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Abstract

Terahertz, abbreviated as THz, (also called T-ray similar to X-ray and γ -ray) is

defined as the frequency band spanning from 300 GHz to 10 THz, which is located

between the microwave from the electronic side of the electromagnetic (EM) spectrum

to mid-Infra-Red (abbreviated as mid-IR) on the photonic side of the EM spectrum.

As accelerated research and innovations over the past seven decades have resulted

in widespread commercialization of both electronic and photonic components, THz

band has remained underdeveloped, underexploited, and mostly unallocated by the

Federal Communications Commission (FCC). Though certain definitive merits of EM

waves at THz have evoked interests of physicists, chemists, biologists and material

scientists to deploy THz in Time-Domain Spectroscopy (TDS), bio-sensing, and clas-

sical imaging applications, the field of THz circuits (also known as THz electronics)

has continued to remain in embryonic stage due to the speed (fT <1 THz) limita-

tions of conventional Silicon and compound semiconductor devices like Field Effect

Transistors (FETs), Hetero-junction Bipolar Transistors (HBTs), and Hot Electron

Mobility Transistors (HEMTs). On the other hand, conventional photonic devices

cannot be readily adopted to design new THz circuits and systems. Our research

vision in THz circuits and systems is to study the meta-material properties of THz
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in various forms of sub-wavelength structures and exploit those unique properties to

invent the designs of large THz systems like the THz switch, Analog-to-Digital Con-

verter (ADC), etc. without requiring the use of conventional electronic transistors

or photonic components. This transformative approach envisions leveraging the con-

ventional MEMS technology to build micro-machined THz components for the next

generation terahertz communications and digital signal processing.

The potential large bandwidth and high propagation speed helps photonic cir-

cuitry to be proposed against the above-mentioned challenges faced by its electronic

counterpart. Optical-assisted as well as all-optical systems in various forms have been

reported to realize different data-processing functionalities. For example, analog-

to-digital converters (ADC) with the potential of high speed operation have been

demonstrated by optical-assisted or all-optical approaches. Photonic logic has also

been reported in numerous works by coding the Boolean information in the amplitude,

phase or wavelength of the optical signals. Despite these efforts, however, the key

element to address the fundamental deficiencies of CMOS circuit remained missing.

The use of optical frequencies in these works brought about common shortcomings in-

cluding dimension mismatch, lack of coherent detection, inflexibility, susceptibility to

mechanical and environmental variations, and the presence of bulky optical elements

(i.e., mirrors, beam splitters, lenses, etc.). More seriously, these works inherited se-

quential circuit designs directly from CMOS. It indicates that the cumulative delay

still dominated the speed performance, which prevented further decrease of the circuit

latency. In light of these problems, we foresee the implementation of THz circuitry

as the next reasonable step to take in designing high-speed analog as well as digital

circuits.

Spoofed Surface Plasmon Polariton (SSPP) is known as a pseudo-surface mode in

THz frequencies that mimics the slow wave nature and localized E-M field distribution

of the plasmon mode typically observed in optical domain. By introducing periodic

xiii



corrugations on the surfaces of a metal-dielectric-metal structure, SSPP mode is real-

ized for propagating THz signal, and its mode dispersion is strongly dependent on the

geometric dimensions as well as the material properties of the architecture. Recently

propagation of THz wave utilizing Spoof surface plasmon polariton (SSPP) earned

a great deal of attention due to the ability of SSPP modes to guide THz waves at

very low dispersion. In this research, we exploit and investigate the SSPP modes in

different periodic structure and utilizing them in different structure to introduce new

THz devices, such as, polarization rotator, THz switch, ADC, etc.
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CHAPTER I

Introduction

The discovery of p-n junction and the construction of the very first semiconductor

transistor decades ago have revolutionized the science of electronics profoundly. Ever

since, efforts have been continuously made to design and realize solid-state circuits

with smaller size, less power consumption, and higher performance. To-date, very

large scale integrated (VLSI) circuit has become the foundation of modern electronics.

With the discovery of new materials and the development of advanced fabrication

techniques, the dimensions of the VLSI are marching into the sub-10 nm domain

with the speed performance achieving gigahertz (GHz) operations.

However, with the ever-growing demand for large scale data transmission and

high-speed information processing, the electronics as we know of begins to face serious

challenges. Conventional VLSI circuit comprises enormous number of complementary

metal-on-semiconductor (CMOS) transistors connected in a preconfigured manner via

metallic wires. The transportation of charged carriers in these structures is not only

slow, but also power consuming. As a result, a hard speed limit is faced by the

circuit designers nowadays. The cumulative path delay and state delay, as well as the

temporal jitter of clock signals, contribute to such limit [1, 2].

Photonics, on the other hand, is a promising solution to the challenges as stated

above. Unlike charged carriers, photons propagate in the form of electromagnetic (E-
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M) waves at a much higher speed, which is close to or comparable with the speed of

light. The path delay for the photonic signal to traverse the entire circuit is therefore

minimal. The E-M field has instantaneous response as dictated by the bounded

solutions to the Maxwells equations, which will further reduce the circuit latency due

to the minimized state delay. Moreover, photonics has great bandwidth, ranging from

terahertz (1 THz=1012 Hz) to 1014 Hz of the visible spectrum. Due to these potential

advantages, photonic circuits and networks have attracted enormous research interest

in the recent years. Optical-assisted as well as all-optical systems in various forms

have been reported to realize different data-processing functionalities [3, 4, 5].

Despite the heated research activities in the optical frequencies, several hurdles

remain before this concept can be adopted in real world applications. These hurdles

include the enormous frequency difference between photons and electrons, as well as

the dimension mismatch between optical and electrical components. Faced by these

problems, THz is proposed to be a transitional frequency range that can potentially

bridge the disparity between the two. Comparing to optics, THz features lower os-

cillating frequency of the E-M field, indicating much easier realization of resonant

interaction of THz radiations with electrons. Unlike optical waves, the direct energy

transfer from photon oscillation to free carrier dynamics in the same time scale is

straightforward in THz.

From the electronics end, the THz frequencies provide bandwidth that is mag-

nitudes larger than the GHz range achievable today. Devices that can utilize THz

signals are hence promising candidates for increasing the speed of the state-of-the-

art electronic components. The photon energy of THz radiation is on the order

of meV. For years, it has posed difficulties for the emitter and detector designs at

these frequencies. The dilemma between the positive phenomenology of THz in cir-

cuit applications and the difficulty in its generation and detection was finally solved

with the discovery of resonant THz emission by using semiconductor photoconductive
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switch, as reported by D. Grischkowsky et al. in the late 1980 [6, 7, 8].

Their pioneering works have been supplemented by the work of Dyakonov and

Shur at the beginning of 1990s, where the possibility of generating and detecting

THz emissions through the instability of plasmon waves in the field-effect transistor

(FET) structure is proposed and demonstrated [9, 10]. To-date, a variety of different

technologies have been employed to generate and detect THz radiations in both pulsed

and continuous-wave (CW) mode, and THz measurement systems employing these

technologies have slowly but steadily matured [11, 12, 13, 14]. With these significant

achievement, and fueled by a multitude of research projects that sometimes involve

collaborative participants, THz technologies progressed fast in the recent decade,

beginning to demonstrate its potential in diverse domains such as astronomy, bio-

sensing, and high-speed data processing [15, 16, 17, 18, 19].

Recent years have seen fast progress in the research field of THz electromagnetics

and components, which has long been deemed as missing links between their mi-

crowave and optics counterparts. In the upcoming future of the Beyond-Moores Law

era of the integrated circuit, higher operation speed of the VLSI can be realized with

the integration of THz components into the state-of-the-art CMOS technologies. In

CMOS circuits, various functionalities are realized by cascading a network of semi-

conductor transistors in sequential manners. Regardless of the circuit design and

realization, electrical signal needs to propagate between stages of the circuit, where

the output from the previous stage serves as the input to the next. Modern chip de-

sign requires the combination of large number of stages of various natures in order to

achieve complex circuit functions including signal switching, routing, amplification,

digitization and Boolean logic operations. Such serial connection and the resultant

information pipelining have engendered the following fundamental limitations on the

performance of the CMOS technology:

1. Cumulative delay. The circuit latency consists of the time for the electrical

3



signal to traverse the entire circuit network, and the time for individual transistor or

group of transistors to switch their output state upon the input change, known as

the path delay and the state delay, respectively. In CMOS circuit, the later stage

cannot generate meaningful result unless the outputs from all of its previous stages

have stabilized. This phenomenon dictates both the path delay and the state delay

to be cumulative.

2. Excessive power consumption. Although the final output is in most cases the

only output of significance, the serial cascading of the circuit components requires

all intermediate results to be calculated, cached and propagated, producing power

consumption associated with each individual step.

3. Limited bandwidth. Ultrafast movement of electrons is inhibited by the finite

carrier mobility and the nonideality of common metal and semiconductor materials.

The speed limitation is worsened by the parasitic resistance and capacitance of the

circuit design. Such delay will scale up significantly with increasing complexity of the

circuit. The potential large bandwidth and high propagation speed helps photonic

circuitry to be proposed against the above-mentioned challenges faced by its electronic

counterpart. For example, analog-to-digital converters (ADC) with the potential of

high speed operation have been demonstrated by optical-assisted or all-optical ap-

proaches [20, 21, 22, 23]. Photonic logic has also been reported in numerous works by

coding the Boolean information in the amplitude, phase or wavelength of the optical

signals [24, 25, 26, 27]. Despite these efforts, however, the key element to address

the fundamental deficiencies of CMOS circuit remained missing. The use of optical

frequencies in these works brought about common shortcomings including dimension

mismatch, lack of coherent detection, inflexibility, susceptibility to mechanical and

environmental variations, and the presence of bulky optical elements (i.e., mirrors,

beam splitters, lenses, etc.). More seriously, these works inherited sequential circuit

designs directly from CMOS. It indicates that the cumulative delay still dominated
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the speed performance, which prevented further decrease of the circuit latency.

There have been many efforts to utilize surface modes in THz region, various

structures have been employed and studied. For example, K. Wang et al. first

proposed the transmission of THz radiation as a radially polarized mode on metal

wires [28]. Due to the small surface area of the metal wire, the loss is shown to be

much smaller than any conventional waveguiding structures available at that time.

The TEM-like dispersion relation also minimized the group velocity dispersion, which

is critical for time-domain applications where pulsed THz radiations are typically

used.

A newly developed method to overcome the group velocity dispersion of terahertz

wave and weak guiding at THz frequencies is the utilization of spoof surface palasmon

polariton (SSPP) waves confined to the periodically corrugated metallic structures.

Such features can be holes, slits, or dimples. Although extraordinary optical trans-

mission for light shining on such surfaces has been studied even before Pendrys work,

the main contribution of this work is to conclude that the enhanced subwavelength

transmission and E-M field localization can be explained by the existence of spoofed

surface plasmon mode on the modified surfaces. He showed that for this kind of mode

it is possible to define an effective permittivity which is a is apparently dependent on

the geometric dimensions as well as the choice of materials of the modified surface.

As long as the periodicity and dimensions of the resonators are much smaller than

the wavelength of operation, it is possible to replace the corrugated conducting struc-

ture with a metal whose plasma frequency depends on the geometric properties of the

grooves. This is the reason that the term spoof surface plasmons used for the confined

surface waves propagating along the corrugated perfectly-conducting surface [29, 30].

The Importance of Pendrys work not only lies in the unified theoretical treatment

of the spoof surface plasmon on corrugated surfaces, but also in the fact that such

resonance can be modified by adjusting the design of the periodic surface features
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toward the desired specifications.

Following Pendrys work, different metallic surfaces with periodic structures are

studied in order to investigate the transmission, guiding and focusing of E-M radia-

tions, mostly in THz frequencies. For example, C. R. Williams et al. have studied the

metal surface perforated with 2-D periodic square holes both quasi-analytically and

numerically [31]. They also performed experiments to characterize the mode confine-

ment, and they have shown an increase of approximately two orders of magnitude

in terms of mode confinement has been observed for the modified surface compared

with the flat structure. Their work proves the Pendrys theoretical prediction, where

he claimed strong mode localization within the surface of periodic structure is antic-

ipated [30].

In the light of the aforementioned challenges, we foresee the implementation of

THz circuitry as the next reasonable step to take in designing high-speed analog as

well as digital circuits. As mentioned in the beginning, THz is easier to be imple-

mented and integrated with electronics as opposed to optics. The use of this fre-

quency domain, when combined with innovative architecture design, will address the

fundamental issues that the CMOS circuits are facing at the moment. Unlike optical

frequencies, the THz signals are most effectively transmitted and modulated using

sub-wavelength surface-mode architectures. We plan to design THz directed logic

elements by employing periodically modified metamaterial architectures. These ele-

ments can be organized into various setups to realize different circuit functionalities.

This thesis is organized as follows:

In Chapter II, by inserting periodic grooves along the direction of propagation in

a cylindrical waveguide, a corrugated SSPP waveguide has been constructed. This

structure shows strong confinement of electromagnetic energy inside the grooves near

their resonant frequency. This property makes it applicable in narrowband THz

circuits such as filter or active switches or polarizer rotators. By applying special
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materials into the circular SSPP waveguide, for example, anisotropic dielectric, the

polarization state of the THz travelling wave, will be preferably selected at input and

will evolve while propagating. If, in addition, we can control the refractive indices

through external stimuli, we can accommodate the output polarization of the THz

signal to our needs.

Chapter III introduces a new THz switch comprising the (cylindrical spoof surface

plasmon polariton) C-SSPP structure. We demonstrate that the C-SSPP has strong

mode confinement, discrete transmission bands, and high quality factor in THz do-

main. The proposed switch works based on waveguide-cavity-waveguide (WCW)

structure. The cavity is connected to identical corrugated cylindrical waveguides in

both sides. The new structure can work as an active switch or modulator. Fur-

thermore, the high-quality factor cavity and small effective area enable the device

to function at the small refractive index modulation ((δnd)nd ) induced by applying

voltage to the metal electrode connections.

Chapter IV discusses about analog to digital converter based on the spatial detec-

tion. The key mechanism behind spatial detection is the deflection of output signal

at different angles with changing analog input. In order to realize this functionality,

spoofed surface plasmon polariton (SSPP) architecture is employed. Such structure

features SSPP mode with a slow-wave nature and strong field confinement. These

properties are not only critical to the THz signal transmission over distance, but are

also the key for localized modulation of the THz signals with enhanced efficiency.

We have shown that the phase constant of the one dimensional SSPP (1D-SSPP) is

sensitive enough to the refractive index of the material inside the grooves. Then using

the plasmonic behavior of the 1D-SSPP dispersion diagram and its sensitivity to the

refractive index inside the grooves, we have shown that one can reach beam steering

around 42 degrees in a short length of the waveguide.

In Chapter V, we have presented an investigation of the SSPP beam splitter, one
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of the key elements of many optical setups. In contrast with conventional free space

implementations, in the case of the SSPP beam splitter one can no longer disregard

scattering of incoming wave back into the input channels. Thus, SSPP implementa-

tions must take into consideration both the splitting ratio and the backscattering as

important parameters characterizing the beam splitter. Three different designs rep-

resenting different approaches to solving the problem of the relation between these

parameters are investigated. The mathematical formalism to study the dispersion

diagrams is proposed. The frequency dependence of splitting ratio, scattering param-

eters and backscattering for each beam splitter is investigated. Finally, by employing

one of the proposed beam splitter a controllable filter is designed and analyzed.

In Chapter VI, the Maxwell stress tensor for the field inside a spoof surface plas-

mon polariton (SSPP) waveguide and the electromagnetic force distribution acting

on a dielectric particle are investigated. We have shown that for particles made of

material with the dielectric function slightly different from that of the medium filling

the waveguide, the force distribution is fully described by the SSPP field in the ab-

sence of the particle. The spatial profile of the field strongly depends on the relation

between the operating frequency and the SSPP resonance frequency. We have illus-

trated that varying the characteristic frequencies introduces a switching effect, when

the direction of the force along the waveguide axis changes its direction (from toward

the grooves to away from them). We have proposed a pumping mechanism based on

force acting on a small particle inside the SSPP waveguide

Chapter VII’s objectives is to offer a highly sensitive THz sensor for detection of

hazardous material and biological agents. At first single and double ring resonator are

placed on a single unit-cell and are investigated. A thin layer of dielectric is added on

top of the metallic rings to increase field concentration near the rings and increases the

THz wave matter interactions. At the end, by constructing a hybrid Fano-resonant

metallic microstructure array-insulator-metal (MIM) configuration, a novel absorp-
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tive metamaterial cavity sensor is proposed. The sensitivity and resolution of meta-

material sensors are compared with the current state of the art metamaterial THz

sensors.

