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Abstract 

 

Despite the tremendous potential of peptide-based cancer vaccines, their efficacy has been 

limited in humans. Recent innovations in tumor exome sequencing have signaled the new era of 

personalized immunotherapy with patient-specific neo-antigens, but a general methodology for 

stimulating strong CD8α+ cytotoxic T-lymphocyte (CTL) responses remains lacking. Here we 

demonstrate that synthetic high density lipoprotein-mimicking nanodiscs (sHDL) coupled with 

antigen (Ag) peptides and adjuvants can markedly improve Ag/adjuvant co-delivery to lymphoid 

organs and sustain Ag presentation on dendritic cells. Strikingly, nanodiscs elicited up to 47-fold 

greater frequencies of neoantigen-specific CTLs than soluble vaccines and even 31-fold greater 

than perhaps the strongest adjuvant in clinical trials (i.e. CpG in Montanide). Moreover, multi-

epitope vaccination generated broad-spectrum T-cell responses that potently inhibited tumor 

growth. Nanodiscs eliminated established MC-38 and B16F10 tumors when combined with anti-

PD-1 and anti-CTLA-4 therapy. These findings represent a new powerful approach for cancer 

immunotherapy and suggest a general strategy for personalized nanomedicine. We also sought to 

develop alternative approaches for cancer therapy. For example, we demonstrated that by simply 

incorporating a hydrophobic anticancer drug withalongolide A-4,19,27-triacetate (WGA-TA) in 

sHDL nanodiscs, we could enhance the therapeutic outcome of WGA-TA and reduce the side 

effects due to the improved tumor targeted delivery of nanodiscs. In addition to direct killing of 

tumor cells, some chemotherapeutic drugs can cause immunogenic cell death and induce 

antitumor T cell responses, which also contribute to the anticancer efficacy and prompt a number 
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of clinical trials on combination chemoimmunotherapy. However, it remains unclear how to 

achieve potent immune activation with traditional chemotherapeutics in a manner that is safe, 

effective, and compatible with immunotherapy. Here we show that high-density lipoprotein 

(HDL)-mimicking nanodiscs loaded with doxorubicin (DOX), a widely used chemotherapeutic 

agent, can potentiate immune checkpoint blockade in murine tumor models. Delivery of DOX 

via nanodiscs triggered immunogenic cell death of cancer cells and exerted antitumor efficacy 

without any overt off-target side effects. Importantly, ―priming‖ tumors with DOX-carrying 

nanodiscs elicited robust antitumor CD8+ T cell responses while broadening their epitope 

recognition to tumor-associated antigens, neoantigens, as well as intact whole tumor cells. 

Combination chemoimmunotherapy with nanodiscs plus anti-PD-1 therapy induced complete 

regression of established CT26 and MC38 colon carcinoma tumors in 80-88% of animals and 

protected survivors against tumor recurrence. Our work provides a new, generalizable 

framework for utilizing nanoparticle based chemotherapy to initiate antitumor immunity and 

sensitize tumors to immune checkpoint blockade. 
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Chapter 1 Introduction 

1.1 Overview of antitumor immune responses 

1.1.1 Innate and adaptive antitumor immunity  

Many different immune cell populations are involved in the antitumor immunity. Innate immune 

cells such as NK cells, NKT cells, and neutrophils have been reported to kill tumor cells in an 

antigen-independent manner.
1
 In contrast, adaptive immune cells such as T cells and B cells can 

kill tumor cells in an antigen-specific manner. Among these cells, it‘s well accepted that T cells 

are the major effector cells that determine the therapeutic outcome.
2
 There are two major types of 

T cells, CD8+ cytotoxic T lymphocytes (CTL) and CD4+ T lymphocytes. Many studies have 

confirmed CD8+ T lymphocytes can lead to the specific lysis of tumor cells and higher levels of 

circulating or tumor-infiltrating CD8+ T lymphocytes are correlated with better prognosis. 

Recently, the importance of CD4+ T lymphocytes for cancer immunotherapy has also been 

revealed, as depletion of CD4+ T lymphocytes can compromise or even abrogate the therapeutic 

efficacy of certain cancer vaccines. 
3
 

1.1.2 Activation of antigen-specific T cells 

The initial activation of naïve CD8+ or CD4+ T cells is mainly mediated by dendritic cells 

(Figure 1.1), which present the antigen peptides (epitopes) in the context of MHC class I or 

MHC class II on the surface of dendritic cells for activation of CD8+ and CD4+ T cells, 

respectively.
2
 Dendritic cells (DCs) are the most important antigen presenting cells (APCs) for T 
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cell activation. Exogenous extracellular antigens can be taken up by DCs and processed in 

acidified endocytic vesicles, where the generated short peptides can bind to MHC class II 

molecules, and the complex of peptide-MHC class II molecules can be recognized by CD4+ T 

cells. Some endocytosed exogenous antigens can be directed into the MHC class I pathway for 

recognition by CD8+ T cells. This phenomenon is called cross-presentation, which can lead to 

the activation of antigen-specific CD8+ T cells. Cross-presentation is very important for the 

tumor immunotherapy.
4
 Development of immunotherapy that can achieve higher cross-

presentation will induce more cytotoxic T cell response and lead to better anti-tumor efficacy. 

Even though the mechanism is still poorly understood,
4
 the following two possible mechanisms 

for cross-presentation have been proposed. Cytosolic pathway: Endocytosed exogenous antigens 

can escape from the endosome and be released into the cytosol, where they are degraded by the 

proteasome to generate short peptides. Some of these peptides can bind to MHC class I 

molecules and be cross-presented to the cell surface for recognition by CD8+ T cells. Vacuolar 

pathway: Endocytosed exogenous antigens are localized in acidified endocytic vesicles 

containing active cathepsin S, which can degrade the antigen into small peptide fragments. These 

peptide fragments can bind to MHC class I molecules in the endosome, which probably 

originated from the phagosome-ER fusion, and the peptide-MHC class I molecules are 

transported to the cell surface for recognition by CD8+ T cells. 

In addition to the above antigen-MHC class I/II complexes on the surface of DCs, two other 

signals, including co-stimulatory molecules and cytokines are required for efficient priming of 

naïve T cells. For immunotherapy, the co-stimulatory molecules and cytokines are usually 

resulted from the adjuvants, which upon uptake by DCs, can upregulate co-stimulatory 

molecules including CD40 and CD80/CD86 for interaction with CD40L and CD28 on T cell 
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surface, respectively. Adjuvants can also induce DCs to secrete cytokines such as IL-12, which 

can provide the third signal required for activation and differenciation of T cells.
5
  

1.2 Tumor antigens 

1.2.2 Tumor associated antigens 

Tumor associated antigens (TAAs) are overexpressed by tumor cells, but these antigens are also 

expressed by normal cells, although at much lower levels.
6
 Previous cancer vaccines in 

preclinical and clinical studies mainly use TAAs for cancer immunotherapy. There are two major 

challegnes for the use of TAAs in cancer immunotherapy. The first challenge is that TAAs are 

self-antigens, and the immune system is normally tolerant to self-antigens and therefore it‘s 

difficult to induce strong T cell responses against these antigens.
7
 However, sometimes, the 

immune tolerance can be broken with the use of strong adjuvant or efficient vaccine delivery 

systems and TAA-specific T cell responses can be induced. The second challenge is that TAAs 

are not only expressed by tumor cells but present in normal cells, so TAA-specific T cells can 

kill both tumor cells and normal cells. The toxicity is dependent on the strength of the T cell 

responses and the expression level of these antigens by normal cells. 

1.2.1 Tumor neoantigens 

When normal cells become cancerous, they have many nonsynonymous mutations, leading to the 

expression of mutant proteins that are not expressed by normal cells. These mutated protein 

sequences can be processed into short peptides (epitopes) and some of them can be presented in 

the context of major histocompatibility complex (MHC). These MHC/epitope complexes can be 

recognized by T cells, which can lead to the specific lysis of tumor cells.
8
 Because these tumor 

neoantigens are ―changed-self antigens‖ (similar to foreign antigens), the immune system is 
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normally not tolerant to these antigens. Importantly, because neoantigens are missing in normal 

cells, neoantigen-specific T cells can selectively kill tumor cells without harming normal cells, 

thereby providing a safe and effective method for cancer immunotherapy. Other exogenous 

antigens such as viral epitopes expressed in cancer cells can be considered as neoantigens as 

well.
8
 

1.3 Adjuvants 

In addition to antigens, adjuvants are commonly included in the vaccine to help induce adaptive 

immune responses.
9
 Based on their origin, adjuvants can be classified into damage-associated 

molecular patterns (DAMPs) and pathogen-associated molecular patterns (PAMPs).
10

 These 

adjuvants can act on pattern recognition receptors (PRRs) and lead to the upregulation of 

costimulatory signals and secretion of cytokines required for activation of T cells. Different types 

of adjuvants have been extensively reviewed elsewhere and several commonly used adjuvants 

relevant to the dissertation are summarized below.  

1.3.1 TLR agonists 

TLRs such as TLR1-2, TLR3, TLR4, TLR7, and TLR9 are widely expressed in innate immune 

cells including dendritic cells. TLRs recognize PAMPs present in a variety of pathogens and 

initiate inflammatory responses.
11

 In the context of cancer immunotherapy, TLR agonists are 

used in the vaccine to induce upregulation of costimulatory signals and secretion of cytokines 

needed for T cell activation. Some TLR agonists can induce secretion of type I interferon, which 

have been reported to contribute to the anti-tumor immunity. 
12

 

In addition to PAMPs, DAMPs can also activate TLRs and lead to the activation of T cells. For 

example, tumor cells treated with certain chemo drugs can undergo immunogenic cell death and 
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secrete High mobility group box 1 protein (HMGB1), which is a TLR4 agonist and can help 

elicitation of antitumor T cell responses.
13

 

1.3.2 STING ligands 

Stimulator of interferon gene (STING) is an adaptor molecule capable of activating the TBK1-

IRF3 axis to induce type I interferon production and eliciting antigen-specific CTL responses in 

the presence of antigens. Several STING agonists themselves haven been shown to exert 

antitumor efficacy.
14,15

 For example, cyclic dinucleoties such as cyclic guanosine 

monophosphate (cGAMP), and cyclic diguanylate and cyclic diadenylate are known to activate 

the STING pathway and enhance the antitumor immune responses. Recently, more and more 

synthetic STING agonists with different chemical structures have been developed, and their 

ability to induce type I interferon and boost the antitumor immunity has been well confirmed. 

1.3.3 Montanide 

Montanide-based adjuvants can form water-in-oil emulsion after simple mixing and 

homogenization in aqueous phase. They are prepared by using the surfactants from the mannide 

monooleate family. After injection, they can form depot at the injection site, allowing for gradual 

release of antigens and induction of prolonged immune responses. Montanides have been used in 

peptide vaccines for the treatment of melanoma and Non-Small Cell Lung Cancer (NSCLC) in 

clinical trials.
16-18

 

1.4 Cancer vaccine delivery 

1.4.1 Soluble vaccine 

Cancer vaccines are typically composed of antigens and adjuvants. Most cancer vaccines are 

administered through subcutaneous or intramuscular injection so that they can drain to local 
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lymph nodes, where high concentrations of resident dendritic cells are available to take up 

antigens and adjuvants for activation of T cells. The simplest version of cancer vaccine is the 

physical mixture of tumor antigen peptides and adjuvants in the soluble form.
19

 However, 

antigen peptides have very low molecular weights and can be quickly absorbed into systemic 

circulation upon subcutaneous injection, with a small amount of antigen peptides delivered in the 

lymph nodes and dendritic cells. In addition, certain antigen peptides can potentially bind to non-

dendritic cells directly, leading to T cell anergy or apoptosis of T cells.
19

 As a result, the overall 

T cell responses induced by soluble vaccines are very weak.  

1.4.2 Water-in-oil emulsions 

Another form of cancer vaccine that has been widely used in preclinical and clinical studies are 

Water-in-oil emulsions.
20

 For example, antigen peptides in aqueous phase are mixed with 

montanide. The mixture is then homogenized to form water-in-oil emulsion. After injection, they 

can form depot at the injection site, allowing for gradual release of antigens and induction of 

prolonged immune responses.
20

 Recent studies showed depot formation and persistent antigen 

induced by Montanide at the injection site can impair antigen-specific T cell responses through 

induction of IFN-γ-mediated and Fas ligand-dependent apoptosis. 
20

 

1.4.3 Nanoparticle-based vaccine delivery 

The rapid development of nanotechnology has provided powerful tools for cancer vaccine 

delivery.
21

 Unlike soluble antigen peptides that have limited lymph nodes draining, various 

nanoparticles have shown increased lymph nodes draining after subcutaneous injection. For 

example, relatively large nanoparticles can be taken up by dendritic cells underneath the skin, 

which then migrate to the lymph nodes, while small nanoparticles can directly drain to the lymph 

nodes. The latter pathway is preferred because the concentration of resident dendritic cells in the 
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lymph nodes is much higher than that underneath the skin and the vaccines have more chance to 

interact with dendritic cells for T cell activation. In addition, nanoparticles also enable the 

codelivery of both antigens and adjuvants to the same dendritic cells, which is required for 

elicitation of strong T cell responses. 

1.5 High density lipoprotein - HDL 

1.5.1 Endogenous HDL  

The discovery of high-density lipoprotein (HDL) is dated back to 1929 when a protein-rich, 

lipid-poor complex was isolated from equine serum at Institute Pasteur by Macheboeuf.
22

 Later 

in the 1950s, Eder and colleagues isolated HDL from human serum as a chemical entity by 

ultracentrifugation,
23

 but it was not until the 1960s that the biological roles of serum lipoproteins 

and their impact on the cardiovascular system were suggested.
24

 Today, it is well known that 

HDL plays critical roles in the transport and metabolism of lipids, such as cholesterol and 

triglycerides.
25

 Other lipoproteins involved in lipid metabolism include low-density lipoprotein 

(LDL), very low-density lipoprotein (VLDL), and chylomicrons. Endogenous HDL is 

heterogeneous—possessing varying compositions and characteristics depending on its 

maturation stage.
26

 Based on electrophoretic migration behaviors, HDL can be generally 

classified into three subtypes; α-migrating species, which include spherical HDL2 and HDL3; β-

migrating species, which include pre-β discoidal HDL, lipid-poor ApoA1, and free ApoA1; and 

γ-migrating species.
27

 

1.5.2 Biosynthesis of endogenous HDL 

The biosynthesis of endogenous HDL begins with the production of ApoA1 in the liver or 

intestine.
28

 Nascent, discoidal HDL is then formed through lipidation of ApoA1, which is 

achieved through the efflux of free phospholipid and cholesterol mediated by the ATP-binding 
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cassette transporter A1 (ABCA1) receptor. Nascent HDL is cholesterol poor, but some 

cholesterol can still be found interspersed among the phospholipid molecules. Lecithin 

cholesterol acyltransferase (LCAT) can convert free cholesterol into cholesterol ester (CE), 

which can then be internalized into the core of the HDL particle, initiating its transformation 

from discoidal to spherical HDL. The esterification of free cholesterol is thought to form a 

cholesterol gradient that enables more cholesterol to bind onto the HDL surface in the 

subsequent steps of reverse cholesterol transport.
29

 Spherical HDL can further internalize 

cholesterol effluxed by ATP-binding cassette transporter G1 (ABCG1) and scavenger receptor 

type B-I (SR-BI) to become more mature, larger spherical HDL. Mature HDL can also exchange 

cholesterol ester for triglycerides from LDL—a process that is mediated by cholesteryl ester 

transfer protein (CETP). Mature HDL, which is typically composed of a hydrophobic core with 

cholesterol ester and triglycerides and a hydrophilic surface containing lipids and ApoA1,
29

 

delivers its cargo molecules to hepatocytes where they are metabolized through an SR-BI-

mediated process.
22

 

HDL removes excess cholesterol from lipid-laden macrophages, called ―foam cells,‖ in 

atherosclerotic lesions via a process known as reverse cholesterol transport (RCT). HDL also 

possesses anti-inflammatory and anti-oxidative properties.
30

 These functions allow HDL to exert 

a protective effect on the cardiovascular system, and therefore, HDL is known as ―good 

cholesterol‖. Moreover, endogenous HDL is reported to transport signaling lipids, proteins, and 

endogenous microRNAs to recipient cells, suggesting that HDL plays multi-faceted roles in 

complex intercellular communication.
31

 These features have inspired numerous academic 

laboratories and pharmaceutical industries to develop HDL as delivery vehicles for various 

therapeutic agents. However, isolation and purification of endogenous HDL from human plasma 
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under current good manufacturing practice (cGMP) is costly and laborious. Additionally, there 

are safety concerns and manufacturing challenges associated with reformulating endogenous 

HDL into drug-loaded therapeutics. To address these issues, various recombinant ApoA proteins 

and ApoA mimetic peptides have been developed within the past few years for ex vivo 

reconstitution of HDL. These synthetic HDL systems, recapitulating the in vivo properties of 

endogenous HDL, can be produced at a large scale, thus highlighting their great potential to 

facilitate clinical development of HDL-based therapeutics. Importantly, safety of HDL-based on 

ApoA proteins and ApoA mimetic peptides has also been well documented in several clinical 

trials at relatively high doses.
32,33

 

1.6 Synthesis of HDL in vitro  

In order to synthesize HDL in vitro, full-length Apo A1 purified from plasma,
34

 Apo A1 

produced recombinantly,
35

 or Apo A1 mimetic short peptides (18-22 amino acids) have been 

used.
36,37

 Compared to endogenous or recombinant full-length Apo A1, short peptides have 

special advantages in that they are not only cheaper but also easier to scale up and control the 

quality. Listed below are several different methods for the preparation of HDL in vitro. 

1.6.1 Direct Isolation from Plasma 

HDL can be isolated from plasma by ultracentrifugation.
38

 Briefly, a one-half volume of solution 

with a density of approximately 1 g/mL is mixed with one volume of serum and centrifuged for 

2-3 hours at 340,000 x g at 16 °C. One volume of the lower solution is mixed with a one-half 

volume of a solution with a density of ~1.2 g/mL and centrifuged for 3-4 h at the same speed and 

temperature. Then one volume of the lower solution is mixed with a one-half volume of a 

solution with a density of ~1.5 g/mL and centrifuged again for 7-8 hours at 266,000 x g at 16 °C. 

The HDL fraction is located in the upper solution after the third centrifugation. Fast protein 
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liquid chromatography (FPLC) has also been used to isolate HDL from the plasma.
39

 Although 

these methods allow for the preparation of relatively pure HDL, they are very costly, time 

consuming, and therefore, suboptimal for the large-scale production of HDL. 

1.6.2 Sodium Cholate Dialysis Method 

In addition to the direct isolation of an HDL fraction from plasma, HDL can be reconstituted in 

vitro using lipids together with either ApoA1 proteins, ApoE proteins, or their mimetic peptides. 

Briefly, lipid mixture (typically composed of phospholipid, cholesterol, and cholesteryl oleate) is 

dried under nitrogen flow to a thin film. Lipids are hydrated in buffer using sodium cholate, and 

appropriate amount of Apo-A1 or mimetic peptide is added. The mixture is incubated for 12 

hours at 4 ℃, followed by dialysis against PBS for 2 days with three buffer changes to remove 

sodium cholate. A previous report has shown that less than 2% of the sodium cholate remains in 

the final synthetic HDL formulation based on the 
3
H cholate analysis.

40
 Reconstituted HDL has 

the size, shape, and targeting properties similar to endogenous HDL. Cholate dialysis method has 

been used to prepare clinical supplies for CSL-111 and CSL-112.
41

 

1.6.3 Sonication Method 

Lipid mixture (typically composed of phospholipid and cholesteryl oleate) in chloroform is dried 

under nitrogen flow and then placed in a vacuum oven for 1 h. PBS buffer is added to the film 

and the mixture is vortexed for 5 min, followed by sonication for 60 min at 48 
0
C under nitrogen. 

ApoA1 or the mimetic peptide in PBS buffer is added to the mixture, which becomes transparent 

immediately. The resulting 

then purified by gel filtration chromatography to obtain homogeneous HDL.
37

 Reconstituted 

HDL also has the size, shape, and targeting properties similar to endogenous HDL. 
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1.6.4 Single Step Reconstitution of HDL Using Microfluidics 

Even though the sodium cholate dialysis method and sonication method allow for reconstitution 

of HDL possessing properties similar to endogenous HDL isolated from plasma, the preparation 

process is lengthy and difficult to scale up. To address these issues, microfluidics has been 

recently used for the preparation of HDL.
42

 Briefly, phospholipids dissolved in organic solution 

were injected into an inlet channel of a microfluidic device with a programmable syringe pump.  

ApoA1, dissolved in aqueous solution, was injected in the outer channels. The microfluidic 

device allows for rapid and effective mixing of the solution by generating tunable dual 

microvortices and a focusing pattern at Reynolds number (Re) ~150. Self-assembly of HDL was 

initiated with the transition of lipids from an organic solution to an aqueous solution, permitting 

incorporation of ApoA1 to the nascent lipid aggregates and formation of small HDL 

nanoparticles. HDL prepared using this method has the similar properties as endogenous HDL.
42

  

1.6.5 Thermal Cycling Method 

Large-scale production of HDL under cGMP condition is crucial for translation of HDL to 

clinical trials. Dasseux et al. reported a thermal cycling-based method which can be easily used 

to produce HDL under cGMP conditions.
43

 Briefly, lipids were weighed and added to the buffer 

and then dispersed at 50 ⁰C using a high-performance disperser. The lipid suspension was then 

combined with ApoA1 protein or ApoA1 mimetic peptide solution and heated to 57 ⁰C under 

nitrogen, followed by cooling to room temperature to form homogeneous HDL. HDL 

nanoparticles prepared with this method have also been shown to exhibit properties similar to 

endogenous HDL.
44

 In addition, the thermal cycling method does not require costly preparation 

processes or organic solvent, and therefore can be easily adapted for large-scale production of 

HDL.  
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1.7 HDL as delivery carriers 

HDL itself has many important functions such as protective role (also known as good 

cholesterol) on cardiovascular system, anti-inflammation and anti-oxidation etc. In addition, 

HDL is inherently biocompatible, and the receptors for HDL are very well known. These 

features make HDL suitable to be used as delivery vehicles. By using HDL as delivery vehicles, 

many problems such as low drug solubility, severe side effects, and low efficacy can be 

overcome to some extent. Although endogenous HDL is mainly designed to transport lipophilic 

cargoes such as lipids in vivo, it is not limited to the delivery of these molecules. Hydrophilic 

molecules such as peptides, proteins, siRNA and oligodeoxynucleotide (ODN) have been 

successfully delivered by HDL using different strategies.  

1.7.1 Delivery of small molecules 

Both nascent discoidal and mature spherical HDL have a hydrophobic core, which is an ideal site 

for the loading of lipophilic small molecules. The encapsulation of lipophilic drugs into the 

hydrophobic core can greatly increase the solubility, decrease the side effects and increase the 

efficacy of the drug. For example, amphotericin B is a lipophilic antifungal drug with dose-

limiting side effects, which include nephrotoxicity and hematologic abnormalities. When the 

drug was formulated into HDL, it exhibited less toxicity to the red blood cells and good efficacy 

in preventing a fungal infection in a mouse model.
45

 Similarly, all-trans retinoic acid (ATRA) is 

a lipophilic drug used for the treatment of acute promyelocytic leukemia, but its use is limited by 

the low solubility and severe side effects such as neurotoxicity and cytokine storm-mediated 

toxic syndrome. After the drug was formulated into HDL, it exhibited better efficacy in a mantle 

cell lymphoma model compared to the conventional formulation.
46
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Other examples include the encapsulation of curcumin,
47,48

 paclitaxel,
49

 10-HCPT and 

doxorubicin into HDL,
50,51

and in all cases the HDL formulation greatly reduced the IC50 of 

these anticancer drugs, improved the circulation time and decreased the side effects. 

