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To those who have faith in the possibility of a world where every

human has the opportunity to follow her/his interest and flourish

her/his talent, a world where no individual is deprived from the

basics of a descent life, and a world where people are in coopera-

tion to grow not at war to destroy. Such world will come true only

by the efforts and contributions of those who believe in it.
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ABSTRACT

This thesis presents Cyber-Physical Systems Design (CPS Design). Design of CPS is chal-

lenging and requires interdisciplinary studies of engineering and economics because of the dis-

tinguishing features of CPS: strategic (self profit-maximizing) decision makers, complex physical

constraints, and large-scale networked systems. We study these features by focusing on designing

markets with complex constraints including both policy and physical constraints, and decomposing

large-scale CPS within the context of electricity markets and network security.

We first study market design for implementation of complex electricity policy targets, i.e. sus-

tainability, reliability, and price efficiency, by efficient design of spot, carbon, and capacity markets

that correct the deficiencies of the current electricity markets; this design does not take into account

the network constraints due to the Kirchhoff’s laws. To address this problem, we develop a frame-

work based on the design of efficient auctions with constraints. Our market design sheds light on

major debates in electricity policy including capacity-and-energy vs energy-only markets, carbon

market vs carbon tax, and use of price or offer caps.

Second, we add network constraints due to Kirchhoff’s laws of current and voltage, which

are unique to electricity networks, to the design of electricity spot markets with complex physical

constraints. To address this problem, we develop a framework for the design of networked markets

based on the ideas from local public goods.

Finally, we study the design of defense policies for large-scale network security. Our approach

is to design approximately optimal defense policies that are computable. We develop a framework

based on the notion of influence graph, which captures the connectivity of the security states of

the system elements, to decompose the system into subsystems. We then design approximately

ix



optimal defense policies for each sub-system. We consider non-Bayesian uncertainty and even

though we do not model the attacker as a strategic decision maker, we compensate (in part) for the

lack of this feature by adopting a minmax performance criterion.
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CHAPTER 1

Introduction

1.1 Motivation

This thesis presents Cybe-Physical Systems Design (CPS Design). CPS are systems that consist of a
physical layer (such as lines/routes, sensors, actuators) and a cyber layer (such as communication
protocols, information system, and algorithms). Examples of these systems are the electricity grid,
security systems, transportation networks, water network and smart devices (Internet of Things).
CPS play a central and ever increasing role in our modern life. For these systems, the design of the
cyber and physical layer must be done in a coordinated manner.

Designing cyber-physical systems is challenging and requires interdisciplinary studies because
of the following features: the presence of strategic decision makers, the existence of complex
physical constraints, and the large-scale nature of CPS (Milgrom, 2017). We describe these features
below.

A decision maker is strategic if he/she considers how his/her actions will affect the others’
actions and the environment. The system operator cannot prescribe the actions to strategic decision
makers directly. Instead, he should design a mechanism to provide correct incentives for them so that
they take the actions desired by him. For example, in the restructured electricity industry, strategic
generation companies (GenCos) want to increase their profit by under-producing electricity and
selling it to the demand at high prices. The system operator in this case should design appropriate
electricity markets that provide correct incentives/punishments for GenCos in order to sell electricity
at the socially optimal amount and at the efficient price. Strategic decision makers and mechanism
design are studied primarily in economics (Börgers, 2015; Vohra, 2011).

Physics of CPS impose complex constraints in their design. For example, the flow of power in
electricity networks is governed by Kirchhoff’s laws; the spread of an attack in a communication
network is determined by the underlying connectivity of the nodes; the reliability constraints for
electricity imposes a very high bar on the minimum amount of investment in electricity capacity.
Complex physical constraints make CPS different from existing models in engineering or eco-
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nomics and require new design methods. For example, physical constraints can prevent a perfectly
competitive market from occurring and necessitate market design (Milgrom, 2017). To see this,
consider congested transmission lines in electricity networks. Their congestion can result in local
markets with local market power, and the hard constraint on maximum carbon emission in producing
electricity can result in a public good problem. As a result, electricity markets are not perfectly
competitive; the system operator should design markets by incorporating prices in an effective way
while still maintaining enough direct control to ensure that complex constraints are satisfied.

Finally, CPS are large-scale in the sense that the amount of computation or communication
required for optimal operation of these systems is beyond the computational power of existing
computers or the communication capacity of existing links. For example consider security of
the Internet. Because of the limited capacity of communication links, it is not possible for any
single node in this network to know the security state of all the other nodes, and even if it does,
using this information for calculating an optimal defense policy is computationally infeasible. The
computation and communication limits enforce a paradigm shift in designing CPS; rather than
optimal performance, the system operator should look for good enough performance (Akbarpour
and Nikzad, 2017; Kleinberg and Tardos, 2006; Milgrom and Segal, 2017). The resulting design
should allow for simple and fast enough decision making. Good enough performance of large-scale
CPS can be achieved by using heuristics and decomposing the system into small sub-systems the
size of which is compatible with existing computation and communication capabilities.

Networks play a central role in the design of CPS with the above features, because they can be
used both to model complex physical constraints and to capture the connectivity of the elements in
a large-scale CPS (Akbarpour et al., 2017; Easley and Kleinberg, 2010).

Other than the above distinguishing features, CPS have two additional major features that are in
common with the earlier man-made systems: dynamic decision making, and uncertainty (Kumar and
Varaiya, 1986). Examples of dynamic CPS are long-term interactions among GenCos in electricity
markets, or dynamic spread of attacks in a network security. Examples of uncertainty in electricity
industry are the uncertain oil price and sudden breakthroughs in renewable technologies. In security
systems uncertainties are due to imperfect observation of the security state or uncertainty about
attacker’s information and strategy.

Design of cyber-physical systems with the above features is the main focus/topic of this thesis.
We address the design of markets with complex constraints and decomposition of large-scale CPS

by concentrating on two applications: electricity markets and network security. First, we study
designing markets with complex policy constraints by focusing on designing electricity markets
that implement electricity policy targets i.e. sustainability, reliability and price efficiency (Chapter
2). These policy targets and the physical constraints in electricity industry are in the form of either
individual or homogeneous (additive) joint constraints. We develop a framework of efficient auctions
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with constraints to achieve our market design goal. Next, we study designing markets with complex
physical constraints by adding Kirchhoff’s laws of current and voltage (network constraints) to
the already existing constraints and design electricity spot markets (Chapter 3). We develop a
framework of efficient networked markets based on ideas from local public good markets. Our
market design allows for efficient (and scalable) dispatch of electricity. Finally, we study large-scale
CPS by focusing on the defense of large-scale network security (Chapter 4). We use the notion
of influence graph that captures the connectivity of the nodes, to form sub-systems by clustering
the graph, and to determine a defense policy for each sub-system by appropriate mapping of the
information space.

Electricity policies in most countries target providing reliable and sustainable electricity with
efficient price to customers (IEA, 2016; Ritzenhofen et al., 2014; UNDP, 2015). Reliability refers
to meeting the uncertain real-time demand almost at all times (one blackout every ten years),
sustainability refers to overcoming the global warming, and efficient price1 (affordablity) refers
to prices close to marginal cost of production. System operators translate reliability target into
planning reserve requirement that is the total invested capacity should exceed the maximum possible
demand by a reserve margin (%15 to %20). Sustainability target is also translated into carbon cap

which is a cap for total carbon emission. Addressing the policy targets for the electricity industry
should consider both the incentive constraints of the strategic GenCos and the physical constraints
of the electricity grid. Example of the physical constraints are ramping constraints, lines thermal
capacity constraints, non-convexity of the production cost function, Kirchhoff’s laws of current
and voltage, etc. Physical constraints make electricity market far from perfect competition and
necessitate the design of special markets for electricity. Among the physical constraints, the most
challenging are Kirchhoff’s laws (loop flow effect) which make electricity network different from
any other CPS networks; loop flow effect connects the production of all nodes to each other and
introduces externalities in a unique form.

Current electricity markets suffer from underinvestment, inefficient mechanisms for limiting
carbon emission and high prices. There are major debates on the correct solutions for these problems:
The first is centered around the need for non-market mechanisms like price-cap, offer-cap and
market-monitoring so as to achieve efficient prices. The second is about the need for mechanisms
with direct capacity incentives, like capacity subsidy or capacity market, so as to achieve the
reliability target; this approach is referred to as energy-and-capacity solution in contrast to energy-

only solution. Even without planning reserve requirements, some references argue that capacity
mechanisms are required because GenCos’ investment will not be socially optimal due to their
market power (Garcia and Shen, 2010; Murphy and Smeers, 2005; Novy-Marx, 2007). The third

1By prices we refer to the prices in the wholesale market, not the regulated price in the end-consumers monthly
bills.
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is with regard to carbon tax that is introduced so as to achieve sustainability target and refers to
the need for the system operator to set the carbon tax (price policy) as opposed to the possibility
of finding the efficient carbon tax by carbon markets (quantity policy). On the sustainability topic,
there is also an ongoing debate tied to political issues on charging carbon vs. supporting renewables
for reducing carbon emission. While the above debates are still ongoing, the electricity industry is
under major technological changes, with the most prominent ones being smart grids that introduce
demand response and elastic demand, and renewable technologies that introduce more uncertainty
and lower prices in the electricity spot market.

The existing studies of electricity policies are limited to addressing reliability, sustainability
and price efficiency separately and in isolation; however these issues are in fact intertwined (Kök
et al., 2016). For example, any changes in the spot market for affordable prices, like price caps, can
reduce reliability by reducing investment incentives (Roques and Savva, 2009); reliability subsidies,
like capacity investment subsidy, work against carbon taxation and may reduce the capacity of
conventional electricity; renewables subsidies result in more intermittent wind and solar resources
and reduce reliability, etc. Therefore, these policy targets should be studied together. To the best
of our knowledge, Reference Ritzenhofen et al. (2014) is the only study that considers all three
policy targets together and analyzes the performance of the current markets under high uncertainty.
In addition, majority of the existing studies analyze the current markets in order to evaluate their
performance with respect to reliability, sustainability and price efficiency. However, in our opinion,
the correct approach for addressing these problems is a design approach starting from the desired
policy targets.

We next study the electricity spot market with the loop flow effect. Loop flow effect ties the
flow of power in each line to all the other flows in the network. As a result, the production of
electricity at each nodes is tied to the production at all other nodes. This way a bilateral contract
between a GenCo and demand will affect the possible dispatch of electricity at all other nodes.
Therefore, allocating optimal dispatch of electricity, constrained by the electricity transmission
network constraints, cannot be achieved by free markets. Currently, there are two approaches to
electricity market design with network constraints which use two different sets of prices Ehrenmann
and Neuhoff (2009): integrated market design that uses nodal prices (one price for each node in the
network); and coordinated market design that uses prices for allocating transmission rights (one price
for transmission right between any two nodes) and prices for allocating electricity dispatch (one
price for each node in the network). Integrated market design is proposed in the form of physical
transmission right (PTR), financial transmission right (FTR) and flow gate right (FGR)(Kristiansen,
2004). In competitive markets with full information, both the integrated market design and the
coordinated market design lead to welfare maximizing outcome (See Bohn et al. (1984) & Cardell
et al. (1997) for integrated, and Chao and Peck (1996) for coordinated approach). When market
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power exists (even under full information) the current design of these markets is not efficient Wilson
(2008) and the comparison between the performance of the two approaches is not completely known
Ehrenmann and Neuhoff (2009). The problem becomes even more challenging when a producer
owns multiple electricity generation firms located at different nodes, or when there are multiple
producers located at a single node Cardell et al. (1997). In the same way, the comparison between
different approaches to coordinated markets is not clear (Joskow and Tirole, 2000).

Finally, we study security of large-scale networks (Chapter 4). The defense of cyber networks,
which are typically very large, plays a crucial role in their efficient operation. In these networks, the
defender’s information grows with the growth in the size of the network. Moreover, the defender
faces uncertainty: he has only imperfect observations of the attack events and system state, and is
also uncertain about the attacker’s strategy. This uncertainty results in a complicated information
structure which grows over time. Since the defender is uncertain about attacker’s strategy, he should
use a robust approach to minimize the worst-case damage to the system among all attacker strategies
(minmax approach). Due to these complexities, the design of optimal defense policies is infeasible.

1.2 Contribution of the Thesis

The contribution of this thesis is in the context of two applications: electricity markets and network
security.

Our contribution to electricity markets is in two parts. First, we set the loop flow effect
(Kirchhoff’s laws) aside. We design electricity markets that are reliable, sustainable and price
efficient (Chapter 2). Next, we add the loop flow effect and focus on designing electricity spot
markets that are price efficient (Chapter 3).

In the first part (Chapter 2), we start by modeling an oligopoly of GenCos which interact through
the electricity network for a long horizon and have common uncertainties with respect to the future.
The demand for electricity is elastic but non-strategic i.e. demand is a price-taker. The non-strategic
demand means that the system operator wants to auction the demand among the strategic GenCos.
In this model, each GenCo’s electricity generation is constrained by its capacity, and the total power
flow over each line of the network is constrained by the lines thermal capacity. Next, we add the
policy targets to the model. The reliability target is modeled by a constraint requiring that the
sum of the GenCos’ capacities exceed the planning reserve requirement. The sustainability target
is modeled by a constraint requiring that the sum of the carbon emissions is below the carbon
cap. We model price efficiency as a desired feature of electricity market design at equilibrium. In
addition to achieving price efficiency, we consider the following desired features for the markets
at equilibrium (since we only consider features at equilibrium, hereafter we may drop the term2):

2We only consider these features at equilibrium. In practice, the market clearing process may stop off equilibrium.
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F1) social optimality, F2) individual rationality, and F3) budget balanced. Social optimality means
that the amount of electricity investment and generation at equilibrium maximizes social welfare.
Individual rationality means that the GenCos’ utility is not less than their opt out option i.e. the
utility they could get by not participating in the market. Budget balance means the price paid to
producers is equal to the price charged to the demand. For elastic demand, budget balanced means
price should be equal to the marginal utility of the demand3. We call a market/auction that possesses
features (F1)-(F3) and is price efficient an efficient market/auction. Our goal is to design efficient
electricity markets considering our model and the policy constraints.

To achieve our market design goal, we develop a framework for designing efficient auctions
with constraints. Some of the constraints in our model are convex individual constraints (or simple
constraints) such as each GenCo’s capacity limit; other constraints are joint constraints (or complex
constraints) such as network, reliability and carbon emission constraints. Implementing individual
constraints requires a different market design approach than the one required for joint constraints.
Therefore, we develop our efficient auction design framework in three steps: (i) designing efficient
auctions without constraints; (ii) designing efficient auctions with convex individual constraints;
and (iii) designing efficient auctions with homogeneous (additive) joint constraints. In the first step,
we propose efficient auctions for both elastic and inelastic demand. In the second step, we show that
the proposed markets are also efficient if the auctions are subject to convex individual constraints.
Finally, considering the fact that the joint constraints in our model are homogeneous, we introduce
a decomposition technique that decomposes an auction with homogeneous joint constraints into a
sequence of auctions with individual constraints.

Our market design framework has the following implications with respect to electricity policy
targets and the debates on implementing them. For each joint constraint we add one market to
operate along with the spot electricity market. These markets include capacity market, carbon
permit market, and transmission right market. Efficient design of these markets can implement the
policy targets. Our results show that price efficiency can be achieved without price caps or offer
caps. Also capacity and carbon markets can be used for reliable investment and efficient carbon
pricing. Although we do not have a complete answer whether reliability can be implemented by
energy-only solutions, but we show that efficient capacity market pays less subsidy for reliability
than operation reserve solutions proposed by Hogan et al. (2005).

In the second part (Chapter 3), we study designing efficient electricity spot market when loop
flow effect exists (designing networked market). We look at the electricity network as a public
good and determine how producers and consumers must use it. Since electricity flow equations

Considering desired features off equilibrium is not the topic of this paper and is a topic for future research.
3The inelastic demand does not change its consumption based on the price of electricity and can be charged any

price to balance the payment to the producers. This means budget balanced is not a restriction for the inelastic demand.
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generally have complex sinusoid form, we consider first order (also known as DC) and second
order approximation of these equations. The DC approximation does not include losses over the
transmission lines. We show that even though for the DC approximation the set of feasible electricity
productions of all the nodes is convex, this set is not convex when considering losses. However,
the set of feasible angles (phases) of the nodes remains convex even with the losses. Since the
angles of the nodes uniquely determine the flow of power in the network, we consider angles as
an alternative representation of the productions when losses exist. Moreover, considering angles
changes the public good problem into a local public good problem in which the producer/consumer
at each node is only affected by the angels of the nodes that are directly connected to it. Such a
local public good problem allows for designing scalable mechanisms. We design an efficient (local)
public good mechanism that can be used to determine either the productions (in DC approximation)
or angles (when losses exist).

Our contribution to the security of large-scale networks is decomposing the system into sub-
systems and presenting heuristics for the defense of each sub-system. Each sub-system defense
problem possesses a subset of the information in the system. We introduce the notion of influence

graph that captures the interactions among the network elements. We partition the influence graph
by clustering using community detection algorithms. Each region of the network corresponding
to each sub-graph is then a sub-system that is controlled by a local controller. We design the
information that should be exchanged among local controllers. We formulate a minmax problem
from each subsystem and propose a suboptimal solution that is computationally feasible. Even
though we do not model the attacker as a strategic decision maker, we compensate (in part) for the
lack of this feature by adopting a minmax performance criterion, which leads to a conservative
defense approach.
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CHAPTER 2

Markets with Complex Policy Constraints:
Sustainable, Reliable and Price Efficient Electricity

2.1 Introduction

In this chapter, we study implementation of electricity policy targets by design of electricity markets.
We model the policy targets as complex constraints and develop a framework of auctions with
constraints for addressing our problem.

Electricity policies in most countries target providing reliable and sustainable electricity with
efficient price to customers (IEA, 2016; Ritzenhofen et al., 2014; UNDP, 2015). Reliability refers
to meeting the uncertain demand almost at all times (one blackout every ten years), sustainability
refers to overcoming the global warming, and efficient price (affordablity) refers to prices close
to marginal cost of production. System operators translate reliability target into planning reserve

requirement that is the total capacity should exceed the maximum possible demand by a reserve
margin (%15 to %20). Sustainability target is also translated into carbon cap which is a cap for
total carbon emission. Planning reserve requirement and carbon cap are uneconomic constraints

(public constraints) because Generation Companies (GenCos) do not have incentives to meet them
unless appropriate taxes/subsidies are in place. Addressing the policy targets for the electricity
industry should be consistent with the spirit of the restructured industry i.e. should be based on
market competition, incentives and minimum regulations. Moreover, it should consider the physical
limits of the electricity grid, mainly electricity transmission line constraints (network constraints).

Before restructuring, the system operator could set the selling price and investment level,
and in this way could ensure reliability and price efficiency. After restructuring however, the
current electricity markets suffer from scarce resources (capacity underinvestment) and high prices
above marginal cost of production; for example in the California 2000 electricity crisis, market
imperfections such as market power and missing money problem1 led to very high prices(Joskow

1The missing money problem refers to the revenue gap for the investors (investors can not collect their cost of
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and Tirole, 2007). Moreover, current mechanisms for reducing carbon emission like carbon tax
and carbon markets or renewable feed-in tariffs are inefficient and costly (Alizamir et al., 2016;
Borenstein, 2012), specially with larger share of the renewables (Acemoglu et al., 2014, 2016a;
Ahlstrom et al., 2015; Baldick, 2012; Hogan, 2015a). There are major debates on and approaches
to the correct solutions for these problems: The first is centered around the need for non-market
mechanisms like price-cap, offer-cap and market-monitoring so as to achieve efficient prices. The
second is about the need for mechanisms with direct capacity incentives, like capacity subsidy or
capacity market, so as to achieve the reliability target; this approach is referred to as energy-and-

capacity solution in contrast to energy-only solution. Even without planning reserve requirements,
some references argue that capacity mechanisms are required because GenCos’ investment will
not be socially optimal due to their market power (Garcia and Shen, 2010; Murphy and Smeers,
2005; Novy-Marx, 2007). The third is with regard to carbon tax that is introduced so as to achieve
sustainability target and refers to the need for the system operator to set the carbon tax (price policy)
or the possibility of finding the efficient carbon tax by carbon markets (quantity policy). On the
sustainability topic, there is also an ongoing debate tied to political issues on charging carbon vs.
supporting renewables. We briefly discuss this debate in Section (2.7.2).

While the above debates are still ongoing, the electricity industry is under major technological
changes, with the most prominent ones being smart grids and renewable technologies 2. Smart
grids introduce demand response and elastic demand to the spot market (Ahlstrom et al., 2015;
Joskow and Tirole, 2006). They also alter the definition of reliability from preventing blackouts
due to inelastic demand exceeding capacity (Fig. 2.1) to preventing high scarcity prices due to
saturated capacity (Fig. 2.2) (Euroelectric, 2010; Henriot and Glachant, 2013; Hogan, 2015b).
Renewables discourage investment on electricity in two ways. First, their low marginal cost of
production reduces the prices in the spot market and therefore makes it harder for both renewable
and conventional utilities to recover their investment costs (Sisternes and Parsons, 2016). Second,
renewables’ high uncertainty makes them a risky investment (Aı̈d et al., 2011; Cramton et al., 2013;
Henriot and Glachant, 2013; Pritchard et al., 2010; Secomandi and Kekre, 2014). On the other
hand, lower carbon emission of renewables can make them an interesting investment for producers
if appropriate taxes/subsidies are in place (Acemoglu et al., 2014).

The existing studies of electricity policies are limited to addressing reliability, sustainability
and price efficiency separately and in isolation; however these issues are in fact intertwined (Kök

investment) and is due to market imperfections. Investors recover their investment cost when their capacity is fully
utilized and the (scarcity) price is beyond their marginal cost of production (Fig. 2.1); therefore, if the demand does
not reach full capacity or the price is not allowed to go high enough, scarcity price, which is the market signal for
investment, is distorted and investors can not collect their cost of investment; thus, investors reduce their investment.

2Global renewable share of the electricity production increases from 21% in 2015 to 29% in 2040. The share of
wind and solar from the renewables is increasing from 20% in 2012 to 35% in 2040. Also, some regions like California
or Germany will have higher share of the renewables in their electricity generation (IEO, 2016).
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Figure 2.1: Scarcity price: When inelastic demand exceeds capacity, market fails to determine
scarcity price.

Figure 2.2: Scarcity price: With elastic demand, market determines scarcity price at peak load.
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et al., 2016). For example, any changes in the spot market for affordable prices, like price caps, can
reduce reliability by reducing investment incentives (Roques and Savva, 2009); reliability subsidies,
like capacity investment subsidy, work against carbon taxation so as to reduce the capacity of
conventional electricity; renewables subsidies result in more intermittent wind and solar resources
and reduce reliability, etc. Therefore, these policy targets should be studied together. To the best
of our knowledge, Reference Ritzenhofen et al. (2014) is the only study that considers all three
policy targets together and analyzes the performance of the current markets under high uncertainty.
In addition, majority of the existing studies analyze the current markets in order to evaluate their
performance with respect to reliability, sustainability and price efficiency. However, the correct
approach for addressing these problems is a design approach starting from the desired policy targets.

Our contribution to electricity policy is the following. We consider emerging electricity techno-
logical changes and design electricity markets that are reliable, sustainable and price efficient. We
start by modeling an oligopoly of GenCos which interact through the electricity network for a long
horizon and have uncertainties with respect to the future. The demand for electricity is elastic but
non-strategic i.e. demand is a price-taker. The non-strategic demand means that the system operator
wants to auction the demand among the strategic GenCos. In this model, each GenCo’s electricity
generation is constrained by its capacity, and the total power flow over each line of the network
is constrained by the line thermal capacity3. Next, we add the policy targets to the model. The
reliability target is modeled by a constraint requiring that the sum of the GenCos’ capacities exceed
the planning reserve requirement. The sustainability target is modeled by a constraint requiring that
the sum of the carbon emissions is below the carbon cap. We model price efficiency as a desired
feature of electricity market design at equilibrium. In addition to price efficiency, we consider
the following desired features for the markets at equilibrium (since we only consider features at
equilibrium, hereafter we may drop the term4): F1) social optimality F2) individual rationality
and F3) budget balanced. Social optimality means that the amount of electricity investment and
generation at equilibrium maximizes social welfare. Individual rationality means that the GenCos’
utility is not less than their opt out option i.e. the utility they could get by not participating in
the market. Budget balance means the price paid to producers is equal to the price charged to the
demand. For elastic demand, budget balanced means price should be equal to the marginal utility of

3Network constraints are major limitations in electricity industry. The network has two effects (Downward et al.,
2010; Ehrenmann and Neuhoff, 2009). First, the electricity flow in each line is limited by the maximum capacity of the
line that is determined by thermal (and other physical) limits. This is the same network effect as in transportation or
communication networks. Second, the entire injection profile in the network should satisfy KVL and KCL constraints.
This is a unique feature of electricity networks; it does not exist in other networks. Corresponding voltage and phase
laws create negative externality effects. Network constraints cause externalities and result in locational market power
and locational prices (Ehrenmann and Neuhoff, 2009). In this paper we only study the first effect i.e. lines’ thermal
capacity.

4We only consider these features at equilibrium. In practice, the market clearing process may stop off equilibrium.
Considering desired features off equilibrium is not the topic of this paper and is a topic for future research.
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the demand5. We call a market/auction that possesses features (F1)-(F3) and is price efficient an
efficient market/auction. Our goal is to design efficient electricity markets considering our model
and the policy constraints.

To achieve our market design goal, we develop a framework for designing efficient auctions

with constraints. Some of the constraints in our model are convex individual constraints (or
simple constraints) such as each GenCo’s capacity limit; other constraints are joint constraints (or
complicating constraints) such as network, reliability and carbon emission constraints. Implementing
individual constraints requires a different market design approach than the one required for joint
constraints. Therefore, we develop our efficient auction design framework in three steps: (i)
designing efficient auctions without constraints; (ii) designing efficient auctions with convex
individual constraints; and (iii) designing efficient auctions with homogeneous (additive) joint
constraints. In the first step, we propose efficient auctions for both elastic and inelastic demand.
In the second step, we show that the proposed markets are also efficient if the auctions are subject
to convex individual constraints. Finally, considering the fact that the joint constraints in our
model are homogeneous, we introduce a decomposition technique that decomposes an auction with
homogeneous joint constraints into a sequence of auctions with individual constraints.

Our market design framework has the following implications with respect to electricity policy
targets and the debates on implementing them. First, our efficient design for auctions without
constraints shows that without network, reliability and carbon constraints, efficient prices (along
with features F1-F3) are achievable by the correct design of the spot market and without using
offer cap, price cap, market monitoring or other sorts of market interventions. Second, our results
contribute to the debate on energy-and-capacity vs. energy-only solutions both with and without
planning reserve requirements. Without planning reserve requirements, our results for auctions
with individual constraints contradict the argument of References Garcia and Shen (2010) and
Murphy and Smeers (2005) by showing that if our proposed spot market is used (instead of Cournot
markets studied in these references), the energy-only mechanism is capable of implementing the
socially optimal investment. When planning reserve requirements exist, our framework can be used
for implementing reliable investment in two ways: First, since planning reserve requirement is a
homogeneous joint constraint, we can use our decomposition technique to design efficient capacity
and spot markets for implementing it. We obtain an energy-and-capacity solution where the price
in the capacity market is the efficient subsidy for reliability target; this subsidy is positive only
if the reliability constraints are binding. Second, the planning reserve requirement can also be
implemented by increasing the demand in the spot market above the real demand (Hogan et al.,
2005); the extra demand is put in operation reserve. We obtain an energy-only solution and our

5The inelastic demand does not change its consumption based on the price of electricity and can be charged any
price to balance the payment to the producers. This means budget balanced is not a restriction for the inelastic demand.
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results for auctions with individual constraints can be used for determining demand profiles that
achieve the reliability target with minimum subsidy required in an energy-only approach We show
that this minimum payment can be greater than the subsidy paid in an efficient capacity-and-energy
approach with efficient capacity markets6. The implication of our results for implementing carbon
constraints is the following.

By defining carbon permit as the level of carbon each producer is allowed to emit, the carbon
constraints can be translated from joint constraints on productions into homogeneous joint con-
straints on carbon permits which, by decomposition technique, can be implemented with efficient
carbon permit markets (or simply carbon market). The price of carbon permit found in the carbon
market is the efficient level of carbon tax. The carbon tax is positive only if the carbon constraint
is binding. With respect to the debate on carbon market vs. carbon tax, this result shows that the
system operator can determine efficient carbon tax by the carbon permit market without knowing all
the private information of the GenCos. Of course, this comes at a higher regulatory cost of running
the carbon market. Our results also contribute to the debate on charging carbon vs. supporting
renewables; we briefly discuss this issue in Section (2.7.2). Finally, the lines’ thermal capacity
constraint can also be implemented in the same way as the carbon emission constraint: By defining
transmission right as the amount of electricity power a GenCo is allowed to send over a certain line
in a certain direction, the lines’ thermal capacity can be modeled by homogeneous joint constraints
on the GenCos’ transmission rights. This allows us to use a decomposition technique for designing
efficient transmission right markets that allocate the transmission rights by determining the efficient
transmission tax7. This tax is positive only if the line is congested in the corresponding direction.
We note that the proposal for transmission right exists in the literature (Chao and Peck, 1996;
Ehrenmann and Neuhoff, 2009; Hogan, 1992), but its efficient market implementation has been an
open problem.

Central to our theoretical results is the assumption of symmetric information among GenCos
and the use of Nash equilibrium as a solution concept. This assumption has both theoretical
and practical reasons. Theoretically, eliminating information asymmetry and its corresponding
information rent allows us to develop a basic understanding of our problems and rigorous analytical
results. This assumption is made in majority of the literature (for example see Allaz and Vila
(1993), Ehrenmann and Neuhoff (2009))8. A number of papers argue that symmetric information

6The other practical challenge of this energy-only solution is the calculation of the demand profile. In real world,
calculation of the efficient demand profile requires a lot of information and complex computations by the system
operator; moreover, the profile should be continuously updated based on the changes in the industry.

7This market for transmission permit is for optimal dispatch and is different from the transmission right market that
is designed to hedge GenCos against uncertainty. Moreover, transmission permit is the first step in understanding the
network effect in electricity. In practice, the loop flow effect of the electricity network due to Kirchhoff’s laws makes
the problem much more complicated.

8Relaxing the assumption of symmetric information comes at the cost of suboptimal outcomes. See the literature of
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is a realistic assumption for electricity markets. For example, Reference Wang and Zender (2002)
argues that symmetric information of the bidders (GenCos) which is also superior to the information
of the auctioneer (system operator) is a common rationale and a reliable assumption for oligopolistic
electricity markets. This is because GenCos monitor each others’ technologies and capacity, but the
ISO does not have access to such information. Symmetric information does not exclude uncertainty.
In fact, uncertainties in the electricity industry can be modeled by considering common/symmetric

uncertainty among the GenCos. In our model, we consider symmetric uncertainty and show that for
risk-neutral GenCos who want to maximize their expected profit over a time horizon, the results
obtained without uncertainty do not change.

Moreover, GenCos in electricity industry have long-term strategic interaction. Long-term
strategic interaction allows GenCos to cooperate/collude their strategies over time and form a
monopolistic supply. This makes the design of dynamic electricity auctions difficult. Our efficient
dynamic auctions forbid the possibility of collusion in finite horizon interactions. For infinite
horizon interactions, collusion is avoided if the GenCos only use pay-off relevant information in
their strategies. References Butler and Neuhoff (2008); Novy-Marx (2007) and Garcia and Shen
(2010) argue that pay-off relevant strategies are a valid assumption for electricity industry.

2.1.1 Literature Review

We investigate the literature related to our work by first studying the literature on price efficient
auctions. Next, we investigate the literature on investment without reliability targets (without
planning reserve requirements) followed by the literature on investment with reliability targets.
Sustainability (carbon emission constraint) and network lines capacity constraints are studied
afterwards. We finish this section by studying the literature on symmetric uncertainty in long-term
interactions among agents.

Price efficient auctions for electricity are static auctions of divisible goods. Static auctions can
be categorized into uniform and discriminatory price auctions. Supply function (SF), Cournot, first
and second price auctions are examples of uniform price auctions. In SF auctions GenCos bid
their cost curve and the market is cleared by dispatching minimum cost first (Green and Newbery,
1992; Klemperer and Meyer, 1989). In practice, SF auctions are used for electricity spot markets
where the same bids are used to clear multiple possible demands due to demand uncertainty or
demand variation during the day (Anderson and Hu, 2008; Downward et al., 2010; Elmaghraby and
Oren, 1999). In general, SF auctions have a range of equilibria and are not efficient (Klemperer
and Meyer, 1989). The inefficiency of SF auctions has been studied further within the context of
polynomial supply functions (Baldick and Hogan, 2004), oligopoly models with capacity constraints

Bayesian implementation and the more recent literature of robust auction design for more discussion.
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(Baldick and Hogan, 2006; Baldick et al., 2001), with pivotal bidder (Genc and Reynolds, 2011),
or with limited number of price bids (Wilson, 1979), or with demand uncertainty (Holmberg and
Wolak, 2015); it is also studied within the context of duopoly models with finite piece-wise linear
cost function (Anderson, 2013). A review of supply function auctions literature is provided in
(Holmberg and Newbery, 2010). Cournot auctions are used to approximate SF electricity auctions
(Downward et al., 2010); they also do not implement the socially optimal allocation (Anderson
and Hu, 2008; Elmaghraby and Oren, 1999). First and second price auctions have been used for
capacity markets (Salant and Stoddard, 2008). While these auctions implement the socially optimal
allocation in Nash equilibria, they are not price efficient. Discriminatory price auctions can also
achieve social optimality but are not price efficient; auctions like Vickery-Clarke-Groves (VCG)
and dAspremont-Gerard-Varet (AGV) achieve social optimality by paying each seller an individual

price that aligns his incentive with the social welfare; however, VCG and AGV auctions can not be
budget balanced and individually rational at the same time. In electricity markets, uniform price
auctions are preferred because they provide a unique and clear signal for investment (Fabra et al.,
2006). We are not aware of an efficient (price efficient, socially optimal, individually rational, and
budget balanced) auction of a divisible good in the literature. Our proposed efficient auctions use
uniform price at equilibrium to achieve price efficiency and budget balance, and discriminatory
prices off-equilibrium to align individuals’ incentives with the social welfare. Such an approach is
proposed in the British restructuring of the electricity markets (FERC, 2012; Hogan, 2016). Our
mechanisms are inspired by Hurwicz (1979) but also consider price efficiency and elastic demand.

Investment without a reliability target (planning reserve requirement) has been studied in
the literature of capacity-trade competition where firms first expand their capacity and later use
that capacity to compete in the trade market9. Capacity-trade competition has been studied in
the literature by analyzing specific forms of trade markets including Bertrand (capacity-price
competition) (Acemoglu et al., 2009; Davidson and Deneckere, 1986; de Frutos and Fabra, 2011),
Cournot (capacity-quantity competition) (Garcia and Shen, 2010; Murphy and Smeers, 2005;
Perakis and Sun, 2014; Roques and Savva, 2009) , VCG (Bergemann and Välimäki, 2002) and
competitive markets (Dixit, 1991). In the case of Bertrand and Cournot, the market equilibrium is
not socially optimal. In the case of VCG and competitive markets, the outcome is socially optimal;
but, VCG is not budget-balanced and perfect competition is a strong assumption for electricity
oligopolistic markets. Our spot market proposal, in contrast to the markets proposed so far in the
literature, achieves the desired features (F1)-(F3) and is price efficient.

