spatial mode shape shift seen in Movie 1

of their Fig. 9I and 9J). This is consistent with the modeling result, where the TM

resonance is roughly 1/2 octave below the CF [56].

3.5.1 Simple Model Representation

In order to better understand the comprehensive model and experimental results,

a much simpler two-degree-of-freedom (2DOF) system is considered as shown in Fig.

3.9. In this system two masses (m1 and m2) are connected through several mechanical

elements (springs and dampers) (see Fig. 3.9-a). As shown in Fig.3.9-b this simple

system represents a conceptual model for the BM and TM mechanical interactions.

The HB deflection in this model is analogous to the difference between x1 and x2

(representing BM transverse and TM shear modes, respectively). The frequency re-

sponses, x1 and x2, are plotted in Fig. 3.9-c along with their relative displacement,

x1-x2. The responses show two peaks associated to the resonance frequencies of this

2DOF system. Moreover, it is noted that the x1-x2 quantity shows an antiresonance

node at a frequency which coincides with the resonance frequency of m1 when de-

tached from m2. At this frequency the impedance of mass m1 (within the coupled
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system) is minimal, giving rise to a node in the force transferred to the mass m2.

Hence, we see an antiresonance node in the relative motion of the masses, x1-x2,

which is analogous to the deflection of the HB (see Fig. 3.9-b).

For sake of simplicity lets consider c1 = c2 = 0 and find the closed form relation for

x1 and x1 displacements:

x1 =
k2F0

m1m2ω4 − k2m1ω2 −m2k1ω2 + k1k2 −m2k2ω2

x2 =
F0(k1 + k2 −m1ω

2)

m1m2ω4 − k2m1ω2 −m2k1ω2 + k1k2 −m2k2ω2

(3.1)

Form Eq. 3.1 we can find that the amplitudes of x1− x2 is minimum when ω =
√

k1
m1

which is the resonance frequency of the mass m1 when detached from m2.

3.6 Comparison to in vivo Data

We note that because the TM will be stimulated by the fluid between it and the

underlying hair cell epithelium, its motion will be more complex inside the cochlea

than the simple model of Fig. 3.9). However, the resonant TM scheme finds support

from in vivo and in vitro observations. For instance, the recent OCT measurements

by Lee et al. [53] in mice shows a notch similar to that shown by our simple 2DOF

model (Fig. 3.9-c). Using their reported data (Fig. 2 of [53]), the vector subtraction

of the BM transverse and TM radial displacements for a range of frequencies and in-

tensities are plotted in Fig. 3.10(a). This calculation takes into account the vibratory

magnitude and phase of each structure. It is observed that there exist notches near

7.5 kHz while the CF for this preparation is at 10 kHz. At the notch frequency the

amplitudes and phases of the BM transverse and TM radial are nearly equal as in

the mechanism shown by the simple 2DOF model (Fig. 3.9). We also note that the

depth of the notches is level dependent such that higher SPLs demonstrate smaller
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Figure 3.9: An antiresonance node in the frequency response of a 2DOF system
describes the notch observed in the complex microstructure of the OoC. (a) a 2DOF
system (b) schematic of the equivalent BM and TM degree of freedoms (c) frequency
response of the system shown in (a) for parameters: m1 = 1; m2 = 2; k1 = 4; k2 =
7; c1 = 0.1; c2 = 0.1. The x1-x2 response shows a node at the resonance frequency

of the uncoupled m1: ω1 =
√

k1
m1

= 2
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Figure 3.10: Extrapolation of the HB notches from BM and TM in vivo data [53]. (a)
The vector subtraction of displacements of the BM transverse (ubm) and TM radial
(utms), |ubm − utms|, from in vivo data extracted from Fig. 2 of [53] for live mouse
preparation. (b) The BM/TM relative motion When ignoring the phase differences;
|ubm| − |utms|. SPLs are from 20 to 80 dB with 10 dB increment.

notches than the higher SPLs.

It is noted that in vivo phase measurements are susceptible for errors; hence it is

reasonable to consider this notation when interpreting the data. When assuming no

phase difference between the BM and TM motions at low frequencies, as predicted

by our model (see Fig. 3.3), the amplitude difference between BM transverse and TM

shear (radial) motions are illustrated in Fig. 3.10(b). The notches are more noticeable

in this figure than Fig. 3.10(a).

3.7 OHC Power Amplification

The OHC somatic force is proportional to the cells transmembrane potential [61]

as described in Eq. 1.3. Hence, the phase relation between the ST voltage and the

BM/RL motions indicates the OHC active power flow direction. The phase transition
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between ST voltage and BM motion (Figure 3.7) sets the condition for the OHC

somatic force to inject power into the BM motion. The phase shift at the bifurcation

frequency brings the phase difference between the somatic force and BM displacement

into the generative region. At the CF a phase difference between the somatic force

and BM displacement reaches near 90 degree. Hence, the active force is nearly in

phase with the BM velocity; a condition required for the effective power injection on

the BM motion. Figure 3.11 shows power interaction between OHC and BM/RL for

frequencies normalized to the CF. The OHC power is calculated as:

P =
1

2
Re{Fsomv∗} (3.2)

where ∗ denotes the complex conjugate and v represents the velocity of the BM

or RL. Moreover, Fsom = ε3∆φohc is the OHC somatic force (see Eq. 1.3) which is

proportional to the OHC transmembrane potential (∆φohc).

A negative value in this plot indicates power dissipation while generative regions

are associated to positive powers. It is noted that the OHC power deposition to the

BM is changed from dissipative (below the fshift) to generative (around the CF) while

the RL side is dissipative near CF.
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peck values. The vertical dashed line indicates frequency boundary where the power
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3.8 Level Dependency

The notch in the voltage data is generated when the BM transverse and TM radial

motion are equal in amplitude and phase (see Fig. 3.9). The depth of the notch is

sensitive to these two conditions and variations in notch depth, as observed in Fig. 3.3,

could be produced by very small variations in BM or TM motion. This likely led to

the deeper notch observed at 40 dB SPL . At SPLs > 60 dB the notch is washed out,

likely due to nonlocal OHCs contributing to the measured voltage.

The depth of notch is also damping dependent in the model and can be indis-

cernible if damping is increased. This finding is shown in Fig. 3.12 where increasing

the TM shear damping has decreased the notch depth. The switch of the phase of

the voltage (and HB motion in our model) is not, however, damping dependent. The

phase transition between mechanical and electrical responses are evident even for

higher SPL sounds as shown in Fig. 3.13(a) from experimental data [52] and from our

model predictions in Fig. 3.13(b).
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EMET scaling factor µ as introduced in Eq. 1.1; µ = 0.2, 0.4, 0.6, 0.8, 1.

The phase shift mechanism is based in passive mechanics, and sets the condi-

tions necessary for amplification, while the size of the amplification, which diminishes

in relative terms as SPL increases, is limited by the saturation of OHC mechano-

transduction current.
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3.9 Discussion

It is hypothesized that the phase transition below the CF (starting from fshift),

introduces a mechanism to set the condition for activation of the cochlear amplifier.

At low frequencies, the in-phase motion of the cochlear structural and electrical re-

sponses (Fig. 3.5) implies that upward movement of the BM pivots the stereocilia to

open ion channels and increase current flow in the OHCs, depolarizing the cells. The

experimental data shown in Fig. 3.3 reveal that the ST voltage undergoes a phase

shift at frequencies below the CF that was not seen in the pressure or displacement

responses [52]. This phase shift or bifurcation point coincided with the onset of non-

linearity in this experimental data [52]. The cochlear nonlinearity is a manifestation

of the active process we hypothesize to be mediated by the OHC somatic forces. The

extracellular voltage is a measure of OHC MET current, flowing through the chan-

nels into the cell and generating the somatic-based active force resultant on the basal

(Deiters Cells/BM) and apical (RL) poles of the OHCs. The OHC somatic force is

proportional to the cell’s transmembrane potential. Hence, the phase relation be-

tween the ST voltage and the BM/RL motions are also related to electromechanical

power transfer.

Our model predicts the notch in the extracellular voltage as well as the phase

relations observed from the experiments. The notch frequency in the model corre-

sponds to the TM radial resonance obtained when the TM is attached to the limbus

but uncoupled from the OHC cilia. At this resonance, the shearing force applied to

the HB by the TM is minimum, resulting in smaller HB deflection, current trans-

ductions, and the notch in voltage. Our analysis of the model results shows that

the phase shift around this notch introduces the correct phasing between mechanical

and electrical responses for effective power amplification. Hence, the model results

implicate a central role of the TM in amplification.

The hypothesized mechanism for the cochlear amplifier is illustrated in a flow
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Figure 3.14: A hypothetical system diagram of cochlear amplification. The input
sound pressure P(f) with frequency f, creates a traveling wave inside the cochlea,
giving rise to the vibrations of the OoC components (e.g, BM, TM, HB). A passive
mechanism based on the mechanical interaction between the OoC components sets
the phasing condition essential for power amplification mediated by the active force
(Fsom).

chart shown in Figure 3.14. In this mechanism, a feedback process that relies on the

operation of the MET channels and OHC electromotility provides an active force to

the OoC components (i.e BM and RL). The input sound pressure creates a traveling

wave along the cochlea which generates vibrations on the OoC components (e.g BM,

TM, HB). Deflection of the HBs, induces transduction current through the MET

channels giving rise to an transmembrane potential on the OHC. An active somatic

force is, then, applied to the BM to provide an amplificatory gain and boost the

vibratory responses. A phase tuning mechanism, controlled by the TM and BM me-

chanical interactions, activates the power amplification at frequencies below the CF.

Our model predicts that this phase tuning is essential to observe realistic responses.

This phase shift mechanism is based on passive mechanics and set the conditions nec-

essary for amplification. The size of the amplification, which diminishes in relative

terms as SPL increases, is limited by the saturation of OHC MET current.

As we have presented here, the resonant TM scheme finds support from in vivo

and in vitro observations, and a detailed physiological model. We note that while a

notch is consistently seen in the gerbil ST voltage measured in the present study, such
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a notch was not observed in the guinea pig OoC voltage measurements by Fridberger

et.al, [62]. This discrepancy could be due to different techniques used for voltage

measurements or another as yet unknown effect. Recent advances in imaging motions

within the OoC will shed further light on these questions.
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CHAPTER IV

Estimation of the OHC Somatic Power Using In

Vivo Data

4.1 Introduction

The cochlea detects and amplifies the input sound through a nonlinear process. Two

mechanisms have been proposed to undertake the active amplification: OHC somatic

motility and HB motility. Since the discovery of OHC somatic electromotility [24]

these cells have been the focus of investigation as a mediator of electrical-structural

interaction and of amplification. Extensive research studies have been conducted

to identify electromechanical properties of the OHC. The electrically induced length

changes of the OHC produces an active force to the OoC components and boosts

their sounds-borne vibrations; hence, OHC apparatus converts electrical energy to

mechanical. The electrical low pass filtering of the cell’s transmembrane potential

has been cited as a limitation for its ability to generate power in vivo at higher fre-

quencies. However, other studies [23] questioned this argument and showed that the

OHC low pass filter does not limit its amplifactory property. The other important

question regarding the efficacy of the OHC motile process is capability of this process

for producing enough force to enhance mechanical response of the OoC. It is not yet

possible to simultaneously measure all the relevant quantities (e.g. OHC intracellular
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potential together with BM and RL motions) for in vivo measurement of the somatic

power. Meaud and Grosh [51] used a computational model to estimate powers gen-

erated by the OHC and HB active processes. Iwasa [63] studied effect of loading on

OHC dynamics by introducing a simple one-dimensional model for electromotility of

OHC in a dynamic environment. Wang et al., [64] studied OHC power deposition

in a model of mouse cochlea. They calculated the net power generation/dissipation

in a cross section of the cochlea due to OHC active forces together with fluid vis-

cous dissipation. However, they have not included the subtectorical fluid loss in their

calculations.

In order to test capability of the OHC active process hypothesis, the power gen-

eration by the OHCs should be calculated and compared with input acoustical power

into the cochlea. Ramamoorthy et al. [14] estimated the OHC power deposition at

the peak frequency (CF), using in vivo data of the BM and RL vibrations along

with theoretical estimations of the cochlear electrical responses. They show that the

OoC is nearly optimized to receive maximum somatic power in vivo and that the

estimated somatic power could account for the active amplification. However, they

have not taken into account the phase relation between the somatic force and BM/RL

motions.

The somatic force of the OHC is proportional and in phase with the cell trans-

membrane potential [65, 66]. Hence, in order to quantify the power deposition of

the OHCs, the cell transmembrane potential should be measured. Because the in

vivo measurements of the intracellular potentials are very invasive and challenging,

we seek a method to estimate them from measurable quantities. A novel method

is proposed to calculate the OHC transmembrane potential using the extracellular

voltage measured inside the scala ST. Then, the transmembrane potential is used

to estimate the active somatic force applied to the BM and RL on basal and apical

sides of the OHCs, respectively. The in vivo power interaction between the OHCs
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Figure 4.1: Schematic of an isolated OHC and corresponding electrical circuit (see
Fig. 1.2)

and other OoC components, are investigated and compared with the literature. This

method is tested by our comprehensive computational model of the cochlea.

4.2 Methods

The schematic of an isolated OHC together with an electrical circuit model cor-

responding to the membrane electrophysiology are demonstrated in Fig.4.1. This

circuit model comprises the electrical impedance of the cochlear tissues and biolog-

ical batteries in the stria vascularis (see Fig. 1.2). The deflection of the HBs (uhb)

triggers the MET channels and gives rise to a current transduction flowing inside

the cell. The somatic property of the OHCs [24] transfers the electrical energy into

mechanical action in form of cell length alteration (which stimulates OHC somatic

motility). This elongation applies an active force (Fsom) to both BM and RL and

based on the phasing between force and velocity of this components could generate

or dissipate power.

