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ABSTRACT

Modern data centers, housing remarkably powerful computational capacity, are

built in massive scales and consume a huge amount of energy. The energy consump-

tion of data centers has mushroomed from virtually nothing to about three percent

of the global electricity supply in the last decade, and will continuously grow. Un-

fortunately, a significant fraction of this energy consumption is wasted due to the

inefficiency of current data center architectures, and one of the key reasons behind

this inefficiency is the stringent response latency requirements of the user-facing ser-

vices hosted in these data centers such as web search and social networks. To deliver

such low response latency, data center operators often have to overprovision resources

to handle high peaks in user load and unexpected load spikes, resulting in low effi-

ciency.

This dissertation investigates data center architecture designs that reconcile high

system efficiency and low response latency. To increase the efficiency, we propose tech-

niques that understand both microarchitectural-level resource sharing and system-

level resource usage dynamics to enable highly efficient co-locations of latency-critical

services and low-priority batch workloads. We investigate the resource sharing on real-

system simultaneous multithreading (SMT) processors to enable SMT co-locations by

precisely predicting the performance interference. We then leverage historical resource

usage patterns to further optimize the task scheduling algorithm and data placement

policy to improve the efficiency of workload co-locations. Moreover, we introduce

methodologies to better manage the response latency by automatically attributing

xii



the source of tail latency to low-level architectural and system configurations in both

offline load testing environment and online production environment. We design and

develop a response latency evaluation framework at microsecond-level precision for

data center applications, with which we construct statistical inference procedures to

attribute the source of tail latency. Finally, we present an approach that proactively

enacts carefully designed causal inference micro-experiments to diagnose the root

causes of response latency anomalies, and automatically correct them to reduce the

response latency.

xiii



CHAPTER I

Introduction

Modern data centers are built in massive scales to provide the computing resources

to keep up with the fast growing demand in cloud computing. In the last decade,

the electricity consumed by data centers globally has grown from virtually nothing

to about three percent of the entire global energy supply [108]. While that is already

39% higher than the total consumption of the entire United Kingdom, this number

is likely to triple in the next decade as noted by recent studies [37]. However, a

significant amount of this energy is wasted due to the inefficiency of current data

center architectures.

One of the key reasons for this inefficiency is that many of such large-scale data

centers are built to host user-facing, interactive services such as web search and social

networks, which often operate under stringent response latency requirements, espe-

cially tail latency (i.e., high quantiles of the response latency distribution). This is

because high response latency often results in poor user experience, and sometimes

even service abandonment. Nevertheless, is is extremely challenging to keep the tail

latency low as the size and complexity of the data center systems scale up, and it has

been identified as one of the key challenges facing modern data center architecture

design.

This dissertation investigates the inefficiency of modern data centers, and proposes

1



a novel data center architecture that optimizes for high efficiency and low latency.

1.1 Motivation

This section motivates the need for architecting data centers for high efficiency

and low latency in the context of the critical challenges facing modern data center

architecture.

1.1.1 Resource Efficiency

The geometric growth of computation in the cloud drives rapidly increasing costs

in building and operating large-scale data centers, such as those operated by Google,

Facebook and Microsoft. Unfortunately, the utilization these data centers is often

low, especially in clusters that host user-facing, interactive services [35, 64]. The

reasons for this include: these services are often latency-critical (i.e., require low

tail response times); may exhibit high peaks in user load; and must reserve capacity

for unexpected load spikes and failures. This low utilization results in low resource

efficiency and high total cost of ownership (TCO).

An effective approach for improving data center efficiency is the co-location of

useful batch workloads (e.g., data analytics, machine learning) and the data they

require on the same servers that perform other functions, including those that run

latency-critical services. However, for co-location with these services to be acceptable,

we must shield them from any non-trivial performance interference produced by the

batch workloads or their storage accesses, even when unexpected events occur. If co-

location starts to degrade response times, the scheduler must throttle or even kill (and

re-start elsewhere) the culprit batch workloads. In either case, the performance of

the batch workloads suffers. Nevertheless, co-location ultimately reduces TCO [164],

as the batch workloads are not latency-critical and share the same infrastructure as

the services, instead of needing their own.

2



Recent scheduling research has considered how to carefully select which batch

workload to co-locate with each service to minimize the potential for interference

(most commonly, last-level cache interference on chip multiprocess servers), e.g. [63,

64, 122, 179]. Based on this precise interference prediction, data center schedulers

can identify “safe” co-locations that bound performance degradation while improving

server efficiency. However, prior techniques only focus on predicting the interference

caused by resource sharing across cores on a multicore processor. Despite the ubiqui-

tous presence of simultaneous multithreading (SMT) processors [159, 158] in modern

data centers, an approach to perform precise interference prediction on real-system

SMT processors has been an open problem.

Realizing precise prediction for SMT co-locations in addition to CMP co-locations

is a particularly challenging problem due to significantly more complex interactions

between shared resources within the core and in the uncore. In addition to the last-

level cache (LLC) and memory bandwidth, which are shared across CMP cores, SMT

cores provide much finer granularity resource sharing on core, among hardware con-

texts. The additional shared resources include private cache(s), memory ports, as well

as integer and floating-point functional units. This fine-grained sharing across a large

number of resources leads to greater performance variability and unpredictability. In

addition, there is diversity in how resources are shared, which further increases the

difficulty of precise interference prediction. For example, a functional unit cannot be

shared concurrently by multiple hardware contexts, however a cache’s capacity can

be shared simultaneously. In this work, we demonstrate that the difference between

CMP and SMT resource sharing calls for a fundamental redesign in the way we model

interference.

Moreover, these works either assume simple sequential batch applications or over-

look the resource utilization dynamics of real services. Scheduling data-intensive

workloads comprising many distributed tasks (e.g., data analytics jobs) is challeng-
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ing, as scheduling decisions must be made in tandem for collections of these tasks

for best performance. The resource utilization dynamics make matters worse. For

example, a long-running workload may have some of its tasks throttled or killed when

the load on a co-located service increases.

Additionally, no prior study has explored in detail the co-location of services with

data for batch workloads. Real services often leave large amounts of spare storage

space (and bandwidth) that can be used to store the data needed by the batch work-

loads. However, co-locating storage raises even more challenges, as the management

and utilization of the services may affect data durability and availability. For ex-

ample, service engineers and the management system itself may reimage (reformat)

disks, deleting all of their data. Reimaging typically results from persistent state

management, service deployment, robustness testing, or disk failure. Co-location and

reimaging may cause all replicas of a data block to be destroyed before they can be

re-generated.

1.1.2 Response Latency

Managing response latency, especially tail latency (i.e., high quantiles of the re-

sponse latency distribution), is one of the most critical tasks for data center operators

to provide quality of service (QoS) guarantees. This is because high latency can eas-

ily result in poor user experience, service abandonment and lost revenue, particularly

for interactive services such as web search and social networks. These services are

powered by clusters of machines wherein a single request is distributed among a large

number of servers in a “fan-out” pattern. In such design, the overall performance

of such systems depends on the slowest responding machine [59]. Recent work has

sought to control and understand these tail requests both at the individual server and

overall cluster level [110].

For data center operators, the capability of accurately measuring tail latency with-
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out disrupting the production system is important for a number of reasons. First,

servers are typically acquired in large quantities (e.g., 1000s at a time), so it is impor-

tant to choose the best design possible and carefully provision resources. Evaluating

hardware configurations requires extensive and accurate measurements against exist-

ing workloads. Second, it is necessary to be able to faithfully measure performance

effects without disrupting production systems. The high frequency of software and

hardware changes makes it extremely hard, or impossible, to evaluate these changes

in production, because it can easily result in user-visible incidents. Instead, it is

desirable to understand the impact of performance-critical decisions in a safe, but

accurate load testing environment.

Building such load testing environment for accurate tail latency measurement

is particularly challenging. This is primarily because there are significantly more

systems and resources involved for large-scale Internet service workloads (e.g., dis-

tributed server-side software, network connections, etc) than traditional single-server

workloads (e.g., SPEC CPU2006, PARSEC). Although there have been several prior

works [53, 70, 74, 115, 166, 90, 89] trying to bridge this gap recently, they have several

pitfalls in their load test design as we will show later in the dissertation. Unfortu-

nately, these tools are commonly used in research publications for evaluation and the

pitfalls may result in misleading conclusions. Similar to the academic community,

there is also a lack of an accurate tail latency measurement test bed in industry,

causing unnecessary resource over-provisioning [35] and unexplained performance re-

gressions [71].

Furthermore, to be able to control the tail latency of these Internet services, a

thorough and correct understanding of the source of tail latency is required. These

Internet services interact with a wide range of systems and resources including op-

erating system, network stack and server hardware thus the ability of quantitatively

attributing the source of tail latency to individual resources is critical yet challenging.
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Although a number of prior works [63, 64, 99, 102, 110, 120, 118, 176, 180, 96, 171,

151, 122, 149] have studied the impact of individual resources on the tail latency,

many resources have complex interacting behaviors that cannot be captured in iso-

lated studies. For example, Turbo Boost and DVFS governor may interact indirectly

through competing for the thermal headroom. Note that the capability of identifying

the source of tail latency relies on the first aforementioned challenge. In other words,

without an accurate measurement of the tail latency we will not be able to correctly

attribute it to various sources.

In addition, performance anomalies, manifested as significant unexplained QoS

degradations, frequently occur in production environments, causing user-visible per-

formance incidents. Architectural and low-level system factors including cache con-

tention, non-uniform memory access (NUMA) issues, and suboptimal thread-to-core

mappings have been shown to be common causes for such performance anomalies [60,

152, 122, 63, 61, 64, 171, 180, 72, 67, 162, 143, 111, 132, 38, 114, 118, 120, 124, 56, 167].

For example, suboptimal IRQ-to-core mappings have been shown to cause a 3× query

latency degradation in Nginx web server, and mismanaged remote NUMA accesses

can cause up to 5× performance degradation in Memcached [111].

However, it is extremely challenging to always optimally configure these factors.

Firstly, misconfigurations may not manifest themselves until the system is under cer-

tain states (e.g., suboptimal frequency boost configurations may remain hidden until

the server is under heavy load [181]), and data center workloads are constantly chang-

ing [19, 3]. The heterogeneity of data centers (i.e., composed of different hardware

platforms [83, 121] and variety of network topologies [161]) further complicates the

configurations. Identifying the optimal configuration in controlled offline experiments

is extremely difficult because production environment is much more complex [161].

Unfortunately, in current data centers, due to the lack of effective performance di-

agnosis techniques to pinpoint the root causes of the observed anomaly, these anoma-
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lies often remain unaddressed, thereby resulting in QoS violations. Although tech-

niques have been developed in the software community to analyze the performance

impact of software configurations [25, 52, 165, 168, 49, 128, 134, 145, 33, 40, 146,

170, 34, 101, 173, 138, 127, 32, 137, 50, 29, 157, 30, 144], most of these techniques

focus only on application-level software configuration issues, and many require in-

strumentation in the source code. These prior works are not applicable for handling

QoS anomalies caused by hardware and low-level system issues, because such issues

do not manifest themselves at the source code level (e.g., suboptimal voltage fre-

quency or remote NUMA access slows down all the code) and cannot be diagnosed

by application-level investigation. Large data center operators like Facebook still rely

on manual instrumentation and inspection to diagnose performance anomalies [161],

which is extremely expensive in both time consumption and engineering effort. There-

fore, new techniques that can reason about hardware-caused performance anomalies

are needed to automatically diagnose and correct such performance anomalies.

Diagnosing QoS anomalies caused by low-level architectural factors is particularly

challenging for several reasons.

• Root Cause Identification: Correlation analysis has been commonly used by

prior work [52, 165, 168, 170, 101, 127] to “diagnose” the causes of performance

anomalies. However, these techniques can generate misleading conclusions and

fail to identify the root causes of anomalies. Correlation analysis cannot estab-

lish causal relationship and many symptoms can appear to be correlated due

to their interactions with the actual root causes. For instance, when the CPU

frequency is lowered, causing QoS degradation, the number of cache misses per

second decreases since the memory access rate is lower. Correlation analysis

may mistakenly identify cache miss rate reduction as one of the root causes.

Therefore, a technique that infers causal relationship rather than correlation is

needed to identify the actual root causes.
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• System Complexity: There are a large number of hardware and system-level

factors that could cause performance anomalies, as well as complex interac-

tions among the factors, further complicating the diagnosis [181]. Designing a

comprehensive system that achieves coverage over the wide spectrum of factors

without sacrificing generality and efficiency is challenging.

• Intolerance of Overhead: Despite the high complexity of identifying the root

causes, to design a system that can be left in place continuously in production,

we need to carefully control its overhead to be no more than 1-2% [133].

1.2 Architecting for High Efficiency and Low Latency

This section summarizes the design of the proposed data center architecture for

high efficiency and low latency.

1.2.1 SMiTe: Precise QoS Prediction to Enable SMT Co-locations

This dissertation first presents a real-system investigation to better understand

how applications interfere on commodity SMT multicore processors. From the inves-

tigation, we have gained several insights that guide the design of an SMT interference

prediction methodology.

• Firstly, across various shared resources (caches, functional units, memory ports,

etc.), contention on each individual resource alone can cause significant perfor-

mance degradation and the amounts of degradation exhibit high variability

across applications and resources.

• Secondly, there is little correlation among application contention characteristics

for different shared resources. For example, an application being sensitive to

contention for data caches does not necessarily mean that it is less (or more)

contentious (or sensitive to contention) for the floating-point functional unit.
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These observations indicate that a holistic approach such as those used in prior

work for interference prediction on CMP servers is not suitable for SMT. For exam-

ple, Bubble-Up [122] relies on a single monotonic metric to quantify interference in

all shared resources, which fails to capture the multidimensionality of the resource

sharing behavior on SMT. We must redesign a methodology to model interference for

SMT co-locations in a manner that the sharing behavior is decoupled along multiple

dimensions of various types of resources.

Based on these observations, we design SMiTe, a methodology that enables precise

performance prediction on real-system SMT processors. SMiTe leverages a carefully

designed suite of software stressors, called Rulers, to characterize an application’s

contention nature for each shared resource. Each Ruler in the suite is designed

to maximize the pressure on one specific resource while minimizing the pressure on

all other resources. By co-locating one application with a Ruler, we measure the

performance degradation of the application as its sensitivity, and the performance

degradation of the Ruler as the application’s contentiousness on the corresponding

resource. A regression model is then established, using application’s sensitivity and

contentiousness for different resources to precisely predict the performance interfer-

ence in SMT co-locations. Based on the precise prediction, we are able to steer the

cluster-level job scheduler to make co-location decisions that improve the data center

efficiency without violating QoS requirements.

1.2.2 Harvest: History-Based Resource Harvesting

We propose techniques for harvesting the spare compute cycles and storage space

in data centers for distributed batch workloads. We refer to the original workloads

of each server as its “primary tenant”, and to any resource-harvesting workload (i.e.,

batch compute tasks or their storage accesses) on the server as a “secondary tenant”.

We give priority over each server’s resources to its primary tenant; secondary tenants
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may be killed (in case of tasks) or denied (in case of storage accesses) when the

primary tenant needs the resources.

To reduce the number of task killings and improve data availability and durabil-

ity, we propose task scheduling and data placement techniques that rely on historical

resource utilization and disk reimaging patterns. We logically group primary ten-

ants that exhibit similar patterns in these dimensions. Using the utilization groups,

our scheduling technique schedules related batch tasks on servers that have similar

patterns and enough resources for the tasks’ expected durations, and thereby avoids

creating stragglers due to a lack of resources. Using the utilization and reimaging

groups, our data placement technique places data replicas in servers with diverse pat-

terns, and thereby increases durability and availability despite the harvested nature

of the storage resources.

To create the groups, we characterize the primary tenants’ utilization and reimag-

ing patterns in ten production data centers, including a popular search engine and

its supporting services. Each data center hosts up to tens of thousands of servers.

Our characterization shows that the common wisdom that data center workloads are

periodic is inaccurate, since often most servers do not execute interactive services.

We target all servers for harvesting.

1.2.3 Treadmill: Attributing the Source of Tail Latency

To better manage tail latency of modern data centers, we first survey existing

performance evaluation methodologies for response latency used in the research com-

munity. We have identified a set of common pitfalls across these tools:

• Query inter-arrival generation - Load testing software is often written for

software simplicity. We find commonly used programming paradigms create an

implicit queueing model that approximates a closed-loop system and systemati-

cally underestimates the tail latency. Instead, we demonstrate a precisely-timed
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open-loop load tester is necessary to properly exercise the queueing behavior of

the system.

• Statistical aggregation - Due to high request rates, sampling must be used

to control the measurement overhead. Online aggregation of these latency sam-

ples must be performed carefully. We find that singular statistics (e.g., a point

estimate of the 95th- or 99th-percentile latency) fails to capture detailed infor-

mation; static histograms used in other load testers also exhibit bias.

• Client-side queueing bias - Due to the high throughput rates (100k - 1M

requests per second) in many commercial systems, we demonstrate that multiple

client machines must be used to test even a single server. Without lightly

utilized clients, latency measurements quickly begin to be impacted by client-

side queueing, generating biased results.

• Performance “hysteresis” - We observe a phenomenon in which the esti-

mated latency converges after collecting a sufficient amount of samples, but

upon running the load test again, the test converges to a different value. This

is caused by changes in underlying system states such as the mapping of logical

memory, threads, and connections to physical resources. We refer to this as

hysteresis because no reasonable amount of additional samples can make the

two runs converge to the same point. Instead we find experiments must be

restarted multiple times and the converged values should be aggregated.

Based on these insights, we propose a systematic procedure for accurate tail la-

tency measurement, and details the design choices that allow us to overcome the

pitfalls of existing methodologies. The proposed procedure leverages multiple lightly-

utilized instances of Treadmill, a modular software load tester, to avoid client-side

queueing bias. The software architecture of Treadmill preserves proper request inter-

arrival timings, and allows easy addition of new workloads without complicated soft-
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ware changes. Importantly, it properly aggregates the distributions across clients,

and performs multiple independent experiments to mitigate the effects of performance

hysteresis.

The precise measurement achieved by Treadmill enables the capability of identi-

fying “where” the latency is coming from. We build upon recent research in quantile

regression [105], and attribute tail latency to various hardware features that cause

the tail. This allows us to unveil the system “black box” and better understand the

impact of tuning hardware configurations on tail latency. We perform this evalua-

tion using Facebook production hardware running two critical Facebook workloads:

the pervasive key-value server Memcached and a recently-disclosed software routing

system mcrouter [113]. Using our tail latency attribution procedure, we are able to

identify many counter-intuitive performance behaviors, including complex interac-

tions among different hardware resources that cannot be captured by prior studies of

individual hardware features in isolation.

1.2.4 TailSniping: Pinpointing Root Causes of QoS Anomalies

Hardware and low-level system misconfigurations often manifest themselves via

system-level and microarchitectural performance indicators such as hardware per-

formance counters. Moreover, collection of these indicators is common practice in

modern production data centers, such as GWP [133, 98] at Google and Scuba [23, 31]

at Facebook. A key motivating observation behind this work is that continuous on-

line monitoring of these indicators in data center composed of tens of thousands of

servers provides a massive amount of data, a previously untapped resource that can

be utilized for continuous anomaly diagnosis and root cause identification.

Building on this observation, we propose TailSniping, a system that leverages

the data provided by continuous monitoring infrastructure to automatically detect,

diagnose and correct a wide range of architectural-caused performance anomalies in
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data centers. TailSniping is composed of two modules: Nerve and Brain. Nerve

continuously monitors a rich set of runtime information, sampling and collecting a set

of architectural and system events with less than 1% overhead. Brain then analyzes

the data produced by Nerve to detect potential performance anomalies using robust

statistical analysis. Once an anomaly has been detected, Brain first performs a corre-

lation analysis to find all correlating factors as candidate causes. To pinpoint the root

causes among the candidate causes, Brain proactively invokes a series of carefully-

designed novel causal inference micro-experiments, reproducing each candidate cause

at a very small scale (often node-level) online. To infer whether a candidate is the un-

derlying root cause, the system constructs a null hypothesis: the application behaves

similarly during the micro-experiment and during the detected anomaly. When the

system fails to reject the null hypothesis, it concludes the corresponding candidate

as the root cause. The analysis incurs little overhead and handles production issues

such as load fluctuation and unknown causes not yet included in the online monitoring

infrastructure. With the accurate diagnosis that Brain provides, the corresponding

misconfigurations can be automatically modified to rescue the affected machines from

the performance anomalies.

1.3 Summary of Contributions

This dissertation proposes a novel architecture to improve data center resource

efficiency and reduce response latency. A summary of specific contributions is as

follows:

• Precise QoS Prediction to Enable SMT Co-locations - We conduct an

in-depth analysis of performance interference on real-system SMT processors,

which demonstrates the low correlation among application contention charac-

teristics for various shared resources. This motivates our design of a multidi-
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mensional modeling methodology for SMT co-locations. We propose Rulers,

carefully designed software stressors to put maximum amount of pressure on

each individual resource while incurring minimum pressure on other resources.

These Rulers allow us to capture an application’s sensitivity and contentious-

ness for each shared resource in a decoupled manner. Then we introduce SMiTe,

a methodology to establish a prediction model using Ruler measurements to

combine the sensitivity and contentiousness characteristics of each application

to precisely predict performance interference on multicore SMT processors. Us-

ing the QoS interference prediction provided by SMiTe to steer cluster-level

scheduling decisions, we demonstrate the effectiveness of the proposed method-

ology in enabling SMT co-locations to achieve higher data center efficiency.

• History-Based Resource Harvesting - We characterize the dynamics of

how servers are used and manged in ten production data centers at Microsoft.

Based on the insights we gained in the characterization, we propose techniques

for improving task scheduling and data placement based on historical behavior

of applications and how they are managed. We extend Hadoop stack to harvest

the spare cycles and storage in data centers using our techniques. Evaluated

on both real systems and simulations, the proposed techniques provide large

improvements in batch job performance, data durability, and data availability.

Finally, we recently deployed our proposed file system in large-scale production

data centers, and we discuss our experience and lessons learned that can be

useful for others.

• Attributing the Source of Tail Latency - We conduct a survey of ex-

isting methodologies in tail latency measurements, and present an empirical

demonstration of their shortcomings. We classify these flaws into four major

principles for future practitioners. We present the design of a robust experimen-

14



tal methodology, and a software load testing tool Treadmill, which we release

as open-source software1. Both systems properly fulfill the requirements of our

principles and are easily extensible for adoption. The high precision measure-

ments achieved by our methodology enables the possibility of understanding

the source of tail latency variance using quantile regression. We successfully at-

tribute the majority of the variance to several advanced hardware features and

the interactions among them. By carefully tuning the hardware configurations

recommended by the attribution results, we significantly reduce the tail latency

and its variance.

• Pinpointing Root Causes of QoS Anomalies - We present a novel method-

ology that proactively conducts causal inference micro-experiments to pinpoint

the root causes of performance anomalies, whereas prior work using correla-

tion analysis can only provide a list of correlating symptoms without provid-

ing any insight about the causal relationship. We design a scalable system,

TailSniping, that continuously monitors, detects, diagnoses and corrects hard-

ware and system-level misconfiguration-caused performance anomalies with less

than 1% performance overhead. We prototype and evaluate TailSniping with

popular data center applications including Memcached [74], Web-Search [74]

and three deep learning-based application from DjiNN [89] on real hardware,

and demonstrate its effectiveness by accurately diagnosing six hardware and

low-level system performance anomalies.