Implementing reliability targets for electricity has been studied by considering sources of

9In oligopoly markets, increasing investment has two opposite effects resulting in inefficiency: on one hand it can
increase the investor’s share of the trade market, but on the other hand it can introduce more competition and lower the
prices.
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underinvestment that are market power and market imperfections leading to missing money problem.
Market imperfections are further categorized into demand inelasticity, uncertainty, and network
effects/constraints. If the inelastic demand exceeds maximum capacity it results in market failure
where supply and demand mismatch without any scarcity price to signal correct investment (Fig. 2.1)
(Cramton and Stoft, 2005; Cramton et al., 2013). Uncertainties result in reliability requirements that
are not valued by the GenCos as much as they are by the ISO (Sun et al., 2010); if GenCos are risk
averse, they have incentives to even further reduce the investment level (Aı̈d et al., 2011; Pritchard
et al., 2010; Secomandi and Kekre, 2014). The network constraints induce externalities such that
GenCo’s may not be able to use their capacity if the lines to the consumers are congested by others
(Borenstein, 2002; Borenstein et al., 2002; Joskow and Tirole, 2007). The methods proposed to
address the reliability constraints can be categorized into: (i) correcting the spot (energy) markets
e.g. using new market processes, lifting price caps and price-dependent market intervention
techniques (Joskow, 2006); (ii) using supportive energy remuneration mechanisms (ERM), e.g.
operation reserve markets (Hogan et al., 2013), forward generation contracts (Allaz and Vila, 1993)
and mandatory load hedging (MLH) (Hogan et al., 2005); and (iii) using supportive capacity
remuneration mechanisms (CRM) e.g. forward capacity obligation with capacity markets/bilateral
trades (ICAP), capacity payments, strategic reserve and reliability options (Bidwell, 2005; Cramton
and Stoft, 2005; Cramton et al., 2013; Hogan et al., 2005). Supportive mechanisms should be
designed in a way that their effect automatically diminishes as the spot market imperfections are
resolved (CAISO, 2014; Henriot and Glachant, 2013). While none of the existing solutions to the
underinvestment problem is a complete market-based response, we propose two such solutions for
reliability: (i) an efficient energy-only solution with operation reserve using efficient auctions with
individual constraints; and (ii) an efficient energy-and-capacity solution with capacity markets using
efficient auctions with joint homogeneous constraints.

Practices for charging carbon emission have been in the form of carbon emission tax (Acemoglu
et al., 2016b) or carbon cap-and-trade market (Borenstein et al., 2015). With a fully-informed
system operator, they lead to the same outcome (Weitzman, 1974); otherwise, only an efficient
cap-and-trade market can find the efficient tax (Keohane, 2009; Metcalf, 2008). Since directly
charging carbon faces political resistance, indirect policies for supporting renewables have been
considered (Borenstein, 2012)10. These supportive policies include forward contracts in terms
of feed-in tariffs (Alizamir et al., 2016; Butler and Neuhoff, 2008; Couture and Gagnon, 2010),
generation subsidy for renewables or feed-in premiums (Hobbs, 2015) and subsidy on capacity

10There are also other non-environmental arguments for supporting renewables including energy security, green jobs,
non-appropriate intellectual property, and lowering the cost of fossil fuels (see (Borenstein, 2012)). Also renewables are
an economic solution for off-grid consumers including islands and rural areas. There are more than 50 thousand islands
on earth with a total area of over one sixth of the global land area, and more than 740 million inhabitants (Kuang et al.,
2016).
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expansion (Sisternes and Parsons, 2016). In addition, a recent line of papers have argued alternative
approaches for making renewables an attractive investment; Reference Aflaki and Netessine (2016)
proposes approaches to reduce the intermittency of renewables; Reference Kök et al. (2016) argues
for flat pricing of electricity. Current policies for charging carbon and supporting renewables are
not efficient or practical with larger share of the renewables (Alizamir et al., 2016; Borenstein,
2012). Calculation and continuous adjustment of the carbon tax is a difficult task. On the other
hand, current carbon markets are not efficient as GenCos can use their market power to pay a
price for carbon that is lower than the efficient tax. Also, renewable supportive mechanisms that
require a considerable financial support for renewables, result in negative spot prices, incentivize
investment only indirectly and inefficiently, are price insensitive resulting in inelastic supply, and can
be in conflict with reliability targets because they decrease the investment on reliable conventional
technologies (Acemoglu et al., 2014, 2016a; Ahlstrom et al., 2015; Baldick, 2012; Borenstein, 2012;
Hogan, 2015a). In contrast to the current supportive policies, renewables should be introduced
to the regulations of the competitive markets (Ahlstrom et al., 2015; Henriot and Glachant, 2013;
Sisternes and Parsons, 2016). Such markets, if designed correctly, can automatically determine
and update the efficient amount of financial support for renewables. Designing efficient markets
for both charging carbon and supporting renewables is an open problem (Ahlstrom et al., 2015;
Henriot and Glachant, 2013; Sisternes and Parsons, 2016). Our model and results for auctions with
homogeneous joint constraints along with the proposed decomposition technique can be used for
designing such markets.

Electricity network constraints result in local market power and inefficiency. This inefficiency
has been studied for Cournot (Downward et al., 2010) and supply function (Wilson, 2008) auctions.
Reference Blazquez de Paz (2014) studies the inefficiency due to the network constraints when
financial transmission rights exist. Even for a stylized model of a bipartite network with infinite
line capacities, Reference Bimpikis et al. (2014) shows the inefficiency of the Cournot competition.
Reference Chao and Peck (1996) identifies line capacity constraints in electricity spot markets
as homogeneous joint constraints and proposes using markets for allocating transmission rights

between each two nodes, but the design of such market is left as an open question. References
Ehrenmann and Neuhoff (2009) and Hogan (1992) study transmission rights in comparison to nodal
pricing, and argue that under competitive markets and Cournot auctions, both the transmission right
approach and the nodal pricing approach lead to socially optimal outcome; however, with existence
of market power none of these approaches is efficient and their comparison is not clear. Our model
for homogeneous joint constraints along with the proposed decomposition technique leads to the
design of efficient transmission right markets.

Symmetric uncertainty has been studied within the context of capacity-trade competition.
Reference (Bushnell and Ishii, 2007) provides an energy-only model (a model of only spot markets)
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for capacity expansion under uncertainty and by finding a Markov perfect equilibrium using
simulations, it shows that the underinvestment problem exists in this model. Reference (Garcia
and Shen, 2010) uses a highly stylized model with Cournot spot markets and provides the same
results analytically. GenCos’ risk aversion facing uncertainty is studied in Reference Secomandi
and Kekre (2014) which shows the advantage of forward contracts over real-time contracts for the
dispatch of the predicted demand. Reference Aı̈d et al. (2011) shows that with highly risk averse
consumers vertical integration is superior to risk hedging. Reference Pritchard et al. (2010) develops
a programming method for determining efficient dispatch and price of electricity considering
uncertainty of renewables. We consider risk-neutral GenCos in this paper. Our model of uncertainty
and long-term interaction of the producers is similar to References Bushnell and Ishii (2007); Garcia
and Shen (2010), but in contrast to these papers, we design markets that are efficient in this setup.

The rest of the paper is organized as follows. In Section (3.2) we present our model. In Section
(2.3) we propose efficient auctions for allocation of an elastic or inelastic divisible good among
agents. We study efficient auctions for the allocation of a divisible good under individual constraints
in Section (2.4). In Section (2.5), we study efficient auctions for the allocation of a divisible good
under homogeneous joint constraints; to this end, we present a technique for decomposing the
allocation problem into a sequence of allocations with individual constraints; each allocation with
individual constraints is implemented with an efficient auction. We discuss long-term interaction of
GenCos with symmetric uncertainty in Section (2.6) by extending the model and results of Section
(2.5)11. In this Section, we use the results of Sections (2.3)-(2.6) to design efficient auctions of
electricity policy targets in Section (2.7). In Section (2.8) we conclude the paper and present future
directions.

2.2 Model

We first model the electricity network and then the policy targets. Other desired features for
electricity markets are subsequently added to the model. Remarks on comparing the model with the
real world and extensions on the model are discussed at the end of this section 12.

Consider a T -period (T -year) economy, T = {1,2, ...,T}, consisting of N = {1,2, ...,N} strate-
gic GenCos (N ≥ 3 for technical issues), a non-strategic elastic demand with discount factor β

and an independent system operator (ISO). GenCos have symmetric information with symmetric
uncertainty. The random variable wt ∈Wt models the uncertainty about the future production costs,

11In Appendix D, we present the same extensions for the results of Section (2.4).
12In this section and consequent sections, bold parameters refer to random variables. The realizations of the

random variables are not bold. Capital letters refer to sets. Also for convenience we use the notation ax:y to refer to
{ax,ax+1, ...,ay−1,ay}. For variables a1,a2, ...,aN if their range N is known, then a without subscript refers to a1:N . For
example {e1,t , ...,eN,t} is referred to by et .
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expansion costs, carbon emission factor and demand utility as well as regulatory uncertainty about
reliability target and carbon emission cap at time t. The distribution of the uncertainties, f (w1:T ), is
common knowledge among GenCos and the ISO. Let en,t denote GenCo n’s electricity production
at time t. GenCo n’s production cost at time t is Ce

n,t(en,t ,wt) where ∀wt ∈Wt , Ce
n,t(en,t ,wt) is

strictly convex and increasing and Ce
n,t(0,wt) = 0. The demand’s utility at time t is denoted by

Ut(dt ,wt), where ∀wt ∈Wt , Ut(dt ,wt) = 0 and Ut(dt ,wt) is strictly concave and increasing. Let
∆xn,t denote GenCo n’s capacity expansion at time t. GenCo n’s expansion cost at time t is limited
by ∆xn,t(wt−1) determined by its physical and budgetary limits. GenCo n’s expansion cost at time t

is Cx
n,t(∆xn,t ,wt−1). For every wt−1 ∈ wt−1, Cx

n,t(∆xn,t ,wt−1) is strictly convex and increasing with
respect to ∆xn,t with Cx

n,t(0,wt−1) = 0. The GenCos and the demand connected via an electricity
network. The network consists of V = {1,2, ...,V} buses/nodes (vertices) and L lines (edges)
connecting them. The elastic non-strategic demand is located in node 1. Each GenCo n ∈ N is
located in one of the other V −1 nodes which is denoted by vn. The set of producers in node v ∈V

is denoted by Nv. The line between two nodes u,v ∈V has thermal capacity Iuv of sending power
flow from u to v. The lines’ thermal capacities are symmetric i.e. Iuv = Ivu. We denote by en,uv

GenCo n’s power flow from node u to node v; negative values of en,uv represent a positive power
flow from v to u. The total power flow from u to v at time t is Iuv,t = ∑n∈N en,uv,t . This total power
flow is constrained by the lines’ thermal capacities (first network constraint),

− Ivu ≤ ∑
n∈N

en,vu,t ≤ Ivu. (2.1)

Moreover, GenCo n’s total outflow of power from node v ∈V at time t ∈ T is the sum of GenCo n’s
power flow from v to all other nodes u ∈V at that time, ∑u∈V en,vu,t ; GenCo n’s outflow from the
node vn where it is located at should be equal to GenCo n’s generation at time t (second network
constraint),

∑
u∈V

en,vnu,t = en,t , ∀t ∈ T. (2.2)

GenCo n’s outflow of power from any node other than its production node, vn, or the demand node,
node 1, should be zero (third network constraint).

∑
u∈V

en,vu,t = 0, v ∈V\{1,vn} ∀t ∈ T. (2.3)

The second and the third network constraints imply that the inflow of producer n to the demand
node, node 1, is equal to its total production, ∑u∈V en,1u,t =−en,t ; this is because all the produced
electricity is consumed at node 1.
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Figure 2.3: Timeline of events in the electricity industry during period t to t +1.

Initially, GenCos have capacity xn,0,n ∈ N. At the beginning of each year t ∈ T , the GenCos
simultaneously and independently decide on how much to expand their existing capacities. The
new capacities are built and added to the system so that the total GenCo n’s capacity for generating
electricity at time t is xn,t = xn,0 +∑τ=1,2,...,t ∆xn,τ

13. Next, nature selects the realization of the
uncertainty for year t, wt . All GenCos and the ISO observe wt and update their belief about future
uncertainties f (wt+1:T |w1:t). After the realization of the uncertainty, demand at time t+ with utility
Ut(dt ,wt), is cleared. The timeline of events during year t is shown in Fig. 2.3. After the final
year, at time T +1, each GenCo n ∈ N sells its entire capacity with price η(wt), gains a value of
Vc(xn,T+1,wT+1) = η(wT+1)× xn,T+1 and leaves the economy. This is the model for the industry.

Next, we model the system operator’s policy targets i.e. reliability, sustainability and price
efficiency. The reliability target is in the form of the following planning reserve requirements:

∑
n∈N

xn,t ≥ xt(wt−1), ∀t ∈ T. (2.4)

This means that at each time t, there is a minimum capacity requirement; this capacity requirement
depends on the realization of uncertainty up to time t−1 and is denoted by xt(wt−1). Assuming
that constructing the minimum required capacity is feasible, the expansion limits of the GenCos
should satisfy

xt(wt−1)≤ ∑
n∈N

xn,t ≤ ∑
n∈N

xn,0 + ∑
τ=1,2,...,t

∑
n∈N

xn,τ(wτ) ∀t ∈ T,w1:t ∈W1:t . (2.5)

We model the system operator’s sustainability target as follows. Consider αn,t(wt−1) to be the
carbon factor for the technology of producer n used for producing electricity at time t. Then at time

13While we assume that the new capacities are immediately built and available at the same year, in practice it takes a
number of years to build and add them to the system. We discuss this issue further in Section (2.8).
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t, the sustainability target restricts carbon emission by carbon cap Bt(wt−1) as follows

∑
n∈N

αn,t(wt−1)en,t ≤ Bt(wt−1) (2.6)

Price efficiency requires that a uniform price is paid to all GenCos and this price is equal to the
marginal cost of production for those producers that their production positive and is not saturated
from above by their capacity. Assume pn,t to be is the price paid to GenCo n at time t. Then, price
efficiency requires that ∀n ∈ N, t ∈ T

pn,t = pt (2.7)

pn,t =C′n,t(en,t) if 0 < en,t < xn,t (2.8)

Budget balance, social welfare maximization, and individual rationality are the other desired
features of electricity markets. Budget balance is defined when the demand is elastic and requires
the sum of money paid to the producers to be equal to the money collected from the demand. Since
∂Ut(dt ,wt)

∂dt
is the price per unit of electricity that the elastic demand is paying for consuming d units

of electricity, budget balance means that for each wt ∈Wt ,

∑
n∈N

pn,ten,t =
∂Ut(∑n∈N en,t ,wt)

∂ (∑n∈N en,t)
× ∑

n∈N
en,t ,∀t ∈ T (2.9)

which for the case of ∑n∈N ên,t 6= 0 means

pt =
∂Ut(∑n∈N en,t ,wt)

∂ (∑n∈N en,t)
. (2.10)

In other words, the price should follow the demand-price curve. f Inelastic demand pays any amount
for electricity consumption; therefore budget balance can be achieved by charging the demand the
total money paid to the GenCos.

Social welfare maximization is determined by appropriate choice of investment and production
plans that are functions of the system’s history of the system. At year t, we denote the history
for expansion by ht and the history for production by ht+ and their spaces by Ht , Ht+ . Define
E1:t(x0,∆x1:t) to the space of all possible electricity productions based on the initial capacity x0 and
capacity expansions ∆xt ; also define ∆X1:t(x1:t) as the space of all possible expansions based on the
expansion limits x1:t . Then,

ht := {x0,e1:t−1,∆x1:t−1,w1:t−1} ∈ Ht :=
(
x0,E1:t−1(∆x1:t−1),∆x1:t−1(x1:t−1),W1:t−1

)
(2.11)

ht+ := {x0,e1:t−1,∆x1:t ,w1:t} ∈ Ht+ :=
(
x0,E1:t−1

(
∆x1:t−1)

)
,∆x1:t(x1:t),W1:t

)
(2.12)
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GenCo n’s investment plan/strategy, n ∈ N, at year t is denoted by σn,t : Ht → [0,∆xn,t(wt−1)] and
its production plan/strategy at year t is denoted by γn,t : Ht+ → [0,xn,t ]. We denote the space of all
such strategies by Σn,t and Γn,t , t = 1,2, ...,T respectively and define

γ :={γn,t : n ∈ N, t ∈ T} (2.13)

σ :={σn,t : n ∈ N, t ∈ T} (2.14)

The investment and production strategies that maximize the expected social welfare are the
solution of the following problem:

max
σn,t∈Σn,t ,γn,t∈Γn,t :n∈N,t∈T

Ew1:T

[
∑
t∈T

β
tUt(∑

n∈N
en,t ,wt)− (Socially Optimal)

∑
t∈T

∑
n∈N

β
t
{

Cx
n,t(∆xn,t ,wt−1)+Ce

n,t(en,t ,wt)

}
+β

T+1
∑

n∈N
η(wT )xn,T

]
(2.15)

s.t. ∀t ∈ T,n ∈ N,∀u,v ∈V,w1:T ∈W1:T

0≤ en,t ≤ xn,0 + ∑
τ=1,...,t

∆xn,τ (2.16)

0≤ ∆xn,t ≤ ∆xn,t(wt−1) (2.17)

∑
n∈N

xn,t ≥ xt(wt−1) (2.18)

∑
n∈N

αn,t(wt−1)en,t ≤ Bt(wt−1) (2.19)

− Ivu ≤ ∑
n∈N

en,vu,t ≤ Ivu (2.20)

∑
u∈V

en,vnu,t = en,t (2.21)

∑
u∈V

en,vu,t = 0, v ∈V\{1,vn} (2.22)

Finally, individual rationality requires that the expected future utility of each GenCo n ∈ N at
each time t ∈ T are greater than its outside option, that is the (expected) future utility each GenCo
receives by not participating in the production and expansion process. Based on the cost functions,
we assume the outside option for not producing or expanding to be zero. If the payment that GenCo
n receives at time t is denoted by rn,t , then individual rationality at times t ∈ T and t+ ∈ T are
expressed by the requirements

Ewt:T

[
∑

τ=t,t+1,...,T
β

τ
(
−Ce

n(en,τ ,wτ)−Cx
n(∆xn,τ ,wτ)+ rn,τ

)∣∣∣∣ht

]
≥ 0 ∀ht ∈ Ht , (2.23)
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and

Ewt+1:T

[
β

t(−Ce
n(en,t ,wτ)+ rn,t

)
+ ∑

τ=t+1,t+2,...,T
β

τ
(
−Ce

n(en,τ ,wτ)−Cx
n(∆xn,τ ,wτ)

+rn,τ
)∣∣∣∣ht+

]
≥ 0 ∀ht+ ∈ Ht+, (2.24)

respectively.

Remark 2.2.1 (EXTENSIONS OF THE MODEL). The model presented here is not a representation

of all the details of real-world electricity markets; it can be extended in the following five major

directions so as to become closer to reality by taking into account modeling cost/utility functions,

capacity expansion, network constraints, asymmetric information, and transmission expansion

planning. We briefly discuss these directions below. We further discuss their impact on the design of

electricity markets in Section (2.8).

We first revisit our assumptions for costs and utilities. Although we assumed costs of production

and expansion are convex, in real world both production and expansion can have economy of scale

and therefore concave Cadwalader et al. (2010). Also, although we assumed the costs are zero for

zero production and expansion, in reality there exist start up costs or fixed costs.

The second direction is capacity expansion. While we assume that the new capacities are

immediately built and available at the same year, in practice it takes a number of years to build

and add them to the system. Also, our model does not consider depreciation of the capacity. The

above modeling assumptions are made for simplicity of presentation; the results of this section hold

also when there exists a fixed constant rate or an uncertain reliable rate of capacity depreciation.

In addition, whereas in practice companies review their expansion decisions each year, there are

numerous spot markets during the year (one in almost every 10 minutes). Therefore, the spot market

in this model should be interpreted as an abstract market model that captures the aggregate effect

of all the spot markets during a year.

The next expansion direction of the model is the network. We have assumed there is a single

demand at node 1. In reality demand is distributed over the network. Furthermore, we have assumed

each GenCo owns only one electricity production utility located in a certain node. In reality each

GenCo owns multiple utilities in different locations. Considering different expansion locations

allows GenCos to decide where they want to expand their capacity. More importantly, we have

not modeled the loop flow effect due to Kirchhoff’s electricity laws. The loop flow effect is what

distinguishes electricity networks from other networks (e.g. transportation, communication, etc.). In

this paper our goal is to understand the effect of constraints (2.16) - (2.22) on the strategic GenCos’

production and capacity expansion plans; for this reason, we did not consider the loop flow effect

due to Kirchhoff’s laws.
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The fourth major extension to the model is to consider the information asymmetry among the

GenCos. We have assumed information is symmetric, but in reality, the GenCos have private

information on their costs, technology and budgets.

Fifth, we have not modeled transmission expansion planning. We can extend the model by

adding transmission companies (TransCos) and consider their expansion decisions.

In addition to the above four directions, we can consider the following extensions to the model.

We presented a model with elastic demand in the spot market. The demand could also be inelastic.

We discuss both elastic and inelastic spot markets in Section (2.3). Also, there are other constraints

that could be added to the model. For example, ramping constraints or N−1 power flow constraints

for short term reliability can be added to the model.

In order to understand how to design efficient auctions that implement the social choice function
of Problem (Socially Optimal), we study a sequence of problems that are increasing in complexity
in terms of the constraints they include. These problems deal with the optimization of the the
social welfare function (i) without any constraints (Section (2.3)), (ii) with individual constraints of
Eqs. (2.16),(2.17) and (2.21)-(2.22) (Section (2.4)), (iii) with joint constraints of Eqs. (2.18)-(2.20)
(Section (2.5)), and (iv) with long-term interaction of GenCos and symmetric uncertainty (Section
(2.6)).

2.3 Efficient Auction of a Divisible Good

We study the design of efficient auctions for divisible goods without any constraints. This problem
serves as the fundamental building block of our development. We consider two separate cases
of price elastic and price inelastic divisible goods. We present auction design for electricity spot
markets, but the model and the design are general enough so that they can be extended to situations
where the mechanism designer is a social welfare maximizer and wants to allocate a divisible good
to an oligopoly of agents; for example, the proposed efficient auction of inelastic divisible good will
be used in the next sections to design capacity market, carbon permit market and transmission right
market.

Inspired by (Hurwicz, 1979), the design is inspired based on the following. (1) The price paid to
each strategic producer is independent of his own price proposal and is determined as a function
of the price proposals of other producers. This approach eliminates market power and provides
flexibility with discriminatory prices to implement the socially optimal allocation. (2) To ensure
uniform efficient price at equilibrium, an individual penalty term is also added to the payments.
These penalty terms punish deviations from price proposal of other GenCos. (3) A penalty is
imposed if the aggregate production is different from the demand; this penalty ensures market
clearing and budget balance. The form of the penalty terms depends on the elasticity of the demand.
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2.3.1 Model: Electricity Spot Markets

Based on the model of Section (3.2), we consider a single spot market without constraints. Since
we study only a one-time market, for the ease of presentation, we drop the time index and ignore
the uncertainty factor in the model of this Section (Also in Sections 2.4 and 2.5). In Section (2.6),
we extend the results to the case where both long-term interaction of agents and uncertainty exist.

The social-welfare maximizing allocation for elastic demand is given by the solution of the
following problem.

max
en,n∈N

U(∑
n∈N

en)− ∑
n∈N

Ce
n(en) (Socially Optimal Dispatch - Elastic)

If the demand is inelastic and equal to D then, the social welfare maximizing problem will be

max
en,n∈N

− ∑
n∈N

Ce
n(en) (Socially Optimal Dispatch - Inelastic)

s.t. ∑
n∈N

en ≥ D (2.25)

Note that both of the above problems are strictly convex optimizations with a convex non-empty
domain and therefore, have a unique solution.

2.3.2 Design/Mechanism

We present two auction mechanisms, one for elastic and one for inelastic demand. The two
mechanisms are only different in their payment methods.

A game form/mechanism is described by (M ,h), where M is the message/strategy space and
g : M → A is the outcome function, a function from the message space M to the space A of
allocations. Consider the following mechanism.

Message space We choose M to be

M := (M1⊗M2⊗ ...⊗MN), (2.26)

where Mn is producer n’s message space,

Mn := R×R+,n ∈ N, (2.27)

and mn ∈Mn is of the form
mn = (ên, p̂n), (2.28)

where ên denotes the amount of good GenCo n proposes to produce, and p̂n denotes the price GenCo
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n proposes to charge per unit of electricity. p̂n is restricted by p̂n ≥ 0.
Allocation Space We choose A to be

A := (A1⊗A2⊗ ...⊗AN), (2.29)

where An is producer n’s allocation space

An := [0,xn]×R,n ∈ N, (2.30)

and an ∈An is of the form
an = (en,rn), (2.31)

where en denotes the amount of good GenCo n is scheduled to produce, and rn denotes the payment
to GenCo n.

Outcome function We define g : M →A as follows:
For each m := (m1,m2, ...,mN) ∈M we set

g(m) = (e,r) = (e1, ...,eN ,r1, ...,rN), (2.32)

where

en = ên (2.33)

For elastic demand the payments are14

relas.
n = p̂n+1ên− p̂−0.5

n ζ
elas.
n

2
(2.34)

ζ
elas.
n = D(p̂n+1)− ∑

n∈N
ên (2.35)

D(p̂) = (U
′
)
−1
(p̂) (2.36)

p̂N+1 := p̂1. (2.37)

For inelastic demand the payments are

rinelas.
n = p̂n+1ên− (p̂n− p̂n+1)

2−2 p̂nζ
inelas.2 (2.38)

ζ
inelas. = (D− ∑

n∈N
ên)

+ (2.39)

pN+1 := p1. (2.40)

14To make sure the tax is in terms of dollars, appropriate unit conversion factors should be considered in the tax
function. To avoid complexities, we have assumed these factors are 1 and have not put them explicitly in the tax terms.
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We refer to these auctions for elastic and inelastic demand by Auelas. and Auinelas. correspondingly.

2.3.3 Interpretation of the Design

The key challenges in the design of an efficient mechanism for the problem considered in this
Section are (1) dealing with the strategic GenCos’ market power; and (2) incentivizing the strategic
GenCos to collectively meet the price-taking demand.

Since the mechanism designer, i.e. the ISO, can not alter the producers’ cost functions, Ce
n(.),

n = 1,2, ...,N, even if he knew their functional form, the only way he could achieve his objective
(social welfare maximization) is through the use of appropriate tax incentives/tax functions. For the
case of elastic demand, the tax function is relas.

n = rn,1 + relas.
n,2 = [p̂n+1ên]+ [−p̂−0.5

n ζ elas.2
n]. For the

case of inelastic demand, rinelas.
n = rn,1 + rinelas.

n,2 = [p̂n+1,ten]+ [−(p̂n− p̂n+1)
2−2p̂nζ inelas.2

t ].
The producers’ market power is addressed by offering each producer a price per unit of its

production that does not depend on its own price proposal, that is, it is not under its own control.
Such an offer induces price-taking behavior among the producers; moreover, allowing discrimi-
natory individual prices charged to GenCos (off-equilibrium) provides the flexibility required for
implementing social welfare maximizing generation. One way to achieve these goals is to arbitrarily
index the GenCos between 1 and N, and then pay GenCo n according to the price proposal pn+1

of GenCo n+1, with the convention that pN+1 = p1. The term rn,1 specifies the amount GenCo n

receives for its production en in this way.
Incentivizing the producers to bid the same prices, can be achieved by a penalty term for each

producer n that depends on his own price. In the same way, incentivizing the strategic producers to
collectively meet the demand can be achieved by penalizing over-production or under-production.
The term relas.

n,2 and rinelas.
n,2 are such penalty terms that provide both of these incentives and can be

thought of as the tax payments the ISO collects from the producers in order to align their productions
with the production profile that maximizes the sum of the utilities of producers and the demand.
For the inelastic demand, the incentive provided to all producers to bid the same price per unit
of capacity is described by the term −(p̂n,t − p̂n+1,t)

2. The incentive provided to all producers
to collectively propose a total production that is equal to the demand, D, is captured by the term
−2p̂n,tζ

inelas.2
t which is a penalty for underproduction. Moreover, for the elastic demand relas.

n,2
15

ensures the equilibrium price is equal to the marginal utility of the demand at the total amount of
production. Under this price all the electricity supplied at the suggested price is bought and used
by the demand. Note that D(p) is the optimal demand for price p, because it is the solution of the

15Following the above guidelines, different penalty terms can be designed for efficient auctions and those terms
proposed here are just one possible formulation. Note that the terms relas.

n and rinelas.
n should be concave to ensure the

results hold.
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optimization problem below:
D(p) ∈ argmax

d≥0
U(d)− pd. (2.41)

Note that, since the above optimization is strictly convex, it has a unique solution.

2.3.4 Comparison of the Elastic and Inelastic Static Auctions

We now contrast the two auction mechanisms we proposed for elastic and inelastic divisible good.
The key differences appear in the specification of the tax function which provides incentives to
strategic GenCos to align their interests/goals with those of the ISO. In the case of elastic demand,
the money the demand pays defines the electricity amount it consumes. Thus, this price should be
less than or equal to marginal utility of consumption at the amount injected to the market. This
expresses the budget balanced property the mechanism should have. In the case of inelastic demand,
budget balanced is not required because the demand pays to the GenCos any amount it is charged.
In return, the GenCos should satisfy an inequality constraint of the form ∑n=1,...,N en ≥ D. The
difficulty in this case is designing a price efficient mechanism (a mechanism where the price is
limited by marginal cost of production) which also implements ∑n=1,...,N en ≥ D.

As a result of these differences, the two mechanisms are different in the way GenCos contribute
to the tax payment that is imposed so as to achieve a feasible allocation at equilibrium.

2.3.5 Properties

The properties possessed by the two proposed mechanisms are described in this Section. We
consider Nash equilibrium (NE) as the solution concept. We denote the equilibrium messages and
outcomes corresponding to GenCo n ∈ N by p̂∗n, ê

∗
n,r

elas.
n

∗
,rinelas.

n
∗
, p∗n and e∗n.

We first define trivial equilibrium (Definition 2.3.1); we show that the auction for inelastic
demand has exactly one trivial NE (Lemma 2). Hereafter, for simplicity of presentation whenever
we refer to NE, we mean non-trivial NE unless otherwise stated. We prove that at any equilibrium
(trivial or non-trivial) outcome of the game induced by the above mechanisms, supply and demand
meet each other (Lemma 1). We use Lemmas 2 and 1 to prove price efficiency, budget balanced,
social welfare maximization, and individual rationality at any Nash equilibrium in Theorems 1-4
respectively. The proof of all these properties is presented in Appendix A. We conclude this Section
by discussing uniqueness of the NE, Pareto dominance of the non-trivial NE compared to the trivial
NE for the inelastic demand, and the anonymity of the mechanisms.

Definition 2.3.1 (TRIVIAL EQUILIBRIUM). An equilibrium where price bids p̂n are zero for all

n ∈ N is defined to be a trivial equilibrium.
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Lemma 1 (MARKET CLEARANCE). At every non-trivial equilibrium, supply meets demand, i.e.

for elastic demand

ζ
elas.
n

∗
= 0, (2.42)

D(p̂∗n+1)− ∑
n∈N

ê∗n = 0, (2.43)

for all n ∈ N and for inelastic demand

ζ
inelas.∗ = 0, (2.44)

(D− ∑
n∈N

e∗n)≥ 0. (2.45)

Theorem 1 (PRICE EFFICIENCY). The auctions proposed for elastic and inelastic demand are

price efficient at any non-trivial equilibrium; that is there is a uniform price equal to the marginal

cost of the next one unit of production by producers, i.e. for every producer n ∈ N,

p̂∗n = p̂∗n+1 = p̂∗, (2.46)

r∗n = p̂∗ê∗n, (2.47)
∂ rn

∂ ên

∣∣∣∣
m∗

= p̂∗, (2.48)

p̂∗ = C′(ê∗n). (2.49)

Theorem 1 shows that at equilibrium all producers propose the same price per unit of electricity
(Eq. 2.46). This equilibrium price is both the average price (Eq. 2.47) and the marginal price (Eq.
2.48), and is efficient in the sense that it is equal to the marginal cost of production for non-saturated
producers (Eq. 2.49). This Theorem shows that the proposed mechanisms incentivize producers
to reveal at equilibrium their true cost of producing the next unit of electricity provided that they
still have free capacity. This marginal cost is the same across all producers with free capacity, and
therefore, would be the marginal cost of production of a hypothetical entity who would own all the
producers.

Theorem 2 (BUDGET BALANCED). The proposed auctions are budget balanced at any trivial

or non-trivial equilibrium. For elastic demand, if ∑n∈N ê∗n > 0, this means the equilibrium price is

equal to marginal utility of the demand,

p̂∗ = U
′
(∑

n∈N
ê∗n). (2.50)

Note that in contrast to the auction for elastic demand, budget balance is always satisfied in the
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auction for inelastic demand by charging demand the total payment to the GenCos.

Theorem 3 (SOCIAL OPTIMALITY). At any non-trivial equilibrium of the proposed auction for

elastic or inelastic demand, the allocation of the demand to GenCos is socially optimal according

to the unique solution of Problem (Socially Optimal Dispatch - Elastic) for allocating an elastic

demand and Problem (Socially Optimal Dispatch - Inelastic) for allocating an inelastic demand.

Theorem 1 determines the price bids and Theorem 3 determines the production bids at equilib-
rium. Using these bids, we can establish individual rationality.

Theorem 4 (INDIVIDUAL RATIONALITY). The proposed auction mechanisms for elastic and

inelastic demand are individually rational, that is at any trivial or non-trivial NE of the game

induced by the mechanisms and for every GenCo n ∈ N, the corresponding allocation (e∗n,r
elas.
n

∗
)

or (e∗n,r
inelas.
n

∗
) is weakly preferred to the allocation (0,0) (the allocation a producer receives when

it does not participate in the market).

Theorem 4 shows that each strategic producer voluntarily participates in the electricity pooling
market.

Lemma 2 (UNIQUENESS OF TRIVIAL NE). The game induced by the proposed auction for

inelastic demand has exactly one trivial Nash equilibrium, where for all n ∈ N, p∗n = 0 and e∗n = 0.

The game induced by the auction for elastic demand does not have any trivial equilibrium if the

solution to Problem (Socially Optimal Dispatch - Elastic), e∗n is not zero for all n ∈ N, otherwise it

has a unique trivial equilibrium where for all n ∈ N, p∗n = 0 and e∗n = 0.

Remark 2.3.1. [UNIQUENESS] The games induced by the proposed mechanisms have a unique

non-trivial NE. This is because by Theorem (3), the bids for electricity production at equilibrium are

corresponding to the unique solution of Problem (Socially Optimal Dispatch - Elastic) for elastic

demand and Problem (Socially Optimal Dispatch - Inelastic) for inelastic demand. Furthermore, by

Theorem (1), the price bids of all the GenCos is the same at equilibrium, and equal to marginal cost

of producing next unit of electricity.

[PARETO DOMINANCE] Since (0,0) is the outcome of the trivial NE of the game induced by

the mechanism, Theorem 4 shows that the non-trivial NE Pareto dominates the trivial NE.

[ANONYMITY] The proposed mechanism is anonymous at equilibrium. In other words, the

equilibrium outcome does not depend on the index order of the GenCos16.

16To see this note that the payments and allocations at equilibrium do not depend on the producers’ indices rather
as shown by Theorems (3), at equilibrium the electricity produced by each GenCo is according to the social welfare
maximizing production which is independent of the indexing. Furthermore, as shown in Lemma (1) (Eq. (2.46)) the
price paid per unit of production at equilibrium is the same for all the producers and independent of the producers’
indexing, and the terms relas.

n,2 and rinelas.
n,2 , n = 1,2, ...,N, in the tax function are equal to zero (Eqs. 2.47).
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Anonymity at off-equilibrium outcomes is also a desired feature for markets. For the case of

elastic demand, we present another mechanism that is anonymous both at equilibrium and off

equilibrium by using the following tax payments that are independent of the GenCos’ indexing.

relas.
n = p̂−nên− p̂−0.5

n ζ
elas.
n

2
(2.51)

ζ
elas.
n = D(p̂−n)− ∑

n∈N
ên (2.52)

p̂−n =
∑ j∈N, j 6=n p̂ j

N−1
. (2.53)

The mechanism described by Eqs. (2.26)-(2.28), (2.33), and (2.51)-(2.53) is an efficient auction that

is also anonymous both at equilibrium and off equilibrium.

2.4 Efficient Auction with Individual Constraints

We consider auctions where sellers have convex individual constraints. We show that with convex
individual constraints, the auctions proposed in Section (2.3.2) remain efficient without any need
for additional prices (and corresponding markets for discovering prices) or other instruments.

We will study these auctions within the context of GenCo’s capacity expansion without reliability
constraints. In this Section and Sections 2.5 and 2.6, we focus on the case of elastic demand; the
extension of techniques and results to corresponding problems with inelastic demand can be achieved
in a similar way. We design an efficient capacity-trade auction, and show that the proposed auction
is efficient (Theorem 5). Moreover, the GenCos use all of the expanded capacity in the spot market
and the spot market price covers their investment cost (Theorem 6).