In the last chapter of this thesis, we have discussed about the fabrication of some

SSPP waveguide and the future plan to improve the quality of previous fabricated

samples. ALso a new one-dimensional structure that can support SSPP modes with

much simpler fabrication process is suggested.
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CHAPTER II

THz Polarization Controller Based on Cylindrical

Spoof Surface Plasmon Polariton (C-SSPP)

2.1 Introduction

Surface plasmons result from the oscillation of plasma along the interface of metal

and dielectric. It happens as a result of negative dielectric of certain metal below

the plasma frequency. There have been some theoretical and experimental works to

utilize these modes in frequency range (0.3-10 THz) [32, 33, 34]. Besides there are

efforts to utilize conventional waveguides such as metallic wires, tubes, index-guiding

silicon slab waveguides or sapphire fibers, etc. unfortunately the conventional metallic

tube waveguides are not suitable because of their high loss, Si waveguide are not

flexible and some waveguides such as sub-wavelength metal wire has high bending

loss and coupling difficulty [34, 35, 36, 37]. A newly developed method to overcome

the group velocity dispersion of terahertz wave and weak guiding at THz frequencies

is the utilization of spoof surface palasmon polariton (SSPP) waves confined to the

periodically corrugated metallic structures [38, 28, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48,

49, 50, 51, 52, 53, 54]. These SSPP modes exhibit features such as field enhancement

and localization. In this technique the transverse mode of SSPP follow the same

behavior of surface plasmons at interface of metal dielectric at optical frequencies.
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It has been first shown by Wang, et al that it is possible to have dispersion-less

propagation along metallic wire surrounded by dielectric at THz frequency [28]. Later

Pendry et al. proposed a periodic structure containing grooves at metallic dielectric

interface to support THz propagation [38].

As long as the periodicity and dimensions of the resonators are much smaller

than the wavelength of operation, it is possible to replace the corrugated conducting

structure with a metal whose plasma frequency depends on the depth of the grooves.

This is the reason that the term spoof surface plasmons used for the confined surface

waves propagating along the corrugated perfectly- conducting surface [55]. In [56, 57]

the corrugated SSPP structures have been realized by placing rectangular resonator

along the propagation path of rectangular waveguide and the parallel plate waveguide.

In our work, by inserting periodic grooves along the direction of propagation in

a cylindrical waveguide, a corrugated SSPP waveguide has been constructed. This

structure shows strong confinement of electromagnetic energy inside the grooves near

their resonant frequency. This property makes it applicable in narrowband THz

circuits such as filter or active switches or polarizer rotators. By applying special

materials into the circular SSPP waveguide, for example, anisotropic dielectric, the

polarization state of the THz travelling wave, will be preferably selected at input and

will evolve while propagating. If, in addition, we can control the refractive indices

through external stimuli, we can accommodate the output polarization of the THz

signal to our needs.

2.2 Cylindrical Spoof Surface Plasmon Polariton (C-SSPP)

waveguide

The structure under investigation consists of a dielectric cylindrical part covered

by perfect electric conductor (PEC). As mentioned before, the proposed SSPP struc-
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ture is a periodic device. In order to calculate the dispersion relationship, electromag-

netic fields need to be calculated in one period. Figure 2.1 shows the overall view of

SSPP waveguide and the unit cell of structure. As can be seen, one period of waveg-

uide has been divided into two regions. Region 1 acts as a cylindrical waveguide,

while Region 2 is a cylindrical resonator.

Figure 2.1: (a) Schematic view of the corrugated cylindrical waveguide. (b) The unit
cell of the structure.

In our convention,d is the period of the grooves, a and R2 represent the width and

radius of the grooves, while R1 is the radius of the smooth part of the waveguide.

Moreover, the permittivity of Region 1 and grooves can be denoted by nd. Based on

Maxwells equations, mathematical expressions of the TM-polarized waves propagat-

ing in z direction along grooves are explicitly written out for both Regions 1 and 2.

To this goal the magnetic and electric vector potentials in Region 1 can be assumed

as A1 = ψa1ẑ and F1 = ψf1ẑ. In which:
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ψa1 = IN(kρρ)cos(Nφ)e−ik
m
z z (2.1a)

ψf1 = IN(kρρ)sin(Nφ)e−ik
m
z z (2.1b)

In Equations (2.1a) and (2.1b), IN(kρρ) is the modified Bessel function of the

first kind, ρ represents radius and kρ is propagation constant in direction of ρ. As

is common in solving Maxwell equations in periodic structures, the EM field can

be best represented by a Bloch-Floquet mode expansion.kmz , therefore, denotes the

wavevector of mth-order Bloch-Floquet mode along z-axis and is expressed by:

kmz = kz +
2mπ

L
(2.2)

Similarly, the magnetic vector potential in Region 2 is assumed to be a vector

along the z-axis as expressed by A2 = ψa2ẑ and F2 = ψf2ẑ. In which:

ψa2 = (A+H2
N(kρ2ρ) + A−H1

N(kρ2ρ)cos(Nφ)cos(
π

a
z) (2.3a)

ψf2 = (B+H2
N(kρ2ρ) +B−H1

N(kρ2ρ)sin(Nφ)sin(
nπ

a
z) (2.3b)

The term cos(nπ
a
z) and sin(nπ

a
z) is included in the expression in order to guarantee

that Eρ vanishes at z=0 inside the resonators. The fields are assumed as upward and

downward waves, and H1,2
N (kρ2ρ) are Hankel functions of the first and second kind,

respectively:
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H2
N(ρ) = JN(ρ)− iNN(ρ) (2.4a)

H1
N(ρ) = JN(ρ) + iNN(ρ) (2.4b)

Having the electric and magnetic vector potential in both regions EM field components

can be calculated as follows:

~D =
1

iω
∇×∇× ~A− [ε]∇× ~F (2.5a)

~H =
1

iωµ
∇×∇× ~F + [ε]∇× ~A (2.5b)

Where [ε] is a function refractive index of dielectric. We can write D and H fields in

both regions. For the TMz modes D and H fields are as follow:


Dρ

Dφ

Dz

 =
M∑

m=−M


−Amkz

ω
kρJ

′
N(kρρ)cos(Nφ)e−ik

m
z z

Am
kz
ωρ
kzJN(kρρ)sin(Nφ)e−ik

m
z z

Am

ω
(k2 − k2z)JN(kρρ)cos(Nφ)e−ik

m
z z

 (2.6a)


Hρ

Hφ

Hz

 =
M∑

m=−M


Am

−N
ρ
JN(kρρ)csin(Nφ)e−ik

m
z z

−AmkρJ ′N(kρρ)sin(Nφ)e−ik
m
z z

0

 (2.6b)

Region 2:
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
Dρ

Dφ

Dz

 =
M∑

m=−M


1
iωε

nπ
a
kρ2(A

+H ′N2(kρ2ρ) + A−H ′N1(kρ2ρ))cos(Nφ)cos(nπ
a
z)

1
iωερ

nπ
a

(A+H2
N(kρ2ρ) + A−H1

N(kρ2ρ))cos(Nφ)sin(nπ
a
z)

1
iωε

(k2 − (nπ
a

)2)nπ
a

(A+H2
N(kρ2ρ) + A−H1

N(kρ2ρ))cos(Nφ)cos(nπ
a
z)


(2.7a)

Hρ

Hφ

Hz

 =
M∑

m=−M


−N
ρ

(A+H2
N(kρ2ρ) + A−H1

N(kρ2ρ))sin(Nφ)cos(nπ
a
z)

−ikρ(A+H ′N2(kρ2ρ) + A−H ′N1(kρ2ρ))cos(Nφ)cos(nπ
a
z)

0


(2.7b)

And for the TEz modes the D and H fields can be written as:

Region 1:


Dρ

Dφ

Dz

 =
M∑

m=−M


Bm

N
ρ
IN(kρρ)cos(Nφ)e−ik

m
z z

BmkρIN(kρρ)sin(Nφ)e−ik
m
z z

0

 (2.8a)


Hρ

Hφ

Hz

 =
M∑

m=−M


−Bmikρk

m
z I
′
N(kρρ)sin(Nφ)e−ik

m
z z

Bm
N
ρ
ikmz IN(kρρ)cos(Nφ)e−ik

m
z z

Bm(kz − kmz 2)IN(kρρ)sin(Nφ)e−ik
m
z z

 (2.8b)
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Region 2:


Dρ

Dφ

Dz

 =
M∑

m=−M


N
ρ
kρ2(B+HN2(kρ2ρ) +B−HN1(kρ2ρ))sin(Nφ)cos(nπ

a
z)

kρ2(B
+H ′N2(kρ2ρ) +B−H ′N1(kρ2ρ))sin(Nφ)sin(nπ

a
z)

0


(2.9a)

Hρ

Hφ

Hz

 =
M∑

m=−M


nπ
a
kρ2(B

+H2
N(kρ2ρ) +B−H1

N(kρ2ρ))sin(Nφ)cos(nπ
a
z)

−N
ρ
nπ
a

(B+H ′N2(kρ2ρ) +B−H ′N1(kρ2ρ))cos(Nφ)cos(nπ
a
z)

kρ2(B
+H ′N2(kρ2ρ) +B−H ′N1(kρ2ρ))sin(Nφ)sin(nπ

a
z)


(2.9b)

Now that the full field expressions are derived, the boundary conditions for tangential

fields at the interface of Regions 1 and 2 need to be satisfied. As a << 1 the only

modes that can propagate in the grooves are the fundamental modes with n = 0 for

TMz and n = 1 for TEz . Now we can implement the boundary conditions for D and

H fields. Writing the boundary condition for Dz and Hz can be further transcribed

as:

m=M∑
m=−M

−Bm(k20 − kmz
2)IN(kρR1)e

−ikmz z =

(k20 −
π

a

2

)((B+H2
N(kρ2R1) +B−H1

N(kρ2R1)sin(
nπ

a
z)) (2.10)

And

m=M∑
m=−M

Am(k20 − kmz
2)IN(kρR1)e

−ikmz z =

k20((A+H2
N(kρ2R1) + A−H1

N(kρ2R1) (2.11)

In addition, at ρ = R2 the tangential electric field should vanish. Therefore we
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have: A+H2
N(kρ2R2) = A−H1

N(kρ2R2) and B+H2′
N (kρ2R2) = B−H1′

N (kρ2R2). Then we

only need to write out the boundary condition for the remaining two fields,Hφ and

Dφ note that for TMz mode Dφ1 = Dφ2 = 0. By solving the boundary condition and

eliminating B− and A−the dispersion relation for the SSPP modes can be obtained

as:

m=M∑
m=−M

Am(k20 − kmz
2)IN(kρR1)e

−ikmz z = k20((A+H2
N(kρ2R1) + A−H1

N(kρ2R1) (2.12a)

Am = (
−kρ2
kρ

)
H1
N(kρ2R2)H

2
N(kρ2R1)−H2

N(kρ2R2)H
1
N(kρ2R1)

H1
N(kρ2R2)H2

N
′
(kρ2R1)−H2

N(kρ2R2)H1
N
′
(kρ2R1)

C2
m (2.12b)

Bm = (
kρ2
kρ

)
H1
N(kρ2R2)H

2
N
′
(kρ2R1)−H2

N(kρ2R2)H
1
N
′
(kρ2R1)

H1
N(kρ2R2)H2

N
′
(kρ2R1)−H2

N(kρ2R2)H1
N
′
(kρ2R1)

C2
m (2.12c)

A = H1
N(kρ2R2)H

2
N(kρ2R1)−H2

N(kρ2R2)H
1
N(kρ2R1) (2.12d)

B = H1
N(kρ2R2)H

2
N
′
(kρ2R1)−H2

N(kρ2R2)H
1
N
′
(kρ2R1) (2.12e)

By finding the eigenvalues of Equation 2.12a, the dispersion diagram for hybrid modes

can be obtained. For special cases, if there is just TMz modes inside the waveguide,

Equation 2.12a reduces to:

m=M∑
m=−M

(
−kρ2
kρ

)
I ′N(kρR1)

IN(kρR1)

H1
N(kρ2R2)H

2
N(kρ2R1)−H2

N(kρ2R2)H
1
N(kρ2R1)

H1
N(kρ2R2)H2

N
′
(kρ2R1)−H2

N(kρ2R2)H1
N
′
(kρ2R1)

C2
m
π
2a

= 1

(2.13)

For the TEz modes, we have:

m=M∑
m=−M

(
kρ
kρ2

)
IN(kρR1)

I ′N(kρR1)

H1
N(kρ2R2)H

2
N
′
(kρ2R1)−H2

N(kρ2R2)H
1
N
′
(kρ2R1)

H1
N(kρ2R2)H2

N(kρ2R1)−H2
N(kρ2R2)H1

N(kρ2R1)

C2
m
π
2a

= 1

(2.14)
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where, the additional variables are defined as:

Cm =

√
a

d
sinc(

kmz a

2π
) (2.15a)

k2ρ + kmz
2 = n2

dK
2
0 (2.15b)

k2ρ2 +
n2π

a

2

= n2
dK

2
0 (2.15c)

Note that the dispersion equations in Equations (2.12a), (2.13), and (2.14) are not

only a function of cylindrical waveguide geometries but also depend on the refractive

index of the dielectric inside the SSPP.

It was mentioned before that a << 1, and the only modes that can propagate

inside the grooves are the fundamental modes with n = 0 for TMz and n = 1 for TEz

. Based on Equations (2.8a),(2.8), (2.9a), and (2.9b), there will be no TEz modes

inside grooves; it can exist just at very high frequency in which the wavelength is

comparable to the width of the grooves. Fortunately, this case is not of our interest.

Then, we can have TEz in smooth parts of waveguide but inside the grooves there

will be only TMz modes. The dominant mode in the smooth part of cylindrical

waveguide is TE11 and to satisfy the boundary conditions, the TM mode inside the

grooves should be TM10.

2.3 Numerical results and discussion

Now that we have developed a mathematical model for the corrugated cylindrical

SSPP architectures, the dispersion diagram of such a structure can be obtained by

numerically solving Equations (2.13) and (2.14).

Figure 2.2 for example, shows the dispersion diagram of the azimuthal mode with

N = 0 for a structure with the dimensions of R1 = 120 µm,R2 = 200 µm, d = 100 µm
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Figure 2.2: Dispersion diagram of cylindrical SSPP structure. (b, c) distribution
in cross section of SSPP waveguide at two different frequencies. (d, e)
Electric field magnitude along z-direction inside the waveguide.

and a = 30 µm . As can be observed, around a normalized frequency of 0.31 (1THz)

(point B) the SSPP waveguide can act as a slow wave structure. A transmission band

gap exists as the structure reaches its resonance state. In Figure 2.2 (b) and (c) the

field distributions are illustrated at two different frequencies, the cross section and

along the z-direction inside the waveguide at corresponding frequencies. It can be seen

that most of the energy is concentrated in the center region of the SSPP waveguide
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when it is off resonance. The EM field confinement within the groove region is clearly

demonstrated when the frequency is close to the band gap. In Figure 2.2(a) the

behavior of the dispersion diagram of first mode is like the dispersion of surface

plasmons along the dielectric metal interface. As a result, we can assume this mode

as a SSPP mode with the normalized resonant frequencies of 0.314. The resonant

frequency of SSPP waveguide is determined by the resonant frequency of grooves.

The two parameters to tailor the resonant frequency of the grooves are width and

height. In our case, the height is much larger than the width. Then, the resonance

along the width occurs in smaller wavelengths compared to the resonance along the

height. As our wavelength of interest is comparable to the height, by adjusting the

height of the grooves we can control the resonant frequency. As it was mentioned

prior, the dominant modes in resonator are TM modes. Thus the resonant frequency

can be approximated by using the conventional formula for TM resonant frequency

of ring resonators.

For the purpose of comparison, the transmission characteristics of the cylindrical

SSPP waveguide are calculated using HFSS [58] and are included here in Figure 2.3.

The dimensions of SSPP waveguide under investigation are R1 = 120 µm,R2 =

200 µm, d = 100 µm and a = 30 µm. Based on Fig. 3 a band gap around f =

0.95 THz is clearly observed, which is in agreement with the result we obtained by

applying our analytical model in Figure 2.2.

In figure 2.4 the dispersion diagram for different azimuthal modes (N = 1 4)

is illustrated. Dimensions of the waveguide in this case remain the same as the

structure studied in Figure 2.2. It can be observed that with higher order azimuthal

mode, the dispersion curve becomes closer to the light line. As a result, the slow-

wave propagation of the input signal in such mode will be observed at slightly higher

frequency.

Figure 2.4 shows Ez intensity at certain frequency below the light line for N = 4
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Figure 2.3: Transmission characteristic of cylindrical waveguide for R1 =
120 µm,R2 = 200 µm, d = 100 µm and a = 30 µm

Figure 2.4: Dispersion diagram for different azimuthal modes. distribution in cross
section of SSPP waveguide for (b) azimuthal mode N=4 and normalized
frequency of 0.3537 (c) azimuthal mode N = 4 and normalized frequency
of 0.3218.

and N = 1 which is obtained using our analytical modeling. It can be seen, that

a great portion of the power is confined in the resonators. Figure 2.5, on the other

21



hand, shows the dispersion diagram for first azimuthal mode and different groove

dimensions. Other waveguide dimensions in Figure 2.5 are kept as R1 = 120 µm,R2 =

200 µm, d = 100 µm and a = 30 µm. It is seen in Figure 2.5 that larger groove

size in general results in lowered dispersion curves. In addition, narrower passing

band is also observed as the groove becomes larger. An intuitive explanation to this

phenomenon is the more significant mismatch between the two waveguiding sections

in this scenario, which makes it more susceptible to any frequency shift from the

transmission maximum.

