
Near Data Processing for Efficient and Trusted Systems

by

Shaizeen Aga

A dissertation submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy
(Computer Science and Engineering)

in The University of Michigan
2018

Doctoral Committee:

Associate Professor Satish Narayanasamy, Chair
Professor Todd Austin
Assistant Professor Reetuparna Das
Professor Mingyan Liu
Professor Scott Mahlke



Shaizeen Aga

shaizeen@umich.edu

ORCID iD: 0000-0001-9552-0508

c© Shaizeen Aga 2018



To my parents for their courage to defy norms:

My mother, Sherbanu Aga

My father, Dilawarhusen Aga

ii



ACKNOWLEDGEMENTS

The path from dreams to success does exist.

May you have the vision to find it,

the courage to get on to it,

and the perseverance to follow it.

Wishing you a great journey.

-Kalpana Chawla, Indian-American Astronaut

Her message aboard the space shuttle Columbia to students of her college in India.

First and foremost, I would like to express my gratitude to my parents. They have been

a constant source of support and encouragement throughout my life. It is thanks to their

courage to defy social norms which discouraged letting a girl child pursue education that I

am here today. Many thanks also to my school and undergraduate professors who helped

me believe in myself.

This dissertation is a product of countless interactions with my advisor Professor Satish

Narayanasamy. I am grateful to him for encouraging me to pursue a doctorate when I

wasn’t very confident in my ability to conduct research. He has helped and guided me over

the entire course of my graduate studies. He has contributed immensely in my transforma-

tion into a computer scientist who can think critically, express ideas crisply and for that I

iii



will forever be grateful to him.

I am also grateful to my amazing committee members Professor Todd Austin, Professor

Reetuparna Das, Professor Mingyan Liu and Professor Scott Mahlke for their insightful

comments on my research and for taking time out to evaluate my dissertation. Specifically,

Professor Reetuparna Das advised me on my Compute Caches project and her enthusiasm

for this work helped me overcome various hurdles.

I have had the pleasure to collaborate with many worthy researchers and fellow graduate

students over the course of my graduate studies. I am grateful to Sriram Krishnamoorthy

from Pacific Northwest National Labs for his patience and help during my CilkSpec project.

I am also grateful to Abhay Singh for countless discussions on memory models and his

ability to discuss any technical topic under the sun with ease. Thanks to Supreet Jeloka

who helped me understand the intricacies of SRAMs and Arun Subramaniyan for his help

with Compute Caches project. Many thanks to Byoungchan Oh for helpful discussions on

memories and Salessawi Ferede Yitbarek for always being encouraging and being ever so

ready to discuss new research ideas. Finally, thanks to my lab-mates Chun-Hung Hsiao and

Subarno Banerjee for many useful discussions.

Over the course of my time at University of Michigan, I have been blessed to have an

amazing group of friends who have helped me immensely. Thanks to Daya for being super-

helpful and for always being available to answer my questions. Thanks to Ankit for being

a constant source of support and his poor jokes. Thanks to Divya and Megha for amazing

food.

Last but not the least I would like to sincerely thank my extended family who make life

worth living. Neel, for showing me the bright side of things and endeavoring to make me

iv



happy. My amazing roommate Komal for countless discussions on surviving graduate life.

My super supportive set of friends Trupti and Akshay for whole heartedly believing in my

ability to achieve anything I put my mind to.

v



TABLE OF CONTENTS

DEDICATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii

ACKNOWLEDGEMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xii

CHAPTER

I. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Compute Caches: Efficient Very Large Vector Processing . . . . . 3
1.2 InvisiMem: Smart Memory Defenses for Memory Bus Side Channel 4
1.3 Sanctuary: Secure and Efficient Memory Management . . . . . . . 6
1.4 Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

II. Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1 NDP proposals without 3D Stacked Memory . . . . . . . . . . . . 9
2.2 3D Stacked Memory . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2.1 NDP proposals with 3D Stacked Memory . . . . . . . . 12
2.3 Breaking New Ground in NDP . . . . . . . . . . . . . . . . . . . 13

III. Compute Caches: Caches that Compute . . . . . . . . . . . . . . . . . 14

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.2.1 Cache Hierarchy and Geometry . . . . . . . . . . . . . 18
3.2.2 Bit-line Computing . . . . . . . . . . . . . . . . . . . . 19

3.3 A Case for Compute Caches . . . . . . . . . . . . . . . . . . . . . 20
3.4 Compute Cache Architecture . . . . . . . . . . . . . . . . . . . . 22

vi



3.4.1 Instruction Set Architecture (ISA) . . . . . . . . . . . . 23
3.4.2 Cache Sub-arrays with In-Place Compute . . . . . . . . 24
3.4.3 Operand Locality . . . . . . . . . . . . . . . . . . . . . 26
3.4.4 Managing Parallelism . . . . . . . . . . . . . . . . . . 29
3.4.5 Fetching In-Place Operands . . . . . . . . . . . . . . . 30
3.4.6 Cache Coherence . . . . . . . . . . . . . . . . . . . . . 32
3.4.7 Consistency Model Implications . . . . . . . . . . . . . 33
3.4.8 Memory Disambiguation and Store Coalescing . . . . . 33
3.4.9 Error Detection and Correction . . . . . . . . . . . . . . 35
3.4.10 Near-Place Compute Caches . . . . . . . . . . . . . . . 35

3.5 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.6 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.6.1 Simulation Methodology . . . . . . . . . . . . . . . . . 38
3.6.2 Application Customization and Setup . . . . . . . . . . 38
3.6.3 Compute Sub-Array: Delay and Area Impact . . . . . . 40
3.6.4 Microbenchmark Study . . . . . . . . . . . . . . . . . . 41
3.6.5 Application Benchmarks . . . . . . . . . . . . . . . . . 44

3.7 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.8 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.9 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

IV. InvisiMem: A Low-overhead Secure Processor . . . . . . . . . . . . . . 52

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
4.2 Motivation and Background . . . . . . . . . . . . . . . . . . . . 57

4.2.1 Enclaves for Isolation . . . . . . . . . . . . . . . . . . . 58
4.2.2 Threat Model . . . . . . . . . . . . . . . . . . . . . . . 59
4.2.3 Memory Bus Side Channel and Cold Boot Defenses . . 60
4.2.4 Smart Memory . . . . . . . . . . . . . . . . . . . . . . 62

4.3 InvisiMem Design . . . . . . . . . . . . . . . . . . . . . . . . . . 63
4.3.1 Advantages of Smart Memory . . . . . . . . . . . . . . 63
4.3.2 Protecting Memory Address and Type . . . . . . . . . . 64
4.3.3 Guaranteeing Data Integrity and Freshness . . . . . . . 65
4.3.4 Mitigating Memory Bus Timing Channel . . . . . . . . 66
4.3.5 Performance: OTP Pre-computation . . . . . . . . . . . 68
4.3.6 Space: Meta-Data in Smart Memory . . . . . . . . . . . 69
4.3.7 Remote Attestation and Key Exchange . . . . . . . . . 70
4.3.8 Key and Timestamp Management . . . . . . . . . . . . 72
4.3.9 Near InvisiMem . . . . . . . . . . . . . . . . . . . . . 73

4.4 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
4.4.1 Hardware Support for Cryptographic Primitives . . . . . 74
4.4.2 InvisiMem far Security Protocol . . . . . . . . . . . . . 76
4.4.3 InvisiMem near Security Protocol . . . . . . . . . . . . 77
4.4.4 Storing Meta-Data in Smart Memory . . . . . . . . . . 77

4.5 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

vii



4.5.1 Methodology . . . . . . . . . . . . . . . . . . . . . . . 78
4.5.2 Unsecure Smart Memory Performance and Energy . . . 81
4.5.3 Far InvisiMem . . . . . . . . . . . . . . . . . . . . . . 82
4.5.4 Static Packet Rate for Timing Channel . . . . . . . . . . 83
4.5.5 Near InvisiMem . . . . . . . . . . . . . . . . . . . . . 85
4.5.6 Memory Space Overhead . . . . . . . . . . . . . . . . . 85
4.5.7 Fragmented Vs Non-Fragmented . . . . . . . . . . . . . 86

4.6 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
4.6.1 3D Stacking for Security . . . . . . . . . . . . . . . . . 87
4.6.2 Secure Hardware . . . . . . . . . . . . . . . . . . . . . 87

4.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

V. Sanctuary: Efficient Page Fault Channel Defense . . . . . . . . . . . . 90

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
5.2 Motivation and Background . . . . . . . . . . . . . . . . . . . . 96

5.2.1 Intel SGX . . . . . . . . . . . . . . . . . . . . . . . . . 96
5.2.2 Threat Model . . . . . . . . . . . . . . . . . . . . . . . 97
5.2.3 Path Oblivious RAM . . . . . . . . . . . . . . . . . . . 98

5.3 Sanctuary Design . . . . . . . . . . . . . . . . . . . . . . . . . . 100
5.3.1 Secure Runtime . . . . . . . . . . . . . . . . . . . . . . 100
5.3.2 Oblivious Page Management . . . . . . . . . . . . . . . 101
5.3.3 EPC-lite to reduce OPAM reliance . . . . . . . . . . . . 110

5.4 Sanctuary Implementation . . . . . . . . . . . . . . . . . . . . . . 112
5.4.1 Sanctuary Metadata . . . . . . . . . . . . . . . . . . . . 112
5.4.2 OPAM Implementation . . . . . . . . . . . . . . . . . . 115

5.5 Applications and Security Context . . . . . . . . . . . . . . . . . 117
5.6 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

5.6.1 Methodology . . . . . . . . . . . . . . . . . . . . . . . 120
5.6.2 Memory Footprint of Applications . . . . . . . . . . . . 122
5.6.3 Evaluation of Smart Tree Growth . . . . . . . . . . . . 123
5.6.4 Benefits of Thin Nodes . . . . . . . . . . . . . . . . . . 124
5.6.5 Sanctuary Performance . . . . . . . . . . . . . . . . . . 125

5.7 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
5.7.1 Secure Hardware Proposals . . . . . . . . . . . . . . . 127
5.7.2 Prior Page Fault Channel Mitigations . . . . . . . . . . 128
5.7.3 Optimizing SGX Performance . . . . . . . . . . . . . . 129

5.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

VI. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

BIBLIOGRAPHY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

viii



LIST OF FIGURES

Figure

3.1 Compute Cache overview. (a) Cache hierarchy. (b) Cache geometry (c)
In-place compute in a sub-array. . . . . . . . . . . . . . . . . . . . . . . 18

3.2 SRAM circuit for in-place operations. Two rows (WLi and WLj) are
activated. An AND operation is performed by sensing bit-line (BL). All
the bit-lines are initially pre-charged to ‘1’. If both the activated bits in a
column have a ‘1’ (column ‘n’), then the BL stays high and it is sensed
as a ‘1’. If any one of the bits were ‘0’ it will lower the BL voltage below
Vref and will be sensed as a ‘0’. A NOR operation can be performed by
sensing bit-line bar (BLB). . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.3 Proportion of energy (top) for bulk comparison operation and area (bot-
tom). Red dot depicts logic capability. . . . . . . . . . . . . . . . . . . . 20

3.4 In-place copy operation (from row i to j). . . . . . . . . . . . . . . . . . . 24
3.5 Cache organization example, address decoding ([i][j] = set i, way j), al-

ternate address decoding for parallel tag-data access caches . . . . . . . . 26
3.6 Compute Caches in action . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.7 Benefit of CC for 4KB operand. a) Throughput b) Dynamic energy . . . . 41
3.8 Total energy benefit of CC for 4KB operand. . . . . . . . . . . . . . . . . 41
3.9 a) Total energy of in-place vs near place for 4KB operand b) Savings in

dynamic energy for 4KB operand for different cache levels . . . . . . . . 43
3.10 a) Total energy benefit b) Performance improvement of CC for applications 44
3.11 Performance overhead of CC for checkpointing . . . . . . . . . . . . . . 45
3.12 Total energy with and without checkpointing . . . . . . . . . . . . . . . . 46
4.1 Smart memory based secure designs. a) InvisiMem far b) InvisiMem near 55
4.2 Symmetric encryption of addresses is not enough. (a) Distinguishing

reads from writes (b) Correlation attack . . . . . . . . . . . . . . . . . . 64
4.3 Time taken to respond by memory can leak sensitive inputs. . . . . . . . . 67
4.4 Existing client-host remote attestation and key exchange (left). Smart

memory authentication and key exchange under InvisiMem (right). . . . . 70
4.5 InvisiMem far Security Protocol for Read. td: timestamp stored with data. 75
4.6 InvisiMem far Security Protocol for Write. . . . . . . . . . . . . . . . . . 75
4.7 (a) Fragmented Design (b) Non-fragmented Design . . . . . . . . . . . . 78

ix



4.8 Performance overhead of far-memory processor unsecure and secure de-
signs w.r.t DRAM hp. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

4.9 Energy overhead w.r.t DRAM hp. . . . . . . . . . . . . . . . . . . . . . 81
4.10 ED2 overhead w.r.t InvisiMem far without timing channel defense for

various static memory access rates. . . . . . . . . . . . . . . . . . . . . . 83
4.11 Overheads w.r.t InvisiMem far without timing channel defense for vari-

ous static memory access rates. . . . . . . . . . . . . . . . . . . . . . . . 83
4.12 Comparison to dynamic scheme. . . . . . . . . . . . . . . . . . . . . . . 84
4.13 Performance overhead of near-memory designs w.r.t DRAM hp. . . . . . 85
5.1 Memory organization under SGX (a) and under Sanctuary (b). CFI: Con-

fidentiality, Freshness, Integrity . . . . . . . . . . . . . . . . . . . . . . . 91
5.2 Accessing block a involves read and write of path to leaf to which the

block is mapped. (a) Depicts stash after end of path read. (b) Depicts
stash after end of path write. Block with dummy data is represented as φ. 98

5.3 Sanctuary page table entries (PTE). A virtual address maps to EPC or
non-EPC memory. For the former, PTE is as before (a) consisting of
physical page number and PTE metadata. For the latter, we store leaf and
tree level (b). This allows about 8TB of non-EPC memory per enclave. . . 102

5.4 Smart growth. Adding nodes to a full tree (50% utilization). Naive
growth adds nodes gradually from left to right which will cause the page
addition to fail as path to leaf 7 is full. Smart growth prioritizes adding
nodes to path which is accessed. As a consequence, the addition succeeds. 103

5.5 Finding page 10 in new tree which was mapped to leaf 3 in old tree. We
employ deterministic remapping; even addresses get remapped to right
paths and odd addresses to left paths. We also remember tree level with
the mapping. To find the page, we find leaf in tree with #old levels and
traverse the tree in relevant direction based on address. . . . . . . . . . . 105

5.6 Fast background spill processing. We store past failed spills in a sorted
order (by leaf id). Figure shows access of path to leaf 3 which has one
empty node (checked) to which we can potentially spill a past failed spill.
We also show the leaf ranges that can be spilled to each node. Simple
range checks against these leaf ranges of available failed spills can help
us process past failed spills quickly. . . . . . . . . . . . . . . . . . . . . 109

5.7 Thin nodes optimization: page movements reduce considerably with very
small increase in tree height. . . . . . . . . . . . . . . . . . . . . . . . . 109

5.8 Memory footprint (accessed) of applications. . . . . . . . . . . . . . . . 122
5.9 Comparison of maximum spill failures (average) for naive tree growth

and smart growth. Smart tree growth considerably reduces spill failures
by prioritizing accessed paths while adding space. . . . . . . . . . . . . . 123

5.10 (a) Realized benefit of thin nodes optimization : page moves reduce con-
siderably while OPAM events do not increase. (b) Performance overhead
for existing EPC size (96MB) with thin nodes optimization. . . . . . . . . 123

5.11 Performance overhead with a four channel memory system for increasing
enclave-lite memory size (total isolated memory (usable) is depicted). . . 124

5.12 EPC misses per kilo instructions. . . . . . . . . . . . . . . . . . . . . . . 124

x



LIST OF TABLES

Table

3.1 Cache energy per read access . . . . . . . . . . . . . . . . . . . . . . . . 21
3.2 Compute Cache ISA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.3 Cache geometry and operand locality constraint. . . . . . . . . . . . . . 28
3.4 Simulator parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.5 Cache energy (pJ) per cache-block (64-byte) . . . . . . . . . . . . . . . . 41
4.1 Comparison of InvisiMem to ORAM-based defenses. Smart memory en-

ables more efficient and simpler solutions. . . . . . . . . . . . . . . . . . 58
4.2 Processor and memory model. . . . . . . . . . . . . . . . . . . . . . . . 79
4.3 LLC MPKI and IPC for DRAM hp. . . . . . . . . . . . . . . . . . . . . 79
4.4 Request and response packet sizes (in bytes). . . . . . . . . . . . . . . . 80
4.5 Memory space overheads. . . . . . . . . . . . . . . . . . . . . . . . . . . 86
5.1 Instructions (in billions) and CPI for unsecure baseline (native execution). 120

xi



ABSTRACT

Near Data Processing for Efficient and Trusted Systems

by

Shaizeen Aga

Chair: Satish Narayanasamy

We live in a world which constantly produces data at a rate which only increases with

time. Conventional processor architectures fail to process this abundant data in an efficient

manner as they expend significant energy in instruction processing and moving data over

deep memory hierarchies. Furthermore, to process large amounts of data in a cost effective

manner, there is increased demand for remote computation. While cloud service providers

have come up with innovative solutions to cater to this increased demand, the security

concerns users feel for their data remains a strong impediment to their wide scale adoption.

An exciting technique in our repertoire to deal with these challenges is near-data pro-

cessing. Near-data processing (NDP) is a data-centric paradigm which moves computation

to where data resides. This dissertation exploits NDP to both process the data deluge we

face efficiently and design low-overhead secure hardware designs.

To this end, we first propose Compute Caches, a novel NDP technique. Simple augmen-

xii



tations to underlying SRAM design enable caches to perform commonly used operations.

In-place computation in caches not only avoids excessive data movement over memory

hierarchy, but also significantly reduces instruction processing energy as independent sub-

units inside caches perform computation in parallel. Compute Caches significantly improve

the performance and reduce energy expended for a suite of data intensive applications.

Second, this dissertation identifies security advantages of NDP. While memory bus

side channel has received much attention, a low-overhead hardware design which defends

against it remains elusive. We observe that smart memory, memory with compute capa-

bility, can dramatically simplify this problem. To exploit this observation, we propose

InvisiMem which uses the logic layer in the smart memory to implement cryptographic

primitives, which aid in addressing memory bus side channel efficiently. Our solutions

obviate the need for expensive constructs like Oblivious RAM (ORAM) and Merkle trees,

and have one to two orders of magnitude lower overheads for performance, space, energy,

and memory bandwidth, compared to prior solutions.

This dissertation also addresses a related vulnerability of page fault side channel in

which the Operating System (OS) induces page faults to learn application’s address trace

and deduces application secrets from it. To tackle it, we propose Sanctuary which obfus-

cates page fault channel while allowing the OS to manage memory as a resource. To do so,

we design a novel construct, Oblivious Page Management (OPAM) which is derived from

ORAM but is customized for page management context. We employ near-memory page

moves to reduce OPAM overhead and also propose a novel memory partition to reduce

OPAM transactions required. For a suite of cloud applications which process sensitive data

we show that page fault channel can be tackled at reasonable overheads.

xiii



CHAPTER I

Introduction

We are constantly being bombarded with new data everyday from varied sources. Nearly

90% of data that exists today has been produced in just the last two years, and we continue

to generate nearly 2.5 quintillion bytes per day [3]. Analyzing this data holds the key

to answering many unsolved problems, from accurate weather prediction to personalized

medicine.

This data deluge, however, has exposed us to several challenges that need addressing.

First, it has brought to light severe inefficiencies in conventional architectures which were

not designed with this unprecedented data deluge in mind. Second, it has brought forth new

pressing needs like increased demand for secure remote computations that need efficient

solutions. The focus of this dissertation is to identify these inefficiencies, new pressing

needs and address them efficiently with innovative architectural solutions.

An important shortcoming of conventional architectures that we focus on in this work

is their compute centric nature. Today’s conventional architectures spend large amounts

of energy and time in instruction processing and data movement over deep memory hi-

erarchies and very little on actual computation. Vector units available today only reduce

1



instruction processing overhead to some extent. This makes conventional architectures

ill-equipped to run current data centric applications which process large amounts of data.

Given the wealth of interesting insights this data holds, it is paramount to design architec-

tures which address these inefficiencies and which can process humongous amounts of data

in an efficient manner both from performance and energy perspective.

Furthermore, there is an increased demand for remote computation to process the data

explosion we are facing in a cost effective manner. Cloud computing solutions are being

increasingly looked up to in order to meet this demand. While cloud service providers are

innovating at a lightning pace in the breadth of services they provide, from large graph pro-

cessing to genetic data processing, the security concerns users feels for their data remains

a strong impediment to adoption of cloud computing. As a consequence, there is a press-

ing need for low-overhead hardware designs which provide strong privacy and security

guarantees.

An exciting technique in our repertoire to deal with these challenges is near-data pro-

cessing (NDP). Prior works have observed that moving computation to where data is (as is

done in NDP) is one way we can tackle the data deluge we are facing today. The research in

this dissertation, however, harnesses NDP in novel ways and brings out hitherto untapped

benefits of this paradigm.

To this end, we first push NDP to a new extreme where we not only move computation

to where data is but transform existing memory elements (caches) into computation units.

Second, this dissertation also shows that NDP not only has energy and performance effi-

ciency benefits but it can also help us provide security guarantees in an efficient manner.

As such, the research in this dissertation proposes low-overhead defenses to tackle memory

2



bus side channel and page fault side channel. Next, we give a brief overview of each of

these solutions.

1.1 Compute Caches: Efficient Very Large Vector Processing

This dissertation identifies a novel way to exploit the NDP paradigm by enabling pro-

cessor caches to perform computation. We propose the Compute Cache architecture which

enables in-place computation in caches. To do so, Compute Caches use the emerging bit-

line SRAM circuit technology [73, 76] to re-purpose existing cache elements and transform

them into active very large vector computational units. Using such a transformation helps

us support several operations: copy, search, compare and logical operations (and, or, xor,

and not) which are widely used primitives and can help accelerate a wide variety of appli-

cations.

Efficiency of Compute Caches arises from two main sources: massive parallelism and

reduced energy due to data movement. A cache is typically organized as a set of smaller

memory arrays. A typical high-end processor has thousands of these memory arrays. All

these memory arrays can potentially compute concurrently on data items stored in them,

enabling us to efficiently exploit large scale data-level parallelism (e.g., 30 MB of cache can

be repurposed as 960K bit-serial computation units). Furthermore, since the computation

is done in-place within a cache sub-array, without transferring data in or out of it, the

energy and performance overhead incurred in on-chip data movement — transferring data

to and from the core, interconnects, and various levels of memory hierarchy — is drastically

reduced.
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We address several challenges in realizing the Compute Cache architecture. We discuss

instruction set extensions and system software support needed to realize Compute Caches.

We identify and solve a new problem unique to Compute Caches that we refer to as operand

locality, which is borne out of the requirement that the data operands be stored in caches

such that they share the same set of bit-lines. We also discuss simple solutions to problems

such as managing parallelism across various cache levels and banks that arise as a conse-

quence of integrating compute capable caches into a conventional cache hierarchy while

preserving properties such as coherence, consistency and reliability. To support Compute

Cache operations without operand locality, we also study near-place processing in cache.

We re-designed several important applications (text processing, databases, checkpoint-

ing) to utilize Compute Cache operations. We demonstrate significant speedup (1.9×) and

energy savings (2.4×) compared to processors with conventional SIMD units. While our

savings for applications are limited by the fraction of their computation that can be ac-

celerated using Compute Caches (Amdahl’s law), our micro-benchmarks demonstrate that

applications with larger fraction of Compute Cache operations could benefit even more

(54× throughput, 9× dynamic energy savings).

1.2 InvisiMem: Smart Memory Defenses for Memory Bus Side Chan-

nel

While performance and energy benefits of NDP have been exploited before in alternate

ways, this dissertation also identifies security advantages that NDP can furnish. Privacy

concerns is one of the strongest impediment to wider adoption of cloud computing. An
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important security concern for trusted cloud computing is the memory bus side channel.

An attacker can learn sensitive information about an application by observing data and

addresses over the memory bus. While it has received much attention, a low-overhead

solution for it is still beyond reach.