At the end of the section, we interpret the results within the context of supply chains. We will
also interpret the results specifically for energy-only electricity markets in Section (2.7).

2.4.1 Model: Investment without Reliability Constraint

Consider the model of Section (3.2) restricted to the following capacity-trade competition: GenCos
individually decide on their investment at time 1 and then the demand is auctioned at the spot market
of time 1+. GenCos’ production is limited by their individual capacity and their capacity expansion
is limited by their individual expansion limits. The social-welfare maximizing allocation for elastic
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demand is a solution to the problem

max
en,∆xn,n∈N

U(∑
n∈N

en)− ∑
n∈N

Ce
n(en)− ∑

n∈N
Cx

n(∆xn) (Socially Optimal - Individual Const.)

s.t. 0≤ en ≤ xn,0 +∆xn ∀n ∈ N (2.54)

0≤ ∆xn ≤ ∆xn ∀n ∈ N (2.55)

Problem (Socially Optimal - Individual Const.) is a strictly convex optimization problem with a
convex non-empty domain; therefore it has a unique solution.

2.4.2 Design/Mechanism

We propose the following dynamic mechanism for capacity-trade competition. GenCos simulta-
neously decide on their expansion ∆xn at time 1. Then at time 1+, they participate in the efficient
auction (spot market) for elastic demand proposed in Section (2.3.2). Note that due to constraint in
Eq. (2.54), GenCo n’s message space in the spot market is limited by 0≤ ên ≤ xn.

2.4.3 Properties

We consider subgame perfect Nash equilibrium (SPNE) as the solution concept and study the
equilibrium properties of our proposed capacity-trade mechanism. We denote the equilibrium
outcome of the game induced by the mechanism by ∆x∗n,e

∗
n and p∗n. The properties of the mechanism

are summarized by Theorems 5 and 6. The proof of all the Theorems in this Section is presented in
Appendix B.

Theorem 5 (EFFICIENCY). The game induced by the proposed mechanism for capacity-trade

competition (capacity expansion and production) has unique sub-game perfect Nash equilibrium.

This unique equilibrium (i) implements socially efficient investment and production corresponding to

Problem (Socially Optimal - Individual Const.), (ii) is individually rational, (iii) results in efficient

price in the spot market and (iv) is budget balanced.

GenCos cover their cost of investment when their capacity becomes saturated and therefore, the
market price is above their marginal cost of production. In the following Theorem, we show that the
GenCos’ investment on capacity is always covered, and it is covered at its marginal cost.

Theorem 6 (SATURATION & SCARCITY PRICE). If GenCo n’s expansion at time 1 is positive,

i.e. ∆x∗n > 0, then its production in the spot market at time 1+ is saturated i.e.

e∗n = xn,0 +∆x∗n. (2.56)
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Moreover, the equilibrium price in the spot market covers the investment at its marginal cost, i.e.

p∗ =Ce
n
′(e∗n)+Cx

n
′(∆x∗n) if 0 < ∆xn < ∆xn. (2.57)

2.4.4 Interpretation

Our results for auctions with convex individual constraints can be interpreted in a more general
framework within the context of supply chains. Consider a supply chain for an end-product. The
producers are competing in the end-product market to meet the demand, but there is no competition
on the other upstream goods/resources in the supply chain; each producer has only individual costs
and limits in the purchase/preparation of the upstream goods/resources which are independent of
the other producers’ purchase/preparation of those goods/resources. Our results on auctions with
individual constraints show that implementation of the socially optimal outcome in this setup can
be achieved by a single efficient market for the end-product and there is no need to design markets
for the upstream goods/resources. In other words, our efficient market for the end-product not only
achieves socially optimal allocations of the end-product demand to the producers, but also sends
back correct signals for efficient investment on all the other upstream goods/resources in the supply
chain.

2.5 Efficient Auction with Homogeneous (Additive) Joint Con-
straints

We consider auctions with homogeneous (additive) joint constraints. Joint constraints are public
(uneconomic) constraints and their implementation requires appropriate tax/subsidy. We introduce a
technique for decomposing homogeneous joint constraints into a sequence of individual constraints
and then implementing them by a sequence of efficient auctions with individual constraints. The
equilibrium price in the market corresponding to each homogeneous joint constraint determines the
efficient tax/subsidy needed to implement that constraint.

We present our decomposition technique and results on homogeneous joint constraints through
the study of reliability constraints (planning reserve requirements) for electricity investment. We
also discuss in Section (2.7) how to implement carbon emission constraints and lines’ thermal
capacity constraints using our results on auctions with homogeneous joint constraints.
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2.5.1 Model: Electricity Investment with Reliability Constraint

We use the model of Section (3.2) and add the reliability constraint to the model of Section (2.4.1).
The social welfare maximizing investment and production are a solution to the Problem (Socially
Optimal - Joint Const.)

max
en,∆xn,n∈N

U(∑
n∈N

en)− ∑
n∈N

Ce
n(en)− ∑

n∈N
Cx

n(∆xn) (Socially Optimal - Joint Const.)

s.t. 0≤ en ≤ xn,0 +∆xn ∀n ∈ N (2.58)

0≤ ∆xn ≤ ∆xn ∀n ∈ N (2.59)

∑
n∈N

(xn,0 +∆xn)≥ x (2.60)

Problem (Socially Optimal - Joint Const.) is a strictly convex optimization with a convex non-empty
domain; therefore, it has a unique solution.

2.5.2 Design/Mechanism

We decompose Problem (Socially Optimal - Joint Const.) and implement its solution with separate
markets. The decomposition and implementation method presented here is for reliability constraints
but the method can be used for problems with other convex homogeneous joint constraints.

Decomposition: Consider x = (x1,x2, ...,xN) where xn = xn,0 +∆xn. Problem (Socially Optimal
- Joint Const.) is equivalent to the following two sequential optimization

max
∆xn,n∈N

V+(x)− ∑
n∈N

Cx
n(∆xn) (Joint Const. Decompos. 1)

s.t. 0≤ ∆xn ≤ ∆xn ∀n ∈ N (2.61)

∑
n∈N

xn ≥ x, (2.62)

followed by

V+(x) = max
en,n∈N

U(∑
n∈N

en)− ∑
n∈N

Ce
n(en) (Joint Const. Decompos. 2)

s.t. 0≤ en ≤ xn∀n ∈ N. (2.63)

Market Design: Inspired by the above decomposition, we propose the following dynamic market
design. First at time 1, the amount of capacity required for reliability, x, is auctioned among the
GenCos using efficient inelastic capacity market. The design of this market is the same as the
efficient inelastic spot market proposed in Section (2.3). Next, at time 1+, the elastic demand U(d)
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is auctioned among the GenCos using an efficient elastic spot market that is the same as that of
Section (2.3). Note that due to constraint in Eq. (2.63), the GenCo n’s message space in the spot
market is limited by 0≤ ên ≤ xn, and in the same way, due to constrain in Eq. (2.61), its expansion
proposals in the capacity market should be between zero and ∆xn.

We prove the properties of this dynamic market in the next section.

2.5.3 Properties

The properties of the proposed dynamic auction for implementing reliability constraints are summa-
rized by Theorems (7) and (8). In Section (2.6.3), we extend these properties to the more general
case where GenCos have long-term interaction with symmetric uncertainty and prove them in
Appendix C.

Theorem 7 (EFFICIENCY). The mechanism proposed for auctions with homogeneous joint con-

straints is individually rational, budget balanced, and price efficient both in the capacity market and

in the spot market. Furthermore, if the solutions of Problem (Socially Optimal - Joint Const.) results

in non-negative total expansion i.e. ∑nıN ∆x∗n 0, then the game induced by the proposed mechanism

has a unique non-trivial SPNE with the allocations corresponding to the optimal solutions of

Problem (Socially Optimal - Joint Const.). The game induced by the proposed mechanism has also

a trivial SPNE where the investment on capacity expansion ∆xn, n ∈ N, are equal to zero. The

non-trivial SPNE Pareto dominates the trivial SPNE.

We present a sketch of the proof for Theorem (7) in three steps (the complete proof is provided
in Appendix C): First, at time 1+ for all vales of x = {x1,x2, ...,xn}, the efficient elastic spot market
implements the solution of Problem (Joint Const. Decompos. 2) and is budget balanced, individually
rational and price efficient (Theorems (5)). Next, we prove the equilibrium in the capacity market is
the solution of Problem (Joint Const. Decompos. 1) on two steps. Define Ṽ+

n to be the GenCo n’s
utility in the spot market:

V+
n (x) =−Ce

ne∗n)+ r∗n. (2.64)

In the inelastic capacity market of time 1, each GenCo wants to maximize his individual util-
ity which is V+

n (x)−Cx
n(∆xn) as a best response to the other GenCos’ expansion decisions,

(∆x1,∆x2, ...∆xn−1,∆xn+1, ...,∆xn). Therefore, by Theorem (5), the equilibrium of the efficient
capacity market is budget balanced, individually rational and price efficient, and implements the
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solution of the following optimization problem:

max
xn,n∈N

∑
n∈N

[V+
n (x)−Cx

n(∆xn)] (Joint Const. Decompos. 3)

s.t. 0≤ ∆xn ≤ ∆xn ∀n ∈ N (2.65)

∑
n∈N

xn ≥ x. (2.66)

To complete the proof, we show that the solution of Problem (Joint Const. Decompos. 3) is
equivalent to the solution of Problem (Joint Const. Decompos. 1). This is because these solutions
satisfy the same first order optimality constraints considering that for each n ∈ N, V+ and V+

n have
the same derivatives with respect to each ∆xn. Steps one to three show that the the proposed dynamic
markets implement Problem (Socially Optimal - Joint Const.) in NE and are budget balanced,
individually rational, and price efficient.

Next, we can comparing the mechanism for homogeneous joint constraint with the mechanism
for auction with individual constrains proposed in Section (2.4). In contrast to auctions with
individual constraints, saturation and scarcity price results of Theorem 6 do not necessarily hold
for our auctions with homogeneous joint constraints. In other words, it is possible that a GenCo
expands its capacity without using the expanded capacity in the spot market. However, the price in
the capacity market is efficient (Theorem (8)).

Theorem 8 (EFFICIENT SUBSIDY/TAX). At the non-trivial SPNE, the equilibrium price in the

capacity market, pc∗, is equal to the efficient level of subsidy/tax per unit of capacity expansion

needed to implement the joint constraint in Eq. (2.60), that is

pc∗ =Cx
n
′(∆xn)+Ce

n
′(en)− p∗ (2.67)

where p∗ is the equilibrium price in the spot market. This equilibrium price in the capacity market

goes to zero if the joint constraint is not binding.

Remark 2.5.1 (MULTIPLE JOINT CONSTRAINTS). Our design by decomposition technique

can be extended to multiple convex homogeneous joint constraints by considering one price signal

for each constraint which is the efficient tax/subsidy for the corresponding joint constraint. Each

efficient price can be discovered using a separate efficient market.

Remark 2.5.2 (ELASTIC JOINT CONSTRAINT). Instead of the hard constraint for reliability in

Eq. (2.66), some proposals assume the market operator has an elastic value function for reliability

which is an increasing function of the existing capacity, U r(∑n∈N xn). Our decomposition technique

can be extended to work for this case. The corresponding capacity market will be an efficient

auction of an elastic divisible good with utility U r(.).
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2.6 Long-Term Interaction with Common Uncertainty

In this Section, we extend the previous results in two directions: considering long-term interaction
of agents and adding common uncertainty. Long-term interaction may result in collusion among
competing agents; furthermore, agents should take into account the effect of uncertainty in their
utility. We consider risk-neutral agents who should maximize their expected utility. We show that
by using a sequence of the auction mechanisms presented in previous sections, we can implement
the efficient outcome with the additional desirable features.

We present the results of this section within the context of long-term electricity investment with
reliability constraints. In practice, GenCos interact for multiple years and have uncertainty about
future demand, cost of production, cost of expansion, etc. We model this environment and design an
efficient dynamic auction mechanism for it by repeating the mechanism proposed in Section (2.5.2)
in each year.

In order to study the properties of this mechanism, we first show that in all of the sub-game
perfect Nash equilibria (SPNE) of the game induced by it, GenCos’ strategies are only a function of
the payoff-relevant information i.e. existing capacities and realization of past uncertainties (Lemma
3); an immediate consequence is that GenCos act myopically in the electricity spot markets, i.e.
maximizing their immediate outcome (Corollary 2.6.1). We use Lemmas (3) to prove that all SPNEs
of the game induced by the mechanism are individually rational, budget balanced and price efficient;
moreover, the unique non-trivial SPNE Pareto dominates all trivial SPNEs and is socially optimal
(Theorem 9). For infinite horizon interaction, there may exist non-Markov equilibria i.e. Lemma 3
does not hold, but by considering the sub-set of equilibria where the strategies are Markov and a
only a function of pay-off relevant information, we can prove the extend the same results to infinite
horizon interaction (Theorem 10).

2.6.1 Model: Long Term Investment with Reliability Constraints

We extend the model of Section (2.5) for investment with reliability constraint to the case where
GenCos interact over a finite time horizon and have common uncertainty that is common knowledge
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among them. The expected social welfare maximizing investment and production is

max
σn,t∈Σn,t ,γn,t∈Γn,t :n∈N,t∈T

Ew1:T

[
∑
t∈T

β
tUt(∑

n∈N
en,t ,wt)−

(Socially Optimal - Longterm Uncertainty)

∑
t∈T

∑
n∈N

β
t
{

Ce
n,t(en,t ,wt)+Cx

n,t(∆xn,t ,wt−1)

}
+β

T+1
∑

n∈N
η(wT )xn,T

]
(2.68)

s.t. 0≤ en,t ≤ xn,0 + ∑
τ=1,...,t

∆xn,τ (2.69)

0≤ ∆xn,t ≤ ∆xn,t(wt−1) (2.70)

∑
n∈N

xt ≥ xt(wt−1) (2.71)

In Lemma (3), we prove that the solution of Problem (Socially Optimal - Longterm Uncertainty),
the expansion strategies at time t, σ∗n,t , are only functions of St = {xt−1,w1:t−1} and generation
strategies at time t+, γ∗n,t , are only functions of St+ = {xt ,w1:t}. In other words, St and St+ are
information state for Problem (Socially Optimal - Longterm Uncertainty). We will also prove that
the same is true for the GenCo’s SPNE strategy in the game induced by the mechanism we design.

2.6.2 Design/Mechanism

Using dynamic programming and value function, Problem (Socially Optimal - Longterm Uncer-
tainty) can be decomposed into a set of sequential optimization problems, one for each year (See
Appendix (C.1)). Furthermore, using the decomposition technique of Section (2.5.2), the optimiza-
tion of each year t ∈ T can be further decomposed into two optimization problems, one for capacity
expansion and one for electricity generation. Considering this decomposition, we use 2×T markets
for implementing the corresponding outcome: each year t ∈ T has a capacity market for auctioning
the inelastic capacity (xt(wt−1)−∑n∈N xn,t−1)

17, followed by an elastic spot market for auctioning
electricity demand with utility Ut(dt ,wt). The timeline of events for year t is shown in Fig. (2.4).

2.6.3 Properties

In the game induced by the energy-and-capacity mechanism, the strategy of each seller n consists of
both strategies σ̃n,t , t ∈ T determining their bids in the capacity market and strategies γ̃n,t+, t ∈ T

17We assume the level of expansion required for reliability is always non-negative. Example of cases where it can
become negative is when the demand prediction suddenly falls (due to technological changes) and the level of capacity
required for reliability can fall below existing capacity. Moreover, we assume the reliability constraints are always
binding; otherwise the GenCos would like to invest more than the capacity allocated to them in the capacity market.
Changing these assumptions does not change the results, but they make presentation of the results complicated.
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Figure 2.4: Timeline of events in year t for the proposed markets of Section (2.6.2).

determining their bids in the spot markets. The history of the game at the time of expansion is

h̃t = {x0,∆x̃1:t−1, p̃1:t−1, ê1:t−1, p̂1:t−1,w1:t−1} ∈ H̃t (2.72)

H̃t := {x0,∆x̃1:t−1, P̃1:t , Ê1:t−1, P̂1:t−1,w1:t−1} (2.73)

σ̃n,t : H̃t → [0,∆xn,t ]×R+ (2.74)

And at the spot market t it is

h̃t+ = {x0,∆x̃1:t , p̃1:t , ê1:t−1, p̂1:t−1,w1:t} (2.75)

H̃t+ = {x0,∆x̂1:t , P̃1:t , Ê1:t−1, P̂1:t−1,w1:t} (2.76)

γ̃n,t+ : H̃t+ → [0,xn,t ]×R+ (2.77)

We denote the set of all such strategies by Σ̃n,t and Γ̃n,t .
The properties of the proposed energy-only economy at its SPNE are described by Lemma 3

and Theorems 9-10. The proof of all these properties is presented in Appendix C.
We first show that strategies at any SPNE of the game induced by the energy-and-capacity

mechanism are only a function of the payoff relevant information i.e. they are Markov.

Lemma 3. (MARKOV STRATEGIES) At any solution of Problem (Socially Optimal - Longterm

Uncertainty) or any SPNE of the game induced by the proposed finite-horizon mechanism of Section

(2.6.2), expansion strategies of all GenCos n ∈ N at time t are functions of St = {xt−1,w1:t−1} and

the production strategies at time t+ are functions of St+ = {xt ,w1:t}.

Lemma (3) implies the following corollary.

Corollary 2.6.1 (MYOPIC BEHAVIOR). Lemma 3 implies that the GenCos act myopically in the

spot market. This is because the actions of the GenCos in the spot market at time t+, production

and price proposals, do not change the information state Sτ and Sτ+ for τ > t i.e. these actions
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do not have any effect in the future strategies of the agents. Therefore, it is best for GenCos to act

myopically and maximize their utility in the current spot market.

We call a SPNE of the game induced by the mechanism non-trivial, if the equilibrium price
proposal in the capacity markets of time t, pc

t
∗ is not zero for all t ∈ T . Theorem (9) shows the game

induced by the mechanism has a unique non-trivial SPNE which Pareto dominates all the trivial
SPNEs.

Theorem 9 (EFFICIENCY). There is a unique non-trivial SPNE that Pareto dominates all the

trivial SPNEs of the game induced by the mechanism of Section (2.6.2) and has the following

features.

(i) [SOCIAL OPTIMALITY] The expansion and production outcomes corresponding to the

unique non-trivial SPNE are socially optimal, that is they are equal to the solution of Problem

(Socially Optimal - Longterm Uncertainty).

(ii) [PRICE EFFICIENCY] For all t ∈ T , there is a unique capacity price proposal, pc
t
∗ in the

capacity market, and a unique electricity price, p∗t in the spot market for all GenCos n ∈ N which

are efficient, that is

p∗t =C′(e∗n,t) if 0 < ê∗n,t < xn,t , (2.78)

pc
t
∗ =Cx′(∆x∗n,t)−Ewt |St

{
∂Vn,t+(xt+,w1:t−1,wt)

∂∆xn,t

∣∣∣∣
m∗t

}
if 0 < ∆x∗n,t < ∆xn,t , (2.79)

where Vn,t+(St+) is the future expected revenue of producer n from time t+ on.

(iii) [BUDGET BALANCED] All the capacity and spot markets are budget balanced at equilib-

rium. For the elastic spot market at time t ∈ T ,

p̂∗t =
∂Ut(∑n∈N en,t ,wt)

∂ (∑n∈N en,t)
. (2.80)

if ∑n∈N en > 0.

(iv) [INDIVIDUAL RATIONALITY] The proposed mechanism is individually rational, that is for

every time t ∈ T and realization of the history, the sum of the current and expected future utility is

non-negative.

Note that Eq. (2.79) is a generalization of Eq. (2.67) and shows that the price in the capacity
market is equal to the difference between the marginal cost of expansion and the expected marginal
future stream of revenue. This is exactly the missing money gap that is covered by the capacity
market. As this gap goes to zero, the price for capacity also goes to zero.

Other than the unique efficient SPNE, the game induced by the proposed mechanism has a
number of trivial SPNEs. Using the intuition in Lemma (2), this is because at each capacity market
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at time t, and history (̃h)t , t ∈ T , for auctioning inelastic capacity market, the GenCos may choose
one of the following two strategies: trivially bid zero capacity expansion and zero capacity price or
propose the socially optimal capacity expansion and the corresponding efficient price.

The above results can not be directly extended to problems where GenCos interact for infinite
horizon in general, because the equilibrium strategies may be non-Markov, and therefore, GenCos
may collude (Lemma (3) does not hold necessarily). However, the result for finite horizon can be
extended to infinite horizon with some extra assumptions.

To extend the model to infinite horizon, assume the random variables wt , t ∈ T are Markovian,
i.e.

fwt (wt |w1:t−1) = fwt (wt |wt−1) (2.81)

We use this assumption to focus on stationary strategies. In the following theorem, we prove that by
focusing on Markov equilibria (where strategies that are only a function of Sin f

t = {xt−1,wt−1} and
Sin f

t+ = {xt ,wt}) the results can be extended to the infinite horizon interaction.

Theorem 10 (INFINITE HORIZON INTERACTION). The game induced by the infinite horizon

mechanism has a unique non-trivial Markov perfect equilibrium in which strategies are only a

function of the payoff relevant information Sin f
t = {xt−1,wt−1} and Sin f

t+ = {xt ,wt}. This equilibrium

is socially optimal, price efficient, individually rational and budget balanced. Moreover it Pareto

dominates all trivial Markov perfect equilibria.

2.7 Implementing Electricity Policy Targets

We use the results the of previous sections to design reliable, sustainable, and price efficient
electricity markets considering the links thermal constraints. We propose two sets of markets:
energy-and-capacity and energy-only. We also discuss how our results contribute to electricity
policy debates mentioned in Section (2.1).

2.7.1 Design/Mechanism

We describe how to design a mechanism that implements the solution of Problem (Socially Optimal)
stated in Section (3.2), and in addition, is individually rational, budget-balanced, and price efficient.
In Problem (Socially Optimal), we have individual constraints, expressed by Eqs. 2.16), (2.17),
(2.21) and (2.22), a homogeneous joint constraints which are the reliability constraint of Eq. (2.18)
and the lines’ thermal capacity of Eq. (2.20), and non-homogeneous joint constraints that describe
the carbon emission limit, Eq. (2.19). Since Eqs. (2.18), (2.19), and (2.20) are all in terms of

41



productions at time t, in order to decompose them into separate optimization problems, we introduce
carbon permits and line transmission rights as auxiliary variables. Carbon permit is also required
since Eq. 2.19 is non-homogeneous.

Let auxiliary variable bn,t be GenCo n’s carbon emission permit at time t; then Eq. (2.19) can
be replaced with one individual and one homogeneous joint constraint as follows

0≤ en,t ≤ bn,t/αn,t(wt−1) (2.82)

∑
n∈N

bn,t ≤ Bt(wt−1). (2.83)

Also, let auxiliary variables In,uv,t to be GenCo n’s transmission right permit at time t in the direction
of u to v. Then we can replace Eq. (2.20) with one individual and one homogeneous joint constraint
as follows:

en,vu,t ≤ In,uv,t , (2.84)

∑
n∈N

In,uv,t ≤ Iuv. (2.85)

Then, Problem (Socially Optimal) with constraints and replaced by and , respectively, if of the same
form as Problem Socially Optimal - Joint Const. of Section (2.5); therefore, we can use the same
mechanism design methodology (decomposition technique) to obtain a mechanism that possesses
the properties established by Theorems 7 and 8.

2.7.1.1 Energy-and-Capacity Markets

Using the modifications of Eqs. (2.19) and (2.20) by the constraints of (2.82)-(2.83) and (2.84)-
(2.85), one way to implement electricity policies is to use one market for each homogeneous joint
constraint in the modified problem. The set of markets at each time t will be the following: one
elastic spot market, one inelastic capacity market, one inelastic carbon permit market, and 2×V

inelastic transmission right markets (one market for each link in each direction). All of these
markets are auctions of divisible goods and can be designed by the method proposed in Section (2.3).
Carbon permit and transmission right markets are used to implement a cap constraint, while the
capacity market is for implementing a floor constraint. Therefore, carbon permit and transmission
right markets collect money from GenCos resulting in higher prices for electricity in the spot market
compared to when the carbon permit and transmission right markets do not exist; while the capacity
market pays to the sellers resulting in lower prices in the spot market compared to when the capacity
market does not exist. The time-line for this dynamic capacity-and-energy mechanism is shown
in Figure 2.5. Note that in this design, there are two transmission right markets for each line, one
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Figure 2.5: Timeline for the proposed capacity-and-energy mechanism

for each direction, hence two prices. GenCos can bid any positive or negative transmission rights
in transmission right markets; since the transmission right is the maximum amount of electricity
that can be sent in a specific direction, a negative transmission right means the GenCo must send a
power flow in the opposite direction and the amount of this flow must be larger than the absolute
value of the right. If some GenCos’ are allocated negative transmission rights, then other GenCos
can be allocated positive transmission right even greater than Iuv as far as Eq. (2.85) is satisfied.
The above design implements Problem (Socially Optimal) and is price efficient, budget balanced
and individually rational.

The equilibrium price in capacity, carbon permit and transmission right markets will be the effi-
cient subsidy/tax for each commodity. These prices are positive only if the corresponding constraint
in Problem (Socially Optimal) is binding. These prices adjust automatically to technological and
economic changes. Note that at most one of the two transmission right prices corresponding to a
line can be positive and it is in the direction that the line is congested; the GenCos that hold negative
transmission right in the direction of congestion are therefore collecting money.

2.7.1.2 Energy-Only Design

We propose an alternative market design that uses operation reserve rather than capacity market to
implement reliable capacity. In this approach, a demand profile Ũt(dt ,wt), above the actual demand
profile Ut(dt ,wt) for all t ∈ T and w∈W , is auctioned; the difference between the auctioned demand
and actual demand is put in operation reserve. There are several operation reserve demand profiles
that can implement the reliability targets: for any large-enough operation reserve demand, the
GenCos have enough incentive to invest on large amounts of capacity and therefore, the reliability
target is met; but this comes at the cost of buying the large amount of operation reserve from
GenCos at high price (high subsidy). Therefore, we use the results of Appendix D for long-term
interaction of GenCos with individual constraints to find a method for determining an efficient

demand profile Ũt(dt ,wt) which can implement reliability constraints with the minimum subsidy
required for energy-only approach. We determine this profile using a reverse optimization problem.
Consider σSO

n,t ∈ Σn,t ,γ
SO
n,t ∈ Γn,t : n ∈ N, t ∈ T to be the solution of Problem (Socially Optimal);
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choose Ũ∗t (dt ,wt) such that Ũ∗t (dt ,wt)≥Ut(dt ,wt), ∀t ∈ T,wt ∈Wt , and if the reliability constraint,
Eq. (2.18), is omitted in Problem (Socially Optimal) and Ut(dt ,wt) is replaced by Ũt(dt ,wt),
σSO

n,t ∈ Σn,t : n ∈ N, t ∈ T , is still the optimal expansion strategy of the new problem, that is

(σSO
n,t ,γn,t : n ∈ N, t ∈ T ) = (Socially Optimal - Operation Reserve)

arg max
σn,t∈Σn,t ,γn,t∈Γn,t :n∈N,t∈T

Ew1:T

[
∑
t∈T

β
tŨt(∑

n∈N
en,t ,wt)−

∑
t∈T

∑
n∈N

β
t
{

Ce
n,t(en,t ,wt)+Cx

n,t(∆xn,t ,wt−1)

}
+β

T+1
∑

n∈N
η(wT )xn,T

]
(2.86)

s.t. Eqs. (2.16)-(2.17) and Eqs. (2.19)-(2.22)∀t ∈ T,n ∈ N,u,v ∈V,w1:T ∈W1:T . (2.87)

Problem (Socially Optimal - Operation Reserve) can be used to design an energy-only solution
with the following markets in each year: an elastic spot market which auctions elastic demand
Ũ∗t (∑n∈N en,t ,wt), an inelastic carbon permit market, and 2×V inelastic transmission right markets.
The markets are designed according to the efficient auctions proposed in Section (2.3).

The proposed energy-only set of markets is different from the energy-and-capacity set of markets
proposed in Section (2.7.1.1) in two ways: first, it does not have capacity markets; and second,
it auctions operation reserve demand Ũ∗t (dt ,wt) instead of the real demand Ut(dt ,wt) in the spot
market. In addition to these differences, Example 1 below shows that for the same level of reliable
capacity, the energy-only solution requires more subsidy compared to energy-and-capacity solutions.
The reason is the saturation property (Theorem 6) that holds for the energy-only solution but does
not hold for energy-and-capacity solution. As a result in the energy-only solution, all of the reliable
capacity should be generating power (saturated) at least at one time instant and the system operator
should pay for that. But in the capacity-and-energy solution this is not necessarily true.

Example 1 (FINANCIAL COMPARISON). Consider an industry modeled in Section 2.5 where

T = 1, i.e. single expansion decision at time 1 is followed by a single spot market at time 1+. We

model a situation where the reliable level of capacity x, the cost of expansion, Cx
n(.) and the cost of

production Ce
n(.) are high but the utility of demand, U(.), is low. Particularly, assume x = 100MW,

there are 4 GenCos with Cx
n(∆xn) = ∆x2

n, Ce
n(en) = e2

n and U(d) = 10d. Assume further that the

initial capacity x0,n is 0 for all n = 1,2,3,4, and that there is no retirement payment after time

T = 1, i.e η = 0$/MW.

First consider the energy and capacity solutions. Since GenCos are similar in their costs and

initial capacity, to meet the 100MW capacity requirement in a socially optimal way, each GenCo

should expand 25MW capacity. This means the price for capacity in the capacity market is 50$/MW,

the marginal cost of expansion by GenCos at 25MW capacity. Therefore, total payment by the

system operator to GenCos in the capacity market is 100MW ×50$/MW = 5k$/MW. This amount
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is the subsidy for reliable capacity. Moreover in the spot market, the price of electricity is marginal

utility of demand which is 10$/MW. Therefore, each GenCo produces 5MW of electricity to have

marginal cost of production equal to 10$/MW and the total payment to GenCos for producing

electricity at the spot market is 4×5MW ×10$/MW = 200$.

Next, consider an energy-only solution. The operation reserve demand should be set high

enough to ensure GenCos have incentive to expand 25MW each, ∆xn = 25MW, n = 1,2,3,4. If

they expand 25MW they should use all of it in the spot market i.e. en = 25MW, n = 1,2,3,4,

since otherwise they do not have incentive to expand that much (saturation property). Therefore the

price of electricity in the spot market should be the marginal of production and expansion together

equal to 2×∆xn + 2× en = 2× 25+ 2× 25 = 100$/MW. The total payment to the GenCos is

100$/MW ×100MW = 10k$. To calculate the subsidy paid for reliable capacity in energy-only

solution, one should calculate the payment for operation reserve; this is the difference between

the total payment in the spot market, 10000$, and the efficient payment for real demand 200$.

Therefore, the subsidy for reliable capacity in the energy-only solution is 10000$−200$ = 9800$
which is almost twice as large as the 5k$ efficient subsidy in the capacity-and-energy solution.

The example above shows that energy-only solution is more expensive for the system operator
because in this approach GenCos should be paid for the reliable capacity at a price equal to
marginal cost of expansion plus marginal cost of production (producing at saturated capacity),
2×25$/MW +2×25$/MW = 100$/MW . This is while the capacity-and-energy solution pays
GenCos for the reliable capacity only at marginal cost of expansion , 2×25$/MW = 50$/MW .

2.7.2 Contribution to the Electricity Policy Debates

The two market designs we provided in Sections 2.7.1.1 and 2.7.1.2 have the following implications
with respect to the electricity policy targets and the debates involved.

First, the design achieves price efficiency along with features (F1)-(F3) without using price caps
(or offer caps), market monitoring or other sorts of market interventions. Second, with respect to
reliability, our results show that no capacity markets (or other subsidiary mechanisms) are required
so as to achieve socially optimal investment when planning reserve requirements do not exist; this is
in contrast to References Garcia and Shen (2010) and Murphy and Smeers (2005). When planning
reserve requirements exist, we proposed both an energy-and-capacity mechanism and argued that
the energy-only mechanism requires more reliability subsidy to be paid to the GenCos. However,
determining the demand profile required for the energy-only mechanism requires a lot of information
and complex computations by the system operator; on the other hand, the energy-and-capacity
mechanism requires extra markets (the capacity markets) and corresponding regulations. Third,
with respect to the debate on carbon market vs. carbon tax, our design shows that the price of carbon
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found in the carbon permit market is the efficient level of carbon charging in order to meet the
carbon emission target; in other words, the system operator can determine efficient carbon charging
through the efficient carbon permit market without knowing the GenCos’ private information; of
course, this comes at a higher regulatory cost of running the carbon market. Finally, our transmission
right market is an efficient mechanism for allocation of transmission rights proposed in References
Ehrenmann and Neuhoff (2009), Chao and Peck (1996) and Hogan (1992).

Our results also contribute to the debate on charging carbon vs. incentivizing the renewables for
restricting carbon emission. We briefly discuss this issue here and present the potential contribution
of our results. As discussed in Section (2.1.1), policies for supporting carbon can be categorized
into those that penalize carbon emission by charging carbon (through direct carbon tax or through
carbon permit market) and those that reward renewables by subsidies. Those who defend the
second approach argue that renewables have close to zero carbon emission factor. Furthermore,
since renewables have lower marginal cost of production, they are dispatched first upon availability.
As a result, increasing investment on renewables lowers carbon emission. There are downsides
to supporting renewables: first, it is an indirect approach that requires determining the level of
renewable capacity so as to meet the carbon emission target; such a determination is a difficult
task. Second, supporting renewables has undesirable side effects such as reduced investment
on conventional sources of electricity which are important for reliability (wind and solar energy
are unpredictable sources of energy). Third, categorization of technologies into renewable and
conventional is not sufficient to address the carbon emission problem. In reality, there are different
technologies with different carbon factors. Therefore, implementing the socially optimal investment
so as to restrict carbon emission can not be achieved by adding a single supporting mechanism for
renewables, rather it requires supporting different technologies with different mechanisms. Finally,
under certain conditions, increase in the capacity of renewables can have opposite effect i.e. increase
the carbon emission. Our results for auctions with divisible goods can be used to design efficient
renewable capacity markets. Such markets discover efficient subsidy for renewable capacity. Paying
subsidy to renewables increases the capacity and therefore lowers the price of electricity in the spot
market.

2.8 Conclusion and Future Directions

We studied efficient implementation of the three electricity policy targets, reliability, sustainability
and price efficiency (together and in a uniform framework) in the restructured electricity industry
where incentives and market competition are the main tools. We modeled the industry, policy targets
and desired features of the markets including individual rationality, budget balanced, and social
optimality. Using the model, we designed efficient electricity auctions that achieve our targets. In

46



order to do so, we developed a framework for auctions with constraints by studying a sequence of
simpler problems. We first designed efficient auctions for the fundamental problem of allocating a
divisible good (elastic or inelastic good) among an oligopoly of agents with market power. Next, we
used these efficient auctions to allocate divisible goods among agents with individual constraints.
To allocate a divisible goods with homogeneous joint constraints (uneconomic constraints) among
agents, we proposed a decomposition technique that transforms the problem into a sequence
of allocations with individual constraints; each of the problems in the sequence can then be
implemented using a separate efficient auction; the price in each auction determines the efficient
level of tax/subsidy required for implementing the uneconomic constraint. The results where
extended to multiple periods of interaction among agents with symmetric uncertainty.

Our electricity market design contributes to some of the ongoing debates on electricity policy
making. We showed that price caps or market monitoring are not required for efficient prices
(affordability) in the spot market. Moreover, we proposed both energy-only and energy-and-
capacity mechanisms for implementing reliability, and showed that the energy-and-capacity solution
is financially more efficient (less subsidy required) for the policy maker compared to energy-only
solution for implementing reliability. Finally, carbon market can determine the efficient level of
carbon tax.

The model we used in this paper is limited in four major aspects presented in Remark 2.2.1.
Extensions for a better model of the real world are the future directions of this research. We present
these extensions and discuss their implications on our results.

In contrast to our model, building new capacities takes multiple years. Considering a d-year
construction period does not change the nature of the results of this paper; however, the information
state for Problem (Socially Optimal - Longterm Uncertainty) and for GenCos’ strategies, introduced
in Lemma (3), will change to St = {xt−1,∆xt−d:t−1,w1:t−1} and St+ = {xt ,∆xt−d:t−1,w1:t}.