1https://github.com/facebook/treadmill
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CHAPTER II

Background and Related Work

In this Chapter, we survey the related literature and provide the background

relevant to the topics covered in this dissertation. This includes prior works on

resource sharing on SMT processors, resource harvesting in data centers, response

latency measurement and management, and performance anomaly diagnosis.

2.1 Resource Sharing on Multicore SMT Processors

2.1.1 SMT Processor Scheduling

There has been a large amount of work on resource management for multicore

SMT processors [73, 68, 47, 46, 143, 58, 163]. Feliu et al. [73] proposes a method to

improve the overall throughput by balancing L1 bandwidth usage, however there is

no performance guarantees. Eyerman et al. present probabilistic job symbiosis [68],

which employs specialized performance accounting hardware to facilitate modeling the

performance impact for SMT co-locations. Cazorla et al. [47, 46] propose a hardware

mechanism to track and adjust shared resource usage, then leverage that mechanism

to dynamically adjust the resources to meet application QoS targets.

As an alternative to predicting the impact of SMT co-locations, others have used

competition heuristics to achieve efficient scheduling. Snavely and Tullsen [143] and

De Vuyst et al. [58] use a sampling phase to discover the performance interference due
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to co-locations in order to schedule jobs on SMT processors. Vega et al. [163] present

a competition heuristic to decide whether multiple threads should be consolidated to

the SMT contexts on the same core for multithreaded workloads.

2.1.2 Resource Sharing on Multicore Processors

There are also a number of prior works on hardware or application characterization

and modeling using micro-benchmarks [44, 107, 122, 39, 62]. Mars et al. [122] present a

methodology that uses tunable memory micro-benchmarks to quantify the sensitivity

and contentiousness of an application for the last level cache and memory bandwidth

contention. However, their approach is designed only for uncore-level resource sharing.

Bertran et al. [39] present an approach to automatically generate micro-benchmarks

to study the energy-performance trade-offs for multicore SMT processors, in which

they use the micro-benchmarks to obtain energy-related platform characterization.

Delimitrou et al. [62] describe a micro-benchmark suite that can be used to detect

resource contention for a number of shared resources in a CMP machine to facilitate

intelligent cluster-level scheduling decisions.

Others have studied the performance interference on multicore processors with-

out considering SMT co-locations. Delimitrou et al. [64] manage various co-location

scenarios in order to improve the resource utilization without violating the QoS tar-

get. Tang et al. present a compiler [148] and a compiler-supported runtime frame-

work [150] to control low-priority application’s contentiousness and ensure the QoS of

high-priority application, in order to improve the system throughput. Yang et al. [171]

improve resource utilization by dynamically probing and controlling the execution of

low-priority applications to guarantee the QoS of the high-priority applications.
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2.2 Resource Harvesting in Data Centers

2.2.1 Resource Harvesting

Prior works have proposed to harvest resources for batch workloads in the absence

of co-located latency-critical services, e.g. [116, 117]. Recent research has targeted

two aspects of co-location: (1) performance isolation – ensuring that batch tasks do

not interfere with services, after they have been co-located on the same server [102,

106, 109, 119, 130, 148, 150, 171, 179]; or (2) scheduling – selecting which tasks to co-

locate with each service to minimize interference or improve packing quality [63, 64,

79, 122, 164, 180]. Borg addresses both aspects in Google’s data centers, using Linux

cgroup-based containers, special treatment for latency-critical tasks, and resource

harvesting from containers [164].

With respect to resource usage dynamics, a related paper is [45], which derives

Service-Level Objectives (SLOs) for resource availability from historical utilization

data.

2.2.2 Data-processing Frameworks and Co-locations

Researchers have proposed improvements to the Hadoop stack in the absence of

co-location, e.g. [26, 54, 80, 81, 82, 100, 174]. Others considered Hadoop (version 1) in

co-location scenarios using virtual machines, but ran HDFS on dedicated servers [51,

140, 178]. Lin et al. [116] stored data on dedicated and volunteered computers (idle

desktops), but in the absence of primary tenants. We are not aware of studies of

Mesos [94] in co-location scenarios. Bistro [79] relies on static resource reservations

for services, and schedules batch jobs on the leftover resources.
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2.3 Response Latency Measurement and Management

2.3.1 Statistically Sound Performance Measurements

There has been large amount of work on developing statistically sound perfor-

mance evaluation methodology. Mytkowicz et al. [126] show the significance of mea-

surement bias commonly existing in computer system research, and present a list of

experimental techniques to avoid the bias. Oliveira et al. [57] present a study on two

Linux Schedulers using statistical methods, which demonstrates that ANOVA can

sometimes be insufficient especially for non-normally distributed data whereas quan-

tile regression can provide more conclusive insights. Curtsinger and Berger propose

STABILIZER [55], which randomizes the layouts of code, stack and heap objects at

runtime to eliminate the measurement bias caused by layout effects in performance

evaluation. Alameldeen and Wood [27] leverage confidence interval and hypothesis

testing to compensate the variability they discover in architectural simulations for

multi-threaded workloads. Tsafrir et al. [155, 156] develop input shaking technique

to address the environmental sensitivities they observe in parallel job scheduling sim-

ulations. Georges et al. [78] point out a list of pitfalls in existing Java performance

evaluation methodologies, and propose JavaStats to perform rigorous Java perfor-

mance analysis. Breughe and Eeckhout [41] point out benchmark inputs are critical

for rigorous evaluation on microprocessor designs.

There are also a number of prior works reducing the variance of query latency,

and improving the tail latency. Shen [141] models the request-level behavior varia-

tion caused by resource contention, and proposes a contention-aware OS scheduling

algorithm to reduce the tail latency.
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2.3.2 Performance Benchmarking for Data Center Workloads

Others have developed benchmark suites that capture the representative work-

loads in modern data centers. Cooper et al. [53] present the Yahoo! Cloud Serving

Benchmark (YCSB) framework for benchmarking large-scale distributed data serv-

ing applications. Fan et al. [70] present and characterize 3 types of representative

workload in Google data centers, including web search, web mail and MapReduce.

In addition, Lim et al. [115] further characterize the video streaming workloads at

Google and benchmark them to evaluate new server architectures. Ferdman et al. [74]

introduce the CloudSuite benchmark suite, which represents the emerging scale-out

workloads running in modern data centers. Wang et al. [166] enrich the data cen-

ter workload benchmark by presenting BigDataBench, which covers diverse cloud

applications together with representative input data sets. Hauswald et al. [90, 89]

introduce benchmarks of emerging machine learning data center applications. Meis-

ner et al. [125] present a data center simulation infrastructure, BigHouse, that can be

used to model data center workloads.

2.4 Performance Anomaly Diagnosis

There has been a large mount of work on diagnosing performance issues using

causal and regression analysis [25, 52, 165, 168, 49, 128, 134, 145, 33, 40, 146, 170,

34, 101, 173, 138, 127, 32, 137, 50]. However, most of them focus on software config-

urations, and none of the prior works applies to hardware configurations in modern

data centers, which are often not explicitly managed.

Taint analysis is a widely used class of techniques for performance and security

debugging, which dynamically tracks the control and data flow at very fine granular-

ity and attributes the contribution to the observed execution back to configuration

and user input [128, 134, 145, 33, 146, 34, 173, 32, 137]. These systems track the data
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and control flow originated or arithmetically derived from the sources like configu-

ration and user input, and quantify their contribution to the current execution. In

addition, there are also prior works that use the dependency and path information at

coarse granularity in large-scale distributed systems [25, 49, 138, 50]. These systems

trace the interactions among different components in the distributed systems, and

infer dependency, convolution, ordering and other relationships from large amount of

traces. When the application experiences performance issues, the systems verify if

these inferred relationships still hold to diagnose possible root causes. Furthermore,

there is also a class of approaches that simply look for correlations between explana-

tory factors and system performance, in order to help narrow down the possible root

causes [52, 165, 168, 170, 101, 127]. These approaches do not explicitly infer causal

relationships, instead they leverage statistical techniques (e.g., bayesian networks,

decision tree, etc.) to find correlations and require further hypothesis testing to di-

agnose the root causes. Moreover, there are also systems that leverage user-specified

rules to diagnose the causes of performance anomalies [40].

It has been demonstrated that a data center wide continuous performance moni-

toring infrastructure (e.g., Google-Wide Profiling [133]) can provide useful insights on

performance bottlenecks and issues [98]. The tradeoff between performance overhead

and powerfulness of the monitoring has been identified as one of the key challenges,

that extremely fined-grained monitoring provides higher resolution at performance

issues while introducing higher overhead [172].
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CHAPTER III

SMiTe: Precise QoS Prediction for SMT

Co-locations

One of the key challenges for improving efficiency in data centers is to improve

server utilization while guaranteeing the quality of service (QoS) of latency-sensitive

applications. To this end, prior work has proposed techniques to precisely predict

performance and QoS interference to identify ‘safe’ application co-locations. However,

such techniques are only applicable to resources shared across cores. Achieving such

precise interference prediction on real-system simultaneous multithreading (SMT)

architectures has been a significantly challenging open problem due to the complexity

introduced by sharing resources within a core.

In this Chapter, we demonstrate through a real-system investigation that the

fundamental difference between resource sharing behaviors on CMP and SMT archi-

tectures calls for a redesign of the way we model interference. For SMT servers, the

interference on different shared resources, including private caches, memory ports, as

well as integer and floating-point functional units, do not correlate with each other.

This insight suggests the necessity of decoupling interference into multiple resource

sharing dimensions. In this work, we propose SMiTe, a methodology that enables

precise performance prediction for SMT co-location on real-system commodity pro-

cessors. With a set of Rulers, which are carefully designed software stressors that
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apply pressure to a multidimensional space of shared resources, we quantify appli-

cation sensitivity and contentiousness in a decoupled manner. We then establish a

regression model to combine the sensitivity and contentiousness in different dimen-

sions to predict performance interference. Using this methodology, we are able to

precisely predict the performance interference in SMT co-location with an average

error of 2.80% on SPEC CPU2006 and 1.79% on CloudSuite. Our evaluation shows

that SMiTe allows us to improve the utilization of data centers by up to 42.57% while

enforcing an application’s QoS requirements.

3.1 Real-System Investigation

In contrast to CMP co-locations where only last-level cache (LLC) and memory

bandwidth are shared among different cores, hardware contexts co-located on the

same SMT core share a much wider range of resources including both functional

units and the memory subsystem. In this section, we present an investigation to

better understand application sharing behavior on these various resources and the

resulting performance interference on commodity multicore SMT processors.

3.1.1 Experimental Methodology

One main difference between CMP co-locations and SMT co-locations is whether

on-core resources are shared. In an Intel Sandy Bridge [8] processor, these resources

are implemented as an execution cluster composed of 6 ports that perform sets of dif-

ferent operations. As illustrated in Figure 3.1, ports 0, 1 and 5 are used for functional

units, whereas ports 2, 3 and 4 (not shown) are for memory accesses. Note that, in

this design, there are many port-specific operations that can only execute on specific

port(s). For example, FP MUL can only execute on port 0, FP ADD on port 1, FP SHF

on port 5 and INT ADD on ports 0, 1 and 5.

Taking advantage of these port-specific operations, we carefully designed a set of

23



 PORT 0

 PORT 1

 PORT 5

GPR SIMD INT SIMD FP
ALU

ALU

JMP

VI_MUL

VI_SHF

VI_ADD

VI_SHF

FP_MUL

Blend

DIV

FP_ADD

FP_SHF

FP_Boolean

Blend

Intel® AVX

ALU

Figure 3.1: Execution cluster of Intel Sandy Bridge microarchitecture. Multiple op-
erations are port-specific (e.g., FP MUL can only execute on port0).

stressors to study application sensitivity and contentiousness on various functional

units for SMT co-locations. In addition to functional units, we also designed a set

of memory stressors to study the interfering behavior on various levels of cache.

The design principles and details behind these stressors (Rulers) are presented in

Section 3.2.2.1.

3.1.2 Contention for Functional Units

Modern microarchitectures often include a large number of functional units to ex-

ploit instruction-level parallelism (ILP). As illustrated in Figure 3.1, each functional

unit is usually designed to only execute certain types of operations. When inves-

tigating the interference due to sharing functional units between multiple hardware

contexts co-located on an SMT core, we aim to answer the following questions:

• What is the amount of performance degradation caused by contention for each

type of functional unit?

• Are applications’ sensitivity and contentiousness for the same resource cor-
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related? The answer to this question will indicate whether they need to be

modeled separately.

• What is the variability of an application’s contention characteristics across dif-

ferent functional units? The answer to this would indicate whether we need

to characterize each shared resource separately or one single unified metric is

sufficient for all resources.

• Do emerging data center workloads (e.g., CloudSuite) behave differently from

traditional workloads (e.g., SPEC CPU2006) in terms of functional unit con-

tention?
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Figure 3.2: The sensitivity and contentiousness of different workloads on functional unit resources.
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Figure 3.3: Aggregated functional unit utilization distributions across all the co-
location pairs in SPEC CPU2006 for ports 0, 1 and 5.

Functional Unit Contentiousness and Sensitivity - Figure 3.2 shows ap-

plications’ sensitivity and contentiousness measured by a set of Rulers, each Ruler

maximizing the pressure in one specific functional unit resource, including FP MUL at

port 0, FP ADD at port 1, FP SHF at port 5 and INT ADD spreading across ports 0, 1, 5.

We quantify an application’s sensitivity as the degradation it suffers from co-locating

with Rulers, while contentiousness is defined as the degradation it causes to the

Rulers. Our findings are as follows:

• Finding 1. Applications in general are sensitive to functional unit contention.

As shown in Figure 3.2, applications suffer 5% - 70% performance degradation

when contending for only one type of functional unit.

• Finding 2. The level of sensitivity to contention for each functional unit varies

across applications. For example, 429.mcf suffers 6% performance degradation

due to port 1 contention, while 444.namd suffers as high as 71% degradation.

• Finding 3. Sensitivity and contentiousness of each application for each shared

resource do not correlate with each other, and thus need to be captured separately.

• Finding 4. Each application has various levels of sensitivity and contentiousness

for different functional units. For example, 454.calculix is more contentious
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to port 0 while 470.lbm is more contentious to port 1. This suggests the need

to capture the contention characteristics for each functional unit separately.

• Finding 5. Emerging data center workloads’ contention behaviors for functional

units are similar to SPEC INT benchmarks.

Due to the variability across applications and across each type of functional unit,

we conclude that an ideal interference model needs to capture application contentious-

ness and sensitivity separately along each resource sharing dimension.

Functional Unit Utilization - In addition to the sensitivity and contentious-

ness, we also profile the utilization of various functional units when applications

co-locate on an SMT core using hardware performance monitoring units (PMUs).

Figure 3.3 presents the cumulative distribution function (CDF) for the utilization of

ports 0, 1, and 5 respectively, across all pairs of co-located applications. In Figure 3.3,

utilization is measured as the aggregated utilization of two co-located applications on

an SMT core, where the shaded area illustrates the percentage of the co-located pairs

that have higher utilization than the median. As shown in the figure, SPEC FP

benchmarks tend to have higher utilization for ports 0 and 1 than SPEC INT. On

the contrary, for port 5, SPEC INT has higher utilization, and this is due to the

higher branch instruction counts in SPEC INT, which are executed on port 5.

• Finding 6. Ports 0 and 1 have similar utilization distributions, which are dis-

tinctly different from the utilization distribution of port 5. This also indicates

that applications’ contention behaviors at different functional units need to be

measured separately to capture the variability across ports.

3.1.3 Interference in Memory Subsystem

In addition to functional units, private caches (L1 and L2), shared LLC and

memory bandwidth are also shared among SMT contexts. Compared to CMP co-
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locations, sharing private caches adds additional complexity to the SMT co-locations.

29



Figure 3.4: The sensitivity and contentiousness of different workloads on memory subsystem resources.
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Figure 3.5: Aggregated memory port utilization distributions across all the co-location
pairs in SPEC CPU2006.

Memory Subsystem Contentiousness and Sensitivity - Figure 3.4 presents

application sensitivity and contentiousness measured using a set of memory Rulers

co-located with the applications. We design our L1 and L2 cache Rulers to be the

same binary with different working set sizes. As we increase the working set size,

there is a monotonic increase in the Ruler’s performance impact.

• Finding 7. Contention behaviors in the memory subsystem are more monolithic

than functional units, demonstrating the basis for prior work to quantify the

memory subsystem pressure using a unified metric. In addition, there is notice-

able variability across applications. Some applications’ performance heavily re-

lies on one specific cache level. For example, applications such as 454.calculix

have very similar sensitivity to contention in L1 and L2 caches, which indicates

their high reliance on the L1 cache and low utilization of the L2 cache.

• Finding 8. CloudSuite workloads are much more contentious at the L3 cache

than SPEC applications, although they exhibit very similar levels of sensitivity

across three levels of cache.

Memory Port Utilization - Similarly, we also profile the aggregated utilization

for memory ports across all the co-location pairs in SPEC as shown in Figure 3.5, in

which port 2 and port 3 are used for memory loads and port 4 for memory stores. In
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Figure 3.6: The sensitivity and contentiousness of all SPEC CPU2006 and CloudSuite
applications. Applications’ contention characteristics have a large variance both for
the same resource and across different resources.

the figure, we find that memory store port (port 4) is heavily underutilized, compared

to the load ports. This is supplementary to our finding 6 that applications’ behaviors

across ports vary, and thus need to be captured separately.

3.1.4 Correlation Among Sharing Dimensions

We summarize our measurement of application sensitivity and contentiousness for

different resources in Figure 3.6. As illustrated in the figure, there is a large variance

in sensitivity and contentiousness in each sharing dimension across applications. For

example, application sensitivity to port 0 or port 1 ranges from negligible to above

70%. However, on average, contention in each dimension can cause significant inter-

ference and thus all these dimensions need to be considered in our interference model.

In addition, there is also a significant difference in terms of contention behaviors

across different sharing dimensions. For example, applications are more sensitive to

contention for port 5 because branch instructions, which can only be executed on

port 5, are critical for performance. In addition, most applications tend to generate

more pressure on L2 than on L1 and L3 caches.
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Figure 3.7: The absolute values of Pearson correlation coefficient among all the sen-
sitivity and contentiousness dimensions. 97.96% of the pairs have a correlation coef-
ficient lower than 0.80 and the majority of the pairs, lower than 0.50.

Furthermore, we quantify the correlation among different sharing dimensions us-

ing Pearson correlation coefficients. The absolute Pearson correlation coefficients of

the contentiousness and sensitivity across all benchmarks in each of the 7 shared

resources are presented in Figure 3.7. The absolute value of Pearson correlation co-

efficient ranges from 0 to 1, where 1 indicates the perfect correlation (both positive

and negative) and 0 indicates no correlations.

• Finding 9. As demonstrated in this figure, there is little correlation for appli-

cation sensitivity and contentiousness among different sharing dimensions. For

example, as shown in the figure, an application being sensitive to contention

for caches does not necessarily mean that it is less (or more) contentious or

sensitive to contention for the floating-point functional unit. In fact, 97.96% of

the pairs of sharing dimensions have a correlation coefficient lower than 0.80,

and for the majority of the pairs the coefficient is lower than 0.50. These low
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Figure 3.8: Overview of SMiTe methodology. Based on our insight that there is lit-
tle correlation among applications’ contention characteristics across multiple resource
sharing dimensions, we design a set of Rulers to quantify an application’s sensitiv-
ity and contentiousness in a decoupled manner (e.g., in each sharing dimension). A
regression-based prediction model is then established to use an application’s sensitiv-
ity and contentiousness characterizations to make performance prediction for SMT
and CMP co-locations.

correlations further suggest the necessity to decouple and measure each sharing

dimension separately.

3.2 SMiTe Methodology

In this section, we present SMiTe methodology. Designed based on the findings

summarized in Section 3.1, SMiTe enables precise performance prediction for SMT

co-locations on real-system multicore processors.

3.2.1 Overview

The overview of the SMiTe methodology is presented in Figure 6.1, which consists

of three main steps.

1. Characterizing Sensitivity and Contentiousness (Section 3.2.2) – For

each application, we quantify its contention characteristics for shared SMT re-

sources. A set of Rulers is designed to sense an application’s sensitivity and
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contentiousness along various sharing dimensions, including functional units

and the memory subsystem. By co-locating the application of interest with a

Ruler, we measure the application’s performance degradation as its sensitivity

to contention in the corresponding sharing dimension, and the degradation of

the Rulers as the application’s contentiousness in the same dimension.

2. Performance Prediction Model (Section 3.2.3) – To predict the perfor-

mance interference between applications when they co-locate on an SMT core or

CMP cores, we establish a regression-based prediction model, which combines

each application’s multidimensional characteristics quantified by the Rulers

to precisely predict the performance degradation in both CMP and SMT co-

location scenarios.

3. Steering towards Safe Co-locations (Section 3.2.4) – SMiTe allows us

to quickly profile an application, and precisely predict the level of performance

degradation that applications may suffer from the co-location. With this pre-

diction ability, a cluster scheduler in a data center can identify ‘safe’ job co-

locations that would not violate applications’ QoS requirements, achieving high

server utilization.

3.2.2 Quantifying Sensitivity and Contentiousness

In order to make precise performance predictions, we first characterize an appli-

cation’s sensitivity and contentiousness. Several key factors determine the charac-

terization quality, including our Rulers design and the methodology to quantify the

sensitivity and contentiousness.

35



3.2.2.1 Ruler Design

We design a set of Rulers to sense an application’s interfering behavior in each

sharing dimension in a decoupled manner. A good Ruler design needs to maximize

the measurement accuracy while minimizing the profiling overhead. Here are two key

principles that guide our Ruler design:

• Each Ruler needs to maximize the pressure in the targeted sharing

dimension while minimizing the impact in all other dimensions. For

example, a Ruler that targets port 0 needs to achieve maximum pressure on that

port while minimizing its pressure on other functional units and the memory

subsystem. As demonstrated in Figure 3.7, there is little correlation across

all sharing dimensions. Therefore, minimizing the overlapping resources that

each Ruler stresses helps decouple the interfering behaviors into independent

dimensions.

• A linear relationship between the intensity of the Ruler and the

amount of interference it causes on the corresponding resource is de-

sirable. To characterize an application’s sensitivity to contention for a given

resource, we need to measure its performance degradation under a range of pres-

sure intensities generated by the Ruler. Having a linear relationship between

the intensity and the resulting interference is highly useful for reducing the pro-

filing overhead. Instead of profiling the entire sensitivity curve by sampling the

degradation under various intensity points, a linear relationship requires only

two samples at both end points of the sensitivity curve.