Traditional solutions to fix this vulnerability employ the Oblivious RAM (ORAM) [60]

construct to hide leaking addresses over the bus. ORAM is a cryptographic construction

that obfuscates memory accesses and makes them indistinguishable from a random access

pattern. A secure processor can implement ORAM by issuing several memory accesses for

every ORAM access. Depending on the size of ORAM, an ORAM access may incur two to

three orders of magnitude increase in memory bandwidth and latency compared to a normal

DRAM access. In spite of recent advancements [111, 56, 93, 160], even with significant

custom hardware support [56], an ORAM-enabled secure processor increases memory ac-

cess latency by 20X, which can result in a performance overhead of about 4X. Beside

hiding addresses accessed, it is also paramount to hide memory access times, memory ad-

dress trace length and provide other security guarantees like data freshness. Providing these

additional guarantees only adds to existing severe ORAM overheads.

This dissertation observes that smart memory, memory with compute capability and

a packetized interface, can dramatically simplify this problem. Such smart memories are

possible today due to recent advancements in 3D integration technology such as the Hybrid

Memory Cube (HMC) [12] which make it possible to stack DRAM layers on top of logic

layers, and connect them using Through Silicon Via (TSV).

Our proposed solution InvisiMem expands the trust base to include the logic layer in

the smart memory to implement cryptographic primitives, which aid in addressing several
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memory bus side channel vulnerabilities efficiently. This allows the secure host processor

to send encrypted addresses over the untrusted memory bus, and thereby eliminates the

need for expensive address obfuscation techniques based on ORAM. Additional measures

are required for address confidentiality which we identify and implement efficiently. In ad-

dition to address confidentiality, we also discuss how smart memory helps mitigate memory

bus timing channel using constant heart-beat packets.

Furthermore, we also observe that smart memory can help reduce the overhead in-

curred for guaranteeing data freshness. An adversary tapping the memory bus can rollback

the state of a memory block by using older messages. To defeat such replay attacks, the

secure processor needs to maintain additional state (version numbers) to ensure that a read

response returns the latest version for a memory block ( [152, 56]). With compute capa-

bility in memory, InvisiMem establishes a secure channel of communication between the

secure processor and memory, such that it guarantees freshness without maintaining such

version numbers in the secure host processor.

We demonstrate that InvisiMem designs provide strong defenses against memory bus

side channels and efficient data freshness guarantee and have one to two orders of magni-

tude of lower overheads for performance, space, energy, and memory bandwidth, compared

to prior solutions.

1.3 Sanctuary: Secure and Efficient Memory Management

This dissertation also harnesses NDP to lower the overheads for page fault channel

defense. Current state of the art secure processors like Intel SGX (Software Guard Exten-
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sions) leave virtual memory management to the operating system. An untrusted operating

system can exploit this to induce page faults on every memory access by the application.

By doing this, a malicious OS can learn memory access trace of the application at page

granularity. A recent work [151] has demonstrated how an application’s page access pat-

tern obtained via page-fault side channel can be used to deduce the program path it took

during execution which in turn can help deduce the application’s sensitive inputs or outputs.

Specifically, they showed how the input image to an image processing application can be

completely recovered. This can have catastrophic consequences for privacy of confidential

data like medical images which are being processed by cloud services.

Current solutions to fix page fault channel [40] make the unrealistic assumption that all

memory needed by an application is reserved a priori. Predetermining application mem-

ory requirement is possible by either severely limiting application behavior (no dynamic

memory allocations, no recursion etc.) or by reserving large amounts of memory a priori.

The latter case can cause information leak if application memory requirement exceeds the

reserved memory size during runtime, leading to OS controlled paging activity. Finally, yet

importantly, these solutions rob the OS of it’s flexibility in managing memory as a resource;

once allocated, memory cannot be reclaimed.

To address the insufficiency of prior works, this dissertation presents Sanctuary, a novel

page fault channel defense which unlike prior solutions preserves operating system’s flex-

ibility in managing memory as a resource by allowing on-demand page allocations and

deallocations. We design a secure runtime which interfaces with the OS on behalf of the

application to hide addresses accessed by the application and also secures address transla-

tions for sensitive application pages. Our secure runtime uses a novel construct, Oblivious
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Page Management (OPAM) which is derived from Oblivious RAM construct [60] but is

customized for addressing challenges and exploiting opportunities that arise in the context

of page management. The chief source of OPAM overhead comprises of page moves and

we perform these page movements near-memory to lower their overheads. Finally, we also

propose a novel memory partition which helps reduce the OPAM transactions needed in

our system and further brings down the overheads of our solution. We study a suite of

cloud applications and show that page fault channel can be fixed at reasonable overheads.

1.4 Organization

The rest of the dissertation is organized as follows. Chapter II presents some back-

ground material on near data processing. Chapter III presents Compute Caches which

enables computation in caches and delivers performance and energy wins. Chapter IV

presents InvisiMem, a secure processor which solves memory bus side channels efficiently

using 3D stacked memories. Chapter V discusses an efficient defense against page fault

channel vulnerability. Finally, in Chapter VI we conclude the dissertation by summarizing

our contributions.
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CHAPTER II

Background

In this chapter we look at prior work on Near Data Processing (NDP) paradigm to put

the research presented in this proposal in proper context. NDP is a data centric computa-

tion paradigm in which computation is moved to where data resides. Prior work on Near

Data Processing can be divided into two parts based on whether or not the proposals em-

ploy 3D Stacked DRAM. We first present prior work which does not employ such “smart”

memories. We then give a brief background on 3D stacked smart memory followed by

proposals which do employ them to harness performance and energy efficiency. Finally,

we talk about how the research presented in this proposal breaks new ground in both ex-

panding the reach of Near Data Processing and identifying its new advantages which have

been hitherto unexplored.

2.1 NDP proposals without 3D Stacked Memory

Traditional DRAM chips have abundant internal bandwidth thanks to large row buffers

but only a tiny amount of data per access is shipped to processor (cache block). To solve
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this, EXECUBE [86] augments a standard, low cost DRAM chip with logic array compris-

ing of eight processors and interface ports. Each such processor can either work indepen-

dently or in tandem with other processors in a SIMD fashion. Such processors then enjoy

far more memory bandwidth than traditional systems which connect to off-chip memory

via memory bus.

Terasys [58] transforms conventional memory into a SIMD processor array. In this

proposal, a traditional SRAM array can either support normal read/write mode or a spe-

cial PIM (processing in memory) mode. In PIM mode, processors associated with each

column in SRAM array perform a specific command on a selected row in SRAM array.

The processors present are bit serial that access and process bits from attached memory.

Each cycle, the processors can either load or store data and perform computation on data

using an ALU. Terasys also provides some reduction capabilities on the results produced

by these processors such as combining results of all processors to send a single bit result to

host processor.

IRAM [106] proposes unifying DRAM and logic into single DRAM chip in response

to growing processor-memory performance gap. Such an organization can utilize internal

DRAM bandwidth better as compared to traditional processor memory configuration. As

memory is now effectively on-chip, memory latency is lower. Furthermore, energy ex-

pended is lower too as far more memory is available on-chip than would be possible using

SRAM as DRAM is far denser.

Active Pages [102] proposes partitioning applications between traditional processor and

intelligent memory system such that data intensive parts of the application are carried out by

the memory. “Active pages” consists of a page of data and functions which manipulate the
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data. The memory system employed is capable of both storing the data and performing the

data manipulations. This proposal implements memory system managing “active pages”

using re-configurable architecture DRAM which integrates FPGA and DRAM technology.

FlexRAM [77] models memory flexibly as either default DRAM chip or a PIM (pro-

cessing in memory) chip which performs computation. This proposal models PIM chips

based on Merged Logic DRAM (MLD) process which integrates logic and DRAM in a sin-

gle chip. PIM chips consist of simple processing elements finely interleaved with DRAM

cells which have high bandwidth access to memory. A low-issue superscalar RISC core

is also modeled in each PIM chip to co-ordinate the processing of the simple processing

elements without relying on host processor.

DIVA [49] or Data IntensiVe Architecture models PIM chips (memory with processing

logic) as co-processors for a conventional system which can either be used to perform

computation close to memory or be used as traditional DRAM chips. Each DIVA PIM

chip is a memory device augmented with a processor and communication hardware for

PIM chips to interact with each other. Form of active messages called “parcels” are used

to communicate computation and synchronize PIM chips. DIVA memory is partitioned

between that accessible to host processor only, PIM chips only and global memory that is

accessible to both. DIVA also enables light weight address translations on PIM chips using

segments.

While all prior proposals aim to add logic to memory to support general purpose pro-

grams, Intelligent Memory Manager [112] augments memory with a simple processor

which solely aims to aid the host processor by performing memory management func-

tions (prefetching of data, relocation of data) on its behalf. Such functions typically tend to

11



pollute processor caches. By performing them using processor in memory, such pollution

can be avoided.

2.2 3D Stacked Memory

Advancements in 3D integration have made possible 3D Stacked memories which are

now commercially available [16]. A typical 3D Stacked memory consists of several layers

of DRAM dies stacked on top of each other, with a logic layer at the bottom. The DRAM

banks are organized into sets of independent vaults, and the various layers are connected

using Through Silicon Vias (TSVs) [12]. High density, short length TSVs in conjunction

with vaults which function independently and can be accessed in parallel are the chief

sources of high bandwidth provided by such a system.

Two of the most popular 3D stacked designs present are HMC [12] and HBM [83].

Both of them employ multiple memory dies stacked together with a logic die at the base.

HMC places memory controller logic in the logic die. While their internal implementations

differ, most importantly, how they are integrated with the main host processor also differs.

In case of HMC an high speed packet based serial interface connects it to the CPU. In case

of HBM however, interaction with CPU is achieved using another silicon layer, termed

silicon interposer.

2.2.1 NDP proposals with 3D Stacked Memory

Several proposals employ such 3D Stacked memories to harness performance for var-

ious applications. Pugsleyet al. [109] model several simple processing cores in the logic
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layer of 3D Stacked memory which perform the Map operation to accelerate MapReduce

workloads. In TOP-PIM [159], the authors model GPU in logic layer of 3D Stacked mem-

ory and study several GPGPU workloads to identify characteristics that make workloads

amenable to be offloaded to GPU near memory. Ahn et al. [22] proposed a locality aware

PIM design, which opportunistically decides when computation should be offloaded to

memory and when it should be performed using host processor instructions.

2.3 Breaking New Ground in NDP

All prior proposals augment the main memory to play an active part in computation.

For applications with no cache locality, compute capable memory is clearly an effective

solution. But for cache friendly applications, always computing in memory may not be an

efficient choice. However, the other extreme of computing the traditional way, as this pro-

posal shows, incurs high instruction processing overheads and expends significant energy

for moving data over memory hierarchy.

To address these limitations, this proposal introduces a new way to realize near-data

computing by enabling processor caches to perform computation. Using our proposed

solution, caches can perform simple operations common to wide variety of applications.

Using our system, data can be moved to the cache level most suitable to it’s reuse profile.

Most near-data processing proposals presented in this chapter seek to attain perfor-

mance and energy gains. Our proposal also identifies and exploits an hitherto untapped

advantage of NDP to provide low-overhead security guarantees.
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CHAPTER III

Compute Caches: Caches that Compute

This chapter presents Compute Caches, our novel proposal to enable computations in

processor caches. With Compute Caches we add a new technique to exploit the near data

processing paradigm. Compute centric architectures employ processor caches merely to

stage data and they otherwise play no active role in computation. However, with Compute

Caches, processor caches can now play an active and a powerful role in computation. Com-

pute Caches not only provide advantages of vector processing but also help avoid excessive

data movement over memory hierarchy.

3.1 Introduction

As computing today is dominated by data-centric applications, there is a strong impetus

for specialization for this important domain. Conventional processors’ narrow vector units

fail to exploit the high degree of data-parallelism in these applications. Also, they expend

disproportionately large fraction of time and energy in moving data over cache hierarchy,

and in instruction processing, as compared to the actual computation [41].
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We present the Compute Cache architecture for dramatically reducing these inefficien-

cies through in-place (in-situ) processing in caches. A modern processor devotes a large

fraction (40-60%) of die area to caches which are used for storing and retrieving data. Our

key idea is to re-purpose and transform the elements used in caches into active computa-

tional units. This enables computation in-place within a cache sub-array, without transfer-

ring data in or out of it. Such a transformation can unlock massive data-parallel compute

capabilities, dramatically reduce energy spent in data movement over the cache hierarchy,

and thereby directly address the needs of data-centric applications.

Our proposed architecture uses an emerging SRAM circuit technology, which we refer

to as bit-line computing [73, 76]. By simultaneously activating multiple word-lines, and

sensing the resulting voltage over the shared bit-lines, several important operations over

the data stored in the activated bit-cells can be accomplished without data corruption. A

recently fabricated chip [73] demonstrates feasibility of bit-line computing. They also

show a stability of more than six sigma robustness for Monte Carlo simulations, which

is considered industry standard for robustness against process variations.

Past processing-in-memory (PIM) solutions proposed to move processing logic near

the cache [87, 50] or main memory [107, 126]. 3D stacking can make this possible [22].

Compute Caches significantly push the envelope by enabling in-place processing using

existing cache elements. It is an effective optimization for data-centric applications, where

at least one of the operands (e.g., dictionary in WordCount) used in computation has cache

locality.

Efficiency of Compute Caches arises from two main sources: massive parallelism and

reduced data movement. A cache is typically organized as a set of sub-arrays; as many
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as hundreds of sub-arrays, depending on the cache level. These sub-arrays can potentially

compute concurrently on data stored in them (KBs of data) with little extensions to the ex-

isting cache structures (8% of cache area overhead). Thus, caches can effectively function

as large vector computational units, whose operand sizes are orders of magnitude larger

than conventional SIMD units (KBs vs bytes). To achieve similar capability, the logic

close to memory in a conventional PIM solution would need to provision more than hun-

dred additional vector functional units. The second benefit of Compute Caches is that they

avoid the energy and performance cost incurred not only for transferring data between the

cores and different levels of cache hierarchy (through network-on-chip), but even between

a cache’s sub-array to its controller (through in-cache interconnect).

We address several problems in realizing the Compute Cache architecture, discuss ISA

and system software extensions, and re-designs several data-centric applications to take

advantage of the new processing capability.

An important problem in using Compute Caches is satisfying the operand locality con-

straint. Bit-line computing requires that the data operands are stored in rows that share the

same set of bit-lines. We architect a cache geometry, where ways in a set are judiciously

mapped to a sub-array, so that software can easily satisfy operand locality. Our design al-

lows a compiler to ensure operand locality simply by placing operands at addresses that are

page aligned (same page offset). It avoids exposing the internals of a cache, such as its size

or geometry, to software.

When in-place processing is not possible for an operation due to lack of operand lo-

cality, we propose to use near-place Compute Caches. In near-place design, the source

operands are read out from the cache sub-arrays, the operation is performed in a logic unit
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placed close to the cache controller, and the result may be written back to the cache.

Besides operand locality, Compute Caches brings forth several interesting questions.

How to orchestrate concurrent computation over operands spreading across multiple cache

sub-arrays? How to ensure coherence between compute-enabled caches? How to ensure

consistency model constraints when computation is spread between cores and caches? Soft

errors are a significant concern in modern processors. Can Error Correction Codes (ECC)

be used for Compute Caches? When not possible, what are the alternative solutions? We

discuss relatively simple solutions to address these problems.

Compute Caches support several in-place vector operations: copy, search, compare and

logical operations (and, or, xor, and not) which can accelerate a wide variety of applica-

tions. We study two text processing applications (word count, string matching), database

query processing with bitmap indexing, copy-on-write checkpointing in OS, and bit matrix

multiplication (BMM); a critical primitive used in cryptography, bioinformatics, and image

processing. We re-designed these applications to efficiently represent their computation in

terms of Compute Cache supported vector operations. Section 3.5 identifies a number of

additional domains that can benefit from Compute Caches: data analytics, search, network

processing etc.

We evaluate the merits of Compute Caches for a multi-core processor modeled after

Intel’s SandyBridge [88] processor with eight cores, three levels of caches, and a ring inter-

connect. For the applications we study, on average, Compute Caches improve performance

by 1.9× and reduce energy by 2.4× compared to a conventional processor with 32-byte

wide vector units. Applications with a higher fraction of Compute Cache operations can

benefit significantly more. Through micro-benchmarks that manipulate 4KB operands, we
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Figure 3.1: Compute Cache overview. (a) Cache hierarchy. (b) Cache geometry (c) In-
place compute in a sub-array.

show that Compute Caches provide 9× dynamic energy savings over a baseline using 32-

byte SIMD units while providing 54× better throughput on average.

3.2 Background

This section provides a brief background of cache hierarchy, cache geometry, and bit-

line computing in SRAM.

3.2.1 Cache Hierarchy and Geometry

Figure 3.1 (a) illustrates a multi-core processor modeled loosely after Intel’s Sandy-

bridge [88]. It has a three-level cache hierarchy comprising of private L1 and L2, and a

shared L3. The shared L3 cache is distributed into slices which are connected to the cores

via a shared ring interconnect. A cache consists of a cache controller and several banks

((Figure 3.1 (b)). Each bank has several sub-arrays connected by a H-Tree interconnect.

For example, a 2 MB L3 cache slice has a total of 64 sub-arrays distributed across 16 banks.

A sub-array in a cache bank is organized into multiple rows of data-storing bit-cells.
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Figure 3.2: SRAM circuit for in-place operations. Two rows (WLi and WLj) are activated.
An AND operation is performed by sensing bit-line (BL). All the bit-lines are initially pre-
charged to ‘1’. If both the activated bits in a column have a ‘1’ (column ‘n’), then the BL
stays high and it is sensed as a ‘1’. If any one of the bits were ‘0’ it will lower the BL
voltage below Vref and will be sensed as a ‘0’. A NOR operation can be performed by
sensing bit-line bar (BLB).

The bit-cells in the same row are connected to a word-line. The bit-cells along a column

share the same bit-line. Typically, in any cycle, one word-line is activated, from where a

data block is either read from, or written to, through the column bit-lines.

3.2.2 Bit-line Computing

Compute Caches use emerging bit-line computing technology in SRAMs [73, 76] (Fig-

ure 3.2) which observes that, when multiple word-lines are activated simultaneously, the

shared bit-lines can be sensed to produce the result of and and nor on the data stored in

the two activated rows. Data corruption due to multi-row access is prevented by lower-

ing word-line voltage to bias against write of the SRAM array. Jeloka et al. [73]’s mea-

surements across 20 fabricated test chips demonstrate that data-corruption does not occur

even when 64 word-lines are simultaneously activated during such an in-place computa-

tion. They show a stability of more than six sigma robustness for Monte Carlo simulations,

which is considered industry standard for robustness against process variations. Also, note
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that, by lowering the word-line voltage further, robustness can be improved at the cost of

increase in delay. Even with it, Compute Caches will still deliver significant savings given

its potential (Section 3.6, 54× throughput, 9× dynamic energy savings).

Section 3.4.2 discusses our extensions to bit-line computing enabled SRAM to support

additional operations: copy, xor, equality comparison, search, and carryless multiplica-

tion (clmul).

3.3 A Case for Compute Caches

In-place Compute Cache has the potential to provide massive data-parallelism, while

also dramatically reducing the instruction processing and on-chip data movement over-

heads. Figure 3.3 pictorially depicts these benefits by comparing a scalar core, a SIMD

core with vector processing support, and Compute Caches.

The bottom half in Figure 3.3 depicts the area proportioning and processing capability

of the three architectures. Significant fraction of die area in a conventional processor is for
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Cache cache-ic (h-tree) cache-access
L1-D 179 pJ 116 pJ

L2 675 pJ 127 pJ
L3-slice 1985 pJ 467 pJ

Table 3.1: Cache energy per read access

caches. A Compute Cache re-purposes the elements used in this large area into compute

units for a small area overhead (8% of cache area). A typical last-level cache consists of

hundreds of sub-arrays distributed across different banks which can potentially compute

concurrently on cache blocks stored in them. This enables us to exploit large scale data

level parallelism (e.g. a 16MB L3 has 512 sub-arrays and can support 8 KB operands)

dwarfing even a SIMD core.

The top row of Figure 3.3 shows relative energy consumption for a comparison op-

eration over several blocks of 4KB operands (Section 3.6.4). In a scalar core, less than

1% of the energy is expended on the ALU operation, while nearly three quarters of the

energy is spent in processing instructions in the core, and one-fourth is spent on data move-

ment. While vector processing (SIMD) support (Figure 3.3 (b)) in general-purpose and

data-parallel accelerators reduce the instruction processing overhead to some degree, it

does not help address the data movement overhead. Compute Cache architecture (Fig-

ure 3.3 (c)) can reduce the instruction processing overheads by an order of magnitude, by

supporting SIMD operation on large operands (tens of KB). Also, it avoids the energy and

performance cost due to data movement.

In-place Compute Cache reduces on-chip data movement overhead, which consists of

two components. First, is the energy spent on data transfer. This includes not only the

significant energy spent on the processor interconnect’s wires and routers, but also the
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H-Tree interconnect used for data transfer within a cache. A near-place Compute Cache

solution can solve the former but not the latter. As shown in Table 3.1, H-Tree consumes

nearly 80% of cache energy spent in reading from a 2MB L3 cache slice.

Second, is the energy spent when reading and writing in the higher-level caches. In a

conventional processor, a data block trickles up the cache hierarchy all the way from L3

to L1 cache, and into a core’s registers, before it can be operated upon. An L3 Compute

Cache can eliminate all this overhead. A shared L3 Compute Cache can also reduce the

cost of sharing data between two cores, as it would avoid write-back from a source core’s

L1 to shared L3, and then a transfer back to a destination core’s L1.

3.4 Compute Cache Architecture

Figure 3.1 illustrates the Compute Cache (CC) architecture. We enhance all the levels

in the cache hierarchy with in-place compute capability. Computation is done at the highest

level where the application exhibits significant locality. In-place compute is based on the

bit-line computing technology we discussed in Section 3.2. We enhance these basic in-

place compute capabilities to support xor and several in-place operations (copy, search,

comparison, and carryless multiplication).

In-place computing is possible only when operands are mapped to sub-arrays such that

they share the same bit-lines. We refer to this requirement as operand locality. We discuss

a cache geometry that allows a compiler to satisfy operand locality by ensuring that the

operands are page-aligned.

Each cache controller is extended to manage the parallel execution of CC instructions
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Opcode Src1 Src2 Dest Size Description
cc copy a - b n b[i] = a[i]

cc buz a - - n a[i] = 0

cc cmp a b r n r[i] = (a[i] == b[i])

cc search a k r n r[i] = (a[i] == k)

cc and a b c n c[i] = a[i] & b[i]

cc or a b c n c[i] = (a[i] || b[i])
cc xor a b c n c[i] = a[i]⊕ b[i]

cc clmulX a k c n ci = ⊕(a[i] & k)

cc not a - b n b[i] =!(a[i])

a,b,c,k: addresses r:register ∀i, i ∈ [1, n] , X = [ 64/128/256 ]

Table 3.2: Compute Cache ISA.

across its several banks. It also decides the cache level to perform the computation and

fetches the operands to that level. Given that a Compute Cache can modify data, we discuss

its implication in ensuring coherence and consistency properties. Finally, we discuss design

alternatives for supporting ECC in Compute Caches.

In the absence of operand locality, we propose to compute near-place in cache. For

this, we add a Logic Unit in the cache controller. Although near-place cache computing

requires additional functional units, and cannot save H-Tree interconnect energy inside

caches, it successfully helps reduce the energy spent in transferring and storing data in the

higher-level caches.

3.4.1 Instruction Set Architecture (ISA)

Compute Cache (CC) ISA extensions are listed in Table 3.2. It supports several vector

instructions, whose operands are specified using register indirect addressing. Operand sizes

are specified through immediate values and can be as large as 16K. It supports vector copy-

ing, zeroing, and logical operations. It also supports vector carry less multiply instruction

(cc clmul) at single/double/quad word granularity. It also supports equality comparison
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and search. We limit the operand size (n) of these instructions to 64 words (512 bytes),

so that the result can be returned as a 64-bit value to a processor core’s register. For the

search instruction, the key size is set to 64 bytes. For smaller keys, the programmer can

either duplicate the key multiple times starting from the key’s address (if its size is a word

multiple), or pad the key and source data operands to be 64 bytes.

3.4.2 Cache Sub-arrays with In-Place Compute
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Figure 3.4: In-place copy operation (from row i to j).