Measuring transmembrane potential, which is a key component of somatic motil-

ity, is invasive and challenging in vivo and there are little experimental data available

(e.g [66]). We propose a method to calculate the transmembrane potential using ex-

tracellular voltage measurements inside the ST in conjunction with an circuit model
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of the cross section of the cochlea. From Fig. 4.1 the current flow inside the ST for

one cross section of the cochlea is estimated as:

Ist =
φst
Rst

(4.1)

where φst and Rst represent the ST voltage and resistance, respectively. Assuming

no current leakage in longitudinal direction (i.e. neglecting current flow in the x-

direction; see Fig. A), the transmembrane potential can be calculated as:

∆φohc = (Ist − Is2)Zm (4.2)

where Zm is the cell membrane impedance and the current source Is2 corresponds to

the total current due to the piezoelectric-like behavior of the OHC:

Is2 = εjωuohc (4.3)

where ε = 0.1 nN/mV is the mechano-electical coupling coefficient of the OHC [63].

Moreover, uohc is the OHC compression which is a linear function of the BM and

TM displacements as introduced in Table A.1. The advanced technique of the optical

coherence tomographic (OCT) is recently used for in vivo measurements of uohc [67].

Hence, the OHC transmembrane potential can be estimated using Eqs. 4.2 and 4.3.

As in Eq. 1.3, the active somatic force generated by piezoelectricity properties of the

OHCs is then calculated as:

Fsom = ε∆φohc . (4.4)
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Table 4.1: Electro-mechanical parameters of the OHC model (see Fig. 4.1).

Property Description Value
ε mechano-electrical coupling coefficient 0.1 nN/mV
Rst ST fluid resistance 105 Ω
Cm OHC basolateral capacitance 15× 10−12 pF
Rm OHC basolateral resistance 107 Ω

4.3 Results

The active somatic forces are calculated by applying our method (introduced in pre-

vious section) to available experimental data of the OoC displacements and voltages

[52, 62, 67]. The experimental data are shown in Fig. 4.2. Two cases (labeled as A

and B) are introduced to refer to the experimental data used in this study. Case A

refers to the data from [52] and Case B corresponds to the data obtained from [62].

Moreover, uohc and url data are retrieved from [67] for both cases. The parameters

used for the OoC cross section model are listed in Table 4.1.

Figure 4.3 illustrates the OHC transmembrane potential and corresponding so-

matic force for the two sets of data. Since the measurements are conducted in different

locations along the cochlea, frequencies are normalized with respect to the frequency

corresponding to the maximum displacement, called characteristic frequency (CF) of

the location. The transmembrane potential is estimated about 0.1 mV at the CF

(Fig. 4.3-a), which gives rise to a force about 10 pN for each OHC (Fig. 4.3-(b)).

In addition to the magnitude of the active force, its phase relation to the move-

ment of the OoC components is important to determine whether the active force is

generative or dissipate. Figure 4.4 illustrates phase relation between the transmem-

brane potential (which is in phase with somatic force [61]) and BM/RL displacements

for the two sets of experimental data. The background color demonstrates the gen-

erative (green) and dissipative (red) regions. We note that for frequencies below the

BM, the two sets of data are in agreement while close to the CF there is inconsistency.
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(panel b) from two sets of experimental data by [52] and [62] labeled as Case A and
Case B, respectively. The horizontal axis represents the frequency which is normalized
with respect to the peck frequency (CF) of the measurement location.

Case A shows that the OHC somatic force is generative in both sides (BM in basal

and RL in apical) while the case B demonstrates a dissipation in BM side.

After estimating the OHC active force and corresponding phases, the electro-

mechanical power transfer from the OHC and BM/RL elements can be computed

as:

Pohc−bm = Fsomvbm cos (θ) (4.5)

where vbm is BM velocity and θ is the phase between transmembrane potential and

BM velocity (Fig. 4.4). Figure 4.5 illustrates power exchange between OHC and

BM/RL. Case A indicates that OHC power is injected into the BM motion while case

B shows a power dissipation for the BM.

The cochlear nonlinear power amplification is illustrated in Fig. 4.6. In this fig-

ure the OHC power gain (somatic power divided by input power) for two SPLs are

compared. The input power is calculated as:
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Pstapes =
1

2
Re{ZsA2

sv
2
s} (4.6)

where Zs = 2 × 1011Ns/m5 and As = 10−6m2 are the stepes impedance and area,

respectively [14]. Moreover, vs is the stapes velocity (0.079×10−6 m/s for 40 dB SPL

data [14]). It is shown that the lower SPL (40 dB) receives larger gain comparing to

higher SPL (60 dB). Moreover, the RL amplification is larger than the BM.

4.4 Validation

Our 3-dimensional cochlear model is used to test the proposed method for estimation

of the OHC transmembrane potential. Figure 4.7 compares the FEM results of ∆φohc

with that estimated from the method introduced in Eq. 4.2. It is noted that out

estimation is very good for low and high frequencies while there is a larger error close

to the CF. Moreover, the phase prediction is matches well with the FEM data. The

phase data are, in specific, very important to identify the power generation/dissipation

by the OHC electromotility.
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Figure 4.7: Comparing the FEM results with estimated transmembrane potential;
µ = 0.5.

In order to improve the accuracy of the estimation method we have used the BM

spatial mode shape to extrapolate the spatial voltage data along the ST. Hence, we

can include the current distribution along the cochlea (modeled using the cable theory

in the FEM model). Figure 4.8 shows the results. We note that the assumption of

similar spatial mode shape for the BM as for the voltage data, improves the estimation

method significantly.

Figure 4.8: Comparing the FEM results with estimated transmembrane potential
with assuming similar spatial mode shape for the ST voltage as for the BM; µ = 0.5.
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Figure 4.9: Phase relation between transmembrane potential and BM displacement.
The background color indicates the generative (green) and dissipative (red) regions.

4.5 FEM Model Predictions

Figure 4.9 illustrates phase relation between the transmembrane potential and

the BM displacement for several SPLs calculated from our nonlinear FEM model

[56]. Our model predicts that close to the CF the active force is generative for the

BM while far from the BM it is dissipative. This result is in agreement with the case

A of the experimental data.

4.6 Conclusions

An active process is involved in the cochlea that boosts the sound borne vibration

of the OoC via a compressive nonlinearity in the system which enhances frequency se-

lectivity and sensitivity to low level sounds. The somatic motility of the mechanosen-

sory OHC is hypothesized as the key element of the cochlear active mechanism. The

OHCs are situated between the BM and RL inside microstructure of the OoC. The

mechanoelectrical properties of these cells allows for conversion of electrical energy,

induced by actively maintained ionic imbalance inside the cochlea, into mechanical

energy (and vice versa). This process results an active force applied on both the
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apical and basal ends of the OHCs. In this study, we used the in vivo experimental

data on the OHC extracellular receptor potential together with the displacement of

the OoC structural components derived from OCT measurements and pressure gra-

dient estimation of the BM velocity to estimate electromechanical energy exchange.

The phase relation between somatic force and the BM/RL motions indicate the active

power flow direction. A simplified circuit model of the cochlea was introduced in order

to approximate the immeasurable quantities (e.g., OHC transmembrane potential).

Post processing the experimental data from two separate but related experiments [62]

and [67] with our model revealed that the OHC active force dissipates power in the

BM side while it amplifies the RL motion. Conversely, another experimental protocol

using a single experiment [52] shows that the OHC active power is generative on the

BM side (RL displacement was not available from this experiment). The conflicting

results point to the need for concomitant OCT and voltage measurements in order to

conclusively determine the applied power.
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CHAPTER V

Simulation of an Active Excised Cochlear Segment

Experiment

5.1 Introduction

In vivo and in vitro experiments provide valuable data to expose and analyze

the unique properties of the hearing in the auditory periphery. Due to geometrical

constraints of the coiled cochlea and also technical measurement limitations, it is

difficult to measure the vibration of most regions of the OoC in vivo. For instance

making a viable measurement of the HB displacement inside an intact cochlea is

challenging, because of the inaccessibility of these cells (as discussed in Lukashkin

et al. [60]). The isolated preparation offers several advantages over existing in vivo

techniques.

An in vitro preparation enables the study of discrete cochlear components. For

instance, Beurg et al. [68] performed intricate and carefully controlled in vitro di-

rect mechanical stimulation of the HB to determine their transduction properties;

in this case the TM was stripped off of the preparation to gain access to the HB.

As another example, Ghaffari et al. [69] isolated the TM to study its traveling wave

propagation. Furthermore, the in vitro preparations enable us to obtain an integrated

understanding of how the individual components interact under mechanical, acousti-
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cal or electrical stimulations. Gummer et al. [57] prepared freshly isolated sections

of the cochlea and investigated contribution of the TM and BM motion to the elec-

tromechanics of the OoC. Ulfendahl et al. [70] developed an in vitro preparation of

the guinea pig temporal bone to study the micro-mechanical behavior of the cochlea.

This preparation, which is known as ITER, consists of the cochlea opened at the

apex, allowing observation of cellular structures within the partition and measure-

ments of cellular vibration. The hemicochlear preparation [71, 72] is another in vitro

technique that allows access to various cochlear structures with minimal physical dis-

tortion. This technique bisects the cochlea such that the tonotopic features of apical,

middle and basal regions can be preserved and studied.

An active in vitro preparation of a small segment of the cochlea, with minimal

physical disruption of the epithelium, is ideal to investigate the cochlear intrinsic dy-

namics. The in vitro preparations of Chan and Hudspeth [3–5] as well as those of

Nowotny and Gummer [73] are notable for isolating a segment of the cochlea with

controlled mechanical, ionic, and electrical conditions in order to keep the OoC in as

pristine state as possible. Both groups demonstrate that the MET channels are kept

at least partially operational and measure the inner hair cell (IHC) deflection due to

pressure and/or electrical stimulation. These preparations hold the potential for un-

covering important structure-function relationships of the auditory periphery, such as

the cochlear amplifier. Furthermore, computational simulation of these experiments

allows us to analyze the data and explore the influence of variations in mechanical

and electrical conditions.

An important question of the biophysics of the cochlea is the effective active mech-

anism underlying the cochlear nonlinear amplifier. Using the active excised cochlear

segment experiment devised by Chan and Hudspeth [3–5] as a model problem, we

developed a computational model for studying contribution of the active processes on

the cochlear nonlinear response.
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The relative contribution of each mechanism to the cochlear performance has yet

to be conclusively apportioned. Different techniques have been proposed to study

contribution of one active mechanism on the cochlear mechanics with minimal inter-

ruption in other mechanism. Santos-Sacchi et al. [17] used salicylate, a ototoxicant

that works directly on the prestin motor [74] but does not effect on the stereociliar

MET channels [75], together with tributyltin (TBT), a chloride ionophore, to alters

OHC electromechanical activity and cochlear amplification in a reversible manner.

They modulated chloride levels around the basolateral region of the OHCs, a manip-

ulation that should not interfere with the cationic workings of the proposed stereocil-

iar mechanism. Fisher et al. [30] developed an optical technique that permits the

targeted inactivation of somatic motility without significantly altering passive power

transmission. They demonstrated that the somatic active forces interact locally with

cochlear traveling waves to achieve enormous mechanical amplification. With recent

advances in production of mutants, there was hope to settle the issue of origin of the

active process in the cochlea. For instance, a knockin mutant mouse that expresses

immotile prestin displays knockout-like hearing thresholds [16], sensitivity [31] and

voltage-evoked movements of HBs [32]. Jia and He [32] measured voltage-evoked

hair-bundle motions in the gerbil cochlea and prestin-knockout mice to determine if

such movements were also present in mammalian OHCs. They observed that the

voltage-evoked hair bundle motions are not affected by calcium concentration in the

cilary area. Moreover, they measured voltage-evoked hair bundle motions in neonatal

gerbils as well as prestin-knockout mice, in the absence of electromotility, and no

motion were detected. These findings suggest that prestin-mediated somatic OHC

motility is the amplifier.

Although interference with prestin has demonstrated a role for somatic motility

in amplification, contribution of the HB motility in the active process remains un-

clear. The experiments by Chan and Hudspeth [3] along with the study by Kennedy
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et al. [22] are the most compelling evidences that support the stereociliary-based

amplification in mammals. Kennedy et al. [22] demonstrated that the ciliary am-

plifier is capable of producing sufficient force that could be fast enough in vivo to

account for amplification, however, technical difficulties precluded the high frequency

measurements. Subsequent work by the same group [33] argues for the combined

contribution of both candidate mechanisms. Chan and Hudspeth performed a series

of experiments [3–5] on an excised segment of the cochlea in order to identify the

underlying active process in a simpler preparation than the intact cochlea. They

reported existence of the nonlinear amplifier in an active preparation with artificial

endolymph containing the N-methyl-D-glucamine (NMDG), a permeant cation that

does not traverse the transduction channel [76]. Hence, they attended to disassociat

the somatic effect, lending support to direct effect of HB motility on the observed

nonlinearity. However, subsequent studies [20, 32, 33] questioned their interpretation

of the data, arguing possibility of contribution of the somatic based amplification in

that preparation.

The purpose of this study is to model the in vitro experiment of an excised section

of the cochlea performed by Chan and Hudspeth [3–5] ( we will refer to this prepa-

ration as Chan-Hudspeth experiment). We use a computational model together with

analytic calculations in order to simulate acoustical, electrical and mechanical bound-

ary conditions of these preparations. This study aims to test our model construction

and assumptions on simulating such an important and difficult experiment.

