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Abstract
 
Over the past decade, genome-wide association studies (GWAS) have proven successful at 

shedding light on the underlying genetic variations that affect the risk of human complex diseases, 

which can be translated to novel preventative and therapeutic strategies. My research aims at 

identifying novel disease-associated genetic variants through large-scale GWAS and developing 

computational and statistical pipelines and methods to improve power and accuracy of GWAS.  

Bicuspid aortic valve (BAV) is a congenital heart defect characterized by fusion of two of 

the normal three leaflets of the aortic valve. As the most common cardiovascular malformation in 

humans, BAV is moderately heritable and is an important risk factor for valvulopathy and 

aortopathy, but its genetic origins remain elusive. In Chapter 2, we present the first large-scale 

GWAS study to identify novel genetic variants associated with BAV. We report association with 

a non-coding variant 151kb from the gene encoding the cardiac-specific transcription factor, 

GATA4, and near-significance for p.Ser377Gly in GATA4. We used multiple bioinformatics 

approaches to demonstrate that the GATA4 gene is a plausible biological candidate. In the 

subsequent functional follow-up, GATA4 was interrupted by CRISPR-Cas9 in induced pluripotent 

stem cells from healthy donors. The disruption of GATA4 significantly impaired the transition from 

endothelial cells into mesenchymal cells, a critical step in heart valve development. 

Genotype imputation is widely used in GWAS to perform in silico genotyping, leading to 

higher power to identify novel genetic signals. When multiple reference panels are not consented 

to combine together, it is unclear how to combine the imputation results to optimize the power of 

genetic association tests. In Chapter 3, we compared the accuracy of 9,265 Norwegian genomes 
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imputed from three reference panels – 1000 Genomes Phase 3 (1000G), Haplotype Reference 

Consortium (HRC), and a reference panel containing 2,201 Norwegian participants from the 

HUNT study with low-pass genome sequencing. We observed that the overall imputation accuracy 

from the population-specific panel was substantially higher than 1000G and was comparable with 

HRC, despite HRC being 15-fold larger. We also evaluated different strategies to utilize multiple 

sets of imputed genotypes to increase the power of association studies. We propose that testing 

association for all variants imputed from any panel results in higher power to detect association 

than the alternative strategy of testing only the version of each genetic variant with the highest 

imputation quality metric. 

In phenome-wide GWAS by large biobanks, most binary traits have substantially fewer 

cases than controls. Both of the widely used approaches, linear mixed model and the recently 

proposed logistic mixed model, perform poorly -- producing large type I error rates -- in the 

analysis of phenotypes with unbalanced case-control ratios. In Chapter 4, we propose a scalable 

and accurate generalized mixed model association test that uses the saddlepoint approximation 

(SPA) to calibrate the distribution of score test statistics.  This method, SAIGE, provides accurate 

p-values even when case-control ratios are extremely unbalanced. It utilizes state-of-art 

optimization strategies to reduce computational time and memory cost of generalized mixed 

model. The computation cost linearly depends on sample size, and hence can be applicable to 

GWAS for thousands of phenotypes by large biobanks. Through the analysis of UK Biobank data 

of 408,961 white British European-ancestry samples for 1,403 dichotomous phenotypes, we show 

that SAIGE can efficiently analyze large sample data, controlling for unbalanced case-control 

ratios and sample relatedness. 
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!Introduction 
 
The principles of inheritance that were developed by Gregor Mendel based on his 19th century 

experiments on pea plant breeding remarkably expanded the world’s understanding about genetic 

inheritance (G., 1866). Since then, large efforts have been made to study how genetic variations 

contribute to human diseases. As of November, 2017, the genes underlying 75% of all 6,727 

known Mendelian disorders have been identified (Amberger, et al., 2015). However, complex 

human diseases (e.g. heart disease and diabetes) and quantitative traits (e.g. blood lipids and body 

mass index) are usually caused by genetic variants in multiple genes, each with relatively small 

effects, and environmental factors. 

Complex diseases/traits are more common in the population than Mendelian disorders, which are 

caused by variants in a single gene, and the majority of them are 30% to 60% heritable(Price, et 

al., 2015). Identifying genetic risk factors for complex diseases/traits elucidates disease etiology 

and ultimately translates to novel preventative and therapeutic strategies. In spite of the prevalence, 

heritability and significance of human complex diseases/traits, the progress of decoding their 

genetic risk factors was slow until the initial completion of the human genome sequence in 

2001(International Human Genome Sequencing, 2001). Within the past decade, genome-wide 

association study (GWAS) has emerged as the most efficient approach to identify the associations 

between genetic variants and complex diseases/traits. As of November 2017, 53,069 unique SNP-

trait associations have been discovered (MacArthur, et al., 2017). 

The parallel advent of DNA array technology, genotype imputation methods and next-generation 

sequencing technology allows large biobanks to genotype or sequence hundreds of thousands of 
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participants. GWAS based on the human phenome (PheWAS), which consists of thousands of 

phenotypes that are constructed based on the real-time electronic health records and 

epidemiological data, is an emerging powerful approach for detangling genetics underlying human 

disease/traits(Bush, et al., 2016; Denny, et al., 2013). In addition to uncovering novel genotype-

phenotype associations, PheWAS systematically examines the cross-phenotype association for 

each genetic marker, incorporates comprehensive information on the environmental factors(e.g. 

life style), and allows the investigation of causal relationships among phenotypes(Millard, et al., 

2015). Earlier this year, the UK Biobank released both genome and phenome data for ~500,000 

participants, which were collected from 2006 to 2010(Bycroft, et al., 2017; Sudlow, et al., 2015). 

The popularity of the large-scale PheWAS brings novel statistical and computational challenges.   

!

Complex diseases/traits refer to the disorders or phenotypes that do not exhibit gene-phenotype 

co-segregation relationship as monogenic Mendelian diseases do (Lander and Schork, 2006). The 

disease susceptibilities are influenced by multiple genetic and environmental factors as well as 

possible interactions between them. Genetic mapping for human complex diseases/traits has drawn 

dramatic attention of researchers since the 1990s (Lander and Schork, 1994; Schork, 1997; Weeks 

and Lathrop, 1995) initially using methods falling into two main categories: linkage analysis and 

candidate gene association (Hirschhorn and Daly, 2005). As the traditional method widely used to 

map genes for Mendelian diseases, linkage analysis attempts to detect disease genes that segregate 

within the affected families through genetic markers flanking the genes(Hirschhorn and Daly, 

2005). This method has not gained much success in gene mapping for complex diseases, because 

the majority of disease-associated genetic variants have relatively small to moderate effects, while 

linkage analysis lacks power to detect those variants(Hirschhorn and Daly, 2005). The candidate 
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gene association approach, an alternative to linkage analysis, searches for variants in candidate 

genes that are depleted or enriched in disease groups. Although candidate gene association has 

successfully identified genetic variants that are associated with some complex diseases/traits, such 

as early-onset obesity(Vaisse, et al., 2000) and HDL(Cohen, et al., 2004), this method requires 

prior biological knowledge to select the disease-associated genes for study and it largely ignores 

the non-coding regions. 

GWAS became practical after the draft of the human genome was initially completed in 

2001(International Human Genome Sequencing, 2001) followed by the characterization of 

genome-wide linkage-disequilibrium (LD) patterns by the HapMap project in 2003 (International 

Human Genome Sequencing, 2001). As the most common type of genome variation, single 

nucleotide polymorphisms (SNPs) were firstly discovered in 1998 and have been observed to occur 

every 300 bases on average in the human genome(The International HapMap, 2007). Several 

hundreds of thousands of SNPs selected based on LD have been shown to be able to cover most 

of the common genome variations(Hirschhorn and Daly, 2005) and could be genotyped using SNP 

arrays(Price, et al., 2015). Over the past decade, GWASs, which test the association between 

genetic variants, one at a time, and the disease/trait of interest, have proven successful at shedding 

light on the underlying genetic variations that affect the risk of human complex diseases. The 

elucidation of the genetic basis of diseases/traits can be translated to novel preventative and 

therapeutic strategies. For example, PCSK9 inhibitors were developed to reduce cholesterol and 

as a therapeutic alternative to statins after the gene was identified in a previous GWAS(Kathiresan, 

et al., 2009; Teslovich, et al., 2010).   
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The common disease-common variants hypothesis, proposed in late 1990s(Cargill, et al., 1999; 

Chakravarti, 1999; Lander, 1996), states that the genetic risk of common human diseases are 

mainly attributed to common genetic variants with low to modest effects, which are usually defined 

as variants with minor allele frequency (MAF) > 1%(Reich and Lander).  Based on this hypothesis, 

early GWASs focused on identifying common variants using SNP chip arrays, which mainly detect 

common variants. However, the common disease-associated variants that have been identified in 

GWASs only explain a limited proportion of disease heritability(Manolio, et al., 2009). A possible 

explanation is that the missing disease heritability is due to the rare variants, which usually have 

MAF < 1%(Frazer, et al., 2009; Saint Pierre and Génin, 2014). 

Rare variants became accessible as the further development of genotype imputation methods and 

next-generation sequencing technologies. Multiple GWASs start identifying association between 

rare variants and complex diseases/traits(Fritsche, et al., 2015; Long, et al., 2017; Marouli, et al., 

2017; Sebastiani, et al., 2017). For example, the International Age-related macular degeneration 

(AMD) Genomics Consortium has identified seven rare variants (MAF<1%) significantly 

associated with AMD with odds ratios of 1.1-47.6(Fritsche, et al., 2015).  

The power of a GWAS can be defined as the probability of successfully identifying the 

association between a genetic variant and the phenotype given a true association exists. The overall 

study power can be seen as a combination of the power to obtain the correct genotypes of the 

genetic variant (genotyping power) and the statistical power for the significance testing (statistical 

power). In a sequencing-based study, the genotyping power relies on the sample size, sequencing 

depth, sequencing errors, and allele frequency of the variant. In a study based on genotype 

imputation (described in 1.2), the genotyping power depends on the size of the reference panel, 

genetic similarity between samples in the reference panel and study samples, and the allele 
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frequency. To well control the family-wise error rate at 0.05, 5x10-8 has been determined as the 

genome-wide significance threshold for GWAS for European samples by simulation studies using 

data on HapMap Encyclopedia of DNA Elements (ENCODE) regions(Pe'er, et al., 2008). With 

the genome-wide significance threshold, the statistical power is influenced by sample sizes, allele 

frequency, the effect sizes of the tested variant, as well as some factors that differ across diseases, 

such as the complexity of genetic architecture and phenotyping accuracy(Price, et al., 2015; Sham 

and Purcell, 2014). 

In Chapter 2, we will present the first large-scale GWAS study to identify novel genetic variants 

that are associated with bicuspid aortic valve(BAV), the most common cardiovascular 

malformation in humans(Tutar, et al., 2005).  

!

Genotype imputation is an approach to infer missing genotypes for untyped genetic variants in 

study samples from a sequenced reference panel with high-density haplotypes(Li, et al., 2009). 

More specifically, given that samples with similar ancestry backgrounds tend to share chromosome 

stretches inherited from common ancestors, the genetic markers that have been sparsely genotyped 

for study samples using a commercial array can be used to identify the chromosome stretches 

shared by study samples and the reference panel, thereby allowing statistical imputation of the 

missing genotypes(Li, et al., 2009). Although the cost of whole-genome sequencing(WGS) has 

substantially dropped recently, array based genotyping followed by imputation is still more cost-

efficient than WGS (~ 20-fold lower) to uncover complete sets of genetic variants across the 

genome since computation and personnel effort is the only cost in the imputation process. 

Genotype imputation has several other advantages which makes it widely used by GWAS for 

different human complex diseases/traits. 1. Genotype imputation boosts the power of GWAS and 
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fine-mapping to detect causal variants by increasing the resolution of the disease-associated 

genetic loci with additional genetic variants added, including potentially causal ones. Both 

simulation studies(Marchini and Howie, 2010; Spencer, et al., 2009) and GWAS on complex 

diseases/traits(Marchini, et al., 2007; Orho-Melander, et al., 2008) have suggested this contribution 

made by genotype imputation. 2. The association power of GWAS can be increased by genotype 

imputation because of the increase in the effective sample size. Genotypes that are partially missed 

in a subset of study samples will be filled in by imputation. 3. Genotype imputation makes it 

possible to meta-analyze GWAS studies that genotype their samples using different commercial 

arrays. 

Multiple imputation tools have been developed within the last decade(Browning and Browning, 

2016; Browning, 2008; Das, et al., 2016; Fuchsberger, et al., 2015; Howie, et al., 2012; Howie, et 

al., 2009; Li, et al., 2010; Marchini, et al., 2007; Scheet and Stephens, 2006). The most widely-

used methods (fastPHASE(Scheet and Stephens, 2006), MaCH/minimac(Das, et al., 2016; 

Fuchsberger, et al., 2015; Howie, et al., 2012; Li, et al., 2010), Impute(Howie, et al., 2009; 

Marchini, et al., 2007), and Beagle4.1(Browning and Browning, 2016)) use the Li and Stephen 

Model, which is a framework using Hidden Markov Model to describe the genetic data structure(Li 

and Stephens, 2003). These methods take characteristics of human genomes, such as linkage and 

recombination rates between the sites, mutation rates and genotyping error rates, into account when 

imputing the missing genotypes, leading to higher imputation accuracy compared with other 

methods(Li and Stephens, 2003). The Michigan Imputation Server 

(https://imputationserver.sph.umich.edu) is a cloud-based server providing free genotype 

imputation using the imputation engine minimac3(Das, et al., 2016) with multiple reference panel 
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options, including the Haplotype Reference Panel (HRC)(McCarthy, et al., 2016), 1000G Phase 1 

and 3(The Genomes Project, 2015) and HapMap Phase 2(The International HapMap, 2007).  

The genotype imputation accuracy mainly depends on the sample size of the reference 

panel(Browning and Browning, 2009; Howie, et al., 2009; Huang, et al., 2009; Li, et al., 2009; 

Roshyara and Scholz, 2015) and the genetic similarity between the reference panel and the target 

samples(Deelen, et al., 2014; Huang and Tseng, 2014; Huang, et al., 2015; Low-Kam, et al., 2016; 

Mitt, et al., 2017; Okada, et al., 2015; Pistis, et al., 2015; Roshyara and Scholz, 2015; Walter, et 

al., 2015). Thus both publicly available reference panels (e.g. HRC and 1000G) (McCarthy, et al., 

2016; The Genomes Project, 2015) and population-specific reference panels generated through 

whole-genome sequencing (WGS) a subset of study samples by individual studies(e.g. The 

Genome of the Netherlands Consortium and the UK10K study) (Deelen, et al., 2014; Huang, et 

al., 2015) have their own advantages. In Chapter 3, we will address the question how to combine 

imputed genotypes from multiple reference panels to achieve higher power in subsequent GWASs.   

!

As Fisher’s 1919 paper stated, polygenic quantitative traits could be explained by Mendelian 

inheritance, suggesting that samples with similar genetic backgrounds tend to have more correlated 

quantitative traits than distantly related samples(Fisher, 1919). This is also true for polygenic 

dichotomous traits since the genetic liability is continuous(Plomin, et al., 2009). Due to the 

violation of the independence assumption between samples, GWAS results based on linear or 

logistic regression can be biased by sample relatedness, familial or cryptic, and population 

stratification, leading to spurious associations.  

Several methods have been developed to correct for sample substructure, including genomic 

control(Devlin and Roeder, 1999), principal component analysis(Patterson, et al., 2006), and 
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mixed model-based methods. The genomic control factor #GC is defined as the median of the 

observed )*(with 1 degree of freedom) association test statistics of all tested genetic markers 

divided by the expected theoretical median of )* under the null hypothesis(Devlin and Roeder, 

1999). #GC > 1 indicates the presence of inflated type I error rates due to sample substructures or 

differential bias(Clayton, et al., 2005). Dividing the observed test statistics )* by #GC is a simple 

approach to correct for the inflated type I errors but is generally thought to be inadequate and 

inappropriate to use such a single adjustment for all SNPs(Price, et al., 2010). Principal component 

analysis (PCA) is a well-developed statistical tool to infer population substructure(Patterson, et al., 

2006). It can be used to detect sample outliers due to batch effects or population stratification. Top 

PCs are usually included in linear/logistic model as covariates to correct for population 

stratification, while they do not correct for sample relatedness(Patterson, et al., 2006). 

Mixed model methods have long been used for selection of animal breeding(Henderson, 1984) 

before being applied to association mapping on humans with known pedigrees(Abney, et al., 2002; 

Chen and Abecasis, 2007) and unknown pedigree(Yu, et al., 2005). Models that accounts for fixed 

effects and random effects jointly are referred as mixed models(Eisenhart, 1947). Intuitively, 

mixed models incorporate the pairwise sample relatedness to capture confounders such as sample 

relatedness and population stratification. A substantial challenge to using mixed models for GWAS 

is their high computational burden from the iterative numeric optimization procedure, especially 

when the number of tested genetic markers and the sample size are large.  

One of the main milestones in reducing the computational time is the two-stage approach that 

was proposed by Chen and Abecasis in 2007(Chen and Abecasis, 2007). This approach assumes 

that each genetic locus has a small effect on the phenotype. In step one, the variance parameters 

are estimated once in the null model, which does not include any fixed genetic effects. Then the 
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estimated variance parameters are used for the association test for each genetic marker in step two. 

This approach avoids the computationally expensive task of estimating the variance component 

parameters for all genetic markers which substantially reduces the computational time for GWAS. 

The drawback is that the p-values at step two are approximated assuming the effect size of the 

tested genetic marker is small. The estimates may be biased, leading to power loss, if the 

assumption is violated. All mixed model methods using this approach are called approximate 

methods, while others are called exact methods. Figure 1-1 presents mixed model methods that 

have been developed since 2006 for population-based genetic association tests with no pedigree 

information since 2006. Below is a brief review for these methods.  

Q+K is a unified mixed model method developed in 2006(Yu, et al., 2005). This method is the 

first to propose using the relative kinship (K) matrix to replace the pedigree-based co-ancestry 

matrix of the traditional mixed model to account for sample relatedness when the pedigree 

information is unknown. An additional variance matrix Q accounts for population structure and 

is included if the population structure is present. With both K and Q matrices, multiple levels 

of relatedness between samples are systematically corrected. This was the first study to use a 

linear mixed model for association mapping with unknown pedigree information has shown that 

the linear mixed model results in lower type I and II error rates and higher power than other 

previously used methods including genomic control and structured association. Q+K has been 

implemented in the software TASSEL(Bradbury, et al., 2007).  

EMMA is a mixed-model association method developed by Kang, et al. in 2008 for model 

organism association mapping but a similar framework can be used for genetic association tests in 

human populations(Kang, et al., 2008). Compared to Q+K, EMMA has substantially increased the 

computation speed and reliability of the mixed-model association mapping using the following 
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techniques. 1. Spectral decomposition is used to compute the likelihood which avoids the large 

number of matrix multiplications and inversions at each iteration. This allows optimization of 

likelihood function or restricted maximum-likelihood function (REML) in a single-dimensional 

parameter space. 2. The dramatic decrease in computation time makes it feasible to obtain the 

global optimization with high confidence by the combination of grid search and Newton-Raphson 

algorithm. 3. A simpler Identity-By-State allele-sharing genetic similarity matrix is used as a 

kinship matrix to account for sample relatedness. 4. REML takes the degrees of freedom of fixed 

effects into account and provides unbiased maximum likelihood variance component estimates.  

EMMAX further expedited EMMA by using the two-stage approach. It was developed by the 

same author as EMMA in 2010 and applied to a human population(Kang, et al., 2010) EMMAX 

decreases the computation time for large GMAS with thousands of samples and hundreds of 

thousands of genetic markers to hours compared to years using EMMA. 

Compressed MLM clusters samples into groups based on kinship and use the kinship between 

groups for random effects(Zhang, et al., 2010). This reduces the time complexity from the cubic 

of the sample size to the cubic of the number of groups. However, the maximum time complexity 

reduction was shown to be about 20 fold(Huang, et al., 2010). P3D also uses the two-stage 

approach, except that in step two, a fixed previously determined population parameters (P3D) is 

used(Zhang, et al., 2010). Compressed MLM and P3D were implemented in the software 

TASSEL(Bradbury, et al., 2007). 

FaST-LMM stands for factored spectrally transformed LMM and was developed in 2011(Lippert, 

et al., 2011). It has a clever use of spectral decomposition for the genetic relationship matrix 

(GRM) to rotate the phenotypes, so that the rotated data become independent and a simple linear 

regression can be used for genetic association testing. Unlike the previous two-stage approach 



 11 

method, FaST-LMM does not need to assume all genetic markers have small effects and provides 

exact p-values. 

GEMMA is another exact linear mixed model method. It is similar to EMMA, but is n (n = sample 

size) times faster(Zhou and Stephens, 2012). Instead of using the expensive spectral 

decomposition, GEMMA uses a few recursions to compute some induced quantities that are 

needed for the optimization of the likelihood function or REML. The recursions only involve in 

matrix-vector multiplications and have quadratic complexity of sample size. 

GRAMMA-Gamma improves the computation efficiency of the second step of the two-stage 

approach by using a constant called GRAMMA-Gamma factor(Svishcheva, et al., 2012), the ratio 

of the GRAMMA score test statistic that ignore the random effects and the one that incorporate 

the random effects. This ratio has been shown to be constant empirically and 

analytically(Aulchenko, et al., 2007). The score test statistics for each genetic marker can be 

computed with no random effects and adjusted using GRAMMA-Gamma factor.  

BOLT-LMM is the only existing linear mixed model method that can handle large sample sizes 

such as UK Biobank (n=~500,000) (Loh, et al., 2015). It utilizes several efficient strategies to 

improve the computational efficiency of the algorithm. To reduce the computational time, it uses 

retrospective mixed-model association statistics, similar to GRAMMA-Gamma. BOLT-LMM 

uses the following techniques to save on memory usage, 1. It replaces the spectral decomposition 

method with the conjugate gradient method to obtain the inverse of the GRM matrix. 2. Instead of 

storing the GRM matrix, it computes the elements of GRM as needed. 3. It stores the hard-call 

genotypes to be used for GRM elements computation in a binary vector. Besides the algorithm 

feasibility for large sample sizes, BOTL-LMM improves the test power by using a Gaussian 

mixture model as a Bayesian prior to modeling the effect sizes that are following the infinitesimal 
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model, calibrating the test statistics using the LD Score regression technique, and adapting the 

leave-one-chromosome-out (LOCO) scheme to avoid proximal contamination. 

GMMAT is the first logistic mixed model method proposed for association tests and was 

developed by Chen et al. in 2016(Chen, et al., 2016). Although linear mixed model methods have 

been widely used for sample relatedness correction, the homoscedasticity assumption that assumes 

constant residual variance regardless of the covariate values is usually violated by binary traits. 

The authors have shown that for genetic association tests for dichotomous traits, GMMAT 

successfully corrects the inflated type I error rates observed in linear mixed model methods. 

However, the high computational cost of GMMAT keeps it from being widely used in large-scale 

GWASs (sample size n > 20,000) for binary traits.  

!

Phenotypes for human diseases are dichotomous (affected/unaffected). In population-based 

biobanks, binary phenotypes often have case-control ratios that are unbalanced (<1:10) or very 

unbalanced case-control ratio (<1:100). For example, more than 85% of 1603 binary phenotypes 

in UK Biobank have case-control ratio < 1:99(Bycroft, et al., 2017; Sudlow, et al., 2015). The 

parameter estimates based on the maximum likelihood function are biased or even infinite in 

presence of the unbalanced case-control sampling(Albert and Anderson, 1984; Ma, et al., 2013). 

To address this issue, Firth proposed a bias-corrected log-likelihood function that is penalized with 

an information matrix(Firth, 1993), based on which Heinze and Schemper described a likelihood 

ratio test, called Firth test(Heinze and Schemper, 2002). Despite its good performance on 

correcting the bias due to case-control imbalanced in logistic regression, the Firth test is 

computational inefficient because the maximum likelihood estimates(MLE) need to be obtained 

under both full and null models.  
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Most of the mixed model methods use score tests for genetic association because model parameters 

are only estimated under the null model, leading to higher computational efficiency than the 

likelihood-ratio tests and Wald tests. However, case-control imbalance also results in inflated type 

I error rates in score tests based on logistic regression, especially for low-frequency variant(Dey, 

et al., 2017; Ma, et al., 2013). This is because skewness in the tail exists when the case-control 

ratios are unbalanced but normality is incorrectly assumed in the traditional score tests. This is 

especially true for less frequent variants. The normal distribution does not capture the tail skewness 

using the first two cumulants, mean and the variance. Saddlepoint approximation(SPA) was firstly 

introduced by Daniels and it uses the entire cumulant generating function to approximate a 

distribution rather than only the first two used by normal approximation(Daniels, 1954). Rounak 

et al. proposed using SPA to approximate the score test distribution in logistic regression for 

unbalanced case-control phenotypes and implemented the SPA test in an R pacakage SPAtest(Dey, 

et al., 2017). SPA test accounts for case-control imbalance for dichotomous traits as well as Firth 

test does, and the SPA test is 100 to 300 times faster than the Firth test(Dey, et al., 2017). In 

Chapter 5, we implement a method that combines advantages of logistic mixed model approaches 

and the saddle-point approximation of score test distribution to efficiently and robustly analyze 

phenotypes with unbalanced case-control ratios and sample relatedness. We utilize state-of-art 

optimization strategies to make our method practical for very large sample sizes. 

!

Recently, increasing numbers of biobanks are able to genotype or sequence all of their participants, 

such as the UK Biobank(Bycroft, et al., 2017; Sudlow, et al., 2015), the population-based Nord 

Trøndelag Health Study (HUNT) (Krokstad, et al., 2013) and Michigan Genomics Initiative 

(https://www.michigangenomics.org). Phenome-wide GWASs for thousands of phenotypes based 
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on ICD codes have both statistical and computational challenges in these large cohorts. Sample 

relatedness and case-control ratio imbalance are the two common issues in such studies. 

Statistically, no method exists for GWAS that can address both issues simultaneously. 

Computationally, the time and memory cost for GWASs on tens to hundreds of millions of genetic 

markers for hundreds of thousands of samples for thousands of phenotypes is significantly high.  

!

My research aims at identifying novel disease-associated genetic variants through large-scale 

GWAS and developing computational and statistical pipelines and methods to improve power and 

accuracy of GWAS.  

Bicuspid aortic valve (BAV) is a birth defect of the heart characterized by fusion of two of the 

normal three leaflets of the aortic valve. BAV is the most common cardiovascular malformation 

in humans(Hoffman and Kaplan, 2002; Tutar, et al., 2005), moderately heritable(Cripe, et al., 

2004; Ellison, et al., 2007; Garg, 2006), is associated with serious consequences, such as dilated 

thoracic aorta, severe aortic valve stenosis, aortic valve incompetence and aortic dissection, which 

carries very high mortality (Losenno, et al., 2012; Michelena, et al., 2008; Michelena, et al., 2011; 

Siu and Silversides, 2010; Ward, 2000). In Chapter 2, we present the first large-scale GWAS study 

to identify novel genetic variants that are associated with BAV. We report association with a non-

coding variant 151kb from the gene encoding the cardiac-specific transcription factor, GATA4, 

and near-significance for p.Ser377Gly in GATA4. We use multiple bioinformatics approaches to 

demonstrate that the GATA4 gene is a plausible biological candidate, whose potential roles in heart 

valve development has been further investigated through functional follow-up.  

Genotype imputation is widely used in GWAS to perform in silico genotyping, leading to higher 

power to identify novel genetic signals. When multiple reference panels are not consented to 
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combine together, it is unclear how to combine the imputation results to optimize the power of 

genetic association tests. In Chapter 3, we compare the accuracy of 9,265 Norwegian genomes 

imputed from three reference panels – 1000 Genomes Phase 3 (1000G)(The Genomes Project, 

2015), Haplotype Reference Consortium (HRC)(McCarthy, et al., 2016), and a reference panel 

containing 2,201 Norwegian participants from the HUNT study with low-pass genome 

sequencing(Krokstad, et al., 2013). We also evaluate different strategies to utilize multiple sets of 

imputed genotypes to increase the power of association studies. We propose that testing 

association for all variants imputed from any panel results in higher power to detect association 

than the alternative strategy of testing only the version of each genetic variant with the highest 

imputation quality metric. 

In GWAS for thousands of phenotypes in large biobanks, most binary traits have substantially 

fewer cases than controls. Both of the widely used approaches, linear mixed model and the recently 

proposed logistic mixed model, perform poorly -- producing large type I error rates -- in the 

analysis of phenotypes with unbalanced case-control ratios. In Chapter 4,  we propose a scalable 

and accurate generalized mixed model association test that uses the SPA to calibrate the 

distribution of score test statistics based on logistic mixed models.  This method, SAIGE, provides 

accurate p-values even when case-control ratios are extremely unbalanced or when allele 

frequencies are low, two situations which all other approaches struggle with. It utilizes state-of-art 

optimization strategies to reduce computational time and memory cost of generalized mixed 

models. The computation cost linearly depends on sample size, and hence can be applicable to 

GWAS for thousands of phenotypes by large biobanks. Through the analysis of UK Biobank data 

of 408,961 white British European-ancestry samples for 1,403 dichotomous phenotypes(Bycroft, 
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et al., 2017; Sudlow, et al., 2015), we show that SAIGE can efficiently analyze large sample data, 

controlling for unbalanced case-control ratios and sample relatedness. 