Figure 2.5: Dispersion diagram for first azimuthal mode with different groove height.

2.4 Polarization controller

In this section, by inserting the anisotropic dielectric material inside the SSPP

waveguide, a polarization rotator is constructed. It has been discussed that the

Equations (2.13) and (2.14) are function of refractive index. This means that by

changing the refractive index inside the waveguide, the propagation constant can be

tuned; if the refractive indices in the x and y direction are not equal, each electric
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component in the x and y direction will experience a different propagation constant.

As a result, if we expand the input polarization in terms of the x and y polarization

state, it is possible to insert phase difference between these two components along

the propagation path. This can lead to the polarization state change which is valid

if the polarization state of the input wave can be determined. Figure 2.6 shows how

electric field direction evolves while propagating.

Figure 2.6: Schematic view of the rotation of electric field inside the waveguide.

Figure 2.7 shows the electric fields inside the circular waveguide. As can be seen,

in the circular waveguide the electric fields at dominant mode are not particularly

in a specific direction, but it is possible to assume that they are mostly in a certain

direction (in this case in y = −x direction).

Figure 2.7: The polarization of electric field inside the circular waveguide.

Figure 2.8 shows the dispersion diagram of the SSPP waveguide for two different
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sets of refractive indices: (nx, ny, nz) = (1.501, 1.501, 1.501) and (1.501, 1.680, 1.501).

The dimensions are R1 = 120 µm,R2 = 200 µm, d = 100 µm and a = 20 µm. As can

be seen, if the operation frequency is in the flat part of dispersion diagram, where the

behavior of the dispersion diagram is like the dispersion of surface plasmons along the

dielectric metal interface, the phase different between the x and y electric components

compare to the conventional circular waveguide would be greater. Then the required

waveguide length to evolve the polarization state of the input signal would be smaller.

Figure 2.8: The dispersion diagram of the same SSPP for two different sets of refrac-
tive indices: (nx, ny, nz) = (1.501, 1.501, 1.501) and (1.501, 1.680, 1.501).

Figure 2.9 shows the polarization of electric field inside the SSPP waveguide for

nx = ny = nz = 1.501 at 0.550THz. As the dominant mode in the SSPP waveguide

is for N = 1, then, if for example the input electric fields are in the x direction,

the most part of the power will be along the Ex . Then nx will be seen inside

the waveguide. Therefore, to find the dispersion diagram for SSPP waveguide with

anisotropic dielectric inside it, it is possible to use the Equation (2.13) in this case. To

change the horizontal polarization to vertical state or vice versa, it is needed at first
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to decompose the input wave into vertical and horizontal polarization, respectively.

Then, by inserting 180 degree phase change between them, the polarization state will

rotate.

Figure 2.9: The polarization of electric field inside the SSPP waveguide for
(nx, ny, nz) = (1.501, 1.501, 1.501).

To simulate this process in HFSS it is necessary at first to control the input

polarization. To this goal, the excitation of SSPP is done by a rectangular waveguide.

This will forcefully define the input polarization. To decompose the input polarization

into two polarization states, it is just enough to rotate the rectangular waveguide in

respect to the x or y axis. Figure 2.9 shows output polarization for the two set of

refractive indices of Figure 2.8. The length of linear polarization rotator is about

5 periods. The length of the SSPP waveguide to rotate the polarization can be

calculated using the following simple formula:

l =
π

β2 − β1
(2.16)

In the above, β2 and β1 are propagation constants in two refraction indices. To

change the horizontal polarization to circular or elliptical state, the 180 degrees of

phase change between x and y elements of electric fields should be reduced to 90
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degrees. Then in Equation (2.16) the length of the waveguide just need to be half

of previous one. Figure 10 shows the dispersion diagram of SSPP waveguide. The

dimensions are R1 = 120 µm,R2 = 200 µm, d = 100 µm and a = 20 µm. The length

of circular polarization rotator is about 3 periods.

Figure 2.10: The dispersion diagram of SSPP for two different sets of refractive in-
dices: (nx, ny, nz) = (1.501, 1.501, 1.501) and (1.501, 1.680, 1.501).

Figure 2.11 shows output polarization for the SSPP waveguide with dispersion

diagram shown in Figure 2.10. The electric fields are shown in for different time

slots. As can be seen the output fields direction is rotating in time. It is worthy to

note that if the calculated length was not the integer multiplicand of the periodicity,

then the simulation result may be a little bit different from what was expected. In

that case, some tuning is required to get the desired result.
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Figure 2.11: Rotation of electric field inside the SSPP waveguide for different times
at 0.510THz.
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CHAPTER III

Terahertz Switch Based on

Waveguide-Cavity-Waveguide Comprising

Cylindrical Spoof Surface Plasmon Polariton

(C-SSPP)

The THz generation and detection techniques have been available for years, but

there have been few reports on commercial THz products until now [59]. One reason

is due to the lack of components to do manipulations and operations on THz signals.

In the area of designing controllable THz devices such as Boolean gates; metama-

terials, liquid crystal (LC), or nonlinear metamaterials are potentially suitable, as

they have low absorption in the THz range. But there are still some challenges that

need to be resolved before those devices can be used in THz Boolean circuitry. For

the LCs, distributed voltage needs to be applied along the LC to make it uniformly

polarized. Also, the switching speed of LCs is significantly slow. The metamaterial

structures are comparably big with respect to LC structure and they work in free

space communications. Kerr materials need to be pumped by optical signals to tune

their loss or refractive index. This requires mostly high power optical pumping. To

overcome the mentioned problems about LCs and Kerr materials, semiconductors (Si,

InSb) are used [60, 61, 62], then by free carrier injection through a p-i-n junction, the
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transmittance, or coupling efficiency, of their proposed structures in THz frequencies

can be controlled. Due to the large imaginary part of Si permittivity in THz range,

such design can only be effectively used up to near-infrared frequencies. In this chap-

ter, we propose a new THz switch comprising the (cylindrical spoof surface plasmon

polariton) C-SSPP structure. We demonstrate that the C-SSPP has strong mode

confinement, discrete transmission bands, and high quality factor in THz domain.

The proposed switch works based on waveguide-cavity-waveguide (WCW) structure.

The cavity is connected to identical corrugated cylindrical waveguides in both sides.

The new structure can work as an active switch or modulator. Furthermore, the high

quality factor cavity and small effective area enable the device to function at the small

refractive index modulation ( δnd

nd
) induced by applying voltage to the metal electrode

connections.

3.1 WCW structure and the Drude model

In this section, we investigate the waveguide-cavity-waveguide structure for THz

switches and the mechanism to control the flow of electromagnetic fields inside the

structure. The dielectric constant of a semiconductor can be described as a function

of frequency using the Drude model [63, 64]

ε(ω) = ε∞ −
ω2
p

ω(ω + iΓ)
(3.1)

in which

ωp =

√
Ne2

meε∞ε0
(3.2a)

ε∞ = εs(
ωTO
ωLO

)
2

(3.2b)
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To implement the optical phonon vibrations of crystal lattice in heteropolar semi-

conductor at higher frequency, the Drude model needs some modifications. For the

heteropolar semiconducturs, the split of transverse and longtitidinal phonon energies

at zero momentum give rise to an extra term in the permittivity calculation formula.

The modified Drude model can be described as [64]

ε(ω) = ε∞(1 +
ωTO

2 − ωLO2

ωTO2 − ω2 − iωγ
−

ω2
p

ω(ω + iωΓ)
) (3.3)

The variables in Equation (3.3) are explained in Table 3.1. Using Equation (3.3), the

dielectric constant of GaAs is calculated versus frequency in Figure 3.1(a). The effect

of phonon resonances can be observed by the sharp peak in the imaginary part of per-

mittivity. Figure 3.1(b) shows the real and imaginary parts of the dielectric constant

as a function of carrier density (N) in semiconductor at frequency of 10.5 THz.

ε0 Vacuum Permittivity
εs Static dielectric constant
e Electron charge
ωLO Longitudinal optical phonon resonance
ωTO Transverse optical phonon resonance

Γ Free carrier coherent decay factor
me Electron effective mass
γ Phonon damping constant
N Free carrier density

Table 3.1: Variables in modified Drude dielectric constant model

Kramers-Kronig relationship dictates coupled evolution of the real and imaginary

parts of the dielectric constant. Then a change in absorption must be accompanied

by the shift in phase accumulation or real part. In Figure 3.1, it is shown that by

increasing the carrier density, the real part decreases and the imaginary part increases.

In other words, higher carrier density results in higher loss. In this paper, the carrier

density for the doped region is set to be N = 2× 1017 Cm−3 and the corresponding
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permittivity is 16.69 + i4.67. As can be seen in Figure 3.1(a), there is an abrupt

change in the real part of permittivity around 8.0 THz. Our operational frequency is

set around 10.5 THz where the real and imaginary part of permittivity shows milder

change versus frequency. The calculated permittivity at 10.5 THz is 8.01 + i0.05.

There are other materials that can be used as a substitution for GaAs, such as InSb

or Si. However, GaAs is preferable because of its low intrinsic free carrier density and

higher carrier mobility compared to other mentioned choices.

Figure 3.1: Real and imaginary part of GaAs permittivity as a function of frequency
for free carrier density of N = 2 × 1017 Cm−3(b) Real and imaginary
part of permittivity as a function of free carrier density at frequency of
10 THz.

Enhancement and depletion modes are known as a working mode based on injec-

tion and depletion of free carriers in the doped semiconductor. These two modes are

being used in this section and the following section to describe the THz switch states.

Now, we focus on the waveguide-cavity-waveguide (WCW) structure with potential

application as THz switch or filter. Figure 3.2(a) shows the schematic view of our

proposed WCW THz switch, consisting of two parts: cavity and waveguide. The

waveguide can be assumed as equally-spaced cylindrical resonators, which are placed

along the cylindrical waveguide. Figure 3.2(b) illustrates the wave propagation mech-

anism in the WCW structure. As shown, the structure can be regarded as equally
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spaced resonator array. When the resonant frequencies of both parts are the same,

the EM wave can couple from the waveguide to cavity and vice versa. Then to obtain

the highest transmission in the switch it is essential that ωW and ωc coincide. In the

next part, we use a mathematical model to describe the power transmission in the

proposed structure, and then we investigate the parameters that are taking effect in

the power transmission characteristic.

Figure 3.2: Schematic view of the THz waveguide-cavity-waveguide structure. (b)
The THz waveguide and cavity can be assumed as equally spaced cylin-
drical resonators array. the coupling frequency for waveguide and cavity
resonators are ωW and ωc respectively.

Using temporal coupled-wave analysis (TWCA), the transmission and the reflec-

tion of waveguide-cavity can be described as [65, 66]

T (ω) =
Γ2
c

(ω − ωW )2 + Γ2
c

(3.4a)

R(ω) =
(ω − ωW )2

(ω − ωW )2 + Γ2
c

(3.4b)
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And Gammac can be described using:

Γc =
ωc
2Q

(3.5)

In the Equations (3.4a) and (3.4b), the cavity decay rate (Γ0) is assumed to be

smaller than the cavity coupling ratio (Γc). This assumption is acceptable in our case

as the loss is very small. The ωc is the resonant frequency of the cavity that can

be controlled by changing the grooves height or altering the refractive index inside

the dielectric. The grooves height is predetermined and cannot be changed after

design so the only option to tune the resonant frequency is changing the refractive

index. In this design, when there is no stimuli and the operating frequency is far from

cavitys resonant frequency compared to Γc , (|ω − ωc| >> Γc), all the power reflects

back and the switch is in the off-state. When the operation frequency is close to the

cavitys resonant frequency (|ω − ωc| << Γc), the transmission in Equation (3.4a) is

approximately 1 and the switch is in the on-state. In order to introduce the parameters

that can enhance the switching ratio we approximate Equation (3.5) as:

Γc =
(1−R)Vg
Lcav

(3.6)

The Γc is described as a function of reflective coefficient R and Vg group velocity .

Based on Equations (3.4a), (3.4b) and (3.5), to enhance the switching ratio we need to

increase the reflective coefficient and decrease group velocity by employing slow waves.

Then to achieve the high switching ratio, two main parameters of the cavity should

be taken into account: the quality factor that is inversely proportional to cavity decay

rate in Equation (3.6), and the effective volume Veff that controls the cavitys photon

intensity [67]. The proposed C-SSPP structure can support the slow waves that have

33



small group velocity. Additionally, the cavity can trap electromagnetic waves for a

significant period of time, resulting in a high quality factor. Then based on what was

discussed in the previous paragraph, this structure can have a high switching ratio. In

our design, the cavity and waveguides portions are identical, but they are separated

from the waveguide through inserting a circular iris between the waveguides and the

cavity. If there is no iris between the cavity and waveguides, the structure acts like

a band reject filter. However, when inserting the iris between the waveguide and

cavity it acts as a band pass filter. By changing the iris radius, we can adjust the

passing bandwidth. In other words, inserting the iris and changing its radius alter the

effective volume and, as a result, quality factor and cavitys bandwidth change. The

simulations show that by decreasing the iris radius the bandwidth is also reduced. It

is noteworthy that the relative bandwidth in the switch with longer cavity lengths is

bigger due to the higher loss.

3.2 Depletion mode performance

By tuning the waveguide-cavity coupling ratio the power transmission can be ad-

justed. Based on Equation (3.5), the Γc is a function of the cavity resonant frequency.

Utilizing the depletion mode to change the dielectric refractive index inside the cavity,

the resonant frequency can be altered. As the cavity quality factor is high, the small

change in refractive index can change the resonance frequency such that the WCW

switches from one state to another state.

Figure 3.3 shows the power transmission for two different refractive indices inside

the cavity. In this plot, the GaAs refractive index is assumed to be constant over the

entire cavity. The cavity length is set to be 3 periods to increase the interaction of

electromagnetic waves with the refractive index inside the cavity. By changing the

real part of permittivity from 8.05 to 8.1 the resonant frequency shifts from 10.72

THz to 10.78 THz. In principle, as permittivity increases, the resonant frequency of
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Figure 3.3: Power transmission versus frequency for different values of GaAs permit-
tivity.

the cavity shifts to lower frequencies. Likewise, when the permittivity decreases the

resonant frequency shifts to higher frequencies. Due to technological constraints, it

is not practical to alter the refractive index value in the entire cavity. As mentioned

earlier by setting the operating frequency near the grooves resonant frequency most of

the electromagnetic (EM) power concentrates inside the grooves. Then by changing

the refractive index in a portion of the grooves cavity, it is possible to control the flow

of electromagnetic waves.

In the final design, the free carrier concentration of GaAs inside the grooves cavity

is set to N = 2 × 1016 Cm−3 Since the doping concentration is higher than its

intrinsic carrier density (N = 2 × 106 Cm−3), we can utilize the depletion mode

in our structure. Where the metal electrode in the cylindrical resonator and the

GaAs dielectric contact, a Schottky contact is formed. By applying a voltage to the

electrodes the depletion zone below the metals will appear. The depletion thickness

can be calculated using [64]
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Ddepletion =

√
2εsε0(Vbi + V )

eN
(3.7)

In which, V is the applied voltage to the patches and Vbi is the built-in voltage

of semiconductor metal junction. Other variables are described in table. I. For the

GaAs-metal junction the Vbi = 0.75 V .

Figure 3.4: Resonant frequency of cavity versus the applying voltage across the metal
contact. The figure in the inset shows how the electrodes are connected
to the cavity.

By changing the voltage across the electrodes, the depletion depth will be formed

and the effective permittivity of GaAs can be tuned. The switch state can alter from

on to off and vice versa by controlling the depletion region in a layer of GaAs that

is thin relative to the grooves width. Figure 3.4 shows the resonant frequency versus

different voltages. The permittivity of the depletion region can be calculated setting

N = 0 in Equation (3.3). This results in ε = 8.051 + i0.05 which is close to the

intrinsic value of permittivity with N = 2 × 106 Cm−3. By increasing the voltage,

36



the depth of the depletion region increases, which leads to a decrease in the effective

permittivity of the dielectric inside the cavity. As mentioned earlier, decrease in

permittivity will shift the resonant frequency to higher. Figure 3.5 shows the power

transmission for two different voltages across the metal contacts and electric field

magnitude at two different frequencies when the voltage is set to be V=2 V. As

depicted in Figure 3.5(b), when the operating frequency is at 10.58 THz the power

transmission has its maximum value and the electric fields concentration is maximum

inside the grooves. By increasing or decreasing the frequency from 10.58 THz the

power transmission is reduced. Figure 3.5(c) shows the electric fields magnitude at

10.59 THz. As can be seen, the electric fields are weaker in the cavity.

Figure 3.5: (a) Power transmission at two different voltages. (b) Electric field mag-
nitude at 10.58 THz (c) Electric field magnitude at 10.59 THz.
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CHAPTER IV

Analog to Digital Converter Using Single Sided

Corrugated Waveguide

Exponential growth of information technology markets feeds the need for higher

sample rate for the communication systems. This leads to ultra-high-speed analog-

to-digital (ADC) converters as an incumbent part of communications systems. The

ADCs based on the spatial detection have been widely used by numerous optical

designers throughout the literature [68, 69, 2]. The key mechanism behind spatial

detection is the deflection of output signal at different angles with changing analog

input. In order to realize this functionality, spoofed surface plasmon polariton (SSPP)

architecture is employed. Such structure features SSPP mode with a slow-wave nature

and strong field confinement. These properties are not only critical to the THz signal

transmission over distance, but are also the key for localized modulation of the THz

signals with enhanced efficiency. We show that the phase constant of the 1D-SSPP is

sensitive enough to the refractive index of the material inside the grooves. Then using

the plasmonic behavior of the 1D-SSPP dispersion diagram and its sensitivity to the

refractive index inside the grooves, we show that one can reach beam steering around

42 degrees in a short waveguide. Figure 4.1 shows the schematic view of the single

sided SSPP structure. It consists of metallic corrugated layer covered by a layer of

dielectric.
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Figure 4.1: (a) Schematic view of the 1D SSPP (b) Cross section of the 1D waveguide.