It is very challenging to achieve these principles on real-system SMT processors

due to the complexity in a commodity processor. Here we present our carefully

designed Rulers.
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loop:!
! mulps! %xmm0, %xmm0!
! ……!
! mulps! %xmm7, %xmm7!
! ……!
! jmp loop

(a) FP_MUL (PORT0)

#define MASK 0xd0000001u!
#define RAND (lfsr = (lfsr >> 1) ^ (unsigned int)(0 - (lfsr & 1u) & MASK))!
……!
! while (1) {!
! ! data_chunk[RAND % FOOTPRINT]++;!
! ! ……!
! ! data_chunk[RAND % FOOTPRINT]++;!
! }

(e) MEM (L1, L2 Cache)

……!
! first_chunk = data_chunk;!
! second_chunk = data_chunk + FOOTPRINT / 2;!
! while (1) {!
! ! for (i = 0; i < FOOTPRINT / 2; i += 64) {!
! ! ! first_chunk[i] = second_chunk[i] + 1;!
! ! }!
! ! for (i = 0; i < FOOTPRINT / 2; i += 64) {!
! ! ! second_chunk[i] = first_chunk[i] + 1;!
! ! }!
! }

(f) MEM (L3 Cache)

loop:!
! addps! %xmm0, %xmm0!
! ……!
! addps! %xmm7, %xmm7!
! ……!
! jmp loop

(b) FP_ADD (PORT1)

loop:!
! shufps! %xmm0, %xmm0!
! ……!
! shufps! %xmm7, %xmm7!
! ……!
! jmp loop

(c) FP_SHF (PORT5)

loop:!
! addl! ! %eax, %eax!
! ……!
! addl! ! %edx, %edx!
! ……!
! jmp loop

(d) INT_ADD (PORT0,1,5)

Figure 3.9: Implementation of Rulers.

Functional Unit Rulers - As presented in Figure 3.9(a-d), in order to design

decoupled Rulers that stress each resource independently, we design our functional

unit Rulers using port-specific instructions [8] (see Figure 3.1). In addition, we re-

move all data dependencies between consecutive instructions and unroll the loops to

maximize the functional unit utilization. By doing so, we achieve higher than 99.99%

utilization for the targeted resource, validated using the hardware performance coun-

ters UOPS DISPATCHED PORT:PORT0,1,5. In addition, this design allows us to achieve

the desirable linear relationship between the Ruler intensity and the interference it

causes, because the intensity of our functional unit Ruler directly translates to the
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port utilization. Note that because specialized functional units are commonly used

in modern processors, the design principle of the port-specific functional unit Ruler

can be applicable to other microarchitectures such as IBM Power7 [142].

Memory Subsystem Rulers - Compared to functional unit Rulers, it is more

difficult to completely decouple the interference in the memory subsystem because

multiple levels of caches can be inclusive. In addition, to issue memory accesses,

a certain amount of computation is unavoidable. Thus, we design our Rulers to

maximize the pressure on the targeted cache level as an approximation, and rely on

the regression-based prediction model to decouple the overlapping impact.

As shown in Figure 3.9(e), the L1 and L2 cache Rulers randomly access a chunk

of data using a lightweight random number generator: linear-feedback shift register

(LFSR). For the L3 cache Ruler as shown in Figure 3.9(f), we use stride access with

a 64-byte offset, the size of the cache line, to maximize the amount of pressure. For

both designs, we also unroll the loops to minimize the number of branch instructions.

The intensity of our memory subsystem Ruler is defined as the working set size of

each Ruler. We measure the average Pearson correlation coefficient between the

working set size of our Ruler at each cache level and the performance degradation of

all SPEC applications when co-located with the Ruler, and we observe strong linear

correlations. The Pearson coefficients are 0.92 for L1, 0.89 for L2 and 0.95 for L3

cache. This linear relationship significantly reduces our profiling overhead, because

the entire sensitivity curve for all working set sizes can be accurately approximated

by interpolating between 3 Rulers whose working set sizes being the L1, L2 and L3

cache sizes.

3.2.2.2 Characterizing Contentiousness and Sensitivity

To quantify an application’s sensitivity and contentiousness, we co-locate the ap-

plication with the Rulers on the neighboring hardware context on an SMT core.
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For each resource i, we measure the application A’s performance degradation as its

sensitivity SenA
i via the following equation:

SenA
i =

IPCA
solo − IPCA

co−location/Ruleri

IPCA
solo

(3.1)

Similarly, we define application A’s contentiousness ConA
i as the corresponding

Ruler’s performance degradation.

ConA
i =

IPCRuleri
solo − IPCRuleri

co−location/A

IPCRuleri
solo

(3.2)

3.2.3 Performance Prediction Model

3.2.3.1 Prediction Model

After characterizing each application, to predict the performance degradation of

application A when co-located with application B on an SMT core, we combine both

A’s sensitivity and B’s contentiousness on each sharing dimension i, using a linear

model. The prediction model is shown in Equation 3.3.

DegAco−locate/B =
N
∑

i

(ci × SenA
i × ConB

i ) + c0 (3.3)

In this model, the degradation for A in each dimension is proportional to measured

application A’s sensitivity and the co-located application B’s contentiousness on that

dimension. The linear model reflects the assumption that an application’s perfor-

mance degradation from each shared dimension is additive. The amount (weight)

that each sharing dimension contributes to the total performance degradation is cap-

tured by the coefficient ci. The constant term c0 is introduced to approximate the

performance interference caused by other resources not captured in the model. A con-

stant is used because the impact of other resources should have a small variance across

applications, based our assumption that functional units and memory subsystem are
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the main contributors for the degradation.

3.2.3.2 Manage Prediction Error

There are two main sources of potential prediction errors. Firstly, the model can

only capture the interference in a limited number of dimensions. Other shared re-

sources such as the branch predictor might also cause performance interference, which

are approximated by the constant c0 in our model. Secondly, in order to reduce the

profiling overhead, we take advantage of the approximately linear relationship be-

tween the intensity of a Ruler and the performance interference. This approximation

might introduce errors in performance prediction. However, as we will show in our

evaluation (Section 6.3), our model achieves high precision, demonstrating that the

model has captured the significant resource dimensions.

3.2.3.3 Predicting Tail Latency

In addition to the average performance, many modern web service workloads

in data centers have certain requirements on the percentile latency, often the tail

latency [59]. For example, QoS requirements can be specified as 90% of the queries

need to achieve under-100ms latency. In addition to service time, the time a query

waits in the job queue before it gets processed also contributes to the latency. Thus,

the percentile latency does not linearly correlate with the average performance due

to this queueing effect, and needs to be modeled differently on top of the average

performance prediction calculated using Equation 3.3.

To address this, we model the web service workload using a simple first-come

first-served (FCFS) M/M/1 queueing system [88], which has a closed-form solution.

We use the M/M/1 model based on two observations:

• Both the service time distribution and the inter-arrival distribution usually have

small coefficients of variance in practice. This indicates that we can approximate
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these distributions using the exponential distribution and Poisson distribution,

respectively, without losing much precision [86].

• The queueing and the processing usually happen at the same level (e.g., a per

thread queueing strategy often implies that each job in the queue is handled by

one thread), which indicates that we can model the system with a single-server

model [110]. For example, rather than having a global queue for all the worker

threads, each thread has its own processing queue in Memcached. This allows us

to model the response time distribution using the single-server model, because

we are essentially just instantiating multiple copies of a single-server queueing

system, one copy per worker thread.

In FCFS M/M/1 queueing model, the response time probability density function

(PDF), f(t), can be modeled as shown in Equation 3.4, in which λ is the mean value

of the arrival rate distribution Poisson(λ), and µ is the average rate of the servicing

time distribution Exp(µ).

f(t) = (µ− λ)e−(µ−λ)t (3.4)

Based on the average performance degradation (Deg) in Equation 3.3, we can

extrapolate the degraded average service rate µ′.

µ′ = (1−Deg)µ (3.5)

Taking the integral of the PDF in Equation 3.4, we can calculate the cumulative

distribution function (CDF) of the response time. Using the inversion of the CDF and

combining it with the degraded service time estimation in Equation 3.5, we estimate

the p-th percentile latency tp with Equation 3.6.
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Table 3.1: Machine specifications in our experimental setup.

Processor Microarchitecture Kernel
Intel Xeon E5-2420 @ 1.90GHz Sandy Bridge-EN 3.8.0
Intel i7-3770 @ 3.40GHz Ivy Bridge 3.8.0

tp = −
ln(1− p)

(1−Deg)µ− λ
(3.6)

3.2.4 SMiTe in Action

With the ability to precisely predict the average performance and percentile la-

tency interference, SMiTe can identify ‘safe’ co-locations of applications so that the

QoS interference for latency-sensitive applications due to co-locations is under a given

threshold. The advantages of SMiTe over exhaustive pairwise offline profiling are

twofold: 1) SMiTe characterizes each application individually once and uses the char-

acterization for performance prediction. This allows the data center operators to

avoid the complexity of cross-product characterization for all possible co-locating

applications. Many latency-sensitive applications in data centers are long running

and well suited for the type of profiling [122]. 2) In addition to much more efficient

offline profiling, SMiTe has carefully controlled profiling complexity so that each ap-

plication’s characterization can be completed in the order of seconds. This allows

us to conduct quick online profiling for any new application when it arrives at the

cluster-level scheduler before getting scheduled to a suitable server.
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3.3 Evaluation

3.3.1 Experimental Setup

We evaluate our SMiTe methodology on two commodity multicore SMT processors

summarized in Table 3.1. The Linux perf tool is used to measure the hardware perfor-

mance monitoring units (PMUs). We use CloudSuite [74] and SPEC CPU2006 [91]

with ref inputs as our workloads. To construct the training and testing sets for

our prediction model, we divide 29 SPEC benchmarks into 2 sets based on their

even/odd numbering. Four applications from CloudSuite, including Web-Search,

Data-Caching, Data-Serving and Graph-Analytics, are used to represent latency-

sensitive workloads in modern data centers.

Throughout this section, the performance degradation caused by the co-location

Degco−location is defined as in Equation 3.7, where IPCsolo is the instructions per cycle

(IPC) measurement when the application is running alone and IPCco−location is the

IPC when co-located with other applications.

Degco−location =
IPCsolo − IPCco−location

IPCsolo
(3.7)

The performance prediction error is reported as the absolute error between the

measured performance degradation and the predicted degradation as shown in Equa-

tion 3.8.

Error =
∣

∣

∣
Degpredictedco−location −Degactualco−location

∣

∣

∣
(3.8)

3.3.2 Performance Interference Prediction

3.3.2.1 SMiTe Prediction for General Purpose Workloads

We first investigate the prediction accuracy of SMiTe using SPEC benchmarks on

an Intel Ivy Bridge server. All even-numbered benchmarks are used as training set
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for the performance prediction model, and odd-numbered benchmarks as testing set.

The model is trained using the sensitivity and contentiousness measurements of each

application as well as the performance degradation profiling of each co-locating pairs

in the training set. Then the trained prediction model takes application’s sensitivity

and contentiousness from the testing set to predict the performance degradation of

co-locating pairs.

In this experiment, we also compare our Ruler based prediction model against

PMU based models. PMU based models have been commonly used for scheduling

optimization [73] and power modeling [39] on SMT processors. Since there is no prior

work providing techniques for precise performance prediction on real-system SMT

processors, we carefully designed several PMU based model for predicting perfor-

mance and selected the best one as our baseline to evaluate the viability of a PMU

based model. Specifically, after experimenting with a number of PMUs and various

regression strategies including linear regression, decision tree, higher order polyno-

mial regression, we found the best performing model to be a linear regression model

using 11 PMU measurements: instructions/cycle, iTLB-misses/cycle, dTLB-load-

misses/cycle, dTLB-store-misses/cycle, i-cache-misses/cycle, L1D-hits/cycle, L2-hits/cycle,

L2-misses/cycle, L3-hits/cycle, MEM-hits/cycle, branch-mispredictions/cycle. The

linear regression is established using Equation 3.9 to predict the performance degra-

dation on SMT and CMP co-locations.

DegAco−locate/B =
N
∑

i

(cAi PMUA
i + cBi PMUB

i ) + c0 (3.9)

The prediction accuracy of SMiTe and the PMU based model is reported in Fig-

ure 3.10 for SMT co-locations and Figure 3.11 for CMP co-locations. As shown in

the figure, the average measured performance degradations of each benchmark when

co-located span a wide range, from 11.74% to 53.14%. In the figure, the bars labeled

as PMU Prediction Error present the average prediction error of the PMU based
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Figure 3.10: Performance prediction accuracy for SMT co-location on SPEC CPU2006
benchmarks, where the average prediction error of PMU based approach is 13.55%
and SMiTe is 2.80%.

prediction model when each benchmark co-locates with all the other benchmarks in

the testing set. The average error for the PMU based model is 13.55% for SMT co-

locations and 9.43% for CMP co-locations. Compared to PMU based approach, SMiTe

provides significantly higher precision, predicting both SMT and CMP co-locations

with an average error of 2.80%.

3.3.2.2 SMiTe Prediction for Cloud Workloads

In this section, we evaluate our methodology on CloudSuite benchmarks, which

are used to represent latency-sensitive applications running in modern data centers.

In contrast to the SPEC workloads, CloudSuite applications are usually multi-

threaded and span more than one core. Thus, we set up this experiment differently

on our Sandy Bridge-EN machine, which has 6 cores with 12 SMT hardware contexts

on each socket. To half load the server as a baseline, we configure the cloud applica-

tions to run with 6 threads for SMT co-location experiment such that each core has

one SMT context busy and the other one idle. Similarly, 3 threads are used for the
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Figure 3.11: Performance prediction accuracy for CMP co-location on SPEC
CPU2006 benchmarks, where the average prediction error of PMU based approach is
9.43% and SMiTe is 2.80%.

CMP co-location experiment with 3 out of 6 cores are left completely idle as the base-

line. Accordingly, we use 6 instances of the same Ruler for SMT experiment and 3

instances for CMP experiment when measuring the sensitivity and contentiousness of

the cloud applications. We use odd-numbered benchmarks from SPEC as the training

set and even-numbered benchmarks as the testing set. Both PMU based and SMiTe

prediction models are trained using the SPEC training set, and tested on co-locations

between CloudSuite applications as latency-sensitive applications and SPEC testing

set as batch applications.
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Figure 3.12: Performance prediction accuracy for SMT and CMP co-location on CloudSuite benchmarks (Web-Search,
Data-Caching, Data-Serving and Graph-Analytics), where the average prediction error of PMU based approach is 17.45%
for SMT co-location, 27.01% for CMP co-location and SMiTe is 1.79% and 1.36% respectively.
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The prediction errors for both SMiTe and PMU based approaches are presented in

Figure 3.12. The bars labeled as Measured present the maximum, average and min-

imum measured performance degradation, ranging from co-locating with 1 instance

to 6 instances of the batch applications (x-axis) for SMT co-locations, and 1 to 3

instances for CMP co-locations. As shown in the figure, the PMU based model has

an average prediction error of 17.45% for SMT co-locations and 27.01% for CMP co-

locations, while SMiTe can precisely predict the performance degradation with 1.79%

and 1.36% average errors respectively.

As demonstrated by our experiments, the PMU based prediction model performs

poorly on both SPEC and CloudSuite applications. We observed a few possible

sources that may contribute to the inaccuracy:

• Some PMUs are designed to be core counters, e.g., UOPS EXECUTED.PORT2 CORE,

and there are no counters available to measure the corresponding events at per

SMT context granularity [85].

• Some PMUs are known to contain bugs and may report inaccurate measure-

ments [66].

• There are limited numbers of PMUs available on the real system, and they may

not fully expose the resource usage information that is needed for the precise

prediction.

3.3.2.3 SMiTe’s Prediction Accuracy for Tail Latency

We evaluate our prediction model for 90th percentile latency using Web-Search

and Data-Caching (Data-Serving and Graph-Analytics do not report percentile la-

tency statistics). We use the profiled performance degradation and 90th percentile la-

tency of CloudSuite application when co-located with Rulers to train our latency pre-

diction model using Equation 3.6. In Figure 3.13, the measured performance degrada-
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Figure 3.13: Prediction accuracy for 90th percentile latency when latency-sensitive
application represented by CloudSuite co-locate with batch applications. The average
absolute prediction error on Web-Search is 4.61% and 6.17% for Data-Caching.

tion and 90th percentile latency are measured when Web-Search and Data-Caching

are co-located with applications from the SPEC testing set. The figure demonstrates

that our queueing model is able to capture the correlation between the performance

degradation and the 90th percentile latency. The average prediction error of our

model is 4.61% for Web-Search and 6.17% for Data-Caching.

3.3.3 Scale-out Study: Improving Utilization while Guaranteeing QoS

With SMiTe’s precise prediction, we can enable ‘safe’ co-locations in order to

improve utilization without violating the QoS requirement. In this experiment, we

assume a cluster composed of 4,000 servers and each 1,000 of them are running one of

the four latency-sensitive applications from CloudSuite (Web-Search, Data-Caching,

Data-Serving and Graph-Analytics). We use our performance prediction model to

guide the cluster-level scheduler to co-locate latency-sensitive applications with batch

SPEC applications. Our evaluation baseline disallows SMT co-locations, which is the

state-of-the-art approach to guarantee QoS in modern data centers without a precise

prediction mechanism, leaving one out of the two SMT contexts on each core idle.
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Figure 3.14: Utilization improvement when we allow SMT co-location under different
QoS targets defined as average performance. SMiTe improves the utilization by 9.24%,
25.90% and 42.97%, at 95%, 90% and 85% QoS target respectively, which is very close
to the Oracle co-location policy as 9.82%, 26.78% and 43.75%.

Figure 3.15: Percentage of QoS violation in all scheduled co-locations under SMiTe
co-location policy and Random co-location policy when QoS is defined as average
performance. In order to achieve same amount of utilization gain, Random co-location
policy violates up to 26% QoS requirement while the largest violation from SMiTe is
only 1.67%.

Thus, we have 6 latency-sensitive application threads running on 6 cores, and we

could potentially co-locate from 0 to 6 instances of batch applications on each server.

In addition to SMiTe, we measure application’s actual performance degradation and

use these measurements to construct an Oracle co-location policy for comparison.

Figure 3.14 shows the utilization improvement when applying different co-location

policies. SMiTe achieves 9.24%, 25.90% and 42.97% utilization improvement at 95%,

90% and 85% QoS targets respectively. Compared to the Oracle policy, which im-
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Figure 3.16: Utilization improvement when we allow SMT co-location under different
QoS targets defined as 90th percentile latency. SMiTe improves the utilization by 0%,
10.72% and 22.03% at 95%, 90% and 85% QoS target respectively, which is relatively
close to the Oracle co-location policy as 0.59%, 12.50% and 24.99%.

proves the utilization by 9.82%, 26.78% and 43.75%, SMiTe is very efficient and

achieves utilization that is very close to the Oracle.

Due to the potential inaccuracy the prediction model has, in rare cases, the co-

location decisions made by SMiTemight slightly violate the targeted QoS requirement.

We quantify the violations compare it against an interference-oblivious policy that

achieves exactly the same amount of utilization gain through randomly co-locating

applications. In this experiment, the percentage of QoS violations is defined as the

number of violations divided by the number of co-locations ( serverviolated
serverco−located

), and the

amount of violations is defined as the normalized violation (QoStarget−QoSactual

QoStarget
).

The QoS violations are shown in Figure 3.15. To achieve the same amount of

utilization gain as SMiTe at each QoS target, the Random policy suffers from up to

26% QoS violation while the biggest violation using SMiTe is only 1.67%. In addition,

as shown in the figure, SMiTe reduces 78.57% QoS violations on average compared to

the Random policy.

3.3.4 Scale-out Study: Tail Latency

In this section, we evaluate the utilization improvement and QoS when the cluster-

level scheduler uses SMiTe’s prediction for tail latency to steer scheduling. Similar
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Figure 3.17: Percentage of QoS violation in all scheduled co-locations under SMiTe
and Random co-location policy when QoS is defined as 90th percentile latency. To
improve the same amount of server utilization, Random policy suffers from up to
110% QoS violation while the largest violation from SMiTe is only 0.96%.

to the previous scale-out experiment, we assume a cluster composed of 4,000 ma-

chines with half-loaded latency-sensitive workloads composed of Web-Search and

Data-Caching. The QoS requirement in this experiment is defined as the 90th per-

centile latency, which is more challenging to meet than the average performance.

This is because the tail latency grows super-linearly with the average performance

degradation due to the queueing effect. However, SMiTe is able to achieve 10.72%

utilization improvement at 90% QoS requirement and 22.03% at 85% QoS require-

ment (90th percentile query latency is affected by 10% and 15% respectively), which

is relatively close to the Oracle policy of 12.50% and 24.99% improvement as shown

in Figure 3.16. In addition, compared to the Random policy shown in Figure 3.17,

which suffers up to 110% QoS violations, the most serious violation SMiTe experiences

is only 0.96%.
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Figure 3.18: Total cost of ownership (TCO) improvement under different QoS re-
quirements normalized by disallowing SMT co-location. SMiTe can save up to 21.05%
cost under average performance requirement and up to 10.70% under 90th percentile
latency requirement.

3.3.5 TCO Analysis

By improving the server utilization through co-locations, we improve the energy

efficiency and also reduce the total cost of ownership (TCO) for building and operating

the data centers. Because we can provide the same amount of computation with fewer

servers through co-locations, we reduce the number of servers needed, the required

power provisioning, the data center area and the maintenance expenses consequently.

In this section, we quantify the TCO saving by applying SMiTe methodology in data

centers under various QoS requirements.

In the baseline configuration, we assume the data center has half of the machines

running latency-sensitive applications and the other half running batch applications.

By applying SMiTe methodology, we can co-locate batch applications together with

latency-sensitive applications on the same server if the QoS requirement can be met

based on the prediction. The analytical methodology introduced in [35] is applied

to study the impact of SMiTe on the 3-year TCO. We use the latest PUE statistics

published by Google [6] as part of the input to the TCO model.

Figure 3.18 presents the results of our TCO analysis. SMiTe improves the TCO by

up to 21.05% when targeting the average performance QoS requirement. Although

90th percentile QoS requirement is more challenging because the tail latency grows
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super-linearly due to queueing effect, SMiTe still achieves up to 10.70% improvement.

3.4 Summary

In this Chapter, we present SMiTemethodology, which enables precise performance

interference prediction on multicore SMT processors. Based on our observation that

there is very little correlation for an application’s contention characteristics across

different shared resources, we design a set of Rulers to quantify application’s sen-

sitivity and contentiousness in a decoupled manner. We then establish a regression

model that combines the sensitivity and contentiousness measurements to predict

the performance interference under various co-location scenarios. With SMiTe, we

are able to predict SMT co-locations with 2.80% average error for SPEC CPU2006

benchmarks and 1.79% average error on CloudSuite. Based on the precise perfor-

mance prediction our methodology provides, we can improve the server utilization by

up to 42.57% through co-locations while enforcing the QoS requirement.
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CHAPTER IV

Harvest: History-Based Resource Harvesting in

Data Centers

An effective way to increase utilization and reduce costs in data centers is to

co-locate their latency-critical services and batch workloads. In this Chapter, we

describe systems that harvest spare compute cycles and storage space for co-location

purposes. The main challenge is minimizing the performance impact on the services,

while accounting for their utilization and management patterns. To overcome this

challenge, we propose techniques for giving the services priority over the resources, and

leveraging historical information about them. Based on this information, we schedule

related batch tasks on servers that exhibit similar patterns and will likely have enough

available resources for the tasks’ durations, and place data replicas at servers that

exhibit diverse patterns. We characterize the dynamics of how services are utilized

and managed in ten large-scale production data centers. Using real experiments and

simulations, we show that our techniques eliminate data loss and unavailability in

many scenarios, while protecting the co-located services and improving batch job

execution time.
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4.1 Characterizing Behavior Patterns

We now characterize the primary tenants in ten production data centers. In later

sections, we use the characterization for our co-location techniques and results.

4.1.1 Data sources and terminology

We leverage data collected by AutoPilot [97], the primary tenant management and

deployment system used in the data centers. Under AutoPilot, each server is part of an

environment (a collection of servers that are logically related, e.g. indexing servers of

a search engine) and executes a machine function (a specific functionality, e.g. result

ranking). Environments can be used for production, development, or testing. In

our terminology, each primary tenant is equivalent to an <environment, machine

function> pair. Primary tenants run on physical hardware, without virtualization.