5.2 Model Geometry and Boundary Conditions

A computational model of the in vitro experiment, developed by Chan and Hud-

speth [3–5], is built to study the OoC mechanics in a small exposed segment of the

cochlea. A schematic of the experimental configuration and the simulation model are

illustrated in Fig. 5.1.
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Figure 5.1: The experimental setup [3–5] and simulation; (a) in vitro cochlear prepa-
ration (not to scale). The apical and basal aspects of the organ of Corti were immersed
in artificial endolymph and artificial perilymph, respectively. Pairs of recording elec-
trodes (RE) and stimulating electrodes (SE) measured microphonic potentials and
provided transepithelial electrical stimuli. Acoustic stimuli from an earphone (red
arrow) were delivered to the basilar membrane through the fluid filled lower compart-
ment. (b) The computational simulation of the cochlear segment experiment. The
segment was stimulated through the pressure boundary condition on the bottom side
of the fluid (red arrows). Two boxes located on the top and bottom of the OoC,
simulated scala tympani and scala media, respectively. Boundary conditions were
set as rigid wall (R) or pressure free (F) on each face, according to the experiment
configuration as discussed in the text. (c) Longitudinal cross section of the model.
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In the experiment, a roughly 700 µm segment of the cochlea was excised from the

middle turn of the Mongolian gerbil and mounted in a two compartment recording

chamber. A perpendicular transection was applied to the main axis of the cochlea

between the basal and middle turns. This bony portion of this small segment of the

cochlea was affixed atop a 1.5 mm hole in a 12.5 mm circular plastic disk. The lower

compartment was comprised of two sections. The first was a horizontal channel 15

mm long, 1.3 mm by 0.8 mm in cross-section. This horizontal channel connected to

the curved surface of cylindrical segment, 1.8 mm in diameter and 1 mm high. Artifi-

cial endolymph and perilymph surrounded the cochlear partition from the apical and

basal surfaces, respectively (see Fig. 5.1a). The upper and lower compartments were

connected through an electrical circuit and a D.C. transepithelial potential was ap-

plied to preserve activity. Acoustical stimuli for a range of intensities and frequencies

were applied through the lower compartment and movement of the OoC components

(i.e., BM, TM and inner hair cell’s HB) were measured at various positions across

their radial dimension. For the BM measurement [4] the preparation was mounted

with its apical end down to allow access to the basilar membrane. In this paper we

simulate the configuration used for the TM and HB movement measurements; the

apical and basal aspects of the OoC are immersed in artificial endolymph (AE) and

artificial perilymph (AP), respectively.

Figures 5.1(b and c) illustrate our three dimensional mathematical model and

boundary conditions corresponding to the experiment configuration. Our model is

simplified, yet still retains the essential physics of the experimental configuration. The

scala tympani and scala media in Fig. 5.1-b are modeled as two chambers, maintaining

the fluid volume inside the lower and upper experimental compartments, respectively.

The exact geometry of the ST configuration encompasses two channels that are sim-

plified to a single channel in our model (the fluid dynamics of the two configurations

are compared in Discussion section). In Table 5.1 the baseline model dimensions are
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Table 5.1: Geometrical dimensions of the model corresponding to the Chan-Hudspeth
experiment set up. The model dimensions are chosen such that the fluid volume inside
the scala tympani and media match, respectively, the reported volume of the fluid in
the bottom compartment (2-5 µL) and droplet on top (600µL)

Property Description Value (mm)
Lst scala tympani length 1.8
Hst scala tympani height 2
Wst scala tympani width 1.4
Lsm scala media length 2.5
Hsm scala media height 2.5
Wsm scala media width 11

given. The length (L), width (W ), and height (H) represent the x, y, and z dimen-

sions respectively (see Fig. 5.1(c), with the y-direction coming into the page) and

the subscripts refer to the two scalae. The domain of the ST occupies the region for

−Hst < z < 0 while the scala media (SM) occupies the region 0 < z < Hsm. The

fluid pressure and velocity at z = 0 were coupled to our structural model of the OoC

and BM over the flexible portion and rigid boundary conditions elsewhere on that

plane. In the ST, the surfaces normal to the x and y directions are rigid, while at

z = −Hst a known external pressure was applied. In the SM, the water-immersion

objective lens, located on top of the upper compartment, constrains the SM fluid,

hence, that entire surface (z = Hsm) was modeled as a rigid wall boundary condition.

The pressure release (free) condition on the endolymphatic droplet of the experimen-

tal configuration is represented by the free (pressure zero) boundary conditions on

the x-normal faces in the SM.

5.3 Linear Model Responses

Throughout entire paper, the segment length and pressure stimuli for the reported

plots are, respectively, Lbm = 700 µm and ps = 67 dB sound pressure level (SPL)

relative to 20 µPa, unless noted otherwise. The parameters are set to account for a
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segment excised from the apical part of the cochlea; the properties at the segment

center match those of an intact cochlea at x0 = 9.5 mm. As in the Chan-Hudspeth

experiment, acoustic stimuli are applied to the base of the fluid in the ST.

5.3.1 Mechanical responses of the OoC to acoustic stimulation

Our FEM model is tested for quantitative comparison of the segment frequency

response with the experimental data. The experimental data is from Fig. 5d of

[3] where the TM vertical movement is recorded at the CF of the preparation for

passive (with the transepithelial potential turned off ) and active preparations. Our

passive model prediction of the TM displacement is compared with the experimental

data of a passive preparation in Fig. 5.2a. We chose a location where the resonance

frequency of the model and the experiment match and then proceed to make a level

comparison between the two. It is observed that our model prediction is close to

the experimental data, however they are not exactly the same. In addition to the

passive configurations we used our linear model to predict the measured nonlinear

(active) responses by altering the MET channel sensitivity as SPL varies. Figure

5.2b compares the experiment and simulation results; the MET channel sensitivities

that we used for each stimulation are denoted in the plot.

5.3.2 Adding fluid in the ST decreases the segment resonance frequency

systematically

In the Chan-Hudspeth experiment [3] it is shown that increasing the fluid mass

inside the lower compartment gives rise to a linear increase on inverse square of

the system natural frequency. Figure 5.3 illustrates the experimental data together

with our simulation results. In order to make a quantitative comparison with the

experimental measurements, the FEM model for this simulation includes the cross

section change in the ST compartment (see section 5.3.4) . It is observed that our

68



SPL (dB)
20 30 40 50 60 70

u
tm

b
(n
m
)

10
-1

10
0

10
1

10
2

Experiment

Simulation

SPL (dB)
20 30 40 50 60 70

u
tm

b
(n
m
)

10-1

100

101

102

4

1.8
1.8

1.8
1.8

1.8

3
2.5

2.5
2

2

Figure 5.2: Comparing the TM vertical displacement of the experiment and simula-
tion for a range of SPLs. The experimental data are from Fig. 5d of [3] and in the
model x0 = 11.7 mm (a) The case where the transepithelial potential is turned off
and the corresponding passive model (µ = 0) (b) the active experiment (with NMDG)
and simulation; in order to match the experimental nonlinear data, the MET channel
sensitivity of the model (µ) is decreased as the SPL increases; corresponding values
are denoted next to the data of each simulation. The power-law slope of the TM
response diverged from linearity (dashed gray line) at low stimulus levels.
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teristic of the experimental data ( Fig. 2-e of [3]).

model predicts the experimetnal data, precisely.

The variation of the BM resonance frequency with changing the lower and upper

compartments fluid height of the simplified configuration (ST single channel) are

presented in Table 5.2 . It is observed that for fixed Hsm, increasing the fluid height

in the lower channel reduces the resonance frequency, systematically. Moreover, the

effect of increasing Hsm saturates at 500 µm for Hst = 200 µm, after which added

fluid has little effect. Both of these results match with those of Chan and Hudspeth

[3, 4], indicating that our modeling simplifications have captured the macroscopic

fluid dynamical boundary conditions, qualitatively.

5.3.3 Traveling waves can exist on small segments of the cochlea

Sound-evoked vibrations transmitted into the mammalian cochlea produce trav-

eling waves along the BM. This phenomenon first was explored by Von Békésy [77]

and later in vivo by Ren [78]. The traveling wave on BM and TM, are shown to

have a significant effect on the stimulation of the mechanosensory receptors of the

OoC [69]. However, the precise interplay between the cochlear active process and
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Table 5.2: The BM response frequency for various scala tympani and media heights
. The resonance frequency decreases with an increase in the scala tympani height,
while it is insensitive to the volume (mass) of fluid in the upper compartment for
Hsm > 200 µm.

ST Fluid (Hsm=250µm) SM Fluid (Hst=200µm)

Hst(µm) ωres(Hz) Hsm(µm) ωres(Hz)

200 1235 200 827
300 1215 500 915
500 1195 1500 918
1000 1144 2500 918
1500 1104
2000 1064
2500 1034

traveling wave propagation is not well understood. Avoiding the traveling wave in

an active cochlear preparation facilitates exploring the relative contribution of HB

active motility and OHC electromotility to the response in a more controlled manner,

even though the setting is not the natural, biological one. This idea has been ex-

amined in the Chan-Hudspeth experiment on a small excised section of the cochlea.

Although one reason for using the small segment was to avoid traveling wave, some

experimental preparations [5] showed phase differences of 0.9 radians over the 700µm

length, indicating the presence of a traveling wave component. In order to test the

prediction capabilities of our model, we investigate existence of the traveling wave in

this experiment by means of simulation. Next, we explore the conditions under which

traveling waves may be developed even with such a short cochlear segment.

The activity level of the system (as embodied by the quantity µ which varies

from 0 (passive) to 1 (stability boundary) is varied by altering the MET channel

sensitivity and propagation of the traveling wave is investigated by computing phase

accumulation along the segment. The cochlear activity in this study is generated

by the outer hair cells somatic electromotility. The BM displacements along the

cochlear segment for a range of activity levels are illustrated in Fig. 5.4a. Increasing
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Figure 5.4: The BM displacement under acoustical stimulation with frequency equal
to the CF of the segment (freq = 0.9 kHz) for different MET channel sensitivities
(varied by µ coefficient; µ = 0 represents the passive preparation and µ = 1 is Hopf
point where increasing activity level beyond that causes instability). The amount of
phase accumulation increases with increasing MET channel sensitivity.

activity gives rise to a larger phase accumulation along the cochlea. Hence, we predict

occurrence of an activity dependent traveling wave, even for very small segments of

the cochlea (a few wave lengths long). The BM phase lags increasingly with distance

from the basal end (except at the apical end which we attribute that to presence

of a backward reflected wave). We note that even for the passive case (µ = 0), a

small phase lag is predicted which is related to variation of the structural properties

(such as stiffness) along the segment. Comparing the gerbil and guinea pig models

(Fig. 5.5) reveals that that phase accumulation is greater in the gerbil than the guinea

pig; e.g., for µ = 0.5, phase lags for the gerbil and guinea pig are 1.86 and 1.07 radian,

respectively. The phase accumulates more rapidly in the gerbil since the frequency

mapping is more spatially compressed compared to the guinea pig. Hudspeth and

Chan [5] reported a phase difference of about 0.94 radian between the apical and basal

end of the exposed segment, under acoustical stimulation. This phase lag matches

our simulation results with µ = 0.1, as indicated in Fig. 5.4a.

In addition to the MET channel sensitivity, the length of the exposed segment
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Figure 5.5: The BM displacement for the cochlear segments with different lengths
(Lbm). Larger phase accumulation (traveling wave) occurs for longer segments; freq =
0.9 kHz, µ = 0.5. (a) gerbil (b) guinea pig

affects phase lag along the segment. Increasing the BM length, gives rise to a larger

phase lag along the segment (results not shown). Therefore, in order to avoid traveling

wave in an in vitro experimental set up, length of the segment should be very short.

However, it is limited by technical difficulties associated with response measurements.

5.3.4 Fluid dynamics of the experimental setup

The experimental configuration in the lower compartment encompasses two sec-

tions; a horizontal channel connected to a cylindrical segment underneath the cochlear

partition. For the sake of simplicity of mathematical calculations, we have combined

the two lower compartments into a single chamber. In this section we compare the

fluid dynamics of the two geometries by using our FEM model. The configurations are

illustrated in Fig.5.6; they are labeled as FEM1 (left panel) and FEM2 (right panel)

for models with 1 and 2 channels in the ST compartment, respectively. Figure 5.6

demonstrates the fluid pressure profile inside the channels. The acoustical pressure is

applied from the bottom part of the ST and pressure release boundary conditions are

considered for the top faces of the SM compartments. The geometrical dimensions are
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Figure 5.6: Fluid pressure profile (Pa unit) in response to a 60 dB SPL acoustical
excitation with frequency equal to the CF of the segment applied at the bottom
of the lower compartment; the total fluid mass is the same (5 mg) for the two ST
configurations: (a) Single channel; (b) 2 channels.

set such that the amount of fluid in both configurations are the same. It is observed

that the fluid dynamics are qualitatively similar for the two configurations: uniform

cross section pressure far from the cochlear segment and prominent near field effect

close to the segment; however, the pressure amplitude on the BM is larger for the

FEM2 model.

5.3.5 Fluid loading added mass on the OoC

The macroscopic fluid boundary conditions of the setup influence the fluid added

mass to the OoC and, consequently, the resonance frequency of the cochlear segment.

In order to explore this effect further, the lumped fluid added mass to the BM is

computed using our FEM matrix formulation Eq. 1.5 as:

M lump−FEM
fl = ρŪTQfsK

−1
f Qsf Ū (5.1)

where ρ denotes the fluid density and the displacement vector (Ū) is the normalized

solution of the BM response for a given frequency. The distributed added mass is pre
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and post multiplied by the displacement vector in order to lump the added mass by

integrating out its spacial dependency. The Kf is the dynamical stiffness matrix of the

fluid and Qfs and Qsf correspond to fluid-structure coupling at the BM (see Eq. 1.5).

The superscripts “ T ” and “-1”, denote transpose and inverse of the corresponding

matrix, respectively. The results are shown in Fig.5.7 (green curves). The fluid added

mass is decomposed of two components: the near field and far field [79]. The near

filed component is generated by the near field pressure close to the OoC which decays

rapidly away from the cochlear segment and the far field component is due to the

pressure that is uniform across the cross section of the chamber (see Fig.5.6).

