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ABSTRACT

The development of computing systems based on the conventional von Neumann

architecture has slowed down in the past decade as complementary metal-oxide-

semiconductor (CMOS) technology scaling becomes more and more difficult. To

satisfy the ever-increasing demands in computing power, neuromorphic computing

has emerged as an attractive alternative. This dissertation focuses on developing

learning algorithm, hardware architecture, circuit components, and design methodolo-

gies for low-power neuromorphic computing that can be employed in various energy-

constrained applications.

A top-down approach is adopted in this research. Starting from the algorithm-

architecture co-design, a hardware-friendly learning algorithm is developed for spiking

neural networks (SNNs). The possibility of estimating gradients from spike timings

is explored. The learning algorithm is developed for the ease of hardware implemen-

tation, as well as the compatibility with many well-established learning techniques

developed for classic artificial neural networks (ANNs). An SNN hardware equipped

with the proposed on-chip learning algorithm is implemented in CMOS technology.

In this design, two unique features of SNNs, the event-driven computation and the in-

ferring with a progressive precision, are leveraged to reduce the energy consumption.

In addition to low-power SNN hardware, accelerators for ANNs are also presented

to accelerate the adaptive dynamic programing algorithm. An efficient and flexible

single-instruction-multiple-data architecture is proposed to exploit the inherent data-

level parallelism in the inference and learning of ANNs. In addition, the accelerator

xiii



is augmented with a virtual update technique, which helps improve the throughput

and energy efficiency remarkably. Lastly, two techniques in the architecture-circuit

level are introduced to mitigate the degraded reliability of the memory system in a

neuromorphic hardware owing to the aggressively-scaled supply voltage and integra-

tion density. The first method uses on-chip feedback to compensate for the process

variation and the second technique improves the throughput and energy efficiency of

a conventional error-correction method.

xiv



CHAPTER I

Introduction

1.1 History of Neural Networks

Even though modern processors based on the von Neumann architecture are able

to conduct logic and scientific computations at an extremely fast speed, they may

still perform poorly in many tasks that are trivial to humans, such as image recog-

nition and natural language processing, etc. With the desire to harness the power of

human brains, neural networks were developed. The research on neural networks has

continued for decades. Fig. 1.1 illustrates three basic types of neural networks. The

simplest neural network is the perceptron, where hand-crafted features are employed

as input to the perceptron. Outputs of perceptrons are binary numbers obtained

through hard thresholding. Therefore, the perceptron can be conveniently used for

classification problems where inputs are linearly separable. A more sophisticated type

of neural network is sometimes called the multilayer perceptron (MLP). Nevertheless,

the “perceptrons” in an MLP are different from simple perceptrons. In an MLP, a

non-linear activation function is associated with each neuron. Popular choices for the

non-linear activation function are sigmoid function, hyperbolic tangent function, and

the rectified linear unit. The output of each neuron is a continuous variable instead of

a binary number in perceptrons. The MLP is widely adopted in the machine-learning

community because this type of neural network is powerful in solving many real-life
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Figure 1.1: Illustration of the neural networks inspired by biological neural networks

problems and is also suitable for being implemented on general-purpose processors.

The MLP is so popular that the word artificial neural network (ANN) is often used

to specify it exclusively, even though ANN should have referred to any other neural

networks besides biological neural networks. In this dissertation, we adopt this con-

vention of referring an MLP as an ANN. A more complicated type of neural network

is called a spiking neural network (SNN). Compared to the previous two types of

neural networks, an SNN resembles more of a biological neural network in the sense

that spikes are used to carry information. It is generally believed that SNNs are more

powerful and more advanced than ANNs because the dynamics of an SNN is much

more complicated.

2
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Figure 1.2: Illustration of one layer of an ANN.

1.2 Neural Networks in Software

1.2.1 ANN

Tremendous progress has been achieved in the late 1980s and the early 1990s for

neural networks built in the form of software. One technique that truly boosted the

development of ANNs was backpropagation [1]. It was shown that backpropagation is

very effective in training multilayer neural networks. With the wide use of backprop-

agation, neural networks have been deployed to various real-life applications such as

image recognition [2, 3], control[4, 5], prediction[6, 7], and so on.

In an ANN, information is encoded as real numbers. Fig. 1.2 illustrates one layer

of an ANN. In the figure, the neural network consists of neurons that are represented

by circles and synapses that are represented by wires. For each layer of a feedforward

ANN, we call the neurons located at the input side of the synapse presynaptic neu-

rons and the neurons located at the output side of the synapse postsynaptic neurons.

During the process of evaluating the neural network, the activation levels from the

presynaptic neurons xli and xlj are multiplied with the synaptic weights wlik and wljk,

respectively, where i and j indicate the index of the neuron and l specifies the index

of the layer at which the neuron is located. The obtained products and the bias

term bl+1
k are added together and the sum is passed through an activation function in

order to produce xl+1
k , the activation level of the postsynaptic neuron. The compu-

tations associated with ANNs can be expressed as matrix operations, which can be

3



conveniently implemented on conventional processors.

In the late 1990s, it was found that other machine-learning tools such as support

vector machines and even much simpler linear classifiers were able to achieve better

or comparable performances in classification tasks, which were the most important

applications of neural networks at that time. It was observed that the training of

neural networks was often stuck at local minima, failing to converge to the true

minimum point. Furthermore, it was generally believed that one hidden layer is

enough for neural networks, as networks with more than one hidden layer are harder

to train. Since then, research interests in neural networks started decaying.

The interest in neural networks was revived around 2006 as a few researchers

demonstrated that a deep feedforward neural network was able to achieve outstanding

classification accuracies with a proper unsupervised pre-training [8, 9]. Despite its

success, the deep neural network was not fully recognized by the computer-vision and

machine-learning community until astonishing results were achieved by the AlexNet,

a deep convolutional neural network (CNN), in 2012 [10]. Since then, deep learning

has emerged as the mainstream method in various tasks such as image recognition,

audio recognition, etc.

1.2.2 SNN

SNNs did not receive much attention compared to the widely-used ANNs. Inter-

ests in SNNs mainly come from the neuroscience community [11, 12, 13]. Despite

being less popular, it is generally believed that SNNs have more powerful computa-

tional capabilities compared to their ANN counterparts, thanks to the spatiotemporal

patterns that are used to carry information in SNNs [14, 15, 16]. Even though SNNs

are potentially more advanced, there are difficulties in harnessing the power of SNNs.

The dynamics of an SNN is much more complicated compared to an ANN, making

the purely analytical approach intractable. Furthermore, the event-triggered nature
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of SNNs leads to an inefficient implementation on a conventional processor. This

is one of the main reasons that SNNs are not as popular as ANNs in the artificial-

intelligence community.

Similar to an ANN, an SNN also consists of neurons and synapses. In terms of the

network topology and connections, SNNs and ANNs have much in common, as can

be seen from Fig. 1.1. However, in an SNN, information is encoded on spikes instead

of the real numbers used in an ANN. Even though the neural spikes observed in a

biological neural network have a complex shape of excitatory postsynaptic potential,

spikes in an SNN are often simplified to a short pulse or even the Dirac delta function

for the ease of implementation and analysis. In addition, the dynamics of a spiking

neuron can be much more complicated compared to that of an artificial neuron.

Popular models for spiking neurons are the Hodgkin-Huxley model [17], the Izhikevich

model [13], and the leaky integrate-and-fire model [18].

1.3 Need for Low-Power Neuromorphic Hardware

The development of hardware-based neural networks experienced similar phases

that the software neural nework did. There was a period of time (late 1980s to early

1990s) in which many neuromorphic chips and hardware systems were introduced

[19, 20, 21, 22]. Later on, after finding out that it is hard to improve the performance

of neural networks, researchers in the hardware community also gradually steered

their research direction toward the conventional computing based on von Neumann

architecture as the CMOS technology kept advancing. Around 2006 when the break-

through was made in the field of the deep learning, the research interests in hardware

implementation of neural networks also revived. The possibilities of deploying neuro-

morphic hardware in real-life applications were explored after the scaling of transistors

was slowed down.

Electronic computing devices have evolved for several decades, as shown in Fig.
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Figure 1.3: History of the development of computing devices

1.3. The sizes of the circles in the figure represent the relative sizes of the computing

devices. Such an evolution is best described by Bell’s law [23]. Two trends can be

observed from Fig. 1.3. The first trend is that computing devices are becoming

smaller and cheaper. Indeed, partially driven by Moore’s law, the size and the price

of the consumer electronics are decreasing continuously. In addition, many of the

electronics in the recent generations are portable and, therefore, are powered by

battery. As a consequence, energy efficiency has become more and more important

for these modern computing devices. The second trend is that the data that the

computing devices take are becoming less and less formatted. In the 1980s, work

stations only took well-written computing scripts as input, yet nowadays there are

many sensors (motion, temperature, pressure, etc.) in our smart phones and wearable

devices that produce various forms of signals. Clearly, we are experiencing a transition

from the conventional rule-based computing to the new data-driven computing.

With more and more low-power sensor devices and platforms being deployed in

our everyday life, an enormous amount of data are collected continuously from these
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ubiquitous sensors. One dilemma we often encounter is that despite the amount of

data we gather, we still lack the capability to fully exploit the collected information.

There is a strong need to provide these sensor platforms with built-in intelligence

so that they can sense, organize, and utilize the data more wisely. Fortunately,

deep learning has emerged as a powerful tool for solving this problem [9, 24, 25, 26,

27, 28, 29]. Despite its successes in small-scale tasks, a deep neural network can

only be employed in a real-life application if hundreds of millions of synapses can

be integrated in the system. Training of such a huge neural network usually takes

weeks and excessive power consumption even when highly optimized hardware such as

graphics processing units (GPUs) are employed and matrix solving are being largely

parallelized [25]. In the near future, we will have more and more ultra-low-power

sensor systems for health and environment monitoring [30, 31, 32], microrobots that

chiefly rely on energy scavenging from the environment [33, 34, 35, 36], and over ten

billion internet-of-things (IoT) devices [37]. For all of these applications where power

consumption is of utmost importance, neither the power-hungry GPU nor sending

raw data to the cloud for further analysis is a viable option. To tackle this difficulty,

many efforts from both industry and academia have been made in order to develop

low-power deep learning accelerators.

Over the past decade, an enormous amount of research effort has been made to

build specialized neuromorphic computing hardware for real-life applications, while

the development of the conventional von Neumann architecture-based computing ap-

proach has slowed down. In recent years, the research focus has gradually shifted from

traditional rate-based ANNs, which were popular choices of hardware implementa-

tions in the 1990s, to SNNs. This trend is attributed to two unique advantages that

SNNs have. The event-triggered nature of an SNN can lead to a very power-efficient

computation. In addition, an SNN has better scalability because an address-event

representation (AER) can conveniently interconnect sub-SNNs in a large network
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[38, 39, 40]. For example, the TrueNorth from IBM [38] is a hardware spiking neu-

ral network that contains 1 million spiking neurons. It consists of 4096 cores and

consumes merely 65 mW while running a real-time multi-object detection and clas-

sification task. Despite these advantages that an SNN provides, SNNs implemented

on a general-purpose processor are not able to demonstrate superiority compared to

ANNs owing to the lack of support of the event-based computation. Therefore, to

better exploit the aforementioned advantages of an SNN, many specialized hardware

systems have been built, such as the TrueNorth from IBM [38], CAVIAR in Europe

[41], and neuromorphic chips from HRL [42].

1.4 Challenges

Building and utilizing specialized neuromorphic hardware is still in its early stage,

especially for spike-based neural networks. There are many difficulties that need to

be addressed before the hardware can become truly useful.

1.4.1 Challenges from Learning

The first challenge we are facing is how to properly train a spike-based neural

network. It is the learning capability that empowers the neuromorphic system with

the built-in intelligence. Unfortunately, in contrast to the ANN, which can be trained

efficiently with a linearized model thanks to its relatively simple mathematic model,

the complicated dynamics of an SNN impedes its learning.

Over the past decades, there were numerous efforts from both the artificial-

intelligence community and the neuroscience community to develop learning algo-

rithms for SNNs. Spike-timing-dependent plasticity (STDP), which was first observed

in real biological experiments, was proposed as an empirically successful learning rule

used for unsupervised learning [43, 44, 45, 46]. There are also various algorithms for

supervised learning in SNNs, such as SpikeProp [47], ReSuMe [48], tempotron learn-
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ing rule [49, 16, 14], and PSD rule [15, 50], yet they all have their own limitations,

such as not being applicable to multilayer neural networks, restricting each neuron

to fire once, etc. Therefore, in order to build spike-based intelligent computing de-

vices, effective learning algorithms that are suitable for hardware implementation are

needed.

1.4.2 Challenges from Memory

The second issue that needs to be solved is the demand for better memory in neu-

romorphic systems. Memory is the most essential building block for neural network

hardware. It often consumes the most area and energy in a neuromorphic hardware.

Therefore, it is desired to improve the energy efficiency and the density of the memory

used in a neural network accelerator. One effective approach to lowering the power

consumption of the chip is to reduce the supply voltage, as it has a quadratic effect

on power consumption. Doing so, however, hurts the reliability of the memory sig-

nificantly [51, 52, 53]. In addition to lowering the power consumption, the gigantic

memory requirement forces the traditional memory technology to scale aggressively,

which, in turn, also jeopardizes the reliability [54].

Clearly, both the requirements of lower power and higher density lead to less and

less robust memory. unreliable memory has become the major threat to many low-

power devices. Therefore, the reliability issue of the memory needs to be carefully

addressed in this dissertation.

1.5 Dissertation Organization

The main objective of this dissertation is to advance low-power neuromorphic

computing through innovations straddling across algorithm, architectures, and cir-

cuits. Chapter II - Chapter IV discuss the algorithm-architecture co-design that aims

at building efficient learning algorithm and hardware architecture for next-generation

9



machine-learning accelerators. The challenge of lacking effective learning algorithm

suitable for hardware implementation is tackled in these chapters. Chapter V stud-

ies architecture-circuit co-optimization in order to reduce power consumption and

increase integration density of the neuromorphic system without sacrificing the reli-

ability. This chapter strives to address the challenge from unreliable memory.

Chapter II introduces a learning algorithm that can be employed for multilayer

spiking neural networks. The learning algorithm is formulated from the perspective

of a circuit designer with the objective of providing an efficient hardware implemen-

tation. With the algorithm proposed in Chapter II, an efficient hardware architecture

is proposed in Chapter III. The architecture is based on the event-triggered computa-

tional model, which is promising in saving energy in computing. Design methodologies

for implementing the learning algorithm are also discussed.

Chapter IV presents accelerator designs for computing with conventional ANNs

in order to leverage its advantage in high-precision computing. An efficient hardware

architecture as well as adaptions in the learning algorithm are presented in order to

improve the energy efficiency of the system.

Chapter V addresses the concern of the reliability for both volatile and non-volatile

memory. Two methods are proposed in this chapter. The first method deals with the

on-chip volatile static random-access memory (SRAM). The possibility of counter-

acting the variation through feedback compensation is explored. The second method

strives to improve the error-correction algorithm used in a non-volatile memory, e.g.

flash. Novel algorithms and architectures are presented to improve the energy effi-

ciency of the error-correction circuit.

Chapter VI concludes this dissertation and provide outlooks for possible future

work.
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CHAPTER II

On-Line Learning for Hardware-Based Multilayer

Spiking Neural Networks

2.1 Introduction

Many hardware implementations for spike-based neural networks have been demon-

strated over the past few years with the objective of leveraging the energy efficiency

and scalability of the SNNs, as discussed in Chapter I. However, many of these hard-

ware do not have the capability to conduct on-chip learning. The goal of this chapter

is to address the issue of lacking an efficient and effective learning algorithm that is

suitable for SNN hardware.

One popular way to utilize the SNN hardware is training an ANN counterpart

off-line using conventional learning algorithms, converting the well-trained ANN into

an SNN, and then downloading the learned weights into the specialized hardware

[55, 56, 57, 58]. However, such a training method fails to provide the on-line learning

capability, which is an expected feature for many specialized neuromorphic hardware

that target future smart IoT devices.

Over the past few decades, there have been many efforts from both the artificial-

intelligence community and the neuroscience community to develop learning algo-

rithms for SNNs. Spike-timing-dependent plasticity (STDP), which was first observed
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in real biological experiments, was proposed as an empirically successful learning rule

that could be used for unsupervised learning [43, 44, 45, 46]. In a typical STDP

protocol, the synaptic weight is updated according to the relative order of spikes and

the difference between the presynaptic and postsynaptic spike timings. Unsupervised

learning is useful in discovering the underlying structure of the data, yet it is not

as powerful as supervised learning in many real-life applications, at least at the cur-

rent stage. There also exist various algorithms for supervised learning in SNNs, such

as SpikeProp [47], ReSuMe [48], tempotron learning rule [49, 16, 14], and PSD rule

[15, 50]. SpikeProp is one of the earliest proposed methods for supervised learning

in SNNs and it is analogous to the backpropagation employed in conventional ANNs.

The tempotron rule relies on a more biologically plausible mechanism. Both of these

methods are based on the gradient descent method and they both limit each neuron

in the SNN to fire only once, making them well-suited for classification applications

where the output is a one-hot code. However, it is not convenient to employ such

a learning algorithm for a softmax classifier or a universal function approximator.

ReSuMe and the PSD rule both originate from the Widrow-Hoff rule. They have

the advantage that they can learn precise spatiotemporal patterns of desired spikes,

which makes them attractive for systems in which the information is mainly modu-

lated on the timings of the spikes. However, how to apply these learning rules to a

multilayer neural network is not obvious. This limitation impedes these algorithms

from being employed in a deep neural network, which has achieved many astonishing

results recently [9, 10, 8]. In addition, all of these learning rules aim at learning

precise firing timings of neurons. It is, however, still debatable what the best way is

to encode information using spikes. Therefore, learning exact spike timing might not

be the optimum and the most efficient method for many real-life applications.

In this chapter, we take a different approach [59]. We do not attempt to learn

the precise spike timings of neurons. Rather, learning rules that aim to achieve de-
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sired firing densities are developed. Nevertheless, the spike timings of neurons are

employed to estimate the gradient components in the learning process. Furthermore,

how to propagate the errors from the output neurons to each synapse is studied. The

proposed method leads to a learning process that is similar to a conventional back-

propagation. The gradients estimated from spike timings are exploited to conduct

gradient descent learning. By developing such a learning rule, we can take advantage

of the power efficiency and scalability of a specialized SNN hardware. In addition,

the developed learning algorithm stays relatively compatible with the learning in a

conventional ANN. Therefore, many theories and techniques developed for the well-

established ANN-based learning, such as momentum and mini-batch, can be applied

to the proposed learning algorithm. Despite the similarities, many unique features

associated with the proposed learning algorithm provide new opportunities. For ex-

ample, in contrast to the layer-by-layer backpropagation in a conventional ANN, a

direct backpropagation in SNN is possible by properly utilizing the spike timings of

neurons, thus reducing the computational effort and improving the backpropagation

speed. Another example is that the trained SNN can infer with a progressive preci-

sion, thus accelerating the inference process and reducing the energy consumption of

the SNN hardware.

2.2 Estimating Gradients from Spike Timings

The following notations are used throughout this chapter.

1) A discrete-time stochastic process is denoted with an uppercase symbol and is

indexed by n, for example, X[n].

2) A deterministic discrete-time signal is denoted by a lowercase symbol and is

indexed by n, for example, x[n].