Each data center has between a few hundred to a few thousand primary tenants.

Though our study focuses on AutoPilot-managed data centers, our characteriza-

tion and techniques should be easily applicable to other management systems as well.

In fact, similar telemetry is commonly collected in other production data centers,

e.g. GWP [133] at Google and Scuba [24] at Facebook.

4.1.2 Resource utilization

AutoPilot records the primary tenant utilization per server for all hardware re-

sources, but for simplicity we focus on the CPU in this paper. It records the CPU

utilization every two minutes. As the load is not always evenly balanced across all

servers of a primary tenant, we compute the average of their utilizations in each time

slot, and use the utilization of this “average” server for one month to represent the

primary tenant.

We then identify trends in the tenants’ utilizations, using signal processing. Specif-

ically, we use the Fast Fourier Transform (FFT) on the data from each primary tenant
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(a) Periodic – time (b) Periodic – frequency

(c) Unpredictable – time (d) Unpredictable – frequency

Figure 4.1: Sample periodic and unpredictable one-month traces in the time and
frequency domains.

individually. The FFT transforms the utilization time series into the frequency do-

main, making it easy to identify any periodicity (and its strength) in the series.

We identify three main classes of primary tenants: periodic, unpredictable, and

(roughly) constant. Figure 4.1 shows the CPU utilization trends of a periodic and an

unpredictable primary tenant in the time and frequency domains. Figure 4.1b shows

a strong signal at frequency 31, because there are 31 days (load peaks and valleys) in

that month. In contrast, Figure 4.1d shows a decreasing trend in signal strength as

the frequency increases, as the majority of the signal derives from events that rarely

happen (i.e., exhibit lower frequency).

As one would expect, user-facing primary tenants often exhibit periodic utiliza-

tion (e.g., high during the day and low at night), whereas non-user-facing (e.g., Web

crawling, batch data analytics) or non-production (e.g., development, testing) pri-

mary tenants often do not. For example, a Web crawling or data scrubber tenant

may exhibit (roughly) constant utilization, whereas a testing tenant often exhibits

unpredictable utilization behavior.
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Figure 4.2: Percentages of primary tenants per class.

Figure 4.3: Percentages of servers per class.

More interestingly, Figure 4.2 shows that user-facing (periodic) primary tenants

are actually a small minority. The vast majority of primary tenants exhibit roughly

constant CPU utilization. Nevertheless, Figure 4.3 shows that the periodic primary

tenants represent a large percentage (∼40% on average) of the servers in each data

center. Still, the non-periodic primary tenants account for more than half of the

tenants and servers.

Most importantly, the vast majority of servers (∼75%) run primary tenants (pe-

riodic and constant) for which the historical utilization data is a good predictor of
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future behaviors (the utilizations repeat periodically or all the time). Thus, leveraging

this data should improve the quality of both our task scheduling and data placement.

4.1.3 Disk reimaging

Disk reimages are relatively frequent for some primary tenants, which by itself

potentially threatens data durability under co-location. Even worse, disk reimages

are often correlated, i.e. many servers might be reimaged at the same time (e.g., when

servers are repurposed from one primary tenant to another). Thus, it is critical for

data durability to account for reimages and correlations.

AutoPilot collects disk reimaging (reformatting) data per server. This data in-

cludes reimages of multiple types: (1) those initiated manually by developers or

service operators intending to re-deploy their environments (primary tenants) or re-

start them from scratch; (2) those initiated by AutoPilot to test the resilience of

production services; and (3) those initiated by AutoPilot when disks have undergone

maintenance (e.g., tested for failure).

We now study the reimaging patterns using three years of data from AutoPilot. As

an example of the reimaging frequencies we observe, Figure 4.4 shows the Cumulative

Distribution Function (CDF) of the average number of reimages per month for each

server in three years in five representative data centers in our sample. Figure 4.5

shows the CDF of the average number of reimages per server per month for each

primary tenant for the same years and data centers. The discontinuities in this figure

are due to short-lived primary tenants.

We make three observations from these figures. First and most importantly, there

is a good amount of diversity in average reimaging frequency across primary tenants

in each data center (Figure 4.5 does not show nearly vertical lines). Second, the

reimaging frequencies per month are fairly low in all data centers. For example, at

least 90% of servers are reimaged once or fewer times per month on average, whereas

59



0

20

40

60

80

100

0 0.5 1 1.5 2

Pe
rc
en
ta
ge
3o
f3s
er
ve
rs

Reimages3/3month

DC-0

DC-7
DC-9

DC-3
DC-1

Figure 4.4: Per-server number of reimages in three years.
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Figure 4.5: Per-tenant number of reimages in three years.

at least 80% of primary tenants are reimaged once or fewer times per server per month

on average. This shows that reimaging by primary tenant engineers and AutoPilot is

not overly aggressive on average, but there is a significant tail of servers (10%) and

primary tenants (20%) that are reimaged relatively frequently. Third, the primary

tenant reimaging behaviors are fairly consistent across data centers, though three

data centers show substantially lower reimaging rates per server (we show two of

those data centers in Figure 4.4).

The remaining question is whether each primary tenant exhibits roughly the same

frequencies month after month. In this respect, we find that there is substantial

variation, as frequencies sometimes change substantially.

Nevertheless, when compared to each other, primary tenants tend to rank con-

sistently in the same part of the spectrum. In other words, primary tenants that
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Figure 4.6: Number of times a primary tenant changed reimage frequency groups in
three years.

experience a relatively small (large) number of reimages in a month tend to experi-

ence a relatively small (large) number of reimages in the following month. To verify

this trend, we split the primary tenants of a data center into three frequency groups,

each with the same number of tenants: infrequent, intermediate, and frequent. Then,

we track the movement of the primary tenants across these groups over time. Fig-

ure 4.6 plots the CDF of the number of times a primary tenant changed groups from

one month to the next. At least 80% of primary tenants changed groups only 8

or fewer times out of the possible 35 changes in three years. This behavior is also

consistent across data centers.

Again, these figures show that historical reimaging data should provide meaningful

information about the future. Using this data should improve data placement.

4.2 Smart Co-location Techniques

In this section, we describe our techniques for smart task scheduling and data

placement, which leverage the primary tenants’ historical behavior patterns.
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4.2.1 Smart task scheduling

We seek to schedule batch tasks (secondary tenants) to harvest spare cycles from

servers that natively run interactive services and their supporting workloads (primary

tenants). Modern cluster schedulers achieve high job performance and/or fairness, so

they are good candidates for this use. However, their designs typically assume dedi-

cated servers, i.e. there are no primary tenants running on the same servers. Thus,

we must (1) modify them to become aware of the primary tenants and the primary

tenants’ priority over the servers’ resources; and (2) endow them with scheduling algo-

rithms that reduce the number of task killings resulting from the co-located primary

tenants’ need for resources. The first requirement is fairly easy to accomplish, so we

describe our implementation in Section 4.3. Here, we focus on the second require-

ment, i.e. smart task scheduling, and use historical primary tenant utilization data to

select servers that will most likely have the required resources available throughout

the tasks’ entire executions.

Due to the sheer number of primary tenants, it would be impractical to treat

them independently during task scheduling. Thus, our scheduling technique first

clusters together primary tenants that have similar utilization patterns into the same

utilization class, and then select a class for the tasks of a job. Next, we discuss our

clustering and class selection algorithms in turn.

The clustering algorithm periodically (e.g., once per day) takes the most recent

time series of CPU utilizations from the average server of each primary tenant, runs

the FFT algorithm on the series, groups the tenants into the three patterns described

in Section 4.1 (periodic, constant, unpredictable) based on their frequency profiles,

and then uses the K-Means algorithm to cluster the profiles in each pattern into

classes. Clustering tags each class with the utilization pattern, its average utilization,

and its peak utilization. It also maintains a mapping between the classes and their

primary tenants.
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Algorithm 1 Class selection algorithm.

1: Given: Classes C, Headroom(type,c), Ranking Weights W
2: function Schedule(Batch job J)
3: J .type = Length (short, medium, or long) from its last run
4: J .req = Max amount of concurrent resources from DAG
5: for each c ∈ C do

6: c.weightedroom=Headroom(J .type,c) × W [J .type,c.class]
7: end for

8: F = {∀c ∈ C| Headroom(J .type,c) ≥ J .req}
9: if F ̸= ∅ then

10: Pick 1 class c ∈ F probabilistically ∝ c.weightedroom
11: return {c}
12: else if Job J can fit in multiple classes combined then

13: Pick {c0, . . . , ck} ⊆ C probabilistically ∝ c.weightedroom
14: return {c0, . . . , ck}
15: else

16: Do not pick classes
17: return {∅}
18: end if

19: end function

As we detail in Algorithm 1, our class selection algorithm relies on the classes de-

fined by the clustering algorithm. When we need to allocate resources for a job’s tasks,

the algorithm selects a class (or classes) according to the expected job length (line

3) and a pre-determined ranking of classes for the length. We represent the desired

ranking using weights (line 6); higher weight means higher ranking. For a long job, we

give priority to constant classes first, then periodic classes, and finally unpredictable

classes. We prioritize the constant classes in this case because constant-utilization

primary tenants with enough available resources are unlikely to take resources away

from the job during its execution. At the other extreme, a short job does not require

an assurance of resource availability long into the future; knowing the current utiliza-

tion is enough. Thus, for a short job, we rank the classes unpredictable first, then

periodic, and finally constant. For a medium job, the ranking is periodic first, then

constant, and finally unpredictable.

We categorize a job as short, medium, or long by comparing the duration of its

last execution to two pre-defined thresholds (line 3). We set the thresholds based on

the historical distribution of job lengths and the current computational capacity of
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Figure 4.7: Example job execution DAG.

each preferred tenant class (e.g., the total computation required by long jobs should

be proportional to the computational capacity of constant primary tenants). Impor-

tantly, the last duration need not be an accurate execution time estimate. Our goal

is much easier: to categorize jobs into three rough types. We assume that a job that

has not executed before is a medium job. After a possible error in this first guess, we

find that a job consistently falls into the same type.

We estimate the maximum amount of concurrent resources that the job will need

(line 4) using a breadth-first traversal of the job’s directed acyclic graph (DAG), which

is a common representation of execution flows in many frameworks [22, 136, 175]. We

find this estimate to be accurate for our workloads. Figure 4.7 shows an example

job DAG (query 19 from TPC-DS [154]), for which we estimate a maximum of 469

concurrent containers.

Whether a job “fits” in a class (line 8) depends on the amount of available resources

(or the amount of headroom) that the servers in the class currently exhibit, as we

define below. When multiple classes could host the job, the algorithm selects one

with probability proportional to its weighted headroom (lines 9 and 10). If multiple
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classes are necessary, it selects as many classes as needed, again probabilistically (lines

12 and 13). If there are not enough resources available in any combination of classes,

it does not select any class (line 16).

The headroom depends on the job type. For a short job, we define it as 1 minus

the current average CPU utilization of the servers in the class. For a medium job, we

use 1 minus Max(average CPU utilization, current CPU utilization). For a long job,

we use 1 minus Max(peak CPU utilization, current CPU utilization).

4.2.2 Smart data placement

Modern distributed file systems achieve high data access performance, availabil-

ity, and durability, so there is a strong incentive for using them in our harvesting

scenario. However, like cluster schedulers, they assume dedicated servers without

primary tenants running and storing data on the same servers, and without primary

tenant owners deliberately reimaging disks. Thus, we must (1) modify them to be-

come co-location-aware; and (2) endow them with replica placement algorithms that

improve data availability and durability in the face of primary tenants and how they

are managed. Again, the first requirement is fairly easy to accomplish, so we dis-

cuss our implementation in Section 4.3. Here, we focus on the second requirement,

i.e. smart replica placement.

The challenge is that the primary tenants and the management system may hurt

data availability and durability for any block: (1) if the replicas of a block are stored in

primary tenants that load-spike at the same time, the block may become unavailable;

(2) if developers or the management system reimage the disks containing all the

replicas of a block in a short time span, the block will be lost. A replica placement

algorithm must then account for primary tenant and management system activity.

An intuitive best-first approach would be to try to find primary tenants that

reimage their disks the least, and from these primary tenants select the ones that have
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Algorithm 2 Replica placement algorithm.
1: Given: Storage space available in each server, Primary reimaging stats,
2: Primary peak CPU util stats, Desired replication R
3: function Place replicas(Block B)
4: Cluster primary tenants wrt reimaging and peak CPU util
5: into 9 classes, each with the same total space
6: Select the class of the server creating the block
7: Select the server creating the block for one replica
8: for r = 2; r ≤ R; r = r + 1 do

9: Select the next class randomly under two constraints:
10: No class in the same row has been picked
11: No class in the same column has been picked
12: Pick a random primary tenant of this class as long as
13: its environment has not received a replica
14: Pick a server in this primary tenant for the next replica
15: if (r mod 3) == 0 then

16: Forget rows and columns that have been selected so far
17: end if

18: end for

19: end function

lowest CPU utilizations. However, this greedy approach has two serious flaws. First,

it treats durability and availability independently, one after the other, ignoring their

interactions. Second, after the space at all the “good” primary tenants is exhausted,

new replicas would have to be created at locations that would likely lead to poor

durability, poor availability, or both.

We prefer to make decisions that promote durability and availability at the same

time, while consistently spreading the replicas around as evenly as possible across

all types of primary tenants. Thus, our replica placement algorithm (Algorithm 2)

creates a two-dimensional clustering scheme, where one dimension corresponds to

durability (disk reimages) and the other to availability (peak CPU utilization). It

splits the two-dimensional space into 3 × 3 classes (infrequent, intermediate, and

frequent reimages versus low, medium, and high peak utilizations), each of which has

the same amount of available storage for harvesting S/9, where S is the total amount

of currently available storage (lines 4 and 5). This idea can be applied to splits other

than 3 × 3, as long as they provide enough primary tenant diversity.

The above approach tries to balance the available space across classes. However,
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perfect balancing may be impossible when primary tenants have widely different

amounts of available space, and the file system starts to become full. The reason is

that balancing space perfectly could require splitting a large primary tenant across

two or more classes. We prevent this situation by selecting a single class for each

tenant, to avoid hurting placement diversity. The side effect is that small primary

tenants get filled more quickly, causing larger primary tenants to eventually become

the only possible targets for the replicas. This effect can be eliminated by not filling

the file system to the point that less than three primary tenants remain as possible

targets for replicas. In essence, there is a tradeoff between space utilization and

diversity. We discuss this tradeoff further in Section 4.5.

When a client creates a new block, our algorithm selects one class for each replica.

The first class is that of the server creating the block; the algorithm places a replica

at this server to promote locality (lines 6 and 7). If the desired replication is greater

than 1, it repeatedly selects classes randomly, in such a way that no row or column of

the two-dimensional space has two selections (lines 9, 10, and 11). It places a replica

in (a randomly selected server of) a randomly selected primary tenant in this class,

while ensuring that no two primary tenants in the same environment receive a replica

(lines 12, 13, and 14). Finally, for a desired replication level larger than 3, it does

extra rounds of selections. At the beginning of each round, it forgets the history of

row and column selections from the previous round (lines 15, 16, and 17).

The environment constraint is the only aspect of our techniques that is AutoPilot-

specific. However, the constraints generalize to any management system: avoid pla-

cing multiple replicas in any logical (e.g., environment) or physical (e.g., rack) server

grouping that induces correlations in resource usage, reimaging, or failures.

Figure 4.8 shows an example of our clustering scheme and primary tenant selection,

assuming all primary tenants have the same amount of available storage. The rows

defining the peak utilization classes do not align, as we ensure that the available
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Figure 4.8: Two-dimensional clustering scheme.

storage is the same in all classes.

4.3 System Implementations

We implement our techniques into YARN, Tez, and HDFS. Next, we overview

these systems. Then, we describe our implementation guidelines and systems, called

YARN-H, Tez-H, and HDFS-H (“-H” refers to history).

4.3.1 Background

YARN [160] comprises a global Resource Manager (RM) running on a dedicated

server, a Node Manager (NM) per server, and a per-job Application Master (AM)

running on one of the servers. The RM arbitrates the use of resources (currently, cores

and memory) across the cluster. The (primary) RM is often backed up by a secondary

RM in case of failure. Each AM requests containers from the RM for running the tasks

of its job. Each container request specifies the desired core and memory allocations

for it, and optionally a “node label”. The RM selects a destination server for each

container that has the requested resources available and the same label. The AM

decides which tasks it should execute in each container. The AM also tracks the

tasks’ execution, sequencing them appropriately, and re-starting any killed tasks.

Each NM creates containers and reports the amount of locally available resources to
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Table 4.1: Our main extensions to YARN, Tez, and HDFS.

System Main extensions
YARN Report primary tenant utilization to the RM

Kill containers due to primary tenant needs
Maintain resource reserve for primary tenant
Probabilistically balance load

Tez Leverage information on the observed job lengths
Estimate max concurrent resource requirements
Track primary tenant utilization patterns
Schedule tasks on servers unlikely to kill them
Schedule tasks on servers with similar primaries

HDFS Track primary tenant utilization, deny accesses
Report primary tenant status to the NN
Exclude busy servers from info given to clients
Track primary disk reimaging, peak utilizations
Place replicas at servers with diverse patterns

General Create dedicated environment for main components

the RM in periodic “heartbeats”. The NM kills any container that tries to utilize

more memory than its allocation.

Tez [136] is a popular framework upon which MapReduce, Hive, Pig, and other

applications can be built. Tez provides an AM that executes complex jobs as DAGs.

HDFS [76] comprises a global Name Node (NN) running on a dedicated server,

and a Data Node (DN) per server. The NN manages the namespace and the mapping

of file blocks to DNs. The (primary) NN is typically backed up by a secondary NN.

By default, the NN replicates each block (256 MBytes) three times: one replica in

the server that created the block, one in another server of the same rack, and one in

a remote rack. Upon a block access, the NN informs the client about the servers that

store the block’s replicas. The client then contacts the DN on any of these servers

directly to complete the access. The DNs heartbeat to the NN; after a few missing

heartbeats from a DN, the NN starts to re-create the corresponding replicas in other

servers without overloading the network (30 blocks/hour/server).
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Figure 4.9: Overview of YARN-H (RM-H and NM-H), Tez-H (AM-H), and HDFS-H
(NN-H and DN-H) in a co-location scenario. Our new clustering service (CS) interacts
with all three systems. The arrows represent information flow. Ci = Container i; AP
= AutoPilot.

4.3.2 Implementation guidelines

We first must modify the systems to become aware of the primary tenants and

their priority over the servers’ resources. Because of this priority, we must ensure that

the key components of these systems (RMs and NNs) do not share their servers with

any primary tenants. Second, we want to integrate our history-based task scheduling

and data placement algorithms into these systems.

Figure 4.9 overviews our systems. The arrows in the figure represent information

flow. Each shared server receives one instance of our systems; other workloads are

considered primary tenants. Table 4.1 overviews our main extensions. The next

sections describe our systems.

4.3.3 YARN-H and Tez-H

Design goals: (G1) ensure that the primary tenant always gets the cores and

memory it desires; (G2) ensure that there is always a reserve of resources for the
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primary tenant to spike into; and (G3) schedule the tasks on servers where they are

less likely to be killed due to the resource needs of the corresponding primary tenants.

Primary tenant awareness. We implement goals G1 and G2 in YARN-H by

modifying the NM to (1) track the primary tenant’s core and memory utilizations;

(2) round them up to the next integer number of cores and the next integer MB of

memory; and (3) report the sum of these rounded values and the secondary tenants’

core and memory allocations in its heartbeat to RM-H. If NM-H detects that there is

no longer enough reserved resources, it replenishes the reserve back to the pre-defined

amount by killing enough containers from youngest to oldest.

Smart task scheduling. We implement goal G3 by implementing a service that

performs our clustering algorithm, and integrating our class selection algorithm into

Tez-H. We described both algorithms in Section 4.2.1.

Tez-H requests the estimated maximum number of concurrent containers from

RM-H. When Tez-H selects one class, the request names the node label for the class.

When Tez-H selects multiple classes, it uses a disjunction expression naming the

labels. RM-H schedules a container to a heartbeating server of the correct class with

a probability proportional to the server’s available resources. If Tez-H does not name

a label, RM-H selects destination servers using its default policy.

Overheads. Our modifications introduce negligible overheads. For primary tenant

awareness, we add a few system calls to the NM to get the resource utilizations,

perform a few arithmetic operations, and piggyback the results to RM-H using the

existing heartbeat. The clustering service works off the critical path of job execution,

computes headrooms using a few arithmetic operations, and imposes very little load

on RM-H. In comparison to its querying of RM-H once per minute, every server

heartbeats to RM-H every 3 seconds. Tez-H requires a single interaction with the

clustering service per job.
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4.3.4 HDFS-H

Design goals: (G1) ensure that we never use more space at a server than allowed

by its primary tenant; (G2) ensure that HDFS-H data accesses do not interfere with

the primary tenant when it needs the server resources; and (G3) place the replicas of

each block so that it will be as durable and available as possible, given the resource

usage of the primary tenants and how they are managed.

Note that full data durability cannot be guaranteed when using harvested storage.

For example, service engineers or the management system may reimage a large number

of disks at the same time, destroying multiple replicas of a block. Obviously, one can

increase durability by using more replicas. We explore this in Section 5.4.

Primary tenant awareness. For goal G1, we use an existing mechanism in HDFS:

the primary tenants declare how much storage HDFS-H can use in each server.

Implementing goal G2 is more difficult. To make our changes seamless to clients,

we modify the DN to deny data accesses when its replica is unavailable (i.e., when

allowing the access would consume some of the resource reserve), causing the client

to try another replica. (If all replicas of a desired block are busy, the block becomes

unavailable and Tez will fail the corresponding task.) In addition, DN-H reports being

“busy” or available to NN-H in its heartbeats. If DN-H says that it is busy, NN-H

stops listing it as a potential source for replicas (and stops using it as a destination

for new replicas as well). When the CPU utilization goes below the reserve threshold,

NN-H will again list the server as a source for replicas (and use it as a destination for

new ones).

Smart replica placement. For goal G3, we integrate our replica placement algo-

rithm (Section 4.2.2) into NN-H.

Overheads. Our extensions to HDFS impose negligible overheads. For primary

tenant awareness, we add a few system calls to the DN to get the primary tenant

CPU utilization, and piggyback the results to NN-H in the heartbeat. Denying a
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request under heavy load adds two network transfers, but this overhead is minimal

compared to that of disk accesses. For smart replica placement, our modifications

add the clustering algorithm to the NN, and the extra communication needed for it

to receive the algorithm inputs. The clustering and data structure updates happen

in the background, off the critical path.

4.4 Evaluation

4.4.1 Methodology

Experimental testbed. Our testbed is a 102-server setup, where each server has

12 cores and 32GB of memory. We reserve 4 cores (33%) and 10GB (31%) of memory

for primary tenants to burst into based on empirical measurements of interference.

(Recall that performance isolation technology at each server would enable smaller

resource reserves.) To mimic realistic primary tenants, each server runs a copy of the

Apache Lucene search engine [123], and uses more threads (up to 12) with higher

load. We direct traffic to the servers to reproduce the CPU utilization of 21 primary

tenants (13 periodic, 3 constant, and 5 unpredictable) from data center DC-9. We

also reproduce the disk reimaging statistics of these primary tenants. For the batch

workloads, we run 52 different Hive [153] queries (which translate into DAGs of re-

lational processing tasks) from the TPC-DS benchmark [154]. We assume Poisson

inter-arrival times (mean 300 seconds) for the queries.