1.7.2 Delivery of peptides/proteins 

Many proteins/peptides have good biological activities and are very promising to be used for the 

treatment of different diseases, but proteins/peptides tend to undergo proteolysis, denaturation 

and aggregation, limiting their efficacy in vivo, therefore appropriate delivery systems are 

needed to both protect and increase the efficacy of the peptides/proteins.
52

 HDL is a nanocarrier 

with many good properties and can potentially solve these problems, but it‘s hard to encapsulate 

peptides/proteins into HDL if they are not highly lipophilic. However, efforts have been made to 

achieve the incorporation of hydrophilic proteins/peptides into HDL, and the incorporation 

greatly improved the efficacy of these proteins/peptides. 

In order to load peptide/protein antigens hemagglutinin 5 (H5) and Yersinia pestis LcrV onto 

HDL, Nicholas O. Fischer etc. prepared some Nickel-lipid modified HDL containing 

recombinant apolipoprotein using sodium cholate dialysis method.
35

 
53

 
54

After peptides/proteins 

were modified with polyhistidine, they could be easily conjugated to the Nickel-lipids. They also 

loaded either MPLA or CpG into the same HDL nanoparticle, and the antibody titer achieved by 

the antigen-conjugated HDL/MPLA or antigen-conjugated HDL/CpG was much higher than free 

antigen, but the cellular response was not tested in their study. 

Cytolytic peptide melittin is a promising candidate to overcome tumor drug resistance due to its 

cytolytic property. However, the severe side effect, hemolysis, limited its wide use.
55

 Chuan 

Huang etc. fused the N-terminus of melittin to the C-terminus of an Apo A1 mimetic peptide via 

a GSG linker.
56

 The fusion enabled melittin to interact with phospholipids and self-assemble into 



 

14 

 

HDL nanoparticles with diameter about 20nm. The interaction between melittin and 

phospholipids could mask the positive charge of melittin, reducing the side effect of hemolysis 

and increasing the safe dosage range. Melittin could be released inside the B16F10 tumor cells 

after it was taken up and exert the cytotoxic effect. When the fusion peptide-HDL was used for 

the treatment of B16F10 tumor-bearing mice, it led to the much better tumor growth inhibition 

compared to the PBS group and blank HDL group. 

1.7.3 Delivery of nucleic acids 

RNAi (RNA interference) is a promising gene therapy in that it has better specificity and has 

potential to down-regulate any protein involved in the formation and metastasis of tumor, even 

for those undruggable target proteins.
57

 Actually, there have been some clinical trials using 

RNAi to fight against cancer recently.
58

 However, siRNA has unfavorable PK, low cellular 

uptake and low biological stability, which prevent its wide application on cancer treatment. A 

delivery system that can protect siRNA, target the tumor region and achieve efficient 

intracellular delivery in tumor cells is greatly needed for the successful RNAi application. HDL 

is a delivery system that can meet the above requirements and several methods have been 

developed for the incorporation of hydrophilic siRNA into HDL. Such strategies can also be 

used for the incorporation of single stranded DNA (ODN) or double stranded DNA into HDL. 

In order to incorporate bcl-2 siRNA into HDL composed of lipids and Apo A1 mimetic peptide, 

Mi Yang et al. modified the bcl-2 siRNA with cholesterol (chol-si-bcl-2).
59

 
60

After the chol-si-

bcl-2 was incubated with the pre-formed HDL at room temperature for 30 min, it was 

successfully inserted into the lipid layers of HDL. The chol-si-bcl-2-HDL had sizes about 25.3 ± 

1.2 nm and was stable in 10% fetal bovine serum (FBS) or 10% human plasma at 4 or 37 ° C for 

3 h. When FITC-chol-si-bcl-2-HDL was incubated with SRBI high-expressing KB cells, more 
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than 90% of the total intracellular FITC-chol-si-bcl-2 signal was in the cytosol.  Western blot 

showed chol-si-bcl-2-HDL at a dose of 400 nM could reduce the Bcl-2 expression to 35 ± 9% of 

the untreated control, while equivalent dose of chol-si-bcl-2 alone could only reduce the Bcl-2 

expression to 84 ± 8% of the untreated control. In addition, chol-si-bcl-2-HDL was also more 

efficient in inducing the apoptosis of the tumor cells compared to the free chol-si-bcl-2. 

Other examples include the systemic delivery of cholesterol conjugated siRNA (Chol-siOAT3) 

into brain capillary endothelial cells (BCECs) using HDL. The OAT3 mRNA levels in BCECs 

were significantly reduced when Chol-siOAT3 in HDL was intravenously injected.
61

 

Instead of modifying the siRNA with cholesterol, Mian M.K. Shahzad etc. used polylysine to 

complex with siRNA to neutralize the negative charges of phosphate groups in siRNA and 

successfully encapsulated the siRNA-polylysine complex into HDL composed of lipids and Apo 

A1 with encapsulation efficiency over 90%.
62

 TEM showed after incorporation of siRNA-loaded 

HDL had a diameter of 10 nm. STAT3 siRNA/HDL could result in over 80% knockdown of 

STAT3 in vitro. After a single intravenous injection of STAT3 siRNA/HDL into a SKOV3 

tumor-bearing model, STAT3 protein levels were reduced by 88%. The injection of STAT3 

siRNA/HDL alone could result in some therapeutic effect on several different tumor models, but 

better therapeutic effects were observed when chemotherapeutic drugs were co-administered. 

1.8 Conclusions 

Overall, it remains to be seen how the exciting progress made in the field of HDL-based therapy 

can evolve to reprogram HDL as a platform technology for cancer immunotherapy and 

chemoimmunotherapy. Clinical translation of HDL-based therapeutics may offer innovative 

solutions to treat and diagnose various human pathologies. 
63
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1.9 Figures 

 

 

Figure 1.1 Schematic of T cell activation by cancer vaccines. Adapted from Nat Rev Clin Oncol. 

2014;11(1):24-37. 
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Chapter 2 Designer Vaccine Nanodiscs for Personalized Cancer Immunotherapy 

2.1 Abstract 

Despite the tremendous potential of peptide-based cancer vaccines, their efficacy has been 

limited in humans. Recent innovations in tumor exome sequencing have signaled the new era of 

personalized immunotherapy with patient-specific neo-antigens, but a general methodology for 

stimulating strong CD8α+ cytotoxic T-lymphocyte (CTL) responses remains lacking. Here we 

demonstrate that high density lipoprotein-mimicking nanodiscs coupled with antigen (Ag) 

peptides and adjuvants can markedly improve Ag/adjuvant co-delivery to lymphoid organs and 

sustain Ag presentation on dendritic cells. Strikingly, nanodiscs elicited up to 47-fold greater 

frequencies of neoantigen-specific CTLs than soluble vaccines and even 31-fold greater than 

perhaps the strongest adjuvant in clinical trials (i.e. CpG in Montanide). Moreover, multi-epitope 

vaccination generated broad-spectrum T-cell responses that potently inhibited tumor growth. 

Nanodiscs eliminated established MC-38 and B16F10 tumors when combined with anti-PD-1 

and anti-CTLA-4 therapy. Such vaccine nanodiscs also showed potent therapeutic efficacy for 

the treatment of various mucosal tumors, including lung tumors, oral tumors and intravaginal 

tumors. These findings represent a new powerful approach for cancer immunotherapy and 

suggest a general strategy for personalized nanomedicine. 

2.2 Introduction 

Peptide-based cancer vaccines have been extensively investigated due to their good safety 

profiles and ease of manufacturing and quality control. However, their anti-tumor efficacy in 
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clinical trials has been disappointing, a phenomenon that has been attributed to inefficient co-

delivery of Ag peptides and adjuvants to draining lymph nodes (dLNs), and subsequent 

immunological tolerance and CTL fratricide
1
. Although depot-forming water-in-oil adjuvant 

systems can improve immunogenicity
2,3

, booster immunizations can cause T-cell sequestration at 

the vaccine site, leading to T-cell exhaustion and deletion
4
. To address these issues, various 

nano-vaccine systems have been evaluated in animal models with varying degrees of success
5-15

. 

Despite the progress in the field, potential safety concerns and scale-up manufacturing of 

nanoparticles, especially in a manner suitable for personalized therapeutics with patient-specific 

neo-antigens, still remain as the major challenges.  

Here we propose an alternative, simple strategy where preformed nanocarriers, with an 

established clinical manufacturing procedure and excellent safety profiles in humans, are mixed 

with adjuvants and Ag peptides, including tumor-specific mutant neo-epitopes
16-19

, to produce 

personalized cancer vaccines (Figure 2.1). Our strategy is based on synthetic high density 

lipoprotein (sHDL) nanodiscs, composed of phospholipids and apolipoprotein A1 (ApoA1)-

mimetic peptides. Compared with other HDLs containing 243-amino acid ApoA1 purified from 

human plasma or produced recombinantly
20-22

, sHDL nanodiscs are synthesized with 22-mer 

peptides (22A), derived from the repeat -helix domain of ApoA1
23

, with no sequence homology 

to endogenous ApoA1, thus averting potential trigger of autoimmunity. Importantly, sHDL has 

been previously manufactured for clinical testing and proven to be safe in humans with the 

maximum tolerated dose at ~2.2 g/m
2
,
24-26

 a value one- to two-orders of magnitude greater than 

most polymeric or inorganic nanoparticles in clinical trials
27,28

.  
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Here we set out to develop a nanodisc-based platform for neo-antigen vaccination (Figure 2.1). 

Exploiting the endogenous role of HDL as a nanocarrier for cholesterol, we modified a 

commonly used oligonucleotide containing 5'-C-phosphate-G-3' (CpG) motif, a potent Toll-like 

receptor-9 agonist, with cholesterol (Cho-CpG) to enhance its in vivo trafficking. We show that 

preformed sHDL nanodiscs can be simply mixed with cholesteryl-CpG and tumor Ag peptides, 

including neo-antigens identified via tumor DNA sequencing, to produce homogeneous, stable, 

and ultrasmall nanodiscs in less than two hours at room temperature (RT). The nanodiscs 

promote co-delivery of Ag/CpG to dLNs; prolong Ag presentation on antigen-presenting cells 

(APCs); elicit striking levels of broad-spectrum antitumor T-cell responses that significantly 

inhibit tumor growth; and eradicate established tumors when combined with immune checkpoint 

blockade. Based on the facile production process, robust therapeutic efficacy, and clinical safety 

demonstrated previously
24,25

, our approach offers an attractive platform technology for patient-

tailored cancer vaccines as well as other bioactive therapeutics. 

2.3 Materials and Methods 

2.3.1 Materials 

1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC), 1,2-dioleoyl-sn-glycero-3-

phosphoethanolamine (DOPE), and rhodamine (Rhod)-labeled DOPE (DOPE-Rhod) were 

purchased from Avanti Polar Lipids (Alabaster, AL). ApoA1 mimetic peptide (22A), OVA257-264 

SIINFEKL, CSSSIINFEKL, CSSSIINFEK(FITC)L, TRP2180-188 SVYDFFVWL, 

CSVYDFFVWL, M27 neo-epitope LCPGNKYEM, M30 neo-epitope 

CSSVDWENVSPELNSTDQ, and Adpgk mutant peptide ASMTNMELM were synthesized by 

GenScript Corp. (Piscataway, NJ). CSSASMTNMELM was synthesized by AnaSpec (Fremont, 

CA). The oligodeoxynucleotide TLR9 ligand CpG 1826 (5‘-tccatgacgttcctgacgtt-3‘, lower case 
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letters represent phosphorothioate backbone), CpG 1826 modified with cholesterol at the 3‘ end 

(Cho-CpG), and Cy5 modified Cho-CpG were synthesized by Integrated DNA Technologies 

(Coralville, IA). HPLC grade methanol and acetonitrile were purchased from Fisher Scientific 

(Pittsburgh, PA). Fetal bovine serum (FBS), penicillin-streptomycin, β-mercaptoethanol and 

ACK lysis buffer were purchased from Life Technologies (Grand Island, NY). Granulocyte 

macrophage colony stimulating factor (GM-CSF) was from GenScript Corp. (Piscataway, NJ). 

Anti-mouse CD16/32, CD86-PE, CD40-APC, CD62L-PECy7, and 25-D1.16 mAb-PE against 

SIINFEKL/H-2K
b
 were from eBioscience (San Diego, CA). Anti-mouse CD8α-APC, CD44-

FITC, TNF-α-FITC, IFN-γ-PE, and CD11c-PECy7 were from BD Bioscience (San Jose, CA). 

Anti-mouse PD-1-PECy7, PD-L1-PECy7, and isotype control antibodies were from Biolegend 

(San Diego, CA). Tetramer H-2K
b
-SIINFEKL-PE was purchased from Beckman Coulter (Brea, 

CA). Tetramer/H-2D
b
-ASMTNMELM-PE was kindly provided by the NIH Tetramer Core 

Facility (Atlanta, GA). Anti-mouse PD-1 (RMP1-14) and anti-mouse CTLA-4 (9D9) antibodies 

were purchased from BioXcell (West Lebanon, NH). We obtained B3Z CD8α+ T cell hybridoma 

from Dr. N. Shastri (University of California, Berkeley); B16OVA from Dr. Kenneth Rock 

(University of Massachusetts, Amherst, MA); MC-38 cells from Dr. Weiping Zou (University of 

Michigan, Ann Arbor, MI); and B16F10 (CRL-6475) cells from the American Type Culture 

Collection (ATCC).  

2.3.2 Synthesis of DOPE-PDP 

Dioleoyl-sn-glycero-3-phosphoethanolamine-N-[3-(2-pyridyldithio) propionate] (DOPE-PDP) 

was synthesized as reported previously with slight modifications
29

. Briefly, DOPE, SPDP 

(succinimidyl 3-(2-pyridyldithio) propionate) and triethylamine (1:1:1.5 molar ratio) were 

dissolved in chloroform. The mixture was reacted in the dark for 5 h. The reaction progress was 
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monitored by thin layer chromatography (TLC), using the following mixture as the developing 

solvent: chloroform/methanol/water = 65/25/4 (volume ratio). After TLC indicated 

disappearance of the starting materials and appearance of a faster-running spot, the reaction 

mixture was dried by rotary evaporation and purified on a silica gel column. 

2.3.3 Preparation and characterization of vaccine nanodiscs 

DMPC and DOPE-PDP (molar ratio = 96:4) were dissolved in chloroform. The mixture was 

dried with nitrogen flow and placed under vacuum for at least 1 h. The resulting lipid film was 

hydrated in 10 mM sodium phosphate buffer (0.3117 g/L NaH2PO4.H2O and 2.0747g/L 

Na2HPO4.7H2O, pH 7.4) and sonicated in a bath sonicator for 10 min, followed by probe 

sonication for another 2.5 min. ApoA1 mimetic peptide 22A dissolved in endotoxin free water 

was added to the above mixture (22A:lipids = 1:7.5 molar ratio), which was then subjected to 

heating (50 ⁰C) for 3 min and cooling (ice water) for 3 min, with 3 cycles in total, to obtain 

sHDL.  

To conjugate tumor antigen peptides to sHDL, cysteine terminated tumor antigen peptides 

dissolved in endotoxin free water were added to the above sHDL (antigen peptide:DOPE-PDP = 

2.5:1, molar ratio) and incubated at room temperature with gentle shaking on an orbital shaker. 

To construct sHDL nanodiscs with multi-antigens, each antigen peptide was reacted with DOPE-

PDP (antigen peptide:DOPE-PDP = 1.5:1, molar ratio) for 1 h in dimethylformamide (DMF), 

which was removed by freeze-drying after dilution with endotoxin-free water. The lipid-peptide 

conjugates were added to pre-formed sHDL and incubated for 30 min at room temperature. 

Unreacted tumor antigen peptides were removed by using Zeba Spin Desalting columns (Pierce) 

following the manufacturer‘s instructions. The conjugation efficiency of tumor antigen peptides 

was calculated based on the decrease of absorbance signal associated with DOPE-PDP as 
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determined by HPLC. Briefly, 200 µl sHDL formulations were freeze-dried and reconstituted in 

300 µl methanol. The mixture was filtered by a 0.22 µm PTFE filter and analyzed with a 

Shimadzu HPLC system using a Vydac 219TP Diphenyl column (4.6 mm × 250 mm ID). The 

two solvents used for the HPLC analysis consisted of water:trifluoroacetic acid =100:0.5 (mobile 

phase A) and methanol:acetonitrile:trifluoroacetic acid = 50:50:0.05 (mobile phase B) (0-75 min, 

15-100%). The flow rate was 0.4 mL/min and the detection wavelength was 220 nm. The loading 

efficiency of tumor antigen peptides in sHDL was confirmed by using FITC-labeled peptides and 

measuring the fluorescence intensity of sHDL formulations at Ex = 490 nm and Em = 520 nm 

after dissolving the formulations in PBS containing 1% Triton X-100. 

To load CpG in sHDL, different concentrations (0-200 µg/mL) of cholesterol modified CpG 

(Cho-CpG) were incubated with sHDL at room temperature with gentle shaking on an orbital 

shaker. The amount of CpG incorporated into sHDL and free CpG was analyzed by gel 

permeation chromatography (GPC). Briefly, the sHDL formulations were diluted in PBS to a 

filter and analyzed with a Shimadzu HPLC system equipped with a TSKgel G2000SWxl column 

(7.8 mm ID × 30 cm, Tosoh Bioscience LLC). The flow rate of mobile phase PBS (pH 7.4) was 

set at 0.7 mL/min, and the detection wavelength was set at 260 nm for CpG.  

The sHDL formulations were diluted to 0.5 mg/mL 22A with PBS, and the particle sizes were 

measured by dynamic light scattering (DLS, Zetasizer Nano ZSP, Malvern, UK). The 

morphology of sHDL was observed by transmission electron microscopy (TEM) after proper 

dilution of the original samples. Briefly, 3 μL of the sample solution was deposited on a carbon 

film-coated 400 mesh copper grid (Electron Microscopy Sciences) and dried for 1 minute. The 

samples were then negatively-stained with 5 droplets of 1% uranyl acetate solution, excessive 
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solutions on the grid were blotted, and the grid was dried before TEM observation. All images 

were acquired on JEM 1200EX electron microscope (JEOL USA, Peabody, MA) equipped with 

an AMT XR-60 digital camera (Advanced Microscopy Techniques Corp. Woburn, MA).  

2.3.4 Activation of BMDCs 

BMDCs were prepared as described previously
30

. Briefly, femur and tibia were harvested 

aseptically from C57BL/6 mice, and the bone marrow was flushed into a petri dish using a 5 mL 

syringe (26 G needle) loaded with BMDC culture media (RPMI 1640 supplemented with 10% 

FBS, 100 U/mL penicillin, 100 μg/ml streptomycin, 50 μM β-mercaptoethanol, and 20 ng/ml 

GM-CSF). Cells were collected by passing the cell suspension through a cell strainer (mesh size 

= 40 μm), followed by centrifugation. Cells were seeded into non-tissue culture treated petri-dish 

at a density of 2×10
5
 cells/ml, cultured at 37 ⁰C with 5% CO2. Culture media were refreshed on 

days 3, 6, 8, and 10, and BMDCs were used for the following assays on days 8-12. 

Immature BMDCs were plated at 1×10
6
 cells/well in 12-well plates. After 24 h, BMDCs were 

washed once with PBS and incubated with 75 nM of CpG in different formulations or 0.5 µg/mL 

LPS (positive control) for 24 h at 37 ⁰C with 5% CO2. BMDCs were harvested, washed with 

FACS buffer (1% BSA in PBS), incubated with anti-CD16/32 at room temperature for at least 10 

min, and then stained with fluorophore-labeled antibodies against CD11c, CD40, CD80, and 

CD86 at room temperature for 30 min. Finally, cells were washed twice by FACS buffer, 

resuspended in 2 μg/ml DAPI solution, and analyzed by flow cytometry (Cyan 5, Beckman 

Coulter, USA). 
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2.3.5 Antigen presentation on BMDCs 

Immature BMDCs were plated at 1×10
6
 cells/well in 12-well plates 24 h prior to use. BMDCs 

were washed with PBS and incubated with 75 nM CpG and/or 500 nM antigen peptide in various 

formulations in complete media for different lengths of time (2, 6, 24, and 48 h). BMDCs were 

then harvested, washed with FACS buffer, incubated with anti-CD16/32 at room temperature for 

at least 10 min, and stained with PE-conjugated anti-mouse SIINFEKL/H-2K
b
 mAb 25-D1.16 at 

room temperature for 30 min. Cells were then washed, resuspended in 2 μg/ml DAPI solution, 

and analyzed by flow cytometry (Cyan 5, Beckman Coulter, USA).  

Alternatively, BMDCs were plated at 5×10
4 

cells/well in a U-bottom 96-well plate. After 

overnight culture, BMDCs were washed with PBS and incubated with different formulations of 

SIINFEKL (20, 100 and 500 nM) and CpG (3, 15, and 75 nM) for 24 h or 48 h at 37 ⁰C. Cells 

were then carefully washed 3 times with PBS, and 10
5 

B3Z CD8+ T hybridoma cells/well were 

added in RPMI 1640 supplemented with 10% FBS, 2 mM L-glutamine, 55 µM β-

mercaptoethanol, 1 mM pyruvate and 100 U/mL penicillin and 100 µg/mL streptomycin. After 

24 hr of incubation, cells were pelleted via centrifugation (1500 rcf, 7 min), the media were 

carefully aspirated, and 150 µL CPRG/lysis buffer (0.15 mM chlorophenol red- β-D-

galactopyranoside (CPRG), 0.1% Triton-X 100, 9 mM MgCl2, 100 µM mercaptoethanol in PBS) 

was added. The plates were incubated at 37 ⁰C in the dark for 90 min, after which the absorbance 

of released chlorophenol red was measured at 570 nm using a microplate reader. 

2.3.6 Confocal microscopy  

JAWSII cells (ATCC, Manassas, VA) were seeded at 1×10
6
 cells on 35 mm petri dishes 

(MatTek Corp., Ashland, MA) that have been pre-equilibrated with the complete cell culture 

media and cultured overnight. To investigate the intracellular delivery profiles of antigen 
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peptides, JAWSII cells were incubated with the physical mixture of free CSSSIINFEK(FITC)L 

and CpG, or sHDL-CSSSIINFEK(FITC)L/CpG for different lengths of time (6, 24, and 48 h). 

Cells were then washed 3 times with PBS and incubated for 30 min at 37 ⁰C with 50 nM 

LysoTracker
®
 Red DND-99 (Invitrogen) and 2 µg/mL Hoechst in phenol/serum-free media to 

stain lysosomes and nuclei, respectively. In parallel, to study the intracellular delivery profiles of 

structural components of sHDL, the lipid layers of sHDL were incorporated with DOPE-Rhod by 

adding 0.5 mol % DOPE-Rhod in the initial lipid film, while 22A peptide of sHDL was labeled 

by incubating pre-formed sHDL with Texas Red
®
-X succinimidyl ester (Life Technologies) and 

passing Texas Red-labeled sHDL through a desalting column to remove the unreacted dye. The 

resulting fluorophore-tagged sHDL formulations were incubated with JAWSII cells at 37 ⁰C with 

5% CO2. After 24 h incubation, cells were washed 3 times with PBS and then incubated for 30 

min at 37 ⁰C with 500 nM LysoTracker
®
 Green DND-26 (Invitrogen) and 2 µg/mL Hoechst in 

phenol/serum-free media to stain lysosomes and nuclei, respectively.  JAWSII cells were then 

imaged using a confocal microscope (Nikon A1). 

2.3.7 In vivo immunization studies 

Animals were cared for following federal, state, and local guidelines. All work performed on 

animals was in accordance with and approved by University Committee on Use and Care of 

Animals (UCUCA) at University of Michigan, Ann Arbor. Female C57BL/6 mice of age 6–8 

weeks (Harlan Laboratories) were immunized with different formulations containing antigen 

peptides (15.5 nmol/mouse) and CpG (2.3 nmol/mouse) in 100 µl volume by subcutaneous 

injection at the tail base on indicated time points. In some studies, antigen peptide and CpG 

emulsified in Montanide served as a positive control
2,3,31

. Briefly, antigen peptide (155 nmol) 
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and CpG (23 nmol) in 0.5 mL PBS were thoroughly emulsified in 0.5 mL Montanide until the 

mixture was homogeneous and administered subcutaneously in 100 µl injection volume. 