The first major future direction for this research is providing a more complete network model.
We assumed there is a single demand at node 1. Distributed demand at multiple nodes requires
multiple prices for electricity (nodal prices). These prices can be discovered by local markets at
each node. Furthermore, if a GenCo owns owns multiple utilities in different locations, it can
potentially manipulate the network by creating local congestions in the spot market. On top of that,
each GenCo should decide where to expand its capacity; this extra decision factor results in a much
more complicated competition among GenCos. More importantly, modeling loop flow effect due to
Kirchhoff’s electricity laws couples all flows in the network and therefore can change the nature of
the market; in the new setup each GenCo’s decision results in an externality on the other GenCos’
utilities.

The second major direction for future research is considering information asymmetry among
the GenCos. GenCos’ private information requires implementation in other equilibrium solution
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concepts such as Bayesian NE or dominant strategies equilibrium. Information asymmetry results
in information rent and the decrease in performance.

The third future research direction is modeling transmission expansion planning of the transmis-
sion companies (TransCos). GenCos’ generation expansion problem studied in this paper is coupled
to the TransCos’ transmission expansion problem. For example, the high congestion price of a line
is a signal for expanding the transmission capacity of that line.

48



CHAPTER 3

Markets with Complex Physical Constraints:
Networked Electricity Spot Market

3.1 Introduction

In this chapter, we study electricity spot markets. We add Kirchhoff’s laws to the model used in
previous Chapter and develop a framework for networked markets using ideas from local public
goods.

As discussed in the previous chapter, allocating optimal dispatch of electricity cannot be achieved
by free markets and requires market design/regulation for the following features: 1) The competition
is not perfect; there is an oligopoly of producers with market power. 2) The cost of producing
electricity is not convex due to the fixed startup cost and economy of scale (potentially no prices
exist for market clearing). 3) Any mismatch of supply and demand can cascade into blackouts
with very costly consequences; this feature is a major complex constraint. 4) Electricity is not a
homogeneous good across time and space because it cannot be stored.

In addition, Kirchhoff’s laws introduce a loop flow effect which, combined with the lines’
thermal capacity constraints, couple the producers’ dispatch and limit the set of feasible dispatches
to a non-convex set. Moreover, the network interconnections among producers result in externalities
both negative (dispatch in the same direction) and positive (dispatch in the opposite directions).

The question of interest is how to design markets for efficient dispatch of electricity, considering
all the above challenges. In the design of these markets, we are looking to incorporate prices in
an effective way while still maintaining enough direct control to ensure that complex constraints
are satisfied. We aim at designing markets that are 1) budget balanced, 2) individually rational, 3)
price efficient, and 4) social welfare maximizing. A practical market design should also consider
the information asymmetry among electricity producers which is a future direction of this research.
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3.1.1 Existing Approaches for Electricity Markets with Networks

Currently, there are two approaches to electricity market design with network constraints which
use two different sets of prices Ehrenmann and Neuhoff (2009): integrated market design that uses
nodal prices (one price for each node in the network); and coordinated market design that uses
prices for allocating transmission rights (one price for transmission right between any two nodes)
and prices for allocating electricity dispatch (one price for each node in the network). Integrated
market design is proposed in the form of physical transmission right (PTR), financial transmission
right (FTR) and flow gate right (FGR)(Kristiansen, 2004).

The most common practice of integrated market design (nodal pricing) is supply-function
auctions where producers bid their entire cost function to the system operator. The system operator
then calculates the most economically efficient dispatch subject to network constraints. The price
paid to each producer is the marginal cost of production at the node it is located in. Cournot
competition is used as an approximation for the study of supply function auctions.

For coordinated market design, first the transmission rights and next the electricity dispatches
are allocated. Transmission rights are allocated to all producers simultaneously using a pooling
auction; this is because transmission rights cannot be traded bilaterally and independently due to
the loop flow effect that connects all transmission rights. In PTR, the physical capacity of a line is
allocated to generation companies to use it for sending electricity to other nodes in the network.
In FTR only the financial right of the lines is allocated; the owner is paid for his amount of FTR
at the difference in the price of electricity at the two ends of the line. Similar to FTR, FGR does
not allocate physical rights, but the price paid to the holder is the marginal improvement in social
welfare by increasing the capacity of the line. FGR is the correct signal for investment on increasing
capacity of a line.

In competitive markets with full information, both the integrated market design and the coordi-
nated market design lead to welfare maximizing outcome (See Bohn et al. (1984) & Cardell et al.
(1997) for integrated, and Chao and Peck (1996) for coordinated). When market power exists (even
under full information) the current design of these markets is not efficient Wilson (2008) and the
comparison between the performance of the two approaches is not completely known Ehrenmann
and Neuhoff (2009). The problem becomes even more challenging when a producer owns multiple
electricity generation firms located at different nodes, or when there are multiple producers located
at a single node Cardell et al. (1997). In the same way, the comparison between different approaches
to coordinated markets is not clear (Joskow and Tirole, 2000). Holders of the physical right can
forbid using them and this way increase the price difference at the two ends of the line, while
holders of the financial right have incentive for under-producing electricity at the congested nodes
so as to increase price in those nodes and collect more payment. Rules such as use-it-or-loose-it or
use-it-or-sell-it are introduced for reducing such market manipulations.
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The above discussion shows the necessity of designing efficient electricity spot markets with
network constraints which is the question of this Chapter.

3.1.2 Contribution

We first model the electricity network and then discuss the various challenges that arise within the
context of the model such as loss, lines capacity constraints and loop flow effect. Especially, to
address the loop flow effect, we present the electricity network as a public good which producers
and consumers should agree on how to use it. We show that with the DC approximation (first
order approximation) of the flows, the set of feasible productions is convex. However, the DC
approximation does not consider the loss in the lines and the set of productions with higher order
approximations of the flows is non-convex. On the other hand, we show that with second order
approximation of the flows, the set of feasible angles (phases) of the nodes, which uniquely
determine the flow of power in the network, is convex. Angles have also the advantage that they
have only local effects (the angle at each node only matters for the feasible set of angles directly
connected to that).

Considering either productions (with first order approximation) or angles (with second order
approximation), the problem is how to deign a market for allocation of a public good. We present
such a mechanism that solves the problem. We present our mechanism by considering the angles
and at the end, we compare the payments resulting from our model and mechanism with the nodal
pricing payments.

3.2 Model

Consider N strategic agents in an electricity network of K nodes. Each agent is both producer
and consumer. Agent n ∈ N has maximum production capacity of xn and his electricity produc-
tion/consumption is denoted by en his utility being un(en). The set of agents at node k is shown by
Nk. Assume there are M utility companies which own the producers. The set of producers owned
by utility company m ∈ N is denoted by Nm. The operating angle of node k is θk. The flow of
power from node k to node j is denoted by Ik j determined by a function fk j (θk−θ j). The thermal
capacity of the line between nodes k and j is denoted by Lk j. Agents know each other’s utilities but
the the system operator does not know the utilities. All other information is common knowledge
among producers and the system operator.
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The socially optimal (centralized) electricity dispatch problem is:

max
θk,en,k∈K,n∈N

∑
n∈N

un(en) (3.1)

s.t. 0≤ en ≤ xn ∀n ∈ N (3.2)

∑
n∈Nk

en = ∑
j∈K

Ik j ∀k ∈ K (3.3)

Ik j ≤ Lk j ∀k, j ∈ K (3.4)

Ik j = fk j(θk−θ j) ∀k, j ∈ K (3.5)

In reality, the function f has a complex sinusoid form. Therefore, we approximate it. The
first-order approximation is a linear one, known as DC approximation; Consider Bk j to be the first
derivative of fk j at zero. Then the DC approximation is described by

Ik j = fk j(θk−θ j) = Bk j× (θk−θ j) (3.6)

The second approximation is a second order polynomial. Consider Gk j to be the second derivative
of fk j at zero.

Ik j = Bk j× (θk−θ j)+
1
2

Gk j× (θk−θ j)
2 (3.7)

In this approximation the second order term captures the loss of power along the line. The total loss
in line k j is Ik j + I jk = Gk j× (θk−θ j)

2.
We wish to design auctions to implement the solution of the above problem. We would like

these auctions to be budget balanced, individually rational and price efficient. Price efficiency in
this setup means that each agent pays his marginal utility with respect to each angle as his price for
that angle.

3.3 Elements of Networked Markets

The model in Section 3.2 departs from the model in the previous Chapter (where several strategic
producers and a single non-strategic demand trade electricity at the same node) in the following
ways:

1. The lines have limited capacity. The capacity of a line limits the trade in between its two ends.
If a line is congested, then the markets on the two sides of the line are not connected, instead
they are two separate local markets. The producers located on each side have local power and
the markets have separate prices.
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2. The flow of electricity is subject to loop flow constraints (KVL and KCL). These constraints
make electricity networks unique and different from any other network; they have complicated
effects as they connect all flows in the network to each other. For example, there could be the
case that the demand at two nodes which are connected to each other with a non-congested
line pay different prices for electricity. As a result of the connectivity of productions due to the
Kirchhoff’s laws, a producer and a consumer cannot do a separate bilateral trade independent
of the others. Instead, all trades should be cleared at the same time and in a pooling market.
Also, network becomes a public good whose use should be determined by all the producers
and consumers together.

3. The lines have loss in delivery of electricity power. This loss is a function of the total power
flow over the line. The power delivered at the one end of the line is the total power injected at
the opposite end minus this loss. In markets, this loss should be shared between the buyer and
the seller and this is reflected in the electricity prices. For example, consider a simple network
of one producer and one consumer connected with a lossy line. If the trading commodity
is electricity at the producer’s node, then the consumer should endogenize the cost of loss
in his bids. On the other hand, if the trading commodity is electricity at the consumer’s
node then the producer should endogenize the cost of loss in her bids. Alternatively, the
producer and consumer can trade electricity at some point in the line between them. In this
case they do loss sharing. Based on this simple example, one can observe that the social
welfare maximizing solution is the same for all the cases but the payments of the producers
and consumer dependon the location where the trade takes place.

4. Multiple producers are located at the same node. As a result, even if the system operator
determines the outflow of electricity power from every node, each agent’s share in that node
should be determined. This may require local markets among the agents at each node.

5. Multiple producers at different nodes can be owned by a single generation company. This
single company then maximizes its aggregate utility from all the producers it owns. As a
result, it may strategically produce more at one of its producers (have negative utility for that
single producer) and congest the lines. This way, it can decompose/break the network into
separate local markets and then exercise its local market power through its producers at each
separate local market.

6. Demand consists of multiple consumers at different nodes. Multiple consumers can be
separated by the network constraints. Therefore, they may each have a separate market
clearing price for buying electricity. This necessitates multiple markets for discovering these
separate prices.
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7. Demand can be strategic. Strategic demand is a major departure from the model in the
previous chapter. Strategic demand is realistic with smart grids, where the demand is price
sensitive and price responsive. Strategic demand can bid in the market.

3.4 Market Design for Electricity Trade over Network

We consider a model that includes features 1,2,3,6,7 presented in Section 3.3, that is, the model
includes strategic demand, maximum of one agent at each node and second order approximation
of the flows (which considers losses). For this model, we present a local public good market that
implements socially optimal dispatch of electricity. In this market, the nodes’ angles are the public
good. For the DC approximation (no loss), the set of feasible production profiles of electricity is
convex; in this case, we can design a market where the electricity production profiles are the public
good.

Consider a variation of the model in Section (3.2) where at each node, there is exactly one
strategic agent (producer or consumer). Moreover, each node is connected to at least two other
nodes (this assumption is required for our market design). Define N to be the set of all nodes and
Rn as the set of nodes that are connected to node n including node n itself. θRn denotes the set of
angles of these nodes (note that |θRn| ≥ 3).

Considering the flow from node n to node k as

Ink = fnk(θn−θk) = Bnk× (θn−θk)+
1
2

Gnk× (θn−θk)
2, (3.8)

the production/consumption at node n is

en(θRn) = ∑
k∈Rn

Bnk× (θn−θk)+
1
2

Gnk× (θn−θk)
2 (3.9)

Note that both Ink and enk are convex functions of θRn . If en > 0, then node n is a producer, otherwise
it is a consumer. The utility for producing/consuming electricity at node n is un(en(θRn)). Assume
un is a strictly concave and decreasing function of en with un(0) = 0. Since en is a convex function
of θRn , un is also a strictly concave function of θRn (See Rockefeller Theorem 5.1).
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3.4.1 The Centralized Problem and The Associated KKT Conditions

The centralized electricity dispatch problem is:

θ
∗
N = arg max

θn,n∈N
∑

n∈N
un(θRn) (Socially Optimal)

s.t. en(θRn)≤ xn ∀n ∈ N (3.10)

Ink ≤ Lnk ∀n,k ∈ N (3.11)

where Ink and en are determined by Equations (3.8) and (3.9).
This maximization has a strictly concave objective function. The domain is convex because Ik j

is a convex function of θ s and therefore the set of θ s satisfying Ik j ≤ Lk j is convex, and furthermore,
the intersection of a finite number of convex sets is also convex. Define this domain by Dom(θN).
As a result, the above optimization is a strictly concave optimization. We present the Lagrangian
and KKT conditions for this problem. The Lagrangian is

L = ∑
n∈N

un(θRn)+ ∑
n∈N

µn(xn− en(θRn))+ ∑
n,k∈N

λnk(Lnk− Ink) (3.12)

Considering that

∂ Ink

∂θk
=−Bnk−Gnk× (θn−θk) (3.13)

∂ Ink

∂θn
= Bnk +Gnk× (θn−θk) (3.14)

and

∂en(θRn)

∂θk
=

−Bnk−Gnk× (θn−θk) k 6= n,

∑i∈Rn Bni +Gni× (θn−θi), k = n,
(3.15)
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the KKT conditions are

∂L
∂θn
|θ∗N ,λ ∗N×N ,µ

∗
N
= [ ∑

k∈Rn

[u′k(ek)
∂ek(θRk)

∂θn
−µk

∂ek

∂θn
−λnk

∂ Ink

∂θn
−λkn

∂ Ikn

∂θn
]|θ∗N ,λ ∗N ,µ∗N =[

u′n(en)× [ ∑
i∈Rn

Bni +Gni× (θn−θi)]+ ∑
k 6=n,k∈Rn

u′(ek)× [−Bkn−Gkn× (θk−θn)]

−µn× [ ∑
i∈Rn

Bni +Gni× (θn−θi)]− ∑
k∈Rn,k 6=n

µk[−Bnk−Gnk× (θn−θk)]

− ∑
k∈Rn

λnk[+Bnk +Gnk× (θn−θk)]− ∑
k∈Rn

λkn× [−Bkn−Gkn(θk−θn)]

]
|θ∗N ,λ ∗N×N ,µ

∗
N
= 0 (3.16)

λkn(Lkn− Ikn)|θ∗N ,λ ∗N×N ,µ
∗
N
= 0, ∀k,n ∈ N (3.17)

µn(xn− en)|θ∗N ,λ ∗N×N ,µ
∗
N
= 0, ∀n ∈ N (3.18)

λnk ≥ 0,µn ≥ 0|θ∗N ,λ ∗N×N ,µ
∗
N
. (3.19)

3.4.2 The Local Public Good Mechanism

We present the following local public good mechanism that is social welfare maximizing, individu-
ally rational and price efficient. In this mechanism, the network is a public resource whose usage is
decided by all the strategic agents collectively.

Message Space:
Agent located at node n sends the following message:

mn = {θ̂ n
Rn
, pn

Rn
} (3.20)

θ̂Rn ∈ Dom(θRn), pn
Rn
∈ R+|Rn|; (3.21)

thus, θ̂Rn consists of the angles proposed for all the nodes in Rn and pn
Rn

is a set of prices proposed
for these nodes.

Outcome Function
The angle of node n is set as

θn(mRn) =
1
|Rn| ∑

k∈Rn

θ̂
k
n (3.22)

Since θ̂ k
n ∈ Dom(θRn),∀k ∈ N and Dom(θn) is convex set, θn(mRn) is also in Dom(θn).

Assume agents in Rk are indexed from 1 to |RK| and yn,k refers to the index of agent n in Rk.

56



The payment of gent at node n is

tn(mRn) = ∑
k∈Rn

lnk(mRn)θk(mRn)+ ∑
k∈Rn

pn
k(θ̂

n
k − θ̂

yn,k+1
k )2 (3.23)

lnk(mRn) = p
yn,k+1
k − p

yn,k+2
k . (3.24)

The total utility of agent n is

un(θRn)− tn. (3.25)

3.4.3 Properties of the Mechanism

Before we introduce the properties of the mechanism, we study the agents’ best response in the game
induced by the mechanism. An agent’s best response will be useful in establishing the properties of
the mechanism. In the game induced by this mechanism, agent n’s best response to the message
m−n of the other agents is

max
θ̂ n

Rn ,p
n
Rn

un
(
en(θRn(m−n, θ̂

n
Rn
))
)
− tn(m−n, θ̂

n
Rn
, pn

Rn
) (Best Response)

s.t. en ≤ xn (3.26)

Ink ≤ Lnk ∀k ∈ Rn (3.27)

Ikn ≤ Lkn ∀k ∈ Rn (3.28)

pn
k ≥ 0 k ∈ Rn (3.29)

where Ink and en are determined by Equations (3.8) and (3.9).
This is a strictly concave optimization problem in mn. We present the Lagrangian and the KKT

conditions for the problem. The Lagrangian is

Hn = un(en
(
θRn(m−n, θ̂

n
Rn
)
)
)− tn(m−n, θ̂

n
Rn
,Pn

Rn
)+ µ̂n(xn− en)

+ ∑
k∈Rn

[λ̂nk(Lnk− Ink)+ λ̂kn(Lkn− Ikn)]+ ∑
k∈Rn

γ̂nk pn
k (3.30)

Considering that

∂θn

∂ θ̂ k
n
=

1
|Rn|

, (3.31)
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the KKT conditions at m−n,m∗n, λ̂
∗
nk, µ̂

∗
n , γ̂
∗
n are:

∂Hn

∂ θ̂ n
n
= u′n(en)×

∂en

∂θn
× ∂θn

∂ θ̂ n
n
− ∂ tn

∂ θ̂ n
n

− µ̂n
∂en

∂θn

∂θn

∂ θ̂ n
n
− ∑

k∈Rn

[λ̂nk
∂ Ink

∂θn

∂θn

∂ θ̂ n
n
+ λ̂kn

∂ Ikn

∂θn

∂θn

∂ θ̂ n
n
]

= u′n(en)[ ∑
i∈Rn

Bni +Gni× (θn−θi)]×
1
|Rn|
− lnn

1
|Rn|
−2pn

n(θ̂
n
n − θ̂

yn,n+1
n )+

− µ̂n[ ∑
i∈Rn

Bni +Gni× (θn−θi)]
1
|Rn|

∑
k∈Rn

[λ̂nk(Bnk +Gnk(θn−θk))
1
|Rn|

+ λ̂kn(−Bkn−Gkn(θk−θn))
1
|Rn|

] = 0 (3.32)

∂Hn

∂ θ̂ n
k

= u′n(en)×
∂en

∂θk
× ∂θk

∂ θ̂ n
k

− ∂ tn
∂ θ̂ n

k

− µ̂n
∂en

∂θk

∂θk

∂ θ̂ k
n
− λ̂nk

∂ Ink

∂ θ̂ n
k

− λ̂kn
∂ Ikn

∂ θ̂ n
k

=

u′n(en)[−Bnk−Gnk× (θn−θk)]×
1
|Rk|
− lnk

1
|Rk|
−2pn

k(θ̂
n
k − θ̂

yn,k+1
k )+

− µ̂n[−Bnk−Gnk× (θn−θk)]
1
|Rk|

− λ̂nk(Bnk +Gnk(θn−θk))
1
|Rk|
− λ̂kn(−Bkn−Gkn(θk−θn))

1
|Rk|

∀k ∈ Rn,k 6= n (3.33)

∂Hn

∂ pn
k
=− ∂ tn

∂ pn
k
= (θ̂ n

k − θ̂
yn,1
k )2 + γ̂nk = 0 ∀k ∈ Rn (3.34)

λ̂nk(Lnk− Ink) = 0 (3.35)

µ̂n(xn− en) = 0, γ̂nk pn
k ≥ 0 (3.36)

λ̂nk, µ̂n, γ̂n ≥ 0 (3.37)

Using the above mechanism, we prove the proposed mechanism possesses the following proper-
ties.

Theorem 11. The set of Nash Equilibria of the game induced by the mechanism is non-empty.

Furthermore, the outcome corresponding to each Nash equilibrium (NE) is a solution of the

centralized problem of Section 3.4.1, and at each NE the mechanism is budget-balanced, individually

rational and price efficient.

Every Nash Equilibrium of the game induced by the mechanism is budget balanced, socially

optimal, individually rational, and price efficient. Moreover, the set of NE of the game is non-empty.

Proof. Let m∗N be a Nash Equilibrium of the game induced by the mechanism. We establish the
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assertion of this theorem in the following steps.
Step 1: We first prove that at equilibrium,

t∗n = ∑
k∈N

l∗nkθ
∗
k (3.38)

or equivalently,

pn
k(θ̂

n
k − θ̂

yn,k+1
k )2 = 0 ∀k ∈ Rn (3.39)

We establish Eq. (3.39) by contradiction. Assume pn
k(θ̂

n
k − θ̂

yn,k+1
k )2 6= 0; then agent n can change

his price proposal to pn
k = 0, without changing the rest of his message, and increase his utility. This

means m∗n is not his best response to m∗−n, a contradiction.
Step 2: By construction ∑k∈Rn lnk = 0. Therefore, using the first step, the total payments in the

system add up to zero:

∑
n∈N

t∗n = ∑
n∈N

( ∑
k∈Rn

lnk)×θn = 0. (3.40)

This means the mechanism is budget balanced at equilibrium.
Step 3: To prove that the outcome corresponding to every NE of the game induced by the

mechanism is socially optimal, we construct the KKT conditions of Problem (Socially Optimal),
from the KKT conditions of Problem (Best Response). Let θ̂ n∗

Rn
, pn

Rn
∗, λ̂ ∗nk, µ̂

∗
n , γ̂
∗
nk,n,k ∈ N describe

a NE and the corresponding dual variables. We claim that the following set of variables is a solution
for Problem (Socially Optimal).

θn =
∑k∈Rn θ̂ k∗

n

|Rn|
(3.41)

λnk = 2× λ̂
∗
nk,n 6= k (3.42)

µn = µ̂
∗
n (3.43)

To prove this claim, we construct the KKT conditions of Problem (Socially Optimal). Note that by
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Eq. (3.32) and (3.33)

∑
k∈Rn

∂Lk

∂ θ̂ k
n
= [u′n(en)

∂en(θRn)

∂θn
− µ̂n

∂en

∂θn
+ ∑

k∈Rn,k 6=n
−λ̂nk

∂ Ink

∂θn
− λ̂kn

∂ Ikn

∂θn
]× 1
|Rn|

+ ∑
k∈Rn,k 6=n

[u′k(ek)
∂ek(θRk)

∂θn
− µ̂k

∂ek

∂θn
+

− λ̂nk
∂ Ink

∂θn
− λ̂kn

∂ Ikn

∂θn
]× 1
|Rn|

+ ∑
k∈Rn

lnk
1
|Rn|

+ ∑
k∈Rn

−2pk
n(θ̂

k
n − θ̂

yk,n+1
n ) = 0 (3.44)

Considering Eq. (3.44) and Eq. (3.39), along with the fact that by construction ∑k∈Rn lnk = 0, and
taking into account the variables defined in Eqs. (3.41)-(3.43) we obtain.

u′k(ek)
∂ek(θRk)

∂θn
−µk

∂ek

∂θn
−λnk

∂ Ink

∂θn
−λkn

∂ Ikn

∂θn
= 0, (3.45)

which is Eq. (3.16), the first KKT condition of Problem (Socially Optimal). The other KKT
conditions, Eqs. (3.17)-(3.19), hold because of Eqs. (3.34)-(3.56).

Step 4: We prove the existence of NE for the game induced by the mechanism in two stages. In
the first stage, we introduce a new optimization problem for each agent, called surrogate optimization
problem. We show that collectively, these surrogate optimization problems have the same solution
as the centralized problem (Socially Optimal). Second, we use the surrogate optimization problems
to prove the existence of NE for the game induced by the mechanism.

First Stage: Let (θ ∗N ,λ
∗
N ,µ

∗
N) denote the unique solution and corresponding dual variables of

Problem (Socially Optimal). Define the following individual prices calculated at (θ ∗N ,λ
∗
N ,µ

∗
N).

l̃∗n,n = u′n(en)×
∂en

∂θn
−µn

∂en

∂θn
− ∑

k∈Rn

[
λnk

2
∂ Ink

∂θn
+

λkn

2
∂ Ikn

∂θn
] (3.46)

l̃∗n,k = u′n(en)×
∂en

∂θk
−µn

∂en

∂θk
− λnk

2
∂ Ink

∂θk
− λkn

2
∂ Ikn

∂θk
. (3.47)

Consider the following (individual) optimization problem for n.

max
θ

n,sur
Rn

un
(
en(θRn)

)
− ∑

k∈Rn

l̃∗nkθk (Surrogate Optimization)

s.t. en ≤ xn (3.48)

Ink ≤ Lnk ∀k ∈ Rn (3.49)

Ikn ≤ Lkn ∀k ∈ Rn (3.50)

where Ink and en are determined by Equations (3.8) and (3.9). This is a strictly concave optimization
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in θ n
Rn

. We present the Lagrangian and the KKT conditions for the problem. The Lagrangian is

Hsur
n = un

(
en
(
θ

n
Rn
)
)
− ∑

k∈Rn

l̃∗nkθk +µ
sur
n (xn− en)

+ ∑
k∈Rn

[λ sur
nk (Lnk− Ink)+λ

sur
kn (Lkn− Ikn)] (3.51)

The KKT conditions at θ n∗
Rn
,λ sur∗

nk ,µsur∗
n are:

∂Hsur
n

∂θ
n,sur
n

= u′n(en)×
∂en

∂θ
n,sur
n
− l̃∗nn− µ̂n

∂en

∂θ
n,sur
n
− ∑

k∈Rn

[λ sur
nk

∂ Ink

∂θ
n,sur
n

+λ
sur
kn

∂ Ikn

∂θ
n,sur
n

] (3.52)

∂Hsur
n

∂θ
n,sur
k

= u′n(en)×
∂en

∂θ
n,sur
k
− l̃∗nk−µ

sur
n

∂en

∂θ
n,sur
k
−λ

sur
nk

∂ Ink

∂θ
n,sur
k
−λ

sur
kn

∂ Ikn

∂θ
n,sur
k

= 0 ∀k ∈ Rn,k 6= n

(3.53)

λ
sur
nk (Lnk− Ink) = 0 (3.54)

µ
sur
n (xn− en) = 0, (3.55)

λ
sur
nk ,µsur

n ,γsur
n ≥ 0 (3.56)

Using Eqs. (3.46) and (3.47) it is straightforward to show that (θ ∗Rn
,µ∗n ,

λ ∗nk
2 ) : k ∈ Rn) from the

solution of Problem (Socially Optimal) is a solution to the surrogate optimization problem at n.
Thus collectively these surrogate optimization problems result in the solution of the centralized
(socially optimal) optimization problem.

Second Step: We construct a NE of the game induced by the mechanism by showing that the
KKT conditions of Problem (Best Response) are satisfied. Let r∗ = (θ ∗N ,λ

∗
N×N ,µ

∗
N) be the solution

to Problem (Socially Optimal). From the first stage above, we know that this is also a solution for
the surrogate problems.

Consider r̂∗ = (θ̂ ∗N , p∗N , µ̂
∗
N , λ̂

∗
N×N) to be a solution to the following equations:

θ̂
k
n = θ

∗
n (3.57)

pk
n− p

yk,n+1
n = l̃kn (3.58)

pk
n ≥ 0 (3.59)

λ̂kn = λ
∗
kn/2 (3.60)

µ̂n = µ
∗
n (3.61)
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Note that for Eq. (3.58) to have a solution, we should have

∑
j∈Rk

l̃ jk = 0 (3.62)

which is true by Eq. (3.16).
The KKT conditions of Problem (Surrogate Optimization) show that at r̂∗, the KKT conditions

for Problem (Best Response) are satisfied and therefore, r̂∗ defines a NE and the corresponding dual
variables.

Step 5: As shown in Step 3, the outcome corresponding to any NE of the game induced by the
mechanism is a solution of Problem (Socially Optimal). The prices at equilibrium are given by
Eqs. (3.46) and (3.47). These are the efficient prices and consist of three parts: marginal cost of
production with respect to angles, u′n(en)× ∂en

∂θk
, the saturation price for limited production capacity

−µn
∂en
∂θk

, and the lines congestion price −λnk
2

∂ Ink
∂θ n

k
− λkn

2
∂ Ikn
∂θ n

k
.

Step 6: To show that the mechanism is individually rational, consider a NE (θ̂ n∗
k , pn∗

k : n ∈ N,k ∈
Nn) of the game induced by the mechanism. If GenCo n deviates from his equilibrium message to

θ̂
n
k =− 1

|Rn| ∑
j∈Rn, j 6=k

θ̂
j∗

n , ∀k ∈ Rn (3.63)

pn
k = 0 ∀k ∈ Rn, (3.64)

then the outcome from this deviation will be en = 0 and tn = 0 which gives agent n a utility of zero.
Note that the message (θ̂ n

k , pn
k) given by Eqs. (3.63) and (3.64) is a feasible message, since Dom(θn)

is a symmetric convex set and therefore, for θ̂
j

n ∈ Dom(θn), the negative of their average is also
in Dom(θn). Since by definition GenCo n should not gain by deviation from the NE, his utility at
equilibrium should be non-negative.

Theorem 12. At equilibrium, each agent’s payment consists of the followings: (i) his produc-

tion/consumption at a price equal to his marginal utility, (ii) half of the loss for his node at a price

equal to the marginal utility, and (iii) the power flow from his node to each line going out of it minus

half of the loss at the congestion cost of the link. This means the producers and consumers share the

cost of loss equally.

When there is no loss in the system (i.e. DC approximation of the flows), this payment are

according to the nodal pricing system.

Proof. By Theorem 11, at the equilibrium of the game induced by the mechanism θ̂ ∗Rn
= θ ∗Rn

and
the individual prices l∗nk are determined by Eqs. (3.46) and (3.47).

Define lossnk to be the loss in line from n to k, and lossn to be the total loss in all the lines going
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out of node n; then,

lossnk =
1
2

Gnk(θn−θk)
2 (3.65)

and

lossn = ∑
k∈N

1
2

Gnk(θn−θk)
2 (3.66)

The equilibrium payment to the agent located at node n, according to Eqs. (3.40), (3.46) and
(3.47), is

t∗n = ∑
j∈Rn

l∗n jθ
∗
j = (3.67)

[u′n(e
∗
n)−µ

∗
n ]× [ ∑

j∈Rn, j 6=n
(−Bn j−Gn j(θ

∗
n −θ

∗
j ))×θ

∗
j

+( ∑
j∈Rn

Bn j +Gn j× (θ ∗n −θ
∗
j ))×θ

∗
n ]+ ∑

j∈Rn

λ ∗nk +λ ∗kn
2

[Bnk(θ
∗
n −θ

∗
k )+Gnk(θ

∗
n −θ

∗
k )

2] (3.68)

= [u′n(e
∗
n)−µ

∗
n ]× [e∗n +

1
2

Loss∗n]+ ∑
j∈Rn

(
λ ∗nk +λ ∗kn

2
)(Ink +

loss∗nk
2

) (3.69)

This payment consists of the parts mentioned in the statement of the Theorem.
When the loss is zero, the payments are equal to those of the nodal pricing system.

3.5 Future Directions

The mechanism designed in this chapter can be extended in the following directions. First consider
the case where there exist nodes without any producer or consumer located in them or in their
neighborhood. According to the mechanism designed in this section, no one bids for angles at such
nodes. The definition of neighboring nodes should be extended to cover this case. Second, the
model must be extended to cover the situations where there are multiple strategic agents at one
node (See issue/feature number 4 in Section 3.3), as well as the case where there are non-strategic
consumers (See issue number 7 in Section 3.3).

Finally, the approach used in this Section for electricity networks can be extended to other
networked markets with externalities such as spectrum allocation in a wireless network with
interference. According to our approach, the network can be considered as a public good. Each
agent in the network will have individual prices for the network. In large-scale networks, forming a
local public goods can reduce the complexity of the mechanism.
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CHAPTER 4

Large-Scale CPS: Network Security with
Non-Bayesian Uncertainty

4.1 Introduction

The defense of computer systems (cyber security) plays a crucial role in their efficient/normal
operation. One class of cyber security problems concerns the security of networks of computers
(cyber networks).1 In this work, we investigate the development of defense policies for the security
of cyber networks.

There are several approaches to addressing the cyber security problem. These approaches can
be categorized into static vs. dynamic and control-theoretic vs. game-theoretic. The static approach
considers a one-stage/single-period decision problem where the goal is to determine a defense policy.
The dynamic approach considers a multi-period decision problem where the goal is to determine
a feedback defense policy that takes into account the evolution of the system and the available
information over time. Both the static and dynamic approaches can vary in the assumptions on the
attacker’s behavior (strategic vs. non-strategic). Strategic behavior leads to a game, e.g. Alpcan and
Başar (2010); Lye and Wing (2005); Manshaei et al. (2013), whereas non-strategic behavior leads
either to an optimization problem in the static case or a control problem in the dynamic case, e.g.

Ligatti et al. (2005); Miehling et al. (2015); Rasouli et al. (2014); Schneider (2000). In each of the
above categories, there exist various assumptions on the problem’s information structure, that is, the
information each agent possesses at each time instant. The information structure can be symmetric
(both agents possess the same information) or asymmetric (agents possess differing information).

In this chapter, we approach the security of cyber networks as a control problem from the
defender’s point-of-view. We model the attacker as nature. The security status of the cyber
network evolves over time as a function of both the defender’s and nature’s actions. We assume
that the defender does not possess complete information of the security status of the network at

1These cyber networks are typically very large.
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any given time. Due to the defender’s lack of complete information of the security status, we
take a conservative approach to determining a defense policy. Specifically, we seek to minimize
the worst-case damage that the attacker/nature can inflict on the cyber network. Therefore, we
determine a defense policy as the solution of a minmax control problem with imperfect information.
Due to the high-dimensionality of the minmax control problem we cannot solve it precisely. As
a result, we develop a scalable approach to its solution, resulting in a suboptimal/approximate
solution of the original problem. The approach is based on the concept of an influence graph (which
quantifies the functional dependencies between the problem’s variables) and uses a clustering
algorithm to decompose the original, high-dimensional minmax control problem into a collection of
lower-dimensional minmax problems that are computationally feasible.

Our approach captures the dynamic nature of attacks and the fact that the defender does not
possess perfect knowledge of the security status of the network. Even though we do not model
the attacker as a strategic agent, we compensate (in part) for the lack of this feature by adopting a
minmax performance criterion, which leads to a conservative defense approach.

Our work is distinctly different from the existing literature. From a security perspective, our
work falls within the category of intrusion response systems (IRSs), where there is a rich literature
(see Foo et al. (2008); Inayat et al. (2016); Shameli-Sendi et al. (2012) and references therein).
The goal of an IRS is to take in security information from the environment and translate it into
a defense action, with the goal of interfering with an attacker’s objective(s). To the best of the
authors’ knowledge, our work is the first to investigate the design of an IRS from a minmax control
perspective. From a control theory point of view, our model and problem are similar to those of
Baras and James (1994); Bernhard (1995, 2000, 2003); Bertsekas and Rhodes (1973); Bertsekas
(1971); Bertsekas and Rhodes (1971); Coraluppi and Marcus (1999); Witsenhausen (1968, 1966);
however, one distinguishing feature of our model is in the structure of observations, allowing us to
capture some essential features of cyber security problems.

4.1.1 Organization of the Chapter

The chapter is organized as follows. In Section 4.2, we introduce the security model. In Section
4.3, we formulate the defense problem, define the notion of an information state for the problem,
and describe a sequential decomposition procedure for the problem’s solution. In Section 4.4, we
describe our approximation approach to the defense problem. This includes defining the influence
graph and the process for constructing the local defense problems. We also discuss the scalability
of our approach. In Section 4.5, we present an example illustrating some of the concepts used in our
approach. In Section 4.6, we discuss our results and provide some concluding remarks.
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4.1.2 Notation

The table below (presented for later reference) describes the notation used throughout the chapter.