3) A column vector is denoted by a bold symbol such as x, and its elements are

denoted by xi, where i = 1, 2, · · · .
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Figure 2.1: Illustration of a multilayer neural network. A neuron located at the lth

layer is denoted as xli, where i represents the index of that neuron.

4) The differentiation of a function f with respect to a vector is an element-wise

operation. For example, ∂f/∂x = [∂f/∂x1, ∂f/∂x2, · · · ]T .

5) The expectation of a random variable is denoted by µ, and the arithmetic

average of signal x[n] over a finite duration is denoted by x.

6) Pr(·) and E[·] are used to represent the probability and expectation, respec-

tively.

Fig. 2.1 shows a multilayer SNN with the naming convention used in this chapter.

In this figure, a neuron that is located at the lth layer is denoted as xli, where i

represents the index of that neuron. There are, in total, Nl such neurons in the lth

layer. For a pair of neurons, a presynaptic neuron xli and a postsynaptic neuron xl+1
j ,

their output spike trains are denoted as

xli[n] =
∑
m

δ
[
n− nli,m

]
(2.1)

xl+1
j [n] =

∑
m

δ
[
n− nl+1

j,m

]
(2.2)

where δ[n] is the Kronecker delta function and nli,m and nl+1
j,m are spike timings for the
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Figure 2.2: Illustration of the two regions divided by the spike timing of a presynap-
tic neuron. The causal and anti-causal regions are defined according to the causal
relationship between presynaptic and postsynaptic spikes.

mth spikes from neuron xli and neuron xl+1
j , respectively. As our primary interests are

in training hardware-based SNNs, we restrict ourselves to discrete-time systems and

the usage of a constant excitatory postsynaptic potential. This way of representing

spikes is very popular in the hardware realization of SNNs, considering its ease of

implementation and routing.

It was shown in [60] that a presynaptic spike partitions the time axis into two

regions: a causal region and an anti-causal region, as shown in Fig. 2.2. Consequently,

we can define a time sequence and its sample mean as

stdplij[n] = xli[n− T ]
(
1− xli[n− T − 1]

) (
xl+1
j [n]− xl+1

j [n− 1]
)

(2.3)

stdplij =

DL∑
n=T+1

stdplij[n]/(DL − T ) (2.4)

where T is the time delay associated with the neuron model used and DL is the learn-

ing duration, which serves as a design parameter. The quantity stdplij[n] measures

the causality between the presynaptic and postsynaptic spikes, which is similar to the
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quantity measured in an STDP protocol.

We consider a class of stochastic neuron model with the dynamics of

X l+1
j [n] = H

(
Nl∑
i=1

wlijX
l
i [n− T ] + SL+1

j [n− T ]

)
(2.5)

For analysis purposes, we treat spikes as stochastic processes. The spike trains xli[n]

and xl+1
j [n] shown in (2.1) and (2.2) are particular realizations of X l

i [n] and X l+1
j [n]

in (2.5). H(·) is the Heaviside function. Sl+1
j [n] is a random process that models

the internal state of neuron xl+1
j . We are interested in finding out how the mean

firing rate of neuron xl+1
j is related to the mean firing rate of its input neuron xli.

Before embarking on deriving this relationship, let us assume that the following two

conditions hold.

C1) X l
i [n] and X l

k[n] are independent for k = 1, 2, · · · , Nl, and k 6= i.

C2) X l
i [n] and X l+1

j [n] are strictly stationary processes, and CXl
i ,X

l+1
j

(n,m) = 0

for n 6= m− T , where CX,Y (·) stands for the cross-covariance function.

We first show that under conditions C1) and C2), the mean firing rate of neuron

xl+1
j , i.e., µl+1

j , is a function of the mean firing rates of its input spikes, µl, or mathe-

matically, µl+1
j = g(µl). In addition, we show that g(·) is differentiable with respect

to µl, and its mth derivative ∂g(m)/∂µl = 0 for m > 1. Here, 0 denotes a zero vector

in which all elements are zero. Note that the time index n is dropped for the sake of

a cleaner notation because we consider strictly stationary processes.

The mean firing rate of neuron xl+1
j can be expressed as

µl+1
j = Pr(X l+1

j = 1)

=
1∑

bl1=0

· · ·
1∑

blNl
=0

{
Pr(X l+1

j = 1|X l
1 = bl1, · · · , X l

Nl
= blNl

)

Nl∏
i=1

[
µli(2b

l
i − 1)− bli + 1

]}
= g(µl) (2.6)
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where bli is a binary auxiliary variable for the convenience of derivation. It can be

shown that the first derivative of g(µl) with respect to µli is

∂g

∂µli
=

1∑
bl1=0

· · ·
1∑

blNl
=0

[
Pr(X l+1

j = 1|X l
1 = bl1, · · · , X l

Nl
= blNl

)

·

(
Nl∏

k=1,k 6=i

[
µli(2b

l
k − 1)− blk + 1

])
(2bli − 1)

]
(2.7)

Clearly, ∂g/∂µli is not a function of µli, which implies that ∂g(m)/∂µl = 0 for m > 1.

According to the law of large numbers, we have

E
[
stdplij

]
= Pr(X l+1

j = 1, X l
i = 1, X l

i

′
= 0)− Pr(X l+1

j = 1, X l
i = 0, X l

i

′
= 1)

=
[
Pr(X l+1

j = 1|X l
i = 1)− Pr(X l+1

j = 1|X l
i = 0)

]
µli(1− µli) (2.8)

In (2.8), X l
i denotes the random variable on which X

(l+1)
j depends, whereas X l

i
′

denotes the random variable of which X
(l+1)
j is independent. From (2.8), through

expanding g(µl) in a Taylor series and using the fact that ∂g(m)/∂µl = 0 for m > 1,

we have

E
[
stdplij

]
µli(1− µli)

= Pr(X l+1
j = 1|X l

i = 1)− Pr(X l+1
j = 1|X l

i = 0)

= g(µl) +
∂g

∂µli
(1− µli)− g(µl)− ∂g

∂µli
(−µli)

=
∂µl+1

j

∂µli
(2.9)

The derivation of (2.9) is based on assumption C1) and C2). We then examine

the validity of (2.9) qualitatively when C1) and C2) do not hold rigorously. C1)

assumes that the spike timings for different input neurons are independent. Even

though the density of each neuron might be highly correlated, the spike timing of

an individual neuron can be largely independent. The mild assumption that the
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spike timing of each neuron is somewhat uncorrelated holds for most SNNs. C2)

implies that Sl+1
j [n] is also strictly stationary and that it should be independent of

X l
i and X l+1

j . Rigorously, Sl+1
j [n] depends on all X l

i [m] in which m < n− T for any

neuron model with a memory, such as the popular leaky integrate-and-fire model. In

practice, however, the dependency of Sl+1
j [n] on the firing history of a presynaptic

neuron is significantly diluted by the firing histories of other independent presynaptic

neurons as well as the modulus or noisy reset operations that are associated with the

postsynaptic neuron. In addition, the dependency can be weakened to an acceptable

level through proper noise injection. This arrangement is illustrated in Section 2.3. A

natural extension of (2.9) is to define the time sequence stdplij[n] in such a way that

more samples can be included for each estimation. This approach is illustrated in

(2.10). In the equation, WINSTDP is a design parameter that is used to specify the

window size of the summation. This method is inspired by the biological STDP, in

which an exponential integration window is employed. The purpose of the parameter

WINSTDP is to include the effects of delayed perturbated outputs, which might be

caused by the memory of Sl+1
j [n].

stdplij[n] = xli[n− T ]
(
1− xli[n− T − 1]

)
·

(
WINSTDP∑

m=1

xl+1
j [n+m− 1]−

WINSTDP∑
m=1

xl+1
j [n−m]

)
(2.10)

Intuitively, (2.9) indicates that
∂µl+1

j

∂µli
can be estimated by observing how the post-

synaptic neuron alters its statistical behavior in response to an input spike that serves

as a small perturbation to the network. Even though perturbations from various

presynaptic neurons might cause the same postsynaptic neuron to spike, contribu-

tions from each presynaptic neuron can be evaluated simultaneously as long as the

spike timings of each of the presynaptic neurons are reasonably uncorrelated. For

example, at any given time k, as shown in Fig. 2.2, neuron xl+1
j has equal probability
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to fire at both regions when the input spike from neuron xli is absent. When the

input spike is present, the spike from neuron xl+1
j is more likely to occur at one side

of k depending on whether the synapse is excitatory or inhibitory. The contribu-

tions of other input neurons appear to be noise, and they can be easily filtered out

if they are not correlated. To further decorrelate the spike timings of each neuron

in an SNN, a stochastic neuron can be employed. More conveniently, a technique

called quantization noise injection, which was introduced in [60], can be utilized.

Therefore, (2.9) can be readily employed in a large network, and individual gradients

can be estimated simultaneously. This approach has the same spirit as simultaneous

perturbation stochastic approximation (SPSA) [61].

Next, we assume that (2.11) can approximately describe the input-output rela-

tionship in the chosen neuron model, where f l+1
j (·) is a differentiable function that

depends on the dynamics of the spiking neuron model that is used. The actual form

of f l+1
j (·) is not important in our derivation because it serves as only an intermediate

quantity that is substituted eventually. Conceptually, f l+1
j (·) can be obtained, for

example, through function fitting.

µl+1
j ≈ f l+1

j

(∑
i

wlijµ
l
i

)
(2.11)

Then, with (2.9) and (2.11), we arrive at

∂µl+1
j

∂wlij
= µlif

l+1
j

′
(∑

i

wlijµ
l
i

)
=

E
[
stdplij

]
wlij(1− µli)

(2.12)

Equation (2.12) resembles the STDP learning rule in the literature. However, in

contrast to a conventional STDP rule, a denominator term is included. Mathemat-

ically speaking, including the weight gives at least the sign information. If negative

weights are allowed, then it is necessary for a term to change the sign in (2.12), which

19



would otherwise induce a wrong direction for the gradient descent. In addition, the

introduction of the weight denominator ensures an upper bound on wlij, which serves

a similar purpose as the weight-decay technique that is widely used in ANNs [62].

Equations (2.9) and (2.12) provide theoretical guidelines to estimate the gradi-

ents in an SNN in order to conduct gradient descent learning. In practice, we use

stdplij/
[
xli(1− xli)

]
and stdplij/

[
wij(1− xli)

]
to approximate ∂µl+1

j /∂µli and ∂µl+1
j /∂wlij,

where xli =
∑DL

n=T+1x
l
i[n]/(DL − T )

To feature gradient descent learning, we need to propagate errors at the output

neurons back to each synapse in the neural network. This process can be achieved

through a chain rule that is similar to that used in a conventional ANN, as shown in

(2.13).

∂µok
∂wlij

=
∂µok
∂µl+1

j

·
∂µl+1

j

∂wlij
(2.13)

In (2.13), the term ∂µl+1
j /∂wlij can be computed according to (2.12), whereas the

term ∂µok/∂µ
l+1
j can be obtained by propagating the gradient layer by layer through

∂µok
∂µl+1

j

=
k∑

io=k

No−2∑
io−1=1

Nl+2∑
il+2=1

j∑
il+1=j

o−1∏
p=l+1

∂µp+1
ip+1

∂µpip
. (2.14)

This process is similar to the backpropagation used in a conventional ANN.

Alternatively, a direct propagation method shown in (2.15) is proposed to estimate

the gradient.

∂µok
∂µl+1

j

=
E
[
cstdpl+1

jk

]
µl+1
j (1− µl+1

j )
(2.15)

In (2.15), cstdpl+1
jk [n] is a quantity that is similar to the one defined in (2.3). The

only difference is that cstdpl+1
jk measures the relationship between the (l + 1)th layer

and the output layer. The delay across multiple layers must be considered in this case.

Here, (2.15) is an extension of (2.9) in the sense that instead of using perturbation to

estimate the gradient of the output of a neuron with respect to its input, we estimate
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the gradient across a network of neurons by observing how the input spike affects the

output firing probability.

To verify (2.12)-(2.15), we conduct simulations on a two-hidden-layer neural net-

work. The operations of the neural network largely follow the conventions used in

TrueNorth [38] because it is the most recently developed, powerful general-purpose

neuromorphic hardware. In [38], spikes from neurons can occur only synchronously

with a time unit called a tick. This setting guarantees a one-to-one mapping between

software and hardware at a tick level, albeit the internal evaluations of the neuron

states are asynchronous to save energy. In the remainder of this chapter, a tick is used

as the minimum temporal resolution as well as the unit for time-related quantities,

e.g., WINSTDP .

The configuration of the neural network is 80-30-100-1, where each number repre-

sents the number of neurons at each layer, from the input layer to the output layer.

A modified integrate-and-fire neuron model, shown in (2.16) and (2.17), is used.

xl+1
j [n] =


0, V l+1

j [n] < thl+1
j

1, V l+1
j [n] ≥ thl+1

j

(2.16)

V l+1
j [n] = max

(
0, V l+1

j [n− 1] +
∑
i

wlijx
l
i[n− 1]− Ll+1

j − xl+1
j [n− 1] · thl+1

j

)
(2.17)

In the model, xl+1
j [n] and V l+1

j [n] are the output and membrane potential of a

neuron xl+1
j at tick n, thl+1

j is the threshold to fire, and Ll+1
j represents the leakage.

It has been shown in [60] that such a neuron model behaves similarly to a first-

order Σ − ∆ modulator, and the quantization noise associated with this model is

helpful in achieving less correlated spike timings. In other words, we can randomize

the spike timing of each neuron without explicitly using random number generators.

In addition, this modified model is one of the models employed in the TrueNorth
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Figure 2.3: Comparison of the gradients obtained from numerical simulations with the
gradients obtained from STDP for (a) the first-layer synapses w1

ij, (b) the second-layer
synapses w2

ij, and (c) the third-layer synapses w3
ij

chips [63]. Therefore, we utilize this model in this chapter unless otherwise stated.

Nevertheless, our proposed algorithm is not restricted to this modified model. For

example, it can also be applied to a conventional leaky integrate-and-fire (LIF) model

if noise is properly injected. This approach is demonstrated in Section 2.3. In our

simulations, input neurons in the network are injected with excitatory currents at

every tick. The injected currents are randomly chosen at the beginning of learning

and are fixed throughout the learning. More information on the input encoding is

detailed in Section 2.3.

Fig. 2.3 shows the scatter charts that compare the gradients estimated from

the spike timing and gradients calculated numerically. Ten sets of experiments are

conducted and 100 weights from each layer are randomly chosen for each set of ex-

periments. A thousand data points, in total, are collected in the figure for each layer.

The numerical results shown in Fig. 2.3 are obtained with the finite-difference (FD)

method. In other words, a small perturbation is applied to the weight and the gradient

is obtained by dividing the change at the output by the amount of perturbation that
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is applied. Owing to the complicated dynamics of the SNN and the limited computa-

tional resources, the gradient obtained from the FD method is not the true gradient

but is instead a noisy version of the true gradient. These gradients asymptotically

approach the true gradient as the number of evaluation ticks increases. Nevertheless,

a comparison with such noisy gradients can provide some useful insights into how

well the spike timing can be used for estimating gradients. As shown in (2.12), when

the weight is small, the quantization noise in the density of the spike might induce a

large estimated gradient variation. Therefore, a limiting operation is needed to limit

the maximum and minimum gradients obtained from the spike timing information.

Detailed information for this clamping is shown in Table 2.1.

The estimated gradients and the gradients obtained numerically match well in Fig.

2.3, which demonstrates the effectiveness of the proposed algorithm. It is observed

in Fig. 2.3(c) that the correlation for w3
ij is comparatively low. It is found in the

simulations that few negative outliers in Fig. 2.3(c) are responsible for this low

correlation. The reason is that the clamping values for all layers in Table 2.1 are

chosen symmetrically for convenience, yet the gradients associated with the last-layer

weight are actually non-negative. In practice, this non-negative characteristic can be

exploited during learning.

Table 2.1: Information of limiting operations used to obtain data in Fig. 2.3

Layer index Maximum/minimum gradient allowed # of outliers

1 ±0.05 1
2 ±0.05 4
3 ±0.5 16

To evaluate the importance of the parameter WINSTDP , which is used in (2.10),

simulations are conducted to examine the results obtained with different window

sizes. Fig. 2.4(a) shows the correlations obtained between the estimated gradients

and the numerical gradients. As shown in the figure, estimating with different window
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Figure 2.4: Correlations between the estimated gradients and the gradients obtained
from the FD numerical method for (a) different window size WINSTDP and (b)
different evaluation duration DL. The results obtained for all three layers of synaptic
weights (w1

ij, w
2
ij, and w3

ij) are compared. Two different backpropagation methods
(layer-by-layer and direct) are also compared.

sizes results in similar accuracies. Preliminary numerical studies on the effect of the

window size on learning also show that changing the window size does not yield a

noticeable difference. Therefore, in this work, we focus on the case with a window

size of 1.

Another set of simulations is conducted to study how the evaluation duration af-

fects the accuracy of the estimated gradients. As shown in Fig. 2.4(b), a general trend

is that the longer the evaluation duration, the more accurate the estimated gradients.

This relationship is consistent with other stochastic approximation methods because

any possible unbiased noise can be filtered out through averaging.

With gradients estimated through spike timings, a stochastic gradient descent

method can be readily employed for learning. Following the convention in a standard

backpropagation algorithm, we define an error function as

E =
1

2

No∑
k=1

(eok)
2 (2.18)

where eok = xok − tok is the error at each output neuron. Here, tok is the target mean
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firing rate of neuron xok.

The weight update ∆wlij can be calculated as

∆wlij = −α ·
No∑
k=1

eok ·
∂µok
∂wlij

(2.19)

where α is the learning rate and the term ∂µok/∂w
l
ij can be obtained from (2.13).

Updating weights according to (2.19) leads to a reduction in the error function toward

the gradient-decent direction.

It is worth noting that the proposed learning algorithm can be readily extended

to other popular learning schemes, such as unsupervised learning and reinforcement

learning, when the target is to minimize some forms of cost functions, even though

this chapter focuses mainly on supervised learning, which has achieved great success

in real-life applications.

2.3 Simulation Results

In Section 2.2, we demonstrate that spike timing information can be readily em-

ployed for estimating the gradient components needed in a gradient descent algorithm.

In this section, we apply the proposed learning algorithm to two neural networks. The

sizes of the neural networks are chosen according to two examples demonstrated in [2]

in such a way that a direct comparison can be made. The MNIST benchmark task is

employed to examine the proposed algorithm. The MNIST dataset contains, in total,

70000 28 × 28 images of handwritten digits. The number of images in the training

and testing sets are 60000 and 10000, respectively. The dataset is categorized into

10 classes, which correspond to ten integers (0 - 9), and each image has an associ-

ated label. Unless otherwise stated, for all of the training examples in this section,

we use a training set that contains the first 500 images from the standard MNIST

training set to accelerate the simulation. For testing, we use all of the 10000 images
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from the standard MNIST testing set. It should be noted that the results obtained

with such an experiment setting are only for verifying the proposed techniques and

exploring the design spaces. Benchmark performance obtained with the full training

set is reported in Section 2.3.3.

To feed the double-precision real values, which are used to encode the grayscale

images, into the SNN, proper encoding mechanisms are needed. We use a pulse-

density modulation scheme, which is a rate-based encoding method. Real values

from the images in the MNIST dataset are injected into the input-layer neurons

as incremental membrane potentials at every tick. Combined with the modified LIF

model, this encoding scheme behaves similarly to a Σ−∆ modulator, which is capable

of converting high-resolution data to low-resolution bit streams through pulse density

modulation. The firing rates of the input-layer neurons are then proportional to the

intensities of the corresponding pixels. Such an encoding method leads to a simple

implementation in hardware while achieving the desired rate encoding.