Compute Caches is made possible by our SRAM sub-array design that facilitates in-

place computation. We start with the basic circuit framework proposed by Jeloka et al. [73],

which supports logical and and nor operations. To a conventional cache’s sub-array, we

add an additional decoder to allow activating two wordlines, one for each operand. The two

single-ended sense amplifiers required for separately sensing both the bit-lines attached to

a bit-cell are obtained by re-configuring the original differential sense amplifier.

In addition to and and nor operations, we extend the circuit to support xor operation

by NOR-ing bit-line and bit-line complement. We realize compound operations such as
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compare and search by using the results of bitwise xor. To compare two words, the

individual bit-wise xor results are combined using a wired-NOR. Comparison is utilized

to do iterative search over cache blocks stored in sub-arrays.

By feeding the result of the sense-amplifiers back to the bit-lines, one word-line can be

copied to another without ever latching the source operand. We leverage the fact that the

last read value is same as the data to be written in the next cycle, and coalesce the read-

write operation to enable more energy-efficient copy operation as shown in Figure 3.4. By

resetting input data latch before a write we can enable in-place zeroing of a cache block.

Finally, the carryless multiplication (clmul) operation is done using a logical and on

two sub-array rows, followed by xor reduction of all the resultant bits. This is supported

by adding a xor reduction tree to each sub-array.

Our extensions have negligible impact on the baseline read/write accesses as they use

the same circuit as the baseline, including differential sensing. An in-place operation takes

longer than a single read or write sub-array access, as it requires longer word-line pulse to

activate and sense two rows to compensate for the lower word-line voltage. Sensing time

also increases due to the use of single-ended sense amplifiers, as opposed to differential

sensing. However, note that this is still less than the delay baseline would incur to accom-

plish an equivalent in-place operation, as it would require multiple read accesses and/or

write access. Section 3.6.3 provides the detailed delay, energy and area parameters for

compute capable cache sub-arrays.
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3.4.3 Operand Locality

For in-place operations, the operands need to be physically stored in a sub-array, such

that they share the same set of bitlines. We term this requirement as operand locality.

In this section, we discuss cache organization and software constraints that can together

satisfy this property. Fortunately, we find that software can ensure operand locality as long

as operands are page-aligned, i.e., have the same page offset. Besides this, the programmer

or the compiler does not need to know about any other specifics of the cache geometry.

Bank

H-Tree

Sub-array

Cache {1 bank, 16 sets (S0-S15), 4 ways per set}

Bank Bits

Physical Address DecodingWay 0

S0

S2

BP0 BP1

S4

BP2 BP3

BP4 BP5 BP6 BP7

Block Partition 

S1

(b)

(a)

S5

S6 S7

S12 S13

S14 S15

S8 S9

S10 S11

Way 1
Way 2
Way 3

S3

Block offset

Set index
Tag

Figure 3.5: Cache organization example, address decoding ([i][j] = set i, way j), alternate
address decoding for parallel tag-data access caches

Operand locality aware cache organization: Figure 3.5 illustrates a simple cache

with one bank each with four sub-arrays. Rows in a sub-array share the same set of bitlines.

We define a new term, Block Partition (BP). Block partition for a sub-array is the group

of cache blocks in that sub-array that share the same bitlines. In-place operation is possible

between any two cache blocks stored within a block partition. In our example, since each

row in a sub-array has two cache blocks, there are two block partitions per sub-array. In
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total, there are eight block partitions (BP0-BP7). In-place compute is possible between any

blocks that map to the same block partition ( e.g. blocks in sets S0 and S2).

We make two design choices for our cache organization to simplify operand locality

constraint. First, all the ways in a set are mapped to the same block partition as shown in

Figure 3.5(a). This ensures that operand locality would not be affected based on which way

is chosen for a cache block.

Second, we use a portion of set-index bits to select the block’s bank and block parti-

tion, as shown in Figure 3.5(b). As long as these are the same for two operands, they are

guaranteed to be mapped to the same block partition.

Software requirement: The number of address bits that must match for operand lo-

cality varies based on the cache size. As shown in Table 3.3, even the largest cache (L3) in

our model requires that only least 12 bits are the same for two operands (we assume pages

are mapped to a NUCA slice closest to the core actively accessing them). Given that our

pages are 4KB in size, we observe that as long as the operands are page aligned, i.e., have

the same page offset, then they will be placed in the address space such that the least sig-

nificant bits (12 for 4 KB page) in their addresses (both virtual and physical) match. This

would trivially satisfy the operand locality requirement for all the cache levels and sizes we

study. Note that, we only require operands to be placed at the same offset of 4KB mem-

ory regions, and it is not necessary to place them in separate pages. For super-pages that

are larger than 4KB, operands can be placed within a page while ensuring 12-bit address

alignment.

We expect that for data-intensive regular applications that operate on large chunks of

data, it is possible to satisfy this property. Many operating system operations that involve
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Cache Banks BP Block size Min. address bits match
L1-D 2 2 64 8

L2 8 2 64 10
L3-slice 16 4 64 12

Table 3.3: Cache geometry and operand locality constraint.

copying from one page to another are guaranteed to exhibit operand locality for our system.

Compiler and dynamic memory allocators could be extended to optimize for this property

in future.

Finally, a binary compiled with a given address bit alignment requirement (12 bits in

our work) is portable across a wide range of cache architectures as long as the number of

address bits to be aligned is equal to or less than what they were compiled for. If the cache

geometry changes such that it requires greater alignment, then the programs would have to

be recompiled to satisfy that stricter constraint.

Column Multiplexing: With column multiplexing, multiple adjacent bit-lines are mul-

tiplexed to a single bit data output, which is then observed using one sense-amplifier. This

keeps area overhead of peripherals under check and improves resilience to particle strikes.

Fortunately, in column multiplexed sub-arrays, adjacent bits in a cache block are inter-

leaved across different sub-arrays such that their bitlines are not multiplexed. In this case,

the logical block partition that we defined would be interleaved across the sub-arrays. Thus,

an entire cache block can be accessed in parallel. Given this, in-place concurrent operation

on all the bits in a cache block is possible even with column multiplexing.

Our design choice of placing ways of a set within a block partition does not affect the

degree of column multiplexing as we interleave cache blocks of different sets instead.

Way Mapping vs Parallel Tag-Data Access: We chose to place all the ways of a set
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within a block partition, so that operand locality is not dependent on which way is chosen

for a block at runtime. However, this prevents us from supporting parallel tag-data access,

where all the cache blocks in a set are pro-actively read in parallel with the tag match.

This optimization is typically used for L1 as it can reduce the read latency by overlapping

tag match with read. But it incurs a high read energy overhead (4.7× higher energy per

access for L1 cache) for modest performance gain (2.5% for SPLASH-2[147]). Given the

significant benefits of L1 Compute Cache, we think it is a worthy trade-off to forgo this

optimization for L1.

3.4.4 Managing Parallelism

Cache controllers are extended to provision for CC controllers which orchestrate the

execution of CC instructions. The CC controller breaks a CC instruction into multiple

simple vector operations whose operands span at most a single cache block and issues them

to the sub-arrays. Since a typical cache hierarchy can have hundreds of sub-arrays (16MB

L3 cache has 512 sub-arrays), we can potentially issue hundreds of concurrent operations.

This is only limited by two factors. First, the bandwidth of the shared interconnects used

to transmit address/commands. Note that we do not replicate the address bus in our H-tree

interconnects. Second, number of sub-arrays activated at same time can be limited to limit

peak power drawn.

The controller at L1-cache uses an instruction table to keep track of the pend-

ing CC instructions. The simple vector operations are kept track of in the operation

table. The instruction table tracks metadata associated at instruction level (i.e., result,

count of simple vector operations completed, next simple vector operation to be gener-
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ated). The operation table, on other hand, tracks status of each operand associated with

the operation and issues request to fetch the operand if it is not present in the cache (Sec-

tion 3.4.5). When all operands are in cache, we issue the operation to the cache sub-array.

As operations complete they update the instruction table, and the L1-cache controller noti-

fies the core when an instruction is complete.

To support search instruction, CC controller replicates key in all the block partitions

where the source data resides. To avoid doing this again for the same instruction, we track

such replications per instruction in a key table.

Finally, if the address range of any operand of a CC instruction spans multiple pages,

it raises a pipeline exception. The exception handler splits the instruction into multiple CC

operations such that each of its operands are within a page.

3.4.5 Fetching In-Place Operands

The Compute Cache (CC) controllers are responsible for deciding the level in the cache

hierarchy where CC operations need to be performed, and issuing commands to the cache

sub-array to execute them. To simplify our design, in our study, the CC controller always

performs the operations at the highest-level cache where all the operands are present. If

any of the operands are not cached, then the operation is performed at lowest-level cache

(L3). Cache allocation policy can be improved in future by enhancing our CC controller

with a cache block reuse predictor [70].

Once a cache level is picked, CC controller fetches any missing operands to that level.

The controller also pins the cache-lines the operands are fetched in while the CC operation

is under way. To avoid the eviction of operands while waiting for missing operands, we
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Figure 3.6: Compute Caches in action

promote the cache blocks of that operand to the MRU position in the LRU chain. However,

on receiving a forwarded coherence request, we release the lock to avoid deadlock and re-

fetch the operand. Getting a forwarded request to a locked cache line will be rare for two

reasons. First, in DRF [20] compliant programs, only one thread will be able to operate

on a cache block while holding its software lock. Second, as operands of a single CC

operation are cache block wide, false sharing will be low. Nevertheless, to avoid starvation

in pathological scenarios, if CC operation fails to get permission after repeated attempts

(set to two), processor core will translate and execute a CC operation as RISC operations.

Figure 3.6 shows a working example. Core issues operation cc and with address

operands A, B and C to L1 controller ( 1 ). Each is of size 64 bytes (8 words) spanning an

entire cache block. For clarity, only one cache set in each cache level is shown. None of

the operands are present in L1 cache. Operand B is in L2 cache and is dirty. L3 cache has

31



clean copy of A and a stale copy of B. C is not in any cache.

L3 cache is chosen for the CC operation, as it is the highest cache level where all

operands are present. L1 and L2 controllers will forward this operation to L3 ( 2 , 3 ).

Before doing so, L2 cache will first write-back B to L3. Note that caches already write-

back dirty data to next cache level on eviction and we use this existing mechanism.

On receiving the command, L3 fetches C from memory ( 4 ). Note that, as an optimiza-

tion, C need not be fetched from memory as it will be over-written entirely. Once all the

operands are ready, L3 performs the CC operation ( 5 ) and subsequently notifies the L1

controller ( 6 ) of it’s completion, which in turn notifies the core ( 7 ).

3.4.6 Cache Coherence

Compute Cache optimization interacts with the cache coherence protocol minimally

and as a result does not introduce any new race conditions. As discussed above, while

the controller locks cache lines while performing CC operation, on receipt of a forwarded

coherence request, the controller releases the lock and responds to the request. Thus, a

forwarded coherence request is always responded to in cases where it would be responded

to in the baseline design.

Typically, higher-level caches writeback dirty data to the next-level cache on evictions.

Coherence protocols already support such writebacks. In the Compute Cache architecture,

when a cache level is skipped to perform CC operations, any dirty operands in the skipped

level need to be written back to next level of cache to ensure correctness. To do this, we use

the existing writeback mechanism and thus require no change to the underlying coherence

protocol.
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3.4.7 Consistency Model Implications

Current language consistency models (C++ and Java) are variants of the DRF model [20],

and therefore a processor only needs to adhere to the RMO memory model. While ISAs

providing stronger guarantees (x86) exist, they can be exploited only by writing assem-

bly programs. As a consequence, while we believe stronger memory model guarantees

for Compute Caches is an interesting problem (to be explored in future work), we assume

RMO model in our design. In RMO, no memory ordering is needed between data reads and

writes, including all CC operations. Individual operations within a vector CC instruction

can also be performed in parallel by the CC controller.

Programmers use fence instructions to order memory operations, which is sufficient

in the presence of CC instructions. Processor stalls commit of a fence operation until pre-

ceding pending operations are completed, including CC operations. Similar to conventional

vector instructions, it is not possible to specify a fence between scalar operations within a

single vector CC instruction.

3.4.8 Memory Disambiguation and Store Coalescing

Similar to SIMD instructions, Compute Cache (CC) vector instructions require addi-

tional support in the processor core for memory ordering. We classify instructions in CC

ISA into two types. CC-R type (cc cmp, cc search) only read from memory. The rest

of the instructions are CC-RW type as they both read and write from memory. Under RMO

memory model, CC-R can be executed out-of-order, whereas CC-RW behaves like a store.

In the following discussion, we refer to CC-R as load, and CC-RW as store.
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Conventional processor cores use a load-store queue (LSQ) to check for address con-

flicts between a load and the preceding uncommitted stores. As vector instructions can

access more than a word, it is necessary to enhance the LSQ with the support for checking

address ranges, instead of just one address. For this reason, we use a dedicated vector LSQ,

where each entry has additional space to keep track of address ranges for the operands of a

vector instruction.

Similar to LSQ, we also split the store buffer into two, one for scalar stores and an-

other for vector stores. The vector store buffer supports address range checks (max 12

comparisons/entry). Our scalar store buffer permits coalescing. However, it is not possible

to coalesce CC-RW instructions with any store, because their output is not known till they

are performed in a cache. As the vector store buffer is non-coalescing, it is possible for

the two store buffers to contain stores to the same location. If such a scenario is detected,

the conflicting store is stalled until the preceding store is complete which ensures program

order between stores to the same location. We augment the store buffer with a field which

points to any successor store and a stall bit. The stall bit is reset when the predecessor store

completes.

Data values are not forwarded from vector stores to any loads, or from any store to

a vector load. Code segments where both vector and scalar operations access the same

location within a short time span is likely to be rare. If such a code segment is frequently

executed, the compiler can choose to not employ Compute Cache optimization.
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3.4.9 Error Detection and Correction

Systems with strong reliability requirements employ Error Correction Codes (ECC) for

caches. ECC protection for conventional and near-place operations are unaffected in our

design. For cc copy simply copying ECC from source to destination suffices. For cc buz,

ECC of zeroed blocks can be updated. For comparison and search, ECC check can be

performed by comparing the ECCs of the source operands. An error is detected if data bits

match, but the ECC bits don’t, or vice versa.

For in-place logical operations (cc and, cc or, cc xor, cc clmul, and cc not), it is chal-

lenging to perform the check and compute the ECC for the result. We propose two alter-

natives. One alternative is to read out the xor of the two operands and their ECCs, and

check the integrity at the ECC logic unit (ECC(A xor B) = ECC(A) xor ECC(B)).

This unit also computes the ECC of the result. Our sub-array design permits computing the

xor operation alongside any logical operation. Although the logical operation is still done

in-place, this method will incur extra data transfers to and from the ECC logic unit. Cache

scrubbing during cache idle cycles [122] is a more attractive option. Since soft errors in

caches are infrequent (0.7 to 7 errors/year [146]), periodic scrubbing can be effective while

keeping performance and energy overheads low.

3.4.10 Near-Place Compute Caches

In the absence of operand locality, we propose to compute instructions “near” the cache.

Our controller is provisioned with additional logic units (not arithmetic units) and registers

to temporarily store the operands. The source operands are read from the cache sub-array
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into the registers at the controller, and then computed results are written back to the cache.

In-place computation has two benefits over near-place computation. First, it provides mas-

sive compute capability for almost no additional area overhead. For example, a 16 MB

L3 with 512 sub-arrays allows 8KB of data to be computed in parallel. To support equiv-

alent computational capability, we would need 128 vector ALUs, each of width 64-bytes.

This is not a trivial overhead. We assume one vector logic unit per cache controller in our

near-cache design. Second, in-place compute avoids data transfer over H-Tree wires. This

reduces in-place compute latency (14 cycles) compared to near-cache (22 cycles). Also,

60%-80% of total cache read energy is due to H-Tree wire transfer (See Table 3.1), which

is eliminated with in-cache computation. Nevertheless, near cache computing retains the

other benefits of Compute Caches, by avoiding transferring data to the higher-level caches

and the core.

3.5 Applications

Our Compute Cache design supports simple but common operations, which can be

utilized to accelerate diverse set of data intensive applications.

Search and Compare Operations: Compare and search are common operations in

many emerging applications, especially text processing. Intel recently added seven new in-

structions to the x86 SSE 4.2 vector support that efficiently perform character searches and

comparison [15]. The Compute Cache architecture can significantly improve the efficiency

of these instructions. Similar to specialized CAM accelerators [64], our search functional-

ity can be utilized to speed up applications such as, search engines, decision tree training
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and compression and encoding schemes.

Logical Operations: Compute Cache logical operations can speedup processing of

commonly used bit manipulation primitives such as bitmaps. Bitmaps are used in graph and

database indexing/query processing. Query processing on databases with bitmap indexing

requires logical operation on large bitmaps. Compute Caches can also accelerate binary

bit matrix multiplication (BMM) which has uses in numerous applications such as error

correcting codes, cryptography, bioinformatics, and Fast Fourier Transform (FFT). Given

its importance, it was implemented as a dedicated instruction in Cray supercomputers [8]

and Intel processors provision a x86 carryless multiply (clmul) instruction to speed it.

Inherent cache locality in matrix multiplication makes BMM suitable for Compute Caches.

Further, our large vector operations can allow BMM to scale to large matrices.

Copy Operation: Prior research [126] makes a strong case for optimizing copy per-

formance which is a common operation in many applications in system software and ware-

house scale computing [75]. The operating system spends a considerable chunk of its

time (more than 50%) copying bulk data [28]. For instance copying is necessary for fre-

quently used system calls like fork, inter-process communication, virtual machine cloning

and deduplication, file system and network management. Our copy operation can acceler-

ate checkpointing, which has a wide range of uses, including fault tolerance and time-travel

debugging. Finally, our copy primitive can also be employed in bulk zeroing which is an

important primitive required for memory safety [154].
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Configuration 8 core CMP
Processor 2.66 GHz out-of-order core, 48 entry LQ, 32 entry SQ
L1-I Cache 32KB, 4-way, 5 cycle access
L1-D Cache 32KB, 8-way, 5 cycle access
L2 Cache inclusive, private, 256KB, 8-way,11 cycle access
L3 Cache inclusive, shared, 8 NUCA slices, 2MB each, 16-way, 11 cycle +

queuing delay
Interconnect ring, 3 cycle hop latency, 256-bit link width
Coherence directory based, MESI
Memory 120 cycle latency

Table 3.4: Simulator parameters

3.6 Evaluation

In this section we demonstrate the efficacy of Compute Caches (CC) using both micro-

benchmark study and a suite of data-intensive applications.

3.6.1 Simulation Methodology

We model a multi-core processor using SniperSim [29], a Pin-based simulator per Ta-

ble 3.4. We use McPAT [90] to model power consumption in both cores and caches.

3.6.2 Application Customization and Setup

In this section we describe how we redesigned applications in our study to utilize CC

instructions.

WordCount: WordCount [157] reads a text file (10MB) and builds a dictionary of

unique words and their frequency of appearance in the file. While the baseline does a

binary search over the dictionary to check if a new word is found, we model the dictionary

as alphabet indexed (first two letters of word) CAM (1KB each). As the dictionary is large

(719KB) we perform search operations in L3 cache. CC search instruction returns a bit
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vector indicating match/mismatch for multiple words and hence we also model additional

mask instructions which report match/mismatch per word.

StringMatch: StringMatch [157] reads words from a text file (50MB), encrypts them

and compares them to a list of encrypted keys. Encryption cannot be offloaded to cache,

hence, encrypted words are present in L1-cache and we perform CC search in it. By repli-

cating an encrypted key across all sub-arrays in L1, a single search instruction can compare

it against multiple encrypted words. Similar to WordCount we also model mask instruc-

tions.

DB-BitMap: We also model FastBit [2] a bitmap index library. The input database

index is created using data sets obtained from a real physics experiment, STAR [7]. A

sample query performs logical OR or AND of large bitmap bins (several 100 KBs each).

We modify the query to use cc or operations ( each processes 2KB of data). We measure

average query processing time for a sample query mix running over uncompressed bitmap

indexes.

BMM: Our optimized baseline BMM implementation (Section 3.5) uses blocking and

x86 CLMUL instructions. Given the reuse of matrix we perform cc clmul in L1-cache.

We model 256× 256 bit matrices.

Checkpointing: We model in-memory copy-on-write checkpointing support at page

granularity for SPLASH-2 [147] benchmark suite (checkpointing interval of 100,000 ap-

plication instructions).

39



3.6.3 Compute Sub-Array: Delay and Area Impact

Compute Caches have negligible impact on the baseline read/write accesses as we still

support differential sensing. To get delay and energy estimates, we perform SPICE simula-

tions on a 28nm SOI CMOS process based sub-array, using standard foundry 6T bit-cells. 1

A and/or/xor 64-byte in-place operation is 3× longer as compared to single sub-array ac-

cess while rest of CC operations are 2× longer. In terms of energy, cmp/search/clmul

are 1.5×, copy/buz/not are 2×, and the rest are 2.5× baseline sub-array access. The area

overhead is 8% for a sub-array of size 512 × 512 2. Note, our estimates account for tech-

nology variations and process, voltage and temperature changes. Further, these estimates

are conservative when compared to measurements on silicon [73] in order to provision for

robust margin against read disturbs and to account for circuit parameter variation across

technology nodes.

We use the above parameters in conjunction with energy per cache access from Mc-

PAT to determine the energy of CC operations (Table 3.5). CC operations cost higher in

lower-level caches as they employ larger sub-arrays. However, they do deliver higher sav-

ings (compared to baseline read/write(s) needed) as they have larger in-cache interconnect

components. For search, we assume a write operation for key; this cost will get amortized

over large searches.

1SRAM arrays we model are 6T cell based. Lower-level caches (L2/L3) are optimized for density and
employ 6T-based arrays. However, L1-cache can employ 8T cell based designs. To support in-place opera-
tions in such a design, a differential read-disturb resilient 8T design [149] can be used.

2The optimal sub-array dimension for L3 and L2 caches we model are 512 × 512 and 128 × 512 bits
respectively.
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cache write read cmp copy search not logic
L3 2852 2452 840 1340 3692 1340 1672
L2 1154 802 242 608 1396 608 704
L1 375 295 186 324 561 324 387

Table 3.5: Cache energy (pJ) per cache-block (64-byte)
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Figure 3.7: Benefit of CC for 4KB operand. a) Throughput b) Dynamic energy

3.6.4 Microbenchmark Study

To demonstrate the efficacy of Compute Caches we model four microbenchmarks:

copy, compare, search and logical-or. We compare Compute Caches to a baseline(Base -

32) which supports 32-byte SIMD loads and stores.

Figure 3.7 (a) depicts the throughput attained for different operations for operand size of

4KB. For this experiment, all operands are in L3 cache and the Compute Cache operation is
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performed therein. Among the operations, for baseline, search achieves highest throughput

as it incurs single cache miss for the key and subsequent cache misses are only for data.

Compute Cache accelerates throughput for all operations: 54× over Base 32 averaged

across the four kernels. Our throughput improvement has two primary sources: massive

data parallelism exposed in presence of independent sub-arrays to compute in, and latency

reduction due to avoiding data movement to the core. For instance, for copy operation, data

parallelism exposes 32× and latency reduction exposes 1.55× throughput improvement.

Figure 3.7 (b) depicts the dynamic energy consumed for operand size of 4KB. Dy-

namic energy depicted is broken down into core, cache data access (cache-access), cache

interconnect (cache-ic) and network-on-chip (noc) components. We term data movement

energy to be everything except the core component. Overall, CC provides dynamic energy

savings of 90%, 89%, 71% and 92% for copy, compare, search and logical (OR) kernels

relative to Base 32. Large vector CC instructions help bring down core component of en-

ergy. Further, CC successfully eliminates all the components of data movement. Writes

incurred due to key replication limit efficacy of search CC operation in bringing down L3

cache energy components. As data size to be searched increases, key replication overheads

will get amortized increasing effectiveness of CC.

Figure 3.8 depicts total energy consumed broken down into static and dynamic com-

ponents. Due to reduction in execution time, CC can significantly reduce static energy.

Overall, averaged across the four kernels studied, CC provides 91% in total energy savings

relative to Base 32.

Near-place design:

In our analysis so far, we have assumed perfect operand locality i.e. all Compute Cache
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Figure 3.9: a) Total energy of in-place vs near place for 4KB operand b) Savings in dynamic
energy for 4KB operand for different cache levels

operations are performed in-place. Figure 3.9 (a) depicts the total energy for near-place and

in-place CC configurations. Recall that in-place computation enables far more parallelism

than near-place and offers larger savings in terms of performance and hence total energy.