The dispersion equation of an SSPP waveguide embedded into a dielectric with

index can be written as [70]

PX(P, β)tan(Ph) = 1 (4.1)

where in the 2D limit P = ωn/c and X(P, β) =
∑m=M

m=−M S2
m/k

m with S2
m =

sinc(Qma/2)a/d and km =
√

(β + 2πm/d)2 − P 2, where we have taken into account

that outside of the grooves we have attenuated field. These expressions are valid in

slightly more general case of structures with finite width , in which case we have

P 2 = (ωn/c)2 − (π/W )2, but we will stick to the 2D limit. We consider two limiting

cases: near zero frequency, where the dispersion curve goes close to the light-line, and

near the SSPP plasma frequency, where the curve is far from the light-line.

The first situation takes place when βh << π/2 and we can approximate P β− δ

. In this case it is sufficient to leave only m = 0 term in the expression for X(P, β)

and we obtain

P = β(1− S4h
2β2

2
) (4.2)
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In the opposite case, we take P = Pp−δ, where Pp = π/2h determines the plasma

frequency (reached asymptotically in the limit h/d >> 1 . Then, we find

P = Pp(1−
X(Pp, β)

h
) (4.3)

Here, retaining only the zeroth term is not that well justified, especially if β is

too close to the boundary of the Brillouin zone β/d . If, nevertheless, we make this

approximation, we obtain

P = Pp(1−
S2√

h2β2 − (π/2)2
) (4.4)

We can use this equation for finding the variation of β when the refractive index

of the dielectric changes, while frequency remains fixed,

β(n)
S2h−1

1− ωn/Ppc
(4.5)

This approximation is valid, when β(n) < π/d. Figure 4.2 shows the dispersion

diagram using Equation (4.5) for different dielectric refractive indices. As can be

seen, by altering the refractive index of dielectric over the corrugated structure the

phase constant changes.

Figure 4.3 illustrates the magnitude of electric field disturbution along the struc-

ture. The operating frequency is chosen to be near the cavity resonant frequency and

the magnitude of E-field are ploted in the cross section of the structure. As can be

seen we have high concentration of E-filed inside the grooves.

We have shown the single sided corrugated structure can support SSPP and has

40



Figure 4.2: Dispersion diagram of the sample 1D SSPP waveguide. Dimensions are
d = 50 µm, h = 40 µm, a = 5 µm

Figure 4.3: E-field disturbution along the structure at two different frequencies, (a)
at 100 GHz (b) at 600 GHz.

strong field confinement inside the grooves. Figure 4.4 shows the schematic view

of the proposed ADC. The ADC has two arms, grooves inside the arms are filled

by doped semiconductor, by implementing Schottky affect we can tune the output

pattern at the end stage of the two arms. In Figure 4.4, over the corrugated metallic

surface is covered by the dielectric layer and over the dielectric is free space. It is

also possible to cover the upper layer with a thin layer of metal. This will reduce the

height of the structure. This will require revision of the Equation (4.5) to find the

dispersion diagram.

The above structure has three stages, beam splitter, two corrugated arms and
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Figure 4.4: Schematic view of ADC using 1D corrugated SSPP waveguide.

detectors. As to make the simulations faster and easier in HFSS the beam splitter

is eliminated but the two arms are excited with same phase and amplitude signal.

Figure 4.5 shows the simulated structure in HFSS.

Figure 4.5: Schematic view of MZI in HFSS.

Each arm acts as an antenna, then in our structure we have antenna array with

two elements. With the beam steering stage comprising a two-arm Mach-Zehnder

Interferometer (MZI) structure, the main lobe of the far-field radiation pattern is

rather broad. As mentioned before, the low quality factor of this spatial maximum
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poses challenges to realizing higher bit resolution, for which reason the detector array

operating at designated gain and saturation power needs to be adopted. In order

to further boost the bit-depth of the ADC, we plan to experiment on different ap-

proaches. One approach, for example, is to incorporate more phase shifting arms

into the beam steering stage, which will generate narrower radiation maxima. For

the purpose of comparison, the structure has been simulated for two different values

of refractive index. The radiation pattern has been shown in Figure 4.6. As can be

seen the new structure has sharper radiation pattern compare to the previous design

[71]. By changing the refractive index from 1 to 1.15 a deflection angle of around 15

degrees has been illustrated. The frequency of operation is set to be around 1.190

THz, which can be scaled to lower and higher frequencies.

The material to control the deflection angle of radiation pattern like the previous

design is GaAs. The real value of refractive index at the operation frequency of 10

THz is 6.91. By using the depletion mode, we can reduce the refractive index and

control the angle of radiation peak. Figure 4.7 shows the simulation result for two

different values of refractive indices. As seen by changing the refractive index from

6.91 to 6 the deflection angle of around 30 degrees can be observed.

4.1 Calculating the radiation pattern of rectangular array

waveguides

First we try to calculate the radiation pattern for our DC-SSPP structure, after

that we will use the same method to calculate the radiation pattern for our new ADC.

We can assume each arm as a rectangular aperture that acting as an antenna. The

dominant modes for this antenna is TE10 the fields in the far field can be calculated

using [72]
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Figure 4.6: Radiation pattern (Power) for comparison with older design.

Ey = E0cos(
πx

z
) (4.6a)

Hx = E0
ε

µ
cos(

πx

z
) (4.6b)

Eθ = ik
e−ikr

2πr
Afy(θ, φ)sin(φ) (4.6c)

Eφ = ik
e−ikr

2πr
Bfy(θ, φ)cos(φ) (4.6d)44



Figure 4.7: Radiation pattern (Electric field) for two different values of dielectric con-
stant in one of the arm.

Figure 4.8: Electric field over waveguide aperture.

Where the fy(θ, φ) is the aperture Fourier transform of electric field:

fy(θ, φ) =

a/2∫
−a/2

b/2∫
−b/2

E(x′, y′)eikxx
′+ikyy′dx′dy′ (4.7)

Using the electric field for the lowest order modes in rectangular waveguide we
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will have the far field fields as follows:

Eθ = Asin(φ)
cos(X)

X2 − π
2
2

sinY

Y
(4.8a)

Hφ = Asin(θ)cos(φ)
cos(X)

X2 − π
2
2

sinY

Y
(4.8b)

X =
ka

2
sin(θ)cos(φ) (4.8c)

Y =
ka

2
sin(θ)sin(φ) (4.8d)

In which, A is a constant, a and b are dimensions of the aperture and k is the

wavenumber. Those equations are for a single aperture antenna, but if we have more

arms the final pattern can be found using linear array formula, the array factor is as

follow:

AF = [
sin(Nφ/2)

sin(φ/2)
] ≈ Nsinc(Nφ/2), φ = kdcos(θ + β) (4.9)

Where, d is the distance between arms and β is phase difference between each

arm. Figure 4.9 shows the radiated fields in H-plane where φ = 0. They show by

increasing the number of arrays and also by increasing the waveguide dimensions we

can achieve higher directivity. The higher directivity means the array factor will have

a sharper peak at ψ = 0 and the ADCs bit resolution will increase. Increasing the

arms make the design much complicated in the ADC. Then in our design we set the

number of arms to 2 but we set the waveguide dimensions as big as possible.
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Figure 4.9: Radiation field for two and three arms (b) radiation field for different
waveguide dimensions.

4.2 Radiation pattern for rectangular dielectric aperture an-

tenna

For a dielectric slab waveguide with dimensions and in free space the electric field

distribution can be approximated as:

Ey =


cos(kxx)cos(kyy) |y| < b, |x| < a

e−αy |y|e−αx|x| otherwise

(4.10)

where:

kx,y =

√
(ωµε)2 − k2z (4.11a)

αx,y =

√
k2z − (ωµε)2 (4.11b)

Using the above equation, the Fourier transform of electric field for the aperture will
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be derived as:

fy(θ, φ) =

∞∫
−∞

∞∫
−∞

E(x′, y′)eikxx
′+ikyy′dx′dy′

=

∞∫
−∞

eikyy
′
e−αy |y′|cos(kyy

′)dy′(

−a∫
−∞

eαxxeikxx
′
dx′+

a∫
−a

cos(kxx
′)ekxx

′
dx′ +

∞∫
a

e−αxx′eikxx
′
dx′) (4.12)

fy(θ, φ) =(
cos(X)

X2 − π
2
2 − 2e−αxx

αxcos(X)− kxsin(X)

k2x + α2
x

)

(
cos(Y )

Y 2 − π
2
2 − 2e−αyy

αycos(Y )− kysin(Y )

k2y + α2
y

) (4.13)

In above equations if we design the structure in a way that the fields outside the

slab damp quickly, we can make the final equation simpler by increasing the value of

αx and αy to infinity. Then the final equation would be as follow:

Eθ =ik
e−ikr

2πr
(
1 + cos(θ)

2
sin(φ)

cos(X)

X2 − π
2
2

cos(Y )

Y 2 − π
2
2 (4.14a)

Etotal =ik
e−ikr

2πr
(
1 + cos(θ)

2
sin(φ)

cos(X)

X2 − π
2
2

cos(Y )

Y 2 − π
2
2

2sinc(kdcos(θ) + β) (4.14b)

Equation (4.14b) show it is possible to have a sharper peak by increasing the dimen-

sions of waveguides. But dimensions are not the only factors that play a significant

role in the beam width of MZI. To have the optimum dimensions for smaller beam

width series of simulations have been done. Figure 4.10(a) shows the radiation pat-
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tern for a single arm waveguide. Simulation shows the waveguide width does not

have a significant effect on the beam width. Adding second arms to the structure and

making a MZI structure we will have smaller beam width (see Figure 4.10(b)) and

by increasing the waveguide width the beam width decreases. Figure 4.10(b) shows

we have the smallest beam width at the frequency of 430 GHz with the waveguide

width of 240 µm .

Figure 4.10: Radiation pattern for single arm with different waveguide width. (b)
Radiation pattern for MZI structure with different waveguide width.
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4.3 Phase difference calculation and circuit model

Using Equation (4.7), the phase difference between arms of length filled with

dielectrics characterized by different refractive indices n1 and n2 can be found as

∆φ(n2, n1) = (β(n2)− β(n1))l = S2 lω

hPpc

n2 − n1

(1− ωn2

Ppc
)(1− ωn1

Ppc
)

(4.15)

We find the effective refractive index of the groove with depleted layers at the

edges by regarding it as a three-layer waveguide and applying the transfer matrix

approach. The electric field is presented within a layer as

Figure 4.11: Cross section view of one groove, depletion layer has thickness of ad and
its refractive index is n′.

Ex(x, z) = peipz(A+(x)eiq(z)x + A−(x)e−iq(z)x) (4.16a)

Ez(x, z) = −q(x)eipz(A+(x)eiq(z)x − A−(x)e−iq(z)x) (4.16b)

where q(x) =
√
P 2(x)− p2 and P (x) is given by the same expression as above P (x) =

ωn(x)/c . Since we consider homogeneous layers, it is sufficient to distinguish them by

the refractive index and thus introduce q(n) =
√
ωn/c2 − p2.The effective refractive
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index can be defined as p = ωneff/c, because it will define the variation of the field

phase inside the groove, φ = ph , which determines how close the frequency is to the

plasma frequency.

Propagation across a layer is taken into account by the layer transfer matrix

Ex(x, z) = peipz(A+(x)eiq(z)x + A−(x)e−iq(z)x) (4.17a)

Ez(x, z) = −q(x)eipz(A+(x)eiq(z)x − A−(x)e−iq(z)x) (4.17b)

where χ(n′) = q(n′)ad and χ(n) = q(n)(a − 2ad) inside the depleted and normal

layers, respectively. The transfer from n′ layer to n layer is described by the interface

transfer matrix

Ex(x, z) = peipz(A+(x)eiq(z)x + A−(x)e−iq(z)x) (4.18a)

Ez(x, z) = −q(x)eipz(A+(x)eiq(z)x − A−(x)e−iq(z)x) (4.18b)

where t1 = n′2/n2 and t2 = q(n′)/q(n). Thus, the total transfer matrix is

Ttot = T (n′)T (n′, n)T (n)T (n, n′)T (n′) (4.19)

where T (n′, n) = T−1(n, n′). At the boundaries of the groove Ex must vanish

and, hence, we must have where |±x〉 = (
√

(1,±1)T )/
√

2. In other words, the cor-

rect transfer matrix across the whole groove must map |x〉 into vector orthogonal to

|−x〉. This yields the dispersion equation in the form 〈x|Ttotal |x〉 . Performing vector

calculations in this formula we obtain
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D(ω) = sin(2χ(n′) + χ(n)) + 2ηsin(χ(n′))cos(χ(n) + χ(n′))− η2sin2(χ(n′))sin(χ))

(4.20)

where η = t2/t1 − 1. We take into account that ωna/c << 1 and hence q(n) and

q(n′) are small comparing to 1/a. Thus both phases χ(n) and χ(n′) are small and we

can take the lowest non-vanishing approximation: D ≈ χ(n) + 2χ(n′)t2/t1. Now, the

equation D = 0 is easy to solve

p2 =
ωn

c

2 1

1− f(1− n2/n′2)
(4.21)

where f = 2ad/a . Thus, we find the effective refractive index

neff =
nn′√

n′2(1− f) + fn2
(4.22)

In the depletion mode of operation of our ADC design, the phase change is in-

duced by the variation of the depletion thickness in the groove regions. Based on

Equation (3.7), the thickness of the space-charge region is a function of the applied

voltage:

ad = Ddepletion =

√
2εsε0(Vbi + V )

eN
(4.23)

There are two sources for the nonlinearity in our ADC design. One is the inverse

cosine relation between angle maximum radiation and phase difference; the other is

the nonlinearity of the Equation (4.23). The effect of first source is negligible for
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small value of phase difference. To overcome the nonlinearity effect of second source,

one way is changing the method that control the refractive index and finding some

material that the relation between its refractive index and external stimuli is linear.

The other way can be implementing the differential voltage, and applying voltage to

both arms. The phase difference between MZI arms can be calculated as:

∆φV1,V2 =
2π

λ0

ni − nd
Dtotal

√
2εsε0
eN

(
√
Vbi + V2 −

√
Vbi + V1) (4.24)

By inserting the voltage to both arms the nonlinearity between the input stimuli

and output phase will reduce.

Figure 4.12: (a) Angle of maximum radiation versus input voltage in case of one arm
excitation. (b) Angle of maximum radiation versus input voltage in
differential mode

Using Taylor expansion and expanding the Equation (4.23) the phase difference

can be found as:
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∆φV1,V2 =
2π

λ0

√
2εsε0
eN

l[a1V1 + b1] (4.25a)

a1 = (−1 +
Vm
4

+
Vbi
2

) (4.25b)

b1 = (
Vm
2
− V 2

m

8
− VbiVm

4
) (4.25c)

Where Vm is V1 +V2 . As can be seen, the new equation shows linear relation between

input voltage and the phase change. It is worth to notice, that the higher terms in

Taylor expansion are omitted due the negligibility to first two terms. Figure 4.12(b)

shows the angle of maximum radiation versus input voltage for two arms excita-

tion. The dimensions for the design are as follows:a = 0.65 µm,W = 6.80 µm,D =

15 µm, d = 3.4 µm, h = 2.2 µm. Figure 4.13(a) shows the normalized directivity for

the ADC with differential excitation versus different applied voltages. As seen by

swiping the voltage from 0 v to 3 v the maximum angle sweep of about 42 degrees

is achievable. Figure 4.13(b) illustrates electric field distributions for three different

applied voltages.