For both neural networks, 10 output neurons, which correspond to 10 digits, are

used. The target of learning is that when a digit is applied to the neural network, the

output neuron that corresponds to the correct digit should fire with a high density of

µH , whereas all of the other neurons fire with a lower density of µL. The firing density

is measured through xok. To test the trained neural network, a digit is presented to

the network. After an inference duration of DI , the output neuron with the highest

firing density xok is chosen as the winning neuron, and its corresponding digit is chosen

as the classification result. All the results presented in this section are obtained from

10 independent runs. Error bars that correspond to the 95% confidence interval are

plotted together with the simulation results.
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2.3.1 One-Hidden-Layer Neural Network

As most useful feedforward neural networks have at least one hidden layer, the

first example that we consider is a one-hidden-layer neural network with 784 input

neurons, 300 hidden-layer neurons, and 10 output neurons. Nevertheless, neural net-

works with only two layers are also useful in some cases. For example, a two-layer

neural network with a special input encoding similar to the radial basis function has

been demonstrated in [60]. Because learning in a two-layer neural network is essen-

tially a sub-problem of learning in a multilayer (more than two) network, we do not

study them in this chapter separately. Nevertheless, most conclusions and techniques

developed in this section can be readily applied to two-layer neural networks as well.

As demonstrated in [60], the gradients estimated from STDP started saturating

and diverging from the actual gradients as the density of spike trains reaches a certain

limit. This saturation occurs because it is difficult to tell whether a postsynaptic spike

is a causal spike or an anti-causal spike when the presynaptic spike train is too dense.

To tackle this issue, it was suggested in [60] that a clock that is fast enough to avoid

dense spike trains should be used. This approach is similar to avoiding the hidden

unit in a conventional ANN to be driven close to 1 or 0, which would otherwise

lead to a significantly slowed learning process. Despite its effectiveness, this method

of manually adjusting weights or the clock frequency is inconvenient. In this work,

we propose to leverage a biologically inspired refractoriness to achieve the desired

sparsity. More specifically, each neuron has a refractory period after firing. During

the refractory period, it is not allowed to fire again. By utilizing this technique, dense

spike trains can be avoided. One potential drawback with a fixed refractory period

is that all neurons that are saturated are highly correlated in their spike timings. To

tackle this problem, a random refractory period technique is proposed. In a discrete-
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Figure 2.5: Comparison of the training and testing correct rates achieved with differ-
ent levels of refractoriness and different initial weights. The refractory mechanism is
helpful in avoiding dense spike trains, which helps improve the learning results.

time implementation, it is convenient to implement according to (2.20).

xl+1
j [n] =


0, V l+1

j [n] < thl+1
j

1, V l+1
j [n] ≥ thl+1

j & xl+1
j [n− 1] = 0

1−R V l+1
j [n] ≥ thl+1

j & xl+1
j [n− 1] = 1

(2.20)

where R is a random variable with a Bernoulli distribution B[1, pr]. Here, pr is a

design parameter that is used for controlling the sparsity. A larger pr can lead to

sparser spike trains.

Fig. 2.5 compares the learning results achieved with different initial weights and

pr. Two sets of initial weights are employed. One set of weights is initialized uniformly

from the interval [0, 2], i.e., wlij ∼ U [0, 2], where U [0, 2] stands for a uniform distri-

bution between 0 and 2. The results obtained with these initial weights are labeled

with “2×” in the figure. Another set of weights is initialized such that wlij ∼ U [0, 8].

The results obtained with these initial weights are labeled with “8×” in the figure.

For small initial weights (wlij ∼ U [0, 2]), a reasonable learning result can be achieved

even for the case in which pr = 0 because saturation has been avoided through the
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Figure 2.6: Comparison of the training and testing correct rates achieved with the
LIF neuron model and the modified LIF model. The results obtained with the con-
ventional LIF model with white noise residue injection are labeled as “LIF w/ white
noise”, whereas the results obtained with the modified LIF model is labeled as “LIF
w/ quantization noise.”

proper choice of small initial weights. This circumstance corresponds to the case in

which proper initial weights are chosen to avoid the hidden layer unit being driven

close to 0 or 1 when training a conventional ANN. When the initial weights are large

(wlij ∼ U [0, 8]), however, the learning performance is significantly deteriorated for the

pr = 0 case because of the aforementioned detrimental effect of saturated spike trains.

It is noted that learning is not successful for the case pr = 1 regardless of the selection

of initial weights because neurons that are saturated always have high correlations in

spike timings. Owing to the proposed stochastic refractory period technique, good

learning results are achieved when a proper pr is employed.

To study the effectiveness of the proposed learning algorithm applied to a conven-

tional integrate-and-fire neuron model, simulations are conducted for different levels

of noise injection, as shown in Fig. 2.6. Noise is injected into the neuron model as

noisy residue. In other words, a random residue is added to the membrane voltage

after each spike. The injected noise is uniformly distributed with the range from zero

to a percentage of the threshold value of that neuron. For example, the 50% white

noise in Fig. 2.6 means that the noise injected into the neuron obeys a distribution,
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Figure 2.7: Comparison of the training and testing correct rates achieved with dif-
ferent initial conditions. The case with pseudo-random initial membrane voltages
outperforms the cases with fixed initial membrane voltages. A pseudo-random leak-
age technique is also employed to further improve the learning performance.

U [0, 0.5× thli]. The results obtained with the modified integrate-and-fire model that

are described in (2.16) and (2.17) are also shown for comparison. The corresponding

results are labeled as “LIF w/ quantization noiss”. As the amount of injected noise

increases, the learning is more effective. This result is expected because the proposed

algorithm relies on the assumption that the spike timings of unconnected neurons

should stay relatively uncorrelated. The conventional LIF model with noise injection

can achieve a reasonably low correlation, yet random number generators are required

for this purpose. On the other hand, the modified LIF model can decorrelate spike

timings without explicitly injecting noise.

Another design consideration in our proposed learning algorithm is the initial

condition of the neuron. In many applications, we need to reset neurons to certain

states for each new input. Therefore, a proper initial condition needs to be set up.

We propose to use a pseudo-random initial condition such that the initial membrane

voltage of a neuron obeys a uniform distribution, e.g., xli[0] ∼ U [0, thli]. The reason for

choosing such an initial condition is that the membrane voltages of an SNN in a steady

state approximately follow a uniform distribution. Therefore, a warm start can be

achieved by setting the initial condition as a uniformly distributed random variable.
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The results obtained with such a pseudo-random initial condition are compared with

the fixed initial conditions in Fig. 2.7. As shown in the figure, even though any initial

condition can feature effective learning, the proposed pseudo-random initial condition

achieves the best performance. The main reason that the random initial condition

outperforms others is that such an initial condition helps to achieve lower correlations

among the input spikes. For the MNIST dataset, many pixels that correspond to

strokes have values equal to one. This circumstance leads to highly correlated input

spikes even when the modified LIF neuron model is used. By setting the initial

condition differently, the correlations can be somewhat lowered.

With the same spirit, a pseudo-random leakage is also added at the input layer

to further decorrelate the spike timings caused by the saturated intensities. The

leakage for each neuron is assigned randomly beforehand and is fixed for the whole

learning process. At each tick, the leakage is subtracted from the membrane voltage

according to the neuron dynamics shown in (2.17). From another perspective, the

pseudo-random leakage is helpful in breaking the possible symmetry that exists in

the input data. Many input pixels from the MNIST dataset have the value of one.

Through introducing the random leakage, we can break this symmetry in the data.

The symmetry-breaking technique has been widely used by many machine learning

researchers for weight initialization [62] and asymmetric connections in convolutional

neural networks (CNNs) [2]. The results obtained with this technique are also com-

pared in Fig. 2.7. The advantage of pseudo-random initial conditions and leakage

for neurons is that no pseudo-random/true-random number generators are actually

needed in the hardware implementation. The values can be conveniently stored in

an on-chip static random access memory (SRAM) array or can be hardcoded in the

logic.

In Section 2.2, it is shown that a longer learning duration yields more accurate

estimated gradients. Therefore, it is expected that the learning performance can be
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Figure 2.8: Comparison of the testing correct rates achieved with different learning
and inference durations. The longer the learning or inference duration is, the higher
the correct rate.

improved through lengthening the learning duration. To investigate the effect of the

learning duration on the learning performance, simulations are conducted, and the ob-

tained results are compared in Fig. 2.8. In the figure, five different learning durations

are used: 32, 64, 128, 256 and 512. Five different inference durations are also used to

evaluate the learned weights. A general trend shown in the figure is that increasing

either the learning or inference duration helps in improving the recognition accuracy.

For both the learning and inference duration, saturations occur at approximately 256,

beyond which the improvement is marginal. Despite the fact that the best learning

results are achieved when the learning duration is long, learning with a short duration

also yields impressive results. This finding arises because stochastic gradient descent

learning is quite robust against noise as long as it is not biased. Furthermore, it has

been demonstrated recently that a noisy gradient is actually beneficial in learning,

especially for a very deep neural network [64]. Therefore, a recommendation is to

utilize a small learning duration at the beginning of the learning to speed up the

learning process as well as to reduce the power consumption. The learning duration

should be gradually lengthened to obtain more and more accurate gradients.
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2.3.2 Two-Hidden-Layer Neural Network

The second example is a two-hidden-layer neural network with 784 neurons in the

input layer, 300 neurons in the first hidden layer, 100 neurons in the second hidden

layer, and 10 neurons in the output layer.

Because many conclusions that we draw for the one-hidden layer neural network

also apply to the two-hidden-layer neural network, we focus mainly on investigat-

ing how different methods of propagating the errors affect the learning performances.

Simulations are conducted for the two different backpropagation methods discussed in

Section 2.2: the standard layer-by-layer backpropagation and the direct backpropaga-

tion. As shown in Fig. 2.9, similar performances are achieved by two backpropagation

methods, which agrees with the results shown in Fig. 2.4(a) and Fig. 2.4(b). For com-

parison purposes, we also plot the results obtained with the one-hidden-layer network

in Fig. 2.9. The recognition rates achieved with the two-hidden-layer network are

higher when a learning duration of a moderate length is used (specifically, DL ≥ 256

in the figure). In addition, the two-hidden-layer neural network requires a longer

learning duration to achieve a satisfactory result compared to its one-hidden-layer

counterpart. This finding is consistent with the observation in ANNs that a deeper

network tends to yield better results, yet it is harder and slower to train.

Even though the conventional layer-by-layer backpropagation can always be used

along with our proposed algorithm, the unique direct backpropagation method can

be helpful when the number of output-layer neurons is much smaller than the number

of hidden-layer neurons, thereby providing more design freedom. For the lth layer in

the network, NlNl+1 multiply-accumulate (MAC) operations are needed for a layer-

by-layer backpropagation, whereas only NlNo MAC operations are needed for a direct

propagation. Significant savings in the number of MAC operations can be achieved

when No � Nl. We do pay the price of spending more memory to store the STDP

information across multiple layers. Therefore, we trade more memory spaces for
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Figure 2.9: Comparison of the testing correct rates achieved with the two different
backpropagation schemes. The two methods achieve similar performances. The two-
hidden-layer neural network can yield better performance, but it requires a longer
learning duration.

fewer computations. The memory requirement for storing cstdpljk is No ·
∑o−1

i=1Ni.

Fortunately, this memory requirement does not scale as badly as the synaptic weight

memory, which is on the order of O(N2), where N is the average number of neurons

for one layer. For neural networks that are employed in most applications, the output

layer has far fewer neurons compared to the preceding layers. Indeed, a function of a

deep neural network is to extract useful information from a high-dimensional input,

layer by layer. Therefore, the number of output neurons in a typical neural network

is on the order of O(1). Consequently, the memory requirement for this type of error

backpropagation is approximately on the order of O(N).

2.3.3 MNIST Benchmark

To demonstrate the effectiveness of the proposed learning algorithm, the standard

MNIST benchmark is employed. Here, 60000 training data are used for training a

one-hidden-layer neural network and a two-hidden-layer neural network. The trained

networks are examined with the testing set, which includes 10000 digits. No pre-

processing technique is used for a fair comparison. The obtained testing results for

these two networks are compared with the results in the literature in Table 2.2. Clas-
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sification accuracies of 97.2% and 97.8% are achieved by the two neural networks,

respectively. The proposed learning algorithm can achieve better classification cor-

rect rates compared to ANNs with the same configurations that are trained with

sophisticated algorithms. Compared to the state-of-the-art result 98.6% in [56], our

result is only slightly worse, especially considering that the size of our neural network

is nine times smaller than the network used in [56] in terms of the number of synapses.

Moreover, different from the ANN-to-SNN conversion method employed in [56], our

proposed learning algorithm can conduct on-line learning directly on hardware SNNs,

which is an expected feature for many energy-stringent applications.

In the table, unsupervised learning in [44] and [43] and the contrast divergence

learning in [57] are similar to clustering. Other decision logics in addition to the

neural network are needed to perform the classification. Moreover, it is not obvious

how these learning algorithms can be used to train a universal function approximator

that is needed in many applications, e.g., reinforcement learning.

2.3.4 Inference with a Progressive Precision

The results in the previous sections are obtained with the inference methods that

are mapped directly from those used in a conventional ANN, for simplicity. In other

words, we wait until the output of the neural network converges to the steady-state

result and then we read out the results. An SNN, however, provides new opportunities

for more rapid estimation of the results. For example, if we train the neural network

such that the output neuron that corresponds to the correct digit fires with a firing

density of µH and other output neurons fire with a density of µL. Then, we have

a noise margin of µH − µL such that a correct inference can still be achieved as

long as the noise or any disturbance is less than this margin. Similar to the signal

outputted by a Σ − ∆ modulator, output signals from neurons are buried in high-

frequency quantization noise. Counting the number of spikes is essentially filtering the
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Figure 2.10: Comparison of a) the recognition rate and b) the effective inference
durations needed for different levels of reduced margin. The results are obtained with
the one-hidden-layer neural network.

high-frequency noise. A longer inference duration can lead to less quantization noise

and, consequently, a more reliable result. This finding is similar to the well-known

progressive precision in the stochastic computation [67]. When the image presented

is easy to recognize, the neural network is able to produce the answer confidently.

Therefore, we do not have to wait until the noise is fully removed. This results in a

rapid inference. On the contrary, when the image is hard to classify, then we have to

wait longer to obtain the answer.

Fig. 2.10(a) and Fig. 2.10(b) show the testing correct rate and effective inference

durations that are needed to complete one classification. A trained one-hidden-layer

neural network is used for illustration. At each tick, the density outputted from

each of the output neurons is computed. If the density of one neuron is larger than

µH−M/2, and the densities from all of the other neurons are less than µL+M/2, then

the inference is considered to be completed and the output neuron with the largest

spike density is chosen as the answer, where M is the reduced margin. Otherwise, the

inference continues until a maximum allowed inference duration is reached. The effec-

tive inference duration in the figure is obtained by averaging the inference durations

in 10000 testing cases. As shown in the figure, as the margin reduces, the length of
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Figure 2.11: The recognition accuracy and the corresponding effective inference du-
ration needed when the first-to-spike-K-spikes readout is employed. The results are
obtained with the one-hidden-layer neural network.

the effective inference duration is significantly shortened. The classification accuracy,

however, does not start dropping until the reduced margin reaches 0.3, where the

quantization noise starts having a noticeable effect on the testing results. It should

be noted that there are some testing cases where the neural network is not able to

give a confident answer regardless of how long the inference duration is. For these

testing cases, the results are always produced when the maximum allowed inference

duration is reached. Therefore, a trend is that the longer the maximum inference

duration is, the longer the effective inference duration.

Another way to demonstrate the inference with a progressive precision is shown

in Fig. 2.11. The output neuron that first generates K spikes is determined to be

the winning neuron, and the corresponding digit is read out as the inferred result.

The recognition rates on the testing-set images are shown in the figure for different

values of K. The number of ticks needed before an inference can be obtained is also

recorded. As shown in the figure, an accuracy as high as 89% can be achieved with an

effective inference duration of only 5.6 ticks. The accuracy enhances rapidly when K

increases. The growth in accuracy starts saturating when K reaches 10 in the figure.
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2.4 Chapter Summary

In this chapter, we formulate an on-line learning algorithm for multilayer spiking

neural networks. The proposed learning method can estimate the gradient compo-

nents with the help of the spike timings in an SNN. The readily available gradient

information is then exploited in stochastic gradient descent learning. How the error

can be propagated back to each layer is studied. A direct backpropagation is pro-

posed in addition to the conventional layer-by-layer approach. The newly proposed

algorithm is employed in two neural networks for the purposes of demonstration.

To feature more effective learning, techniques such as random refractory period and

pseudo-random initial conditions are proposed. Furthermore, the progressive pre-

cision provided by a trained SNN is leveraged to accelerate the inference process.

Extensive parametric studies are conducted to verify the proposed techniques as well

as to examine many aspects of the proposed learning rules. To further demonstrate

the effectiveness of the algorithm, the MNIST benchmark test is conducted. Recog-

nition accuracies of 97.2% and 97.8% are achieved with the neural networks trained

by the proposed algorithm. With the hardware-friendly learning algorithm presented

in this chapter, efficient SNN hardware can be built. This is discussed in Chapter

III.
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CHAPTER III

A Low-Power Hardware Architecture for On-Line

Supervised Learning in Spiking Neural Networks

3.1 Introduction

To tackle the problem of lacking effective on-chip supervised learning algorithms

for hardware SNN, a hardware-friendly learning rule is proposed in Chapter II for

training multilayer SNN on-line. With the gradient information estimated from the

spike timings (STs) in the neural network, a stochastic gradient-descent learning is

presented.

In this chapter, based on the learning algorithm outlined in Chapter II, we pro-

pose an efficient hardware architecture [68]. The proposed event-triggered architec-

ture provides good scalability and low power consumption. Several simplifications

and adaptations on the original algorithms are proposed to increase the performance

and reduce the power consumption of the system. A cache structure is proposed to

leverage the sparsity that exists in neural networks in order to reduce the memory

requirement of the system. In addition, a background ST update technique is pro-

posed to boost the system throughput as well as the energy efficiency of the system.

The proposed hardware architecture is implemented in a 65-nm CMOS technology

and various performance metrics are simulated and reported.
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3.2 Hardware Architecture

3.2.1 Algorithm Adaptations

Even though the learning algorithm developed in Chapter II is already suitable

for VLSI implementation, a few simplifications can be made to improve the power

efficiency of the system further. The MNIST hand-written digit recognition bench-

mark is employed to study various aspects of the proposed hardware architecture.

The original 28× 28 MNIST images are down-sampled to 16× 16 to accommodate a

design that can be simulated, synthesized, placed, and routed in a reasonable amount

of time. The network configuration we use in this chapter is 256-50-10, where each

number represents the number of neurons in each layer, from the input layer to the

output layer.

Memory is the most critical element in hardware implementation of a neural net-

work. It easily dominates both the power consumption and silicon area. Therefore,

the bitwidth of the synaptic weights needs to be carefully chosen to minimize the

memory size while not degrading the performance. To investigate the trade-off ex-

isting in picking the word length, parametric simulations have been conducted for

different bitwidth, and the obtained results are compared in Fig. 3.1. The error bars

in this figure indicate a 95% confidence interval. In the simulations, the maximum

weight is fixed as 1023 while the weight resolution is swept. To speed up the simula-

tions, only 100 images in the training set are used for training. The trained network

is evaluated with all the images in the test set. From the figure, we can draw the

conclusion that a bitwidth of 20 is necessary to maintain an acceptable system per-

formance. We pick 24 as the bitwidth of the synaptic weight in our design to allow

some margins.