For example, our L3-cache allows 8KB data to be operated in parallel. Near-place design

would need 128 64-byte wide logical units to provide equivalent data parallelism. This is

not a trivial overhead. As such, for 4KB operands, in-cache provides 3.6× total energy

savings and 16× throughput improvement on average over near-place. Note however that,

near-place can still offer considerable benefits over the baseline architecture.

Computing at different cache levels: We next evaluate the efficacy of Compute Caches

when operands are present in different cache levels. Figure 3.9 (b) depicts the difference

in dynamic energy between CC configurations and their corresponding Base 32 config-

urations. As expected, the absolute savings are higher, when operands are in lower-level

caches. However, we find that doing Compute Cache operations in L1 or L2 cache can

also provide significant savings. As the number of CC instructions stays same regardless of

43



 0

 1

 2

 3

 4

 5

to
ta

l e
ne

rg
y 

sa
vi

ng
s 

 (r
at

io
)

BMM WordCount StringMatch DB-BitMap

uncore-static
core-static

uncore-dynamic
core-dynamic

 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

pe
rf

or
m

an
ce

 n
or

m
al

iz
ed

 
to

 b
as

el
in

e

BMM WordCount StringMatch DB-BitMap

Figure 3.10: a) Total energy benefit b) Performance improvement of CC for applications

cache level, core energy savings is equal for all cache levels. Overall, CC provides savings

of 95% and 93% for L1 and L2 caches respectively relative to Base 32.

3.6.5 Application Benchmarks

In this section we study the benefits of Compute Caches for five applications. Fig-

ure 3.10 (b) shows the overall speedup of Compute Caches for four of these applications.

We see a performance improvement of 2× for WordCount, 1.5× for StringMatch, 3.2× for

BMM, and 1.6× for DB-BitMap. Figure 3.10 (a) shows ratio of total energy of CC to base-

line processor with 32-byte SIMD units. We observe average energy savings of 2.7× across

these applications. Majority of benefits come from three sources: data parallelism exposed

by large vector operations, reduction in number of instructions and data movement.

For instance, recall that while baseline WordCount does a binary search over dictio-

nary of unique words, Compute Cache does a CAM search using cc search instructions.

Superficially it may seem that binary search will outperform CAM search. However, we

find that CC version has 87% fewer instructions by doing away with book keeping in-

structions of binary search. Further, our vector cc search enables energy efficient CAM

searches. These benefits are also evident in StringMatch, BMM and DB-BitMap (32%,
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Figure 3.11: Performance overhead of CC for checkpointing

98% and 43% instruction reduction respectively). The massive data level parallelism we

enable benefits data intensive range and join queries in DB-BitMap application. Recall that

this benchmark performs many independent logical OR operations over large bitmap bins.

Since these operations are independent, many of them can be issued in parallel.

Significant cache locality exhibited by these applications makes them highly suitable

for Compute Caches. As cache accesses are cheaper than memory accesses, computation in

cache is more profitable for data with high locality or reuse. The dictionary in WordCount

has high locality. BMM has inherent locality due to the nature of matrix multiplication. In

DB-BitMap, there is significant reuse within a query due to aggregation of results into a

single bitmap bin, and there is potential reuse of bitmaps across queries. In StringMatch,

locality comes due to repeated use of encrypted keys.

Figure 3.11 depicts the overall checkpointing overhead for SPLASH-2 applications as

compared to baseline with no checkpointing. In absence of SIMD support, this overhead

can be as high as 68% while in presence of it the average overhead is 30%. By further

reducing instruction count and avoiding data movement, CC brings down this overhead

to a mere 6%. CC successfully relegates checkpointing to cache, avoids data pollution of
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Figure 3.12: Total energy with and without checkpointing

higher level caches and relieves the processor of any checkpointing overhead. Figure 3.12

shows significant energy savings due to Compute Caches. Note that, for checkpointing, all

operations are page-aligned and hence we achieve perfect operand locality.

3.7 Related Work

To our knowledge, Compute Caches is the first to make a case for off-loading computa-

tion to caches. Our SRAM design enables in-place computation. As this proposal focuses

on reducing data movement and making it efficient, we compare and contrast prior work

which addresses both of these aspects of data movement.

Near Memory Computing:

Concept of near memory computing or processing in memory (PIM) has been around

for some time [58, 77, 86, 102, 106]. Recent advances with die-stacking which make inte-

grating high-speed logic process technology with memory possible have renewed interest

in near memory computing [12, 159, 53, 162, 109]. The key idea in these works is to

place computation near main memory. Ahn et al. [22] proposed a locality aware PIM de-

sign, which opportunistically decides when computation should be offloaded to memory
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and when it should be performed using host processor instructions. TCAM [64] enables

in-memory associative computing using STT-MRAM technologies.

PIM is an effective approach for reducing data movement costs for applications that

have no cache locality. However, for cache friendly applications, compute caches are a

better choice. Ultimately, the locality characteristics of an application should guide in

which level of memory hierarchy (registers, higher-level caches, lower-level caches, or

memory) the computation must be performed.

Seshadri et al. [125] exploit existing DRAM operation to perform a bitwise AND/OR

of two DRAM rows completely within DRAM. Our proposal complements [125] when

applications have cache locality. For applications with cache locality, in-DRAM compu-

tation is energy inefficient compared to compute caches. Also, unlike our proposal, every

logical operation in [125] first requires all operands in the logical operation to be copied

to new DRAM rows because DRAM read is destructive. This incurs additional overheads.

Overhead of such copies is justified only at large granularities. In-cache computation, how-

ever, can support much smaller granularities. Finally, while this work is similarly limited

by operand locality, it does not discuss ways to address it but proposes copying of operands

from one DRAM sub-array to another to perform in-place computation.

Processing in memory solutions like RowClone [126] exploit internal DRAM organi-

zation to perform fast copy operations and can be employed for in-memory checkpoint-

ing. However, offloading copying to memory requires flushing dirty data from higher level

caches and will cause high latency cache misses for application data. In our proposal, by

performing copy at various cache levels can avoid this cost.

Duarte et al [50] propose adding an indexing table near cache to accelerate cache line
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copying. They neither provide in-place copy nor provide any other operation but copy.

Reducing data movement Several proposals from both hardware and software domain

can reduce on-chip data movement. Non-uniform cache access(NUCA) organizations, in

which large last level caches are decomposed into smaller slices have been widely stud-

ied [80, 66, 37, 45] to exploit variable wire lengths between cache slices and cores. Locality

aware task mapping [54, 19, 156, 42] can also reduce data movement by placing frequently

communicating tasks close to each other. Such techniques reduce data movement costs by

moving data closer to computation cores that need them. Compute caches do the opposite

– it moves compute near the data.

Optimizations to reduce cache misses [78, 148, 69, 128], conflicts [27, 79, 114], or

placing data in locality tailored fashion [104, 45], energy efficient communication fab-

rics [99, 142, 44, 82, 139, 43, 18] can all in general reduce data movement over cache

hierarchy. In addition to this, there is a rich literature which employs cache bypass-

ing [70, 115, 74] by predicting reuse distances of data. Such techniques can complement

our design by helping to effectively select the cache level to perform a CC operation.

Logic in memory arrays: Associative memories [103] perform XOR operations within

the array, but have either much larger bit-cells or more complicated bit-cells [108] or non-

CMOS bit-cells [64]. Also they have different peripheral circuit organization around the

array. Our proposed solution does not modify the foundry provided, highly optimized,

six transistor CMOS bit-cell and uses an organization compatible with conventional cache

sub-arrays.
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3.8 Discussion

While Section 3.7 compares Compute Caches to other contemporary works which fo-

cus on optimizing data movement, this section places Compute Caches in the larger context

of available computation nodes. Programmers today have several architectures at their dis-

posal (multi-cores, GPUs) to realize performance. Further, as discussed in Section 3.7,

research proposals are also looking at using DRAM and emerging memories to perform

computations. This raises an interesting question as to which computation node is best

suitable for a given computation or in other words, how do these computation nodes com-

pare against each other. We compare available and proposed computation nodes against

Compute Caches along three dimensions: potential to reduce data movement costs, data-

parallelism available and computation capability.

First, as this work demonstrates (Figure 3.3), general purpose cores expend a great deal

of time and energy in data movement over cache hierarchies. As GPUs employ caches too,

they also expend energy in data movement over them. In contrast, by enabling computation

inside caches we can save this component of energy. Computation inside/near memory

(DRAM and emerging memories like memristors) can avoid expending data movement

energy over caches. However, in presence of cache locality for operands, computation

in caches is far more profitable as each cache access is cheaper (delay and energy) as

compared to a memory access.

Second, data parallelism in compute caches is orders of magnitude higher than SIMD

units in CPUs, and even GPUs. For example, we can re-purpose 30 MB LLC in the server

class Intel Xeon E5-2597 to support 983,040 bit-serial ALU slots. This compute capabil-
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ity is significantly higher than aggregate SIMD width in Xeon (448 32-bit slots), or even

Nvidia Titan Xp (3840 32-bit slots). While data parallelism in DRAM and emerging mem-

ories like memristors can be higher than present in caches (owing to their larger sizes),

former does not support in-place operations due to destructive nature of DRAM reads ne-

cessitating copies and latter is a speculative technology, and is also significantly slower

than SRAM.

Finally, the set of operations currently supported inside caches is limited as compared to

that supported by a general purpose core or GPU or even memristors. However, as demon-

strated in this work, Compute Cache enabled logical and copy operations can accelerate a

wide variety of applications such as search engines, cryptography, bitmap based databases,

bioinformatics and operating system primitives.

To conclude, nearly three-fourth of a server class processor die area today is devoted for

caches. Even accelerators use large caches. Our work provides evidence that turning them

into compute units can deliver significant performance and energy savings. As caches can

be found in almost all modern processors, we envision compute caches to be a disruptive

technology that can enhance commodity processors with large data-parallel accelerators

for almost free of cost. CPU vendors (Intel, IBM, etc.) can thus continue to provide

high-performance general-purpose processing, while enhancing them with a co-processor

like capability to exploit massive data-parallelism. Such a processor design is particularly

attractive for difficult-to-accelerate applications that frequently switch between sequential

and data-parallel computation. As such, Compute Caches is a worthy addition to available

computation nodes.
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3.9 Conclusion

In this chapter we proposed the Compute Cache architecture which unlocks hitherto un-

tapped computational capability present in on-chip caches by exploiting emerging SRAM

circuit technology of bit-line computing. Using compute enabled caches, we can perform

several simple operations in-place in cache over very-wide operands. This exposes massive

data parallelism saving instruction processing, cache interconnect and intra-cache energy

expenditure. We present solutions to several challenges exposed by such an architecture.

We demonstrate the efficacy of our architecture using a suite of data intensive benchmarks

and micro-benchmarks.
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CHAPTER IV

InvisiMem: A Low-overhead Secure Processor

This chapter presents InvisiMem, a low-overhead secure processor design with strong

defenses against memory side channels and efficient data freshness guarantees. Both mem-

ory side channel and data freshness are well studied problems and prior work has proposed

solutions with various optimizations. However, in our work we look at these security vul-

nerabilities in new light of 3D stacked memory with integrated logic layer. Our proposal

shows how in presence of such “smart” memories simpler and efficient solutions to these

security vulnerabilities are possible.

4.1 Introduction

Cloud computing allows clients to outsource their computations to untrusted cloud ser-

vice providers. Ensuring privacy of code and data on a computer physically owned and

maintained by an untrusted party is challenging, as we must assume a powerful adversary.

A malicious insider may even have physical access to the data-centers, making them vul-

nerable to physical attacks, such as probing the memory bus [10, 145].
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A common solution is to reduce the attack surface by minimizing the trusted comput-

ing base (TCB) to a secure processor [9, 138] and a small portion of the client’s applica-

tion. Intel Software Guard Extensions (SGX) [97, 23] provides hardware primitives for

this purpose. An SGX-enabled processor seeks to isolate code and data of private enclave

functions in an application from the rest of the system, including its own public functions,

system software, and hardware peripherals.

While the secure processor is trusted, the memory bus and the memory are not. De-

fending against memory bus side channel requires solutions to at least three problems: data

and address confidentiality, data integrity and freshness, and timing channel. Solutions to

these problems are expensive. For example, best known solution for address confidential-

ity is Oblivious RAM (ORAM) [60], which increases memory bandwidth consumption by

˜100X.

In this chapter, we present InvisiMem, a low-overhead secure processor that provides

ORAM equivalent guarantees for the address side channel, ensures data integrity, freshness,

and mitigates memory timing channel. InvisiMem is based on our observation that smart

memories (memories with compute capability) with packetized interface (as opposed to

the DDR interface) can be taken advantage of to design an ultra-low overhead secure pro-

cessor. Recent advancements in 3D integration technology such as the Hybrid Memory

Cube (HMC) [16] make it possible to stack DRAM layers on top of logic layers, and con-

nect them using Through Silicon Vias (TSV). Unlike a memory bus that is exposed to an

adversary, the TSVs pass completely through a silicon wafer, and therefore it is almost

impossible to probe them without destroying the 3D package. Thus, there is no need for

expensive mitigation solutions to protect the communication over the TSVs.
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InvisiMem executes the private enclave functions in a SGX-like secure high-performance

host processor connected to the smart memory via a memory bus using a packetized in-

terface (Figure 4.1 (a)). The logic in smart memory is included in TCB and is used to

implement cryptographic functions, while memory layers remain outside TCB.

Data and Address Confidentiality: A secure processor guarantees data confidential-

ity by encrypting data before sending it to memory. Memory address, however, is sent in

plain-text on the bus, as required by the DRAM’s DDR interface. By observing the mem-

ory addresses, an adversary can infer sensitive program inputs [151] and cryptographic

keys [163]. Prior solutions tackle this leak using Oblivious RAM (ORAM) [60]; a cryp-

tographic construction that obfuscates memory accesses to make them indistinguishable

from a random access pattern. To do so, it issues several memory accesses for every nor-

mal access. In spite of significant recent advancements [56, 160] such ORAM-based so-

lutions increase memory access latency considerably (˜20X) and incur huge performance

overheads(˜4X). ORAM also has security limitations in that it does not help guard against

memory timing channel [91].

InvisiMem’s trusted compute capability in memory allows the processor to send the

whole request packet, including the address, in an encrypted form. We observe, however,

that address encryption alone is insufficient to provide ORAM guarantees. First, read re-

quests or responses should appear indistinguishable from their write counterparts to an

adversary snooping the memory bus to avoid leaking the memory access type. Second, on

a read to a location, if the memory simply returns stored encrypted data at that location, an

adversary can correlate it to the last write or previous reads to the same location. Solutions

to address these problems are discussed.
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Figure 4.1: Smart memory based secure designs. a) InvisiMem far b) InvisiMem near

Freshness without Merkle trees: Guaranteeing data freshness requires that an adver-

sary should not be able to rollback the state of a memory block by recording and replaying

older packets (either by manipulating values in memory or while being transmitted over

the bus). To defeat such replay attacks, a conventional secure processor maintains cur-

rent versions of memory blocks using Merkle trees [117] and verifies that a read response

returns the latest version. Merkle trees impose severe memory space and bandwidth re-

quirements [63].

We observe that smart memory can provide freshness without requiring the Merkle tree

construct. To do that we set up a secure communication channel between processor and

memory using authenticated encryption. This is possible thanks to the compute capability

of memory. Using authenticated encryption, we can prevent data manipulation in memory

or over the memory bus as both parties can ensure that requests/responses are originating

from the authenticated counterpart and that they are fresh.

Timing Channel: Smart memory also enables an efficient solution for solving one type

of memory timing channel: memory access and response times seen on the memory bus.
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InvisiMem sends constant rate heart-beat packets between the processor and smart mem-

ory in both directions. When an actual request or response is available, the next heart-beat

packet’s slot is used or else a dummy packet is transmitted. This is viable for systems

with smart memory (HMC-like) for several reasons. First, the interface employed in such

systems sends synchronization packets periodically even when there is no communica-

tion [12]. Hence, the energy overhead of turning them into heart-beat packets is relatively

low. Second, unlike traditional memory systems, smart memory allows dummy requests

to be ignored, lowering their energy overhead. Third, compute capability in smart mem-

ory allows responses from memory to be sent at a constant rate (unlike traditional memory

systems). This helps hide variations in access times to different locations.

The above solution naturally supports a system with multiple memory modules con-

nected to a processor. Sending constant rate heart-beat packets between every pair of com-

municating nodes hides all access patterns, and thereby also hides addresses accessed. We

also discuss some precautions needed to support such systems.

Optimizations: Encrypting and decrypting packets constitute the majority of the per-

formance overhead in InvisiMem. Specifically, computing OTPs (one-time pads) using

AES incur the highest latency. We take these operations out of the critical path of a mem-

ory access by precomputing OTPs before a request/response is sent or received. We also

investigate various designs for efficiently storing and retrieving meta-data (for encryption

and integrity checks) which exploit smart memory characteristics like vault-level paral-

lelism.

With these optimizations, InvisiMem incurs 14.21% performance overhead, 53.03%

energy overhead and 37.5% memory space overhead compared to an Intel Xeon-like pro-

56



cessor.

The logic layer in smart memory has sufficient area and power budget (nearly 55W [51])

for a low-power processor. Executing enclaves in this core can hide all the communication

between the core and memory, and thereby eliminate memory bus side channel. The trade-

off, however, is that its compute capability may not match that of a high-performance core.

We study this using a variant of our design, named InvisiMem near (Figure 4.1 (b)).

Remote attestation and Key Management: InvisiMem expands TCB to include logic

layer stacked with memory. Note that DRAM layers in memory are still outside TCB.

Almost all secure processors such as Intel SGX, including all ORAM based designs, rely

on public key infrastructure (PKI). Similarly, we propose that smart memory vendors also

support PKI for trusted logic in memory. Using the public key of the smart memory, we

show that a secure host processor can easily establish a secure communication channel with

the smart memory’s logic.

4.2 Motivation and Background

In this section we briefly describe hardware support for secure containers (enclaves),

which we assume in our work. We also present a threat model and discuss prior defenses for

memory bus side channel. Finally, we provide a brief background on 3D stacked memory,

which we use in our system.
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Channel Leak/Vulnerability Freecursive
ORAM [56]

Ghostrider [91] InvisiMem far InvisiMem -
near

Passive
Memory
Bus
Probe

Data Data encryption Data encryption Data encryption
Eliminate
memory bus
channel

Address ORAM ORAM Whole packet encryp-
tion + Double data and
timestamp encryption

Access type (R/W) ORAM ORAM Same packet size for
read/write

Trace length with [57], yes Deterministic execu-
tion

constant rate request-
s/responses

Access time with [57], yes Deterministic execu-
tion

constant rate request-
s/responses

Active
Memory
Bus
Probe

Data Data encryption Data encryption Enclave checks +
Authenticated
Encryption (HMAC)

Enclave checks
+
Authenticated
Encryption
(HMAC)

Data corruption HMAC no
Replay attack HMAC + access count no

+ position data checks
Write set ORAM ORAM

Cold
Boot

Data Data encryption Data encryption Data encryption Data encryp-
tion

System
software

Execution time no Deterministic execu-
tion

no no

Table 4.1: Comparison of InvisiMem to ORAM-based defenses. Smart memory enables
more efficient and simpler solutions.

4.2.1 Enclaves for Isolation

Intel SGX [23, 97] is the latest hardware support for building trusted computing sys-

tems. It provides capability for isolating the execution of an enclave from the rest of the

system, including the public functions of the application, system software, and other hard-

ware peripherals.

An enclave is a secure container that contains private data and the code that operates

on it. An application is responsible for specifying enclaves and invoking them. When an

enclave is invoked through special CPU instructions, the untrusted system software loads

the enclave contents to the portion of the protected memory allocated for the enclave’s

execution. The secure processor computes the enclave’s measurement hash over initial data

and code, which the remote client uses for software attestation. Thereafter, the enclave is

executed in a protected mode, where the hardware checks ensure that every memory access

to protected memory is from its enclave.
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4.2.2 Threat Model

We assume a secure processor that supports isolated execution of enclaves (e.g. Intel

SGX [23, 97]). We assume that an adversary cannot observe the communication between

the layers in smart memory and that its logic layer is secure.

We assume a powerful adversary that can compromise the operating system and use

OS privileges to compromise the confidentiality and integrity of applications. This adver-

sary also has physical access to the computers running client computations. Thus, he can

probe the off-chip memory bus to observe (and modify) the communication between the

secure processor and the memory, including the event times. We assume that DRAM die is

untrusted, as the adversary may have the capability to scan DRAM contents through cold

(re)boot attacks [65] or corrupt state using Row-Hammer attacks [84].

We assume that the execution of a private enclave function and its data in the processor

(registers, caches, on-chip interconnect, performance counters) is secure and isolated from

other computation. Several prior studies have discussed solutions for ensuring this property

in a multi-core processor with shared hardware structures [40, 127, 143, 33]. We also as-

sume prior solutions for mitigating page-fault side-channel [40, 132] in enclaved systems.

Power [85], thermal [110], program execution time [158] side-channels, and leaks via com-

munication patterns over the network [100, 124], have been addressed in prior work and

are outside the scope of this work.
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4.2.3 Memory Bus Side Channel and Cold Boot Defenses

Table 4.1 compares various leaks through memory bus side channel and cold boot attack

that secure processors must protect. It describes the solutions used in two of the recent

ORAM-based work, Freecursive ORAM [56] and Ghostrider [91]. While more recent

ORAM-based work exists [160], we consider Freecursive ORAM [56] as it proposes a

ORAM-based defense optimized for providing data integrity and freshness guarantees as

well.

In most trusted computing systems such as SGX, all the hardware components outside

the secure processor are untrusted, including the memory and the memory bus. To ensure

confidentiality, they use randomized encryption to encrypt the data before writing to mem-

ory, and decrypt it when it is read back. This protects sensitive data from leaking directly

through memory bus probes and cold boot attacks. However, an adversary can still observe

addresses and access types (read or write) by passively probing the bus.

To protect confidentiality of addresses (also, access types and write sets), prior solutions

employ expensive ORAM [60] construct. To obfuscate the address pattern, depending on

the memory size, an ORAM access may require one to two orders of more memory accesses

compared to a normal DRAM access. Recent hardware innovations such as Freecursive

ORAM have made significant improvements to bring down the performance cost to about

4X [56], though at a significant increase in hardware complexity, on-chip (80KB) and off-

chip (more than 2X) space overhead.

ORAM does not prevent memory access time and total number of memory accesses

from leaking. This is provided by the memory-trace obliviousness (MTO) guarantee pro-
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vided by Ghostrider [91] which ensures that the program execution (instruction trace, time)

is independent of program sensitive inputs. This requires a deterministic compiler, hard-

ware which prohibits most commonly used optimizations (caches, instruction re-ordering

etc) and also imposes non-trivial constraints on the program (e.g. sensitive input-independent

loop guards). As a result, it incurs nearly 6X performance overhead. compared to a baseline

with a single-issue, in-order processor.

An adversary can corrupt data in memory and violate data integrity. A replay attack

is also possible, where an adversary manages to rollback the state of a memory block by

replaying an older write message. To provide data integrity, secure processors typically

create and store hash message authentication code (HMAC) along with data in memory. On

a read, HMAC can be used to detect data integrity violation. Replay attacks are thwarted

by including a version number during the HMAC creation. The processor tracks the current

version of the memory state using on-chip storage [152, 56], and uses it to ensure that a

read returns the latest version. Both these guarantees incur additional performance and

space overhead, and complexity.

With 3D smart memory, and by increasing the trusted computing base to include its

logic layer, we can reduce the complexity of these problems, and realize low-overhead se-

curity solutions. We seek to guarantee memory-trace obliviousness (MTO) property (except

not protecting program execution time from leaking) along with data integrity and freshness

guarantees.
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4.2.4 Smart Memory

3D integration has led to the rise of 3D-DRAM devices such as the Hybrid Memory

Cube (HMC) [16]. A typical 3D-DRAM consists of several layers of DRAM dies stacked

on top of each other, with a logic layer at the bottom, all internally connected using Through

Silicon Vias (TSVs) [12]. The layers are partitioned vertically into vaults (each with sev-

eral DRAM banks) which can be accessed in parallel. HMC device is connected to the

processor via SERDES links. Unlike traditional DRAM’s DDR interface with low-level

commands, HMC device is exposed via a more flexible packet interface.

Recent HMC device has a capacity of 2GB and can provide maximum memory band-

width of 160GB/s [16]. While the logic layer in current devices contains circuits for in-

terfacing with the vaults (memory controllers), it has sufficient area and thermal power

budget (55W [51]) to include fairly sophisticated computational units, such as a low-power

processor and/or cryptographic units.