For lymph node draining studies, C57BL/6 mice were injected with free CSSSIINFEK(FITC)L, 

sHDL-CSSSIINFEK(FITC)L, free Cho-CpG(Cy5), or  sHDL-Cho-CpG(Cy5). After 24 h, 

inguinal lymph nodes were harvested, and FITC or Cy5 fluorescence signal was measured with 

IVIS optical imaging system (Caliper Life Sciences). 

For prophylactic tumor challenge studies, vaccinated animals were challenged on day 8 after last 

immunization by subcutaneous injection of 2×10
5
 B16OVA cells/mouse on the right flank. 

Tumor growth was monitored every other day, and the tumor volume throughout this study was 

calculated by the following equation
32

: tumor volume = length × width
2
 × 0.52.  Animals were 

euthanized when the tumor masses reached 1.5 cm in diameter or when animals became 

moribund with severe weight loss or ulceration. For the lung metastasis model, vaccinated 

animals were challenged two months after the third vaccination by intravenous injection of 

5×10
4
 B16OVA cells/mouse. The animals were euthanized after 20 days, and the lungs were put 

in Fekete‘s solution before B16OVA tumor nodules were counted. 

For therapeutic tumor vaccination studies with MC-38 cells, C57BL/6 mice were inoculated with 

1×10
5
 MC38 cells per mouse on the right flank by subcutaneous injection on day 0 and 

vaccinated on days 10, 17, and 24 with 15.5 nmol of ASMTNMELM and 2.3 nmol of CpG in 

either sHDL or free soluble form.  For the combinatorial immunotherapy against MC-38 tumor, 

mice were inoculated subcutaneously with 1×10
5
 MC38 cells on day 0 and vaccinated on days 

10, and 17 with 15.5 nmol of ASMTNMELM and 2.3 nmol of CpG in either sHDL or free 

soluble form. Anti-mouse PD-1 (100 μg/mouse) was administered intraperitoneally on days 1 
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and 4 after each vaccination. For B16F10 studies, mice were inoculated subcutaneously with 

1×10
5
 B16F10 cells on day 0 and vaccinated on days 4, 11, and 18 with indicated formulations 

(10 nmol of each antigen peptide and 2.3 nmol of CpG).  For the combinatorial immunotherapy 

against B16F10 tumor, anti-mouse PD-1 and anti-mouse CTLA-4 (each 100 μg/mouse) 

antibodies were administered intraperitoneally on days 1 and 4 after each vaccination. Tumor 

growth was monitored as indicated above.  

2.3.8 Tetramer staining assay 

Immunized mice were analyzed for the percentages of tumor antigen-specific CD8α+ T cells 

among peripheral blood mononuclear cells (PBMCs) using the tetramer staining assay, as 

described previously
33

. In brief, 100 µl of blood was drawn from each mouse on indicated time 

points by submandibular bleeding, and red blood cells were lysed with ACK lysis buffer. 

PBMCs were then washed with FACS buffer and blocked by anti-CD16/32 antibody and 

incubated with peptide-MHC tetramer tagged with PE (e.g. H-2K
b
-restricted SIINFEKL, or H-

2D
b
-restricted ASMTNMELM) for 30 min at room temperature. Samples were then incubated 

with anti-CD8α-APC for 20 min on ice. Cells were washed twice with FACS buffer and 

resuspended in 2 μg/ml DAPI solution for analysis by flow cytometry (Cyan 5, Beckman Coulter, 

USA).  

2.3.9 ELISPOT 

For ELISPOT assay, spleens from immunized mice were harvested aseptically, processed into 

single cell suspensions for each mouse, and seeded at 3×10
5
 splenocytes per well in 96-well 

PVDF plates (EMD Millipore) pre-incubated overnight with IFN-γ coating Ab (R&D Systems). 

Splenocytes were co-incubated with antigen peptides (2.5 μg/ml) or controls for 24 hours. 

Assays were completed using sequential incubations with biotinylated-secondary Ab, 
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streptavidin-alkaline phosphatase (Sigma Chemical), and NBT/BCIP substrate (Surmodics). 

Developed spots were enumerated using an AID iSpot Reader (Autoimmun Diagnostika GmbH, 

Germany).  

2.3.10 Intracellular cytokine staining 

For intracellular cytokine staining (ICS) assay, 100-150 µL peripheral blood collected from 

vaccinated mice was lysed with ACK lysis buffer, washed with PBS, and plated at ~10 million 

cells/mL in 50 µL T cell media (RPMI 1640 supplemented with 10% FBS, 2 mM L-glutamine, 

55 µM β-mercaptoethanol, 1 mM pyruvate and 100 U/mL penicillin and 100 µg/mL 

streptomycin, HEPES, and non-essential amino acids) in 96-well U bottom plates. Cells were 

pulsed with 10 µg/mL antigen peptides or ApoA-I mimetic 22A peptide for 6 hours with protein 

transport inhibitor, brefeldin A (BD Biosciences), added during the last 4 h of incubation. For 

multivalent peptide vaccine studies, 50,000 BMDCs were added in each well to ensure antigen 

presentation. Cells were then washed twice with ice-cold FACS buffer (1% BSA in PBS), 

followed by incubation with anti-CD16/32 for at least 10 minutes and anti-CD8α for 20 min on 

ice. Cells were then fix/permeabilized for 20 min on ice and then stained with anti-IFN-γ-PE and 

anti-TNF-α-FITC for 30 min on ice. After extensive washing, cells were analyzed by flow 

cytometry.  

2.3.11 Analysis of intratumoral T cells 

For some experiments, tumor tissues were excised at indicated time points and cut into small 

pieces of 2-4 mm and then placed in dissociation buffer (1 mg/mL of collagenase type IV and 0.1 

mg/mL of DNase I in RPMI) for 30 min at 37 ⁰C with gentle shaking. The cell suspension was 

passed through a 70-μm strainer, washed with FACS buffer, stained with indicated antibodies, 

followed by flow cytometry analysis. 
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2.3.12 Measurement of antibody titers against 22A peptide 

ELISA plates were coated with 22A peptide in PBS (1 μg/mL) with 100 μL/well and incubated 

overnight at 4 ⁰C. Plates were blocked with 1% BSA in PBS for 2 h, and 100 μL of 4-fold serial 

dilutions of serum was added to each 96-well and incubated for 1 hour at room temperature. 

Wells were incubated with rabbit anti-mouse IgG-HRP (1:5000 dilution) for 1 h at room 

temperature, followed by addition of the HRP substrate, TMB. The enzymatic reaction was 

stopped by adding 2N H2SO4, and the absorbance at 450 nm (OD450) was measured using a 

microplate reader. The highest dilution with twice the absorbance of background was considered 

as the end-point dilution titer. 

2.3.13 cDNA sequencing of neo-epitope (Adpgk) in MC-38 cells 

Total RNA was extracted from MC-38 cells by the RNeasy
®
 mini Kit (QIAGEN) following the 

manufacturer‘s instructions. The first-strand cDNA was synthesized using 1 µg of total RNA 

with the SuperScript™ III First-Strand Synthesis SuperMix Kit (Invitrogen). Adpgk cDNA with 

lengths of 250 bp and 485 bp were selectively amplified by using the following two sets of 

sequence specific primers. Primer 1: TGCCAACCGCTTCATCTTCT (forward primer) and 

GGTAGACCAGCGTGTGGAAA (reverse primer); Primer 2: CTCCAACGGGGCCATGAATA 

(forward primer) and CGTGGGAAAGACCTGCTGAT (reverse primer). The amplification was 

performed using the SuperScript One Step RT-PCR System (Invitrogen). The final cDNA 

products were visualized in 1.5% agarose gels with ethidium bromide, and the Adpgk cDNA 

bands were cut and purified using the PureLink® Quick Gel Extraction and PCR Purification 

Combo Kit (Invitrogen). The purified cDNA was sequenced by the Sanger sequencing method
34

 

at the University of Michigan DNA Sequencing Core.  
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2.3.14 Statistical analysis 

Sample sizes were chosen based on preliminary data from pilot experiments and previously 

published results in the literature. All animal studies were performed after randomization. Data 

were analyzed by one- or two-way analysis of variance (ANOVA), followed by Tukey's multiple 

comparisons post-test or log rank (Mantel-Cox) test with Prism 6.0 (GraphPad Software). Data 

were normally distributed and variance between groups was similar. P values less than 0.05 were 

considered statistically significant. All values are reported as means ± SD with the indicated 

sample size. No samples were excluded from analysis.  

2.4 Results and Discussion 

2.4.1 Preparation and Characterization of vaccine nanodiscs 

We first identified lipids and peptides conducive to nanodisc formation. DMPC lipid films were 

hydrated and added with a series of ApoA1-mimetic peptides, followed by thermal cycling 

between 50 ºC and 4 ºC. We identified a subset of peptides, including 22A and D-amino acids of 

22A, that produced clear sHDL suspensions, stable for one month when stored at 4ºC (Table 2.1, 

Figure 2.2). In addition, use of phospholipids with transition temperature (Tm) below RT (e.g. 

POPC and DOPC with Tm = -2°C and -17°C, respectively) produced murky liposomal 

suspension, whereas lipids with high Tm (e.g. DPPC and DMPC with Tm = 41°C and 24°C, 

respectively) formed clear sHDL suspensions in the presence of 22A (Figure 2.2), showing 

flexibility in the materials design. Based on their size, homogeneity, and long-term stability, we 

chose to further investigate 22A and DMPC as the key components of nanodisc vaccines. 

To achieve intracellular release of Ag within APCs via reduction-sensitive conjugation of Ag on 

sHDL, we synthesized dioleoyl-sn-glycero-3-phosphoethanolamine-N-[3-(2-pyridyldithio) 
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propionate] (Figure 2.3) and incorporated PDP into sHDL (4 mol%). When incubated for 30 min 

at RT with Ag peptides modified with a cysteine-serine-serine (CSS) linker
35

, sHDL nanodiscs 

were efficiently surface-decorated with various Ag peptides (e.g., OVA257-264, a model CD8α+ 

T-cell epitope Ag from ovalbumin; and Adgpk, neo-antigen in MC-38), and subsequent 

incubation with Cho-CpG for 30 min at RT led to almost complete (~98%) insertion of CpG into 

sHDL, producing nanodiscs co-loaded with Ag and CpG (termed sHDL-Ag/CpG, with ~6.5 Ag 

peptides and ~1 CpG molecule per nanodisc, Supplementary (Figure 2.4, Table 2.2). sHDL-

Ag/CpG exhibited uniform disc-like morphology with an average diameter of 10.5 ± 0.5 nm and 

polydispersity index of 0.20 ± 0.02 (Figure 2.5a,b). Importantly, sHDL-Ag/CpG could be 

readily sterile-filtered and stored frozen at -20 ºC for at least 8 weeks before thawing at 37 °C, 

without negatively affecting its homogeneity (Figure 2.5c). 

2.4.2 BMDC activation and antigen presentation 

We next examined the impact of nanodiscs on Ag presentation. Bone marrow derived dendritic 

cells (BMDCs) pulsed for 24 h with sHDL-CSSSIINFEKL/CpG presented OVA257-264 

SIINFEKL with a greater efficiency than BMDCs treated with free Ag peptides admixed with 

CpG or sHDL-CSSSIINFEKL, as determined by staining DCs with the 25-D1.16 mAb directed 

against SIINFEKL-H-2K
b
 complexes. Interestingly, DCs pulsed with free SIINFEKL+CpG 

efficiently presented Ag for the first 6 h of incubation, but Ag presentation decreased 

precipitously past 6 h (Figure 2.5d-f), suggesting initial direct Ag binding to MHC-I molecules, 

followed by rapid Ag degradation or disassociation. In contrast, Ag presentation with sHDL-

Ag/CpG gradually increased over time, achieving ~9-fold greater levels at 24 h and maintaining 

~4-fold higher levels even at 48 h, compared with free SIINFEKL+CpG.  
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Intrigued by prolonged Ag presentation, we investigated the process of nanodisc uptake and Ag 

localization using CSS-SIINFEK(FITC)L; SIINFEKL modified with FITC at ε-amino group in the 

lysine residue is known to retain its binding capacity to H-2K
b 

molecules
36

. JAWSII cells 

(immortalized immature DCs) incubated with free Ag(FITC)+CpG displayed weak fluorescence 

signal on the plasma membrane at 6 h, and only dim fluorescence was observed by 24 h (Figure 

2.5g, Figure 2.6). In stark contrast, sHDL-Ag(FITC)/CpG treatment led to strong FITC signal 

co-localized with endosomes/lysosomes by 6 h, and robust Ag(FITC) signal was detected on cell 

membranes by 24 h and sustained up to 48 h. In addition, nanodiscs containing Rh-PE or Texas 

Red-labeled-22A were predominantly found within endosomes/lysosomes, indicating cellular 

uptake of intact whole nanodiscs (Figure 2.7). To assess the impact of prolonged Ag 

presentation on T-cell cross-priming, we treated BMDCs with free Ag peptides+CpG or sHDL-

Ag/CpG for 24 or 48 h, and then added SIINFEKL-specific, H-2K
b
-restricted B3Z T-cell 

hybridomas. BMDCs pulsed with sHDL-Ag/CpG promoted strong B3Z T-cell activation even 

after 48 h incubation, whereas free Ag peptides+CpG induced minimal B3Z T-cell activation 

beyond the 24 h period (Figure 2.8). Moreover, sHDL-Ag/CpG potently stimulated DC 

maturation (Figure 2.9). Altogether, whereas free Ag peptide was rapidly loaded and dissociated 

from MHC-I molecules on cell membranes, nanodiscs facilitated intracellular delivery of 

Ag/CpG and mediated their sustained release within endosomes/lysosomes, thereby promoting 

durable Ag presentation, APC maturation, and cross-priming CD8α+ T-cells in vitro.  

2.4.3 Elicitation of strong T cell responses in vivo 

We next investigated the impact of nanodiscs on lymphatic delivery of Ag/CpG and induction of 

CD8α+ T-cell responses in vivo
5
. C57BL/6 mice injected subcutaneously at tail base with 31 

nmol free CSS-SIINFEK(FITC)L had minimal FITC signal in inguinal dLNs after 1 day (Figure 
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2.10), potentially due to systemic dissemination of small MW Ag peptide or direct Ag binding 

on non-APCs at the injection site
1
. In contrast, sHDL-Ag group exhibited markedly increased 

FITC signal in dLNs (p < 0.01, Figure 2.1), with Ag(FITC) and Cy5-tagged 22A co-localized 

within dLNs. Similarly, injection of 2.3 nmol Cy5-tagged Cho-CpG in sHDL increased its LN 

accumulation, compared with injection in free soluble form (p < 0.01). These results showed that 

sHDL nanodisc promoted co-delivery of Ag and CpG to dLNs. We next immunized C57BL/6 

mice with 15.5 nmol Ag and 2.3 nmol CpG (non-fluorophore tagged), and peripheral blood was 

analyzed for the frequency of SIINFEKL–MHC-I tetramer+ CD8α+ T-cells. The mixture of free 

Ag peptides (SIINFEKL or CSS-SIINFEKL) and CpG induced 1-3% Ag-specific CTLs after the 

third immunization (Figure 2.11 a,b). As the benchmark, we also vaccinated animals with the 

equivalent doses of Ag and CpG emulsified in water-in-oil Montanide, which is arguably one of 

the strongest adjuvant systems in clinical trials for peptide-based cancer vaccines
2,3,37,38

. 

Ag+CpG+Montanide elicited ~2% Ag-specific CTLs after priming; however, no further T-cell 

expansion was observed even after the third immunization, consistent with a recent study 

reporting dysfunction and deletion of high-avidity T-cells after repeated immunizations with a 

depot-forming water-in-oil adjuvant
4
. In contrast, sHDL-Ag/CpG group elicited a peak 

frequency of ~21% Ag-specific CD8α+ T-cells after the third vaccination (p < 0.0001, Figure 

2.11 a,b). When challenged with 2×10
5
 B16OVA cells, mice immunized with sHDL-Ag/CpG 

had no detectable tumor masses up to 28 days, whereas mice immunized with free Ag 

peptides+CpG or Ag+CpG+Montanide all succumbed to tumors with marginal survival benefits 

(Figure 2.11c,d). We observed similar levels of peak Ag-specific CTL responses after sHDL-

Ag/CpG vaccination with the dosing intervals of 1, 2, or 3 weeks (Figure 2.12). Importantly, 

throughout our studies, we did not observe any signs of toxicity, autoimmunity, nor immune 
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responses directed against the ApoA1-mimetic peptide 22A in animals immunized multiple 

times with sHDL-Ag/CpG (Figure 2.13). 

We sought to rule out the possibility that CSS-modified peptides or Cho-CpG dissociated from 

sHDL-Ag/CpG in vivo were responsible for the strong CTL responses. Introducing the CSS 

linker to SIINFEKL and replacing free CpG with Cho-CpG in free soluble form resulted in 

minimal T-cell responses, and the physical mixture of Ag, CpG, and sHDL also elicited weak 

CTL responses (Figure 2.14a-c). In contrast, sHDL-Ag/CpG nanodiscs drastically improved 

CD8α+ T-cell responses, eliciting remarkable 41-fold greater frequency of Ag-specific CD8α+ 

T-cells than CSSSINFEKL+Cho-CpG group (day 35, p < 0.0001), with CTLs primarily 

exhibiting CD44
high

CD62L
low

 effector phenotype and robust IFN-γ
+
 ELISPOT responses (Figure 

2.14a-c). We also examined the durability of T-cell responses; after achieving their peak ~30% 

responses, animals still maintained 10% Ag-specific CD8α+ T-cells at 2 months post the last 

vaccination (20-fold greater than free Ag+CpG group, p < 0.001, Figure 2.15a), and efficiently 

eliminated B16OVA cells inoculated intravenously (Figure 2.15b), demonstrating long-lived 

protection against tumor challenge. In contrast, the soluble vaccine failed to protect animals 

against the intravenous B16OVA challenge.  

2.4.4 Elicitation of strong T cell responses in vivo 

To demonstrate the utility of our platform technology for vaccination against neo-antigens, we 

first employed the murine MC-38 colon carcinoma model recently reported to harbor a single-

epitope mutation within Adpgk protein (ASMTNRELM  ASMTNMELM), with the neo-

epitope presented in MHC-I H-2D
b
 molecules

16
. We confirmed the Adpgk neo-antigen mutation 

in MC-38 cells by cDNA sequencing (Figure 2.16a) and synthesized sHDL-Adpgk/CpG by 
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mixing nanodiscs with the neo-epitope modified with the CSS-linker and Cho-CpG. C57BL/6 

mice immunized with sHDL-Adpgk/CpG generated remarkable 47-fold and 31-fold greater 

frequencies of neoantigen-specific CTLs, compared with the soluble Adpgk+CpG and 

Adpgk+CpG+Montanide groups, respectively (p < 0.0001, Figure 2.16b,c), and long-lived T-

cell responses, as in the case of sHDL-SIINFEKL/CpG vaccination (Figure 2.16d), with tumor-

specific cytotoxicity against MC-38 target cells (Figure 2.17). To investigate the therapeutic 

efficacy of nanodisc vaccination, C57BL/6 mice were inoculated subcutaneously with 10
5 

MC-

38 cells and treated with 15.5 nmol Adpgk and 2.3 nmol CpG (Figure 2.18a-e). Therapeutic 

vaccination with sHDL-Adpgk/CpG induced polyfunctional IFN-γ
+
 and IFN-γ

+
TNF-α

+
 Adpgk-

specific CD8α+ T-cells and substantially slowed MC-38 tumor growth (Figure 2.18a-e), 

compared with the traditional soluble Adpgk+CpG vaccine. However, no tumor rejection was 

observed in either vaccine groups, potentially due to immunosuppression within tumor 

microenvironment, as we detected high expression levels of programmed cell death-1 (PD-1) and 

its ligand PD-L1 among tumor-infiltrating CD8α+ T-cells and tumor cells, respectively (Figure 

2.19). In order to block the immunosuppressive PD-1/PD-L1 pathway
39,40

, we combined the 

vaccines with anti-PD-1 antibodies (αPD-1). Combination immunotherapy with sHDL-

Adpgk/CpG and αPD-1 treatment generated robust neoantigen-specific CTL responses and led to 

complete tumor regression in ~88% mice (Figure 2.20-2.21), compared with ~25% rate of tumor 

regression in the soluble Adpgk+CpG+αPD-1 group. Notably, 100% of surviving mice rejected 

the subsequent re-challenge with MC-38 cells inoculated at the contralateral flank or rechallenge 

with intravenous injection of MC-38 cells on day 70, indicating immunological memory against 

tumor recurrence (Figure 2.22).  
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2.4.5 Multi-epitope T-cell responses with cocktail nanodiscs 

Finally, we evaluated our nanodisc platform in a melanoma model with B16F10 cells, as they are 

highly aggressive, poorly immunogenic, and hence hard to treat with conventional cancer 

vaccines. To prevent tumor immune escape by loss of a single mutant allele
41

, we sought to elicit 

broad-spectrum T-cell responses by employing multiple antigens (multiAgs), including recently 

reported B16F10 mutated neo-epitopes (MHC I-restricted M27 and MHC II-restricted M30) as 

well as MHC I-restricted epitope from tyrosinase-related protein 2 (TRP2, a melanoma-

associated Ag), all loaded in the same nanodiscs. C57BL/6 mice inoculated subcutaneously with 

10
5
 B16F10 cells were vaccinated with sHDL-multiAgs/CpG, eliciting a total of ~30% Ag-

specific, IFN-γ
+
 CD8α+ and CD4+ T-cells in peripheral blood, compared with only 1-3% 

induced by the soluble multiAgs+CpG or multiAgs+CpG+Montanide groups (p < 0.0001, 

Figure 2.23). Vaccination with sHDL-multiAgs/CpG significantly inhibited B16F10 tumor 

growth, compared with the soluble or Montanide vaccines (p < 0.0001, Figure 2.24a). Notably, 

removing either M27/M30 or TRP2 from sHDL-multiAgs/CpG compromised its therapeutic 

efficacy, suggesting the benefits of broad CTL responses against neo-antigens and tumor-

associated antigens (Fig. 2.24b). Lastly, we evaluated sHDL-multiAgs/CpG combined with dual 

immune checkpoint inhibitors. Combination immunotherapy with sHDL-multiAgs/CpG and 

αPD-1/αCTLA-4 treatment led to an impressive rate of B16F10 tumor rejection with ~90% of 

mice free of tumor, whereas the soluble multiAgs+CpG+αPD-1/αCTLA-4 treatment mediated 

tumor regression in ~38% of animals (Figure 2.25). Notably, 100% of surviving mice rejected 

the subsequent re-challenge with B16F10 cells inoculated at the contralateral flank or 

rechallenge with intravenous injection of B16F10 cells on day 70, indicating immunological 

memory against tumor recurrence (Figure 2.26).  
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Overall, our results have significant clinical importance since these nanodiscs, with an 

established manufacturing procedure suited for neo-antigen vaccination and excellent safety 

profiles in humans, can drastically improve co-delivery of antigens and adjuvants to LNs; sustain 

antigen presentation on DCs and cross-priming of T-cells; drive multivalent CD8α+ and CD4+ 

T-cell immunity against neo-antigens and tumor-associated antigens with long-term T-cell 

response; and significantly delay tumor growth in the setting of therapeutic vaccination. 

However, despite strong anti-tumor T-cell responses, nanodiscs administered as a monotherapy 

failed to eliminate tumors, possibly due to the immunosuppressive PD-L1/PD-1 pathway within 

the tumor microenvironment. Aiming to unleash the full cytotoxic potential of T-cells
39,40

, we 

combined nanodisc vaccination with immune checkpoint inhibitors, achieving potently amplified 

therapeutic efficacy and eradication of MC-38 and B16F10 tumors in > 85% of animals. 

Although other nanosystems in the literature
5-15

 may be also applicable, this is, to the best of our 

knowledge, the first demonstration of antitumor efficacy with personalized nanomedicine 

tailored with tumor-specific neo-antigens.  