 

 

Figure 1-1 Mixed model methods developed for population-based genetic association tests since 

2006.  

The methods in the top row are approximate methods and in the bottom row are exact methods. 

GMMAT(Chen, et al., 2016) is the only logistic mixed model method. 
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Chapter 2!Protein-altering and regulatory genetic variants near GATA4 implicated in 
bicuspid aortic valve 

!

Bicuspid aortic valve (BAV) is a heritable congenital heart defect and an important risk factor for 

valvulopathy and aortopathy.  Here we report a genome-wide association scan of 466 BAV cases 

and 4,660 age, sex, and ethnicity-matched controls with replication in up to 1,326 cases and 8,103 

controls. We identify association with a non-coding variant 151kb from the gene encoding the 

cardiac-specific transcription factor, GATA4, and near-significance for p.Ser377Gly in GATA4. 

GATA4 was interrupted by CRISPR-Cas9 in induced pluripotent stem cells from healthy donors. 

The disruption of GATA4 significantly impaired the transition from endothelial cells into 

mesenchymal cells, a critical step in heart valve development. 

!

Bicuspid aortic valve (BAV) is a congenital aortic valve defect characterized by fusion of two of 

the normal three leaflets. With a prevalence of ~1% in the population and a feature of some rare 

connective-tissue syndromes, BAV is the most common cardiovascular malformation in 

humans(Hoffman and Kaplan, 2002; Tutar, et al., 2005). BAV is associated with serious 

consequences: 30-70% of those with BAV will develop dilated thoracic aorta(Losenno, et al., 

2012); 15 – 71% of BAV patients develop aortic valve stenosis depending on age group and 

individuals with BAV have a 50-fold higher risk of severe aortic valve stenosis(Ward, 2000); and
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 up to 47% of BAV patients develop aortic valve incompetence(Siu and Silversides, 2010). The 

presence of a BAV confers an eight-fold increased risk of aortic dissection, which carries very 

high mortality(Michelena, et al., 2011). 27% of BAV patients will require surgical intervention to 

either replace their aortic valve or aorta for aortic aneurysm and dissection(Michelena, et al., 2008). 

BAV accounts for ~40% of the >50,000 aortic valve replacements (AVR) performed in the US 

each year(Roberts and Ko, 2005). 

BAV is moderately heritable, with estimates ranging from 20 – 89%(Cripe, et al., 2004; Ellison, 

et al., 2007; Garg, 2006).  Despite the prevalence, importance, and heritability of BAV, its genetic 

origins remain elusive.  Previous genetic studies of BAV have focused primarily on linkage 

analysis in families(Ellison, et al., 2007; Martin, et al., 2007) or sequencing candidate genes in 

cases(Foffa, et al., 2013) under a hypothesis of Mendelian inheritance.  Only one previous GWAS 

for BAV has been published in a limited number of cases (N=68)(Wooten, et al., 2010), which did 

not identify any genome-wide significant results.  The only gene in which variants have been 

identified to cause BAV in multiple families is NOTCH1, but <6% of BAV cases are accounted 

for by NOTCH1 variation(Foffa, et al., 2013).  It is clear that BAV is not a simple Mendelian 

trait(Ellison, et al., 2007; McBride, et al., 2008), but is indeed heritable, and therefore, we applied 

genetic association methods typically used for complex traits. 

With a goal of identifying genetic variants associated with BAV, leading to biological insight of 

the underlying causes, here we perform an unbiased genome scan in a large study of BAV cases 

(N=466) and controls (N=4,660), with replication in additional samples of up to 1,326 cases and 

8,103 controls). We identify two genetic variants that reached or were near genome-wide 

significance levels (P < 5x10-8). One is a low-frequency intergenic variant rs6601627 (odds ratio 
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(OR) = 2.38, Pafter-replication=3x10-15) with a substantially higher frequency in BAV cases (8.3%) 

than in controls (4.2%) and the other one is an independent association signal at a common protein-

altering variant p.Ser377Gly (rs3729856) in GATA4, which encodes a cardiac-specific 

transcription factor that is 151 kilobases(kb) away from the first variant (Pafter-replication = 8.8x10-8). 

Induced pluripotent stem cells (iPSCs) with GATA4 disrupted by CRISPR-Cas9 demonstrate 

impaired transition of endothelial into mesenchymal cells (EndoMT), a critical step in valve 

formation (Lin, et al., 2012).  

!

To discover the underlying genetic basis of BAV, we successfully genotyped 498,075 genetic 

variants with enrichment of protein-altering variants (43.8% of variants examined) for 466 BAV 

cases and 4,660 controls. Imputation from the Haplotype Reference Consortium (HRC) 

panel(McCarthy, et al., 2016) enabled examination of a total of 12,320,487 variants. Clinical 

characteristics for BAV cases are summarized in Table S2-1. Following a genome-wide 

association scan(Figure S2-1 and Figure S2-2), we examined three variants in replication cohorts 

with a combined total of up to 1,326 additional cases and 8,103 controls.   

2.2.1! Variants near GATA4 

The strongest result from the genome-wide discovery for BAV was observed for a genotyped low-

frequency variant, rs6601627, in an intergenic region of chromosome 8 (rs6601627, MAF = 4.1%, 

OR = 1.9, Pcombined = 3.0x10-15) (Table 2-1, Figure 2-1, and Figure S2-2). 97 imputed variants in 

this region also reached genome-wide significance (p < 5 x10-8).  The two nearest genes are not 

obvious functional candidates (CTSB and DEFB135), however, this variant is 151kb from the 3’ 

end of the GATA4 gene (Figure 2-1). We also observed a common missense variant p.Ser377Gly 
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in GATA4 (rs3729856) that was also associated with BAV (Pdiscovery = 3.2x10-4, MAF = 14.5%) 

(Table 2-1 and Figure 2-1). We selected GATA4 p.Ser377Gly for in silico replication because it is 

a protein-altering variant and because it was located in the local genomic region of the most 

significant variant (Error! Reference source not found.). The p.Ser377Gly variant reached near 

genome-wide significance after including in silico replication data (OR = 1.31, P = 8.8x10-8) 

(Figure S2-4) and exceeded the typical significance level used for exome-wide studies of coding 

variation (typically p < 2 x 10-7)(Sveinbjornsson, et al., 2014).  This suggests that GATA4 may be 

the functional gene at this GWAS locus, but further experiments will be needed to demonstrate 

which gene(s) causes BAV. The two variants at 8p23.1 (rs6601627 and rs3729856) appear to be 

independent from each other, since they were not in linkage disequilibrium (LD r2 = 0.013) and 

reciprocal conditional association analysis maintained nominal significance for both (Pcond 

rs6601627 = 8.92x10-9, Pcond rs3729856 = 0.012). After including in silico replication data, the 

reciprocal conditional association analysis still maintained nominal significance (Pmeta rs6601627 

= 1.52x10-9, Pmeta rs3729856 = 8.17x10-3) (Figure S2-5). The non-additive association tests showed 

that both variants appear to have dominant effects on risk of BAV (Table S2-2). 

 The ExAC database characterizes protein-altering variants in 60,706 multi-ethnic individuals with 

whole exome sequences(Lek, et al., 2016).  ExAC lists 96 missense variants in GATA4 (95 of them 

have MAF < 1%), a deficit compared to the 140 variants predicted based on gene size.  

Additionally, 9.4 loss-of-function (LoF) variants are predicted and only 1 was observed 

(p.Lys365Ter) out of 60,706 individuals with deep exome sequences.  The probability that the 

gene is intolerant to LoF, a measure of the relative importance of gene function, is high (pLI=0.8 

where > 0.9 is considered extremely intolerant). Moreover, the missense GATA4 variant rs3729856 

is predicted as benign or tolerated by PolyPhen"2(Adzhubei, et al., 2013) and SIFT(Kumar, et al., 
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2009) and it has a CADD score 9.418 (in top 11% of deleterious variants in the human 

genome)(Kircher, et al., 2014). These results suggest the importance of the GATA4 gene’s 

function, although the missense variant rs3729856 itself may not be significantly deleterious. 

We hypothesized that the functional BAV gene at this CTSB/GATA4 locus would demonstrate 

high expression in heart or vascular tissue.  Using the GTEx portal(2013), we examined mRNA 

expression levels of all genes within the 200kb surrounding the non-coding associated variant 

rs6601627 and found that GATA4 showed strong expression in heart (atrial appendage and left 

ventricle) and coronary artery, and also ovary, testis, pancreas, and liver (Figure S2-6). The other 

genes in the region (NEIL2, FDFT1, and CTSB) showed ubiquitous expression levels across all 

tissues (Figure S2-6). Examination of all GTEx association results did not identify any significant 

expression quantitative trait locus (eQTL) with the noncoding rs6601627 (P < 10-5)((Bahcall, 

2015)).  We propose that this noncoding variant, or a variant tagged by it, influences GATA4 

expression in a manner not detectable by GTEx – either exerting an influence on gene expression 

levels only in the developing fetal heart or with a relatively modest effect that was not detectable 

in the current GTEx sample size. 

After detecting association with both coding and non-coding variants at the GATA4 locus, we 

sought to examine the role of GATA4 in the development of the aortic valve.  In the primitive 

heart tube, heart valves develop from endocardial cushions, which are formed by mesenchymal 

cells derived from endothelial cells (ECs) through a process called EndoMT(Lin, et al., 2012). 

Despite the critical role in heart valve development, the mechanism of EndoMT is not well 

understood(de Lange, et al., 2004; Lincoln, et al., 2004; Wirrig and Yutzey, 2014). GATA4 was 

previously shown to be essential for heart formation (Kuo 1997 and Molkentin 1997) and for 

endocardial cushion development in mice(Rivera-Feliciano, et al., 2006). Here we evaluated the 
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impact of disruption of GATA4 on human iPSCs differentiation into mesenchymal cells through 

EndoMT to examine the role of GATA4 in the development of aortic valves in humans.  

The GATA4 knock-out mouse is embryonic lethal between embryonic day (E) 7.0 and E9.5 and 

lacks a primitive heart tube(Molkentin, et al., 1997). Deletions of GATA4 in humans have been 

associated with congenital heart defects (CHD)(Kennedy, et al., 2001; Pehlivan, et al., 1999) and 

a missense variant p.Gly296Ser was identified in a family with atrial and ventricular septal 

defects(Garg, et al., 2003).  A mouse model of the p.Gly296Ser missense change is also embryonic 

lethal by E11.5 but a subset of these mice demonstrate semilunar valve stenosis and small defects 

of the atrial septum, thought to be resultant from defects in cardiomyocyte proliferation during 

embryogenesis(Sarkozy, et al., 2005).   Previous studies observed missense variants in GATA4 in 

patients with septal defects (Tomita-Mitchell, et al., 2007), congenital heart defects(Zhang, et al., 

2008), and Tetralogy of Fallot (ToF)(Zhang, et al., 2008), but have not been tested in case-control 

models. The frequency of GATA4 variants in healthy controls is not clear from these studies and 

their pathogenicity is unknown.  The co-appearance of congenital heart disease and testicular 

anomalies was found in a family with a GATA4 p.Gly221Arg mutation, thought to disrupt 

interaction with FOG2 and/or NR5A1, important factors for gonadal development(Lourenco, et 

al., 2011). GATA5 has 46% homology with GATA4.  GATA5 sequence variants have been 

identified in humans with BAV(Bonachea, et al., 2014; Padang, et al., 2012) and GATA5 knock-

out mice and zebrafish demonstrate high rates of cardiac abnormalities(Laforest, et al., 2011). 

2.2.2! Chromatin conformation at the GATA4 locus 

We attempted to evaluate the hypothesis that non-coding variants in LD with rs6601627 impact 

expression of GATA4 during a critical stage of development.  This is supported by prior evidence 
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that GATA4 dosage impacts cardiac formation(Pu, et al., 2004).  We first identified potentially 

functional variants using RegulomeDB and HaploReg in the region near rs6601627 or variants in 

high linkage disequilibrium (LD) (r2 > 0.6) (ranging from rs112197605 to rs117851931; 

hg19:chr8:11774952-11838697)(Boyle, et al., 2012; Ward and Kellis, 2012). After examining 

local chromatin states, DNase hypersensitive regions and transcription factor binding sites, we 

identified rs118065347 as a variant likely to be functional because it co-localizes with binding 

regions for multiple transcription factors (including KAP1, CCNT2, CJUN, CMYC, GATA2, 

HDAC2, HMGN3, JUND, MAX, SP1, TAL1, YY1, ZBTB7A) and is in a known enhancer active 

in fetal heart, left and right ventricle, right atrium, as well as other tissues(Bernstein, et al., 2012; 

Boyle, et al., 2012). This variant disrupts the binding motif for a variety of transcription factors 

including PAX6(Piper, et al., 2013). There are other candidate functional variants in high LD with 

the index variant, and molecular experiments will be required to definitively identify the functional 

variant(s) and the mechanism of action on aortic valve development. 

We next asked which genes in the locus may interact with this candidate enhancer region.  We 

identified chromatin interaction loops in K562 and GM12878 cells using chromatin interaction 

analysis by paired-end tag sequencing (ChIA-PET) and high-throughput sequencing (Hi-C) data 

(Figure 2-2)(Phanstiel, et al., 2015; Rao, et al., 2014). rs118065347 falls near the edge of a 

topologically associated domain spanning from hg19:chr8:11250000-11825000 defined by Hi-C 

in both cell lines. The variant falls inside a ChIA-PET loop connecting to a region also annotated 

as an enhancer 3’ of GATA4 and C8orf49 and 5’ of NEIL2. These data indicate that this distal 

region is brought in close proximity to GATA4 and disruption of this region may have direct impact 

on GATA4 expression. Further molecular experiments will be needed to clarify the gene(s) that 

impacts BAV. 
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2.2.3! Phenotypic characteristics of BAV cases in discovery sample 

Among our 466 non-syndromic BAV cases, 93 (20%) reported one or more family members also 

having BAV (Table S2-1). This suggests a high recurrence risk and supports the hypothesis of 

large-effect variants, but not necessarily Mendelian inheritance(Pasta, et al., 2013). Majority of 

BAV cases were recruited from cardiac surgery clinic at the University of Michigan Frankel 

Cardiovascular Center (FCVC) where patients are referred to cardiac surgery for aneurysm repair 

or valve replacement, thus we found a high proportion of patients with thoracic aortic aneurysm 

(TAA) (83%). However, at these two loci, we saw no evidence for heterogeneity between BAV 

cases with or without TAA (Table S2-3) and between BAV cases with or without a positive family 

history of BAV and/or TAA (Table S2-4), suggesting that BAV probably impact the risk of TAA 

due to altered hemodynamic blood flow and aortopathy from different mechanisms instead of 

sharing molecular mechanisms with TAA that impact both aorta and valve tissue(Pasta, et al., 

2013). Additionally, we did not find evidence for heterogeneity in the association results at GATA4 

and BAV subtypes (Table S2-5) and among males and females (Table S2-6). 

2.2.4! Implication of rs6601627 and GATA4 p.Ser377Gly in other CHD 

To investigate whether the two variants at GATA4 that we report are involved in development of 

other and more severe congenital heart defects, we tested for association with 806 cases of ToF 

along with 5,029 matched controls and performed association tests for the two variants as 

described previously(Cordell, et al., 2013). In an additive genetic model, we did not find evidence 

for association between the non-coding rs6601627 and ToF (MAF = 0.03, OR = 0.89, 95% CI 

0.67-1.20, P=0.46), however, for GATA4 p.Ser377Gly, the association was nominally significant 

(MAF = 0.11, OR = 1.24, 95% CI 1.06-1.45. P = 0.007).  This suggests that the regulatory variant 

associated with BAV may act in a highly tissue or developmentally controlled manner to cause 
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only BAV and not other congenital heart defects, whereas GATA4 missense changes may have a 

more broad impact on other CHDs. 

2.2.5! Missense variant in DHX38 

The GWAS highlighted a rare missense variant (0.14% frequency in controls) in DHX38 

(p.Thr1221Met) with a strong association with BAV (OR=13.14, 95% CI 5.39-32.04, P = 1.5x10-

8) in the discovery sample (Figure S2-2). After genotyping of this variant in 720 cases and 5,831 

controls, only 22 copies of the rare allele were identified (5 in cases and 17 in controls), providing 

a replication p-value of 0.05.  Additional large studies will be needed to confirm this rare variant 

association with BAV.  

2.2.6! GATA4 deficiency impairs EndoMT in iPSC-derived cells 

We investigated the biological impact of GATA4 in the EndoMT process required for human valve 

formation.  Human induced pluripotent stem cells (iPSCs) were generated from peripheral blood 

mononuclear cells of a donor with normal tri-leaflet aortic valve, using non-integrated DNA 

vectors containing OCT4, SOX2, C-MYC, and KLF4(Su, et al., 2013). The pluripotency of iPSCs 

was confirmed by expression of OCT4, SOX2, NANOG, and SSEA4, TRA-1-60, and TRA-1-81 

(Figure S2-7A-B). Additionally, iPSCs generated teratoma containing tissues from three germ 

layers, demonstrating their pluripotency in vivo (Figure S2-7C). In a previous study, wildtype 

GATA4 localized completely in the nucleus, whereas GATA4 mutant p.Ser377Gly (a C-terminal 

mutant) was shown to be partially distributed to the cytoplasm, indicating a loss-of-function 

mutation(Wang, et al., 2013). To evaluate whether disruption of GATA4 may result in a loss-of-

function phenotype, iPSCs were electrotransfected with plasmid containing Cas9, GATA4 single 

guide RNA (sgRNA), and green fluorescent protein (GFP) as an indicator for transfection(Ran, et 

al., 2013).  As control, iPSCs were transfected with plasmid containing Cas9 and GFP. Transfected 
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cells were enriched by flow cytometry sorting based on GFP positivity (Figure S2-8A-C). iPSCs 

were differentiated into ECs with efficiency above 90% (Figure S2-8D). GATA4 level was 

significantly lower in ECs from the GATA4 sgRNA transfected group than control (Figure 2-3A), 

indicating successful targeting to GATA4. When EndoMT was induced by TGF2 and BMP2 in 

ECs, smooth muscle actin (SMA), a mesenchymal marker gene was upregulated in control cells 

(Figure 2-3B). Noticeably, the GATA4 sgRNA group showed significantly lower SMA levels 

(Figure 2-3B). ECs were also explanted to collagen gel to induced EndoMT(Rivera-Feliciano, et 

al., 2006).  The GATA4 sgRNA group showed significantly fewer mesenchymal cells migrating 

out after 3 days than control cells (Figure 2-3C). Cells undergoing EndoMT express SMA and 

CD31 simultaneously at a certain point(Rivera-Feliciano, et al., 2006). Immunofluoresence 

staining of SMA and CD31, markers of EndoMT(Rivera-Feliciano, et al., 2006), also showed 

significantly less SMA and CD31 double positive cells in GATA4 sgRNA group (Figure 

2-3D).These results indicate EndoMT was impaired by disruption of GATA4 with GATA4 sgRNA. 
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!

In this study we find variants associated with bicuspid aortic valve (BAV) that reach genome-wide 

significance.  We identified association with a low frequency non-coding variant 151kb from 

GATA4, as well as a common missense variant in GATA4.  Although we cannot yet confirm the 

mechanism of action of the non-coding variant(s) on chromosome 8 on aortic valve development, 

chromatin conformation experiments suggest that the region near the associated variants appears 

to loop and physically interact with regions intronic to GATA4.  This hypothesis could be tested in 

future functional experiments to investigate whether the non-coding BAV-associated variants 

identified here affect expression of GATA4 at a critical time in heart development. This could 

possibly disrupt EndoMT, a process important for normal trileaflet aortic valve formation.   

GATA4, a zinc finger transcription factor, is one of three major transcription factors, together with 

Nkx2.5 and TBX5, that are critical for heart differentiation(Huang, et al., 1995). Although not 

previously associated with BAV, the GATA4 gene is a plausible biological candidate. The missense 

GATA4 mutation G296S disrupts the transcriptional cooperativity between GATA4 and TBX5, 

resulting in abnormal cellular functions related to morphogenetic defects(Ang, et al., 2016). Many 

mutations in GATA4 have been previously reported to be found in different kinds of CHD: atrial 

septal defect(Garg, et al., 2003; Hirayama-Yamada, et al., 2005; LaHaye, et al., 2016; Mattapally, 

et al., 2015; Posch, et al., 2008; Sarkozy, et al., 2005; Tomita-Mitchell, et al., 2007; Yang, et al., 

2013), ventricular septal defect(Garg, et al., 2003; Mattapally, et al., 2015; Tomita-Mitchell, et al., 

2007; Wang, et al., 2011; Yang, et al., 2012), and ToF(Mattapally, et al., 2015; Tomita-Mitchell, 

et al., 2007; Yang, et al., 2013), although mostly tested in family studies. Furthermore, the GATA4 

mutations have been identified in CHD patients with various ancestries: European(Garg, et al., 
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2003; Posch, et al., 2008; Sarkozy, et al., 2005; Tomita-Mitchell, et al., 2007), Asian(Garg, et al., 

2003; Hirayama-Yamada, et al., 2005; Mattapally, et al., 2015; Wang, et al., 2011; Yang, et al., 

2013; Yang, et al., 2013; Yang, et al., 2012), and Native and Hispanic American(Tomita-Mitchell, 

et al., 2007). Additionally, GATA4 knockout mice are embryonic lethal with heart defects(Kuo, et 

al., 1997).  Mice that are missing GATA5 also develop BAV(Laforest, et al., 2011) and rare GATA5 

mutations have been identified in humans with BAV (Bonachea, et al., 2014). 

We have provided evidence for the complexity of the BAV phenotype, with multiple genetic 

variants of incomplete penetrance contributing to susceptibility. To assess whether the two variants 

that we report are specific for BAV or whether they are also implicated in other congenital heart 

defects, we studied cases of ToF, characterized by several cardiac malformations including an 

overriding aorta, pulmonic stenosis, ventricular septal defect, and right ventricular hypertrophy. 

We found that the common coding variant in GATA4 (p.Ser377Gly) was associated with increased 

risk of ToF whereas the low frequency non-coding variant (rs6601627) was not associated. We 

speculate that the low frequency non-coding variant disrupts a regulatory element that plays a 

critical role in regulating GATA4 expression in a precise time of cardiac embryogenesis that may 

impact the valve more specifically, whereas the common GATA4 missense variant might disrupt 

GATA4 function more generally and increase the risk of several cardiac malformations, including 

ToF. The frequencies of the associated variants at the GATA4 locus (variants with r2 > 0.6 in EUR 

samples of 1000G) vary among different populations(Auton, et al., 2015). For example, among 

the non-coding variant rs6601627 and its 115 correlated variants, 108 variants have MAF < 0.01 

and 73 are monomorphic in East Asians(Auton, et al., 2015). Association studies in other 

populations will be critical for determining if the association exists in other populations and may 

be helpful at narrowing the associated interval. 
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To investigate the possible role of GATA4 in aortic valve development, we used sgRNA guided 

Cas9 to disrupt GATA4 in iPSCs from a healthy human donor with normal tricuspid aortic valves. 

The iPSCs were differentiated into endothelial cells and then induced to mesenchymal cells 

through EndoMT.  We demonstrated that deficiency of GATA4 impaired the transition of 

endothelial into mesenchymal cells, a critical step in valve formation(Lin, et al., 2012) (Figure 

2-3). This indicates that GATA4 is required for aortic valve formation and that disruption of the 

GATA4 gene, either by non-coding or protein-altering variants, may affect aortic valve formation.  

!

2.4.1! GWAS genotyping and genotype imputation  

We performed genotyping of a combined set of 498,075 genome-wide association scan (GWAS) 

variants, including 217,957 protein-altering variants, using a GWAS+exome chip array (Illumina 

Human CoreExome).  To avoid any potential batch effects, cases and controls were genotyped 

using the same array in the same genotyping center (Sequencing and Genotyping core at the 

University of Michigan).  Genotype calling was performed using GenTrain version 2.0 in 

GenomeStudio V2011.1 (Illumina) using identical cluster files for cases and controls. Samples 

with <98% genotype calls, evidence of gender discrepancy, duplicates as well as individuals with 

non-European ancestry identified by plotting the first 10 genotype-driven principal components 

were excluded from further analysis.  We performed variant-level quality control by excluding 

22,983 variants that met any of the following criteria; variants with a cluster separation score < 

0.3, < 98% genotype call rate, or deviation from Hardy–Weinberg equilibrium (P < 1 × 10−5). We 

phased the autosomal genotype data using SHAPEIT2(Delaneau, et al., 2012) and imputed variants 

from the HRC v1 reference panel(McCarthy, et al., 2016) using minimac3(Fuchsberger, et al., 

2015). We excluded poorly imputed variants with imputation R2 < 0.3 and then merged the 
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genotyped variants and the successfully imputed variants to a combined data set, which contains 

12,320,487 variants in total.  

2.4.2! Description of cases in discovery cohort 

We collected DNA from consented individuals with bicuspid aortic valve from the Frankel 

Cardiovascular Center at the University of Michigan as part of the University of Michigan BAV 

registry or the Cardiovascular Health Improvement Project (CHIP).  All repository projects 

utilized for this study are approved by the University of Michigan, Medical School, Institutional 

Review Board (IRBMED), and informed consent was obtained from study participants. Patients 

were typically seen in clinic for aortic valve replacement or aortic aneurysm.  Diagnoses of 

bicuspid aortic valve were made by cardiac surgeons upon visual inspection of the aortic valve 

during open surgery for aneurysm repair or valve replacement. BAV cases with major syndromic 

connective-tissue disorders (e.g. Marfan syndrome) were excluded.  DNA was isolated from 

peripheral blood lymphocytes.   

2.4.3! Description and selection of controls in discovery cohort 

We identified potential controls from a surgical-based biobank, the Michigan Genomics Initiative 

(MGI), that were genotyped with the same GWAS array (Illumina Human CoreExome).  After 

excluding those with possible aortic disease (N=1,586, Table S2-7), we were left with 15,642 

potential controls with GWAS data.  We performed age matching by requiring controls to have a 

birth year within -5 and +10 years of the case.  From the available controls in the appropriate age 

and sex category, we selected the best ethnic match for each case and repeated the greedy 

algorithm until a control was selected for each case.  We repeated the entire process so that 10 

controls were selected for each case.  We opted for this approach to provide the best ancestry 
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matching between cases and controls, to reduce the potential for false positives due to ethnicity 

mismatch, and to also provide the most power for rare variants that increase risk of BAV by 

including the highest number of matching controls. All MGI research subjects provided informed 

consent.   

2.4.4! Statistical analyses 

In the discovery cohort, we performed association testing for BAV status using logistic regression 

with single genetic variants (295,759 with MAF > 1%), with age, sex and the first four principal 

components as covariates using PLINK for hard call genotypes(Purcell, et al., 2007) and the 

EPACTS software (URL: http://csg.sph.umich.edu//kang/epacts/) for imputed dosages.  We 

identified two genetic variants that were directly genotyped and reached genome-wide 

significance levels (P < 5x10-8).  We observed no evidence for inflation due to population 

stratification (λ = 1.033, Figure S2-1). We observed a genotyped missense variant within 200kb 

(rs3729856) of one of the significant non-coding variants (rs6601627) and selected this third 

variant for follow-up in additional samples.  

2.4.5! Association with Tetralogy of Fallot (ToF) 

A total of 835 unrelated ToF cases and 5159 controls were genotyped and imputed from 1000 

Genomes Phase 3 for the region 11MB-12MB on chromosome 8 using IMPUTE2(Cordell, et al., 

2013; Howie, et al., 2009). The association tests were performed using logistic regression of the 

“best-guess” genotypes for all imputed SNPs with IMPUTE2 info score ≥ 0.5 and with MAF ≥ 

0.01 in controls using SNPTEST(Marchini, et al., 2007). This study has been approved by 

Newcastle and North Tyneside NHS Research Ethics Committee. 
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2.4.6! Gene expression, chromatin conformation and epigenetics data 

We assessed expression levels of relevant genes using the GTEx server 

(http://www.gtexportal.org/home/)(2013).  We obtained the Hi-C interaction calls from Rao et 

al.(Phanstiel, et al., 2015; Rao, et al., 2014) and ChIA-PET interactions from Phanstiel et 

al.(Phanstiel, et al., 2015; Rao, et al., 2014) available through the ENCODE DCC accessions 

ENCSR000FDB and ENCSR752QCX (https://www.encodeproject.org/). ChromHMM data are 

displayed from the K562 Genome Segmentation by ChromHMM from ENCODE/Analysis 

available at https://genome.ucsc.edu/ and is created through chromatin segmentation using 8 

histone modifications, CTCF, Pol2, and open chromatin annotations(Ernst and Kellis, 2012). 

 

2.4.7! IPS cells generation and culture 

The procedure of iPSC derivation was performed according to methods we described (Su, et al., 

2013). PBMCs were separated from human peripheral blood with LSM (MP Biomedicals LLC.), 

cultured in medium containing IMDM (Life technologies Corp.), 10% FBS (Life technologies 

Corp.), TPO�SCF�FLT-3 at final concentration 100ng per mL, G-CSF�  IL-3 at final 

concentration 10ng per mL (Peprotech Inc.), penicillin-streptomycin (Life technologies Corp.) and 

electrotransfected using Nucleofector 2 device (Lonza Corp.) with episomal DNA plasmids 

containing OCT4, SOX2, KLF4, and C-MYC. At around day 30 post-infection, the colonies became 

compact. The colonies were mechanically picked up from the culture dishes and firstly cultured 

with mouse embryonic fibroblasts for 3 passages(Jiao, et al., 2013) and transited to TesRE8 

medium (Stemcells Inc.) on matrigel-coated (BD Corp.) dishes. iPSCs were passaged every 4 to 6 

days with Versene (Life Technologies Corp.). And iPSCs from passage 25 to passage 35 were 

used in experiments. 



