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ABSTRACT 

How nature and nurture interact to sculpt the nervous system, which underlies animal 

behaviors, has fascinated both scientists and the general public for generations.  At the 

level of neural circuit assembly, the answer lies in the interplay between genetic 

programs and neural activity; the development of a functional nervous system is not just 

hard-wired by the genome, but depends on sensory experiences and neuronal 

activities.  However, the mechanisms underlying the “activity-dependent development” 

of the nervous system are poorly understood, mostly due to the lack of a model system 

that is amenable to efficient gene manipulations and circuit analyses.  My dissertation 

research aims to develop a Drosophila system that is suitable for identifying the 

mechanisms behind activity-dependent development of neural circuits from the 

molecular to the circuit and behavioral levels.  I have largely achieved this through two 

projects. 

First, I discovered that the functional development of Drosophila somatosensory 

circuits depends on the sensory inputs during animal development.  Our behavior 

analysis demonstrated that larval escaping behavior in response to noxious stimulation 

is suppressed if a larva experiences enhanced levels of noxious stimulation during 

development, demonstrating sensory input-induced plasticity.  Using imaging-based 

physiological analyses  (calcium and cAMP imaging techniques and optogenetic 

stimulation of neurons), we found that enhanced noxious stimulation during 



 

 x 

development reduces the synaptic transmission from nociceptors (i.e., sensory neurons 

detecting noxious stimuli) to the second-order neurons (SONs) in the pathway.  Our 

study further revealed that this physiological change accounts for the suppressed 

behavioral outputs.  Importantly, we showed that the enhanced noxious experience has 

no effect on other sensory modalities such as the mechanosensory pathway and 

elucidated the mechanism that underlies this sensory-pathway-specificity. 

Second, my work facilitated the discovery that the activity levels of nociceptors 

regulate their axonal projections in the central nervous system (CNS).  Through 

advanced techniques that combine single-cell labeling and computational analysis, we 

found that the spatial arrangement of nociceptor axon terminals in the CNS reflects the 

locations of territories occupied by nociceptor dendrites on the body wall, forming a 

topographic map.  The formation of this map depends on the levels of their activities, 

and manipulation of neuronal activity at single-cell level disrupts the map formation.  

This activity-dependent topography in Drosophila is likely established through the 

interactions of nociceptor presynaptic terminals with their postsynaptic SONs, similar to 

topography in vertebrates.  This work is the first report of an activity-dependent 

topographic map in Drosophila, and has allowed for mechanistic analyses of the role of 

neuronal activity in neural circuit wiring.  My dissertation research contributes to our 

understanding of how neural activity interacts with genetic programs to shape the 

nervous system.



 

 1 

 

 

 

CHAPTER 1 

Introduction 

 

A part of this chapter includes excerpts from a review article in Journal of 

Comprehensive Physiology A, Fine-scale topography in sensory systems: insights from 

Drosophila and vertebrates, written by Takuya Kaneko and Bing Ye in 2016. 

 

 

Introduction to neuronal activity-dependent development 

 

Animals develop through the interplay between nature and nurture – genetic inheritance 

and the environment.  Developmental processes such as embryogenesis and 

organogenesis are mostly determined by genes, so that the phenotype - the observable 

properties of animals - is largely determined by the genotype - genetic information.  In 

this way, animals within a species, who share most of their genes, develop common 

traits.  Yet, the contribution of environmental factors in animal development cannot be 

ignored.  In fact, monozygotic twins who share the exact same genotype often exhibit 

distinct phenotypic traits.  Additionally, some animals exhibit a capacity to develop 
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different anatomical structures according to their individual environments.  For instance, 

larvae of Hokkaido salamander, Hynobius retardatus, develop a larger head, which is 

beneficial as a predator, when the environment contains a large amount of their preys 

such as tadpoles (Matsunami et al., 2015).  On the other hand, salamander larvae 

exhibit larger external gills and tail fin for protection when presented with their predators, 

dragonfly nymphs.  Thus, multiple phenotypes can arise from a single genotype.  The 

capacity to develop variety of phenotypes from a single genotype provides variation 

within a species and increases the chance of animals to survive in the given 

environment.  How environmental factors instruct animal development has long been a 

fundamental, yet unanswered, question in biology. 

 One of the developmental processes most susceptible to the environment is the 

wiring of neurons.  In the nervous system, environmental factors are directly detected as 

sensory stimuli, which appear as neuronal activity of sensory neurons.  The impact of 

sensory inputs on a developing brain was first demonstrated by a classic study in which 

visual inputs were deprived from developing cats (Hubel and Wiesel, 1970).  Hubel and 

Wiesel sutured one eyelid of new born kittens, and opened the eye several months 

later.  They identified that the sutured eye had defective neuronal circuits and lacked 

visual functions, whereas the spared eye was functional.  This classic study illustrates 

that genetic programs alone are insufficient for shaping a functional brain, and 

experiencing sensory inputs during development is a necessary step. 

The levels of sensory inputs during development determine the functional levels 

of a mature neural circuit.  For example, more neuronal connections develop in the 

visual system of rats reared in a group with wooden and plastic objects, or “toys”, that 



 

 3 

are changed and rearranged daily, compared with rats reared in a pair without any toy 

(Turner and Greenough, 1985; Volkmar and Greenough, 1972).  Rats reared in isolation 

develop a less complex visual system with fewer neuronal connections than the above 

two groups.  Thus, the nervous system possesses a capacity to modify developing 

neural circuits based on animals’ sensory experience during development.  Through this 

process, individual animals within the same species develop functionally different 

neuronal circuits, and adapt to their own environments. 

How does neuronal activity during development shape the nervous system?  This 

remains a mystery, mostly due to the lack of a model system that is amenable to 

efficient gene manipulations and circuit analyses.  One of the most suitable model 

systems for such analyses is the fruit fly, Drosophila melanogaster; therefore, in my 

dissertation research, I aim to develop a Drosophila system for studying activity-

dependent development of neural circuits.  My dissertation research focuses on two 

major developmental processes that are dependent on neuronal activity: sensory-input 

induced plasticity and activity-dependent topographic projections. 

 

Sensory-input-induced plasticity 

The environment presents animals with a wide variety of sensory inputs such as visual, 

auditory, tactile, and noxious stimuli.  Upon detection of individual types of stimuli, the 

nervous system elicits unique motor outputs in animals.  Behavioral outputs in response 

to the same type of sensory inputs are typically stereotyped.  When presented with 

food, animals tend to approach the food; when presented with predators, animals try to 
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escape.  Yet, at the same time, animals possess a capacity to modify their responses in 

order to adapt to their individual environments. 

In particular, animals from distinct environments often develop different sensitivity 

to sensory stimuli.  For example, the worm nematode, Caenorhabditis elegans, exhibits 

larger responses to tactile inputs when raised in a group, compared to those raised in 

isolation (Rose et al., 2005).  The sensitization to tactile inputs seems to arise from 

physical contacts during development, which prepares them for future contacts.  In 

another situation, sensory inputs during development may desensitize animals.  For 

instance, animals raised in a noisy environment may not react to a loud noise that 

otherwise startles animals. 

This type of animal adaptation is attributable to the plasticity of neural circuits; the 

nervous system is plastic and capable of modulating its circuitry based on animals’ 

experience of sensory information from the environment.  This form of plasticity, or 

sensory-input-induced plasticity, is observed in both developing and mature animals.  

Studies of changes in both developing and mature neuronal circuits have provided 

profound insights into the molecular mechanism behind the sensory-input-induced 

plasticity. 

 

Presynaptic mechanism underlying sensory-input-induced plasticity: habituation and 

sensitization of the Aplysia gill withdrawal reflex 

The cellular and molecular bases of neural plasticity have mainly been explored in 

studies of the marine mollusk, Aplysia californica (Kandel, 2001; Kandel, 2013).  This 

invertebrate animal has been an excellent system for neurobiology since 1960s 
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because of several advantages (Kandel et al., 1967).  First, Aplysia has only 2000 

neurons; as a comparison, mouse has about 108 neurons.  Second, neurons of this 

species are typically large and identifiable, which allowed electrophysiological 

recordings that would not have been possible in other systems in early studies.  Third, 

Aplysia exhibits stereotyped and quantifiable behavioral outputs in response to sensory 

inputs.  The best studied behavioral response is the gill withdrawal reflex in which the 

mollusk withdraws the gill into the mantle shelf for protection upon a tactile stimulus to 

the siphon.  Finally, and importantly, this behavioral output exhibits sensory-input-

induced plasticity.  After the siphon is touched several times, Aplysia exhibits smaller 

levels of responses against siphon stimulation, which is referred to as “habituation” 

(Carew et al., 1981; Castellucci et al., 1970).  By contrast, the gill withdrawal reflex is 

enhanced when a noxious electric shock is applied to the tail prior to a tactile input to 

the siphon, a change called “sensitization” (Kandel, 2001). 

 Habituation and sensitization of the gill withdrawal reflex can be long-lasting in 

response to enhanced levels of sensory experience.  When a single session of 10 

tactile inputs is applied to the siphon, Aplysia exhibits suppressed, or habituated, 

withdrawal reflexes for a few minutes (Carew et al., 1981; Castellucci et al., 1970).  On 

the other hand, when Aplysia experiences the same session four times with intervals of 

several hours, the mollusk shows a long-term habituation that lasts for a few weeks.  A 

long-lasting effect is similarly observed when Aplysia experiences electrical inputs to the 

tail several times (Kandel, 2001).  Whereas a single tail shock produces a sensitized 

response for a few hours, the effect of four shocks lasts over 24 hours.  Moreover, four 

sessions of four electric shocks result in long-term sensitization that lasts over a week. 
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 The ease of electrophysiological recording in Aplysia has facilitated identification 

of the neural circuits responsible for the gill withdrawal (Kandel, 2001).  Tactile inputs to 

the siphon activate a group of mechanosensory neurons that innervate the siphon.  

These sensory neurons directly form synapses on motor neurons that control the gill 

muscle (Figure 1.1a).  Upon siphon stimulation, the presynaptic sensory neurons 

release glutamate, a neurotransmitter, to activate the postsynaptic motor neurons, 

leading to the gill withdrawal.  The strength of transmission in this synapse changes in 

response to sensory experience, and this circuit change accounts for behavioral 

modification. 

For instance, one session of continuous siphon stimulation reduces the 

transmission from the sensory neurons to the motor neurons, which causes short-term 

habituation (Carew et al., 1981; Castellucci et al., 1970).  The suppressed transmission 

is attributable to decreases in the amount of glutamate released from the presynaptic 

terminals of the sensory neurons.  The same level of siphon stimulation does not affect 

the postsynaptic motor neurons; the sensitivity of glutamate receptors on the 

postsynaptic terminals is unaltered.  In addition to the reduction in the levels of 

glutamate release, enhanced levels of siphon stimulation decreases the number of 

synaptic contacts between pre and postsynaptic neurons when establishing long-term 

habituation.  This structural change is mainly caused through pruning of the presynaptic 

terminals.  Thus, both short-term and long-term habituation in Aplysia is established by 

a reduction in the strength of synaptic transmission, or synaptic efficacy, and primarily 

through presynaptic modification. 
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Similar to habituation, sensitization of the Aplysia gill withdrawal reflex is caused 

by modification of the same sensorimotor synapse (Kandel, 2001).  An electronic 

noxious input from the tail facilitates glutamate release from the presynaptic terminals of 

the siphon mechanosensory neurons.  How is synaptic efficacy of a sensory circuit 

modulated by an input for another sensory circuit?  In Aplysia, this is achieved by a 

group of modulatory interneurons that secrete serotonin, a neuromodulator conserved 

across species.  The serotonergic neurons receive the tail-shock signals from sensory 

neurons innervating the tail, and in turn send the signals to the siphon sensory neurons 

by secreting serotonin onto their axon terminals (Figure 1.1a).  This circuit motif allows a 

noxious input to the tail to impact glutamate release from the siphon mechanosensory 

neurons.  In other words, serotonergic neurons serve as a bridge between two sensory 

neurons responsible for different sensory modalities (i.e. tactile and noxious). 

Serotonin facilitates neurotransmitter release by modulating the resting 

membrane potential of the presynaptic terminals of the siphon sensory neurons through 

the following steps (Kandel, 2001).  First, serotonin secreted from serotonergic neurons 

binds to G-protein coupled receptors on the presynaptic terminals.  Then, this binding 

activates adenylate cyclase and, as a result, increases the intracellular concentration of 

cAMP, a second messenger that activates proteinase kinase A (PKA).  Finally, activated 

PKA closes a particular type of K+ channels on the axon terminals, raising the 

membrane potential.  When the resting membrane potential is high, action potentials 

induced by sensory inputs easily lead to neurotransmitter release through the opening 

of voltage-gated Ca2+ channel at the presynaptic terminals.  This mechanism allows 
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tactile stimulation to the siphon preceded by a noxious shock to the tail to elicit an 

enhanced gill withdrawal response, establishing short-term sensitization. 

Long-term sensitization is achieved by a similar mechanism, but involves a 

protein synthesis (Kandel, 2001).  Multiple tail shocks enhance serotonin secretion onto 

the presynaptic terminals of the siphon sensory neurons.  Whereas a transient serotonin 

increase activates PKA locally at the presynaptic terminals, continuous serotonin 

elevation results in translocation of PKA into the nucleus.  The nuclear translocation 

allows PKA to activate nuclear substrates that include CREB, a transcriptional factor.  

Active CREB binds to CRE (cAMP response element) sequence and initiates 

transcription of target genes.  This process ultimately results in the growth of the 

presynaptic terminals, which increases their synaptic contacts with postsynaptic motor 

neurons and results in long-term sensitization (Bailey and Chen, 1989).  Thus, both 

short-term and long-term sensitization is established primarily through serotonin-

mediated presynaptic modification. 

In summary, sensory-input-induced plasticity in the Aplysia withdrawal reflex is 

based on synaptic plasticity - the ability of synapses to change their strength.  Studies of 

Aplysia have identified presynaptic mechanisms underlying synaptic plasticity.  

However, presynaptic regulation is not the only way for manipulating synaptic efficacy.  

The next section discusses postsynaptic modification that enables long-lasting changes 

in neural connections by reviewing the hippocampus in the mammalian brain. 
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Postsynaptic mechanism: LTP and LTD in the mammalian hippocampus 

For the past several decades, the hippocampus has received considerable attraction 

ever since its major contribution for memory acquisition was identified.  Of particular 

interest is the question of how this brain region stores and updates our memory 

according to our experience.  Accumulating evidence suggests that our memory is 

based on the ability of hippocampal neurons to change the strength of neural 

connections in response to experience.  In fact, the hippocampus changes synaptic 

strength when presynaptic neurons are directly stimulated in a certain pattern by an 

inserted electrode.  These studies mainly apply electrophysiological neural stimulation, 

rather than natural sensory inputs, yet principles identified in the hippocampus generally 

underlie sensory-input-induced plasticity in the mammalian brain as briefly discussed 

later in this section. 

One of the best studied synapses in the hippocampus is that formed by 

presynaptic CA3 neurons and postsynaptic CA1 neurons (CA1 and CA3 indicate 

particular regions within the hippocampus) (Bliss and Collingridge, 1993; Luo, 2015; 

Malenka and Bear, 2004).  When the presynaptic CA3 neurons receive a brief high-

frequency trains of stimuli, the strength of their synapses with postsynaptic CA1 

neurons increases (Figure 1.1b).  This effect is long-lasting and called long-term 

potentiation (LTP).  LTP lasts for tens of minutes to hours when induced in slices of 

hippocampus.  This effect continues up to 24 hours if four or more trains of high-

frequency stimulation is given to the presynaptic neurons.  In addition to an increase in 

synaptic efficacy, synapses in the hippocampus are capable of decreasing their 

strength, an effect termed long-term depression (LTD).  LTD in the CA3-CA1 synapse 
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can be induced by a long period of low-frequency stimulation to presynaptic CA3 

neurons.  Thus, as seen in Aplysia, the mammalian hippocampus exhibits synaptic 

plasticity; hippocampal neurons change synaptic efficacy bidirectionally in response to 

particular types of stimulation. 

Both LTP and LTD are established primarily through postsynaptic regulation in 

the CA3-CA1 synapse.  The key molecules for the two events are NMDA receptors on 

the postsynaptic terminals, whose activation triggers cascades for postsynaptic 

modification (Bliss and Collingridge, 1993; Huganir and Nicoll, 2013).  NMDA receptors 

are ion channels and require glutamate binding to open the pore of the channels.  But, 

glutamate release from presynaptic terminals is insufficient to open and activate the 

receptor-channel.  This is because the pore of NMDA receptors is blocked by 

extracellular Mg2+, which can be removed by depolarization of the postsynaptic 

terminals.  Therefore, NMDA receptors become active only when the following two 

events occur simultaneously: 1) activation of presynaptic neurons to release glutamate, 

and 2) activation of postsynaptic neurons to depolarize the membrane potential.  That 

is, NMDA receptors serve as detectors of co-activity of pre- and postsynaptic neurons. 