While the work presented here provides the framework for future clinical translation, our 

strategy designed to generate neoantigen-specific cellular immunity requires tumor DNA/RNA 

exome sequencing, identification of neo-antigens, and production of nanodiscs, followed by a 

multi-dose vaccine regimen, which collectively may protract the time window required for 

control of malignancies for late-stage patients. These issues may be tackled in the future by 

multi-thronged strategies that exploit combined immunotherapy targeted to humoral and innate 

arms of immunity
42

 or radiation therapy
43

 and select chemotherapeutics
44

 known to delay tumor 

growth and synergize with T-cell vaccines.  
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2.5 Conclusions 

We have developed a new nano-vaccine system ideally suited for individualized neo-epitope 

vaccination and demonstrated their potency to generate broad-spectrum T-cell responses with 

striking therapeutic efficacy when combined with immune checkpoint inhibitors. As the majority 

of somatic mutations in cancer cells are unique to each patient, cancer vaccines would require a 

personalized approach
16-19

. Coupled with the recent biomedical breakthroughs in neo-antigen 

screening and immune checkpoint blockade
39,40,45-47

, our approach may offer a powerful yet 

facile strategy for producing cancer vaccines designed for each patient. Furthermore, this 

platform technology may be generally applicable for personalized therapeutics with a wide range 

of bioactive molecules and imaging agents. 
48
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2.6 Figures 

 

 

Figure 2.1. Design of sHDL nanodisc platform for personalized cancer vaccines. a, sHDL nanodiscs, 

composed of phospholipids and apolipoprotein-1 mimetic peptides (22A), are engineered for co-delivery 

of antigen (Ag) peptides and adjuvants. Pre-formed sHDL nanodiscs displaying 4 mol% DOPE-PDP are 

mixed with cysteine-modified Ag peptides, including tumor-specific mutated neo-antigens identified via 

tumor exome DNA sequencing, and subsequent incubation with cholesterol-modified immunostimulatory 

molecules (Cho-CpG) leads to formation of sHDL nanodiscs co-loaded with Ag and CpG (sHDL-

Ag/CpG). b, Upon administration, sHDL nanodiscs efficiently co-deliver Ag and CpG to draining lymph 

nodes, promote strong and durable Ag presentation by dendritic cells (DCs) (Signal 1), and induce DC 

maturation (Signal 2), resulting in elicitation of robust Ag-specific CD8α+ cytotoxic T lymphocyte (CTL) 

responses. Activated CTLs recognize and kill their target cancer cells in peripheral tissues and exert 

strong anti-tumor efficacy. Combination immunotherapy with immune checkpoint blockade further 

amplifies the potency of nanodisc vaccination, leading to elimination of established tumors.  
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Table 2.1 Characterization of nanodiscs containing different 22A variants. Data represent mean ±SD 

(n=3) 

 

 

 

 

 

 

 

 

Sample ID Sequence Size (d. nm) PDI

22A PVLDLFRELLNELLEALKQKLK 10.6  0.2 0.18  0.01 

22A-1 PVLDEFREKLNEELEALKQKLK N.D. N.D.

22A-2 PVLDLFRELLNELLEZLKQKLK 25.6  2.7 0.28  0.10

22A-3 PVLDLFRELWNELLEALKQKLK 13.5  0.5 0.25  0.03

22A-4 PVLDLFRELLNELWEALKQKLK 14.3  0.2 0.29  0.01

22A-5 PVLDWFRELLNELLEALKQKLK 20.2  2.2 0.27  0.06

22A-6 PVLDLFRELLNEWLEALKQKLK 13.9  0.2 0.29  0.01

22A-7 PVLDEFRELLNELLEALKQKLK 13.6  1.8 0.38  0.10

22A-8 PVLDLFREKLNEELEALKQKLK N.D. N.D.

22A-9 KLKQKLAELLENLLERFLDLVP N.D. N.D.

22A-10
PVLDLFRELLNELLEALKQKLK 

(D-amino acids)
10.8  0.3 0.19  0.01
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Figure 2.2. Effect of 22A variants and lipids on the formation of sHDL nanodisc. a, DMPC (containing 4% 

mol DOPE-PDP) and different 22A mutants were used to prepare sHDL. In addition to 22A that we have 

used throughout this study, several other 22A variants, including 22A composed of D-amino acids, 

formed homogeneous sHDL nanodiscs (as analyzed by dynamic light scattering) that remained stable up 

to one month at 4⁰C. Data represent mean ± SD (n = 3). N.D., not determined due to aggregation. b, 

Synthesis of sHDL requires phospholipids with high transition temperature (Tm) and ApoA-mimetic 

peptides. DPPC and DMPC (Tm = 41°C and 24°C, respectively) but not POPC or DOPC (Tm = -2°C and -

17°C, respectively), formed homogeneous sHDL in the presence of 22A and 4 mol% DOPE-PDP.  

4⁰C (stored for one month)

DOPC + - - - - -

POPC - + - - - -

DMPC - - + - + -

DPPC - - - + - +

22A + + + + - -

a

b
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Figure 2.3. Synthesis of functional lipid DOPE-PDP. a, DOPE, SPDP (succinimidyl 3-(2-pyridyldithio) 

propionate) and triethylamine (1:1:1.5 molar ratio) were dissolved in chloroform and allowed to react in 

dark with stirring for 5 h. b, The reaction progress was monitored by thin layer chromatography (TLC), 

using the following mixture as the developing solvent: chloroform/methanol/water = 65/25/4 (volume 

ratio). c-d, The reaction mixture was purified using a silica gel column, and the purity was assessed by c, 

TLC and d, HPLC using the condition described in the Supplementary Materials and Methods section. 
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Table 2.2. Characterization of nanodiscs containing antigens and CpG. Data represent mean ±SD (n=3). 

 

 

 

 

 

 

 

 

 

 

Formulations
% of PDP-lipid 

converted to Ag-lipid

% of Cho-CpG 

Inserted into sHDL
Size (d. nm) PDI

sHDL-CSSSIINFEKL/CpG 92.0  3.5% 98.5  1.1% 10.5  0.5 0.20  0.02

sHDL-Adpgk/CpG 91.1  3.1% 96.5  1.8% 10.8  0.3 0.22  0.02

sHDL-multiAgs/CpG 92.8  3.9% 95.3  2.7% 10.9  0.6 0.28  0.13
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Figure 2.4. Preparation and characterization of sHDL-CSSSIINFEKL/CpG and sHDL-Adpgk/CpG. a, 

HPLC chromatograms confirming the conjugation of CSSSIINFEKL, Adpgk and multiple antigen 

peptides (TRP2, M27, and M30) to sHDL. b, GPC showed homogeneity of all formulations and efficient 

loading of Cho-CpG in sHDL nanodiscs.   
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Figure 2.5. Strong and durable Ag presentation mediated by sHDL nanodiscs  a, Dynamic light scattering 

analysis and b, transmission electron microscopy imaging showed uniform sHDL-Ag/CpG (10.5 nm ± 0.5 

average diameter) with nanodisc-like morphology. Scale bar = 100 nm. Scale bar in the inset = 20 nm. c, 

Homogeneity of nanodiscs was maintained after sterile-filtration (0.22 μm), and long-term storage (8 

weeks) at -20ºC, followed by thawing at 37ºC. d-e, BMDCs were incubated with vaccine formulations for 

d, 24 h or e, indicated lengths of time, and Ag presentation was quantified by flow-cytometry analysis of 

DCs stained with 25-D1.16 mAb that recognizes SIINFEKL-H-2K
b 

complex. f-g, Confocal microscopy 

images of JAWSII cells (immature DCs). f, JAWSII cells were incubated with free Ag+CpG or sHDL-

Ag/CpG for 24 h and stained with 25-D1.16 mAb. Scale bars = 20 μm. g, JAWSII cells were incubated 

with free CSSSIINFEK(FITC)L + CpG or sHDL-CSSSIINFEK(FITC)L/CpG for 6, 24, or 48 h, followed by 

staining with Hochest and Lysotracker. Scale bars = 10 μm. The data show mean ± SD from a 

representative experiment (n = 3) from 2-4 independent experiments. * p < 0.05, ** p < 0.01, *** p < 

0.001, and **** p < 0.0001, analyzed by (d) one-way or (e) two-way ANOVA with Bonferroni multiple 

comparisons post-test. 
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Figure  2.6. Ag delivery and presentation mediated by sHDL-Ag/CpG (broader view).  JAWSII cells 

were incubated with free CSSSIINFEK(FITC)L + CpG or sHDL-CSSSIINFEK(FITC)L/CpG for 6, 24, or 48 h, 

and stained with Hochest and Lysotracker. Scale bar = 50 μm.  
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Figure 2.7. Intracellular delivery of sHDL. JAWSII cells were incubated for 24 h with sHDL containing 

either Rhodamine-labeled DOPE (DOPE-Rhod) or Texas Red-labeled 22A and stained with Hochest and 

Lysotracker. Scale bar = 50 μm for broader view and 20 μm for single cell imaging .  
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Figure 2.8, BMDCs were incubated with different concentrations of indicated formulations: low dose  = 

20 nM SIINFEKL and 3 nM CpG; medium dose = 100 nM SIINFEKL and 15 nM CpG; and high dose = 

500 nM SIINFEKL and 75 nM CpG. After incubation for 24 h or 48 h, BMDCs were co-cultured with 

SIINFEKL-specific B3Z T-cell hybridoma for another 24 h, followed by assessment of T cell activation. 

The data show mean ± SD from a representative experiment (n = 3) from 2-4 independent experiments. * 

p < 0.05, ** p < 0.01, *** p < 0.001, and **** p < 0.0001, analyzed by two-way ANOVA with 

Bonferroni multiple comparisons post-test. 
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Figure 2.9. Stimulation of bone marrow-derived dendritic cells (BMDCs) by CpG-containing 

formulations. BMDCs were incubated with blank sHDL or 75 nM CpG formulations for 24 h. The 

expression levels of CD40, CD80, and CD86 were measured by flow cytometry after staining with 

corresponding fluorophore-labeled antibodies. The data show mean ± SD from a representative 

experiment (n = 3) from 3 independent experiments. * p< 0.05, ** p< 0.01, *** p< 0.001, **** p < 

0.0001, one-way ANOVA with Bonferroni post-test. 
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Figure 2.10. Vaccine nanodiscs for LN-targeting of Ag and adjuvants and elicitation of CTL responses. 

a-b, C57BL/6 mice were administered subcutaneously at tail base with a, 31 nmol FITC-tagged Ag 

(CSSSIINFEK(FITC)L) or b, 2.3 nmol Cho-CpG (20% labeled by Cy5) in free soluble or sHDL form, and 

fluorescence signal in the draining inguinal LNs were quantified with IVIS after 24 h. c, sHDL-

CSSSIINFEK(FITC)L nanodiscs incorporated with Cy5-labeled 22A were injected subcutaneously (31 

nmol antigen peptides/mouse) at the tail base of C57BL/6 mice. After 24 h, draining inguinal lymph 

nodes were harvested and frozen sections were prepared for confocal microscopy. The confocal images 

showed antigen peptides and 22A were colocalized in the lymph nodes (indicated by white arrows). Scale 

bar = 50 µm. The data show mean ± SD from a representative experiment (n = 4-5) from 2-3 independent 

experiments. * p < 0.05, ** p < 0.01, *** p < 0.001, and **** p < 0.0001, analyzed by (a-b) two-tailed 

unpaired Student‘s t test.  
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Figure 2.11. Vaccine nanodiscs for LN-targeting of Ag and adjuvants and elicitation of CTL responses. 

a-d, C57BL/6 mice were immunized with the indicated formulations (15.5 nmol Ag peptide and 2.3 nmol 

CpG) on days 0, 21, and 42. a, Shown are their representative scatter plots on day 49 and b the frequency 

of SIINFEKL-specific CD8α+ T-cells in peripheral blood measured 7 days post each immunization by 

flow-cytometry analysis of tetramer+ CD8α+ T-cells. c-d, On day 50, pre-vaccinated animals were 

challenged with subcutaneous flank injection of 2×10
5
 B16OVA cells. Tumor growth and animal survival 

were measured over time. The data show mean ± SD from a representative experiment (n = 4-5) from 2-3 

independent experiments. * p < 0.05, ** p < 0.01, *** p < 0.001, and **** p < 0.0001, analyzed by (b,c) 

two-way ANOVA with Bonferroni multiple comparisons post-test or log rank (Mantel-Cox) test (d). 

Asterisks in panel c indicate statistically significant differences between sHDL-Ag/CpG and 

SIINFEKL+CpG+Montanide. 
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Figure 2.12. C57BL/6 mice were immunized with sHDL-Ag/CpG for 3 times in an 1-week interval, 2-

week interval or 3-week interval. Shown are the percent of SIINFEKL-specific CD8+ T cells among 

PBMCs one week after the third vaccination. Data represent mean ± SD from a representative experiment 

(n = 5) from 2-3 independent experiments. NS, non-statistically significant. 
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Figure 2.13. C57BL/6 mice were immunized with sHDL-CpG (equivalent to 2.3 nmol CpG per dose) for 

3 times in an 1-week interval. Shown are the percent of 22A-specific CD4+ T cells (a), 22A-specific 

CD8+ T cells (b) among PBMCs one week after the third vaccination, and (c) the titers of IgG antibody 

against 22A  one week after the third vaccination. Data represent mean ± SD from a representative 

experiment (n = 3) from 2 independent experiments. NS, non-statistically significant. 
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Figure 2.14. Vaccine nanodiscs for LN-targeting of Ag and adjuvants and elicitation of CTL responses. 

a-b, C57BL/6 mice were immunized with the indicated formulations (15.5 nmol Ag peptide and 2.3 nmol 

CpG) three times in a biweekly interval. Shown are a, percent of SIINFEKL-specific CD8α+ T-cells in 

peripheral blood; b, representative scatter plots for SIINFEKL-specific CD8+ T-cells among PBMCs on 

day 35 and their effector CD8+ T-cell phenotype as analyzed by CD44 and CD62L staining; and c, 

ELISPOT analysis of IFN-γ spot-forming cells among splenocytes after ex vivo restimulation with 

SIINFEKL on day 35. The data show mean ± SD from a representative experiment (n = 4-5) from 2-3 

independent experiments. ** p < 0.01, and **** p < 0.0001, analyzed by two-way ANOVA with 

Bonferroni multiple comparisons post-test. 
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Figure 2.15. Vaccine nanodiscs for LN-targeting of Ag and adjuvants and elicitation of CTL responses. a, 

C57BL/6 mice were immunized with the indicated formulations (15.5 nmol Ag peptide and 2.3 nmol 

CpG) in a biweekly interval. Shown are Ag-specific CD8α+ T-cell responses measured over 12 weeks 

post vaccination (black arrows indicate days of immunizations). b, Vaccinated mice in (a) were 

intravenously challenged with 5×10
4
 B16OVA cells two months after the third vaccination. Shown are 

pictures of the lungs and numbers of lung metastatic nodules counted on day 20 after the B16OVA 

challenge. The data show mean ± SD from a representative experiment (n = 4-5) from 2-3 independent 

experiments. ** p < 0.01, *** p < 0.001, and **** p < 0.0001, analyzed by (a) two-way ANOVA, or (b) 

one-way ANOVA with Bonferroni multiple comparisons post-test.  
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Figure 2.16. Nanodisc-based neo-antigen vaccination for personalized immunotherapy.  a, Mutation of 

Adpgk in MC-38 murine colon adenocarcinoma cells was confirmed by sequencing cDNA of Adpgk. b-d, 

C57BL/6 mice were vaccinated three times with the indicated formulations (equivalent to 15.5 nmol 

mutated Adpgk peptide and 2.3 nmol CpG) in a bi-weekly interval, and the frequency of Adpgk-specific 

CD8α+  T-cells in peripheral blood was measured . Shown are b, the representative scatter plots, and c, 

the frequency of Adpgk-specific CTLs on day 35. d, Clonal contraction of Ag-specific CD8α+ T-cell 

responses elicited by sHDL-Adpgk/CpG and sHDL-SIINFEKL/CpG vaccines was monitored for eight 

weeks after the last vaccination. The data show mean ± SD from a representative experiment (n = 5-10) 

from 2-3 independent experiments. **** p < 0.0001, analyzed by (c) one-way ANOVA with Bonferroni 

multiple comparisons post-test.  

 

 

 

 

 

 

 

 

 

T
e
tr

a
m

e
r

No treatment Adpgk + CpG

a

b c d
Adpgk+CpG

+Montanide sHDL-Adpgk/CpG

0.03 1.32 0.74 31.8

0 10 20 30 40 50

% Adpgk-specific CD8+ T cells

(among DAPI-CD8+ T cells in PBMCs)

****

No treatment

Adpgk + CpG

Adpgk+CpG+Montanide

sHDL-Adpgk/CpG
5 8 12

0

10

20

30

40

50

Weeks

%
 a

n
ti
g
e

n
-s

p
e
c
if
ic

 C
D

8
+

 T
 c

e
lls

(a
m

o
n
g
 D

A
P

I-
C

D
8
+

 T
 c

e
lls

 i
n
 P

B
M

C
s
)

sHDL-SIINFEKL/CpG

sHDL-Adpgk/CpG

cDNA sequencing

Neo-antigen (Adpgk)

MC-38umor cells

A S M T N R E L M

A S M T N M E L M

G C C A G T A T G A C C A A C A G G G A G C T C A T GWT:

G C C A G T A T G A C C A A C A T G G A G C T C A T GMutant:

WT peptide:

Mutant peptide:

G
T
A
C



 

62 

 

 

Figure 2.17. Effector splenocytes (E) were incubated with 5000 target MC38 cells (T) pulsed with the 

neoantigen peptide (MC38 w/Adpgk) or not pulsed with the neoantigen peptide (MC38 w/o Adpgk) at 

indicated ratios for 6 ~ 8 h. Then specific lysis was analyzed by the nonradioactive LDH release assay by 

following the manufacturer‘s instructions. Data represent mean ± SD from a representative experiment (n 

= 3). *** p < 0.001, and **** p < 0.0001, analyzed by two-way ANOVA with Bonferroni post-test. 

Asterisks next to MC38 w/Adpgk indicate the difference for all groups. Asterisks next to MC38 w/o 

Adpgk indicate the difference between MC38 w/o Adpgk and B16F10. 
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Figure 2.18. sHDL-Ag/CpG for vaccination against mutated tumor-specific neo-antigen. a-e, C57BL/6 

mice were inoculated subcutaneously with 1 × 10
5 
MC-38 tumor cells and vaccinated with the indicated 

formulations (equivalent to 15.5 nmol mutated Adpgk peptide and 2.3 nmol CpG) on days 10, 17, and 24. 

Shown are a, the frequencies of Adpgk-specific CD8α+ T-cells among PBMCs and representative scatter 

plots of Adpgk-tetramer+ CD8α+ T-cells on day 23; b, the percentages of intracellular IFN-γ
+
, TNF-α

+
, 

and IFN-γ
+
TNF-α

+
 CD8α+ T-cells among PBMCs on day 30 after ex vivo restimulation with the mutated 

Adpgk Ag and their representative scatter plots. c, average tumor growth; d, individual tumor growth of 

MC-38 tumor masses; and e, animal survival. The data show mean ± SD from a representative experiment 

(n = 5-8) from 2-3 independent experiments. * p < 0.05, ** p < 0.01, *** p < 0.001, and **** p < 0.0001, 

analyzed by (a,b,c) two-way ANOVA with Bonferroni post-test or (e) log-rank (Mantel-Cox) test. 

Asterisks in panels c indicate statistically significant differences between sHDL-Ag/CpG and all other 

groups.  
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Figure 2.19. Expression levels of PD-1 on tumor-infiltrating lymphocytes and PD-L1 on tumor cells were 

confirmed by flow cytometry on day 23 from the experiment shown in Fig. 4e. Shown are representative 

scatter plots of PD-1 expression on intratumoral total CD8+ T cells and Adpgk-specific CD8+ T cells, 

and PD-L1 expression on tumor cells.  
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Figure 2.20.C57BL/6 mice were inoculated subcutaneously with 10
5 
MC-38 tumor cells and vaccinated 

with the indicated formulations (equivalent to 15.5 nmol mutated Adpgk peptide and 2.3 nmol CpG) on 

days 10 and 17. On days 1 and 4 after each vaccination, mice were administered intraperitoneally with 

αPD-1 (100 μg/mouse). Average and individual MC-38 tumor growth curves are shown. The data show 

mean ± SD from a representative experiment (n = 5-8) from 2-3 independent experiments. *** p < 0.001, 

and **** p < 0.0001, analyzed by two-way ANOVA with Bonferroni post-test.  
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Figure 2.21. C57BL/6 mice were inoculated subcutaneously with 1 × 10
5 

MC-38 tumor cells and 

vaccinated with the indicated formulations (equivalent to 15.5 nmol mutated Adpgk peptide and 2.3 nmol 

CpG) on days 10 and17 and αPD-1 (100 μg per dose) on days 1 and 4 after each vaccination. Shown are 

the frequencies of Adpgk-specific CD8α+ T-cells among PBMCs on day 23. Data represent mean ± SD 

from a representative experiment (n = 5-8) from 2 independent experiments. * p < 0.05, *** p < 0.001, 

and **** p < 0.0001, analyzed by one-way ANOVA with Bonferroni post-test.  
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Figure 2.22. On day 70, cured mice were re-challenged subcutaneously (a) or intravenously (b) with 

1×10
5 
 MC38 cells. Shown are the animal survival (a) and lung metastasis (b) of MC38 cells on day 25 

after re-challenge. Naïve mice were used as control and inoculated with the same number of tumor cells. 
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Figure 2.23. C57BL/6 mice were injected with 1×10
5
 B16F10 cells on day 0. On days 4, 11, and 18, 

tumor-bearing mice were vaccinated with indicated formulations (multiAgs = Trp2 + M27 + M30). 

Shown are the percent of IFN-γ
+ 

CD8α+ or CD4+ T cells in peripheral blood measured by intracellular 

cytokine staining and representative scattering plots of intracellular cytokine staining of PBMCs from 

mice vaccinated with indicated formulations on day 17. The data show mean ± SD from a representative 

experiment (n = 5) from 2-3 independent experiments. **** p < 0.0001, analyzed by one-way ANOVA 

with Bonferroni multiple comparisons post-test. 
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Figure 2.24. C57BL/6 mice were inoculated subcutaneously with 10
5
 melanoma B16F10 cells and 

vaccinated on days 4, 11, and 18 with indicated formulations (10 nmol of each antigen peptide and 2.3 

nmol of CpG). Shown are the average B16F10 tumor growth curves. The data show mean ± SD from a 

representative experiment (n = 5) from 2-3 independent experiments. **** p < 0.0001 analyzed by two-

way ANOVA with Bonferroni multiple comparisons post-test. Asterisks indicate statistically significant 

differences between sHDL-Ag/CpG and all other treatment groups.  
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Figure 2.25. C57BL/6 mice were inoculated subcutaneously with 10
5
 melanoma B16F10 cells and 

vaccinated on days 4, 11, and 18 with indicated formulations (10 nmol of each antigen peptide and 2.3 

nmol of CpG). For the combination immunotherapy, on days 1 and 4 after each vaccination, αPD-1 and 

αCTLA-4 (100 μg/mouse each) were administered intraperitoneally. Shown are average and individual 

B16F10 tumor growth curves. The data show mean ± SD (n = 8-10). * p < 0.05, ** p < 0.01, and **** p 

< 0.0001, analyzed by two-way ANOVA with Bonferroni multiple comparisons post-test.  
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Figure 2.26. On day 70, cured mice were re-challenged subcutaneously (a) or intravenously (b) with 

1×10
5 
B16F10 cells. Shown are the animal survival (a) and lung metastasis (b) of B16F10 cells on day 25 

after re-challenge. Naïve mice were used as control and inoculated with the same number of tumor cells. 
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Chapter 3 Nanodiscs for Targeted Withalongolides Delivery to Adrenocortical Carcinoma 

3.1 Abstract 

Adrenocortical carcinoma (ACC) is a rare endocrine malignancy and has a five-year survival rate 

of less than 35%. ACC cells require cholesterol for steroid hormone production, and this 

requirement is met via expression on the cell surface of a high level of the scavenger receptor 

(class B1; SR-B1), which is responsible for the uptake of high density lipoproteins (HDL) that 

carry and transport cholesterol in vivo. Here we describe how this natural lipid-carrier function of 

SR-B1 can be utilized to improve the tumor-targeted delivery of a novel natural product 

derivative withalongolide A-4,19,27-triacetate (WGA-TA), which has shown potent antitumor 

efficacy but poor aqueous solubility. Our strategy is to use synthetic HDL (sHDL) nanodiscs, 

which are effective in tumor targeted delivery due to their small size, long circulation half-life, 

documented safety, and ability to bind to SR-B1. In this study, we prepared sHDL nanodiscs 

using an optimized phospholipid composition combined with ApoA-I mimetic peptide (22A), 

which has previously been tested in clinical trials, to load WGA-TA. Following optimization, 

WGA-TA nanodiscs showed a drug encapsulation efficiency of 78%, a narrow particle size 

distribution (9.81  0.41 nm), discoidal shape, and sustained drug release in PBS. WGA-TA-

sHDL nanodiscs exhibited higher cytotoxicity in the ACC cell line H295R (IC50 0.260  0.045 

M) than did free WGA-TA (IC50 0.492  0.115 M, p < 0.05). Fluorescent dye-loaded sHDL 

nanodiscs efficiently accumulated in H295R adrenal carcinoma xenografts 24 hours following 

dosing. Moreover, daily IP administration of 7 mg/kg of WGA-TA-loaded sHDL nanodiscs 
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significantly inhibited tumor growth during 21-day administration to H295R xenograft-bearing 

mice compared to placebo (p < 0.01). Collectively, these results suggest that WGA-TA-loaded 

nanodiscs may represent a novel and beneficial therapeutic strategy for the treatment of 

adrenocortical carcinoma.  