Another simplification originates from the division operation in the original algo-

rithm. The term 1−µli in (2.9) and (2.12) can be approximated by 1, assuming sparse
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Figure 3.1: Effect of shortening bitwidth of the synaptic weights on the classification
results.

spike trains. In addition, to circumvent the slow and power-hungry division, we adopt

the approximate division technique proposed in [60]. In an approximate division, the

divisor is rounded toward zero to the first power of two. Mathematically, the new

divisor can be computed as

wlij
′
= sgn

(
wlij
)
· 2blog2 ‖wl

ij‖c (3.1)

where sgn(·) represents the sign function. In (3.1), we use wlij as an example. A

similar approximation can be applied to xli as well. With the approximate division

technique, division can be conveniently implemented as a round-and-shift operation,

which remarkably simplifies the hardware complexity.

In the neuron model shown in (2.20), it is expected that a random number gen-

erator is available to achieve the effect of the random refractoriness. To avoid using

linear feedback shift register to generate random numbers, we propose to use the

membrane voltage as the source of randomness. It is observed in (2.20) that random

numbers are only needed for firing neurons whose membrane potentials exceed the

firing threshold. Thus, we can utilize the last few digits in the membrane potentials

of firing neurons as the random numbers to decide whether a refractory event should

occur or not. With such a random refractoriness, two consecutive spikes only occur
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occasionally. Therefore, the term
(
1− xli[n− T − 1]

)
in (2.10) is dropped for the ease

of implementation.

Fig. 3.2 compares the testing recognition rates of the neural networks employing

above-mentioned techniques. Again, only 100 images are used for training to accel-

erate the evaluation process. It is obvious that none of the proposed simplifications

in hardware implementation induces any noticeable performance degradation.

3.2.2 Layer Unit

The diagram of the circuit used to implement one layer of the neural network is

illustrated in Fig. 3.3. Input of this layer is the address representing spikes from

the preceding layer. Corresponding synaptic weights are read out from the weight

memory upon a new spike event, and the membrane potential for each neuron in the

layer is updated. After all spikes from the preceding layer are committed for the

current tick, neurons in this layer are evaluated. Spikes are generated according to

the dynamics shown in (2.20). A priority encoder is then employed to encode output

spikes into corresponding addresses.

The proposed neuron circuit is also shown in Fig. 3.3. It is designed to minimize

the number of adders, which is normally the most bulky and power-hungry compo-

nent in a spiking neuron. In the proposed neuron circuit, only one adder and three
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comparators are needed. Among those comparators, two of them are trivial sign

detectors.

3.2.3 Leveraging Sparsity

To feature effective learning, memory units are needed to store spike timing in-

formation in our proposed algorithm. In the most straightforward implementation,

the numbers of words used to store ST information and synaptic weights are the

same. In other words, each synapse has one dedicated ST field in the memory. Even

though the ST information generally demands much shorter word length compared

to the synaptic weight, it is still a burden to the system in order to store all the ST

information. Fortunately, as pointed out in [60, 59], sparsity in neural networks can

be leveraged to reduce the memory requirement. Sparsity is an important feature

of many neural networks. It is not only discovered in biological neural networks but

is also controlled in many artificial neural networks [69]. Indeed, many real-world

signals are sparse in nature, such as image, audio, and video, resulting in sparsely

activated input-layer and hidden-layer neurons when such signals are presented to

neural networks. Fig. 3.4 demonstrates the sparsity in the investigated neural net-

work. The worst-case sparsities in the figure are obtained from a testing set of 10000

MNIST images. It can be observed that the input layer (layer #1) has a low aver-
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age sparsity of approximately 0.2 and a worst-case sparsity of 0.4. That is, at most

40% of input neurons are activated for any image in the testing set. As the input

layer typically has most neurons in a neural network, the total worst-case sparsity is

mainly determined by the input layer, as shown in Fig. 3.4. Furthermore, sparsity

regulation is often employed to regulate hidden-layer neurons in order to meet certain

sparsity requirement. It is demonstrated that learning with sparsity is more biologi-

cally plausible as well as more effective [69]. To leverage the spasity that widely exists

in neural networks, we observe that only recently active synapses have non-zero ST

information. Therefore, we propose to use a cache structure to store ST information,

as illustrated in Fig. 3.5. It is similar to a fully associative cache structure. Whenever

a new entry comes in, the content addressable memory first searches if the entry with

the same address is already in the cache. On a cache miss, a new entry in the cache

structure is created, and the newly-coming ST information is directly stored. Such

a structure can help reduce the memory requirement significantly, considering that

only the ST information associated with active synapses are stored.
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3.2.4 Background ST Update

In the learning algorithm, the ST information needs to be updated while the

neural network is running. The frequency of updating the STDP cache serves as a

design parameter. One extreme is to hold all spike timings for each neuron and to

update the STDP cache only once in the end. This way of updating minimizes the

frequency of visiting the STDP cache, yet requires a large memory structure to store

all the spike timings. Another extreme is to update the STDP cache immediately

after each spike. This method avoids the need for a large memory array to hold

spike timings but slows down the system significantly. Intuitively, weight memory
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and STDP cache are visited in similar frequencies in every tick. However, both read

and write operations are needed for the STDP cache updating, whereas only the read

operations are conducted during a membrane voltage update. Therefore, conducting

immediate STDP field update inevitably prolongs the duration of each tick.

In contrast to the membrane voltage updating where an immediate response is

required, the ST field updating can be delayed without affecting the computational

results. Therefore, we propose hiding the STDP updating in the background using

the circuit shown in Fig. 3.6. Local buffers are employed to hold the spike timing

information temporarily. A scheduling algorithm with a state diagram shown in Fig.

3.7 is utilized to control whether a ST update should be conducted. The basic idea is

that updating of the ST is only carried out when there are membrane voltage updates

currently going on. The ST update is enforced whenever an urgent flag is set, which

indicates that the storing capacity of the buffers is reached and the update has to be

conducted otherwise information will be lost. Another situation to enforce the ST

updates is when the current tick is the last tick in a learning iteration. This way
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Figure 3.8: Comparison of the number of clock cycles per forward iteration for differ-
ent buffer depth.

of scheduling helps conduct ST updating in the background. It attempts to update

the ST information immediately while ensuring that the duration of each tick is only

slightly affected. Fig. 3.8 compares the number of clock cycles for each forward

iteration as the length of the buffer varies. When a shallow buffer is used, more

clock cycles are needed for each forward iteration. Updating of the ST information

significantly slows down the system in this case. As the size of the buffer reaches five,

the improvement in the number of clock cycle per forward iteration starts saturating.

3.3 CMOS Implementation Results

The proposed hardware architecture is implemented in TSMC 65 nm technology

along with all the techniques proposed in this chapter. The chip layout is illustrated

in Fig. 3.9. The chip occupies an area of 1.8mm2 including pads. Synaptic weight

memories, which are implemented in SRAM, take most of the area. It is also noted

that the STDP cache is much smaller compared to the weight memory. Table 3.1

shows the estimated power consumption breakdown for the learning mode and the

inference mode, respectively. The numbers in the table are estimated with Cadence

Innovus. The results are obtained with the post-layout parasitics and the circuit-

switching activities obtained from gate-level simulations. It is observed that most
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Figure 3.9: Chip layout of the CMOS implementation.

power is dissipated in the second layer, as it involves most synaptic operations. In

addition, the inference mode consumes less power than the learning mode, as the ST

information and the synaptic weights are not updated in the inference mode.

Table 3.1: Power consumption breakdown

Learning Inference

Layer #1 20.97 mW (20.14%) 21.15 mW (23.17%)
Layer #2 49.11 mW (47.16%) 43.64 mW (47.80%)
Layer #3 7.34 mW (7.05%) 7.47 mW (8.19%)
Learning controller 12.13 mW (11.66%) 4.74 mW (5.19%)
Others 13.28 mW (12.76%) 14.30 mW (15.66%)

Total 104.12 mW 91.30 mW

One very useful feature of an SNN is the capability to infer with a progressive

precision, as demonstrated in Chapter II. It provides an additional knob for the

designer to optimize the system performance dynamically. Fig. 3.10 plots the time

and energy needed for a certain inference accuracy when the first-to-spike-K-spikes

scheme is employed. That is, the output neuron that first spike K spikes is chosen as

the winning neuron and the recognized digit is read out accordingly. As shown in the
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Figure 3.10: Time and energy needed per inference as a function of the inference
accuracy.

figure, a growing recognition accuracy can be achieved by spending more time and

energy in inference, providing additional freedom that can be configured at run-time.

Table 3.2: Summary and comparison with prior works

This work [[70]] [[57]] [[71]]

Network size 256-50-10 256-256 484-256 256-256

Bitwidth of synapses 24 bit 8 bit and 13
bit

1 bit 4 bit

Memory size 358.3 Kb 1.31 Mb 256 Kb 256 Kb

Technology 65-nm 65-nm 45-nm 45-nm

Core area 1.1 mm2 3.1 mm2 4.2 mm2 4.2 mm2

Power consumption 104.12 mW @
learning, 91.3
mW @ inference

228.1 mW @
learning, 218
mW @ infer-
ence

45pJ/spike -

Clock frequency 166.7 MHz 235 MHz @
learning, 310
MHz @ infer-
ence

1 KHz 1 MHz

Table 3.2 summarizes the performances of the CMOS implementation. The design

is also compared with the state-of-the-art SNN implementations in the literature.

Compared to other SNN chips, one remarkable feature of the design presented in

this chapter is that it is a multilayer neural network that is capable of conducting

on-chip supervised learning. Such a piece of hardware can be beneficial to many
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energy-starved applications where built-in intelligence is needed.

3.4 Chapter Summary

In this chapter, we propose a hardware architecture for supervised learning in

multilayer SNNs based on the algorithm presented in Chapter II. Learning can be

conducted directly on-chip with the algorithm. Several adaptations are made to the

original learning algorithm to reduce the complexity of the circuit while not degrading

the performance noticeably. An event-triggered architecture is proposed to improve

the throughput as well as the energy efficiency of the system. In addition, the sparse

nature of an SNN is leveraged in the design to reduce the memory requirement. A

background ST update is also utilized to speed up the inference and learning process of

the algorithm. The design is implemented in TSMC 65-nm technology and how infer-

ring with a progressive precision can be beneficial in saving energy is demonstrated.

It is expected that the learning algorithm and hardware architecture proposed in

Chapter II and this chapter will help accelerate the development of energy-efficient

deep spiking neural network hardware.
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CHAPTER IV

A Low-Power Accelerator for Action-Dependent

Heuristic Dynamic Programming

4.1 Introduction

In addition to the efforts of building customized SNN hardware, there is also a lot

of interest in accelerating ANN applications with specialized hardware in recent years.

Compared to SNN accelerators, ANN accelerators can take advantage of many state-

of-the-art network architectures, algorithms, and techniques that have been developed

over the past decade. Recently, many specialized accelerators have been developed

for ANNs [72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84]. Various design techniques

have been proposed to improve the efficiency and throughput of the neural network

accelerators. Most of these accelerators are for deep neural networks, especially the

deep convolutional neural network, which is one of the most popular and powerful

neural networks employed widely in image and audio recognition.

Adaptive dynamic programming (ADP) is a powerful algorithm in solving various

decision-making and control problems [85, 86, 87, 88, 89]. Through approximating the

solution to the Bellman equation, the ADP algorithm can generate optimal or near-

optimal solutions for many real-life problems. The ADP algorithm is considered one

type of reinforcement-learning algorithm. It is also known as adaptive critic design,
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approximate dynamic programming, neurodynamic programming, etc. Many ADP

algorithms have been successfully implemented in the form of software running on a

general-purpose processor [90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103].

Among various types of ADP algorithms, the action-dependent heuristic dynamic

programming (ADHDP) algorithm is one of the most popular and most powerful

ADP algorithms [90, 91, 97, 98, 100, 102], as this algorithm does not require any

pre-knowledge about the model of the system to be controlled.

Despite being effective as an algorithm itself, the highly iterative ADP algorithms

running on a general-purpose processor in the form of software fail to provide energy-

efficient solutions to various applications where power consumption is of importance.

For example, potential applications for the ADP algorithm are mobile autonomous

robots with a small form factor [35, 34, 33] and future internet-of-things (IoT) devices.

For these microrobots and IoT devices that chiefly rely on energy scavenging from

the environment or energy stored on a tiny battery, energy consumption is of utmost

importance. Therefore, it is necessary to resort to specialized accelerators in order to

meet the stringent requirements of both the speed and energy consumption.

Even though an ADP-based reinforcement learning also utilizes neural networks,

there are some different design challenges and tradeoffs in building accelerators for

ADP algorithms [104]. For example, most existing deep-learning accelerators only

implement the inference phase, as the learning is assumed to be accomplished some-

where else. Such an operating model indeed works well for supervised learning. The

slow and energy-consuming learning process can be conducted on the graphic pro-

cessing units in the data centers. Users of the neural network accelerator can then

download the trained weights onto the chip and the accelerator is ready to conduct

some classification or inference tasks. On the other hand, most ADP algorithms target

controlling plants or making optimal decisions in a dynamic environment. Under this

circumstance, each ADP accelerator needs to learn how to choose the optimal policy
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Figure 4.1: Illustration of the actor-critic configurations used in the ADHDP algo-
rithm. Two neural networks, critic network and actor network, are employed in the
algorithm to approximate functions need to be learned.

for the plant or environment it is interacting with in an on-line fashion. Therefore,

learning for an ADP accelerator is most likely to be a real-time task.

In this chapter, we introduce a hardware architecture as well as design method-

ologies for ADHDP accelerators [105]. A tile-based computing is employed to provide

good scalability for the accelerators. The designed accelerators are also flexible, as

they can be programmed with instructions in order to run ADHDP algorithms with

different configurations. Low-power operations are achieved through reducing the

data movements by utilizing and partitioning data buffers. Furthermore, as we fo-

cus on building accelerators that can conduct learning efficiently, a virtual update

technique is introduced to leverage some unique computational patterns in the AD-

HDP algorithm in order to shorten the computational time and increase the energy

efficiency.

4.2 Action-Dependent Heuristic Dynamic Programming

In this section, a few concepts for the ADP and ADHDP are reviewed. For brevity,

only important terminologies that are closely related to this chapter are covered.
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4.2.1 Actor-Critic Networks

Suppose the discrete-time system under control can be modeled by

x(t+ 1) = f [x(t), a(t)] (4.1)

where x(t) is the n-dimensional state vector at time t, a(t) is the m-dimensional

action vector, and f(·) is the model of the system. The target of the algorithm is to

maximize the reward-to-go J , expressed as follows

J [x(t)] =
∞∑
k=1

γk−1r [x(t+ k)] (4.2)

where γ is the discount factor used to promote the reward received in the near future

over long-term reward and r [x(t)] is the reward received at state x(t).

The reward-to-go can be maximized through solving the Bellman equation

J∗ [x(t)] = max
a(t)
{(r [x(t+ 1)] + γJ∗ [x(t+ 1)])} (4.3)

where J∗ [x(t)] denotes the optimal value function under the optimal policy. The

optimal policy a∗(t) is obtained by maximizing the right-hand side of (4.3).

Solving the Bellman equation directly is intractable for many problems with prac-

tical sizes. The complexity grows exponentially with the size of the problem, which

is well known as the curse of the dimensionality. To circumvent this difficulty, the

ADP algorithm solves the Bellman equation approximately with the help of function

approximators. The model-free ADP algorithm we consider in this chapter is the

ADHDP algorithm, which is one of the most popular model-free ADP algorithms

[90, 91, 97, 98, 100, 102]. It is closely related to the well-known Q-learning algorithm

that is widely used in the artificial intelligence community. The model-free ADP

algorithm does not need a model for the plant or the environment. The algorithm
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learns the model in the process of interacting with the plant or the environment. The

configuration of the ADHDP algorithm is illustrated in Fig. 4.1. In the figure, x and

a represent state and action vectors, respectively. ha and hc are Nha-dimensional

and Nhc-dimensional output vectors from the hidden units in the actor and critic

network, respectively. wa1, wa2, wc1, and wc2 are synaptic weights in the networks.

Two neural networks are used as universal function approximators in this algorithm.

One neural network, called the critic network, is employed to generate Ĵ [x(t)], which

is an estimation of J [x(t)]. The critic network attempts to learn J [x(t)] through ad-

justing the synaptic weights in the neural network in order to minimize the temporal

difference error as shown in (4.4).

δ(t) = Ĵ [x(t− 1)]− γĴ [x(t)]− r[x(t)] (4.4)

The second neural network is called an actor network. Its function is to generate

an action vector a(t) that maximizes the estimated reward-to-go Ĵ [x(t)]. Action

vector outputted by the actor network is fed to the critic network. The actor then

adjusts its synaptic weights to maximize Ĵ [x(t)].

4.2.2 Learning Algorithm

In the learning process, we need to train the two neural networks such that the

defined cost function can be minimized. The most popular and efficient way to train a

neural network is the stochastic gradient descent learning based on backpropagation

[106]. Errors at output layers are propagated back to each synapse in the network,

layer by layer. There are two phases in the ADHDP algorithm: critic update phase

and actor update phase. Multiple iterations are involved in both phases. Each it-

eration contains a forward operation and a backward operation. The algorithm is

illustrated in Fig. 4.2.
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Inputs : wa1, wa2, wc1, wc2: weights for the actor and critic neural network
Ia, Ic: The maximum number of iterations allowed for updating actor
and critic networks in one time step
Ea, Ec: Thresholds to control whether an update can be terminated

1 t = 0
2 Actor network forward operation: compute a(t)

3 Critic network forward operation: compute Ĵ [x(t)]
4 Output action a(t) and obtain the updated states x(t+ 1), reward r[x(t+ 1)],

and termination request REQterm from the environment or the plant
5 while REQterm 6= 1 do
6 t = t+ 1, ic = 0, ia = 0
7 Actor network forward operation: compute a(t)

8 Critic network forward operation: compute Ĵ [x(t)]
9 Compute the temporal difference δ(t)

10 while
(
ic < Ic && δ(t)2

2
≥ Ec

)
do

11 Critic network backward operation: update wc2 and wc1

12 Critic network forward operation: compute Ĵ [x(t− 1)]
13 Compute the temporal difference δ(t)
14 ic = ic + 1

15 Compute the cost function e2a
2

16 while
(
ia < Ia && e2a

2
≥ Ea

)
do

17 Actor network backward operation: update wa2 and wa1

18 Actor network forward operation: compute Ĵ [x(t)]

19 Compute the cost function e2a
2

20 ia = ia + 1

21 Output action a(t) and obtain the updated states x(t+ 1), reward
r[x(t+ 1)], and termination request REQterm from the environment or
plant

Output: wa1, wa2, wc1, wc2: updated weights for the actor and critic neural
network

Figure 4.2: Pseudocode for the ADHDP algorithm
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4.2.2.1 Forward Opeartion

For each iteration in the actor update phase, the forward operation is carried out

according to (4.5)-(4.9).

hai = σ

(
n∑
j=1

wa1
ij xj

)
(4.5)

ai = σ

(
Nha∑
j=1

wa2
ij h

a
j

)
(4.6)

pc =

a

x

 (4.7)

hci = σ

(
m+n∑
j=1

wc1ij p
c
j

)
(4.8)

Ĵ =

Nhc∑
i=1

wc2i h
c
i (4.9)

where σ(·) is the activation function. Popular choices are hyperbolic tangent function,

sigmoid function, and the rectified linear unit. For the critic forward phase, only (4.8)-

(4.9) are carried out. (4.5)-(4.7) are not necessary as the weights in the actor network

remain the same, which leads to the same action vector.