One brief train of high-frequency stimulation to CA3 neurons for LTP expression 

successfully activates NMDA receptors on CA1 neurons through the following steps 

(Bliss and Collingridge, 1993).  First, action potentials induced by stimulation early in the 

train induce glutamate release from the CA3 presynaptic terminals, which activates 

another type of glutamate receptor, AMPA ion channels, on the CA1 postsynaptic 

surface.  Second, activated AMPA channels depolarize the postsynaptic terminals and 
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remove Mg2+ from NMDA receptors.  Finally, subsequent glutamate release induced by 

presynaptic stimulation later in the train activates and opens NMDA receptors. 

How do activated NMDA receptors then express LTP?  In the CA3-CA1 synapse, 

this is established through NMDA-mediated increase in the number of AMPA receptors 

on the postsynaptic surface (Huganir and Nicoll, 2013).  When high-frequency 

stimulation activates NMDA receptors, the intracellular levels of Ca2+ dramatically 

increase in the postsynaptic neurons.  This is due to a high conductance of NMDA 

receptors for Ca2+.  Elevated Ca2+ in turn triggers multiple signaling pathways that 

include activation of calmodulin-dependent protein kinase II (CaMKII) and protein kinase 

C (PKC).  Activation of these signaling molecules leads to phosphorylation of one of the 

subunit of AMPA receptors, GluA1.  This phosphorylation, then, leads to exocytosis of 

intracellular vesicles that contain AMPA receptors, inserting more glutamate receptors 

on the postsynaptic membrane.  The more glutamate receptors postsynaptic neurons 

possess, the more sensitive to glutamate they become, contributing to LTP expression. 

LTD relies on a similar mechanism to express the opposite outcome from LTP 

(Malenka and Bear, 2004).  Compared with high-frequency stimulation for LTP, long 

low-frequency stimulation for LTD results in lower levels of NMDA activation, leading to 

a smaller Ca2+ increase in the postsynaptic terminals.  Low levels of Ca2+ increase is 

insufficient to activate CaMKII pathway, but activates another pathway mediated by the 

calcium-dependent phosphatase, calcineurin.  One function of activated calcineurin is to 

dephosphorylate GluA1, which facilitates the endocytosis of AMPA receptors from the 

postsynaptic surface.  Through this process, postsynaptic neurons become less 

sensitive to signals from presynaptic neurons, expressing LTD.  
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As is the case in Aplysia, expression of longer LTP in response to repeated trains 

of high-frequency stimulation involves an increase in the number of synaptic contacts 

(Engert and Bonhoeffer, 1999; Luscher and Malenka, 2012).  This additional phase of 

LTP, termed late LTP, is initiated by a split of existing postsynaptic terminals.  Then, the 

growth of the postsynaptic terminals likely induces duplication of the presynaptic 

terminals.  This process ultimately increases the number of synaptic contacts between 

the same two neurons, drastically enhancing synaptic efficacy.  Similar to the earlier 

phase of LTP, or early LTP, this additional step for late LTP requires NMDA receptors, 

emphasizing the major contribution of the postsynaptic side.  Despite this similarity, late 

LTP depends on gene transcription, whereas early LTP does not.  Prolonged Ca2+ 

elevation induced by NMDA receptors is possibly the key step to initiate gene 

transcription for late LTP. 

In summary, hippocampal neurons are capable of producing long-lasting 

changes on synaptic efficacy in response to a particular pattern of stimulation.  These 

changes are primarily based on postsynaptic mechanism.  This type of synaptic 

modification is not limited to the hippocampus.  Indeed, many other regions of the 

mammalian brain similarly express LTP and LTD in response to electrical stimulation.  

Yet, how does this kind of modification happen inside the brain of living animals in 

response to sensory experience, which may not necessarily produce certain patterns of 

stimulation?  It is believed that, in reality, interconnected neurons create specific 

patterns of action potentials to induce LTP or LTD according to experience. 

Evidence suggesting that LTP and LTD indeed occur in response to natural 

sensory inputs comes from studies on other areas of the mammalian brain, which 
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include the visual cortex and the somatosensory cortex (Foeller and Feldman, 2004; 

Kirkwood et al., 1996).  An example is a region of the primary somatosensory cortex 

that is responsible for receiving signals of sensory inputs from whiskers.  When a subset 

of whiskers are trimmed to deprive sensory inputs, the strength of synapses 

downstream of the trimmed whiskers decreases (Allen et al., 2003).  This decrease 

possibly represents LTD expression because of the following observation: whisker 

deprivation provides presynaptic neurons of the synapses with a particular pattern of 

action potentials, which is, when given by electrode stimulation, indeed capable of 

inducing LTD.  Moreover, another experiment has demonstrated that sensory inputs 

through the remaining whiskers increase synaptic efficacy downstream of these intact 

whiskers (Takahashi et al., 2003).  This change is likely caused by LTP expression 

because of the two characteristics.  First, the increase in synaptic efficacy is dependent 

on the function of AMPA receptors.  Second, GFP-fused AMPA receptors are in fact 

inserted in the postsynaptic terminals in vivo as synaptic efficacy increases.  Taken 

together, these lines of evidence support that mechanisms underlying LTP and LTD 

discussed in this section generally underlie synaptic plasticity induced by natural 

sensory inputs. 

 

As discussed so far, studies of mature neuronal circuits have provided important 

insights into presynaptic and postsynaptic mechanisms that create long-lasting changes 

in synaptic efficacy.  The interplay of these two mechanisms establishes sensory-input-

induced plasticity across species.  Yet, how the nervous system induces these stable 

changes in a sensory-pathway-specific manner remains an open question.  The 
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following sections first review recent studies on this process, and then discuss possible 

mechanisms by coming back to the Aplysia and hippocampus systems.  

 

Sensory-pathway-specificity of neural plasticity 

Animals are capable of modifying their responses to one particular type of sensory 

stimuli, without disrupting those to other sensory stimuli.  A noisy environment, for 

instance, may desensitize animals’ responses to sound, but not to touch or light.  This 

form of specificity, or sensory-pathway-specificity, can be straightforward if individual 

sensory circuits are distinctly separated from other pathways.  However, the nervous 

system is not that simple.  In fact, whereas distinct types of sensory stimuli are usually 

detected by different groups of sensory neurons, these different sensory neurons often 

share common downstream neuronal circuits.  This means that neurons within shared 

circuits receive signals of multiple sensory modalities.  One possible function of these 

multimodal neurons is to integrate multiple sensory inputs in order to elicit behavioral 

outputs that are most appropriate for individual situations.  Despite this advantage, 

highly interconnected sensory pathways raise the following question: how does the 

nervous system modulate single sensory circuits without disrupting other sensory 

modalities that share the same circuits?  This is a fundamental question in neurobiology 

that remains to be addressed. 

Evidence from recent studies of developing nervous systems suggests that 

sensory-pathway-specificity occurs in multimodal neurons at the synaptic level.  For 

example, neurons in the optic tectum of the frog, Xenopus laevis, respond to two 

different sensory stimuli: visual and mechanosensory inputs (Deeg and Aizenman, 
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2011).  In this system, visual inputs are transmitted to the optic tectum through the optic 

nerve, while mechanosensory signals are derived from neurons in the hindbrain.  These 

two types of neurons of different origins converge on the same postsynaptic neurons in 

the optic tectum by forming synapses on different dendritic branches of these shared 

postsynaptic neurons (Figure 1.2a).  In spite of this signal convergence, the two 

different types of synapses, visual synapses and mechanosensory synapses, 

individually change their strength, or synaptic efficacy, in response to sensory inputs. 

When Xenopus tadpoles experience enhanced levels of mechanosensory 

stimulation by a continuous vibration for 48 hours, the efficacy of mechanosensory 

synapses decreases (Deeg and Aizenman, 2011)(Figure 1.2a).  This same condition 

has no effect on visual synapses formed by the same postsynaptic neurons in the 

tectum.  This observation indicates that elevated mechanosenory inputs specifically 

modulate the efficacy for mechanosesory transduction without affecting responses of 

the optic tectum to visual inputs.  Similarly, when Xenopus tadpoles are placed in 

darkness to deprive visual inputs for 48 hours, the efficacy of visual synapses increases 

without changing that of mechanosensory synapses of the same postsynaptic neurons.  

One hypothesis is that this pathway-specific change is caused by modification of 

individual presynaptic neurons.  However, visual deprivation has little, if any, effect on 

neurotransmitter release probability of the presynaptic optic nerve.  This observation 

supports the other possibility that postsynaptic multimodal neurons in the optic tectum 

are capable of modulating the efficacy of one type of synapses without disrupting the 

functions of the others, exhibiting pathway-specificity at the synaptic level. 
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Sensory-pathway-specificity is similarly observed in the worm, C. elegans.  As 

mentioned earlier, C. elegans worms raised in groups exhibit larger responses to tactile 

inputs after development is complete, compared to those raised in isolation (Rose et al., 

2005).  This increase in sensitivity is likely caused by enhanced levels of 

mechanosensory inputs during development through physical contacts in groups.  

Indeed, additional mechanosensory stimuli to isolated worms sufficiently enhance their 

responses to tactile stimuli.  Motor outputs induced by tactile inputs is similarly observed 

when worms encounter a heat probe; essentially worms swim backward away from 

stimuli.  Despite this similarity, worms from the two different groups (i.e. isolation vs. 

groups) exhibit comparable levels of responses to a heated probe.  That is, the effect of 

mechanosensory stimuli during development is specific to mechanosensory pathways. 

What circuit modification underlies the change in behavior?  In C. elegans, tactile 

and heat stimuli are detected by different sensory neurons, yet they converge on shared 

postsynaptic interneurons for common motor outputs.  Three lines of evidence suggest 

that mechanosensory synapses of the shared interneurons become more effective as 

worms experience mechanosensory inputs during development (Rose et al., 2005).  

First, in colony-raised worms, the presynaptic terminals of mechanosensory neurons 

contain higher levels of GFP-tagged synaptobrevin, a protein that regulates 

neurotransmitter release.  Second, colony-raised worms express more GFP-tagged 

glutamate receptors in the postsynaptic interneurons.  Third, a brief mechanosensory 

stimulation on isolate-raised worms during development sufficiently increases the levels 

of glutamate receptors in the postsynaptic neurons.  Thus, sensory-pathway-specificity 
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in behavioral modification in worms is likely based on synapse-specific regulation in 

multimodal interneurons, where multiple sensory modalities first converge (Figure 1.2b). 

The two examples above highlight the contribution of synapse-specific 

modulation for establishing sensory-pathway-specificity.  Although the mechanism 

behind synapse-specific plasticity is largely unknown, profound insights have been 

gained, again, from the Aplysia and hippocampal systems. 

 

Presynaptic mechanism underlying synapse-specific plasticity 

In Aplysia, serotonin-mediated sensitization of synapses occurs in a synapse specific 

manner.  This insight is provided from a culture system that contains an isolated Aplysia 

sensory neuron (neuron A1) and two motor neurons (neurons B1 and B2), where A 

sensory neuron has a bifurcated axon that forms separate synaptic contacts with motor 

neurons B1 and B2 (Kandel, 2001; Kandel, 2013).  When one pulse of serotonin was 

applied locally onto the synapse formed between neuron A1 and neuron B1, the efficacy 

of this synapse increased for a short period of time, indicating the expression of short-

term sensitization.  In another set of experiments, five pulses of serotonin were locally 

given to the A1-B1 synapses, which enhanced synaptic efficacy for as long as 24 hours 

with increased synaptic contacts between neurons A1 and B1, an indication of long-

term sensitization.  In each situation, the change in synaptic efficacy was synapse-

specific, and the other synapse, A1-B2 synapse, exhibited no change in its efficacy 

(Figure 1.2c). 

 How does one synapse change its efficacy in response to serotonin without 

affecting other synapses of the same presynaptic neuron?  The expression of short-
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term sensitization seems straightforward because this process is mediated by 

serotonin-induced local PKA activation, as discussed earlier, which has no influence on 

other parts of the presynaptic neuron.  In the case of the expression of long-term 

sensitization, on the other hand, the mechanism is more complicated.  In response to 

continuous serotonin elevation, activated PKA translocate to the nucleus and initiate 

gene transcription for subsequent structural changes.  Therefore, synapse-specific 

regulation requires a mechanism that allows new gene products to selectively function 

only at the serotonin-stimulated synapse. 

 A clue for understanding the mechanism has been gained from a unique property 

of cultured Aplysia neurons (Kandel, 2013; Martin, 2002).  When a single pulse of 

serotonin, which usually induces only short-term sensitization, was given to the A1-B2 

synapses in combination with five pulses of serotonin on the A1-B1 synapses, both the 

A1-B1 and A1-B2 synapses exhibited long-term sensitization with increased synaptic 

contacts (Figure 1.2c).  This remarkable observation indicates that a single pulse of 

serotonin, although insufficient to induce gene expression, is actually sufficient to allow 

the A1-B2 synapse to capture gene products generated by active PKA from the A1-B1 

synapse.  This serotonin-mediated process - marking a synapse for capturing new gene 

products - is called synaptic tagging.  Similar to other serotonin-mediated steps, 

synaptic tagging depends on the activity of PKA.  When a PKA inhibitor is applied 

locally at a synapse, a single pulse of serotonin prevents this synapse from using gene 

products derived from multiple serotonin pulses at another synapse.  Thus, PKA-

mediated short-term sensitization seems to be a prerequisite for synaptic tagging and 

subsequent long-term sensitization.  Tagging a particular synapse by the serotonin-PKA 
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pathway underlies specific modulation of the particular synapse with other synapses of 

the same presynaptic neuron unaltered; however, detailed molecular mechanisms 

remain unexplored. 

 

Postsynaptic mechanism underlying synapse-specific plasticity 

Synaptic specificity is similarly a critical property of LTP expression in the hippocampus 

(Bliss and Collingridge, 1993; Luo, 2015).  When high-frequency stimulation is given to 

one CA3 neuron (neuron A1), the efficacy of its synapse with a postsynaptic CA1 

neuron (neuron B1) increases by expressing LTP.  Yet, stimulation to neuron A1 does 

not affect the synapse of neuron B1 formed by another CA3 presynaptic neuron (neuron 

A2) (Figure 1.2d).  This synapse-specific change is largely dependent on the function of 

NMDA receptors on the postsynaptic surface.  Activation of NMDA-type glutamate 

receptors, which is necessary for LTP expression, requires neural activity of both 

presynaptic and postsynaptic neurons.  Given this unique property, NMDA receptors are 

active only at the A1-B1 synapse, but not at the A2-B1 synapse, which lacks neural 

activity of the presynaptic side. Thus, NMDA receptors allow LTP expression only at 

synapses formed by co-active neurons.  This function of NMDA receptors reflects a 

long-established hypothesis in neuroscience stated by Hebb (Hebb, 1949): coactivity of 

pre and postsynaptic neurons strengthens their synaptic connections.  Therefore, 

NMDA receptors are the molecular nature underlying Hebb’s postulate, a key for 

establishing synapse-specific regulation. 

 Synaptic specificity in the hippocampus is maintained even during the late phase 

of LTP, which involves gene expression.  How do gene products generated in 
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postsynaptic neuron B1 specifically modulate the “stimulated” A1-B1 synapse without 

altering the “unstimulated” A2-B1 synapse?  As in Aplysia, the specificity seems to 

attributable to synaptic tagging in the hippocampus.  Indeed, the presence of a tag at a 

stimulated synapse is supported by multiple lines of evidence (Frey and Morris, 1997); 

however, the molecular property of the synaptic tag is largely a mystery. 

 The Aplysia and hippocampus systems have laid a basis for understanding the 

presynaptic and postsynaptic mechanisms behind synapse-specific plasticity.  Yet, at 

the same time, these studies have left behind additional mysteries in neurobiology.  Is 

serotonin-mediated synaptic tagging a general strategy conserved across species?  

How is synaptic specificity established in postsynaptic neurons that lack NMDA 

glutamate receptors – e.g. in an insect brain where the primary neurotransmitter is 

acetylcholine, rather than glutamate?  An ideal system for elucidating further 

mechanisms is the fruit fly, Drosophila melanogaster.  However, in this powerful model 

organism, pathway-specific plasticity has not been well documented, which is the 

motivation for my dissertation research described in Chapter 2. 

 

This chapter has so far discussed one major role of neural activity in a 

developing nervous system.  Sensory inputs during development, which induce 

neuronal activity in sensory neurons, largely contribute for shaping the final pattern and 

strength of synaptic connections.  However, neuronal activity is not limited to that 

evoked by sensory experience.  In fact, without sensory inputs, neurons exhibit 

spontaneous activity.  Unlike evoked activity, spontaneous neuronal firing usually 

depends on the genome, rather than the environment.  For instance, the pattern of 
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spontaneous firing depends on the number or the type of ion channels neurons 

possess.  The contribution of spontaneous activity in a developing nervous system has 

been identified by studies of topographic map formation.  These studies have provided 

general insights into activity-dependent development.  

 

Activity-dependent topographic projections 

This part of the chapter (pp. 21-28) uses excerpts from a review article (Kaneko and Ye, 

2016, J. Comp. Physiol. A). 