3.2 Introduction 

Adrenocortical carcinoma (ACC) is a rare endocrine malignancy with a poor prognosis.
1
 The 

majority of the ACC patients have metastasis at the time of diagnosis, resulting in a five-year 

survival rate of less than 35%.
2
  Complete surgical resection remains the standard of care today. 

Other commonly used pharmacological interventions include the adrenotoxic drug, mitotane 

(o,p‘-DDD), which is administered either alone or in combination with other cytotoxic 

chemotherapy, such as etoposide, doxorubicin, and platinum agents.
3
 Because this method of 

treatment has a relatively low response rate and carries significant systemic toxicity, better 

treatment methods are critically needed for more effective targeting and inhibition of ACC.  

Recently, we showed that the novel semi-synthetic withalongolide A 4, 19, 27-triacetate, from 

the plant Physalis longifolia, targets several oncogenic pathway proteins implicated in ACC.
4
 

This toxicity occurs through a combined mechanism of induction of an oxidative stress-response 

in cancer cells along with functional inhibition of the molecular chaperone heat shock protein 90 

(Hsp90) through its interaction with the co-chaperone CDC37.
4
 Although WGA-TA has shown 

great efficacy both in vitro and in vivo, one significant limitation of its translational development 

has been its low aqueous solubility.
5
 

ACC cells require cholesterol for steroidogenesis and are known to express the scavenger 

receptor class B type 1 (SR-B1) to take up cholesterol from circulating high density lipoprotein 
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(HDL).
6
 Many patients with advanced ACC develop steroid over-secretion

7
 and specific patient-

derived ACC cell lines have been classified as ―high cortisol secretors‖ (H295R) or ―steroid non-

secretors‖ (SW13).
8,9

 In addition to ACC cells, lymphoma, prostate, breast and ovarian cancers 

have also been found to overexpress SR-B1 receptors.
10-12

 In fact, in recent years, high SR-B1 

expression has emerged as an indicator of aggressiveness in both prostate and breast cancer and a 

predictor of poor survival. Therefore, nanoparticles that recognize SR-B1 receptors can 

potentially improve the targeted delivery of drugs to a wide range of different cancers.  

HDL is an endogenous nanoparticle ranging from 8 to 14 nm in diameter and mainly composed 

of lipids and apolipoproteins, with Apolipoprotein A-I (ApoA-I) acting as the main protein 

component.
13

 The primary function of endogenous HDL involves effluxing excess cholesterol 

from cells in peripheral tissues and delivering it to the liver for metabolism. In addition to 

cholesterol, hormones, vitamins, signaling lipids, microRNAs, enzymes and even hydrophobic 

drugs have been found to associate with HDL, either by partitioning into the hydrophobic core of 

nanoparticle, inserting in the lipid layer, or binding to the negatively charged particle surface.
14,15

 

Thus, HDL, with its small size and large surface area, has emerged as an important vascular 

carrier of lipophilic products.  

Several groups have utilized biomimetic HDL nanodiscs for drug delivery purposes.
16-19

 Most 

biomimetic HDL has been prepared with full-length ApoA-I protein either purified from plasma 

or produced by recombinant means, which is then combined with lipids and drugs in the 

presence of surfactant to form HDL nanodiscs. In most cases, the resulting nanoparticles have a 

heterogeneous size distribution with an average particle size larger than that of endogenous HDL 

and thus require purification prior to use.
20

 The resulting ApoA-I expression/purification and 

HDL assembly processes are technically complex and expensive; moreover, the process does not 
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assure the removal of clinically unacceptable impurities, such as endotoxins, surfactants, and 

particulates.  

To circumvent some of these technical issues, our laboratory utilizes a fully synthetic ApoA-I-

mimetic peptide, 22A, to prepare highly homogeneous sHDL with an average diameter of 10-12 

nm. The surfactant-free assembly process, involves co-lyophilization of ApoA-I peptide, 

phospholipids, and anticancer or imaging agents from organic solvent solution followed by 

hydration with buffer to form sHDL.
21-23

. This specific ApoA-I peptide and same process for 

nanoparticle assembly were used to prepare ETC-642, an HDL product for treatment of 

cardiovascular diseases.
24,25

 In clinical studies, ETC-642 was found to have long plasma 

residence time (~8 hours) and to be safe when administered at 30 mg/kg peptide (90 mg/kg total 

components) by weekly intravenous.
15,26

 Prior clinical safety data with ETC-642 can facilitate 

clinical translation of sHDL-mediated drug delivery for treatment of adrenal diseases.  

In the present study, we first characterized expression levels of SR-B1 in various ACC cell lines. 

Next, we explored cellular uptake of fluorescently labeled HDL nanoparticles in both high 

(H295R) and low (SW13) SR-B1-expressing ACC cell lines and examined the extent to which 

SR-B1 mediated the cellular uptake. We then confirmed the accumulation of sHDL in ACC 

tumor xenografts in vivo. For this, we optimized phospholipid composition of biomimetic sHDL 

to encapsulate a novel natural product derivative WGA-TA and characterized the nanoparticle 

size, morphology, drug loading, and drug release kinetics. The cytotoxicity of WGA-TA-sHDL 

was confirmed in vitro and then compared in vivo with free drug, blank HDL, and a model 

standard of care chemotherapy treatment using H295R tumor xenografts.  

3.3 Materials and Methods 



 

80 

 

3.3.1 Materials   

Phospholipids, including 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC), egg 

sphingomyelin (SM), 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC), 1-palmitoyl-2-

oleoyl-sn-glycero-3-phosphocholine (POPC), 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC), 

and egg yolk phosphocholine (EPC) were purchased from NOF America Corporation (White 

Plains, NY). ApoA-I-mimetic peptide was synthesized by Genscript (Piscataway, NJ). WGA-TA 

was provided by Dr. Barbara N. Timmermann (University of Kansas). Fluorescent dyes 3,3‘-

dioctadecyloxacarbocyanine perchlorate (DiO) and 1,1‘-dioctadecyl-3,3,3,3‘-

tetramethylindotricarbocyanine iodide (DiR) were purchased from Invitrogen. All other chemical 

reagents were obtained commercially and were of analytical grade. 

3.3.2 Preparation of WGA-TA-loaded sHDL 

Lipid mixtures (DPPC, SM, DMPC, POPC, DOPC, and EPC), 22A peptide, and the anticancer 

drug WGA-TA were dissolved in glacial acetic acid at predetermined ratios (Table 1). The acetic 

acid was removed by freeze-drying and the powder was hydrated at 15 mg/mL 22A peptide 

concentration with PBS (pH 7.4). The suspension was cycled 3 times between 50 ℃ (3 min) and 

20 ℃ (3 min) with gentle shaking to obtain drug-loaded sHDL nanoparticles. The fluorophore-

loaded sHDL were prepared using the same protocol but the anticancer drug was instead 

replaced with DiO or DiR dyes at 2:1:0.02 weight ratio of phospholipids to 22A peptide and to 

dye.  

3.3.3 Characterization of WGA-TA-loaded sHDL  

The drug encapsulation efficiency was determined using the desalting-column centrifugation 

method. Briefly, WGA-TA-sHDL was passed through the desalting column (cut off = 7000 Da) 

to remove any unencapsulated drug. Ethanol was added to break sHDL and dissolve the drug 
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before HPLC analysis.
27

 WGA-TA concentration was determined by HPLC using isocratic 

elution with 35% A (water with 0.1% acetic acid) and 65% B (methanol with 0.1% acetic acid) 

at a flow rate of 0.7 mL/min. A C18 column (250 × 4.6 mm) was used for separation and the 

detector wavelength was set at 230 nm. Dynamic light scattering (DLS) and gel permeation 

chromatography (GPC) were employed for the analysis of average size, size distribution and 

purity of WGA-TA-loaded sHDL nanoparticles. For DLS, 10 μl of the sHDL were diluted to 1 

mL with PBS before measurement on the Malvern Zetasizer Nano (ZSP). For GPC, 40 μl of the 

sHDL formulation (0.5 mg/mL 22A peptide) were injected into the HPLC equipped with a TSK 

2000 GPC column. The flow rate was set at 0.7 mL/min, and the detector wavelength was 220 

nm. Morphology of sHDL particles was further characterized by transmission electron 

microscopy (TEM). All images were acquired on a JEM 1200EX electron microscope (JEOL 

USA, Peabody, MA) equipped with an AMT XR-60 digital camera (Advanced Microscopy 

Techniques Corp, Woburn, MA).
28

 

To evaluate the in vitro release profile of drugs, 1 mL of 0.15 mg/mL free drug (dissolved at 0.3 

mg/mL in DMSO and diluted to 1 mL with PBS) or 1 mL of 0.15 mg/mL of WGA-TA-loaded 

sHDL was added in a dialysis bag (6-8 kDa), which was sealed and placed in 200 mL PBS (pH 

7.4) containing 0.1% Tween 80.
29,30

 The contents were gently shaken at 100 rpm in a 37C air 

bath shaker. An equal amount of free drug was directly added in the release medium to mimic 

complete drug release. At predetermined time points, 2 ml of the release medium were sampled, 

and an equal volume of fresh release medium was added back. The amount of drug in the media 

was quantified by reverse-phase HPLC described above. The cumulative release was calculated 

using the following equation: Cumulative release (%) = Ct/Cmax × 100%, where Ct is the 
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concentration of WGA-TA in the release media and Cmax is the concentration of WGA-TA when 

the drug was completely released. 

3.3.4 Cell Culture 

Human adrenocortical cancer cell lines H295R (high-cortisol secretor) and SW-13 (non-secretor) 

were obtained from ATCC. RL251 (non-secretor) was derived using clinical protocol approved 

by the IRB at University of Michigan Hospital and validated by the provider.
31

 H295R cells were 

grown in 1:1 of Dulbecco‘s modified Eagle medium: nutrient mixture F12 (DMEM: F12, Life 

Technologies, Grand Island, NY) supplemented with 5% fetal bovine serum, 100 U/mL 

penicillin, 100 µg/mL streptomycin and 1x ITS (final concentrations 0.001 mg/ml bovine insulin, 

0.0055 mg/ml human transferrin and 6.7 ng/ml sodium selenite) (Life Technologies, Grand 

Island, NY). ACC cell lines SW13, and RL251 were grown in DMEM supplemented with 10% 

FBS. All cell lines were cultured at 37
o
C in a humidified incubator with 5% CO2.  

3.3.5 Quantification of SR-B1 expression  

The mRNA and protein expression levels of SR-B1 in the ACC cell lines were evaluated by RT-

PCR and western blot methods, respectively. For RT-PCR, RNA was isolated from cells grown 

in culture using RNease kit as per the manufacturer‘s protocol (Qiagen, Valencia, CA). The 

mRNA was reverse transcribed and the expression of SR-B1 and the control β-actin was 

examined with specific primer sets by the standard curve method in Viia7 real time PCR system 

(Thermo Fisher Scientific, Waltham, MA). For the western blot, cells were lysed using RIPA 

buffer (50 mM Tris–HCI pH 7.4, 150 mM NaCI, 1% (v/v) NP-40, 0.5% (w/v) sodium 

deoxycholate, 10 mM sodium fluoride, 1 mM sodium orthovanadate, 1 mM PMSF, 10 mM 

sodium pyrophosphate, 0.1% (w/v), and SDS supplemented with protease inhibitor solution 

(EMD Millipore, Billerica, MA). The lysates were centrifuged at 14,000 rpm for 20 minutes and 
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the proteins were quantified using Protein Assay Reagent (Thermo Scientific, Rockford, IL). 

Equal amounts of total proteins were separated using SDS-PAGE and then transferred onto a 

Hybond nitrocellulose membrane (GE Healthcare Life Sciences, Piscataway, NJ). The 

membranes were blocked using 5% milk and probed over night with appropriate dilutions of the 

primary antibodies (SR-B1 or actin) for proteins. The blots were then washed three times with 

PBST and incubated with HRP-conjugated secondary antibodies (1:5000 dilution) from Santa 

Cruz Biotechnology (Santa Cruz, CA). To ensure equal loading of proteins, actin was used as a 

control. The bands were visualized using Enhanced chemiluminescence reagent (Thermo 

Scientific, Rockford, IL). The images were captured on Kodak X-ray film. ImageJ software 

(NIH) was used for quantification of the western blot. 

3.3.6 Cellular uptake of fluorophore-loaded sHDL  

The ability of ACC H295R and SW13 cells to recognize sHDL nanodiscs and internalize 

sHDL‘s cargo through the SR-B1 receptor was examined after a 2-h incubation of cells with 

DiO-labeled sHDL. For the confocal microscopy, cells were fixed with 4% paraformaldehyde, 

permeabilized with 0.1% Triton X-100, and stained with 4', 6-diamidino-2-phenylindole (DAPI). 

The cellular uptake was then visualized using a Nikon A-1 Spectral Confocal microscope system 

(Nikon Corporation, Tokyo). Quantification of the cellular fluorescent signal was determined 

using a flow cytometer (Cyan5) at an excitation wavelength of 488 nm. To investigate whether 

the uptake of sHDL was mediated by the SR-B1, H295R cells were either pretreated with anti-

SR-B1 antibody (NB400-113, Novus biological) at a 1:100 dilution or pre-incubated with 100-

fold excess of unlabeled sHDL for 1 h at 37 ºC.  
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3.3.7 Cytotoxicity of drug-loaded sHDL on adrenal cancer cells  

For in vitro testing of drug efficacy, H295R was used and the viability was determined by Cell 

Titer 96 Aqueous non-radioactive Cell proliferation assay. Approximately 8,000 H295R 

cells/well were seeded in 96- well micro titer plates in 90 μL of growth media and cells were 

allowed to attach overnight. On the second day, 10 μL serial dilutions of the sHDL nanoparticle, 

WGA-TA (4,19,27-withalongolide A triacetate) and sHDL-WGA-TA were added to the plates. 

The cells were then incubated for 72 h at 37
o
C in a CO2 humidified chamber. In some 

experiments H295R cells were pretreated with the SR-B1 antibody (1:100 dilution) or PBS for 1 

h before incubation with WGA-TA-sHDL for 24 h. The number of viable cells was determined 

by measuring the absorbance at a 490 nm wavelength of the dissolved formazan reagent on a 

BioTek Synergy Neo plate reader (BioTek, Winooski, VT) after the addition of 20 μL of the 

MTS reagent for 2 h as per the manufacturer‘s protocol (Promega, Fitchburg, WI). All 

experiments were carried out in triplicate and the viability of the cells was expressed as the ratio 

of the number of viable cells with treatment compared to untreated cells. The half-maximal 

inhibitory concentrations (IC50) were calculated from the MTS assay curves using GraphPad 

Prism 5 software.  

3.3.8 In vivo biodistribution of fluorophore-loaded sHDL in H295R xenografts 

Animal experiments were performed in accordance with federal, state, and local guidelines. All 

work performed on animals was in accordance with and approved by the University Committee 

on Use and Care of Animals (UCUCA) at University of Michigan, Ann Arbor. When H295R 

cells reached 60-70% confluence, cells were collected using 0.25% trypsin-0.02% EDTA 

(Sigma-Aldrich, St. Lewis, MO) and mechanical dissociation, then suspended at 6 × 10
7
 

cells/mL in phosphate buffered saline (PBS) and placed on ice. Within 30 minutes, athymic nude 
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mice (Athymic Nude-Foxn1
nu

, Harlan Laboratories, Indianapolis, IN) were anesthetized with 

isoflurane, and 6 × 10
6
 cells suspended in 100 µL PBS were injected subcutaneously in the right 

flank.  

For immunohistochemical analysis of SR-BI receptors, tumors were collected when they were ~ 

6 mm in diameter and fixed in 10% buffered formalin (Fisher Diagnostics™). 

Immunohistochemical staining was performed on the Biocare Intellipath Flx in the ULAM IVAC 

Histology Core at the University of Michigan. Briefly, slides were deparaffinized in xylene, 

rehydrated through graded alcohols to water then Heat Induced Epitope Retrieval (HIER) was 

performed in the Decloaking Chamber (Biocare Medical) with Diva, (Biocare Medical). Slides 

were incubated in Peroxidazed 1 (Biocare Medical) for 5 minutes followed by 30 minutes of 

incubation in Rodent Block M (Biocare Medical). Rabbit anti-mouse SRB1 (Novus Biologicals) 

antibody was applied for 30 minutes then SR-B1 was detected with Rabbit on Rodent HRP 

Polymer (Biocare Medical) for 30 minutes. HRP staining was visualized with DAB (Biocare 

Medical). Slides were counterstained in Hematoxylin (Biocare Medical), rinsed in deionized 

water, dehydrated through graded alcohols, cleared in xylene and mounted with Micromount 

(Lecia Biosystems). Stained slides were imaged with the microscope (PerkinElmer Mantra). 

To characterize the biodistribution and tumor-targeting efficacy of the sHDL-WGA-TA 

nanoparticle in vivo, imaging studies were performed in the adrenocortical cancer (H295R) 

tumor-bearing mice when the tumors were ~6 mm in diameter. DiR (Invitrogen, NY)-labeled 

sHDL nanoparticles (20 ug/mL DiR) were injected into the tail vein or intraperitoneally at 0.2 

mL/dose. At the end of 24 h, animals were sacrificed and organs including the spleen, liver, heart, 

lung, kidney, brain and tumor were harvested and imaged to characterize biodistribution using a 

Xenogen IVIS Spectrum Imaging System. 
32,33

  



 

86 

 

3.3.9 Inhibition of tumor growth by WGA-TA sHDL nanodisc in H295R xenografts 

The ability of WGA-TA-sHDL nanodiscs to inhibit tumor growth was examined in H295R 

xenografts in athymic mice. The tumors were implanted as described above, and the treatment 

was started when tumors reached ~100 mm
3
. The mice were randomized into five groups with 

eight animals per group including: WGA-TA-sHDL (6 mg/kg/day drug, 150 mg/kg/day 22A 

peptide), WGA-TA (6 mg/kg/day), blank sHDL (150 mg/kg/day 22A peptide), the standard of 

care Italian protocol (etoposide x 7.5mg/kg/day, doxorubicin x 1.5 mg/kg/day, cisplatin x 2.5 

mg/kg/day and mitotane x 300 mg/kg/day) and no-treatment control. Mice were treated with 

daily intraperitoneal injections for 21 days. Tumor length and width measurements were 

recorded by digital caliper every 3 days for the duration of treatment. Some mice became 

moribund during treatment and were euthanized. Average tumor volume was calculated using 

the formula: tumor volume (mm
3
) = (π/6) × (width)

2
 × length.  

Following 21 days of treatment, serum was collected for analysis of aspartate transaminase (AST) 

and alanine transaminase (ALT) levels, which were performed at the In-Vivo Animal Core 

(IVAC) Animal Diagnostic Laboratory at the University of Michigan. The normal range of AST 

and ALT was 39.55-386.05 U/L and 24.30-115.25 U/L, respectively. Histologic analysis was 

performed following 21 days of treatment to evaluate the liver toxicity of different formulations. 

Signs of chronic inflammation (defined by the presence of lymphocytes and plasma cells), 

cellular necrosis, and steatohepatitis were assessed in the liver. "Normal" was assigned to 

specimens with essentially no pathology except for a small degree of inflammation comparable 

to what is seen physiologically. "Mild, moderate or severe" was assigned to specimens with a 

less than 10%, 10-50% and greater than 50% increase in inflammatory cells compared to the 

physiologic state, respectively. 
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3.3.10 Statistical analysis 

Data were analyzed statistically using one-way ANOVA Kruskal-Wallis non-parametric test, and 

two-way ANOVA for comparisons of 3 or more variables with either Dunn‘s or Holm-Sidak‘s 

multiple comparisons tests, and two-tailed Student‘s t test for comparisons of two values. P 

values of <0.05 were considered statistically significant. 

3.4 Results and Discussion 

3.4.1 Preparation and Characterization of sHDL 

The schematic of WGA-TA- and dye-loaded sHDL nanoparticle preparation is shown in Figure 

3.1. Phospholipids, 22A peptide, and either drug or dye were first dissolved in organic solvent 

and lyophilized. The resulting powder was hydrated at the temperature above phospholipid 

melting temperature (Tm) to facilitate nanoparticle assembly and drug incorporation. The 1:2 

weight ratio of 22A to phospholipids was used because it is known to result in formation of a 

homogenous HDL 10-12 nm in diameter.
34

 The theoretical loading of WGA-TA was set at 1% 

(0.3 mg/30 mg peptide-lipid mixture). Following assembly, sHDL-drug nanoparticles were 

passed through the desalting column (7000 Da) to remove un-incorporated drug and determine 

WGA-TA encapsulation efficiency (Table 3.1).  

Due to the limited space available for incorporating drug inside sHDL, molecular interactions 

between phospholipids and WGA-TA are rather important. The fatty acid chain length and 

saturation determine Tm and the resulting fluidity of phospholipid bilayer, which is important for 

incorporation and retention of WGA-TA in sHDL. We used phospholipids of different Tm to 

prepare WGA-TA-sHDL nanoparticles, including DPPC (Tm = 41C), SM (Tm = 38C), DMPC 

(Tm = 23C), POPC (Tm = -3C), and their mixtures.
21

 The visual appearance of the resulting 
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suspension correlated to both the size and quality of the resulting nanoparticles, with clear 

solutions correlating to the formation of 10-12 nm sHDL particles and cloudy solutions 

indicating HDL aggregation and drug precipitation.  When WGA-TA-sHDL was prepared with 

DPPC and/or SM, the nanoparticle solutions were clear at 50C but cloudy at both 37C and 

20C, indicating drug precipitation at temperatures below Tm.  When DMPC (Tm = 23C) was 

used to prepare nanoparticles, the drug-loaded sHDL was clear at 50⁰C and 37⁰C but cloudy at 

20⁰C. Samples with cloudy solutions showed a loss of drug upon passage through the desalting 

column and a low encapsulation efficiency of 31-50% (Table 3.1). 

Lipids with a low transition temperature, such as POPC and DOPC, failed to form sHDL, so they 

were not used for the preparation of drug-loaded sHDL. However, the mixture of DMPC and 

POPC resulted in successful loading of WGA-TA into sHDL and clear sHDL solutions at all 

temperatures tested.  For this formulation, drug encapsulation efficiency of 78% was obtained, 

which corresponded to 0.78% of WGA-TA weight loading. This formulation was selected for 

additional analytical characterization and was used in cell culture and animal experiments.  

3.4.2 Characterization of WGA-TA-sHDL nanoparticles 

To examine the purity and size of the WGA-TA-sHDL nanoparticles, blank and drug-loaded 

sHDL nanoparticles were analyzed by gel permeation chromatography (GPC), dynamic light 

scattering (DLS), and transmission electron microscopy (TEM). GPC confirmed formation of 

homogeneous WGA-TA-sHDL distribution without the presence of large nanoparticle 

aggregates or unbound 22A peptide (Figure 3.2a). The DLS measurement showed a narrow size 

distribution for sHDL and WGA-TA-sHDL of 9.7 ± 0.61 nm and 9.81 ± 0.41 nm, respectively. 