4.2.2.2 Backward Operation

During the backward operation in the critic update phase, wc1 and wc2 are up-

dated according to (4.10) and (4.11).

∆wc2i = αδhci (4.10)

∆wc1ij = αec1i σ
′

(
m+n∑
k=1

wc1ikp
c
k

)
pcj (4.11)

where ec1j = δwc2j is the error at the hidden unit hci , and α is the learning rate.
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During the backward operation in the actor update phase, wa1 and wa2 are up-

dated according to (4.12) and (4.13).

∆wa2
ij = αea2

i σ
′

(
Nha∑
k=1

wa2
ik h

a
k

)
haj (4.12)

∆wa1
ij = αea1

i σ
′

(
n∑
k=1

wa1
ik xk

)
xj (4.13)

where ea1
j =

∑m
i=1

[
ea2
i · σ′

(∑Nha

k=1w
a2
ik h

a
k

)
· wa2

ij

]
, ea2

j =
∑Nhc

i=1

[
ec1i · σ′

(∑m+n
k=1 w

c1
ikp

c
k

)
· wc1ij

]
,

and ec1j = eaw
c2
j are backpropagated errors at haj , aj and hcj, respectively. e2

a/2 is the

cost function that needs to be minimized for the actor network. In many applications,

the desired reward-to-go is 0, i.e. no punishment (negative reward). In this case, a

convenient choice is ea = Ĵ [x(t)] [90, 91, 97, 98, 100, 102].

4.3 Hardware Architecture

The proposed hardware architecture for the ADP accelerator is shown in Fig. 4.3.

The accelerator consists of three major blocks: datapath, memory, and controller.

The datapath is the core of the ADP accelerator. It handles all the arithmetic oper-

ations needed in the ADHDP algorithm. The memory unit contains all the on-chip

storage units, including a static random-access memory (SRAM) array used to store

synaptic weights, registers for holding neuron states, and input buffers for reducing

data movements. The controller oversees operations of the whole accelerator and

executes programmed instructions in order.

4.3.1 On-Chip Memory

Memory in our system can be divided into three categories based on the purposes

they serve: synapse memory, neuron memory, and data buffers. The most critical and

also the largest memory block is the synapse memory, as the number of synapses grows
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Figure 4.3: Hardware architecture for the proposed accelerators. Data-level par-
allelism is exploited through utilizing multiple datapath lanes. A reconfigurable
five/six-stage pipeline is used for the datapaths.

Synapse Memory

Activation Buffer

Synapse Memory

Error Buffer

Error Buffer

Activation Buffer

Forward Backpropagation Weight Update

Synapse Memory

Activation Level Error Synaptic Weight

Figure 4.4: Illustration of data flow and memory access patterns in the proposed
accelerators. Data buffers are employed to exploit the locality of the data. Synaptic
weights needed in on tile operation is stored in one row.
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quadratically with the size of the neural network. In this design, we use SRAM array

for storing synaptic weights. Neuron memory is where the activation levels of neurons

in the network are stored. It is implemented with an array of registers in this design.

Data buffers are storage units used to hold the input, intermediate, and output data

temporarily in order to accelerate the computation and save computational energy.

Data flow and memory access patterns employed in the proposed accelerator are

shown in Fig. 4.4. The computations in the forward operations shown in (4.5) -

(4.9) are mostly matrix multiplication operations. Similar to most machine-learning

accelerators [72, 73, 74, 77], we adopt a tile-based matrix multiplication strategy,

where the matrix is partitioned into several smaller blocks. The size of the tile is

determined by the number of data lanes available in the system. In this design, the

number of lanes is set to four, as this is enough for applications targeted by this work.

Nevertheless, the proposed architecture and design methodology are scalable, so more

lanes can readily be added into the design to accommodate larger problems.

For the forward operation, we adopt a row-wise multiplication. The neuron acti-

vation vector is first loaded from the neuron memory to the activation buffer. The

activation buffer is a circular buffer and it rotates a complete circle when multiplying

each row in the matrix. Loading the data from the neuron memory to the input buffer

has the advantage that the data in the buffer can be reused without accessing the

relatively-large neuron memory repeatedly, thereby saving power and time. Synaptic

weights in the SRAM are arranged in a way such that weights corresponding to one

tile are stored in the same row for easy access.

For the backward operation, there are two major steps: error backpropagation

and weight update. The error backpropagation operation is also a matrix-vector

multiplication. Similar to the forward operation, tile-based multiplication is used.

However, the multiplication in this case is done column-wise instead of row-wise.

Such an arrangement has the advantage that the access for the memory is always
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sequential, providing a more regular memory access pattern when off-chip memory is

used. In the weight update operation, two vectors are multiplied to form a matrix

that is added to the old synaptic weight matrix. In this case, elements in the row

vector are stored in the circular buffer, whereas elements associated with the column

vector are stored in the linear buffer. The error backpropagation and weight update

operations are scheduled in alternate clock cycles in order to reuse the same row of

synaptic weights. Therefore, for one backward operation, each entry in the synaptic

weight SRAM only needs to be read and written once.

4.3.2 Datapath

The datapath is partitioned into five/six-stage reconfigurable pipelines: schedule,

fetch, multiply, add, activate, and write back.

4.3.2.1 Datapath Operations

In the schedule stage, instructions fetched from the instruction memory are de-

coded to obtain necessary information for scheduling operations with data. In the

proposed single-instruction-multiple-data (SIMD) architecture, one instruction may

contain workloads that need multiple clock cycles to complete. Therefore, the in-

struction fetching and decoding occur selectively with the help of the controller. The

scheduler needs to generate and latch addresses for data to be fetched in the fetch

stage as well as to inspect any potential data hazard. Upon detecting that the data

needed in the speculatively-scheduled operation are not ready in the input buffer,

the scheduler looks for possibilities of data forwarding directly from the memory or

write-back buffer. If even the data forwarding is not able to resolve the data hazard,

a STALL operation is inserted into the pipeline as a null operation, waiting for the

data needed to be computed. In the fetch stage, data is read from input buffers or

memory and is latched in corresponding pipeline registers.
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Figure 4.5: Comparison of the learning performances achieved with different levels
of data quantization for three classic ADP benchmarks. The obtained performances
are normalized with respect to those obtained from double-precision floating-point
computations.

The multiply and add stage conduct multiplication and addition operations, re-

spectively. Adders in the add stage can be configured as parallel adders, adder trees,

or a mixture of both depending on the operations conducted. The activate stage

implements the activation function employed in neural networks. The hyperbolic

tangent function is employed in this design, as it is the most popular choice for ADP

algorithm in the literature [90, 91, 97, 98, 100, 102]. In the proposed design, the ac-

tivation function is implemented with piecewise linear interpolation, similar to those

employed in [72, 107]. Depending on the operation conducted, the activation stage

may be bypassed, as the activation operation is only needed in the forward phase. In

this case, the six-stage pipeline is reduced to a five-stage pipeline. After arithmetic

computations, the write-back stage in the end of the pipe writes computed results

back to storage units depending on the instruction executed.

4.3.2.2 Datapath Quantization

One important consideration in designing customized accelerators is the choice of

bitwidth used to represent data in the system. It is the norm to use a fixed-point
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number representation in machine-learning accelerators [72, 73, 74, 75, 76, 77, 78, 79,

80, 81] because of its ease of implementation and good computational efficiency. To

provide some guidelines in determining the proper bitwidth in our system, we con-

duct parametric simulations on the learning performance of the ADP algorithm under

different bitwidths. Three most popular benchmark tasks for the ADP algorithm are

employed in the parametric study: The cart-pole balancing problem [90, 97, 91, 100],

the beam-balancing problem [99, 101], and the triple-link inverted pendulum problem

[90, 97]. In these three tasks, the target is to control the system such that the states

of the system stay within some pre-defined ranges. In our experiment setting, once

the states of the system under control exceed the desired ranges, punishment (or a

negative reward) is provided. For each task, data used in the algorithm, including

synaptic weights, neuron states, and other intermediate variables, are quantized to

numbers with a fractional bitwidth of Qf . Learning processes are then carried ac-

cording to the ADP algorithm. The learning performance obtained for each task with

different levels of quantizations are compared in Fig. 4.5. For each task, 50 runs are

conducted, where a run contains several trials. Each trial is a complete process from

beginning to end. A trial is ended either when the maximum time is reached (1000

time steps in these experiments) or the states under control exceed certain limits. The

learning performance is measured by the total time that the plants are successfully

maintained in the desired states in all trials. In Fig. 4.5, performances obtained with

different bitwidth are normalized to the performances obtained from the computa-

tions with a double-precision floating-point number representation. Error bars in the

figure correspond to a 95% confidence interval. As shown in the figure, performances

achieved with quantized data start matching those obtained with double-precision

data when the bitwidth for the fractional part reaches 12 bit. We use a 6-bit integer

part (including a 1-bit sign information) and an 18-bit fractional part to represent

data in our accelerators. The extra six bits in the fractional part compared to the
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Op Code # of Row # of ColumnSource Addr Synapase Addr Offset ConfigDestination Addr

(a)

FF Forward Operation

SCA Scalar Operation

BP_WU
Error Backpropagation 

& Weight Update

BP Error Backpropagation 

WU Weight Update

CC Controller Operation

FF Forward Operation

SCA Scalar Operation

BP_WU
Error Backpropagation 

& Weight Update

BP Error Backpropagation 

WU Weight Update

CC Controller Operation

Op Code Operation

(b)

Check Point

Actor Feedforward

Check Point

Actor Feedforward

Check Point

Critic Feedforward

Scalar Operation

Check Point

Critic Backpropagation

Check Point

Actor Feedforward

Scalar Operation

Check Point

Actor Backpropagation

Check Point

FF 0 0 0 3 2 0 0

FF 2 6 8 1 3 0 0

FF 6 9 10 3 3 0 0

FF 10 18 128 1 3 0 1

BP_WU 10 18 0 1 3 0 0

BP 6 9 0 3 3 0 0

0

1

5

6

10

11

13

14

15

17

18

22

23

24

28

CC 0 0 0 0 0 0 0

(c)

Figure 4.6: Illustration of the instructions used in the accelerators. (a) Format of the
instruction. (b) List of all operation codes and their corresponding operations. (c) A
sample program for implementing the ADHDP algorithm shown in Fig. 4.2.

12-bit lower limit is to provide some tolerance in the design.

4.3.3 Controller

The main role of the controller is to determine the instruction flow. The format

of instructions developed for our accelerator is shown in Fig. 4.6(a). The operation

code field specifies the type of the instruction. There are six types of instructions in

our accelerator, as shown in Fig. 4.6(b).

The code “FF” corresponds to the forward operation, which is the most common

instruction. The code “SCA” is for scalar operation such as calculating the temporal

difference as shown in (4.4). The operation code “BP WU” is used for hidden-layer

units where both error backpropagation and weight update are needed. Code “BP”

and “WU” are for error backpropagation and weight update, respectively. They are
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used when only one type of operation is needed. For example, “WU” code can be used

for the input layer when error backpropagations are not needed. The code “CC” calls

for controller operation. It can be used, for example, to implement the conditional

jumps in Fig. 4.2. The fields “Source Addr”, “Synapse Addr”, and “Destination

Addr” specify the addresses for the source data, the address for the synaptic weight

and the addresses to write back, respectively. In our design, the synapse memory

has its own address space, whereas all other registers share a unified address space.

The “# of Row” and “# of Column” fields indicate the size of the matrix operated

on. The field of “Offset” specifies any offset in computing the matrix multiplication.

For example, as shown in Fig. 4.2, backpropagation for the actor network only needs

to be done for a(t). Therefore, elements associated with x(t) should be skipped

through specifying the offset. The “Config” field is used for configuration purposes,

for example, to specify whether to bypass the activation stage in the datapath.

With all the fields specified in the instructions, the scheduler can schedule op-

erations based on this information. In the proposed architecture, one instruction

specifies all operations conducted on one matrix. An example of the instructions

corresponding to the pseudocode shown in Fig. 4.2 is illustrated in Fig. 4.6(c). Only

a portion of the instructions are shown for the purpose of brevity. All instructions in

the figure correspond to a series of operations conducted by the datapath except for

the “Check Point” operation where the controller conducts a conditional jump with

the help of an FSM.

4.4 Virtual Update Algorithm

In this section, we examine a few unique features of the ADP algorithm. These

features are then exploited to improve speed and energy efficiency of the accelerator.
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4.4.1 Algorithm

In the ADP algorithm, it is the norm to conduct many internal cycles in order

to minimize the cost function for each input vector [90, 91, 92, 93, 94, 95, 96, 97,

98, 99, 100, 101, 102]. This corresponds to the second and the third while loop in

Fig. 4.2. The maximum number of internal loops for each input vector is typically

in the range of 10 to 100. In other words, many iterations are carried out for the

same input vector, attempting to minimize the cost function at the current time step.

Therefore, it may be worth conducting some pre-processing if the same input vector

is used repeatedly. Such a simplification is indeed possible by inspecting the unrolled

while loop.

Without loss of generality, let us focus on the update in the critic network. Weights

in the input layer of the critic network are updated according to (4.11), followed by

the immediate forward operation in (4.8). For the ease of explanation, (4.11) and

(4.8) are rewritten in (4.14) and (4.15) with the dependence on the loop index ic

explicitly indicated. Note that pc in the equations is not a function of ic, as the input

vector and selected action remain the same when the critic network is updating.

∆wc1ij (ic) = αec1i (ic)σ
′

[
m+n∑
k=1

wc1ik (ic)p
c
k

]
pcj (4.14)

hci(ic + 1) = σ

[
m+n∑
j=1

wc1ij (ic + 1)pcj

]
(4.15)

By substituting (4.15) into (4.14) with the help of the relationship wc1ij (ic + 1) =

wc1ij (ic) + ∆wc1ij (ic), one can obtain

oci(ic) = oci(0) + Ei(ic)Λc (4.16)
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where

Λc =
m+n∑
j=1

(pcj)
2 (4.17)

oci(0) =
m+n∑
j=1

wc1ij (0)pcj (4.18)

Ei(ic) =
ic∑
k=0

αec1i (k)σ′[oci(k)] (4.19)

oci(ic) is the input to neuron hci in the ithc iteration. Λc is the sum of squares of

activation levels of all input neurons, which is independent of ic. In this case, we only

need to update Ei(ic) in each iteration. oci(0) and Λc need only to be computed and

stored once. Therefore, activation levels of the hidden layer units in the ithc iteration

can be conveniently calculated based on results obtained from the previous iterations.

Even though no actual weight update or forward operations are conducted, it appears

to neurons in other layers as if the weights in the input layer were updated. We call

this technique the virtual update technique.

When the update loop is terminated either because the maximum number of

iterations Ic is reached or because the cost function is below a certain threshold,

synaptic weights associated with the input layer are updated according to (4.20).

∆wc1ij = Ei(ic)p
c
j (4.20)

It is worth mentioning that the virtual update algorithm accelerates the learning

process through reordering effective operations more efficiently instead of using ap-

proximations. Therefore, the proposed technique does not reduce the precision of the

ADP algorithm.
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4.4.2 Hardware Implementation Considerations

In order to exploit the proposed virtual update technique, one extra instruction

“VU” is added to our instruction set introduced in Section 4.3. This instruction

implements (4.16) - (4.19) in two groups of operations. The first group of operations

is to compute and store Λc when the current input vector is presented for the first

time. The second group of operations are the multiply-and-add operations shown

in (4.16). The operation of accumulating Ei(ic) is merged to the normal “BP” or

“BP WU” operations without introducing any overhead in computational time. It is

worth noting that all newly-added operations, as shown in (4.16)-(4.19), scale linearly

with the size of the network, whereas the original backward and forward operations

scale quadratically. Therefore, the virtual update technique can help save significant

computational efforts.

To implement the virtual update algorithm, oci(0) and Ei(ic) need to be stored.

They can be stored conveniently in the synapse memory, recognizing that the weight

memory is not utilized during the virtual update operation. Indeed, the virtual

update technique avoids both writing synaptic weights in the weight update phase

and reading weights in the forward phase, leaving the weight memory free during

that period. Compared to the synaptic weights stored in the synapse SRAM, the

additional memory overhead caused by the virtual update technique is negligible,

especially when the size of the network is large.

The pseudocode for the while loop of updating the critic network with the proposed

virtual update technique is shown in Fig. 4.7. If the current iteration is not the last

one allowed by the maximum number of iterations, the virtual update algorithm is

used to compute neuron activation levels of hidden-layer neurons in the next iteration,

otherwise the conventional update is used. It should be ensured that when exiting

the while loop, normal weight update has to be conducted once according to (4.20),

as weights are actually not updated during previous iterations.
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1 while
(
ic < Ic && δ(t)2

2
≥ Ec

)
do

2 Backward operation: update wc2

3 if (ic == Ic − 1) then
4 Backward operation: update wc1

5 Forward operation: compute hc

6 else
7 Virtual update: compute hc

8 Forward operation: compute Ĵ [x(t− 1)]
9 Compute the temporal difference δ(t)

10 if
(
δ(t)2

2
< Ec

)
then

11 Backward operation: update wc1

12 ic = ic + 1

Figure 4.7: Pseudocode for the while loop corresponding to the critic update when
the virtual update algorithm is employed

The computational complexity of the virtual update algorithm is compared with

that of the baseline in Table 4.1. The number of arithmetic operations per time step

is used for comparison. In the table, Ni and Nh represent the number of input-layer

neurons and hidden-layer neurons, respectively. L specifies the number of iterations

in one time step. Its value should be in the range of [1, Ic] or [1, Ia] depending on

whether the network is the critic or the actor. “MAC”, “MUL”, and “ADD” denote

multiply-accumulate, multiply, and add operations, respectively. It is worth noting

that the complexities listed in the table are valid for the case where L > 1. When

L = 1, two algorithms have the same computational complexity, as no virtual update

takes place. As shown in the table, the virtual update technique significantly reduces

the number of operations needed. Even though the technique is only applicable for

synapses between the input layer and the hidden layer, the savings in computational

efforts is remarkable, as most weights in neural networks concentrate in between these

two layers. The actual percentage of savings is reported in Section 4.5.
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Table 4.1: Comparison of the computational complexity of conventional update and
virtual update

Regular update Virtual update

Forward NiNhL MAC (L − 1)Nh MAC +Ni MUL +NiNh

MAC

Backward NiNhL MAC (L− 1)Nh ADD +NiNh MAC

Total operations
(MAC/MUL/ADD)

2NiNhL 2(L+Ni − 1)Nh +Ni

Complexity O (NiNhL) O ((L+Ni)Nh)

On-Chip Memory

Synapse SRAM

Arithmetic Unit

Controller Scheduler

550 μm

550 μm

Figure 4.8: Chip layout and floorplan of the accelerator chip with the virtual update
algorithm

4.5 Design Examples

The hardware architectures and techniques discussed in previous sections are im-

plemented in TSMC 65-nm CMOS technology and the obtained simulation results

are presented in this section. In order to examine all aspects of the proposed de-

sign methodology, simulators are developed in a high-level programming language.

These simulators model behaviors of the final chip and they are employed to measure

the input-output relationships and clock cycle needed to accomplish certain tasks.