X = X 1×X 2×·· ·×X n state-space of the problem

N = {1,2, . . . ,n} set of state elements

X i = {xi,1,xi,2, . . . ,xi,ni
x} state-space of element i ∈N

T = {0,1, . . . ,T} time horizon of length T

W = {w1,w2, . . . ,wnw} set of nature’s events

W (x) set of nature’s events admissible from state x ∈X

U = U 1×U 2×·· ·×U n action-space

U i = {ui,1,ui,2, . . . ,ui,ni
u} action-space of element i ∈N

Y = Y 1×Y 2×·· ·×Y n set of event observations

Y i = {yi,1,yi,2, . . . ,yi,ni
y} set of event observations for element i

Z = Z 1×Z 2×·· ·×Z n set of action observations

Z i = {zi,1,zi,2, . . . ,zi,ni
z} set of action observations for element i

K = {1,2, . . . ,nk} set of local defense problems

Nk state indices of local defense problem k’s internal state-space

Lk state indices of local defense problem k’s local state-space
¯Nk exogenous state indices for local defense problem k

X Nk internal state-space of local defense problem k

X Lk local state-space of local defense problem k

X
¯Nk exogenous state-space of local defense problem k

U Nk internal action space of local defense problem k

Y Nk internal event observation space of local defense problem k

Z Nk internal action observation space of local defense problem k

mkl
t message sent from local defense problem k to l at t

m
¯Nk

t aggregate message of local defense problem k

ht = {x0,u0:t−1,z0:t−1,y0:t} realized history at time t

hk
t = {x

Nk
0 ,uNk

0:t−1,z
Nk
0:t−1,y

Nk
0:t ,m

¯Nk
0:t } realized history for local defense problem k at time t

Ht space of histories for defender at time t

H k
t space of histories for local defense problem k at time t

R space of information states

BLk space of approximate information states for local defense

problem k

ψ information state update function

φ k approximate information state update of local defense prob-

lem k

G space of admissible defense policies
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γ element of G , admissible defense policy

G k space of admissible defense policies for local defense prob-

lem k

γk element of G k, admissible defense policy for local defense

problem k

Γ′k space of admissible approximate defense policies for local

defense problem k

γ ′k element of Γ′k, admissible approximate defense policy for

local defense problem k

c(x,u) state-action cost

ci(xi,ui) state-action cost of element i

xt:t+s the sequence xt ,xt+1, . . . ,xt+s

P(A ) the powerset of set A

vA the collection of elements vi, i ∈A , from vector v

v−i,v−(i, j) all elements of v excluding element i, resp. excluding ele-

ments i and j

We denote variables by upper-case letters and their realizations by their corresponding lower-case
letter, e.g. x is a realization of variable X .

4.2 The Security Model

Consider a system consisting of n elements operating in discrete time. Let N := {1,2, ...,n} denote
the set of the system’s elements. Consider a discrete, finite state space X := X 1×X 2 · · ·×X n,
where X i := {xi,1,xi,2, . . . ,xi,ni

x} represents the (finite) state-space of element i ∈N . Let T denote
the time horizon over which we consider the system’s operation; T may be finite or infinite. Define
T = {0,1, . . . ,T}. The state of the system at any given time t is given by

xt = (x1
t ,x

2
t , . . . ,x

n
t ) ∈X . (4.1)

There are two agents: a controller (the defender) and nature (the adversary). The agents interact
according to the following timing diagram, shown in Fig. 4.1.
The system state, xt , evolves due to both the defender’s decisions (control actions) and nature’s
events. For a given time-step (following the notation used in Fig. 4.1), nature first generates an
event, wt(xt); nature’s set of feasible events at any time t depends on the system’s state xt , hence the
notation wt(xt). The set of all events due to nature is denoted by W := {w1,w2, ...,wnw}. The set of
events that are admissible from state xt is denoted by W (xt)⊆W . To simplify the notation in the
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t + 1t

wt

yt

ut

zt

xt xt+1

Figure 4.1: Timeline of events for a given time-step.

rest of the paper we use wt instead of wt(xt). The defender is not able to perfectly observe the event
wt , but instead receives an observation yt , termed an event observation,generated according to the
function θ : X ×W → Y = Y 1×Y 2×·· ·×Y n

yt = θ(xt ,wt)

=
(
θ

1(x1
t ,wt), . . . ,θ

n(xn
t ,wt)

)
(4.2)

where θ i : X i×W → Y i, Y i = {yi,1,yi,2, . . . ,yi,ni
y}, and ni

y is the total number of possible obser-
vations for yi

t . The defender then takes a defense action

ut ∈U = U 1×U 2×·· ·×U n (4.3)

based on its current information, where it is assumed (for simplicity) that the action space de-
composes over the elements of the state-space. Each space U i consists of a finite set of defense
alternatives U i = {ui,1,ui,2, . . . ,ui,ni

u}. We assume that, for a given element i, each action ui, j ∈U i,
j ∈ {1,2, . . . ,ni

u}, only has an effect on the state xi of element i. The defender incurs a state-
dependent cost for each defense action ut , denoted by

c(xt ,ut) = ∑
i∈N

ci(xi
t ,u

i
t), (4.4)

We assume that |c(x,u)| ≤ cmax for all x ∈X and u ∈U . This cost is incurred immediately after
the defense action is selected. The defender then receives an observation zt , termed an action

observation, following the defense action, that is generated by the function ζ : X ×W ×U →
Z = Z 1×Z 2×·· ·×Z n as

zt = ζ (xt ,wt ,ut)

=
(
ζ

1(x1
t ,wt ,u1

t ), . . . ,ζ
n(xn

t ,wt ,un
t )
)

(4.5)
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where ζ i : X i×W ×U i→Z i, Z i = {zi,1,zi,2, . . . ,zi,ni
z}, and ni

z is the total number of possible
observations for zi

t . The defense action, ut = (u1
t , . . . ,u

n
t ), causes the system to transition to the

system state xt+1 according to the state update function π : X ×W ×U →X , that is,

xt+1 = π(xt ,wt ,ut)

=
(
π

1(xt ,wt ,u1
t ), . . . ,π

n(xt ,wt ,un
t )
)
. (4.6)

where each π i : X ×W ×U i→X i is the update equation state element i. Note that at any time t,
each π i depends on the global system state xt , not only on xi

t , because, as we pointed out above, the
set of nature’s feasible events at t depends on xt .

4.3 The Defense Problem

The optimal defense action at any given time-step is dictated by an optimal defense policy. The
defense policy at time t, denoted by γt , is a function of the defender’s information available
at time t. This information, termed the history and denoted by ht , consists of the initial state
x0, all previous control actions, u0, . . . ,ut−1 (denoted compactly by u0:t−1), and all observations
y0:t , and z0:t−1. Formally, ht = {x0,u0:t−1,z0:t−1,y0:t}, where the initial state x0 is known by the
defender. A defense policy, γ = (γ1,γ2, . . . ,γT ), maps the available information at any time t to
a defense action ut , that is, γt : Ht → U , where Ht is the information space of the controller at
time t (the space of histories up to time t). The space of admissible defense policies is given by
G = {γ = (γ1,γ2, . . . ,γT ) |γt : Ht →U for all t ∈T }.

An optimal defense policy is a policy γ that solves the following partially observable minmax
control problem (P).

min
γ∈G

max
{XT ∈X

γ

T }

{
∑

t∈T
β

tc(Xt ,Ut
)∣∣∣∣X0 = x0

}
(P)

subject to Xt+1 = π(Xt ,Wt ,Ut) (P-i)

Yt = θ(Xt ,Wt) (P-ii)

Zt = ζ (Xt ,Wt ,Ut) (P-iii)

Ut = γt(Ht) (P-iv)

Ht = {x0,U0:t−1,Z0:t−1,Y0:t} (P-v)

The set X γ

T denotes the space of all sequences of system states (trajectory) generated by a given
defense policy γ . The maximization is taken over all families of state trajectories generated by the
defense policy γ , denoted by {XT = {X1,X2, . . . ,XT} ∈X γ

T }. We consider all such families of
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trajectories (each one associated with a defense policy) and choose the policy that minimizes the
highest-cost (worst-case) trajectory among all families.

The remainder of this section is devoted to determining more compact descriptions of the
defender’s information. Such descriptions may either permit the computation of an optimal defense
policy or provide guidelines/insights for computationally tractable approximations of Problem (P).

4.3.1 Information State

In order to prescribe an optimal defense action at time t for Problem (P), we need to determine an
information state sufficient for performance evaluation. One such information state is the history ht .
Unfortunately, due to the unbounded growth of the domain of ht (see Fig. 4.2), the computation
of a defense policy based on ht is intractable for infinite-time horizon problems (and large finite
horizons). This motivates the search for a more compact (albeit still sufficient) summary of the
current information.2

Figure 4.2: The information, Ht , consisting of the initial state x0, observations Y0:t , Z0:t−1, and
previous defense actions U0:t−1 grows rapidly as a function of t, as can be seen by the tree structure
above. The number of information realizations at time t is equal to the number of leaf nodes in the
tree at depth t. A realized information trajectory, ht = (x0,y′,u′,z′,y′′, . . . ,y′′′), is a path from the
root of the tree, x0, to a leaf, in this case y′′′, as shown by the bolded line.

2The need for finding a compact information state is even more critical in modern dynamic security environments
where the rate of events is high, causing ht to grow rapidly in size.
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An alternate information state for Problem (P) can be defined. This alternate information state
offers insight into the source of computational difficulty associated with the defender’s problem
and forms the basis for later approximations that bring the problem into the realm of computational
tractability.

We now define this information state, denoted by Rt , in the context of the defense problem and
describe its update equations. Consider a realization ht := {x0,u0:t−1,z0:t−1,y0:t} of the defender’s
information at time t. Denote by {J 1

t , . . . ,J
l̂(ht)

t } to be the set of distinct event-action trajectories
from 0 to t that are compatible with x0 and ht ;3 J i

t = {x0,u0:t−1,
iw0:t}, i = 1,2, . . . , l̂(ht). Each

trajectory J i
t leads to a system state ix̂t :=(ix̂1

t , . . . ,
ix̂i,n

t ), i= 1,2, . . . , l(ht). Denote by iκ̂t the cost of
reaching ix̂t ; iκ̂t := ∑

t−1
τ=0 β τc(ix̂τ ,uτ), where ix̂τ is the system state at τ due to J i

t . Define R̂t(ht) :=
{(1xt ,

1wt ,
1κ̂t), . . . ,(

l̂(ht)xt ,
l̂(ht)wt ,

l̂(ht)κ̂t)}. Apply the following reduction process to R̂(ht). If R̂(ht)

contains components ( j1xt ,
j1wt ,

j1κt), . . . ,(
jqxt ,

jqwt ,
jqκt) such that ( j1xt ,

j1wt) = . . .= ( jqxt ,
jqwt)

and jp κ̂t = max j∈{ j0, j1,..., jq}{
jκt}, then omit ( jixt ,

jiwt ,
jiκt), ji 6= jp, from R̂t(ht). This reduction

process results in

Rt(ht) = {(1xt ,
1wt ,

1
κt), . . . ,(

l(ht)xt ,
l(ht)wt ,

l(ht)κt)}

where (1xt ,
1wt), . . . ,(

l(ht)xt ,
l(ht)wt) are distinct; Rt(ht) is an alternative information state at t along

ht for Problem (P). From the construction of Rt(ht), we conclude that for all history realizations
ht and for all t, an information state Rt has the form {(1xt ,

1wt ,
1κt), ...,(

axt ,
awt ,

aκt)}, where
{(1xt ,

1wt), ...,(
axt ,

awt)} ∈P(X ×W n) = P(X 1×X 2× ...×X n×W n), iκt ∈ [0, cmax

1−β
], for

all i, for all t, and P(·) denotes the power set. We denote by R the space of information states at
any time t.

We now describe how to obtain Rt+1 from Rt and the new information Ht:t+1 that becomes
available to the defender at time t + 1. Let ht be a realization of Ht and ht:t+1 = ht+1\ht =

{ut ,zt ,yt+1} be a realization of Ht:t+1. Denote by {J 1
t:t+1, ...,J

p(ht:t+1)
t:t+1 } the set of distinct action-

event trajectories from t to t +1 that are compatible with R(ht) and ht:t+1; J i
t:t+1 := {ut ,

iwt+1},
i = 1,2, ..., p(ht:t+1). Using R(ht), {J 1

t:t+1, . . .J
p(ht:t+1)

t:t+1 } and the system dynamics, Eq. (4.6),
we can construct R̂(ht+1) :=

{
(rx̂t+1,

rŵt+1,
rκ̂t+1),r = 1,2, . . . ,a}4 where rx̂t+1 = π((rxt ,

rwt ,ut),
(ut ,

rwt+1) ∈ {J 1
t:t+1, . . .J

p(ht:t+1)
t:t+1 }, rwt+1 ∈ W (rx̂t+1), rκ̂t+1 =

rκt +β tc(rxt ,ut), and rκt is the
cost associated with (rxt ,

rwt), where (rxt ,
rwt ,

rκt) ∈ R(ht). Apply the above-described reduction

3Compatibility implies that the following requirements are satisfied; each event-action trajectory {u0:t−1,
iw0:t} is

consistent with x0, the observations y0:t and z0:t−1 (through θ and ζ , respectively), the system dynamics described by
Eq. (4.6), and for every τ ≤ t, wτ ∈W (xτ), where xτ is the system state at τ reached via x0, u0:τ−1, w0:τ−1.

4The number of components a of R̂(ht+1) depends on R(ht), ht:t+1, the system dynamics, and the sets W (x),
x ∈X .
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process to R̂t+1(ht+1) to obtain the alternative information state

Rt+1(ht+1) = {(1xt+1,
1wt+1,

1
κt+1), . . . ,(

l(ht+1)xt+1,
l(ht+1)wt+1,

l(ht+1)κt+1)}

for Problem (P) at time t + 1 along ht+1. The recursive update process described above can be
summarized by an update equation

Rt+1(ht+1) = ψ(Rt(ht),ht:t+1) = ψ(Rt(ht),ut ,zt ,yt+1). (4.7)

The information state described above summarizes the information ht available to the defender
at time t by including all system states at t that are compatible with ht , the maximum cost that
is incurred in order to reach each of these states, and the events in nature that follow each of the
possible states at t; these events must be feasible conditioned on the state rxt , that is, rwt must be in
the set W (rxt).

We are now in a position to write the dynamic program for Problem (P).

4.3.2 Sequential Decomposition and Dynamic Programming

We discuss a sequential decomposition for Problem (P) using dynamic programming. To specify
the dynamic program for the finite horizon problem, denote by rt the information state at time t ≤ T .
Define by Vt(rt), rt ∈ Rt , the minmax value of Problem (P) from time t on when the information
state at t is rt . Then, when rT = ((1x,1w,1κ),(2x,2w,2κ), . . . ,(l(hT )x, l(hT )w, l(hT )κ)),

VT (rT ) = max
j∈{1,2,...,l(hT )}

j
κ (4.8)

For t = 0,1, . . . ,T −1,

Vt(rt) = min
ut∈U

[
max

(xt ,wt ,κt)∈rt
Vt+1(rt+1)

]
= min

ut∈U

[
max

(xt ,wt ,κt)∈rt

[
max

wt+1∈W (π(xt ,wt ,ut))

Vt+1

(
ψt
(
rt ,ut ,ζ (xt ,wt ,ut),θ(π(xt ,wt ,ut),wt+1)

))]]
. (4.9)

Eqs. (4.8) and (4.9) define the dynamic program for the finite (T) horizon Problem (P).
To specify the dynamic program for the infinite horizon problem, we let r ∈ R denote the

current information state and V (r) denote the minmax value of the infinite horizon Problem (P).
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Then,

V (r) = min
u∈U

[
max

(x,w,κ)∈r

[
max

w′∈W (π(x,w,u))
V
(

ψ
(
r,u,ζ (x,w,u),θ(π(x,w,u),w′)

))]]
(4.10)

Because of the high dimensionality, the solution of the finite and infinite time-horizon dynamic
programs is computationally intractable. For this reason, in the next section, we provide a scalable
approach for the solution of Problem (P).

4.4 Approximation to the Defense Problem

Even though the alternate information state described in Section 4.3.1 above leads to an intractable
problem even for small systems, it forms the basis for a scalable approach to the solution of Problem
(P). The approach consists of two key steps: (i) Using the concept of an influence graph, we analyze
the functional dependencies between state elements and split elements with weak dependencies,
decomposing the original problem (P) into a number of local defense problems (Pk); (ii) We
further approximate the solution of each local defense problem in order to permit computation of
(suboptimal) local defense policies. We discuss the computational complexity of each of the local
defense problems and comment on how to use the features of our approach so as to end up with
problems that are compatible with the defender’s computational capabilities.

4.4.1 Local Defense Problems

4.4.1.1 Preliminaries

In order to define the local defense problems, denoted by (Pk), we first introduce some necessary
notation and describe, at a high level, how the local defense problems interact with one another.
Then, in the remaining subsections, we describe in detail how the local defense problems are formed.

Consider a collection of nk local defense problems, denoted by the set K = {1,2, . . . ,nk}. Each
local defense problem k ∈K has an associated set of states termed the internal state-space of
problem k, denoted by X Nk ⊆X , where Nk ⊆N is the set of internal state indices for problem
k. By construction (described later), X Nk , k ∈K , form a partition of the original state-space
X , that is X Ni ∩X N j = /0 for i 6= j, and ∪k∈K X Nk = X . Under this partition, the action and
observation spaces for each local defense problem k ∈K are denoted by U Nk and Y Nk , Z Nk ,
respectively.

Each local defense problem (Pk) is associated with a local defense policy γk. In computing the
local defense policies, we assume that the local defense problems can exchange information over
time via messages. We denote by mkl

t the message local defense problem k receives from local
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defense problem l at time t. The message exchange process occurs immediately before each local
defense action is taken, as shown in the timing diagram of Fig. 4.3.

t + 1t
wt uNk

t

yNk
t zNk

t

message exchange
xNk

t xNk
t+1

Figure 4.3: Timeline of events for the local defense problem (Pk) for a given time-step.

The local defense action, uNk
t ∈ U Nk , causes the internal states of local defense problem

k, denoted by xNk
t = {x j

t | j ∈Nk}, to transition to xNk
t+1 according to the state update function

πNk : X ×W ×U Nk →X Nk . The function πNk is simply defined as the collection of functions
π j, j ∈Nk, as described in Eq. (4.6). Note that the dynamics of the internal states of each local
defense problem (Pk) depend, in general, on the state of the overall system. This means that, without
exploiting any additional structure of the problem, the state space of each local defense problem
is just as large as that of the original problem (P). To address this, we define an influence graph
(in Section 4.4.1.2) in order to quantify the functional dependencies among state elements. Using
the structure of the influence graph, each local defense problem can restrict attention to the state
elements that directly influence the evolution of its internal states. The remainder of Section 4.4 is
devoted to describing how the local defense problems are formed.

4.4.1.2 Functional Dependencies & the Notion of an Influence Graph

To form the local defense problems, we first analyze the functional dependencies among the state
elements i ∈N . To this end, we provide the following definition.

Definition 4.4.1 (Functional Dependency). State element i is said to have a functional depen-
dency on state element j, if there exists an action ui ∈ U i, an event w ∈ W , and two states

x = (x1, . . . ,x j−1,x j,x j+1, . . . ,xn), x̂ = (x1, . . . ,x j−1, x̂ j,x j+1, . . . ,xn) differing only in element j,

x j 6= x̂ j, such that

π
i(x,w,ui) 6= π

i(x̂,w,ui),
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where π i is the state update function of element i, given by Eq. (4.6).

In other words, state element i is said to be functionally dependent on state element j if a change
in the state element j influences the update for state element i for some action ui ∈U i and some
event w ∈ W . The relationships expressed by Definition 4.4.1 can be summarized by a graph,
termed the influence graph, defined below.

Definition 4.4.2 (Influence Graph). The influence graph, G = (V ,E ,ξ ), is a weighted directed

graph, that consists of nodes V = N , edge set E , and edge-weights ξ . The edge-set E contains

edge e = (i, j) if and only if state element j is functionally dependent on state element i, as described

by Definition 4.4.1. Each edge e = (i, j) ∈ E in the influence graph is assigned a weight ξe ∈ (0,1],
computed as

ξe =
1
d ∑

x−(i, j)∈X −(i, j)

xi∈X i

x j∈X j

w∈W
ui∈U i

x̂ j∈X j\{x j}

1
(
{π i(x,w,ui) 6= π

i(x̂,w,ui)}
)

(4.11)

where 1(A) is the indicator function of event A and d is the normalization term; d is the number

of all possible terms in the summation of Eq. (4.11) and therefore, its value is equal to d =

(∏l 6=i, j nl
x)n

i
xn j

xnwni
u(n

j
x−1).

The influence graph summarizes the dependencies among all state elements for all possible
defense actions and events. A directed edge e = (i, j) ∈ E exists from element (node) i to element
j if there exists an assignment of values to states, events, and actions such that state element j

functionally depends on state element i. The weight of edge (i, j) ∈ E quantifies the strength of the
functional dependency of element j on element i.

4.4.1.3 Formulating the Local Defense Problems

We form local defense problems by partitioning the influence graph into clusters of nodes (state
elements). The clustering algorithm should place state elements with strong dependencies into a
single cluster. Since the weights of the edges in the influence graph quantify the strength of the
functional dependencies between state elements, application of the (normalized) min-cut algorithm
Johnson et al. (1993) splits elements with weak functional dependencies, achieving the desired goal.
A single application of the (normalized) min-cut algorithm decomposes a graph into two separate
graphs using a minimum weight cut. Continued application of the min-cut algorithm results in
increasingly finer partitioning of nodes, resulting in clusters with fewer nodes and eventually leading
to a partitioning of the state-space that permits computation of local defense policies (this procedure
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is described in detail in the example of Section 4.5). For each cluster of elements, we formulate a
local defense problem (Pk) and aim to solve for the corresponding local defense policy.

In order to formulate each local defense problem (Pk), k ∈ K , we must first describe its
associated state-space and dynamics. Using the influence graph, one can analyze the functional
dependencies between state elements. Specifically, given a set of internal state indices Nk, one
can determine the state elements outside the set of internal states, i ∈N \Nk, that influence the
evolution of states within Nk (as described by Definition 4.4.1). Formally, this set of elements is
defined as

¯Nk = {i ∈N \Nk | (i, j) ∈ E , j ∈Nk}

where E is the influence graph’s set of edges. From this, one can define the set of local state element
indices as the state elements in Nk combined with the state elements that directly influence the
evolution of any element in Nk, that is,

Lk = Nk∪ ¯Nk.

The state-space corresponding to indices Lk is written as X Lk ⊆X and is termed the local

state-space of problem k. Since, by construction, there are no edges from any elements in N \Lk to
elements in Nk, the update of the internal states xNk is independent of the states in X N \Lk . There-
fore, with some abuse of notation, the state update function for the internal states can equivalently
be written using the function πNk : X Lk×W ×U Nk →X Nk as

xNk
t+1 = π

Nk(xLk
t ,wt ,u

Nk
t ). (4.12)

It is important to note that the local state-space X Lk of each local defense problem k ∈K is
an approximation to the state-space that would be necessary for computing an optimal local defense
policy. Although the states xNk can be updated precisely using the local states xLk , as evidenced by
Eq. (4.12), computation of an optimal local defense policy requires knowledge of how xLk evolves
over time. Due to the computational limitations of the defender, one is unable to take into account
the state dynamics associated with the state elements outside its internal state-space, X Nk , for the
purpose of computing a local defense policy. As a result, we approximate the state dynamics by
introducing a message-exchange procedure in which neighboring defense problems communicate
relevant elements of their internal states.

The messages that local defense problems exchange consist of the possible states that are
consistent with each local defense problem’s history (more on this in Section 4.4.2). Before formally
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defining the messages, define the set

¯Nkl = ¯Nk∩Nl.

The set ¯Nkl represents the set of state indices within Nl that can influence the evolution of a state
element in Nk. Note that ¯Nkl is only non-empty if there is an edge (i, j) ∈ E in the influence graph
such that i ∈Nl and j ∈Nk. Also, note that { ¯Nkl, l ∈K } forms a partition of ¯Nk. The message
that local defense problem k receives from local defense problem l at time t, mkl

t , lives within the
set of all possible states of x ¯Nkl , that is, mkl

t ∈P(X
¯Nkl). Local defense problem l constructs this

message as the set of possible states that are consistent with its local information (built in part using
its imperfect internal observations).

In this sense, local defense problem k receives a summary of local defense problem l’s local
information that is relevant for taking an internal defense action uNk = {ui | i ∈Nk} ∈ U Nk =

∏i∈Nk
U i, permitting local defense problem k to compute a (suboptimal) local defense policy γk.

The complete set of messages that local defense problem k receives from neighboring local defense
problems are combined to form an aggregate message, denoted by

m
¯Nk

t ∈P

(
∏

l∈K
X

¯Nkl

)
= P(X

¯Nk).

The aggregate message allows local defense problem k to update its exogenous state elements in
a way that is consistent with the exchanged information, that is, x

¯Nk
t+1 ∈ m

¯Nk
t+1. Combined with the

state update of its internal states, given by Eq. (4.12), the defender is able to (approximately) model
the evolution of its local states xLk .

For each local defense problem k ∈K , an optimal local defense action at any given time-step
is dictated by an optimal local defense policy. The local defense policy at time t, denoted by
γk

t , prescribes an action based on its available information at time t. This information, given by
hk

t = {x
Nk
0 ,uNk

0:t−1,z
Nk
0:t−1,y

Nk
0:t ,m

¯Nk
0:t }, consists of the initial value of the internal states xNk

0 , all internal
defense actions uNk

0:t−1 up to and including t−1, all internal action observations zNk
0:t−1 = {zi

0:t−1 |
i ∈Nk} up to and including t−1, all internal event observations yNk

0:t = {yi
0:t | i ∈Nk} up to and

including t, and all received messages up to and including t, summarized by the aggregate messages
m

¯Nk
0:t . A local defense policy, γk = (γk

1 ,γ
k
2 , . . . ,γ

k
T ), maps the available information at any time t,

hk
t , to a defense action uNk

t , that is, γk
t : H k

t →U Nk , where H k
t is the information space of the

local defense problem at time t. The space of admissible local defense policies for local defense
problem k is given by G k = {γk = (γk

1 ,γ
k
2 , . . . ,γ

k
T ) |γk

t : H k
t → U Nk for all t ∈ T }. The optimal

local defense policy for local defense problem k, k ∈K , is a policy γk that solves the following
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partially observable minimax control problem (Pk).

min
γk∈G k

max{
X

Lk
T ∈X

Lk ,γ
k

T

}
{

∑
t∈T

β
tcNk(XNk

t ,UNk
t
)∣∣∣∣XLk

0 = xLk
0

}
(Pk)

subject to XNk
t+1 = π

Nk(XLk
t ,Wt ,U

Nk
t ) (Pk-i)

X
¯Nk

t+1 ∈M
¯Nk

t+1 (Pk-ii)

Y Nk
t = θ

Nk(XNk
t ,Wt) (Pk-iii)

ZNk
t = ζ

Nk(XNk
t ,Wt ,U

Nk
t ) (Pk-iv)

UNk
t = γ

k(Hk
t ) (Pk-v)

where the local states are defined as collection of internal and exogenous states, XLk
t = (XNk

t ,X
¯Nk

t ).
The functions θNk , ζ Nk are defined as the collection of event and action observation functions θ i,
ζ i, i ∈Nk, as defined in Eqs. (4.2) and (4.5), respectively. The function cNk(xNk ,uNk) represents
the state-action cost of local defense problem k and is defined as the sum of the internal state-action
cost functions, that is, cNk(xNk ,uNk) = ∑ j∈Nk

c j(x j,u j). The set X Lk,γ
k

T denotes the space of all
sequences of local system states under local defense policy γk. As described earlier for Problem (P),
the optimal policy is the policy that minimizes the worst-case cost over all state trajectories.

Each local defense problem (Pk), defined above, is of the same form as Problem (P). Conse-
quently, the information state for the internal state-space X Nk is of the same form as the one
described in Section 4.3.1. Unfortunately, such an information state precludes computation of an
optimal local defense policy. As a result, we approximate the information state of each local defense
problem (Pk) so as to end up with a modified problem that is computationally tractable. This is the
topic of the following subsection.

4.4.2 Approximating the Local Defense Problems

We use the information state described in Section 4.4.1 to form an approximate information state for
each local defense problem k. For a given realization of the local history hk

t ∈H k
t , we consider only

the set of states that are compatible with hk
t .5 That is, each local defense problem constructs the set of

all possible local states, xLk = (xNk ,x ¯Nk), consistent with the history of internal defense actions and
observations and messages that it has received from neighboring local defense problems. We denote
this approximate information state at time t by bLk

t ∈BLk = P(X Lk), where BLk is the space of
approximate information states for local defense problem k. Using the new information from time t

to t+1, given by hk
t:t+1 = {u

Nk
t ,zNk

t ,yNk
t+1,m

¯Nk
t+1}, local defense problem k can update its approximate

5We omit the set of nature’s events and the maximum cost associated with each compatible state.
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information state as follows. We note that bLk
t has the form bLk

t = {(1xNk
t ,1x

¯Nk
t ), . . . ,(lxNk

t , lx
¯Nk

t )}.
We use (1xNk

t , . . . , lxNk
t ), uNk

t , zNk
t , yNk

t+1 to determine (1xNk
t+1, . . . ,

rxNk
t+1) according to the update

process ψ described in Section 4.3.1. We combine (1xNk
t+1, . . . ,

rxNk
t+1) with the message m

¯Nk
t+1 =

(1x
¯Nk

t+1, . . . ,
qx

¯Nk
t+1) to form bLk

t+1 = {(ixNk
t+1,

jx
¯Nk

t+1), i = 1,2, . . . ,r; j = 1,2, . . . ,q}. Thus

bLk
t+1 = φ

k(bLk
t ,hk

t:t+1)

= φ
k(bLk

t ,uNk
t ,zNk

t ,yNk
t+1,m

¯Nk
t+1).

With this new approximate information state, each Problem (Pk) is approximated by the follow-
ing minmax control problem (P′k).

min
γ ′k∈Γ′

max{
X

Lk
T ∈X

Lk ,γ
′k

T

}
{

∑
t∈T

β
tcNk(XNk

t ,UNk
t
)∣∣∣∣XLk

0 = xLk
0

}
(P′k)

subject to XNk
t+1 = π

Nk(XLk
t ,Wt ,U

Nk
t ) (P′k-i)

X
¯Nk

t+1 ∈M
¯Nk

t+1 (P′k-ii)

Y Nk
t = θ

Nk(XNk
t ,Wt) (P′k-iii)

ZNk
t = ζ

Nk(XNk
t ,Wt ,U

Nk
t ) (P′k-iv)

UNk
t = γ

′k(BLk
t ) (P′k-v)

where the local states are given by XLk
t+1 = (XNk

t+1,X
¯Nk

t+1) and Γ′k = {γ ′k = (γ ′k1,γ
′k
2, . . . ,γ

′k
T ) |γ ′

k
t :

BLk →U Nk for all t ∈T } represents the set of admissible approximate local defense policies γ ′k.
For finite horizon T we solve Problem (P′k) backward in time via the following set of recursive

equations. Let bLk
t ∈ BLk be the approximate information state at t and V k

t (b
Lk
t ) denote the

minmax value of Problem (P′k) from time t on when the approximate information state at t is bLk
t ,

t = 0,1, . . . ,T +1. Then, for each bLk
T+1 ∈BLk ,

V k
T+1(b

Lk
T+1) = 0. (4.13)
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and for t = 1,2, . . . ,T , and each bLk
t ∈BLk ,

V k
t (b

Lk
t ) = min

u
Nk
t ∈U Nk

[
max

x
Lk
t =(x

Nk
t ,x

¯Nk
t )∈b

Lk
t

[
cNk(xNk

t ,uNk
t
)
+

β max
wt∈W (x

Lk
t )

m
¯Nk

t+1∈P(X
¯Nk )

[
max

x
¯Nk

t+1∈m
¯Nk

t+1

[
max

wt+1∈W
(

π
Nk (x

Lk
t ,wt ,u

Nk
t ),x

¯Nk
t+1

)
V k

t+1

(
φ
(
bLk

t ,uNk
t ,ζ Nk

(
xNk

t ,wt ,u
Nk
t
)
,θNk

(
π

Nk(xLk
t ,wt ,u

Nk
t ,wt+1

)
,m

¯Nk
t+1
))]]]]

(4.14)

where W (xLk
t ) is defined as the set of events possible from any state x such that the elements Lk of

the state are equal to xLk
t .

For the infinite horizon case, we solve Problem (P′k) via the set of equations

V k(bLk) = min
uNk∈U Nk

[
max

xLk=(xNk ,x ¯Nk )∈bLk

[
cNk(xNk ,uNk

)
+

β max
w∈W (xLk )

m ¯Nk∈P(X
¯Nk )

[
max

x ¯Nk∈m ¯Nk

[
max

w′∈W
(

π
Nk (xLk ,w,uNk ),x ¯Nk

)
V k
(

φ
(
bLk ,uNk ,ζ Nk

(
xNk ,w,uNk

)
,θNk

(
π

Nk(xLk ,w,uNk ,w′
)
,m

¯Nk
))]]]]

(4.15)

for all bLk ∈BLk .
Solving the above recursive equations (Eqs. (4.13) and (4.14) for the finite horizon case, or

Eq. (4.15) for the infinite horizon case) for each k ∈K yields a set of (suboptimal) local defense
policies {γ ′1,γ ′2, . . . ,γ ′nk} for Problem (P).

4.4.3 Scalability

Our approach to the solution of Problem (P) consists of two main steps: (i) The partition of the
influence graph into clusters and the formulation of approximate local defense problems (P′k); and,
(ii) The solution of each problem (P′k). This approach can provide a (suboptimal) solution to the
defense problem (P) associated with networks of arbitrarily large size, as we explain below. Suppose
that the designer of the defense policy knows its (limited) computational capability. To implement
our approach the designer must be able to solve the problems associated with the above described
steps.

Forming the influence graph requires the computation of all of the edge weights, ξe, as described
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in Section 4.4.1.2; the complexity of such a computation is of the order of O(∑ j,i∈N , j 6=i |X ×
X j×W ×U |) = O(n2nwnu). Creating clusters requires the use of the min-cut algorithm, the
complexity of which is of the order O((nk − 1)n2), where nk is the number of clusters. The
computational complexity of each of the Problems (P′k) is of the order O(|P(X Lk)×Y Nk ×
Z Nk ×U Nk ×W |) = O(2|Lk|nw ∏i∈Nk

(ni
yni

zn
i
u)). The problems (P′k) can be solved in parallel.

The above arguments show that the computational complexity associated with the solution of each
Problem (P′k) is the main bottleneck in the application of our approach to the solution of Problem
(P). If the computational complexity of each of the problems (P′k), k ∈K , does not exceed the
designer’s computational capability then our approach can be used to provide a suboptimal solution
to Problem (P).

From the above discussion it is clear that an increase in number nk of clusters will on one hand de-
crease the computational complexity of each (P′k), as the dimensionality of each X Nk ,Y Nk ,Z Nk ,W ,U Nk

will decrease, but on the other hand, will decrease the accuracy of the solution of Problem (P) and
increase the complexity of the min-cut algorithm. Therefore, in the application of our approach to
Problem (P) one has to explore the above described tradeoff between computational complexity and
solution quality so as to end up with the best approximation that is compatible with the defender’s
computational capabilities.

Depending on the structure of the influence graph, modifications to the approach can be taken.
In some problems, the influence graph may exhibit some sparsity; in this case the computational
complexity associated with clustering can be reduced using spectral clustering with non-backtracking
matrix Krzakala et al. (2013).6 In situations where the influence graph is densely connected, one
can use approximations, in addition to those described in this chapter, so as to end up with a scalable
approximation to Problem (P). We briefly describe such approximations in the conclusion of the
chapter (Section 4.6).