 

The neural circuits of sensory systems are typically organized into two-dimensional 

neural maps to encode features of sensory stimuli.  Depending on what features are 

encoded, each neural map can be either discrete or continuous (Luo and Flanagan 

2007).  For example, the olfactory maps encoding odorant types are discrete.  In a 

discrete map, neurons detecting different types of stimuli are anatomically well 

separated.  On the other hand, the retinotopic maps encoding the positions of visual 

stimuli are continuous.  A continuous map in the nervous system usually reconstructs 

quantitative features of sensory stimuli, such as the locations of visual or 

somatosensory stimuli and the frequencies of sound; thus, these maps are also called 

topographic maps (Luo and Flanagan 2007).  Two features of topographic maps make 

them distinct from discrete neural maps.  First, neurons in a topographic map are of the 

same type.  This is true not only for the specific sensory features they detect but also for 

the fact that the cell-fate of individual neurons in the map is determined by the same 

genetic program.  Second, the axon terminals of neighboring afferent neurons in a 
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topographic map are adjacent to each other, forming a “continuous” map.  A unique 

issue in continuous maps is the establishment of the synaptic connections that are 

specific enough to distinguish adjacent presynaptic terminals, which may initially be 

intermingled with each other and may be separated by only a few microns once 

development is completed.  Studies in the vertebrate visual system have revealed that 

the mechanisms underlying regional topography (“coarse”) and the mechanisms 

specifying the topographic locations of neighboring neurons (“fine-scale”) are different. 

 

Fine-scale topography in the vertebrate visual system 

A large number of studies on the development of vertebrate retinotopic maps have 

provided profound insights into the development, cell biology, and plasticity of neural 

circuits.  In the vertebrate visual system, the retinal ganglion cells (RGCs) project their 

axons to the midbrain visual centers: the optic tectum in amphibians and birds, and the 

lateral geniculate nucleus and superior colliculus in mammals (Ruthazer and Cline 

2004; Huberman et al. 2008; Cang and Feldheim 2013).  RGC axon terminals in these 

target structures form topographic maps that represent the two-dimensional 

arrangements of RGC cell bodies in the retina.  For example, in frogs, RGCs in the 

nasal part of retina project their axons to the posterior side of the tectum whereas 

temporal RGCs terminate at the anterior side (Figure 1.3b) (Ruthazer and Cline 2004).  

In these maps, neighboring RGCs project their axons to neighboring synaptic targets 

without intermingling with each other.  This sorting of the terminals establishes point-to-

point specificity in the synaptic connections, or fine-scale topography.  Here, the 
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establishment of fine-scale retinotopic maps requires neural activity (Debski and Cline 

2002; Ruthazer and Cline 2004; Ackman and Crair 2014). 

 

Neural activity-dependent regulation of fine-scale retinotopy 

Sperry proposed that each RGC possesses a distinct molecular tag, allowing it to find 

the topographically correct target.  As it is hard to conceive the existence of such 

molecular tags for thousands of RGCs in each retina, he later revised this model by 

suggesting that concentration gradients of a few molecules may serve as such 

molecular tags (Sperry 1963).  Studies by Bonhoeffer and Flanagan groups 

subsequently discovered that the concentration gradients of cell-surface proteins Ephs 

and ephrins in RGCs and their targets direct the formation of topographic maps 

(McLaughlin and O’Leary 2005; Flanagan 2006).  Thus, the concentration of membrane 

proteins (ligands and receptors in this case) serves as a unique molecular tag for each 

pair of pre- and post-synaptic neurons.  Although it is conceivable that fine-scale 

topography might be established with the same mechanism, a number of studies have 

demonstrated that there are important differences between the mechanism underlying 

fine-scale topography and that underlying coarse topography. 

One important aspect of fine-scale topography in vertebrates is its requirement of 

neural activity during development.  For example, in chick embryos, blocking neural 

activity in the eye by the injections of tetrodotoxin (TTX) results in defective retinotopic 

maps that contain enlarged synaptic terminals.  As a result, neighboring RGCs have 

overlapping terminals, abolishing topography despite the presence of Ephs and ephrins 

(Figure 1.3b) (Kobayashi et al. 1990).  Neural activity during development is also 
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essential for the segregation of the axons from the two eyes (Ruthazer and Cline 2004).  

However, because synaptic connections in retinotopy involve point-to-point accuracy 

while eye-specific segregation does not, the molecular mechanisms underlying these 

two activity-dependent processes in development are likely to be different. 

A number of studies support the “co-activity” hypothesis for establishing the 

retinotopic maps and eye-specific segregation (Cline 1991).  This hypothesis states that 

neighboring RGCs exhibit similar activity (i.e. are co-active), and are thus connected to 

the same target neurons.  This model is in principle a special case of Hebb’s postulate 

of synaptic connection, which states that correlated pre- and post-synaptic activity 

results in the selective strengthening of synapses (Hebb 1949).  There are two key 

tenets of the co-activity hypothesis: 1) neighboring presynaptic neurons are co-active.  

As discussed below, patterned retinal RGC activity supports this in both topographic 

maps and eye-specific segregation (Ruthazer and Cline 2004); 2) co-active presynaptic 

terminals form synapses with postsynaptic targets that exhibit the same co-activity (e.g. 

same postsynaptic neurons or different neurons with the same activity pattern).  While 

this is supported in eye-specific segregation (Zhang et al. 2012), its involvement in the 

establishment of topographic maps remains hypothetical. 

An important line of evidence supporting the co-activity hypothesis is the 

presence of coordinated spontaneous activity among neighboring RGCs that sweeps 

across the entire retina in waves prior to the eye-opening (Meister et al. 1991; Wong et 

al. 1993; Feller et al. 1996; Ackman et al. 2012).  In mice lacking the β2 subunit of the 

nicotinic acetylcholine receptor (i.e. β2 knockout mice, or β2KO) (Grubb et al. 

2003; McLaughlin et al. 2003; Mrsic-Flogel et al. 2005; Chandrasekaran et al. 
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2005; Pfeiffenberger et al. 2006; Willshaw et al. 2014), normal patterns of RGC activity 

are disrupted, which consequently affects the co-activity of neighboring RGCs.  In these 

mutants, both topography and eye-specific segregation are defective.  The RGCs in the 

mutant mice possess enlarged terminals and, as a result, defects in fine-scale 

connectivity in retinotopic maps. 

The role of retinal waves in establishing topography has been controversial as a 

result of inconsistent phenotypes observed in β2KO mice (Sun et al. 2008; Chalupa 

2009; Feller 2009; Stafford et al. 2009), which might be due to the fact that β2 deletion 

is not specific to the retina in β2KO mice.  To address this issue, β2 gene was 

expressed in the ganglion cell layer, leading to a restoration of retinal waves in β2KO 

mice (Xu et al. 2011).  These waves are smaller in size than wild-type, and individual 

waves occur locally without propagating across the entire retina.  Despite this 

abnormality, RGCs project the axons to the topographically appropriate locations.  The 

abnormally enlarged terminals in β2KO are rescued in these mice, implicating the 

successful establishment of fine-scale topography.  The smaller waves only produce co-

activity in local areas, and hence, co-activity in local areas is sufficient for establishing 

point-to-point connections.  These findings suggest an instructive role of the retinal 

waves in fine-scale topography. 

How might the co-activity of neighboring presynaptic neurons contribute to fine-

scale topography?  In regard to the original Hebbian hypothesis, the co-activity model is 

based on the assumption that the activity of the target neurons synchronizes with the 

patterned retinal RGC activity.  The synchronous activity between pre- and post-

synaptic neurons would produce stable synapses through Hebbian plasticity.  An in-vivo 
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calcium imaging study revealed the presence of waves in the postsynaptic neurons in 

mouse (Ackman et al. 2012). The postsynaptic waves emerge at the same frequency 

and at the same speed as the presynaptic RGC waves.  Moreover, the postsynaptic 

wave disappears upon the inhibition of the waves in the retina, indicating that the 

postsynaptic wave is driven by the activity of RGC presynaptic terminals.  This would 

ensure that the afferents and target neurons are co-active, which might lead to specific 

connections between the afferents and their appropriate targets.  Indeed, coincidence in 

the activities of RGCs and their target neurons strengthens the synaptic connections 

between these neurons in mouse (Butts et al. 2007; Shah and Crair 2008).  Thus, 

“neurons that fire together, wire together” to establish synaptic specificity in the 

establishment of fine-scale topographic maps. 

The connections between co-active pre- and post-synaptic neurons rely on 

NMDA-type glutamate receptors (Constantine-Paton et al. 1990; Cline 1991).  RGCs 

are glutamatergic neurons, and NMDA receptors are localized on the dendrites of the 

postsynaptic neurons of RGCs.  It is postulated that co-activation of multiple 

neighboring RGCs leads to sufficient depolarization to activate postsynaptic NMDA 

receptors (Cline 1991).  As a result, the synaptic connections between these RGCs and 

the postsynaptic partner(s) are strengthened.  Therefore, NMDA receptors serve as a 

detector of co-activity of neighboring afferents. The molecular mechanism downstream 

of NMDA receptors in establishing topography remains to be determined. 

The co-activity model explains how neighboring afferents converge on shared 

targets, but does not explain how different neighboring afferents might connect with 

different postsynaptic targets.  Recent studies on retinal waves suggest a role of the 



 

 27 

sequence of RGC activation for synaptic segregation among different neighboring 

afferents (i.e. the point-to-point connectivity).  Interestingly, the propagation of retinal 

waves exhibits a directional bias (Stafford et al. 2009; Ackman et al. 2012).  The waves 

frequently start from the ventral-temporal retina and sweep toward the dorsal-nasal 

pole.  The propagation at a fixed direction provides two neighboring neurons along the 

propagation axis with less correlated activity than those perpendicular to the axis 

(Stafford et al. 2009).  Importantly, RGC terminals with defective retinal waves (as in 

β2KO mice) exhibit enlargement along the axis of wave propagation (Grubb et al. 

2003; Mrsic-Flogel et al. 2005; Ackman and Crair 2014), indicating that the topography 

along this axis is particularly dependent on the retinal wave.  This finding highlights the 

importance of sequential activation among adjacent RGCs in establishing fine-scale 

topography. 

The sequential activation in the form of a wave might cause intrinsic differences, 

such as biochemical activities, in neighboring neurons along the axis of wave 

propagation.  This possibility is supported by the findings that neural activity dynamically 

regulates the activity of cell adhesion molecules.  For example, in a cultured 

hippocampal neuron, N-Cadherin stabilizes and localizes to the cell surface in response 

to neural activity, enhancing its adhesive activity (Itoh et al. 1997; Tanaka et al. 

2000; Brigidi et al. 2014).  The retinal wave is also known to produce oscillations in the 

intrinsic cAMP level of individual RGCs (Dunn et al. 2006).  The cAMP oscillations in 

RGCs then modify the intrinsic ephrin signaling to control its repellent action in vitro 

(Nicol et al. 2007).  The molecular differences among neighboring afferents along the 
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axis of wave propagation may modulate the axon-axon interactions to establish the 

point-to-point topography. 

 

In summary, studies on the vertebrate visual system have shaped our current 

understanding of activity-dependent topographic projections.  The formation of 

topographic maps is a general strategy conserved across species; therefore, studies on 

the Drosophila sensory system are expected to provide detailed insights into how neural 

activity and molecular signaling interplay to instruct fine-scale axonal projections, which 

is the main subject of Chapter 3. 

 

 

Drosophila nervous system  

for understanding activity-dependent development 

 

Drosophila melanogaster is one of the best model systems in neurobiology research.  

This is due in part to its short life cycle and simple nervous system.  Most important is 

that powerful genetic techniques have accumulated through a long history of Drosophila 

research.  These powerful techniques allow genetic manipulation of subsets of neurons 

despite massive numbers of neurons in the nervous system.  Gene manipulation 

includes loss/gain of gene functions, neural visualization, activity manipulation, and 

activity recording.  Given this advantage, the Drosophila nervous system has been 

extensively explored for elucidating mechanisms behind activity-dependent 

development, such as neural plasticity. 
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Experience-dependent plasticity in Drosophila 

The Drosophila system best studied for neural plasticity is the larval neuromuscular 

junction (NMJ).  The larval NMJ consists of synapses formed by motor neurons on 

muscle cells on the larval body wall.  In this system, synaptic efficacy increases as 

larvae crawl during development (Schuster, 2006; Sigrist et al., 2003).  Enhanced larval 

locomotion (when driven by a warm environment for instance) involves elevated neural 

activity in the motor system, and yields long-term strengthening of synaptic 

transmission.  This plasticity is established by both presynaptic modification - enhanced 

neurotransmitter release - and postsynaptic modification - increased neurotransmitter 

receptors.  Moreover, a long period of vigorous locomotion leads to increases in the 

number of synaptic contacts, which requires coordination of both pre- and postsynaptic 

growth.  Importantly, studies of the NMJ have well characterized a signaling pathway 

that allows the coordinated development across synapses.  In addition to 

neurotransmitter-mediated signaling from pre- to postsynaptic terminals, postsynaptic 

muscles signal presynaptic motoneurons by secreting the BMP ligand, Gbb, to activate 

BMP signaling in the presynaptic terminals (Marques and Zhang, 2006).  This type of 

“retrograde” signaling contributes to mutual communication across synapses for 

coordinated pre- and postsynaptic growth. 

Similar to the motor system, the Drosophila sensory system changes synaptic 

efficacy in response to experience.  For example, levels of visual experience during 

development impact synaptic transmission in the visual system (Yuan et al., 2011).  

When fly larvae are exposed to constant light throughout development, the transmission 

of synapses between photoreceptors and their postsynaptic neurons becomes less 
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effective.  This change is associated with the shortened dendrites of the postsynaptic 

neurons and reduced synaptic contacts.  In contrast, constant darkness throughout 

development lengthens the postsynaptic dendrites, increases synaptic contacts, and 

enhances synaptic transmission from photoreceptors to the postsynaptic neurons.  The 

functional and morphological modification depends on the cAMP-PKA pathway in the 

postsynaptic neurons.  This phenomenon highlights the conserved role of this pathway 

in synaptic plasticity across species.  Besides the visual system, sensory-input-induced 

plasticity is similarly identified in the olfactory system (Sachse et al., 2007); however, it 

remains an open question whether the Drosophila nervous system is capable of 

modifying one particular sensory circuit without affecting other modalities. 

 

Activity-independent topographic projections in Drosophila 

Drosophila has been an excellent system for studying fine-scale topographic projections 

due to its amenability to single-neuron analysis.  Studies of topography in this organism 

have been primarily focused on the visual system.  This work demonstrated that 

topographic projections of photoreceptors are independent from neural activity, which 

will be discussed below.  Despite this unique aspect, the Drosophila visual system has 

provided critical principles that are potentially conserved even in activity-dependent 

topographic projections of other sensory pathways. 

 

The following section (pp. 31-36) interpolates material from a review article (Kaneko and 

Ye, 2016, J. Comp. Physiol. A). 
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Fine-scale topographic maps in the Drosophila visual system 

The compound eye in Drosophila consists of approximately 750 ommatidia, each of 

which contains 8 photoreceptors, known as R1-R8 (Clandinin and Zipursky 

2002; Hadjieconomou et al. 2011).  These R cells are categorized into three groups 

based on the second-order neuropils in which the axons of these neurons terminate 

(Harris et al. 1976).  The six outer photoreceptors (R1-R6), which detect green light, 

project their axons to the lamina.  R7 and R8 sense ultraviolet and blue light, 

respectively, and terminate in two distinct layers in the medulla.  Topographic maps 

representing the visual world are formed in each of these three target regions. 

The retinotopic map formed by R1-R6 cells in the lamina has been extensively 

studied for fine-scale specificity in synaptic connections. In the lamina, the terminals of 

R1-R6 cells form an array of anatomical units called cartridges, each of which is 

responsible for passing along the visual excitation elicited by a light point in the visual 

space (Clandinin and Zipursky 2002; Hadjieconomou et al. 2011).  The array of the 

cartridges reconstructs the visual space by forming a topographic map; neighboring 

cartridges are responsible for neighboring points in space. Because R1-R6 

photoreceptors in the same ommatidium see distinct light points, the six axons 

terminate in different cartridges.  At the same time, the light from a point is received by 

six photoreceptors (R1-R6) that are distributed in six neighboring ommatidia, and the 

axons of these six neurons converge on the same laminar cartridge.  As a result, every 

cartridge possesses the terminals of R1-R6 cells from six different ommatidia.  The R1-

R6 photoreceptors in the eye each form a topographic map (Figure 1.3a).  For instance, 

R4 photoreceptors from adjacent ommatidia select cartridges that are next to each 
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other.  The formation of these topographic maps exhibits remarkably high fidelity with 

less than two photoreceptors terminating at inappropriate cartridges in each eye 

(Schwabe et al. 2013). 

The R1-R6 topographic maps are established through two steps.  First, the 

photoreceptor axons from the same ommatidium are bundled together prior to reaching 

the lamina (Clandinin and Zipursky 2000).  The bundles do not intermingle with each 

other and thus preserve the spatial arrangement of the ommatidia, contributing to the 

coarse topography.  Second, once the axon bundles enter the lamina, R1-R6 axons 

segregate away from the bundles.  The extensions of the six axons out of the bundles 

are stereotypic in such a way that their terminals reconstruct the visual space.  R4 

axons, for example, exhibit stereotypic extensions with a consistent angle from the 

bundles, and hence different R4 axons from neighboring bundles do not mix with one 

another (Figure 1.3a).  Thus, such precise projections out of the axon bundles ensure 

the fine-scale connectivity in the fly visual system. 