Area, speed, and power consumption are evaluated based on post-layout circuit-level
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Figure 4.9: Comparison of the learning performances achieved by the accelerators and
the software approach for three commonly used benchmarks. The results obtained
from the accelerators are normalized to those obtained from software. The error bars
correspond to a confidence interval of 95%.

simulation results.

Two accelerators are implemented. One implementation is equiped with the pro-

posed virtual update algorithm, whereas another one is the baseline design with the

conventional update. Both chips have similar chip layouts. Therefore, only the one

with virtual update is shown in Fig. 4.8 for brevity. On-chip memories, including

synapse memory, neuron memory, and input buffers, take most of the space. The

arithmetic unit, which contains multipliers, adders, and the activation block, is the

second largest block. The controller and scheduler occupy the rest of the area. Both

the baseline and the upgraded accelerators are designed to operate at a clock frequency

of 175 MHz. Such a clock frequency is more than enough for the accelerators to per-

form all the benchmark tasks that are discussed in this work in real time. In order

to evaluate the performance of the accelerators in conducting reinforcement-learning

tasks, the three most common control benchmarks used in Section 4.3 are employed.

The same metric, accumulated time steps, is used for comparison. The performances

achieved by the accelerators are normalized with respect to the performance achieved

by the software approach implemented on a general-purpose processor. The obtained

73



0 . 0 0 0 0
0 . 0 0 8 1

0 5 0 0 0 1 0 0 0 0

0 . 0
1 . 1

0 . 0 0
0 . 3 4

0 . 0 0
0 . 8 1

0 . 0 0
0 . 5 2

- 1 4 0
0

0
9 2

- 2 5
0

0 . 0
5 . 6

0 . 0
0 . 1

5 5 0
5 7 5
6 0 0

0 5 0 0 0 1 0 0 0 0- 1
0
1

 

x

x '

θ3

θ2

 
θ1

θ'
3

θ'
2

θ'
1

u
J

Σ | w |

r

t i m e  s t e p

Figure 4.10: Typical waveforms obtained in the triple-link inverted pendulum task
with the baseline accelerator. In the figure, the unit for distances and angles are
meter and degree, respectively.

results are shown in Fig. 4.9. As the virtual update algorithm does not use any

approximation or assumption in the computation, the obtained results should be the

same with the baseline design when quantization is absent. Nevertheless, there are

slight differences in the computed results, which are caused by the different orderings

of quantization. The results in the figure are obtained from the behavior-level model

of the chip. Mathematical models used for simulating these benchmark tasks can be

found in [90, 91, 97, 99, 100, 101], and they are omitted here for brevity. As shown

in the figure, the accelerators are able to achieve a similar performance compared to

the processor that computes with double-precision floating-point numbers.

To provide more insight into how well the accelerator performs on a complicated

task, one set of typical waveforms obtained from the triple-link task for successful

learning is demonstrated in Fig. 4.10. In the figure, x, θ1 - θ3 and their corresponding
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derivatives x′ and θ′1 - θ′3 are eight state variables that the ADP accelerator observes,

u is the applied control voltage, J is the estimated reward-to-go, Σ|w| is the sum of

absolute values of all weights, and r is the reward signal, which is -1 if the states of the

plant exceed the target range. Initial conditions for the plants are set as the following.

x and x′ are initialized as zero. θ1−θ3 and θ′1−θ′3 are initialized randomly. They obey

uniform distributions U [−1◦, 1◦] and U [−0.5◦/s, 0.5◦/s], respectively. The target is

to control x to be within the range of [−1m, 1m] and to maintain θ1 - θ3 in the range

[−20◦, 20◦] while the applied voltage is bounded by ±30V . More detailed information

on the triple-link inverted pendulum balancing task can be found in [90, 97]. It is

demonstrated in Fig. 4.10 that the accelerator successfully learns the control policy

and maintains the states of the system well within the target range.

To demonstrate the efficacy of the proposed virtual update technique, Fig. 4.11(a)-

Fig. 4.11(c) compare the number of clock cycles, power consumption, and energy

efficiency of the accelerators with and without the proposed technique. Different

sizes of neural networks and control tasks are examined. In the figures, results with

the labels “4-6-1, 5-6-1” and “4-10-1, 5-12-1” are obtained from the cart-pole task,

where the two sets of numbers refer to the sizes of the critic and actor networks,

respectively. The results with the label “8-20-1, 9-20-1” are obtained from the triple-

link inverted pendulum task. In addition, specifications of the proposed ADHDP

accelerator are summarized in Table 4.2.

Table 4.2: Specifications of the ADHDP accelerator

Technology TSMC 65nm

Area 550 µm × 550 µm
Number of lanes 4
Arithmetic precision 24-bit fixed-point
Supply voltage 1.2 V
Clock frequency 175MHz
Power consumption 25 mW

The normalized number of clock cycle breakdowns are compared in Fig. 4.11(a).
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One trend that can be observed for both the baseline accelerator and the accelerator

with the virtual update is that the forward and backward operations occupy most of

the clock cycles and the percentages that these two operations occupy increase as the

size of the neural networks becomes large. Indeed, as the size of the neural network

increases, the number of operations that can flow through the pipeline without being

interrupted by the control or branch operation increases. The proposed virtual update

algorithm effectively shortens the number of clock cycles needed for each task. The

improvement grows as the size of the problem increases. A 1.47 times improvement

is achieved for the triple-link inverted pendulum benchmark task. The main reason

for the growing improvement is that the virtual update algorithm effectively replaces

quadratically-scaled operations with linearly-scaled operations. Therefore, the sav-

ings in the number of clock cycles increases with the size of the problem. To give a

comparison between the accelerators presented in this chapter and a software running

on a general-purpose processor, the ADP algorithm is programmed and is run on an

Intel Xeon processor. On average, the accelerator is two orders of magnitude faster

than the software approach.

Fig. 4.11(b) compares the power consumption of the two accelerators. The accel-

erator with virtual update has a slightly lower power consumption compared to the

baseline design, thanks to many fewer memory operations, as illustrated in the fig-

ure. Another observation made from Fig. 4.11(b) is that the virtual update tends to

increase the power consumption in the arithmetic unit. This can be attributed to two

reasons. The first reason is that the virtual update increases the utilization rate of

the arithmetic unit. Another reason is that multiplexers are added in the arithmetic

unit to allow for more operations needed in the virtual update algorithm, which con-

tributes to the additional power. The increased power consumption in the arithmetic

unit is offset by the savings in memory operations, resulting in a net savings in the

power consumption. The energy efficiencies are compared in Fig. 4.11(c). Through
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Figure 4.11: Comparison of (a) the numbers of clock cycles needed for every
critic/actor update iteration, (b) the power consumption, and (c) the energy con-
sumption for every critic/actor update iteration for the ADP accelerators with and
without the virtual update technique. The first two groups of data are obtained from
the cart-pole balancing task, whereas the third group of data is obtained from the
triple-link inverted pendulum task.

accumulating the improvements in both the number of clock cycles per iteration and

the power consumption, energy efficiency of the accelerator with the virtual update

technique has been improved as many as 1.64 times for the triple-link inverted pendu-

lum task. Again, as the size of the network increases, the improvement in the energy

efficiency grows.
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4.6 Chapter Summary

In this chapter, we present a hardware architecture for ADHDP accelerators.

Through leveraging the data-level parallelism and data locality, scalable and pro-

grammable accelerators with high throughput and high energy efficiency are demon-

strated. In addition, to exploit the iterative nature of the ADP algorithm, a vir-

tual update technique is proposed to skip unnecessary computations, improving the

throughput and power consumption. We demonstrate two design examples that are

with and without the proposed technique. Extensive simulations are conducted to

demonstrate the efficacy of the design strategies and techniques. It is shown that

the proposed virtual update algorithm can effectively improve the energy efficiency

of the accelerator by a factor of 1.64 for the most complicated benchmark task we

employ. Such a good energy efficiency and high throughput open the door for compli-

cated ADP algorithms to be deployed in various energy-constraint applications where

optimal decision-making or control are needed.
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CHAPTER V

Memory Reliability Enhancement Through

On-Chip Compensation and Error Correction

5.1 Introduction

In addition to the algorithm- and architecture-level optimizations and techniques

that are employed in previous chapters in order to reduce the power consumption

needed in neuromorphic computing, circuit-level low-power design techniques can also

be very effective. The most popular low-power circuit-level strategy is the low-voltage

design, considering the dynamic power consumption, which is the dominant source

of power consumption in most CMOS digital systems, scales quadratically with the

supply voltage. This is illustrated in Fig. 5.1. Even though the leakage power sets a

lower bound on how low the supply voltage can drop, the voltage can be reduced to

a subthreshold or a near-threshold voltage to boost the energy efficiency remarkably.

Subthreshold circuit design has attracted many researchers’ attentions in recent

years thanks to many emerging applications such as wireless sensor networks and

the IoT technology. Many ultra-low-power subthreshold CMOS systems have been

demonstrated recently with significantly improved energy efficiencies compared to

their superthreshold counterparts. Subthreshold logic design is relatively straight-

forward. The design process is essentially an optimization task that involves the
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Figure 5.1: Illustration of the energy per operation versus the supply voltage.

power-delay trade-off. On-chip subthreshold memory design, however, are much more

challenging. Despite the success in reducing the power consumption by operating cir-

cuits in the subthreshold region, reliability becomes the most serious issue. The

reduced supply voltage shrinks both the write and read noise margin significantly. A

more problematic issue is the serious degradation in the worst-case read stability and

writability because of global and local process variations.

Another requirement for the memory in a neural network hardware is a high

integration density. The size of the memory required by neuromohrphic computing is

enormous even for a moderate-size task. For different tasks, synaptic weights obtained

from learning need to be stored in the non-volatile memory when not being used. In

the future, it is expected that both the size of the problem and the number of problems

to which neuromorphic computing are applicable will grow rapidly. As a reference,

it is estimated that there are around 1014 synapses in a human brain. Even if we

treat each synapse as a 1-bit memory cell, the capacity of a human brain is in the

order of 100 Tb! Although the storage capacity of artificial neuromorphic hardware

might not need to be as high as a human brain, large storage spaces can lead to

much more powerful neuromorphic hardware. Instead of performing a single simple
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task, the hardware with more storage capacity is able to process multiple complex

inference and control tasks with human-level intelligence. One solution to avoid the

large storage requirement is cloud storage or cloud computing. However, storing

the synaptic weights or conducting the inference in the cloud might not be feasible

for many applications where the overhead of communication is large or low-latency

inference is needed. Therefore, high-density and low-power non-volatile memories are

critical components for future low-power neuromorphic computing.

The growing storage demands increasingly push the advance of flash memories.

Higher and higher density is achieved through technology scaling, multi-level storage,

as well as migration from a 2-D flash array to 3-D flash. All this technology advance-

ment, however, is achieved by sacrificing the reliability of the memory. Despite the

high density that modern memory systems can achieve, reliability becomes a major

problem [54]. In addition to the mature flash memories, many emerging memory tech-

nologies also provide new opportunities for more aggressive memory scaling. With

the advent of the memristor technology, the crossbar-based memristor memory be-

comes more and more attractive as an alternative high-density non-volatile memory

[108][109]. Despite its high density and high durability, the memristor crossbar suffers

from problems such as stochastic variations [110][111] and sneak path [112][113][114],

which jeopardize the reliability of the memory.

In order to tackle the reliability issue existing in the memory system of neuro-

morphic hardware, two techniques are introduced in this chapter. The first technique

utilizes an on-chip closed-loop compensation to mitigate the global variation, increas-

ing the reliability of the on-chip SRAM memory [115]. The second technique relies

on a more efficient error-correction method that can be used to improve the error

resilience of the non-volatile memory [116].
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Figure 5.2: Schematic of an 8T SRAM cell.

5.2 Counteract Variations in SRAM

In this section, how to improve the reliability of on-chip SRAM is discussed.

First, the static noise margin (SNM), the most important metric used to measure

the stability of an SRAM cell, is modeled semi-analytically, providing a fast and

direct way to analyze and estimate the reliability of the SRAM cells. An on-chip

compensation method is then introduced to mitigate the degraded stability of SRAM

cells.

5.2.1 Modeling of Variations in SNM

Characterizing variation in cell stability is necessary, considering the large number

of cells involved in an SRAM system. This is even more critical for SRAM systems

operating in the subthreshold region because of the larger variations in static noise

margin (SNM). Monte Carlo (MC) simulations are often carried out to capture the

worst-case read stability. However, MC simulations for a large array are often com-

putationally prohibitive. Importance sampling [117][118] was proposed as a powerful

technique to characterize the variation of SNM. By transforming the sampling density

function, MC simulations based on importance sampling are much more efficient than
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traditional full MC simulations. Nevertheless, many samples are still needed. There-

fore, an accurate statistical model in an analytical or a semi-analytical form is able to

help designers estimate the performance of the SRAM under process variation in the

early design phase without resorting to time-consuming MC simulations repeatedly.

Fig. 5.2 shows the typical configuration of an 8T SRAM cell. In the figure, the two

cell inverters consisting of N1, P1 and N2, P2 are of interest. N3-N6 can be omitted

for the purpose of analyzing the read (hold) SNM except that one has to be cautious

about the systematic mismatch introduced by N5 and N6. The voltage transfer char-

acteristic (VTC) of an inverter is an important tool to analyze the stability of an

SRAM cell. Most voltage-based SNMs can be calculated if the VTCs of cell inverters

are known. The drain current of an NMOS transistor operating in the subthreshold

region can be modeled as shown in (5.1) [119].

I = I0
W

L
e

VGS−Vth
nUT

(
1− e−

VDS
UT

)
(5.1)

where Vth is the threshold voltage, UT is the thermal voltage, n is the subthreshold

factor, W and L are width and length of the transistor, and I0 is a technology-

dependent fitting parameter.

For a CMOS inverter, let us define a quantity, called transition voltage VT , as

the input voltage that drives the output of the inverter to VDD/2. Mathematically,

this can be written as V TC(VT ) = VDD/2 where V TC(·) is the voltage transfer char-

acteristic of the inverter. It is well known that the variation of threshold voltage,

which is mainly caused by the random dopant fluctuation (RDF), is the dominant

source of the variation in cell stability in a subthreshold memory system [120][121].

This is because the exponential dependence of current on threshold voltage dilutes

the impacts brought by other sources. Therefore, only the variation in the thresh-

old voltage is modeled in this chapter. Threshold voltages are typically modeled as

83



- 5 - 4 - 3 - 2 - 1 0 1 2 3 4 5
- 0 . 1 0
- 0 . 0 5
0 . 0 0
0 . 0 5
0 . 1 0
0 . 1 5
0 . 2 0
0 . 2 5
0 . 3 0

∆ V t h n = 5 σ

3 σ

−σ
σ

- 3 σ

- 5 σ

V T (V
)

∆ V t h p  ( σ)

 N u m e r i c a l  S i m u l a t i o n
 A n a l y t i c a l

Figure 5.3: Transition voltages of an SRAM cell inverter as the threshold voltages of
the NMOS and PMOS transistor vary. The solid line is obtained with (5.2), whereas
the circles are obtained from the circuit simulation tool.

independent, normally distributed random variables with standard deviations of the

form AVth/
√
WL [122], where AVth is a technology-dependent constant. It can be

shown that the transition voltage of a cell inverter obeys a normal distribution with

a standard deviation of

σ (VT ) =

√(
np

nn + np

)2 A2
Vthn

WnLn
+

(
nn

nn + np

)2 A2
Vthp

WpLp
(5.2)

The transition voltage obtained from (5.2) and the one from the simulation tool

are compared in Fig. 5.3. In this chapter, a 65-nm technology is employed in the

simulation for demonstration purposes and all simulation results are obtained with

the Cadence Spectre. The threshold voltages of both NMOS and PMOS transistors

vary from −5σ to 5σ, corresponding to the worst variation of 5
√

2σ. The analytical

results match well with the numerical results except for the region where VT is negative

or close to zero. This discrepancy, however, is forgivable as a near- or sub-zero VT

implies an unreliable cell that cannot hold the data. In practice, most SRAM designs

have the objective of controlling the worst-case SNM to be larger than zero with some

margin.
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Figure 5.4: Illustration of (a) two VTCs in the nominal case and two VTCs under
process variation, and (b) VTCs under variation that are shifted by the same amount
such that VTC2 is moved back to its original location.

In the noise margin calculation, two single-sided SNMs can be found, which cor-

respond to two lobes of the butterfly curve. The double-sided SNM of an SRAM cell,

which characterizes the worst-case noise margin, is defined as the minimum of these

two single-sided SNMs. For analysis purposes, results for a single-sided SNM called

SNMS are developed first. The results will then be used to find the double-sided

SNM called SNMD. In order to find the single-sided SNM variation, a mapping

function g(x, y) is needed such that

M = g(X, Y ) (5.3)

where X and Y are random variables representing variations in the transition voltages

of the two VTCs used to calculate SNM and M is the single-sided SNM we are

interested in.

It is difficult to get an analytical expression for g(·) accurately. One alternative

way is to obtain g(·) numerically by running through different x and y. Careful

examination of the definition of SNM, however, reveals that a function g(·) with one

argument is sufficient for the mapping. Suppose the variation in transistors pushes
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VTCs of the inverters away from their original places by the amount of X and Y ,

as shown in Fig. 5.4(a). Then, the change in VT is also X and Y . By shifting both

VTC1 and VTC2 by −Y , VTC2 returns to its nominal place as shown in Fig. 5.4(b).

Therefore, the single-sided SNM can be obtained as

M = g(S) + Y (5.4)

where

S = X − Y (5.5)

Therefore, only a one-argument function g(s) is needed. Function g(s) can be obtained

by keeping the VTC of one inverter fixed and shifting the VTC of another inverter

for different s. The obtained single-sided SNM is the value of g(s).

To obtain an analytical expression for the distribution of a single-sided SNM,

another random variable is defined as

T = g(X − Y ) (5.6)

Without loss of generality, let us focus on the single-sided noise margin corresponding

to the upper-left lobe of the butterfly curve. g(s) is a strictly increasing function in

this case. Through the change of variable [123], the probability density function

(PDF) of M can be obtained as

fM(m) =

∫ +∞

−∞

fX (g−1(t) +m− t) fY (m− t)
g′ (g−1(t))

dt (5.7)

A typical g(s) is plotted in Fig. 5.5. There are three regions in g(s). When s is

small, SNMS is proportional to s with a slope approximately equal to 1, because this

is the region where VTC1 constrains SNMS. When s is large, SNMS is proportional

to s with a slope approximately equal to 0 because this is the region in which VTC2
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Figure 5.5: A typical mapping function.

constrains SNMS. Based on the nature of this curve, it is convenient to do a piecewise

linear fitting on g(s) such that

g(s) ≈ kis+ ai (5.8)

for

s ∈ (si, si+1), i = 1, 2, · · · , N (5.9)

where (si, ti) are knots for the piecewise linear fitting.

Then, (5.7) can be approximately written as

fM(m) ≈
N∑
i=1

∫ ti+1

ti

1

ki
fX

(
t− ai
ki

+m− t
)
fY (m− t)dt (5.10)

As X and Y are normally distributed random variables with a mean of zero and

standard deviations shown in (5.2), the integral in (5.10) can be analytically derived

and the final expression is

fM(m) ≈
N∑
i=1

[Ci(m, ti+1)− Ci(m, ti)]φ
(
m− ai
σi

)
(5.11)
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lation tool. Two sets of results match well, demonstrating that g(s) can be employed
for estimating the SNM.

where

Ci(m, ti) = Φ

(
(t−m)σi

2 + (ai −m)(ki − 1)σ2
Y

kiσXσY σi

)
(5.12)

σi =

√
k2
i σ

2
X + (k2

i − 1)
2
σ2
Y (5.13)

In the equations, φ(·) and Φ(·) are the PDF and the cumulative density function

(CDF) of the normal distribution.