Figure 4.13: (a) Normalized directivity for different applied voltages. Electric field
distribution at three different voltages (b) V=0 V. (c) V=1.5 V. (d) V=3
V.
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The Schottky contact that formed by the metal electrode and the doped GaAs

acts as the main contributor to a settling or delay time of the phase modulator. To

find the final formula for bandwidth we start with the angle of maximum radiation

versus time. For an end-fire array antenna the angle that maximum radiation occurs

can be calculated using the following equation:

θn = cos−1(
λ

2πD
(−∆φV1,V2)) (4.26)

Substituting the phase difference from Equation (4.25a) in Equation (4.26) and

inserting the transient time into the account the angle of maximum radiation versus

time can be found as follows:

θn = cos−1(
λ

2πD
(a1V1 + b1)(1− e−t/T )) (4.27)

doing some algebraic manipulation, the upper limit for ADC BW can be found as

follows:

BW <
1

2TLn(b+ 1)
(4.28)

As seen, for a fixed value of maximum applied voltage by increasing the number of

bit the required sampling bandwidth reduces. To calculate this value for our designed

ADC we need to find the settling time. The settling time can be combination of two

different processes: carrier transition time and the RC time constant. For a very

thin layer of dielectric in Schottky diode, when the induced electric field is strong,

the transition time can be estimated using the simple formula: τ = d/Vsat , where
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is the carrier displacement. The thickness of depletion is around 200nm and the

saturation drift velocity is Vsat = 8 × 108 m/s the transient time will be around 2.5

ps. By reducing the doped region thickness the settling time reduces. Unfortunately,

it is not possible to reduce the doped region as in this case we need to reduces the

maximum voltage and finally it reduces the sweep range of output pattern. The

other factor is the delay time caused by RC value of the structure. Now we need to

calculate the RC value of the 1D-SSPP waveguide. In this case one unit cell of the

structure is investigated. Figure 4.14 shows the circuit model of a single period of the

SS-SSPP waveguide. Zl and Zg represent the conventional waveguide impedance that

can be easily calculated using conventional formula for slab and metallic waveguides.

Ygroove represents the admittance of the grooves than can be calculate using following

equation [73, 74, 75]

Ygroove = iωCg +
1

iωLg
+ Yg

ZSchottkey + iZgtan(βglg)

Zg + iZSchottkeytan(βglg)
(4.29)

Figure 4.14: (a) Unit cell of 1D-SSPP waveguide. (b) Circuit model of Schottky
diode. (c) Circuit model of single period of the waveguide.

Where Zgis the characteristic impedance of the groove and lg is groove length.

Foe simplicity and as the value of Cg and Lg are smaller than the value of ZSchottkey
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they are neglected. And βg is the propagation constant of EM wave inside the groove.

Zg = Z0
k0
β
, βg =

√
ω2µε− (

π

W
)
2

(4.30)

Figure 4.14 (b) shows the circuit model of the Schottky diode. The values of

circuit elements can be found using the following formulas [76, 77]

rs =
1

4σa
, Ls = rs

meµ

e
, Cs

εsε0
µ0

(4.31a)

Z1 = (
Ln(b/a)

2π
)

√
[

σ

iω − (meµ/e)ω2
+
εsε0
µ0

] (4.31b)

Where a and b are the dimensions of the contact, σ is the semiconductor DC con-

ductivity. The Cb is the capacitance value of the Schottkey contact and can be found

using the simple capacitance formula:

Cb = εsε0
AContact
DDepletion

(4.32)

Where Acontact is the surface area of Schottkey contact. Using the mentioned

dimensions, the final value of RC is around 2.53 ps, including the transient time and

using the Equation (4.28) the upper band for bandwidth is 47 GS/s.
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CHAPTER V

Design, Analysis, and Simulation of Three

Different Structure for THz Beam Splitting

One of the components which is the important building block of every optical

setup and, therefore, is necessary in THz range is beam splitter. In general, beam

splitters used in THz setup are polarizing metallic grids, dielectric films, or substrate-

coated beam splitters [78, 79, 80]. Coated dielectric beam splitters, however, intro-

duce significant loss, for example, if the dielectric is made of alkalihalide it shows high

absorption at frequencies below 7 THz [78]. Metamaterial based beam splitters, in

turn, are mostly working at specific polarization and are not suitable for wavelength

smaller than the structures period. The main feature drastically distinguishing SSPP

BS is their reduced dimensionality. As a result, there is always scattering into the

state with reversed wave vector, i.e. backscattering. Moreover, one may expect that

the ability to redistribute efficiently the incoming wave into the outgoing channels

is related to the strong perturbation of the SSPP flow and thus should be accompa-

nied by the strong backscattering. The importance of the intensity of backscattering

depends on details of specific applications. For example, in setups employing the

small number of beam splitters, backscattered signal can be completely ignored. We

address this problem in more details in the next section in the context of prospective

applications in homodyne detection schemes.
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Figure 5.1: The schematic view of analyzed designs of beam splitters. In the contra-
and co-propagating schemes the input ports are 1, 2 and 1, 4, respectively.
(a) Two waveguides with the distance l = 230 µm between the arms are
connected by the single connector. (b) The arms are connected by two
connectors with the separation D = 500 µm between them. (c) The arms
are coupled by means of the two-arm waveguide with common grooves,
h′ = 100 µm.

On the other hand, in large-scale setups backscattering may lead to significant

reduction of the output signal, which may pose the challenging obstacle. This leads

to the problem of rather finding an optimal design in terms of the trade-off between

the splitting efficiency and the intensity of backscattering as is dictated by the specific

application. We analyze three implementations of the SSPP BS shown in Figure 5.1,

which illustrates different approaches to the problem of SSPP splitting.

5.1 SSPP mode in double corrugated waveguide

Transport of THz waves through the SSPP mode in double corrugated waveg-

uide (see Figure 5.1) with subwavelength dimensions has been analyzed in details in

the previous publications [57]. These results are directly applicable for the analysis

of one- and two-connector beams splitters, but require a generalization in order to

deal with the beam splitter design based on coupling through shared grooves. The

generalization is based on applying the transfer matrix formalism for finding the spa-

tial distribution of the electromagnetic field along the -direction. The closed form of

the transfer matrices can be found, as will be elaborated below, keeping the lowest
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frequency contributions, which is justified for the low frequency part of the spectrum.

As well as in [57], we consider Ey = 0 . In this case instead of the full vectors

of the electric and magnetic fields, it is sufficient to keep track of Ex,Hy , and if the

waveguide contains layers with different dielectric functions, Ez components. Then,

the SSPP dispersion law is recovered by enforcing the proper boundary conditions.

Due to the periodicity in the -direction, in virtue of the Bloch theorem, it is sufficient

to consider in details the field distribution within the single period. Inside the grooves

Ez must vanish at the boundaries and thus we have:

Ex = s(y)
∑
m>0

Pm
z cos(

mπ

a
(z − xL))(Am+eiP

m
z z + Am−e−iP

m
z z) (5.1a)

Ez = −s(y)
∑
m>0

mπ

a
sin(

mπ

a
(z − xL))(Am+eiP

m
z z − Am−e−iPm

z z) (5.1b)

Hy = s(y)
∑
m>0

Pm
z

2

ω
cos(

mπ

a
(z − xL))(Am+eiP

m
z z − Am−e−iPm

z z) (5.1c)

where m enumerates different modes, xL is the x-coordinate of the left boundary

of the groove, a is the width of the grooves,s(y) = sin(π(y − yF )/W ) describes the

confinement of the electromagnetic field in the -direction,Pm
z

2 = ω/c2+π/W 2+mπ/a2

and Am+ are Am−the amplitudes of the waves propagating upward and downward,

respectively, W is width of the waveguide, a is width of the grooves and c is speed of

light. Inside the arm due to the Bloch theorem the components are given by

Ex = s(y)
∑
m>0

Qm
z e

iqmx(Bm+eiP
m
z z +Bm−e−iP

m
z z) (5.2a)

Ez = −s(y)
∑
m>0

qme
iqmx(Bm+eiP

m
z z −Bm−e−iP

m
z z) (5.2b)

Hy = s(y)
∑
m>0

P 2
z
2

ω
eiqmx(Bm+eiP

m
z z −Bm−e−iP

m
z z) (5.2c)
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where qm = β + 2πm/d , β is the SSPP propagation constant, d is the period of the

structure,Pz = P 0
z ,and Qm

z
2 = P 2

z − q2m.

Let ZB be the coordinate of the groove-arm interface. Enforcing the continu-

ity ofEx and Hy at the interface one can find the relation between amplitudes Am±

and Bm±. The procedure is based on treating Ex in Equation (5.1a), and in Equa-

tion (5.2a) as Fourier expansions of functions, which should take the specific form at

Z = ZB . For example, limiting expansions in Equation (5.1a) and Equation (5.2a)

to the same number of terms, one finds Bm+eiP
m
z z + Bm−e−iP

m
z z from the condition

that Ex in Equation (??) and (5.2a) vanishes in the region x < xL and x > xL + a .

Further, (Am+eiP
m
z z −Am−e−iPm

z z) are found from the continuity of Hy . Solving the

obtained system of equations with respect to Bm± one obtains the transfer matrix,

which maps the state of the electromagnetic field inside the groove into the state of

the field inside the arm. From the formal point of view, the requirement of the num-

ber of terms in expansions Equations (5.1a) and (5.2a) being the same ensures that

the dimensions of the spaces of the states of the electromagnetic field in the groove

and in the arm are the same. This can be avoided in waveguides with the corrugation

along one side only [81] or in highly symmetrical two-sided single arm waveguides [57]

but is necessary in the general case.

In order to make main formulas less cumbersome, we will keep only terms with l =

0 and m = 0 in Equations (5.1a), (5.1b), (5.1c) and Equations (5.2a), (5.2b), (5.2c),

which is justified for analysis of the low frequency part of the spectrum. Incorporating

phase factors e±iQzZB , whereQz = Q0
z , and e±iPzZB into the amplitudes A± and

B± we find implementing the procedure outlined above the relation between vectors

|A〉 = (A+, A−)
T

and |B〉 = (B+, B−)
T

describing the electromagnetic field in the

groove and in the arm, respectively, |B〉 = ˆTa,g |A〉, where the transfer matrix through

the groove-arm interface is
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ˆTa,g =
ieβxc

2SQz

 t1 + t2 t1 − t2

t1 − t2 t1 + t2

 (5.3)

Here xc = xL+a/2 is the x-coordinate of the center of the groove, S =
√
a/dsinc(βa/2),

t1 = S2Pzd, t2 = Qza . The transfer matrix for the transition from the arm to the

groove is found by simple inversion ˆTa,g = ˆTa,g
−1

. Since the phase factors were incor-

porated into the amplitudes, the phase difference between the amplitudes at opposite

ends of an element (either groove or arm) is accounted for by introducing diagonal

matrices ˆTg,g = diag(eiPzh, e−iPzh) and ˆTa,a = diag(e2iQzt, e−2iQzt) for the groove with

height h and the arm with height 2t . The total transfer matrix ˆTtot connecting the

state of the electromagnetic field at the upper and lower ends of the structure is found

by taking the ordered product of the transfer matrices through individual elements.

For example, for the single arm waveguide this is

T̂SA = T̂ggT̂gaT̂aaT̂agT̂gg (5.4)

while for the two arm waveguide with shared grooves we have

T̂TA = T̂ggT̂gaT̂aaT̂ag′T̂g′g′T̂g′g′T̂g′aT̂aaT̂agT̂gg (5.5)

The distribution of the field must satisfy certain boundary conditions at the ends

of the structure. For the case of our main interest, when the structure is terminated

by closed grooves, Ex must vanish at the ends. Thus, we have A+ + A− = 0 or in

vector notations 〈x| |A〉 or equivalently 〈A| = c |−x〉, where c is an arbitrary number,

|±x〉 = (1,±1)T/
√

2 and bra- and ket-vectors are related as usual through Hermitian
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conjugation. Thus, in the case of our main interest, closed structures, the SSPP

dispersion equations are

〈x| T̂tot |A〉 (5.6)

Since the left hand side of this equation defines an analytic function of ω, for

a given β, Equation (5.6) holds only for isolated frequencies ω = ωi(β) , which

thus define branches of the SSPP dispersion curve when β varies from −π/d to π/d.

Due to the mirror symmetry of the structures under consideration, the dispersion

equation factorizes De(ω, β)Do(ω, β) = 0 because the modes possess the definite

transformation properties under reflections about the middle line. It is convenient to

classify the modes according to the sign of charge on the horizontal boundaries, or,

equivalently, according to the sign of Ez : the even and odd modes are characterized

by even and odd functions Ez(z). The even mode, therefore, has Ex vanishing at the

middle line and thus the transfer matrix through half of the structure,T̂half , must

map |−x〉 into |−x〉 , which leads to

De(ω, β) = 〈x| T̂half |−x〉 (5.7)

The similar argument for an odd mode yields

De(ω, β) = 〈−x| T̂half |−x〉 (5.8)

For the single arm waveguide this leads to already known result
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Figure 5.2: The lowest three bands of SSPP in the single arm waveguide. Solid lines
show solutions of De

SA(ω, β)D = 0 and correspond to the first and second
symmetric modes. The dashed line depicts the first antisymmetric mode
and is found from D0

SA(ω, β)D = 0.

De
SA(ω, β) = 1 + η

tan(Pzh)

tan(Qzt)′
(5.9a)

Do
SA(ω, β) = 1− ηtan(Pzh)tan(Qzt) (5.9b)

where η = S2 Pz

Qz
. First three branches determined by Equations (5.9a) and (5.9b) are

shown in Figure 5.2.

The dispersion law of SSPP in the two-arm waveguide with shared grooves is de-

rived in the same way. It should be noted that in this caseDe
TA(ω, β) = 〈x| T̂half |−x〉 =

0 has the form for the dispersion equation of the single arm waveguide with grooves,

generally, of different heights h and h’. The non-zero difference between them breaks

the symmetry of the effective single arm waveguide, which leads to the coupling be-

tween its even and odd modes. Thus, we have:
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De
TA(ω, β) = De

SA(ω, β), Do
SA − (1− η2)

sin2(1
2
(h− h′)Pz)

cos2(1
2
(h+ h′)Pz)

(5.10)

which, in particular, shows the effect of the length of the shared grooves on the

SSPP dispersion curves. The two-arm waveguide, however, does not have the conve-

nient factorization property and has somewhat cumbersome form

Do
TA(ω, β) =cos(Pz(h+ h′))

− tan(2Qzt)[ηcos(Pzh)sin(Pzh
′) + η−1sin(Pzh)cos(Pzh

′)] (5.11)

The solutions of equations De
TA(ω, β)D = 0 and Do

TA(ω, β)D = 0 are shown in

Figure 5.3.

Figure 5.3: The SSPP dispersion law in the two-arm waveguide with shared grooves
(the middle part of the structure shown in Figure 5.1 c). Solid and dashed
lines show symmetric and ant-symmetric modes, respectively.
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5.2 Beam splitter’s performances

Obtained dispersion laws allow us to discuss the main features of the SSPP prop-

agation through beam splitters. The easiest case is the implementation shown in Fig-

ure 5.1, which we will refer to as the single-connector beam splitter (SC). It can be re-

garded as consisting of two connected T-junctions. Thus, considering ports 1 and 2 as

input ports and ports 3 and 4 as output, that is in the contra-propagating scheme, one

can expect that due to the mirror symmetry with respect to the central vertical line the

supplied input should be split equally between the output ports. In order to charac-

terize quantitatively the transport properties, we introduce |S(i, j)|2 , the normalized

output power at port j with the input at port i, so that |S(i, 1)|2 + ...+ |S(i, 4)|2 = 1.

In the contra-propagating setup, ports 1 and 2 (see Figure 5.1) are input ports and

ports 3 and 4 are regarded as output. In the co-propagating scheme, the input is sup-

plied at ports 1 and 4 and the output is collected at ports 2 and 3. The characteristic

of special importance, as will be illustrated in the next section, is the splitting ratio,

or balance. For a symmetric contra-propagating beam splitter, i.e. with input ports

1 and 2, the balance is fully characterized by the ratio b(ω) = |S(1, 3)|2/|S(1, 4)|2, for

the co-propagating beam splitter, when ports 1 and 4 are input, the splitting ratio

is defined as b(ω) = |S(1, 2)|2/|S(1, 3)|2. For both cases, when b(ω) = 1 the beam

splitter is balanced, otherwise it is unbalanced.

Figure 5.4 shows the frequency dependence of the parameters |S(i, j)|2 for the

simplest design with one connector. It is assumed here and in the following figures

that the input signal is supplied at port 1. Due to the symmetry of the structure,

the full set of parameters |S(i, j)|2 is obtained by simple re-enumeration of the ports.

For example, for the contra-propagating scheme the output signal with input at port

2 is found as |S(2, 3)|2 = |S(1, 4)|2 and |S(2, 4)|2 = |S(1, 3)|2, while the backscat-

tered signal is found as |S(2, 2)|2 = |S(1, 1)|2 and |S(2, 1)|2 = |S(1, 2)|2. For the

co-propagating scheme, the input is supplied at ports 1 and 4, hence, the output
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signal is determined by |S(1, 2)|2 = |S(4, 3)|2 and |S(1, 3)|2 = |S(4, 2)|2 and the

backscattered signal is found from |S(1, 1)|2 = |S(4, 4)|2 and |S(1, 4)|2 = |S(4, 1)|2 .

Figure 5.4: The frequency dependence of S-parameters of the single connector beam
splitter.

The characteristic feature of Figure 5.4 is practically coinciding curves |S(1, 3)|2

and |S(1, 4)|2, which characterize the output signal in the contra-propagating scheme.

This confirms the observation based on the symmetry of the structure made above.