Consistent with the DLS and GPC data, TEM results also showed that the formulation had 
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homogeneous discoidal-shaped WGA-TA-sHDL nanoparticles with an average size of ~10 nm 

(Figure 3.2b-c). This size and shape closely resemble the characteristics of endogenous HDL 

nanoparticles.
15

 

To examine drug-release kinetics, WGA-TA-sHDL nanoparticles were placed in a dialysis bag 

and incubated in sink conditions in 200 mL of PBS containing 0.1% Tween 80 for 24 hours. To 

compare nanoparticle release with free drug, the same amount of WGA-TA-sHDL was dissolved 

in 50% DMSO and placed in dialysis bag. The free drug was rapidly released to the media, with 

almost 100% release within 10 h (Figure 3.2d). In contrast, the release of WGA-TA from sHDL 

was relatively slow, with about 46% released to the media within 10 h, and 65% released within 

24 h. These results indicated that the encapsulation of WGA-TA into sHDL significantly alters 

drug release behavior. 

3.4.3 Quantification of SR-B1 on ACC cells 

To select ACC cell lines for evaluation of sHDL cellular uptake and WGA-TA-sHDL 

cytotoxicity, we examined the SR-B1 expression in various ACC cell lines by measuring mRNA 

levels using RT-PCR and protein levels by western blot analysis (Figure 3.3). Actin was used as 

internal control for RT-PCR, and actin immunoblot confirmed equal loading of the protein per 

each well. The steroid hormone-synthesizing H295R cells were found to have much higher 

mRNA and protein expression levels of SR-B1 compared to the other two human ACC cell lines, 

SW13 and RL251 (p < 0.0001), which do not synthesize steroid hormones. Hence, H295R was 

selected to assess cellular uptake and cytotoxicity of WGA-TA-sHDL. 
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3.4.4 Cellular uptake of sHDL  

To determine if our sHDL is recognized by SR-B1 and capable of delivering its cargo to the 

target cells efficiently, DiO-loaded sHDLs were incubated with high (H295R) and low (SW13) 

SR-B1 expressing ACC cell lines for 2 h (Figure 3.4a-b). After incubation, the cells were 

imaged by confocal microscopy and DiO fluorescence in cells was quantified by flow cytometry. 

It is clear from the image that SR-B1 positive H295R cells effectively internalized DiO-labeled 

sHDL, in contrast to SW13 cells, which showed limited dye uptake. The addition of anti-SR-B1 

antibody or the excess of blank sHDL nanoparticles reduced dye uptake in H295R cells, 

confirming the involvement of SR-B1 (Figure 3.4a). Fluorescence quantification by flow 

cytometry confirmed visual observations (Figure 3.4b). Over 80% of H295R cells showed a 

positive DiO signal, while fewer than 10% of SW13 cells showed DiO uptake. The pre-

incubation of H295R cells with anti-SR-B1 antibody or blank sHDL reduced dye uptake by 2.5-

fold and 20%, respectively, confirming the interaction between SR-B1 and sHDL nanodiscs. 

Based on these results, H295R cells were selected to confirm cytotoxicity and in vivo efficacy of 

WGA-TA-sHDL nanodiscs in ACC. 

3.4.5 Cytotoxicity of WGA-TA-loaded sHDL 

The cytotoxicity of WGA-TA-loaded sHDL nanodiscs was evaluated by the MTS proliferation 

assay in the H295R cell line. The cells were treated with varying concentrations of either sHDL, 

free WGA-TA, or the WGA-TA-loaded sHDL nanodiscs for 72 h, and the viability of the cells 

was then analyzed (Figure 3.5a-b). The results indicate that, compared to either sHDL or WGA-

TA alone, WGA-TA-loaded sHDL nanoparticles demonstrated improved cytotoxicity (reduction 

in cell viability with lower IC50 levels by quantitative curve-fitting using Graph Pad 5.0). The 

IC50 calculated by quantitative curve-fitting using Graph Pad 5.0 was 0.260  0.045 M for 
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WGA-TA-sHDL and 0.492  0.115 M for WGA-TA (p < 0.05). The blank sHDL treatment 

showed some cytotoxicity, likely due to ability of sHDL to efflux cholesterol and inhibit 

corticosteroid synthesis as we previously reported,
35

 but sHDL cytotoxicity was observed at a 

higher concentration relative to WGA-TA-sHDL (IC50 corresponding to 8.630 ± 1.520 μM 

WGA-TA (p < 0.05) and equivalent to 0.13 ± 0.02 mg/mL of 22A peptide). The presence of SR-

B1 antibody significantly decreased the cytotoxicity of WGA-TA-sHDL in H295 cells, with a 2-

fold decrease and 4.8-fold decrease of viability for 2.5 µM and 5 µM WGA-TA-sHDL, 

respectively, indicating the uptake of WGA-TA-sHDL was at least partially mediated by the SR-

B1 receptor. 

3.4.6 In vivo biodistribution of fluorophore-loaded sHDL 

Efficient accumulation throughout individual tumors is important for the targeted delivery of 

anticancer drugs. In order to test the ability of our sHDL to accumulate in tumor regions 

efficiently, DiR-loaded sHDL nanodiscs were prepared and administered by either intravenous 

(IV) or intraperitoneal (IP) routes into athymic mice bearing H295R tumors, which express high 

levels SR-B1 receptors (Figure 3.6a). At 24 h following the injection, biodistribution of DiR-

sHDL was examined by imaging individual organs (Figure 3.6b-c). The imaging clearly 

demonstrated that tumors harvested 24 h after either IV or IP injection had efficient 

accumulation of sHDL cargo DiR, providing direct evidence for in vivo ACC targeting with 

sHDL. As expected, strong fluorescent signals from the liver were observed, which is supported 

given that the liver is the major organ for elimination of nanoparticles. The accumulation of the 

sHDL nanodiscs in other organs was significantly less compared to that in either the liver or 

tumor. Since IV and IP injection showed similar distribution profiles of sHDL-DiR (p > 0.05), 
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for the therapeutic efficacy study in H295R xenografts, WGA-TA-sHDL was administered by 

the IP route.    

3.4.7 Tumor growth inhibition in vivo 

The ability of WGA-TA-sHDL nanodiscs to inhibit growth of ACC in vivo was tested in H295R 

xenografts, which exhibit high levels of SR-B1 expression in tumors (Supplementary Figure 1). 

Once the tumor volume reached ~100 mm
3
, the tumor-bearing mice were randomly assigned to 

one of the five treatment groups. The control group received no treatment, while the other groups 

received either blank sHDL, free WGA-TA, WGA-TA-sHDL, or standard of care treatment 

Italian protocol (etoposide, doxorubicin, cisplatin and mitotane) by IP administration daily for 21 

days. Following the start of treatment, the tumor volumes were assessed every three days, which 

are shown in Figure 3.7. H295R is a very aggressive and rapidly growing tumor with high 

animal-to-animal variability and rapid growth kinetics, making this tumor very difficult to cure. 

The results from the study, however, showed significant differences in tumor volume between 

the no-treatment control and WGA-TA-sHDL group at the end of treatment (p < 0.01). No 

statistical differences between other groups were observed. Importantly, we didn‘t see any 

significant change to the serum ALT and AST levels, as both were in the normal range for all 

treated groups following 21-day treatment (Figure 3.7b). Moreover, livers from all the 

experimental groups were shown to be normal (Figure 3.7c). Although both mice treated with 

free WGA-TA and WGA-TA-HDL had lower body weights than other groups, it should be noted 

that part of the body weight decrease for WGA-TA-HDL can be ascribed to the tumor volume 

decrease following treatment. Compared to the free drug-treated animals that had much larger 

tumors and lower body weights, the WGA-TA-sHDL treatment decreased the side effects of 

WGA-TA in vivo (Figure 3.8). 



 

93 

 

3.5 Conclusion 

In summary, we have optimized the composition of sHDL for delivery of a novel lipophilic 

natural product, withalongolide A (WGA)-4,19,27-triacetate (WGA-TA). When WGA-TA was 

loaded into sHDL, this formulation was shown to kill the SR-B1-expressing H295R cancer cells 

more efficiently than free drug alone in vitro. In addition, sHDL cargo molecules could 

accumulate in tumor regions of ACC in vivo, and the WGA-TA-sHDL formulation was more 

effective in halting the growth of ACC tumors than the standard-of-care Italian protocol. Taken 

together, sHDL delivery could represent a more useful drug-delivery platform for hydrophobic 

chemotherapeutics in tumors such as ACC that overexpress SR-B1 and should be further 

evaluated for potential clinical application. Additionally, this unique drug-delivery strategy could 

be applied for the delivery of hormones, steroids, and other therapeutics agents in treating other 

adrenal diseases. 
36
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3.6 Figures 

 

 

 

 

 

Figure 3.1. Schematic for the preparation of WGA-TA-sHDL and SR-B1-mediated uptake of sHDL 

cargo. 
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Figure 3.2. Characterization of blank sHDL and WGA-TA-sHDL. a, gel permeation chromatography 

(GPC) of indicated formulations; b, dynamic light scattering (DLS), and c, transmission electron 

microscopy (TEM) of blank sHDL and WGA-TA-sHDL; d, WGA-TA release from sHDL nanodiscs 

compared with a solution of free drug in PBS containing 0.1% Tween 80 at 37 ºC.  
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Figure 3.3.  SR-B1 expression in different cell lines. SR-B1 levels in ACC cell lines were analyzed by 

RT PCR (a) and western blot (b). Asterisks represent the significant difference between H295R cells and 

all other groups. 
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Figure 3.4. Cellular uptake of DiO-sHDL by different cell lines. (a) Confocal microscopy images and (b) 

flow cytometry of H295R cells and SW13 cells following incubation with indicated formulations for 2 h 

at 37 ºC. * p < 0.05, and **** p < 0.0001. Asterisks in (b) represent the significant difference between 

H295R cells and indicated groups. 

 

sHDL-DiO sHDL-DiO+Ab sHDL-DiO+HDL

DAPI

DiO

Merge

PBS PBS sHDL-DiO

H295R SW13a

H295R

PBS

sHDL-DiO

sHDL-DiO+Blank HDL

HDL-DiO+SR-BI Ab

PBS

sHDL-DiO

0 20 40 60 80 100

Percent of DiO+ cells

H295R

SW13

*

****

****

FITC+

0.16

FITC-

99.8

10
0

10
1

10
2

10
3

10
4

Comp-FL 1 Log :: FITC

0

50

100

150

200

C
o

u
n

t

C5JM032817RK_1_H295R-PBS.fcs

Pulse Width, FS subset

11529

FITC+

84.6

FITC-

15.4

10
0

10
1

10
2

10
3

10
4

Comp-FL 1 Log :: FITC

0

50

100

150

C
o

u
n

t

C5JM032817RK_4_H295R-DiO.fcs

Pulse Width, FS subset

13545

FITC+

62.4

FITC-

37.6

10
0

10
1

10
2

10
3

10
4

Comp-FL 1 Log :: FITC

0

50

100

150

C
o

u
n

t

C5JM032817RK_8_H295R-DiO+HDL.fcs

Pulse Width, FS subset

12889

FITC+

23.5

FITC-

76.5

10
0

10
1

10
2

10
3

10
4

Comp-FL 1 Log :: FITC

0

50

100

150

C
o

u
n

t

C5JM032817RK_10_H295R-DiO+Ab.fcs

Pulse Width, FS subset

12722

FITC+

0.17

FITC-

99.8

10
0

10
1

10
2

10
3

10
4

Comp-FL 1 Log :: FITC

0

100

200

300

C
o

u
n

t

C5JM032817RK_13_SW13.fcs

Pulse Width, FS subset

12372

FITC+

2.58

FITC-

97.4

10
0

10
1

10
2

10
3

10
4

Comp-FL 1 Log :: FITC

0

50

100

150

200

C
o

u
n

t

C5JM032817RK_18_SW13.fcs

Pulse Width, FS subset

9131

PBS sHDL-DiO sHDL-DiO + blank sHDL sHDL-DiO + SR-B1 Ab

SW13

PBS sHDL-DiO

b



 

98 

 

 

Figure 3.5. Cytotoxicity of free WGA-TA, WGA-TA-sHDL and blank sHDL on H295R cells. (a) H295R 

cells were incubated with indicated formulations for 72 h at 37 ºC and the viability was determined by 

Cell Titer 96 Aqueous non-radioactive Cell proliferation assay. (b) H295R cells were pretreated with the 

SR-B1 antibody (1:100 dilution) or PBS for 1 h before incubation with indicated concentrations of WGA-

TA-sHDL for 24 h. The viability was measured using the same method as described in (a).  
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Figure 3.6. Biodistribution of DiR-sHDL in H295 tumor-bearing mice.  (a) Immunohistochemical (IHC) 

staining of SR-B1 in H295R tumors. Immunohistochemical staining was performed on the Biocare 

Intellipath Flx in the ULAM IVAC Histology Core at the University of Michigan by using rabbit anti-

mouse SRB1(rabbit polyclonal; Novus Biologicals) revealed with rabbit horseradish peroxidase. Shown 

are the representative IHC staining of slides of H295 tumors without using anti-mouse SRB1 (control) or 

with anti-mouse SRB1. (b) DiR-sHDL was injected either intravenously or intraperitoneally in H295 

tumor-bearing mice and major organs were harvested and imaged 24 h after injection. (c) Quantification 

of fluorescence for organs in (b). 
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Figure 3.7. In vivo therapeutic effect of WGA-TA-sHDL. H295 tumor-bearing mice were treated with 

indicated formulations daily for 21 days after the tumor volume reached ~100 mm3. Shown are (a) the 

average tumor growth curves; (b) serum ALT and AST levels for indicated formulations, and (c) H&E 

staining of livers for indicated formulations following 21 days of treatment. ** p < 0.01.  
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Figure 3.8. Body weights of animals treated with indicated formulations. Data represent mean ± SEM 

(n=4-6).    
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Table 3.1. Characterization of WGA-TA-sHDLs with different compositions. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Lipid

composition

DPPC

(mg)

SM

(mg)

DMPC

(mg)

POPC

(mg)

22A

(mg)

WGA-

TA

EE

%

DPPC 20 0 0 0 10 0.3 45%

SM 0 20 0 0 10 0.3 45%

DMPC 0 0 20 0 10 0.3 31%

DPPC/SM 10 10 0 0 10 0.3 50%

DMPC/POPC 0 0 10 10 10 0.3 78%
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Chapter 4 Elimination of Established Tumors with Nanodisc-Based Combination 

Chemoimmunotherapy 

4.1 Abstract 

Although immune checkpoint blockade has shown initial success for various cancers, only a 

small subset of patients benefits from this therapy. Some chemotherapeutic drugs have been 

reported to induce antitumor T cell responses, prompting a number of clinical trials on 

combination chemoimmunotherapy. However, it remains unclear how to achieve potent immune 

activation with traditional chemotherapeutics in a manner that is safe, effective, and compatible 

with immunotherapy. Here we show that high-density lipoprotein (HDL)-mimicking nanodiscs 

loaded with doxorubicin (DOX), a widely used chemotherapeutic agent, can potentiate immune 

checkpoint blockade in murine tumor models. Delivery of DOX via nanodiscs triggered 

immunogenic cell death of cancer cells and exerted antitumor efficacy without any overt off-

target side effects. Importantly, ―priming‖ tumors with DOX-carrying nanodiscs elicited robust 

antitumor CD8+ T cell responses while broadening their epitope recognition to tumor-associated 

antigens, neoantigens, as well as intact whole tumor cells. Combination chemoimmunotherapy 

with nanodiscs plus anti-PD-1 therapy induced complete regression of established CT26 and 

MC38 colon carcinoma tumors in 80-88% of animals and protected survivors against tumor 

recurrence. Our work provides a new, generalizable framework for utilizing nanoparticle-based 

chemotherapy to initiate antitumor immunity and sensitize tumors to immune checkpoint 

blockade.  
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4.2 Introduction 

Cancer immunotherapy aims to harness the host‘s own immune system to fight against cancer, 

and immune checkpoint blockers (ICBs) have shown striking initial success in the past few years, 

as exemplified by the clinical success of anti-CTLA-4 (αCTLA-4), anti-PD-1 (αPD-1), and 

recently FDA-approved anti-PD-L1 antibodies
1-4

. However, despite their potential, ICBs 

currently benefit only a subset of patients, generally with 10 - 40% response rates reported in the 

clinic
2,5

. As their therapeutic efficacy depends largely on licensing pre-existing antitumor T cells 

to kill their target tumor cells, the majority of patients bearing ―cold‖ tumors with a low number 

of tumor antigen-specific T cells respond poorly to ICBs
6,7

. Hence, there has been considerable 

interest to develop complementary approaches, including therapeutic vaccines
8-10

, radiation 

therapy
11-13

, and chemotherapy
14-16

, which could increase the repertoire and abundance of 

antitumor T cells so that combination immunotherapy with ICBs might exert strong antitumor 

immunity against cancer cells.  

Notably, recent studies have shown that certain chemotherapeutic drugs, such as doxorubicin 

(DOX), may contribute to antitumor T cell responses by inducing a special form of tumor-cell 

killing, known as immunogenic cell death (ICD)
17-22

. Tumor cells undergoing ICD upregulate 

―eat me‖ and ―danger‖ signals. The ―eat me‖ signals, such as calreticulin (CRT) exposed on the 

surfaces of immunogenically dying tumor cells, enable dendritic cells (DCs) to phagocytose 

those tumor cells and present tumor antigen epitopes in the context of major histocompatibility 

complex (MHC) class I or II
18,22

. In turn, the ―danger‖ signals, such as high-mobility group box 1 

(HMGB1) released by immunogenically dying tumor cells, promote activation of DCs and 

trigger antigen-specific T cell responses
17,21,23

. Thus, the use of ICD-inducing chemotherapeutic 
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agents may offer a convenient and universal strategy for killing cancer cells, while 

simultaneously eliciting broad antitumor T cell responses.  

Importantly, recent studies have shown promising pre-clinical results reporting antitumor 

immune responses induced by free DOX treatment either as a monotherapy or combined with 

immunotherapy
14,24-26

. Such findings have led to multiple ongoing clinical trials in phases I, II, 

and III that aim to investigate DOX therapy combined with ICBs
27-30

. While results these clinical 

trials are yet to be reported, it remains to be seen how to achieve an optimal therapeutic outcome 

with chemoimmunotherapy, especially since there are concerns of inadequate circulation half-

life and limited intratumoral accumulation of DOX as well as its off-target toxicities, including 

its widely-documented cardiotoxicity
31

, which may exacerbate toxicities of ICBs
32

.   

 To address these challenges, here we have sought to develop a general strategy for 

improving the delivery of chemotherapeutics in a way that is safe, effective, and compatible with 

immune activation for combination immunotherapy. We have chosen to work with DOX since it 

is a widely-used anti-cancer therapeutic agent and has ICD-inducing properties
18,21,22,33

. Delivery 

of DOX via nano-systems has been investigated intensively with a wide range of biomaterials, 

including liposomes, synthetic polymers, micelles, and inorganic nanostructures, in various 

stages of development
34-38

. However, it is not yet clear how to apply these drug delivery systems 

to achieve immune activation in a manner compatible with cancer immunotherapy, while, at the 

same time, addressing the long-standing issues of industrial scale-up and clinical safety 

associated with various classes of nanomedicine.  

In this study, we have developed synthetic high density lipoprotein-like nanodiscs (sHDL), 

composed of an apolipoprotein A1 (ApoA1)-mimetic peptide and phospholipids, for stimuli-
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responsive delivery of chemotherapy and demonstrated their potency for combination 

chemoimmunotherapy in vivo (Figure 4.1). In particular, in recent clinical trials for 

cardiovascular applications, sHDL platform has been successfully scaled up and demonstrated to 

be safe
39-41

, thus prompting us to evaluate sHDL as the delivery platform for 

chemoimmunotherapy. In that effort, we have achieved efficient loading of DOX in sHDL and 

its pH-dependent release in endosomes/lysosomes of tumor cells. Treatment with sHDL 

covalently attached with DOX (sHDL-DOX) induced ICD of tumor cells, improved 

pharmacokinetic profiles and tumor targeting of DOX, and exhibited significant antitumor 

efficacy without causing any overt off-target side effects. Tumor-bearing mice treated with 

sHDL-DOX elicited robust T cell responses directed against live tumor cells, tumor-associated 

antigens as well as neoantigens, which are a class of patient-specific mutant epitopes encoded by 

somatic mutations in cancerous cells
42

 and shown to dictate patient responses to immune 

checkpoint blockade
43-45

. Importantly, we report that sHDL-DOX markedly potentiated 

antitumor T cell responses and therapeutic efficacy of αPD-1 immunotherapy, leading to 

elimination of established CT26 and MC38 tumors in 80-88% of mice and long-term immunity 

against tumor cell re-challenge. Overall, these results demonstrated a generalizable strategy for 

inducing robust antitumor immunity with nanoparticle-based chemotherapy that can sensitize 

tumors to immune checkpoint blockade. 

4.3 Materials and methods 

4.3.1 Materials 

1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) was Nippon Oils and Fats (Osaka, Japan). 

1,2-dipalmitoyl-sn-glycero-3-phosphothioethanol (PTD) was purchased from Avanti Polar 

Lipids (Alabaster, AL). DWLKAFYDKVAEKLKEAFPDWAKAAYDKAAEKAKEAA (37A) 
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was from GenScript Corp. (Piscataway, NJ). Anti-mouse CD16/32 was from eBioscience (San 

Diego, CA). Anti-mouse CD8α-APC, IFN-γ-PE, and CD11c-PECy7 were from BD Bioscience 

(San Jose, CA). Anti-mouse PD-1 (RMP1-14) was purchased from BioXcell (West Lebanon, 

NH). CT26 cells were from the American Type Culture Collection (ATCC). MC-38 cells were 

from Dr. Weiping Zou (University of Michigan, Ann Arbor, MI). 

4.3.2 Preparation and characterization of sHDL-DOX 

sHDL was prepared by using the lyophilization method that we have previously developed
41,46,47

. 

Briefly, 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) and an ApoA1-mimetic peptide 

DWLKAFYDKVAEKLKEAFPDWAKAAYDKAAEKAKEAA (37A) were mixed at 1.5:1 

weight ratio in acetic acid, followed by lyophilization. The lyophilized powder was hydrated in 

PBS (pH 7.4) and cycled between 55 ⁰C and room temperature to obtain sHDL. We synthesized 

a pH-sensitive lipid-DOX conjugate for efficient loading and pH-triggered release of DOX from 

sHDL. Briefly, DOX was activated with N-β-maleimidopropionic acid hydrazide (BMPH, 

Thermo Fisher) in anhydrous methanol containing TFA
34

. The mixture was allowed to react for 

24 h at room temperature, followed by rotary evaporation. Activated DOX was then reacted with 

1,2-dipalmitoyl-sn-glycero-3-phosphothioethanol (PTD) in chloroform containing 10% 

triethylamine for 24 h in the dark. After rotary evaporation, the resulting lipid-DOX conjugate 

was kept at -20 ⁰C until further use. The molecular weight of the conjugate was confirmed by 

electrospray ionization (ESI) mass spectrometry. To load DOX in sHDL, the lipid-DOX 

conjugate was dissolved in DMSO and then incubated with pre-formed sHDL suspension in PBS 

(pH 7.4) for 5 min at 37 ⁰C on an orbital shaker. The resulting sHDL-DOX was passed through a 

desalting column (Pierce) to remove any unincorporated DOX. 
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The concentration of DOX loaded in sHDL-DOX was measured by a fluorescence-based method. 