In 2.5D stacking, the memory and the processor can be interconnected through metal

layers within a silicon interposer [47]. These metal tracks are etched using the same pro-

cesses as the tracks on the silicon chips, and hence they are orders of magnitude smaller

than the tracks on a conventional memory bus. It is therefore reasonable to assume that an

adversary will be unable to tap the communication between the processor and memory in

2.5D system, providing similar security properties as 3D. Also, since logic is not stacked

at the bottom of the memory layers, the thermal power budget would allow it to support a

high-performance core.

62



4.3 InvisiMem Design

InvisiMem builds upon enclave support similar to Intel SGX or Sanctum [40] for isola-

tion. As memory layers in smart memory are untrusted (cold-boot attacks, Section 4.2.2),

we store encrypted data in memory using randomized encryption, similar to SGX.

We first discuss InvisiMem far, which executes the enclave in a secure high perfor-

mance processor (Figure 4.1 a)). Later, we discuss a more optimized design, InvisiMem -

near, which executes the enclave within smart memory’s logic.

We start by discussing smart memory advantages which help design low-overhead de-

fenses for memory bus side channel and also lead to an efficient solution to guarantee

freshness. We also discuss performance optimizations that we employ and efficient storage

of meta-data in smart memory.

4.3.1 Advantages of Smart Memory

Compute capability in memory allows whole memory packets to be encrypted and de-

crypted. Also, it makes it possible to generate dummy responses, and discard dummy

requests.

In traditional DRAM systems, on-chip memory controller issues low-level DDR stan-

dard compliant commands to interact with the off-chip DRAM modules. In contrast, a

smart memory has a packetized interface. The logic layer in smart memory decodes com-

mand packets from processor and internally routes them to the memory controller associ-

ated with every vault. The memory controller then communicates with the DRAM memory

in its vault through DDR commands. Smart memory’s packetized design allows us to seam-
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lessly extend its packet processing logic with security functionality, without modifying the

DDR standard, which is harder.

Unlike a memory bus, the TSVs that connect the logic layer and the DRAM memory

pass entirely through silicon. It is almost impossible for an adversary to launch a physical

attack by probing the TSVs without destroying the 3D package.

4.3.2 Protecting Memory Address and Type

In InvisiMem, secure processor encrypts and sends the whole packet, including data,

address, access type (read or write) using randomized encryption. This is possible only

because smart memory is capable of decrypting addresses. Randomized encryption makes

it hard for an adversary to correlate messages that carry the same address. However, en-

crypting address alone is not enough to ensure ORAM properties.

First, an adversary can correlate a read to a location with an earlier write to the same

location by simply comparing the encrypted data (or timestamp used to encrypt it) as de-

picted in Figure 4.2 (b). To solve this problem, while responding to a read request, the

smart memory double encrypts an already encrypted data and its timestamp, before send-

ing a response.
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Second, the communication between the processor and the memory in an insecure de-

sign is noticeably different for reads and writes (Figure 4.2 (a)). A read request and a write

response do not carry data, while a write request and a read response do. Thus, an attacker

could infer whether an access is a read or a write. We eliminate this leak by ensuring equal

packet sizes for both read and write request/responses by adding a dummy block to read

request and write response.

These solutions are sufficient to provide guarantees equivalent to ORAM. However,

they are not sufficient to prevent the number of memory accesses and their access times

from leaking (ORAM leaks these too). Furthermore, response times may vary depend-

ing on the memory location accessed. We address these timing channel problems in Sec-

tion 4.3.4.

4.3.3 Guaranteeing Data Integrity and Freshness

Our threat model assumes that DRAM layers are untrusted and therefore stored data

can be corrupted (e.g. Row-hammer attacks [84]). An adversary may also corrupt data

communication on the bus through active probing. Creating and storing a hash message

authentication code (HMAC) with data on a write, and checking the code on a read can

solve these issues.

Guaranteeing freshness, however, requires more extensive support in conventional hard-

ware. In a replay attack, an adversary manages to rollback the state of a memory block by

replaying an older data. Replay attacks can be prevented by including a version number

during the HMAC creation. The processor must securely track the current version of the

memory state [152, 56], and use it to check if a read is returning the latest version. But these
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data integrity checks incur additional performance and space overhead, and complexity.

InvisiMem far uses authenticated encryption [96] to guarantee freshness. Authenti-

cated encryption ensures integrity and freshness of data sent over the untrusted memory

bus. Using authenticated encryption, the sender (processor or memory) generates and sends

an authentication tag over the encrypted packet sent to the receiver. The receiver uses this

tag to check if the packet is the latest message from the trusted sender.

Authenticated encryption [96] uses an one-time pad (encryption of monotonically in-

creasing counter) to generate encrypted data over which the authentication tag is then gen-

erated. As such, on a message replay, receiver’s regenerated tag (using latest one-time pad)

will not match the received tag (replayed) causing authentication failure. Note that when

memory responds, it generates this tag over double encrypted data and timestamp (en-

crypted) (Section 4.3.2). Unlike prior designs [152], we avoid significant hardware state

and memory space needed to track and check the versions of memory blocks.

The secure logic in memory performs the integrity checks only for accesses to protected

memory range reserved for enclaves. It relies on the secure host processor to perform

the necessary enclave checks to ensure that the accesses to enclave locations are from the

enclave that owns them.

4.3.4 Mitigating Memory Bus Timing Channel

Memory access times observed on the memory bus can leak the program paths taken in

an execution [57]. Memory response times to requests can also leak sensitive information.

For example, reads with row-buffer locality will have significantly lower response latency

than reads to different rows (Figure 4.3).
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Figure 4.3: Time taken to respond by memory can leak sensitive inputs.

To solve both these leaks, the processor and the memory send heart-beat packets at a

constant rate to each other. When there is a real packet to send, the sender transmits it at

the next available slot. In the absence of a real packet, a dummy packet is sent, which is

ignored by the receiver. This design trivially eliminates the two leaks noted above. Smart

memory’s capability to generate packets at a constant rate makes this design feasible. In

a conventional memory system, as only the processor can send requests at a chosen rate,

variations in response times noted above (Figure 4.3) are hard to mask.

We also experimented with a dynamic scheme that adjusted the packet rate according

to application’s memory access characteristics [57], but we did not find any significant per-

formance or energy benefit in the context of a smart memory based design (Section 4.5.4).

We believe this is partly due to unique characteristics of smart memories. Smart mem-

ory is different from traditional memory systems modeled in prior work [57] in two aspects.

First, smart memory can ignore dummy requests. Second, idle energy expended in smart

memory is very high compared to a traditional DDR interface, as SerDes links in packe-

tized interface require null packets to be sent at a constant rate for synchronization [12].

Link energy to transmit a null packet is about 75% of energy to send an actual packet [81].

Further, the energy expended in encrypting/decrypting packets does not constitute a
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significant fraction of the total system energy, even while operating at a packet rate that is

high enough for the most memory intensive programs we studied.

As a dynamic scheme’s security guarantee is also weaker than a static rate, we chose the

latter. Instead of choosing a constant packet rate for all applications, we could select a rate

for each application using profiling or user input, without sacrificing security properties.

Though we did not find a significant benefit for this approach, it may be useful for very

memory intensive applications needing a higher packet rate than what we chose.

While outside the scope of this work, an attacker capable of measuring power side chan-

nel can distinguish real and dummy requests in InvisiMem, as the smart memory ignores

dummy requests. If this is a concern, instead of ignoring a dummy request, we can issue

an access to a random location.

4.3.5 Performance: OTP Pre-computation

One-time pad (OTP) generation, which uses an AES encryption, is the most time con-

suming portion of GCM [96] which we use for authenticated encryption. We take it off the

critical path of a request or a response by pre-computing it.

An OTP is generated from a timestamp counter and a private key. A timestamp counter’s

state is shared between the processor and the smart memory. We enable sharing by initial-

izing the respective timestamp counters in both processor and memory at the start of a pro-

gram’s execution to the same value. Thereafter, the sender and the receiver synchronously

increment the counter on sending or receiving a packet.

Synchronous timestamp counters avoid sending the timestamps along with each packet.

More importantly, the sender or the receiver can pre-compute an OTP even before a packet
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is ready to be encrypted or decrypted. The only case where this is not possible is when

decrypting a read response as the timestamp stored with the data must be first recovered to

compute the OTP and then decrypt the data using it. See Section 4.4.2 and Figure 4.5 for

more details.

Synchronous timestamp counters are feasible as the communication network is point-

to-point between the processor and memory, and is generally lossless. If a communication

link is unreliable, then timestamp counters can lose synchronization when a packet is lost.

Unreliable networks typically deal with lost messages by tagging packets with sequence

numbers, and re-synchronize when a packet loss is detected. Similar techniques can be

used to track lost packets in our system.

4.3.6 Space: Meta-Data in Smart Memory

We consider two design alternatives for storing meta-data (timestamp and tag) with

their data. In the fragmented design, data of a cache block is stored along with its meta-

data in memory. This design has relatively lower complexity as the memory controller can

fetch both data and its meta-data using a single request. However, storing meta-data with

data consumes two cache blocks worth of space, even though meta-data is smaller than a

cache data block.

In the non-fragmented design, we store data and meta-data at non-contiguous loca-

tions. This allows meta-data of multiple data blocks to be compactly packed together with

less wastage of memory. However, this requires two requests per data access. We reduce

any potential performance overhead due to the serialization of these requests by exploit-

ing vault-level parallelism (Section 4.2.4). To achieve this, we map addresses to physical
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locations such that data and its meta-data are always stored in different vaults (note how-

ever that in a multiple module system, data and it’s associated metadata are present in a

single module). Furthermore, as adjacent data blocks may be accessed in close succes-

sion, our mapping ensures that data and meta-data of spatially adjacent data blocks in the

address space are stored in different vaults. See Section 4.4.4 for details. With these per-

formance optimizations, non-fragmented design incurs only a negligible performance over-

head compared to the fragmented design, but has better space utilization (91.66% compared

to 68.75%).

4.3.7 Remote Attestation and Key Exchange

We now discuss a simplified client-processor remote attestation protocol [9, 23, 39], and

how we could adapt it to set up a secure communication channel between the processor and

memory in InvisiMem.

Remote attestation is a process by which a remote host proves to a client that it is run-
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ning trusted software on trusted hardware. On successful conclusion of remote attestation,

the client shares its sensitive data (e.g., private keys) with the host before commencing

computation.

A secure processor manufacturer endows each secure processor with a unique public-

private key pair. It also serves as a certificate authority that provides a certificate that binds

the processor’s identity to its public key. In addition, a secure processor has support for

integrity measurement (a hash of code, data, and system state).

The client aims to attest a remote processor and setup a shared session key to communi-

cate sensitive data with it. To do that, it sends a key agreement message ( 1 ) to the remote

host [48]. The processor uses this to generate a response key agreement message. This

along with its integrity measurement is signed with the processor’s private key. The signed

message is sent along with the processor’s certificate issued by its manufacturer ( 2 ) to the

client. The client ( 3 ), first verifies that the certificate is valid using manufacturer’s public

key. Then, using the processor’s public key in the certificate, it verifies that the received

message is indeed from the processor. It further checks if the measurement value is as

expected. If it is, then the client uses the key agreement message received to compute the

shared session key for further secure communication.

In InvisiMem, the secure processor and the client use the conventional remote attesta-

tion protocol described above. Secure processor uses a similar protocol to authenticate and

exchange keys with its secure memory. The only difference is that the secure memory does

not need integrity measurement support. To support this, just like processor manufacturers,

we propose that memory manufacturers endow smart memory modules with public-private

key pair, and serve as its certification authorities.
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To support the above protocol, we assume that smart memory’s logic can support asym-

metric encryption. Given its area and thermal budgets (Section 4.2.4), it should be able to

support asymmetric encryption which is implemented even in smart-cards [68] with much

lesser resources.

4.3.7.1 Security Considerations

Remote attestation protocol discussed above is immune to man-in-the middle (MITM)

attacks. The second check in the last step of the protocol described above ( 3 ) ensures that

the response received is indeed from the trusted entity. Private keys stored in secure proces-

sor and secure memory are tamper-proof. But to manage scenarios where vulnerabilities

are discovered after deployment, certificate authorities can maintain certificate revocation

lists. Alternatively, certificates can be associated with expiration dates. None of these

problems and solutions are unique to processor-memory authentication and key exchange

described above, as they exist in client-processor remote attestation as well.

4.3.8 Key and Timestamp Management

Storage: Keys (data and address) and timestamps we employ are stored in special

registers at memory controllers at both side. To ensure process isolation, each process has

a different key. But we need only as many special registers for keys as there are processor

cores, as the number of active processes cannot be more than that. A timestamp can be

shared amongst processes. Security is guaranteed as long as a given timestamp is never

reused for the same key, which is ensured by incrementing it each time it is used. Note that

techniques that tackle timestamp overflow [152] can be adapted in our system.
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Multiple Memory Modules: Systems where a secure processor is connected to multi-

ple memory modules are possible [81]. Therein, the processor can setup a secure channel

with each memory module. This will require a timestamp per memory module. Further-

more, to ensure that the same timestamp-key pair is not reused, we statically partition

timestamp ranges amongst memory modules.

A security vulnerability in such a system is that an adversary can gain some information

about an address accessed simply by observing which module is accessed. Fortunately, our

timing channel solution (Section 4.3.4) addresses this problem.

4.3.9 Near InvisiMem

As noted in Section 4.2.4, the logic layer integrated with memory could support low-

power (3D) or even high-performance cores (2.5D). InvisiMem near exploits this opportu-

nity by assuming that the secure host processor is within smart memory’s logic layer. Since

the TSVs are secure, it obviates the need for protecting communication between the core

and memory. However, we conservatively exclude the DRAM memory layers from TCB

(Section 4.2.2). Therefore, data is still stored in encrypted form in memory, and its integrity

is checked by storing HMAC tags with data and checking them on read.

The memory controller bounces any access from an external device, including the host

processor, by checking if it falls within the range of protected memory region dedicated

for enclaves. Apart from these measures and support for enclave checks, all of which

are already supported in commodity secure processors such as Intel SGX, InvisiMem near

requires little else support to provide the guarantees we seek. Note that this design does

not need additional support to guarantee freshness or prevent memory timing channel leaks
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(Section 4.3.4).

4.4 Implementation

This section describes hardware support for cryptographic primitives, and details how

OTP pre-computation helps reduce the latency of encryption/decryption in a read/write

operation, and how meta-data is stored in 3D memory efficiently.

4.4.1 Hardware Support for Cryptographic Primitives

4.4.1.1 Authenticated Encryption

We use Galois/Counter operation mode (GCM) [96] with AES for authenticated en-

cryption. GCM operates on 128-bit blocks. Therefore, a single cache block (64 bytes) is

broken into 4 blocks of plain-text. One Time Pad (OTP) is generated by using AES en-

cryption on a counter along with a 128-bit encryption key. OTP is then XORed with a

plain-text to generate its cipher-text. The counter used to generated OTP is incremented for

every block that is processed to provide randomized encryption [116]. For authentication,

GCM employs a GHASH function [96], which creates hash of a message ciphertext using a

secret 128-bit hash key (H) derived from the encryption key. The output is an authentication

tag, which is regenerated at the receiver to verify data integrity.

4.4.1.2 Metadata: Timestamps and Keys

InvisiMem far uses three symmetric keys: address (Ka), data (Kd), and data double

encryption (Kd-de). The data double encryption key is used to double encrypt encrypted
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data and timestamp to defend against correlation attack (Section 4.3.2).

We use three timestamps. 128-bit address timestamp (ATS) is used for generating ad-

dress OTP. Address key (Ka) and ATS are used to encrypt packet header and tail, which

includes the address, command, etc. For brevity, we simply refer to these in terms of en-

crypting/decrypting addresses in this section.

Smaller 64-bit data timestamp (DTS1) is used for encrypting 64-byte cache block data

as follows. The cache block is broken into four 128-bit blocks. Timestamp for each block

is produced by concatenating 64-bit timestamp (DTS1) with a 62-bit fixed vector (FV)

and a two bit block-id representing it’s relative position in the cache block. Since the

timestamp for a cache block has to be stored along with data in memory, using a smaller

64-bit timestamp helps save space. For double-encryption of data and its timestamp, we

use a 125-bit timestamp DTS2 concatenated with 3-bit chunk-id while generating the OTP.
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This timestamp is never stored in memory.

4.4.1.3 Augmented Memory Controller

Smart memory has memory controller/s (MMC) in the logic layer which communicate

with the integrated memory controller (PMC) in the processor. We augment both PMC

and MMC to perform authenticated encryption (Figure 4.7 (a)). This requires registers for

timestamps and keys mentioned in Section 4.4.1.2. PMC and MMC have three AES and

four Galois Field multipliers (GF-M) [123] each.

4.4.2 InvisiMem far Security Protocol

Figures 4.5 and 4.6 depict the steps involved in InvisiMem far on a read and write

respectively. We classify all the actions into either ”off-critical path” or ”on-critical path” of

a read or a write access. For simplicity, we only depict the encryption part of GCM and not

authentication tag generation which can be partly overlapped with encryption/decryption.

We also ignore our timing channel solution, which simply requires that once a packet is

ready it is sent at the next available slot.

In Figure 4.5, PMC encrypts an address for read request. Using ATS, we can pre-

compute the OTP required for address encryption, leaving only an XOR operation on the

critical path. Request packet for a read includes the encrypted address and dummy en-

crypted data block. The latter is added to the request packet to make it impossible for

an attacker to differentiate a read request from a write request. On receipt of a request,

MMC decrypts the address; again with a pre-computed OTP and issues a read to DRAM.

On receiving a response from DRAM, MMC encrypts data and its associated timestamp
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using pre-computed OTP generated from DTS2 (double encryption) and sends it to PMC.

Double encryption is done to guard against correlation attack by observing encrypted data

or timestamp. On receipt of response, PMC first decrypts data and timestamp using OTP

pre-computed from DTS2. Then uses the decrypted timestamp to again decrypt the data,

which is the expensive step in our protocol.

For a write (Figure 4.6), PMC encrypts data and address; while MMC decrypts address

both using pre-computed OTPs. Thus, only XOR operations are on the critical path.

For authentication, a Galois Field multiplication and an XOR operation are also needed

per ciphertext (Section 4.4.1.1). Read/write requests/responses require address and either

data or dummy data tag generation on both PMC and MMC side. Dummy data tag genera-

tion can be avoided on receiving side. For a read response, MMC first checks the tag read

from DRAM and generates another tag on double encrypted data for transmission. We can

overlap some of these operations with data (and address) encryption/decryption.

4.4.3 InvisiMem near Security Protocol

The protocol for near-memory secure processor involves data encryption and authen-

tication tag generation on a write. A read requires data decryption, and authentication

tag generation and check. While authentication delay is added to critical path for a write

request, a read response overlaps it with data decryption.

4.4.4 Storing Meta-Data in Smart Memory

Meta-data for a cache block consists of 64-bit timestamp value (DTS1) and an integrity

tag. Section 4.3.6 described two designs for storing this meta-data: fragmented and non-
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fragmented.

Figure 4.7 (a) depicts fragmented layout. Storing data and its metadata together requires

88 bytes (64 data, 8 timestamp, 16 tag). HMC Specification [12] mandates that memory

block sizes can be 32/64/128/256 bytes. Therefore, in the fragmented layout, 88-byte data

block and its meta-data consumes 128-bytes, resulting in effective memory utilization of

68.75%.

Figure 4.7(b) depicts non-fragmented layout, where meta-data and data are not stored

together. A 64 byte block can store meta-data for two data blocks (2 timestamps and 2 tags).

This leads to a far better memory utilization of 91.66%. To exploit vault-level parallelism,

our data mapper places data block and its meta-data in different vaults, so that they can be

accessed in parallel. We also take care that meta-data of spatially adjacent data blocks are

mapped to different meta-data blocks. Memory waits for both data and metadata before

responding to a request from PMC.

4.5 Evaluation

4.5.1 Methodology

We study 22 benchmarks from SPEC 2006 [67] suite with reference inputs. We use

the Simpoint [129] methodology with interval size of 100 million instructions to choose
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Configuration 4 cores, commit width 4, 72 entry LQ, 42 entry SQ
Processor Near Memory: 2.5 GHz out-of-order core

Far Memory: 4 GHz out-of-order core
L1-I/D Cache 32KB, 8-way, 4 cycle access
L2 Cache inclusive, private, 256KB, 8-way,11 cycle access
L3 Cache inclusive, shared, 8MB, 16-way, 40 cycles
Interconnect Split Bus, 6 cycles, arbitrate latency: 1 cycle
DRAM 4GB, 2 channels, tCL = tRCD = tRP = 13.75ns,

tCk=1.25ns
3D Memory 4GB, 32 vaults [12], 128 TSV’s per vault @2Gb/s [72]
Off-chip links 4 SerDes links, 16 lanes per link, direction [12]

Table 4.2: Processor and memory model.

Benchmark LLC MPKI IPC Benchmark LLC MPKI IPC
povray 0.06 0.94 perlbench (perl) 1.42 1.20
gamess 0.1 1.33 gcc 1.49 0.65
namd 0.13 1.13 cactusADM 3.58 0.71

(cactus)
hmmer 0.26 1.08 zeusmp 4.02 0.84
calculix 0.31 1.17 bwaves 10.32 0.69
gobmk 0.34 0.93 leslie3d (leslie) 17.53 0.38
h264ref 0.43 1.21 GemsFDTD (Gems) 20.25 0.27
gromacs 0.46 0.76 milc 20.58 0.45
sjeng 0.47 0.86 soplex 25.93 0.27
tonto 0.54 1.01 libquantum (libq) 33.06 0.32
bzip2 0.55 0.75 mcf 40.67 0.15

Table 4.3: LLC MPKI and IPC for DRAM hp.

representative execution samples. Table 4.3 reports the LLC misses per kilo instructions

(MPKI) and IPC values for DRAM hp (unsecure baseline without smart memory).

Processor Model: We modeled our processor designs (Table 4.2) using MARSSx86 [105],

a full system cycle accurate simulator. Processor in InvisiMem far is similar to Intel Quad

Core i7-4790K processor [13]. InvisiMem near places secure processor in the logic die of

smart memory. Eckert et al. [51] investigated power dissipation possible in the logic layer

of smart memory under various cooling solutions. They conclude that with an active heat

sink, the power dissipated can be as high as 55W without affecting memory die tempera-
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Design Read-Req Read-Resp Write-Req Write-Resp
Baseline 16 80 80 16
InvisiMem far 112 120 112 120

Table 4.4: Request and response packet sizes (in bytes).

tures adversely. Hence, we model InvisiMem near as Intel i7-3770T [11] at 2.5GHz and

45W.

Latency of Cryptographic Primitives: We synthesized a pipelined AES core from

OpenCores [17] at 45nm and scaled it using ITRS projections to model its latency in our

system. The Galois Field multiplication (authenticated encryption) is a combinational cir-

cuit that operates in single cycle [123, 152].

Power Model: We model processor power using McPAT [90] and AES energy to be

302 pJ [95] per 128-bit block. For baseline DRAM, we model access energy to be 65

pJ/bit [72]. A recent industry prototype [72] reports 10.48pJ/bit for HMC access of which

43% is attributed to SerDes circuits [72, 109], rest is for DRAM access and logic layer. We

model 1.42W for DRAM static power.

Smart Memory Model: We use DRAMSIM2 [118] to model 4GB of DRAM memory

for baseline (DRAM hp). We modify DRAMSIM2 to model a 4GB 3D-stacked mem-

ory with 32 vaults and 128 TSVs (through silicon vias) per vault [12]. We assume the

same DRAM device parameters (Table 4.2) for both traditional DRAM and 3D-stacked

memory. However, we assume a DRAM clock in line with TSV signaling rate for smart

memory [72].

Table 4.4 shows packet sizes communicated in baseline [12] and InvisiMem far. Each

packet has 8-bytes of header and tail, which carry useful meta-data like command, address
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Figure 4.9: Energy overhead w.r.t DRAM hp.

etc. Hence, read request or write response is 16 bytes in size. Write requests and read

responses carry 64 bytes of data as well. In our design read/write requests also transmit au-

thentication tags (16 bytes for packet header/tail, 16 bytes for data). Responses additionally

carry data timestamp (8 bytes).

4.5.2 Unsecure Smart Memory Performance and Energy

Figure 4.8 shows the performance overhead with respect to unsecure baseline DRAM -

hp of various designs modeled with increasing security guarantees. We plot the benchmarks

in the increasing order of their LLC miss rates. The 3D far design represents an unsecure

high power processor connected to smart memory. High bandwidth smart memory helps

improve performance of memory intensive programs (GemsFDTD sees gain of 31.41%).