 

Genetically hardwired fine-scale topography in the Drosophila visual system 

The molecular mechanisms underlying the fine-scale topography in the fly visual 

system has been studied at single-neuron resolution.  One approach employed by 

Clandinin and colleagues is to label a single ommatidium with the fluorescent lipophilic 

dye DiI, so that the locations of the R1-R6 axon terminals from the ommatidium can be 

assessed (Clandinin and Zipursky 2000).  Through this technique, they found that the 

extension of the photoreceptor axons out of the bundle is defective in mutants lacking 

particular subsets of R1-R6 cells.  For instance, in mutants lacking R3 and R4, the 
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axons of the remaining photoreceptors successfully defasciculate from the axon bundle, 

but fail to select the proper cartridges.  This indicates that interactions among axons in 

the same ommatidium play a role in their fine-scale projections from the bundle. 

Screening of candidate molecules responsible for the axon-axon interactions was 

facilitated by genetic techniques for eye-specific gene manipulation (Lee et al. 

2001; Lee et al. 2003).  Moreover, fly genetic mosaic techniques, such as flip-out and 

mosaic analysis with a repressible cell marker (MARCM) (Lee and Luo 1999), made it 

possible to visualize and genetically manipulate single photoreceptors within an 

ommatidium (Lee and Luo 1999; Lee et al. 2001; Clandinin and Zipursky 2002).  Using 

these techniques, Clandinin, Zipursky, and colleagues identified two cadherin 

superfamily proteins, Flamingo (Fmi) and N-cadherin (Ncad), as responsible for the 

axon-axon interactions underlying fine-scale topography (Lee et al. 2001; Lee et al. 

2003).  When all photoreceptors are homozygous for Fmi or Ncad mutation, these 

neurons fail to connect with the appropriate targets. 

Later studies revealed that Fmi and Ncad act redundantly in individual 

photoreceptor axons.  Inhibition of either Fmi or Ncad (through mutation or RNAi) in 

single photoreceptors does not cause any error in the target selection of the mutants 

(Chen and Clandinin 2008; Schwabe et al. 2013).  The projections become defective 

only when Fmi and Ncad genes are simultaneously knocked down in R1, R2, R5 and 

R6 through RNAi expression (Schwabe et al. 2013).  The axons frequently choose 

inappropriate targets in spite of the successful segregation from their original bundles.  

Most of the defective axons terminate close to their proper cartridges, suggesting that 

Fmi and Ncad regulate fine-scale topography, but not coarse topography. 
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Several lines of evidence suggest that the axon-axon interactions underlying fine-

scale topography rely on the relative, rather than absolute, levels of cadherin proteins 

among neighboring axons.  First, R4-specific overexpression of Fmi causes targeting 

errors in neighboring neurons despite the normal expression of Fmi in these neighbors 

(Chen and Clandinin 2008).  Defective targeting of wild-type photoreceptors also 

appears when Ncad is overexpressed in R4 specifically (Schwabe et al. 2013).  The R4-

specific overexpression of Ncad involves a targeting error of the axons from adjacent 

ommatidia that have a direct contact with the R4 axons.  Second, Fmi is differentially 

expressed in the axons of the six different photoreceptors in a lamina cartridge (Lee et 

al. 2003; Schwabe et al. 2013).  Its protein level is high in R2 and R5, intermediate in 

R1 and R6, and low in R3 and R4.  Therefore, the axon-axon interactions are precisely 

regulated by the intrinsic differences in the activity of cell-adhesion proteins. 

The axon-axon interactions direct the fine-scale projections of photoreceptors by 

polarizing the growth cones of extending axons (Schwabe et al. 2013).  The distribution 

of filopodia in the growth cones (i.e. growth cone polarity) correlates with the direction of 

axon terminal extension, which in turn points toward the specific targets.  Thus, it is 

likely that the polarity of a photoreceptor growth cone directs the axon terminal to the 

topographically correct target.  The regulation of the growth cone polarity requires the 

cadherin-mediated axon-axon interactions.  When both Fmi and Ncad are knocked 

down in R1, R2, R5 and R6, the growth cones exhibit variable polarity and do not point 

toward their correct target cartridges.  This abnormal polarity directs the axon toward 

improper direction, disrupting topographic orientation of neighboring axon terminals. 
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Together, these findings suggest that the axon-axon interactions, which are 

based on differentially regulated intrinsic cadherin activity, instruct the growth cone 

polarity of individual photoreceptors in an ommatidium, which then directs the axon 

terminals to their correct targets for establishing fine-scale topography. 

In addition to axon-axon interactions, axon-target interactions are necessary for 

the establishment of fine-scale topography of photoreceptors, although their roles are 

likely to be permissive.  While Fmi is specifically expressed in photoreceptors (Lee et al. 

2003), Ncad is expressed in both photoreceptors and their target neurons (Lee et al. 

2001).  When Ncad expression is removed from some of the target neurons in the 

lamina, photoreceptor axons show defective projections (Prakash et al. 2005).  

Consequently, cartridges that harbor Ncad mutant postsynaptic neurons do not contain 

six photoreceptor presynaptic terminals.  This result suggests that Ncad expression in 

the target neurons is essential for photoreceptor cells to terminate at the appropriate 

cartridges.  Therefore, Ncad mediates attractive interactions between pre- and post-

synaptic terminals.  This is different from Fmi, which is neither expressed nor required in 

the target neurons (Chen and Clandinin 2008).  These results point to distinct roles for 

adhesion molecules, despite the redundancy in the presynaptic terminals as mentioned 

above. 

Remarkably, the topographic maps in the fly visual system are formed 

independently of neuronal activity (Hiesinger et al. 2006).  Electron microscopy of the 

lamina shows no morphological abnormality of cartridges in several mutants that have 

defective neural activity.  The cellular composition of each cartridge is normal despite a 

defect in the generation of electrical potentials or in the release of neurotransmitter.  
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Moreover, DiI injection of single ommatidia in trp;trpl mutants, which are defective in 

light-elicited response, shows normal projections of photoreceptor axons.  R4-specific 

labeling of the mutants further confirms the distribution of a single R4 terminal to each 

cartridge.  Therefore, genetically programmed mechanisms are sufficient to instruct 

individual photoreceptors to their own targets by differentially regulating the intrinsic 

levels of cadherin activity between neighboring neurons. 

 

In summary, studies of the Drosophila visual system have revealed important molecular 

principles behind fine-scale topography, which potentially underlie even activity-

dependent topographic projections.  Detailed investigation of molecular pathways that 

indeed interplay with neural activity, however, awaits identification of activity-dependent 

topographic projections, ideally in another Drosophila sensory system.  

 

Drosophila Nociceptive sensory system 

My dissertation research focuses on the larval nociceptive circuit in Drosophila, which 

seems suitable for further investigating activity-dependent development.  The 

nociceptive system is one of the somatosensory systems responsible for detecting 

noxious stimuli from the environment, such as intense radiation and heat, chemicals 

from plants and pesticides, and harsh mechanical stimuli from predators (Hwang et al., 

2007).  In larvae, these noxious stimuli are detected by nociceptive sensory neurons, 

which are called class IV dendritic arborization (C4da) neurons (Kim et al., 2013).  C4da 

neurons elaborate their dendrites on the body wall, where they detect noxious inputs, 

and project their axons to the ventral nerve cord (VNC), which is a CNS structure 
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equivalent to the vertebrate spinal cord (Grueber et al., 2007).  To date, studies of the 

nociceptive system have primarily focused on C4da neurons and have yielded critical 

insights into neural physiology and development (Emoto et al., 2004; Grueber et al., 

2003; Ye et al., 2007).  Despite the profound work on C4da neurons, however, the 

nociceptive system has not been extensively explored at the circuit level.  Given this 

opportunity, I aim to investigate this system to elucidate principles underlying activity-

dependent development.  In particular, my dissertation research addresses the following 

two questions: 

 

1) How do noxious inputs during development influence the development 

of the nociceptive circuit?  The nociceptive system seems particularly suitable for 

addressing this question regarding neural plasticity for the following reasons.  First, 

functional levels of the nociceptive circuit can be reliably assessed through analysis of 

behavioral outputs.  Upon detection of noxious inputs, the nociceptive system elicits a 

series of stereotyped behavioral responses in larvae: an abrupt curling of the body that 

is frequently followed by a rolling of the body.  This type of behavior, or nociceptive 

behavior, likely allows larvae to escape from the source of noxious stimuli (Hwang et al., 

2007).  The levels of the nociceptive behavior, which are reliably quantifiable, reflect 

possible circuit modulation in response to experience of noxious inputs.  Second, due to 

recent identification of interneurons postsynaptic to C4da neurons, it has become 

possible to study the levels of synaptic transmission from C4da neurons, which reflect 

potential synaptic modification (Ohyama et al., 2015; Vogelstein et al., 2014).  This 

advance is expected to allow detailed investigation of the linkage between two levels of 
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plasticity, the synaptic and the behavioral levels.  Finally and most importantly, some of 

the newly identified postsynaptic neurons receive mechanosensory inputs besides 

nociceptive inputs (Ohyama et al., 2015).  Given these multimodal interneurons, the 

nociceptive circuit is conceivably equipped with a mechanism that enables pathway-

specific-plasticity. 

 

 2) How is topography in the nociceptive system developed?  Similar to the 

Drosophila visual system, where photoreceptors are grouped into anatomical units of 

ommatidia, in the nociceptive system, C4da neurons are organized into another type of 

anatomical unit, namely, body segments.  Reflecting this anatomical aspect, C4da 

neurons from adjacent body segments project the axons into neighboring, but spatially 

distinct, synaptic areas in the VNC, called C4da neuropils (Grueber et al., 2007).  C4da 

neurons from more anterior body segments, for instance, terminate their axons in more 

anterior C4da neuropils in the VNC.  Despite this anatomical separation across body 

segments, C4da neurons from the same hemi-segment terminate their axons within the 

same C4da neuropil.  Each body hemi-segment possesses the dendrites of three C4da 

neurons on the body wall, which are arranged along the dorso-ventral (D-V) body axis.  

As a result, each C4da neuropil in the VNC is packed with the axon terminals of three 

C4da neurons, which are expected to align along the D-V axis to establish topography.  

Topographic projections have not been explored in any of the Drosophila 

somatosensory systems, and identification of activity-dependent topography in this 

organism has been desired for detailed mechanistic analysis of the role of neuronal 

activity during circuit development.   
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Figure 1.1. Synaptic plasticity in Aplysia and the mammalian hippocampus 

(a) Synaptic plasticity that underlies sensitization of the gill withdrawal reflex in 
Aplysia.  Serotonergic neurons, which are activated by tail sensory neurons, increase 
the efficacy of synaptic transmission from siphon sensory neurons to motor neurons. 

(b) Long-term potentiation in the mammalian hippocampus.  High-frequency 
stimulation to presynaptic CA3 neurons activates NMDA receptors on the postsynaptic 
terminals of CA1 neurons and consequently elevates synaptic efficacy between CA3 
neurons and CA1 neurons. 
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Figure 1.2. Synapse-specific plasticity  
(a) Sensory-pathway-specific plasticity in Xenopus tadpoles.  Neurons in the 

optic tectum (tectal neurons) receive visual inputs and mechanosensory inputs from two 
different types of neurons.  In response to repeated inputs from one type of presynaptic 
neurons, tectal neurons specifically suppress the transmission from these presynaptic 
neurons without disrupting the transmission from the other type of presynaptic neurons.  

(b) Sensory-pathway-specific plasticity in C. elegans.  Mechanosensory 
stimulation during development enhances synaptic transmission from mechanosensory 
neurons to multimodal interneurons without affecting the responses of these multimodal 
interneurons to inputs from heat-sensing neurons. 

(c) Synapse-specific plasticity in Aplysia.  The serotonin-receiving synapse (i.e. 
A1-B1) is specifically modified, and the other synapse of the same presynaptic sensory 
neuron (i.e. A1-B2) is unaltered.  When a low level of serotonin, which usually induces 
only short-term sensitization, is given to the A1-B2 synapse in combination with a high 
level of serotonin on the A1-B1 synapse, both of the A1-B1 and A1-B2 synapses exhibit 
long-term sensitization – a process called synaptic tagging (Martin, 2002). 

(d) Synapse-specific LTP in the mammalian hippocampus.  High frequency 
stimulation to neuron A1 specifically modulates the A1-B1 synapse without changing the 
A2-B1 synapse. This specificity is attributable to NMDA receptors, which locate on the 
postsynaptic terminals and become active only when pre- and postsynaptic neurons are 
coactive.  When high frequency stimulation to neuron A1 activates both neuron A1 and 
neuron B1, a low level of electrode stimulation to neuron A2 sufficiently activates NMDA 
receptors on the A2-B1 synapse.  As a result, both of the A1-B1 and A2-B1 synapses 
express LTP (Luo, 2015).    
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Figure 1.3. Fine-scale topography in Drosophila and vertebrates 
(a) In the Drosophila visual system, R1-R6 photoreceptors form a retinotopic 

map.  R4 photoreceptors from neighboring three ommatidia (labeled in blue, red, or 
green) terminate at adjacent cartridges in the lamina.  Gray: R2 and R5 photoreceptors.  
Brown: R7 and R8 photoreceptors.  Modified from Clandinin and Zipursky 2000. 

(b) In the vertebrate visual system, the fine-scale topographic projections of 
RGCs require neuronal activity.  Upon the inhibition of neuronal activity, RGCs exhibit 
enlarged presynaptic terminals which extensively overlap with adjacent RGC terminals.  
The square in the tectum is magnified at the bottom.  N: nasal. T: temporal. A: anterior. 
P: posterior. 

(c) In the nociceptive system in Drosophila larva, the topographic projections of 
M (in red) and V (in green) neurons depend on the relative levels of neuronal activity.  
The activity inhibition of M neurons shifts their axon terminals ventrally.  VNC: ventral 
nerve cord. 
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CHAPTER 2 

Serotonergic Modulation Enables  
Pathway-Specific Plasticity  

in a Developing Sensory Circuit in Drosophila 

 

This chapter consists of material from a research article in Neuron, Serotonergic 

Modulation Enables Pathway-Specific Plasticity in a Developing Sensory Circuit in 

Drosophila, written by Takuya Kaneko, Ann Marie Macara, Ruonan Li, Yujia Hu, 

Kenichi Iwasaki, Zane Dunnings, Ethan Firestone, Shawn Horvatic, Ananya Guntur, 

Orie T. Shafer, Chung-Hui Yang, Jie Zhou and Bing Ye in 2017. 

 

Author contributions are as follows: 

T.K., A.M.M., and B.Y. conceived the project and designed the experiments. T.K., 

A.M.M., R.L., Y.H., K.I., and Z.D. performed behavior analyses.  A.M.M. set up the live-

imaging system for the larval nervous system.  A.M.M., T.K., and R.L. performed the 

calcium and cAMP imaging.  O.T.S. provided reagents and expertise in stimulating 

neurons with P2X2 and cAMP imaging.  Y.H., K.I., and T.K. carried out the studies on 

neuronal morphology and connectivity.  E.F. and Z.D. set up the optogenetic system for 

studying larval nociceptive behavior.  S.H. and J.Z. developed the method and software 
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for quantifying body angles in larval nociceptive curling.  R.L. and A.M.M. developed the 

assay for AITC-induced nociceptive behavior.  A.G. and C.-H.Y. provided initial data 

suggesting that serotonergic neurons are downstream of the nociceptors.  B.Y. 

supervised the project.  T.K., A.M.M., and B.Y. wrote the paper. 

 

I thank all the coauthors of this paper.  Special thanks to the co-first author, Ann Marie 

Macara, who is the main collaborator for this project.  

 

Summary 

How experiences during development cause long-lasting changes in sensory circuits 

and affect behavior in mature animals are poorly understood.  Here we establish a novel 

system for mechanistic analysis of the plasticity of developing neural circuits by showing 

that sensory experience during development alters nociceptive behavior and circuit 

physiology in Drosophila larvae.  Despite the convergence of nociceptive and 

mechanosensory inputs on common second-order neurons (SONs), developmental 

noxious input modifies transmission from nociceptors to their SONs, but not from 

mechanosensors to the same SONs, which suggests striking sensory pathway 

specificity.  These SONs activate serotonergic neurons to inhibit nociceptor-to-SON 

transmission; stimulation of nociceptors during development sensitizes nociceptor 

presynapses to this feedback inhibition.  Our results demonstrate that, unlike 

associative learning, which involves inputs from two sensory pathways, sensory 

pathway-specific plasticity in the Drosophila nociceptive circuit is in part established 
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through feedback modulation.  This study elucidates a novel mechanism that enables 

pathway-specific plasticity in sensory systems.  

 

Noxious Experience during Development Suppresses Larval Nociceptive 

Behavior 

Stimulation of the nociceptors (i.e. C4da neurons) of Drosophila larvae elicits a series of 

behavioral responses, which begin as an abrupt curling of the body and are often 

followed by rolling the body along the rostrocaudal axis (Hwang et al., 2007) (Figure 

2.1A).  Using the nociceptive circuit and its robust behavioral output as a model, we 

investigated the functional consequences of exposure to noxious stimuli during 

development. 