At the same time, it should be noticed that in the co-propagating scheme the equal

splitting is reached when curves corresponding to |S(1, 2)|2 and |S(1, 3)|2 intersect,

which occurs at isolated frequencies near the low-frequency edge of the SSPP waveg-

uide. As has been discussed above, another important characteristic is the intensity

of backscattering, which is defined in terms of the scattering intensities as |S(1, 1)|2 +

|S(1, 2)|2 = 1 − |S(1, 3)|2 − |S(1, 4)|2. Figure 5.4 demonstrates that for the single-

connector design connector the high intensity of the backscattered signal,R(ω) > 0.5

is rather typical, which, as has been discussed above, may be a highly undesirable

property. The numerical calculations were performed using HFSS simulation package,

and the ports are terminated to the matched load, so that there is no reflection at

the ports termination back into the structure.
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The problem of significant backscattering can be approached utilizing more com-

plex designs in two ways: with the help of destructive interference of backscattered

waves or by reducing backscattering itself. The implementation of the first principle

in the beam splitter with two connectors (TC) is shown in Figure 5.1.

In this case, the backscattered field at the input ports is the result of interference

of waves scattered on different junctions. In order to get better understanding of

the mechanism of reduction of backscattering we consider the propagation across the

beam splitter approximating the propagation of the electromagnetic wave into the

connector by the main component with the propagation constant k =
√
P 2 − (π/dc)

2,

dc where is the width of the connector in the x-direction. Then the propagation of

the SSPP can be described by the transfer matrices of the form T e = T ec TWT
e
c and

T o = T oc TWT
o
c , for the even and odd modes of the beam splitter, respectively. The

scattering into the even and odd modes of the connector is described by the transfer

matrices [32] respectively, and the propagation of the SSPP in the arm is described

by

T ec =

 1 0

iZ−11 tan(kl/2) 1

 (5.12a)

T oc =

 1 0

−iZ−11 cot(kl/2) 1

 (5.12b)

TW =

 cos(βD) iZ0sin(βD)

−iZ0sin(βD) cos(β(βD))

 (5.12c)

Here D and l are the distances between the arms and connectors, respectively,Z1 =

ω/k , Z0 = −ωβ/c2P 2. Parameters S(i, j) can be expressed in terms of the matrix

elements of the transfer matrices T e and T o (see e.g. Secion 4 of [82]). Imposing the

condition of minimal power at the input ports, i.e. minimal backscattering, we find
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Figure 5.5: The significant reduction of the intensity of backscattering in the two-
connector beam splitter with variation of the distance between the arms.
The input is supplied at port 1 and backscattering is registered at port 4.

that the necessary condition is

tan(
kl

2
= 1) (5.13)

Thus, one can achieve reduced backscattering in TC at given frequency by making

the structure with specially chosen distance between the arms. In order to demon-

strate this effect, we compare in Figure 5.5 the field distribution inside two structures

with slightly different at the same frequency. The frequency dependence of the -

parameters of the TC is shown in Figure 5.6. It should be noted that while backscat-

tering in TC is significantly reduced comparing to SC, the simultaneous reach of

balanced splitting and low backscattering requires careful adjusting the parameters

of the structure and thus this design is more suitable for narrowband applications.

More direct control over backscattering is achieved in the implementation of the SSPP

beam splitter shown in Figure 5.1(c). The advantage of such constructed beam split-

ter is that the translational symmetry is broken in a less invasive way. Moreover, by

careful choosing the characteristics of the waveguides, one can eliminate the variation

of the SSPP propagation constant at the junction between the parts of the waveguide

with disjoint arms and with arms sharing grooves thus reducing the backscattering

in a stable (non-resonant) manner.
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Figure 5.6: The frequency dependence of S-parameters of the two-connector beam
splitter.

Indeed, as Equation (5.8) shows, the fundamental branch of a two-arm waveguide

can be presented as a result of coupling between the even mode of the single-arm

waveguide (i.e. its fundamental branch) and the lowest odd mode, with the coupling

parameter proportional to the difference between heights of the shared and non-shared

grooves. Thus, for frequencies not too close to the edge of the fundamental branch,

where the coupling between the even and odd modes is significant, the lowest modes

of the single- and two-arm waveguides differ only slightly.

Therefore, for a given frequency the mismatch between the propagation constants,

and, hence, the impedance mismatch, between the parts of the beam splitter with

disjoint arms and with arms sharing grooves is small. This observation is confirmed

by the numerical simulations presented in Figure 5.7. It shows in particular that, as

well as in the case of the beam splitter with two-connectors, the equal splitting ratio

is reached at isolated frequencies. A drawback of this design, however, should be

noted. The coupling between SSPP modes propagating in different arms is relatively

weak. This results in the necessity of having long length of the beam splitter, when

the effect of attenuation may become pronounced
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Figure 5.7: (Upper panel) S-parameters of the beam splitter based on coupling
through shared grooves. The black markers indicate the frequency range
with suppressed backscattering. (Lower panel) The field distribution in-
side the beam splitter demonstrating the reduced back scattering and the
gradual formation of the split signal.

5.3 Four-terminal beam splitter with backscattering

One of the important applications of the beam splitter is in various quantum op-

tical experiments, for instance, Hong-Ou-Mandel type of experiments and homodyne

detection. The standard description of these experiments assumes that the distinction

between the input and output ports is strict. At the same time, all designs consid-

ered in the previous section demonstrate backscattering for a generic frequency. As

a result, the standard description of the beam splitter adopted in quantum optics is

not directly applicable but requires a slight generalization to account that sending a

pulse into either port produces, generally speaking, outgoing signals in all port. Thus,

the relation between incoming and outgoing states is provided by 4 × 4 a scattering
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matrix Ŝ


b1
...

b4

 = Ŝ


a1
...

a4

 (5.14)

where ai is the operator corresponding to incoming SSPP in port i and bi describe

outgoing SSPP.

Out of the variety of possible applications of transformations of quantum states

described by Equation (5.14), we pay the special attention to the implementation

of the balanced homodyne detection scheme. Without the loss of generality, we can

consider the case when the incoming SSPP states are supplied in ports 1 and 2 only,

while only the outgoing states in ports 3 and 4 are detected.

In order to explicate such setup, we collect indices 1,2 into set in and indices 3,4

into set . Then Equation (5.14) can be rewritten in the block form

 bin

bout

 = Ŝ

 ain

aout

 (5.15)

where the scattering matrix Ŝ is written as

Ŝ =

 Ŝin,in Ŝin,out

Ŝout,in Ŝout,out

 (5.16)

and Ŝi,j are 2× 2 matrices.

A general one-particle observable involving ports 3 and 4 can be represented as
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operator

Vout = V0 J0(b
+
out, bout) + V J0(b

+
out, bout) (5.17)

where a scalar V0 and a 3d unit vector V characterize measured quantity and

Ji(b
+, b) =

1

2

∑
m,n∈3,4

b+m(σi)m,nbn (5.18)

with and being the usual Pauli matrices.

It should be noted that the similar approach can be used for describing a general

observable involving all four ports. In this case instead of the Pauli matrices one

needs to employ the full family of generators of su(4) Lie algebra. This general case,

however, is beyond the scope of the current consideration and will not be analyzed

here. Equation (5.17) presents the observable in the basis of the outgoing states.

Using Equation (5.17) and taking into account that we are only interested in the case

when the input is supplied at ports 1 and 2, we find

Vin = V ′0 J0(a
+
out, aout) + V ′ J0(a

+
in, ain)J (5.19)

where we have introduced the modified pair (V ′0 , V ) defined by the relation

∑
i

V ′i σi =
∑
i

Vi(Ŝ
+
out,inσiŜout,in) (5.20)

This relation can be alternatively written in terms of linear transformation V ′i =
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∑
j Ri,jVj, where the matrix elements Ri,j are found using the orthonormality relation

Tr(σiσj) = 2−1δi,j . The application of this formalism for the homodyne detection is

simplified by two circumstances. First, we require that the measured quantity must be

a linear function of the operators corresponding to the unknown state (say, supplied at

port 1). Thus, we require that V ′0 = V ′z = 0 . Second, we take into consideration that

only intensity is measured at the output ports, so that Vx = Vy = 0 . Applying the

orthonormality relation these conditions can be written as a system of homogeneous

equations with respect to V0 and Vz

Tr[σiŜout,in(V0σ0 + Vzσz)Ŝout,in] = 0 (5.21)

where i = 0, z. Writing out explicitly the matrices involved, one finds that this

system has a nontrivial solution V0 = 0, Vz = 1 only when |S(3, 1)|2|S(4, 2)|2 =

|S(4, 1)|2|S(3, 2)|2 . For the case of a design symmetric with respect to the middle line

this implies that in order to be employed in the homodyne detection scheme the beam

splitter must be balanced, so that |S(3, 1)|2 = |S(4, 2)|2 = |S(4, 1)|2 = |S(3, 2)|2 = p.

Using these findings in Equation (5.20), we find

V ′x = p(cos(φ3,1 − φ3,2)− cos(φ4,1 − φ4,2)) (5.22a)

V ′y = p(sin(φ3,1 − φ3,2)− sin(φ4,1 − φ4,2)) (5.22b)

where φi,j = arg(Si,j) are phases of the respective scattering amplitudes. Equations

Equations (5.22a) and (5.22b) show the important consequence of the symmetry of

the beam splitter on the form of the observable operator in the basis of incoming

states. In this case one has φ3,1 − φ3,2 = φ4,2 − φ4,1 and, as a result,V ′x = 0 Thus

the beam splitters with the symmetry with respect to the middle line allows one to

measure only the p-quadrature. By breaking the mirror symmetry, for instance, by
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means of filling the beam splitter partially by a dielectric material, as is considered

in the next section, the phase parameter of the beam splitter can be varied. Such

modification, however, leads in general to changing the splitting ratio and, as a result,

the beam splitter becomes unbalanced. Thus, the variation of the phase parameter

requires more complex control.
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CHAPTER VI

Mechanical Pressure Exerted by SSPP

Surface plasmon polaritons (SPP), optically excited plasmon polariton at the in-

terface of dielectric and metal, opened a broad way to miniaturized photonic circuits

or designing subwavelength structure that can carry optical or electrical signal [1].

The SPPs have found their applications in many areas such as modulators, switches,

sensors, etc. [2-5]. Recently, there have been many efforts to utilize the plasmon

polaritons at frequencies in the THz range (0.3-10 THz). Unfortunately, elevated

medium losses at lower frequencies make implementing of this technique highly im-

practical. It has been shown, however, that by engineering the metal or dielectric

surface and implementing periodic patterns such as grooves or holes, one can reintro-

duce the concept of surface plasmon at lower frequencies. It has been demonstrated

that these structures mimic the dispersion properties of surface plasmon polariton

[6], and the respective propagation modes are dubbed spoof surface plasmon polari-

ton (SSPP). In the sub-wavelength limit, when the characteristic spatial scales of the

structure (e.g., period and the width of the grooves or holes) are smaller than the

operating wavelength, the designed surface can be represented as an effective media

with the dielectric function having the Drude form. SSPP structures have attracted

a significant attention of researchers, from both theoretical and experimental per-

spectives, as they can offer localized field enhancement at the frequency range where
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true plasmons do not exist. In the past decade, different structures with periodic

perforation have been studied, including double sided corrugated structure, single

sided corrugated waveguide, cylindrically corrugated waveguide, etc. [22-29]. Utiliz-

ing the SSPP modes, different components have been proposed, such as polarization

controller [28], THz switch [29], analog to digital convertor (ADC) [30], and beam

splitter [31]. Beside these applications of the optical and THz waves in plasmonic

and SSPP waveguides, recently there has been significant interest in electromagnetic

forces in dielectric and waveguide structures in order to utilize the electromagnetic

(EM) force in optomechanical or micro electro mechanical MEMs devices. Pernice et

al [83] studied the optical forces in parallel waveguides. Optical forces between metal-

lic nano particle has been investigated in [84, 85]. Povinelli et al. [86] suggested that

the optical force can be increased by optical resonances and it has been theoretically

proven in [87]. The optical forces have been also investigated in a wide variety of

structures such as photonic crystals and plasmonic waveguides, [88, 89], for different

applications and situations, such as force on nano-particles, between two single-sided

spoof plasmon waveguides, etc. [90, 91, 92, 93, 94, 95, 96, 97]. In the present paper,

we apply the same concept of resonantly enhanced electromagnetic force to inves-

tigate the mechanical action of SSPP inside corrugated waveguides. This paper is

organized as follows, in Section 1, we briefly review a theoretical description of SSPP

in double sided corrugated waveguides and their dispersion diagram. In Section 2,

the Maxwell stress tensor formalism is introduced and the force acting on a small

dielectric particle inside the SSPP waveguide is evaluated. Section 3 discusses the

force exerted by the SSPP field on a small particle and Section 4 analyzes the force

distribution inside the SSPP waveguide and proposes a switching mechanism. Double

sided corrugated waveguide While the results presented below have a wide range of

applicability, for concreteness, we limit our attention to closed waveguides, which is

especially relevant for potential microfluidic applications. More specifically, we con-
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sider double corrugated waveguides, as shown in Figure 6.1. SSPP in such structures

were analyzed in prvious section therefore, we only briefly outline the main points.

Figure 6.1: Cross section view of Doubly corrugated waveguide.

For simplicity, we only will keep the lower modes with l=0 and m=0 in Equa-

tion (??), thus obtaining the dispersion equations governing even and odd SSPP

modes

De
SA(ω, β) = 1 + η

tan(Pzh)

tan(Qzt)′
(6.1a)

Do
SA(ω, β) = 1− ηtan(Pzh)tan(Qzt) (6.1b)

First five branches determined by Equations (6.1a) and (6.1b) are shown in Figure 6.2

and compared with the transmission spectrum of the waveguide which is calculated

using HFSS. Throughout this paper, the dimensions of the waveguide are fixed and

set to be as follows: d = 100 µm, h = 80 µm, a = 10 µm, W = 300 µm, t = 33.3 µm.

6.1 Maxwell Stress Tensor

The force acting on a particle placed into the waveguide is found as the flux of the

Maxwell stress tensor through the surface S encompassing the particle, F =
∫
T̂ .dn .

If the medium inside the waveguide has the dielectric function ε = 1, the stress tensor
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Figure 6.2: Dispersion diagram and scattering parameters of the double corrugated
waveguide. Gray areas represent the band gaps. The dashed rectangular
area represents the frequencies that we see SSPP modes.

can be written as [98]

T̂ = ε0E ⊗ E +
1

µ0

B ⊗B − 1

2
(ε0E

2 +
1

µ0B2
)Î (6.2)

where

Î is the unit tensor, ⊗ is the Cartesian product defined as (a ⊗ b)i,j = aibj and

E2 = E.E . Representing the electric and magnetic fields in the form

E(r, t) = E∗0(r)eiωt + E0(r)e
−iωt (6.3a)

E(r, t) = B∗0(r)eiωt +B0(r)e
−iωt (6.3b)

we obtain the Maxwell tensor as a sum of time independent and oscillating compo-

nents.

T̂ = T̂s + T̂ ∗0 e
2iωt + T̂ ∗0 e

−2iωt (6.4)
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where

T̂s = 2Re[ε0E ⊗ E +
1

µ0

B ⊗B − 1

2
(ε0|E2

0 |+
1

µ0|B2
0 |

)Î] (6.5)

with lvertE2
0 | = E∗0E0 , and

T̂0 = ε0E0 ⊗ E0 +
1

µ0

B0 ⊗B0 −
1

2
(ε0E

2
0 +

1

µ0B2
0

)Î (6.6)

The time independent component T̂s yields the stationary force F =
∫
T̂ .dn char-

acterizing the pressure exerted by the SSPP on the dielectric particle. The effect of

the oscillating terms is usually neglected because they vanish after averaging over

the period. It should be noted, however, that these terms alone result in oscillations

of the center of mass of the specimen near the position drifting with the velocity

vd = Im(F0)/mω , where is the mass of the specimen and F0 =
∫
T̂0.dn. Depend-

ing on situation, the displacement due to the drift may play an important role and

should be taken into consideration. Indeed, the flux of the Maxwell tensor through a

surface encompassing a particle with radius is proportional to the area of the surface

∝ r2 , while the mass of the particle is proportional to its volume, ∝ r3, leading to

vd ∝ 1/r . As a result, the effect of drift may be important while dealing with small

light particles in a liquid environment with low viscosity. Since we are interested in

a mechanical action of a THz field, however, we use the fact that in high frequency

fields, the effect of the drift is subsided and neglect it.
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6.2 Dielectric particles inside the SSPP field

The total force acting on a small particle can be calculated using Equation (6.6),

which includes two different kind of forces as gradient and scattering force [32]:

~F0 =
εrε0
2
Re[α(E0.5 E∗0 + α

δ

δt
(E0 ×B∗0))] (6.7)

where α is the polarizability. The gradient force is the part that is responsible for

attraction or repulsion of the particle toward the high intensity field. Inserting the

Maxwell equation5×E = −δB/δt and using the vector calculus identity5(E.E∗) =

2Re[(E.5)E∗ +E × (5×E∗)] the final form of the gradient force can be calculated

as:

~F0 =
εrε0
2
Re(α)(5E0.E

∗
0) (6.8)

It should be noted that the electric field entering the expression for the Maxwell

stress tensor is a solution of the full system of Maxwell equations including both

the periodic corrugation of the waveguide and the inserted particle. If, however, the

particle is small and its refractive index only slightly differs from that of surrounding

medium, one can use Equation (6.7) with E = ESSPP , where ESSPP is the SSPP

field in a corrugated waveguide free of introduced particles. Indeed, in this case, the

electric field can be presented as a superposition of ESSPP and the scattered field.