We use multiple baselines. When studying scheduling, the first baseline is stock

YARN and Tez. We call it “YARN-Stock”. The second baseline combines primary-

tenant-aware YARN with stock Tez, but does not implement smart task scheduling.

We call it “YARN-PT”. We call our full system “YARN-H/Tez-H”. Given the work-

load above, we set the thresholds for distinguishing task length types to 173 and

433 seconds. Jobs shorter than 173 seconds are short, and longer than 433 seconds
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are long. These values produce resource requirements for the jobs of each type that

roughly correspond to the amount of available capacity in the preferred primary ten-

ant class for the type. We use HDFS-Stock with YARN-Stock, and HDFS-PT with

the other YARN versions. The latter combination isolates the impact of primary

tenant awareness in YARN from that in HDFS.

When studying data placement and access, the first baseline is “HDFS-Stock”,

i.e. stock HDFS unaware of primary tenants. The second baseline is “HDFS-PT”,

which brings primary tenant awareness to data accesses but does not implement smart

data placement. We call our full system “HDFS-H”. We use YARN and Tez with

HDFS-Stock, and YARN-PT and Tez with the other HDFS versions. Again, we seek

to isolate the impact of primary tenant awareness in HDFS and YARN.

Simulator. Because we cannot experiment with entire data centers and need to

capture long-term behaviors (e.g., months to years), we also built a simulator that

reproduces the CPU utilization and reimaging behavior of all the primary tenants

(thousands of servers) in the data centers we study. We simulate servers of the

same size and resource reserve as in our real experiments. To study a spectrum

of utilizations, we also experiment with higher and lower traffic levels, each time

multiplying the CPU utilization time series by a constant factor and saturating at

100%. Because of the inaccuracy introduced by saturation, we also study a method

in which we scale the CPU utilizations using nth-root functions (e.g., square root,

cube root). These functions make the higher utilizations change less than the lower

ones when we scale them, reducing the chance of saturations.

When studying task scheduling and data availability, we simulate each data center

for one month. When studying data durability, we simulate each data center for one

year. We use the same set of Hive queries to drive our simulator, but multiply their

lengths and container usage by a scaling factor to generate enough load for our large

data centers (many thousands of servers) while limiting the simulation time.
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In the simulator, we use the same code that implements clustering, task scheduling,

and data placement in our real systems. The simulator also reproduces key behaviors

from the real systems, e.g. it reconstructs lost replicas at the same rate as our real

HDFS systems. However, it does not model the primary tenants’ response times. We

compare our systems to the second baseline (YARN-PT) in task scheduling, and the

first baseline (HDFS-Stock) in data placement and access.

4.4.2 Performance microbenchmarks

The most expensive operations in our systems are the clustering and class selection

in task scheduling and data placement. For task scheduling, clustering takes on

average 2 minutes for the primary tenants of DC-9, when running single-threaded.

(Recall that this clustering happens in the clustering service once per day, off the

critical scheduling path.) The clustering produces 23 classes (13 periodic, 5 constant,

and 5 unpredictable) for DC-9. For this data center, class selection takes less than 1

msec on average. For data placement, clustering and class selection take on average

2.55 msecs per new block (0.81 msecs in HDFS-Stock) for DC-9. (Clustering here can

be done off the critical data placement path as well.)

4.4.3 Experimental results

Task scheduling comparisons. We start by investigating the impact of harvest-

ing spare compute cycles on the performance of the primary tenant. Figure 4.10

shows the average of the servers’ 99th-percentile response times (in ms) every minute

during a five-hour experiment. The curve labeled “No Harvesting” depicts the tail

latencies when we run Lucene in isolation. The other curves depict the Lucene tail

latencies under different systems, when TPC-DS jobs harvest spare cycles across the

cluster. The figure shows that YARN-Stock hurts tail latency significantly, as it dis-

regards the primary tenant. In contrast, YARN-PT keeps tail latencies significantly

75



Figure 4.10: Primary tenant’s tail latency in the real testbed for versions of YARN
and Tez.

lower and more consistent. The main reason is that YARN-PT actually kills tasks

to ensure that the primary tenant’s load can burst up without a latency penalty.

Finally, YARN-H/Tez-H exhibits tail latencies that nearly match those of the No-

Harvesting execution. The maximum tail latency difference is only 44 ms, which is

commensurate with the amount of variance in the No-Harvesting execution (average

tail latencies ranging from 369 to 406 ms). The improved tail latencies come from

the more balanced utilization of the cluster capacity in YARN-H.

Another key characteristic of YARN-H/Tez-H is its smart scheduling of tasks

to servers where they are less likely to be killed. Figure 4.11 shows the execution

times of all jobs in TPC-DS for YARN-Stock, YARN-PT, and YARN-H/Tez-H. As

one would expect, YARN-Stock exhibits the lowest execution times. Unfortunately,

this performance comes at the cost of ruining that of the primary tenant, which is

unacceptable. Because YARN-PT must kill (and re-run) tasks when the primary

tenant’s load bursts, it exhibits substantially higher execution times, 1181 seconds on

average. YARN-H/Tez-H lowers these times significantly to 938 seconds on average.

In these experiments, YARN-H/Tez-H improves the average CPU utilization from

33% to 54%, which is a significant improvement given that we reserve 33% of the CPU

76



Figure 4.11: Secondary tenants’ run times in the real testbed for versions of YARN
and Tez.

Figure 4.12: Primary tenant’s tail latency in the real testbed for versions of HDFS.

for primary tenant bursts. The utilization improvement depends on the utilization of

the primary tenants (the lower their utilization, the more resources we can harvest),

the resource demand coming from secondary tenants (the higher the demand, the

more tasks we can schedule), and the resource reserve (the smaller the reserve, the

more resources we can harvest).

Overall, these results clearly show that YARN-H/Tez-H is capable of both pro-

tecting primary tenant performance and increasing the performance of batch jobs.

Data placement and access comparisons. We now investigate whether HDFS-
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Figure 4.13: Secondary tenants’ run time improvements in DC-9 under YARN-H/Tez-
H for root and linear scalings.

H is able to protect the performance of the primary tenant and provide higher data

availability than its counterparts. Figure 4.12 depicts the average of the servers’ 99th-

percentile response times (in ms) every minute during another five-hour experiment.

As expected, the figure shows that HDFS-Stock degrades tail latency significantly.

HDFS-PT and HDFS-H reduce the degradation to at most 47 ms. The reason is

that these versions avoid accessing/creating data at busy servers. However, HDFS-

PT actually led to 47 failed accesses, i.e. these blocks could not be accessed as all

of their replicas were busy. By using our smart data placement algorithm, HDFS-H

eliminated all failed accesses.

4.4.4 Simulation results

Task scheduling comparisons. We start our simulation study by considering the

full spectrum of CPU utilizations, assuming the size and behavior of our real produc-

tion data centers. Recall that we use two methods to scale utilizations (up and down)

from the real utilizations: linear and root scalings. To isolate the benefit of our use

of historical primary tenant utilizations, we compare YARN-H/Tez-H to YARN-PT.

Figure 4.13 depicts the average batch job execution time in DC-9 under both sys-
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tems and scalings, as a function of utilization. Each point along the curves shows

the average of five runs, whereas the intervals range from the minimum average to

the maximum average across the runs. As one would expect, high utilization causes

higher queuing delays and longer execution times. (Recall that we reserve 33% of

the resources for primary tenants to burst into, so queues are already long when we

approach 60% utilization.) However, YARN-PT under linear scaling behaves differ-

ently; the average execution times start to increase significantly at lower utilizations.

The reason is that linear scaling produces greater temporal variation in the CPU

utilizations of each primary tenant than root scaling. Higher utilization variation

means that YARN-PT is more likely to have to kill tasks, as it does not know the his-

torical utilization patterns of the primary tenants. For example, at 45% utilization,

YARN-PT under linear scaling kills 4× more tasks than the other system-scaling

combinations.

Because YARN-H/Tez-H uses our clustering and smart task scheduling, it im-

proves job performance significantly across most of the utilization spectrum. Under

linear scaling, the average execution time reduction ranges from 0% to 55%, whereas

under root scaling it ranges between 3% and 41%. The YARN-H/Tez-H advantage is

larger under linear scaling, since the utilization pattern of each primary tenant varies

more over time.

To see the impact of primary tenants with different characteristics than in DC-9,

Figure 4.14 depicts the minimum, average, and maximum job execution time improve-

ments from YARN-H/Tez-H across the utilization spectrum for each data center (five

runs for each utilization level). The average improvements range from 12% to 56%

under linear scaling, and 5% to 45% under root scaling. The lowest average improve-

ments are for DC-0 and DC-2, which exhibit the least amount of primary tenant uti-

lization variation over time. At the other extreme, the largest average improvements

come for DC-1 and DC-4, as many of their primary tenants exhibit significant tem-
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Figure 4.14: Secondary tenants’ run time improvements from YARN-H/Tez-H for
root and linear scalings.

Figure 4.15: Lost blocks for two replication levels.

poral utilization variations. The largest maximum improvements (∼90% and ∼70%

under linear and root scaling, respectively) also come from these two data centers,

regardless of scaling type.

Data placement and access comparisons. We now consider the data durability

in HDFS-H. Figure 4.15 shows the percentage of lost blocks under two replication

levels (three and four replicas per block), as we simulate one year of reimages and 4M

blocks. Each bar depicts the average of five runs, and the intervals range from the

minimum to the maximum percent data loss in those simulations. The missing bars
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Figure 4.16: Failed accesses under linear scaling.

mean that there is no data loss in any of the corresponding five simulations. Note

that a single lost block represents a 10−5 (< 100 × 1/4M) percentage of lost blocks,

i.e. 6 nines of durability.

The figure shows that HDFS-H reduces data loss more than two orders of mag-

nitude under three-way replication, compared to HDFS-Stock. Moreover, for one of

the data centers, HDFS-H eliminates all data loss under three-way replication. The

maximum number of losses of HDFS-H in any data center was only 81 blocks (DC-3).

Under four-way replication, HDFS-H completely eliminates data loss for all data cen-

ters, whereas HDFS-Stock still exhibits losses across the board. These results show

that our data placement algorithm provides significant improvements in durability,

despite the harvested nature of the disk space and the relatively high reimage rate

for many primary tenants. In fact, the losses with HDFS-H and three-way replication

are lower than those with HDFS-Stock and four-way replication for all but one data

center; i.e. our algorithm almost always achieves higher durability at a lower space

overhead than HDFS-Stock.

Our data availability results are also positive. Figure 4.16 depicts the percentage

of failed accesses under the two replication levels and linear scaling, as a function of

the average utilization. The figure includes range bars from five runs, but they are all

81



too small to see. The figure shows that HDFS-H exhibits no data unavailability up to

higher utilizations (∼40%) than HDFS-Stock, and low unavailability for even higher

utilization (50%), under both replication levels. At 50% utilization, HDFS-Stock al-

ready exhibits relatively high unavailability under both replication levels. Around

66% utilization, unavailability starts to increase faster (accesses cannot proceed if

CPU utilization is higher than 66%). More interestingly, our smart data placement

under three-way replication achieves lower unavailability than HDFS-Stock under

four-way replication below 75% utilization. The trends are similar under root scal-

ing, except that HDFS-H exhibits no unavailability up to a higher utilization (50%)

than with linear scaling. Regardless of the scaling type, HDFS-H can achieve higher

availability at a lower space overhead than HDFS-Stock for most utilizations.

4.5 Experiences in Production

As a first rollout stage, we deployed HDFS-H to a production cluster with thou-

sands of servers eleven months ago. Since then, we have been enabling/adding features

as our deployment grows. For example, we extended the set of placement constraints

beyond environments to include machine functions and physical racks. In addition,

we initially configured the system to treat the replica placement constraints as “soft”,

e.g. the placement algorithm would allow multiple replicas in the same environment,

to prevent the block creation from failing when the available space was becoming

scarce. This initial decision promoted space utilization over diversity. Section 4.2.2

discusses this tradeoff.

Since its production deployment, our system has eliminated all data losses, except

for a small number of losses due to corner-case bugs or promoting space over diversity.

Due to the latter losses, we started promoting diversity over space utilization more

than nine months ago. Since then, we have not lost blocks. For comparison, when

the stock HDFS policy was activated by mistake in this cluster for just three days
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during this period, dozens of blocks were lost.

We also deployed YARN-H’s primary tenant awareness code to production four-

teen months ago, and have not experienced any issues with it (other than needing to

fix a few small bugs). We are now productizing our scheduling algorithm and will

deploy it to production.

In the process of devising, productizing, deploying, and operating our systems, we

learned many lessons.

1. Even well-tested open-source systems require additional hardening in

production. We had to create watchdogs that monitor key components of our

systems to detect unavailability and failures. Because of the non-trivial probability

of concurrent failures, we increased the number of RMs and NNs to four instead of

two. Finally, we introduced extensive telemetry to simplify debugging and operation.

For example, we collect extensive information about HDFS-H blocks to estimate its

placement quality.

2. Synchronous operations and unavailability. Synchronous operations are in-

adequate when resources or other systems become unavailable. For example, our

production deployments interact with a performance isolation manager (similar to

[119]). This interaction was unexpectedly harmful to HDFS-H. The reason is that

the manager throttles the secondary tenants’ disk activity when the primary tenant

performs substantial disk I/O. This caused the DN heartbeats on these servers to stop

flowing, as the heartbeat thread does synchronous I/O to get the status of modified

blocks and free space. As a result, the NN started a replication storm for data that

it thought was lost. We then changed the heartbeat thread to become asynchronous

and report the status that it most recently found.

3. Data durability is king. As we mention above, our initial HDFS-H deployment

favored space over diversity, which caused blocks to be lost and the affected users to

become quite exercised. By default, we now monitor the quality of placements and
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stop consuming more space when diversity becomes low. To recover some space, we

still favor space usage over diversity for those files that do not have strict durability

requirements.

4. Complexity is your enemy. As others have suggested [48], simplicity, modular-

ity, and maintainability are highly valued in large production systems, especially as

engineering teams change and systems evolve. For example, our initial task schedul-

ing technique was more complex than described in Section 4.2.1. We had to simplify

it, while retaining most of the expected gains.

5. Scaling resource harvesting to massive data centers requires additional

infrastructure. Stock YARN and HDFS are typically used in relatively small clus-

ters (less than 4k servers), due to their centralized structure and the need to process

heartbeats from all servers. Our goal is to deploy our systems to much larger instal-

lations, so we are now in the process of creating an implementation of HDFS-H that

federates multiple smaller clusters and automatically moves files/folders across them

based on primary tenant behaviors, and our algorithm’s ability to provide high data

availability and durability.

6. Contributing to the open-source community. Though our techniques are

general, some of the code we introduced in our systems was tied to our deployments.

This posed challenges when contributing changes to and staying in-sync with their

open-source versions. For example, some of the YARN-H primary tenant awareness

changes we made to Hadoop version 2.6 were difficult to port to version 2.7. Based

on this experience, we refactored our code to isolate the most basic and general

functionality, which we could then contribute back; some of these changes will appear

in version 2.8.
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4.6 Summary

In this Chapter, we first characterized all servers of ten large-scale data centers.

Then, we introduced techniques and systems that effectively harvest spare compute

cycles and storage space from data centers for batch workloads. Our systems embody

knowledge of the existing primary workloads, and leverage historical utilization and

management information about them. Our results from an experimental testbed and

from simulations of the ten data centers showed that our systems eliminate data

loss and unavailability in many scenarios, while protecting primary workloads and

significantly improving batch job performance. Based on these results, we conclude

that our systems in general, and our task scheduling and data placement policies

in particular, should enable data center operators to increase utilization and reduce

TCO.
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CHAPTER V

Treadmill: Attributing the Source of Tail Latency

Managing tail latency of requests has become one of the primary challenges for

large-scale Internet services. Data centers are quickly evolving and service operators

frequently desire to make changes to the deployed software and production hardware

configurations. Such changes demand a confident understanding of the impact on

one’s service, in particular its effect on tail latency (e.g., 95th- or 99th-percentile

response latency of the service). Evaluating the impact on the tail is challenging

because of its inherent variability. Existing tools and methodologies for measuring

these effects suffer from a number of deficiencies including poor load tester design,

statistically inaccurate aggregation, and improper attribution of effects. As shown in

this Chapter, these pitfalls can often result in misleading conclusions.

In this Chapter, we develop a methodology for statistically rigorous performance

evaluation and performance factor attribution for server workloads. First, we find

that careful design of the server load tester can ensure high quality performance

evaluation, and empirically demonstrate the inaccuracy of load testers in previous

work. Learning from the design flaws in prior work, we design and develop a modular

load tester platform, Treadmill, that overcomes pitfalls of existing tools. Next,

utilizing Treadmill, we construct measurement and analysis procedures that can

properly attribute performance factors. We rely on statistically-sound performance
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evaluation and quantile regression, extending it to accommodate the idiosyncrasies of

server systems. Finally, we use our augmented methodology to evaluate the impact of

common server hardware features with Facebook production workloads on production

hardware. We decompose the effects of these features on request tail latency and

demonstrate that our evaluation methodology provides superior results, particularly

in capturing complicated and counter-intuitive performance behaviors. By tuning

the hardware features as suggested by the attribution, we reduce the 99th-percentile

latency by 43% and its variance by 93%.

5.1 Pitfalls in the State-of-the-Art Methodologies

To understand the requirements of an evaluation test bed, we first survey existing

methodologies and tools in prior work. Many tools are available to study the per-

formance of server-side software, including YCSB [53], Faban [4], Mutilate [109] and

CloudSuite [74]. These tools have been widely used in standard benchmark suites, in-

cluding SPEC2010 jEnterprise [20], SPEC2011 SIP-Infrastructure [21], CloudSuite [74]

and BigDataBench [166], thereby many recently published research projects.

Through studying these existing tools, we found several common pitfalls. We

categorize them into four major themes provided below.

Table 5.1: Summary of load tester features.

YCSB Faban CloudSuite Mutilate Treadmill
Query Interarrival Generation ✓ ✓

Statistical Aggregation ✓ ✓

Client-side Queueing Bias ✓ ✓ ✓

Performance Hysteresis ✓

Generality ✓ ✓ ✓
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Figure 5.1: Comparison of the number of outstanding requests between closed-loop
and open-loop controllers. The “Open-Loop” line shows the cumulative-distribution
of the number of outstanding requests in an open-loop controlled system when running
at 80% utilization. The “Closed-Loop” lines show the distribution of the number of
outstanding requests in a closed-loop controlled system with 4, 8 and 12 concurrent
connections respectively. The closed-loop controller significantly underestimates the
number of outstanding requests in the system and therefore queueing latency, which
creates bias in tail latency measurement.

5.1.1 Query Inter-arrival Generation

A performance evaluation test bed requires a load tester, a piece of software that

issues requests to the server in a controlled manner. A client machine will run the

load tester which periodically constructs, sends and receives requests to achieve a

desired throughput. There are two types of control loops that are often employed to

create these timings: open-loop control and closed-loop control [139]. The closed-loop

controller has a feedback loop, where it only tries to send another request after the

response to the previous request has already been received. In contrast, the open-loop

controller sends requests at defined times regardless of the status of the responses.

Almost all the modern data center server-side softwares are built to handle open-loop

setup, so that each server thread does not reject requests from clients while busy

processing previous ones.

However, many load testers are implemented as closed-loop controller because of

software simplicity, including Faban, YCSB and Mutilate as we shown in Table 5.1.

Often, load is generated by using worker threads that block when issuing network
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Figure 5.2: Different latency distributions measured from multiple clients in the a
multi-client performance evaluation procedure, where the y-axis shows the decompo-
sition among clients as what percent of samples is contributed by each client. We
can see from the figure that Client 1 dominates the high quantiles of the combined
distribution thus bias the measurement, because it resides on a different rack than
the other clients and the server.

requests. The amount of load can then be controlled by increasing or decreasing the

amount of threads in the load generator. Unfortunately, this pattern exactly resembles

a closed-loop controller; each thread represents exactly one potentially outstanding

request.

Figure 5.1 demonstrates the impact of closed-loop and open-loop design. For an

open-loop design, the number of outstanding requests varies over time and follows

the shown distribution. The high-quantiles of the distribution exhibit far more out-

standing requests (and therefore queueing latency) than a closed-loop design. Using

a closed-loop design can significantly underestimate the request latency especially at

high quantiles. Therefore, we conclude that a open-loop design is required to properly

exercise the queueing behavior of the system.

5.1.2 Statistical Aggregation

Due to high request rates, load tester software needs to perform at least some

statistical aggregations of latency samples to avoid the overhead of keeping large

number of samples. We find that care must be taken in this process and two types
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of errors can occur.

First, it is important for load testers to keep an internal histogram of latency that

adapts over time. Those load testers that do maintain a histogram often make the

mistake of statically setting the histogram buckets. Non-adaptive histogram binning

will break when the server is highly utilized, because the latency will keep increasing

before reaching the steady state thus exceeds the upper bound of the histogram.

Moreover, if the requests have distinct characteristics (e.g., different request types,

sent by different machines, etc.), we observe that bias can occur due to improper

statistical aggregation. For example, in Figure 5.2 we demonstrate a scenario where

four clients are used to send requests to the same Memcached server, and “Client 1”

is on a different rack than the other clients and the server. At each latency point on

the x-axis, each shaded region represents the proportion of samples that come from

one of the four clients. As the quantile gets higher, one can clearly see that most

of the samples are coming from “Client 1”. This bias is problematic because the

performance estimate of the system becomes a function of one single client. Instead,

one should extract the interested metrics (e.g., 99th-percentile latency) at each client

individually, and aggregate them properly.

5.1.3 Client-side Queueing Bias

While operating a load tester, it is important to purely measure the effects of

server-side latency. For workloads with long service time (e.g., complex MySQL

queries), clients do not have to issue many requests to saturate the server. However,

for workloads like Memcached the request rates on the clients and network themselves

are quite high. This can lead to queueing effects in the clients and network themselves,

thereby bias the latency measurements. YCSB and CloudSuite suffer from such bias

due to their single client configuration as shown in Table 5.1.

Figure 5.3 shows an example of how client and network utilizations can bias latency
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Figure 5.3: Comparison between single-client and multi-client setups for measuring
request latency. In the single-client setup, the network and the client have the same
utilization as the server, which results in increasing queueing delay when the server
utilization increases. This will bias the latency measurement, whereas in the multi-
client setup the utilizations of the network and the client are kept low enough that
they only add an approximately constant latency.

measurements. In “Single-Client Setup”, the client and the network have the same

utilization as the server. As one can see, the client-side latency and the network

latency grow as the server utilization increases, and represent a significant fraction of

the end-to-end latency.

We find that it is extremely challenging, if not impossible, to design a single-client

load tester that can fully saturate the server without incurring significant client-side

queueing for modern data center workloads that operate at microsecond-level latency.

Instead, it is necessary to have a multi-client setup and have a sufficient number of

machines such that the client-side and network latency is kept low. In “Multi-Client

Setup”, we increase the number of client machines to minimize these biases. After

this adjustment the majority of measured latency comes from the server.
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Figure 5.4: Variance exists regardless of a single run’s sample size. A single run
exhibits a large variance for a small sample size (i.e., early in the run). With a suffi-
ciently large sample size the estimate of 99th-percentile latency converges. However,
empirically we find that each run can converge to a different value. Although the
testing procedure of each run would yield a tight confidence interval, the result of
each run clearly varies significantly (15-67% variation from the average).