 
 

33 

 

2.4.8! Teratoma formation in immune-deficient mice 

Conduction of Animal experiments was in compliance to regulations of the Unit for Laboratory 

Animal Medicine (ULAM) at the University of Michigan. Two million iPSCs were injected 

subcutaneously into each flank of the recipient male, 6-to-8-weeks-old NOD-SCID mice  (Jackson 

Laboratory, Bar Harbor, Maine). 3–5 weeks after injection, teratomas were harvested from the 

mouse flanks and fixed with formalin (Thermo Corp.) for 2 days. Then the tumors were imbedded 

in paraffin and sections were prepared with microtome (Leica Corp.) and stained by H&E staining 

solutions from Thermo Corp. The slides were examined and photos were taken under brightfield 

with microscope (Nikon Corp.). 

2.4.9! GATA4 sgRNA design and electrotransfection of iPSCs 

sgRNA were designed to target GATA4 exon2 (the first coding exon) with sgRNA design tool 

(http://www.genome-engineering.org) developed by Dr. Feng Zhang group(Ran, et al., 2013). 

Sequence of GATA4 sgRNA was: CGCGCCGTGCATGAAGGCGCCGG. Target site was: chr8:-

11565888. Quality score was 93. Minimal number of mismatch nucleotides in offsite targets was 

3. SgRNA were cloned into PX458, which contains SpCas9-2A-EGFP using AgeI and EcoRI at 

5’ and 3’ cloning sites(Ran, et al., 2013). One million iPSCs were electrotransfected with 

constructed 5µg PX458 containing GATA4 sgRNA, using Lonza Human Stem Cell Nucleofector® 

Kit 2 with program U-023 on Nuclefector 2 device (Lonza Ltd.). Another one million iPSCs were 

electrotransfected with PX458 vector as control under the same conditions. 
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2.4.10! Endothelial cell differentiation from iPSCs 

To differentiation iPSCs into ECs, iPSCs were dissociated with Versene (Life Technologies Corp.) 

into single cells and seeded at 2x104 cells per cm2 with TesRE8 (Stemcell technology Inc.) medium 

supplemented with Rocki (Y27632, Stemgent Inc.). When the cells reached a confluence of 20% 

to 30%, medium was changed into differentiation medium, which contained DMEM-F12 (Life 

technologies Corp.), B27 supplement without vitamin A (Life technologies Corp.), L-glutamine 

(Life technologies Corp.), penicillin-streptomycin (Life technologies Corp.), 400 µM 1-

thioglycerol (Sigma Corp.). 50 µg per mL Ascorbic acid (Sigma Corp.), 25 ng per mL BMP4 

(R&D Systems Corp.), and 6 µM GSK3 inhibitor CHIR99021 (Sigma Corp.). Differentiation 

medium was refreshed daily for 3 days. Then cells were dissociated with Accutase (Life 

technologies Corp.) and seeded at 1x104 cells/cm2 on Matrigel (BD Corp.) coated dishes with 

endothelial cell medium containing Stempro34(Life technologies Corp.), Stempro34 supplement 

(Life technologies Corp.), L-glutamine (Life technologies Corp.), penicillin-streptomycin(Life 

technologies Corp.), and 50 ng per mL VEGF (Peprotech Inc.). Medium was refreshed every two 

days for 13 days. 

2.4.11! Immunofluorescence staining and flow cytometry 

Immunofluorescence staining and flow cytometry was performed as follows, firstly cells were 

fixed in 4% formaldehyde (Thermo Corp.) for 1 hour at room temperature, then the cells were 

washed with DPBS (Thermo Corp.) once and incubated  with primary antibodies for 2 hours at 

room temperature(Jiao, et al., 2013). The following primary antibodies were used: anti-OCT4 

(mouse IgG, dilute 500 hundred times upon usage, sc-5279, Santa Cruz Biotechnology Inc.), anti-

SOX2 (mouse IgG, dilute 500 hundred times upon usage, sc-365964, Santa Cruz Biotechnology 

Inc.), anti-NANOG (rabbit polyclonal, dilute 500 hundred times upon usage, REC-RCAB004PF, 
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Cosmo Inc.), anti-SSEA4 (mouse IgG, dilute 100 hundred times upon usage, 60062, Stemcell 

technology Inc.), anti-TRA-1-60 (mouse IgM, dilute 100 hundred times upon usage, 60064, 

Stemcell technology Inc.), anti-TRA-1-81 (mouse IgM, dilute 100 hundred times upon usage, 

60065, Stemcell technology Inc.), anti-CD31 (rabbit polyclonal, dilute 500 hundred times upon 

usage, ab28364,Abcam Inc.), anti-SMA (mouse IgG, dilute 1000 hundred times upon usage, 

A5228, Sigma, Corp.). Cells were washed three time with DPBS (Thermo Corp.), then incubated 

with secondary antibodys for 1 hour at room temperature. The following fluorochrome-conjugated 

secondary antibodies were used: Alexa Fluor 488 goat anti-rabbit IgG (goat, dilute 1000 times 

upon usage, A11034, Thermo Corp.), and Alexa Fluor 488 goat anti-mouse IgG (goat, dilute 1000 

times upon usage, A32723, Thermo Corp.), Alexa Fluor 594 goat anti-mouse IgG (goat, dilute 

1000 times upon usage, A11032, Thermo Corp.) Slides were mounted with anti-fade mounting 

media containing DAPI (Prolong gold, Life technologies Corp.), and were observed on a Nikon 

A1 confocol microscope (Nikon Corp.). In flow cytometry study, electrotransfected iPSCs were 

dissociated into single cells with Accutase (Stemcell technology Inc.), and applied to MoFlo 

Astrios (Beckman Coulter Inc.) flow cytometry machine. 

2.4.12!Western blot analysis  

Whole cell extracts were prepared using RIPA buffer (1% NP-40, 1% sodium deoxycholate, 0.1% 

SDS, 0.15 M NaCl, 0.01 M sodium phosphate, 2 mM EDTA, 50 mM sodium fluoride, 0.2 mM 

Na3VO4.2H2O, 100 U per mL protease inhibitor), resolved on SDS-PAGE gels, and transferred to 

acetate cellulose membranes. Primary antibodies used were anti-GATA4 (rabbit IgG, diluted 500 

times upon usage, 36968, Cell Signaling technology Inc.), anti-SMA (mouse IgG, diluted 300 

times upon usage, A5228 Sigma), anti-GAPDH (rabbit IgG, diluted 2000 times upon usage, 

sc25778, Santa Cruz Inc.). Secondary antibodies used were IRDye800CW Donkey anti-Mouse 
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(92532212), IRDye680LT Donkey anti-Rabbit (92568023), IRDye800CW Donkey anti-Rabbit 

(92532213) (All secondary antibodies were diluted 500 times upon usage and purchased from 

Licor Inc.). Licor western blot detection system was used for the dual-color imaging. Uncropped 

version of western blot is presented in Figure S2-9 and Figure S2-10. Image was used for 

quantification of bands. Each band was normalized by GAPDH. Experiments were repeated three 

times. Average value and standard derivation were plotted. 

2.4.13! Endothelial-to-mesenchymal transition and collagen gel assay 

EndoMT was induced by changing medium to EndoMT inducing medium which contained 

stempro34 medium with stempro34 supplement (Life science technology Corp.), L-glutamine 

(Life technologies Corp.), penicillin-streptomycin (Life technologies Corp.), 200ng per mL BMP2 

(Peprotech Inc.) and 50ng/mL TGFβ2 (Peprotech Inc.). Non EndoMT control group were kept in 

EC medium containing Stempro34 (Life technologies Corp.), Stempro34 supplement (Life 

technologies Corp.), L-glutamine (Life technologies Corp.), penicillin/streptomycin (Life 

technologies Corp.), and 50 ng/mL VEGF (Peprotech Inc.). Cells were harvested three days after 

induction. 

Type I collagen (Sigma Corp.) at 1mg/mL (final concentration) were mixed with stempro34 

medium, stempro34 supplement (Life science technology Corp.), and 50mM NaOH (Sigma 

Corp.). The mixture was poured into 24-well tissue culture plates (0.5 mL per well) and allowed 

to gel in 5% CO2 incubator at 37°C for 30 minutes. And then 0.5 mL EndoMT inducing medium 

was added. After 3 days, pictures of cells were taken with 100 times magnificence under Eclipse 

Ti-U inverted research microscope (Nikon Corp.). Mesenchymal cells which migrated out in three 
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pictures from different field were counted. Experiments were repeated three times. Average value 

and standard derivation were plotted.  

2.4.14!Genetic association replication cohorts 

CHIP: In the CHIP replication cohort, an additional 140 BAV cases from the University of 

Michigan FCVC biobank were collected. These samples were genotyped using the same GWAS 

array as the discovery cohort but only examined for the three variants described here. The 

association was tested using PLINK(Purcell, et al., 2007) with 1,400 age, sex, and ancestry-

matched controls from the MGI study, which were independent samples from previously used 

controls.  Informed consent was obtained from all participants and approval was obtained from the 

Institutional Review Board of the University of Michigan Medical School.   

MHI: In the Montreal Heart Institute (MHI) biobank, 305 BAV cases and 2746 controls were 

collected and genotyped on the Illumina Core Exome array at the MHI Pharmacogenomic Centre. 

Controls were selected by excluding those with MI, PCI, Angina, CHF, valve defects, heart 

surgeries, heart arrest, atrial fibrillation and sudden cardiac death. Genotyping was performed with 

the Illumina HumanExome array. Association analysis was performed in PLINK(Purcell, et al., 

2007) using a logistic regression model correcting for sex, age, and principal components of 

ancestry 1-10. The project has been approved by the Ethics Committee of the Montreal Heart 

Institute and informed consent was obtained from study participants. 

Partners HealthCare: In the Partners HealthCare cohort, 452 Caucasian BAV cases were identified 

from the electronic medical records of Partners HealthCare (Boston, MA).  Individual 

echocardiographic images were reviewed to confirm BAV diagnosis.  Whole blood DNA was 

genotyped using the Illumina Omni2.5 Beadchip. The Framingham Heart Study dbGaP cohort, 
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genotyped using the Illumina Omni5.0 Beadchip, was used as controls. Quality control and 

population stratification of the genotype data were performed in PLINK(Purcell, et al., 2007). 

SNPs with MAF less than 1%, without physical map reference, not in Hardy-Weinberg equilibrium 

(P<10-4), differential missingness (P<10-5), were removed.  Related individuals (PI_HAT > 0.25) 

were excluded. Genome wide IBD & IBS were used to detect outliers and clusters. After merging 

case and control genotypes, additional genotypes have been imputed against the 1000 Genome 

reference (phase3) and HRC (Michigan University) panels using SHAPEIT2(Delaneau, et al., 

2012) and IMPUTE2(Howie, et al., 2009).  After QC, 452 cases and 1634 controls (1094 males + 

992 females) with 7.5 million markers were analyzed using an additive logistic regression model 

accounting for gender, age and principal components. This study has been approved by Partner’s 

HealthCare Human Research Committee and informed consent was obtained from study 

participants. 

University of Texas Health Science Center: In the UTHSC cohort, 765 patients with sporadic 

thoracic aortic aneurysms or aortic dissections (TAAD) were collected and genotyped.  874 

genotypes from dbGAP (NINDS Neurologically Normal control collection) were used as controls. 

QC and population stratification of the genotype data were performed in PLINK (Purcell, et al., 

2007). SNPs with MAF less than 1% or missing more than 1% of genotypes were 

excluded. Multidimensional scaling was used to detect and exclude population outliers. We 

imputed additional genotypes against 1000 Genomes Phase3 using SHAPEIT2(Delaneau, et al., 

2012) and IMPUTE2(Howie, et al., 2009). After QC, a total of 152 BAV cases and 633 tricuspid 

aortic valve (TAV) cases or 874 controls were analyzed using an additive logistic regression model 

accounting for gender and principal components. This study has been approved by the Committee 
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for the Protection of Human Subjects at UT Health Science Center at Houston and informed 

consent was obtained from study participants. 

ASAP-Artist-Polca-Olivia cohort: Three cohorts ASAP, ARTIST and POLCA were included in 

this replication group with a total of 275 BAV cases and 1,686 controls used for analysis. The 

POLCA/Olivia cohort is a merged cohort with a total of 1,295 individuals. The ASAP cohort 

consists of 429 patients genotyped on Illumina 610wQuad beadchips. Approximately 588,400 

SNPs were provided after quality control.  The Artist cohort consists of 406 samples genotyped 

with Omni-2.5 Quad beadchips on 2,443,180 SNPs.  In POLCA, 625 control samples were 

genotyped on Illumina 610kwQuad and in Olivia, 670 control-samples were genotyped on illumina 

1M genotyping arrays. The vast majority of included samples are of Scandinavian ancestry. For 

the ASAP database, where ancestry is specifically registered, this corresponds to >95% of the 

individuals, supported by PCA plots of genotype clustering. Imputation was performed using 

Impute2 from 1000G phase1 v3(Howie, et al., 2009). Analysis was performed using 

SNPTEST(Marchini, et al., 2007), with age, sex and first 10 principal components as covariates. 

This study was approved by Regional ethical committee of Stockholm and informed consent was 

obtained from study participants. 

BioMe: The Mount Sinai BioMe Biobank (BioMe) is an ongoing, prospective, hospital- and 

outpatient- based population research program operated by The Charles Bronfman Institute for 

Personalized Medicine (IPM) at Mount Sinai and has enrolled over 33,000 participants since 

September 2007. BioMe is an Electronic Medical Record (EMR)-linked biobank that integrates 

research data and clinical care information for consented patients at The Mount Sinai Medical 

Center, which serves diverse local communities of upper Manhattan with broad health disparities. 

BioMe populations include 25% of African ancestry (AA), 36% of Hispanic Latino ancestry (HL), 
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30% of white European ancestry (EA), and 9% of other ancestry. The BioMe disease burden is 

reflective of health disparities in the local communities. BioMe operations are fully integrated in 

clinical care processes, including direct recruitment from clinical sites waiting areas and 

phlebotomy stations by dedicated recruiters independent of clinical care providers, prior to or 

following a clinician standard of care visit. Recruitment currently occurs at a broad spectrum of 

over 30 clinical care sites. Information on BAV status, age, and sex was derived from participants’ 

EMRs. BAV cases were defined as BioMe participants with the ICD-9 code 746.4 (Congenital 

insufficiency of aortic valve). In total, there were 41 BAV cases with available genotyping data (8 

AA and 13 HL BAV cases genotyped on the Infinium Multi-Ethnic Global (MEGA) BeadChip 

from Illumina as well as 13 additional HL and 7 EA BAV cases genotyped on the Illumina 

HumanOmniExpressExome-8 v1.0 BeadChip. For each case, three controls were selected by 

genetically matching using the first two genetic principal components and stratification by age and 

sex. Logistic regression was performed in PLINK for the 3 SNPs in the 4 groups(Purcell, et al., 

2007). We performed analyses both including and excluding the BioME non-European samples 

and results were highly similar.  We present results in this study excluding the non-European 

samples since there were few cases. This study has been approved by Icahn School of Medicine 

IRB and informed consent was obtained from study participants.  

2.4.15!Data availability  

The data that support the findings of this study are available from the corresponding author upon 

reasonable request. Acknowledgements 
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Figure 2-1 Regional association plot of the chr8 association region near GATA4, as observed in 

the discovery cohort  

 

Genome-wide single variant association tests were performed on 466 BAV cases and 4,660 

controls. The upper panel shows all variants that were directly genotyped in the chip array in this 

region. A missense variant (rs3729856, p.S377G) within GATA4 was observed to be associated 

with BAV with P = 3.2x10-4, that reached P = 8.8x10-8 following replication in 1,326 BAV cases 

and 8,103 controls. The bottom panel shows results after genotypes imputed from the HRC 

reference(McCarthy, et al., 2016). Coding variants are represented by triangles and noncoding 

variants are represented by squares.  
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Figure 2-2 Chromatin interactions between associated variants and GATA4 

The topological domain region containing associated variants (orange lines), genes (see inset for 

annotation descriptions), chromatin interactions by Hi-C (blue) and ChIA-PET (purple), and 

chromatin state (outer ring and standard colors from(Ernst and Kellis, 2012) but of significance 

yellow as enhancers, red as promoters, green as transcribed, blue as CTCF, and grey as inactive. 

All data are from K562 cells. rs3729856 is indicated as falling within a coding exon of GATA4. 

rs6601627 was identified as the associated variant to BAV and rs118065347 is the putative 

functional variant in linkage. rs11865347 overlaps an annotated enhancer as well as a ChIA-PET 

loop connecting to a region 3’ of GATA4. 
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Figure 2-3 EndoMT, a key process in valve development, is impaired by GATA4 deficiency 

(A) Western blot of GATA4 and GAPDH from control and GATA4 sgRNA ECs. GATA4 sgRNA 

ECs were differentiated from iPSCs transfected with px458 with GATA4 sgRNA and enriched by 

GFP. Control ECs were derived from iPSCs with px458 and enriched by GFP. Uncropped 

version is presented in Figure S2-9. 

Lower panel: quantification of western blot data. The data was normalized to control ECs. 

Experiments were repeated three times, averages and standard derivations were plotted.  

(B) Western blot of SMA and GAPDH from control ECs, control ECs undergoing EndoMT, 

GATA4 sgRNA ECs, and GATA4 sgRNA ECs undergoing EndoMT. Uncropped version is 

presented in Figure S2-10.  

Lower panel: quantification of western blot data. The data was normalized to control ECs 

undergoing EndoMT. Experiments were repeated three times, averages and standard derivations 

were plotted.  

(C) Numbers of mesenchymal cells from control and GATA4 sgRNA in collagen gel assay. The 

data was normalized to control. Experiments were repeated three times, averages and standard 

derivations were plotted.  

(D) Immunofluorescence staining of SMA and CD31 of the control and GATA4 sgRNA 

undergoing EndoMT. The scale bars represent 50 µm. Abbreviations: iPSCs: induced pluripotent 

stem cells. EC: endothelial cells. EndoMT: endothelial-to-mesenchymal transition. MW: 

molecular weight. kDa: kilodalton. * indicates P<0.05. ** indicates P<0.01. 
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Table 2-1 Genetic variants associated with BAV 

 

Variants Discovery Replication Combined 

Chr:pos 
rsid 

Protein 
Change 

Freq 
Case/ 
Ctrl (%) 

N 
Case/ 
Ctrl 

OR P 
N 
Case/ 
Ctrl 

Freq 
Case/ 
Ctrl 
(%) 

OR P 
N 
Case/ 
Ctrl 

OR P 

8:11778803 
rs6601627 Intergenic 8.2/3.7 466/ 

4660 
2.38 
(1.81-3.13) 1.5x10-10 1,021/ 

5,357 
7.2/ 
4.2 

1.73 
(1.42-2.12) 1.1x10-7 1,487/ 

10,017 
1.93 
(1.64-2.27) 3.0x10-15 

8:11614575 
rs3729856 

p.S377G 
GATA4 18.2/14.1 466/ 

4660 
1.39 
(1.17-1.66) 3.2x10-4 1,326/ 

8,103 
15.3/ 
12.7 

1.28 
(1.14-1.45) 5.3x10-5 1,792/ 

12,763 
1.31 
(1.19-1.45) 8.8x10-8 

16:72146374 
rs137867582 

p.T1221M 
DHX38 0.9/0.1 466/ 

4660 
13.14 
(5.39-32.04) 1.5x10-8 720/ 

5,831 
0.37/ 
0.15 

2.87 
(1-8.22) 5.0x10-2 1,186/ 

10,491 
7.13 
(3.63-14) 1.2x10-8 
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Figure S2-1 Quantile-quantile plot for single-variant analysis results of BAV in the discovery 

cohort.  

Variants in this plot include all those directly genotyped using the chip array and those successfully 

imputed from Haplotype Reference Consortium (HRC)(McCarthy, et al., 2016) 
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Figure S2-2 Manhattan plots for single variant association tests with BAV in the discovery cohort.  

 

The red line indicates the genome-wide significance threshold (P = 5x10-8). 

(A)!Before genotype imputation  

(B)!After genotype imputation from the HRC(McCarthy, et al., 2016) 
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Figure S2-3 Regional association plot for all coding variants of the chr8 association region near 

GATA4, as observed in the discovery cohort (N=466 BAV cases, 4,660 controls).  

 

The upper panel shows all 59 coding variants that were directly genotyped in the chip array in this 

region. A missense variant rs3729856 within GATA4 was observed with p = 3.2x10-4, that reached 

P = 8.8x10-8 following replication. The bottom panel includes additional 11 coding variants whose 

genotypes are imputed to the HRC reference(McCarthy, et al., 2016). Coding variants observed in 

this region contain missense variants (represented by triangles) and stop gain variants (represented 

by squares). 

 



 
 

52 

Figure S2-4 Forest plots of the BAV hits near GATA4 by stage and study.  

 

The combined results are for the meta-analysis of the discovery study and all replication studies.  
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Figure S2-5 Forest plots of the reciprocal conditional analysis of the two BAV hits near GATA4 

by stage and study.  

 

The combined results are for the meta-analysis of the discovery study and all replication studies.  
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Figure S2-6 The mRNA expression levels of genes surrounding the non-coding associated variant 

rs6601627 from the GTEx portal(2013). 
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Figure S2-7 iPSCs from Control patient are pluripotent. 

 

(A) Immunofluorescence staining of OCT4, SOX2, NANOG of the iPSC colonies. The scale bars 

represent 50µm. 

(B) Immunofluorescence staining of SSEA4, TRA-1-60 and TRA-1-81 of the iPSC colonies. The 

scale bars represent 50µm.  

(C) H&E staining of teratomas. The scale bars represent 50µm. DAPI marks the nucleus. 

Abbreviations: iPSCs: induced pluripotent stem cells.  
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Figure S2-8 GATA4 sgRNA/cas9 electrotransfection of iPSCs. 

 

(A) Diagram of experimental process.  

(B) Illustration of GATA4 sgRNA target site. 

(C) Flow cytometry of electrotransfected iPSCs. IPSCs in “Control” group were transfected with 

PX458 plasmids containing Cas9 and GFP. IPSCs in GATA4 sgRNA group were transfected with 

PX458 plasmids containing Cas9, GFP and GATA4 sgRNA. Successfully transfected cells were 

GFP positive. GFP positive cells within the inside area were selected for further experiments. 

(D) Immunofluorescence staining of CD31 on ECs differentiated from iPSCs. DAPI marks the 

nucleus. Scale bars represent 100µm. Abbreviations: iPSCs: induced pluripotent stem cells. EC: 

endothelial cells. GFP: green fluorescent protein. EndoMT: endothelial-to-mesenchymal 

transition. 
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Figure S2-9 Uncropped version of GATA4 and GAPDH western blot.  

 

This is uncropped version of Figure 2-3A. Abbreviations: Ctrl: control. MW: molecular weight. 

kDa: kilodalton. 
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Figure S2-10 Uncropped version of SMA and GAPDH western blot.  

 

This is uncropped version of Figure 2-3B. Abbreviations: EC: endothelial cells. EndoMT: 

endothelial-to-mesenchymal transition. MW: molecular weight. kDa: kilodalton. 
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Table S2-1 Clinical characteristics of the BAV cases in the discovery cohort (n = 466) 

 

 BAV Cases in Discovery Cohort 

 (N = 466) Age at inclusion, median (IQR) 39.0 (31.0-46.0) 
Male sex, n (%) 345 (74) 
Hypertension, n (%) 253 (54) 
Dyslipidemia, n (%) 203 (44) 
Smoking - ever, n (%) 198 (43) 
BAV subtype, n (%)  
    Type 0 anterior-posterior 6 (1.3) 
    Type 0 lateral 10 (2.1) 
    Type 1a 202 (43) 
    Type 1b 45 (9.7) 
    Type 1c 11 (2.4) 
    Type 2a 16 (3.4) 
    Type 2b 1 (0.2) 
    Type 2c 8 (1.7) 
    Type 3 5 (1.1) 
    No information on subtype 162 (35) 
Thoracic aortic aneurysm, n (%)  
    Arch 40 (8.6) 
    Ascending 316 (68) 
    Descending 10 (2.1) 
    Root 21 (4.5) 
    None 79 (17) 
Aortic stenosis, n (%) 259 (56) 
Aortic insufficiency, n (%) 246 (53) 
Other congenital heart defects, n (%) 4 (0.9) 
BAV in family*, n (%) 93 (20) 

*Number (%) of cases reporting one or more family member with BAV.  
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Table S2-2 Non-additive association results for the BAV hits in the discovery study (466 BAV 

cases and 4,660 controls) 

 

Variants Dominant Tests Recessive Tests 

Chr:pos rsID Protein 
Change OR P OR P 

8:11778803 rs6601627  
A/G Intergenic 2.39 

(1.81-3.15) 6.4x10-10 8.04 
(1.78-36.26) 6.7x10-3 

8:11614575 
exm682536 
rs3729856 

A/G 

p.S377G  
GATA4 

1.48 
(1.21-1.82) 1.5x10-4 1.24 

(0.63-2.41) 0.5 
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Table S2-3 Association results with thoracic aortic aneurysm (TAA) of the two BAV hits in the discovery study. 

Variants BAV with TAA BAV without TAA TAA without BAV 

Heterogeneity 

P* 

Chr:pos rsID 
Protein 

Change 

Freq 

(%) 

Case/ 

Ctrl 

N 

Case/ 

Ctrl 

OR P 

Freq (%) 

Cases/ 

Ctrl  

N 

Case/ 

Ctrl 

OR P 

Freq 

(%) 

Cases/ 

Ctrl  

N 

Case/ 

Ctrl 

OR P 

8:11778803 
rs6601627 

A/G 
Intergenic 

8.1/ 

3.8 

387/ 

3870 

2.29 

(1.72-3.06) 
2.0x10-8 

8.2/ 

3.4 

79/ 

790 

2.76 

(1.41-5.40) 
3.0x10-3 

4.8/ 

3.6 

414/ 

4140 

1.38 

(0.98-1.95) 
6.0x10-2 0.62 

8:11614575 

exm682536 

rs3729856 

A/G 

p.S377G 

GATA4 

18.0/ 

14.3 

387/ 

3870 

1.35 

(1.11-1.65) 
3.0x10-3 

19.6/ 

13.2 

79/ 

790 

1.63 

(1.05-2.54) 
3.0x10-2 

13.7/ 

13.3 

414/ 

4140 

1.04 

(0.84-1.28) 
7.2x10-1 0.44 

 

*Heterogeneity tests were performed to compare the tests of BAV patients with TAA and the tests of BAV patients without TAA.  
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Table S2-4 Association results with BAV cases with and without family members with BAV and/or TAA of the two BAV hits in the 

discovery study. 

 

Variants BAV cases without  
family members who have BAV and/or TAA 

BAV cases with  
family members who have BAV and TAA 

Heterogeneity 

P 
Chr:pos rsID Protein 

Change 

Freq (%) 
Cases/Ct

rl%) 
N 

Case/Ctrl OR P Freq (%) 
Cases/Ctrl 

N 
Case/Ctrl OR P 

8:11778803 rs6601627 A/G Intergenic 8.5/3.6 371 / 
3710 

2.54 
(1.90-3.41) 4.8x10-10     6.8/4.0 95/ 

950 
1.84 

(0.98-3.44)   5.8x10-2 0.36 

8:11614575 
exm682536 
rs3729856 

A/G 

p.S377G 
GATA4 18.2/14.3 371 / 

3710 
1.37 

(1.11-1.67) 2.7x10-3 18.4/13.6 95/ 
950 

1.50 
(1.00-2.26) 5.3x10-2 0.69 
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Table S2-5 Association results with BAV subtypes of the two BAV hits in the discovery study. 

 
Variants 

 
BAV type 1a 

BAV non-type 1a 
(patients without available subtype information 

are excluded) 

Heterogeneity 
P 

Chr:pos rsID Protein 
Change 

Freq (%) 
 Cases/Ctrl 

N 
Case/Ctrl OR P Freq (%) 

Cases/Ctrl 
N 

Case/Ctrl OR P 

8:11778803 rs6601627 A/G Intergenic 6.9/3.5 202/ 
2020 

2.07 
(1.35-3.17) 8.3x10-4     10.8/3.6 102/ 

1020 
3.42 

(2.00-5.87) 8.7x10-6 0.15 

8:11614575 
exm682536 
rs3729856 

A/G 
p.S377G GATA4 17.3/13.4 202/ 

2020 
1.40 

(1.06-1.84) 1.9x10-2 15.2/14.6 102/ 
1020 

1.09 
(0.72-1.66) 6.8x10-1 0.34 
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Table S2-6 Association results with BAV cases in males and females of the two BAV hits in the discovery study. 