The latter, in turn, in the lowest order of the perturbation theory is proportional

to ESSPP and the variation of the refractive index, which yields Equation (6.7) with

ESSPP . A direct manifestation of such approximation is a simple linear dependence

of the force on the refractive index of the particle. We test this conclusion in Fig-
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ure 6.3, which shows that the approximation ESSPP is valid for a particle with the

dimensions of 1 µm up to n=1.3 . We would like to stress, however, that as the size

of the particle or its refractive index increase, the simplest approximation no longer

provides a good description of the electromagnetic field. Strong scattering not only

leads to a modification of an effective refractive index of the particle but may result

in a complete reconstruction of the field of the propagating modes of the corrugated

waveguide. As a simple illustration, we plot in Figure 6.3 the frequency dependence

of the electromagnetic force acting on a large particle placed near the groove opening.

It shows that the mechanical action of the electromagnetic field leads to repelling the

particle away from the region of the high field concentration in a particle-free waveg-

uide. In other words, it shows the behavior opposite to that for small particles. The

physical origin of such behavior is as follows. A large particle effectively modifies

the dielectric properties of the groove, thus making the groove different from the rest

of the structure. This, in turn, may lead to formation of SSPP modes character-

istic for heterogeneous structures, which can be drastically different from those of

homogeneous waveguides [70].

In the present paper, we limit ourselves to an analysis of the case when the ap-

proximation of small particles is applicable and one can substitute E = ESSPP into

Equation (6.7). In this case, one can extend the analysis based on Equations (6.1a),

(6.1b), and (6.2) for a qualitative description of the spatial profile of the force field.

In particular, one can see from the series representation of the field inside the arm

that the characteristic pattern of the field distribution is a result of the superposition

of higher order Bloch modes. While moving away from the interface toward the cen-

ter of the arm, the contribution of higher Bloch modes can be expected to quickly

attenuate owing to the m-dependence of km =
√

(β + 2π/d)2 − ω2/c2. While this

conclusion is qualitatively correct for generic and spectral points, it is not sufficient

for describing details of the spatial variation of the field. Indeed, at frequencies close
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Figure 6.3: Pressure exerted by SSPP on a particle placed near the groove opening.
(a) The field distribution in the waveguide in the presence of the particle.
The red arrow indicates the general direction of the force; the bold pink
arrow shows the direction of SSPP propagation. (b) The frequency de-
pendence of the x, y, and z components of the force acting on the particle.

to band edges, where β ≈= π/d, one has Q0 ≈−1 and, thus, not too close to the

groove/arm interface, the field distribution is a result of interference of m=0 and

m=-1 Bloch modes.

We discuss the form of the field distribution for the case of a structure with wide

arm. Then in a region, which is not too close to the groove/arm interface and to the

center of the arm, we can retain only and Bloch modes and, additionally, neglect the

contribution of , since due to the symmetry with respect to the plane passing through

the center of the arm, one has . Using these simplifications, we obtain for

E2
x + E2

z = g2e−kz(k2cos2(βx) + β2sin2(βx)) (6.9)

where x is counted from the center of the groove opening, k = k0 and g is a

constant. Expanding k, we finally obtain
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E2
x + E2

z = g2e−kz/beta2(1− ω2

β2c2
cos2(βx)) (6.10)

which demonstrates the characteristic oscillations along the -axis with the magni-

tude determined by the deviation of the SSPP spectral point (ω, β(ω)) from the light

line ω = βc .

Figure 6.4: force in z-direction versus the refractive index for small cubic dielectric
with dimensions 1 µm× 1 µm× 1 µm.

Figure 6.5 shows the magnitude of electric field inside the waveguide at the fre-

quency of 0.87 THz (frequency lies in the region, where the waveguide support SSPP

modes and we have high field concentration inside and at the opening of groove, this

region is shown by letter A in Figure 6.2) in the presence of a small dielectric cube

with dimensions of 1 µm× 1 µm× 1 µm and the refractive index 1.2.

6.3 Switching mechanism in SSPP waveguide

As mentioned earlier, when the operating frequency approaches the resonant fre-

quency of the grooves, the field concentration inside the grooves increases, this means

we can control the field concentration at regions close to the opening of the grooves

and as a result alter the force inserting on a particle inside the SSPP waveguide.
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Figure 6.5: (a) Magnitude of electric field inside the SSPP waveguide in presence of
the dielecric. (b) Normalized force disturbution inside the waveguide.

Figure 6.6 illustrates the force in x direction on a particle versus its position along x

axis for two different frequencies. The particle position is depicted in Figure 6.6(d).

When frequency changes from 0.93 THz (which is close to the resonant frequency of

the grooves and lies in region A) to 0.75 THz (which is far from region A and the

waveguide in it acts as a conventional rectangular waveguide) the field concentration

at the opening of the grooves decreases and at the same time intensity of the field

at the space between the groove increases (see Figure 6.6(b, c)), this change in field

intensity results in changing the force direction which is shown in Figure 6.6(a).

Figure 6.6: (a) Force on particle versus its position along x axis for two different
frequencies, blue line for 0.93 THz and red line for 0.75 THz. (b, c)
Magnitude of the electric field (

√
E2
x + E2

y + E2
z ) at 0.75 THz and 0.93

THz, respectively. (d) Particles position,hp = 12 µm, ld = d/4 .
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Figure 6.7 depicts the force on a particle which is placed inside the SSPP waveguide

arm between the grooves opening. Operating frequency is set to 0.75 THz and the

height of the groove is changed to alter the force exerted on the particle. Increasing

the groove height decreases its resonant frequency which results in changing the field

concentration at the opening of the grooves and the space between the groove.

Figure 6.7: Force versus the groove height at 0.75 THz.

To changing the groove height, we can fill the groove with doped GaAs to form a

Schottky contact [30], then by applying voltage across the Schottky contact, altering

the depletion depth and tune the optical length of the groove. Using the results

presented by Figures 6.6 and 6.7, we can propose a micro fluid pumping mechanism

that can move particles inside the SSPP waveguide. Let the operating frequency

be set to 0.75 THz, and the waveguide dimensions are the same as above. For a

particle shown in Figure 6.8(a) by a red square, the force has a distribution shown

in Figure 6.6(a) and, as the field concentration is higher between the grooves at this

frequency (see Figure 6.6(b)), is directed along the -axis toward the middle of the

space between the grooves. Thus, the particle is pushed into this region and takes

the position as depicted in Figure 6.8(b). Now, if we increase the optical length of
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the groove, this reduces the resonant frequency [see Figure 6.6 (a, c)]. As a result,

the force changes sign and pushes the particle toward the opening of the grooves.

When the particle reaches the opening of the groove (see Figure 6.8(c)), we restore

the groove optical length to push the particle further forward.

Figure 6.8: Movement of a particle inside the SSPP waveguide from (a) to (c). Solid
red square represents the particle, dashed red square represents the par-
ticle destination. li represents the optical length of the groove (l1 > l2)
.

Electromagnetic force acting on a particle placed into a corrugated waveguide

supporting spoof surface plasmon polaritons (SSPP) is calculated. For relatively small

particles with small deviation of the value of the refractive index from environment,

the force is found to be a linear function of refractive index thus indicating that the

effect of the particle on SSPP can be neglected and the force can be regarded as

exerted by SSPP. Since the force inside the waveguide is a function of the particle

size and its refractive index, the mechanical action of SSPP can be used as a filter

for fluid passing through the waveguide. Such action can separate the particles inside

the fluid according to their volume and dielectric properties. A switching mechanism

is proposed utilizing the variation of the force direction depending on the relation

between the operating frequency and the SSPP resonance frequency, ωp , due to

interference of Bloch modes. In essence, at the middle line of the waveguide, the

component of the force along the axis of the waveguide is directed away from the

nearest groove, when the operating frequency is close to ωp and toward the groove,

when the operating frequency is sufficiently far from ωp.
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CHAPTER VII

High Sensitivity THz Sensor Based on

Fano-Resonance Phenomenon in Metamaterial

The emerge of hidden threats such as explosives material or biological agents

like anthrax have motivated researcher to delve deep into the field of sensors and

their applications in detection of hazardous material. The explosives such as TNT,

RDX, HMX and biochemical weapons decompose at atmospheric pressure, and as

they absorb radiation in the specific electromagnetic spectrum like THz range [99],

their traces in air can be used as signatures. The devices using this new technology

can play a great role in improving the security measurements and providing accurate

data base worldwide for sensitive gas tracing. Those data can provide sophisticated

and accurate detection systems, which can challenge the growing threat in public

transport, airports, and for industrial and medical applications. To identify and de-

tect these dangerous materials, it is necessary to develop devices that can detect

either the transmitted or reflected electromagnetic waves selectively. Another im-

portant application of THz wave is spectroscopy and bio-sensing. THz sensing and

spectroscopy benefit from the fact that materials have unique fingerprint of spec-

tral features in the band. THz sensors can offer high sensitivity and resolution, also

because of small wavelength they can be fabricated on-chip scale [100]. With the de-

velopment of terahertz time domain spectroscopy (THz-TDS) and portable terahertz
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spectroscopic tool, THz sensing technology has shown great potential in highly sen-

sitive and on-site detection/identification of minute amounts of microbial substances

[101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113]. There are two im-

portant aspects in THz resonance sensing, one is to increase sensitivity of the sensor.

Various high Q resonators, such as asymmetric split ring resonators (ASRRs) [114],

Γ−shaped resonator [115], are developed to achieve this goal. Another aspect is to re-

duce the amount of sample needed to characterize it. For example, a near field source

is employed in [116] to focus the energy onto a tiny spot beyond the diffraction limit,

which consequently reduces the amount of required sample [117]. The metamaterial

biosensors play a key role in THz bio-sensing system, however, the current index of

sensitivity, high Q resonance, absorption rate, interaction efficiency, readout signal

and integration is still unable to meet the requirements. For non-magnetic materi-

als, the analyte will change the whole equivalent dielectric constant by changing the

capacitance of the metamaterial, finally leading to the change of the resonance fre-

quency and amplitude. Obviously, adopting low dielectric constant, low loss and thin

thickness of the metamaterial can improve the sensitivity of the sensor, and be benefi-

cial to detecting minute perturbations in dielectric value and reducing the number of

required samples molecules [116]. However, due to the weak energy storage character-

istics of the monolayer metamaterial, increasing the subwavelength scale interaction

between samples under investigation and terahertz wave for a sufficient sensitivity is

the key scientific problems in the study of terahertz sensing. The most effective way

to improve the light-matter interaction is utilizing the near filed enhancement of high

Q factor resonance. There are two ways to improve the Q factor of metamaterial,

first is by designing the artificial microstructure with sharp resonance peak, second is

by enhancing the mutual coupling between the multilayer structures to improve the

electromagnetic energy utilization ratio [118]. Beside the current advancements in

the THz metamaterial sensors, the sensitivity is still limited by the weak interaction
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between samples and the localized near field or the decayed resonant mode outside

the cavity. While most of the terahertz sensors are based on transmission spectrum

detection, the sensitivity can be greatly reduced in the case of interaction of THz

wave with lossy microfluidic analyte through one-time transmission. Compared with

the transmission structure, the reflective structure can provide twice interaction be-

tween the terahertz wave and the microfluidic analyte during incidence and reflection

process, which is more favorable to the spatial overlap interaction.

7.1 The metamaterial absorber structures

Figure 7.1 illustrates the proposed structure for the THz sensing. It represents

the device that can be used for sensing the liquid samples, they will pass through the

fluid channel at the top of the sensing platform, and affects the THz resonances of

the metamaterial structure and its absorption characteristics.

Figure 7.1: Schematic view of the proposed THz sensing platform.

The first structure that we have investigated is the metallic ring as shown in the

Figure 7.2. In this design, the metamaterial absorber (MA) is composed of a periodic

array of metallic rings and continuous metal film separated by dielectric substrate.

The ring possesses high symmetry and can be easily fabricated. The two metallic

layers strongly couple to the magnetic field of the incident wave, which exhibits a

magnetic resonance. As a result, we can tune the geometric parameters of the MA to
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acquire a desired magnetic resonance at the resonance frequency and achieve perfect

absorption.

Figure 7.2: Schematic view of the metallic ring, dielectric refractive index is 2.1, di-
mensions are as d = 100 µm, h = 1 µm, t = 6 µm, r = 45 µm

In our simulation, metallic ring and metal film are made of lossy gold. The

transmission is zero due to the shielding of the bottom metal film and the reflectance

is the only factor determining the absorption hence the absorptivity is calculated by

A(ω) = 1−R(ω) = 1− |S(1, 1)|2 To attain perfect absorption, we can only minimize

the reflectance. Figure 7.3 illustrate the Hx and Ez, respectively. The cross product

of these two represents the power flow in y-direction, there is the same situations for

Hy and Ez, as the structure has symmetry respect to x and y. Then, the power flows

inside the substrate, also as the Ez (see Figure 7.3) mostly exist underneath the ring,

power flow happens under the ring and most of power loss happens there. If instead

of the dielectric at the underneath of the ring, replacing the sample, we can have

more electromagnetic fields and sample interaction and increasing the sensitivity.

Figure 7.3: Magnitude of Ey at the top of the ring resonator, (b) Magnitude of Hx ,
(c) Magnitude of Ez.
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Figure 7.4 depicts the absorption spectra of the ring metamaterial. The goal is to

increase the sensitivity of the metamaterial sensor platform, and optimize the struc-

ture to get more information out of the sample. In order to achieve higher sensitivity,

the sensor needs a sharp edge in responsive transmitted/reflective spectrum and a

point of high concentration of electric field to detect small changes in the dielectric

environment.

Figure 7.4: Absorption spectra of the metamaterial composed of periodic metallic
ring.

The primary resonance modes of metamaterial usually have lower Q values, such

as the dipole mode and LC resonance mode. The high Q resonance modes can be

obtained by introducing the trapped modes or high order modes, which requires the

metamaterial to support the sub-radiation modes. The sub-radiation modes usually

exist in the form of dark modes, such as Fano, Quadrupole resonance and electromag-

netically induced transparency (EIT) resonance [119] and [120, 121, 122, 114, 123, 124,

125, 126, 127, 128, 129], which can effectively improve the utilization of electromag-

netic energy by suppressing the outward radiation filed. Resonance is an important

subject in theoretical and experimental investigation of structures in physics. The
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search for new effects related to wave interference and different kinds of resonances

in various physical systems may be of interest. Interference of a localized wave with

propagating states and resulting Fano resonances in atomic and solid-state structures

have been attracting much attention recently [114, 123, 124]. In the next section, we

investigate the double resonance structure with improved sensitivity. And then we

improve it by introducing Fano resonance in our design.

Figure 7.5: Schematic view of the metallic ring, dielectric refractive index is 2.1, di-
mensions are as d = 100 µm, h = 5 µm, t = 6 µm, r1 = 45 µm, r1 =
45 µm.

To have double resonance feature two ring are put in each period. Terahertz multi

resonant metamaterials with fractal-structure or super-cell resonators can match mul-

tiple resonance frequencies with characteristic frequencies of the analyte, providing

more dielectric information of the analyte for higher sensitivity in miniaturized sens-

ing device. Figure 7.5 illustrates the schematic view of the double resonance structure

with improved sensitivity. Figure 7.6 depicts the surface current and field distribu-

tions for new structure that consists two set of ring inside each other. As seen, part

of the electromagnetic energy is move to the space between the two rings, and in

contrast the energy concentration in above and bottom of the ring decreases. This

will result in more interaction between samples and electromagnetic fields. As the

circumferences of the rings are different then their resonant frequencies are also dif-

ferent. To increase the sensitivity a thin layer of dielectric ring is added to the top of
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the metamaterial, this will confine the electromagnetic fields concentration near the

metallic rings.

Figure 7.6: (a, b, c) Ex, Ey and surface current for double ring resonator, respectively.

Figure 7.7 shows the Absorption properties of the sensor for the three different

materials with the refractive index of:nEthanol = 1.6, nGlucose = 2.1, nAir = 1. The

absorption results show almost perfect absorption in the metamaterial sensor at the

lower index values (under 2). In addition, the sharp resonant absorption demonstrates

excellent signal to noise ratio (SNR). The sensitivity of the ring resonator for Mode

A which has lower resonant frequency is 0.679 RIU−1 and for Mode B with higher

resonant frequency is 0.727 RIU−1.

7.2 Fano-Resonace based metamaterials

High-Q-factor metamaterial based on symmetric and asymmetric resonators can

be traced to the excitation of the sub-radiation trapped mode. Fano-resonant meta-

materials enable the strong localized EM field enhancement by bright-dark mode

coupling, the asymmetric and spectrally steep line shape. By matching the spec-

tral positions of the dark resonances with the vibrational fingerprints of the material
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under investigation, quantitative characterization of weak induced perturbation in

dielectric environment can be carried out. In recent years, THz Fano-resonant meta-

surface bio-sensing has become a promising label-free detection technology due to its

high-quality factor resonance and strong localized field absorption, interacting with

analyte such as bimolecular with affinity binding, which makes a breakthrough of

detection resolution limits [130]. In 2009, B. Lahiri et al. proposed an asymmetric

circular split ring resonator (SRR) sensor, the enhanced plasmon resonance increases

the sensitivity for different biological molecules [131]. Al-Naib et al. demonstrated a

terahertz metamaterials sensor consists of SRR arrays with respect of different mu-

tual rotation angle, revealed a high Q factor of 100 at the mergence of the sub-radiant

even mode [132]. Other researchers also through utilizing high Q metamaterials, de-

picted high sensitivity THz sensors, their sensitivity can be as high as 7.75 x 103

nm/refractive index unit (RIU) [133].