5.1.4 Performance “Hysteresis”

Through experimentation we find an usual behavior in how estimates converge

that we refer to as performance “hysteresis”. Figure 5.4 demonstrates that as more

samples are collected, the estimate of 99th-percentile latency begins to converge to a

singular value. However, if the server is restarted and another run is performed, the

estimate can converge to a different value.

In this case, the estimates have a large sample size and we would have expected

the “confidence” in each estimate to be high, but clearly there still exists variance

across runs. In fact, the difference between these estimates and the average is as high

as 67%. This phenomenon means that one cannot achieve higher statistical accuracy

simply by “running for longer” and is similar to effects observed in STABILIZER [55].

Instead, it is necessary to restart the entire procedure many times and aggregate the

results. However, none of the existing load testers is robust enough to handle this

scenario as shown in Table 5.1.

92



5.2 Methodology

To overcome the four common pitfalls we find in existing methodologies, we de-

sign and develop Treadmill, a modular software load tester (Section 5.2.1), and a

robust procedure for tail latency measurement (Section 5.2.2). To demonstrate the

effectiveness of our methodology, we then evaluate it on real hardware (Section 5.2.3).

5.2.1 Treadmill

Given the existing pitfalls in state-of-the-art load tester tools, we decide to build

our own load tester Treadmill. Specifically, the problems in existing tools are ad-

dressed by the following design decisions.

• Query inter-arrival generation: To guarantee the query inter-arrival gener-

ation can properly exercise the queueing behavior of the system, we implement

an open-loop controller. The control loop is precisely timed to generate requests

at an exponentially distributed inter-arrival rate, which is consistent with the

measurements obtained from Google production clusters [124].

• Statistical aggregation: To provide high precision statistical aggregation,

Treadmill goes through three phases during one execution: warm-up, calibra-

tion and measurement. During the warm-up phase, all measured samples are

discarded. Next, we determine the lower and upper bounds of the sample his-

togram bins in the calibration phase. The calibration phase is useful to reduce

the amount of information lost from transforming detailed latency samples into

a histogram. Finally, Treadmill begins to collect samples until the end of ex-

ecution. Histograms are used to reduce the storage and performance overhead,

and are re-binned when sufficient amount of values exceed the histogram limits.

• Client-side queueing bias: To avoid client-side queueing bias, we use wan-

gle [77], which provides inline execution of the callback function, to ensure
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that the response callback logic is executed immediately when the response is

available. In addition, we highly optimize for performance (e.g., lock-free im-

plementation), which indirectly reduces the client-side queueing bias by keeping

the clients at low utilization.

Furthermore, we also optimize for generality, making it easy to extend Treadmill

to new workloads. Moreover, Treadmill is also able to reproduce configurable work-

load characteristics.

• Generality: We also optimize for generality, to minimizes the amount of ef-

fort required to extend Treadmill to new workloads. So far, we have success-

fully integrated Treadmill with several services including Memcached [129] and

mcrouter [113]. Each integration takes less than 200 lines of code.

• Configurable workload: It has been demonstrated in prior work [31] that

workload characteristics (e.g., the ratio between GET and SET requests in

Memcached) can have a big impact on the system performance. Therefore, being

able to evaluate the system against various workload characteristics can improve

the accuracy of measurement. To do so, a JSON formatted configuration file can

be used to describe the workload characteristics (e.g., request size distribution)

and fed into Treadmill.

5.2.2 Tail Latency Measurement Procedure

Treadmill provides highly accurate measurement even at high quantiles. How-

ever, as we illustrated in Figure 5.3, multiple clients are needed to avoid client-side

queueing bias for testing high throughput workloads like Memcached. Therefore,

we develop a methodology leverages multiple Treadmill instances to perform load

testing for such workloads.
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To measure the tail latency, multiple instances of Treadmill are used to send

requests to the same server, where each instance sends a fraction of the desired

throughput. Then the same experiment is repeated multiple times, and the mea-

surements from each experiment is aggregated together to get a converged estimate.

Particularly, We make the following design decisions when designing this procedure.

• Statistical aggregation: First, we need to aggregate the statistics reported

by multiple instances of Treadmill in each experiment. In this process, the

common practice that combines distributions obtained from all Treadmill in-

stances to a holistic distribution and then extracts interested metrics (e.g.,

99th-percentile latency) could be heavily biased by outliers as we illustrated

in Figure 5.2. Instead, we first compute the interested metrics from each in-

dividual Treadmill instance, and then combine them by applying aggregation

functions (e.g., mean, median) on these metrics.

• Client-side queueing bias: By leveraging multiple instances of Treadmill,

that each of them is highly performing, we can keep all the clients under low

utilization thus prevent the measurement from client-side queueing bias.

• Performance hysteresis: To avoid performance hysteresis, multiple measure-

ments are taken by repeating the same experiment multiple times. After each

experiment, we record the collected measurements and repeat this procedure

until the mean of the collected the measurements has already converged.

5.2.3 Evaluation

In this section, we evaluate the accuracy of the tail latency measurement ob-

tained from Treadmill. We focus on Memcached [75] due to its popularity in both

industry [28, 129] and academia [69, 114, 93, 92, 112, 87], as well as its stringent

performance needs. Besides Treadmill, we also deploy two other recently published
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load testers CloudSuite [74] and Mutilate [109] for comparison.

To set them up, we explicitly follow the instructions they publish online. Specifi-

cally, 1 machine is used for running Memcached server, and 1 machine is used for the

load tester from CloudSuite. Mutilate runs on 8 “agent” clients and 1 “master” client

as suggested in the instructions, and also sends requests to 1 Memcached server. For

Treadmill, we also use 8 clients in order to compare against Mutilate with the same

amount of resource usage. Table 5.2 shows the hardware specifications of the system

under test, which is used for all the experiments in this paper.

Table 5.2: Hardware specification of the system under test.

Specification
Processor Intel Xeon E5-2660 v2
DRAM 144GB @ 1333MHz

Ethernet 10GbE Mellanox MT27500 ConnectX-3
Kernel Version 3.10

When setting up these load testers, we also start a tcpdump process on the load

test machines to measure the ground truth latency distribution. Tcpdump provides

a good ground truth measurement because it measures the latency at network-level,

thus eliminates potential client-side queueing delay. The tcpdump process is pinned

on an idle physical core to avoid possible probe effect.

Tcpdump records the timestamps that request and response packets flow through

the network interface card (NIC). By matching the sequence IDs of the packets, we

can map each request to its corresponding response and calculate the time difference

between the two timestamps as the ground truth latency in our evaluation. However,

this ground truth latency is expected to be lower than the one that the load testers

measure, because the timestamps tcpdump reports are taken when the network pack-

ets arrive the NIC. Certain amount of time is spent in kernel space to handle the

network interrupts before the packets reach the user code, where these load testers

reside.

96



Figure 5.5: Latency distributions measured by CloudSuite, Mutilate and Treadmill
at 10% server utilization, in which only Treadmill accurately captures the ground
truth distribution measured by tcpdump. CloudSuite heavily overestimates the tail
latency due to client-side queueing delay, and Mutilate also overestimates the tail
latency and fail to capture the shape of the ground truth distribution. In contrast,
Treadmill precisely captures the shape of ground truth distribution and maintains
a constant gap to the tcpdump curve even at high quantiles. Note the gap between
tcpdump measurement and load tester measurement is expected due to kernel space
interrupt handling as we explain in the experimental setup.

5.2.3.1 Measurement under 10% Utilization

In the first experiment, we use the three load testers to send 100k requests per

second (RPS) to the Memcached server. This translates to 10% CPU utilization on

the server. We modified all three load testers to report the entire latency distribution

at the end of execution as shown in Figure 5.5, in which the tcpdump curve shows

the latency distribution measured by tcpdump as ground truth. The 99th-percentile

latency measured by each tool is plotted in the figure with the dashed line.

As shown in Figure 5.5, CloudSuite measures a drastically higher tail latency
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Figure 5.6: Latency distributions measured by Mutilate and Treadmill at 80% CPU
utilization, where the ground truth tail latency measured by tcpdump is underesti-
mated in the Mutilate experiment due to closed-loop controller. CloudSuite is not
efficient enough to saturate the server at such high utilization because it runs a single
client, thus not shown in the figure. As we illustrated in Figure 5.1, Mutilate, which
runs a closed-loop controller, limits the maximum number of outstanding requests
thus underestimates the ground truth tail latency. However, Treadmill is still able
to precisely measure even the high percentile latency, and the expected gap between
Treadmill and tcpdump remains the same (30µs) as during low utilization shown in
Figure 5.5.

(99th-percentile latency is higher than 250µs thus not shown in the figure), because

of heavy client-side queueing bias. This is due to the fact that it runs a single client

to generate the load. Although Mutilate leverages 8 clients, it still fails to capture the

shape of the ground truth latency distribution, and overestimates the tail latency. Due

to the improper query inter-arrival generation, we notice that the ground truth latency

distribution measured in Mutilate experiment is different from the ones measured in

CloudSuite and Treadmill experiments. In contrast, Treadmill precisely captures

the shape of the ground truth latency distribution, thus achieves highly accurate

measurements. There is a fixed offset between the tcpdump and Treadmill curves,

due to the expected computation spent in kernel space for interrupt handling.

98



5.2.3.2 Measurement under 80% Utilization

Similarly, we construct another experiment with these three load testers to send

800k requests per second (RPS) to one Memcached server, which runs at 80% CPU

utilization. In this experiment, we find that CloudSuite is not efficient enough to

send this many requests because of the performance limitation of a single client; we

only report the measurements from Mutilate and Treadmill in Figure 5.6.

Similar to the previous experiment, the measured ground truth latency distri-

butions from Mutilate experiment and Treadmill experiment are drastically differ-

ent, especially at high quantile. This is due to the fact that tcpdump measures the

ground truth driven by the control loop of the load tester. Mutilate runs a closed-

loop controller, which artificially limits the maximum number of outstanding requests

as we illustrated in Figure 5.1, therefore heavily underestimates the 99th-percentile

latency by more than 2×. Open-loop controller does a much better job properly

exercising the queueing behavior of the system, because the number of outstanding

requests is not limited, which reassembles a realistic setting in production environ-

ment. Although the implementation of Mutilate overestimates the tail latency from

the “ground truth”, the 99th-percentile latency measured by Mutilate is still under-

estimated. Note that Treadmill still maintains a fixed offset to the ground truth

latency distribution measured by tcpdump, and the offset is exactly the same (30µs)

as during low utilization shown in Figure 5.5.

In conclusion, CloudSuite suffers from heavy client-side queueing bias, and Muti-

late cannot properly exercise the queueing behavior of the system due to the closed-

loop controller, whereas Treadmill precisely measures the tail latency even at high

utilization.
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5.3 Tail Latency Attribution

With sufficient amount of samples, Treadmill is able to obtain accurate latency

measurements even at high quantiles. However, we sometimes find the measured

latency from each run converges to a different value as shown in Figure 5.4. This

suggests that the systems or the states of the system we measure are changing across

runs, which may also happen in production environment if we do not have a technique

to carefully control it. In this section, we analyze this variance of the tail latency

using a recently developed statistical inference technique, quantile regression [105],

and attribute the source of variance to various factors.

5.3.1 Quantile Regression

To analyze the observed variance in a response variable, analysis of variance

(ANOVA) is often used to partition the variance and attribute it to different explana-

tory variables. However, the classic ANOVA technique assumes normally distributed

residuals and equality of variances, which have been demonstrated unsuitable by prior

work [57] for many computer system problems due to the common presence of non-

normally distributed data. In addition, ANOVA can only attribute the variance of

the sample means. In contrast, quantile regression [105] is a technique proposed to at-

tribute the impact of various factors on any given quantiles, which does not make any

assumption on the distribution of the underlying data. Therefore, quantile regression

is particularly suitable for our purpose of analyzing the sources that contribute to the

tail latency.

Similarly to ANOVA, quantile regression takes a number of samples as its input,

where each sample includes a set of explanatory variables xi and a response variable

y. The response variable is expected to vary depending on the explanatory vari-

ables. Quantile regression produces estimates of coefficients ci that minimizes the

prediction error on a particular quantile τ for given X as shown in Equation 5.1. In
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addition to individual explanatory variables, it can also model the interactions among

them by including their products (e.g., c12(τ)x1x2 in Equation 5.1). It uses numeri-

cal optimization algorithm to minimize a loss function, which assigns a weight τ to

underestimated errors and (1− τ) to overestimated ones for τ -th quantile, instead of

minimizing the squared error in ANOVA.

Qy(τ |X) =c0(τ) + c1(τ)x1 + c2(τ)x2 + · · ·+

c12(τ)x1x2 + c13(τ)x1x3 + · · ·+

. . .

(5.1)

In this case, we design the response variable to be a particular quantile (e.g.,

99th-percentile) of the latency distribution and the explanatory variables to be a set

of factors that we suspect to have an impact on the latency distribution.

5.3.2 Factor Selection

First of all, we need to identify the potential factors that may affect the tail

latency. We list all the factors we suspect to have an impact on the tail latency.

Then we use null hypothesis testing on a large number of samples collected from

repeated experiments under random permutations of all the factors, to identify the

factors that actually have an impact on the tail latency. Although the factors may

vary depending on the workload and the experimental environment, we find a list

of factors consistently affecting the tail latency across various workloads we have

experimented with.

• NUMA Control: The control policy for non-uniform memory access (NUMA)

determines the memory node(s) to allocate for data. The same-node policy

prefers to allocate memory on the same node until it cannot be allocated any-

more, whereas the interleave policy uses round robin among all nodes.
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• Turbo Boost: Frequency up-scaling feature is implemented on many modern

processors, where the frequency headroom heavily depends on the dynamic

power and thermal status. The scaling management algorithm is implemented

in processor’s hardware power control unit, and it is not clear how it will impact

the tail latency quantitatively.

• DVFS Governor: Dynamic voltage frequency scaling allows the operating sys-

tem to up-scale the CPU frequency to boost performance and down-scale to

save power dynamically. In this section, we study two commonly used gov-

ernors including performance (always operating at the highest frequency) and

ondemand (scaling up the frequency only when utilization is high).

• NIC Affinity: The hardware network interface card (NIC) uses receive side scal-

ing (RSS) to route the network packets to different cores for interrupt handling.

The routing algorithm is usually implemented through a hashing function com-

puted from the packet header. For example, the NIC on our machine (shown in

Table 5.2) provides a 4-bit hashing value, which limits the number of interrupt

queues to 24 = 16. We study the impact of mapping all the interrupt queues to

cores on the same CPU socket, and evenly spread across the two sockets.

Therefore, we use a 2-level full factorial experiment design with the 4 factors listed

above as shown in Table 5.3.

Table 5.3: Quantile regression factors.

Factor Low-Level High-Level
NUMA Control (numa) same-node interleave
Turbo Boost (turbo) off on
DVFS Governor (dvfs) ondemand performance
NIC Affinity (nic) same-node all-nodes

In addition to the 4 factors listed above in isolation, we also model the interactions

among combinations of them, because they might not necessarily be independent from
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each other. For example, the impact of DVFS governor may depend on Turbo Boost

because they can indirectly interact with each other due to the contention in thermal

headroom.

5.3.3 Quantifying Goodness-of-fit

In ANOVA, coefficient of determination R2 is often used to quantify the fraction

of variance that the model is able to explain. However, an equivalent of R2 does not

exist for quantile regression. Therefore, we define a pseudo-R2 metric in Equation 5.2

using the same idea. The metric falls in the range of [0, 1], where 1 means the model

perfectly predicts the given quantile and 0 means its accuracy is the same as the best

constant model that always predicts the same value regardless of the explanatory

variables. In the equation, the numerator represents the sum of the prediction errors

of the quantile regression model, and the denominator is the error of the best constant

model.

pseudo–R2
τ = 1−

∑N
i=0 w(τ, err

τ
qr(i))|err

τ
qr(i)|

∑N
i=0 w(τ, err

τ
const(i))|err

τ
const(i)|

(5.2)

For each sample, the prediction error is computed as the product of the absolute

prediction error and a weight. The prediction error for sample i at τ -th quantile is

defined in Equation 5.3 as the difference between empirically measured quantile yτi

and the predicted quantile modelτ (Xi) conditional on explanatory variables Xi.

errτmodel(i) = yτi −modelτ (Xi) (5.3)

The weight assigned to each error is defined in Equation 5.4 as (1− τ) for overes-

timation and τ for underestimation, which is the same as the loss function in quantile

regression.
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w(τ, err) =

⎧

⎪

⎨

⎪

⎩

(1− τ) : err < 0

τ : err ≥ 0
(5.4)

5.4 Evaluation of Hardware Features

The precision of tail latency measurements achieved by Treadmill enables the

possibility of understanding and attributing the sources of tail latency variance. In

this section, we present the complex and counter-intuitive performance behaviors

identified through attributing the source of tail latency, and demonstrate the effec-

tiveness of our methodology in improving tail latency.

5.4.1 Experimental Setup

We leverage quantile regression to analyze the measurements obtained under var-

ious configurations presented in Table 5.3 to understand the sources of tail latency

variance.

To perform quantile regression, we first obtain latency samples under various

configurations. We randomly choose one permutation of the configurations for each

experiment to preserve independence among experiments, until we have at least 30

experiments for each permutation of the configurations. Given we are studying 4

factors, we will need at least 24 × 30 = 480 experiments. For each experiment, we

randomly sub-sample 20k latency samples during the time when the latency distri-

bution has already converged. We make sure this sub-sampling does not hurt the

precision of the analysis by comparing against a model obtained using more samples,

and we observe no significant difference.

Each factor is coded as 0 at low-level, and 1 at high-level in the samples. Before

feeding the data into the quantile regression model, we perturb the data using a

symmetric variance at 0.01 standard deviation. This is useful to prevent the numerical
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Table 5.4: Results of quantile regression for Memcached at high utilization, which
detail the contribution of each feature on the latency. The first several rows show
the base latency (Intercept) and the latency of each feature enabled in isolation. The
other rows provide the interaction latency effect of multiple features. For example,
“turbo” is the best single feature (-29µs) in isolation to turn on to reduce 99th-
percentile latency. Turning “nic” to high-level is only beneficial if “dvfs” is set to
high-level (29 + -8 + -58 = -37µs), otherwise the net effect would be an latency
increase (29µs). Surprisingly, setting “turbo” on, which is beneficial in isolation, in
addition to “nic” and “dvfs” would actually increase the 99th-percentile latency (-29
+ -8 + 29 + 40 + 23 + -58 + 4 = 1µs) due to the negative interaction among them.
Note that for some rows, the uncertainty in the data is significant, and we choose a
p-value of 0.05 to highlight these values in bold.

50th-Percentile 95th-Percentile 99th-Percentile
Factor Est. Std. Err p-value Est. Std. Err. p-value Est. Std. Err p-value
(Intercept) 65 µs <1 µs <1e-06 155 µs <1 µs <1e-06 355 µs 5 µs <1e-06
numa 2 µs <1 µs <1e-06 24 µs <1 µs <1e-06 56 µs 8 µs <1e-06
turbo -2 µs <1 µs <1e-06 -12 µs <1 µs <1e-06 -29 µs 7 µs 1.00e-04
dvfs 1 µs <1 µs <1e-06 <1 µs <1 µs 2.60e-01 -8 µs 8 µs 3.54e-01
nic <1 µs <1 µs <1e-06 2 µs <1 µs 2.07e-03 29 µs 8 µs 1.10e-04
numa:turbo 3 µs <1 µs <1e-06 5 µs 1 µs 2.40e-04 21 µs 11 µs 6.37e-02
numa:dvfs -3 µs <1 µs <1e-06 -29 µs 1 µs <1e-06 -57 µs 11 µs <1e-06
numa:nic <1 µs <1 µs <1e-06 -6 µs 1 µs 4.00e-05 -20 µs 11 µs 6.91e-02
turbo:dvfs <1 µs <1 µs <1e-06 14 µs 1 µs <1e-06 40 µs 11 µs 3.30e-04
turbo:nic 3 µs <1 µs <1e-06 23 µs 1 µs <1e-06 23 µs 10 µs 2.90e-02
dvfs:nic -1 µs <1 µs <1e-06 -15 µs 1 µs <1e-06 -58 µs 11 µs <1e-06
numa:turbo:dvfs 2 µs <1 µs <1e-06 12 µs 2 µs <1e-06 3 µs 16 µs 8.70e-01
numa:turbo:nic <1 µs <1 µs 6.25e-01 -7 µs 2 µs 8.00e-05 -14 µs 15 µs 3.59e-01
numa:dvfs:nic 3 µs <1 µs <1e-06 34 µs 2 µs <1e-06 79 µs 15 µs <1e-06
turbo:dvfs:nic <1 µs <1 µs 7.66e-01 -9 µs 2 µs <1e-06 4 µs 14 µs 7.96e-01
numa:turbo:dvfs:nic -8 µs <1 µs <1e-06 -43 µs 3 µs <1e-06 -83 µs 23 µs 2.50e-04

optimizer from getting trapped in local optimal, because all explanatory variables are

discrete values (i.e., dummy variables). The perturbation is small enough that it does

not affect the quality of the regression itself.

5.4.2 Memcached Result
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Figure 5.7: Estimated latency of Memcached at various percentiles under low utilization and high utilization using the result
from quantile regression.
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Figure 5.8: The average impact in latency of turning each individual factor to high-
level for Memcached, assuming each of the other factors have equal probability of
being low-level and high-level. Negative latency means latency reduction, and positive
number means latency increase.

Table 5.4 shows the result from quantile regression for different percentiles, in-

cluding 50th-, 95th- and 99th-, for Memcached workload at 70% server utilization.

For each percentile, Est. shows the estimated coefficient (i.e., ci(τ) in Equation 5.1)

of each factor, where negative value means turning the factor to high-level reduces

the corresponding quantile latency. To estimate the quantile latency for a given

hardware configuration, one needs to add up all the qualified estimated coefficients

(Est. in the table) and the intercept. For example, to estimate the 95th-percentile

latency for a configuration that only “numa” and “turbo” are turned to high-level,

one needs to add their coefficients of them in isolation (24 + -12 = 12µs), and their

interaction “numa:turbo” (5µs), and the intercept (155µs), therefore the estimated

95th-percentile latency is 12 + 5 + 155 = 172µs. Std. Err is the estimated stan-

dard error for the coefficient estimation at 95% confidence interval. P-value is the

standard p-value for null hypothesis testing, which is the probability of obtaining a

result equal or more extreme than the observed one. A p-value smaller than 0.05 is

usually considered as strong presumption against null hypothesis, which suggests the

corresponding factor has a significant impact on the percentile latency.

To summarize the result, Figure 5.7 shows the estimated latency of all factor per-

mutations at various percentiles under low and high server utilization correspondingly.

From the result, we have several findings as follows:
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• Finding 1. The variance of latency increases from lower to higher server uti-

lization, because of the increasing variance in number of outstanding requests.

This is similar to what we observe in a M/M/1 queueing model [88], that the

variance of number of outstanding requests ρ
(1−ρ)2 , where ρ is the server utiliza-

tion, grows as the utilization increases.

• Finding 2. The variance of latency increases from lower to higher quantile as

suggested by the growing standard error shown in Table 5.4, because the variance

of a quantile is inversely proportional to the density [103]. This also explains

the reason why we observe many statistically insignificant cases (p-value > 0.05)

and the uncertainty is high at high quantiles.