Variants 

 
In males 
 

 
In females 
 Heterogeneity 

 P 

Chr:pos rsID Protein 
Change 

Freq (%) 
 Cases/Ctrl N 

Case/Ctrl OR P Freq (%) 
Cases/Ctrl 

N 
Case/Ctrl OR P 

8:11778803 rs6601627 A/G Intergenic 9.2/3.8 344/3440 2.74 
(2.03-3.69) 4.0x10-11 5.3/3.5 122/1220 1.53 

(0.84-2.80)   1.6x10-1 0.09 

8:11614575 
exm682536 
rs3729856 
A/G 

p.S377G GATA4 18.0/14.1 344/3440 1.36 
(1.10-1.68) 4.2x10-3 18.9/14.1 122/1220 1.48 

(1.03-2.11) 3.2x10-2 0.70 
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Table S2-7 ICD-9 Diagnoses codes used to exclude MGI controls with aortic diseases  

ICD-9 Inclusion Diagnoses for Aortic Disease MGI Controls 
441 Aortic Disease - Major Classes 
Aortic dissection  
441.00 Unspecified site 
441.01 Thoracic 
441.02 Abdominal 
441.03 Thoracoabdominal 
Aortic Aneurysm  
441.2 Ascending 
441.1 Ascending, if ruptured 
441.2 Arch 
441.1 Arch, if ruptured 
441.9 Descending, not otherwise specified (NOS) 
441.5 Descending, if ruptured 
441.2 Thoracic descending 
441.1 Thoracic descending, if ruptured 
441.4 Abdominal descending 
441.3 Abdominal descending, if ruptured 
441.7 Thoracoabdominal 
441.6 Thoracoabdominal, if ruptured 
441.4 Abdominal 
441.3 Abdominal, if ruptured 
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Chapter 3!Improving power of association tests using multiple sets of imputed genotypes 

from distributed reference panels 

 

!

The accuracy of genotype imputation depends upon two factors: the sample size of the reference 

panel and the genetic similarity between the reference panel and the target samples. When multiple 

reference panels are not consented to combine together, it is unclear how to combine the imputation 

results to optimize the power of genetic association studies. We compared the accuracy of 9,265 

Norwegian genomes imputed from three reference panels – 1000 Genomes Phase 3 (1000G), 

Haplotype Reference Consortium (HRC), and a reference panel containing 2,201 Norwegian 

participants from the population-based Nord Trøndelag Health Study (HUNT) from low-pass 

genome sequencing. We observed that the population-matched reference panel allowed for 

imputation of more population-specific variants with lower frequency (minor allele frequency 

(MAF) between 0.05% and 0.5%). The overall imputation accuracy from the population-specific 

panel was substantially higher than 1000G and was comparable with HRC, despite HRC being 15-

fold larger. These results recapitulate the value of the population-specific reference panels for 

genotype imputation. We also evaluated different strategies to utilize multiple sets of imputed 

genotypes to increase the power of association studies. We observed that testing association for all 

variants imputed from any panel results in higher power to detect association than the alternative 

strategy of including only one version of each genetic variant, selected for having the highest
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imputation quality metric.  This was particularly true for lower-frequency variants (MAF < 1%), 

even after adjusting for the additional multiple testing burden.  

!

Many novel disease-associated signals for a wide variety of diseases and traits have been 

successfully identified using imputation-based meta-analyses(Cheng and Thompson, 2016; 

Cooper, et al., 2008; De Jager, et al., 2009; Ge, et al., 2016; Horikoshi, et al., 2015; Houlston, et 

al., 2008; Jin, et al., 2016; Loos, et al., 2008; Ruth, et al., 2015; Zeggini, et al., 2008; Zeggini, et 

al., 2007). Genotype imputation is the process of inferring missing genotypes in study samples 

using a reference panel of high-density haplotypes(Li, et al., 2009). Imputation allows variants that 

are not directly genotyped to be studied without other costs than computation. Previous simulations 

showed that imputation substantially increases the power of association studies to detect causal 

loci(Marchini and Howie, 2010; Spencer, et al., 2009). Imputation-based genome-wide association 

studies (GWAS) have successfully identified novel signals that were undetected in chip-based 

studies. For example, two disease-associated signals were detected in the 1000G-based 

imputation(Auton, et al., 2015) for the Wellcome Trust Case Control Consortium phase 1 Data 

(WTCCC), which were missed in the original WTCCC GWAS study that was performed four 

years before(Burton, et al., 2007; Huang, et al., 2012). Imputation also facilitates fine-mapping 

studies by allowing most polymorphic variants, including causative ones, to be tested in known 

disease associated loci. For example, the strongest association signal, observed at the imputed 

variant rs7903146 of the TCF7L2 locus in the WTCCC type 2 diabetes scan, is suggested to be 

causal association in the locus(Mahajan, et al., 2014; Marchini, et al., 2007). Furthermore, 

imputation allows for meta-analysis between samples that have genotyped using different arrays, 

increasing power.  
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   However, for studies that have access to population-matched genome sequenced 

individuals, there is uncertainty in deciding between a smaller, ancestry-matched reference panel 

and a larger publicly-available cosmopolitan reference panel. An ideal reference panel is expected 

to have closely matched ancestry to study samples because the genetic similarity increases the 

accuracy of imputation(Deelen, et al., 2014; Huang and Tseng, 2014; Huang, et al., 2015; Low-

Kam, et al., 2016; Mitt, et al., 2017; Okada, et al., 2015; Pistis, et al., 2015; Roshyara and Scholz, 

2015; Walter, et al., 2015). On the other hand, the imputation accuracy increases when larger 

reference panels are used, especially for lower-frequency variants(Browning and Browning, 2009; 

Howie, et al., 2009; Huang, et al., 2009; Li, et al., 2009; Roshyara and Scholz, 2015).  

 Furthermore, different whole-genome reference panels may generate discordant imputed 

genotypes for the same variants in the same study samples. This brings in challenges for the follow-

up association tests. The optimal strategy to perform association tests using genotypes imputed by 

different reference panels remains unclear. IMPUTE2 provides one possible approach to merge all 

reference panels to a single larger panel for genotype imputation when multiple reference panels 

are available (Howie, et al., 2009), which may avoid the problem that different versions of 

genotypes are imputed for the same variants. The Genome of the Netherlands Consortium and the 

UK10K study have further shown that the combined reference panel of 1000G and the population-

specific reference resulted in better imputation results compared to the two individual panels for 

rare variants(Deelen, et al., 2014; Huang, et al., 2015). However, this approach is not feasible when 

individual-level haplotypes within the reference panel are not accessible, as is the case with the 

Haplotype Reference Consortium (HRC)(McCarthy, et al., 2016), primarily due to ethical issues 

surrounding sharing of individual-level genetic data(McCarthy, et al., 2016).  
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Here we genotyped 9,265 Norwegian participants from the HUNT study(Krokstad, et al., 2013) 

for 350,270 polymorphic autosomal variants using the Illumina Human CoreExome array with 

approximately 240,000 GWAS tagging markers. We created a population-matched reference panel 

by whole-genome sequencing (WGS) 2,021 individuals from the HUNT study to a mean depth of 

5x. We imputed variants from the HUNT WGS reference panel as our ethnically matched panel. 

We also performed imputation with two additional imputation reference panels: the 

HRC(McCarthy, et al., 2016) and 1000G Phase 3(Auton, et al., 2015). First, we systematically 

evaluated and compared the imputation results from the three reference panels, including the 

number of successfully imputed variants as well as the imputation accuracy. Next, we evaluated 

and compared the power of association tests between two approaches to incorporate multiple 

versions of imputed genotypes. First is the “best Rsq” approach, which retains imputed genotypes 

only from the panel with highest imputation quality metrics for each variant. Second is the “best 

p-value” approach that tests association with all imputed genotypes and uses the most significant 

association p value, adjusting for the additional variants tested.   

!

3.1.1! Array-based genotyping 

9,265 samples from the HUNT Biobank in Norway were genotyped at 350,270 polymorphism 

autosomal variants using an Exome + GWAS chip array (HumanCoreExome-12 v1.0, Illumina). 

Genotype calling was performed using GenTrain version 2.0 in GenomeStudio V2011.1 

(Illumina). Samples with <98% genotype calls (N = 37), evidence of gender discrepancy (N = 

21), duplicates (N = 66) as well as individuals with non-Norwegian ancestry identified by 

plotting the first 10 genotype-driven principal components(Springer-Verlag, 1986) (N = 7) were 

excluded from further analysis (N = 131, 1.19%). As Figure S3-1 shows, the HUNT GWAS 
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samples have similar ancestry to the samples in the HUNT WGS reference panel.  All HUNT 

research subjects provided informed written consent and IRB approval was obtained for genetic 

studies. 

   Relatedness was evaluated based on the estimation of the proportion of identity by descent 

(IBD) by PLINK(Purcell, et al., 2007). We excluded 1,644 samples from the HUNT GWAS 

sample due to 1st or 2nd degree relatedness to samples in HUNT WGS, defined as IBD ≥ 0.25. We 

excluded samples that were related to samples within the reference panel to avoid inflating 

imputation statistics for regions inherited IBD. We performed variant-level quality control by 

excluding 19,872 variants that met any of the following criteria; variants with a cluster separation 

score < 0.3 reported by GenomeStudio V2011.1 (Illumina), < 95% genotype call rate, or deviation 

from Hardy–Weinberg equilibrium (P < 1 × 10−5).  

3.1.2! Genotype imputation  

Genotype imputation with the 1000G Phase 3(Auton, et al., 2015) and the HRC(McCarthy, et al., 

2016) reference panels was conducted using the Michigan Imputation Server(Das, et al., 2016) 

and imputation with the HUNT WGS reference panel was conducted using a local server. The 

study samples were phased using SHAPEIT2(v2.r790)(Delaneau, et al., 2013) followed by 

imputation using minimac3(v2.0.1)(Fuchsberger, et al., 2015; Howie, et al., 2012). Two 

imputation metrics output by minimac3 were used for evaluating the imputation quality: ImpRsq 

and EmpRsq. ImpRsq is previously known as r"  in different versions of the 

MaCH/minimac(Fuchsberger, et al., 2015; Howie, et al., 2012; Li, et al., 2010). ImpRsq is defined 

for both genotyped and ungenotyped variants in the chip array as an estimate of the squared 

correlation between imputed dosages and true, unobserved genotypes, calculated as the observed 

variance over the expected variance. EmpRsq is defined only for genotyped variants in the chip 
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array as the squared correlation between leave-one-out imputed dosages and the true, observed 

genotypes (See “Estimated Imputation Accuracy” section at 

http://genome.sph.umich.edu/wiki/Minimac_Diagnostics for details). 

 

3.1.3! Reference panels 

The HUNT WGS reference panel contains 1,101 earliest onset cases with myocardial infarction 

and 1,100 age and sex matched controls that were selected from the HUNT study(Krokstad, et 

al., 2013). Whole genome sequencing to ~5x depth was performed on either Illumina HiSeq 

2000 or 2500.  We followed the GotCloud SNP calling pipeline to process the whole genome 

sequencing data(Jun, et al., 2015). The variant sites and genotype likelihood were called using 

SAMtools(Li, et al., 2009) and the genotypes for SNPs were refined and phased using Beagle 

v4(Browning and Browning, 2013). After quality control, 20.2 million single nucleotide variants 

were retained in 2,201 samples, of which 4 million were unique to our study; not observed in 

dbSNP 144(Sherry, et al., 2001), 1000 Genomes Phase 3(Auton, et al., 2015), UK10K(Walter, et 

al., 2015), ESP6500(2013), or ExAC.r0.3(Lek, et al., 2016) (Table 3-1). The individuals in the 

HUNT WGS panel have similar ancestry to the HUNT study samples (Figure S3-1) and are from 

the same geographic region, although we excluded in the genotyped samples any 1st or 2nd degree 

relatives of the sequenced samples to avoid biased estimates of the accuracy of imputation.  

Additionally, there were no close relatives within the sequenced samples.  The other two 

reference panels that we used for genotype imputation are the 1000 Genomes Phase 3 

(1000G)(Auton, et al., 2015) and the HRC release 1(McCarthy, et al., 2016) containing 32,488 

individuals, both of which are pre-stored in the Michigan Imputation Server(Das, et al., 2016) 

(Table 3-2).  The HUNT cohort contributed an early freeze of whole genome sequencing data 
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consisting of 1,023 samples to the HRC consortium. Thus, the HUNT WGS and the HRC 

reference panels have 1,023 samples in common. Variants with minor allele counts (MAC) less 

than or equal to 5 were excluded from HRC(McCarthy, et al., 2016).  

 

3.1.4! Permutation test 

To determine the genome-wide significance thresholds for association tests using the two 

approaches to incorporate imputed genotypes, we performed permutation tests. The measurements 

of the high-density lipoprotein (HDL) cholesterol for the study samples were permuted 1,000 

times. Each permutation was followed by a genome-wide association test (GWAS) using the 

permuted phenotypes. The most significant p-values from each of the 1,000 GWAS were ranked. 

And the significance threshold with family-wise error rate (FWER) n/1000 equals to the nth 

smallest p-value. Because the “best p-value” approach tests more variants, it will be a more 

stringent significance threshold than the “best Rsq” approach. 

3.1.5! Power estimation 

In order to estimate the power to detect association under the two approaches to incorporate 

imputed genotypes from multiple reference panels, we considered directly genotyped variants as 

causal variants, and used multiple sets of imputed genotypes to evaluate the power. First, we 

obtained the leave-one-variant-out imputed dosages for those directly genotyped variants. The 

official release of minimac3 performs leave-one-out hidden Markov model (HMM) calculation 

internally to calculate leave-one-out Rsq summary statistics, but does not output individual 

dosages (Fuchsberger, et al., 2015; Howie, et al., 2012). We modified minimac3 to include the 

individual leave-out-out dosages in the output VCF for the genotyped variants. Second, we 

simulated phenotypes based on the genotypes obtained by the chip array. Finally, we evaluated 
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power of the two approaches by performing association tests between the simulated phenotypes 

and the imputed dosages based on either “best Rsq” or “best p-value” approaches. 

  

The details of simulation follow the steps described below: 

1.  Select the non-centrality parameter corresponding to the association test p-value #$ . We 

calculate the non-centrality parameter N%" as a chi-square statistic corresponding to the upper-tail 

probability #$, where N is the total number of study subjects. This ensures that the median p-value 

is #$ when the true phenotypic variance explained by the genotype is %". 

2. For each variant, we randomly draw & from the normal distribution with mean 0 and standard 

deviation 1 − %". We calculate the effect size ) as %" 2+(1 − +), where + is the minor allele 

frequency (MAF) estimated using the chip genotypes of the variant. The phenotype value y is then 

calculated as .) + &, where the chip genotypes . is 0, 1, or 2. The phenotypic variance explained 

by G and & will be %" and 1-%", respectively.  

3. We perform the linear regression using the leave-one-variant-out dosages for this variant, which 

were imputed using the three different reference panels respectively, and the phenotype y.  

4.  For the “best p-value” approach, the final association p value equals to most significant one 

among the three p values associated with the three different versions of imputed dosages. With the 

“best Rsq” approach, the final p value equals to the one corresponding to the reference panel with 

the highest imputation quality (ImpRsq), an estimated value for the correlation between imputed 

genotypes and true, unobserved genotypes. 

5. The power to detect association signals equals to the percentage of final p values exceeding the 

genome-wide significance threshold determined for each approach by the permutation tests 

described above. 
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   We performed linkage disequilibrium(LD) based variant pruning for the 289,376 directly 

genotyped variants that were found by all three reference panels using PLINK(Purcell, et al., 2007) 

and obtained 132,183 variants with LD r"< 0.2 among each other. Then we randomly selected 

3,000 variants for each of the MAF categories: MAF ! 0.001, MAF > 0.001 and ! 0.01, MAF > 

0.1 and ! 0.05, and MAF > 0.05. We applied ImpRsq > 0.3, 0.5 and 0.8 to remove poorly imputed 

genotypes and variants that were successfully imputed from at least two references were used for 

this simulation study. All 5 steps above were repeated given different p1’s ranging from 5x10-8 to 

1x10-13. Additionally, the entire process was repeated 5 times across the selected variants to 

average power.  

 

3.1.6! Partial correlation estimation 

To quantify the net gain of imputation accuracy obtained by including another reference panel on 

top of an existing panel, we estimated the partial correlation between the leave-one-out imputed 

dosages from the additional panel and the chip genotypes, conditioned on the leave-one-out 

imputed dosages from the existing panel. The correlation has been estimated for every pair of 

reference panels among the three on each of the 289,376 genotyped variants that were found in all 

three panels. For example, to estimate the net gain of including 1000G panel on top of HUNT 

panel (PartialRsq [1000G,Chip | HUNT]), we first obtained the leave-one-out dosages based on 

1000G and HUNT WGS (details described in the Power estimation subsection). Secondly, for each 

variant, we performed three linear regressions on the chip genotypes: the first one has the imputed 

dosages from 1000G and HUNT WGS as covariates (model 1), the second one has the imputed 

dosages from HUNT WGS only as a covariate (model 2), and the third one does not have any other 

covariate except for the intercept (model 3). Lastly, we obtained sum of squared residuals (SSR) 
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for the three linear regressions and calculated the partial correlation (partial Rsq) as 

223456789:22345678;
22345678<

. In a similar notation, the EmpRsq is equivalent to 22345678<:223456789
22345678<

, and 

their sum should be equivalent to the proportion of explained variance by both sets of imputed 

dosages. Our intuition is that the more extra information the additional reference panel provides, 

the higher the partial correlation will be.   

 

!

! Evaluating successfully imputed variants using different reference panels 

In total, ~23.8 million variants were successfully imputed using minimac 3(Fuchsberger, et al., 

2015; Howie, et al., 2012) from at least one of the three reference panels and exceeded the 

threshold of estimated imputation quality (ImpRsq) " 0.3 (Figure 3-1).  The three reference panels 

yielded roughly equal number of SNPs with MAF more than 1%, but the 1000G uncovered more 

unique variants; approximately 75.3% (1,068,228 out of 1,418,417) that were uniquely imputed 

from 1000G are indels or structural variants, a category of variation that is not available in the 

other two reference panels.  We observed that imputation from the HRC panel resulted in more 

extremely rare variants (MAF less than 0.05%) than from HUNT WGS and 1000G. Imputation 

from the HUNT WGS panel uncovered more variants with MAF between 0.05% and 1% than the 

other two reference panels (Table 3-3).  Approximately 3.6 million variants were uniquely imputed 

by the HUNT WGS panel (Figure 3-1) and the majority of them have MAF less than or equal to 

0.05% (Figure 3-2). A threshold " 0.3 for ImpRsq was applied as recommended to remove most 

of poorly imputed variants while retaining the vast majority of well imputed SNPs(Li, et al., 2009). 
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We observed that the average EmpRsq remained above 0.6 for all MAF categories from all three 

reference panels when the ImpRsq " 0.3 threshold was applied (Figure S3-2). 

3.1.7! Comparing imputation accuracy from different reference panels 

To compare the imputation accuracy across the three reference panels, we examined all 289,376 

variants that were directly genotyped by the chip array and available in all three reference panels. 

“Leave-one-variant-out” imputation results were used for these directly genotyped variants, 

meaning that one-by-one, each genotyped variant was masked, imputed, and then compared to the 

directly genotyped calls.  The EmpRsq was estimated for each genotyped variant from each panel, 

which is the squared Pearson correlation between the imputed allele dosages and the genotypes 

called by direct genotyping. Figure 3-3a compares the average EmpRsq for all genotyped variants 

categorized by MAF among different reference panels. The MAF is estimated using the genotypes 

called by the chip array. Imputation from HRC has higher imputation accuracy for rare variants 

with MAF < 0.5% than the other two reference panels, which is expected because the number of 

samples available in HRC is much larger than the other two panels and the imputation accuracy 

for extremely rare variants depends on the number of copies of alternate alleles(Roshyara and 

Scholz, 2015). What is unexpected is that for variants with MAF " 0.5%, HRC and HUNT WGS 

panels show comparable imputation accuracy, even though the size of the HUNT WGS panel is 

15 times smaller than HRC. Consistent to previous studies, this result demonstrated the value of 

whole-genome sequencing for ancestry matched samples as a reference panel for genotype 

imputation(Deelen, et al., 2014; Huang and Tseng, 2014; Huang, et al., 2015; Low-Kam, et al., 

2016; Okada, et al., 2015; Pistis, et al., 2015; Roshyara and Scholz, 2015; Walter, et al., 2015).  It 

is also noticed that imputation from 1000G has lower average ImpRsq than the other two reference 
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panels (Figure 3-3b-d), which is consistent to the lower proportion of variants passing the various 

ImpRsq thresholds in 1000G observed in Figure S3-2. 

To further evaluate the impact of the sample size of the HUNT WGS panel on the imputation 

accuracy, we have randomly drawn 500, 1000, and 1500 samples from the original HUNT 

reference panel for imputation. Figure S3-3 shows the comparison of the average EmpRsq for all 

genotyped variants categorized by MAF among the target samples, across all reference panels. As 

expected, increases in the sample size of the HUNT WGS reference panels resulted in higher 

imputation accuracy, particularly for less frequent variants with MAF < 0.5%. Interestingly, we 

observed that the HUNT WGS with 500 samples outperforms 1000G(Auton, et al., 2015) for 

variants with MAF > 0.5%. These results are consistent with other studies with population specific 

reference panels(Mitt, et al., 2017; Pistis, et al., 2015). The subset of 1000 samples provides better 

imputation accuracy than 1000G(Auton, et al., 2015) even for variants with MAF as low as 0.1% 

and comparable imputation accuracy to HRC(McCarthy, et al., 2016) for variants with MAF > 

0.5%.  

   We examined whether our evaluation of imputation accuracy is biased in favor of HUNT 

WGS due to relatedness. Previous studies have shown that the relatedness between study samples 

and reference samples increases genotype imputation efficiency since related individuals tends to 

share longer haplotype stretches than unrelated ones(Huang and Tseng, 2014). To avoid the bias 

of imputation accuracy due to the relatedness between our study samples and the samples in the 

HUNT WGS reference panel, we excluded 1,644 study samples who are up to 2nd degree relatives 

of HUNT WGS samples.  Relatedness was based on the estimation of the proportion of IBD by 

PLINK(Purcell, et al., 2007). We observed that excluding these study samples did not affect the 
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imputation accuracy except causing a slight decrease of the imputation accuracy for those very 

rare variants with MAF < 0.05% (Figure S3-4). 

3.1.8! Evaluating two possible association test strategies to use multiple sets of imputed 

genotypes 

As Figure 3-1 shows, approximately 60% of all successfully imputed variants were imputed from 

more than one reference panel, which makes it unclear how to perform downstream association 

tests. We compared two possible strategies: the “best p-value” and the “best Rsq” approaches. The 

“best p-value” approach uses each version of imputed genotypes to choose the lowest association 

p-value, thereby increasing the burden of adjusting for multiple hypothesis testing. The “best Rsq” 

approach selects the imputed variant with the highest estimated imputation quality ImpRsq, which 

is expected to be a reasonable approximation of the association between imputed and true 

genotypes, especially for common variants (Figure S3-5). 

 We have compared the power of the two approaches to detect association signals accounting for 

the fact that the “best p-value” approach needs adjusting for the additional variants tested. To 

determine the significant thresholds for association tests with a family-wise error rate (FWER) 

0.05, we estimated the number of independent tests using 1,000 permutations. For the “best Rsq” 

approach, where fewer ‘variants’ are analyzed, the significance threshold is 4.69x10-9 (2.10x10-9 

with a Bonferroni correction) and for the best p-value approach, it is 2.53x10-9 (1.05x10-9 with a 

Bonferroni correction).  

Using the permutation-derived significance thresholds above, we evaluated the power of 

the two approaches for association tests with quantitative traits through a simulation study (details 

described in methods). Our results indicated that the “best p-value” approach has more power to 

detect association signals than the “best Rsq” approach, particularly for rare variants with MAF < 
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1%, no matter how stringent the ImpRsq threshold was used for filtering out the poorly imputed 

genotypes (Figure 3-4, Figure S3-6 and Table S3-1). This is probably because the estimated 

imputation quality ImpRsq does not always agree with empirical imputation quality EmpRsq 

especially for rare variants (Figure S3-5), resulting in loss of variants with highest empirical 

imputation quality when selecting the “best Rsq” strategy.  In addition, the distributions of the 

ImpRsq are quite different from different panels. Notably, from 1000G(Auton, et al., 2015), the 

ImpRsq and EmpRsq were substantially lower for low-frequency variants (0.5% < MAF < 5%), 

and ImpRsq tends to underestimate EmpRsq (Figure S3-5). The two approaches have comparable 

association power for variants with MAF ≥ 1%, where estimated and empirical imputation 

qualities highly agree with each other (Figure S3-5). Our observation suggests that the inaccurate 

prediction of imputation quality have a higher impact than increased burden of multiple testing in 

association test with rare variants.  

 

3.1.9! Evaluating net gain of imputation accuracy by including an additional reference 

panel 

Finally, we quantified the net gain of imputation accuracy by including an additional reference 

panel as a “partial Rsq” conditioned on the imputed genotypes from an existing reference panel 

(See Materials and Methods for details). Intuitively, this represents the difference between the 

“optimal EmpRsq” linearly combined between two sets of imputed genotypes and the EmpRsq 

from the original imputed genotypes. 289,376 genotyped variants that were found in all three 

panels were used to evaluate the additional information that were gained from one reference panel 

given imputed dosages based on another panel. As Figure S3-7 presents, each reference panel is 

able to provide additional information to improve imputation accuracy. However, relatively less 
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information could be gained by including 1000G(Auton, et al., 2015) panel on top of HRC across 

all MAF categories. This is expected since 1000G samples are included in the HRC panel, with 

the caveat that only single nucleotide variants with minor allele count ≥ 5 were retained. Note that 

evaluation of indels and structural variants absent in HRC were not included in this experiment.  

In contrast, given the imputed dosages from 1000G, both HUNT WGS and HRC provide 

substantial net gain of imputation accuracy, which is consistent to our observations. Furthermore, 

HUNT WGS and HRC provide additional information conditional on each other. More 

specifically, more extra information was obtained from HRC given HUNT WGS than those were 

obtained from HUNT WGS given HRC for these genotyped variants, which is also consistent to 

our observations in Figure 3-3. 

!

Many studies have performed whole genome sequencing of a subset of samples followed by 

imputation into samples with GWAS data(Holm, et al.; Lane, et al., 2016; Nalls, et al., 2014; van 

Leeuwen, et al., 2016). However, the trade-offs between the panel size, imputable variant types, 

and population specificity across different reference panels make it challenging to decide on the 

optimal strategy for imputation and downstream association analysis.  We evaluated methods for 

genotype imputation when different reference panels are available. Our findings have 

demonstrated the benefits of uncovering novel variants with low frequency by using population-

specific reference panels as has been reported by previous studies(Huang, et al., 2015). Since the 

population-specific HUNT panel shared 1,023 samples with HRC(McCarthy, et al., 2016), we 

expect to see an even bigger advantage in the number of novel low frequency variants imputed by 

the population-specific panel if there were no overlap between the two reference panels.  
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We have also observed that large-scale publicly available reference panels, as exemplified 

by HRC (McCarthy, et al., 2016) and 1000G(Auton, et al., 2015), contribute a large number of 

variants that are not captured by population-specific reference panels. More specifically, 

HRC(McCarthy, et al., 2016), which has much larger sample size and contains more general 

European populations, contributes 3.5 million variants that could not be imputed by the other two 

panels.  Since 1000G(Auton, et al., 2015) has additional advantages that indels and structural 

variants are comprehensively detected and genotyped, 1.3 million non-SNP variants have only 

been imputed by 1000G(Auton, et al., 2015). Furthermore, each reference panel may provide 

additional information to improve imputation accuracy. Therefore, to increase the variant coverage 

and imputation accuracy as much as possible, we recommend using all three reference panels for 

imputation if available.  If a single panel has to be chosen, each option will have different 

advantages and disadvantages. We have shown that imputation from population-specific reference 

panels provides comparable imputation accuracy for variants with MAF > 0.1% . as using 

reference panels with 15 times larger sample size with only broad ancestry-matching (i.e. 

European). Although panel sizes are similar, the population-specific reference panel results in 

higher imputation accuracy than the mixed-ancestry 1000G panel (Auton, et al., 2015) for variants 

with MAF ≥ 0.05%. This has also been observed by a recently published study on Estonians(Mitt, 

et al., 2017). 

 To address the issue of imputing different versions of the same variant from different 

reference panels, we propose the “best p-value” approach, which analyzes all versions of each 

imputed variant and accounts for the multiple testing.  Our simulation study demonstrated that this 

approach has higher power for detecting association signals than selecting the imputed variant with 
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highest imputation quality given the distributions of the imputation quality metrics from different 

reference panels may be quite different, even adjusting for additional variants tested.  

The UK10K study and the Genome of the Netherlands (GoNL) Consortium suggested that 

merging multiple reference panels to a larger reference panel would improve imputation 

performance, especially for less frequent variants(Deelen, et al., 2014; Huang, et al., 2015). 

Compared to this approach, our “best p-value” approach does not require access to all reference 

panes and is feasible even if not all reference panel haplotypes are directly accessible. If large 

imputation reference panels, such as the HRC(McCarthy, et al., 2016), are not directly accessible, 

conducting association tests for all imputed versions of genotype with slightly higher 

computational cost will be an effective strategy.   