Figure 7.8 shows the structure that supports the Fano resonance, to add Fano

resonance the symmetry of the ring resonator is broken, (see Figure 7.8). Figure 7.9

represents the electric field distributions at the resonant frequency of the structure at

the surface slightly at the top of the ASRR. As seen near the gap we have the highest

power concentration.

The surface currents at the two resonances based on the transmission properties

of Figure 7.10 are depicted in Figure 7.10. For the sharp asymmetric resonance at 0.7

THz which occurs for the first orientation, when incident electric field is perpendicular

to the gap, we observe anti-parallel currents in the left and bright arcs. As the

structure is weakly coupled to the free space these currents are very effective. This

resonance mode is similar to the inductive capacitive (LC) resonance which can be

considered in a single gap SRR. Both of these resonances lead to current configurations

in which the magnetic dipole moment is perpendicular to the metamaterial plane of

the array. These currents oscillate synchronously in all the ASRRs at this resonant
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Figure 7.7: Absorption spectra for double ring resonator for three different samples.

Figure 7.8: Schematic view of the metallic ring, dielectric refractive index is 2.1, di-
mensions are as d = 100 µm, h = 5 µm, t = 6 µm, r1 = 45 µm, r1 =
45 µm, g = 6 µm, rg = 4 µm
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frequency. The second broad symmetric resonance at 0.9 THz is due to a dipole-like

parallel current distribution as seen in the simulation.

Figure 7.9: From left to right, Ex and Ey of the asymmetric ring resonator.

The high Q asymmetric Fano resonance in the ASRR arises from the structural

asymmetry which results in an interference between a sharp discrete resonance and a

much broader continuum-like spectrum of dipole resonance. This narrow resonance

arises from a sub-radiant dark mode for which the radiation losses are completely

suppressed due to the structures weak coupling to free space. Such dark modes are

exploited to realize EIT-like effects in metamaterials which opens avenues for de-

signing slow light devices with high group index. The resonance at 1.6 THz which

is illustrated for the second orientation is due to dipole-like and is depicted in Fig-

ure 7.10.

As can be seen from Figure 7.11 the Fano resonance in our asymmetric meta-

material is sensitive to the polarization of the exciting field. This opens the route

towards tunable devices which could base on the circular dichroism of terahertz waves

mediated through a chiral arrangement of the planar metamaterial with respect to

the incident terahertz field [134]. The effect of asymmetry on the Q factor of the

Fano resonance is studied in [126]. It is demonstrated that the strength of the Fano

resonance increases with increasing asymmetry parameter. The same is true for the

width of the resonance. The sharpest resonance is observed for a small asymmetry. It

should be stressed that such a high Q factor is almost an order of magnitude higher

than that obtained in the regular LC resonance symmetric Lorentzian mode [135].
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Figure 7.10: Absorption for two different polarizations. Surface current on split ring
resonator for two different polarization TM and from left to right.

As asymmetry increases, the resonance broadens since the asymmetric split ring res-

onator (ASRR) metamaterial couples more efficiently to the free space. Figure 7.11

shows the absorption properties of the ASRR sensor for the three different materials

with the refractive index of: . The sensitivity of the split ring resonator for Mode A

with lower resonant frequency is 0.690 RIU−1 and for Mode B with higher resonant

frequency is 0.758 RIU−1.

Figure 7.12 illustrates the current distributions for ASRR and double RR to have

better understanding of their differences. The induced currents in the inner and outer

rings oscillate in opposite phase, yielding an electromagnetically trapped mode. The

induced currents in the split rings form a circulating current loop, yielding a sub-

radiant mode. The E fields of trapped modes are focused either in the gaps of unit
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Figure 7.11: Absorption spectra for asymmetric ring resonator for three different sam-
ples.

cells or gaps between the paired rigs. Inspired by the condensed near field coupling, we

innovatively present an interaction enhancing strategy of etching grooves underneath

each meta-atom. Both the E fields of dipole-like modes and Fano-like modes are

focused at the gaps of the split rings. These sub-radiant modes are beneficial to

restrain outgoing radiation, thus improve the Q factor and sensitivity. The height of

the dielectric is in subwavelength scale, resulting a transverse resonance. The current
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loop forming by the on-top metamaterial and reflector ground excites the field along

x direction. As a result, a strong electrically resonant component in the vertical

direction is observed at the two ends of the dipole. Therefore, the calculated power

flux is clearly along the y direction. The transverse resonance reduced the radiative

damping rate of the resonant mode, a key factor to obtain complete absorption, which

is controlled by adjusting the height of the substrate.

Figure 7.12: Absorption spectra for asymmetric ring resonator for three different sam-
ples.

The current state of art THz sensors are compared with the proposed sensors in

Table 7.1. In recent years, a large overlap with greatly confined cavity resonance of

the metamaterial perfect absorber (MPA), resulting in ultrahigh sensitivity detection,

has aroused widespread concerns in the terahertz sensing research field. N. Liu et al.

reported a near infrared plasmonic sensor based on narrowband perfect absorber, the

detection sensitivity was 420nm/RIU [121]. In 2015, L. Cong et al. compared the

sensitivity of terahertz MMs absorber and metamaterial with the same resonator, the

results show that the figure of merit (FoM) was increased by an order of magnitude

because the Fabry-Perot cavity significantly enhanced the EM field concentration in

the absorber [122]. In 2016, X. Hu et al. presented a terahertz MPA integrated

microfluidic sensor, a high sensitivity of 3.5 THz/RIU is predicted by the greatly

enhanced light-matter [114]. In contrast, the multi-band sensitivity of our design

sensor could be further improved by constructing stronger interaction cavity, which

consists of Fano resonant meta-atoms on top cap and grooved microfluidic channel in
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middle and ground reflector at bottom.

Frequency
[THz]

Normalized
Sensitivity
[RIU ]−1

Ref Technique

0.55 0.25 [136] Waveguide resonance
1.5 0.17 [137] Metal ring and graphene disk
0.5 0.08 [138] Metamaterial
3.0 0.49 [139] (MPA)
0.71 0.31 [140] Mpa integrated microfluidic channel
0.77 0.73 Proposed Trapped mode resonance
0.54 0.76 Proposed Fan-resonance

Table 7.1: Comparison the sensitivity of the state of the art metamaterial sensors
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CHAPTER VIII

Closing Remarks and Future Path

Compressing light on a subwavelength scale is one of the most promising areas

of current photonics and electronics. However, it is not possible to confine the light

radiated by nanometer size atoms or molecules to a lateral dimension smaller than

wavelength of the light by using the conventional waveguiding methods. To overcome

these challenges, plasmonics is an ideal candidate for two main reasons: first, plasmon-

ics uses low dimensional surface waves such as 1-D and 2-D, thus miniaturizing the

optical components for solving the integration limit and second, plasmonics devices

provide strong light localization, thus allowing highly sensitive detection and signal

transducer components. Thus, the emerging field of plasmonics strongly benefits the

various areas such as near-field optics, quantum dots and optical processing.

In this dissertation, we have designed Single sided SSPP waveguide, THz switch,

and THz ADC as one important building block of the THz circuitries, as already

described in detail in Chapters III and IV. In that design, The SSPP structure acts

as an effective interface through which the electronic input can be used as control

signals, while the information is carried by the THz frequency. The Single sided

SSPP structure enables THz signal propagation in slow-wave modes. These designer

modes indicate the possibility of controlling the wave transmission via external stim-

uli. Similar ideas can be employed in the design of other THz circuitry components.
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Most prominently, THz Boolean logic component designs are studied in this chapter

and realized as the fundamental constituent of the future THz digital circuits. In

the following we will discuss about future works regarding the fabrication of SSPP

waveguides and utilizing the planar SSPP structure as a substitution to single sided

SSPP waveguide.

8.1 Fabrication of SSPP components

We have developed the preliminary fabrication process technology for the SSPP

structure at the Lurie Nanofabrication Facilities (LNF) of the University of Michigan.

A schematic view example of the DC-SSPP components fabricated at LNF is shown

in the Figure 8.1. The initial batches of the fabricated SSPP sensing structures were

designed to have their input and output ports compatible with the WR-3 standard

(0.431 mm by 0.863 mm). The features on such a design have dimensions as small

as 180 µm. The fabrication process is a two-mask process and is described in the

following.

Figure 8.1: Transmission spectra of (a) unmodified DC-SSPP structure and (b) the
DC-SSPP structure with narrowed waist.

The fabrication was carried out on a 4 inch Silicon wafer. The thickness of the

device side is 431 µm and the back side is 250 µm thick. The Silicon dioxide layer

in the middle is 0.5 µm thick, and 1 µm Silicon dioxide layers were prepared and

polished on both sides of the wafer. First, the device sides of two bare polished

SOI wafers were coated with a thin layer (3 µm) of photoresist. After coating, the

photoresist layers were patterned and developed (Figure 8.2(a)). Then we etched the
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1 µm Silicon dioxide on top of the wafers until the buried Silicon layer was exposed

(Figure 8.2(b)).

Figure 8.2: Coating with photoresist and patterning. (b) Etching Silicon dioxide. (c)
Etching Silicon dioxide at back side. (d) Etching the Silicon layer.

To etch the Silicon dioxide layer, reactive-ion etching (RIE) technique was used.

After that, the two wafers were stripped from the remaining photoresist using solvent

or RF plasma stripper. Then, the back-sides of these two wafers were patterned

using the backside mask and after developing, the 1 µm Silicon dioxide on bottom

of the wafers was etched until the buried Silicon layer was exposed (Figure 8.2(c)).

The next step was to etch the Silicon on the device side (Figure 8.2(d)). The deep

reactive-ion etching (DRIE) technique was used in order to achieve precise dimensions.

After completing wafer etching, we deposited Au on device side using physical vapor

deposition (PVD). To avoid Silicon diffusion into Au which will result in a lossy alloy

in THz frequencies, we deposited a thin layer (0.5µm) of Silicon dioxide before the

Au layer deposition took place (Figure 8.3(a)). Next, the two wafers were aligned

and bonded together (Figure 8.3(b)).

Figure 8.3: (a) Gold deposition. (b) Bonding. (c) Etching the Silicon at the top of
wafer. (d) Mounting to carrier wafer and etching the remaining Silicon.

The final step was to etch the top and bottom of bonded wafers (Figure 8.3(c)).
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At first one side was etched until buried Silicon dioxide layer. It was flipped and

mounted to a carrier wafer and the other side was etched to the Silicon dioxide layer.

The remaining Silicon dioxide layers were about 1µm thick. To separate the parts, we

had put them in hot water (80◦C). Then the crystal bonds were dissolved in water

to allow the final components to float (Figure 8.3(d)).

Figure 8.4: (a) SSPP waveguide with five corrugations. (b) SSPP waveguide with 3
corrugations. (c) SSPP waveguide and the WR3 feed point. (d) Mach-
Zehnder interferometer.

The SEM images of the final SSPP components are shown at Figure 8.4 and

Figure 8.5 show the final components.

An important finding from our preliminary work is that the metal deposition

plays critical role in the fabrication flow. Lack of metal on the surface of the silicon

waveguide will introduce serious loss in slow EM wave propagation inside DC-SSPP

device. It will also break the boundary conditions under which the SSPP resonance

would occur. The vertical walls of the grooves are the places where metal deposition

is hardest to control. In the initial batches, gold evaporating technique was used for

deposition with unsatisfactory evenness. We plan to replace it with gold sputtering

technique in the following batches and the outcome will be evaluated. Bonding is
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Figure 8.5: Fabricated SSPP components; in the left corner: halves of the SSPP
components is shown to illustrate the grooves.

another critical step that we need to further optimize. There are two parameters

(temperature, pressure) that can affect the bonding process. For example, increasing

the pressure tends to crack the samples, while reducing the pressure results in many

un-bonded or weak-bonded components. Such effects can be alleviated to some extent

by increasing the gold thickness inside the waveguide, while thick gold deposition may

result in unevenness on the bonded edges. We plan to adjust the gold thickness along

with the temperature and pressure during the bonding. This may require several runs

on different fabrication batches to find the optimized recipe of the three parameters.

Figure 8.6: Photo of the samples during the DRIE etch.

Figure 8.6 shows that during the Silicon etching process, some small holes appear

on the Silicon surface during the Silicon etching process. These holes result in uneven

surface, and ultimately will generate loss in the THz transmission. To overcome the

106



challenges posed by dirts, we need to do more cleaning process before the DRIE

process and doing plasma etch to completely cleaning the Silicon surface from any

photoresist or organic compound that can prevent from Silicon etch. Figure 8.7 shows

the SEM image of some components right after the DRIE. It shows unwanted Silicon

on the wafer. To get rid of it, we can use DRIE for a longer time to etch them all

the way, but increasing the etching time can result in undercut and even damage

to the Oxide layer. To solve these problems, we need to work on DRIE recipe and

Oxygen plasma etch. The other challenges we anticipate include the uneven etch of

the Silicon. The recipe that is normally used for the DRIE, also etches the Silicon

at high rate and etches the Silicon dioxide at very slow rate. But the etch rate may

vary on the wafer and also it changes with the temperature. Our observation shows

that the etch rate at the center of the wafer is higher than the corners, and at some

places the Oxide layer etches completely causing damage to the samples. To decrease

the etch rate of the silicon dioxide we should work on the DRIE recipe to increase its

selectivity between Silicon and Silicon dioxide. Also, to reduce the heat effect on the

wafer, we can divide the etch time and performing Silicon etch in several steps to let

the wafer cool down.

8.2 Planar SSPP structures

The inception of spoof surface plasmon polariton (SSPP) metamaterial made it

possible to manage light beyond diffraction limit at a designer specified frequency.

Originally proposed and theorized as a 3D structure, about a decade later, a thin

film planar version of the metamaterial supporting spoof plasmon, more amenable

to fabrication, was demonstrated to inherit the similar dispersion property. Regret-

tably, all the demonstration in planar structure have not been accompanied with a

comprehensive closed-form theory. We bridged the gap in the existing theory of spoof

plasmon, and analyzed the prospect of exploiting this unconventional optical mode as
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Figure 8.7: SEM image of damaged fabricated samples.

high speed intra-chip data transfer media. Through the simple yet powerful formal-

ism built-up, we are the first to explain a number of important characteristics of spoof

plasmon mode; such as, evanescent mode profile across the waveguide that explains

the red-shift of band with reduction of waveguide’s cross-section, and showed how

these properties can be leveraged to design cross-talk suppressive data-transfer chan-

nels. In particular, the questions of acceleration of the bandwidth modulation rate

of SSPP mode by external perturbation, choice of appropriate geometry to optimize

the SSPP bandwidth density are addressed.

Despite Single sided SSPP deemed as a brilliant solution, the very large cross-

sectional size (ideally infinite) of the metamaterial as originally proposed posed a

tremendous challenge to fabricate the 3D SSPP structure and to mold it for engi-

neering applications, in particular data processing and routing. The 3D structures

possess considerably large thickness (ideally infinite), which makes it difficult to fab-

ricate. On the contrary, a 2D SSPP structure with nominal thickness is not only
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Figure 8.8: Schematics of a 3D SSPP structure standing alone and a 2D SSPP struc-
ture on substrate.

amiable to fabrication on a substrate, but also possess interesting properties that we

can harness for efficient mode excitation, and bandwidth modulation.
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[87] Michelle L Povinelli, Marko Lončar, Mihai Ibanescu, Elizabeth J Smythe,
Steven G Johnson, Federico Capasso, and John D Joannopoulos. Evanescent-
wave bonding between optical waveguides. Optics letters, 30(22):3042–3044,
2005.

[88] Xiaodong Yang, Yongmin Liu, Rupert F Oulton, Xiaobo Yin, and Xiang Zhang.
Optical forces in hybrid plasmonic waveguides. Nano Letters, 11(2):321–328,
2011.

[89] MI Antonoyiannakis and JB Pendry. Electromagnetic forces in photonic crys-
tals. Physical Review B, 60(4):2363, 1999.

[90] David Woolf, Mikhail A Kats, and Federico Capasso. Spoof surface plasmon
waveguide forces. Optics letters, 39(3):517–520, 2014.

[91] Hideaki Taniyama, Masaya Notomi, Eiichi Kuramochi, Takayuki Yamamoto,
Yutaka Yoshikawa, Yoshio Torii, and Takahiro Kuga. Strong radiation force
induced in two-dimensional photonic crystal slab cavities. Physical Review B,
78(16):165129, 2008.

[92] TA Nieminen, H Rubinsztein-Dunlop, and NR Heckenberg. Calculation and
optical measurement of laser trapping forces on non-spherical particles. Journal
of Quantitative Spectroscopy and Radiative Transfer, 70(4):627–637, 2001.
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