Plants have developed various noxious chemical compounds to repel insects.  

Among these compounds, allyl-isothiocyanate (AITC), which is found in cruciferous 

plants and used as a food flavoring, preservative, and, in high concentrations, 

insecticide (Wu et al., 2009), acts through TrpA1 channels to excite C4da nociceptors in 

Drosophila larvae (Iwasaki et al., 2008).  Consistently, we found that AITC activated 

C4da neurons (Figure 2.1B).  To test the consequences of exposure to AITC during 

development, we reared larvae in an environment containing AITC at a concentration 

comparable to that found in plants (Sultana et al., 2003).  The nociceptive behavioral 

responses of mature larvae (late third instar) were tested with optogenetic activation of 

C4da neurons, as described previously (Honjo et al., 2012; Hwang et al., 2007).  Larvae 

raised on AITC exhibited suppression of nociceptive rolling behavior (Figures 2.1C and 
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2.2B), suggesting that noxious stimulation during development suppresses nociceptive 

behavior. 

To determine whether developmental activation of nociceptors is sufficient to 

suppress nociceptive behavior, we specifically activated C4da neurons during 

development using an optogenetic approach.  ChR2 was specifically expressed in C4da 

neurons and activated in developing larvae with brief pulses of blue light (5 s of 

illumination followed by a 5-min break).  Red light, which does not activate ChR2, was 

used as a negative control.  After larval development was complete 5 days after egg 

laying (AEL), nociceptive behavior was tested with exposure to blue light after at least 1 

hr in the dark.  Rearing these larvae under pulses of blue light during development 

dramatically suppressed nociceptive responses, including rolling, curling, and overall 

response (as demonstrated by changes in body angle) (Figures 2.1D, 2.2C, and 2.2D). 

The extent of the sensory input-induced suppression of nociceptive behavior 

depended on the intensity of developmental stimulation (Figure 2.1E).  A low intensity of 

optogenetic stimulation during development led to a behavioral suppression that was 

comparable to AITC-induced suppression (Figure 2.1C).  Regardless of the intensity, 

developmental stimulation suppressed the maximal responses (Figure 2.1E), which 

effectively reduced the gain of the nociceptive circuit. 

ChR2-mediated suppression of nociceptive behavior is not due to the bleaching 

of all-trans-retinal (ATR), a key component in ChR2 function (Figures 2.2E and 2.2F).  

Consistent with a previous report that intense blue light activates nociceptors (Xiang et 

al., 2010), illumination with blue light alone (without ATR) during development led to a 

mild decrease in nociceptive rolling (Figure 2.2G).  Moreover, developmental activation 
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of nociceptors did not change the size or targeting of their presynaptic terminals (Figure 

2.3). 

This behavioral suppression was not due to acute changes, because it was 

absent in larvae reared under constant darkness for 5 days before being illuminated 

with pulsed red or blue light for 1 hr (Figure 2.1F).  Furthermore, stimulating nociceptors 

on days 3 and 4 (late second and early third instar larval stages) suppressed the 

nociceptive response in mature larvae that were tested on day 5 (Figure 2.1G), 

suggesting that the functional development of larval nociceptive behavior is regulated by 

nociceptor activity.  This result also demonstrates that the plasticity is long lasting (>24 

hr). 

Taken together, these results show that noxious experience during development 

leads to long-lasting suppression of nociceptive behavior in the Drosophila larva (Figure 

2.1H).  

 

A08n Neurons Are Specific Postsynaptic Targets of Nociceptors 

To identify the mechanism that underlies the sensory input induced plasticity of larval 

nociceptive behavior, it is necessary to analyze the neurons downstream of the 

nociceptors.  Recent advances in delineating the larval nociceptive circuit have 

identified two groups of segmentally repeated neurons, Basin-2 and -4, as postsynaptic 

targets of both nociceptors and NompC-expressing mechanosensory neurons (Ohyama 

et al., 2015).  In addition, a pair of neurons, called A08n, has been identified as 

potentially postsynaptic to C4da neurons (Vogelstein et al., 2014) (Figure 2.4A).  Using 

an improved GFP reconstitution across synaptic partners (GRASP) technique, termed 
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synaptobrevin-GRASP (syb-GRASP) (Macpherson et al., 2015), we found that A08n 

dendrites are synaptic partners of C4da axon terminals, but not those of 

mechanosensory neurons (Figures 2.4B and 2.4C), raising the possibility that C4da-to-

A08n synaptic transmission is dedicated to the nociceptive circuit.  To test this, we used 

calcium imaging to record nociceptor-evoked responses of A08n and Basin-4 neurons.  

Activation of nociceptors by AITC elicited robust responses in A08n neurons (Figure 

2.4D).  These AITC-elicited responses were nociceptor dependent, because no 

response was observed when C4da neurons were genetically ablated or the peripheral 

nervous system (PNS) was disconnected from the CNS.  As shown later in Figure 2.6, 

the nociceptor-elicited responses in A08n neurons were further confirmed by 

chemogenetic stimulation of nociceptors.  In contrast, activation of mechanosensors did 

not elicit any response in A08n neurons (Figure 2.4E), suggesting that C4dato-A08n 

transmission is dedicated to the nociceptive circuit.  Consistent with the previous report 

that Basin-4 is postsynaptic to both nociceptors and mechanosensors (Ohyama et al., 

2015), Basin-4 responded to activation of both nociceptors and mechanosensors 

(Figures 2.4F and 2.4G). 

The role of A08n neurons in larval behavior has not been identified, although 

optogenetic stimulation of GMR82E12-GAL4-expressing neurons, which include A08n 

neurons, leads to a behavior probability distribution that resembles the behavioral 

output caused by nociceptor activation (Vogelstein et al., 2014).  Indeed, optogenetic 

stimulation of GMR82E12-Gal4-expressing neurons by CsChrimson elicited abrupt body 

curling (Klapoetke et al., 2014), indicating that these neurons play a major role in the 

initial step of nociceptive behavior (Figure 2.4H). 
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In addition to the A08n neurons in the ventral nerve chord (VNC), the 

GMR82E12-GAL4 driver marks some neurons in the central brain.  To confirm the role 

of A08n neurons in nociceptive behavior, we took advantage of the FLP-out mosaic 

technique to express CsChrimson in both, one, or none of the two A08n neurons 

(Gordon and Scott, 2009; Struhl and Basler, 1993; Yang et al., 2014) (Figures 2.4I and 

2.5).  With no expression of CsChrimson in A08n neurons, larvae rarely exhibited 

nociceptive response despite CsChrimson expression in the central brain.  On the other 

hand, larvae expressing CsChrimson in both A08n neurons exhibited nociceptive 

behavioral responses at the same level as larvae that expressed CsChrimson in all 

GMR82E12-GAL4 neurons; larvae expressing CsChrimson in one of the two A08n 

neurons responded at about half the level of those that expressed in both neurons.  

Therefore, activating A08n neurons is sufficient to elicit nociceptive behavior.  We then 

silenced the A08n neurons by expressing the inwardly rectifying potassium channel 

Kir2.1 in these neurons (Baines et al., 2001; Hodge, 2009; Johns et al., 1999) while 

simultaneously stimulating ChR2-expressing C4da neurons, and we recorded 

behavioral responses.  Larvae with inhibited A08n neurons showed a reduction in 

nociceptive behavior in response to C4da activation (Figure 2.4J).  The incomplete 

suppression of nociceptive behavior in the absence of A08n activity is likely because the 

nociceptive circuit consists of multiple pathways downstream of C4da nociceptors, such 

as the Basin-Goro pathway (Ohyama et al., 2015).  These results demonstrate that 

A08n neurons mediate nociceptive behavior. 
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Nociceptor Input-Induced Plasticity Is Sensory Pathway Specific 

Results presented so far show that increased input through nociceptors during 

development leads to long-lasting suppression of nociceptive behavior.  Moreover, while 

Basin-4 neurons receive synaptic inputs from both nociceptors and mechanosensors, 

A08n neurons receive synaptic inputs from nociceptors, but not mechanosensors.  Next, 

we set out to identify where the plasticity occurs.  We first examined the activity of the 

nociceptive pathway-specific target neurons A08n by calcium imaging.  Nociceptors 

were stimulated during development by either ChR2-mediated optogenetics followed by 

acute AITC stimulation in mature larvae for calcium imaging (Figures 2.6A and 2.7) or 

by AITC during development followed by acute chemogenetic activation of nociceptors 

for calcium imaging (Yao et al., 2012) (Figures 2.6B–D).  In the chemogenetic 

approach, the vertebrate P2X2 receptor, an ATP-activated cation channel absent in 

Drosophila (Hu et al., 2010; Lima and Miesenbo¨ ck, 2005), was specifically expressed 

in nociceptors.  Perfusion with solutions containing ATP activates P2X2 (Yao et al., 

2012; Zemelman et al., 2002) and, consequently, stimulates nociceptors. 

A08n neurons’ response to nociceptor stimulation was significantly reduced after 

developmental stimulation (Figures 2.6A and B).  A similar reduction in A08n response 

was caused by C4da activation on days 3 and 4 of development (Figure 2.7), which is 

consistent with the behavioral output (Figure 2.1G). 

We next took advantage of the multimodal inputs to Basin-4 to study the 

specificity of sensory input-induced plasticity of the larval nociceptive circuit.  After 

developmental treatment of AITC, Basin-4’s responses to nociceptor stimulation were 

significantly reduced (Figure 2.6C).  In contrast, Basin-4 response to mechanosensor 
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stimulation was not affected by enhanced noxious inputs during development (Figure 

2.6D). 

Suppression of C4da-to-SON transmission by developmental stimulation was not 

caused by changes in sensory transduction in the nociceptors, because no change in 

calcium response in either C4da somata or their axon terminals was observed (Figures 

2.6E and F). 

These results suggest that nociceptive inputs during development specifically 

suppress synaptic transmission from nociceptors to SONs, but not from 

mechanosensors—even to the same SONs (Figure 2.6G). 

 

Serotonergic Neurons Are Required to Establish Sensory Input-Induced Plasticity 

of the Larval Nociceptive Circuit 

Next, we set out to determine what mediates developmental experience-dependent 

suppression of nociceptive behavior.  The serotonergic system is involved in synaptic 

and behavioral plasticity of the mature nervous system in various species, including 

mammals (Lesch and Waider, 2012), Aplysia (Kandel, 2001), and C. elegans (Zhang et 

al., 2005).  In Drosophila larvae, the processes of serotonergic neurons, which 

specifically express tryptophan hydroxylase (TRH) (Huser et al., 2012), are near the 

C4da axon terminals (Figure 2.8A).  This raises the possibility that serotonin (5-HT) 

modulates synaptic transmission from C4da neurons to their targets and contributes to 

the synaptic and behavioral plasticity of the larval nociceptive circuit. 

To test this, we silenced serotonergic neurons and examined the consequences 

for nociceptive behavior.  Silencing serotonergic neurons partially rescued nociceptive 
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behavioral responses in larvae whose nociceptors had been stimulated during 

development (Figures 2.8B and C).  Silencing serotonergic neurons did not affect 

nociceptive behavioral responses when nociceptors were not stimulated during 

development (Figure 2.9).  These results suggest that serotonergic neurons are 

required to establish nociceptive input-induced plasticity in larvae. 

We next investigated whether enhancing serotonergic signaling during 

development leads to suppression of nociceptive behavior.  Feeding larvae with the 

precursor to serotonin, 5-hydroxytryptophan (5-HTP), which increases serotonin levels 

in the body (Yuan et al., 2006), led to subdued nociceptive behavior (Figure 2.8D).  

Feeding 5-HTP, which has a half-life of about 4 hr (Westenberg et al., 1982), to larvae 

during the first 2 days of development also suppressed nociceptive behavior (Figure 

2.8E), suggesting that the effects on behavior are due to developmental changes in the 

nociceptive circuit. 

Consistent with the results from behavioral studies, silencing serotonergic 

neurons rescued A08n responses to nociceptors in mature larvae that had experienced 

chronic noxious inputs (Figure 2.8F), while feeding larvae with 5-HTP led to a 

suppression of C4da-to-A08n transmission (Figure 2.8G).  Furthermore, optogenetic 

activation of serotonergic neurons during development reduced C4da-to-A08n 

transmission (Figure 2.8H).  Since serotonergic neurons were not activated during 

calcium imaging in these experiments, this result again demonstrates that 

developmental activation of serotonergic neurons suppresses C4da-to- SON synaptic 

transmission. 
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Taken together, these results suggest that serotonergic neurons play an 

essential role in establishing nociceptive inputinduced plasticity in the developing larval 

nociceptive circuit. 

 

Stimulation of Nociceptors Activates Serotonergic Neurons via SONs in the 

Nociceptive Pathway 

To understand how serotonergic neurons contribute to nociceptor input-induced 

plasticity, we investigated whether nociceptors regulate the activity of serotonergic 

neurons.  Stimulation of nociceptors activated serotonergic neurons in larval VNC 

(Figure 2.10A).  Silencing A08n, Basin-4, or all four Basin (Basin-1–4) neurons partially 

reduced nociceptor-induced activation of serotonergic neurons (Figure 2.10B), 

suggesting that nociceptors activate serotonergic neurons through the SONs.  To 

directly test this, we stimulated A08n or Basin-4 neurons with ATP/P2X2, and we found 

that both SONs activated serotonergic neurons (Figure 2.10C).  These results suggest 

that stimulation of nociceptors activates serotonergic neurons through the SONs.  

 

Serotonergic Signaling Inhibits Nociceptor-to-SON Transmission 

We then investigated how serotonergic signaling modulates nociceptor-to-SON synaptic 

transmission.  Our results suggest that serotonergic signaling modulates this synapse 

through presynaptic inhibition (Figure 2.10D).  First, ipsapirone, an agonist of the 

vertebrate 5-HT1a receptor (Glaser and Traber, 1985; Maj et al., 1987; Traber et al., 

1984), inhibited C4da-to-A08n transmission (Figures 2.10D and E).  In Drosophila, 

ipsapirone may act as an agonist to both 5-HT1a and 5-HT1b, since these two 

receptors are similarly homologous to mammalian 5-HT1a receptors (Saudou et al., 
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1992).  Second, ipsapirone reduced nociceptor-evoked increases in cyclic AMP (cAMP) 

levels in C4da presynaptic terminals (Figure 2.10F).  Because 5-HT1 receptors are G 

protein-coupled receptors (GPCRs) that downregulate cAMP levels in cells (Raymond 

et al., 1999), this result suggests serotonergic modulation of C4da presynaptic 

terminals.  Last, RNAi-mediated knockdown of 5-HT1b in C4da neurons, but not that of 

5-HT1a or an unrelated protein (mCherry), reduced inhibition of C4da-to-A08n 

transmission by ipsapirone (Figure 2.10G).  In contrast, knockdown of 5-HT1b in A08n 

neurons had no effect (Figure 2.10H).  These results suggest that 5-HT1b in C4da axon 

terminals mediates inhibition of nociceptor-to-A08n transmission by serotonin. 

Consistent with physiological results, we found that the terminals of serotonergic 

neurons intimately intertwined with C4da presynaptic terminals (Figure 2.11A).  

However, we did not detect significant syb-GRASP signal from serotonergic terminals to 

C4da presynaptic terminals (Figure 2.11B).  This suggests that the distance between 

serotonergic terminals and C4da presynaptic sites is larger than that of conventional 

synapses (<100 nm).  This finding may not be surprising because serotonergic 

terminals are known to modulate synaptic transmission through volume transmission or 

extra-synaptic transmission.  In fact, 5-HT1b receptors are found predominantly at 

extra-synaptic and nonsynaptic sites in rat brains (Riad et al., 2000). 

Taken together, these results suggest that SONs activate serotonergic neurons 

to inhibit nociceptor-to-SON synaptic transmission by acting on nociceptor presynaptic 

terminals, forming an inhibitory feedback loop (Figure 2.10I). 
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Developmental Stimulation of Nociceptors Sensitizes Nociceptor Presynaptic 

Terminals to Serotonergic Inhibition 

Our finding of feedback serotonergic modulation led us to hypothesize that 

developmental stimulation of nociceptors alters the level of this modulation to establish 

plasticity in C4da-to-SON transmission.  Developmental stimulation of C4da neurons did 

not affect C4da-elicited responses of serotonergic neurons (Figure 2.12A).  Thus, we 

tested the possibility that developmental stimulation sensitizes nociceptor presynaptic 

terminals to serotonergic inhibition of C4da-to-SON transmission.  Results from two 

experiments support this possibility.  First, 1 mM ipsapirone significantly inhibited C4da-

to-A08n transmission after developmental stimulation of nociceptors, but not when 

nociceptors were not stimulated during development (Figure 2.12B).  Similarly, while 10 

mM ipsapirone only partially inhibited C4da-to-A08n transmission when nociceptors 

were not stimulated during development, it completely inhibited this synaptic 

transmission after developmental stimulation of nociceptors.  These results indicate 

enhanced sensitivity to ipsapirone of C4da-to-A08n synaptic transmission.  Second, 

developmental stimulation of nociceptors significantly reduced the sensory input-

induced increase in cAMP levels in C4da axon terminals (Figures 2.12C and D), without 

affecting basal cAMP levels (Figure 2.12E). 