On average, smart memory delivers performance improvement of 4.02%.

Figure 4.9 shows the energy overhead of 3D far design (average 24.98%). While the
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DRAM energy is lower for smart memory, the static power expended by the SerDes links is

the chief cause of this overhead. High static power is caused as SerDes links transmit null

packets when idle [12]. Prior work also observes that SerDes link power is a significant

fraction of the total HMC power [21, 109, 59].

4.5.3 Far InvisiMem

This section discusses performance and energy overheads of our InvisiMem far designs

to guarantee security properties equivalent to ORAM, data integrity, freshness, and also

avoid leaking timing of memory events.

3D far+DE configuration in Figure 4.8 adds data encryption (DE) to 3D far design.

This model helps us tease out data encryption overheads (incurred in secure processors like

Intel SGX) from the address encryption overheads. Adding data encryption incurs modest

overhead of 2.58% on average.

To tease out the overhead of providing ORAM guarantees from the other security guar-

antees, we model InvisiMem far (no DI) configuration which provides only ORAM guar-

antee. In this design we encrypt both address and data, but authenticate only address. This

increases the overhead from 2.58% (3D far+DE) to mere 5.55%.

The InvisiMem far configuration depicts the design which has ORAM, data integrity

and freshness guarantees, but no defense against the timing channel. InvisiMem far design,

incurs an average overhead of 10.81% (highest overhead for bwaves of 52.65%). This is a

significant improvement over prior ORAM-based solutions [56], which also require addi-

tional hardware support for tracking and checking version numbers of memory blocks. The

InvisiMem far configuration which does not leak the timing of memory events is depicted
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as InvisiMem far+Timing (Section 4.5.4). This design increases the average overhead from

10.81% to 14.21%.

Figure 4.9 shows the energy overheads of InvisiMem far. Without timing channel

defense, InvisiMem far increases the energy overhead of 3D far design from 24.98% to

34.38%; with it the overhead is 53.03%. This is a sharp contrast to prior works which in-

cur one to two orders of performance loss, bandwidth increase, and commensurate energy

overhead.

4.5.4 Static Packet Rate for Timing Channel

As discussed in Section 4.3.4, we choose a static request and response rate to address

timing channel leaks. We provide here the empirical evidence to support this choice. Fig-

ure 4.10 depicts energy delay squared (ED2) overhead of various static packet rates with

respect to InvisiMem far without timing channel protection. To depict spectrum of behav-
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Figure 4.12: Comparison to dynamic scheme.

iors, we pick two least and most memory intensive benchmarks, and two benchmarks with

highest and lowest IPC.

We see that the lowest (ED2) overhead occurs roughly at 30-cycles for all these diverse

programs. The reason is that energy consumed by cryptographic units to process dummy

packets stops being a significant fraction of system power as packet interval increases be-

yond about 30-70 cycles. As SerDes links constantly send null packets even when they

are idle, there is not much to be gained by increasing the packet interval beyond this sweet

point. This combined effect is depicted in Figure 4.11 (averaged across six benchmarks

under study) wherein energy overheads first start to drop before showing a negative trend.

We also implemented a dynamic predictor [57] (ED2 overhead of 165.58%) with rates

(30, 60, 120, 240). Figure 4.12 compares this predictor to our static scheme with 30 cy-

cles (ED2 overhead of 159.73%). We show low (gcc) and high (mcf) LLC MPKI rate

benchmarks, and also average for all the programs. As these results show there is not a sig-

nificant potential for performance improvements or energy savings with a dynamic scheme.

Considering it has a weaker security guarantee, we chose a static rate.
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4.5.5 Near InvisiMem

Figure 4.13 shows the performance overhead of two near-memory processor designs

we model, with and without security guarantees (We depict outlier benchmarks only for

space considerations). A low-power processor stacked with memory layers is depicted

as 3D near. Compared to high-performance far processor, it has an average overhead

of 13.56%. Compute intensive benchmarks exhibit overheads (44.23% for calculix),

whereas memory-intensive benchmarks see performance gains (GemsFDTD, 26.43%). In-

visiMem near which encrypts data and authenticates it on reads adds about 11% overhead

to 3D near design. To model the scenario where it may be feasible to connect a high

performance core to memory through secure silicon interposer, we depict 3D near hp and

InvisiMem near hp. For such a design, the average overhead of providing data encryption

and integrity is a mere 1.41%.

4.5.6 Memory Space Overhead

Table 4.5 lists the space overheads of a recent ORAM-based proposal Freecursive-

ORAM [56] and InvisiMem far for various security guarantees. For both designs we report
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Guarantee Encryption ORAM Integrity
Freecursive ORAM [56] 256MB 5.8GB 2GB
InvisiMem far 512MB 0B 1GB

Table 4.5: Memory space overheads.

space overheads for 4GB of real data with 64 bytes block size.

InvisiMem far incurs more space overhead to store encryption timestamps as these are

per cache block. In contrast, in Freecursive-ORAM, these timestamps are per bucket which

comprises of multiple cache blocks. However, this reduction in space overhead has con-

comitant performance, energy and bandwidth cost as buckets have to be read and written in

their entirety. InvisiMem far incurs no space overhead for ORAM guarantees. Freecursive-

ORAM, on the other hand, incurs close to 100% space overhead to store dummy data blocks

and other metadata needed to implement the ORAM algorithm. Finally, for data integrity,

Freecursive-ORAM has higher overheads as it needs tags for dummy cache blocks as well.

4.5.7 Fragmented Vs Non-Fragmented

Section 4.4.4 discussed two ways in which a memory block and its metadata (times-

tamp/tag) can be stored and retrieved from memory. Non-fragmented design has better

memory utilization than fragmented design. However, it also breaks every memory request

into requests for data and metadata. Owing to vault-level parallelism and our data mapping

policy (Section 4.4.4) we see that the average overhead of InvisiMem far only increases

from 7.24% in fragmented design to 10.81% in non-fragmented design. Given its better

memory utilization and negligible performance difference, we chose the memory layout of

non-fragmented design for all our experiments.
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4.6 Related Work

InvisiMem is the first work that uses smart memory based solution for memory bus side

channel.

4.6.1 3D Stacking for Security

Only two prior proposals [140, 63] harness 3D-stacking to provide security guaran-

tees. In [140] a control plane is integrated with a conventional processor in a 3D stack

which provides security functionalities like monitoring activities of the processor to pre-

vent cache-side channel attacks. In [63], the authors leverage smart memory logic to

efficiently implement Bonsai Merkle Tree [117]. Our work obviates need for Merkle trees

by using memory isolation provided by Intel SGX and employing authenticated encryption

between processor and memory. Both prior works did not harness smart memories to solve

address side channel or timing channel.

Concurrent to our work, ObfusMem [25] also uses smart memory to provide ORAM-

equivalent guarantee. InvisiMem provides a stronger memory-trace obliviousness (MTO)

guarantee [91] by hiding memory access and response times using constant rate messages.

4.6.2 Secure Hardware

Several secure hardware proposals [138, 9, 61, 136, 31] exist which chiefly aim to

provide isolation (protect sensitive application from other applications and untrusted sys-

tem software) and software attestation. The latest proposal: Intel SGX [97, 23], provides

isolated execution, and reduces the trusted computing base to the application and few privi-
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leged containers. It also provides encryption, data integrity and freshness guarantees. There

are other proposals with similar or more security guarantees like SGX [36, 52, 40]. None

of these proposals address memory bus side channel.

We discussed solutions [91, 160, 56] that provide defenses against memory bus side

channel in Section 4.2. They incur order of magnitude more memory accesses and result

in huge performance overheads. We show in this work that with smart memory, memory

bus side channel can be solved with low overheads. Prior works have also considered

sending memory requests from the processor at a static [55] or dynamic [57] rate. Both

rely on ORAM algorithm to generate indistinguishable real and dummy requests. Our

timing solution does not rely on ORAM-algorithm. By employing smart memory it can

generate constant response rate to hide response time variations. It can avoid processing

dummy requests in memory, saving energy. Also, unlike prior schemes [57], our solution

is not limited to only one pending memory request at any time.

Prior works [143, 127] address information leakage when an untrusted program shares

the memory system with a trusted application. Wang et al. [143] extended memory con-

troller to allocate fixed time quantum for each thread when they can issue memory accesses.

It does not hide when a thread issues requests or receives responses within its time quantum

from an adversary who has physical access to memory bus. Shafiee et al. [127] proposed to

issue a real or dummy request every Q cycles for each thread, and architected a determin-

istic memory that guaranteed a response before the interval ends. Deterministic memory

forgoes optimizations such as row-buffer hits. Unlike InvisiMem, it does not hide type of

memory access (read or write). Also, InvisiMem leverages packetized interface of smart

memory to support constant rate responses without requiring any changes to DRAM de-
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sign, and is more efficient.

Optimizing Memory Encryption: Prior works propose several optimizations to re-

duce memory encryption overheads which can be used in our design. In [130], the authors

predict encryption counters for speculative OTP pre-computation. In [153, 152], encryp-

tion counters are cached which can also further reduce our overheads.

4.7 Conclusion

This chapter proposed InvisiMem, which harnesses smart memory with compute ca-

pability to simplify solutions for providing address and data confidentiality, data integrity,

freshness, and also closes the memory bus timing channel. By including logic layer of

smart memory in the trusted computing base, we demonstrate how each of the above guar-

antees can be obtained at order of magnitude lower overheads for performance, space,

energy and memory bandwidth, when compared to prior solutions that relied on expensive

constructs like Oblivious RAM and Merkle trees.
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CHAPTER V

Sanctuary: Efficient Page Fault Channel Defense

Previous chapter discussed how an attacker can learn the address trace of an application

by snooping the addresses off the bus and a low-overhead defense against this side-channel.

A related vulnerability that commercial secure processors like Intel SGX suffer from is

page fault side channel. A malicious OS uses the page fault mechanism to induce faults

at each memory access to learn the address trace of the application. This chapter presents

Sanctuary, a low-overhead page fault channel defense which provisions operating system

with flexibility to manage memory as a resource, yet prevents the OS from using page

faults to learn an application’s address trace. Our solution relies on near-memory page

movements to keep it’s overheads low. Together with InvisiMem (Chapter IV), Sanctuary

secures the address trace of an application from leaking and leads to more secure systems

at low overheads.
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Figure 5.1: Memory organization under SGX (a) and under Sanctuary (b). CFI: Confiden-
tiality, Freshness, Integrity

5.1 Introduction

Reliance on cloud computing for it’s myriad benefits has led to increased demand for

preserving the privacy of cloud computing client’s data and computations. Intel Software

Guard Extensions (SGX) [23, 97] is the latest commercially available secure processor

offering which aims to answer the increased demand for privacy preserving remote com-

putations. With SGX, a cloud user can designate parts of his application as private or

sensitive (termed enclave) and the SGX-enabled processor will isolate code and data of

this enclave from the rest of the system, including the application’s public functions, sys-

tem software, and hardware peripherals. A SGX enclave accesses its code/data by placing

it in a partition of physical memory that SGX reserves at boot time termed EPC (Enclave

Page Cache, Figure 5.1). Once a page in this partition is allocated to an enclave, SGX pro-

visions checks to ensure this page is isolated from the rest system; only the owing enclave

can read/write to the page.

The size of EPC is limited under SGX (128MB in current SGX processors) to keep

metadata space and performance overheads under check which largely depend on EPC size.
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Security guarantees for EPC are provided at cache-block granularity; every cache-block is

encrypted (confidentiality), has associated MAC tag (integrity:prevent data corruption) and

additional metadata to preserve freshness (read returns latest written value). Limited EPC

size can cause sensitive pages to be spilled outside EPC. SGX provides similar security

guarantees (Figure 5.1) to enclave’s sensitive pages regardless of the memory partition

they are stored in albeit at different granularities. When a page is being spilled from EPC

to non-EPC memory, SGX encrypts the page for confidentiality, creates a single MAC tag

for data integrity and uses a nonce for freshness. Unlike EPC, sensitive pages in non-EPC

memory do not have isolation. In order for an enclave to access a spilled page, it has to be

moved back to EPC. Such page movements are done by the OS using SGX instructions.

While the security guarantees provided by SGX for sensitive pages of an enclave are

strong, SGX leaves page management entirely to the OS. The OS can allocate pages in

EPC to enclaves, deallocate them at will and spill them to non-EPC memory. Furthermore,

address translations (virtual to physical) are also under OS’s purview. As such, OS handles

TLB misses, accesses and updates page tables for enclaves.

As SGX leaves page management to the OS, a malicious OS can simply revoke page

permissions to induce spurious page faults during enclave execution. Using this mecha-

nism, the OS can learn the address trace of an enclave. This security vulnerability, termed

page fault channel [151] can be used to recover sensitive inputs of an application [151, 163].

Specifically, prior work [151] showed how the sensitive input image to an enclave can be

completely recovered. This can have catastrophic consequences say for a medical image

processing cloud application.

Current solutions to fix page fault channel [40] propose to reserve all memory needed
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by an enclave a priori and revoke OS’s ability to perform address translations and mem-

ory deallocations during enclave’s execution. This is undesirable from both enclave’s and

operating system’s perspective. For the enclave, predetermining memory requirement is

only possible either by severely limiting enclave’s behavior (no dynamic memory alloca-

tions, no recursion etc.) or by reserving large amounts of memory a priori. The latter case

can cause information leak if enclave memory requirement at runtime exceeds the reserved

memory size leading to OS controlled paging activity. For the OS, disallowing memory

deallocations robs the OS of it’s flexibility in managing memory as a resource.

In this chapter, we propose Sanctuary, a page fault channel defense in which unlike

prior solutions we allow OS to allocate memory on-demand and also deallocate memory

during enclave’s execution. Unlike baseline SGX, where OS is in complete control of page

management for an enclave, under Sanctuary, while OS still retains complete control over

allocations, EPC deallocations and page movements between EPC and non-EPC memory

are performed by a secure runtime in collaboration with the OS. The runtime secures its

transactions (hides addresses) with the OS via a novel construct termed Oblivious Page

Management (OPAM) which is derived from Oblivious RAM (ORAM) [60] but is cus-

tomized for the properties of page management for enclaves. The runtime is also responsi-

ble for securing address translations for enclave’s sensitive pages. As OPAM transactions

are costly, we reduce their number by creating a novel memory partition termed EPC-lite

which has similar guarantees to EPC but does not incur the overheads of actually increasing

EPC size.

Oblivious page management (OPAM): Under both baseline SGX and Sanctuary, OS

retains the ability to deallocate non-EPC memory pages and swap them to a backing store.
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A malicious OS can use this to revoke permissions on non-EPC memory pages and learn the

address trace of an enclave. To prevent this, under Sanctuary, the secure runtime obfuscates

the addresses accessed in non-EPC memory via ORAM construct.

ORAM is a cryptographic primitive which makes a memory access pattern compu-

tationally indistinguishable from a random access pattern of same length. To do so, it

maintains a randomized mapping between each logical page and its physical location in

memory (position-map) and also reshuffles pages in memory on each access. While

several ORAM realizations exist, we focus on path-ORAM [135] in this work which orga-

nizes memory as a binary tree. We customize the traditional ORAM implementation for

our context and term the resultant implementation oblivious page management (OPAM).

Reducing position-map overheads: A key structure which supports ORAM algorithm

is position-map which stores mappings between a logical page and it’s physical loca-

tion in memory. Access to this structure is required for each ORAM access and is on the

critical path. By encoding position map data inside page tables we show how we can do

away with both the space and performance overheads of accessing this structure.

Dynamic ORAM: Prior solutions protect fixed memory size using ORAM construct.

However, as we support on-demand memory allocation for an enclave, the amount of non-

EPC memory needed by an enclave can grow/shrink over time necessitating an ORAM

construct which supports this feature. While such dynamic ORAMs have been theoretically

studied, our work realizes the first efficient implementation for them. We address several

challenges that arise to support this feature like maintaining consistency of position map

structure as the ORAM tree grows and also identify interesting opportunities like choosing

which tree paths to grow to improve ORAM efficiency.
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Dataless and efficient stash: Each access to ORAM tree is modeled as a read and

write of all pages on a path in the tree. Due to the nature of the ORAM algorithm, on a

path write, it is possible that not all read pages can be spilled back to the tree. Such failed

spill pages are tracked in a stash structure. To keep the memory footprint low for stash,

traditional algorithms periodically issue dummy ORAM accesses (access random paths in

tree) which add to overheads. Sanctuary reduces stash footprint by making it dataless; on

a spill failure, we simply track few bytes of metadata and pick a new victim page to spill.

Further, each ORAM access also attempts to spill pages in stash and we come up with

efficient mechanisms to do so for our context.

Thin nodes: Each ORAM access accesses multiple pages (accessed path) in order to

hide the specific page which was accessed. While reducing the node width (pages per node)

in an ORAM tree can reduce its overheads, such thin nodes are more susceptible to ORAM

spill failures. We show how by smartly growing the ORAM tree and our dataless stash

implementation help us to both reduce spill failures and be more resilient to them. This

allows us to realize thin nodes and reap their lower overheads.

Near-memory page movements: The chief source of overhead for an ORAM access

is that several pages are read and written on each ORAM access. The net effect of each

such access is that either a page is spilled from EPC to non-EPC memory or fetched from

non-EPC memory to EPC while rest of the pages are simply moved in non-EPC mem-

ory. Performing these page moves using traditional loads/stores will cause cache pollution

besides incurring huge overheads. Instead, we perform these page movements in a hard-

ware unit close to the memory controller. This accelerates these page moves, avoids cache

pollution and lowers overhead of each ORAM access.
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EPC-lite to reduce OPAM transactions: While OPAM considerably reduces baseline

ORAM algorithm overheads, each OPAM transaction is still costly. As these transactions

are required only while accessing non-EPC memory, we could reduce their number by

increasing EPC. Increasing EPC size, however, is challenging as SGX provides security

guarantees for EPC pages at cache block granularity. As such, any increase in EPC size

will incur additional performance and space overheads for maintaining and accessing the

metadata needed for providing these guarantees. Instead, Sanctuary extends EPC without

incurring metadata overheads by devising a memory partition which has all the security

properties of EPC except at page-level. We term this novel memory partition as EPC-

lite. Secure runtime can move pages between EPC-lite and EPC without needing OPAM

transactions. We identify challenges in supporting EPC-lite region and propose simple

solutions to address these challenges.

We model a suite of cloud computing applications: genome processing, vision applica-

tions, graph processing, and in-memory key value store which frequently process sensitive

data including but not limited to medical images, genome sequences and social graphs.

We demonstrate how page fault channel can be fixed with reasonable overheads for these

applications.

5.2 Motivation and Background

5.2.1 Intel SGX

Intel SGX [23, 97] provisions instruction set extensions which rely on hardware support

to provide isolated execution to an application. An application developer intending to create
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an SGX application, first needs to identify data that is sensitive, data structures which hold

this data and code that operates on these structures and place them in a separate trusted

library termed as enclave [14]. SGX guarantees that as long as hardware is not tampered

with, any memory claimed by the enclave is encrypted and its integrity is checked. SGX

adds additional checks to prevent malicious system software (operating system, hypervisor)

or other applications in the system from accessing the memory claimed by the enclave.

While an adversary can corrupt the enclave memory using physical probing of memory,

any such data corruption will be detected using integrity checks of SGX.

While a promising solution, Intel SGX is susceptible to several vulnerabilities. The

vulnerability that we focus on in this work is page fault side channel [151]. As SGX

leaves virtual memory management entirely under the purview of the OS, a malicious OS

can manipulate page tables to induce spurious page faults and learn the page-level address

trace of an application. Prior works [151] show how this channel can be used to recover

sensitive inputs to an application.

5.2.2 Threat Model

We assume a secure processor with support for isolated execution like Intel SGX. Our

attack model assumes a powerful adversary with full control over the operating system. We

assume that the entire application is bundled as an enclave (along with necessary libraries)

and it’s interactions with external world are made secure i.e. the enclave is protected against

attacks like Iago attacks [32]. We consider other side channels like cache [155], power [85],

thermal [110], program execution time [158] outside the scope of this work.
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Figure 5.2: Accessing block a involves read and write of path to leaf to which the block
is mapped. (a) Depicts stash after end of path read. (b) Depicts stash after end of path
write. Block with dummy data is represented as φ.

5.2.3 Path Oblivious RAM

Oblivious RAM (ORAM) is a cryptographic construct which makes a memory trace

computationally indistinguishable from a random access trace of same length. While there

are several ORAM construct realizations, we employ path-ORAM [135] which is the most

practical implementation of this construct. In this section we explain the workings of path-

ORAM algorithm (henceforth referred to simply as ORAM).

ORAM organizes memory as a binary tree and each node in the tree has fixed num-

ber of slots (z) each capable of storing a single data block. The tree also has associated

utilization factor which indicates percentage of real blocks that can be stored in the

tree; remaining blocks hold dummy data. The algorithm maps each real block to a leaf

in the tree and these mappings are maintained in the position-map structure. All the

blocks (real and dummy) are stored in encrypted form in memory. The tree also stores

metadata for every block which includes its block-id (null for dummy blocks), its leaf and

encryption related counter.
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Figure 5.2 depicts steps involved while reading block a. The algorithm first looks

up the position-map to find the leaf the block is mapped to ( 1 ). The ORAM invariant

is that block a will either be in the stash structure the algorithm maintains or in some

slot along the path to it’s mapped leaf (path-0). Next, it accesses path-0 and decrypts

all blocks along the path ( 2 ), storing only real blocks in the stash structure ( 3 ). At

this point, block a is read and remapped to a random leaf ( 4 ). Next, as many blocks

as possible are encrypted and written back to path-0 and rest of the slots are filled with

dummy blocks ( 5 ). While writing back a path, data blocks are pushed as close to leaf

nodes as possible (block c moves to leaf node). Notice that block a is left behind in

the stash. This is so, as it is now mapped to leaf 3 and the only common node between

path-0 and path-3 is the root node which is currently full. A write operation proceeds

similarly except that the block will be read and updated.

ORAM’s security relies on two actions. First, mapping of blocks to random leafs on

each access causes new set of blocks to be read each time a block is accessed. Second,

each access causes re-encryption of all blocks accessed which makes it hard for an adver-

sary to differentiate between real and dummy blocks and deduce which block was actually

accessed.

Note that ORAM is susceptible to failures. Most secure processor implementations

provision stash as an on-chip structure and a stash overflow due accumulation of blocks

causes ORAM failure. So as to reduce this probability, on every ORAM access, data blocks

are pushed as close to leaf nodes as possible to free up higher level nodes which can store

blocks mapped to larger set of leaves.
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5.3 Sanctuary Design

This section gives details about three main components of Sanctuary’s design: secure

runtime, oblivious page management (OPAM) construct and EPC-lite memory.

5.3.1 Secure Runtime

The secure runtime is responsible for address translations for enclave’s sensitive pages.

All page faults incurred by an enclave are delivered to the secure runtime which performs

the page table walk to read/update enclave’s page tables. Further enclave’s page tables are

stored in enclave’s sensitive pages so as to prevent malicious updates to them.

It is necessary to direct TLB misses to enclave’s sensitive pages to enclave’s page ta-

bles(stored securely and isolated) whereas misses to non-sensitive pages continue to use

OS managed page tables. This necessitates enabling a dual page table walk mechanism.

Such support has been extensively studied by prior work [40] and can be adopted in our

system. In essence, this requires an additional page table base register which points to the

physical address of enclave’s page tables. Under SGX, programmer explicitly demarcates

range of virtual addresses of an application as being sensitive and any address translation

for this range can be directed to the enclave’s page tables.

Under Sanctuary, the secure runtime also performs page management in collaboration

with the OS. This includes making page management decisions on behalf of the enclave

and securely performing page movements between EPC and non-EPC memory using our

OPAM construct (Section 5.3.2). At enclave load, the secure runtime attempts to load the

enclave’s code and data section pages in EPC. If enough EPC is not present, these pages
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are allocated in non-EPC memory. The secure runtime also reserves some pages for stack

and heap sections. Profiling can be employed to figure out the number of pages to be set

aside for these sections.