Ten µL of sHDL-DOX diluted in water was incubated with 240 µL of 1% Triton X-100 solution 

for 30 min at RT in the dark, and the fluorescence signal from DOX was detected using a 

microplate reader with Ex = 470 nm and Em = 590 nm. Homogeneity of sHDL-DOX was 

analyzed by gel permeation chromatography (GPC) using a Shimadzu HPLC system equipped 

with a TSKgel G2000SWxl column (7.8 mm ID × 30 cm, Tosoh Bioscience LLC) and the 

detection wavelengths were set at 220 nm and 485 nm for quantification of ApoA-I mimetic 

peptide 37A and DOX, respectively. The particle size of sHDL-DOX was measured by dynamic 

light scattering (DLS) on a Malvern Zetasizer (Westborough, MA). The sHDL morphology was 

assessed by transmission electron microscopy (TEM) after proper dilution of the original 

samples. Then, 3 μL of the diluted sample solution was deposited on a carbon film-coated 400 

mesh copper grid (Electron Microscopy Sciences) and dried for 1 minute. Samples were then 

negatively stained with 1% (w/v) uranyl formate, and the grid was dried before TEM observation. 

All specimens were imaged on a 100kV Morgagni TEM equipped with a Gatan Orius CCD. 

4.3.3 Intracellular delivery and cytotoxicity of sHDL-DOX 

To examine sHDL-DOX for its pattern of intracellular delivery, 100,000 CT26 tumor cells were 

seeded in 35 mm Petri dishes (MatTek Corp., Ashland, MA) and cultured overnight. Cells were 

incubated with 40 μΜ sHDL-DOX or free DOX for predetermined durations (10 min, 10 h, and 

24 h). After incubation, cells were washed with PBS, fixed with 4% paraformaldehyde, and 

stained with DAPI before imaging with a confocal microscope (Nikon A1). Cytotoxicity of 

sHDL-DOX was measured using a cell counting kit-8 (CCK8, Dojindo Molecular Technologies) 

following the manufacturer‘s instructions.  
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4.3.4 Immunogenic cell death in tumor cells treated with sHDL-DOX 

Markers of immunogenic cell death, such as calreticulin (CRT) and HMGB1, were analyzed 

following published reports
17,18

. Briefly, 100,000 CT26 cells were seeded on 35 mm Petri dishes 

(MatTek Corp., Ashland, MA) pre-coated with polylysine. After overnight incubation, cells were 

treated with 50 μΜ DOX or sHDL-DOX for 24 h, washed twice with FACS buffer (1% BSA in 

PBS) followed by incubation with CD16/32 for 10 min and rabbit anti-mouse CRT Ab (1:100 

dilution) for 30 min. Cells were washed and then incubated with Hoechst 33342 and anti-rabbit 

Ab labeled with APC for 20 min and then observed under a confocal microscope.  To measure 

the release of HMGB1 from dying tumor cells, 50,000 CT26 cells seeded in 96-well plates were 

incubated with 50 μΜ DOX or sHDL-DOX for 72 h. After incubation, each supernatant was 

collected and centrifuged at 1,000 g for 20 min before HMGB1 measurement using a mouse 

HMGB1 ELISA kit (LifeSpan BioSciences, Inc). 

4.3.5 Biodistribution and pharmacokinetic studies in vivo 

sHDL was loaded with a near-infrared fluorescent dye, DiR, for the biodistribution study
48

. 

Briefly, DiR (0.1 mol %) was mixed with DPPC and 37A in acetic acid, followed by 

lyophilization and hydration in PBS to form sHDL-DiR as described above. BALB/c mice 

inoculated with 200,000 CT26 tumor cells were injected intravenously with sHDL-DiR (20 

μg/mL DiR) on day 10. At predetermined time points post-injection, whole body imaging was 

performed using the IVIS optical imaging system. At the 72 h time point, the tumor-bearing mice 

were euthanized and major organs (brain, heart, liver, spleen, lung, kidney, and tumor) were 

harvested for ex vivo imaging. For the pharmacokinetic analysis, mice were administered with 4 

mg/kg DOX or sHDL-DOX IV. Following drug treatment, at each time point (15 min, 1 h, 3 h, 7 

h, and 24 h), 50 μL of blood was collected in Microvette
®
 500 Z-gel tubes by submandibular 
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bleeding and kept on ice. The samples were centrifuged at 10,000 g for 5 min at RT, and 10 μL 

of the serum was added with 10 μL of PBS and incubated with 480 μL of acidified isopropanol 

(75 mM HCl, 10% water, 90% isopropanol) overnight at 4 ⁰C in the dark to extract DOX. The 

isopropanol extract was centrifuged at 14,000 rpm for 10 min, and 125 μL of the supernatant was 

used for fluorescence detection of DOX on a microplate reader with Ex = 485 and Em = 590 nm. 

The standard curve was generated with DOX spiked in normal serum and measured following 

the same protocol. Dox serum concentration vs time curves were fitted with a two-compartment 

model by GraphPad Prism 6 to determine the AUC values
49

. 

4.3.6 Therapeutic study in tumor-bearing animals 

Mice were cared for following federal, state, and local guidelines. All work performed on 

animals was in accordance with and approved by University Committee on Use and Care of 

Animals (UCUCA) at University of Michigan, Ann Arbor. For treatment studies involving 

animals injected with CT26 cells, BALB/c mice were inoculated with 2×10
5
 CT26 cells per 

mouse on the right flank by subcutaneous injection on day 0 and intravenously injected with 4 

mg/kg DOX in sHDL or free soluble form on days 8, 11, and 14. For the combinatorial 

chemoimmunotherapy, anti-mouse PD-1 (100 μg/mouse) was administered intraperitoneally on 

days 9, 12 and 15 in addition to the i.v. injection of DOX-containing formulations. For MC38 

studies, C57BL/6 mice were inoculated subcutaneously with 2×10
5
 MC38 cells on day 0 and 

intravenously injected with 4 mg/kg DOX in sHDL or free soluble form on days 8 and 11 with or 

without intraperitoneal administration of anti-mouse PD-1 (100 μg/mouse) on days 9 and 12. 

Tumor growth was monitored every other day, and the tumor volume was calculated by the 

following equation: tumor volume = length × width
2
 × 0.52. When individual tumor masses 

reached 15 mm in diameter or when animals became moribund with severe weight loss or active 
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ulceration, animals were euthanized. On day 20, some CT26 tumor-bearing mice were 

euthanized and the hearts and livers were collected and fixed in 10% Buffered Formalin (Fisher 

Diagnostics™). A series of 5-μm sections were stained with hematoxylin and eosin (H&E). 

Stained slides were then observed microscopy (PerkinElmer Mantra). On day 60, mice cured of 

primary CT26 or MC38 tumors were re-challenged by subcutaneous injection of 2×10
5
 of the 

same tumor cells, and subsequent tumor growth was monitored as described above. Alternatively, 

some mice, cured of primary CT26 or MC38 tumors, were re-challenged by intravenous 

injection of 2×10
5
 the same tumor cells and the lung metastasis of CT26 or MC38 tumor cells 

was visualized by injecting India ink (1:10 dilution in PBS) into the lungs via the trachea and 

fixing the lungs in Fetek's solution
50

. Naïve mice were used as controls and re-challenged in the 

same way.   

For a subset of studies, tumor tissues and tumor-draining lymph nodes (TDLNs) harvested on 

indicated time points were cut into small pieces of 2-4 mm and cells were dissociated in 

digestion buffer [collagenase type IV (1 mg/mL) and DNase I (100 U/mL) in serum-free RPMI] 

for 20~30 min at 37 ⁰C with gentle shaking
10

. This cell suspension was passed through a 70-μm 

nylon strainer and washed with FACS buffer. Cells were then incubated with CD16/32 for 10 

min, and then stained with antibodies against CD4 (RM4-5), CD8α (53-6.7), CD11c (HL3), 

CD11b (M1/70), Ly6c (AL-21), and CD86 (GL1) on ice before flow cytometry (Cyan 5, 

Beckman Coulter, USA). In some experiments, cells were incubated with AH1 peptide-MHC 

tetramer (H-2L
d
-restricted SPSYVYHQF) to label the antigen-specific T cells at room 

temperature for 30 min before incubation with the above antibodies. 
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4.3.7 Tetramer staining and intracellular cytokine staining 

The percentages of tumor antigen-specific CD8α+ T cells among peripheral blood mononuclear 

cells (PBMCs) were analyzed using the tetramer staining assay, as described previously
10

. 

Briefly, 100 µl of blood was collected from each mouse on indicated days by submandibular 

bleeding, and red blood cells were lysed using ACK lysis buffer. PBMCs were then washed with 

FACS buffer and blocked by anti-CD16/32 antibody and incubated with peptide-MHC tetramer 

(e.g., H-2L
d
-restricted SPSYVYHQF or H-2D

b
-restricted ASMTNMELM) for 30 min at room 

temperature. Samples were then incubated with anti-mouse CD8α-APC for 20 min on ice. Cells 

were washed twice with FACS buffer and resuspended in 2 μg/ml DAPI solution for analysis by 

flow cytometry.  

For intracellular cytokine staining (ICS) assay
10

, 100-150 µL peripheral blood collected from 

mice was lysed with ACK lysis buffer, washed with PBS, and plated at ~10 million cells/mL in 

50 µL T cell media (RPMI 1640 supplemented with 10% FBS, 2 mM L-glutamine, 55 µM β-

mercaptoethanol, 1 mM pyruvate, 100 U/mL penicillin, 100 µg/mL streptomycin, 10 mM 

HEPES, and non-essential amino acids) in 96-well U-bottom plates. These PBMCs were 

incubated with 0.1 million CT26 cells/well for 16 h in the presence of the protein transport 

inhibitor, brefeldin A (BD Biosciences). Cells were then washed twice with ice-cold FACS 

buffer (1% BSA in PBS), followed by incubation with anti-CD16/32 for at least 10 minutes and 

anti-CD8α for 20 min on ice. Cells were then fixed/permeabilized for 20 min on ice and then 

stained with anti-IFN-γ-PE for 30 min on ice. After extensive washing, cells were analyzed by 

flow cytometry. 
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4.3.8 Statistical analysis 

Sample sizes were chosen based on preliminary data from pilot experiments and previously 

published results in the literature. All animal studies were performed after randomization. Data 

were analyzed by one- or two-way analysis of variance (ANOVA), followed by Tukey's multiple 

comparisons post-test or log rank (Mantel-Cox) test with Prism 6.0 (GraphPad Software). Data 

were normally distributed and variance between groups was similar. P values less than 0.05 were 

considered statistically significant. All values are reported as means ± SD with the indicated 

sample size. No samples were excluded from analysis.  

4.4 Results and Discussion 

4.4.1 Preparation and characterization of sHDL-DOX 

We prepared sHDL nanodiscs composed of an ApoA1-mimetic 37-mer peptide and 1,2-

dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) using a thermal-cycling method as we have 

reported previously
41,48,51

. To promote loading and pH-triggered release of DOX from sHDL, we 

tethered DOX to a hydrophobic anchor with a hydrazone linker
34

, which allowed for stable drug 

incorporation at pH 7.4 but rapid drug release at pH 5. We conjugated DOX to 1,2-dipalmitoyl-

sn-glycero-3-phosphothioethanol (PTD) with N-β-maleimidopropionic acid hydrazide (BMPH) 

linker (Figure 4.2), and confirmed the formation of lipid-DOX conjugate by mass spectrometry 

(Figure 4.3). To load lipid-DOX into the lipid layers of sHDL, pre-formed sHDL was simply 

admixed with lipid-DOX and incubated for 5 min at 37 ⁰C, resulting in efficient incorporation of 

lipid-DOX into sHDL (80 ± 2% encapsulation efficiency and 2.0 ± 0.2% w/w loading) as 

demonstrated by co-elution of sHDL and DOX (maximum absorbance at 220 nm and 485 nm, 

respectively) in gel permeation chromatography (GPC) (Figure 4.4a). In contrast, when free 

DOX without the lipid tail was incubated with pre-formed sHDL, < 1% of lipid-DOX was 
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incorporated into sHDL (Figure 4.4a), suggesting the intermolecular interaction between the 

hydrophobic anchor of lipid-DOX and sHDL lipid layers is the major factor that drives drug 

loading. Transmission electron microscopy (TEM) and dynamic laser scattering (DLS) showed 

the homogeneous hydrodynamic size of ~ 10 nm for both ―blank‖ sHDL and sHDL-DOX, 

indicating the minimal impact of drug loading on the formation and homogeneity of sHDL-DOX 

(Figure 4.4b,c). Notably, sHDL-DOX stored in a lyophilized powder form for at least 2 months 

was readily reconstituted with water to form homogeneous sHDL-DOX with the hydrodynamic 

size, PDI, and GPC chromatogram similar to those of freshly prepared sHDL-DOX (Figure 

4.4c,d). We then examined pH-sensitive release of DOX from sHDL-DOX. Whereas sHDL-

DOX incubated at pH 7.4 in PBS released less than 5% of DOX over 24 h, sHDL-DOX 

incubated at pH 5 rapidly released ~60% of DOX within 24 h (Figure 4.4e), demonstrating pH-

responsive drug release at intracellular pH of endosomes/lysosomes.  

4.4.2 Intracellular delivery of doxorubicin and expression of ICD markers 

We next investigated the intracellular delivery of DOX and sHDL-DOX and examined their 

impact on ‗danger signals‘ (e.g. HMGB1 and CRT) implicated in ICD
20,21

. We treated CT26 

colon cancer cells, a widely used murine model of colon adenocarcinoma, with DOX 

formulations and visualized DOX fluorescence with confocal microscopy. Within 10 min of 

treatment, CT26 cancer cells internalized free DOX as shown by dim, diffuse DOX fluorescence 

signal detected throughout the cells, and uptake of free DOX was further increased until 10 h 

after incubation (Figure 4.5a,b). In contrast, sHDL-DOX treatment slowed down DOX uptake 

(Figure 4.5a,b) with the nanodiscs first phagocytosed into endolysosomes (Figure 4.6) and the 

intracellular DOX signal steadily increasing over 24 h. The IC50 value of free DOX was slightly 

lower than that of sHDL-DOX in vitro in CT26 cells (3 μM and 15 μM, respectively, Figure 
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4.7a) as well as in another murine colon carcinoma cell line, MC38 cells (0.11 μM and 0.62 μM, 

respectively, Figure 4.7b). The reduction in cytotoxicity of sHDL-DOX may be attributed to the 

delayed cellular uptake and drug release from sHDL-DOX in vitro. Importantly, despite delayed 

sHDL-DOX internalization, sHDL-DOX treatment mediated up-regulation of CRT (Figure 4.8a) 

and triggered robust release of HMGB1 from CT26 cells (P < 0.01, compared to the no treatment 

control, Figure 4.8b) to a similar degree as free DOX treatment. Overall, we have successfully 

synthesized a sHDL-DOX nano-formulation with the attractive features of efficient drug loading, 

homogeneity, long-term stability, and stimuli-responsive drug release tailored to the 

endolysosomal condition (Figure 4.4-4.6). Furthermore, despite delayed cellular uptake, sHDL-

DOX can effectively kill cancer cells while maintaining the pharmacological activity of DOX to 

induce ICD (Figure 4.7-4.8).  

4.4.3 In vivo chemotherapy with sHDL-DOX 

We next examined the in vivo distribution and efficacy of the sHDL formulations in tumor-

bearing mice. We inoculated BALB/c mice subcutaneously in the flank with CT26 colon 

carcinoma cells on day 0 and performed intravenous administration on day 11 with sHDL 

carrying DiR, a model fluorescent tracer with a hydrophobic anchor as in the lipid-DOX 

conjugate. Non-invasive whole animal imaging over time revealed that sHDL-DiR efficiently 

accumulated in CT26 tumors, with the fluorescence signal peaking at 24 h and lasting up to 72 h 

after injection (Figure 4.9a). When we harvested major organs at 72 h and performed 

quantitative imaging, we detected at least 7-fold greater radiant efficiency (defined as 

fluorescence intensity/area/time) in tumor tissues, compared with those in spleens, lungs, or 

kidneys (Figure 4.9b,c). As expected, the sHDL-DiR signal was strong in the liver, which is the 

major site for elimination of HDL
52

. To understand how sHDL affects the pharmacokinetics of 
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DOX, we quantified the serum concentrations of DOX after intravenous administration and fitted 

the results into a two-compartment model. The area under the curve (AUC) for sHDL-DOX was 

27-fold greater than that of free DOX (217.5 ± 15.2 µg/mL*h for sHDL-DOX and 7.9 ± 0.1 

µg/mL*h for DOX, respectively, Figure 4.9d). Consistent with the improved AUC, sHDL-DOX 

treatment resulted in 2.8-fold increase in the cellular uptake of DOX within tumors, compared 

with free DOX treatment (P < 0.01, Figure 4.9e) 

Having shown increased accumulation of sHDL in tumors as well as improved pharmacokinetics 

of sHDL-DOX, we next examined the therapeutic potential of sHDL-DOX and its effect on 

antitumor immune responses in vivo. BALB/c mice were inoculated subcutaneously with CT26 

cells, and when the tumor size reached ~80 mm
3
 on day 8, the animals were treated three times 

with 4 mg/kg of DOX in either the free soluble or sHDL form (Figure 4.10a). At this limited 

dose, free DOX treatment had no discernable impact on the overall tumor growth, compared with 

the no treatment control group (Figure 4.10b,c). In contrast, sHDL-DOX treatment significantly 

slowed tumor growth, compared with free DOX or no treatment groups (P < 0.0001, Figure 

4.10b,c). Notably, as widely reported in the literature
31

, free DOX treatment triggered adverse 

side effects, including the body weight decrease and vacuolization of cardiomyocytes (Figure 

4.10d,e). However, mice treated up to 3 times with the equivalent 4 mg/kg of sHDL-DOX 

exhibited no overt signs of toxicity, weight loss, or cardiac or liver tissue damage (Figure 

4.10d,e).  

4.4.4 Robust antitumor T cell responses induced by sHDL-DOX therapy  

We next examined the impact of sHDL-mediated delivery of DOX on antitumor immune 

responses. We first aimed to evaluate broad antitumor cellular immune responses induced by 

sHDL-DOX versus free DOX treatment. Briefly, we treated CT26 tumor-bearing BALB/c mice 
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with DOX formulations as indicated above and examined induction of functional CD8α
+
 T cells 

against whole CT26 tumor cells by co-culturing peripheral blood mononuclear cells (PBMCs) 

with live CT26 tumor cells and performing intracellular cytokine staining (ICS) for interferon-

gamma (IFN-γ). Mice that received free DOX treatment failed to expand any CT26-specific IFN-

γ
+
CD8α

+
 T cells beyond the basal level, whereas sHDL-DOX treatment generated a 7-fold 

higher frequency of IFN-γ
+
CD8α

+
 T cells that recognized intact CT26 tumor cells (P < 0.01, 

Figure 4.11a,b).  

To gain insight into antigen-specificity of cellular immune responses, we used the major 

histocompatibility complex-I (MHC-I) minimal epitope of CT26 gp70 (AH1) (H-2L
d
-restricted 

SPSYVYHQF) as the surrogate marker of tumor-specific antigen and quantitated the frequency 

of AH1-specific CD8α
+
 T cells among PBMCs. Whereas CT26 tumor-bearing mice that received 

free DOX treatment had the basal frequency of AH1-specific CD8α
+
 T cells among PBMCs, 

sHDL-DOX treatment induced 3.9-fold and 3.1-fold higher AH1-specific CD8α+ T cell 

responses, relative to the free DOX and no treatment groups, respectively (P < 0.001 and P < 

0.01, respectively Figure 4.11c,d). Notably, compared with mice treated with free DOX, sHDL-

DOX-treated animals had a higher frequency of CD11c+CD11b+Ly6c+ DCs within the tumor-

draining lymph nodes (TDLNs) (P < 0.05, Figure 4.11e). These CD11c+CD11b+Ly6c+ DCs, 

which are a subset of APCs that play crucial roles in the presentation of tumor antigens
53

, also 

exhibited increased expression of a co-stimulatory marker CD86 within TDLNs (Figure 4.11f).  

4.4.5 Potent antitumor efficacy of sHDL-DOX + αPD-1 

Having confirmed immune responses triggered by sHDL-DOX monotherapy, we asked whether 

we could further amplify antitumor immunity and improve the therapeutic efficacy of sHDL-

DOX therapy by combining this treatment with immune checkpoint blockade. Specifically, we 
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chose to inhibit the immunosuppressive PD-1/PD-L1 pathway
5,54

 with anti-PD-1 IgG therapy 

(αPD-1) to reflect ongoing combination immunotherapy clinical trials. BALB/c mice were 

inoculated subcutaneously with 2x10
5
 CT26 tumor cells, and when the tumor size reached ~80 

mm
3
 on day 8, the animals were treated intravenously on days 8, 11, and 14 with 4 mg/kg of 

DOX in either soluble or sHDL formulation, each supplemented with intraperitoneal 

administrations of αPD-1 (100 µg/dose) (Figure 4.12a). Compared with the αPD-1 monotherapy, 

the combination of free DOX and αPD-1 therapy did not lead to significant expansion of AH1-

specific CD8α
+
 T cells, (Figure 4.12b,c). In stark contrast, the combination therapy of sHDL-

DOX + αPD-1 led to remarkable expansion of AH1-specific CD8α
+
 T cells, reaching the peak 

frequency of 5-18% AH1-specific CD8α
+
 T cells among PBMCs on day 20 (8-fold greater than 

the αPD-1 monotherapy on average, P < 0.01; and 4-fold greater than the dual free DOX + αPD-

1 therapy, P < 0.05; Figure 4.12b,c).  

Consistent with the enhanced antitumor immune responses, the combination 

chemoimmunotherapy with sHDL-DOX and αPD-1 exerted dramatic antitumor efficacy, leading 

to the elimination of established tumors (~80 mm
3
 at the initiation of treatment on day 8) in 88% 

of animals after three cycles of dual sHDL-DOX + αPD-1 therapy (P < 0.0001, Figure 4.12d,e). 

This is in stark contrast to the αPD-1 monotherapy or free DOX plus αPD-1 dual therapy that 

failed to inhibit the average tumor growth at this low dose/frequency regimen (P < 0.0001, 

Figure 4.12d,e). Importantly, 100% of the surviving animals from the sHDL-DOX + αPD-1 

treatment group rejected the subsequent re-challenge with 2x10
5 
CT26 tumor cells performed on 

day 60 either by subcutaneous or intravenous route of administration (Figure 4.12f,g), 

suggesting the establishment of durable immunity against tumor relapse. Moreover, throughout 

our studies, we did not observe any signs of weight loss, toxicity, nor autoimmunity in animals 
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treated up to three times with sHDL-DOX + αPD-1 dual therapy. Collectively, these results 

demonstrated that sHDL-DOX therapy combined with αPD-1 therapy elicited potent antitumor 

CD8α
+
 T cell responses in vivo, thereby exerting robust antitumor efficacy against established 

tumors and tumor relapse. 

4.4.6 T cell responses in the tumor microenvironment 

Since tumor-infiltrating lymphocytes are one of the key determinants for the outcome of 

immunotherapy, we sought to profile antitumor T lymphocytes in the tumor microenvironment 

of animals undergoing chemoimmunotherapy. BALB/c mice were inoculated with 2x10
5 

CT26 

tumor cells and treated with various formulations as stated above. Notably, among various 

formulations tested, the dual sHDL-DOX + αPD-1 therapy recruited the highest frequency of 

CD8α
+
 T cells into the tumor microenvironment (3-fold greater than the free DOX treatment, P < 

0.05, Figure 4.13a). The sHDL-DOX + αPD-1 therapy also promoted the highest frequency and 

absolute number of tumor-infiltrating CD8α
+
 T cells recognizing the CT26 AH1 antigen (5-fold 

greater than the non-treated control group, P < 0.05, Figure 4.13b,c). These results, in general, 

reflected the patterns of systemic antigen-specific CD8α
+
 T cell responses induced after the 

combination sHDL-DOX + αPD-1 therapy (Figure 4.13b,c).  