Consistent with a change in presynaptic modulation of nociceptor-to-target 

transmission, developmental stimulation of nociceptors did not reduce the 

responsiveness of SONs.  Larval sensory neurons are known to use acetylcholine 

(ACh) as the transmitter (Salvaterra and Kitamoto, 2001).  We tested A08n responses 

to different concentrations of nicotine, which specifically activates ionotropic ACh 



 

 56 

receptors (AChRs), and we recorded A08n response by calcium imaging.  

Developmental activation of nociceptors did not reduce A08n’s response to nicotine 

(Figure 2.12F). 

Taken together, these results suggest that nociceptor activity during development 

enhances 5-HT1R-mediated inhibition of nociceptor-to-SON transmission by regulating 

presynaptic terminals.  Such sensory afferent-specific regulation of presynaptic 

terminals likely maintains the function of other sensory pathways that share central 

neurons with the nociceptive circuit. 

 

We define here a novel mechanistic model that explains pathway specific, experience-

dependent plasticity during development.  Nociceptors activate SONs in the nociceptive 

circuit, which in turn activate modulatory serotonergic neurons; the latter suppress 

transmission from nociceptors to SONs, thereby forming a feedback circuit motif.  

During development, stimulation of nociceptors activates serotonergic neurons to 

sensitize nociceptor presynaptic terminals to serotonergic inhibition, reducing 

nociceptive behavioral responses in mature larvae (Figure 2.12G). 

 

Materials and Methods 

Drosophila melanogaster strains 

The following fly stocks are used in this study.  Both male and female wandering 3rd-

instar larvae are used unless otherwise noted.  All experiments were conducted on age- 

and size-matched larvae. 
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GAL4/LexA stocks: GMR82E12-GAL4 (Bloomington Drosophila Stock Center, 

stock number B-40153) and GMR82E12-lexA (B-54417) (Vogelstein et al., 2014); ppk-

GAL4 (Grueber et al., 2007); ppk-LexA (Gou et al., 2014); nompC-GAL4 (B-36369); 

nompC-LexA (B-52241); GMR57F07-GAL4 (B-46389), GMR57F07-lexA (B-54899), and 

GMR72F11-Gal4 (B-39786) (Ohyama et al., 2015); TRH-GAL4 (B-38389); TRH-LexA 

(B-52248). 

UAS/LexAop stocks: UAS-CD4-GFP (BL-35836); UAS-GCaMP6f (Chen et al., 

2013); LexAop-GCaMP6f (Chen et al., 2013) (B-44277); UAS-Epac1-camps (Shafer et 

al., 2008); UAS-ChR2::YFP (Honjo et al., 2012); UAS-CsChrimson::Venus (B-55139) 

(Klapoetke et al., 2014); LexAop-P2X2 (Yao et al., 2012); UAS-DenMark (B-33062) 

(Nicolaı¨ et al., 2010); UAS-syt-HA (Robinson et al., 2002); UAS-Kir2.1 (Baines et al., 

2001; Nitabach et al., 2002); LexAop-kir2.1 (Prieto-Godino et al., 2012); UAS-

syb::spGFP1-10 and LexAop-CD4::spGFP11 (Macpherson et al., 2015); UAS-RNAi-5-

HT1b (B-33418, designated as #1); UAS-RNAi-5-HT1b (B-27635, designated as #2); 

UAS-RNAi-5-HT1a (B-33885); UAS-RNAi-5-HT7 (B-32471); UAS-FRT-rCD2-stop-FRT-

CD8::GFP, UAS-FRT-rCD2-stop-FRT-CD4::tdTomato (Yang et al., 2014). 

Other stocks: hs-flp122 (B-1929), tubP-FRT-Gal80-FRT (B-38880), and ppk-

ChR2::YFP.  To make the ppk-ChR2::YFP transgenic flies, ChR2-YFP cDNA was 

amplified from UAS-ChR2::YFP transgenic flies by PCR, cloned into the pBluscript-

ENTR-Topo vector, and inserted via Gateway cloning into the pDEST-APPHIH vector 

between the attR1 and attR2 sites, which are downstream of the 1-Kb promoter of the 

ppk gene.  The resulting plasmid, pDEST-APPHIH-ChR2, was then used for 

transgenesis with the fC31 system. 
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FLP-out mosaic labeling 

Mosaic A08n labeling (Figure 2.4B) and stimulation (Figures 2.4I and 2.5) were 

achieved by the combination of a FRT-flanked Gal80 transgene that is under the control 

of a tubulin promoter (tubP-FRT-Gal80-FRT), and a transgene expressing heat-

inducible flippase (hs-FLP) (Gordon and Scott, 2009).  Upon flippase-mediated removal 

of Gal80, A08n neurons express CD4-GFP, DenMark, and Syt-HA (Figure 2.4B), or 

CsChrimson::Venus (Figures 2.4I and 2.5). UAS-FRT-rCD2-stop-FRT-CD8::GFP and 

UAS-FRT-rCD2-stop-FRTCD4::tdTomato (Yang et al., 2014) were used in combination 

with hs-FLP and TRH-GAL4 to label single serotonergic neurons with fluorescent 

proteins in Figure 2.8A.  Genetic mosaic clones were generated using the method 

described previously (Yang et al., 2014). 

 

Behavioral tests 

Embryos were collected for 6-12 hr at 25C on basic fly food.  The fly food was mixed 

with 4 mM ATR for optogenetic stimulation, 2.5 to 5 mM allyl isothiocyanate (AITC, 

Sigma) for AITC-mediated developmental stimulation, or 5 mM 5-hydroxytryptophan (5-

HTP, Sigma) for 5-HTP feeding.  On day 5, mature (wandering 3rd instar) larvae were 

transferred to room temperature, removed from food, rinsed, and left in the dark for 1 hr 

before being tested for behavioral responses.  Control and experimental groups were 

paired in all behavioral tests. 

Optogenetic behavioral tests were done on 35 mm grape-agar plates covered 

with 1 mL water in a dark room.  For optogenetic stimulations, a light intensity of 26 

mW/mm2 was used unless otherwise stated.  470nmBlue LED (CREE XP-E 
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Blue3WLED, RapidLED) was used for ChR2 activation.  ChR2-mediated nociceptor 

stimulation was performed by ppk-GAL4/UAS-ChR2::YFP or ppk-ChR2::YFP, as 

indicated in the figures.  Neurons in the CNS—A08n and TRH—were stimulated by 

expressing CsChrimson::Venus using 617 nm red LED (CREE XP-E Red LED, 

RapidLED).  LED stimulation was for 5 s. 

AITC behavioral tests were performed on 12-well grape-agar plates.  Each well 

was covered with 300 mL of 25 mM AITC before transferring one larva to the well.  Only 

single larvae were placed on each well so that individual larvae could be tracked for two 

min. 

Sample sizes were estimated based on previous publications in the field (Jovanic 

et al., 2016; Ohyama et al., 2015).  To reduce possible variation in each batch of fly 

cultures, samples from more than 3 separate trials, each of which included similar 

numbers of samples, were analyzed.  The behavioral tests with AITC as the stimulant 

were more subject to variations of experimental conditions.  To eliminate experimenter 

bias, these experiments were done in double-blind fashion.  The video recorded by the 

primary experimenter was coded and randomized by another experimenter.  After the 

primary experimenter quantified the data, the recordings were decoded for statistical 

analysis.  All behavioral data were included in the statistical analyses. 

 

Developmental optogenetic stimulation 

Automatic optogenetic stimulation (26 mW/mm2) of nociceptors during development 

was achieved by a custom-made array of LEDs.  Illumination duration and frequency 

were controlled by a BASIC Stamp microcontroller, and intensity by aPWMDimmer.  
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LEDs (CREE XP-E Blue 3W LED, CREE XP-E Red LED) were mounted on aluminum 

heatsinks (RapidLED).  For even distribution of light on the agar dish for rearing larvae, 

the light emitted by LED passed through an 80_CREE XP-E/XP-G lens.  Developmental 

optogenetic stimulation was performed in a 25_C incubator.  LEDs were programmed to 

turn on for 5 s every 5 min throughout the appropriate experimental duration. 

 

Calcium and cAMP imaging 

Live imaging of calcium and cAMP levels was conducted on a Leica SP5 confocal 

microscope equipped with a resonant scanner, an acousto-optical beam splitter, and an 

HC Fluotar L 25x/0.95WVISIR immersion objective (Leica).  Calcium levels were 

measured by imaging with the GCaMP6f indicator (Chen et al., 2013).  Larvae were 

dissected as previously described (Matsunaga et al., 2013).  Dissection and imaging 

were performed in a modified hemolymph-like 3 (HL3) saline (70mM NaCl, 5 mM KCl, 

0.5 mMCaCl2, 20mM MgCl2, 5 mM trehalose, 115 mM sucrose, and 5 mM HEPES, pH 

7.2) (Stewart et al., 1994).  7 mM glutamate was added to the HL3 solution to block 

muscle contractions and eliminate motor feedback to the sensory circuits by saturating 

glutamate receptors at the neuromuscular junction (Macleod et al., 2004; Reiff et al., 

2002, 2005).  A low concentration of calcium was also used to reduce muscle 

contraction and nerve damage during dissection (Caldwell et al., 2013).  Calcium 

responses were recorded in xyzt mode such that an image stack was taken every 1 s or 

2 s over the course of the experiment. 

ATP/P2X2 technique was used to stimulate neurons for calcium imaging with the 

expression of rat ATP-sensitive cation channel P2X2 (Yao et al., 2012).  Because there 
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are no ATP-sensitive channels in Drosophila, ATP application excites neurons that 

express P2X2 (Yao et al., 2012).  This approach is particularly instrumental when 

GCaMP-implemented calcium imaging is used to record neuronal activity due to an 

overlap in the excitation wavelengths of ChR2, CsChrimson (activated by both red and 

blue light), and GCaMP.  Unless otherwise stated, 1mMATP was used to activate 

neurons expressing P2X2.  ATP (Sigma) was first dissolved in water to 100mMand then 

diluted to the final concentrations with HL-3.  We used the ValveBank 4 Pinch Valve 

Perfusion System (Automate Scientific) to control perfusion of ATP. 

In addition to the ATP/P2X2 technique, AITC was used as a natural stimulant to 

activate nociceptive neurons, and nicotine to activate A08n neurons.  AITC, ipsapirone 

(Tocris), and (-)-nicotine tartrate (Fisher Scientific) were bath-applied to the specimen; 

concentrations are indicated in the figure legends.  AITC (Sigma) was first dissolved in 

DMSO to 1 M, and then diluted to the final concentrations with HL-3.  In experiments 

that test the effects of ipsapirone while stimulating nociceptors, ipsapirone was mixed 

with AITC before being applied to the samples. 

cAMP levels were measured by imaging with the Epac1-camps indicator (Shafer 

et al., 2008; Yao et al., 2012).  The procedure for cAMP imaging was the same as that 

for Ca2+ imaging described above except for the following.  The Epac1-camps indicator 

was specifically expressed in nociceptors, whose presynaptic terminals were imaged for 

FRET.  Hence the observed cAMP levels were only those in C4da presynaptic 

terminals.  2 mM AITC was used to activate nociceptive neurons.  In Figure 6C, 

ipsapirone was mixed with AITC before being applied to the specimen.  A Z stack was 

taken every 3 s over the course of the experiment. 
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Sample sizes were estimated based on previous publications in the field (Jovanic 

et al., 2016; Ohyama et al., 2015; Yao et al., 2012).  To reduce possible variation in 

each batch of fly cultures, samples from more than 3 separate trials, each of which 

included similar numbers of samples, were analyzed.  Several key findings, including 

the effects of developmental stimulation on behavior and synaptic transmission and the 

pathway-specificity of the plasticity were repeated by multiple experimenters.  All data 

were included in the analyses with the exception that neurons with low levels of AITC-

evoked responses (< 50% MaxDF/F0) before ipsapirone treatment were not included in 

Figures 5G and 5H.  This is to minimize the masking of ipsapirone suppression caused 

by low levels of initial response. 

 

Immunostaining 

Third instar larvae were dissected and stained as described previously (Kim et al., 2013; 

Wang et al., 2013).  Primary antibodies used were: mouse anti-GFP (1:100, Sigma, 

RRID: AB_259941); chicken anti-GFP (1:2500, Aves Laboratories, RRID: 

AB_2307313); rabbit anti-RFP (1:5000, Rockland, RRID: AB_2209751); and rat anti-HA 

(1:250, Roche, RRID: AB_390915).  Secondary antibodies used were (1:500, Jackson 

ImmunoResearch): donkey anti-mouse Alexa Fluor 488 (RRID: AB_2340846), anti-

chicken Alexa Fluor 488 (RRID: AB_2340375), anti-chicken Alexa Fluor 647 (RRID: 

AB_2340380), anti-rabbit Rhodamine RX (RRID: AB_2340613), and anti-rat Alexa Fluor 

647 (RRID: AB_2340694). 
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Synaptobrevin-GRASP 

Syb-GRASP was performed as described previously (Macpherson et al., 2015).  

Reconstituted GFP (i.e., GRASP) signals were detected by anti-mouse monoclonal 

GFP antibody (1:100, Sigma, RRID: AB_259941, referred to as anti-GRASP).  

Syb::spGFP1-10 was preferentially detected by anti-chicken polyclonal antibody 

(1:2500, Aves Laboratories, RRID: AB_2307313, referred to as anti-spGFP1-10). 

 

Quantification of behaviors 

Rolling was counted only when a larva exhibited at least one complete (360_) rotation of 

the body along a rostrocaudal axis (Hwang et al., 2007).  Curling is defined as an acute 

decrease in body angle formed by simultaneous movements of the head and tail 

immediately upon noxious stimulation.  The numbers of larvae that rolled and curled 

were manually counted in slow motion (0.5 - 0.25 x speed) over the 5 s stimulation 

interval for optogenetic assays or over the 2 min period of AITC stimulation.  Percent 

rolling and curling were the number of larvae that rolled or curled divided by the total 

number of larvae counted (number of larvae that rolled or curled x 100/Total larvae). 

Body angle was calculated as the angle between the two lines that connect the 

middle point of the skeleton and each of the two end points of the skeleton.  The angle 

ranges between 0 and 180 with a smaller angle indicating a more curled larva.  To 

obtain the skeleton and its middle and end points, a custom ImageJ plugin was 

developed to first detect and track the larvae at each frame.  Contours of the detected 

larvae were then smoothed using a 3x3 mean filter.  A skeletonization algorithm was 

applied to obtain the centerlines of the detected larvae.  A longest-path search was then 
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performed to remove the small spurs and result in a clean centerline of the animal. The 

middle point of the skeleton is the point on the skeleton line with equal distances to the 

two end points along the skeleton.  The positions of the middle point and two end points 

of the skeleton line were used for the body angle calculation, as described above. 

 

Quantification of calcium and cAMP Responses 

The ImageJ software (NIH) with the Time Series Analyzer plugin was used to analyze 

the xyzt projection movie.  The average intensity of a selected region of interest (ROI) 

was measured over the course of the experiment. 

To quantify calcium responses, the change in GCaMP6f fluorescence was 

calculated by DF/F0 = (Ft - F0)/F0, where Ft is the fluorescent mean value of an ROI in 

a given frame.  F0 is the baseline 30 s interval before stimulation.  Max DF is the 

maximum value during the stimulation period of the recording.  To analyze the activity 

levels of A08n neurons, Max DF/F0 for individual A08n neurons were plotted on the 

graph and used for statistical analyses (i.e., each dot indicates one A08n).  Because the 

responses of Basin-4 neurons—unlike A08n neurons—are highly variable within each 

VNC (data not shown) (Jovanic et al., 2016), the average of Max DF/F0 of 10 Basin-4 

neurons from abdominal segments 3-7 in each VNC were calculated to represent the 

Basin-4 activity in each VNC. 

The cAMP response level was quantified as changes in the inverse FRET ratio, 

which is CFP intensity divided by YFP intensity (DCFP/YFP) scanned with a 458-nm 

confocal laser. The cAMP basal level was quantified as YFP intensity scanned with a 
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458-nm divided by that scanned with a 515-nm laser (YFP458/YFP515).  The n 

represents the number of larvae tested. 

 

Statistical analysis 

Statistical analysis was performed using Prism software.  Fractions of rolling and curling 

behavior under stimulation were analyzed using the chi-square test.  Calcium and cAMP 

imaging, and axon terminal length of single C4da neurons were analyzed using the 

nonparametric Mann-Whitney U-test.  For multi-group comparisons, Kruskal-Wallis tests 

were conducted.  In all figures, N.S., *, **, and *** represent p > 0.05, p < 0.05, p < 0.01, 

and p < 0.001, respectively.  Error bars are standard errors of the mean. 
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Figure 2.1. Activation of Larval Nociceptors during Development Suppresses 
Nociceptive Behavior in Mature Larvae 

(A) A montage showing nociceptive behavior responses, including curling and 
rolling, in a third instar larva.  ChR2 was expressed specifically in C4da nociceptors and 
activated by illumination with blue light.  Small arrows point to the openings of dorsal 
trachea to indicate the larva’s body position, and the large arrow indicates the direction 
of rolling. 