4.5 Example

Consider a system of five hosts. Each host can be in one of four security states (a measure of its
security level), ranging from the most secure state, s1, to the least secure state, s4. At each time-step,
the attacker (nature) can choose to attack the hosts through selection of various attack actions. The
attacker is assumed to have access to three types of attack actions: a null action, corresponding to
not attacking the host; probe actions, which increment the security state of the attacked host; and
spread actions, which allow the attacker to use a host in a degraded security state to attack another
host. Following the attack action (nature’s event), the defender selects its defense action. The

6The spectral clustering with non-backtracking matrix algorithm has lower complexity than the min-cut algorithm
for super-sparse graphs.
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defender has access to three types of defense actions: a null action, corresponding to not specifying
any defense action; a sense action, which, if invoked on a host, reveals the true security state of the
host to the defender; and a re-image action, which resets the security state of the host to s1.

The five host system described above can be modeled using the security model of Section
4.2. Formally, using the notation of our model, each host corresponds to a state element, that is,
N = {1,2,3,4,5}. The state-space of each element reflects the possible security states that each
host can be in, that is, X i = {s1,s2,s3,s4}. The state-space of the problem is X = ∏i∈N X i. The
set of attack actions W is assumed to decompose into attacks on each host, that is, W = ∏i∈N W i.7

Each set W i consists of attacks W i = {wi
∅,w

i
p1
,wi

p2
,wi

p3
,w ji

s ,w
ji
s′} on host i, where wi

∅ represents
no attack on host i, wi

pk
represents a probe action, incrementing the security state of host i from

xi
t = sk to xi

t+1 = sk+1, and both w ji
s and w ji

s′ represent spread actions, allowing the attacker to use
another host j if it is in state x j

t = s4 to attack host i. Specifically, w ji
s brings the state of host i

from xi
t = s1 to xi

t+1 = s3 and w ji
s′ brings the state of host i from xi

t = s2 to xi
t+1 = s3. To make

the example more interesting (resulting in a more diverse set of weights in the influence graph),
we assume that the attacker has limited spreading capabilities, that is, W 1 contains the spreading
actions {w5,1

s ,w5,1
s′ }, W 2 contains {w1,2

s ,w1,2
s′ ,w

3,2
s }, W 3 contains {w1,3

s ,w4,3
s }, W 4 contains {w3,4

s },
and W 5 contains {w1,5

s }. The set of defense actions U = ∏i∈N U i is described in terms of the
action-space of each element. Specifically, U i = {ui

∅,u
i
s,u

i
r}, where ui

∅ represents the defender not
taking any action on host i, ui

s represents the sense action on host i, and ui
r represents the re-image

action on host i. Neither the null actions or the sense action have an affect on the evolution of the
state.

In terms of the state update function of Eq. (4.6), the evolution of the each state element can be
written as follows

xi
t+1 = π

i(xi
t ,wt ,ui

t) =



s1 if ui
t = ui

r

s3 else if (w ji
s ∈ wt , x j

t = s4, xi
t = s1) or

(w ji
s′ ∈ wt , x j

t = s4, xi
t = s2)

sk+1 else if wi
t = wi

pk
, xi

t = sk, k = 1,2,3
xi

t otherwise.

We assume that the defender is only able to observe the spreading actions, but cannot observe the

7Note that in our model of Section 4.2, the attacks are not necessarily decomposable into attacks on each element;
however, for the purposes of our example, we assume (for simplicity) that the system-wide attack can be described as
the collection of attacks on each element.
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attacker’s null or probe actions. Formally,

yi
t = θ

i(xi
t ,wt) =

{
w if for any w = w ji

s or w = w ji
s′ in wt

∅otherwise.

The defender’s action observations are

zi
t = ζ

i(xi
t ,u

i
t) =


s1 if ui

t = ui
r

xi
t else if ui

t = ui
s

∅otherwise.

Finally, the (instantaneous) cost that the defender incurs at time t is simply c(xt ,ut) = c1(x1
t ,u

1
t )+

· · ·+ c5(x5
t ,u

5
t ) where xt = (x1

t ,x
2
t , . . . ,x

5
t ) and ut = (u1

t ,u
2
t , . . . ,u

5
t ). The defense problem (P) can

now be written. In previous work Rasouli et al. (2014), we were able to obtain a defense policy for
a similar problem with n = 3 elements using the approximate information state (the set of states
compatible with the defender’s information at t) described in Section 4.4.2. For larger problems (for
instance, the n = 5 problem just described), we must employ the decomposition approach proposed
in this chapter to permit computation of approximate defense policies.

The influence graph for the example problem can now be constructed. Assume that the com-
putational capability of the defender is such that it can solve Problem (P) for systems consisting
of nmax = 3 or fewer elements.8 In the current example n = 5 > 3 = nmax, so we must decompose
the problem into local defense problems and determine local defense policies. As described in
Section 4.4.1.2, the construction of the influence graph is performed by analyzing the functions and
the sets of actions of both the defender and attacker with the weights computed according to Eq.
(4.11). For illustration purposes, we show how to compute one of the weights, specifically ξ5,1. The
remaining edge weights are calculated in a similar fashion. To calculate ξ5,1, we need to count the
cases where the state update of element i = 1 functionally depends on the state of element i = 5,
as described by Definition 4.4.1; we enumerate over all values of x1, u1, w1, x5, x̂5 6= x5, u5, w5,
x−(1,5), and w−(1,5). The total number of different values which is the normalization term in Eq.
(4.11), is d = (∏l∈N \{i, j} nl

x)n
i
xn j

x(n
j
x−1)nwni

u = (43) ·4 ·4 · (4−1) · (6 ·7 ·6 ·5 ·5) ·3 = 58060800.
Only in those cases that all of the following conditions are satisfied, the inequality in Eq. 4.11
holds: (i) A spread attack is launched from element j = 5 to i = 1 while the state of element i = 1
is such that the spread attack is effective, i.e. (w5 = w5,1

s , x1 = s1) or (w5 = w5,1
s′ , x1 = s2). (ii)

the state of element j = 5 allows the the attack to be launched in x5 but does not allow it in x̂5 or
vice versa i.e. (x5 = s4, x̂5 ∈ {s1,s2,s3}) or (x5 ∈ {s1,s2,s3}, x̂5 = s4). (iii) There are no similar

8The quantity nmax is determined by taking into account the defender’s computational capability and the computa-
tional complexity of Problem (P′k), as described in Section 4.4.3.
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(c) Final set of clusters.

Figure 4.4: Repeated application of the mincut algorithm to obtain three clusters, N1 = {3,4},
N2 = {2}, and N3 = {1,5}.

effective spread attacks on element i = 1 from other elements k ∈ {2,3,4}; since there exists no
spread attack from elements k ∈ {2,3,4} to element i = 1, their state and attack events can take any
possible value i.e. x−(1,5) ∈X −(1,5), and w−(1,5) ∈W −(1,5). (iv) The defender does not deploy a
defense action that nullifies the effect of the spread attack from element j = 5 to element i = 1, that
is, u1 ∈ {u1

∅,u
1
s}. The above conditions ensure the updated state of element i = 1 differs between

the states x5 and x̂5. The total number of such cases is 2 ·2 · (1 ·3+3 ·1) ·43 · (7 ·6 ·5 ·5) = 1612800.
The normalized weight, computed using Eq. (4.11), is thus ξ5,1 = 1612800/58060800≈ 0.03. The
complete influence graph is depicted in Fig. 4.4.

Using the edge weights in the influence graph, the min-cut algorithm Johnson et al. (1993) can
now be applied in order to partition (cluster) the graph. The first application of the min-cut algorithm,
shown in Fig. 4.4(a), results in the clusters {1,2,5} and {3,4}. Notice that under this clustering,
the existence of edges (3,2) and (4,5) would result in one of the local defense problems containing
all 5 elements in its local state-space, violating the nmax = 3 limit. As a result, we apply the min-cut
algorithm once more, as shown in Fig. 4.4(b). With the new cut we can see that the resulting set
of clusters, N1 = {3,4}, N2 = {2}, and N3 = {1,5}, shown in Fig. 4.4(c), satisfy the nmax limit.
This can be seen by writing the set of state indices for the local defense problems, L1 = {1,3,4},
L2 = {1,2,3}, and L3 = {1,4,5} and noticing that |L1|= |L2|= |L3|= 3 = nmax.

84



Using the clusters of Fig. 4.4(c), the corresponding local defense problems can be defined.
The internal state spaces of each problem are defined by the set of nodes within the corresponding
cluster, that is, X N1 = X 3×X 4, X N2 = X 2, and X N3 = X 1×X 5. The corresponding state
update functions are

π
N1
t+1 = π

N1(xL1
t ,wt ,u

N1
t )

=
(
π

3(xL1
t ,wt ,u3

t ),π
4(xL1

t ,wt ,u4
t )
)

π
N2
t+1 = π

N2(xL2
t ,wt ,u

N2
t )

= π
2(xL2

t ,wt ,u2
t )

π
N3
t+1 = π

N3(xL3
t ,wt ,u

N3
t )

=
(
π

1(xL3
t ,wt ,u1

t ),π
5(xL3

t ,wt ,u5
t )
)

where the local states are xL1
t = {x1

t ,x
3
t ,x

4
t }, xL2

t = {x1
t ,x

2
t ,x

3
t }, and xL3

t = {x1
t ,x

4
t ,x

5
t } and the inter-

nal actions are uN1
t ∈U N1 = U 3×U 4, uN2

t ∈U N1 = U 2, and U N3 = U 1×U 5. The cost func-
tions of each local defense problem are cN1(xN1

t ,uN1
t ) = c3(x3

t ,u
3
t )+ c4(x4

t ,u
4
t ), cN2(xN2

t ,uN2
t ) =

c2(x2
t ,u

2
t ), and cN2(xN2

t ,uN2
t ) = c1(x1

t ,u
1
t )+ c5(x5

t ,u
5
t ). Similarly, each local defense problem’s ob-

servations are yN1
t = (y3

t ,y
4
t ), zN1

t = (z3
t ,z

4
t ), yN2

t = y2
t , zN2

t = z2
t , and yN3

t = (y1
t ,y

5
t ), zN3

t = (z1
t ,z

5
t ).

The message sent from local defense problem l to local defense problem k at time t, denoted
by mkl

t , belongs to the powerset of states that can influence the evolution of elements in the
internal state space Nk. Specifically, for the example, local defense problem k = 1 receives
a message from problem k = 3, described by m13

t ∈ P(X
¯N13) = P(X 1) (representing all

possible states the element i = 1 can be in). Similarly, local defense problem k = 2 receives
two messages, one from problem k = 1, m21

t ∈P(X
¯N21) = P(X 3), and one from problem

k = 3, m23
t ∈P(X

¯N23) = P(X 1) (these messages can be summarized by the aggregate mes-
sage mN2

t ∈P(X 3)×P(X 1)). Lastly, local defense problem k = 3 receives a message from
problem k = 1, m31

t ∈P(X
¯N31) = P(X 4). No other messages are exchanged. The approxi-

mate information state spaces for the local defense problems are BL1 = P(X 1×X 3×X 4),
BL2 = P(X 1×X 2×X 3) and BL3 = P(X 1×X 4×X 5). The dynamic programs (for the
finite horizon defense problem) can be written in a similar fashion to Eq. (4.13) and (4.14). The
equations can be solved using standard value iteration-type algorithms to obtain the local defense
policies γ ′k, k ∈K .
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4.6 Conclusion and Future Directions

We studied a cyber-security problem from the defender’s point of view. This is a control problem
where the defender’s goal is to determine a defense policy to protect the system against an attacker
that is modeled by nature. The system’s security status evolves dynamically over time; its evolution
depends on the defender’s actions and the attack events. The defender has imperfect information
about the system’s security status and takes a conservative approach to the system’s defense.
Specifically, the defender’s goal is to minimize the worst possible damage to the system caused
by attack (nature’s) events. Therefore, the defender has to solve a minmax control problem with
imperfect observation so as to determine an optimal defense policy.

The defender’s imperfect observation combined with the high dimensionality of the system’s
state and the minmax objective result in a complicated information state that renders the computation
of an optimal defense policy intractable, necessitating approximations. The approximation we
present is based on decomposing the defense problem into local defense problems and solving for
local defense policies. We form local defense problems by first forming the influence graph – a
weighted directed graph quantifying the dependencies between the system’s elements. Next, we
cluster the influence graph into clusters of strongly-dependent elements using the min-cut algorithm.
Using the clusters and the dependencies among them, we form a local defense problem for each
cluster. The control of each local defense problem is further approximated by focusing on an
approximate information state that allows the computation of a policy sequentially using dynamic
programming ideas.

Our approach has two computational requirements: (i) forming the influence graph and clusters;
(ii) computing a defense policy for the local defense problem associated with each cluster. Given
the defender’s computational capabilities, we can address these requirements irrespectively of
the system’s size (the dimensionality of the system’s state) as follows: we can form a large
number of clusters so that the size of each local defense problem is compatible with the defender’s
computational capability. Consequently, the approach to the dynamic defense problem of cyber
networks described in this chapter is scalable.

For some instances of our security model, the resulting influence graph may not permit a
partitioning into clusters that satisfy the designer’s computational capability. For example, consider
a completely connected influence graph. In such a graph, each local state space X Lk would be equal
to the complete state space X . In such a situation, no clustering that satisfies the constraint would
exist and we would not be able to compute local defense policies. However, we believe that, for
practical purposes, influence graphs will have at least some sparsity that can be exploited, allowing
our decomposition to be applied to obtain a suboptimal defense policy. In the rare event that the
influence graph doesn’t permit the required clustering, one can employ alternate (more aggressive)
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approximation techniques that summarize the available information (for example, collapsing all
exogenous elements into a single worst-case element).

In the cyber security model studied in this chapter the attacker’s behavior is fixed in advance and
modeled by the (state-dependent) events that occur in nature. The situation where both the defender
and the attacker are strategic and have different objectives is not captured by the model of Section
4.2. Such a situation gives rise to a dynamic game with asymmetric information. Preliminary results
on such games can be found in Ouyang et al. (2017); Tavafoghi et al. (2016).
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CHAPTER 5

Conclusion and Future Directions

This thesis presented cyber-physical systems design (CPS Design). CPS are systems that have both
physical and cyber components. Examples are electricity networks, security networks, transportation
networks, smart connected medical devices, etc. CPS are growing in our modern life because of the
technological developments in embedded systems and smart devices.

CPS design is complicated and requires interdisciplinary studies of economics, engineering and
computer science because of the distinguishing features of these systems which are the presence of
strategic decision makers, the large-scale nature of CPS, and the existence of complex constraints.
These distinguishing features of the CPS require a new approach for their design. Strategic users
cannot be controlled directly, rather they should be controlled by providing appropriate incentives.
Therefore, CPS design requires mechanism (such as market and auction) design. On the other
hand the large scale nature of the CPS means these systems cannot be controlled optimally as the
determination of the optimal control strategy is computationally infeasible; instead the designer
should look for approximate algorithms and mechanisms that allow for the determination of good
suboptimal but feasible control. These approximations can be made based on heuristics. Finally,
the complex constraints imposed by real world (such as physical or policy constraints) introduce
new models and design problems which are application specific. All these features mean that a
new system design approach for the CPS design should be built. Note that, in addition to their
distinguishing features, CPS have the features of other engineering systems such as presence of
uncertainty and dynamic interaction of agents.

Networks are a central tool for CPS design. Networks allow for modeling a lot of the the
complex constraints in CPS. Furthermore, their structure/topology can be used for decomposition
of large scale CPS into small subsystems.

In this thesis, we studied CPS design by focusing on two specific problems, designing markets
with complex constraints, and decomposition of large-scale CPS. For the first problem we focused
on electricity markets and for the second one we considered network security.

We studied the design of markets with complex constraints in two stages: electricity markets
with complex policy constraints, and with complex physical constraints. For markets with policy
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constraints, we focused on implementing electricity policy targets i.e. sustainability, reliability and
price efficiency by designing markets that are also budget balanced, individually rational and social
welfare maximizing. To achieve our goal, we developed a framework for designing efficient auctions
with constraints including individual and homogeneous (additive) joint constraints. Our results,
shed light on major policy debates including price/offer caps, capacity-and-energy solutions vs
energy-only solutions, and carbon market vs carbon tax. For markets with physical constraints, we
focused on designing efficient spot markets when complex network constraints due to Kirchhoff’s
laws exist. The market should also be individually rational, price efficient, budget balanced and
social welfare maximizing. To achieve this goal, we used ideas from local public goods where the
network is considered a public good whose use should be determined by all users collectively.

Second, we studied decomposition of large-scale CPS, motivated by network security issues. We
introduced the notion of influence graph that captures the connectivity of the elements in a network.
The influence graph then allows for decomposition of the system into subsystems by clustering
connected elements together. Each cluster is controlled by a local defense algorithm which can
exchange information with other local defense algorithms. This approach allows for heuristic and
suboptimal defense of the network which is computationally feasible.

Our research can be extended in two directions. The first direction is designing other CPS
such as transportation networks, water networks, or gas networks by modeling their constraints.
The second direction is to add other features of CPS especially the information asymmetry among
strategic agents. When the strategic agents have asymmetric information, the CPS design requires
implementation in perfect Bayesian equilibria or dominant strategy implementation of the social
choice function instead of the Nash implementation approach used in this thesis.

As fast as CPS are growing in our life, CPS design will be more and more critical and beneficial
to the well-being of the human society.
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APPENDIX A

Proof of Properties in Section (2.3)

We first present some preliminaries required for the proofs in Section (2.3.5). We start with the
auction for elastic demand and then move to auctions with inelastic demand. Stated below, we
present the GenCos’ best response problems in the auction, Problem (Q̂elas.

1,n ) and Problem (Q̂inelas.
1,n ).

We show that both the socially optimal problems, Problem (Socially Optimal Dispatch - Elastic)
and Problem (Socially Optimal Dispatch - Inelastic), and the GenCos’ best response problems,
Problem (Q̂elas.

1,n ) and Problem (Q̂inelas.
1,n ), are strictly convex. Therefore, Karush-Kuhn-Tucker (KKT)

conditions are necessary and sufficient conditions for optimality in all these problems. We present
the KKT conditions.

A.1 Preliminaries
A set of messages m∗ = (m∗1,m

∗
2, ...,m

∗
N) is a NE of the game induced by the proposed mechanism if

for each producer n ∈ N, m∗n = (ê∗n, p∗n) is a best response to the others’ messages denoted by m∗−n.
First consider the auction with elastic demand. The pair (ê∗n, p̂∗n) is producer n’s best response to

other producers’ messages, if it is a solution to his profit maximization problem

(ê∗n, p̂∗n) = arg max
ê∗n∈R,p̂∗n∈R+

{
−Ce

n(ên)+ relas.
n
}

(Q̂elas.
1,n )

s.t. p̂n ≥ 0. (A.1)

We prove Problem Q̂elas.
1,n is a strictly convex optimization. The domain of Problem Q̂elas.

1,n is convex
and compact. Furthermore, the inequality constraints are linear, therefore, they satisfy the constraint
qualification conditions. The objective function is

−Ce
n(ên)+ rn =−Ce

n(ên)+ p̂n+1ên− p̂−0.5
n ζ

elas.
n

2
(A.2)

The term −Ce
n(ên) is strictly concave by Assumption (A5). p̂n+1ên is linear and concave. It remains

to show the concavity of −p̂−0.5
n ζ elas.

n
2 which is equivalent to the convexity of p̂−0.5

n ζ elas.
n

2. The
Hessian matrix of p̂−0.5

n ζ elas.
n

2 is

H =

[
0.75 p̂−2.5

n ζ elas.
n

2 −p̂−1.5
n (D(p̂n+1)−∑n∈N ên)

−p̂−1.5
n (D(p̂n+1)−∑n∈N ên) 2p̂−0.5

n

]
. (A.3)
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For convexity we need this Hessian to be positive semidefinite at any point p̂n and ên in the domain.
Equivalently, the Hessian must have non-negative eigenvalues, that is, the following inequalities
must be satisfied.

0.75 p̂−2.5
n ζ

elas.
n

2
+2 p̂−0.5

n ≥ 0 (A.4)

0.75 p̂−2.5
n ζ

elas.
n

2×2p̂−0.5
n −

(
− p̂−1.5

i (D(p̂n+1)− ∑
n∈N

ên)
)2 ≥ 0 (A.5)

Inequalities (A.4) and (A.5) are equivalent to

.75 p̂−2.5
n ζ

elas.
n

2
+2 p̂−0.5

n ≥ 0 (A.6)

0.5p̂−3
n

(
D(p̂n+1)− ∑

n∈N
ên

)2

= 0.5 p̂−3
n ζ

elas.
n

2 ≥ 0 (A.7)

Inequalities (A.6) and (A.7) are satisfied in the domain of Problem Q̂elas.
1,n . Consequently, p̂−0.5

n ζ elas.
n

2

is convex in (p̂n, ên). Therefore, each individual producer’s problem in the game induced by the
mechanism is concave optimization.

Since both Problems (Socially Optimal Dispatch - Elastic) and (Q̂elas.
1,n ) are strictly concave

optimization problems, they have a unique solution, and the Karush-Kuhn-Tucker (KKT) conditions
are necessary and sufficient for optimality. The Lagrangian for problem (Socially Optimal Dispatch
- Elastic) is

LSociallyOptimalDispatch−Elastic = U(∑
n∈N

en)− ∑
n∈N

Ce
n(en) (A.8)

and the KKT conditions are, ∀n ∈ N,

∂U(∑n∈N en)

∂en

∣∣∣∣
e∗
− ∂Ce

n
∂en

∣∣∣∣
e∗

= 0. (A.9)

The Lagrangian for Problem (Q̂elas.
1,n ) is

LQ̂1,n
=−Ce

n(ên)+ relas.
n −θn pn, (A.10)

and the corresponding KKT conditions are

− ∂Ce
n

∂ ên

∣∣∣∣
m∗

+
∂ relas.

n
∂ ên

∣∣∣∣
m∗

= 0, (A.11)

∂ relas.
n

∂ p̂n
|m∗− θ̂

∗
n = 0, (A.12)

θ̂
∗
n p̂∗n = 0, (A.13)
θ̂
∗
n ≥ 0. (A.14)

Next we consider the auction for inelastic demand. Let m∗ = (ê∗1, ê
∗
2, ..., ê

∗
N , p̂∗1, p̂∗2, ..., p̂∗N) be

a NE of the game induced by the mechanism. Then, m∗ is a solution to every producer’s profit
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maximization problem, that is, ∀n ∈ I

(ê∗n, p∗n) = argmax
ên,p̂n
−Ce

n(ên)+ rinelas.
n (Q̂inelas.

1,n )

s.t p̂n ≥ 0. (A.15)

By an argument similar to the one used for the case of elastic demand, we can show that Problem
(Q̂inelas.

1,n ) is strictly convex optimization. Since both Problems (Socially Optimal Dispatch - Inelastic)
and (Q̂inelas.

1,n ) are strictly concave optimization, they have a unique solution and the KKT conditions
are necessary and sufficient for optimization. The Lagrangian for Problem (Socially Optimal
Dispatch - Inelastic) is

LSociallyOptimalDispatch−Inelastic = −∑
i∈I

Ce
nen)+κ(∑

n∈N
en−D)

(A.16)

and KKT conditions are

∂Ce
n

∂en

∣∣∣∣
e∗
−κ

∗ = 0 ∀n ∈ N, (A.17)

κ
∗(∑

n
e∗n−D) = 0, (A.18)

κ
∗ ≥ 0. (A.19)

The Lagrangian for Problem (Q̂inelas.
1,n ) is

LQ̂inelas.
1,n

=−Ce
n(ên)+ rinelas.

n + θ̂n p̂n (A.20)

and the KKT conditions are, ∀n ∈ N,

− ∂Ce
n

∂ ên

∣∣∣∣
m∗

+
∂ rinelas.

n
∂ ên

∣∣∣∣
m∗

= 0, (A.21)

∂ rinelas.
n

∂ pn
|m∗+ θ̂

∗
n = 0, (A.22)

θ̂
∗
n ≥ 0. (A.23)

A.2 Proof of Results in Section (2.3.5)
Proof of Lemma 1 First consider the auction for elastic demand. Assume ζ elas.

n
∗ 6= 0 at NE for

some n ∈ N. Then, the price at equilibrium, p̂∗n, must be strictly positive because if it is zero, the
GenCo n’s utility at equilibrium is equal to −∞ and agent n can improve its utility by changing p̂n
to a positive value. From Eqs. (A.12) we have

∂un

∂ p̂n

∣∣∣∣
m∗

=
∂ relas.

n
∂ p̂n

∣∣∣∣
m∗

= −0.5 p̂∗−1.5
n ζ

elas.
n

∗2∣∣∣
m∗

= 0. (A.24)
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Since p̂∗−1.5
n > 0, we should have ζ elas.

n = (D(p̂n+1)−∑n∈N ê∗n)2 = 0 which contradicts the as-
sumption of ζ elas.

n
∗ 6= 0.

Next, consider the auction for inelastic demand. Since the equilibrium is non-trivial all prices
can not be zero at the same time, therefore, either all prices are positive or there exists a zero price
followed by a positive price.

Case 1: For all n ∈ N, p̂∗n > 0.
Here, p̂∗n ≥ 0 is not binding. Therefore, at NE for all n ∈ N,

∂ ûn

∂ p̂n

∣∣∣∣
m∗

=
∂ rinelas.

n
∂ p̂n

∣∣∣∣
m∗

=

−2(p̂∗n− p̂∗n+1)−2ζ
inelas.∗2 = 0. (A.25)

Summing up Eq. (A.25) over all n we get:

∑
n∈N

∂ rinelas.
n

∂ p̂n

∣∣∣∣
m∗

= ∑
n∈N

[−2(p̂∗n− p̂∗n+1)−2ζ
inelas.∗2]

=−2Nζ
inelas.∗2 = 0. (A.26)

The last equality is achieved if and only if ζ inelas.
t

∗
= 0, i.e. if and only if ∑n∈N ê∗n = D.

Case 2: ∃n ∈ N s.t. p̂∗n = 0 and p̂n+1 > 0.
We prove that this case cannot exist. Since the constraint p̂n ≥ 0 is binding for p̂∗n = 0, at NE

we must have
∂ ûn

∂ p̂n

∣∣∣∣
m∗
≤ 0. (A.27)

Furthermore, using p̂∗n = 0 we obtain

∂ ûn

∂ p̂n

∣∣∣∣
m∗

= 2[p̂∗n+1−ζ
inelas.∗2]≤ 0. (A.28)

Since p̂∗n+1 > 0, because of Eq. (A.25),

∂ ûn+1

∂ p̂n+1

∣∣∣∣
m∗

= 2(p̂∗n+2− p̂∗n+1)−2ζ
inelas.∗2 = 0 (A.29)

From (A.29) it follows that

p̂∗n+2 = p̂∗n+1 +ζ
inelas.∗2 ≥ p̂∗n+1 > 0. (A.30)

Since p̂∗n+2 > 0, we can repeat the same argument as Eqs. (A.29) and (A.30) to calculate
p̂∗n+3 and show it is positive. Continuing the same argument on the sequence of the prices
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{p̂∗n+3, p̂∗n+4, ..., p̂∗n, p̂∗1, ..., p̂∗n−1,t , p̂∗n}, we obtain

p̂∗2n = p̂∗n+1 +Nζ
inelas.∗2 > 0. (A.31)

This contradicts the assumption of p̂∗n = 0.
Proof of Theorem 1 First consider the auction for elastic demand. From Eq. (2.43) of Lemma

1, we have
D(p̂∗n) = ∑

j∈N
ê∗j ∀n ∈ N. (A.32)

As a direct consequence of Eqs. (2.36) and (A.32),

p̂∗n = p̂∗ =U ′(∑
j∈N

e∗j)> 0 ∀n ∈ N. (A.33)

The inequality in Eq. (A.33) follows from concavity of demand. Moreover, Eqs. (2.34), (2.43),
(2.46) imply r∗n = p̂∗ê∗n, and because ζ elas.

n
∗
= 0,

∂ relas.
n

∂ ên

∣∣∣∣
m∗

= p̂∗−2p̂∗0.5ζ
elas.
n

∗ ∂ζ elas.
n

∂ ên

∣∣∣∣
m∗

= p̂∗. (A.34)

From Eq. (A.34), (A.11), we have

C′(e∗n) = p∗ (A.35)

Next, consider the auction with inelastic demand. First note that from proof of Lemma 1, for
any non-trivial NE, we have p∗n > 0,∀n ∈ N. Using Eq. (2.44) in Eq. (A.25) we obtain

∂ rinelas.
n

∂ p̂n

∣∣∣∣
m∗

=−2(p̂∗n− p̂∗n+1) = 0. (A.36)

Therefore,
p̂∗n = p̂∗n+1 = p̂∗ ∀n ∈ N. (A.37)

Next, from Eq. (2.45), we get [∑n∈N ê∗n−D] = 0, therefore,

p̂∗[∑
n∈N

ê∗n−D] = 0 ∀n ∈ N. (A.38)

Furthermore, Eqs. (2.34), (2.44) and (A.37) imply

rinelas.
n

∗
= p̂∗ê∗n, (A.39)

and
∂ rinelas.

n
∂ ên

∣∣∣∣
m∗

= p̂∗−2p̂∗ζ inelas.∗∂ζ inelas.

∂ ên
|m∗ = p̂∗. (A.40)
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Finally, using Eq. (A.40) in Eq. (A.21) of the KKT condition we obtain

p̂∗ =Ce
n
′(ê∗n). (A.41)

Proof of Theorem 2 At the trivial equilibrium amount paid to the GenCos is zero. Therefore,
the auctions are budget balanced. We discuss the case of non-trivial equilibriums below.

First consider the auction with elastic demand. At equilibrium, producer n receives relas.
n

∗
=

p∗e∗n and demand pays p̂∗∑n∈N ê∗n = ∑n∈N relas.
n

∗ where from Eq. (A.33), p∗ = (U−1)′(∑n∈N e∗n);
therefore, the sum of all payments adds up to zero. For the auction with inelastic demand, the
amount charged to producer, ∑n∈N relas.

n
∗, can be collected from the inelastic demand without

changing the behavior of the demand. Therefore, the auction is budget balanced.
Proof of Theorem 3 To show that the allocation e∗n = ê∗n, n ∈ N, corresponding to non-trivial

equilibrium m∗ is a solution of Problem (Socially Optimal Dispatch - Elastic) (correspondingly
Problem (Socially Optimal Dispatch - Inelastic)), we specify the KKT parameters of Problem
(Socially Optimal Dispatch - Elastic) (correspondingly Problem (Socially Optimal Dispatch -
Inelastic)) based on the KKT parameters of Problem (Q̂elas.

1,n ) (correspondingly Problem (Q̂inelas.
1,n ))

as follows.
First consider the auction for elastic demand. Let m∗ be a NE of the game induced by the

proposed mechanism (p̂∗n > 0, ∀n ∈ N by Theorem 1). Then, Eqs. (A.11)-(A.13) along with
Theorem 1 show that Eq. (A.9) is satisfied for all n ∈ N. Consequently, (ê∗1, ê

∗
2, ..., ê

∗
N) is a solution

of Problem Socially Optimal Dispatch - Elastic.
Second, consider the auction for inelastic demand. Let m∗ be a non-trivial NE of the game

induced by the mechanism. Then, m∗ is a solution to every GenCo’s profit maximization problem.
We set

e∗n = ê∗n, κ
∗ = p̂∗ ∀n ∈ N. (A.42)

Then, Eqs. (A.21)-(A.23) along with Theorem 1 show that Eqs. (A.17)-(A.18) are satisfied.
Proof of Theorem 4 We show that each producer n∈N weakly prefers the equilibrium outcome

to the outside option (en,rn) = (0,0) resulting when producer n does not participate in the auction.
From Eq. (2.47) we obtain that GenCo n’s utility at equilibrium is

−Ce
n(ê
∗
n)+ relas.

n
∗
=−Ce

n(ê
∗
n)+Ce

n
′
(ê∗n)× ê∗n. (A.43)

Furthermore, for the convex and increasing function Ce
n(.) with Ce

n(0) = 0 we have

Ce
n(en)≤Ce

n
′
(en)× en for any en ≥ 0. (A.44)

Combining (A.43) and (A.44) we get,

un(m∗) =−Ce
n(ê
∗
n)+Ce

n
′
(ê∗n)ê

∗
n ≥ 0. (A.45)

Proof of Lemma 2 We first prove the existence of a unique trivial equilbirum for the inelastic
demand. Consider GenCo n and assume all other GenCos propose a price of zero; we prove
GenCo n’s best response is to bid zero price and zero quantity. Since p̂∗n+1 = 0, GenCo n is paid
no compensation for his production, i.e. p̂∗n+1en = 0. Other terms in GenCo n’s utility function
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include penalty term and cost of production. The penalty terms are non-positive for any p̂n > 0 and
zero for p̂n = 0. Therefore, producer n maximizes this utility by proposing p̂n = 0. Also, the cost
of production is positive for all ên 6= 0 and zero at ên = 0. Therefore, GenCo n’s best response is
en = 0.

For elastic demand, the proof of Lemma (1) and Theorem (3) is valid at all equilibria1. Therefore,
in the case where the solution of Problem (Socially Optimal Dispatch - Elastic) is such that
∃n ∈ N : e∗n > 0 there does not exist any trivial equilibrium. This is because from Theorem (1),
GenCos’ price proposals are p̂∗ = Ce

n
′(e∗n) which is greater than zero. On the other hand, if the

solution of Problem (Socially Optimal Dispatch - Elastic) satisfies e∗n = 0,∀n ∈ N then the price
proposals are also zero and the game induced by the mechanism has a unique equilibrium which is
trivial.

1Note that in contrast to auctions for elastic demand, for the case of inelastic demand we used the assumption of
non-trivial equilibrium in the proof of Lemma (1).
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APPENDIX B

Proof of Properties in Section (2.4)

We first present some preliminaries needed for the proofs of the results of Section (2.4). This
preliminary information includes (i) the decomposition of Problem (Socially Optimal - Individual
Const.) to optimization problems for each t and t+, Problems Q2(1) and Q2(1+), using dynamic
programming principles, (ii) the best response problem for each GenCo at times 1 (capacity
expansion) and 1+ (generation spot market), Problems Q̂2,n(1) and Q̂2,n(1+). We prove these
problems are all strictly concave optimization. We present the KKT conditions that are necessary
and sufficient for optimality.

B.1 Preliminaries for Proofs
Problem (Socially Optimal - Individual Const.)

For Problem (Socially Optimal - Individual Const.), we define the stage problems Q2(1) &
Q2(1+) respectively.

Q2(1+)
At time 1+ optimal generations are solution to the following optimization problem,

V1+(h1+) = max
en,n∈N

∑
n∈N

U(∑
n∈N

en)− ∑
n∈N

Ce
n(en) (B.1)

s.t. 0≤ en ≤ xn∀n ∈ N. (B.2)

Note that h1+ = (x0,∆x) = (x1,0,x2,0, ...,xN,0,∆x1,∆x2, ...,∆xN).
Q2(1+) is a strictly concave optimization problem. The corresponding Lagrangian and KKT

conditions are

L1+(h1+) =U(∑
n∈N

en)− ∑
n∈N

Ce
n(en)

+νnen +µn(xn− en). (B.3)
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and ∀n ∈ N,

∂U(∑n∈N en)

∂en

∣∣
e∗−

∂Ce
n(en)

∂en

∣∣
e∗+ν

∗
n −µ

∗
n = 0 (B.4)

ν
∗
n e∗n = 0 (B.5)

µ
∗
n (xn− e∗n) = 0 (B.6)

ν
∗
n ≥ 0, µ

∗
n ≥ 0, (B.7)

respectively.
Q2(1)
The capacity expansions at time 1 are the solution of the following optimization problem,

V1(h1) = max
∆xn,n∈N

−∑
n∈N

Cx
n(∆xn)+V1+(h1,∆x) (B.8)

s.t. 0≤ ∆xn ≤ ∆xn. (B.9)

Note that h1 = x0.
We first prove Q2(1) is strictly concave optimization and then present the Lagrangian and KKT

conditions. In order to prove strict concavity of Q2(1), we show that V1+(h1,∆x) is concave with
respect to ∆x for every h1. We prove this in two steps. We first prove that V1+(h1,∆x) can be written
as a function of S1+ = x0 +∆x. Next, we prove that V1+(x0 +∆x) is concave with respect to ∆x.