The far field component can be well described using the simple 1D control volume

analysis. A schematic of the experimental configuration, with the horizontal channel

rotated to the vertical position, is pictured in (Fig. 5.8a). In the control volume

analysis [80] we have assumed that the cochlear partition (CP) interacts with an

incompressible, inviscid fluid whose pressure profile P (z) varies along the length of

the duct but is constant in each cross section and that the pressure in the SM is

negligible as is mass of CP. A closer inspection of pressure contours obtained from

our FEM model (Fig. 5.6) shows that our assumption of a constant pressure contour

in each cross section is largely true except in the near field of the BM where that

assumption fails (we will see this has a dramatic effect on our estimation of the added

mass). Our assumption that the pressure in the SM is much smaller than that in the

ST is validated by these simulations (∼1/10 in amplitude). This pressure difference

also gives rise to a much smaller fluid loading mass in the SM side comparing to that

of the ST (∼1/100); justifying neglecting the SM fluid mass in our simple model.

Under these assumptions, the resonance frequency of the segment is approximated

as:

ωres =

√
Kvol
cp Sst

ρH
(5.2)
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where Kvol = P/U vol is the volumetric or acoustical stiffness (see [81]) and U vol =∫
S
uds is the volume displacement which is constant along the height. Equation 5.2

predicts that the far field volumetric added mass (M vol−1d
fl = ρHst/Sst) is simply pro-

portional to the ratio of the height to the cross section area of the duct. Furthermore

this equation shows that the resonance frequency decreases with increasing fluid col-

umn height (as in the experiment and predicted by three dimensional fluid dynamical

simulations (see Fig. 5.3)). Somewhat counterintuitively, the Eq. 5.2 predicts that

the resonance frequency increases with increasing channel width and we validated this

prediction using 3D simulations (not shown); hence the resonance frequency does not

equal the square root of the quotient of the stiffness of the partition and the total

fluid mass. Note that Eq. 5.2 is different from the equations given in [3, 4].

The 1D control volume analysis can only count for the near filed added mass not

the far field component. In Fig. 5.7 the near field added masses are estimated by

subtracting the far field added mass from the total FEM calculated added masses

(Eq. 5.1). This plot illustrates the near field and far field added mass components

for the FEM1 and FEM2 geometries, introduced in Fig.5.6. It is shown that the

far field added masses are significantly different for the two configurations; however,

the near field components are very similar. Moreover, it is observed that the far

field components for both configurations increase by an increase in the ST fluid mass

(through increasing the lower channels heights) while the near field added masses are

nearly insensitive to that; this can also be observed from our closed form expression of

the added mass (Eq. 5.19) in which the hyperbolic tangent function limits dependency

of the near field component on the channel height.

5.3.6 Control volume analysis

The control volume analysis [80] is utilized to calculate the resonance frequency of

the simplified 1D model of the Chan-Hudspeth experiment, demonstrated in Fig. 5.8.

76



ST Fluid Mass (mg)

2 4 6 8 10 12 14

A
d
d
ed

 M
as

s 
(µ

 g
)

0

5

10

15

20

25

NF-FEM1

NF-FEM2

FF-FEM1

FF-FEM2

Total-FEM1

Total-FEM2
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for the FEM1 and FEM2 models, illustrated in Fig. 5.6. The total added masses
(green curves) and the far field (FF) components are calculated, respectively, from
the FEM formulation (Eq .5.1) and the control volume analysis. The near field (NF)
components then are estimated by subtracting the far field component from the total
added mass.

The conservation of the momentum for the selected control volume results in:

PstSst − PbmSch + Pch(Sch − Sst) = −ρω2U vol
bm (d+ h) (5.3)

where the Sch and Sst are ,respectively, the area of the fluid chamber just below the

BM and the area of acoustic stimulation where the pressure Pst is applied to the fluid

on the bottom of the channel. A separate control volume for the chamber below BM

gives rise to:

PchSch − PbmSch = −ρω2U vol
bmh (5.4)

Using the Laplace equation for the inviscid fluid dynamics together with the diver-

gence theorem, one can show conservation of the volumetric displacement (velocity):

U vol
st = U vol

bm (5.5)
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Moreover, the fluid pressure below the BM (Pbm) can be expressed as multiplication

of the cochlear partition volumetric stiffness and the BM volumetric displacements:

Pbm = Kvol
cp U

vol
bm (5.6)

Plugging Eqs.5.5 and 5.6 into 5.3 and 5.4, the resonance frequency of the system is

derived as:

ωres =

√
Kvol
cp Sst

ρ(d+ hSst/Sch)
(5.7)

In the simplified configuration (single ST channel), we use the case where Sst = Sch

and the channel height is H:

ωres =

√
Kvol
cp Sst

ρH
(5.8)
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5.3.7 Estimation of the cochlear partition effective stiffness from the OoC

frequency response

Analyzing the frequency response of the cochlear segment under acoustical stimu-

lation while varying the fluid loading provides us with a means to estimate stiffness of

the partition. Stiffness is not a material property, but rather depends on the bound-

ary conditions, geometry, and forcing of the electro-elastic-acoustic system. In this

section we show how to use the experimental results to estimate the overall partition

volumetric stiffness.

In order to estimate the volumetric (acoustic) stiffness of the cochlear partition, we

need not, however, compute the exact added mass for the experimental configuration.

We need only have an estimate of the change in the acoustical mass. Although the 1D

model incorrectly computes the added mass, when the height is large (Hst > 1mm)

our analytic expression for the variation of the volumetric added mass (∆M vol
fl ) of the

3D model asymptotes to the 1D model, ρ∆Hst/Sst because the nonlinear summed

terms in Eq. 5.21 reach a limiting value and remain constant as Hst increases. Hence

the slope of the ω−2
res versus the 1D fluid mass yields the inverse of the volumetric

stiffness. It is important to estimate the resonance frequency as the peak of the

frequency response of the velocity rather than displacement to avoid the confounding

effect of the changing damping ratio with mass loading (even if the damping itself

remains constant).

Using the results predicted by our 3D FEM model as an experiment data (i.e.,

we did not assume a velocity profile but rather computed it, see Fig. 5.11), we tested

this method by comparing our estimation of the volumetric stiffness to the known

value of our model. Since we only need the variation of the added mass, the sim-

plified FEM1 configuration can be used to calculate the CP stiffness. Panel (a) of

Fig. 5.9 illustrates the square inverse of the frequency corresponding to the peak of

BM velocity-frequency response (obtained from FEM simulation) as a function of the
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fluid volumetric mass, calculated from two models. The slope of the curves in this fig-

ure represents the inverse of the BM volumetric stiffness, as illustrated in panel (b). In

this plot the OoC volumetric stiffnesses approximated by the two models (1D and 3D)

is shown to converge to a value which we have verified to be the same as exact value of

the volumetric stiffness calculated by the FEM model (Kvol
exact = 1.09× 1014 N ·m−5).

We then applied this method to compute the volumetric stiffness of the experimental

data from the Chan-Hudspeth experiment [3] and found it to be 1.9× 1014 N ·m−5.

While the volumetric stiffness is a direct measured value of the method, the point

stiffness (more commonly measured) will depend on a model. If we approximate the

BM deflection by a strongly orthotropic plate model (Eq. 5.17) with simply supported

boundary conditions, and consider the relationship between volumetric and point

stiffnesses [82] of the same volumetric stiffness we obtain a point stiffness of 0.06

N/m for the center of the cochlear segment, while the model exact point stiffness of

this location (x = 7.5 mm from the stapes) is calculated 0.056 N/m. Furthermore,

the experimental data by [83] estimates a point stiffness of kmeasure = 0.08 N/m

at the same location. We note that the measured point stiffness depends on the

radial location and load [82–84]; hence the point stiffness values reported by different

investigators does vary.

We used our method for evaluating the stiffness of the cochlear partition using

the same method as in Figure 5.9. Using the slope in Fig. 5.10b we find the lumped

stiffness of the partition to be 0.225, 0.232, 0.234 N/m for µ equal 0.1, 0.3 and 0.5,

respectively. Hence this technique predicts a stiffness that is relatively insensitive to

activity. This result is consistent with the experimental data by Olson and Mountain

[82], where they did not detect changes in situ between pre-mortem stiffness and

stiffness measured within 1 h post-mortem.
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Figure 5.9: Estimation of the cochlear partition volumetric stiffness from the velocity
frequency response ; (a) square inverse of the BM resonance (characteristic) frequency
(from FEM simulation) versus volumetric added mass, calculated from two models:
1D volumetric (Eq. 5.2) and 3D analytical models (Eq. 5.21). (b) Volumetric stiffness
calculated from inverse of slopes of curves in panel (a), assuming a simple harmonic
characteristic for the cochlear segment. The OoC volumetric stiffness approximated
from the two models are the same (Kvol

approx. = 1.09×1014 N.m−5) and match the exact
volumetric stiffness of the segment, calculated by the FEM model (Kvol

exact = Pbm/U
vol
bm )

for uniform pressure on the BM and low frequency stimulation.

0 0.5 1 1.5 2

v
bm

(m
m
/
s
)

0

0.02

0.04
µ=0.1

µ=0.2

µ=0.3

µ=0.4

µ=0.5

Freq (kHz)
0 0.5 1 1.5 2

p
h
a
s
e
(R

a
d
)

-10

-5

0

Mfl (µg)
2 3 4 5 6 7 2

ω
−
2

C
F
(m

s
2
)

0.01

0.015

0.02

0.025

µ=0.1
µ=0.2
µ=0.3
µ=0.5

(a) (b)
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levels. The added mass is calculated from the analytical model (Eq. 5.19).
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5.3.8 Dynamics of the active excised cochlear segment can be represented

by a lumped component model

In vivo analysis of the cochlear mechanics is greatly complicated by the presence

of a traveling wave on the cochlear partition. As a result of this mode of movement,

different portions of the partition are at any instant responding in quite different

ways which makes it more difficult to study cochlear local dynamics. Suppressing

the traveling wave along the segment, if possible, allows a simplification of the move-

ment that all of the hair cells function more-or-less in concert and enables studying

the active process. One goal of the Chan-Hudspeth configuration is to simplify the

movement by encouraging a segment of the cochlear partition to resonate in a simple,

second-order mode. However, in previous section we demonstrated that a simulation

of this experiment discloses existence of traveling wave which its strength depends on

the segment length and activity level. Hence, it is important to identify contribution

of the traveling wave on the cochlear response in this preparation. To this end, we

propose a lumping method to reduce the fluid dynamics into a loading added mass on

the OoC. The reduced order model is called lumped component model. The lumped

component model allows for adding HB motility and studying contribution of the

active process (somatic electromotility and HB motility) on the cochlear amplifier,

while the traveling wave is attenuated.

5.3.9 Analytical approximation of the fluid pressure and added mass

The cochlear partition is stimulated by pressure difference across the OoC. An analyt-

ical formulation of the fluid dynamics interacting with the OoC mechanics, provides

us with a robust explanation of the results obtained from the computational model.

By utilizing a Fourier series along the x and y directions, we approximate the pres-

sure distribution in the fluid. This approach along with the WKB method has been

developed by Steele and Taber [85] to calculate the cochlear response in a three di-
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mensional model. They employed the WKB method to compute the BM wavelength

which is varying spatially along the cochlea. However, compactness of the segment in

our simulation, allows us to approximate the wavelength as λ = π/Lbm, by assuming a

half sine wave shape for the BM displacement. The assumed BM spacial displacement

together with the FEM simulation results for two different frequencies and activity

levels are depicted in Fig. 5.11. Considering this simplification for the exposed short

segment, the pressure distribution inside the scala tympani can be approximated as:

P st(x, y, z, t) =
∑
k

∑
j

Qst
jk(z)φstj (y)ψstk (x)e−iωt for z = [−Hst, 0] (5.9)

Moreover, The boundary condition at z = −Hst corresponds to the acoustical pressure

stimuli, ps, in the bottom, while a linearized Euler relation satisfies the BM-fluid

interaction at z = 0:

BC :


P st
∣∣∣
(z=−Hst)

= pse
−iωt

∂P st

∂z

∣∣∣
(z=0)

= ρω2Ubmη(y)χ(x)e−iωt
(5.10)

As depicted in Fig.5.1(c), geometrical dimensions corresponding to the scala tympani

and scala media are illustrated by “ st ” and “ sm ” subscribes, respectively. Moreover,

ρ and Ubm denote fluid density and BM maximum displacement (ubm = Ubmη(y)χ(x)e−iωt),

respectively. A time dependence of e−iωt is assumed, where ω is the angular frequency.