   In summary, we recommend creating a small size ancestry-matched reference panel using 

whole genome sequencing to allow for improved imputation of low frequency variants that may 

be enriched in that ancestral group, performing genotype imputation using the ancestry-matched 

reference panel and other large publicly available databases, and analyzing all versions of imputed 

variants in downstream association testing. 
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Figure 3-1 Number of variants that are imputed by different reference panels. 

 

The corresponding percentage is the variants number out of all 23.8 million variants that are 

successfully imputed by any of the three reference panels. 
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Figure 3-2 Distribution of numbers of variants that are imputed from only one reference panel or 

from multiple reference panels in different MAF categories. 

 

Variants that are imputed by 1000G only are categorized as SNPs and non-SNP variants, including 

indels, deletions, complex short substitutions and other structural variant classes. 1000G, 1000 

Genomes Phase 3; WGS, whole-genome sequencing; HRC, Haplotype Reference Consortium; 

MAF, minor allele frequency 
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Figure 3-3 HRC and HUNT WGS panels show comparable imputation quality.  

 

a. comparing the mean empirical R2 (y axis) reported by different reference panels for variants that 

are directly genotyped categorized by the MAF (x axis) without any ImpRsq threshold applied.  

b. comparing the mean Imputation R2 (y axis) reported by different reference panels for variants 

that are directly genotyped categorized by the MAF (x axis) without any ImpRsq threshold applied.  

c. comparing the mean Imputation R2 (y axis) reported by different reference panels for all imputed 

variants (ImpRsq > 0.3) by the MAF (x axis).  

d. comparing the mean Imputation R2 (y axis) reported by different reference panels for all imputed 

variants by the MAF (x axis) without any ImpRsq threshold applied. 

1000G, 1000 Genomes Phase 3; WGS, whole-genome sequencing; HRC, Haplotype Reference 

Consortium; MAF, minor allele frequency; ImpRsq, imputation quality metric R2 
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Figure 3-4 Comparison of power to detect true associations between best p-value and best Rsq 

approaches via simulation studies.  

For each MAF category, 3,000 directly genotyped variants were randomly selected based on their 

MAF estimated with genotypes obtained from the chip array to estimate the power. The power is 

calculated as the proportion of significantly associated variants across three imputed panels based 

on each strategy given the corresponding significance threshold. ImpRsq > 0.3 was applied to 

remove poorly imputed genotypes. The numbers of variants that were successfully imputed from 

at least two reference panels and used in the simulation studies are: 2,513 with MAF > 0 and ! 

0.001; 2,989 with MAF > 0.001 and ! 0.01; 3,000 with MAF > 0.01 and ! 0.05; and 3,000 with 

MAF > 0.05. MAF, minor allele frequency; ImpRsq, imputation quality metric R2
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Table 3-1 Summary of the variants in the HUNT whole-genome sequencing reference panel 

containing 2,201 individuals with average sequencing depth 5x.  

 

Variant Type Total number 
of variants 

Mean number of 
variants per 
individual (SD) 

Mean number 
of unique 
variants per 
individual (SD) 

% in 1000 
Genomes 

Number of 
novel variants* 

Splice 1,265 71.5(4.6) 0.2(0.47)  36.6 355 
Nonsense 2,432 71.5(6) 0.43(0.74) 36.6 585  
Missense 113,576 9,480(113) 13.8(13.6) 56.3 13,927  
Synonymous 77,699 10,707(100) 7.1(7.5) 68.5 5,935 
Noncoding 20,050,237 3,342,839(15,415) 1531(906) 68.7 4,030,199 
Total 20,245,209 3,363,168(15,522) 1,552(919)  68.6  4,051,001 

 

*Novel: not reported in dbSNP 144(Sherry, et al., 2001), 1000 Genomes Phase 3(Auton, et al., 

2015), UK10K(Walter, et al., 2015), ESP6500(2013), or ExAC.r0.3(Lek, et al., 2016) 



 
 

88 

Table 3-2 Reference panels used for genotype imputation 

MAC: minor allele count 

 

Reference Panels Variants Sample Size Population 

Haplotype Reference Consortium(McCarthy, 

et al., 2016) (HRC) 
39 million SNPs (MAC " 5) 32,488a 

Cosmopolitan 

(mostly 

European) 

1000 Genomes Phase 3 Version 5(Auton, et 

al., 2015) (mean depth < 8x) 

81 million Biallelic SNPs, indels, 

deletions, complex short substitutions 

and other structural variant classes 

(MAC " 2) 

2,504 Cosmopolitan 

HUNT Whole Genome Sequencing (HUNT 

WGS) (mean depth ~ 5x) 
20 million SNPs 2,201a Norwegian 

 

aHRC and HUNT whole-genome sequencing data set have 1,023 samples in overlap. 
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Table 3-3 Numbers of imputed variants contributed by each reference panel categorized by MAF.  

The threshold ImpRsq > 0.3 was applied. Each reference panel contributed uniquely imputed 

variants. The greatest number of the uniquely imputed variants among the three reference panels 

for variants in each MAF category is highlighted in red.  MAF: minor allele frequency; ImpRsq, 

imputation quality metric R2 

 

  HRC Release 1 
(39.2M SNPs, 32,488 samples 
including 1,203 HUNT samples ) 

1000G Phase3 v5 
 (81.2M markers, 2,504 samples) 

HUNT 5x WGS  
(20.2M SNPs, 2,201 samples ) 

MAF 
Number 
of Passed 
Variants 

Percent 
of 
Passed 
Variants 

Number of 
Uniquely 
Imputed 
Variants 

Number 
of Passed 
Variants 

Percent 
of 
Passed 
Variants 

Number 
of 
Uniquely 
Imputed 
Variants 

Number 
of Passed 
Variants 

Percent 
of 
Passed 
Variants 

Number 
of 
Uniquely 
imputed 
Variants 
 

(0, 0.0005) 4,337,138 23.9% 3,009,729 567,481 2.4% 230,186 2,291,216 50.6% 1,570,259 

(0.0005, 0.001) 1,339,096 91.1% 373,964 501,248 11.4% 176,252 1,668,837 94.4% 901,106 

(0.001, 0.005) 2,964,988 97.5% 140,318 2,119,956 33.6% 475,376 3,917,801 98.0% 982,320 

(0.005, 0.01) 1,125,181 99.2% 7,426 1,074,885 68.9% 126,616 1,279,200 98.6% 47,426 

(0.01, 0.05) 2,314,490 99.6% 10,525 2,554,206 89.2% 295,991 2,538,140 99.1% 55,490 

> 0.05 5,158,670 99.8% 10,692 6,547,887 98.1% 1,122,426 5,507,946 99.6% 44,866 

Total  17,239,563 55.1% 3,552,654 13,365,663 29.5% 2,426,847 17,203,140 87.4% 3,601,467 
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Figure S3-1 The principle component plots for the individuals in the HUNT WGS reference panel 

and the HUNT study samples. 
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Figure S3-2 Average EmpRsq (top panel) and the proportion of variants that passed the ImpRsq 

thresholds (bottom panel) are plotted against ImpRsq thresholds for post-imputation QC for 

variants in different MAF categories.   

Reference panels include HRC(McCarthy, et al., 2016), 1000 Genomes Phase 3(Auton, et al., 

2015). and the HUNT WGS. The dashed line is for the ImpRsq threshold ≥ 0.3. 
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Figure S3-3 Comparing the mean empirical R2 (y axis) reported by all four HUNT WGS reference 

panels, HRC(McCarthy, et al., 2016) and 1000G(Auton, et al., 2015) for all 289,376 variants that 

were directly genotyped categorized by the MAF (x axis) of the target samples. 
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Figure S3-4 Imputation of the study data set with and without the 1,644 samples, who are closely 

related to samples in the HUNT WGS, has been performed.  

For variants that were directly genotyped by the chip array, average EmpRsq are plotted by 

different MAF categories.   

 



 
 

94 

Figure S3-5 Relationships between ImpRsq (imputation quality metric estimated by minimac3) 

and EmpRsq (correlation between imputed and true genotypes).  

The plots are based on 289,376 directly genotyped variants that were found in all three panels. 

Reference panels include A. HRC(McCarthy, et al., 2016).. B. 1000G Phase 3(Auton, et al., 2015). 

C. HUNT WGS.  MSE: mean square errors.  

 

 

MAF$≤ ". $% 0.5%$<MAF$≤ $% MAF$> $%
A:)HRC

B:)1000G

C:)HUNT)WGS

MSE)=)0.0275 MSE)=)0.0024 MSE)=)0.0002

MSE)=)0.0939 MSE)=)0.024 MSE)=)0.0038

MSE)=)0.0367 MSE)=)0.0026 MSE)=)0.0003
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Figure S3-6 Comparison of power to detect true associations between best p-value and best Rsq 

approaches via simulation studies for variants with MAF ! 0.1%. 

Different ImpRsq cutoffs were used to remove poorly imputed genotypes. Only variants with at 

least two versions of successfully imputed genotypes were used in the simulation study. 2,513 

variants passed the threshold ImpRsq > 0.3, 2,095 variants passed the threshold ImpRsq > 0.5, 

and 899 variants passed the threshold ImpRsq > 0.8. 
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Figure S3-7 Plots of partial correlation between imputed dosages by one reference panel and the 

chip genotypes given imputed dosages by another reference panel. 

The plots only contain the genotypes variants found in all three reference panels: HRC(McCarthy, 

et al., 2016), 1000G Phase 3(Auton, et al., 2015), and HUNT WGS. MAF was calculated based 

on the chip genotypes. A. 19,337 variants with MAF ≤ 0.5%. B. 26,661 variants with MAF 

between 0.5% and 5%. C. 243,378 variants with MAF  > 5%.  

MAF$≤ ". $%A
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". $% <MAF$≤ $%B
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MAF$> $%C
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Table S3-1 Percentage of variants detected as significant (association p value reaches the significant p threshold) using the best p and 

the best R2 methods when the ImpRsq > 0.3 was applied. 

True 
p 0 < MAF <= 0.001 0.001 < MAF <= 0.01 0.01 < MAF <= 0.05 MAF > 0.05 
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Chapter 4!Efficiently controlling for case-control imbalance and sample relatedness in large-

scale genetic association studies 

 

!

In genome-wide association studies (GWAS) for thousands of phenotypes in large biobanks, most 

binary traits have substantially fewer cases than controls. Both of the widely used approaches, 

linear mixed model and the recently proposed logistic mixed model, perform poorly -- producing 

large type I error rates -- in the analysis of phenotypes with unbalanced case-control ratios. Here 

we propose a scalable and accurate generalized mixed model association test that uses the 

saddlepoint approximation (SPA) to calibrate the distribution of score test statistics.  This method, 

SAIGE, provides accurate p-values even when case-control ratios are extremely unbalanced. It 

utilizes state-of-art optimization strategies to reduce computational time and memory cost of 

generalized mixed model. The computation cost linearly depends on sample size, and hence can 

be applicable to GWAS for thousands of phenotypes by large biobanks. Through the analysis of 

UK-Biobank data of 408,961 white British European-ancestry samples, we show that SAIGE can 

efficiently analyze large sample data, controlling for unbalanced case-control ratios and sample 

relatedness.

!

 



 
 

101 

Decreases in genotyping cost allow for large biobanks to genotype all participants, enabling 

genome-wide scale phenome-wide association studies (PheWAS) in hundreds of thousands of 

samples. In a typical genome-wide PheWAS, GWAS for tens of million variants are performed 

for thousands of phenotypes constructed from Electronic Health Records (EHR) and/or survey 

questionnaires from participants in large cohorts(Bush, et al., 2016; Cronin, et al., 2014; Denny, 

et al., 2013; Denny, et al., 2011; Dumitrescu, et al., 2015; Hall, et al., 2014; Hebbring, et al., 2015; 

Hebbring, et al., 2013; Liao, et al., 2013; Millard, et al., 2015; Moore, et al., 2015; Namjou, et al., 

2014; Neuraz, et al., 2013; Pendergrass, et al., 2013; Ritchie, et al., 2013; Shameer, et al., 2014; 

Ye, et al., 2015). For binary traits based on disease/condition status in PheWAS, cases are typically 

defined as individuals with specific International Classification of Disease (ICD) codes within the 

EHR.  Controls are usually all participants without the same or other related conditions(Bush, et 

al., 2016; Denny, et al., 2013). Due to the low prevalence of many conditions/diseases, case-control 

ratios are often unbalanced (case:control=1:10) or extremely unbalanced (case:control<1:100). 

The scale of data and the unbalanced nature of binary traits pose substantial challenges for genome-

wide PheWAS in biobanks.  

 

Population structure and relatedness are major confounders in genetic association studies and also 

need to be controlled in PheWAS. Linear mixed models (LMM) are widely used to account for 

these issues in GWAS for both binary and quantitative traits(Aulchenko, et al., 2007; Kang, et al., 

2010; Lippert, et al., 2011; Loh, et al., 2015; Yang, et al., 2011; Zhang, et al., 2010; Zhou and 

Stephens, 2012). However, since LMM is not designed to analyze binary traits, it can have inflated 

type I error rates, especially in the presence of unbalanced case-control ratios. Recently, Chen, H. 

et al. have proposed to use logistic mixed models and developed a score test called the generalized 
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mixed model association test (GMMAT)(Chen, et al., 2016). GMMAT assumes that score test 

statistics asymptotically follow a Gaussian distribution to estimate asymptotic p-values. Although 

GMMAT test statistics are more robust than the LMM based approaches, it can also suffer type I 

error rate inflation when case-control ratios are unbalanced, because unbalanced case-control 

ratios invalidate asymptotic assumptions of logistic regression. In addition, since GMMAT 

requires O(MN2) computation and O(N2) memory space, where M is the number of genetic variants 

to be tested and N is the number of individuals, it cannot handle data with hundreds of thousands 

of samples. 

Here, we propose a novel method to allow for analysis of very large samples, for binary traits with 

unbalanced case-control ratios, which also infers and accounts for sample relatedness. Our method, 

Scalable and Accurate Implementation of GEneralized mixed model (SAIGE), uses the 

saddlepoint approximation (SPA)(Daniels, 1954; Dey, et al., 2017; Kuonen, 1999) to calibrate 

unbalanced case-control ratios in score tests based on logistic mixed models. Since SPA uses all 

the cumulants, and hence all the moments, it is more accurate than using the Gaussian distribution, 

which uses only the first two moments. Similar to BOLT-LMM(Loh, et al., 2015), the large sample 

size method for linear mixed-models, our method utilizes state-of-art optimization strategies, such 

as the preconditioned conjugate gradient (PCG) approach(Hestenes, 1952; Kaasschieter, 1988). 

for solving linear systems for large cohorts without requiring a pre-computed genetic relationship 

matrix (GRM). The overall computation cost of this proposed method is O(MN), which is 

substantially lower than the computation cost of GMMAT(Chen, et al., 2016) and many popular 

LMM methods, such as GEMMA(Zhou and Stephens, 2012). In addition, we reduce the memory 

use by compactly storing raw genotypes instead of calculating and storing the GRM.  
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We have demonstrated that SAIGE controls for the inflated type I error rates for binary traits with 

unbalanced case-control ratios in related samples through simulation and the UK Biobank data of 

408,961 white British samples(Bycroft, et al., 2017; Sudlow, et al., 2015). By evaluating its 

computation performance, we demonstrate the feasibility of SAIGE for large-scale PheWAS. 

!

4.3.1! Overview of methods 

The SAIGE method contains two main steps: 1. Fitting the null logistic mixed model to estimate 

variance component and other model parameters. 2. Testing for association between each genetic 

variant and phenotypes by applying SPA to the score test statistics. Step 1 iteratively estimates the 

model parameters using the computational efficient average information restricted maximum 

likelihood (AI-REML) algorithm(Gilmour, et al., 1995), which is also used in GMMAT(Chen, et 

al., 2016). Several optimization strategies have been applied in step 1 to make fitting the null 

logistic mixed model practical for large data sets, such as the UK Biobank(Bycroft, et al., 2017; 

Sudlow, et al., 2015). First, the spectral decomposition has been replaced by the PCG to solve 

linear systems without inversing the !"×"! GRM(Hestenes, 1952) (as in BOLT-LMM(Loh, et al., 

2015)). The PCG method iteratively finds solutions of the linear system in a computation and 

memory efficient way. Thus, instead of requiring a pre-computed GRM, which costs a significant 

amount of time to calculate when sample sizes are large, SAIGE uses the raw genotypes as input. 

The computation time is about O(M1N) times the number of iterations for the conjugate gradient 

to converge, where M1 is a number of variants to be used for constructing GRM. Second, to further 

reduce the memory usage during the model fitting, the raw genotypes are stored in a binary vector 

and elements of GRM are calculated when needed rather than being stored, so the memory usage 

is M1N/4 bytes (as in BOLT-LMM(Loh, et al., 2015) and GenABEL(Aulchenko, et al., 2007). For 
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example, for the UK Biobank data with M1 = 93,511 and N = 408,961 (white British participants), 

the memory usage drops from 669 Gigabytes(Gb) for storing the GRM with float numbers to 9.56 

Gb for the raw genotypes in a binary vector.  

 

After fitting the null logistic mixed model, the estimate of the random effects for each individual 

is obtained. The ratio of the variances of the score statistics with and without incorporating the 

variance components for the random effects is calculated using a subset of randomly selected 

genetic variants, similar to BOLT-LMM(Loh, et al., 2015) and GRAMMAR-Gamma(Svishcheva, 

et al., 2012). This ratio has been previously suggested to be constant for score tests based on 

LMMs(Svishcheva, et al., 2012). We have shown that the ratio is also approximately constant for 

all genetic variants with MAC ! 20 in the scenario of the logistic mixed models through analytic 

derivation and simulations (Supplementary Notes and Figure S4-1). 

In step 2, for each variant, the variance ratio is used to calibrate the score statistic variance that 

does not incorporate variance components for random effects. Since GRM is no longer needed for 

this step, the computation time to obtain the score statistic for each variant is O(N). SAIGE next 

approximates the score test statistics using the SPA to obtain more accurate p-values than the 

normal distribution. A faster version of the SPA test, similar to the fastSPA method in the SPAtest 

R package that we recently developed(Dey, et al., 2017), , is used to further improve the 

computation time, which exploits the sparsity in low frequency or rare variants to reduce the 

computation cost.  

4.3.2! Computation and memory cost 

The key features of SAIGE compared to other existing methods are presented in Table 4-1, 

showing that SAIGE is the only mixed-model association method that is able to account for the 
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unbalanced case-control ratios while remaining computationally practical for large data sets. To 

further evaluate the computational performance of SAIGE, we randomly sampled subsets from the 

408,458 white British UK Biobank participants who are defined as either coronary artery disease 

(CAD) cases (31,355) or controls (377,103) based on the PheWAS Code 411(Bycroft, et al., 2017; 

Denny, et al., 2013; Sudlow, et al., 2015) followed by benchmarking association tests using SAIGE 

and other existing methods on 200,000 genetic markers randomly selected out of the 71 million 

with imputation info ≥ 0.3. The non-genetic covariates sex, birth year, and principal components 

1 to 4 were adjusted in all tests. The log10 of the memory usage and projected computation time 

for testing the full set of 71 million genetic variants are plotted against the sample size as shown 

in Error! Reference source not found. and Table S4-1. Although SAIGE and BOLT-LMM have 

the same order of computational complexity (Table 4-1), SAIGE was slower than BOLT-LMM 

across all sample sizes (ex. 517 vs 360 CPU hours when N=408,458). This is due to the fact that 

fitting logistic mixed model requires more iterative steps than linear mixed model, and applying 

SPA requires additional computation. SAIGE requires slightly less memory than BOLT-LMM (10 

to 11 Gb when N=408,458) and the low memory usage makes both methods feasible for the large 

data set.  In contrast, GMMAT and GEMMA requires substantially more computation time and 

memory usage. For example, when N=400,000, projected memory usages of both GMMAT and 

GEMMA are more than 600 Gb. The actual computation time and memory usage of association 

tests for the full UK Biobank data for CAD are given in Table 4-1. SAIGE required 517 CPU hours 

and 10.3 Gb memory to analyze 71 million variants that have imputation info ≥ 0.3 for 408,458 

samples, which indicates that the analysis will be done in ~26 hours with 20 CPU cores.  

4.3.3! Association analysis of binary traits in UK Biobank data 
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We applied SAIGE to several randomly selected binary traits defined by the PheWAS Codes 

(PheCode) of UK Biobank(Bycroft, et al., 2017; Denny, et al., 2013; Sudlow, et al., 2015) and 

compared the association results with those obtained from the method based on linear mixed 

models, BOLT-LMM(Loh, et al., 2015) , and SAIGE without the saddlepoint approximation 

(SAIGE-NoSPA), which is asymptotically equivalent to GMMAT(Chen, et al., 2016). Due to 

computation and memory cost, the current GMMAT method cannot analyze the UK Biobank 

data. We restrict our analysis to markers directly genotyped or imputed by the Haplotype 

Reference Consortium (HRC)(McCarthy, et al., 2016) panel due to quality control issues of non-

HRC markers reported by the UK BioBank. Approximately 28 million markers with minor allele 

counts (MAC) ≥ 20 and imputation info score > 0.3 were used in the analysis. Among 408,961 

white British participants in the UK Biobank, 132,179 have at least one up to the third degree 

relative among the genotyped individuals(Bycroft, et al., 2017; Sudlow, et al., 2015) . We used 

93,511 high quality genotyped variants to construct the GRM. In the UK Biobank data, most 

binary phenotypes based on PheCodes (1,431 out of 1,688; 84.8%) have case-control ratio lower 

than 1:100 (Figure S4-3) and would likely demonstrate problematic inflation of association test 

statistics without SPA. 

 

Association results of three exemplary binary traits that have various case-control ratios are plotted 

in Manhattan plots shown in Figure 4-1 and in the quantile-quantile (QQ) plots stratified by minor 

allele frequency (MAF) shown in Figure 4-2. The four binary traits are coronary artery disease 

(PheCode 411) with 31,355 cases and 377,103 controls (1:12), colorectal cancer (PheCode 153) 

with 4,562 cases and 382,756 controls (1:84), glaucoma (PheCode 365) with 4,462 cases and 

397,761 controls (1:89), and thyroid cancer (PheCode 193) with 358 cases and 407,399 controls 
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(1:1138). In the Manhattan plots in Figure 4-1, each locus that contains any variant with p-value < 

5x10-8 is highlighted as blue or green to indicate whether this locus has been reported by previous 

studies or not. Table S4-2 presents the number of all significant loci and those that have not been 

previously reported by each method for each trait and Table S4-3 lists all significant loci identified 

by SAIGE.  

 

Both Manhattan and QQ plots show BOLT-LMM and SAIGE-NoSPA have greatly inflated type 

I error rates. The inflation problem is more severe as case-control ratios become more unbalanced 

and the MAF of the tested variants decreases. The genomic inflation factors (λ) at the 0.001, 0.01 

p-value percentiles are shown for several MAF categories in Table S4-4. For the colorectal cancer 

GWAS which has case-control ratio 1:84, λ at the 0.001 p-value percentile is 1.68 and 1.71 for 

variants with MAF< 0.01 by SAIGE-NoSPA and BOLT-LMM, while λ is 0.99 by SAIGE.  The 

inflation is even more severe for the test results by SAIGE-NoSPA and BOLT-LMM for the 

thyroid cancer, which has case-control ratio 1:1138, with the λ at the 0.001 p-value percentile 

around 4 to 5 for variants with MAF< 0.01 and all variants, respectively. With the unbalanced 

case-control ratio accounted for in SAIGE, the λ is again very close to 1.   

We have generated summary statistics for all 1,403 PheCode-derived binary traits in 408,961 UK 

Biobank white British European-ancestry samples using SAIGE software and made them available 

in a public repository (see below for URL). 

4.3.4! Simulation studies 

 

We investigated the type I error control and power of two logistic mixed model approaches, SAIGE 

and GMMAT, and the linear mixed model method BOLT-LMM that computes mixed model 
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association statistics under the infinitesimal and non-infinitesimal models through simulation 

studies. We followed the steps described on the Methods section to simulate genotypes for 1,000 

families, each with 10 family members (N=10,000), based on the pedigree shown in Figure S4-4. 

4.3.4.1! Type I error rates 

The type I error rates for SAIGE, SAIGE-NoSPA, GMMAT, and BOLT-LMM have been 

evaluated based on the association tests performed on 109 simulated genetic variants. The variants 

were simulated using the same MAF spectrum of the UK Biobank HRC imputation data with case-

control ratio 1:99, 1:9, and 1:1. Two different values of variance component parameter τ=1 and 2 

were considered, which correspond to the liability scale heritability 0.23 and 0.38, respectively. 

The empirical type I error rates at the " = 5x10-4 and " = 5x10-8 are shown in the Table S4-5. Both 

SAIGE-NoSPA, GMMAT, and BOLT-LMM have greatly inflated type I error rates when the case-

control ratios are moderately or extremely unbalanced and slightly deflated type I error rates when 

the case-control ratios are balanced. This is expected as previous studies have suggested inflation 

of the score tests in the presence of the unbalanced case-control ratios and deflation in balanced 

studies(Dey, et al., 2017; Ma, et al., 2013). We also observed that GMMAT score test statistics do 

not follow the normal distribution when MAF is low and case-control is unbalanced (Figure S4-

5). Unlike GMMAT and BOLT-LMM, SAIGE has no inflation when case-control ratios are 

unbalanced. SAIGE also has no deflation when the case-control ratios are balanced. 

 

To further investigate the type I error rates by MAF and case-control ratios, we carried out 

additional simulations.  

Figure S4-6 shows QQ plots of 1,000,000 rare variants (MAF = 0.005) with various case-control 

ratios (1:1, 1:9, and 1:99) and Figure S4-7 shows QQ plots of 1,000,000 variants with different 
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MAF (0.005, 0.01, 0.05, 0.1 and 0.3) when case-control ratio was 1:99.  Consistent to what has 

been observed in the real data study, GMMAT and SAIGE-NoSPA is more inflated for less 

frequent variants with more unbalanced case-control ratios. In contrast, SAIGE has successfully 

corrected this problem.  

To evaluate whether SAIGE can control type I error rates in the presence of population 

stratification, we have simulated two subpopulations with Fst 0.013, which corresponds to the 

average Fst between Finnish and non-Finnish Europeans20. We assumed that subpopulations have 

different disease prevalences (0.01 for subpopulation 1 and 0.02 for subpopulation 2, 0.1 for 

subpopulation 1 and 0.2 for subpopulation 2, and 0.5 for subpopulation 1 and 0.4 for subpopulation 

2). Both subpopulations have 1,000 families, each with 10 family members based on the pedigree 

shown in Figure S4-4. Association tests were performed on 10 million simulated markers and the 

first four principle components were included as covariates (Figure S4-8). QQ plots (Figure S4-9) 

show that the test statistics were well calibrated regardless of the variance component parameter * 

and prevalence. This simulation result demonstrates that SAIGE produces well-calibrated p-values 

in the presence of population stratification.  

 

4.3.4.2! Power 

Next we evaluated empirical power. Since power simulation requires re-estimating a variance 

component parameter for each variant to test, to reduce computational burden, we used SAIGE-

NoSPA instead of the original GMMAT software. Due to the inflated type I error rates of BOLT-

LMM and GMMAT (and SAIGE-NoSPA), for a fair comparison, we estimated power at the test-

specific empirical α levels that yield type I error rate " = 5x10-8 (Table S4-6). Figure S4-10 shows 

the power curve by odds ratios for variants with MAF 0.05, 0.1 and 0.2. When the case-control 
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ratio is balanced, the power of SAIGE, SAIGE-NoSPA and BOLT-LMM were nearly identical. 

For studies with moderately unbalanced case-control ratio (case:control=1:9), SAIGE has higher 

power than SAIGE-NoSPA and BOLT-LMM, which is due to very small empirical " for SAIGE-

NoSPA and BOLT-LMM resulted from type I error inflation. The power gap is much larger when 

the case-control ratios are extremely unbalanced. Power results for * =2 yielded the same 

conclusion regarding the methods comparison (data not shown). 

 

Overall simulation studies show that SAIGE can control type I error rates even when case-control 

ratios are extremely unbalanced and can be more powerful than GMMAT and BOLT-LMM. In 

contrast, GMMAT and BOLT-LMM suffer type I error inflation, and the inflation is especially 

severe with low MAF and unbalanced case-control ratios. 

 

4.3.4.3! Code and data availability 

SAIGE is implemented as an open-source R package available at 

https://github.com/weizhouUMICH/SAIGE/. The GWAS results for 1,403 binary phenotypes with 

the PheCodes(Denny, et al., 2013) constructed based on ICD codes in UK Biobank using SAIGE 

are currently available for public download at 

https://www.dropbox.com/sh/wuj4y8wsqjz78om/AAACfAJK54KtvnzSTAoaZTLma?dl=0 

We also display the results for 397 binary phenotypes in the Michigan PheWeb 

http://pheweb.sph.umich.edu/UKBiobank, which consists of Manhattan plots, Q-Q plots, and 

regional association plots for each phenotype as well as the PheWAS plots for every genetic 

marker.  We will populate the pheweb with results for all UK biobank phenotypes (> 1,400). 
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!