On a TLB miss, the secure runtime performs a page table walk. If the miss is due to

a page present in EPC, the page table entry is simply loaded in TLB. If however the miss

is due to a stack/heap page which was never allocated before, the secure runtime requests

OS to allocate an EPC page. If a new EPC page is not available, the secure runtime picks a

victim EPC page from the EPC pages allocated to the faulting enclave, spills it to non-EPC

memory to make space in EPC and allocates it to the faulting address. Note that, during a

spill to non-EPC memory, the secure runtime may need to request more non-EPC memory

pages from the OS. If the miss is caused by a code/data section page or stack/heap page

which was previously allocated but was spilled to non-EPC memory, the secure runtime

will fetch the page in EPC which could also require an EPC page to spilled to make space

for incoming non-EPC memory page.

5.3.2 Oblivious Page Management

In this section we discuss how we customize the traditional ORAM construct (Sec-

tion 5.2.3) to be more suitable for page management context. We term our customized

construct Oblivious Page Management (OPAM). Our secure runtime uses this construct to

support page movements between EPC and non-EPC memory.

Sanctuary organizes the non-EPC memory pages belonging to an enclave as a binary

tree as in traditional ORAM construct. The secure runtime can request allocations of non-

EPC memory pages for an enclave. The OS can swap any non-EPC memory page to the
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Figure 5.3: Sanctuary page table entries (PTE). A virtual address maps to EPC or non-EPC
memory. For the former, PTE is as before (a) consisting of physical page number and PTE
metadata. For the latter, we store leaf and tree level (b). This allows about 8TB of non-EPC
memory per enclave.

backing store. However, on an access to the tree, the OS ensures all non-EPC memory

pages on the accessed path are resident in memory and we provision mechanisms for the

secure runtime to check this (Section 5.4.1.1). We discuss next our customizations to the

traditional ORAM construct.

5.3.2.1 Page table as Position Map

Traditional ORAM algorithm requires a position map which tracks mapping be-

tween a page and leaf. One of the chief overheads of ORAM algorithm is the perfor-

mance and space overheads associated with position map. We do away with these

overheads by encoding position map data inside page table entries. On a TLB miss,

page tables are already accessed and as such there is no performance overhead for accessing

position map data. Figure 5.3 depicts this encoding where an enclave page is either

mapped to EPC in which case the page table entry (PTE) stores conventional information

(physical page number and PTE metadata). However, if the enclave page is mapped to non-

EPC memory, the PTE stores the leaf to which the page is mapped. Assuming x86-based

architecture, close to 36 bits are available of which we use 31 bits to store leaf information.
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5.3.2.2 Dynamic ORAM

Traditional ORAM algorithm supports fixed memory size. In our context, predetermin-

ing total number of non-EPC memory pages needed by an enclave a priori is hard. Further-

more, reserving large number of non-EPC memory pages would imply a large OPAM tree.

As the overhead of each OPAM access largely correlates to the tree size this would in turn

would translate to large overheads. As a consequence, unlike in traditional ORAM, in our

context it makes sense to grow the OPAM tree on-demand. While prior works [98] study

such dynamic ORAMs theoretically, we identify several challenges in practically imple-

menting this feature and present solutions to identified challenges. Note that, OPAM tree

can also be shrunk as enclave frees memory. While desirable, we leave this to future work

and only focus on growing the tree efficiently in this work.

Add page x
at leaf 7

0 1 2 3

leaf-ids

Node w/ data

Node w/ dummy data

0 1 2 3 4 5 6 7

page x

Figure 5.4: Smart growth. Adding nodes to a full tree (50% utilization). Naive growth adds
nodes gradually from left to right which will cause the page addition to fail as path to leaf 7
is full. Smart growth prioritizes adding nodes to path which is accessed. As a consequence,
the addition succeeds.

Growth Size: An interesting choice with dynamic ORAMs is when and by how much

to grow the tree. Former is guided by the utilization factor (Section 5.2.3) which

dictates the fraction of pages in the tree that can hold real data. Sanctuary adds nodes to
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the tree at a spill to non-EPC memory which will cause the utilization factor to be

exceeded. We add as many nodes so as to ensure that even after adding a new real page the

utilization factor is not exceeded.

Smart Growth: While prior works [98] discuss gradual node addition to an ORAM tree,

our work observes a unique opportunity that exists in deciding where to add these nodes.

Figure 5.4 depicts a scenario wherein we are trying to add a page x to a full tree (utilization

factor of 50%, has three real pages). As discussed above, at this point we will add two

nodes to this tree so that post addition of page x the utilization factor is maintained. A

naive growth strategy could add nodes left to right in a level and in this case cause the spill

of page x to fail as path to leaf 7 is full.

Instead, in Sanctuary, we take a different approach which we term as Smart Growth.

Under this optimization, when we attempt to grow the tree, we first try to add nodes to the

path we are accessing. In this case, this causes nodes to be added to path to leaf 7 causing

the spill of page x to succeed. If the path being accessed is already grown, we simply revert

to adding nodes from left to right. We track a bit vector for last tree level to remember

which paths have been grown so far and which need growing. Our evaluation shows that

by prioritizing adding space to where it is needed the most, smart growth helps us reduce

spill failures considerably.

Smart growth preserves the security of ORAM construct and the adversary does not

learn anything new in smart growth as compared to naive growth. In both growth strategies

the adversary only learns that the tree is being grown and which path in the tree is being

accessed. By making node addition independent of current tree contents, smart growth
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Figure 5.5: Finding page 10 in new tree which was mapped to leaf 3 in old tree. We employ
deterministic remapping; even addresses get remapped to right paths and odd addresses to
left paths. We also remember tree level with the mapping. To find the page, we find leaf in
tree with #old levels and traverse the tree in relevant direction based on address.

does not leak any further information. Smart growth is independent of tree contents as

regardless of occupancy of path being accessed, we still grow accessed path if we need to

grow the tree and current path can be grown.

Avoiding Position Map Updates: One of the key challenge in realizing dynamic ORAM

is position map consistency in which the leaf mapping stored in position map does not

suffice in deducing which path in the tree is to be accessed. Position map consistency is

affected in two scenarios: number of levels in the tree changes and when pages are shuffled

at each access. Figure 5.5 depicts the former. When levels in a tree change, the #leafs in

the tree change. The tree on the left has four leaves while on the right has eight leaves.

The paths to leaf 3 in both the trees are vastly different. Also, page shuffling done on each

access to the tree pushes data as close to leaf as possible. When the tree grows, two leafs

are created where originally there was one leaf. We would like to spread old data over both

leaves on page shuffling causing remapping of pages (update to leaf) needing position map

updates. In the extreme case, we could iterate over all affected position map entries and
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update them. This can have severe overheads as it will lead to random page table walks.

In Sanctuary, we employ two strategies which help us grow the tree and shuffle pages

without needing to update the position map. First, we modify our position map entry to also

store tree level as depicted in Figure 5.3. The leaf and tree level are stored the first time

the entry it inserted in the page table. Also, during page shuffling, we employ deterministic

remapping of pages. We remap pages with even addresses to even paths and odd addresses

to odd paths. With these strategies, during accessing a page, we first use the levels stored

in position map to identify leaf in the tree with stored #levels and then pick either the

right-most leaf (even addresses) or left-most leaf (odd addresses) to identify the path to be

accessed. Figure 5.5 shows an example.

5.3.2.3 Reducing Page Copies between EPC and non-EPC memory

In traditional ORAM implementations, on each tree access, all the pages on the ac-

cessed path are first decrypted and moved to stash (secure space) and then, as many

pages in the stash as possible are written back. In our context, implementing this as-is

would incur several page copies between EPC and non-EPC memory as the stash has to

be in EPC. Such page copies are costly as SGX provides security guarantees at different

granularity for EPC (cache-block level) and non-EPC memory (page level). As such, page

copies have to transform metadata needed for these security guarantees (non-EPC memory

to EPC: page level to cache-block level and vice versa). Note that, the net effect of tree

access is that on each spill to non-EPC memory or fetch from non-EPC memory, only

a single page actually needs to be copied between EPC and non-EPC memory while rest

of the pages on the path only get shuffled in non-EPC memory.
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So as to reduce these page copies, we harness our key observation that we only need

to inspect OPAM metadata to deduce the page movement decisions and we need not move

page data between non-EPC memory and EPC to get the net effect of an OPAM access.

Recall that every page in OPAM tree has associated metadata (virtual address of page,

leaf, level). We store this metadata separately from actual page data in a mirrored OPAM

tree. We first access this data to deduce page copy decisions and subsequently copy one

page between EPC and non-EPC memory (spill: EPC to non-EPC memory or fetch: non-

EPC memory to EPC) and rest of the pages are simply moved within non-EPC memory

(non-EPC memory to non-EPC memory). Our decoupling ensures that even with OPAM

access, the page copies between non-EPC memory and EPC in Sanctuary are the same as

in baseline SGX.

In order to support this feature, we need to enable additional primitives than currently

available in SGX. SGX supports primitives for copying pages between EPC and non-EPC

memory and vice versa. These primitives perform the necessary checks to ensure security

guarantees (integrity and freshness). We need an additional primitive which copies data

from an non-EPC memory page to another while performing these checks. In addition, in

order to read OPAM metadata securely, we also need existing SGX primitives (EPC to non-

EPC memory and non-EPC memory to EPC) to work at granularity smaller than a page.

Prior works like Eleos [101] also propose having such primitives (sub-page access) so as

to avoid moving page worth of data between EPC and non-EPC memory when locality is

lacking.
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5.3.2.4 Dataless and Efficient Stash

Recall from Section 5.2.3 that the ORAM algorithm uses a stash structure to track

pages which could not be spilled on a path write. Prior ORAM implementations which

model stash as a hardware structure have serious limits on how large this structure can

be to limit on-chip storage. As such, when the number of blocks in stash increases to a

certain threshold, these implementations need dummy ORAM accesses to empty the stash.

A dummy ORAM access is simply an access to a random path in tree. The goal of such

accesses is to find a path where some of the blocks in the stash can be spilled so as to reduce

stash occupancy.

Sanctuary’s realization of stash obviates the need for such dummy ORAM accesses and

their concomitant overheads. In Sanctuary on a spill failure, we simply pick another page

in EPC to spill and only remember small amount of metadata for the failed spill (virtual

address of page, leaf, level). As such, our stash simply holds this metadata and is in effect

dataless which reduces overall stash footprint. Furthermore, given our stash is dataless and

in-memory we can also track larger number of spill failures.

On every ORAM access, attempt is made to spill data in stash to the tree (background

spill processing). So as to push data as close to leaf nodes as possible, entries in stash

are sorted based on the leaf currently being accessed. Tracking large number of entries

in stash can cause high overheads for this sorting. In our design, we avoid this sorting.

Instead we maintain a sorted list (by leaf-id) of available entries in stash which reduces

stash processing to simple range checks. If an accessed path has a free slot, we compare

the leaf range that can be spilled to this slot against leaf range available in stash. Only on
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Figure 5.6: Fast background spill processing. We store past failed spills in a sorted order
(by leaf id). Figure shows access of path to leaf 3 which has one empty node (checked)
to which we can potentially spill a past failed spill. We also show the leaf ranges that can
be spilled to each node. Simple range checks against these leaf ranges of available failed
spills can help us process past failed spills quickly.
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Figure 5.7: Thin nodes optimization: page movements reduce considerably with very small
increase in tree height.

an overlap, do we check the stash for overlapped range only. Figure 5.6 shows an example.

5.3.2.5 Thin Nodes Optimization

Figure 5.7 depicts the effect of lowering ORAM tree node width (z). As the tree node

width (z) decreases, the number of pages on the path also decrease, reducing page copies

and overhead per access. However, as z decreases, the probability of spill failures also

increases as the #options available to spill a page reduces (slots available on a path). Recall

from Section 5.3.2.4 that such spill failures are tracked in stash and traditional implementa-

tions rely on dummy accesses to keep stash occupancy low. In fact, for tree node width 1, an
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order of magnitude of more dummy accesses could be required making this configuration

infeasible [111].

However, in Sanctuary, a confluence of optimizations makes thin nodes feasible. First,

our stash is in-memory and is dataless making stash footprint very low. As such, we can

track large number of spill failures. Furthermore, as discussed in Section 5.3.2.4 we also

have an efficient mechanism to process stash. Finally, smart growth optimization (Sec-

tion 5.3.2.2) keeps spill failures low. Together this helps us realize thin nodes and reduce

OPAM access overheads.

5.3.2.6 Harnessing SGX Infrastructure

Recall from Section 5.2.3 that data in ORAM tree is stored in encrypted format and each

access to the tree causes pages on the accessed path to be read and re-encrypted. Baseline

SGX already has mechanisms to ensure confidentiality (encryption), integrity (MAC tag)

and freshness (nonce) for every sensitive enclave page which is spilled to non-EPC mem-

ory. We use existing SGX mechanisms while reading and writing non-EPC memory pages

as part of an OPAM access.

5.3.3 EPC-lite to reduce OPAM reliance

While our novel OPAM construct reduces the overhead of securing page movements

between EPC and non-EPC memory pages considerably, each OPAM access causes several

non-EPC memory pages to be copied and as such incurs high overheads. Recall that, we

need to rely on OPAM only to access non-EPC memory pages. As such, we could reduce

the number of OPAM accesses if we can increase EPC size.
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The key impediment to increasing EPC size is the fact that SGX provides security

guarantees for EPC pages at cache block granularity. As such, increasing EPC size causes

a commensurate increase in space and performance overheads incurred for its metadata.

Sanctuary overcomes this problem by extending EPC but providing security guarantees

at page granularity. We term our EPC extension as EPC-lite. As EPC-lite has the same

properties as EPC, page movements between EPC-lite and EPC do not use the OPAM

construct.

Supporting EPC-lite requires extending baseline SGX isolation mechanism to also

cover some non-EPC memory pages instead of only EPC pages. To support isolation for

EPC pages, baseline SGX maintains a map structure (Enclave Page Cache Map, EPCM)

which securely tracks some metadata for every EPC page. This metadata includes page

permissions, the virtual address of page and also the enclave id who owns the page. SGX

hardware checks this metadata to ensure only owing enclave issues reads/writes to an EPC

page. These checks are performed each time a TLB miss resolves to an address in EPC.

As EPC is a contiguous chunk of physical memory, checking if an address falls in EPC

is a simple range check. To support isolation for pages in EPC-lite, we propose to track

them similarly in EPCM. Also, just like baseline SGX, which marks EPC as no-DMA at

memory controller, we also need similar support for EPC-lite.

Unlike EPC which is fixed at boot time, we propose that the EPC-lite be dynamic; the

number of pages in EPC-lite can grow and shrink over time. This raises the question as

to which non-EPC memory pages can be added to EPC-lite. If we provision support for

any non-EPC memory page to be added to EPC-lite, every memory access needs to check

EPCM which will add unnecessary overheads while accessing non-sensitive pages. In order
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to avoid this, we constrain the EPC-lite region to be a contiguous memory chunk following

the EPC. Doing so, preserves the single range check currently supported in baseline SGX.

While EPC-lite is interesting from a security standpoint, it does have associated limi-

tations. Similar to EPC, deallocation of an EPC-lite page requires the request to be routed

via the secure runtime. As such, larger the EPC-lite region, smaller the non-EPC mem-

ory which implies lower the control the OS has in moving pages to the backing store and

more it’s reliance on getting an enclave to deallocate an owned page. Also, constraining

the EPC-lite to be a contiguous memory chunk as we do can lead to memory fragmentation

as enclaves can give up EPC-lite pages as they finish execution. Some form of memory

compaction in collaboration with the enclave’s secure runtime will be necessary to reduce

this fragmentation. We leave investigating this to future work.

5.4 Sanctuary Implementation

5.4.1 Sanctuary Metadata

Baseline SGX provisions metadata for every sensitive enclave page that is spilled to

non-EPC memory which it uses to load the page back in EPC at a later time while ensur-

ing security guarantees. We refer to this metadata as SGX metadata and this is different

from the metadata needed per non-EPC memory page to support ORAM construct (termed

OPAM metadata). We discuss in this section the changes to SGX metadata, OPAM meta-

data and how we separate the two and update/access them independently.
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5.4.1.1 Changes to SGX Metadata

Baseline SGX creates metadata for an EPC page being spilled to non-EPC memory so

as to be able to load the page back whilst ensuring confidentiality, integrity and freshness.

This metadata includes host of information including (but not limited to) virtual address of

the page, page permissions, enclave ID who owns the page and page type. Furthermore,

SGX also encrypts the page, generates a MAC tag over both the page data and metadata and

relies on a 8-byte nonce for freshness. Metadata so created except for nonce is stored in

non-EPC memory along with the evicted page. Despite OPAM, if this metadata is left as is,

a malicious OS can inspect it to learn which pages are being accessed. As a consequence,

in Sanctuary, we also encrypt SGX metadata. Also, recall that some non-EPC memory

pages are dummy. In order make real and dummy pages indistinguishable from each other

we also we need SGX metadata (dummy) for these pages.

Sanctuary also needs to maintain the integrity of OPAM tree. While SGX ensures con-

fidentiality, integrity and freshness for enclave’s sensitive pages in non-EPC memory, we

also need to ensure that the OS does not swap two nodes in the OPAM tree with impunity.

To avoid such attacks, the MAC tag part of SGX metadata is also created over a unique

tree-id which represents the position of the node in the tree. On an OPAM access, the

secure runtime expects to read certain tree-ids and using this modified tag we can ensure

the integrity of OPAM tree.
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5.4.1.2 OPAM Metadata

We provision metadata per non-EPC memory page (real and dummy) which aids in

the working of OPAM construct. We term this OPAM metadata and it includes the page’s

virtual address (VA), its leaf and level of OPAM tree. We need VA as the position map

simply stores VA to leaf mapping and on accessing a path in tree we need to figure out

which page matches the VA we are looking for. We need leaf and tree levels to support

efficient page shuffling. Recall that on each access, pages are shuffled to push real data as

close to leaf nodes as possible. Having leaf and level as part of metadata helps us perform

page shuffling without having to access the position map.

As we inspect OPAM metadata independent of page data (Section 5.3.2.3), we store

OPAM and SGX metadata separately. As such, we need to maintain security guarantees

for OPAM metadata separately. Consequently, we encrypt this metadata and store a MAC

tag for it. Similar to the tag that SGX stores (Section 5.4.1.1) this tag is also calculated over

tree-id.

Recall that SGX relies on 8-byte nonces (stored securely) to ensure freshness for both

non-EPC memory page and SGX metadata. We also need to provide similar guarantee for

OPAM metadata. Straightforward addition of nonces for OPAM data can increase nonce

overhead considerably. We optimize this overhead by observing that both OPAM and SGX

metadata are updated on each page access albeit sequentially. As such, we repurpose ex-

isting SGX nonce storage for both the nonces: while OPAM metadata uses nonce, SGX

metadata uses nonce+1.
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5.4.2 OPAM Implementation

In this section we discuss some relevant implementation details for OPAM, additional

hardware support we need for it and an optimization we employ.

We implement an OPAM tree with 50% utilization factor and in our evaluation we try

different tree node widths (z). Each slot in our OPAM tree stores a single non-EPC memory

page of size 4KB. Our OPAM tree supports three operations: spill which adds an EPC

page to the tree, fetch which moves a non-EPC memory page to EPC and increase

which increases the tree size by adding new non-EPC memory pages. Note that unlike

traditional ORAM implementations, our OPAM tree is exclusive; a given logical page is

either in the OPAM tree or in EPC. We do not attempt to hide the OPAM operation type

(spill, fetch etc) from the adversary. However, we do hide the page access type (read/write).

5.4.2.1 Hardware Support for Additional Paging Primitives

As discussed in Section 5.3.2.3 we rely on new paging primitives which help us decou-

ple page data and OPAM metadata access which in turn helps us reduce page copies done

in our system. We describe the new primitives and the hardware support needed for them

more concretely in this section.

Baseline SGX has support for moving a page worth of data between EPC and non-EPC

memory. While moving a page from EPC to non-EPC memory, SGX encrypts the page,

generates some metadata (Section 5.4.1.1) for the page, also generates MAC tag over page

data and metadata and relies on a 8-byte nonce for freshness. While loading back the page

from non-EPC memory to EPC, SGX checks the integrity and freshness of the page using

115



the tag and the nonce and only then writes it to EPC.

In our design, we first need an additional paging primitive which copies a non-EPC

memory page to another after checking it’s freshness and integrity. Further, we also need a

primitive, which moves data between EPC and non-EPC memory at granularities smaller

than a page while also performing integrity and freshness checks. We use this primitive

to read and write OPAM metadata. While the latter primitive can be supported by adding

granularity support to existing SGX primitives, for the former primitive, we need an entirely

new primitive, which, while similar in spirit to existing primitives, instead reads a non-EPC

memory page and writes to another.

Since these non-EPC memory pages are never accessed by the enclave post the OPAM

access bringing them in caches can only pollute caches by kicking out useful data. Further-

more, using traditional loads/stores to perform these page moves will further exacerbate

their overheads. Instead, we perform these page movements at memory controller periph-

ery via a hardware unit close to the memory controller. This unit receives a list of source

and destination page addresses, reads and decrypts page contents at source address, per-

forms integrity and freshness checks just like in baseline SGX and then encrypts the page

contents and writes them to destination page address along with generating new integrity

tag and using updated freshness nonce.

5.4.2.2 Spill-ahead Optimization

As discussed in Section 5.3.1, unless the OS allocates a free EPC page to the enclave,

a miss to a newly minted stack/heap page or previously spilled EPC page will require the

enclave to pick a victim page amongst its EPC pages and spill it to non-EPC memory. This
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implies, two OPAM accesses get added to the critical path (spill EPC page, fetch non-EPC

memory page). Instead, we employ an optimization which helps us reduce the number of

OPAM access to either zero or one. If we could have secure runtime running in a parallel

thread, we could spill an EPC page ahead of time and keep a free EPC page at all times

with an enclave. This can potentially take the spill of EPC page off the critical path. We

term this as spill-ahead optimization and also evaluate such a configuration.

5.5 Applications and Security Context

We discuss in this section the cloud applications we study and also outline scenarios

where these applications manipulate sensitive data.

• Genome Processing: We study PRIMEX [89], an open source genome sequence

analysis algorithm which breaks up a given genome sequence into k-mers (substrings

of fixed length) and tracks their occurrences in the sequence in a table. This table then

aids in quick searches over the sequence.

Security Context: Genome data is highly sensitive as it can be used to identify a

person, deduce if he is susceptible to any known diseases, ancestry information and

much more. Given genome processing deals with large scale of data, cloud comput-

ing is often employed.

• Graph Processing: We study the following graph processing algorithms from Graph-

Mat [137].

PageRank: PageRank orders web pages based on some metric like popularity. Web

pages are modeled as vertices and hyperlinks as edges and the algorithm scores each
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vertex to determine its rank.

Breadth First Search (BFS): BFS takes a graph and an initial vertex and computes

the distance (number of edges) to all reachable vertices from the initial vertex.

Single Source Shortest Path (SSSP): SSSP takes a weighted graph (each edge has

corresponding weight) and an initial vertex and computes the minimum distance (us-

ing edge weights) of all vertices from the initial vertex.

Collaborative Filtering (SGD): This kernel is used by recommender systems [113]

to deduce a given user’s rating for a given item based on incomplete set of (user,

item) ratings.

Security Context: Graphs are increasingly being employed in several domains in-

cluding networks, natural language processing, social network analysis and bioin-

formatics. In response to this, several cloud-based graph analysis services have been

made available to users including GraphLab, IBM System G, Dydra and more. Given

their wide usage, graphs deal with wide range of sensitive data. Social network anal-

ysis [71] manipulates social graphs (containing sensitive information like political or

personal views of people) and is used in disease transmission analysis and sociol-

ogy. Graphs are also employed in bioinformatics to capture functional relationships

between entities like genes and proteins.

• Image Processing: We study the following image processing applications from the

San Diego Vision Benchmark Suite (SD-VBS) [141].

Scale Invariant Feature Transform (SIFT): SIFT extracts features from images

which are robust to scaling, rotation and noise. Features so extracted find variety
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of uses in object recognition, panorama stitching, 3D scene modeling, tracking and

many more.

Security context: SIFT is widely used in medical image analysis; an important step

in diagnosis and subsequent treatment of diseases. SIFT aids in medical image reg-

istration [119], segmentation of medical images [121], stitching multiple medical

images [35] and more.

Maximally Stable Extremal Regions (MSER): MSER is a method to detect blobs

in images. MSER is used in 3D reconstruction from set of images [94], object and

scene retrieval in videos e.g Video Google [134], street extraction from satellite im-

ages [120] and more.

Security Context: MSER is widely employed in visual surveillance [120] to aid in

human detection and recognition, traffic analysis and vehicular tracking. MSER also

finds utility in medical image segmentation [161].