Considering the rigid wall pressure boundary conditions in x and y directions (see

Fig.5.1) and hinged edges for the BM, the representing functions in Eq. 5.9 have the
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following form:

φstj (y) = cos

(
jπ(y + Wst/2)

Wst

)
; η(y) = sin

(
π(y + b/2)

b

)
ψstk (x) = cos

(
kπ(x+ Lst/2)

Lst

)
; χ(x) = sin

(
π(x+ Lbm/2)

Lbm

) (5.11)

The functions φstj (y) and ψstk (x) represent the pressure components corresponding to

modes j and k, respectively. Taking advantage of orthogonality of the modes, we

can integrate out the longitudinal and lateral modes by multiplying both sides of the

BC by ψK(x) and φJ(y) and integrating over (−Lst/2, Lst/2) and (−Wst/2,Wst/2),

respectively:
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Qst
jk

∣∣∣
z=−Hst

=


psA

st
0 B

st
0 /(LstWst) j=k=0

0 otherwise

∂Qst
jk

∂z

∣∣∣
z=0

=
ρω2UbmA

st
j B

st
k

mst
j m

st
k LstWst

(5.12)

where:

mst
k =

1

Lst

Lst/2∫
−Lst/2

(
ψstk
)2
dx; Astj =

b/2∫
−b/2

ηφstj dy

mst
j =

1

Wst

Wst/2∫
−Wst/2

(
φstj
)2
dy; Bst

k =

Lbm/2∫
−Lbm/2

χψstk dx

(5.13)

Note that χ(x) and η(y) are defined in the domain of (−Lbm/2, Lbm/2) and (−b/2, b/2),

respectively, and are zero everywhere else. Considering the Laplace equation for the

inviscid and inviscous fluid on the scala tympani, we have:

∇2P st = 0 (5.14)

Next, we substitute pressure expansion from Eq.5.9 into Eq. 5.14 :

d2Qst
jk

dz2
− α2

jkQ
st
jk = 0 (5.15)

where, αstjk
2

= (kπ/Lst)
2 +(jπ/Wst)

2. This second order differential equation together

with corresponding boundary condition (Eq.5.12) has an exponential solution for all

j’s and k’s except when, αjk = 0 in which then the solution is a linear polynomial:
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Qst
jk(z) =


ρω2UbmA0B0

WstLst
(z +Hst) + ps k = j = 0

ρω2UbmA
st
j B

st
k

αst
jkWstLstmst

j m
st
k

sinh[αst
jk(z+Hst)]

cosh(αst
jkHst)

otherwise

(5.16)

where A0 = 2b/π and B0 = 2Lbm/π . Finally, we plug Eq. 5.16 into Eq. 5.9 and

obtain pressure distribution inside the scala tympani. A similar process is performed

for the scala media compartment to calculate P sm. Appropriately with the given

circumstance, we need to redefine ψsmk (x) = sin
(
kπ(x+Lsm/2)

Lsm

)
, thus indicating that

the pressure boundary condition for the scala media compartment is different than

the scala tympani (see Fig. 5.1).

Consequently, the pressure difference between two sides of the BM, produces a har-

monic force to the BM which appears in the right hand side of the BM equation of

motion (plate model):

Dxx
∂4ubm
∂x4

+2(Dxy+2Dsh)
∂4ubm
∂x2∂y2

+Dyy
∂4ubm
∂y4

−iωCbmubm−Mbmω
2ubm =

[
P st − P sm

]
(x,y,0,t)

(5.17)

where Cbm is the BM viscous damping per unit area and Mbm is the mass of the BM

per unit area. Dxx, Dyy ,Dxy and Ds are the orthotropic plate bending stiffnesses of

the BM mode. Locally reacting model of the BM corresponds toDxx = Dxy = Ds = 0.

Figure. 5.12 exhibits precision of our method by comparing the pressure distribution

along the z axis (Eq. 5.9) with the FEM results. An excellent agreement between the

two approaches, ratifies the assumed structural model consideration in the analytical

calculation.

Next step, we compute the segment lumped model elements by integrating out the x

and y components from Eq. 5.17 to get:
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Figure 5.12: The 3D analytical model (Eq. 5.9) reproduces the pressure dependency
predicted by the FEM analysis. In analytical calculation, the BM displacement is
considered the same as the FEM simulation result.

(
K lump
bm − iωC lump

bm −M lump
bm ω2

)
Ubm = F lump

bm
(5.18)

whereM lump
bm = M lump−analytical

fl +MbmI andK lump
bm = π4 (Dxx/L

4
bm + 2 (Dxy + 2Dsh) /b

2L2
bm +Dyy/b

4) I,

C lump
bm = CbmI, F lump

bm = ps
∫ Lbm/2

−Lbm/2

∫ b/2
−b/2 η(y)χ(x)dydx and I =

∫ Lbm/2

−Lbm/2

∫ b/2
−b/2 η(y)2χ(x)2dydx.

In this equation, M lump−analytical
fl represents the effective fluid lumped added mass to

the BM and has the following form:

M lump−analytical
fl =

∑
k

∑
j

[
ρ
(
Astj B

st
k

)2

αstjkWstLstmst
j m

st
k

tanh
(
αstjkHst

)
+

2ρ
(
Asmj Bsm

k

)2

αsmjk WsmLsmmsm
j

exp(−2αsmjk Hsm) + 1

exp
(
−2αsmjk Hsm

)
− 1

] +
16Hstρb

2L2
bm

π4WstLst

(5.19)

This formula involves the near field (summation terms) and 1D volumetric (last term)

contributions on the added mass calculation. The number of modes necessary for

convergence is determined by the summation limits j, k = 0, 1, 2, ... (except j = k = 0,

which is separated out in the last term). Number of modes as low as 10 for each x
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and y components is enough for convergence in our simulations. One can compute

the acoustical/volumetric added mass by dividing Eq. 5.19 by the BM mode shapes:

M vol−analytical
fl =

M lump−analytical
fl

(16b2L2
bm/π

4)
(5.20)

The analytic added mass formulations are utilized in the paper to calculate the seg-

ment effective stiffness and interpret the experimental/computational results.

This formula involves the near field (summation terms) and 1D volumetric (last term)

contributions on the added mass calculation. The number of modes necessary for

convergence is determined by the summation limits j, k = 0, 1, 2, ... (except j = k = 0,

which is separated out in the last term). Number of modes as low as 10 for each x

and y components is enough for convergence in our simulations. One can compute

the acoustical/volumetric added mass by dividing Eq. 5.19 by the BM mode shapes:

M vol−analytical
fl =

M lump−analytical
fl

(16b2L2
bm/π

4)
(5.21)

5.4 Nonlinear Reduced-Order Model

The Chan and Hudspeth experiments are known as important evidence that sup-

port contribution of the HB motility on the cochlear amplification in mammals. In

previous sections we developed a computational model of these experiments and

showed that our linear model of the electrical, mechanical, and acoustical bound-

ary conditions of the configuration is able to replicate some of the experimental re-

sults. However, in order to identify the root source of the nonlinearities seen in the

Chan-Hudspeth experiment, the contribution of the somatic motility, HB motility,

and nonlinearity of the MET channels to the overall response must be modeled and

analyzed. To this end we build a nonlinear model of the Chan and Hudspeth ex-

periments [3–5] to determine the relative contribution of the active mechanisms on
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the cochlear amplifier under acoustical and electrical excitations. A reduced-order

nonlinear model is obtained through an assumed mode formulation, based on our

previous FEM model [86].

The transduction current is observed to vary nonlinearly with respect to the HB

deflections, which is widely hypothesized as the main source of the cochlear nonlinear

behavior. Utilizing a first-order Boltzmann function of the HB deflection (uhb), the

MET current flowing through the OHC is estimated as shown in Eq. 1.1 [25] (see

Fig. 1.3).

5.4.1 Structural dynamics

Equation 5.17 represents the BM mechanics (plate model) with the boundary con-

ditions associated to the Chan-Hudspeth experimental configuration. This equation

can be rewritten as:

b

2

(
Kbm + Cbm

d

dt
+Mbm

d2

dt2

){
ubm(t)χ(x)

}
= qbm(x) (5.22)

where qbm(x) =
∫ b/2
−b/2 [P st − P sm] η(y)dy is the pressure loading per unit length on

the BM and Kbm = Dxx
∂4

∂x4
+ 2π2/b2 (Dxy +Dsh)

∂2

∂x2
+ π4/b4Dyy is the BM stiffness

operator, lumped in the y direction. The BM lumped equation introduced in Eq. 5.22

is incorporated in the microstructure of the OoC which includes the TM shear (utms)

and bending (utmb) displacements. The structural dynamics equation of the OoC gets

the from:

{
Ks +Cs

d

dt
+Ms

d2

dt2

}
ūχ(x) = Qsūχ(x) = F̄s (5.23)

Here, Ks, Cs and Ms are, respectively, the structural stiffness, damping and mass

matrices (3 by 3 dimensions) applied to the displacement vector ū = [ubm, utms, utmb]
T ,
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while the superscript ”T” denotes the transpose of the corresponding vector. More-

over, F̄s = [qbm, 0, 0]T is the force vector representing the external pressure loading

on the OoC.

5.4.2 Electrical components

An electrical circuit model is incorporated to describe the current path inside

the OoC. The circuit model in a cross section of the Chan-Hudspeth experimental

configuration is illustrated in Fig. 1.2. The governing electrical equations for a cross

section are driven using the Kirchhoff’s laws:

− (1/Rsm + 3Ya)φsm + 3Yaφohc − Imet = 0

3Yaφsm − 3(Ya + Ym)φohc + 3Ymφst + Imet − Ipz = 0

3Ymφohc − (1/Rst + 3Ym)φst + Ipz = 0

(5.24)

where Ya and Ym are admittances of the apical and basolateral portions of the OHC,

respectively. The transduction current (Imet) and piezoelectric current (Ipz) are in-

troduced in Eqs. 1.1 and 1.3, respectively. It is observed that the longitudinal current

flow along the cochlea does not contribute significantly on the overall dynamics of this

preparation (data not shown), thus it is not included here for the sake of simplicity. In

these equations φsm, φohc and φst represent the electrical voltages in the SM, intracel-

lular OHC and ST, respectively. the voltage vector is defined as Φ̄ = [φsm, φohc, φst].

Using the same longitudinal mode shape for the electrical responses as the mechanical

displacements (χ(x)), we can write Φ̄(t, x) = φ̄(t)χ(x).

For the electrical stimulation experiments (section 5.5.2) an AC current is applied

between the SM and ST compartments which is simulated by applying external cur-

rents (with equal amplitudes but opposite polarity) to the right hand side of the first

and third equations of the Eqs. 5.24.
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5.4.3 Electro-mechanical Coupling

The electrical and structural components of the OoC are linked through the mecha-

noelectrial properties of the OHCs (see Eqs. 1.3). Hence, the structural and electrical

domains are coupled as follow:

 Qs Qse

Qes Qe


 ūχ(x)

φ̄χ(x)

+ N̄ (uhb) =

 F̄s

0

 (5.25)

where the structural and electrical sub-matrices are denoted by subscripts s and

e, respectively. The sub-matrix Qs contains the structural components as defined

in Eq. 5.23, while the electrical components (Eq. 5.24) are introduced in the sub-

matrix Qe. Moreover, the sub-matrices Qse and Qes represent the coupling be-

tween structural and electrical elements (as introduced in Eqs. 1.1 and 1.3). The

nonlinear terms (stem from the MET channels) are separated into the vector N̄ =

[0, 0, 0,−Imet, Imet, 0]T .

Equation 5.25 represents the nonlinear dynamics of a cochlear segment with lon-

gitudinal coupling along the cochlea. This model can be further reduced to a lumped

model by multiplying both sides of Eq. 5.25 by the assumed mode χ(x) and inte-

grating over the segment length Lbm. Using the modal approximation of the fluid

pressure in the x and y directions (Eq. 5.9), the first term of the force vector F̄s takes

the form
∫ Lbm/2

−Lbm/2
qbm(x)χ(x)dx = −M lump

fl
d2ubm
dt2

+ F lump
bm , where M lump

fl (Eq. 5.19) is

the fluid added mass to the BM (calculated from Qst(z, t)) and F lump
fl = 4psLbmb/π

2

is the loading force to the BM due to the input pressure ps.

The BM traveling wave along the cochlear partition is measured from the Chan-

Hudspeth experiment; 4.6 mm wavelength [86] for a 700 µm segment. The short

traveling wave in this preparation allows to reduce the macroscopic fluid dynamics

of the configuration to a loading added mass on the BM and simplify the complex

FEM model into an analytical lower-order model. Assuming a specific spatial mode
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Figure 5.13: The BM frequency response (amplitude and phase) from the FEM (right)
and the analytical model (left) for 60 dB SPL and various MET channel sensitivities
(controlled by the scaling factor, µ). The reduced-order model represents the main
characteristics of the FEM model very well.

shape (half-sinusoidal) for the electrical and mechanical responses, the longitudinal

dependency of these quantities are integrated out and a lumped component model

for the segment is developed. The reduced-order dynamics is much simpler in terms

of interpreting the results as well as computational challenges.

5.4.4 Comparing reduced-order and FEM models

In Fig. 5.13 the BM frequency responses of the analytical reduced-order model and the

FEM model are compared. Three different activity levels are simulated by varying

the scaling factor µ which is defined in Eq. 1.1. It is shown that our analytical

simplified model captures the dynamics of the original system (i.e. frequency tuning

and amplification properties) very well. However, it is noted that the amplitude

responses are slightly overestimated by the reduced-order model which, presumably,

resulted from the added mass approximation [86].
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5.5 Nonlinear Model Results

5.5.1 NMDG does not abolish somatic based amplification

In the Chan-Hudspeth experiment [3], the cochlear responses were studied under

replacement of the normal K+ rich endolymph by channel-impermeant NMDG which

does not traverse the transduction channel [76]. The NMDG-based endolymph lacks

the K+ that ordinarily carries most of the transduction current. The level dependency

of the cochlear responses were measured to assess the cochlear amplifier and the

underlying mechanism. Acoustic pressures over a range of frequencies and intensities

were applied to the basal part of the lower compartment (shown with red arrows in

Fig. 5.1) and the OoC motions were measured. We have simulated this configuration

as described in the section 5.4. Figure 5.14 shows the experimental data as well

as the simulation results of the cochlear microphonics (CM) and HB motions for

preparations with different endolymphic fluids.

Figure 5.14(a) shows the HB displacements at the resonance peaks over a range

of stimulus levels; experimental data (Fig.5 of [3]) and simulation results. In this

figure there are two sets of experimental data corresponding to the preparations with

K+ (square markers) or NMDG (triangle markers). Figure 5.14(a) is in log-log scale

and the power-law slopes corresponding to the fitted lines to the experimental data

are denoted inside the figure. The cochlear active process is level dependent; for

the low SPLs the responses are nonlinear while higher SPLs show a linear input-

output relation, as evidenced in the Fig. 5.14(a). Replacing K+ rich endolymph with

NMDG has decreased the nonlinearity level, changing the the power-law slopes from

0.75 to 0.85 (1 being linear). Figure 5.14(a) also shows the simulation results for the

experimental data. It is observed that the experimental data of the K+ preparation is

well predicted by our model for µ = 0.7. The NMDG based endolymph is simulated by

reducing the MET transduction current sensitivity because only Ca+ passes through
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the transduction channels. As shown in Fig. 5.14(a), a value of µ = 0.3 predicts the

the NMDG effect on the MET nonlinearity very well.