First note that in the optimization problem specified by Eqs. (B.1)-(B.2), V1+ depends on
x = x0 +∆x in Equation (B.2). Therefore, V1+(h1,∆x) can be written as a function of S1 = x. Next,
we prove concavity of V1+(x0 +∆x) with respect to ∆x. To do so, we first prove its concavity with
respect to x. Consider x1, x2 and x3 = λx1 +(1−λ )x2 where 0≤ λ ≤ 1 and their corresponding
optimal production of electricity in Eq. (B.1), e1∗, e2∗ and e3∗. Consider e3 = λe1∗+(1−λ )e2∗.
Since both e1∗ and e2∗ satisfy Eq. (B.2), 0≤ e3

n ≤ λx1
n +(1−λ )x2

n = x3
n ∀n ∈ N. This means e3 is a

feasible point in the domain of optimization of V1+(x3). In addition, since the objective function of
function V1+(x) is concave, then

λV1+(x
1)+(1−λ )V1+(x

2) = λ [U(∑
n∈N

e1
n
∗
)− ∑

n∈N
Ce

n(e
1
n
∗
)]+(1−λ )[U(∑

n∈N
e2

n
∗
)− ∑

n∈N
Ce

n(e
2
n
∗
)]

(B.10)

≤U(∑
n∈N

e3
n)− ∑

n∈N
Ce

n(e
3
n)≤U(∑

n∈N
e3

n
∗
)− ∑

n∈N
Ce

n(e
3
n
∗
) =V1+(x

3) (B.11)

This means V1+ is concave. To prove concavity of V1+(x0 +∆x) with respect to ∆x, define the
function B(∆x) = x0 +∆x. B(∆x) is concave and V1+(x) is non-decreasing (because by increasing
x the domain of the optimization for V1+ only increases, this implies that the value function is
non-decreasing) and therefore, V1+(B(∆x)) is concave (See Rockafellar (2015), Theorem 5.1).

The corresponding Lagrangian and KKT conditions are

L(x0) =−∑
n∈N

Cx
n(∆xn)+V1+(x0 +∆x)+

∑
n∈N

(
αn∆xn +βn(∆xn−∆xn)

)
(B.12)
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and

−∂Cx
n(∆x∗n)
∆x∗n

+
V ∗1+(x0 +∆x∗)

∆x∗n
+α

∗
n −β

∗
n = 0, (B.13)

α
∗
n ∆x∗n = 0, (B.14)

β
∗
n (∆xn−∆x∗n) = 0, (B.15)
α
∗
n ≥ 0, β

∗
n ≥ 0. (B.16)

Best Response of the GenCos
For GenCo n, n ∈ N, we define the best response problems Q̂2,n(1) and Q̂2,n(1+) at times 1 and

1+ respectively. The history ĥ1 at time 1 (resp. the history ĥ1+ at time 1+) is an information state for
problem Q̂2,n(1) (respectively Problem Q̂2,n(1+)). For each problem, we prove it is strictly concave
optimization and present the corresponding Lagrangian and KKT conditions.

Let m̂∗1 and m̂∗1+ be the GenCos’ message at equilibrium.
Q̂2,n(1+)
Consider GenCo n ∈ N and denote the other GenCos’ generation and price bid from their

strategies at time 1+ by m̂−n,1+ = (ê−n, p̂−n). GenCo n’s generation decision at the spot market of
time 1+ with history ĥ1+ is determined by the solution of the optimization problem

V̂n,1+(ĥ1+) = max
ên,p̂n
−Ce

n(ên)+ p̂n+1ên− p̂−0.5
n ζ

elas.
n

2
(B.17)

s.t. 0≤ ên ≤ xn (B.18)
0≤ p̂n. (B.19)

The above optimization is strictly concave.
The corresponding Lagrangian and KKT conditions are

L̂n,1+(ĥ1+) =−Ce
n(ên)+ p̂n+1ên− p̂−0.5

n ζ
elas.
n

2
+ ν̂nên (B.20)

+ µ̂n(xn− ên)+ θ̂n p̂n, (B.21)

and

−∂Ce
n

∂ ên
|ê∗n + p̂∗n+1−

∂ p̂−0.5
n ζ elas.

n
2

∂ ên
|(m̂−n,1+ ,ê

∗
n,p̂∗n)+ ν̂

∗
n − µ̂

∗
n = 0 (B.22)

−∂ p̂−0.5
n ζ elas.

n
2

∂ p̂n
|(m̂−n,1+ ,ê

∗
n,p̂∗n)+ θ̂

∗
n = 0, (B.23)

θ̂
∗
n p̂∗n = 0, (B.24)

µ̂
∗
n (xn− ê∗n) = 0, (B.25)

ν̂
∗
n ê∗n = 0, (B.26)

ν̂
∗
n ≥ 0, µ̂

∗
n ≥ 0, θ̂

∗
n ≥ 0, (B.27)

respectively.
Q̂2,n(1)
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Denote the other GenCos’ expansion determined from their strategy at time 1 by m̂−n,1 = ∆x̂−n.
GenCo n’s best response for expansion decision at time 1, is determined by the solution of the
optimization problem below:

V̂n,1(ĥ1) = max
∆x̂n
−Cx

n(∆x̂n)+V̂n,1+
(
ĥ1,∆x̂

)
(B.28)

s.t. 0≤ ∆x̂n ≤ ∆xn, (B.29)

We prove that this is a strictly concave optimization problem. To do so, we prove that for every
given m̂−n,1 = ∆x̂−n, V̂n,1+(ĥ1+) is concave in ∆x̂n. We show this in two steps. We first show that
V̂n,1+(ĥ1+) is a function of x̂ = x0 +∆x̂. To see this note that V̂n,1+(ĥ1+) is a function of ĥ1+ because
of the constraint described by Eq. (B.18). Next, for a given x̂−n, we prove V̂n,1+ is concave in xn

and then we show it is concave in ∆x̂n. Consider x1, x2 and x3 = λx1 +(1−λ )x2 where 0≤ λ ≤ 1
and their corresponding optimal electricity and price bids in Eq. (B.17), (ê1∗

n , p1∗
n ), (ê2∗

n , p2∗
n ) and

(ê3∗
n , p3∗

n ). Consider ê3
n = λ ê1∗

n +(1−λ )ê2∗
n and p3

n = λ p1∗
n +(1−λ )p2∗

n . Since both ê1∗
n and ê1∗

n
satisfy Eq. (B.18), 0 ≤ ê3

n ≤ λx1
n +(1−λ )x2

n = x3
n ∀n ∈ N. Also, p3

n ≥ 0 ∀n ∈ N. This means
(ê3

n, p3
n) is a feasible point in the domain of optimization of V̂n,1+(x3). In addition, since the objective

function of function V̂n,1+(x) is concave, then

λV̂n,1+(x
1)+(1−λ )V̂n,1+(x

2) = λ [−Ce
n(ê

1∗
n )+ p̂1∗

n+1ê1∗
n − p̂1∗−0.5

n ζ
elas.1∗
n

2
]

+ (1−λ )[−Ce
n(ê

2∗
n )+ p̂2∗

n+1ê2∗
n − p̂2∗−0.5

n ζ
elas.2∗
n

2
] (B.30)

≤−Ce
n(ê

3
n)+ p̂3

n+1ê3
n− p̂3−0.5

n ζ
elas.3
n

2

≤−Ce
n(ê

3∗
n )+ p̂3∗

n+1ê3∗
n − p̂3∗−0.5

n ζ
elas.3∗
n

2
= V̂n,1+(x3) (B.31)

This means V̂1+ is concave. To prove concavity of V̂1+(x0 +∆x) with respect to ∆x, define the
function B(∆x) = x0 +∆x. B(∆x) is concave and V̂1+(x) is non-decreasing (because by increasing
x the domain of the optimization for V̂1+ only increases which means the value function is non-
decreasing) and therefore, V̂1+(B(∆x)) is concave (See Rockafellar (2015), Theorem 5.1).

The corresponding Lagrangian and KKT conditions are

L̂n,1(ĥ1) =−Cx
n(∆x̂n)+V̂1+,n

(
x0 +∆x̂

)
(B.32)

+α̂n∆x̂n + β̂n(∆xn−∆x̂n), (B.33)

and

−∂Cx
n(∆x̂n)

∂∆x̂n
|∆x̂∗n +

∂V̂n,1+
(
x0 +∆x̂

)
∂∆x̂n

|(m̂−n,1,∆x̂∗n)+ α̂
∗
n − β̂

∗
n = 0, (B.34)

α̂
∗
n ∆x̂∗n = 0, (B.35)

β̂
∗
n (∆xn−∆x̂∗n) = 0, (B.36)

α̂
∗
n ≥ 0, β̂

∗
n ≥ 0. (B.37)
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B.2 Proof of the Results in Section 2.4.3
Proof of Theorem (5) We first prove market clearance, budget balance and price efficiency. In the
spot market. Problem Q̂2,n(1+) is similar to Problem (Q̂elas.

1,n ) with additional individual constraint
of Eq. (B.18); therefore, market clearance, budget balance and price efficiency of the spot market
can be established in the similar way as in Problem (Q̂elas.

1,n ) (Lemma (1) and Theorems (1) and (2)).
Next, we prove the social optimality of the equilibrium outcome. Assume σ̂∗n and γ̂∗n form a

SPNE for the dynamic game induced by the mechanism proposed in Section (2.4.2). Consider
ĥ1 = h1 and ĥ1+ = h1+ and the following strategies in Problem (Socially Optimal - Individual
Const.).

σ
∗
n (S1) = ∆x̂∗n,1+(S1+) (B.38)

γ
∗
n (S1+) = ê∗n(S1+) (B.39)

Then using the results of Theorem (3), Eq. (B.34)-(B.37), Eqs. (B.38)-(B.39) and Eqs. (B.22)-(B.27)
the following parameters will satisfy the KKT conditions of Q2(1), Eq. (B.4)-(B.7), and the KKT
conditions of Q2(1+), Eq. (B.13)-(B.16), defined for all n ∈ N

ν
∗
n = ν̂

∗
n (B.40)

µ
∗
n = µ̂

∗
n (B.41)

α
∗
n = α̂

∗
n (B.42)

β
∗
n = β̂

∗
n (B.43)

This means the energy production and expansion corresponding to the SPNE are solutions of
Problem (Socially Optimal - Individual Const.).

To prove that the mechanism is individually rational, we need to show that starting from each
time 1 or 1+, GenCo n’s future utility due to the SPNE strategy of the game induced by the
mechanism is greater than or equal to his non-continuation utility (which is 0).

First consider the expansion epoch 1. GenCo n’s utility at equilibrium starting from time 1 is
determined by the solution of Q̂2(1) as

V̂n(h1) =−Ce
n(ê
∗
n)−Cx

n(x̂
∗
n)+ p̂∗ê∗n. (B.44)

To show this value is positive, we introduce a surrogate optimization problem which has the same
solution and value function as Q̂2,n(1). We prove the solution to this surrogate optimization problem
is non-negative. Consider the following surrogate optimization for GenCo n where the prices p∗ are
fixed and equal to the outcome prices of the SPNE strategies.

max
∆x̂′n,ê′n

−Ce
n(ê
′
n)−Cx

n(∆x̂′n)+ p̂∗ê′n

s.t. 0≤ ∆x̂′n ≤ xn

0≤ ê′n ≤ x0,n +∆x̂n (B.45)

Call this problem Q̂sur
2 (n). Problem Q̂sur

2 (n) is a convex optimization satisfying the constraint
qualification conditions. First by using the KKT condition of Problem Q̂sur

2 (n), one can check that
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GenCo n’s SPNE strategies σ̂∗n and γ̂∗n , are also a solution of Q̂sur
2 (n). Moreover, V̂n is also equal to

the optimal value of Q̂sur
2 (1). Then, note that (0,0) is a feasible solution of problem Q̂sur

2 (n) and
the value of Q̂sur

2 (n) at (0,0) is equal to zero. Consequently, V̂n is non-negative and GenCo n will
continue participation in the mechanism from time 1.

Next, consider the generation at time 1+. The utility at time 1+ is determined by

V̂(n,1
+)(h1+) =−Ce

n(ê
∗
n)+ p̂∗ê∗n. (B.46)

Similar to the proof of Theorem (4), one can show that −Ce
n(ê
∗
n)+ p̂∗ê∗n is non-negative. Therefore,

GenCo n will continue participation in the mechanism from time 1+.
To prove uniqueness, note that Problem (Socially Optimal - Individual Const.) is strictly convex

and therefore it has a unique solution. On the other hand, as shown earlier in this proof, at any
SPNE of the game induced by the mechanism

ê∗n = e∗n (B.47)
∆x̂∗n = ∆x∗n (B.48)

and due to price efficiency

p̂∗n =U ′t (∑
n∈N

e∗n). (B.49)

Eqs. (B.47)-(B.49) uniquely determine the SPNE of the game induced by the mechanism.
Proof of Theorem 6: Theorem 5 shows that the SPNE of the game induced by the mechanism

results in the same expansion and generation as the optimal solution of Problem (Socially Optimal -
Individual Const.). Therefore to prove Theorem (6), we show that for Problem (Socially Optimal -
Individual Const.) and its optimal strategy, if ∆x∗n > 0 GenCo n is saturated in the spot market, i.e.

e∗n = x∗n. (B.50)

We prove this by contradiction. Assume e∗n < x∗n. We construct an alternative strategy which is
feasible and can improve the social welfare. For the production strategy, use the same e∗n. For the
expansion strategy use ∆x∗n− ε with small enough ε such that the constraints in Problem (Socially
Optimal - Individual Const.) are not violated. This alternative strategy has lower expansion cost at
time 1 compared to the original strategy but the cost for production and utility of demand remain
the same. Therefore, the social welfare increases. This contradicts the fact that (γ∗n ,σ

∗
n , n ∈ N) is

the optimal solution of Problem (Socially Optimal - Individual Const.).
Next we show the price in the spot market covers the investment at its marginal cost. First, as

proved in Theorem (5), by price efficiency the price in the spot market is equivalent to the marginal
utility of the demand. Also, the expansions and the productions at the SPNE are equal to the
expansions and productions in Problem (Socially Optimal - Individual Const.). Therefore, because
of Eqs. (B.4) and (B.13), the price in the spot market is

p∗ =Ce
n
′(e∗n)+Cx

n
′(∆x∗n) if 0 < ∆xn < ∆xn. (B.51)
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APPENDIX C

Proof of Properties in Section (2.5)

We first present some preliminary information needed for the proofs of the results of Section
(2.6). This preliminary information includes (i) the decomposition of Problem (Socially Optimal
- Longterm Uncertainty) to optimization problems for each t and t+, Problems Q3(t) and Q3(t+),
using dynamic programming principles, (ii) the best response problem for each GenCo at times t
(capacity expansion) and t+ (generation spot market), Problems Q̃3,n(t) and Q̃3,n(t+). We prove
these problems are all strictly concave optimization. To do so, we prove Lemma (3). We present the
KKT conditions that are necessary and sufficient for optimality.

C.1 Preliminaries
For Problem (Socially Optimal - Longterm Uncertainty) we define the stage problems Q3(t) &
Q3(t+) respectively.

Let

VT+1(hT+1) = η(wT ) ∑
n∈N

xn,T+1. (C.1)

Problem Q3(t+)
At time t+ optimal generations are according to the following optimization problem,

Vt+(ht+,w1:t) = max
en,t ,n∈N

Ut(∑
n∈N

en,t ,wt)− ∑
n∈N

Ce
n,t(en,t ,wt)+βVt+1(ht+,et) (C.2)

s.t. 0≤ en,t ≤ xn,t+ ∀n ∈ N. (C.3)

Problem Q3(t)
The expansions at time t are according to the following optimization problem which we refer to

by Q3(t) (note that (ht ,∆xt ,wt) = ht+).

Vt(ht) = max
∆xn,t ,n∈N

−∑
n

Cx
n,t(∆xn,t ,wt−1)+Ewt

[
Vt+(ht ,∆xt ,wt)|w1:t−1

]
(C.4)

s.t. 0≤ ∆xn,t ≤ ∆xn,t (C.5)

∑
n∈N

∆xn,t ≥ ∆xt (C.6)
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GenCos’ Best Response
For GenCo n, n ∈ N, we define best response problems Q̃3,n(t) and Q̃3,n(t+) at times t and t+

respectively. The history h̃t at time t (resp. the history h̃t+ at time t+) is an information state for
problem Q̃3,n(t) (respectively problem Q̃3,n(t+)).

Let

Ṽn,T+1(h̃T+1) = η x̃n,T+1. (C.7)

Q̃3,n(t+)
At the spot market of time t+ with history h̃t+ , GenCo’s best response to other GenCos’

production and price proposal m̃−n,t+ = (ê−n,t , p̂−n,t) determined by their strategies γ̂−n,t is

Ṽn,t+(h̃t+) = max
ên,t ,p̂n,t

−Ce
n,t(ên,t ,wt)+ p̂n+1,t ên,t− p̂−0.5

n,t ζ
elas.2

n,t +βṼN,t+1(h̃t , êt , p̂t) (C.8)

s.t. 0≤ ên,t ≤ xn,t (C.9)
0≤ p̂n,t (C.10)

Q̃3,n(t)
At expansion epoch t with history h̃t , GenCo n’s best response to the other GenCos’ expansion

and price proposal m̃−n,t = (∆x̃−n,t , p̃−n,t) determined by their strategies σ̃−n,t is determined by

Ṽn,t(h̃t) = max
˜∆xn,t , ˜ n,tp
−Cx

n,t(∆x̃n,t ,wt−1)+ p̃∗n+1,t∆x̃n,t− (p̃n,t− p̃∗n+1,t)
2−2 p̃n,tζ

inelas.2
t

+βEwt

[
Ṽt+,n

(
h̃t ,∆x̃t , p̃t ,wt

)∣∣w1:t−1

]
(C.11)

0≤ ∆x̃n,t ≤ ∆xn,t (C.12)
p̃n,t ≥ 0 (C.13)

To show Problems Q̃3,n(t) and Q̃3,n(t+) are strictly concave optimization and develop the
Lagrangian and KKT conditions, we first prove Lemma (3).

Proof of Lemma 3 We show that St := (xt−1,w1:t−1) (respectively St+ := (xt ,w1:t)) is an
information state for problem Q3(t) and Q̃3,n(t) (respectively Q3(t+) and Q̃3,n(t+)). We first prove
the results for Problem (Socially Optimal - Longterm Uncertainty) and then for the SPNE of the
game induced by the mechanism. We proceed by induction.

Problem (Socially Optimal - Longterm Uncertainty)
We proceed in three steps. We first show that the value function at time T +1, VT+1 is a function

of ST+1. Then we prove that if for t +1 ∈ T , Vt+1 is function of St+1 then Vt+ is also a function of
St+ . Finally, we show that if for t ∈ T , Vt+ is a function of St+ then Vt is a function of St .

First, note that at time T + 1, VT+1 is a function of ST+1 (see Eq. C.1). Assume that Vτ+1,
τ = t + 1, t + 2, ...,T , is a function of Sτ+1. Then, at t+ the solution of Eq. (C.2) is a function
of (xt ,w1:t) = St+ , therefore, St+ is an information state for Problem Q3(t+) and Vt+ is a function
of St+ . Consequently, the solution of Eq. (C.4) is a funciton of (xt−1,w1:t−1) = St , thus St is an
information state for Problem Q3(t) and Vt is a funciton of St .

GenCos’ best response problem

112



We prove in three steps. We first show that the value function at time T +1, Ṽn,T+1 is a function
of ST+1. Then we prove that if for t +1 ∈ T , Ṽn,t+1 is function of St+1 for all n ∈ N then Ṽn,t+ is
also a function of St+ . Finally, we show that if for t ∈ T , Ṽn,t+ is a function of St+ for all n ∈ N, then
Ṽn,t is a function of St .

First, at time T +1, by Eq. (C.7), Ṽn,T+1(h̃T+1) is only a function of ST+1 for all n ∈ N.
Second, at time t+, t ∈ T , if Ṽn,t+1 is a function of St+1, it is independent of the strategies at time

t+ (because these strategies do not change St+1). On the other hand, the best response problem and
its constraints at time t+ is a function of St . Therefore, equilibrium strategies are only a function of
St

1.
Third, we consider the expansion at time t ∈ T and assume Ṽ ∗n,t+ is a function of St+; St+ is

determined by St plus the expansion decision at time t (i.e. independent of the rest of the history).
Therefore the best response problem at time t and its constraints can be written as a function of St .
As a result, the equilibrium strategies are a function of St

2.
Using the above Lemma, we can prove strict concavity of the stage optimization problems and

develop the KKT conditions.
Dynamic Programming and KKT Conditions for Problem

(Socially Optimal - Longterm Uncertainty)
First define

VT+1(ST+1) = η(wT ) ∑
n∈N

xn,T+1. (C.14)

and note that it is concave.
Problem Q3(t+)

At time t+ optimal generations are according to the following optimization problem,

Vt+(xt+,w1:t) = max
en,t ,n∈N

Ut(∑
n∈N

en,t ,wt)− ∑
n∈N

Ce
n,t(en,t ,wt)+βVt+1(xt+,w1:t) (C.15)

s.t. 0≤ en,t ≤ xn,t+ ∀n ∈ N. (C.16)

Assuming Vt+1(xt+1,w1:t) is concave in xt+1 (by induction), we prove Vt+ is a strictly concave
optimization problem and furthermore, Vt is strictly concave with respect to xt for every w1:t ∈W1:t .
For a give w1:t , Ce

n,t is strictly convex, Ut is strictly concave and by assumption Vt+1 is concave.
Since the domain is also concave, the problem is strictly concave optimization. The corresponding
Lagrangian and KKT conditions are

Lt+(St+) =Ut(∑
n∈N

en,t ,wt)− ∑
n∈N

Ce
n,t(en,t ,wt)+βVt+1(St+) (C.17)

+ ∑
n∈N

νn,ten,t + ∑
n∈N

µn,t(xn,t+− en,t), (C.18)

1In problems with multiple equilibrium, the equilibrium selection can be history dependent. We will show later that
the spot market at time t has a unique equilibrium and therefore, there does not exist an equilibrium selection problem.

2We will show later that there are two equilibria in each capacity market which are both function of St . In general
with multiple equilibria, equilibrium selection can be history dependent. Therefroe, here we consider Pareto efficient
equilibrium. Since one of the two equilibria Pareto dominates the other, in this case, equilibrium selection is not a
history dependent decision.
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and

∂Ut(∑n∈N en,t ,wt)

∂en,t
|e∗t −

∂Ce
n,t(en,t ,wt)

∂en,t
|e∗t

+β
∂Vt+1(St+)

∂en,t
|e∗+ν

∗
n,t−µ

∗
n,t = 0, (C.19)

ν
∗
n,te
∗
n,t = 0, (C.20)

µ
∗
n,t(x

∗
n,t+− e∗n,t) = 0, (C.21)

ν
∗
n,t ≥ 0, µ

∗
n,t ≥ 0, (C.22)

respectively.
Next, we prove that Vt+(St+) is concave in xt+ . Consider x1

t , x2
t , x3

t = λx1
t +(1−λ )x2

t , where
0 ≤ λ ≤ 1 and their corresponding optimal production of electricity in Eq. (C.15), e1

t
∗, e2

t
∗ and

e3
t
∗. Consider e3

t = λe1
t
∗
+ (1− λ )e2

t
∗. Since both e1

t
∗ and e2

t
∗ satisfy Eq. (C.16), 0 ≤ e3

n,t ≤
λx1

n +(1−λ )x2
n = x3

n ∀n ∈ N. This means e3 is a feasible point in the domain of optimization of
Vt+ for x3. In addition, since the objective function of function Vt+ is concave, we have

λVt+(x
1,w1:t)+(1−λ )Vt+(x

2,w1:t) = λ [Ut(∑
n∈N

e1∗
n,t ,wt)− ∑

n∈N
Ce

n,t(e
1∗
n,t ,wt)+βVt+1(x1

t+,w1:t)]

+(1−λ )[Ut(∑
n∈N

e2∗
n,t ,wt)− ∑

n∈N
Ce

n,t(e
2∗
n,t ,wt)+βVt+1(x1

t+,w1:t)]

≤Ut(∑
n∈N

e3
n,t ,wt)− ∑

n∈N
Ce

n,t(e
3
n,t ,wt)+βVt+1(x1

t+,w1:t) =

≤Ut(∑
n∈N

e3∗
n,t ,wt)− ∑

n∈N
Ce

n,t(e
3∗
n,t ,wt)+βVt+1(x1

t+,w1:t) =Vt+(x
3,w1:t) (C.23)

This means Vn,t+ is concave in xt .
Problem Q3(t)
The expansions at time t are according to the following optimization problem which we refer to

by Q3(t) (note that (xt +∆xt ,w1:t) = St+).

Vt(St) = max
∆xn,t ,n∈N

−∑
n

Cx
n,t(∆xn,t ,wt−1)+Ewt

[
Vt+(xt +∆xt ,w1:t)|w1:t−1

]
(C.24)

s.t. 0≤ ∆xn,t ≤ ∆xn,t (C.25)

∑
n∈N

∆xn,t ≥ ∆xt (C.26)

Assuming that Vt+(xt +∆xt ,w1:t) is concave with respect to xt (by induction), we prove Q3(t) is
a strictly concave optimization problem and furthermore, Vt(St) is concave in xt . First, to prove
concavity of Vt(St) with respect to ∆xt , define the function B(∆xt) = xt +∆xt . B(∆xt) is concave and
Vt(St) is concave and non-decreasing in xt , therefore, Vt+(B(∆xt)) is concave in ∆xt (See Rockafellar

(2015), Theorem 5.1) and Ewt

[
Vt+(xt+ +∆xt ,w1:t)|w1:t−1

]
is a weighted sum of concave functions,

hence it is concave in ∆xt . Considering this, it is straightforward to see Vt(St) is concave optimization
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with convex domain. The Lagrangian and the KKT conditions are

Lt(St) =−∑
n

Cx
n,t(∆xn,t ,wt−1)+βEwt

[
Vt+(xt +∆xt ,w1:t)

∣∣w1:t−1

]
+

∑
n∈N

(
αn,t∆xn,t +βn,t(∆xn,t−∆xn,t)

)
+κt(∑

n∈N
∆xn,t−∆xt) (C.27)

and

−
∂Cx

n,t(∆xn,t ,wt−1)

∂∆xn,t
|∆x∗t +βEwt

[
∂Vt+(xt +∆xt ,w1:t)

∂∆xn,t
|∆x∗t

∣∣w1:t−1

]
+α

∗
n,t−β

∗
n,t +κ

∗
t = 0 (C.28)

α
∗
n,t∆x∗n,t = 0 (C.29)

β
∗
n,t(∆xn,t−∆x∗n,t) = 0 (C.30)

κ
∗
t (∑

n∈N
x∗n,t−∆xt) = 0 (C.31)

α
∗
n,t ≥ 0, β

∗
n,t ≥ 0,κ∗t ≥ 0 (C.32)

respectively.
To prove Vt(St) is concave in xt for a given w1:t−1 ∈W1:t−1, we use the first and the second order

conditions. First, by envelope theorem,
∂Vt(St)

∂xn,t
= βEwt

[
∂Vt+(xt+∆xt ,w1:t)

∂xn,t
|∆x∗t

∣∣w1:t−1

]
which is non-negative by concavity of Vt+(xt +∆xt ,w1:t)

with respect to xt +∆xt (first order condition). Second,

Hessian(Vt(St)) = βEwt

[
Hessian(Vt+(xt +∆xt ,w1:t))|∆x∗t

∣∣w1:t−1

]
(C.33)

which is negative semidefinite by concavity of Vt+(xt +∆xt ,w1:t) (second order condition). First
and second order conditions prove concavity of Vt(St).

GenCos’ Best Response
For GenCo n, n ∈ N we present the best response problems Q̃3,n(t) and Q̃3,n(t+) at times t and

t+ respectively as a function of St and St+ . Let

Ṽn,T+1(ST+1) = η x̃n,T+1. (C.34)

Ṽn,T+1(ST+1) is concave in x̃n,T+1.
Q̃3,n(t+)
At the spot market of time t+ with St+ , GenCo’s best response to other GenCos’ production and
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price proposal m̃−n,t+ = (ê−n,t , p̂−n,t) determined by their strategies γ̂−n,t is

Ṽn,t+(St+) = max
ên,t ,p̂n,t

−Ce
n,t(ên,t ,wt)+ p̂n+1,t ên,t− p̂−0.5

n,t ζ
elas.2

n,t +βṼn,t+1(St) (C.35)

s.t. 0≤ ên,t ≤ xn,t (C.36)
0≤ p̂n,t (C.37)

St is independent of ên,t , p̂n,t and therefore, βṼn,t+1(St) is independent of ên,t , p̂n,t . Therefore, it is
straightforward to see Ṽn,t is concave optimization with convex domain. The Lagrangian and the
KKT condition are

L̃n,t+(St+) =−Ce
n,t(ên,t ,wt)+ p̂n+1,t ên,t− p̂−0.5

n,t ζ
elas.2

n,t +βṼn,t+1(St+)+ ν̂n,t ên,t (C.38)

+ µ̂n,t(xn,t− ên,t)+ θ̂n,t p̂n,t , (C.39)

and

−
∂Ce

n,t

∂ ên,t

∣∣
ê∗n,t

+ p̂∗n+1,t−
∂ p̂−0.5

n,t ζ elas.2
n,t

∂ ên,t

∣∣
(m̃−n,t+ ,ẽn,t ,p̃n,t)

+β
∂Ṽn,t+1(St)

∂ ên,t

∣∣
(m̃−n,t+ ,ẽn,t ,p̃n,t)

+ ν̂
∗
n,t− µ̂

∗
n,t = 0, (C.40)

−
∂ p̂−0.5

n,t ζ elas.2
n,t

∂ p̂n,t
|(m̃−n,t+ ,ẽ

∗
n,t ,p̃∗n,t)+β

∂Ṽn,t+1(St+1)

∂ p̂n,t
|(m̃−n,t+ ,ẽ

∗
n,t ,p̃∗n,t)+ θ̂

∗
n,t = 0, (C.41)

θ̂
∗
n,t p̂∗n,t = 0, (C.42)

µ̂
∗
n,t(xn,t− ê∗n,t) = 0, (C.43)

ν̂
∗
n,t ê
∗
n,t = 0, (C.44)

ν̂
∗
n,t ≥ 0, µ̂

∗
n,t ≥ 0, θ̂

∗
n,t ≥ 0, (C.45)

respectively.
To prove that for every given w1:t , Ṽn,t+(St+) is concave with respect to xn,t+ , assume Ṽn,t+1 is

concave in xt+1 for every w1:t ∈W1:t (by induction). Then by employing the arguments used to
prove concavity of V̂n,1+ in Eqs. (B.28)-(B.29), we can establish the concavity of Ṽn,t+1 with respect
to xn,t+ .

Q̃3,n(t)
At expansion epoch t with St , GenCo n’s best response to the other GenCos’ expansion and

price proposal m̃−n,t = (∆x̃−n,t , p̃−n,t) determined by their strategies σ̃−n,t is determined by

Ṽn,t(St) =max
˜∆xn,t

−Cx
n,t(∆x̃n,t ,wt−1)+ p̃∗n+1,t∆x̃n,t− (p̃n,t− p̃∗n+1,t)

2−2 p̃n,tζ
inelas.2

t

+βEwt

[
Ṽt+,n

(
xt +∆x̃t ,w1:t

)∣∣w1:t−1

]
(C.46)

0≤ ∆x̃n,t ≤ ∆xn,t (C.47)
p̃n,t ≥ 0. (C.48)
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We prove that the above optimization is a strictly concave optimization and furthermore, Ṽn,t(St)
is concave in xt for every w1:t ∈W1:t . To do so, assume (by induction) that Ṽn,t+(xt +∆x̃t ,w1:t) is
concave and increasing in xt +∆x̃t . Define function B(∆x̃t) = xt +∆x̃t . Since B(∆x̃) is affine, this
means Ṽn,t+(xt +∆x̃t ,w1:t) is concave in ∆x̃ (See Rockafellar (2015), Theorem 5.1).

Next, Ew1:t

[
Vn,t+(xt+ +∆xt ,wt)|w1:t−1

]
is a weighted sum of concave functions hence concave.

Considering this, it is straightforward to see Vn,t(St) is a strictly concave optimization with convex
domain. The Lagrangian and the KKT conditions are

L̃n,t(St) =−Cx
n,t(∆ ˜xn,t ,wt−1)+ p̃∗n+1,t∆x̃n,t− (p̃n,t− p̃∗n+1,t)

2

−2 p̃n,tζ
inelas.2

t +βEwt

[
Ṽn,t+

(
xt +∆x̃t ,w1:t

)∣∣w1:t−1

]
+ α̃n,t∆x̃n,t+

β̃n,t(∆xn,t− ˜∆xn,t)+ θ̃n,t p̃n,t , (C.49)

and

−
∂Cx

n,t(∆x̃n,t ,wt−1)

∂∆x̃n,t
|∆x̃∗n,t +

∂ rinelas.
n,t

∂∆x̃n,t
|(m̃−n,t ,∆x̃∗n,t ,p̃∗n,t)

+βEw1:t

[
∂Ṽn,t+

(
xt+ +∆x̃t ,wt

)
∂∆x̃n,t

|(m̃−n,t ,∆x̃∗n,t ,p̃∗n,t)
∣∣w1:t−1

]
,

+α̃
∗
n,t− β̃

∗
n,t = 0, (C.50)

∂ rinelas.
n,t

∂ p̃n,t
|(m̃−n,t ,∆x̃∗n,t ,ẽ∗n,t)+βEwt

[
∂Ṽn,t+

(
xt +∆x̃t ,w1:t

)
∂ p̃n,t

|(m̃−n,t ,∆x̃∗n,t ,p̃∗n,t)
∣∣w1:t−1

]
, (C.51)

+α̃
∗
n,t∆x̃∗n,t = 0, (C.52)

β̃
∗
n,t(∆xn,t−∆x̃∗n,t) = 0, (C.53)

θ̃
∗
n,t p̃∗n,t = 0, (C.54)

α̃
∗
n,t ≥ 0, β̃

∗
n,t ≥ 0, θ̃

∗
n,t ≥ 0, (C.55)

respectively.
To prove Ṽn,t(St) is concave in xt , note that by induction, Ṽn,t+

(
xt+ +∆x̃t ,wt

)
is concave and

increasing in xt+ . Defining the affine function B(∆x̃t) = xt +∆x̃t shows Ṽn,t+ is also concave in
∆x̃t (See Rockafellar (2015), Theorem 5.1). Now considering two different xt and using the same
approach used in the proof of concavity of V1+(x1) in Eq. (B.10), we can show Ṽn,t(St) is concave
in xt .

C.2 Proof of Results in Section 2.6.3
Proof of Theorem 9, Part (i) We prove by construction. Assume σ̂∗n,t and γ̂∗n,t are the corresponding
strategies for the dominant SPNE of the dynamic game induced by the mechanism proposed in
Section (2.6.2) . By Lemma 3, these strategies are functions of St and St+ respectively. Define
ê∗n,t(St+) to be GenCo n’s production at time t+ due to strategy γ̃∗n,t(St+) and ∆x̃∗n,t(St) to be GenCo
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n’s expansion at time t due to strategy σ̃∗n,t(St). Consider the following strategy for the planner.

σ
∗
n,t(St) = ∆x̃∗n,t(St) (C.56)

γ
∗
n,t(St+) = ê∗n,t(St+) (C.57)

Note that the capacity expansion is equivalent to an auction with inelastic demand; therefore,
using the results of Theorem (3), Lemma (1), the KKT conditions of Q̃3,n(t) and Q̃3,n(t+), Eq.
(C.50)-(C.55), Eq. (C.40)-(C.45) respectively, and the generation and expansion strategies of Eq.
(C.56)-(C.57), the following parameters will satisfy the KKT conditions of Q3(t), Eq. (C.28)-(C.32),
and the KKT conditions of Q3(t+), Eq. (C.19)-(C.22). For all t ∈ T and n ∈ N put

ν
∗
n,t = ν̃

∗
n,t (C.58)

µ
∗
n,t = µ̃

∗
n,t (C.59)

α
∗
n,t = α̃

∗
n,t (C.60)

β
∗
n,t = β̃

∗
n,t (C.61)

As a result, the energy production and expansion corresponding to the non-trivial SPNE are solutions
of Problem (Socially Optimal - Longterm Uncertainty).