 

In this paper, we have presented a method to perform the association tests for binary traits in large 

cohorts in the presence of sample relatedness, which provides accurate p-value estimates for even 

extremely unbalanced case-control settings (with a prevalence < 0.1%). The dramatic decrease of 

the genotyping cost over the last decade allows more and more large biobanks to genotype all of 

their participants followed by genome-wide PheWAS, in which GWASs are performed for all 

thousands of diseases/conditions characterized based on EHR and/or survey questionnaires to 

identify genetic risk factors across different phenotypes(Bush, et al., 2016; Cronin, et al., 2014; 

Denny, et al., 2013; Denny, et al., 2011; Dumitrescu, et al., 2015; Hall, et al., 2014; Hebbring, et 

al., 2015; Hebbring, et al., 2013; Liao, et al., 2013; Millard, et al., 2015; Moore, et al., 2015; 

Namjou, et al., 2014; Neuraz, et al., 2013; Pendergrass, et al., 2013; Ritchie, et al., 2013; Shameer, 

et al., 2014; Ye, et al., 2015). Several challenges exist for PheWAS studies by large cohorts. 

Statistically, inflated type I error rates caused by unbalanced case-control ratios and sample 

relatedness need to be corrected. Computationally, most of existing mixed model association 

methods are not feasible for large sample sizes.  Our method, SAIGE, uses logistic mixed model 

to account for the sample relatedness and applies the saddle point approximation (SPA) to correct 

the inflation caused by the unbalanced case-control ratio in the score tests based on logistic mixed 

models. 

SAIGE successfully corrects the inflation of type I error rates of low-frequency variants with 

binary traits that have unbalanced case-control ratios while also accounting for the relatedness 

among samples. Furthermore, our method uses several optimization strategies that are similar to 

those used by BOLT-LMM to improve its computational feasibility for large cohorts. For example, 
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the preconditioned conjugate gradient algorithm is used to solve linear systems instead of the 

Cholesky decomposition method so that the time complexity for fitting the null logistic model is 

decreased from O(N3) to approximately O(M1N1.5), where M1 is the number of pruned markers 

used for estimating the genetic relationship matrix and the N is the sample size. Compared to large 

N, M1 is usually small. For instance, in the UK Biobank(Bycroft, et al., 2017; Sudlow, et al., 2015), 

M1 = 93,511 and N = 408,961 (white British participants). 

There are several limitations in SAIGE. First, the time for algorithm convergence may vary among 

phenotypes and study samples given different heritability levels and sample relatedness. Second, 

SAIGE has been observed to be slightly conservative when case-control ratios are extremely 

unbalanced (Table S4-5). Third, the accurate odds ratio estimation requires fitting the model under 

the alternative and is not computational efficient. Similar to several other mixed model 

methods(Kang, et al., 2010; Loh, et al., 2015; Svishcheva, et al., 2012) , SAIGE estimates odds 

ratios for genetic markers using the parameter estimates from the null model. Fourth, SAIGE 

estimates the genetic relationship matrix using genome-wide genetic markers instead of using the 

leave-one-chromosome-out (LOCO) scheme, which can avoid proximal contamination(Lippert, et 

al., 2011; Listgarten, et al., 2012; Loh, et al., 2015; Yang, et al., 2014) . Last, SAIGE assumes that 

the effect sizes of genetic markers are normally distributed, which follows an infinitesimal 

architecture. With this assumption, SAIGE may sacrifice power to detect genetic signals whose 

genetic architecture is non-infinitesimal. In future direction, we will incorporate the LOCO 

scheme, which is straightforward based on the current model and method, and model non-

infinitesimal architecture as needed to improve power. In addition, we will extend the current 

single variant test to gene- or region-based multiple variant test to improve power for identifying 

disease susceptibility rare variants.   
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With the emergence of large-scale biobank, PheWAS will be an important tool to identify genetic 

components of complex traits. Here we describe a scalable and accurate method, SAIGE, for the 

analysis of binary phenotypes in genome-wide PheWAS. Currently, SAIGE is the only available 

approach to adjust for both case-control imbalance and family relatedness, which are commonly 

observed in PheWAS datasets. In addition, the optimization approaches used in SAIGE make it 

scalable for the current largest (UK Biobank) and future much larger datasets. Through simulation 

and real data analysis, we have demonstrated that our method can efficiently analyze a dataset with 

400,000 samples and adjust for type I error rates even when the case-control ratios are extremely 

unbalanced. Our method will provide an accurate and scalable solution for large scale biobank 

data analysis and ultimately contribute to identify genetic mechanism of complex diseases.   

!

4.5.1! Generalized linear mixed model for binary traits 

In a case-control study with sample size !, we denote the status of the ith individual using ,- = 1 

or 0 for being a case or a control. Let the 1×"(1 + 1)"vector 3- represent 1"covariates including 

the intercept and 4- represent the allele counts (0, 1"or"2) for the variant to test. The logistic mixed 

model can be written as 

 

9:;<= >- = 3-? + 4-@ + A- 

where >- = B ,- = 1" "3-, 4-, A-) is the probability for the ith individual being a case given the 

covariates and genotypes as well as the random effect, which is denoted as A-. The random effect 

A-  is assumed to be distributed as !(0, *"C), where C is an !"×"! genetic relationship matrix 
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(GRM) and * is the additive genetic variance. The ? is a" 1 + 1 "×"1"coefficient vector of fixed 

effects and @ is a coefficient of the genetic effect.  

4.5.2! Estimate variance component and other model parameters (Step 1) 

To fit the null model, 9:;<= >-D = 3-? + A-, penalized quasi-likelihood (PQL) method(Breslow 

and Clayton, 1993) and the AI-REML algorithm(Gilmour, et al., 1995) are used to iteratively 

estimate (*, ?, A).  At iteration k, let (*(E), ?(E), A(E)) be estimated (*, ?,"A), >-
(E) be the estimated 

mean of ,- , F(E) = G<H;[>-
E
1 − >-

E
], and Σ(E)= (F E )MN + *(E)C be an O"×"O matrix of 

the variance of working vector ,- = 3-?(E) + A-
(E)
+ (,- − >-

(E))/" >-
E
1 − >-

E  . To obtain log 

quasi-likelihood and average information at each iteration, the current GMMAT approach 

calculates the inverse of Σ E . Since it is computationally too expensive for large N, we use the 

preconditioned conjugate gradient (PCG)(Hestenes, 1952; Kaasschieter, 1988) , which allows 

calculating quasi-likelihood and average information without calculating (Σ E )MN  (See 

Supplementary for details). PCG is a numerical method to find solutions of linear system. It is 

particularly useful when the system is very large. BOLT-LMM(Loh, et al., 2015) successfully used 

it to estimate variance component in linear mixed model. 

A score test statistics for Ho: @ = 0 is P = 4Q R − > = 4Q R − >  where G and Y are !"×"1 

genotype and phenotype vectors, respectively, and > is the estimated mean of Y under the null 

hypothesis, and 4 = 4 − 3(3QF3)MN3QF4" is the covariate adjusted genotype vector. The 

variance of T, Var(T) = 4QB4 , where B = SMN − SMN3 3QSMN3
MN
3QSMN . For each variant, 

given B, calculation of Var(T) requires O(N2) computation. In addition, since our approach does 

not calculate SMN, and hence B, obtaining Var(T) requires applying PCG for each variant, which 

can be computationally very expensive. To reduce computation cost, we use the same 
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approximation approach used in BOLT-LMM and GRAMMAR-GAMMAR(Svishcheva, et al., 

2012), , in which we estimate a variance of T with assuming that true random effect A is given, 

and then calculate ratio between these two variance. Suppose Var(T)* = 4QF4 , which is a 

variance estimate of T assuming A is given. Let r = Var(T)/Var(T)* ratio of these two different 

types of variance estimates. In Supplementary materials, we have shown that the ratio is 

approximately constant for all variants. Using this fact, we can estimate r using a relatively small 

number of variants. In all the numerical studies in this paper, we used 30 variants to estimate r.  

4.5.3! Score test with SPA (Step 2)  

Suppose T is the estimated ratio (i.e. r) in Step 1. Now the variance adjusted test statistics is  

PUVW =
4Q R − >

T4QF4
", 

which has mean zero and variance 1 under the null hypothesis.  The computation of PUVW requires 

O(N) computation. The traditional score tests assume that T (and hence Tadj) asymptotically 

follows a Gaussian distribution under Ho: @ = 0, which is using only the first two moments (mean 

and variance). When the case-control ratios are unbalanced and variants have low MAC, the 

underlying distribution of Tadj can be substantially different from Gaussian distribution. To obtain 

accurate p-values, we use Saddlepoint approximation method (SPA)(Dey, et al., 2017; Imhof, 

1961; Kuonen, 1999) , which approximates distribution using the entire cumulant generating 

function (CGF). A fast version of SPA (fastSPA)(Dey, et al., 2017) has recently been developed 

and applied to PheWAS, and provides accurate p-values even when case-control ratios are 

extremely unbalanced (ex. case:control=1:600).  
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To apply fastSPA to Tadj we need to obtain CGF of Tadj first. To do this, we use the fact that given 

A, Tadj is a weighted sum of independent Bernoulli random variables. The approximated cumulant 

generating function is  

X =;"Z, [ = log 1 − Z- + Z-^
_`ab

c

-dN

− [= 4-

c

-dN

Z- 

where the constant c=Var*(T)-1/2. Let Xe(=) and X′′(=) are first and second derivatives of K with 

respect to t. To calculate the probability that PUVW < g, where q is an observed test statistic, we use 

the following formula(Imhof, 1961; Johnson & Kotz, 1970; Kuonen, 1999) 

1T PUVW < "g ≃ i g = "Φ k +
1

k
log

l

k
, 

where k = m<;O(n) 2 ng − X(n)
o

p  , l = n Xee n
o

p  and n = " n g  is the solution of the 

equation Xe n = g. As fastSPA(Dey, et al., 2017), we exploit the sparsity of genotype vector 

when MAF of variants are low. In addition, since normal approximation works well when the test 

statistic is close to the mean, we use the normal distribution when the test statistic is within two 

standard deviation of the mean.  

 

4.5.4! Data simulation  

 

We carried out a series of simulations to evaluate and compare the performance of SAIGE to 

GMMAT. We randomly simulated a set of 1,000,000 base-pair “pseudo” sequences, in which 

variants are independent to each other. Alleles for each variant were randomly drawn from 

Binomial(n = 2, p = MAF). Then we performed the gene-dropping simulation(Abecasis, et al., 

2001) using these sequences as founder haplotypes that were propagated through the pedigree of 
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10 family members shown in Figure S4-4. Binary phenotypes were generated from the following 

logistic mixed model 

9:;<= Z-D = ?D + A- +"3N + 3q + 4-@ 

where Gi is the genotype value, @ is the genetic log odds ratio,  A- is the random effect simulated 

from !(0, τ"C) with τ = 1. Two covariates, X1 and X2, were simulated from Bernoulli(0.5) and 

N(0,1), respectively. The intercept ?D  was determined by given prevalence (i.e. case-control 

ratios). 

To evaluate the type I error rates at genome-wide α=5×10-8, 10 million markers along with 100 

sets of phenotypes with different random seeds for case-control ratios 1:99, 1:9, and 1:1 were 

simulated with @ = 0 . Given τ = 1 , the estimated heritability is 0.015, 0.092, and 0.17 for 

phenotypes with case-control ratios 1:99, 1:9, and 1:1, respectively(de Villemereuil, et al., 2016) . 

Association tests were performed on the 10 million genetic markers for each of the 100 sets of 

phenotypes using SAIGE, GMMAT, and BOLT-LMM, therefore in total 109 tests were performed. 

To have a realistic MAF spectrum, MAFs were randomly sampled from the MAF spectrum in UK 

Biobank data (Figure S4-11). Additional type I error simulations were carried out for five different 

MAFs (0.005, 0.01, 0.05, 0.1 and 0.3) to evaluate type I error rates by MAFs. 

For the power simulation, phenotypes were generated under the alternative hypothesis @ ≠ 0. For 

each of the MAF 0.05 and 0.2, we simulated 1,000 datasets, and power was evaluated at test-

specific empirical α, which yields nominal α=5×10-8. The empirical α was estimated from the 

previous type I error simulations. As the same as type I error simulations, three different case-

control ratios (1:99, 1:9, and 1:1) were considered. 
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Note that since we evaluated the empirical type I error rates and power based on genetic variants 

that were simulated independently, the LD Score regression(Bulik-Sullivan, et al., 2015) 

calibration and the leave-one-chromosome-out (LOCO) scheme were not applied in BOLT-LMM.   

 

4.5.5! Phenotype definition in UK Biobank 

We used a previously published scheme to defined disease-specific binary phenotypes by 

combining hospital ICD-9 codes into hierarchical PheCodes, each representing a more or less 

specific disease group(Denny, et al., 2013) 

ICD-10 codes were mapped to PheCodes using a combination of available maps through the 

Unified Medical Language System(https://www.nlm.nih.gov/research/umls/) and other sources, 

string matching, and manual review. Study participants were labeled a PheCode if they had one or 

more of the PheCode-specific ICD codes. Cases were all study participants with the PheCode of 

interest and controls were all study participants without the PheCode of interest or any related 

PheCodes. Gender checks were performed, so PheCodes specific for one gender could not 

mistakenly be assigned to the other gender. 

!
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!

4.7.1! Algorithm Details: Step 1. Fitting the logistic mixed model under the null hypothesis 

4.7.1.1!Generalized linear mixed model and penalized quasi-likelihood 

Details of fitting the null logistic mixed model and estimating the parameters for fixed effects and 

variance components are provided in this section. Note that although we use the same restricted 

log likelihood and average information matrix as in GMMAT(Chen, et al., 2016), we use a 

different approach to estimate parameters to make our method feasible for very large datasets. In 

particular, we use the preconditioned conjugate gradient method(Kaasschieter, 1988)to solve 

linear systems instead of obtaining an inverse of the covariance matrix of the phenotypes. For the 

derivation of the likelihood and information matrix, please refer the GMMAT paper (Chen, et al., 

2016).  

Logistic mixed model is a part of the larger generalized linear mixed model (GLMM) with the 

logistic link function for binary outcome. The model can be written as  

9:;<= >- = 3-? + 4-@ + A-, 

where >- = B ,- = 1" "3-, 4-, A-) is the probability for the ith individual being a case given the 

covariates 3- and genotypes 4-"as well as the random effect A-, assumed to be distributed as !(0, 

*"C), where C is an !"×"! genetic relationship matrix (GRM)(Kang, et al., 2010) and * is an 

additive genetic variance. The phenotype ,-  is assumed to be conditionally independent given 

( 3-, 4-, A-)  and follows the binomial distribution with mean s ,- "A-) = "Z-" and variance 

tHT ,- "A) = ""ul(Z-), where l Z- = >-(1 − >-) is the variance function, and the dispersion 

parameter u = 1.   

Under the null hypothesis that vD:"@ = 0, to estimate ?, u, * , the log integrated quasi-likelihood 

function can be written as  
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g9 ?, @ = 0, u, * = log ^x1 g9- ?, @ = 0" "A)
y
-dN "×"(2Z)M

z

p|τ"C|M
o

p"×

"^x1 −
N

q
AQ τ"C MNA GA,          (1) 

where g9- ?, @ = 0" "A) = "
Ub(|bM})

~�(})
G>

}b

|b
 is the quasi-likelihood for the ith individual given the 

random effect A . Let Ä A = " g9- ?, @ = 0" "A)
y
-dN −

N

q
AQ τ"C MN. Approximation for the 

integral ^x1 Ä A GA  can be obtained using Laplace’s method with the first and second 

derivatives. Let A denote the solution of Äe A "= 0, which maximizes Ä A , and Fdenote the 

weight matrix, which is a diagonal matrix with diagonal terms  N

~� }b [Åe(}b)]
p
.""Note that since 

logistic is a canonical link function, the diagonal element of W can be simplified as l >- ." 

Equation (1) can be written as  

g9 ?, @ = 0, u, * = Ä A −"
N

q
9:;|τ"C"F + Ç|            (2) 

 

4.7.1.2!Estimate parameters using AI-REML 

Here we describe iterative steps to estimate (?, A, u, *). To obtain the estimates of the fixed effect 

coefficients and the random effects given (u, *), (?(u, *), A(u, *)), that jointly maximize the 

g9 ?, @ = 0, u, * , we take the derivative of equation (2) with respect to ?  and A and get the 

solution for the derivatives to be zero. Assuming the weight matrix F varies slowly as a function 

of the conditional mean, the last term in the expression of g9 ?, @ = 0, u, *  in equation (2) can be 

ignored.  Let Σ = "FMN + *C, B = "ΣMN −"ΣMN3 3QΣMN3 MN3QΣMN and R be a working vector 

with the ith element being 3-? + A- + ;e >- (,- − >-), and then 

? = " 3QΣMN3 MN3QΣMNR      (3) 

A = "τ"CΣMN(R − 3?)   (4) 
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Given ? and A estimated,  

g9 ?(u, *)", @ = 0, u, * = [ −
N

q
log S −

N

q
RQBR"" (5) 

The restricted maximum likelihood (REML) version: 

 g9É ?(u, *)", @ = 0, u, * = [É - N
q
log S −"

N

q
log 3QSMN3 −

N

q
RQBR" (6) 

To obtain the estimates of the variance components, (u, *) , that jointly maximize 

the"g9 ?(u, *)", @ = 0, u, * , we take the derivative of equation (6) with respect to u"and *: 

ÑÖÜá à(~,â)",ädD,~,â

Ñ~
= "

N

q~
RQBFMNBR ""−

N

q~
=T(BFMN)""  (7) 

ÑÖÜá à(~,â)",ädD,~,â

Ñâ
= "

N

q
(RQBCBR ""− =T BC )"" (8) 

ϕ and τ are estimated by obtaining the solutions to make equations (7) and (8) equal to zero. Let 

"θ represents the vector of variance component parameters. In this case, θ is a vector containing 

ϕ and τ." In the REML iterative process,  the estimates for θ in the (i+1)th iteration is updated by 

θ(çéN) = "θ ç + J θ ç
MN
S(θ ç ), where S θ =

ëíìî ï

ëï"
"  as the equation (7) and (8) and J θ =

−
ëñ ï

ëï"
= −

ëpíìî ï

ëïp""
""".  

The elements of the observed  information matrix J θ (Gilmour, et al., 1995)are  

 

−
∂qlô α ϕ, τ , β = 0, ϕ, τ

∂ϕq
= −

1

2
tr PψDPψD + ""Y

üPψDPψDPY"" 

 

−
∂qlô α ϕ, τ , β = 0, ϕ, τ

∂ϕ∂τ
= ""−

1

2
tr PψDPψ +" ""YüPψDPψPY"" 

 

−
ëíìî † °,¢ ,£dD,°,¢

ë¢p
= −

N

q
tr PψPψ + ""YüPψPψPY                      (9) 
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The elements of the expected information matrix(Gilmour, et al., 1995) are  

 

E −
∂qlô α ϕ, τ , β = 0, ϕ, τ

∂ϕq
=
1

2
tr PψDPψD  

 

E −
∂qlô α ϕ, τ , β = 0, ϕ, τ

∂ϕ∂τ
=
1

2
tr PψDPψ "

E −
ëíìî † °,¢ ,£dD,°,¢

ë¢p
=
N

q
tr PψPψ           (10) 

 

To avoid the trace evaluation in (9), which has high computational cost, an average information 

matrix AI is then defined as the average of the observed information in (9) and the expected 

information in (10) in place of the J θ  matrix to estimate ϕ and τ iteratively(Chen, et al., 2016; 

Gilmour, et al., 1995; Yang, et al., 2011).  

       "

AI°° =
1

2
"YüPψDPψDPY" 

AI°¢ = AI¢° = "
1

2
""YüPψDPψPY""" 

AI¢¢ = "
N

q
""YüPψPψPY              (11) 

 

Note that for the logistic mixed model, ϕ = 1, so we do not need to obtain (7) and the first two 

equations in (9-11) that contain derivatives with"ϕ . 
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4.7.1.3!Approaches to reduce computation and memory cost.  

 

Preconditioned Conjugate Gradient (PCG): To obtain equations (3)-(8), we need to compute 

expression forms containing a product of ΣMN and a vector or a matrix, such as ΣMN3, which is 

very challenging for large cohorts. Computing the !×! empirical genetic relationship matrix 

(GRM) C = aß
®aß

©o
 costs O(M1N2), where  4_  is an"™N×! matrix with genotypes for ™N  genetic 

markers of !  individuals that are normalized with the means and standard deviations of raw 

genotypes. Moreover, the Cholesky decomposition used by GMMAT1 to invert Σ takes ´(!¨) 

computation and very large memory space, which are not practical for studies with large sample 

sizes (! > 20,000).  

Similar to BOLT-LMM (Loh, et al., 2015), we use two strategies to reduce the computation and 

memory cost. First, instead of requiring the pre-computed GRM C as an input, we store genotypes 

for computing GRM in a binary vector and calculate elements of Σ as needed, which reduces the 

memory usage from 4!(! + 1) bytes, given double precision floating number is used to store C, 

to c©o
Ø

 bytes. For instance, with N =408,961 white British participants and M1 = 93,511 markers, 

the memory usage drops from 669 Gb to 9.56 Gb with this strategy. Second, the conjugate gradient 

method is used to calculate the product of ΣMN and a vector by iteratively solving the linear system 

∞x = ± , where ∞ = Σ and ±  is a known vector, such as any column vector in 3  matrix. The 

number of iterations required for convergence of the conjugate gradient algorithm is proportional 

to Ä(∞) , where Ä(∞)  is the condition number for ∞ . To make the convergence faster, a 
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preconditioner matrix ≤ is used so that ∞=≤MN∞ and Ä ∞ < "Ä ∞ . Here, ≤ is an !×!"diagonal 

matrix with the diagonal elements of Σ and the calculation of Q requires O(NM1).  

The numerical accuracy of the PCG method has been evaluated based on the Euclidean distance 

for the vector ΣMNy computed by PCG and by calculating ΣMN  for the simulated data sets as 

described in the Data Simulation section. With the tolerance 1x10-5 for PCG to converge, the 

average Euclidean distances for 100 simulated data sets with case-control ratio 1:99, 1:9 and 1:1 

are 2.46x10-11, 7.70x10-10, and 1.53x10-9, respectively, suggesting the PCG method is highly 

accurate. The average numbers of PCG interactions to convergence are 4, 6 and 7 for case-control 

ratio of 1:99, 1:9, and 1:1, respectively. The average iterations for PCG to converge for the 1,283 

non-sex specific binary phenotypes in the UK Biobank have been plotted in Figure S4-12. There 

was no phenotype with an average number of iterations larger than 10, indicating PCG converges 

reasonably fast in UK Biobank data analysis.   

 

Randomized trace estimator for =T(BFMN)"and  =T(BC): The computation of (7) and (8) requires 

the traces of matrices BFMN and"BC. For this, we use Hutchinson’s randomized trace estimator6,7. 

The trace of a matrix ¥, such as BFMN and BC , is estimated by N
É

µ-
Q¥µ-

É
-dN , where zç’s are R 

independent random vectors whose entries are i.i.d Rademacher random variables (P(zç = "±1) =

0.5). A vector µ-"with size ! is randomly drawn from the Rademacher distribution, followed by 

the calculation for µ-Q¥µ-. This procedure is repeated for π times and the average of the results for 

µ-
Q¥µ- is the estimate for the trace of the ¥ matrix. The by default value for π is set to be 30.  

The numerical stability and convergence of the randomized trace estimator has been evaluated 

using data sets that were simulated as described in the Data Simulation section. During the process 

of fitting the null generalized logistic model iteratively, the trace of the matrix BC was estimated 



 
 

125 

using different numbers of independent random vectors (R = 10, 20, 30, 40 and 50). The estimated 

traces were plotted against the true traces that were computed as the sum of the elements on the 

main diagonal of matrix BC in the Figure S4-13. As the number of random vectors that were used 

for trace estimation increases, the estimator is more stable and more consistent to the true value. 

Given that the trace is estimated as the average of µ-Q¥µ-, i=1, …., R, the coefficient of variation 

(CV), which is defined as the ratio of standard error to the mean (i.e. SE/Mean) and measures 

relative variability, is used to determine whether R independent random vectors provide stable 

trace estimation.  When R=30, in most simulated datasets, CV < 0.0025, which indicates that trace 

can be accurately estimated using 30 independent random vectors for the simulated data sets. 

Therefore, the default number of random vectors to use (R) in SAIGE is set to be 30. But it is 

possible that R=30 is not enough to stably calculate the trace in some datasets. In this case, R 

should be increased. A function to adaptively increase R when the CV is larger than a certain 

threshold has been implemented in the SAIGE R package.  

 

Parallel computation for the vector multiplication: The most time-consuming step of the proposed 

algorithm is performing PCG, which involves computing a product of the GRM C"and a vector x, 

i.e. Cx = 4_Q4_x. We use parallel computing techniques to speed up this procedure. In particular, 

we use Intel Threading Building Block (TBB) implemented in RcppParallel package8 for the multi-

threading computation. Our approach utilized nearly all CPU cores allocated. For example, the 

CPU usages on average were 14.6 when 16 CPU cores were allocated. 

A low-rank GRM to correct for sample relatedness: Since the computation and memory cost of 

step 1 in SAIGE is linear to the number of markers (M1) used to construct the Kinship matrix, the 

computation and memory cost can be reduced using a subset of markers, instead of using all 



 
 

126 

available markers. In the UK Biobank data analysis, for example, 93,511 independent, high quality 

genotyped variants were used for the step 1 (M1 = 93,511), which is the same set of markers used 

by the UK Biobank data group to estimate the kinship coefficients between samples(Bycroft, et 

al., 2017). This low-rank GRM approach was first proposed by Lippert C, et al.(Lippert, et al., 

2011) and has been shown to provide similar p-values to using the more complete set of genetic 

markers to construct GRM(Lippert, et al., 2011). Later, Yang et al. suggested that using a few 

thousand genetic markers to construct GRM would reduce the ability to correct for sample 

relatedness(Yang, et al., 2014). Therefore the marker selection for step 1 should be based on 

careful consideration for the trade-off between computation cost and performance of adjusting for 

sample relatedness. In Supplementary Section 2, a sensitivity analysis has been reported when 

increasing M1 to be 340,447. Using more markers for the step 1 produced generally similar p-

values but with lambdas closer to 1. 

 

4.7.2! Algorithm Details: Step 2. Single variant score tests with SPA 

4.7.2.1!Score tests based on logistic mixed model 

Given the estimates from step 1 for fixed effect coefficients ?, random effects A, and the variance 

component parameters u  and *  under the null hypothesis Ho: @ = 0 , the score test can be 

constructed for each genetic marker to be tested. Suppose 4  is the N×1 genotype vector, > is 

estimate for B R = 1" "3, A), are the probabilities for study individuals being a case given the 

covariates 3 and the estimated random effect A from step 1, F is a diagonal vector with diagonal 

elements > 1 − > ,"and 4 = 4 − 3(3QF3)MN3QF4"is the covariate adjusted genotype vector 
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with covariate effects projected out from the raw genotypes9. Suppose Σ = "FMN + *C and  B =

SMN − SMN3 3QSMN3
MN
3QSMN, and then"B4 = B4.  The score test statistics can be written as  

P = 4Q R − > = 4QBR = "4QBR = 4Q R − > ,"

where R is the working vector previously defined. The variance of T, Var(T) = 4QB4 = "4QB4. 

 

4.7.2.2!Estimation of Var(T) 

Calculating B4 is required for the estimation of Var(T), which is computationally expensive. To 

avoid to calculate B4 to all the variants, we use similar approximation approaches used in BOTL-

LMM(Loh, et al., 2015) and GRAMMAR-GAMMAR(Svishcheva, et al., 2012) in which we 

obtain the ratio between Var(P) and Var P ∗ = 4QF4  using a small number of variants, and 

estimate variant as TVar P ∗ , where T = Var(P)  / Var P ∗ . Note that Var P ∗  is a variance 

estimator without accounting the fact that the random effect b is estimated from data, and the 

calculation of Var P ∗ only requires O(N) computation.  

 

Here we show that the ratio r is approximately constant across all variants. For this, we assume 

that æb

æø
¿
ø¡o

= :(1), for all i=1, …, N, where wi is the ith element of W. Note that this assumption 

can only be violated when the covariates are extremely sparse, which rarely happens in real data. 