It is noted that all the information needed for calculating the SNM is contained

in g(s), given (5.2) is held. To illustrate this, SNM calculated based on (5.2) and

(5.4) are compared with the results obtained directly from the simulation tool in Fig.

5.6. Two sets of results match well. Compared to the conventional linear model, the

proposed method requires similar or even less amounts of circuit simulations to model

the SNM variations. For example, 41 circuit simulations are necessary to generate

41 VTCs for points in Fig. 5.6 in order to utilize the linear model, whereas only one

circuit simulation is needed for the proposed algorithm to generate the VTC in the

nominal case. For SRAM cells operating in the superthreshold region, it is generally

assumed that the total SNM variation is a linear combination of SNM variations

caused by each transistor. Therefore, the slope of each curve at ∆Vth = 0 in Fig. 5.6
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is employed as the sensitivity of the SNM with respect to the threshold voltage of

that transistor. Correctness of this approach, however, is challenged in [120], as it is

found that sensitivity curves shown in Fig. 5.6 are dependent on each other. One

observation from (5.11) is that the PDF of a single-sided SNM is the sum of several

modulated Gaussian PDFs, meaning that the distribution of SNMS is not necessarily

normal. In the case where the variation of the transition voltage, which is ultimately

determined by the variation in threshold voltages, is not large, the variation of s is

kept local. g(s), in this case, can be represented by one straight line. Consequently,

(5.11) can be simplified to

fM(m) ≈ φ

(
m−m0

σ

)
(5.14)

where

σ =

√
k2σ2

X + (k2 − 1)2 σ2
Y (5.15)

and m0 is the SNM in the nominal case and k is the localized slope of g(·).

Equation (5.14) shows that the distribution of a single-sided SNM is normal when

the variation is not too large, which is the assumption that is widely used in the lit-

erature. Consequently, the conventional way of representing the total SNM variation

as a linear combination of SNM variations caused by transistors is an acceptable ap-

proximation. However, when the variation is large, the distribution starts deviating

from a Gaussian one. This observation is particularly useful because the variation of

the threshold voltage is growing as the technology advances, especially considering

that the transistors used for SRAM cells are usually with minimum sizes.

The simulation results of single-sided SNMs obtained from (5.11) are compared

with 20000-run MC simulations results obtained from the circuit simulation tool in

Fig. 5.7(a). To increase the efficiency of the MC simulations, an importance sampling

with 1.5 times larger standard deviation is employed. One nominal-case circuit sim-
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Figure 5.7: Comparison of the distributions of (a) the single-sided SNMs and (b)
the double-sided SNMs obtained from the conventional linear superposition model,
proposed model, and MC simulations. The results obtained with exaggerated (2x)
variations are also plotted to show the trend as variations grow in advanced technolo-
gies.

ulation is needed to help build the mapping function. The shifting of the VTC and

the calculation of SNMS are conducted in a programming tool. (5.2) is employed

to obtain the values of σX and σY . For comparison purposes, the SNM distribution

obtained with the conventional superposition method [124][125][126] are also plotted.

To demonstrate the trend as the variation in threshold voltage increases, the results

obtained with doubled variations are also plotted. In Fig. 5.7(a), the distributions

obtained from the MC simulations match well with our proposed model for the region

where SNM is positive. When the SNM is negative, the distribution obtained from

the MC simulations start deviating from the proposed model as a consequence of the

discrepancy between the estimated VT and the measured VT shown in Fig. 5.3. How-

ever, this estimation error when SNM is negative (or close to zero), again, is forgivable

as one rarely cares about SNM that is close to zero or even negative. To illustrate

this point, the same SRAM array with a supply voltage of 0.5 V is also simulated.

This is a more realistic supply voltage for an SRAM array with such a large threshold

voltage variations. In this case, the proposed estimation method accurately predicts

the distribution of the SNM. There exists a discrepancy between the proposed model
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and the conventional linear superposition model, and this discrepancy grows as the

variation increases.

After obtaining the distribution of SNMS, the tail of the PDF of the double-sided

SNM can be estimated by [120]

f(SNMD) = 2fSNMS
(1− FSNMS

) (5.16)

The exact distribution of SNMD can actually be derived with the help of an

inequality

g−1(T )− 2T + 2M < 0 (5.17)

This inequality corresponds to the unshaded region shown in Fig. 5.5. Suppose the

two intersects of the mapping function and the boundary of the region corresponding

to (5.17) are tA and tB. Then the PDF of the double-sided SNM is given by

fSNMD
(m) =

∫ tB

tA

fX (g−1(t) +m− t) fY (m− t)
g′ (g−1(t))

dt (5.18)

Once (5.18) is obtained, the piecewise linear fitting technique described before

can be used to calculate the PDF of the double-sided SNM. Equations similar to

(5.11)-(5.13) can be obtained except, in this case, the sum only runs through knots

between tA and tB. One thing should be noted is that tA and tB are functions of m.

Therefore, they have to be calculated for each m that is of interest.

The distributions of the double-sided SNMs obtained from the model in (5.18)

are compared with the results estimated from the conventional linear model and

MC simulations, as shown in Fig. 5.7(b). The proposed model predicts the whole

distribution well, whereas the conventional model can only predict the tail with a

limited accuracy. To show the trend of increasingly worsened variations in advanced

technologies, the results obtained with twice as many variations as the employed
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technology (65 nm) are also shown. A similar trend is observed in the double-sided

SNMs as well: the proposed method can accurately predict positive SNMs. We also

compare the results obtained with a supply voltage of 0.5 V. This is, again, a more

realistic supply voltage for such serious threshold voltage variations. As the variation

gets worse, the discrepancies between the results obtained from the MC simulations

and the conventional linear superposition method increase, whereas the proposed

method matches well with the MC simulation for regions where SNMs are positive.

5.2.2 Adaptive Body Biasing

To counteract threshold voltage variations, one straightforward way is to increase

the transistor sizing in a cell [121]. This way of remedy, however, introduces a large

area penalty. Mismatches in transistors induced by the RDF are uncorrelated [122].

Therefore, compensation for local variation is not feasible. The global variation,

however, can be sensed and compensated accordingly. To counteract performance and

yield degradation caused by the variation, body biasing is introduced as an effective

and efficient technique. In [127], an operational amplifier is employed to adjust the

body bias. This method, however, has at least three disadvantages. First, an op-amp

with a wide input common mode range and a rail-to-rail output is hard to build under

subthreshold supply voltages. Second, a current source, a block that is often absent

in SRAM, is needed. Third, the offset of the employed op-amp might introduce a

significant error. In [128], two inverters are employed as error amplifiers and feedback

is used to correct the body bias. However, the stability of the feedback system is

not discussed and the circuit only supports a balanced P-N ratio. In an SRAM cell,

however, a stronger NMOS is often desired for a more robust write operation. In [129],

an open-loop system is employed to generate a proper bias. However, considering

process, voltage, and temperature variations, a feedback system is more suitable. In

this section, an adaptive body biasing circuit is proposed to compensate for the global
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Figure 5.8: (a) Conceptual diagram of the proposed adaptive body biasing circuit.
(b) Simplified equivalent circuit of (a).

variation. Simple circuit structures are used to achieve a negligible area and power

consumption overhead. A stabilization technique inspired by the ring amplifier is

introduced to stabilize the feedback loop.

To mitigate the threshold voltage variation, an adaptive body biasing technique

is introduced in this section. A simple yet powerful body bias generation circuit

is proposed, which senses global threshold voltage variations and then adjusts the

body bias of SRAM cells for compensation. The circuit conceptually consists of only

inverters, as shown in Fig. 5.8(a). To better understand how the proposed circuit

functions, its simplified equivalent circuit is shown in Fig. 5.8(b). The first-stage

sensing inverter senses and amplifies the difference between the desired transition

voltage V ∗T and the actual transition voltage VT . Two other inverters are employed

as an error amplifier to further amplify the error. The error signal is then fed back

to the cell inverter for a feedback control. The block T shown in the figure is the

transfer function that models the relationship between the bias voltage of the cell

inverter and the transition voltage of that inverter.

In this section, we use the body bias of PMOS transistors as an example, as this

type of body biasing does not require any special option such as the triple-well process.

Nevertheless, the proposed technique can be readily applied to the body biasing of

NMOS transistors. Two examples of the proposed biasing circuit are shown in Fig.

5.9(a) and Fig. 5.9(b). The circuit shown in Fig. 5.9(b) requires an additional
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Figure 5.9: Configuration of the proposed adaptive body biasing circuit. (a) One
example of generating body bias to mitigate the read SNM degradation when the
global variation is present. V ∗T is the desired transition voltage. (b) Another example
of generating body bias to mitigate the read SNM degradation. In the figure, VDD2 >
VDD1.

supply voltage so that the tuning range of the body bias can be enlarged. Despite

its simplicity, one thing that needs to be ensured for the proposed adaptive biasing

circuit is the stability. Inspired by the stabilization technique employed in a ring

amplifier [130], an offset is introduced by the pseudo-resistor in Fig. 5.9(a) and Fig.

5.9(b) in order for the two transistors at the output stage to conduct a small amount

of current in the steady state. Therefore, a dominant pole is formed at the output

stage, which helps stabilize the feedback circuit. In addition, the output of the biasing

circuit is connected to bodies of many transistors in an SRAM array. The parasitic

capacitance and body leakage current also help stabilize the loop.

5.2.3 Overheads

Fig. 5.10 shows a diagram of how the proposed body biasing circuit can be in-

cluded in an SRAM array. The layout of the sensing inverters should resemble invert-

ers in an SRAM cell to reduce systematic mismatch. One possible way of achieving
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Figure 5.10: Configuration of the proposed adaptive body biasing circuit in an SRAM
array.

this similarity is to have the same device placement and interconnect routing in the

sensing cells as those in an SRAM cell. Contacts, however, are used differently to form

the connection needed in a sensing inverter, as shown in Fig. 5.10. Furthermore, in

order for the sensing inverters to accurately capture the global threshold voltage, the

number of sensing cells, K, has to be large enough to overcome the local variation. If

we assume the biasing circuit has a large enough gain to bias the transition voltage of

the sensing inverter to the desired voltage, then the variation (both global and local)

of the transition voltage of an SRAM cell inverter with the adaptive biasing is

σ′(VT ) =
√

(σ2
sense(VT )) + σ2(VT ) (5.19)

where σsense(VT ) = σ(VT )/
√
K

The above result is obtained by assuming there is no spatial correlation in the

threshold voltage variation. This assumption is supported by [122], where no notice-

able spatial correlation in threshold voltages was observed. To suppress the variation
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introduced by the sensing cell inverters, we require that σsense(VT )� σ(VT ). Accord-

ing to (5.19), a K of 16 is enough to effectively control the variation introduced by

the inaccurate sensing to be approximately 3% of the local mismatch in the target

technology.

The second stage of the proposed circuit splits input from the sensing stage into

two outputs with an offset. The pseudo-resistor employed also helps in tracking

variations in supply voltage. The output stage is used to bias bodies of PMOS

transistors. Both the huge amount of parasitic capacitance associated with body

nodes and the leakage current from the body help in stabilizing the circuit. It is

found in the implementation that a phase margin of around 90 degrees can be met

once the output is applied to an array of SRAM.

Current flowing in the output stage should be designed larger than the junction

leakage current such that a moderate gain can be kept to maintain the correct voltage

value. The overhead, in terms of the power consumption, can be estimated as

IABB
IDLeak

=
K

2N
e

VDD
2nUT +

BIB
ID

(5.20)

where K is the number of sensing inverters, and N is the number of SRAM cells, B

is a design parameter, IB is the junction leakage current, and ID is the subthreshold

leakage current. When the size of the SRAM array is small, the power consumption of

the proposed adaptive biasing circuit is dominated by the sensing stage, corresponding

to the term K
2N
e

VDD
2nUT in (5.20). This is because a moderate number of inverters are

needed to overcome the local variation. For example, a rough estimation according

to (5.20) is that 16 sensing inverters incur a power consumption that is less than 1%

of the leakage power of an SRAM array with 40 K cells. The power consumption of

sensing inverters is quickly diluted as the size of the SRAM array increases. When the

size of the SRAM array grows large, power is mostly consumed by the output stage
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Figure 5.11: (a) Transition voltage and (b) body bias voltage of an SRAM cell inverter
at different process corners with the help of the circuit shown in Fig. 5.9(a).
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Figure 5.12: (a) Transition voltage and (b) body bias voltage of an SRAM cell inverter
at different process corners with the help of the circuit shown in Fig. 5.9(b).

in order to counteract the body leakage. This power consumption scales linearly with

the size of the SRAM array. The junction leakage in a transistor is normally much

smaller than the subthreshold leakage [131], which keeps the term IB/ID small. It is

found that the power consumption of the proposed biasing circuit is less than 0.4%

and 1% of the leakage power of a 100 Kb SRAM under a supply voltage of 0.3 V for

circuits shown in Fig. 5.9(a) and Fig. 5.9(b), respectively.
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5.2.4 Implementation Examples

Simulations are carried out to demonstrate the effectiveness of the proposed body

biasing circuit. Fig. 5.11(a) compares the transition voltage VT of an SRAM cell

inverter with and without the proposed body biasing. The comparison is conducted

for various desired transition voltage V ∗T under different process corners. Fig. 5.11(b)

shows how the corresponding body bias varies with V ∗T under different process cor-

ners. In the TT (NMOS typical/PMOS typical) case, VT obtained with the proposed

adaptive body bias follows the desired transition voltage V ∗T applied at the input

of the biasing circuit. As V ∗T increases, the body bias signal VB generated by the

proposed circuit decreases to strengthen the PMOS transistor in order to shift the

VTC towards the right. In this case, Fig. 5.11(b) shows that the body bias VB can

swing rail to rail. This is one advantage of the proposed body biasing scheme. In

the FS case (NMOS fast/PMOS slow), the generated body bias stays at a low volt-

age, attempting to compensate for the weak PMOS transistor because of the global

threshold voltage variation. Limited by the finite tuning range of the body bias, the

actual VT is not able to follow the desired V ∗T accurately. Nevertheless, the resultant

VT is closer to the desired value, leading to a less spreading VT . In the SF corner

(NMOS slow/ PMOS fast), the body bias signal is close to VDD, leading to a VT close

to the uncompensated value. This is because the body bias is bounded by the supply

voltage. In order to provide a more effective compensation for the SF corner, the cir-

cuit shown in Fig. 5.9(b), which has a wider tuning range, is simulated. The obtained

results are compared in Fig. 5.12(a) and Fig. 5.12(b). The generated body bias and

the obtained VT in the FS corner are similar to those achieved in Fig. 5.11(a) and

Fig. 5.11(b), as the lowest body bias available in both circuits are zero. In the TT

case, however, the range where VT follows V ∗T obviously enlarges, thanks to the larger

tuning range of VB, as illustrated in Fig. 5.12(b). In both the TT and SF corner, the

body of the PMOS transistor can be reversely biased to weaken the PMOS transistor
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Figure 5.13: Comparison of the read SNM obtained with and without the proposed
adaptive body biasing circuit as the threshold voltages of the PMOS transistor and
the NMOS transistor vary. (a) The results are obtained with the circuit shown in
Fig. 5.9(a). (b) The results are obtained with the circuit shown in Fig. 5.9(b)

that is stronger than desired because of process variations.

To study how the proposed adaptive body biasing circuit can be helpful in mit-

igating the degradation of SNM, which is caused by global process variations, Fig.

5.13(a) and Fig. 5.13(b) compare the double-sided SNMs of an SRAM cell with and

without the proposed body bias scheme under different levels of variations. In the

figures, variations in the threshold voltages of both NMOS and PMOS transistors are

swept together to study the worst-case scenario. For example, in Fig. 5.13(a) and

Fig. 5.13(b), the numbers on the x-axis represent the amount of variations ∆Vthn and

∆Vthp. As shown Fig. 5.13(a), the read SNM is improved wherever a body biasing is

effective. A 15% improvement is achieved for the worst-case SNM with the proposed

biasing technique. The percentage of improvement is normalized with respect to the

nominal SNM. In Fig. 5.13(b), the SNMs at both the SF and FS corners are improved

as the body bias voltage can swing both sides.

It is worth pointing out that even though the proposed adaptive biasing circuit is

aimed at reducing SNM variation caused by global process variations, it can also be

used for variations introduced by other sources, e.g. the negative bias temperature

instability (NBTI) effect [132].
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5.3 Improved One-Pass Chase Decoding of BCH Codes

To counteract the increasing unreliability introduced by the aggressive memory

scaling, error corrections are often needed. Bose-Chaudhuri-Hocquenghem(BCH)

codes are widely employed in flash memories to support a high memory throughput

with low energy consumption [133]. During the normal operation, a hard-decision de-

coding of BCH code is used. When storage cells are damaged, the soft-decision BCH

decoding may be activated to provide strong error-correcting performance. Chase

decoding is a good candidate for this purpose because of its compatibility with a reg-

ular hard-decision BCH decoder and the ease of implementation. The conventional

Chase decoding algorithm, however, is only practical when the number of extra error-

correcting bits is few, as the computational complexity of the algorithm scales ex-

ponentially with the number of extra correcting bits. To extend the error-correcting

capability of the Chase decoding algorithm, a one-pass Chase decoding method was

proposed in [134]. The decoding complexity of this algorithm is significantly lowered,

enabling the soft-decision Chase decoding with better error-correcting capabilities to

be deployed in real applications.

To implement the one-pass Chase decoding algorithm, hardware architecture was

discussed in [135]. Zeros in the error locator polynomial corresponding to the flipped

bits were taken out to maintain the order of the polynomial, reducing the compu-

tational efforts. In that work, it was stated that most area and power consumption

were spent on the highly parallel Chien search that runs as fast as the polynomial

update block. An interpolation-based Chase decoding algorithm was developed in

[136] to avoid the expensive parallel Chien search. A 2.3 times higher efficiency was

reported in that work.

To better accommodate the one-pass Chase decoding algorithm, an eligibility ver-

ification algorithm is proposed in this chapter. The algorithm checks if the obtained

error locator polynomial from the polynomial update algorithm or the Berlekamp’s
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algorithm is able to generate a correct error pattern such that the corrected code is

a valid code word. The main motivation of the proposed algorithm is that an invalid

polynomial can be easily detected without actually finding out all roots of that poly-

nomial. The problem of checking the eligibility is first converted into a problem of

calculating polynomial modulus. The calculation of the modulus can then be conve-

niently solved by repeated squaring. In addition, to further reduce the computational

complexity, as well as the critical path delay in a hardware implementation, a poly-

nomial inversion algorithm is proposed. An efficient hardware architecture is then

proposed to build the algorithm. To verify the efficacy of the algorithm and hardware

architecture, a design example is presented. Compared to the conventional exhaustive

searching, the proposed algorithm achieves a reduction of 88% in gate counts.

5.3.1 One-Pass Chase Decoding

The standard way of decoding a BCH code is through the Berlekamp’s algorithm.

It is a hard-decision decoding (HDD) algorithm. That is, all bits in a received word are

treated equally. Such an HDD decoding algorithm works well whenever the number of

errors is less than t, the error-correction capability of BCH codes. The Chase decoding

is a type of soft-decision decoding (SDD) method. An SDD method leverages the soft

information, i.e. the reliability of each bit in a word, to decode. The main motivation

of the Chase decoding algorithm is that a less reliable bit has a higher chance of

being wrong. Therefore, the Chase decoding algorithm flips η least reliable bits in a

received word one by one and then attempts to decode the modified word to see if

the corrupted word can be recovered correctly.