(B) AITC activates C4da neurons.  The boxed area in the schematic indicates the 
part of the cell imaged for calcium signals.  The trace shows the average of responses 
(n = 3). 

(C) Larvae raised on AITC exhibit reduced nociceptive behavior.  Top panel: a 
diagram shows the experimental scheme.  The developmental timeline of larvae is 
shown as days 1–5, with day 1 being the first day of development after egg laying (AEL) 
and day 5 being the time when the larvae are at the late third instar stage.  Control 
larvae were reared on regular food throughout development (black bar), whereas 
experimental larvae were reared on food containing 2.5 mM AITC (green bar).  The 
vertical blue bar indicates the blue light used in optogenetic stimulation for behavioral 
tests on day 5, and the vertical black bar indicates the 1 hr of darkness prior to the tests.  
Throughout the paper, the following color coding is used: green, AITC; black, darkness 
or no AITC; red, red light (617 nm); blue, blue light (470 nm); and gray, ATP.  Moreover, 
the expression of proteins for stimulating nociceptors (i.e., ChR2, CsChrimson, and 
P2X2) is indicated by ‘‘C4da > proteins’’ above the timeline bars.  Bars represent the 
percentage of total larvae that performed rolling following curling (curl /roll), curling only, 
and no response (n = 75 larvae per group).  Note that every roll starts with curling. 

(D) Optogenetic stimulation of nociceptors during larval development leads to a 
dramatic suppression of nociceptive behavior (n = 45 larvae per group). 

(E) Developmental stimulation suppresses the maximal response 
ofnociceptivebehavior inmature larvae.  Larvae that expressed ChR2 in C4da neurons 
were reared under pulses of red (28 mW/mm2) or blue light (0.7 or 28 mW/mm2) during 
development.  Rolling responses of late third instar larvae were tested with five different 
intensities of blue light (0.7, 5, 14, 28, and 38 mW/mm2) (n = 115, 88, and 69 larvae for 
red, 0.7 mW/mm2 blue, and 28 mW/mm2 blue, respectively). 

(F) Larvae that received acute stimulation (1 hr) of nociceptors do not exhibit 
suppression of nociceptive behavior (n = 60 larvae per group). 

(G) Stimulating nociceptors on days 3 and 4 AEL suppressed nociceptive 
behavior in mature larvae tested on day 5 (i.e., 24 hr after pulse stimulation) (n = 100 
larvae for each group). 

(H) A set of diagrams that summarize the results in this figure.  Stimulation of 
nociceptors during development leads to suppression of nociceptive behavior in mature 
larvae.   
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Figure 2.2. Developmental stimulation of nociceptors suppresses nociceptive 
behavior. 

(A) Schematic of a larval fillet used for live-imaging studies.  “a” and “p” indicate 
anterior and posterior of the larval fillet, respectively.  The axon terminals of C4da 
neurons in several segments are magnified. 

(B) Raising larvae on AITC (5 mM) leads to suppression of nociceptive behavior.  
The behavioral tests were performed with AITC on 3rd instar larvae.  The graph 
indicates the percentage of larvae showing a complete (i.e. 360°) rolling within 2 min in 
response to 25 mM AITC.  n = 440 and 124 larvae for – AITC and + AITC, respectively. 

(C) Diagram illustrating the automatic measurement of larval body angle to 
quantify curling behavior.  A single larva was extracted from the video-recording to 
obtain its skeleton using automatic image processing.  The two red dots indicate the 
end points of the skeleton line, and the blue dot is the middle point of the line.  Graph 
indicates body angles of larvae during curling in response to ChR2-mediated 
stimulation.  The speed is 30 frames/sec. 

(D) Optogenetic activation of C4da neurons during development results in a 
significant reduction in curling (n = 70 larvae for each group). 

(E) All-trans-retinal (ATR) is required for ChR2 activation of C4da neurons (n = 
115 larvae for each group).  Larvae were developed in constant darkness for 5 days in 
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food with or without ATR.  Larvae developed without ATR (right) do not exhibit robust 
responses to blue light compared to larvae with ATR (left). 

(F) ChR2-mediated suppression of nociceptive behavior is not due to ATR 
bleaching. 4 mM ATR-containing food was kept under blue or red light or constant 
darkness for 5 days.  Larvae were then allowed to develop on food in constant darkness 
for 5 days before being tested for behavior.  No change in nociceptive behavior was 
observed between the tested conditions, as analyzed using Kruskal-Wallis tests.  n = 
30, 30 and 20 larvae for blue, red and dark, respectively, for curling angle analysis; n = 
60, 60 and 45 larvae for blue, red and dark, respectively, for percent of total larvae that 
exhibited nociceptive responses. 

(G) Illumination with blue light alone (without ATR) during development led to a 
mild decrease in nociceptive rolling.  The behavior test was performed with 100 mM 
AITC.  n = 58, 59, and 83 larvae for Red – ATR, Blue – ATR, and Blue + ATR, 
respectively. 
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Figure 2.3. Developmental activation of C4da nociceptors with AITC does not 
change the size or targeting of their presynaptic terminals. 
Micrographs show the presynaptic terminal of a representative ddaC neuron (green) 
from each group.  Presynaptic terminals of the other C4da neurons in the same body 
segment were labeled using a different fluorescent protein (magenta).  Quantification of 
each subtype of C4da neurons (ddaC, v’ada, and vdaB) is shown in the bar chart.  
Scale bar: 10 μm. 
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Figure 2.4. A08n Neurons Are Specific Postsynaptic Targets of Nociceptors 

(A) A schematic of the axon projections of nociceptors (blue) and the neurites of 
A08n within the VNC (orange).  A, anterior; P, posterior. 
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(B) The majority of A08n neurites are dendrites.  A single A08n neuron is labeled 
by the FLP-out technique.  The soma (arrowhead) of the A08n neuron is located near 
the posterior end of the VNC.  A08n neurites in close proximity to C4da axon terminals 
are mostly positive for the dendrite marker DenMark, and they contain scattered spots 
that are positive for the axonal marker Synaptotagmin (Syt).  Scale bar, 10 mm. 

(C) A08n neurons are synaptic partners of C4da, but not NompC-expressing 
mechanosensory, neurons.  The synaptobrevin (syb)-GRASP technique was used to 
detect synaptic connections between neurons.  SpGFP11 expressed in Basin-4 neurons 
produces syb-GRASP signals (green) with spGFP1–10 (magenta) expressed in either 
nociceptors (ppk-GAL4) or mechanosensors (NompC-GAL4).  In contrast, spGFP11 
expressed in A08n neurons only produces syb-GRASP signals with spGFP1–10 in 
nociceptors.  The discrete GFP signals along the VNC midline are artifacts that show up 
in the absence of spGFP11 and can be observed with various antibodies.  Scale bar, 10 
mm. 

(D) AITC activates A08n neurons specifically through C4da nociceptors, as 
shown by calcium imaging.  A schematic is included to show pre- and postsynaptic 
neurons.  The neuron that was recorded by GCaMP calcium imaging is shown in green.  
Traces show the averages of responses.  No response was observed in the absence of 
C4da neurons (C4da ablated) or with the severing of nerves connecting the VNC with 
the PNS (PNS severed) (n = 3, n = 4, and n = 4 in C4da present, C4da ablated, and 
PNS severed, respectively). 

(E) Stimulation of NompC-expressing mechanosensors does not activate A08n 
neurons.  Mechanosensors expressing P2X2 were stimulated by 1 mM ATP for Ca2+ 
imaging (n = 10 neurons [five larvae]). 

(F) Stimulation of C4da nociceptors activates Basin-4 neurons (n = 9 neurons 
[five larvae]).  Note that AITC does not activate NompC-expressing mechanosensory 
neurons (data not shown). 

(G) Stimulating NompC-expressing mechanosensors activates Basin-4 neurons 
(n = 8 neurons [four larvae]). 

(H) Activation of C4da or A08n neurons by CsChrimson elicits nociceptive 
response (n = 90 larvae for each group).  Note that activation of A08n neurons mostly 
results in abrupt body curling. 

(I) Larvae expressing CsChrimson in one or two A08n neurons exhibit an 
increase in nociceptive behavior.  Results combine curling and rolling. Most of the 
responders showed curling only.  Sample numbers are indicated in the graph. 

(J) Larvae with silenced A08n neurons show a significant reduction in nociceptive 
response.  Nociceptors were activated by ChR2.  A08n neurons were silenced by Kir2.1 
expression with the GMR82E12-Gal4 driver.  The control group lacked the driver (n = 
100 larvae for each group).   
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Figure 2.5. Mosaic activation of A08n neurons. 
CsChrimson::Venus was expressed in none (“0”), one (“1”), or both (“2”) A08n neurons, 
in addition to several neurons in the brain.  The FLP-out mosaic technique with 
GMR82E12-Gal4 driver was used for the mosaic expression of CsChrimson.  
Arrowheads point to the cell bodies of A08n.  Scale bar: 50 μm. 
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Figure 2.6. The Sensory Input-Induced Plasticity of Larval Nociceptive Circuit Is 
Pathway Specific 

(A) Optogenetic activation of C4da neurons during development inhibits C4da-to-
A08n transmission.  C4da neurons in mature larvae were stimulated by AITC for Ca2+ 
imaging.  Maximum DF/F0 for individual A08n neurons is plotted on the graph and used 
for statistical analyses (i.e., each dot indicates one A08n) (n = 12 neurons [from six 
larvae] per group). 
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(B) Stimulation of C4da neurons by AITC (5 mM) during development inhibits 
C4da-to-A08n transmission.  C4da neurons in mature larvae were stimulated by P2X2 
for Ca2+ imaging (n = 26 [from 13 larvae] and 28 neurons [from 14 larvae] in _AITC and 
+AITC, respectively). 

(C) Stimulation of C4da neurons by AITC (2.5 mM) during development inhibits 
C4da-to-Basin-4 transmission.  Because the responses of Basin-4 neurons are highly 
variable within each VNC (data not shown) (Jovanic et al., 2016), the average of 
maximum DF/F0 of ten Basin-4 neurons from abdominal segments 3–7 in each VNC 
was calculated to represent Basin-4 activity in each VNC (i.e., each dot indicates one 
larva) (n = 7 and 6 larvae in _AITC and +AITC, respectively). 

(D) Treating larvae with AITC (2.5 mM) during development does not alter the 
mechanosensor-to-Basin-4 transmission (n = 14 larvae per group). 

(E and F) Larvae raised in environments with and without AITC (2.5 mM) have 
similar levels of noxious stimulation-induced calcium responses in C4da somata (E) and 
axon terminals (F) (n = 6 and 7 neurons [four larvae per group] in _AITC and +AITC, 
respectively, E; n = 6 neurons from three larvae per group, F). 

(G) Schematics showing the pathway specificity of nociceptor input-induced 
plasticity in synaptic connections between larval nociceptors and SONs in the circuit.  
Left: circuit diagram shows connections under normal developmental conditions.  Right: 
high levels of nociceptive input specifically suppress synaptic transmission from 
nociceptors to SONs. 
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Figure 2.7. High levels of nociceptive inputs during development suppress C4da-
to-A08n synaptic transmission. 
Nociceptor activation during day 3-4 AEL of larval development resulted in reduced 
A08n responses.  n = 13 neurons (7 larvae) and 17 neurons (10 larvae) in red and blue 
groups, respectively. 
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Figure 2.8. Serotonergic Neurons Are Required to Establish Sensory Input-
Induced Plasticity of Larval Nociceptive Behavior 
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(A) Projections of serotonergic neurons overlap with C4da axon terminals.  
Serotonergic neurons (TRH), which were labeled by a multicolor FLP-out technique, are 
shown in red and green, and C4da axon terminals are shown in blue.  Scale bar, 25 
mm. 

(B and C) Silencing TRH neurons partially rescued nociceptive behavioral 
responses in larvae whose nociceptors were optogenetically stimulated during 
development.  TRH neurons were silenced by Kir2.1 expression with TRH-Gal4.  The 
control lacked TRH-Gal4.  In (B), n = 120 (control + red), 120 (control + blue), 135 (TRH 
> Kir2.1 + red), and 120 (TRH > Kir2.1 + blue) larvae.  In (C), n = 42 (TRH) and 40 
(TRH > Kir.21) larvae. 

(D) Larvae fed 5-HTP throughout development show a 2-fold reduction in rolling 
(n = 135 [_5-HTP] and 105 [+5-HTP] larvae). 

(E) Larvae fed 5-HTP during days 1 and 2 of larval development show a 2-fold 
reduction in nociceptive rolling compared to control (n = 50 [_5-HTP] and 60 [+5-HTP] 
larvae). 

(F) Silencing TRH neurons rescues A08n activity in larvae that experience high 
levels of nociceptive inputs during development.  Control, larvae that have normal TRH 
activity due to the lack of TRH-Gal4 driver for expressing UAS-Kir2.1 (n = 12 and 13, 
respectively, for red and blue illuminations); TRH > Kir2.1, larvae whose TRH neurons 
were silenced by the expression of Kir2.1 (n = 12 and 13, respectively, for red and blue 
illuminations). 

(G) Larvae fed 5-HTP throughout development show a reduction in C4da-to-
A08n synaptic transmission (n = 27 [_5-HTP] and 23 [+5-HTP] neurons). 

(H) Optogenetic stimulation of serotonergic neurons during development, without 
the stimulation during calcium imaging in mature larvae, reduced AITC-elicited A08n 
responses. Pulses of red light were used to chronically stimulate CsChrimson-
expressing serotonergic neurons.  Larvae in the control group were reared in the dark (n 
= 23 neurons [from 13 larvae] and 20 neurons [from 11 larvae] in dark and red, 
respectively). 
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Figure 2.9. Silencing serotonergic neurons does not affect the nociceptive 
behavioral responses if nociceptors are not stimulated during development. 
Kir2.1 was expressed in serotonergic neurons to silence these neurons (TRH>Kir2.1).  
The negative control (Ctl) was UAS-Kir2.1 alone without the TRH-GAL4 driver.  25 mM 
AITC was used to assess larval rolling behavior on day 4 AEL (n = 106 larvae for Ctl 
and 72 for TRH>Kir2.1) and day 5 AEL (n = 57 for Ctl and 59 for TRH>Kir2.1).  The 
percentage of larvae showing a complete rolling within 2 min was quantified.  No 
significant difference was observed between the two groups.  Larvae younger than day 
4 AEL were not tested because they rarely exhibit nociceptive rolling (data not shown). 
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Figure 2.10. Feedback Inhibition of Nociceptor-to-SON Transmission through 
Serotonergic Neurons 

(A) Stimulating C4da nociceptors activates serotonergic neurons.  The trace 
shows the averages of GCaMP6f intensities in TRH neurons caused by stimulating 
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C4da neurons via ATP/P2X2.  The black arrowhead indicates the start of ATP/P2X2-
mediated stimulation (n = 33). 

(B) Silencing SONs suppresses nociceptor-induced activation of serotonergic 
neurons.  C4da, A08n, Basin-4, and Basin-1–4 were inhibited by expressing Kir2.1.  
AITC was used to stimulate C4da neurons (n = 12, 6, 7, 9, and 8 larvae in control, 
C4da, A08n, Basin-4, and Basin-1–4 groups, respectively). 

(C) Stimulation of SONs activates serotonergic neurons.  ATP was used to 
activate neurons expressing P2X2.  Larvae in ‘‘no P2X2’’ group had no P2X2 
expression due to the lack of a GAL4 driver and a P2X2 transgene (n = 7, 12, 12, and 
10 larvae in control, C4da, A08n, and Basin-4 groups, respectively). 

(D and E) Ipsapirone (100 mM) inhibits C4da-to-A08n synaptic transmission.  
ATP/P2X2 was used to activate C4da neurons.  (D) Traces show the averages of 
responses.  (E) Quantification and statistical analysis are shown (n = 8, 6, and 10 
neurons, five larvae per group). 

(F) Ipsapirone (10 mM) diminishes AITC-elicited increase in cAMP levels in C4da 
axon terminals.  Imaging-based cAMP sensor Epac1-camps was expressed specifically 
in nociceptors, and their presynaptic terminals were imaged for Fo¨ rster resonance 
energy transfer (FRET).  AITC was used to activate nociceptors.  Levels of cAMP were 
quantified as changes in the inverse FRET ratio, which is CFP intensity divided by YFP 
intensity (DCFP/YFP) scanned with a 458-nm confocal laser (n = 5 larvae per group). 

(G and H) Knockdown of 5-HT1b in C4da neurons, but not that in A08n, 
significantly blocks the effect of ipsapirone on nociceptor-to-SON transmission.  The 
graphs show the ratio of AITC-elicited maximum DF/F0 in the presence of 10 mM 
ipsapirone over that in the presence of DMSO (vehicle).  This ratio indicates the extent 
of serotonergic inhibition of AITC-elicited responses in A08n.  In the schematic, neurons 
expressing GCaMP6f and RNAi are shown in green and purple, respectively.  An RNAi 
line against mCherry was used as a negative control.  5-HT1b #1 (B-33418) and 5-
HT1b #2 (B-27635) were used to knock down 5-HT1b (n = 18 neurons [nine larvae], n = 
12 neurons [six larvae], n = 13 neurons [seven larvae], n = 17 neurons [nine larvae], 
and n = 12 neurons [seven larvae] for mCherry, 5-HT1a, 5-HT1b #1, 5-HT1b #2, and 5-
HT7, respectively, G; n = 8 [five larvae], n = 12 [six larvae], n = 10 neurons [five larvae], 
and n = 12 neurons [six larvae] for mCherry, 5-HT1a, 5-HT1b #1, and 5-HT1b #2, 
respectively, H). 