• Finding 3. The latency could be higher at lower utilization when the DVFS

governor is turned to ondemand policy, because of frequent transitions among

frequency steps. The 50th- and 90th-percentile latencies are higher during low

load than high load under ondemand DVFS governor. This is because requests

have a higher probability of experiencing the overhead of transitioning from

lower to higher frequency steps, whereas the CPU is kept at high frequency

during high load and does not need many transitions.

• Finding 4. Turning NIC affinity policy from same-node to all-nodes during

low load can significantly reduce the latency when DVFS governor is set to on-

demand. The cores have larger utilization range under same-node policy than

all-nodes, which leads to higher probability of experiencing frequency step tran-

sitions. This does not occur at high load because the utilization is already high

enough that the number of frequency transitions is negligible. Prior study per-

formed on the same hardware factors in isolation fails to capture such interacting

behaviors among multiple factors due to the limitation of isolated study.

• Finding 5. As shown in Table 5.4, the interactions among factors are demon-
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strated to have statistically significant impact on the latency as many of them

have a p-value smaller than 0.05. In addition, the estimated coefficients of

interactions are sometimes larger than individual factors, which means the in-

teractions among factors can have higher impact on the latency. For example,

turning NUMA control policy to interleave increases the 99th-percentile latency

by 56µs as shown in the table, but its positive interaction with performance

DVFS governor results in a 9µs improvement. These interacting behaviors are

complicated and sometimes counter-intuitive, and cannot be captured by iso-

lated studies of individual factors. Therefore, it is necessary to use statistical

techniques like quantile regression to model the interactions.

Due to the interactions among factors, we cannot simply decompose the variance

of the tail to each individual factor. However, by assuming all the other factors

are randomly selected (i.e., each factor has equal probability of being low-level and

high-level), we can quantify the impact of each factor on average case as shown in

Figure 5.8.

• Finding 6. Interleaved NUMA control policy increases the latency by up to 44µs

especially during high load. This is caused by bad connection buffers allocation

that majority of the server threads have their connection buffers allocated on the

remote memory node, while same-node policy guarantees half of the threads get

their buffers allocated on the local node. We only observe this behavior during

high load because the high queueing delay magnifies the overhead of accessing

remote memory node.

• Finding 7. The amount of impact each factor contributes varies depending on

the load levels. For example, DVFS governor has the highest impact at low load,

whereas NUMA policy is the biggest contributor to the variance at high load.

This is caused by the complex interacting behavior among different features,
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which again, is not captured by isolated studies in prior works.

5.4.3 Mcrouter Results
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Figure 5.9: Estimated latency of mcrouter at various percentiles under low utilization and high utilization using the result from
quantile regression.
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Figure 5.10: The average impact in latency of turning each individual factor to high-
level for mcrouter, assuming each of the other factors have equal probability of being
low-level and high-level. Negative latency means latency reduction, and positive
number means latency increase.

Similarly, we also construct experiments with mcrouter workload as shown in

Figure 5.9, which is a configurable protocol router that turns individual cache servers

into massive-scale distributed systems. Figure 5.10 shows the average impact of the

4 factors assuming other factors are selected randomly with equal probability.

• Finding 8. Turbo Boost significantly improves the latency especially during low

load for mcrouter. This is because a large fraction of the computation mcrouter

needs to do is to deserialize the request structure from network packets, which is

CPU-intensive and can easily be accelerated by frequency up-scaling. However,

this difference is much smaller, sometimes statistically insignificant, during high

load, because the available thermal headroom is smaller compared to low load.

5.4.4 Quantifying Goodness-of-fit

Although the low p-values obtained from quantile regression suggests high confi-

dence that the studied factors have significant impact on the tail latency, it is also

possible that they only contribute to a small fraction of the total variance. Therefore,

we quantify the goodness-of-fit in this section, which demonstrates that our model

covers the majority of the observed variance.

Figure 5.11 shows the pseudo-R2 values, we previously defined in Equation 5.2,
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Figure 5.11: Pseudo-R2 (shown in Equation 5.2) of the quantile regression results
at various load levels and percentiles, which demonstrates good coverage of sources
of variance. Pseudo-R2 quantifies the goodness-of-fit of the model, which ranges in
[0, 1] that higher value indicates better model fit. Our regression models show high
pseudo-R2 values (>0.90), which suggests that they are able to explain majority of
the variance.

Figure 5.12: Using the knowledge we gain from quantile regression, both the latency
and the variance of latency are significantly reduced after carefully controlling the
factors contributed to the variance. The average 99th-percentile latency in 100 ex-
periments is reduced from 181µs to 103µs, and the standard deviation is reduced from
78µs to 5µs.

of the quantile regression models at various percentiles, which quantifies the variance

that can be explained. Our models have consistently high pseudo-R2 values (the

lowest one is 0.9), which suggests that they are able to explain the majority of the

observed variance.
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5.4.5 Improving Tail Latency

We further evaluate the quantile regression results in Figure 5.12, in which we

perform the same experiment 100 times using randomly selected configurations as

“before”, and compare against the best configuration for 99th-percentile latency rec-

ommended by our quantile regression model as “after”. As we can see from the figure,

both latency and the variance of latency have been significantly reduced. Specifically,

the expected 50th-percentile latency has been reduced from 69µs to 62µs, and the

standard deviation has been reduced from 13µs to 5µs. The expected 99th-percentile

latency has been reduced from 181µs to 103µs, and the standard deviation has been

reduced from 78µs to 5µs. The reductions we achieve on 99th-percentile latency are

much larger than on 50th-percentile, because we optimize for 99th-percentile when

choosing the best configuration.

5.5 Summary

In this Chapter, we identify four common pitfalls through an in-depth survey of

existing tail latency measurement methodologies. To overcome these pitfalls, we de-

sign a robust procedure for accurate tail latency measurement, which uses Treadmill,

a modular software load tester we develop. With the superior measurements achieved

by this procedure, we leverage quantile regression to analyze, and attribute the sources

of variance in tail latency to various hardware features of interest. Using the knowl-

edge we gain from the attribution, we reduce the 99th-percentile latency by 43% and

its variance by 93%.
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CHAPTER VI

TailSniping: Pinpoing Root Causes of Qos

Anomalies

One of the key challenges in modern data centers is to enforce quality of ser-

vice (QoS) requirements for user-facing services. Architectural and low-level system

misconfigurations commonly cause QoS performance anomalies – significant unex-

plained QoS degradations. Unfortunately, conventional performance diagnosis tech-

niques only provide application-level analysis, failing to diagnose the important hard-

ware and low-level system issues, therefore these anomalies often remain unaddressed,

causing sustained QoS violations.

In this Chapter, we introduce TailSniping, a lightweight infrastructure for au-

tomatically detecting, diagnosing and correcting hardware and low-level system con-

figuration issues that impact QoS in data centers. Leveraging the massive amount

of data collected by monitoring infrastructures common to modern data centers, our

approach goes beyond conventional techniques by continuously mining application

performance characteristics in production to detect performance anomalies in a low-

overhead, statistically robust manner.

Unlike prior work that relies on correlation analysis to identify causes to anoma-

lies, our approach enacts carefully designed causal inference micro-experiments to

accurately pinpoint the root causes of the anomalies.
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6.1 Performance Anomalies

In this section, we present a survey of common performance anomalies in data

centers that are caused by system-level misconfigurations. These misconfigurations

are common, yet challenging to diagnose for a number of reasons:

• The workloads of modern data centers are constantly changing as the user

base grows, new products are launched, and software systems are frequently

updated [19, 3].

• Many misconfigurations do not manifest themselves until the system is under

certain states (e.g., suboptimal frequency boost configurations may remain hid-

den until the server is under heavy load [181]).

• The heterogeneity (i.e., composed of different generations of hardware [83, 121]

and variety of network topologies [161]) of modern data centers further compli-

cates system configurations.

• Identifying the optimal configuration in controlled offline experiments is ex-

tremely difficult, if possible, because production environment is much more

complex [161].

Consequently, data centers commonly experience suboptimal performance, which

results in performance anomalies, and even service outages [18, 5, 177].

6.1.1 Unexpected Interference

In modern data centers, many servers are provisioned to serve interactive services

(e.g., web search and social network) at a given QoS target. However, it is not

uncommon that the low-priority co-locating workloads may generate unexpectedly

significant interference, resulting in performance anomalies on the interactive services.

116



For example, modern data centers co-locate low-priority batch processing work-

loads with latency-critical interactive services to increase server utilization [164, 122,

63, 64, 171, 111]. However, co-location may cause performance anomalies for interac-

tive services, when the interactive services demand more resources dynamically (e.g.,

load spike) or the low-priority applications consume more resources than provisioned.

In addition, maintenance activities (e.g., data reconstruction in distributed file sys-

tems, garbage collections in managed languages) can cause significant performance

anomalies in production environment as reported by Google [60].

6.1.2 NUMA Locality

As the working set size of the data center workloads grows, non-uniform memory

access (NUMA) architecture has become ubiquitous. However, NUMA architecture

introduces new challenges on managing memory locality due to the performance over-

head of accessing remote memory node(s).

Many applications are designed and developed at a level of abstraction higher than

explicitly managing NUMA, so it is not surprising that they experience performance

anomalies due to suboptimal NUMA locality when the OS dynamically decides where

to allocate memory at runtime [152, 167, 56, 111]. Furthermore, NUMA locality-

caused performance anomalies can sometimes remain hidden unless the system is

under certain states (e.g., cross-socket memory bandwidth is saturated), which makes

them hard to diagnose and debug [181].

6.1.3 Thread-to-Core Mapping

Managing thread-to-core mapping is particularly challenging given its complex

interactions with other components of the system (e.g., contention among applica-

tion threads, cache coherence traffic, cross socket communication, remote NUMA ac-

cesses). The heterogeneity at both server-level and cluster-level further complicates
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the thread-to-core configuration. At server-level, logical cores (i.e., SMT contexts)

on the same physical core share private cache(s) and functional units, and cores on

the same CPU socket contend for last-level cache and memory bandwidth and incur

additional overhead when accessing remote memory node(s). At the cluster-level,

many different machine generations are in operation at the same time, as reported

by Google [121].

Given all the complexity, there is no single configuration that always yields optimal

performance. Therefore, production systems can sometimes suffer from serious per-

formance anomalies caused by suboptimal thread-to-core mappings, especially when

the decisions are left to the OS dynamically at runtime [84] (e.g., over-subscription,

unnecessary cross socket communication).

6.1.4 Voltage Frequency Scaling

Power counts for a large fraction of the total cost of operating a data center.

Therefore, many CPU dynamic voltage frequency scaling (DVFS) management sys-

tems [169] have been developed and deployed in data centers to save energy by down-

clocking. However, it is very challenging to always configure DVFS optimally, because

applications prefer different voltage frequency scaling policies [111, 118, 120, 99] even

under different states [99, 181] (e.g., load level, interrupt queue-to-core mapping) due

to its complex interaction with other components of the system.

For example, the ondemand DVFS governor, which lowers the CPU voltage fre-

quency when the utilization is low, yields 2× degradation on 99th-percentile latency

for Memcached during low load due to the overhead of waking the CPU up from

lower frequency steps, while causing no degradation during high load [181]. The im-

pact of the DVFS governor also varies drastically depending on whether the hardware

interrupts are handled by one or all CPU sockets [181].
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6.1.5 Network Interrupt Handling

Many interactive Internet services heavily rely on the network for communication,

which requires significant amount of work on the processor to handle the hardware

interrupts issued by the network interface card (NIC). Many vendors have integrated

advanced features to optimize the mapping between the hardware interrupt queues

(IRQs) on NICs and the CPU cores to handle the interrupts [7, 10], which requires

careful tuning under various configurations [65, 131].

For example, spreading interrupts across all cores instead of having dedicated cores

for interrupt handling can cause significant performance anomalies for Memcached

(i.e., 3× degradation on tail latency [111]). However, this is not always true for all

circumstances. For instance, spreading interrupt across cores becomes the preferable

configuration when the interrupt flows can be directed to the correspondingly cores

that process the queries using Flow Director [7].

6.1.6 Network Saturation

Due to the complex network topologies of modern data centers, it is not uncom-

mon that network saturation sometimes causes performance anomalies [161]. These

anomalies are hard to diagnose because they only manifest themselves when the load

on certain components of the network is high enough. In addition, there have also

been user-visible incidents caused by stale and inconsistent configurations in query

routing systems [147, 113].

For example, unbalanced load can cause network saturation on certain regions of

the network, resulting in long network latency and performance anomalies [161]. Such

problem is extremely hard to investigate in controlled offline experiments, and can

only be discovered when the production system is being exercised in specific ways.

Additionally, data center operators (e.g., Google [5] and Facebook [18]) have reported

user-visible incidents caused by anomalies in network routing configurations.
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Table 6.1: An example of measurements collected by the continuous monitoring in-
frastructure. Each record is indexed by Time T , Server S and Application A, and
composed of a set of observations O (i.e., Memory Usage, CPU Frequency, LLC-
misses/s, Load) and a QoS metric Q Latency.

Time Server Application Memory CPU Freq LLC-misses/s Load Latency
2016-04-10 16:36:01 server0 Memcached 42.4 GB 1.8GHz 4.24E6 802,210 req/s 47µs
2016-04-10 16:36:01 server1 Web-Search 442.6 MB 2.4GHz 1.22E6 782 req/s 57ms
2016-04-10 16:36:16 server1 Web-Search 467.7 MB 2.4GHz 1.57E6 791 req/s 76ms
2016-04-10 16:36:16 server1 MySQL 16.2 GB 2.4GHz 3.40E7 1,965 req/s 95ms

6.1.7 Load Fluctuation

The query load changes constantly in production data centers as user activity

varies over time (e.g., the diurnal pattern in a Google Web-Search cluster [124]),

which results in varying application performance. This is not a performance anomaly,

but can cause application performance degradation and a diagnosis system should not

mistakenly attribute degradation due to load fluctuation to other factors.

On the other hand, load fluctuation can also be caused by actual anomalies like

poor load balancing. For example, a few TAO [42] caching servers at Facebook were

running out of CPU cycles because they stored a significant fraction of the frequently-

accessed data (e.g., popular content), which resulted in long latency accessing the

stored data, while other caching servers had many idle cycles [161].

6.2 TailSniping

To automatically diagnose and correct these performance anomalies, we build

TailSniping. In this section, we first present an overview of TailSniping (Sec-

tion 6.2.1). We then describe its two major components in detail: Nerve (Sec-

tion 6.2.2) and Brain (Section 6.2.3).

6.2.1 Overview

Figure 6.1 presents an overview of TailSniping, which is composed of 2 major

components: Nerve and Brain. Nerve continuously runs on each server in produc-
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Figure 6.1: Overview of TailSniping methodology – (1) Nerve continuously moni-
tors runtime information on each server; (2) the measurements collected by Nerve is
stored to the distributed file system; (3) Brain searches for performance anomalies
by comparing statistical properties of the collected performance measurements; (4) a
correlation analysis is performed to find all the correlating factors as the candidate
causes; (5) Brain conducts one micro-experiment for each factor through Nerve to
test the hypothesis that the candidate cause is the root cause; (6) a conclusion will be
drawn once one hypothesis has been accepted; (7) the corresponding misconfiguration
will be corrected in production environment.

tion environment to (1) monitor the runtime information and (2) store the collected

measurements into a distributed file system. The analysis engine Brain runs in a

separate analysis cluster, and asynchronously (3) mines the data to detect poten-

tial performance anomalies. Once a performance anomaly has been detected, Brain

(4) performs a correlation analysis to find the correlating factors as candidate causes.

Then Brain (5) conducts a micro-experiment for each candidate cause through Nerve

to test the null hypothesis that it is the root cause of the observed anomaly. Once

a hypothesis has been accepted, Brain (6) identifies the root cause, and (7) corrects

the corresponding misconfiguration on the production servers.

6.2.2 Nerve

It is a common practice for data centers to deploy continuous monitoring infras-

tructure in production environment, such as GWP [133, 98] at Google and Scuba [23,

31] at Facebook. Similarly, Nerve is responsible for monitoring runtime information
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in the production environment (step (1) in Figure 6.1), storing the collected data to

a distributed file system (step (2) in Figure 6.1), which will be used by Brain for

detecting performance anomalies and diagnosing root causes, and executing micro-

experiments invoked by Brain (step (5) in Figure 6.1).

6.2.2.1 Design Principles

There are 3 fundamental principles that we follow when designing Nerve.

• Coverage: Given the large amount of resources available on these production

systems, the infrastructure needs to collect a rich set of runtime information to

cover the possible causes of anomalies.

• Generality: The infrastructure needs to remain generic, because the servers in

the production environment can be provisioned to serve various applications.

• Low Overhead: In order to be continuously deployed in production environ-

ment, the infrastructure needs to have an overhead no more than 1-2% [133].

6.2.2.2 Data Collection

Table 6.1 shows a simplified example of measurements collected by such monitor-

ing infrastructure, in which each record is indexed by a time T , a server S and an

application A. In each record, there are five types of measurements:

• Time T : The time when the record is collected (column Time in Table 6.1).

• Server S: The server that the record is collected on (column Server in Ta-

ble 6.1).

• Application A: The application that the server is provisioned to run (column

Application in Table 6.1).
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• Observations O: Runtime statistics exposed by hardware (e.g., performance

monitoring unit measurements), the operating system (e.g., statistics about

running processes in /proc/), and the application (i.e., request load informa-

tion). For example, this includes columns Memory Usage, CPU Frequency,

LLC-misses/s, and Load in Table 6.1).

• QoS Q: Quality of service metrics specified by the application (e.g., column

Latency in Table 6.1). The metric varies depending on the nature of the appli-

cations. For example, web search engines often use query latency as their QoS,

and video streaming applications typically define their QoS as the number of

frames being served per second.

When multiple applications are co-locating on the same server, there will be multiple

entries in the table indexed by the same T and S, but different A (e.g., 2nd and 4th

rows in Table 6.1). We define ℜ(T, S,A,O,Q) as the relation of the measurements

collected by the monitoring infrastructure, and the same notation will be used through

out the paper.

To achieve high coverage of the potential root causes, Nerve collects data from

3 primary sources, covering architectural and system-level runtime information, to

facilitate root cause diagnosis.

• Hardware: Nerve collects hardware runtime statistics (e.g., CPU core fre-

quency, LLC-misses/s) using a configurable set of hardware performance moni-

toring units (PMUs) with libpfm [12] as parts of observationsO in ℜ(T, S,A,O,Q).

• Software: We monitor process-specific information exposed by the operating

system in /proc/ [15] (e.g., CPU utilization, context switches) also as parts of

the observations O in ℜ(T, S,A,O,Q).

• Application: We also pull information from the applications that the servers

are provisioned to serve. This includes the request load information (e.g.,
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number of requests per second) as parts of the observations O in relation

ℜ(T, S,A,O,Q), and the QoS metric Q (e.g., query latency) in the relation.

By collecting the request load information, we can potentially attribute the

source of ”performance anomaly” to the fluctuating load of the application it-

self, which commonly occurs in data centers [124].

6.2.2.3 Anomalies vs. Performance Variation

Due to the complex nature of modern systems, it is common that their perfor-

mance behavior is non-deterministic to a degree. However, this expected variabil-

ity is different from the unexpected degradation caused by performance anomalies.

Therefore, we need a formal definition of the performance anomaly that is robust to

differentiate between the two.

We use Φ
Ti,Sj ,A

(Q) to represent a particular statistical property (e.g., mean, median,

99th-percentile) computed over all the QoS metric measurements Q indexed by time

Ti and server Sj for application A. A performance anomaly is defined as the scenario

that the difference between the computed statistical properties at different time Ti and

Tk or on different server Sj and Sl for the same application A is statistically significant.

The statistical significance is defined in Equation 6.1, in which σ( Φ
T,S,A

(Q)) denotes

the standard deviation of Φ
T,S,A

(Q).

∣

∣

∣

∣

Φ
Ti,Sj ,A

(Q)− Φ
Tk,Sl,A

(Q)

∣

∣

∣

∣

> σ( Φ
T,S,A

(Q)) (6.1)

Using this equation, we only conclude a performance anomaly when the variability

of the statistical property Φ
Ti,Sj ,A

(Q) computed over Q is larger than its empirically

measured standard deviation. Intuitively, the statistical significance is used to avoid

concluding a performance anomaly when the variability is expected and caused by

the nature of the system.
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6.2.3 Brain

Brain continuously mines the data collected by Nerve to detect potential per-

formance anomalies (step (3) in Figure 6.1). When an anomaly has been detected,

Brain diagnoses the root cause using correlation analysis (step (4) in Figure 6.1)

and causal inference (step (5) and (6) in Figure 6.1). Once the root cause has been

identified, the system can automatically correct the corresponding misconfigurations

in the production environment (step (7) in Figure 6.1).

In this section, we focus on anomaly detection (Section 6.2.3.1), and anomaly

diagnosis (Section 6.2.3.2) techniques.

6.2.3.1 Anomaly Detection

Design Principles

The goal of anomaly detection is to draw a conclusion on whether 2 sets of per-

formance measurements X and Y are significantly different, that in statistical terms

they are most likely to be drawn from different populations. Naively, we can use

Equation 6.1 to serve this purpose, when we have the entire population of both QoS

measurements Q(X) and Q(Y ) (e.g., latency of every single request in sets X and

Y ). However, QoS measurements are often down-sampled to reduce the overhead due

to the large number of requests pumping through the system. For example, a typical

Memcached server can serve up to hundreds of thousands of requests per second, that

recording the latency of every single request is simply infeasible. Therefore, the key

principles for designing a performance anomaly detecting technique include:

• Coping with Sampled Data: Because only a subset of the QoS measurements

Q are presented, the main challenge is that we no longer have access to the

entire population. Therefore, we need a technique that copes with sampled

data, while still providing high statistical confidence levels to ensure that the

anomalies identified are genuine.
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• Robust to Various Statistical Properties: It is common that data center

applications define their QoS using different statistical properties (e.g., average

latency, 99th-percentile latency). A mechanism that is robust enough to handle

various statistical properties is required.

Idea

To cope with sampled data, we leverage statistical hypothesis testing techniques

to determine whether two sets of QoS metrics Q are statistically significantly differ-

ent. Specifically, we use a standard parametric hypothesis testing technique, unpaired

Student’s t-test procedure [104] with significant amount of samples (e.g., >30), when

the QoS metric is defined as the average performance (e.g., average latency). Because

non-normally distributed data commonly exists in computer systems [57], we cannot

apply Student t-test when only small number of samples is given, which requires the

underlying population being normally distributed. Therefore, we use Student t-test

with significant amount of samples (e.g., >30), because Central Limit Theorem pro-

vides the guarantee that the sampled mean will always follow a normal distribution

even if the original population is not normally distributed [135]. However, there is

no such guarantee when the QoS metric is defined as certain quantiles (e.g., me-

dian, 99th-percentile latency). Therefore, we leverage a non-parametric hypothesis

testing technique developed by Campbell and Gardner [43], which does not make

any assumptions about the underlying distribution of the data, thereby can handle

non-normally distributed data.

Technique

When the QoS metric is defined as the average performance, we directly apply

the standard unpaired Student’s t-test procedure [104] with a significant sample size.

When the QoS metric is defined as certain quantile of the distribution (e.g., 99th-

percentile latency), we leverage a non-parametric hypothesis testing technique devel-

oped by Campbell and Gardner [43], which is robust enough to handle non-normally
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distributed data.