The most straightforward and the widely adopted way of implementing the Chase

decoding in hardware is to use the existing BCH HDD circuit iteratively with control

circuit generating different testing patterns [137][138], as illustrated in Fig. 5.14(a).

For every error pattern, a new testing word is generated and the HDD decoder is
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Figure 5.14: Illustration of (a) the conventional and (b) the one-pass Chase decoding
of BCH code.

applied with the attempt to find the correct word. This way of decoding requires

applying the power-hungry Berlekamp key equation solver and the Chien search mod-

ule 2η times for decoding. Such an exponential growth in computational complexity

restricts η to be a small number (typically one or two), yielding only a marginal

performance improvement compared to an HDD decoder.

To circumvent the aforementioned difficulty, a one-pass Chase decoding algorithm

was proposed in [134]. The original work was for Reed-Solomon (RS) codes, but it

can be easily adapted for BCH codes. This algorithm is based on the observation

that the error-locator polynomial for a new testing word can be easily obtained if

the polynomial for another testing word, which is close to the new word in Hamming

distance, is known, as shown in Fig. 5.14(b). Therefore, the Berlekamp’s algorithm

needs only to be applied once to obtain the starting error-locator polynomial. Other

error-locator polynomials corresponding to different error patterns can then be derived

easily from the starting polynomial by using the polynomial update algorithm in
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[134][135].

5.3.2 Eligibility Verification Algorithm

With the one-pass Chase decoding algorithm, the decoding of a BCH code with

Chase decoding can be very efficient. Nevertheless, the highly iterative Chien search

is still needed for each newly-generated codeword to examine whether the obtained

codeword is a valid one. This process has been shown to be the most power and area

consuming part in the algorithm [135]. In this section, how this costly step can be

by-passed is discussed.

It has been shown in [139] that the sufficient and necessary conditions for an error

locator polynomial to locate errors such that a legal (not necessarily correct) word

can be recovered are as follows:

1) The error locator polynomial Λ(x) has exactly e distinct non-zero roots in

GF(2m).

2) LΛ = e, where LΛ is the length of the linear feedback shift register (LFSR)

described by Λ(x).

It is also known that dΛ ≤ LΛ [140], where dΛ is the degree of the polynomial Λ(x).

Consequently, the process of verifying an error locator polynomial can be divided into

two cases:

1) If dΛ 6= LΛ, then the error locator polynomial is not a valid one.

2) If dΛ = LΛ, then check whether the number of distinct non-zero roots of Λ(x)

is equal to dΛ. If they are not equal, then the error locator polynomial is not a valid

one.

The condition dΛ = LΛ can be easily checked by identifying the location of the

first non-zero coefficient in Λ(x). Furthermore, it is found in simulations that this

condition is satisfied in most of the time even when the error locator polynomial is

not a correct one. Therefore, counting the number of roots that Λ(x) has is the key
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to determining whether the obtained error locator polynomial is valid. Zero roots

in Λ(x) can be identified by checking whether Λ0 is zero. Λ(x) with a zero root is

discarded right away without further processing. Therefore, in the remainder of this

section, it is assumed that Λ(x) does not have a root that is equal to zero.

An auxiliary polynomial d(x) is defined according to (5.21), where the operator

gcd(a, b) stands for finding the greatest common divisor of a and b. As x2m − x has

all the elements in GF(2m) as its roots [138], it can be shown that the degree of d(x)

is equal to the number of roots that Λ(x) has.

d(x) := gcd
(
x2m − x,Λ(x)

)
(5.21)

Euclideans algorithm can be employed here to obtain a further simplified expres-

sion

d(x) = gcd
((
x2m − x

)
mod Λ(x),Λ(x)

)
(5.22)

Following (5.22), it can be proven that the sufficient and necessary condition for

Λ(x) to have dΛ distinct non-zero roots in GF(2m) is

x2m mod Λ(x) = x (5.23)

(5.23) is too expensive to be computed directly when m is large. Fortunately,

squaring and multiply [141] can be utilized here to save a significant amount of com-

putational labor. In addition, because 2m is a power of 2, what we really need is just

repeated squaring (that is, not even multiply). More specifically, we can calculate

x2m iteratively as follows, starting from the trivial case:

x2blog2(dΛ−1)c
mod Λ(x) = x2blog2(dΛ−1)c

(5.24)
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We then can compute x2i+1
mod Λ(x)from x2i mod Λ(x) as

x2i+1

mod Λ(x) = fi(x) mod Λ(x) (5.25)

where

fi(x) =
(
x2i mod Λ(x)

)2

(5.26)

By doing this, only m−blog2(dΛ−1)c polynomial modulo operations are needed to

compute x2m mod Λ(x). Each polynomial modulo operation is at most of order t. To

carry out the modulo operation, an old-school long division can be employed. Each

modulo operation takes about d2
Λ multiplications. One problem with this straight-

forward implementation is that the critical path is long, as shown in Section 5.3.3.

Considering that the divisors in all modulo operations are Λ(x) (see (5.22)-(5.26)), it

is worth spending some effort on converting Λ(x) into a form with which the division

in the following stages can be performed more efficiently. Inspired by the algorithm

in [142], we propose the following polynomial inversion algorithm to help improve the

efficiency and critical path delay of the polynomial division.

Let Λr(x) represent the polynomial with all the coefficients arranged in a reverse

order of Λ(x). That is, Λr(x) = Λ0x
dΛ + Λ1x

dΛ−1 + · · ·+ ΛdΛ
. Similar notations apply

for other polynomials. Then it can be shown that the reverse quotient polynomial

can be computed as

qri (x) = Λ̂r(x)f ri (x) mod xdΛ−1 (5.27)

where Λ̂r(x) is defined as the inverse polynomial of Λr(x) such that

Λr(x)Λ̂r(x) = 1 mod xdΛ−1 (5.28)

Λ̂r(x) can be conveniently computed through an iterative algorithm. Let Λ̂r
i (x)

be the polynomial such that Λr(x)Λ̂r
i (x) = 1 mod xi, then it can be shown that by
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setting the initial condition and iterative updating equation as (5.29) and (5.30), one

can obtain Λ̂r(x).

Λ̂r
1(x) = Λ−1

dΛ
(5.29)

Λ̂r
i (x) = Λr(x)

(
Λ̂r
j(x)

)2

mod xi (5.30)

where j ≥ di/2e.

It is noted that in (5.30), only unknown coefficients need to be calculated. The

process of computing Λ̂r(x) takes one inversion, (dΛ − 1)/2 squaring, (dΛ − 1)2/4 +

(dΛ − 1)/2 multiplication and (dΛ − 1)2/4 − (dΛ − 1)/2 addition when dΛ − 1 is a

power of two. As will be shown in Section 5.3.3, the computational complexity of

deriving Λr(x) is much less than the complexity of computing (5.25). Furthermore,

pre-computing Λr(x) can actually save efforts for computing (5.25).

One thing should be noted is that the derivation of the proposed algorithm implic-

itly assumes that the BCH code is not shortened. Therefore, the proposed algorithm

is not rigorously applicable to shortened BCH codes. It is theoretically possible for

the error locator polynomial of a shortened BCH code to have the correct number

of roots over GF(2m), yet one or more of these roots are not in the valid range. In

this case, the proposed algorithm fails to detect the invalid error locator polynomial,

whereas the exhaustive Chien search is still able to. Simulation, however, shows that

the probability of this malfunction is unnoticeably low. Therefore, we argue that the

proposed algorithm can be applied to a shortened BCH code for practical purposes.

5.3.3 VLSI Architecture

Even though the proposed algorithm can be used for polynomials with arbitrary

degrees, it is, in practice, enough to check polynomials with a degree of t. By do-

ing this, the hardware complexity can be significantly reduced without a noticeable

performance degradation. Fig. 5.15 compares the performance achieved by an SDD
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Figure 5.15: Comparison of the error-correction performances of an HDD, an SDD
with exhaustive polynomial search, and an SDD with the proposed eligibility checking
algorithm. The BCH code used here is a (4200, 4096) code over GF(213).

employing the proposed eligibility verification algorithm with the performance of an

SDD using direct polynomial search and the performance of an HDD. In the proposed

eligibility checking algorithm, dΛ is set to t. That is, the verification process only runs

on the polynomials with a degree of t. For the polynomials with degrees less than

t, they are adopted as valid solutions. It is shown in the figure that, the proposed

eligibility verification algorithm can effectively identify valid error locator polynomi-

als. The performance of the proposed algorithm is degraded neither by applying the

algorithm to a shortened BCH code nor by only running verification on polynomials

with a degree of t.

A VLSI architecture of the proposed eligibility checking algorithm is shown in Fig.

5.16. There are three main blocks: block I and II are for polynomial multiplication

and block III is used for polynomial inversion. The pipelining can be used in order to

improve the throughput of the system. There are mainly three finite field operations

shown in Fig. 5.16 besides the standard multiplex, delay and compare operations. The

first operation is subtracting polynomials in a finite field. This operation can be done

by simply doing bitwise XOR operations on each coefficient of the two polynomials.

The second operation is squaring a polynomial in a finite field, which can be achieved
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Figure 5.16: A VLSI architecture of the proposed eligibility checking algorithm. Block
I and II conduct multiply and modulo operations, and Block III conducts polynomial
inversion operation.

by squaring each coefficient of the polynomial. The third operation is to multiply and

modulo polynomials. This is the main operation in the proposed algorithm. It can be

formulated as a matrix-vector multiplication where the matrix is a Toeplitz matrix.

Thanks to the unique property of Toeplitz matrices, the multiplication-and-modulo

operation can be efficiently conducted by employing the circuit shown in Fig. 5.17. In

this figure, the diagonal multipliers share the same multiplicands bi. The multipliers

at the same columns share the same multipliers ai. Products at the same row are then

added by a XOR tree to get the final results ci. Since a finite field multiplication can

be expressed as a matrix-vector multiplication, matrices associated with the shared

multiplicands only need to be calculated once and distributed along the diagonals,

reducing gate counts and the critical path delay.

The hardware complexity of the main blocks in the proposed eligibility checking

circuit is summarized in Table 5.1. The proposed circuit has an area-latency product

in the order of (m− log2 t) t
2. This is much less than nt, the area-latency product of

a conventional exhaustive search. The area-latency product is defined as the product

of the number of multipliers and the number of clock cycles needed to complete the

task. It serves as a quick estimation of how the complexity of the circuit grows with
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Figure 5.17: Diagram of the proposed polynomial multiplication array. Same multi-
plicands bi are shared along diagonals, and multipliers ai are shared along columns.
Multiplication results ci are obtained by adding each row with XOR trees.

the size of the problem. The reason that only finite field multipliers are counted is

that they dominate the area of the circuit. To give an immediate comparison, the gate

count ratio between the proposed algorithm and the conventional method is less than

(n−k)/n, which is the redundancy ratio of an error-correction code. The redundancy

ratios in most memory systems are much less than one. Even though the employed

non-constant multiplier takes larger area than the constant multiplier employed in the

Chien search, the savings in area-latency product is still significant, as will be shown

in Section 5.3.4. In addition, the diagonal-sharing technique mentioned above also

helps reduce the gate counts effectively. Furthermore, compared to the straightfor-

ward implementation with a long division that requires (m− log2(t)) t2 multipliers,

the proposed algorithm only needs approximately 3 (m− log2(t)) t2/4 multipliers, re-

ducing the gate count by roughly 25%. This saving is achieved by pre-computing the

inverse polynomial Λ̂r(x).

5.3.4 Design Example

In this section, the proposed eligibility checking circuit is implemented for a

(4200, 4096) code over GF(213). Inversion of Λ−1
dΛ

and block III are pipelined with
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Table 5.1: Summary of hardware complexity of the proposed eligibility verification
circuit

# of multiplier # of adder Critical path delay # of cycles

I t(t+2)
4

t(t−2)
4

Dmul +Dadd · log2

(
t−1

2

)
m− blog2(t− 1)c

II (t−1)(t+2)
2

t(t−1)
2

Dmul +Dadd · log2(t− 1) m− blog2(t− 1)c
III t

2
t
2
− 1 Dmul +Dadd · log2

(
t
2

)
t

block II and III. The process of eligibility verification takes 11 clock cycles.

The comparisons of the gate counts and the critical path delay are summarized

in Table 5.2. In this design example, the finite field multiplier and squaring circuit

that were proposed in [143] are used. The multiplier in [143] is not the optimal

choice in terms of gate counts. It is adopted in our design example because of its

simplicity. More sophisticated multipliers such as those in [144] can be employed to

further reduce the gate counts. In the table, the numbers of flip-flops are directly

read out from the synthesized netlists and the combinational gate counts reported

by the employed synthesis tool are converted to equivalent NAND2 gate counts for

comparison.

Table 5.2: Comparison of hardware complexity and critical path delay

Algorithm Sub-block NAND2 Registers Critical path delay

Polynomial inversion 634 94 DAND + 6DXOR

Proposed
algorithm

Polynomial multiplication 39K 104 2DAND + 13DXOR

Total 46K 453 2DAND + 13DXOR

Exhaustive
polynomial
search

416K 485 6DAND + 6DXOR

As shown in the table, the gate counts of the proposed eligibility checking circuit

are only around 12% of the exhaustive Chien search. This number can be further

projected to estimate the overall savings in the area of the entire decoder. In [135],

it is shown that the polynomial searching block occupies an area that is 85% of the

total area of the decoder. Therefore, it is estimated that the proposed eligibility
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verification circuit can reduce the area of the one-pass Chase decoder by 75% while

having a similar performance. Furthermore, thanks to the polynomial inversion step,

the critical path delay of the proposed circuit is reduced to a value similar to that of

the Chien search.

The proposed design and the conventional Chien search block are synthesized in

a 65-nm technology using Synopsys Design Compiler. The synthesized designs are

then automatically placed and routed with Cadence Encounter. The areas of the

obtained layouts are reported in Table 5.3. The netlists obtained after place and

route are simulated using Synopsys Finesim with extracted interconnect parasitics.

The power consumption and the critical path delay are simulated. The maximum

clock frequency reported in Table 5.3 is calculated according to the simulated critical

path delay with a 10% margin. As noted from Table 5.3. The proposed eligibility

checking circuit is 20 times more power-efficient than the conventional exhaustive

Chien search. The savings in power consumption is larger than the area saving ratio.

This can be attributed to the fact that the conventional Chien search has a larger

activity factor.

Table 5.3: Summary of the proposed design

This work Conventional

Equivalent NAND2 gate count 49K 418K
Area after place and route 67, 600µm2 640, 000µm2

Power consumption @ 1.2 V & 400MHz 21.9 mW 408mW
Maximum clock frequency 568 MHz 455 MHz

5.4 Chapter Summary

In this chapter, architecture- and circuit-level techniques are employed to reduce

the power consumption of the memories in neuromorphic systems while improving

the reliability. Two studies are presented.
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The first study focuses on compensating for the variations in on-chip SRAM mem-

ories. The variation in SNMs is analyzed. A statistical model for SNMs is proposed

to provide a quick way to estimate the reliability of the SRAM cells, thus avoiding the

repeated uses of time-consuming MC simulations at the design time. To counteract

global process variations, an adaptive body bias generation circuit is proposed. Feed-

back is employed to control the transition voltage of a cell inverter. A stabilization

technique inspired by the ring amplifier is applied to the proposed bias generation

circuit. Two examples are provided along with the simulations results. It is shown

that a 15% improvement can be achieved for the worst-case read SNM.

In the second study, we present a novel eligibility verification algorithm aimed

at avoiding the area and power consumption penalty incurred by the parallel Chien

search in a conventional one-pass Chase soft-decision BCH decoder. The proposed

algorithm can effectively check the correctness of a derived error locator polynomial

by counting the number of roots it has. In addition, an iterative polynomial inversion

algorithm is presented to reduce the area and the critical path delay. A hardware

architecture for the proposed algorithms is also presented in this chapter. Hardware

complexity is carefully examined. A design example is implemented for a (4200, 4096)

code over GF(213). The obtained gate counts and critical path delay are compared

with a conventional design. Our newly proposed design achieves more than 88%

area reduction while having a similar critical path delay. This translates into a 75%

reduction in the overall decoder area.
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CHAPTER VI

Conclusion

6.1 Summary and Contributions

The looming end of Moore’s law drives researchers to look for promising alterna-

tives to the conventional ways of computing. This dissertation aims at developing

energy-efficient neural network hardware for energy-constrained applications. In or-

der to achieve this ultimate goal, innovations in algorithms, architectures, and circuits

are made.

Chapter II introduces a bio-inspired learning algorithm that can train spiking

neural networks in hardware effectively and efficiently. It investigates the possibil-

ity of using an STDP-like supervised learning algorithm in a deep neural network.

Through estimating the gradients based on spike timing information, a learning pro-

cess similar to that of a conventional ANN can be achieved. Two neural networks

performing MNIST hand-written digits recognition tasks are employed as examples

to demonstrate the efficacy of the proposed learning algorithm.

With the learning algorithm developed in Chapter II, an efficient hardware archi-

tecture is proposed in Chapter III. The new architecture is based on an event-driven

computational model. In addition, a cache structure is employed to reduce the mem-

ory requirement, considering the sparsity in the neural networks. Furthermore, local

storage buffers are leveraged to hide the latency of updating spike timing information,
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which helps boost the throughput of the system. The architecture is implemented

in a 65-nm technology and how the inference duration can be utilized as a run-time

knob to trade off accuracy for energy and throughput is demonstrated.

Chapter IV presents a neural network accelerator for the ADP algorithm. Data-

level parallelism in the matrix-vector multiplication is exploited through a SIMD

architecture. The proposed accelerator can be programmed through the customized

instruction set in order to accommodate various tasks. In addition, a virtual up-

date algorithm is proposed to exploit the inherent computational patterns existing

in the ADHDP algorithm. The proposed technique effectively increases the through-

put and reduces the power consumption of the accelerator, resulting in a significant

improvement in energy efficiency.

Chapter V addresses the concern about the reliability of the memory circuitry

used in neural network hardware. Two techniques are proposed in this chapter to deal

with both volatile SRAM memory and non-volatile memory such as flash. A feedback

compensation technique is presented to counteract the global process variation, im-

proving the worst-case read static noise margin. In order to increase the throughput,

as well as the energy efficiency of the error-correction circuit used in flash memory,

an algorithm is proposed to break the bottleneck existing in a conventional one-pass

Chase decoding algorithm. With the proposed algorithm and hardware architecture,

the energy efficiency of the error-correction circuitry is significantly improved.

6.2 Future Work

There is still a long way to go before achieving brain-like computing in hardware.

The problem becomes even more complicated when power consumption is also a major

design consideration.

One future direction is to employ the proposed learning algorithm in more com-

plicated neural networks, such as convolutional neural networks and recurrent neural
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networks. Even though the proposed learning algorithm is still valid in these net-

works, suitable hardware architectures need to be developed to accommodate the

more complicated network structures with a weight sharing.

Another research direction is to build neuromorphic hardware based on emerging

nanotechnologies, e.g. memristors. One problem of using memristors in neural net-

work hardware is that a neural network that is trained off-line with the device model

might not work well after being mapped to a physical network on the chip because

of both the spatial and temporal variations in memristor devices. With the proposed

on-line learning algorithm, however, the training can occur directly on-chip. Such

on-chip learning can effectively compensate for the variations.
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