Figure 5.14(b) illustrates the CM of the experimental data (right trace) and cor-

responding simulation results (left trace) for K+ and NMDG based endolymphic

preparations. The experimental data show that CM decreases by replacing K+ en-

dolymph with the NMDG. Although the model somewhat over predicts the absolute

level, the relative change is well-matched. The root-mean-square (RMS) of the CMs

for the preparations with K+ endolymph and NMDG are calculated 18.6 µV and 7.8

µV , respectively; hence, NMDG causes 57.7% reduction on the CM. This drop in the

CM is caused by the reduction of the transduction current due to the blockage of the

MET channels by the NMDG molecules. The left panel of Fig. 5.14(b) shows the

simulation results for the corresponding experiment. In this figure, as in Fig. 5.14(a),

replacing normal endolymph with the NMDG is simulated by decreasing the MET

sensitivity controlled by the scaling factor µ. It is shown that reducing µ from 0.7 to

0.3 gives rises to 56.8% reduction of the CM, changing the RMS from 27 µV to 11.5

µV .

5.5.2 Electrical stimulation

A sinusoidal current stimulus (30 µA ) is applied across the chambers (see Fig. 5.1)

and electrically evoked motions of the HBs are measured under variation of the en-

dolympic fluid. Figure 5.15 shows the experimental data (right) next to the simula-

tion results (left). As in the experiment, our model predicts that replacing normal

endolymph with NMDG does not affect the electrically evoked motions of the HBs.

As for the CM, the theory over predicts the absolute level. This could be due to the

difference in the measurements locations (IHC in the experiment and OHC in our

model) or the lumping process.
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Figure 5.14: The NMDG effect on the CM and compressive nonlinearity. (a) The HB
displacements at the resonance peaks over a range of stimulus levels for preparations
with K+ and NMDG based endolymphs; experimental data (Fig.5 of [3]) and simu-
lations. For visual clarity to compare the slopes (representing the nonlinearity), the
data for each preparation are normalized to their relative largest amplitude (highest
SPL). The power-law slopes corresponding to the curves fitted to the experimental
data are denoted inside the figure (1 being linear). (b) Microphonic response to a 67
dB SPL stimulus; simulation (left) and experimental data from [3] (right). Decreasing
µ from 0.7 (top trace) to 0.3 (bottom trace) causes the RMS of the CM to decrease
from 27 µV to 11.5 µV that is 56.8% reduction. For the experimental data (right) the
reduction is calculated 57.7% (changing from 18.6 µV to 7.8 µV ). The HB motility
is not incorporated in this simulation.

=0.3

=0.7

10

nm
20

ms

(a) (b)

Figure 5.15: The electrically evoked HB movement for preparations with normal K+

based endolymph and NMDG. A 500-Hz sinusoidal current stimulus (30 µA peak to
peak) is applied across the sensory epithelium and HB motions are presented for (a)
simulation (OHC-HB) (b) experimental data from Fig. 4b of [3] (IHC-HB).
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5.5.3 Hair Bundle adaptation reduces the MET sensitivity

In this section the alternative active process of HB motility (Eq. 1.4) is incorporated

into the reduced-order model and interplay between the two mechanisms is explored.

Figure 5.16 shows contribution of the HB adaptation on the cochlear nonlinear ampli-

fication. In this figure the normalized amplitude of the HB displacements at resonance

are plotted as a function of stimulus level for simulations with and without HB adap-

tation. In addition, the experimental data from [3] are included for comparison. The

OHC piezoelectricity (Eq. 1.3) remains the same for both simulations, while the adap-

tation motor is set to be stationary (dxa/dt = 0) for the passive HB model (without

adaptation). Two sets of parameters (Case I and Case II) are considered for the HB

model as listed in Table 5.4. Each parameters set corresponds to a dynamical regimes

as discussed in Chapter II. Case I parameters are physiologically valid and give rise

to spontaneous oscillations for isolated HB, while Case II parameters are selected

such that enhance the MET sensitivity. The MET scaling factor µ is varied for each

simulation such that the dynamics is close to the Hopf point where the nonlinearity

effect is maximum. As shown in Fig. 5.16(a) the HB motility diminishes the cochlear

compressive nonlinearity originated from the OHC electromotility when Case I pa-

rameters are used. However, when using the Case II parameters (Fig. 5.16(b)) the HB

amplitude and compressive nonlinearity increases significantly. In order to interpret

these results, the action of the HB motility on the MET sensitivity is calculated as:

Sen = ∂Imet/∂uhb = µ∆V 0GmaxCp

{
1− ∂xa/∂uhb

}
, (5.26)

where the associated parameters are defined in the Table 5.4. A time dependence of

e−jωt is assumed (where ω is the angular frequency) and the las term of Eq. 5.26 is

calculated from the HB dynamics (see Eq. 1.4) as:
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Figure 5.16: The HB motility effect on the compressive nonlinearity. The HB dis-
placements at the resonance peaks over a range of stimulus levels; experimental data
(Fig.5 of [3]) and simulation results (with and without HB adaptation) for (a) Case I
with µ=0.7 (b) Case II with µ = 1.5. For passive HB motility, the adaptation motor
displacement is fixed and gating spring is removed kgs = 0 (to avoid instability).

∂xa/∂uhb =
−kgs +DCpkgs + γfmax(1− SCp)

−kgs +DCpkgs − kes − γfmaxSCp + jλaω
, (5.27)

where Cp = P0(1− P0)/∆X is a constant which depends on the resting probability

of the MET channels P0 and the displacement constant ∆X introduced in Eq. 1.1.

The adaptation motor (xa) is set to be stationary for the passive HB simulation

(∂xa/∂uhb = 0 in Eq. 5.26) while the coupled dynamics of HB motion and the adap-

tation motor (Eq. 1.4) is implemented for the active HB model. Figure 5.18 compares

the frequency dependency of the MET sensitivity for the active and passive HB mod-

els. It is shown that implementing the HB adaptation in the MET dynamics reduces

the sensitivity significantly for Case I parameters while Case II gives rise to an en-

hancement in MET sensitivity. This result implies that the HB adaptation process

may affect the cochlear dynamics through controlling the MET sensitivity (see Chap-

ter II for more detail). Figure 5.17 shows the transduction current variation relative

to the HB motion for Case I (panel a) and Case II (panel b) parameters while µ is set

such that the dynamics are near the Hopf point. It is noted that the HB adaptation

changes both the shape of the curve as well as the slopes (representative sensitivity).
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Figure 5.17: The MET current transduction (a) Case I with µ=0.7(b) Case II with
µ = 1.5 for 67 dB SPL and freq=1.18 kHz.
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Figure 5.18: Sensitivity of the MET current transduction for (a) Case I with µ=0.7
and (b) Case II with µ = 1.5.

HB activity creates a hysteresis loop that gives rise a cycle-by-cycle power generation.

The HB active model with case I parameters gives rise to a significant decrease in

sensitivity while Case II enhances MET sensitivity slightly.

5.6 Discussion

Chan and Hudspeth [3, 4] used artificial endolymphatic fluids that act on the MET

channels and examined contribution of the HB motility on the cochlear amplifier.

They measured the cochlear response under replacement of the normal K+ rich

endolymph with BAPTA (which disrupts tip links [87]), NMDG (K+ blocker of
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transduction-channel [76]) and amiloride (MET blocker [88]). It is reported [3] that

“...when the apical surface of the sensory epithelium was bathed in NMDG-based

endolymph and a transepithelial potential was applied, little microphonic potential

could be recorded, yet amplification was still observed...” which led the authors to con-

clude that “this dissociation of the receptor potential (as reflected in the microphonic

potential) from the active process (as revealed by the compressive nonlinearity) argues

against the participation of any membrane potential based process such as somatic

electromotility at the frequencies studied here”. However, it is not clearly discussed

why the little recorded CM is not sufficient for the small nonlinearity observed in

these experiments (the power-law slope of 0.7-0.8 comparing to 0.3 measured from

the intact cochlea).

Although the Chan-Hudspeth experiments are remarkable for preserving the cochlear

activity on an excised segment and observing its manifestation on the nonlinear am-

plification, their interpretation of the data remains elusive. Hence, their conclusion

cannot be reconciled with other studies in mammalian amplifier [30, 32] where they

shows the OHC motility is needed for amplification. In order to shed new insights into

the Chan and Hudspeth analysis of the underlying active mechanism in mammals we

simulated their experiments with corresponding mechanical, acoustical and electrical

boundary conditions. Replacement of the K+ rich endolymph by channel-impermeant

NMDG in the experiment [3] was shown to increase the power-law dependency of the

compressive nonlinearity from 0.74 to 0.85 (1 being linear) and reduce the microphonic

response by 57% (Fig. 5.14(a)). When we simulate the same conditions (allowing only

Ca2+ ions to pass through the MET channel), the model (with somatic electromotil-

ity as the sole mediator of the active process) predicts a 56% reduction in cochlear

microphonic (Fig. 5.14(a)) and power-law changes from 0.75 to 0.86 (Fig. 5.14(b)).

These results suggest that the CM in this preparation is sufficient for the somatic ac-

tive process to produce the small nonlinearity seen in the experiments (Fig .5.14(b)).
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This finding is also supported by the electrically-evoked motion measurements in the

Chan-Hudspeth experiment. As it is illustrated in Fig. 5.15, the electrically evoked

motion of the HBs are not changed by altering the CM (i.e. using NMDG) implying

that the entry of Ca2+, which persists in NMDG endolymph, is sufficient to mediate

the full extent of electrically evoked hair-bundle movement. In our model with the

HB motility, eliminating the somatic force linearizes the responses (data not shown)

Our physiologically-based model of the cochlea allows us to assess possible contri-

bution of the alternative active mechanism (HB motility) on the measured nonlinear

responses. In order to account for the possible contribution of the HB motility on the

nonlinear responses seen in the Chan-Hudspeth experiments, a HB active model [1] is

incorporated into the microstructure of the OoC (see Fig. 1.2). The HB dynamics is

linked to the MET current transduction (see Eq. 1.1) that triggers the OHC somatic

electromotility. Hence, implementing the adaptation process to the HB dynamics

reflects on the sensitivity of the MET channels as well as the OHC somatic forces.

It is shown in our model that the HB adaption with physiologically valid parameter

values may reduce the MET sensitivity dramatically (Fig. 5.18(a)) in a frequency

dependent fashion. This reduction of the MET sensitivity abolishes the transduction

current and thus the compressive nonlinearity (Fig. 5.16(a)).
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Table 5.3: Material properties for the gerbil cochlear model (x is in meters) and the
geometrical boundary dimensions (m0 = 10mg)

Property Description Value
b BM width 80 µm base - 180 µm apex
Lbm BM length 700 µm
hbm BM thickness 7 µm base - 1.7 µm apex
Kbm BM stiffness per unit area 4.49× 109(hbm/hbm0)3(b0/b)

4 N/m3

Ktms TM shear stiffness per unit length 1.2333× 104e−672.7x N/m2

Ktmb TM bending stiffness per unit length 1.2333× 104e−672.7x N/m2

Krl RL stiffness per unit length 4.0083× 103e−706.4x N/m2

Kohc OHC stiffness per unit length 4.0083× 103e−706.4x N/m2

Kst Stereocilia stiffness 1.879× 104e(−706.4x) N/m2

Mbm BM mass per unit area ρbmhbm (ρbm = 1000 Kg/m3)
Mtms TM shear mass per unit length 1.08× 10−12e(84.09x)ρtm Kg/m , (ρtm = 1000 Kg/m3)
Mtmb TM bending mass per unit length 0.7 Mtms

cbm BM damping coefficient per unit length 0.03 Ns/m2

ctms TM shear damping coefficient per unit length 0.03 Ns/m2

ctmb TM bending damping coefficient per unit length 0.05 Ns/m2

Lhb HB length 1 µm base - 6 µm apex
Gmax saturating HB conductance 800.36× 104 Lhb0/Lhb e

(−252.3x) S/m2

ε3 electromechanical coupling coefficient −122e−7 (base) to −152e−7 (apex) N/m/mV
∆V 0 resting potential difference between vsm and vohc 150 (base) to 131.5 (apex) mV
Hsm scala media height 2.5 mm
Wsm scala media width 11 mm
Lsm scala media length 2.5 mm
Lst scala tympani length 1.8 mm
Wst scala tympani width 1.4 mm
Hst scala tympani channel height 3.9 mm
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Table 5.4: Parameter values for the hair bundle model introduced in Eq. 1.4. Two
sets of parameters are considered; Case I from [1, 2] and Case II.