Proof of Theorem 9, Part (ii) and (iii) To prove price efficiency and budget balanced in spot
(or capacity) market of time t+ (time t), we model this market as a single elastic (or inelastic)
auction presented in Section 2.3.2 and use the properties of these auctions presented in Section
2.3.5. To do this modeling, every GenCo’s cost of generation (cost of expansion) is the sum of
both the immediate utility from the spot (or capacity) market and the value of the future outcomes,

Ce
n,t(ên,t ,wt)−βṼn,t+1(St), (or Cx

n,t(∆x̃n,t ,wt−1)−βEwt

[
Ṽt+,n

(
St ,∆x̃t , p̃t ,wt

)∣∣w1:t−1

]
)). This cost

function is strictly convex and increasing and therefore the results of market clearance, Lemma (1),
price efficiency, Theorem (1), and budget balance, Theorem (2), can be generalized for the spot (or
capacity) market at time t+ (t). This means Equations (2.78), (2.79) and (2.80) hold.

Note that for the capacity market, the price at equilibrium is the dual variable of the long-term
reliability constraint κ∗t (Eq. C.27). From Equation (C.50), κ∗t represents the difference between
the marginal cost of expansion and the marginal value of the future profits if 0 < ∆x̃n,t < ∆xn,t i.e.
α̂∗n,t = 0 and β̂ ∗n,t = 0.

Proof of Theorem 9, Part (iv) To prove individual rationality, we should prove that, at each
time instant t, by continuing participation in the mechanism, the GenCos’ future utility is greater
than or equal to zero (which is the utility they get by stopping to participate in the mechanism). We
prove this by induction. We show that at time T +1 the GenCos’ values are non-negative and then
we show that if at any time t (respectively t+) it is weakly better for the GenCos to continue the
game, then so is at (t−1)+ (respectively t).

First, note that at time T + 1, Vn,T+1,n ∈ N is non-negative by definition. Now assume at
time t +1 it is individually rational for the GenCos to participate in the mechanism. Consider the
generation epoch t+. Since at the dominant SPNE the firms act myopically in time t+, by Theorem
(4) their immediate revenue from the spot market is non-negative; therefore, the assumption that
individual rationality holds at time t +1 results that it also holds at time t+.

Next, assume the mechanism is individually rational starting from any St+ at time t+. Consider
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time t. For the non-trivial NE, GenCo n’s utility from Theorem 9 Part (i) is−Cx
n,t( ˜∆xn,t)+E{Ṽn,t(xt +

∆x̃∗t ,w1:t)|St}+ p̂∗t ∆x̃∗n,t where ∆x̃∗t is the solution of Q3(t); if 0=∆x̃∗n,t , then this utility is E{Ṽn,t(xt +
∆x̃∗t ,w1:t)|St} which is non-negative by assumption. If 0 < ∆x̃∗n,t then

p̂∗t ≥
∂

(
−Cx

n,t( ˜∆xn,t)+E{Ṽn,t(x+∆x̃∗t ,w1:t |St)}
)

∂∆x̃∗n,t
; (C.62)

since −Cx
n,t( ˜∆xn,t)+E{Ṽn,t(x+∆x̃∗t ,w1:t)|St} is strictly concave and the price p̂∗t is the marginal of

this utility, the participation utility at equilibrium−Cx
n,t( ˜∆xn,t)+E{Ṽn,t(xt +∆x̃∗t ,w1:t)|St}+ p̂∗t ∆x̃∗n,t

is non-negative. Therefore, it is individually rational to continue participation in the game at time t.

Remark C.2.1. Note that since Problem (Socially Optimal - Longterm Uncertainty) has a unique
solution, its production amounts and marginal cost of productions uniquely determine the non-trivial
SPNE. Moreover, in the capacity market of time t ∈ T for every history h̃t ∈ H̃t , t ∈ T , GenCos can
choose between the trivial and the non-trivial NE strategies. Therefore, there is a set of SPNEs
for the game induced by the mechanism. However, the unique non-trivial SPNE in which GenCos
choose the non-trivial stage NE at all histories ht ∈ Ht ,∀t ∈ T Pareto dominates other SPNEs.
Intuitively, this is because if GenCos expand their capacity, then they are compensated at the
marginal cost of expansion in the capacity market. Since the expansion cost is convex, GenCos
collect profit from the capacity markets.

Proof of Theorems 10 Consider the problem of socially optimal expansion and generation with
infinite horizon. At the optimal Markov strategy, the value function V (S),V+,∗(S+) should satisfy
the Bellman equations:

V (S) = max
∆xn

{
∑

n∈N
−Cx

n(∆xn,w)+Ew′|w{V+,∗(S+)|w}
}
, (C.63)

where

S+ = (x(S)+∆x,w′), (C.64)

and

V+,∗(S+) = max
en

{
∑

n∈N
−Cn(en,w)+U(∑

n∈N
en,w)+βV (S)

}
, (C.65)

where

S = S+. (C.66)

These equations form a contraction mapping and therefore, they have a unique solution V and V+,∗

that satisfy (C.63) and (C.65).
GenCos’ best responses satisfy the following Bellman equations (note that for the infinite
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horizon we have assumed the random noise w1:T is Markov).

V̂ ∗n (S) = max
∆x̃n,p̃n

{
−Cx

n(∆x̃n,w)+ rinelas.
n (∆x̃n, p̃n,∆x̃−n, p̃−n)+Ew′|w{V̂+∗

n (S+)}
}

(C.67)

S+ = (x(S)+∆x̃,w′) (C.68)

and

V̂+,∗
n (S+) = max

ên,p̂n

{
−Cn(ên,w)+ rn(ên, p̂n, ê−n, p̂−n)+βV (S)

}
, (C.69)

S = S+ (C.70)

Construct the strategies and the value functions of Problem (Socially Optimal - Longterm
Uncertainty) form strategies and value functions corresponding to the dominant MPE of the
game induced by the mechanism. Define the strategies of Problem (Socially Optimal - Longterm
Uncertainty) by Eq. (C.56)-(C.57) and value functions by

V (S) = Ew2:∞|w{ ∑
t∈{2,3,...},n∈N

β
t{−Cx

n(∆x̃∗n,t ,wt−1)−Ce
n(ê
∗
n,t ,wt)

}
+ ∑

t=2,3,...,∞
U ′( ∑

m∈N
ê∗m,t ,wt)ê∗n,t} (C.71)

V+,∗
n (S+) = ∑

n∈N
−Ce

n(ê
∗
n,1,w)+U ′( ∑

m∈N
ê∗m,1,w)ê

∗
n,t

+Ew2:∞|w{ ∑
n∈N,t∈{2,3,...}

β
t
(
−Cx

n(∆x̃∗n,t ,wt)

−Ce
n(ê
∗
n,t ,wt+1)+U ′( ∑

m∈N
ê∗m,t ,wt+1)ê∗n,t

)
} (C.72)

These strategies along with value functions V ∗n (S) and V+,∗
n (s+) satisfy the Bellman equations for

Problem (Socially Optimal - Longterm Uncertainty), Eqs. (C.63) and (C.65).
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APPENDIX D

Extension of the Auctions with Individual
Constraints in Section (2.4) to Long-term Interaction

of GenCos with Symmetric Uncertainty

D.1 Model
We extend the model for investment without reliability constraints of Section (2.4) to the case
where GenCos interact over a finite time horizon and have symmetric uncertainty that is common
knowledge among them. The expected social welfare maximizing investment and production are
given by the solution of the following problem

max
σn,t∈Σn,t ,γn,t∈Γn,t :n∈N,t∈T

Ew1:T

[
∑
t∈T

β
tUt(∑

n∈N
en,t ,wt)−

(Socially Optimal - Longterm Uncertainty II)

∑
t∈T

∑
n∈N

β
t
{

Ce
n,t(en,t ,wt)+Cx

n,t(∆xn,t ,wt−1)

}
+β

T+1
∑

n∈N
η(wT )xn,T

]
(D.1)

s.t. 0≤ en,t ≤ xn,0 +
t

∑
τ=1

∆xn,τ ∀t ∈ T (D.2)

0≤ ∆xn,t ≤ ∆xn,t(wt−1) ∀t ∈ T (D.3)

In Lemma (4), we prove that at any time t, without loss of optimality we can restrict attention to
expansion strategies σ∗n,t that are functions of St = {xt−1,w1:t−1} and to generation strategies, γ∗n,t
that are only functions of St+ = {xt ,w1:t}. In other words, St and St+ are information states for
Problem (Socially Optimal - Longterm Uncertainty). We also prove that the same is true for the
GenCo’s SPNE strategies in the game induced by the proposed mechanism.

D.2 Design/Mechanism
Using dynamic programming, Problem (Socially Optimal - Longterm Uncertainty II) can be
decomposed into a set of 2×T sequential optimization problems, two for each time step (See
Section (D.4) for details). Considering this decomposition, we propose the following dynamic
market mechanism for implementing the outcome. During each year t ∈ T , first the GenCos
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individually decide on expanding their capacities at time t. Next, at time t+, they participate in the
efficient auction (spot market) for elastic demand Ut(dt ,wt) proposed in Section (2.3.2).

D.3 Properties of the Mechanism
At each time t ∈ T , GenCo n’s, n∈N, strategy consists of an expansion strategy σ̂n,t and a production
strategy ˆgamman,t that describes how he participates in the spot market. The history of the game at
t, the time of expansion is

ĥt = {x0,∆x̂1:t−1, ê1:t−1, p̂1:t−1,w1:t−1} ∈ Ĥt (D.4)

Ĥt := {x0,∆X̂1:t−1, Ê1:t−1, P̂1:t−1,W1:t−1}, (D.5)

and the GenCos expansion strategies are

σ̂n,t : Ĥt → [0,∆xn,t ],n ∈ N; (D.6)

the history of the game at t+, the time of participation in the spot market, is

ĥt+ = {x0,∆x̂1:t , ê1:t−1, p̂1:t−1,w1:t} ∈ Ĥt+ (D.7)

Ĥt+ = {x0,∆X̂1:t , Ê1:t−1, P̂1:t−1,W1:t}, (D.8)

and the GenCos production strategies are,

γ̂n,t+ : Ĥt+ → [0,xn,t ]×R+ (D.9)

We denote the set of all expansion and production strategies by Σ̂n,t and Γ̂n,t , respectively.
We first show that in the finite horizon economy, the producers SPNE expansion and production

strategies are Markov i.e. they are only a function of the existing capacity and the realized
uncertainties (Lemma (4)). We prove that this feature of equilibrium strategies implies that GenCos
are myopic in the spot market. We use this to prove the sub-game perfect Nash equilibrium of
the game induced by the mechanism satisfies market clearing, price efficiency and budget balance
(Theorem (13)). We also prove social optimality, individual rationality, and uniqueness of the
equilibrium in Theorems (14), (15) and (16) correspondingly. Theorem (17) shows that the GenCos
cover their cost of expansion i.e. there is no missing money problem.

Lemma 4. (MARKOV STRATEGIES) For Problem (Socially Optimal - Longterm Uncertainty II),
there exists an optimal expansion strategy at time t and optimal production strategy at time t+ which
are functions of St := {xt−1,w1:t−1} and St+ = {xt ,w1:t}, t ∈ T respectively.

Also, for the game induced by the mechanism of Section (D.2), any SPNE is a function of St at
time t and St+ at time t+.

Lemma 4 implies that GenCos behave myopically in the spot markets i.e. maximize their
immediate revenue from the spot market. This is because the actions in the spot market i.e.
production and price bids, do not change the information state of the system for future Markov
strategies i.e. existing capacity and realized uncertainties1. Therefore, the price and production bids

1We will later show that the equilibrium is unique and there is not an equilibrium selection issue.
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will be similar to those of a single elastic spot market studied in Section (2.3.5). This discussion
provides the intuition for the feasibility, budget balanced and price efficiency of the equilibrium as
presented in the Theorem below.

Theorem 13 (MARKET CLEARANCE, PRICE EFFICIENCY, BUDGET BALANCED). For
every time t ∈ T and for every realization of the history ĥt+ ∈ Ĥt+ , the game induced by the
mechanism proposed in Section (D.2) has the following properties at its SPNE: The outcome of
spot market is feasible, the electricity production price is efficient, and the payments are budget
balanced, i.e. ∀t ∈ T

p̂∗n,t = p̂∗t =C′(e∗n,t) if 0 < e∗n,t < xn,t , (D.10)

p̂∗t (ĥt+) =U ′t (∑
n∈N

e∗n,t), (D.11)

∑
n∈N

r∗n,t(ĥt+) = p̂∗t (ĥt+)× ∑
n∈N

e∗n,t(ĥt+). (D.12)

Theorem 14 (SOCIAL OPTIMALITY). The expansion and production outcomes corresponding to
every SPNE are socially optimal, that is they are equal to the solution of Problem (Socially Optimal
- Longterm Uncertainty II).

Theorem 15 (INDIVIDUAL RATIONALITY). The SPNE of the game induced by the mechanism
is individually rational. That is at each stage, the future expected allocations corresponding to the
SPNE of the game induced by the mechanism are weakly preferred by all producers to the future
allocation (0,0) (the allocation a producer receives when it does not participate anymore in the
mechanism)2.

Theorem 16 (UNIQUENESS OF SPNE). The game induced by the proposed mechanism of Section
(D.2), has a unique SPNE.

Theorem 17 (SATURATION). Let (σ̂∗n,t , γ̂
∗
n,t ,n ∈ N, t ∈ T ) denote the SPNE of the game induced

by the mechanism. If σ̂∗n,t(ĥn,t)> 0 then there exists a future time instant τ ≥ t and a continuation
ĥt+1:τ of ĥt such that p(ĥt , ĥt+1:τ |ĥt)> 0 and γ̂∗n,t(ĥτ+) is equal to GenCo n’s capacity x̂∗n,τ .

When a GenCo is saturated, the market price is greater or equal to its marginal cost of production.
This extra income covers the GenCo’s cost of expansion (no missing money). Therefore, existence
of saturation under at least one scenario with positive probability is necessary for accepting the cost
for expanding the capacity and yet having a positive expected future revenue.

D.4 Preliminaries for Proofs
The solution to Problem (Socially Optimal - Longterm Uncertainty II) and the determination of
SPNE can be obtained by backward induction. We present the corresponding stage optimization
problems at times t and t+, denoted by Q2(t) & Q2(t+). We also present GenCo n’s best response

2Note that there may exist a history ĥt and GenCo n∈N such that the accumulated revenue from the past is negative.
Even more, there may be a history and a GenCo such that the sum of his accumulated past revenues and his future
expected revenue is negative.
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problem at times t and t+, Q̂2,n(t) and Q̂2,n(t+). To show these are strictly concave optimization
problems, we prove Lemma (4). We present the Lagrangians and KKT conditions for these stage
problems.

Problem (Socially Optimal - Longterm Uncertainty II)
For social optimality, Problem (Socially Optimal - Longterm Uncertainty II), we define the

stage problems Q2(t) & Q2(t+) respectively.
Let

VT+1(hT+1) := η(wT ) ∑
n∈N

xn,T+1. (D.13)

Q2(t+)
At time t+ optimal generations are solution to the following optimization problem.

Vt+(ht+) = max
en,t ,n∈N

∑
n∈N

Ut(∑
n∈N

en,t ,wt)− ∑
n∈N

Ce
n,t(en,t ,wt)+βVt+1(ht+,et) (D.14)

s.t. 0≤ en,t ≤ xn,t+∀n ∈ N (D.15)

Note that (ht+,et) = ht+1.
Q2(t)
The expansions at time t are solution to the following optimization problem.

Vt(ht) = max
∆xn,t ,n∈N

−∑
n

Cx
n,t(∆xn,t ,wt−1)+βEwt

[
Vt+(ht ,∆xt ,wt)|w1:t−1

]
(D.16)

s.t. 0≤ ∆xn,t ≤ ∆xn,t (D.17)

Note that (ht ,∆xt ,wt) = ht+ .
GenCos’ Best Response
For GenCo n, n ∈ N we define best response problems Q̂2,n(t) and Q̂2,n(t+) at time t and t+

respectively. The history ĥt at time t (resp. the history ĥt+ at time t+) is an information state for
problem Q̂2(n, t) (respectively problem Q̂2,n(t+)).

First consider

V̂T+1,n(ĥT+1) := η(wT )xn,T+1. (D.18)

Q̂2,n(t+)
Consider GenCo n ∈ N. Given m̂−n,t = (ê−n,t , p̂−n,t) to be the other GenCos’ strategies at time

t+, GenCo n’s best response at the spot market of time t+ with history ĥt+ is a solution of

max
ên,t ,p̂n,t

−Ce
n,t(ên,t)+ p̂n+1,t ên,t− p̂−0.5

n,t ζ
elas.
n,t

2
+βV̂n,t+1(ĥt+, p̂t , êt) (D.19)

s.t. 0≤ ên,t ≤ xn,t (D.20)
0≤ p̂n,t . (D.21)

Q̂2,n(t)
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GenCo n’s best response for expansion decision at time t, Given the other GenCo’s expansion
strategy to be m−n,t = ∆x̂−n,t , is

V̂n,t(ĥt) = max
∆x̂n,t
−Cx

n,t(∆x̂n,t ,wt−1)+βEwt

[
V̂n,t+

(
ĥt ,∆x̂t ,wt

)∣∣w1:t−1

]
(D.22)

0≤ ∆x̂n,t ≤ ∆xn,t , (D.23)

To prove strict concavity of the above stage optimization problems, we prove Lemma (4).
Proof of Lemma 4 We show that St := (xt−1,w1:t−1) (respectively St+ := (xt ,w1:t)) is an

information state for Problem (Socially Optimal - Longterm Uncertainty II) and then for the SPNE
strategies of the game induced by the mechanism. We proceed by induction.

Problem (Socially Optimal - Longterm Uncertainty II)
We proceed in three steps. We first show that the value function at time T +1, VT+1 is a function

of ST+1. Then we prove that if for t +1 ∈ T , Vt+1 is function of St+1 then Vt+ is also a function of
St+ . Finally, we show that if for t ∈ T , Vt+ is a function of St+ , then Vt is a function of St .

First note that by (Eq. D.13), at time T +1, VT+1 is a function of ST+1.
Next, assume Vt+1 is a function of St+1 at equilibrium, and therefore independent of en,t . Then,

Problem Q2(t+) is a function of St+ because in the optimization in Eqs. (D.14)-(D.15), Eq. (D.15)
is a function of xt+ , and Vt+1 is a function of St+ .

Finally, assume Vt+ is only a function of St+ . Then Problem Q2(t) is a function of St .
GenCos’ Best Response Problem
We proceed again in three steps. We first show that the value function at time T +1, V̂n,T+1 is a

function of ST+1. Then we prove that if for t +1 ∈ T , V̂n,t+1 is function of St+1 for all n ∈ N then
V̂n,t+ is also a function of St+ for all n ∈ N. Finally, we show that if for t ∈ T , V̂n,t+ is a function of
St+ for all n ∈ N, then V̂n,t is a function of St for all n ∈ N.

First note that by definition, at time T +1, V̂n,T+1 is a function of ST+1 (Eq. D.18).
Next, assume V̂n,t+1 is a function of St+1 for all n ∈ N. It is straightforward to see that as a result,

Problem Q̂2,n(t+) is a function of St+ .
Finally, assume V̂n,t+ is a function of St+ for all n ∈ N. Since Sn,t+ is determined by St and the

expansion at time t, ∆x̂n,t , Problem Q̂2,n(t) and its constraints can be written as a function of St . As
a result the strategies at time t are function of St

3.
Using the above lemma, we present the Lagrangian and KKT conditions.
Problem (Socially Optimal - Longterm Uncertainty II)
For social optimality, Problem (Socially Optimal - Longterm Uncertainty II), we define the

stage problems Q2(t) & Q2(t+) respectively.
Let

VT+1(ST+1) := η(wT ) ∑
n∈N

xn,T+1. (D.24)

VT+1(ST+1) is concave in xt .
Q2(t+)

3There is not an equilibrium selection problem for the uniqueness of the equilibrium.
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At time t+ optimal generations are solution to the following optimization problem.

Vt+(St+) = max
en,t ,n∈N

∑
n∈N

Ut(∑
n∈N

en,t ,wt)− ∑
n∈N

Ce
n,t(en,t ,wt)+βVt+1(St+) (D.25)

s.t. 0≤ en,t ≤ xn,t+∀n ∈ N (D.26)

Note that St+1 = St+ . Since Vt+1(St+) is constant with respect to en,t , the above optimization is
strictly concave with convex domain. The corresponding Lagrangian and KKT conditions are

Lt+(St+) =Ut(∑
n∈N

en,t ,wt)− ∑
n∈N

Ce
n,t(en,t ,wt)+βVt+1(St+)

+νn,ten,t +µn,t(xn,t+− en,t). (D.27)

and

∂Ut(∑n∈N en,t ,wt)

∂en,t

∣∣
e∗t
−

∂Ce
n,t(en,t ,wt)

∂en,t

∣∣
e∗t

+β
∂Vt+1(St+)

∂en,t

∣∣
e∗t
+ν

∗
n,t−µ

∗
n,t = 0 (D.28)

ν
∗
n,te
∗
n,t = 0 (D.29)

µ
∗
n,t(xn,t+− e∗n,t) = 0 (D.30)

ν
∗
n,t ≥ 0, µ

∗
n,t ≥ 0, (D.31)

respectively.
To prove Vt+(St+) is concave with respect to xt+ for every w1:t ∈W1:t , it is straightforward to

extend the same proof approach used for concavity of Vt+(St+) in Eq. (C.15) to Vt+(St+).
Q2(t)
The expansions at time t are solution to the following optimization problem.

Vt(St) = max
∆xn,t ,n∈N

−∑
n

Cx
n,t(∆xn,t ,wt−1)+βEwt

[
Vt+(xt +∆xt ,w1:t)|w1:t−1

]
(D.32)

s.t. 0≤ ∆xn,t ≤ ∆xn,t (D.33)

Note that (xt +∆xt ,w1:t) = St+ . Assuming that Vt+(xt +∆xt ,w1:t) is concave with respect to xt
(by induction), we prove Q3(t) is strictly concave optimization problem and furthermore, Vt(St) is
concave in xt . First, to prove concavity with respect to ∆xt . Define the function B(∆xt) = xt +∆xt ;
B(∆xt) is convex and non-decreasing and therefore, Vt+(B(∆xt)) is concave (See Rockafellar (2015),

Theorem 5.1). Since Ewt

[
Vt+(xt+ +∆xt ,w1:t)|w1:t−1

]
is a weighted sum of concave functions of

∆xt , it is concave in ∆xt . Considering this, it is straightforward to see that Eqs. (D.32)-(D.33) is
a concave optimization problem with convex domain. The corresponding Lagrangian and KKT
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conditions are

Lt(St) =−∑
n

Cx
n,t(∆xn,t ,wt−1)+βEwt

[
Vt+(xt +∆xt ,w1:t)|w1:t−1

]
+

∑
n∈N

(
αn,t∆xn,t +βn,t(∆xn,t−∆xn,t)

)
(D.34)

and

−
∂Cx

n,t(∆x∗n,t ,wt−1)

∆x∗n,t
+βEwt

[
V ∗t+(xt +∆x∗t ,w1:t)

∆x∗n,t
|w1:t−1

]
+α

∗
n,t−β

∗
n,t = 0 (D.35)

α
∗
n,t∆x∗n,t = 0 (D.36)

β
∗
n,t(∆x∗n,t−∆x∗n,t) = 0 (D.37)

α
∗
n,t ≥ 0, β

∗
n,t ≥ 0 (D.38)

To prove Vt(St) is concave in xt for a given w1:t−1 ∈W1:t−1, assume by induction that Vt+ is
concave and follow the same approach used for proof of concavity of Vt+(St+) in Eq. (C.23).

GenCos’ Best Response
For GenCo n, n ∈ N we define best response problems Q̂2,n(t) and Q̂2,n(t+) at time t and t+

respectively. With these information states, we proceed to specify problems Q̂2,n(t) and Q̂2,n(t+),
n∈N, t ∈ T . For each problem we also define its Lagrangian and the corresponding KKT conditions.

First consider

V̂T+1,n(ST+1) := η(wT )xn,T+1. (D.39)

Note that V̂T+1(ST+1) is concave in xT+1.
Q̂2,n(t+)
Consider GenCo n ∈ N. Given m̂−n,t = (ê−n,t , p̂−n,t) to be the other GenCos’ strategies at time

t+, GenCo n’s best response at the spot market of time t+ with history St+ is a solution of

V̂n,t+(St+) = max
ên,t ,p̂n,t

−Ce
n,t(ên,t)+ p̂n+1,t ên,t− p̂−0.5

n,t ζ
elas.
n,t

2
+βV̂n,t+1(St+1) (D.40)

s.t. 0≤ ên,t ≤ xn,t (D.41)
0≤ p̂n,t . (D.42)

Since St is constant with respect to ên,t , p̂n,t , it is also concave with respect to (ên,t , p̂n,t). There-
fore, V̂n,t is concave optimization with convex domain. The corresponding Lagrangian and KKT
conditions are

L̂n,t+(St+) =−Ce
n,t(ên,t)+ p̂n+1,t ên,t− p̂−0.5

n,t ζ
elas.
n,t

2
+βV̂t+1(St)+ ν̂n,t ên,t (D.43)

+ µ̂n,t(xn,t− ên,t)+ θ̂n,t p̂n,t , (D.44)
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and

−
∂Ce

n,t

∂ ên,t
|e∗n,t + p̂∗n+1,t−

∂ p̂∗−0.5
n,t ζ elas.

n,t
2

∂ ên,t
|(m̂−n,t ,ê∗n,t ,p̂∗n,t)

+β
∂V̂n,t+1(St+)

∂ ên,t
|(m̂−n,t ,ê∗n,t ,p̂∗n,t)+ ν̂

∗
n,t− µ̂

∗
n,t = 0 (D.45)

−
∂ p̂−0.5

n,t ζ elas.
n,t

2

∂ p̂n,t
|(m̂−n,t ,ê∗n,t ,p̂∗n,t)+β

∂V̂n,t+1(St+)

∂ p̂n,t
|(m̂−n,t ,ê∗n,t ,p̂∗n,t)+ θ̂

∗
n,t = 0, (D.46)

θ̂
∗
n,t p̂∗n,t = 0, (D.47)

µ̂
∗
n,t(xn,t− ê∗n,t) = 0, (D.48)

ν̂
∗
n,t ê
∗
n,t = 0, (D.49)

ν̂
∗
n,t ≥ 0, µ̂

∗
n,t ≥ 0, θ̂

∗
n,t ≥ 0, (D.50)

respectively.
To prove that for every given w1:t , V̂n,t+(St+) is concave with respect to xn,t+ , assume V̂n,t+1 is

concave in xt+1 for every w1:t ∈W1:t (by induction). Then, it is straightforward to extend the same
approach used for proof of concavity of V̂n,1+ in Eq. B.30 for V̂n,t+(St+).

Q̂2,n(t)
GenCo n’s best response for expansion decision at time t, Given the other GenCo’s expansion

strategy to be m̂−n,t = ∆x̂−n,t , is

V̂n,t(St) = max
∆x̂n,t
−Cx

n,t(∆x̂n,t ,wt−1)+βEwt

[
V̂n,t+

(
xt +∆x̂t ,w1:t

)∣∣w1:t−1

]
(D.51)

0≤ ∆x̂n,t ≤ ∆xn,t , (D.52)

Assume (by induction) that V̂n,t+(xt +∆x̂t ,w1:t) is concave in xt +∆x̂t . This means it is also
concave in ∆x̂ (See Rockafellar (2015), Theorem 5.1). We show that the above optimization is
concave optimization and furthermore, V̂n,t(St) is concave in xt for every w1:t ∈W1:t . First,

Ew1:t

[
Vn,t+(xt+ +∆xt ,wt)|w1:t−1

]
is a weighted sum of concave functions hence concave. Consider-

ing this, it is straightforward to see Vn,t(St) is a strictly concave optimization with convex domain.
The corresponding Lagrangian and KKT conditions are

L̂n,t(St) =−Cx
n,t(∆x̂n,t ,wt−1)+βEwt

[
V̂t+,n

(
xt +∆x̂t ,w1:t

)∣∣w1:t−1

]
(D.53)

+α̂n,t∆x̂n,t + β̂n,t(∆xn,t−∆x̂n,t), (D.54)
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and

−
∂Cx

n,t(∆x̂n,t ,wt−1)

∂∆x̂n,t
|(m̂−n,t ,ê∗n,t ,p̂∗n,t)

+βEwt

[
∂V̂n,t+

(
xt +∆x̂t ,w1:t

)
∂∆x̂n,t

|∆x̂∗t

∣∣∣∣w1:t−1

]
+ α̂

∗
n,t− β̂

∗
n,t = 0, (D.55)

α̂
∗
n,t∆x̂∗n,t = 0, (D.56)

β̂
∗
n,t(∆xn,t−∆x̂∗n,t) = 0, (D.57)

α̂
∗
n,t ≥ 0, β̂

∗
n,t ≥ 0. (D.58)

respectively.
To prove V̂n,t(St) is concave in xt . First assume (by induction) that V̂n,t+ is concave with respect

to xt +∆x̂t ; therefore, it is also concave with respect to xt (See Rockafellar (2015), Theorem 5.1).
Now considering two different xt and using the same approach used in the proof of concavity of
V1+(x1) in Eq. (B.10), we can show V̂n,t(St) is concave in xt .

D.5 Proof of the Results in Section D.3
Proof of Theorem 13 Due to Lemma 4, the SPNE strategies in the spot markets are myopic for
maximizing immediate revenue from the spot market. This is because the strategies in the spot
market at time t+ do not change the state Sτ for any τ > t+. As a result, each spot market can
be studied as an independent static market without considering the future continuation valuation.
Therefore, market clearance, budget balance and price efficiency of each spot market is independent
of the other markets, and can be established in a similar way to the properties proved for Problem
(Socially Optimal Dispatch - Elastic) in Lemma (1), Theorems (1) and (2).

Proof of Theorem 14 Assume σ̂∗n,t and γ̂∗n,t+ form a SPNE for the dynamic game induced by the
mechanism proposed in Section (D.2). By Lemma (4), these strategies are functions of St and St+

receptively which are subsets of ht and ht+ , the history in Problem (Socially Optimal - Longterm
Uncertainty II). Define ê∗n,t(St+) to be GenCo n’s production at time t+ due to strategy γ̂∗n,t(St+)
and ∆x̂∗n,t(St) to be GenCo n’s expansion at time t due to strategy σ̂∗n,t(St). Consider the following
strategies in Problem (Socially Optimal - Longterm Uncertainty II).

σ
∗
n,t(St) = ∆X̂∗n,t(St), (D.59)

γ
∗
n,t(St+) = ê∗n,t(St+), (D.60)

then using the results of Theorem (3), Eq. (D.55)-(D.58), Eqs. (D.59)-(D.60) and Eqs. (D.45)-
(D.50), the following parameters, defined for all t ∈ T and n ∈ N, will satisfy the KKT conditions
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of Q2(t), Eq. (D.28)-(D.31), and the KKT conditions of Q2(t+), Eq. (D.35)-(D.38),

ν
∗
n,t = ν̂

∗
n,t , (D.61)

µ
∗
n,t = µ̂

∗
n,t , (D.62)

α
∗
n,t = α̂

∗
n,t , (D.63)

β
∗
n,t = β̂

∗
n,t . (D.64)

This means the energy production and expansion corresponding to the SPNE of the game induced
by the mechanism are solutions of Problem (Socially Optimal - Longterm Uncertainty II).

Proof of Theorem 15 To prove that the mechanism is individually rational, we need to show
that starting from each time t or t+, t ∈ T , GenCo n’s expected future utility due to the SPNE
strategy of the game induced by the mechanism is greater than or equal to its non-continuation
utility (which is 0).

First consider the expansion epoch t. GenCo n’s expected utility at equilibrium starting from
time t is determined by the solution of Q̂2(t) as

V̂ ∗n,t = Ewt:T |w1:t−1

[
∑
τ≥t

β
τ

(
−Ce

n,τ(ê
∗
n,τ ,wτ)−Cx

n,τ(x̂
∗
n,τ ,wτ−1)+ p̂∗τ ê∗n,τ

)∣∣∣∣ht

]
. (D.65)

To show this is positive for all t ∈ T , consider the following surrogate optimization for GenCo n
where the prices p∗τ ,τ ≥ t are fixed and equal to those corresponding to the SPNE strategies.

max
x̂′n,τ ,ê′n,τ

Ewt:T |w1:t−1

[
∑
τ≥t

β
τ

(
−Ce

n,τ(ê
′
n,τ)−Cx

n,τ(x̂
′
n,τ ,wτ−1)+ p̂∗τ ê′n,τ

)]
s.t. 0≤ x̂′n,τ ≤ xn,τ

0≤ ê′n,τ ≤ x̂n,t−1 + ∑
τ ′∈{t,t+1,...,τ}

x̂n,τ ′ (D.66)

Call this problem Q̂sur
2 (t). Problem Q̂sur

2 (t) is a convex optimization satisfying the constraint
qualification conditions. Note that because of Theorems (13) and (14), GenCo n’s SPNE strategies,
σ̂∗n,t and γ̂∗n,t , are a solution of Q̂2

sur
(t), and V̂n,t is equal to maximum value of Q̂2

sur
(t). Furthermore,

note that (0,0) is a feasible solution of problem Q̂2
sur

(t) and the value of Q̂2
sur

(t) at (0,0) is equal
to zero. Consequently, V̂n,t is non-negative, therefore GenCo n will continue participating in the
mechanism at time t.

Next, consider the generation at time t+. The expected utility at time t+ is determined by

V̂ (n, t+) =−Ce
n,τ(ê

∗
n,τ)+ p̂∗τ ê∗n,τ

+Ewt+1:T |w1:t

[
∑

n∈N,τ≥t+1
β

τ

(
−Ce

n,τ(ê
∗
n,τ)−Cx

n,τ(x̂
∗
n,τ ,wτ−1)+ p̂∗τ ê∗n,τ

)]
. (D.67)

By Theorem (4), −Ce
n,τ(ê

∗
n,τ)+ p̂∗τ ê∗n,τ , which is GenCo n’s maximum utility in the spot market at
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t+, is non-negative. In addition, the expected utility from time t +1 on is

Ewt+1:T |w1:t

[
∑

n∈N,τ≥t+1
β

τ

(
−Ce

n,τ(ê
∗
n,τ)−Cx

n,τ(x̂
∗
n,τ ,wτ−1)+ p̂∗τ ê∗n,τ

)]
, (D.68)

and this term is non-negative by the first part of this proof. Therefore, V̂ (n, t+) is non-negative and
GenCo n will continue participating in the mechanism at time t+.

Proof of Theorem 16 Problem Q2 is strictly convex and therefore it has a unique solution. Due
to Theorem 14, at any SPNE of the game induced by the mechanism

ê∗n,t = e∗n,t (D.69)

∆x̂∗n,t = ∆x∗n,t (D.70)

and due to Theorem 1

p̂∗n,t =U ′t (∑
n∈N

e∗n,t). (D.71)

These equations uniquely determine the SPNE of the game induced by the mechanism.
Proof of Theorem 17 Theorem 14 shows that the NE of the game induced by the mechanism

results in the same expansion and generation as the optimal solution of the corresponding social
optimality problem, Problem (Socially Optimal - Longterm Uncertainty II). Therefore, to prove
Theorem (17), we show that for Problem (Socially Optimal - Longterm Uncertainty II) and its
optimal strategy, if ∆x∗n,t(ht) = σ∗n,t(ht)> 0 then there exists at least one history hτ ∈ Hτ , τ ≥ t
with P(ht:τ |ht)> 0 such that GenCo n is saturated, i.e.

γ
∗
n,τ(hτ) = e∗n,τ(ht) = x∗n,τ . (D.72)

We prove this by contradiction. Assume γ∗n,τ(hτ)= e∗n,τ(hτ)< x∗n,τ , ∀τ,hτ ∈Hτ such that P(ht:τ |ht)>
0. We construct an alternative feasible strategy by adjusting the optimal strategy that can improve
the social welfare by reducing the expansion strategy only at history ht , ∆x∗n,t(ht) = σ∗n,t(ht), by
small enough ε such that the constraints in Problem (Socially Optimal - Longterm Uncertainty II)
are not violated (this is possible since by assumption the capacity is never saturated in the histories
with positive probability). This way we reduce the expansion cost at time t but all the future costs for
production and expansion and all the payments remain the same, thus the social welfare increases.
This contradicts the fact that (γ∗n,t ,σ

∗
n,t , n ∈ N, t ∈ T ) is an optimal solution of Problem (Socially

Optimal - Longterm Uncertainty II).
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