First, tHT P  can be written as 

tHT P = "4QB4 = 4QSMN4 − 4QSMN3 3QSMN3
MN
3QSMN4""""""""(3) 

Suppose 4- is the ith element of 4. Since 4 is adjusted by covariates including the intercept, 4- 

can be treated as a mean zero random variable uncorrelated with the covariates, and hence 

!MN/q3QSMN4 asymptotically have mean zero and variance !MN3QSMNtHT 4 SMN3 = ´(1). By 
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Chebyshev's inequality !MN/q3QSMN4 = ´ƒ(1). Since 3QSMN3
MN
= ´ !MN , the second term 

in (3) is"4QSMN3 3QSMN3
MN
3QSMN4 = ≈́(1). The first term in (3) is 4QSMN4 = ≈́(!), so (3) 

can be approximated by 4QSMN4. Let k be the mean of the diagonal element of FMN and ∆ =

FMN − kÇ. And then  

4QSMN4 ≈ "4Q kÇ + *C MN4 −""4Q kÇ + *C MN∆ kÇ + *C MN4"""(4) 

With the assumption æb

æø
¿
ø¡o

= :(1), 4Q kÇ + *C MN∆ kÇ + *C MN4 ""= ∑∆-G- , where ∆-  is the 

ith diagonal element of ∆ and G- is the square of the ith element of  kÇ + *C MN4. Since the mean 

of ∆-"is zero, and ∆-  and G-  are uncorrelated, ∑∆-G- = :≈(!). Combining a fact that 4Q kÇ +

*C MN4 = ´ƒ ! , 
a® æ…éâ ÀoÃ æ…éâ Àoa

a® æ…éâ Àoa
= :≈(1), therefore (4) can be approximated by the first 

term, in which  

4 ≈ 4Q kÇ + *C MN4 = "4QCM
N
qC

N
q kÇ + *C MNC

N
qCM

N
q4 = HQÕŒ

N
q kÇ + *Œ MNŒ

N
qÕH"""""(5) 

where U and Œ"are eigenvector and eigenvalue matrices of C, and "H = CM
o

p4. Since correlation 

matrix of H  is an identity matrix, asymptotically, (4) is closely approximated by the trace of 

[ÕŒ
o

p kÇ + *Œ MNŒ
o

pÕ, which is [ œ-/(k + *œ-)
y
-dN , where c=MAF(1-MAF). As the same way, 

Var P ∗ = 4QF4 ≈ [ œ-/k
y
-dN . And hence the ratio is 

T =
Var(P)"

Var P ∗
≈

œ-
k + *œ-

y
-dN

œ-
k

y
-dN

""" 

which is constant across all variants.  The variance adjusted score test statistic is  

PUVW = T4QF4
MN/q

4Q R − >  

where T"is the estimated r, which is estimated from 30 randomly selected genetic markers. Under 

the null hypothesis of no association, PUVW"has mean zero and variance one. Figure S4-1 shows the 
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ratio r by minor allele counts (MAC) from 1000 simulated markers. The ratio was nearly identical 

for markers with MAC > 20 and then variation was increased for extremely rare variants. This 

figure provides empirical evidence that the equal ratio assumption holds. 

 
In analysis of simulated and real data, 30 randomly selected genetic markers with MAC > 20 were 

used to estimate T . To evaluate the numerical stability of the T  estimation, the coefficient of 

variance (CV) of T using simulated datasets was used. In most simulated datasets, the CV for T 

was smaller than 0.001 (Figure S4-14) with 30 randomly selected markers, indicating that T can 

be accurately estimated using 30 markers. As a sensitivity analysis, T has been calculated based 

on 500 randomly selected markers, and the estimated T"were nearly identical (Figure S4-14). But 

it is also possible that using 30 markers is not enough to stably calculate T in some datasets. In this 

case, the number of markers for T"should be increased. As the same as the random trace estimation 

(Section 1.1.3), a function is included in the SAIGE package, in which the number of markers for 

T is automatically increased if CV is larger than a given threshold (current default=0.001). 

 

4.7.2.3!P-value calculation using SPA 

The traditional score test, such as GMMAT, used the fact that the score test statistic asymptotically 

follows a normal distribution under the null hypothesis of no association. When the case-control 

ratios are unbalanced and MAC is small, this asymptotic result does not hold and type I error rates 

can be inflated. To obtain more accurate p-value, we use a fast-version of SPA (fastSPA)(Dey, et 

al., 2017), which we have previously developed for logistic regression model.  For this, we utilize 

the fact that phenotype Yi independently follows Bernoulli distribution given Z- , and Tadj is a 



 
 

130 

weighted sum of independent Bernoulli random variable. The approximated cumulant generating 

function (CGF) of Tadj is 

X =;"Z, [ = log"(1 − Z- + Z-^
_`ab)

c

-dN

− [= 4-

c

-dN

Z-"""" 

where the constant c=Var*(T)-1/2, which provide K’(0)=0 and K’’(0) = 1, where K’ and K’’ are 

first and second derivate of K with respect to t. Note that since K uses Z, which is estimated from 

data, it is an approximation of the true CGF. Now we use the saddle point method to estimate the 

p-value. To calculate the probability that PUVW < g, where q is an observed test statistic, we use the 

following formula(Kuonen, 1999) (Imhof, 1961) (Johnson & Kotz, 1970).  

1T PUVW < "g ≃ i g = "Φ k +
1

k
log

l

k
"""" 

,where k = m<;O(n) 2 ng − X(n)
o

p  , l = n Xee n
o

p  and n = " n g  is the solution of the 

equation Xe n = g.  As the fastSPA(Dey, et al., 2017), we exploit the sparsity of genotype vector 

when MAF of variants are low. In addition, since normal approximation performs well when the 

test statistic is close to the mean, we use normal distribution when the test statistic is within two 

standard deviations of the mean.  

 

4.7.2.4!Effect size estimation  

To rapidly estimate the effect size @, which equals to the natural logarithm of the odds ratio, we 

use the variance component estimate under the null hypothesis. Note that a similar approach has 

been used in EMMAX(Kang, et al., 2008) and GRAMMAR-Gamma(Svishcheva, et al., 2012). 

Our @ estimate is 

@ = " 4QB4
MN
4QBR 
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Since P = 4QBR and Var P = "4QB4, @ can be written as P/Var P . In the section 1.2.2, we 

have shown that Var P = TVar P ∗ "= " T4QF4 . Therefore, @  can estimated using 

P, Var P ∗,"and T , which have already been calculated for association p-value estimation. To 

estimate the standard error and confidence interval, we use p-values. The standard error of @, 

–s(@) = @/µ , where z-score corresponds to the association p-value/2. 

4.7.2.5!Leave-one-chromosome-out 

To avoid contamination from correlated markers(Lippert, et al., 2011), we implemented an option 

to apply the leave-one-chromosome-out (LOCO) scheme in SAIGE. In step 1, given the variance 

component parameter — that was estimated using GRM constructed with genome-wide markers, 

the random and fixed effects were estimated for each chromosome using a GRM constructed with 

genetic markers excluding that chromosome. In the following step 2 for association tests, the 

estimates from step 1 using all other chromosomes are then used for testing genetic markers on 

that chromosome. We evaluated this approach by comparing p-values with and without the LOCO 

scheme.  

Figure S4-15 shows the scatter plots for the p-values of the 28 million genotyped and imputed 

markers for the four randomly selected phenotypes in the UK Biobank data. We found that the p-

values estimated with and without LOCO are highly correlated.  

 

4.7.3! Additional simulation and real data analysis results 

4.7.3.1!Simulation studies with different — values and heritability estimation 

In SAIGE, penalized quasi-likelihood (PQL), which provides easy implementation and fast 

computation, is used to estimate the variance component parameter *. Although PQL is the mostly 
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widely used method in Generalized Linear Mixed Model and also used by the recently developed 

GMMAT method(Chen, et al., 2016), it is known to produce biased estimate of the variance 

component (*)(Breslow, 2004; Breslow and Clayton, 1993; Capanu, et al., 2013), and therefore, 

the heritability estimates. This may be due to the fact that PQL approximates true-likelihood using 

Laplace method, and hence after the approximation, — in true likelihood is no longer the same as 

—"in the approximated model.  

 

Table S4-7 shows "— estimated by PQL (as in SAIGE) for simulated data with four different 

"*"values, 0.5, 1, 2, and 3, corresponding to ℎÜU`”y`q =0.13, 0.23, 0.38, and 0.48, respectively, where 

ℎÜU`”y`
q  is a liability scale heritability. The ℎÜU`”y`q  was obtained using the fact that the logistic 

regression can be described as a liability threshold model with standard logistic distribution, which 

has variance=Zq/3 = 3.23. Therefore the variance component parameter * can be converted to the 

heritability on latent scale as 

ℎÜU`”y`
q =

"*"

Zq/3 + "*"
 

Using the relationship between *  and ℎÜU`”y`q , *" can be estimated from the liability scale 

heritability estimates from other methods, such as phenotype correlation–genotype correlation 

(PCGC) regression method(Golan, et al., 2014). PCGC is a moment-based method and known to 

produce unbiased heritability estimation. We estimated "— as  ‘p’÷ß◊ß
p

¨(NM’÷ß◊ß
p )

 , where ℎ≈_Å_q  is the latent 

scale heritability estimated by PCGC. Table S4-7 clearly suggests that —  from SAIGE is 

substantially biased. Therefore� "—  estimated by SAIGE should not be used to interpret the 

heritability. — from PCGC was more accurate than that from SAIGE; however, it was still biased 

especially when true * was large.  
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To evaluate whether SAIGE can control type I errors in wide ranges of heritability, additional type 

I error simulations with four * values (0.5, 1, 2, and 3) have been performed and the results are 

similar for different * values (Figure S4-16). The results with * = 1 and 2 are shown in Table 

S4-7. To evaluate whether using more accurate * estimate can have impact on type I error control, 

we also included approaches assuming 1) true * is known (true-"*), and 2) estimating * using 

PCGC regression (PCGC-"*). For both approaches, fixed and random effect terms were calculated 

from Equations (3) and (4) given *.  Note that since true *  is unknown in real data, the first 

approach (i.e true-"*) can be used in simulation study only. Figure S4-16 shows QQ plots when 

the variant MAF=0.01 and case control ratio=1:99. In all *  -values, the proposed PQL-based 

approach has very well calibrated QQ plots. Interestingly, both true-"* and PCGC-"*"have deflated 

QQ plots, indicating that these approaches produce conservative results. As aforementioned, this 

may due to the fact that our score test statistics were derived from PQL not from original 

likelihood. We note that type I error simulations with different MAFs (0.3 and 0.05) and case 

control ratios (1:9 and 1:1) yielded nearly identical results (data not shown). 

 

Overall these simulation studies clearly show that although PQL is biased for the heritability 

estimation, it works well for adjusting for sample-relatedness. 

 

4.7.3.2!Simulation studies with Population stratification 

To evaluate whether SAIGE can control type I error rates in the presence of population 

stratification, we have simulated two subpopulations with Fst 0.013, which corresponds the Fst 

between Finnish and non-Finnish Europeans(Nelis, et al., 2009), assuming that subpopulations 
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have different disease prevalence. Each subpopulation has 1000 families, each with 10 family 

members based on the pedigree shown in Figure S4-4. 93,511 genetic markers were simulated 

with the overall minor allele frequency (MAF) following the MAF spectrum of the genotyped 

markers that were used for constructing the GRM in the UK Biobank data. Three different disease 

prevalences were considered for subpopulations 1 and 2 (0.01 and 0.02; 0.1 and 0.2; 0.5 and 0.4). 

Four different * values are used to simulate the phenotypes: 0.5, 1, 2, and 3. Association tests were 

performed on 10 million markers including the first four principle components as covariates. The 

overall MAF of 10 million markers follows the same MAF spectrum of the imputed genetic 

markers in the UK Biobank data. The plots for the PCs were presented in the Figure S4-8, which 

shows that PC1 well separated two populations. QQ plots (Figure S4-9) were well calibrated 

regardless of * and prevalence. This simulation results clearly demonstrate that our approach can 

produce well calibrated p-values in the presence of population stratification.  

 

4.7.3.3!UK Biobank data analysis with different M1 

As a sensitivity analysis, we used 340,447 genotyped markers for step 1, which were obtained by 

using the following pruning parameters on directly genotyped markers: using windows of 500,000 

base pairs (bp), a step-size of 50 markers, and pairwise r2 < 0.2. We compared association p-values 

for four randomly selected phenotypes in the UK Biobank data when GRM was constructed using 

the 93,511 genotyped markers and the 340,447 genotyped markers, respectively. Scatter plots 

comparing p-values of the 28 million tested genetic markers are presented in Figure S4-17, 

suggesting highly correlated association p-values. We also note that when 340,447 markers were 

used for GRM , -log10 p-values were slightly lower than those of using 93,511 markers, especially 

for coronary artery disease (PheCode 411) (Figure S4-17) and the genomic inflation factors (λ) at 
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the 0.001, 0.01 p-value percentiles slightly decreased (Table S4-8).   Manhattan plots of these two 

approaches were largely similar (Figure S4-18), in which colorectal cancer (PheCode 153), 

glaucoma (PheCode 365), and thyroid cancer (PheCode 193) have the exactly same number of 

GWAS hits. 

4.7.3.4!Additional rare variant associations in UK Biobank 

Among SAIGE results for 1,283 non sex-specific binary phenotypes constructed based on the 

PheCodes in the UK Biobank data, there are total 1,609 genetic variants, including variants in the 

same locus, with minor allele frequency < 0.5% with SAIGE p-values < 5x10-8. Examples include 

the HBB locus (rs11549407, MAF=0.027%, p-value=2.4x10-12) associated with hereditary 

hemolytic anemias (http://pheweb.sph.umich.edu:5003/pheno/282), and two different rare variants 

associated with breast cancer: the ZNRF3 locus (rs6223688, MAF=0.26%, p-value=1.8x10-23) and 

the TTC28 locus (rs62237617, MAF=0.3%, p-value=3.5x10-22) 

(http://pheweb.sph.umich.edu:5003/pheno/174).  

As shown in Table S4-3, a well-known stop-gain variant rs74315329 in the gene MYOC for 

glaucoma was identified for glaucoma (PheCode 365 with 4,462 cases and 397,761 controls). This 

rare variant has MAF 0.14%. If rare variants were excluded from the analysis due to difficulties 

appropriately analyzing them, these associations would not be identified.  
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Figure 4-1 Manhattan plots of association p values resulting from SAIGE, SAIGE-

NoSPA(asymptotically equivalent to GMMAT) and BOLT-LMM  

A. coronary artery disease (PheCode 411, case:control = 1:12), B. colorectal cancer (PheCode 153, 

case:control = 1:84), C. glaucoma (PheCode 365, case: control = 1:89), and D. thyroid cancer 

(PheCode 193, case:control=1:1138). Blue: loci with association p-value < 5x10-8, which have 

been previously reported, Green: loci that have association p-value < 5x10-8 and have not been 

reported before. Since results from SAIGE-noSPA and BOLT-LMM contain many false positive 

signals for colorectal cancer, glaucoma, and thyroid cancer, the significant loci are not highlighted.  

 

 

A.#Coronary#Artery#Disease

B.#Colorectal#Cancer

D.#Thyroid#Cancer
BOLT%LMM SAIGE%NoSPA (GMMAT) SAIGE

BOLT%LMM SAIGE

BOLT%LMM SAIGE%NoSPA (GMMAT) SAIGE

SAIGE%NoSPA (GMMAT)

C.#Glaucoma
BOLT%LMM SAIGE%NoSPA (GMMAT) SAIGE
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Figure 4-2 Quantile-quantile plots of association p-values resulting from SAIGE, SAIGE-NoSPA 

(asymptotically equivalent to GMMAT) and BOLT-LMM (non-infinitesimal mixed model 

association test p-value)  

 

A. coronary artery disease (PheCode 411, case: control = 1:12), B. colorectal cancer (PheCode 

153, case: control = 1:84), C. glaucoma (PheCode 365, case: control = 1:89), and D. thyroid cancer 

(PheCode 193, case: control=1:1138). 
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Table 4-1 Comparison of different methods for GWAS with mixed effect models  

 

Method Features Algorithm Complexity 

Benchmarks for 
UK Biobank Data 
Coronary Artery 
Disease 
(PheCode 411) 

Does not 
require 
pre-
computed 
genetic 
relationship 
matrix 

Feasible 
for large 
sample 
sizes 

Developed 
for 
binary 
traits 

Accounts 
for 
unbalanced 
case-
control 
ratio 

Tests 
quantitative 
traits 

Time complexity Memory usage 
(Gbyte) 

Time 
CPU 
hrs 

Memory 
Step 1 Step 2 Step 1 Step 2 

Logistic 
mixed 
model 

SAIGE ! ! ! ! ! O(PM1N1.5) * O(MN) M1N/4 N 517 10.3G 

GMMAT   !  ! O(PN3) O(MN2) FN2 FN2 NA NA 

Linear 
mixed 
model 

BOLT-
LMM ! !   ! O(PM1N1.5) * O(MN) M1N/4 N 360 10.9G 

GEMMA     ! O(N3) O(MN2) FN2 FN2 NA NA 

N: number of samples 
P: number of iterations required to reach convergence 
M1: number of markers used to construct the kinship matrix    
M: total number of markers to be tested 
F: Byte for floating number 
* Number of iterations in PCG is assumed as O(N0.5) (Loh, et al., 2015)  
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Figure S4-1 Plot of the ratio of the variances of the score statistics with and without incorporating 

the variance components for the random effects  

for A. 1,000 simulated markers with MAF spectrum shown in Figure S4-10 and B. 669 out of 

1,000 markers that have MAC < 200. 1,000 families were simulated based on the pedigree 

structure shown in Figure S4-4 with case control ratio 1:9.   
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Figure S4-2 Log-log plots of the estimated run time (A) and memory use (B) as a function of 

sample size (N). Numerical data are provided in Table S4-1.  

 

Benchmarking was performed on randomly sub-sampled UK Biobank data with 408,458 white 

British participants and 200,000 markers for the cardiovascular diseases (PheCode = 411). The 

plotted run time is the projected computation time for testing 71 million markers with info ≥ 0.3. 

The reported run times are medians of five runs with samples randomly selected from the full 

sample set using different sampling seeds. Software versions: BOLT-LMM, v2.3; GEMMA, 

v0.96. BOLT-LMM: compute association statistics under the non-infinitesimal model; BOLT-

LMM_lmmInfOnly: compute mixed model association statistics under the infinitesimal model  
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Figure S4-3 Histogram of case-control ratios of 1,688 disease-specific binary phenotypes in the 

UK Biobank data.  

 

Phenotypes were constructed based on ICD-9 and ICD-10 codes using a previously described 

scheme(Denny, et al., 2013).  
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Figure S4-4 Pedigree of families, each with 10 members, in the simulation study. 
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Figure S4-5 Histogram of the GMMAT test statistics (solid black line) overlaid with the standard 

normal density curve (red dotted line) for 1,000,000 simulated genetic markers for different case-

control ratios 
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Figure S4-6 Quantile-quantile plots of association p-values for 1,000,000 variants having MAF = 

0.005 from the simulation study. 

 

The first column is p-values from SAIGE. The second column is for p-values from SAIGE-

NoSPA. The third column is for p -values from the GMMAT (Chen, et al., 2016) program. The 

fourth column is comparing the p-values from SAIGE and from GMMAT (Chen, et al., 2016). 

The fifth column is comparing the p-values from SAIGE-NoSPA and from GMMAT (Chen, et al., 

2016). The black lines indicate x = y. τ: variance component parameter. 
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Figure S4-7 Quantile-quantile plots of association p-values for 1000,000 variants with 10,000 

samples with very unbalanced case-control ratio 1:99 from the simulation study.  

 

The first column is p-values from SAIGE. The second column is for p-values from SAIGE-

NoSPA. The third column is for p -values from the GMMAT (Chen, et al., 2016) program. The 

fourth column is comparing the p-values from SAIGE and from GMMAT (Chen, et al., 2016). 

The fifth column is comparing the p-values from SAIGE-NoSPA and from GMMAT (Chen, et al., 

2016). The black lines indicate x = y. τ: variance component parameter. 
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Figure S4-8 Plots for the first four PCs based on the 93,511 simulated markers for samples from 

the two subpopulations. 
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Figure S4-9 Quantile-Quantile plots for the association p-values for ~10 million simulated genetic 

markers with MAC > 20 in presence of two subpopulations, each having 10,000 samples, with Fst 

= 0.013. τ: variance component parameter. 
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Figure S4-10 Empirical power of SAIGE, SAIGE-NoSPA (asymptotically equivalent to 

GMMAT), BOLT-LMM_lmmInfOnly (compute mixed model association statistics under the 

infinitesimal model), and BOLT-LMM (compute mixed model association statistics under the non-

infinitesimal model) at the test-specific empirical α levels that yield type I error rate ! = 5x10-8, 

when the variance component parameter τ=1. 
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Figure S4-11 Distribution of the minor allele frequency spectrum for randomly selected 1,000,000 

markers in the simulation study. 
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Figure S4-12 Histogram of the average numbers of iterations for PCG to converge in the process 

of fitting the null logistic mixed model for the 1,283 non-sex specific binary phenotypes that have 

at least 50 cases in the UK Biobank. The PCG convergence tolerance was 1x10-5.  
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Figure S4-13  A. The trace of the matrix Pψ (estimated using the random trace estimator based on 

10, 20, 30, 40 and 50 random vectors) is plotted against the true traces that were computed as the 

sum of the elements on the main diagonal of matrix Pψ; B. The coefficient of variation (CV) for 

the trace estimator is plotted 
A 

 
B 
 

 



 
 

153 

Figure S4-14 The variance ratios and the coefficient of variation (CV) estimated based on 30 

random genetic markers were plotted against those based on 500 markers, respectively. The thin 

red lines indicate x = y. τ: variance component parameter. 
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Figure S4-15 Comparing association p-values for ~ 28 million genotyped or HRC imputed 

genetic markers with and without the leave-one-chromosome-out (LOCO) approach. 
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Figure S4-16 Quantile-quantile plots of association p-values for 1,000,000 variants having case-

control ratio 1:99 from the simulation study with MAF = 0.005. The first column is p-values using 

τ estimated by SAIGE. The second column is for p-values using true τ. The third column is for p-

values using τ estimated by PCGC. The fourth column is comparing the p-values using τ estimated 

by SAIGE and using true τ. The fifth column is comparing the p-values using τ estimated by 

PCGC and using true τ.  The thin black lines indicate x = y. τ: variance component parameter. 
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Figure S4-17 Comparing association p-values for ~ 28 million genotyped or HRC imputed genetic 

markers for all four randomly select exemplary binary phenotypes in the UK Biobank data with a 

low-rank genetic relationship matrix (GRM) constructed using 93,511 genotyped markers and a 

GRM constructed using 340,447 directly genotyped markers 
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Figure S4-18 Manhattan plots of association p values resulting from SAIGE with a genetic 

relationship matrix (GRM) constructed using 93,511 genotyped markers and a GRM constructed 

using 340,447 genotyped markers  

 

A. coronary artery disease (PheCode 411, case:control = 1:12), B. colorectal cancer (PheCode 153, 

case:control = 1:84), ), C. glaucoma (PheCode 365, case: control = 1:89), and D. thyroid cancer 

(PheCode 193, case:control=1:1138). Blue: loci that have association p-value < 5x10-8, where the 

top hits are previously reported, Green: loci that have association p-value < 5x10-8 and have not 

been reported before. 
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Table S4-1 The estimated run time (A) and memory use (B) across different sample sizes.  

Benchmarking was performed on randomly sub-sampled UK Biobank data with 408,458 white 

British participants and 200,000 markers for the cardiovascular diseases (PheCode = 411). The run 

time is the projected computation time for testing 71 million markers with info ≥ 0.3. The reported 

run times are medians of five runs with samples randomly selected from the full sample set using 

different sampling seeds. Software versions: BOLT-LMM, v2.3; GEMMA, v0.96. BOLT-LMM: 

compute non-infinitesimal association statistics; BOLT-LMM_lmmInfOnly: compute mixed 

model association statistics under the infinitesimal model 

Sample Size(N) Time (CPU hours) Memory(Gb) Tests 
5,000 497.19 3.17 GMMAT 

10,000 2109.83 11.88 GMMAT 
20,000 9046.04 47.09 GMMAT 
5,000 95.18 0.94 BOLT-LMM_lmmInfOnly 

10,000 98.40 1.05 BOLT-LMM_lmmInfOnly 
20,000 104.05 1.28 BOLT-LMM_lmmInfOnly 
50,000 117.80 2.03 BOLT-LMM_lmmInfOnly 

100,000 137.16 3.23 BOLT-LMM_lmmInfOnly 
200,000 189.28 5.67 BOLT-LMM_lmmInfOnly 
408,458 335.00 10.98 BOLT-LMM_lmmInfOnly 

5,000 93.89 0.93 BOLT-LMM 
10,000 99.39 1.04 BOLT-LMM 
20,000 103.15 1.29 BOLT-LMM 
50,000 119.03 2.04 BOLT-LMM 

100,000 150.02 3.24 BOLT-LMM 
200,000 214.71 5.69 BOLT-LMM 
408,458 360.63 10.98 BOLT-LMM 

5,000 397.00 1.64 GEMMA 
10,000 835.59 3.99 GEMMA 
20,000 1431.69 11.03 GEMMA 
5,000 117.50 0.50 SAIGE 

10,000 118.83 0.56 SAIGE 
20,000 133.32 0.72 SAIGE 
50,000 153.60 1.45 SAIGE 

100,000 211.21 2.58 SAIGE 
200,000 312.81 5.16 SAIGE 
408,458 517.38 10.32 SAIGE 
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Table S4-2 Number of genetic variants and loci that passed the genome-wide significant threshold 

(P < 5x10-8) for the three ‘real data’ phenotypes identified by SAIGE, SAIGE-

NoSPA(asymptotically equivalent to GMMAT), and BOLT-LMM in the UK Biobank data.  

 

Since results from SAIGE-NoSPA and BOLT-LMM contain many false positive signals for 

colorectal cancer, Glaucoma, and thyroid cancer, the numbers of loci are not provided.   

 

 
Phenotype Tests 

Number of 
variants with p-
value < 5x10-8 

Number of 
all loci with top 
p-value < 5x10-8 

Number of 
all loci with top 
p-value < 5x10-8 

and have not 
been previously 

reported 
Coronary artery disease 

PheCode 411 
case:control  1:12 

SAIGE 1,733 40 6 
SAIGE-NoSPA 1,820 101 68 

BOLT-LMM 1,886 89 58 

Colorectal cancer  
PheCode 153 

 case:control  1:84 

SAIGE 77 3 3 
SAIGE-NoSPA 2,950 NA NA 

BOLT-LMM 3,349 NA NA 

Glaucoma 
PheCode 365 

case:control  1:89 

SAIGE 362 12 6 
SAIGE-NoSPA 3,278 NA NA 

BOLT-LMM 4,228 NA NA 

Thyroid cancer  
PheCode 193  

case:control=1:1138 

SAIGE 125 1 1 
SAIGE-NoSPA 73,382 NA NA 

BOLT-LMM 79,269 NA NA 
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Table S4-3 Loci that passed the genome-wide significant threshold (P < 5x10-8) for the three phenotypes identified by the SAIGE in the 

UK Biobank data. 