Property Description Case I Case II
kgs Gating spring stiffness (mN/m) 8 0.95
kes Extension spring stiffness (µN/m) 750 4
ksp Stereocilia pivot stiffness (mN/m) 3.1 4
λ Effective stereocilia damping (µNs/m) 0.28 0.28
λa Adaptation motor damping (µNs/m) 0.5 0.5
fmax Motor strength (nN) 1.3 0.02
S Strength of the Ca2+ feedback on the motor force 4 1
γ Geometric gain 0.25 0.2
d Microscopic gating swing (nm) 15 8.7
N Number of transduction elements 50 50
fgs single channel gating spring force (pN) 9.7 0.82
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CHAPTER VI

Application of the WKB Method for an Active

Cochlear Model

6.1 Introduction

The Wentzel-Kramers-Brillouin (WKB) method has been used to approximate the

solution for systems with slowly varying properties. This analytic method is computa-

tionally efficient, and provides insights into the physical problem by decomposing the

solution into a dominant wave number and the associated amplitude. This method

has been utilized to solve the cochlear mechanics problem which involves slow varia-

tion of the parameters along its length (e.g., see [85, 89]). Application of this method

in the cochlear problem provides a unique insight into wave propagation while the its

simpler computationally comparing to other methods such as FEM. However, there

have been some limitations on the WKB method to the cochlear mechanics. When

the BM is modeled as a locally reacting impedance, the WKB solution provides a

fairly good approximation of cochlear response before the resonance peak, but be-

yond that, it shows a far-too-large downward slope which fails to agree with other

numerical solutions [90]. Because of its computational efficiency, this method pro-

vides a convenient means to estimate parameters in a complicated cochlear model,

through variation and optimization.
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Previously, the WKB method has been used to solve passive cochlear problem

which is based on the fluid-structure interaction of the BM and intracochlear fluid.

In this study, we extend the WKB approximation to an active model that includes

the micromechanics of the OoC coupled to the electrical potentials inside the cochlea.

The OHC electromotility is the sole mediator of the active processes. The frequency

response of the cochlea together with the dispersion relations are calculated and

compared for passive and active models.

6.2 Mathematical Model

6.2.1 Passive cochlea

The simplified passive cochlear model consists of an unwrapped rectangular fluid-

filled single duct with dimensions L, L1 and L2 in directions x, y and z, respectively,

as shown in Fig. 6.1. An incoming sound wave is injected into the fluid from one

side of the duct and propagates down the length of the duct, interacting with a

flexible membrane on the bottom wall. In this study an orthotropic plate with varying

stiffness along its length is used for the BM model. The fluid inside the duct is assumed

to be inviscid, compressible, and irrotational. The formulation of the WKB method

application on the cochlea passive problem, developed by Steele and Taber [85], is

presented in this section. The plate governing equation for an orthotropic model is

introduced as:

Dxx
∂4wp
∂x4

+ 2(Dxy + 2Dsh)
∂4wp
∂x2∂y2

+Dyy
∂4wp
∂y4

− ρpω2twp = −p(x, y, 0) (6.1)

where Dxy, Dsh and Dyy represent the bending stiffness in different directions and

ρp is the fluid density. wp is the BM displacement which can be expressed as the

summation of the modes in x direction.
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Figure 6.1: Rectangular duct modeling idealization of the cochlea.

wp(x, y, t) =
∑
r

Wr(x)η(y)eiθ (6.2)

where Wr(x) is the BM spatial variation in the x direction and the phase θ(x, t) =

ωt − λx contains the wave number λ and frequency ω. We have used the BM first

mode in the radial direction for the hinged boundary condition (BC):

η(y) = sin

(
π(y + b/2)

b

)
(6.3)

where b is the BM width. For the sake of convenience, we define the derivative

operator of Eq. 6.1 as:

L () = Dxx
∂4()

∂x4
+ 2(Dxy + 2Dsh)

∂4()

∂x2∂y2
+Dyy

∂4()

∂y4
− ρpω2t() (6.4)

so, Eq. 6.1 can be expressed as :

L [wp] = −p(x,y,0,t) (6.5)

A velocity potential is approximated for the fluid in the x and z directions:
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φ =
∑
j=0

Bj coshmj(z − L2) cos(jπy/L1)eiθ (6.6)

where Bj is calculated to satisfy fluid-structure interaction BC at z = 0 (after inte-

grating out y the dependence):

∂wp
∂t
|z=0 =

∂φ

∂z
|z=0 (6.7)

Substituting the first mode of the BM displacement (Eq. 6.2) and Eq. 6.6 into Eq. 6.7

we get:

Bj =
−iωWAjej

mjL1 sinhmjL2

(6.8)

where m2
j = (jπ/L1)2 + λ2 represents wave constant in z direction and

Aj =

b/2∫
−b/2

η(y) cos(jπy/L1)dy (6.9)

Now, we can find pressure distribution inside the duct from the velocity potential

(p = −ρ∂φ
∂t

) which then can be plugged into Eq. 6.5 to get:

L
[
W (x)η(y)eiθ

]
= −ρ

∑
j

Bj coshmjL2 cos(jπy/L1)iωeiθ (6.10)

Using the orthogonality properties of the modes, we integrate out the y dependence

by multiplying both sides of Eq. 6.10 by η(y) and integrating over the BM width:

DxxD0
∂4Wr

∂x4
+ 2F1(Dxy + 2Dsh)

∂4Wr

∂x2∂y2
+DyyG1

∂4wr

∂y4
−D0ρpω

2twr =∑
j

ρω2A2
jej

mjL1 sinhmjL2
coshmjL2Wr

(6.11)

where the integration coefficient are calculated as:
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D0 =
∫ b/2
−b/2 η

2dy F1 =
∫ b/2
−b/2

d2η
dy2
ηdy G1 =

∫ b/2
−b/2

d4η
dy4
ηdy (6.12)

Now we redefine the L operator to include these coefficients:

L′ = DxxD0
∂4

∂x4
+ 2F1(Dxy + 2Dsh)

∂2

∂x2
+DyyG1 −D0ρpω

2t (6.13)

hence, Eq. 6.10 get the form

L′ [Wr] =
∑
j

ρfω
2A2

jej

L1mj tanhmjL2

Wr (6.14)

Considering displacement dependence on x as Wr(x) = Weiθ and canceling out W

from both sides of this equation we get the eikonal equation:

f(λ)passive = Fr(λ)− ρfω2heq(λ) (6.15)

This equation represents the BM dispersion relation and the fluid effective height is

calculated as:

heq =
∑
j

A2
jej

L1mj(λ) tanh (mj(λ)L2)
(6.16)

where

Fr(λ) = DxxD0λ
4 − 2F1(Dxy + 2Dsh)λ

2 +DyyG1 −D0ρpω
2t (6.17)

Solving for the roots of Eq. 6.15, we can calculate wave numbers associated with the

wave propagating along the BM. Next we plug the corresponding wave numbers into

the transport equation (see [85]) to calculate the BM vibration amplitude:

W = C(
∂f

∂λ
)−1/2 (6.18)
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6.2.2 Eikonal equation for the OoC microstructure

In the previous section the eikonal equation for the configuration of Fig. 6.1 is cal-

culated. Next, we modify the eikonal equation to include electro-mechanical compo-

nents of the OoC. Figure 1.1 depicts a schematic of the OoC and transverse section

of the model. For this system we have the following frequency domain dynamical

equation in a matrix format:

[
Ksys

]
Ū = 0 (6.19)

where Ū = [U φ]T is the nodal vector of structural displacements U = [ubm utms utmb]

and electrical voltages φ = [φsv φsm φohc φst]. The system dynamical matrix is

defined as Ksys = −Mω2− iωC + K in which the sub-martices M, C, and K are the

structural mass, damping, and stiffness of the OoC cross section slowly varying along

the cochlea. The formulation of the OoC electro-mechanical matrices are defined in

the Appendix A.

The eikonal equation corresponding to the BM-fluid interaction is calculated in

Eq. 6.15. In order to calculate the eikonal equation of the whole OoC, a new dynam-

ical matrix K̃ is formed by substituting the first entry of Ksys for Fr(λ) and setting

the determinant equal to zero:

f(λ)active = det(K̃) = 0 (6.20)

Note that only the first element of K̃, which is the BM dynamical stiffness, is a

function of the wave number (λ). This eikonal equation is solved using a numerical

method (Newton Rophson) to find the root locus along the cochlea for active and

passive models. Then Eq. 6.2.1 is used to calculate displacement amplitudes.
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Parameters are used for this study are listed in Table 6.1. Moreover, parameters

of the OoC model are used from [25].

Table 6.1: WKB model parameters.

Parameter Value Description
L 1.85× 10−2 duct length (m)
L1 10−3 duct width (m)
L2 10−3 duct height (m)
t 8× 10−6 plate thickness (m)
b0 10−4 plate width at x =0 (m)
bf 8× 10−4 plate width at x=L (m)
ρf 1000 fluid density (kg/m3)
ρp 1000 BM density (kg/m3)
c 1500 sound speed in fluid (m/s)
Ey 109(1 + 0.1j) Young’s Modulus of the Plate in y direction (Pa)
Ex 0.01× 109(1 + 0.1j) Young’s Modulus of the Plate in x direction (Pa)
Vyx 0.3 Poisson’s ratio

6.3 Results

The geometry of the long slender duct and the mechanical properties of the partition

are assumed to be slowly varying functions of the lengthwise coordinate x, allowing

use of the WKB approximation to study wave propagation. The OHC electromotility

is the mediator of the active process in this model. The active process contribution

on the wave numbers are demonstrated in Figs. 6.2. This figure shows the real and

imaginary parts of the smallest wavenumbers for the active and passive models. The

root with Re(λ) > 0 and Im(λ) < 0 represents the right-running wave. It is shown

that the activity decreases the wavelength near the CF and makes the imaginary part

more negative, which sharpens the responses as shown in Figs. 6.3.
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CHAPTER VII

Conclusions and Future Works

7.1 Conclusions

The overarching goal of this thesis was to develop a computational model of the mam-

malian auditory system that helps gaining a deeper understanding of the mechanics

of hearing. This model describes the response of the cochlea to both external acous-

tic and internal electrical stimulations. The highly debated issue of the identity of

the cochlear amplifier is addressed in this thesis. The proposed active mechanisms

(OHC somatic electromotility and HB motility) are implemented into our model and

their relative contribution on the cochlear mechanics is investigated. It is shown that

somatic based activity plays a fundamental role in the amplifier while the HB motil-

ity contribution remains elusive. In this study, we have found that the power gain

by hair bundle motility is 103-105 times smaller than the somatic force. Hence, it

is unlikely that hair bundle motility itself can amplify OoC motions and that OHC

somatic motility is the the primary driver for cochlear amplification. However, it is

shown that by coupling active hair bundle motility to somatic motility, it is possible

to hasten the onset of compressive nonlinearity along with an increase in the low

stimulus gain. We identify two possible distinct mechanisms through which the HB

activity affects the cochlear dynamics. One mechanism generates a cycle-by-cycle

power into the OoC dynamics while causes a significant decrease in the MET sensi-
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tivity. This mechanism is not able to amplify the cochlear responses as observed in

vivo. The second mechanism, however, enhances the MET sensitivity which boosts

the OHC somatic force. In our model, the first mechanism is most effective at basal

locations (higher frequencies) while the second mechanism works better at apical lo-

cations (lower frequencies). Hence, a transition of the dynamics from base to apex is

proposed as a possible contribution of the HB on the cochlear mechanics.

Furthermore, we modeled an in vitro active experiment conducted by Chan and

Hudspeth [3–5] as an ideal configuration to study the cochlear nonlinear amplifier

in a semi-intact and controlled configuration. It is shown that the OHC somatic

electromotility, rather that HB motility, is sufficient to predict the nonlinearities

observed in these experiments. The power generation by the HB active mechanism

is not sufficient to reproduce the amplification observed in the experimental data,

however, the adaptation process can regulate the MET sensitivity and boost the OHC

somatic force. We conclude that the somatic force is the primary force transducer

in the OoC and that the hair bundle adaptation mechanism most likely controls the

larger somatic force by fine modulation of the gating force and MET current.

The compressive nonlinearity is a hallmark of a healthy cochlea. Our model in

conjunction with experimental data were used to identify the underlying mechanism

that onsets the cochlear nonlinearity. As observed in vivo, our model predicts that

the OHC extracellular voltages undergo a phase shift at frequencies slightly below the

peak, that coincides with the onset of the nonlinear amplification. It is hypothesized

that this phase difference between the electrical and mechanical responses gives rise

to effective power generation of the OHC somatic force. This phase transition is gen-

erated by the TM resonance properties in the radial direction. It is proposed that the

TM plays a central role in setting appropriate phase relations between electrical and

mechanical components to shift the somatic active force from dissipative to generative

at frequencies slightly below the CF. The shear resonant TM scheme finds support
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from in vivo and in vitro observations.

7.2 Future work

While the importance of a resonant TM has been speculated upon for many years

[57, 59, 60], our analysis of experimental data in view of our mathematical model

has given new insights on how to test this hypothesis. A CM measurement in the

otoancorin decient [92] and wild type mouse holds the potential to prove or disprove

this hypothesis as the notch in the voltage frequency response and phase shift would

not be seen under this hypothesis. A mouse specific model would be needed to

simulate both the normal mouse and the otoancorin knock out mouse’s response to

acoustic stimulus and test our hypothesis.

While some experimental data are supportive of our model guided hypothesis that

the phase difference between electrical and mechanical components sets the OHC ac-

tive force in the generative region, results from [62] do not show this same phase

shift. Hence, more investigation is needed to determine if this discrepancy is due to

different techniques used for voltage and displacement measurements or another as

yet unknown effect. The advent of new measurement techniques, such as OCT holds

potential to obtain more consistent data in multiple labs. OCT enables measurement

of structures through the tissue at both the base and apex enabling simultaneous

measurement of BM, TM, and RL motion [53, 67, 93]. Different groups including Ol-

son lab (Columbia University) and Nuttall lab (Oregon Hearing Research Center) are

capable to develop an experimental set up which allows simultaneous measurements

of the OoC motions (using OCT) and electrical responses.

The electrical current flow along the ST is hypothesized to play a role in the en-

ergy distribution of the active process and effect the longitudinal coupling. However,

there are some modeling efforts [94, 95] showing this effect is not significant inasmuch

the voltage space constant is too small for electrical coupling between neighboring
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cells. The cochlear electro-physiology is not well studied in vivo. Hence, more ex-

perimental data on electrical paths inside the cochlear ducts are essential in order to

validate/invalidate our cable model (described in [27]). One possible experiment is

injection of current in the round window and recording voltage responses in a nearby

location. These measurement enable us to calculate the voltage space constant inside

the ST.
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APPENDIX A

Micro-electro-mechanical Model of the OoC

Kinematics of the OoC

Figure A.1 shows a schematic of the microstructure of the OoC used in this study.