4.4.7 Neoantigen-specific CD8+ T cell responses induced by chemoimmunotherapy 

Recent studies have shown that antitumor efficacy of immune checkpoint blockade is strongly 

correlated with T cell responses against neoantigens, which are antigens encoded by somatic 

gene mutations only found in cancerous cells
42,44,55

. Here, we studied the impact of sHDL-

mediated DOX delivery on the generation of neoantigen-specific T cell responses and also 

sought to validate our results using another murine colon carcinoma model of MC38 tumor cells 

syngeneic to C57BL/6 mice. Animals were inoculated with 2×10
5
 MC38 tumor cells via 
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subcutaneous administration, and when the average tumor size reached ~60 mm
3
 on day 8, we 

performed intravenous administration with 4 mg/kg dose of free DOX or sHDL-DOX, 

supplemented with αPD-1 therapy or PBS (Figure 4.14a). To monitor neoantigen-specific T cell 

responses, we utilized a recently reported mutated neo-epitope within Adpgk protein 

(ASMTNRELM → ASMTNMELM mutation), which is presented on MC38 tumor cells in the 

context of H-2D
b
 molecules

56
. The dual sHDL-DOX + αPD-1 chemoimmunotherapy generated 

2.4-fold greater expansion of neoantigen-specific CD8α
+
 T cells among PBMCs, compared with 

free DOX or sHDL-DOX treatment (P < 0.05, Figure 4.14b,c). Importantly, sHDL-DOX + 

αPD-1 dual therapy exerted potent antitumor efficacy, leading to complete regression of 

established tumors (~60 mm
3
 at the initiation of therapy on day 8) to an undetectable level in 80% 

of animals (P < 0.0001, Figure 4.15a,b). This is in contrast to all other treatment groups that 

exhibited increasing average tumor sizes over time. Overall, two cycles of sHDL-DOX + αPD-1 

chemoimmunotherapy led to complete tumor response in 80% of animals (Figure 4.15a,b). On 

the other hand, αPD-1 monotherapy and free DOX + αPD-1 dual therapy mediated tumor 

regression in ~40% of animals. None of the animals treated with DOX or sHDL-DOX 

chemotherapy had tumor regression. Importantly, mice cured of the primary MC38 tumors with 

sHDL-DOX + αPD-1 dual therapy were also completely protected from MC38 tumor cell re-

challenge performed on day 60 by either subcutaneous or intravenous injection (P < 0.01, Figure 

4.15c,d), thus indicating long-term protection against tumor relapse.  

4.5 Conclusion 

In this study, we present our proof-of-concept design that utilizes sHDL nanodiscs for delivering 

an ICD inducer, DOX, and achieving potent antitumor efficacy in combination with ICBs. 

Specifically, we have demonstrated that sHDL nanodiscs, composed of the 37-amino acid 
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ApoA1 mimetic peptide and phospholipids, serve as a promising platform for 

chemoimmunotherapy. Compared with free DOX therapy, sHDL-DOX showed a 27-fold 

increase in PK profiles in animals and increased tumor accumulation without any targeting 

moiety. Monotherapy with sHDL-DOX significantly delayed tumor growth without any overt 

off-target side effects. Importantly, sHDL-DOX treatment triggered robust antitumor T cell 

responses while broadening their epitope recognition to tumor-associated antigens, neoantigens, 

as well as intact whole tumor cells. Elicitation of neoantigen-specific T cell responses is quite 

notable as this class of tumor antigens is under intense investigation for personalized cancer 

vaccines, as we and others have reported
10,50,56

. Furthermore, the therapeutic efficacy of ICBs 

was recently shown to be directly correlated with neoantigen-specific T cell responses
43-45

, thus 

raising the prospect that ―priming‖ tumors with sHDL-DOX therapy may potentiate ICBs - even 

without a priori knowledge of tumor antigens. Indeed, the combination of sHDL-DOX plus ICB 

therapy elicited strong antitumor immune responses and markedly augmented their therapeutic 

efficacy; co-treatment with sHDL-DOX plus αPD-1 IgG antibody induced complete regression 

of established colon carcinoma in 80-88% of animals (CT26 and MC38 tumors in BALB/c and 

C57BL/6 mice, respectively) while protecting all survivors against tumor cell re-challenge. This 

is in stark contrast to the animals treated with free DOX plus αPD-1 dual therapy or αPD-1 

monotherapy, which failed to decrease the average tumor sizes with the response rates remaining 

below 40%. 

An extensive list of nanoparticle systems, such as liposomes, synthetic polymers, micelles, and 

inorganic nanostructures, has been examined for delivery of DOX with varying levels of 

success
34-38

, but their impact on antitumor immunity and hence their potential as a platform for 

chemoimmunotherapy remains to be explored. The work presented here is, to the best of our 
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knowledge, the first report of chemo-nanotechnology designed to trigger ICD of tumor cells and 

elicit T cell immunity against a broad range of tumor antigens, including neoantigens, thereby 

potentiating immune checkpoint blockade. While other conventional nano-formulations may also 

be applicable to this approach, we believe the sHDL system is particularly attractive for 

translation due to the ease of synthesis, established large-scale manufacturing, proven human 

safety, and non-immunogenicity of the ―blank‖ sHDL as demonstrated in a number of clinical 

trials
40,41,57

. In addition, the cardioprotective effect of HDL
58-60

 may further alleviate 

cardiotoxicity associated with sHDL-DOX treatment. Moreover, conventional nanoparticles 

typically require PEGylation for sufficient circulation half-life and drug accumulation in tumors; 

however, repeated administrations of PEGylated materials can cause chronic Hand-Foot 

Syndrome
61

 as well as anti-PEG antibody responses,
62

 thus potentially complicating their 

application in immunotherapy. In contrast, sHDL nanodiscs mimicking endogenous HDL do not 

require PEGylation for efficient DOX delivery. While the precise mechanisms are under 

investigation, we speculate that sHDL-mediated intratumoral delivery of DOX is facilitated in 

part by their ultrasmall particle size (~10 nm), extended pharmacokinetics, and extensive uptake 

by metabolically highly active cancer cells that require a large amount of lipids and cholesterol 

for proliferation
41,48,49

.    

In conclusion, we have produced a new, generalizable framework for chemoimmunotherapy. By 

delivering chemotherapeutic agents via nanocarriers in a manner that sensitizes tumor cells to 

immune activation and subsequent immune checkpoint blockade, we have achieved potent 

antitumor efficacy, leading to elimination of established tumors in 80-88% of animals.  Our 

approach may be readily applied to other chemotherapeutic agents known to induce ICD of 

tumor cells
17,18,21

. As there is intense interest in improving the patient response rate and 
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therapeutic efficacy of immune checkpoint blockade, our strategy presented here may have a 

wide-ranging impact in the field of drug delivery, nanotechnology, and cancer immunotherapy.  
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4.6 Figures 

 

Figure 4.1. Schematic of doxorubicin-loaded sHDL (sHDL-DOX) for chemo-immunotherapy. a, sHDL-

DOX is formulated by incubation of lipid-doxorubicin with preformed-sHDL. b, The ultrasmall size and 

prolonged circulation of sHDL enable intratumoral delivery of DOX, followed by internalization by 

tumor cells and pH-responsive release of DOX in the endosomes/lysosomes. Released DOX kills tumor 

cells and triggers immunogenic cell death, promoting upregulation of calreticulin (the ―eat me‖ signal) 

and release of ―danger ― signals such as HMGB1. Dendritic cells recruited to the immunogenically dying 

tumor cells phagocytose them, process tumor antigens, and cross-prime tumor antigen-specific T cells. 

Antitumor immunity ―primed‖ with sHDL-DOX synergizes with immune checkpoint blockade, leading to 

efficient elimination of established tumors and prevention of tumor relapse. 
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Figure 4.2 . Schematic for the synthesis of lipid-doxorubicin conjugate. 
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Figure 4.3. Mass spectroscopy confirmed the conjugation of doxorubicin to 1,2-Dipalmitoyl-sn-Glycero-

3-Phosphothioethanol (PTD). The Measured m/z of [M-Na]+ is 1415.6939 and predicted value is 

1415.6970. 
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Figure 4.4. Preparation and characterization of sHDL-DOX. a, Gel permeation chromatography (GPC) of 

blank sHDL, the physical mixture of sHDL+DOX, and sHDL covalently attached with DOX (sHDL-

DOX) at 220 nm and 485 nm. b, Transmission electron microscopy (TEM) of blank sHDL and sHDL-

DOX. Scale bars = 50 nm. c-d, Sizes of sHDL-DOX before and after lyophilization/reconstitution 

measured by dynamic light scattering (DLS)(c) and  GPC (d) . e, Release of doxorubicin from sHDL at 

pH 5 and pH 7.5. Data represent mean ± SD (n = 3).  
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Figure 4.5. a-b CT26 cells were incubated with 40 μM DOX or sHDL-DOX for indicated for indicated 

lengths of time (10 min, 10 h, and 24 h). The cellular uptake of DOX or sHDL-DOX was analyzed by 

confocal microscopy (a) and flow cytometry (b). * P < 0.05, **** P < 0.0001 analyzed by two-way 

ANOVA with Bonferroni's multiple comparisons post-test. Data represent mean ± SD (n=3).  
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Figure 4.6. CT26 cells were incubated with sHDL-DiR (20 ng/DiR) for 24 h. Cells were then stained 

with lysotracker (green) and nuclei were stained with Hoechst before confocal microscopy. Scale bar = 20 

μm.  
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Figure 4.7. Cytotoxicity of sHDL-DOX. a-b, CT26 tumor cells (a) or MC38 tumor cells (b) were 

incubated with serial dilutions of free DOX or sHDL-DOX for 72 h, and cellular viability was measured 

by the cell counting kit. Data represent mean ± SD (n = 3) from a representative experiment from 2–3 

independent experiments.  

 

 

 

10 -2 10 -1 100 101 102
0

40

80

120

Free DOX

sHDL-DOX

Blank sHDL

DOX concentration (M)

V
ia

b
ilt

iy
 o

f 
C

T
2
6
 c

e
lls

10 -2 10 -1 100 101 102
0

40

80

120

DOX concentration (M)

V
ia

b
ilt

iy
 o

f 
M

C
3
8
 c

e
lls

Free DOX

sHDL-DOX

Blank sHDL

a

b



 

134 

 

 

 

 

 

 

 

Figure 4.8. CT26 cells were incubated with indicated formulations (equivalent to 50 μM DOX) for 24 h. 

CRT was imaged by confocal microscopy after proper staining with fluorophore-tagged antibodies. 

Release of HMGB1 was quantified by ELISA after CT26 tumor cells were treated with indicated 

formulations (equivalent to 50 μM DOX). * P < 0.05, ** P < 0.01 analyzed by one-way ANOVA with 

Tukey's multiple comparisons post-test. Data represent mean ± SD (n = 3) from a representative 

experiment from 2–3 independent experiments.  

P
B

S
s
H

D
L

F
re

e
 D

O
X

s
H

D
L

-D
O

X
Nucleus DOX CRT Merge

N
o treatm

ent
B
lank sH

D
LFree D

O
XsH

D
L-D

O
X

0

1
0

0
0

2
0

0
0

3
0

0
0

4
0

0
0

5
0

0
0

HMGB1 concentration (pg/mL)

*

**

a

b



 

135 

 

 

  

 

 

Figure 4.9. Antitumor efficacy and T cell immunity exerted by sHDL-DOX monotherapy. a, CT26 

tumor-bearing mice were intravenously injected with sHDL-DiR, and the biodistribution of sHDL-DiR at 

different time points were imaged by the IVIS optical imaging system. b, At 72 h post injection, major 

organs were harvested and imaged ex vivo, and c, fluorescence signal was quantified. d, BALB/c mice 

were intravenously injected with free DOX or sHDL-DOX at 4 mg/kg DOX. Shown are the serum 

concentrations of DOX fitted to the two-compartment model. Data represent mean ± SD (n = 3) from a 

representative experiment from 2-3 independent experiments. e, CT26 tumor-bearing mice were 

intravenously injected with 8 mg/kg DOX or sHDL-DOX mL. Twenty-four hours after injection, mice 

were euthanized and tumors were harvested and prepared into single-cell suspension. The total uptake of 

DOX or sHDL-DOX by all cells in the tumors were measured by flow cytometry and represented as the 

MFI of DOX.  *P < 0.05 analyzed by unpaired t test. n = 5. 
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Figure 4.10. Antitumor efficacy and T cell immunity exerted by sHDL-DOX monotherapy. a, BALB/c 

mice were subcutaneously inoculated with 2×10
5
 CT26 cells on day 0. On days 8, 11, and 14, tumor-

bearing mice were treated with indicated formulations at 4 mg/kg DOX. b-c, The average and individual 

CT26 tumor growth curves for mice treated with indicated formulations. CR = complete tumor regression. 

d, Body weights of CT26 tumor-bearing mice treated with indicated formulations. e, H&E staining of the 

hearts and livers harvested on day 20 from tumor-bearing mice treated with indicated formulations. ** P 

< 0.01, *** P < 0.001, **** P < 0.0001 analyzed by two-way ANOVA (c,d) with Tukey's multiple 

comparisons post-test.  
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Figure 4.11. Antitumor efficacy and T cell immunity exerted by sHDL-DOX monotherapy. BALB/c 

mice were subcutaneously inoculated with 2×10
5
 CT26 cells on day 0. On days 8, 11, and 14, tumor-

bearing mice were treated with indicated formulations at 4 mg/kg DOX. a-b, The percent of tumor cell-

reactive T cells (IFNγ+CD8+) among PBMCs on day 20 was measured by  intracellular cytokine staining 

(ICS). Shown are a the percent of IFNγ+CD8+ among PBMCs on day 20, and b the representative scatter 

plots. c, the percent of CT26 tumor antigen peptide AH1-specific CD8+ T cells among PBMC on day 20, 

and d the representative scatter plots. e-f, Balb/c mice were inoculated with 2×10
5
 CT26 cells on day 0. 

On days 8 and 11, tumor-bearing mice were treated with indicated formulations at 4mg/kg DOX. Shown 

are the percent of CD11c+CD11b+Lyc+ DCs and CD86 levels in the TDLNs (e-f). Data are represented 

as box plots (whiskers 5–95 percentile, n = 4-5) from a representative experiment from 2 independent 

experiments. ** P < 0.01, *** P < 0.001, **** P < 0.0001 analyzed by one-way ANOVA with Tukey's 

multiple comparisons post-test.  
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Figure 4.12. Potentiation of αPD-1 immunotherapy with sHDL-DOX for treatment of CT26 tumors. a, 

BALB/c mice were subcutaneously inoculated with 2×10
5
 CT26 cells on day 0. On days 8, 11, and 14, 

tumor-bearing mice were treated with indicated formulations at 4 mg/kg DOX. αPD-1 was injected i.p. at 

100 ug/dose on days 9, 12, and 15. b, The percent of CT26 tumor antigen AH1-specific CD8+ T cells 

among PBMC on day 20, and c the representative scatter plots. Data are represented as box plots 

(whiskers 5–95 percentile). n = 5 from a representative experiment from 2 independent experiments. d, 

Individual growth curves for mice treated with indicated formulations. CR = complete tumor regression. e, 

The average tumor growth curves for mice treated with indicated formulations. Data represent mean ± SD 

(n = 8) from a representative experiment from 2 independent experiments. f-g, On day 60, cured mice in e 

were re-challenged subcutaneously (f) or intravenously (g) with 2×10
5 
 CT26 cells. Shown are the animal 

survival (f) and lung metastasis (g) of CT26 cells on day 22 after re-challenge. Naïve mice were used as 

control and inoculated with the same number of tumor cells. * P < 0.05, ** P < 0.01, and **** P < 

0.0001 analyzed by one-way ANOVA (b), or two-way ANOVA (e) with Tukey's multiple comparisons 

post-test, or log rank (Mantel-Cox) test (f).  
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Figure 4.13. Antitumor immune responses in the tumor microenvironment. a, BALB/c mice were 

subcutaneously inoculated with 2×10
5
 CT26 cells on day 0. On days 8, and 11, CT26 tumor-bearing mice 

were treated with indicated formulations at 4 mg/kg DOX. For the combination immunotherapy, αPD-1 

was injected i.p. at 100 ug/dose on days 9 and 12. Shown are the percent of CD8+ T cells (a), the percent 

of AH1-specific CD8+ T cells (b), and the number of AH1-specific CD8+ T cells/250,000 cells (c) in 

tumors on day 15. * P < 0.05 analyzed by one-way ANOVA with Tukey's multiple comparisons post-test. 

Data are represented as box plots (whiskers 5–95 percentile). n = 5 from a representative experiment from 

2 independent experiments.  
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Figure 4.14. Chemo-immunotherapy for induction of neoantigen-specific T cell responses and 

elimination of MC38 tumors. a. C57BL/6 mice were inoculated subcutaneously with 2×10
5
 MC38 cells 

on day 0. On days 8 and 11, tumor-bearing mice were treated with indicated DOX-containing 

formulations at 4 mg/kg DOX. For the combination immunotherapy, αPD-1 was injected i.p. at 100 

μg/dose on days 9 and 12. On day 18, the percent of Adpgk-specific CD8+ T cells among PBMCs was 

measured. Data are represented as box plots (whiskers 5–95 percentile). n = 5 for no treatment and n = 8 

for other groups, from a representative experiment from 2 independent experiments. b-c, The percent of 

Adpgk-specific CD8+ T cells among PBMCs (b) and the representative scatter plots (c). * P < 0.05, ** P 

< 0.01, and **** P < 0.0001 analyzed by one-way ANOVA (b).  
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Figure 4.15. Chemo-immunotherapy for induction of neoantigen-specific T cell responses and 

elimination of MC38 tumors. a. C57BL/6 mice were inoculated subcutaneously with 2×10
5
 MC38 cells 

on day 0. On days 8 and 11, tumor-bearing mice were treated with indicated DOX-containing 

formulations at 4 mg/kg DOX. For the combination immunotherapy, αPD-1 was injected i.p. at 100 

μg/dose on days 9 and 12. a, Individual tumor growth curves of mice treated with indicated formulations. 

CR = complete tumor regression. b, The average tumor growth curves of mice treated with indicated 

formulations. Data represent mean ± SD. n = 8-10, from a representative experiment from 2 independent 

experiments. c-d, On day 60, cured mice were re-challenged s.c. (c) or i.v (d) with 2×10
5 

MC38 cells. 

Shown are the survival (c) and lung metastasis of MC38 cells (d) on day 26 after re-challenge. Naïve 

mice were used as control and inoculated with the same number of tumor cells. * P < 0.05, ** P < 0.01, 

and **** P < 0.0001 analyzed by two-way ANOVA (b) with Tukey's multiple comparisons post-test, or 

log rank (Mantel-Cox) test (c).  
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Chapter 5 Conclusion 

5.1 Significance 

Recent innovations in tumor exome sequencing have signaled the new era of personalized cancer 

immunotherapy with patient-specific neo-antigens. However, a general methodology of inducing 

strong T cell responses against these neoantigens is still lacking.   

To educate the immune system to mount strong neoantigen-specific T cell responses, the 

neoantigens need to be efficiently delivered in lymphoid organs such as lymph nodes, where 

high concentrations of dendritic cells are available to present the neoantigens in the context of 

MHC class I or MHC class II that can be recognized by CD8+ T or CD4+ T cells bearing the 

complementary T cell receptors (TCR).
1
 In addition, adjuvants also need to be internalized by 

dendritic cells in order to upregulate activation markers and induce secretion of cytokines 

required for T cell activation. Traditional soluble vaccines are composed of soluble antigen 

peptides and adjuvants. Due to the small size of antigens, they can be quickly absorbed into 

systemic circulation or bind to non-dendritic cells. The amount of antigens that can be delivered 

into dendritic cells is very small.
2
 Similarly, the lymph nodes draining of soluble adjuvant can be 

also very poor and the adjuvant is not always codelivered in dendritic cells, so the overall T cell 

responses are very weak. Although water-in-oil emulsions have been used to improve the T cell 

responses, recent studies showed depot formation and persistent antigen release at the injection 

site can impair antigen-specific T cell responses through induction of IFN-γ-mediated and Fas 

ligand-dependent apoptosis. 
3
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To efficiently enhance the lymph nodes draining and delivery of antigens and adjuvants into 

dendritic cells, our strategy is to use synthetic high density lipoprotein (sHDL) based nanodiscs. 

sHDL is composed of phospholipids and ApoA-1 mimetic peptides, which wrap around the 

phospholipid bilayer to form the nanodisc structure that is about 10 nm in diameter. Previously 

sHDL has been tested in Phase I and II clinical trials for the treatment of cardiovascular 

diseases.
4
 The well-established cGMP manufacturing protocols, good biocompatibility and 

safety profiles of sHDL nanodiscs make them very attractive as delivery vehicles. In this study, 

we customized different tumor antigen peptides and then anchored them to lipid bilayer of 

nanodiscs by adding phospholipid tails to these peptides. In addition, a TLR9 agonist CpG was 

modified with cholestesrol, which has high binding affinity to sHDL and enables the efficient 

loading of CpG in nanodiscs.
5
 We demonstrated that sHDL nanodiscs coupled with antigens and 

adjuvants can dramatically improve the lymph nodes draining and enhance antigen presentation 

on dendritic cells compared with free antigens and adjuvants. Strikingly, nanodiscs elicited up to 

47-fold greater frequencies of neoantigen-specific CTLs than soluble vaccines and even 31-fold 

greater than perhaps the strongest adjuvant in clinical trials (i.e. CpG in Montanide). Moreover, 

multi-epitope vaccination generated broad-spectrum T-cell responses that potently inhibited 

tumor growth. Nanodiscs eliminated established MC-38 and B16F10 tumors when combined 

with anti-PD-1 and anti-CTLA-4 therapy. Such vaccine nanodiscs also showed potent 

therapeutic efficacy for the treatment of various mucosal tumors, including lung tumors, oral 

tumors and intravaginal tumors. These findings may suggest a general strategy for personalized 

nanomedicine and represent a powerful approach for cancer immunotherapy. 

In addition to the use of nanodisc-based peptide vaccine for elicitation of antitumor immune 

responses, we also sought to develop alternative approaches. For example, we demonstrated that 
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by simply incorporating a hydrophobic anticancer drug withalongolide A-4,19,27-triacetate 

(WGA-TA) in sHDL nanodiscs, we could enhance the therapeutic outcome of WGA-TA and 

reduce the side effects due to the improved tumor targeted delivery of nanodiscs.
6
 In addition, 

some chemotherapeutic drugs have been reported to not only kill tumor cells directly, but also 

induce antitumor T cell responses, prompting a number of clinical trials on combination 

chemoimmunotherapy.
7
 However, it remains unclear how to achieve potent immune activation 

with traditional chemotherapeutics in a manner that is safe, effective, and compatible with 

immunotherapy. Here we show that high-density lipoprotein (HDL)-mimicking nanodiscs loaded 

with doxorubicin (DOX), a widely used chemotherapeutic agent, can potentiate immune 

checkpoint blockade in murine tumor models. Delivery of DOX via nanodiscs triggered 

immunogenic cell death of cancer cells and exerted antitumor efficacy without any overt off-

target side effects. Importantly, ―priming‖ tumors with DOX-carrying nanodiscs elicited robust 

antitumor CD8+ T cell responses while broadening their epitope recognition to tumor-associated 

antigens, neoantigens, as well as intact whole tumor cells. Combination chemoimmunotherapy 

with nanodiscs plus anti-PD-1 therapy induced complete regression of established CT26 and 

MC38 colon carcinoma tumors in 80-88% of animals and protected survivors against tumor 

recurrence. Our work provides a new, generalizable framework for utilizing nanoparticle-based 

chemotherapy to initiate antitumor immunity and sensitize tumors to immune checkpoint 

blockade. 

5.2 Future Directions 

As one of the crucial component of nanodisc-based peptide vaccines, adjuvants are critical for 

providing signals needed for T cell activation. In our study, we use CpG, which is a TLR9 

agonist as the adjuvant. Although we saw promising results on mice, it remains to be seen how 
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well this adjuvant can work in humans, because the expression patterns of TLR9 receptors in 

mice and humans are different.
8
 In the future, different adjuvants can be tested in parallel and 

those that are more suitable for human use can be included in the vaccine nanodisc platform in 

order to facilitate the clinical translation. 

In addition, our synthetic high density lipoprotein (sHDL) nanodisc platform mimics the 

structure and function of endogenous HDL in vivo, so that they share many properties such as 

ultrasmall sizes and long circulation time in vivo. However, it should be noted that sHDL still 

has a shorter circulation time than endogenous HDL. Further research is needed to further 

optimize the structural peptide of sHDL in terms of the lengths and sequences, so that the sHDL 

has even longer circulation time in vivo, which can be useful for systemic delivery of therapeutic 

molecules.  
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