Suppose we would like to compare 2 sets of QoS measurements Q(X) and Q(Y ),

and draw a conclusion on whether their q-th quantiles are significantly different at

a confidence level (1 − α). We first compute the r and s quantity for both Q(X)

and Q(Y ) using Equation 6.2, in which n is the number of samples, and N1−α
2
is the

corresponding value from the standard Normal distribution at the (1 − α
2 ) quantile

(e.g., 1.96 for α = 0.95).

r =nq − (N1−α
2

√

nq(1− q))

s =1 + nq + (N1−α
2

√

nq(1− q))
(6.2)

We round r and s to the closest integers as [r] and [s]. Then we find the [r]-th

sample Q[r] and [s]-th sample Q[s] in increasing order from Q as our confidence interval

at confidence level (1− α).

Then we compute the confidence interval for both sets of the q-th quantile at

confidence level (1 − α) as (Qq
[s](X), Qq

[r](X)) and (Qq
[s](Y ), Qq

[r](Y )). Therefore, we

have the confidence interval of their difference in q-th quantile as shown Equation 6.3:

(

Qq
[s](X)−Qq

[s](Y ), Qq
[r](X)−Qq

[r](Y )
)

(6.3)

If this interval does not include 0, we reject the null hypothesis and conclude

that there is a statistically significant difference between the q-th quantiles of Q(X)

and Q(Y ), which means a performance anomaly has been detected. Otherwise, the

anomaly detection cannot draw any conclusion, and Brain continues to scan more

data for anomalies.
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6.2.3.2 Anomaly Diagnosis

Design Principles

The key task of the diagnosis engine is to accurately diagnose the root causes of

the detected performance anomaly. The biggest challenge is to be able to identify

the actual cause from the large number of correlating symptoms due to the complex

interaction among resources. For example, lowering the CPU frequency will degrade

the performance, as well as causing many other symptoms (e.g., decreasing instruc-

tions/s, LLC-misses/s). As a result, correlation analysis will attribute the degraded

performance to all the correlating factors including the symptoms. Therefore, the

key design principle is to be able to identify the root causes from many correlating

factors.

• Root Cause Identification: Correlation analysis has been commonly used by

prior works [52, 165, 168, 170, 101, 127] in various studies, but it is not capable

of diagnosing the root causes. To identify the root causes, a technique that

infers true causal relationship rather than correlation is needed.

• Unknown Factor: It is impractical to cover all the possible causes of all

performance anomalies. Therefore, it is important for the technique to be able

to determine the actual root cause cannot be attributed to any monitored causes

(e.g., network traffic is not being monitored when the root cause is misrouted

network traffic), rather than attributing the cause to other factors.

Idea

To identify the root cause, Brain first performs correlation analysis on the ob-

servations collected under normal execution and during the detected anomaly to find

all the correlating factors with the QoS Q as candidate causes. For each candidate

cause, it automatically conducts a micro-experiment by artificially reproducing the
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candidate cause on an identical server, or suspending the candidate cause on the ab-

normal. When reproducing on an identical server, it constructs a null hypothesis that

the runtime statistics population collected in the reproduction is not significantly dif-

ferent from the one collected during the anomaly. When suspending on the abnormal

server, it constructs a null hypothesis that the runtime statistics population collected

after the suspension is not significantly different from the one collected during normal

execution. If it fails to reject the null hypothesis, which means the two populations

are similar enough that they are most likely to be drawn form the same distribution,

we conclude the corresponding candidate cause is the actual root cause. If all the

candidate causes are rejected, we conclude the anomaly is caused by an unknown fac-

tor that is not being monitored, which suggests the data center operators to extend

the list of monitored runtime statistics and candidate causes.

Suppose an unexpected co-locating application is slowing down the Web-Search

engine due to interference, the CPU utilization of the co-locating application will

appear to be correlated with the QoS of Web-Search. A micro-experiment will be

performed by temporarily suspending the co-locating application, and a null hypoth-

esis will be constructed to evaluate whether the runtime statistics population collected

after the suspension is similar enough to the one collected during normal execution.

As they are similar enough, the unexpected interference caused by the co-locating

application is concluded as the root cause of the observed performance anomaly.

Technique

Correlation analysis: We use analysis of variance (ANOVA) when the QoS

metric Q is defined as the average performance (e.g., average latency), and quan-

tile regression [105] as suggested by prior work [57] when Q is defined as quantiles

(e.g., 99th-percentile latency). Both techniques give us a list of correlating factors

ranked by the variance each factor is able to explain, which intuitively corresponds

the contribution of each factor to the QoS.
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Micro-experiment: With the exception of unexpected interference anomalies,

micro-experiments are conducted on a separate “normal-performing” server (i.e., one

isnt experiencing the anomaly) with identical hardware specifications. This mitigates

the possibility of introducing additional slowdowns beyond the anomalous server.

• Unexpected Interference: Pause the co-locating application by its process ID.

• NUMA Locality: Migrate the memory pages using migrate pages [13] and

move pages [14], and change thread-to-core mapping [16] to reproduce the exact

memory allocation on a normal server.

• Thread-to-Core Mapping: Migrate threads to reproduce the exact same map-

ping on a normal server [16].

• Voltage Frequency Scaling: Change DVFS setting to reproduce the same setting

on a normal server [2].

• Network Interrupt Handling: Change the network interface card configura-

tion [9] to reproduce the exact same setting on a normal server.

Some candidate causes are hard to suspend on the abnormal server, so we reproduce

the same anomaly on a normal server:

• Network Saturation: Send same amount of synthetic network traffic to the

normal server using iperf3 [11].

• Load Fluctuation: Route same amount of shadow request traffic to the normal

server by configuring the request routing (routing shadow request traffic is a

common practice in production data centers, e.g., [17] using mcrouter [113], [161]).

Note that the micro-experiment methodology is generalizable to other QoS anomalies,

and can be easily extended.
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Null hypothesis testing: The goal of null hypothesis testing is to determine

whether the two populations X and Y (e.g., ⟨Oabnormal, Qabnormal⟩ collected during

the anomaly and ⟨Ocandidate, Qcandidate⟩ collected during reproduction of the candidate

cause on a normal server) are similar enough that they are most likely to have been

drawn from the same distribution. If they are drawn from the same distribution,

candidate is the root cause of the observed performance anomaly.

Because ⟨O,Q⟩ has many dimensions, a hypothesis testing technique that copes

with multidimensional data is needed. Therefore, we choose to use the unpaired two

sample Hotelling’s T-squared test [95], which is designed for multivariate hypothesis

testing.

Specifically, we first compute the T 2 value using Equation 6.4, in which X is the

mean vector of X, nX is the number of samples in X, and σ(X) is the standard

deviation vector of X.

T 2 =(X − Y )T
[

S(
1

nX
+

1

nY
)

]

−1

(X − Y )

S =
(nX − 1)σ(X) + (nY − 1)σ(Y )

(nX − 1) + (nY − 1)

(6.4)

Similarly to F -test, we then compute the F -value, degrees of freedom df1 and df2

using Equation 6.5, in which k is the number of dimensions of X.

F =
(nX + nY + k)T 2

k(nX + nY )

df1 = k

df2 = nX + nY − k − 1

(6.5)

Once we have the F -value and the degrees of freedom df1 and df2, we have simply

look up the p-value from the F-distribution using Equation 6.6.
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p-value = 1− ProbF (F, df1, df2) (6.6)

If the p-value is smaller than a small value α (usually 0.01 or 0.05), we reject the

null hypothesis and conclude that X and Y are drawn from different populations.

Otherwise, we fail to reject the null hypothesis and therefore X and Y are likely to

have been drawn from the same population. Particularly in our use case, we conclude

that candidate is the root cause of the performance anomaly if we fail to reject the null

hypothesis. When all the null hypotheses have been rejected, which means none of the

candidate factor is the actual root cause, we conclude that the observed performance

anomaly is caused by an unknown factor.

6.3 Evaluation

In this section, we evaluate our TailSniping system’s effectiveness in achieving

the following goals.

• Low overhead of continuously monitoring (Section 6.3.2)

• High accuracy of performance anomaly detection and pinpointing the root

causes (Section 6.3.3)

• High scalability of the diagnosis procedure (Section 6.3.4)

• High effectiveness in improving data center performance by correcting the anoma-

lies (Section 6.3.5)

6.3.1 Experimental Setup

All experiments are conducted on real systems. The specifications of the servers

used are shown in Table 6.2. We use five popular data center applications as our
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Figure 6.2: Normalized performance overhead of Nerve.

benchmarks as shown in Table 6.3. The events monitored by Nerve are listed Ta-

ble 6.4. The events with a star in front (e.g., appirq) are monitored per process. The

corresponding events of the application A in ℜ(T, S,A,O,Q) is denoted as app∗, and

3 other most CPU-intensive co-running processes are monitored and denoted as co-

runk
∗
where k is the ranking in utilization. The rest of the events (e.g., sendbytes) are

monitored system-wide.

Table 6.2: Machine specifications.

Item Specification
Processor Intel Xeon E5-2407 v2 @ 2.40GHz
Microarchitecture Ivy Bridge-EN
Memory 144GB @ 1333MHz
Operating System Linux (kernel version 3.19.0)

6.3.2 Monitoring Overhead

We first evaluate the performance overhead of the continuous monitoring infras-

tructure Nerve to ensure it is deployable in production environment. Note that these

measurements are already monitored in production data centers as a common prac-

tice [133, 98, 23, 31], so Nerve is not introducing any additional overhead. We quantify

the worst case performance overhead of Nerve by running each of the applications at

a high utilization (i.e., 60%), which is significantly higher than the typical utilization
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Table 6.3: Benchmark specifications.

Name Source Description
Memcached CloudSuite [74] data caching server
Web-Search CloudSuite [74] web search engine
ASR DjiNN [89] automatic speech recognition
IMC DjiNN [89] image classification
DIG DjiNN [89] digit recognition

Table 6.4: Events monitored by Nerve.

Name Description
load query load of the application
sendbytes no. bytes sent through network
sendpackets no. packets sent through network
recvbytes no. bytes received from network
recvpackets no. packets received from network
*appirq avg. no. interrupts handled by app’s cores
*appfreq avg. frequency of app’s cores
*appcpu util cpu utilization of app
*appv ctxt sw no. voluntary context switches
*appnv ctxt sw no. non-voluntary context switches
*appio read no. I/O read operations
*appio write no. I/O write operations
*appvmem virtual memory usage
*apprmem real memory usage
*appcycles no. of cycles of app
*appinsts no. of instructions of app
*appl1d miss no. L1 d-cache misses of app
*appl1i miss no. L1 i-cache misses of app
*appl2 miss no.L2 cache misses of app
*appllc miss no. LLC misses of app
*appbr miss no. branch mispredictions of app
*appr numa no. remote NUMA accesses of app
*appl numa no. local NUMA accesses of app
*apppg fault no. page faults of app

levels these Internet services operate at (i.e., 30% as reported by Google [36]). We

also configure Nerve to sample at two different rate (i.e., every 1s and every 10s), and

in two different co-locating settings (i.e., sharing the same cores as the application

and running on a separate core).

Figure 6.2 shows the normalized performance overhead of Nerve on the average
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latency. As we can see from the figure, the performance overhead Nerve introduces is

negligible for most of the applications. Web-Search experiences slightly higher over-

head than the other applications, due to the overhead of aggregating statistics of many

utility child threads created by JVM (e.g., garbage collection, signal dispatcher) as it

is written in Java (i.e., Apache Solr [1]). Overall, the performance overhead of Nerve

is very small (i.e., ¡ 1% even when sharing on the same cores as the applications). In

addition to performance overhead, the data generated by Nerve is less than 1KB/s

per application.

6.3.3 Performance Troubleshooting

In this section, we evaluate the effectiveness of TailSniping in detecting and

diagnosing the root causes of six hardware and system-level performance anomalies

listed in Section ??. Similar to prior work [25, 52, 165, 168, 49, 128, 134, 145, 33,

40, 146, 170, 34, 101, 173, 138, 127, 32, 137, 50], we construct experiments by arti-

ficially injecting performance anomalies. We also construct experiments to evaluate

its capability of identifying unknown causes when the corresponding events are not

being monitored (Section 6.3.3.8). In all experiments, it takes ∼30 seconds to detect

the performance anomaly, and ∼30 seconds to conduct a micro-experiment, which

is much more efficient than the manual diagnosis used in production [161]. We also

present the results produced by state-of-the-art correlation techniques as baseline for

comparison.

We focus on single-factor anomalies in our evaluation because single-factor anoma-

lies are common and automatically diagnosing single-factor anomalies is still an open

research question. That being said, we believe our technique can also be applied

to multiple-factor anomalies by conducting micro-experiments with multiple factors

combined.

Result Interpretation
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(a) Web-Search

(b) Memcached

(c) ASR

(d) IMC

(e) DIG

Figure 6.3: Unexpected Interference. TailSniping accurately pinpoints the root
cause of the anomaly, while correlation analysis used in prior work fails to identify
the actual root cause (i.e., low in ranking).
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For each experiment, we present a figure (e.g., Figure 6.3a) with the ranked corre-

lating factors produced by the baseline correlation analysis on left, and the p-values

of all candidate causes generated by causal inference on right. The baseline corre-

lation analysis ranks all the correlating factors based on their contribution to the

performance anomaly (e.g., the left figure in Figure 6.3a suggests appv ctxt sw con-

tributes the most to the detected performance anomaly). The p-values produced by

causal inference on right present the output of the null hypothesis testing for each

candidate cause. A p-value greater than 0.01 suggests it is the root cause of the

performance anomaly, otherwise it is only a correlating symptom (e.g., the right fig-

ure in Figure 6.3a suggests the unexpected interference intrf is the root cause). In

each figure, we also highlight the actual root cause denoted as cause using a darker

color than the correlating factors denoted as symptom. In all figures, the unexpected

interference is denoted as intrf, NUMA locality as numa, thread-to-core mapping as

t2c, voltage frequency scaling as freq, network interrupt handling as irq, network

saturation as network, and load fluctuation as load for short.

6.3.3.1 Unexpected Interference

We run 462.libquantum from SPEC [91] as the source of unexpected interfer-

ence. We find all five applications experience significant degradation caused by the

interference, and the anomaly detection engine successfully detects all.

As shown in Figure 6.3, the baseline correlation analysis often ranks the actual

cause co-runcpu util (i.e., CPU utilization of the most CPU-intensive co-runner) very

low among many other correlating symptoms (i.e., 3rd for Web-Search, 9th for Mem-

cached, 41st for ASR, 26th for IMC and 46th for DIG). However, the causal inference

analysis is able to pinpoint the exact root cause (i.e., the p-value of the null hypoth-

esis that intrf is the root cause is much bigger than 0.01 while the p-values of other

candidate causes are close to 0).

137



(a) Memcached

(b) ASR

(c) IMC

Figure 6.4: NUMA locality.

6.3.3.2 NUMA Locality

In this experiment, we introduce the performance anomaly by using a suboptimal

NUMA allocation policy that increases the number of remote NUMA accesses. Only

three out of the five applications experience performance degradation, which the

anomaly detection engine is able to accurately detect. Web-search is not sensitive

to remote NUMA accesses, which is consistent with the observation that Web-search

has low memory bandwidth usage made by prior work [74]. The working set size of

DIG is small enough to fit entirely into LLC, because the neural network used in the

application has only 60K parameters.

As shown on left in Figure 6.4, the actual root cause appr numa (i.e., number of

remote NUMA accesses) is again ranked relatively low by the baseline correlation
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(a) Web-Search

(b) ASR

(c) IMC

(d) DIG

Figure 6.5: Thread-to-core mapping.

analysis (i.e., 53rd for Memcached, 42nd for ASR and 16th for IMC). However, our

causal inference procedure can accurately pinpoint the actual root cause as shown in

the high p-values for candidate cause numa.
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6.3.3.3 Thread-to-Core Mapping

In this experiment, we misconfigure the applications to run on less number of

cores than the number of threads they have to introduce the anomaly. Four out

of the five application as found to be sensitive to the misconfigured thread-to-core

mapping, and the anomaly detection procedure detects all of them. Memcached does

not suffer significantly from this particular thread-to-core mapping, which aligns with

the observation made in prior work [109] that it does not suffer much from context

switching unless the cores are over-utilized.

Figure 6.5 shows the results produced by the baseline correlation analysis on left,

in which the root cause appnv ctxt sw (i.e., number of involuntary context switches)

has very low rankings (i.e., lower than 50th for all applications). As shown by the

p-values of the causal inference results on right, TailSniping accurately identify the

exact root cause among many correlating symptoms.

6.3.3.4 Voltage Frequency Scaling

In this experiment, we modify the DVFS governor to ondemand, which tries to

lower the CPU frequency when its utilization is low, to introduce the performance

anomaly. We find all five applications are sensitive to this misconfiguration, and the

anomaly detection procedure successfully detects the anomaly.

As shown in Figure 6.6, although the baseline correlation analysis ranks the root

cause appfreq (i.e., the average CPU frequency of the cores that the application runs

on) relatively high, our causal inference technique does a strictly better job by accu-

rately pinpointing the exact root cause.

6.3.3.5 Network Interrupt Handling

In this experiment, we configure the IRQ-to-core mapping to route the interrupts

to the same cores as the ones that the application is running on, rather than having
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(a) Web-Search

(b) Memcached

(c) ASR

(d) IMC

(e) DIG

Figure 6.6: Voltage frequency scaling.
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(a) Memcached

(b) DIG

Figure 6.7: Network interrupt handling.

a dedicated core to handle the interrupts. Memcached and DIG are the only applica-

tions that we find to be sensitive to this misconfiguration, and the anomaly detection

procedure successfully detects that. This is because the other three applications have

much longer query latency that the relative slowdown they experience when waiting

for the interrupts to be handled is negligible.

As shown in Figure 6.7, the baseline correlation analysis only ranks the root cause

appirq (i.e., average number of interrupts handled by the cores that the application

runs on) the 22nd and the 6th, whereas the causal analysis identifies it as the root

cause as indicated by the large p-values on right.

6.3.3.6 Network Saturation

In this experiment, we reproduce this anomaly by sending network traffic to the

same server that the application is running on at a rate of 512Mbps. The anomaly

detection engine precisely detects that the only application that experiences signifi-

cant performance degradation is Memcached. This is because the other applications

have much lower network usage, thereby are not sensitive to bandwidth contention.
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(a) Memcached

Figure 6.8: Network saturation.

Figure 6.8 shows the results produced by the baseline correlation analysis on left,

and the root cause recvbytes (i.e., the number of bytes received over the network) is

only ranked as the 3rd important factor. In contrast, the causal inference procedure

strongly suggests it is the root cause of the observed anomaly by a p-value close to 1

in network.

6.3.3.7 Load Fluctuation

In this experiment, we increase the application load by 25% and find the query

latency of all five applications increases significantly, which is accurately captured by

the performance anomaly detection procedure.

As shown in Figure 6.9, the baseline correlation analysis fails to point out the

application load as the root cause for Memcached, ASR and DIG. However, our

causal inference procedure again successfully pinpoints the exact root cause for all

five applications as indicated by the p-values larger than 0.01 in load on right.

6.3.3.8 Unknown Factor

We also construct a set of experiments, in which we remove the actual root cause

from the events being monitored (e.g., removing CPU frequency-related measure-

ments in the data when reproducing a voltage frequency scaling misconfiguration), to

evaluate the effectiveness of TailSniping determining the root cause is not presented

in the monitored events. In all cases, the causal inference procedure rejects all the
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(a) Web-Search

(b) Memcached

(c) ASR

(d) IMC

(e) DIG

Figure 6.9: Load fluctuation.
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Figure 6.10: The number of servers needed in the analysis cluster in order to serve
the analysis load with less than 10% probability of incurring any wait, at various
production cluster sizes and various anomaly occurrence frequencies.

null hypotheses as the p-values are close to 0, and precisely concludes that the actual

cause is not presented in the monitored events.

6.3.4 Scalability

In this section, we evaluate the scalability of TailSniping by quantifying the

number of servers needed to perform the correlation analysis and the causal inference.

We assume the servers used to perform the analysis are the same as the machines

in the production environment as shown in Table 6.2, and each server experiences

performance anomalies independently. The system is modeled by a M/M/c queueing

system [88], where c is the number of servers in the analysis cluster.

Figure 6.10 shows the number of machines needed in the analysis cluster to perform

the analysis with less than 10% probability of incurring any waiting time, as a function

of production cluster size and the rate of performance anomaly occurrences. As we

can see from the figure, the number of machines needed in the analysis cluster is

negligible comparing to the number of machines in the production environment (i.e.,

¡ 1%). Only less than 10 machines are needed in the analysis cluster for a production

cluster that has 1,000 machines.
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Figure 6.11: The performance improvement TailSniping achieves by successfully
detecting, diagnosing and correcting the performance anomalies caused by low-level
misconfigurations on various applications. It improves the overall performance by up
to 3.5× and 1.5× on average.

6.3.5 Performance Improvement

In this section, we evaluate the performance improvement TailSniping achieves

by successfully detecting, diagnosing and correcting various performance anomalies

caused by hardware and low-level misconfigurations.

Figure 6.11 shows the performance improvement in average query latency, com-

paring to a data center that is not equipped with the proposed TailSniping system.

As demonstrated in the figure, our technique can significantly improve the overall

data center performance under various performance anomalies described by up to

3.5×, and 1.5× on average.

6.4 Summary

This Chapter presents TailSniping, a methodology for automatically detecting,

diagnosing and correcting hardware and low-level system misconfiguration issues in

data centers. We prototype TailSniping on real systems and demonstrate its effec-

tiveness using five real-world data center applications. Our system can successfully

detect, diagnose and correct a wide spectrum of performance anomalies, ranging from

thread scheduling mismanagement to NUMA allocations to IRQ-to-core mappings,
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with under 1% monitoring overhead. By accurately diagnosing and correcting the

root causes of the performance anomalies, we achieve 1.5× performance improvement

on average.
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CHAPTER VII

Conclusion

Modern data centers are built in massive scales to provide the computing resources

to power the demand of cloud computing. However, it is well-known that they have

been operated inefficiently, and their performance cannot sustain the fast growing

future demand. This dissertation investigates the inefficiency of modern data centers,

and proposes software and hardware solutions to architect future data centers for high

efficiency and low latency.

Firstly, I conduct an in-depth analysis of performance interference on real-system

SMT processors, and design SMiTe, a methodology that establishes a prediction model

to precisely predict QoS degradation for SMT co-locations. Leveraging this methodol-

ogy, I then build a cluster-level scheduler to enable SMT co-locations to improve data

center efficiency without violating QoS requirements. Secondly, I characterize the

dynamics of how resources are utilized in ten production data centers at Microsoft to

extract insights and historical patterns. Based on these insights, I design, develop and

deploy a system that makes intelligent decisions on task scheduling and data place-

ment according to historical behavior of applications to further improve data center

efficiency. Thirdly, I identify and empirically demonstrate four common pitfalls in

existing methodologies for measuring tail latency, and propose a robust experimental

methodology and a software load testing tool Treadmill to overcome these flaws to
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achieve microsecond-level precision tail latency measurements. The high precision

measurements enable us to build statistical inference procedures to understand and

attribute the source of tail latency. Lastly, I present a novel methodology that proac-

tively enacts causal inference micro-experiments to diagnose the root causes of perfor-

mance anomalies, whereas prior work using correlation analysis can only generate a

list of correlating symptoms without providing any insight about causal relationship.

With this novel methodology, I design and develop a scalable system, TailSniping,

that automatically detects, diagnoses and corrects performance anomalies to increase

the data center efficiency and reduce response latency.
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