The variables ubm, utms and utmb represent displacements of the BM, TM shear and

TM bending modes, respectively.

K
tms

u
bm

u tm
s

u
tmb

K
tmb

K
rl

K
st

K
ohc

Figure A.1: Microstructure of the OoC model [27].
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The Kinematics of the OoC structure is modeled using the Lagrange’s method as

in [27]. Here we assume that the angles associated to the TM and HB orientations

(see Fig. A.1) are equal (α = β) and also θ1 = θ2 = 60◦. Hence, the dynamics of the

OoC can be further simplified. The formulation for important quantities are listed in

the Table A.1.

Table A.1: Kinematics of the OoC formulations. Th subscripts j = 1, 2, 3 denotes
the cell number.ψ1(y) = sin (π(y+b/2)

b
)

Description Formula
OHC-apex toward the BM

and along the OHC

uaohci = ubm(x)ψ1(b/2− Lpc)
× (− cos(θ1 − α) + aj cos(θ1 − β))− ajutmb(x)

, a1 = 1− L1

Lro
, a2 = 1, a3 = 1 + L1

Lro

OHC-base toward the RL

and along the OHC
ubohci = ubm(x)ψ1(b/2− bj) cos(α)

, b1 = L0 − L1

cos(α)
, b2 = L0, b3 = L0 + L1

cos(α)

HB displacement normal to HB

toward the outer rows
uahbi = ubm(x)ψ1(b/2− Lpc) sin(θ1 − α) + gjutms
, g1 = (1− L1/Ltm), g2 = 1, g3 = (1 + L1/Ltm)

RL displacement normal to RL
away form the OHC urli = aj (−ubm(x)ψ1(b/2− Lpc) cos(θ1 − β) + utmb(x))

Electrical Components

A cable model is used to represent the macroscopic current flow along the cochlear

ducts as shown in Fig. A. The deflection of the HB of the OHC triggers the opening

of the MET channels resulting in current flow into the OHC. In each cross-sectional

circuit branch, there are four electrical potentials corresponding to scala vestibuli

(φsv), scala media (φsm), OHC (φohc) and scala tympani (φst).

−
(

1

Rvl

+
1

Rvm

)
φsv +

φsm
Rvm

= 0 (A.1)

1

Rvm

φsv −
(

1

Rvm

+ 3Ya

)
φsm + 3Yaφohc − Is1 = 0 (A.2)
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3Yaφsm − 3(Ya + Ym)φohc + 3Ymφst + Is1 − Is2 = 0 (A.3)

3Ymφohc −
(

1

Rtl

+ 3Ym

)
φst + Is2 = 0 (A.4)

where Ya = 1/R0
a + iωCa is the apical OHC admittance and Ym = 1/Rm + iωCm is

the basolateral admittance.

Figure A.2: Electric Network at Cross Section [27].

Hair Bundle and OHC

The HBs are assumed to have a conductance which changes nonlinearly with the

deflection of the HB. It can be linearized to:
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Ihbj = GajVsm/ohc (A.5)

where Vsm/ohc represents the voltage difference between SM and OHC:

Vsm/ohc = (φsm + Vsm)− (φohc + Vohc) (A.6)

Here Vsm and Vohc are the SM and OHC voltages at resting state while φsm and

φohc are fluctuating parts of the voltage introduced in Eqs. 5.24-??. In Eq. A.5 the

conductance for the jth HB (Gaj) is the summation of the conductance at the resting

state (G0
a = 1/R0

a) and the fluctuating part:

Gaj = G0
a +G1

auhbj (A.7)

where the HB displacement (uhb) is presented in the Table A.1. The HB current can

be calculated as:

Ihbj = (G0
a +G1

auhbj + iωCa) ∗ (φsm − φohc + Vsm − Vohc) (A.8)

and after neglecting small terms we have:

Ihbj = (G0
a + iωCa)(φsm − φohc) + (Vsm − Vohc)G1

auhbj (A.9)

The HB current source (Is1) shown in Fig. A is the part that varies by HB motion:

Is1 = (Vsm − Vohc)G1
a

∑
uhbj (A.10)

The OHC active force is modeled as:

Fohcj = Kohcu
com
ohcj + ε3(φohc − φst) (A.11)

118



where ucomohcj = uaohcj +ubohcj (see Table A.1) is the OHC compression and ε3 is the OHC

electromechanical coupling coefficient. Moreover, the OHC current is:

Iohcj = (φohc − φst)/Zm − iωε3ucomohcj (A.12)

where Zm is the OHC basolateral impedance, ε3 is the electromechanical coupling

coefficient and Kohc represents the OHC stiffness. The OHC current source (Is2) is

the OHC motion dependent part:

Is2 = −ε3d(uohc)/dt = −iωε3ucomohcj (A.13)

The OoC Cross Section Equations of Motion

The equations of motion for the OoC electro-mechanical components can be derived

in the following matrix format:

 Ms 0

0 0


 Ü

φ̈

+

 Cs Cse

Ces Ce


 U̇

φ̇

+

 Ks Kse

Kes Ke


 U

φ

 = F ; (A.14)

These equations relate the OHC strain and transmembrane voltage to the OHC force

and current. Based on these equations we have Kse = CT
es which, indicates that

energy is conserved through the OHC electromotility.

that couples the structural displacements U = [ubm utms utmb]
T to the electrical volt-

ages φ = [φsv φsm φohc φst]
T where T represents transpose and the structural-electrical

sub-matrices are:
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Ms =


Mbm 0 0

0 Mtms 0

0 0 Mtmb

 ; Cs =


c11 c12 c13

c21 c22 c23

c31 c32 c33

 ; Ce =



0 0 0 0

0 −Ca Ca 0

0 Ca −Ca − Cm Cm

0 0 Cm −Cm



Ces =



0 0 0

0 0 0

ε3(C1 + E1) ε3C3 ε3C4

−ε3(C1 + E1) −ε3C3 −ε3C4


; Cse = [0]; Ks =


k11 k12 k13

k21 k22 k23

k31 k32 k33

 ;

Kse =


0 0 (C1 + E1)ε3 −(C1 + E1)ε3

0 0 C3ε3 −C3ε3

0 0 C4ε3 −C4ε3

 ; Kes =



0 0 0

−A1q −A3q −A4q

A1q A3q A4q

0 0 0


;

Ke =



−1/Rvl − 1/Rvm 1/Rvm 0 0

1/Rvm −1/Rvm − 1/Ra0 1/Ra0 0

0 1/Ra0 −1/Ra0 − 1/Rm 1/Rm

0 0 1/Rm −1/Rtl − 1/Rm


;

(A.15)

in which

C1 = 0; E1 = sin(
π(L0 − L1/ cos(α))

b
+ sin(

πL0

b
) + sin(

π(L0 + L1/ cos(α))

b
) cos(α)

C3 = 0; C4 = −3;A1 = 3H sin(θ1 − α); H = sin(πLpc/b); A3 = 3; A4 = 0;

(A.16)
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APPENDIX B

Hopf Normal Form

It has been suggested that the negative stiffness seen in mammalian OHCs, to-

gether with spontaneous oscillations of the hair bundle that has been observed in

lower vertebrates, e.g. in bullfrogs, mean that the nonlinearity of hair cells can be

essentially modeled as that of a nonlinear oscillator undergoing a Hopf bifurcation.

Based on this fact, Eguluz et al. [40] presented the Hopf bifurcation normal form as

a possible process of amplification. They argued that near resonance the response

to stimulus relation is close to a cubic root, whereas at sufficient distance form reso-

nance the linear relation will become dominant. Magnasco [37] used Hopf bifurcation

to explain the shape of the cochlea tuning curves by analyzing energy flow and dis-

sipation. Kim et al. [38] proposed a model including both damping and stiffness

nonlinearity. They reported the stiffness nonlinearity, modeled with Duffing equa-

tion, increases frequency selectivity at high levels. Ó Maoiléidigh and Jülicher [2]

proposed a model considering somatic motility, transduction current adaptation and

nonlinearity and showed it is consistent with the experimental results by Kennedy et

al. [22]. They incorporated myosin motor dynamics in their model of OHC which also

included electrical domain through charge dynamics. Later Szalai et al. [39] simplified

Maoiléidighh’s model and studied two different bifurcations that may be the source
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Figure B.1: Bifurcation diagram for BM displacement with and without TM shear
mode approximation. Simplification reserves dynamics characteristic qualitatively.

of amplification. They argued that it is not necessary for local model of the OHC

dynamics to take form of Hopf oscillator and there is possibility of other type of local

bifurcation including saddle-node and cusp.

Hopf Normal From

In this section, we reduce the nonlinear dynamical system of Eq. B.1 near a Hopf

bifurcation point.

 Ms 0

0 0


 Ü

φ̈

+

 Cs Cse

Ces Ce


 U̇

φ̇

+

 Ks Kse

0 Ke


 U

φ

+f(U) = F ; (B.1)

where the nonlinear terms (arising from MET transduction current) are set inside

f . Numerical simulations revealed that TM shear displacement can be approximated

as a linear function of BM displacement (utms = αubm), while the dynamics are

qualitatively consistent (Fig.B.1). Performing this simplification and shifting the

bifurcation parameter to µ̃=0, we can write the system in a state space as:

Ẋ = AX + µ̃BX + f(X) (B.2)
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where X=[ubm utmb φohc φst u̇bm u̇tmb ]T is the state vector, A and B represent the

linear part of the dynamics, while f contains nonlinear terms. Because the origin is

a Hopf bifurcation, two of the eigenvalues are purely imaginary complex conjugates

(i.e., λ1,2 = ±iω ) and the remaining eigenvalues (λ3, ...λ6) are in the left half of the

complex plane. The idea is to find the normal form of Eq. (B.2) near X = 0 for small

µ̃. We first decouple the linear part by introducing the transformation X = TY and

obtain:

Ẏ = JY + T−1µ̃BTY + T−1f(TY) (B.3)

where J = T−1AT . We note that J can be written as:

J =

 Jc 0

0 Js

 ; Jc =

 iω 0

0 −iω

 (B.4)

and Js is a 4× 4 matrix whose eigenvalues are λ3, ..., λ6. We can express Eq. (B.3) in

two parts, defining Yc and Ys, where Yc is a 2 dimensional vector with the component

y1 and y2 and Ys is 4 dimensional vector with the component y3, ...y6.

Ẏc = JcYc + µ̃B1cYc + µ̃B1sYs + Fc(Yc,Ys)

Ẏs = JsYs + µ̃B2cYc + µ̃B2sYs + Fs(Yc,Ys)

(B.5)

Lets consider a local center manifold of the form:

Ys = N(Yc) (B.6)

where N consists polynomials as a function of Yc = [yc1, yc2] satisfying two conditions:

Ni(0) = 0 and dNi(0)/dYc = 0 for i = 1, ..., 4.

Ni = n1iy
2
c1 + n2iy

2
c2 + n3iyc1yc2 (B.7)
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After having manipulated Eqs. B.5-B.7 to obtain 4 polynomials and equating the

coefficients of the different powers on both sides, one obtains a system of algebraic

equations for the coefficients of the polynomials. Solving these equations, we obtain a

first approximation to the center manifold Ys = N(Yc). Therefore, we can substitute

Ys into the Eq. (B.5) and obtain the following two-dimensional system describing

the dynamics on the center manifold.

ẏc1 = ωyc2 + µ̃C11yc1 + µ̃C12yc2 + Fc1(yc1, yc2)

ẏc2 = −ωyc1 + µ̃C21yc1 + µ̃C22yc2 + Fc2(yc1, yc2)
(B.8)

Next, we use the method of normal forms to simplify the center manifold. First

we calculate left and right eigenvector corresponding to Jc and call them q and p

respectively. Then, we switch into a complex coordinate system, introducing:

 yc1

yc2

 = pu(t) + p̄ū(t) (B.9)

where p̄ and ū are complex conjugate of p and u respectively. Substituting Eq. B.9

into the center manifold equation (Eq. B.8) and multiplying the result from the left

with q yields:

u̇ = iωu+ βµ̃u+ P 2(u, ū, µ̃) + P 3(u, ū, µ̃) +H.O.T (B.10)

where P 2 and P 3 are second and third order polynomials respectively and H.O.T

denotes higher order terms. Now, we introduce a near-identity transformation [96] of

the form:

u = v +H(v) (B.11)

where H(v) = b1v
2 + b2v̄

2 + b3vv̄. Substituting this transformation into Eq. (B.10)
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Figure B.2: Comparing Bifurcation Diagram for Original and Reduced system

and considering (1 +DvH(v))−1 ≈ (1−DvH(v)) we can get:

v̇ = ωv + βµ̃v + P̃ 2(u, ū, µ̃, bj) + P̃ 3(u, ū, µ̃) +H.O.T (B.12)

in which P̃ 2 involves H(v) coefficients (bj; j=1,2,3). We chose the b1,2,3 and substitute

in Eq. (B.12) to eliminate the quadratic terms. Finally we obtain the normal form

of the Hopf bifurcation as:

v̇ = ωv + βµ̃v + p1v
3 + p2v

2v̄ + p3v̄
2v + p4v̄

3 (B.13)

Note that the remaining terms cannot be eliminated through a new near-identity

transformation, since they are so called resonance terms and Eq. (B.13) is the simplest

possible form of the original equation (Eq. B.3). Figure .B.2 indicates that bifurcation

diagram of the original system and the reduced model are qualitatively the same.

Specifically for small µ̃, where polynomial approximations are valid, they are well

matched. Moreover, Fig .B.3 compares the BM time response for the approximate

and original models and demonstrates a good agreement.
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