Phenotype Location Chr:Pos rsID 
Re
f 

Al
t Function Gene MAF 

Sample 
Size 

P 
value 

Known for 
CAD 

Previous Findings 

Cardiovascula
r diseases 

PheCode 411 
case:control 

=1:12 

1p32.3 1:55505647 rs11591147 G T Exonic PCSK9 0.018 408,458 
2.30E

-12 known 
(Kathiresan, 2008) 

1p32.2 1:56966350 rs17114046 A G Intronic PLPP3 0.092 

408,458 
1.36E

-11 known 

(CARDIoGRAMplusC4
D Consortium, et al., 
2013) 

1p13.3 1:109817590 rs12740374 G T UTR3 CELSR2 0.222 

408,458 
1.68E

-25 known 

(CARDIoGRAMplusC4
D Consortium, et al., 
2013) 

1q41 1:222814442 rs2133189 C T Intronic MIA3 0.286 

408,458 
2.35E

-11 known 

(CARDIoGRAMplusC4
D Consortium, et al., 
2013) 

2p24.1 2:19942473 rs16986953 G A Intergenic 
OSR1; 
LINC00954 0.068 

408,458 
9.96E

-09 known 

(CARDIoGRAMplusC4
D Consortium, et al., 
2013) 

2p11.2 2:85767735 rs2028900 C T Intronic MAT2A 0.450 

408,458 
1.82E

-08 known 

(CARDIoGRAMplusC4
D Consortium, et al., 
2013) 

2q33.2 2:203968973 rs72934535 T C Intronic NBEAL1 0.108 

408,458 
7.14E

-09 known 

(CARDIoGRAMplusC4
D Consortium, et al., 
2013) 

3q22.3 3:136294757 rs13065626 C G Intronic STAG1 0.137 

408,458 
1.63E

-08 known 

(CARDIoGRAMplusC4
D Consortium, et al., 
2013) 

4q32.1 4:156645513 rs13139571 C A Intronic GUCY1A3 0.233 

408,458 
2.94E

-10 known 

(CARDIoGRAMplusC4
D Consortium, et al., 
2013) 

6p24.1 6:12903957 rs9349379 A G Intronic PHACTR1 0.405 

408,458 
6.30E

-19 known 

(CARDIoGRAMplusC4
D Consortium, et al., 
2013) 

6p21.33 6:31881731 rs685031 G A Intronic C2 0.389 

408,458 
9.26E

-09 known 

(CARDIoGRAMplusC4
D Consortium, et al., 
2013) 

6p11.2 6:57113816 rs430918 C T Intergenic 
RAB23; 
LOC100506188 0.066 

408,458 4.79E
-08 

potential 
novel 

 

6q14.1 6:82459034 rs78707197 T C UTR3 FAM46A 0.022 
408,458 3.75E

-10 
potential 
novel 

 

6q23.2 6:134204247 rs12194592 A G ncRNA_intronic TARID 0.307 

408,458 
1.95E

-10 known 

(CARDIoGRAMplusC4
D Consortium, et al., 
2013) 

6q26 6:161005610 rs55730499 C T Intronic LPA 0.081 

408,458 
4.48E

-62 known 

(CARDIoGRAMplusC4
D Consortium, et al., 
2013) 
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7p21.1 7:19049388 rs2107595 G A Intergenic 
HDAC9; 
TWIST1 0.152 

408,458 
4.23E

-10 known 

(CARDIoGRAMplusC4
D Consortium, et al., 
2013) 

7q36.1 7:150690176 rs3918226 C T Intronic NOS3 0.081 
408,458 1.92E

-10 known 
(Nikpay, et al., 2015) 

8p21.3 8:19870271 rs35237252 C A Intergenic LPL;SLC18A1 0.251 

408,458 
4.68E

-08 known 

{CARDIoGRAMplusC4
D Consortium, 2013 
#212} 

9p21.3 9:22103813 rs1333042 A G ncRNA_intronic CDKN2B-AS1 0.496 

408,458 
2.29E

-72 known 

(CARDIoGRAMplusC4
D Consortium, et al., 
2013) 

9q21.12 9:73553245 
rs15028253
0 C T Intronic TRPM3 0.001 

408,458 3.45E
-08 

potential 
novel 

 

10p11.2
3 10:30317073 rs9337951 G A Exonic JCAD 0.345 

408,458 
7.32E

-09 known 

(CARDIoGRAMplusC4
D Consortium, et al., 
2013) 

10q11.2
1 10:44687780 rs11238907 T G Intergenic 

LINC00841; 
C10orf142 0.115 

408,458 
1.88E

-08 known 

(CARDIoGRAMplusC4
D Consortium, et al., 
2013) 

11p15.4 11:9766932 rs378825 A G Intronic SWAP70 0.427 

408,458 
3.43E

-08 known 

(CARDIoGRAMplusC4
D Consortium, et al., 
2013) 

11q22.1 
11:10059353
8 rs633185 G C Intronic ARHGAP42 0.285 

408,458 8.81E
-09 

potential 
novel 

 

11q22.3 
11:10367329
4 rs2839812 T A Intergenic 

DYNC2H1; 
MIR4693 0.279 

408,458 
1.10E

-11 known 

(CARDIoGRAMplusC4
D Consortium, et al., 
2013) 

11q23.3 
11:12023362
6 rs7924772 A G intronic ARHGEF12 0.387 

408,458 2.42E
-09 

potential 
novel 

 

12q13.1
3 12:54513915 rs11170820 C G ncRNA_exonic FLJ12825 0.058 

408,458 1.33E
-09 known 

(Verweij, et al., 2017) 

12q24.1
2 

12:11190437
1 rs4766578 T A intronic ATXN2 0.495 

408,458 
7.97E

-14 known 

(CARDIoGRAMplusC4
D Consortium, et al., 
2013) 

12q24.1
3 

12:11248681
8 rs17696736 A G intronic NAA25 0.428 

408,458 
7.93E

-11 known 

(CARDIoGRAMplusC4
D Consortium, et al., 
2013) 

12q24.3
1 

12:12141665
0 rs1169288 A C exonic HNF1A 0.313 

408,458 1.37E
-09 known 

(Reiner, et al., 2009) 

13q34 
13:11083755
3 rs638634 C T intronic COL4A1 0.302 

408,458 
1.41E

-08 known 

(CARDIoGRAMplusC4
D Consortium, et al., 
2013) 

15q25.1 15:79132330 rs11072811 A C intergenic 
ADAMTS7; 
MORF4L1 0.492 

408,458 
1.28E

-10 known 

(CARDIoGRAMplusC4
D Consortium, et al., 
2013) 

15q26.1 15:91429287 rs4932373 A C intronic FES 0.326 

408,458 
1.84E

-17 known 

(CARDIoGRAMplusC4
D Consortium, et al., 
2013) 
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16q23.3 16:83045790 rs7500448 A G Intronic CDH13 0.254 
408,458 8.32E

-10 known 
(Verweij, et al., 2017) 

17q21.3
2 17:47340297 rs2011767 C T Intergenic 

FLJ40194; 
MIR6129 0.459 

408,458 
1.33E

-13 known 

(CARDIoGRAMplusC4
D Consortium, et al., 
2013) 

17q21.3
3 17:47450057 rs7209400 C T ncRNA_intronic LOC102724596 0.453 

408,458 
2.25E

-12 known 

(CARDIoGRAMplusC4
D Consortium, et al., 
2013) 

18q21.2 18:52723198 
rs55078082
6 A G Intergenic 

CCDC68; 
LINC01929 0.004 

408,458 1.91E
-08 

potential 
novel 

 

19p13.2 19:11188164 rs56125973 T C Intergenic 
SMARCA4; 
LDLR 0.118 

408,458 
3.99E

-13 known 

(CARDIoGRAMplusC4
D Consortium, et al., 
2013) 

19q13.3
2 19:45412079 rs7412 C T Exonic APOE 0.081 

408,458 
6.98E

-17 known 

(CARDIoGRAMplusC4
D Consortium, et al., 
2013) 

21q22.1
1 21:35593827 rs28451064 G A Intergenic 

LINC00310; 
KCNE2 0.132 

408,458 
1.24E

-14 known 

(CARDIoGRAMplusC4
D Consortium, et al., 
2013) 

Colorectal 
cancer 

PheCode 153 
case:control = 

1:84 

8q24.21 8:128413305 rs6983267 G T ncRNA_exonic CCAT2 0.481 387,318 
7.03E

-12 known 
(Haiman, et al., 2007) 

15q13.3 15:33001734 rs58658771 T A Intergenic 
SCG5; 
GREM1 0.179 387,318 

1.41E
-10 known 

(Jaeger, et al., 2007) 

18q21.1 18:46448805 rs6507874 T C Intronic SMAD7 0.473 387,318 
1.93E

-14 known 
(Broderick, et al., 2007) 

Glaucoma 
PheCode 365 
Case:control  

1:89 
 

1q24.1 1:165743523 rs2790049 A G ncRNA_exonic LOC100147773 0.124 402,223 
8.71E

-17 known 
(Burdon, et al., 2011) 

1q24.3 1:171605478 rs74315329 G A exonic MYOC 0.00137 402,223 
9.13E

-16 known 
(Stone, et al., 1997) 

3p12.1 3:85134557 rs9309969 T G intronic CADM2 0.406 402,223 
4.94E

-11 
Potential 
novel 

 

3q27.3 3:186128816 rs56233426 A G intergenic 
DGKG; 
LINC02052 0.463 402,223 

1.25E
-10 

Potential 
novel 

 

4p16.1 4:7889096 rs7663205 C T intronic AFAP1 
0.40039

0 402,223 
8.82E

-12 known 
(Gharahkhani, et al., 
2014) 

7p15.3 7:22293117 
rs11343228
9 A C intronic RAPGEF5 0.00012 402,223 

2.26E
-08 

Potential 
novel 

 

7q35 7:146348027 
rs54069442
4 G C intronic CNTNAP2 0.00004 402,223 

1.27E
-08 

Potential 
novel 

 

9p21.3 9:22052734 rs6475604 T C ncRNA_intronic CDKN2B-AS1 0.43059 402,223 
3.12E

-15 known 
(Burdon, et al., 2011) 

9q31.1 9:107693201 rs2437812 A C intergenic 
ABCA1; 
SLC44A1 0.42358 402,223 

1.49E
-14 known 

(Chen, et al., 2014) 

15q13.1 15:28365618 rs12913832 A G intronic HERC2 0.21416 402,223 
4.05E

-08 
Potential 
novel 

 

15q24.2 15:76049154 
rs18711239
8 C T intergenic 

DNM1P35; 
MIR4313 0.00079 402,223 

1.03E
-08 

Potential 
novel 

 

17p13.1 17:10031090 rs12150284 C T intronic GAS7 0.37337 402,223 
8.70E

-12 known 
(Bailey, et al., 2016) 
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Thyroid 
cancer 

PheCode 193 
case:control 

=1:1138 9q22.33 9:100546600 rs925489 C T ncRNA_intronic PTCSC2 0.332 407,757 
5.43E

-11 known 

(Pereira, et al., 2015) 
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Table S4-4 Estimated inflation factors of the genomic controls at different p-value quantiles and 

different MAF cutoffs for SAIGE, SAIGE-NoSPA, and BOLT-LMM test applied on three 

different phenotypes for 28 million successfully imputed genetic markers (imputation info ≥ 0.3 

and MAC ≥ 20) from the UK Biobank data. 
   Genomic Control at qth p-value quantile 

Phenotype Test MAF cutoffs Including previously reported loci Excluding previously reported loci 
   q=0.01 q=0.001 q=0.01 q=0.001 

Coronary artery 
disease 

PheCode 411 
case:control  1:12 

All 
variants 

SAIGE 1.132 1.244 1.112 1.166 
SAIGE-
noSPA 1.155 1.329 1.133 1.249 

BOLT-LMM 1.129 1.306 1.108 1.225 

> 0.01 

SAIGE 1.363 1.72 1.284 1.445 
SAIGE-
noSPA 1.363 1.721 1.284 1.445 

BOLT-LMM 1.356 1.709 1.277 1.433 

< 0.01 

SAIGE 1.046 1.041 1.045 1.04 
SAIGE-
noSPA 1.069 1.162 1.069 1.16 

BOLT-LMM 1.031 1.13 1.028 1.13 

Colorectal cancer 
PheCode 153 

case:control  1:84 

All 
variants 

SAIGE 1.014 1.026 1.01 1.014 
SAIGE-
noSPA 1.186 1.555 1.181 1.545 

BOLT-LMM 1.188 1.577 1.182 1.567 

> 0.01 

SAIGE 1.051 1.116 1.039 1.073 
SAIGE-
noSPA 1.052 1.121 1.04 1.077 

BOLT-LMM 1.057 1.126 1.044 1.085 

< 0.01 

SAIGE 0.999 0.993 0.998 0.992 
SAIGE-
noSPA 1.253 1.683 1.251 1.681 

BOLT-LMM 1.255 1.709 1.255 1.709 

Glaucoma 
PheCode 365 

case:control=1:89 

All 
variants 

SAIGE 1.024 1.039 1.021 1.033 
SAIGE-
noSPA 1.204 1.576 1.2 1.567 

BOLT-LMM 1.222 1.634 1.216 1.621 

> 0.01 

SAIGE 1.077 1.141 1.069 1.114 
SAIGE-
noSPA 1.078 1.144 1.07 1.118 

BOLT-LMM 1.085 1.153 1.078 1.126 

< 0.01 

SAIGE 1.004 1.003 1.003 1.003 
SAIGE-
noSPA 1.266 1.702 1.265 1.702 

BOLT-LMM 1.285 1.77 1.285 1.77 

Thyroid cancer 
PheCode 193 

case:control=1:1138 

All 
variants 

SAIGE 1.012 0.992 1.011 0.989 
SAIGE-
noSPA 1.964 4.195 1.963 4.194 

BOLT-LMM 2 4.497 1.989 4.497 
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> 0.01 

SAIGE 1.01 1.036 1.007 1.026 
SAIGE-
noSPA 1.015 1.069 1.012 1.058 

BOLT-LMM 1.02 1.074 1.017 1.064 

< 0.01 

SAIGE 1.013 0.977 1.013 0.977 
SAIGE-
noSPA 2.432 4.737 2.434 4.737 

BOLT-LMM 2.479 5.096 2.479 5.096 
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Table S4-5 Empirical type 1 error rates for SAIGE, SAIGE-NoSPA, GMMAT, and BOLT-LMM 

estimated based on 109 simulated data sets.  

 

BOLT-LMM: compute non-infinitesimal association statistics; BOLT-LMM_lmmInfOnly: 

compute mixed model association statistics under the infinitesimal model 

 
Variance 

Component 
Parameter 

! 

Case:Control Test Empirical Type 1 Error Rates 

   " = $×&'() " = $×&'(* 

1 

1:1 

SAIGE 5.11x10-4 5.45x10-8 
SAIGE-NoSPA 4.71x10-4 4.00x10-8 

GMMAT 4.66x10-4 3.81x10-8 
BOLT-LMM_ lmmInfOnly 4.83x10-4 4.83x10-8 

BOLT-LMM 4.95x10-4 4.99x10-8 

1:9 

SAIGE 4.43x10-4 4.01x10-8 
SAIGE-NoSPA 6.72x10-4 7.82x10-7 

GMMAT 7.30x10-4 1.00x10-6 
BOLT-LMM_ lmmInfOnly 9.01x10-4 2.73x10-6 

BOLT-LMM 9.03x10-4 2.71x10-6 

1:99 

SAIGE 3.82x10-4 1.44x10-8 
SAIGE-NoSPA 2.93x10-3 9.76x10-5 

GMMAT 3.31x10-3 1.26x10-4 
BOLT-LMM_ lmmInfOnly 4.02x10-3 2.10x10-4 

BOLT-LMM 4.02x10-3 2.10x10-4 

2 

1:1 

SAIGE 5.15x10-4 3.53x10-8 
SAIGE-NoSPA 4.75x10-4 2.72x10-8 

GMMAT 4.64x10-4 2.56x10-8 
BOLT-LMM_ lmmInfOnly 5.03x10-4 3.74x10-8 

BOLT-LMM 5.21x10-4 3.59x10-8 

1:9 

SAIGE 4.07x10-4 3.20x10-8 
SAIGE-NoSPA 5.96x10-4 4.94x10-7 

GMMAT 7.07x10-4 8.01x10-7 
BOLT-LMM_ lmmInfOnly 9.88x10-4 3.51x10-6 

BOLT-LMM 9.88x10-4 3.52x10-6 

1:99 

SAIGE 3.53x10-4 2.08x10-8 
SAIGE-NoSPA 2.66x10-3 7.75x10-5 

GMMAT 3.13x10-3 1.08x10-4 
BOLT-LMM_ lmmInfOnly 4.13x10-3 2.30x10-4 

BOLT-LMM 4.13x10-3 2.30x10-4 
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Table S4-6 Test-specific " levels SAIGE and GMMAT where empirical type I errors were equal 

to 5x10-8.  

 

BOLT-LMM: compute non-infinitesimal association statistics; BOLT-LMM_lmmInfOnly: 

compute mixed model association statistics under the infinitesimal model 

 

Variance 
Component 
Parameter 

! 

Case:Control Test Test-specific " 
levels 

1 

1:1 

SAIGE 4.74x10-8 
SAIGE-NoSPA 5.70x10-8 

BOLT-LMM_ lmmInfOnly 5.20x10-8 
BOLT-LMM 4.80x10-8 

GMMAT 6.79x10-8 

1:9 

SAIGE 6.08x10-8 
SAIGE-NoSPA 6.98x10-10 

BOLT-LMM_ lmmInfOnly 1.60x10-11 
BOLT-LMM 1.70x10-11 

GMMAT 5.29x10-10 

1:99 

SAIGE 1.02x10-7 
SAIGE-NoSPA 1.54x10-22 

BOLT-LMM_ lmmInfOnly 5.80x10-26 
BOLT-LMM 8.40x10-26 

GMMAT 1.50x10-23 

2 

1:1 

SAIGE 6.76x10-8 
SAIGE-NoSPA 8.01x10-8 

BOLT-LMM_ lmmInfOnly 6.40x10-8 
BOLT-LMM 6.30x10-8 

GMMAT 8.42x10-8 

1:9 

SAIGE 7.85x10-8 
SAIGE-NoSPA 2.30x10-9 

BOLT-LMM_ lmmInfOnly 1.40x10-11 
BOLT-LMM 1.40x10-11 

GMMAT 8.73x10-10 

1:99 

SAIGE 1.59x10-7 
SAIGE-NoSPA 2.10x10-21 

BOLT-LMM_ lmmInfOnly 8.10x10-28 
BOLT-LMM 9.60x10-28 

GMMAT 6.69x10-23 
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Table S4-7  The variance component estimates + were estimated using SAIGE and PCGC for 100 

simulated data sets for each combination of prevalence and the variance component parameter +. 

  ! from PCGC ! from SAIGE 
Prevalence ! Mean SD Mean SD 

0.01 0.5 1.181 1.602 0.257 0.29 
0.01 1 1.226 1.691 0.372 0.295 
0.01 2 4.287 12.057 0.631 0.373 
0.01 3 6.771 16.294 0.834 0.428 
0.1 0.5 0.348 0.158 0.182 0.069 
0.1 1 0.701 0.223 0.322 0.075 
0.1 2 1.473 0.351 0.534 0.072 
0.1 3 2.329 0.523 0.689 0.073 
0.5 0.5 0.362 0.085 0.185 0.035 
0.5 1 0.714 0.11 0.312 0.036 
0.5 2 1.396 0.164 0.481 0.035 
0.5 3 2.022 0.234 0.58 0.037 
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Table S4-8  Estimated inflation factors of the genomic factor (,) at different p-value quantiles and 

different MAF cutoffs when applying SAIGE using 93,511 genetic markers to construct GRM vs. 

using 340,447 genetic markers to construct GRM on four different phenotypes for 28 million 

successfully imputed genetic markers (imputation info ≥ 0.3 and MAC ≥ 20) from the UK Biobank 

data 

+. 

 

   Genomic Control at qth p-value quantile 
Phenotype Test MAF cutoffs Including previously reported loci Excluding previously reported loci 

   q=0.01 q=0.001 q=0.01 q=0.001 

Coronary artery 
disease 

PheCode 411 
case:control  1:12 

All 
variants 

GRM-93,511 1.132 1.244 1.112 1.166 
GRM-340,447  1.048 1.137 1.032 1.074 

> 0.01 GRM-93,511 1.363 1.72 1.284 1.445 
GRM-340,447  1.217 1.523 1.157 1.277 

< 0.01 GRM-93,511 1.046 1.041 1.045 1.04 
GRM-340,447  0.985 0.98 0.984 0.979 

Colorectal cancer 
PheCode 153 

case:control  1:84 

All 
variants 

GRM-93,511 1.014 1.026 1.01 1.014 
GRM-340,447  0.993 1.004 0.99 0.993 

> 0.01 GRM-93,511 1.051 1.116 1.039 1.073 
GRM-340,447  1.026 1.088 1.014 1.047 

< 0.01 GRM-93,511 0.999 0.993 0.998 0.992 
GRM-340,447  0.981 0.973 0.98 0.972 

Glaucoma 
PheCode 365 

case:control=1:89 

All 
variants 

GRM-93,511 1.024 1.039 1.021 1.033 
GRM-340,447  1.008 1.022 1.006 1.015 

> 0.01 GRM-93,511 1.077 1.141 1.069 1.114 
GRM-340,447  1.057 1.119 1.049 1.094 

< 0.01 GRM-93,511 1.004 1.003 1.003 1.003 
GRM-340,447  0.99 0.988 0.989 0.988 

Thyroid cancer 
PheCode 193 

case:control=1:1138 

All 
variants 

GRM-93,511 1.012 0.992 1.011 0.989 
GRM-340,447  0.957 0.933 0.956 0.931 

> 0.01 GRM-93,511 1.01 1.036 1.007 1.026 
GRM-340,447  0.969 0.991 0.966 0.981 

< 0.01 GRM-93,511 1.013 0.977 1.013 0.977 
GRM-340,447  0.953 0.91 0.953 0.91 
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Chapter 5!Discussion 
 

!

Bicuspid aortic valve (BAV) is a birth defect of the heart characterized by fusion of two of 

the normal three leaflets of the aortic valve. Despite its the prevalence(Hoffman and Kaplan, 2002; 

Tutar, et al., 2005), importance(Roberts and Ko, 2005), and heritability(Cripe, et al., 2004; Ellison, 

et al., 2007; Emanuel, et al., 1978; Garg, 2006), its genetic origins remain elusive. Previous genetic 

studies of BAV have focused primarily on linkage analysis in families (Ellison, et al., 2007; 

Martin, et al., 2007) or sequencing candidate genes in cases (Foffa, et al., 2013) under a hypothesis 

of Mendelian inheritance. Although GWAS is a widely used approach to identify genetic risk 

factors for complex diseases, it is challenging to perform GWAS for BAV because an open heart 

surgery is required to diagnose this congenital heart defect. In Chapter 2, in collaboration with 

clinicians at the Frankel Cardiovascular Center at the University of Michigan, we performed the 

first large-scale GWAS on 466 BAV cases, each matched with 10 unaffected controls on age, 

gender and ancestry. We identified a low-frequency intergenic variant rs6601627 (P = 1.5x10-8) 

with a substantially higher frequency in BAV cases (8.3%) than in controls (4.2%). We performed 

a replication study in six BAV study cohorts with an additional 1,021 cases and 5,357 controls and 

we found strong evidence for association (P=3x10-15). We also identified an independent 

association signal at a common protein-altering variant p.Ser377Gly in GATA4 (rs3729856) that 

is 151 kilobases(kb) away from the first variant (P = 8.8x10-8 ). Following identification of this 

novel associated region, we examined the gene expression and chromatin conformation patterns 

in the region and identified the GATA4 gene, which encodes one of three major transcription
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factors that are critical for heart differentiation, as a biological candidate. Next, GATA4 was 

interrupted by CRISPR-Cas9 in induced pluripotent stem cells from healthy donors. The disruption 

of GATA4 significantly impaired the transition from endothelial cells into mesenchymal cells, a 

critical step in heart valve development. 

Compared to large-scale GWASs on other common diseases (e.g. type 2 diabetes and 

cardiovascular diseases), our study on BAV has a much smaller sample size, leading to relatively 

low association power in principle. However, multiple features, which were considered carefully 

when planning the study,  make it a valid and well-designed GWAS so that genetic variants with 

modest effect sizes typically seen for complex traits have been successfully captured. 1. BAV cases 

were diagnosed by cardiac surgeons upon visual inspection of the aortic valve during open surgery 

for aneurysm repair or valve replacement and any controls with possible aortic disease were 

excluded.  This avoided any bias due to case-control misclassification. 2. Each case and its ten 

controls were matched based on ancestry, age, and gender, which avoided batch effects due to 

sampling. 3. Cases and controls were genotyped simultaneously using the same version of an 

Exome+GWAS array at the same genotyping center followed by uniform calling using the same 

cluster file and quality control was performed on a merged data set with cases and controls. This 

reduced batch effects of genotyping. 4. Genotypes were imputed from a sequencing-based 

reference panel, HRC. This allowed rare or low-frequency genetic variants to be detected and 

tested. 5. The DNA array used for genotyping is enriched with coding variants (Illumina Human 

CoreExome), enabling genetic association tests for directly genotyped protein-altering variants, 

even those with low frequency. 6. To correct for inflation caused by the unbalanced case-control 

ratio (1:10) in score tests in the traditional logistic regression, the saddlepoint approximation (SPA) 

tests were used to test for genetic association.  
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To further investigate the underlying genetic and epigenetic architecture for BAV, next steps 

would include but not limited to 1. meta-analyzing our results with other BAV cohorts to increase 

power and therefore detect novel BAV-associated genetic variants, 2. conducting whole-exome or 

target sequencing to identify novel pathogenic genetic variants for BAV that were unable to be 

imputed, possibly due to low frequency 3. performing reduced representation bisulfite 

sequencing(RRBS) and whole-transcriptome RNA sequencing (RNA-seq) on aortic tissues of 

BAV patients and healthy controls with tricuspid aortic valves to uncover epigenetic and 

transcriptional variations that are associated with BAV. 

Genotype imputation, which statistically infers missing/unobserved genotypes in low-density 

genotyped study samples using a reference panel containing high-density genome markers, is 

considered “in silico genotyping”. As trade-offs exist between imputing from a larger, multi-

ethnic, publicly available imputation reference panel and a smaller, population-specific panel, we 

sought to quantify the differences. In Chapter 3, we systematically evaluated and compared the 

imputation accuracy and numbers of imputed variants using multiple reference panels. Our results 

confirmed that both the population-specific reference panels (e.g. HUNT whole-genome 

sequencing reference panel) and the large-scale publicly accessible reference panels (e.g. HRC and 

1000G) are valuable for genotype imputation. Furthermore, since different whole-genome 

reference panels may generate discordant imputed genotypes for the same variants of the same 

study samples, we performed a simulation study to investigate the optimal strategy to incorporate 

multiple versions of imputed genotypes to perform GWAS. Our results indicate that testing for 

association for all imputed genotypes for all genetic variants and using the most significant 

association p-value results in higher association power than retaining imputed genotypes only from 
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the panel with highest imputation quality metrics for each variant. This holds true even with a more 

stringent adjustment for the multiple testing burden of the additional variants adjusted.   

The strategy we proposed is feasible even when individual-level haplotypes within the reference 

panel are not accessible, a common issue due to ethical issues surrounding sharing of individual-

level genetic data, as is the case with the HRC(McCarthy, et al., 2016). Genotype imputation tools 

that allow merging reference panels without sharing the individual-level data in each panel for 

imputation would be very useful.  As the cost for genome sequencing drops quickly, reference 

panel sizes continuously increase. The future direction of genotype imputation would also lie in 

the development of imputation tools to handle the increase in computational burden.  

In Chapter 4, to tackle challenges in PheWAS, an emerging unbiased approach to explore the 

genome-phenome associations, we have developed a novel method, Scalable and Accurate 

Implementation of GEneralized mixed model (SAIGE). This method allows for analysis of very 

large sample sizes for binary traits with unbalanced case-control ratios and also infers and accounts 

for sample relatedness. SAIGE applies the saddlepoint approximation to correct for inflation 

caused by the unbalanced case-control ratio in the score tests in logistic mixed models. We have 

demonstrated that SAIGE controls for the inflated type I error rates for analysis of binary traits in 

related samples even when case-control ratios are extremely unbalanced through simulation and 

GWASs in the UK Biobank data of 408,961 white British samples. Our work provides an accurate 

and scalable solution for large scale biobank data analysis. We employed SAIGE to analyze 1,403 

binary phenotypes constructed based on PheCodes for 408,961 white British samples in the UK 

Biobank, within one week.  The GWAS summary statistics are available for public download.  
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!

PheWAS was initially proposed to examine associations between genetic variants and multiple 

human phenotypes. Since the first PheWAS published in 2010 (Denny, et al., 2011),  multiple 

PheWAS studies have been reported(Bush, et al., 2016; Dumitrescu, et al., 2015; Ehm, et al., 2017; 

Hall, et al., 2014; Hebbring, et al., 2015; Millard, et al., 2015; Moore, et al., 2015; Namjou, et al., 

2014; Namjou, et al., 2015; Pendergrass, et al., 2013; Ye, et al., 2015), most of which focused on 

a small set of genetic markers that were previously shown to be associated with certain phenotypes 

or have biological functions of interest. 

In recent years, as large biobanks, such as the MGI Biobank(www.michigangenomics.org), the 

HUNT study (Krokstad, et al., 2013) and the UK Biobank(Bycroft, et al., 2017; Sudlow, et al., 

2015), started genotyping all of their participants and subsequently performing GWASs on the 

human phenome based on EHR and/or epidemiological data, PheWAS expanded the scope of its 

genetic tests to the whole genome. The release of the UK Biobank’s genotyping and imputation 

data in combination with EHR and epidemiological questionnaire data for ~500,000 participants 

earlier this year is expected to invigorate the next-generation PheWAS(Bycroft, et al., 2017; 

Sudlow, et al., 2015).  

Such genome-phenome association studies enable comprehensive mapping of the pleiotropy of 

human genome. This not only provides potential drug targets like traditional GWAS, but also 

reveals cross-phenotype associations which may lead to drug repositioning and/or treatment 

repurposing(Rastegar-Mojarad, et al., 2015). For example, Zidovudine, a reverse transcriptase 

inhibitor, is a drug prescribed to treat HIV/AIDS, which may inhibit TERT(Telomerase Reverse 

Transcriptase) activity. A PheWAS reported an association between a SNP rs2736100 in the 

gene TERT and diabetes and an increased telomerase activity was also reported to be associated 
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with increased diabetes complications, suggesting that Zidovudine may be repositioned to treat 

diabetes (Rastegar-Mojarad, et al., 2015; Sun, et al., 2013). 

Interpreting GWAS results is not a simple task, given that the majority of phenotype-associated 

variants are non-coding and therefore have no easily identifiable effect on protein function and 

disease. Omics data, such as epigenetic features, RNA expression and chromatin conformation, 

etc., are often integrated together for post-GWAS identification of candidate functional genes and 

pathways. Interpretation of PheWAS results is even more challenging, because cross-phenotype 

associations could be due to true pleiotropy, true comorbidity, confounded phenotype relationship 

or just false phenotype definition(Rastegar-Mojarad, et al., 2015). Further analysis, such as 

Mendelian randomization, is needed to help interpret PheWAS results. 

The “big data” in large biobanks makes PheWAS computationally challenging. For example, 

SAIGE is the only mixed model method that is practical for large-scale PheWAS while correcting 

for sample relatedness and case-control imbalance.  While SAIGE is relatively fast, performing 

PheWAS for 1,403 binary traits on the UK Biobank data(Bycroft, et al., 2017; Sudlow, et al., 

2015), which contains ~30 million genetic variants for ~400,000 samples, required ~700,000 CPU 

hours (80 CPU years). Further efforts will be required to continuously improve the computational 

efficiency of methods for the association tests.  

The next-generation PheWAS, in which multiple GWASs are performed, identifies genetic 

markers, while incorporating real-time health records and personal environmental information 

(e.g. lifestyle). This makes it a powerful approach to inform the prediction for individual disease 

risk and treatment response, aiding the development of precision medicine. The work presented in 

this dissertation highlights the value of GWAS for identifying novel genetic variants for complex 

diseases, even for diseases whose diagnoses is so difficult that sample size in GWAS is relatively 
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small, proposes an optimal strategy to increase the study power by imputing genotypes using 

multiple reference panels, and provides a scalable and efficient statistical tool to perform PheWAS 

in large biobanks. 
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