• Redis: Redis [5] is an open source in-memory key-value data structure store. Redis

supports complex data types likes sets, hashes, lists and sorted sets. In response

to massive data explosion and bottlenecks of traditional databases, key-value stores

like Redis are a solution of choice as is evident with their wide spread adoption (

Amazon’s SimpleDB, Google’s AppEngine).

Security Context: Key-value stores are often employed as caches for frequent com-

putations like complex SQL queries over traditional databases. As such, they also

manipulate a breadth of sensitive data from commercial (stock quotes, people loca-

tion services) to medical (electronic health records) to military sectors.

119



5.6 Evaluation

In this section we demonstrate the efficacy of our proposed design and implementa-

tion. We first talk about how our OPAM design helps reduce overheads of secure page

movements assuming currently supported EPC size. We then talk about how increasing

EPC size as we do with EPC-lite optimization further helps reduce the cost of page fault

channel defense.

5.6.1 Methodology

Benchmark instructions CPI Benchmark instructions CPI
primex pagerank
yeast 6.2 1.42 amazon 32.6 0.67
worm 13.6 1.39 flickr 72.2 0.77
gorilla 24.8 1.41 wiki 178.1 0.75
redis bfs
4k1800s 4.8 1.67 amazon 12.6 0.86
4k3600s 7.8 1.68 flickr 32.7 0.93
4k7200s 12.1 1.68 wiki 71.9 0.92
sgd sssp
netflix 1 11.0 1.92 amazon 12.6 0.85
netflix 2 10.8 1.92 flickr 32.6 0.93
netflix 5 10.9 1.93 wiki 71.6 0.92
mser sift
hd 3.2 0.61 hd 20.1 0.41
sun 6.7 0.77 saturn 24.8 0.42
dog 18.2 1.39 sun 1 38.9 0.42
kme 26.8 1.26 sun 2 71.9 0.43

Table 5.1: Instructions (in billions) and CPI for unsecure baseline (native execution).

Application Inputs: For genome processing application primex we run the applica-

tion with genome sequences having increasing sequence lengths from the Ensembl genome

database [1]. For graph applications, we run real-world graph datasets (Amazon, Flickr and

Wikipedia) from the University of Florida Sparse Matrix collection [46] and Netflix chal-
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lenge for collaborative filtering [26]. For image processing applications (mser, sift)

we model the largest dataset (full hd) from the San Diego Vision Benchmark Suite [141]

and also run these applications with images from MIT-Adobe fivek dataset [4] to get larger

memory footprints. We run redis using Memtier [6], a traffic pattern generator for key

value stores for 4096 bytes object size for varying durations to get increasing memory

footprints. Table 5.1 lists the instruction counts and CPI for unsecure baseline for the ap-

plications and the different input sizes.

Execution Model: We generate instruction level memory traces using PIN tool [92]

which we use to infer instruction and data TLB misses. We model a 128 entry 4-way

instruction TLB and a 64 entry 4-way data TLB. We use this TLB miss trace to infer EPC

hits and misses. For EPC misses we infer the OPAM events that we incur. We model 96MB

of EPC 1 based on current Intel SGX processors [62] and employ clock algorithm [30] for

page replacement. We also study the OPAM events incurred and resultant overheads while

modeling different EPC-lite sizes.

Performance Model: We use the OPAM events generated from the execution model

to infer the performance overheads incurred by modeling both page movement and OPAM

algorithm cost. We set the page movement (copy) cost assuming a standard memory sys-

tem with 12.8 GB/s/channel and present results for a four channel memory system. We

assume that OPAM algorithm cost is two times page movement cost. The algorithm cost

involves reading metadata blocks and inferring page movement decisions. Note that this

cost is much lower when tree levels are small and increases slowly as tree levels increase.

Finally, we also assume that a parallel thread executes the OPAM events while inferring

1While actual EPC size is 128MB, only 96MB is usable and rest is used for metadata.
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Figure 5.8: Memory footprint (accessed) of applications.

performance overheads. This helps us exploit the spill-ahead optimization (Section 5.4.2.2)

which takes EPC spills off the critical path when possible.

5.6.2 Memory Footprint of Applications

We depict in Figure 5.8 the memory footprint of various applications we model for

different input sizes. We track unique pages accessed by the application to deduce this

footprint value and further divide it into code, data, stack and heap sections. For the appli-

cations we model, the memory footprint is dominated by heap pages. We pick inputs for

the applications with increasing memory footprint size to evaluate how the overhead of fix-

ing page fault channel changes as memory footprint increasingly exceeds EPC size. As an

example, the footprint size for pagerank varies from 3X for amazon to 17X for wiki

with respect to available EPC size. For sgd we do observe that changing the number of

input movie files does lead to similar memory footprints.

Larger memory footprints are more likely to cause page movements across EPC and

non-EPC memory boundary and as such could cause larger overheads. As our optimiza-

tions (OPAM and EPC-lite memory) reduce both the number of the page movements and

cost of making them secure, the benefits of our optimizations will be more pronounced for
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Figure 5.10: (a) Realized benefit of thin nodes optimization : page moves reduce consider-
ably while OPAM events do not increase. (b) Performance overhead for existing EPC size
(96MB) with thin nodes optimization.

larger memory footprints. The memory footprints we study in this work are largely limited

by the simulation time needed to get traces for the entire application and the enormous

storage needed for the resultant traces.

5.6.3 Evaluation of Smart Tree Growth

Figure 5.9 depicts the comparison of smart tree growth and its naive counterpart. We

show the maximum spill failures (pending spill failures averaged across all applications) for

different tree node widths (z). On a page eviction from EPC we randomly pick a path in the
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Figure 5.12: EPC misses per kilo instructions.

OPAM tree to spill this page. The lower the value of z, lower the options available along

the chosen path and hence higher the chances of spill failures as is seen in Figure 5.9. While

smart growth also depicts this behavior there is several orders of magnitude of reduction in

the number of pending spill failures as compared to naive growth for higher values of z and

close to an order of magnitude of reduction for z1. By prioritizing accessed paths, smart

tree growth adds space to the OPAM tree where it is most needed and as a consequence far

less failures need to be tracked and considered on each OPAM access.

5.6.4 Benefits of Thin Nodes

Thin nodes are interesting in that they help reduce performance cost of each OPAM

event. As (z) decreases, while the performance cost of each OPAM event reduces (reduc-

tion in page moves needed), the spill failures also increase (Section 5.6.3) needing ability
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to track these failures. In order to deal with increased spill failures prior works [111] incur

an order of magnitude increase in OPAM events at lower values of (z) making such con-

figurations infeasible. As discussed in Section 5.3, while smart growth helps us keep spill

failures in check, dataless stash helps us keep the overhead of tracking spill failures low.

Together they help us realize thin nodes optimization.

Figure 5.10a depicts both the OPAM events per kilo instructions and page moves per

kilo instructions for different values of z averaged across all benchmarks. As we reduce z,

the page moves needed per OPAM access reduces which will cause commensurate reduc-

tion in performance cost of each OPAM event. At the same time, the OPAM events needed

do not increase as (z) decreases. In the following section we discuss how lower values of

z help us reduce performance overheads.

5.6.5 Sanctuary Performance

5.6.5.1 Thin nodes optimization

In Figure 5.10b, we plot the performance overheads of Sanctuary as a consequence of

OPAM events for different node widths as compared to a baseline which does not fix page

fault channel. As discussed before, thin nodes reduce page moves needed for each OPAM

event which is reflected in their lower performance overhead.

5.6.5.2 Enclave-lite optimization

We discussed in Section 5.3 how EPC-lite optimization helps us reduce the number

of OPAM transactions needed. Figure 5.11 depicts performance overheads of Sanctuary

as we increase EPC-lite memory size for a four channels memory system. As expected,
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the performance overheads drop as memory size increases as the number of OPAM events

drop and also as some of the workload’s memory footprint fits within available memory.

At 768MB memory, we see a performance overhead of mere 16% to fix page fault channel

with memory footprint of fifteen of the available twenty-six workloads fits inside available

memory.

5.6.5.3 Performance analysis

We also observe that, for a given application, the larger the delta between available

EPC and EPC-lite memory and memory footprint of the application, more are the OPAM

events incurred leading to increased overhead. However, the increase in overhead is not

commensurate to memory footprint of the application. As an example, sgd has the highest

memory footprint of all applications but not the highest performance overhead.

We observe that the OPAM events incurred by an application are more a property of its

memory access behavior than its footprint. Figure 5.12 depicts the EPC miss rates observed

per kilo instructions for applications under study. Some of the applications we model like

primex, mser exhibit very high miss rates. We observe that these high miss rates trans-

late to high performance overheads as depicted in Figure 5.11. Figure 5.10b depicts that

the average overhead drops from 3.54X (all) to a mere 1.7X (subset) in absence of

the workloads which exhibit high miss rates (worm, gorilla, dog, kme) assuming

existing EPC size (96MB).
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5.7 Related Work

5.7.1 Secure Hardware Proposals

In this section we talk about secure hardware proposals which contribute to trusted

cloud computing. None of these solutions address the page fault channel and hence can

benefit using our proposed designs. We talk about proposals which deal with fixing page

fault channel in the next section.

Several proposals aim to build secure hardware to provide trusted cloud computing en-

vironments. The execute-only memory (XOM) architecture [138] creates compartments

to isolate code and data of an application from other applications and system software. It

assumes external memory is untrusted and so provides data encryption and integrity guar-

antees. However, it is susceptible to replay attacks. Trusted Platform Module(TPM) [9]

provides a tamper resistant secure co-processor which is used to provide software attesta-

tion: a mechanism for a host to authenticate its software and hardware to a remote user. The

attestation covers all software including host OS and thus, TPM trusts host OS to provide

isolation to sensitive computation. Intels Trusted Execution Technology (TXT) [61] uses

TPM co-processor for software attestation but reduces the software included in attestation

to Virtual Machine (OS and application). The Aegis secure processor [136] trusts subset

of host OS functionality (included in software attestation) to provide isolation guarantees

to an application. The Aegis memory controller provides encryption and data integrity and

is resistant to replay attacks. Bastion [31] relies on trusted hypervisor software (included

in software attestation) to ensure isolation of an application from other applications and

untrusted OS. The trusted hypervisor is invoked on every TLB miss to ensure this isolation.
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Intel Software Guard Extensions (SGX) [97, 23] is the latest offering to provide isolated

execution which reduces the amount of software included in software attestation to the

application and few privileged containers. It also provides encryption, data integrity and

freshness guarantees. Alternate proposals which provide SGX like security guarantees

and/or add to it [36, 52, 40] have also been proposed. Given the commercial availability

of SGX and the fact that it is already hardened against several attacks, we focus on fixing

SGX’s security vulnerabilities.

5.7.2 Prior Page Fault Channel Mitigations

Prior works which aim to tackle page fault channel exist. Like Sanctuary, Sanctum [40]

secures address translations of enclave’s sensitive pages but requires an enclave’s memory

requirements to be known a priori which is unrealistic. Also, once allocated, OS cannot

reclaim memory from an enclave. T-SGX [131] breaks an enclave into several smaller

transactions and relies on Intel Transactional Synchronization Extensions (Intel TSX) to

get notified on a page fault. However, it assumes any page fault is a potential attack. This

necessitates that enclave’s entire memory footprint fit inside EPC. Given the small size of

EPC on current SGX processors, this is also unrealistic.

In [133], the authors propose determinizing page fault access pattern by modifying

each input dependent code/data page access to also pro-actively access several more pages.

This incurs severe overheads (4000X) requiring manual program annotations and compiler

analysis to lower them. Another approach also suggested in [133] requires enclave to de-

clare a priori the set of pages it will access as a ‘contract’ and relies on processor to enforce

no page faults to such pages. However, they only demonstrate their techniques for crypto-
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graphic routines and not for general programs. Deja Vu [34] focuses on detecting privileged

attacks. To do so, it creates a reference clock within an enclave and detects if enclave exe-

cution is longer than expected which signals a possible attack. Unlike Sanctuary, Deja Vu

does not secure page movements between EPC and non-EPC memory.

5.7.3 Optimizing SGX Performance

Prior works [144, 101] which optimize SGX performance exist and can be adapted

in our system. Both Hotcalls [144] and Eleos [101] identify frequent enclave exits on

system calls as a performance bottleneck and eliminate them by offloading system call

processing to a separate thread. Eleos [101] also isolates this thread from enclave threads

in last level cache using Intel Cache Allocation Technology [38] to reduce LLC pollution

caused by system calls. SCONE [24] enables secure containers with small TCB and lower

overheads using SGX by relying on asynchronous system calls. Finally, Intel’s SGX2

extensions [150] extend SGX so allow enclaves to dynamically add/remove pages. As

part of this, they also provide support for Dynamic Regions which helps prevent frequent

enclave exits by allowing an enclave to request a range of memory to be allocated with one

call. Note that none of these works address the page fault channel.

5.8 Conclusion

In this chapter we presented Sanctuary, a page fault channel defense that preserves the

flexibility operating system enjoys in managing memory as a resource. OS page manage-

ment actions are routed through a secure runtime which uses a novel Oblivious Page Man-
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agement (OPAM) construct to make transactions with OS secure. We use near-memory

page movements to keep OPAM overhead low and also propose a novel memory partition

EPC-lite which helps reduce the OPAM transactions needed and further helps reduce over-

heads of our solutions. Our results demonstrate that Sanctuary fixes page fault channel for

a suite of cloud applications at reasonable overheads.
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CHAPTER VI

Conclusion

We are deluged with tremendous amounts of data we observe and collect everyday.

This data holds the key to understanding our world and making it better. Digitization of

medical records can help spot patterns and aid in early diagnosis of diseases. Credit card

companies can monitor transactions to identify fraudulent transactions. These are but few

examples of the kinds of solutions one can expect by processing the massive amounts of

data at our disposal.

This data explosion, however, exposes us to several new challenges. The research in

this dissertation identifies two important challenges facing us and comes up with innovative

architectures which tackle these challenges. First, we tackle the performance and energy

inefficiency of conventional architectures via our proposal Compute Caches. Second, being

cognizant of the increased demand for secure remote computation to process the massive

amounts of data being produced, we come up with low-overhead hardware designs which

defend against two important security vulnerabilities.

Today’s compute centric systems incur high instruction processing overheads and ex-

pend significant energy over the deep memory hierarchies they employ. Consequently,
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they are ill-equipped for data centric applications which process and analyze humongous

amounts of data. To tackle this inefficiency, the research in this dissertation identifies a new

near data processing technique which we term Compute Caches. Using emerging SRAM

circuit technology of bitline computing, we make a case for caches that can compute. Un-

til today, caches have served only as an intermediate low-latency storage unit. Our work

directly challenges this conventional design paradigm, and proposes to impose a dual re-

sponsibility on caches: store and compute data. By doing so, we turn them into massively

parallel vector units, and drastically reduce on chip data movement overhead.

We design simple, yet expressive, ISA extensions to expose Compute Cache function-

alities. We identify and address several challenges in realizing an architecture where caches

not only stage data but also compute. We re-designed a variety of data-centric applications,

including text processing, database query processing (FastBit), cryptographic kernels, and

OS checkpointing to leverage Compute Cache operations. Using Compute Caches as co-

processors, we demonstrated significant speedup for this gamut of applications.

Another important challenge this dissertation focuses on is enabling secure remote com-

putation. Cloud computing is increasingly being considered a viable, cost-effective way to

process the large amounts of data we produce. However, users balk from adopting cloud

computing because of security concerns. Increasing instances of data breaches and security

attacks that we are witnessing only add to users’ concerns. As such, the need for systems

which provide better security guarantees is only going to increase. To this end, the research

in this dissertation comes up with low-overhead hardware designs which defend against

two important security vulnerabilities.

Memory bus side channel is an important vulnerability in secure hardware designs.
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Merely by observing the addresses a program accesses, sensitive inputs to the program

can be re-engineered. A practically feasible low-overhead hardware design that provides

strong defenses against this vulnerability remains elusive. For example, current solutions

to mitigate address side channel incurs about 100X memory bandwidth overhead, increase

memory latency by over 20X and incur huge performance overheads (around 4X).

We instead propose InvisiMem, which uses compute capable smart memories to realize

a practically feasible low-overhead solution to close memory bus side channel. We showed

how emerging 3D stacked smart memory with packetized interface and logic layer close to

memory can efficiently address memory bus side channel vulnerabilities without needing

the ORAM construct. We also come up with a low-overhead solution to guarantee fresh-

ness using authenticated communication channel between processor and memory which

obviates the need for expensive solutions like Merkel trees. We solve memory bus timing

channel elegantly by sending heart-beat messages at a constant rate in both directions. Our

work showed for the first time that hardware security is not just a processors responsibility,

but memories have an important role to play. It closed the memory bus side channel using

secure smart memory hardware that was several orders of magnitude more efficient than

previously known solutions.

This dissertation also tackles a related vulnerability of page fault channel. A malicious

OS can use the page fault mechanism to learn the address trace of an application. Com-

mercial secure processor solutions like Intel SGX leave virtual memory management to the

OS and are susceptible to this vulnerability. Prior works which try to fix this vulnerability

assume that all application memory can be preallocated and do not let OS reclaim memory.

To overcome the limitations of prior solutions, this dissertation proposes Sanctuary, a
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low-overhead solution which closes the page fault channel. We do so, without needing to

preallocate all application memory apriori unlike prior works and still allowing the OS to

reclaim allocated memory. We design a secure runtime which collaborates with the OS to

perform page management functions on behalf of the application. We secure the runtime’s

interactions with the OS via a novel construct Oblivious page management (OPAM) which

is derived from Oblivious RAM (ORAM) construct but adapted for page management con-

text. We use near-memory page movements to keep OPAM overheads low. Finally, we

also design a novel memory partition which helps reduce the OPAM transactions needed

and further helps reduce overheads of our solutions. We study several interesting cloud

applications which process sensitive data and demonstrate how we can tackle page fault

channel with reasonable overheads.

To conclude, this dissertation identifies and addresses two important challenges that the

data deluge we are facing exposes us to. We address the performance and energy ineffi-

ciency of conventional architectures in processing massive amounts of data via our proposal

Compute Caches. We also address the increased demand for secure remote computation via

low-overhead secure hardware designs: InvisiMem and Sanctuary. Together our proposals

build a system which is better equipped to tackle massive amounts of data in a performance

and energy efficient manner while also providing strong security guarantees.
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attacks in shielded execution with déjà vu. In Proceedings of the 2017 ACM on Asia

Conference on Computer and Communications Security, ASIA CCS ’17, 2017.

[35] W. Cheung and G. Hamarneh. n -sift: n -dimensional scale invariant feature trans-

form. IEEE Transactions on Image Processing, 2009.

[36] S. Chhabra, B. Rogers, Y. Solihin, and M. Prvulovic. Secureme: A hardware-

software approach to full system security. In Proceedings of the International Con-

ference on Supercomputing, ICS ’11.

[37] Z. Chishti, M. D. Powell, and T. N. Vijaykumar. Distance associativity for high-

performance energy-efficient non-uniform cache architectures. In Proceedings of

140



the 36th Annual IEEE/ACM International Symposium on Microarchitecture, MICRO

36, 2003.

[38] I. corp. Improving real-time performance by utilizing cache allocation technology.

intel white paper., 2015.

[39] V. Costan and S. Devadas. Intel sgx explained. Cryptology ePrint Archive, Report

2016/086, 2016.

[40] V. Costan, I. Lebedev, and S. Devadas. Sanctum: Minimal hardware extensions for

strong software isolation. Cryptology ePrint Archive, Report 2015/564, 2015.

[41] B. Dally. Power, programmability, and granularity: The challenges of exascale com-

puting. In Parallel Distributed Processing Symposium (IPDPS), 2011 IEEE Inter-

national, 2011.

[42] R. Das, R. Ausavarungnirun, O. Mutlu, A. Kumar, and M. Azimi. Application-

to-Core Mapping Policies to Reduce Memory System Interference in Multi-Core

Systems. In Proceedings of the 19th International Symposium on High Performance

Computer Architecture (HPCA-19), 2013.

[43] R. Das, S. Eachempati, A. K. Mishra, D. Park, V. Narayanan, R. Iyer, and C. R.

Das. Design and Evaluation of Hierarchical On-Chip Network Topologies for next

generation CMPs. In HPCA-15, 2009.

[44] R. Das, S. Narayanasamy, S. Satpathy, and R. G. Dreslinski. Catnap: Energy Pro-

portional Multiple Network-on-Chip Architecture. In Proceedings of the 40th Inter-

national Symposium on Computer Architecture (ISCA-40), 2013.

141



[45] S. Das, T. M. Aamodt, and W. J. Dally. Slip: Reducing wire energy in the memory

hierarchy. In Proceedings of the 42Nd Annual International Symposium on Com-

puter Architecture, 2015.

[46] T. Davis. The university of florida sparse matrix collection. ”http://www.

cise.ufl.edu/research/sparse/matrices”.

[47] Y. Deng and W. P. Maly. Interconnect characteristics of 2.5-d system integration

scheme. In Proceedings of the 2001 International Symposium on Physical Design,

ISPD ’01.

[48] W. Diffie and M. Hellman. New directions in cryptography. IEEE Transactions on

Information Theory, pages 644–654, 1976.

[49] J. Draper, J. Chame, M. Hall, C. Steele, T. Barrett, J. LaCoss, J. Granacki, J. Shin,

C. Chen, C. W. Kang, I. Kim, and G. Daglikoca. The architecture of the diva

processing-in-memory chip. In Proceedings of the 16th International Conference

on Supercomputing, ICS ’02.

[50] F. Duarte and S. Wong. Cache-based memory copy hardware accelerator for multi-

core systems. Computers, IEEE Transactions on, 59(11), 2010.

[51] Y. Eckert, N. Jayasena, and G. Loh. Thermal feasibility of die-stacked processing in

memory. In Workshop on Near-Data Processing, 2014.

[52] D. Evtyushkin, J. Elwell, M. Ozsoy, D. Ponomarev, N. A. Ghazaleh, and R. Riley.

Iso-x: A flexible architecture for hardware-managed isolated execution. In Proceed-

142



ings of the 47th Annual IEEE/ACM International Symposium on Microarchitecture,

MICRO-47.

[53] A. Farmahini-Farahani, J. H. Ahn, K. Morrow, and N. S. Kim. Nda: Near-dram

acceleration architecture leveraging commodity dram devices and standard memory

modules. In High Performance Computer Architecture (HPCA), 2015 IEEE 21st

International Symposium on, 2015.

[54] K. Fatahalian, D. R. Horn, T. J. Knight, L. Leem, M. Houston, J. Y. Park, M. Erez,

M. Ren, A. Aiken, W. J. Dally, and P. Hanrahan. Sequoia: Programming the memory

hierarchy. In Proceedings of the 2006 ACM/IEEE Conference on Supercomputing,

SC ’06, 2006.

[55] C. W. Fletcher, M. v. Dijk, and S. Devadas. A secure processor architecture for

encrypted computation on untrusted programs. In Proceedings of the Seventh ACM

Workshop on Scalable Trusted Computing, STC ’12.

[56] C. W. Fletcher, L. Ren, A. Kwon, M. van Dijk, and S. Devadas. Freecursive oram:

[nearly] free recursion and integrity verification for position-based oblivious ram.

ASPLOS ’15, 2015.

[57] C. W. Fletcher, L. Ren, X. Yu, M. van Dijk, O. Khan, and S. Devadas. Suppressing

the oblivious ram timing channel while making information leakage and program

efficiency trade-offs. In High Performance Computer Architecture (HPCA), 2014

IEEE 20th International Symposium on, 2014.

143



[58] M. Gokhale, B. Holmes, and K. Iobst. Processing in memory: the terasys massively

parallel pim array. Computer, 1995.

[59] M. Gokhale, S. Lloyd, and C. Macaraeg. Hybrid memory cube performance charac-

terization on data-centric workloads. In Proceedings of the 5th Workshop on Irregu-

lar Applications: Architectures and Algorithms, pages 7:1–7:8, 2015.

[60] O. Goldreich and R. Ostrovsky. Software protection and simulation on oblivious

rams. J. ACM.

[61] D. Grawrock. Dynamics of a trusted platform: A building block approach. Re-

trieved April 1, 2016 from Intel Press, 2009, 2009.

[62] S. Gueron. A memory encryption engine suitable for general purpose processors.

Cryptology ePrint Archive, Report 2016/204, 2016. http://eprint.iacr.

org/2016/204.

[63] A. Gundu, A. S. Ardestani, M. Shevgoor, and R. Balasubramonian. A case for near

data security. In Workshop on Near-Data Processing, 2014.
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