(I) Schematic model showing that serotonergic neurons modulate nociceptor-to-
SON transmission by providing feedback inhibition. 
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Figure 2.11. The terminals of serotonergic neurons intimately intertwine with 
C4da presynaptic terminals. 

(A) Terminals of TRH neurons expressing the presynaptic marker, syb-spGFP1-
10 (cyan), near C4da neuropils (magenta).  The inset in “merge” shows one C4da 
neuropil (marked with “*”) in a single focal plane.  Scale bar: 5 μm. 

(B) No syb-GRASP signal was observed from TRH terminals to C4da 
presynaptic terminals.  Syb-spGFP1-10 was expressed in TRH neurons; CD4-tdTomato 
and CD4-spGFP11 were expressed in C4da neurons. 
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Figure 2.12. Developmental Stimulation of Nociceptors Enhances 5-HT Receptor-
Mediated Inhibition of Nociceptor-to-SON Transmission 

(A) Noxious stimulation during development (2.5mMAITC) does not affect 
nociceptor-induced responses in serotonergic neurons (n = 33 and 25 larvae for _AITC 
and +AITC, respectively). 

(B) Developmental stimulation of C4da neurons sensitizes C4da-to-A08n 
transmission to ipsapirone.  AITC was used to stimulate C4da neurons for calcium 
imaging.  0, 1, or 10 mMipsapirone was mixed with AITC and applied sequentially from 
low to high concentrations (n = 12 neurons [from six larvae] for each group). 

(C–E) Noxious stimulation during development (2.5 mM AITC) significantly 
diminishes AITC-elicited increase in cAMP levels in C4da axon terminals without 
affecting basal cAMP levels.  Average traces of cAMP responses (C), quantification and 
statistical analysis of cAMP levels (n = 7 for each group, D), and quantification and 
statistical analysis of basal cAMP levels (E) are shown.  The value YFP458/YFP515 
was normalized by dividing the average of the _AITC group (n = 7 for each group). 

(F) Developmental activation of nociceptors does not reduce A08n responses to 
nicotine.  Three different concentrations of nicotine were applied to the brains of mature 
larvae, and changes in calcium levels in A08n somata were analyzed.  Since A08n is 
specific to nociceptive inputs, A08n responses to nicotine reflect its responses to 
nociceptive inputs (n = 9 in each group). 

(G) A model that explains the experience-dependent sensory input-induced 
plasticity in nociceptor-to-SON transmission.  Left panel: acute noxious stimulation in 
mature larvae increases cAMP levels in the presynaptic terminals of nociceptors (shown 
in teal), and it leads to robust synaptic transmission to SONs (shown in orange).  
Serotonergic neurons (shown in purple) suppress cAMP levels in nociceptor presynaptic 
terminals.  Right panel: developmental noxious stimulation enhances the 
responsiveness of nociceptor presynaptic terminals to 5-HT modulation in mature 
larvae, leading to further suppression of cAMP production and reduced synaptic 
transmission to target neurons. 
  



 

 85 

 

 
Figure 2.13. Feedback Modulation Enables Pathway-Specific Plasticity in 
Developing Sensory Circuits in Drosophila 
The pathway-specific plasticity of the developing nociceptive circuit in Drosophila is 
different from the serotonergic facilitation that occurs during sensitization of the 
defensive gill-withdrawal reflex in Aplysia.  In the Drosophila nociceptive circuit, activity 
in nociceptors (S) leads to activation of both SONs in the circuit and serotonergic 
interneurons (5-HT), while in Aplysia gill-withdrawal reflex circuit, serotonergic 
interneurons are activated by another sensory pathway (S2). 
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CHAPTER 3 

Neural Activity Instructs  
Fine-Scale Topography  

in a Developing Sensory Circuit in Drosophila 

 

A part of this chapter includes excerpts from a review article in Journal of 

Comprehensive Physiology A, Fine-scale topography in sensory systems: insights from 

Drosophila and vertebrates, written by Takuya Kaneko and Bing Ye in 2016. 

 

In addition, Materials and Methods section incorporates material from a research article 

in Current Biology, Trim9 regulates activity-dependent fine-scale topography in 

Drosophila, written by Limin Yang, Ruonan Li, Takuya Kaneko, Kendra Takle, Rei K. 

Morikawa, Laura Essex, Xin Wang, Jie Zhou, Kazuo Emoto, Yang Xiang, and Bing Ye 

in 2014.  

 

I acknowledge Limin Yang, a collaborator for this project. 
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Summary 

To encode the positions of sensory stimuli, sensory circuits form topographic maps in 

the central nervous system (CNS) through specific point-to-point connections between 

pre- and postsynaptic neurons.  In vertebrate visual systems, the establishment of 

topographic maps involves the formation of a coarse topography followed by that of 

fine-scale topography that distinguishes the axon terminals of neighboring neurons.  

Intrinsic differences in the form of broad gradients of guidance molecules instruct coarse 

topography while neuronal activity is required for fine-scale topography.  On the other 

hand, studies in the Drosophila visual system have shown that intrinsic differences in 

cell adhesion among the axon terminals of neighboring neurons instruct the fine-scale 

topography, independent of neural activity.  Here, we identify the first activity-dependent 

topography in Drosophila.  The central projections of nociceptive sensory neurons in 

Drosophila exhibit fine-scale topography, which depends on the activity levels of 

nociceptive neurons.  This study reveals a role of neuronal activity in creating molecular 

differences among nociceptive neurons.  Our study further demonstrates that 

topography of nociceptors requires their postsynaptic targets, similar to activity-

dependent topography in vertebrates, implicating a conserved principle. 

 

The topographic map in the nociceptive system in Drosophila larva 

Do C4da nociceptive neurons exhibit topography in C4da synaptic areas (“C4da 

neuropils”)?  In order to address this question, we took advantage of the C4da-specific 

promoter from the pickpocket gene (Grueber et al. 2003) to generate a reference of the 

C4da neuropils by marking these neurons with a membrane marker, e.g. the red 
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fluorescence protein tdTomato tagged with the membrane protein CD4.  We then 

labeled single C4da neurons in the background of this reference.  Automated image 

analysis was used to deduce the relative position of the synaptic terminal of the GFP-

labeled mutant in the C4da neuropil.  An advantage of the C4da system is that 

randomly labeled single neurons can be reliably identified based on the position of the 

cell bodies on the body wall.  As a consequence, the differences among the three C4da 

neurons can be systematically studied. 

This analysis identified that the synaptic terminals of the three C4da neurons in 

each hemi-segment form a dorsal-to-ventral topographic arrangement in the VNC, 

which corresponds to the dorsal-to-ventral distribution of their dendritic fields on the 

body wall.  This topographic system is fine-scale because it distinguishes the locations 

of neighboring neurons.  Unlike the dendritic tiling on the body wall, which is large in 

size, the fine-scale topography formed by the C4da synaptic terminals in the VNC is 

confined along a distance of roughly 6 microns.  Moreover, the synaptic terminals are 

intimately adjacent to each other, leaving little space in between.  These features allow 

for direct assessment of fine-scale topography, but also call for new techniques for 

efficient analysis. 

Although it consists of only three neurons, the C4da topography is composed of 

two aspects, which are likely to be established through different mechanisms.  The 

three C4da neurons in each hemi-segment are termed the dorsal (D), middle (M), and 

ventral (V) neurons based on the locations of their cell bodies and dendritic fields in the 

body wall.  After the axons of the three neurons reach the VNC, the D axon immediately 

defasciculates from the M and V axons.  The D axon projects dorsally while the M and V 
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axons project ventrally.  Both then converge on the C4da neuropil situated in the most 

medioventral portion of the general synaptic area in the VNC.  Once inside the C4da 

neuropil, the terminal of the D axon stays dorsally to those of the M and V axons.  The 

M and V axons, which reach the C4da neuropil as a single nerve, separate from each 

other gradually during development so that the M terminal locates dorsally to the V 

terminal.  Consequently, the presynaptic terminals of the three C4da neurons occupy 

distinct areas in the C4da neuropil, establishing fine-scale topography (Figure 1.3c). 

 
Neural activity-dependent regulation of fine-scale topography in the larval 

nociceptive circuit 

The mechanism separating the D terminal from the M/V terminals is different 

from that separating the M and V terminals; neural activity specifically regulates the 

projections of M and V neurons.  When the activity of M neurons is blocked by the 

expression of Kir2.1, an inward rectifier potassium channel that blocks both 

spontaneous and evoked activity, M terminals end in the ventral portion of C4da 

neuropil where V neurons normally terminate (Figure 1.3c).  The effect of Kir2.1 is 

specific to M neurons, and its expression in D or V neurons has no effect on the 

topographic locations of their terminals.  Conversely, activation of V neurons through 

dTrpA1 (at 30°C) shifts their terminals to the middle portion of the C4da neuropil.  

Expression of dTrpA1 in either D or M neurons does not affect the topography.  These 

results suggest that the levels of neuronal activity in M and V neurons direct the 

separation of their terminals.  The separation of the D terminals from the M/V terminals 

is independent of neuronal activity, though the underlying mechanism remains 

unknown. 
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In the C4da system, it is likely that neural activity instructs fine-scale topography 

by setting up different levels of intracellular signaling activities in M and V neurons.  In 

other words, neuronal activity creates an intrinsic signaling gradient among neighboring 

afferents.  First, although C4da neurons are almost genetically identical, they exhibit 

different levels of the Drosophila ortholog of the tripartite motif protein Trim9 (dTrim9), a 

putative E3 ubiquitin ligase of the TRIM family (Reymond et al. 2001).  The protein level 

of dTrim9 is higher in V neurons than M neurons (Morikawa et al. 2011).  Second, the 

dTrim9 protein level is regulated by neuronal activity.  When the activity of M neurons is 

blocked by Kir2.1, dTrim9 levels in these neurons increase to levels comparable to V 

neurons.  Conversely, activating V neurons by dTrpA1 decreases dTrim9 level and 

consequently eliminates the difference between M and V neurons.  Third, the gradient in 

dTrim9 protein level is essential for the topographic projections.  When dTrim9 is 

overexpressed specifically in M neurons to abolish the M-V difference, the M axons 

terminate in the ventral portion of the C4da neuropil, which is a similar phenotype to 

Kir2.1 expression.  Conversely, the removal of dTrim9 gene from V neurons 

recapitulates the phenotype of those with activation by dTripA1.  Finally, restoring the 

dTrim9 gradient rescues the topographic defects caused by activity manipulation.  

Therefore, genetic manipulation to establish the gradient of dTrim9 is sufficient to 

specify the projections of M and V neurons regardless of their activity levels. 

Altogether, these results suggest that neuronal activity regulates the levels of 

dTrim9, a cell-intrinsic molecule that is differentially expressed in individual neurons, to 

separate the M and V terminals.  How might neural activity establish such a molecular 

difference among neighboring afferents?  One possibility is that the activity levels of M 
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and V neurons are different.  Although this could be caused by genetic programs, it is 

equally possible that M and V neurons in developing larvae, which are behaving 

animals, might be activated at different levels.  Another possibility is that the responses 

to neuronal activity differ between M and V neurons so that the same level of neuronal 

activity leads to different levels of dTrim9 proteins.  This would be caused by a 

genetically programmed difference, and neuronal activity would just be a factor linking 

an intrinsic difference to differential expressions of signaling molecules. 

 

C4da neurons require postsynaptic neurons for fine-scale topography 

The identification of activity-dependent topography in Drosophila has opened up the 

door for mechanistic analysis of the role of neural activity, which might be in part 

conserved in vertebrates.  In the vertebrate visual system, neural activity in retinal 

ganglion cells (RGCs) instructs fine-scale topography by regulating interactions of the 

RGC axons with postsynaptic neurons.  In order to address whether this role of neural 

activity is conserved in the Drosophila nociceptive system, we examined the necessity 

of postsynaptic targets of C4da neurons for fine-scale topography.  For this purpose, we 

genetically ablated one type of second-order neuron of this circuit, A08n neurons, 

through the expression of reaper (rpr) and head involution defective (hid) (Hsu et al., 

2002).  The genetic deletion of A08n postsynaptic neurons significantly disrupted the 

C4da projections with incomplete separation of M and V presynaptic terminals (Figure 

3.1A).  This result suggests that the C4da topographic projections require interactions of 

the C4da axons with their postsynaptic targets, and the axon-target interactions may be 

the site of neural activity-mediated regulation as in the vertebrate visual system. 
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 Despite this similarity across species, the pathway by which neural activity 

impacts axon-target interactions seems different.  In the vertebrate visual system, 

neural activity in RGCs instructs topography through activation of NMDA receptors of 

postsynaptic neurons, whereas, in the Drosophila nociceptive system, neural activity is 

mediated by dTrim9 in presynaptic C4da neurons as mentioned above.  This difference 

may reflect that C4da neurons are presumably cholinergic and, as a result, their axon-

target interactions are independent of the NMDA glutamate receptor.  Consistent with 

this difference, our result suggests that neural activity is capable of instructing the C4da 

projections even without synaptic transmission to activate postsynaptic neurons.  In this 

experiment, we expressed tetanus toxin light chain (TNT) in single C4da neurons, which 

blocks synaptic transmission from these neurons (Robertson et al., 2013; Sweeney et 

al., 1995).  We found that C4da neurons with TNT expression exhibits normal 

topographic projections (Figure 3.1B), indicating that activation of postsynaptic neurons 

is a dispensable role of neural activity in C4da neurons for establishing fine-scale 

topography. 

  

C4da fine-scale topography requires BMP signaling 

How do postsynaptic neurons contribute to activity-dependent C4da topography?  

Since our result indicates synaptic transmission from C4da neurons is unnecessary for 

topography, we hypothesize that postsynaptic neurons regulate the C4da projections 

through retrograde signaling (i.e signaling from post to presynaptic terminals).  The 

most characterized retrograde signaling in Drosophila is BMP signaling at the larval 

neuromuscular junction (NMJ), where BMP signaling is active in motor neurons in 
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response to BMP ligands secreted from muscle cells (Marques and Zhang, 2006).  

Taking a clue from this work, we first asked whether BMP signaling is similarly active in 

C4da sensory neurons.  When BMP signaling is active, the BMP effector, Mad, 

becomes phosphorylated and trafficked to the nucleus to initiate transcription of target 

genes; therefore, the levels of BMP signaling are reflected by the expression levels of 

nuclear phosphor Mad (pMad) (Tanimoto et al., 2000).  Through immunostaining, we 

identified all of the three C4da subtypes express pMad in the nucleus, demonstrating 

that BMP is active in C4da neurons as we hypothesize (Figure 3.1C). 

Next, we examined whether postsynaptic A08n neurons express BMP ligands.  

For this purpose, we used a Gal4 reporter line for the BMP ligand, Dpp, in combination 

with UAS-nuclear GFP.  We identified that A08n expresses high levels of GFP 

expression although only a small population of neurons are positive for the reporter 

expression in the VNC (Figure 3.1D).  This result is consistent with our hypothesis that 

A08n neurons communicate with C4da neurons through retrograde BMP signaling. 

Is BMP signaling in C4da neurons required for their topographic projections?  To 

address this question, we first deleted the type II BMP receptor, Wit, in single C4da 

neurons through MARCM technique.  We found that Wit deletion from D or V neurons 

has no effect on their topographic projections while deletion from M neurons disrupts 

their projections by shifting the presynaptic terminals ventrally (Figure 3.2A).  A similar 

phenotype was observed when we mutated the BMP effector, Mad, in single C4da 

neurons.  M neurons that lack Mad expression project their presynaptic terminals to the 

ventral side of the C4da neuropil (Figure 3.2B).  Thus, BMP signaling is required 

specifically in M neurons, where neural activity is required, for fine-scale topography. 
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One possible model is that M neurons exhibit higher levels of BMP signaling than 

V neurons and this difference causes the separation of the M/V presynaptic terminals.  

However, our results show this is unlikely the case.  First, our immunostaining for 

nuclear pMad showed no obvious difference in the levels of BMP signaling between M 

and V neurons (Figure 3.2B).  Second, elevation of BMP signaling specifically in V 

neurons does not shift their presynaptic terminals dorsally.  We elevated the levels of 

BMP signaling through the expression of a constitutively active form of the BMP type I 

receptor, Tkv, (Tkv[CA]).  Tkv[CA] expression in single C4da neurons resulted in 

overgrowth of their axon terminals along the A-P axis, but has no effect on their 

orientation along the D-V axis (Figures 3.2B-C).  Consistently, overexpression of the Wit 

receptor to increase BMP signaling does not disrupt the topographic projections. (Figure 

3.2B).  Taken together, despite the requirement of BMP signaling, the C4da projections 

are not determined by the levels of BMP signaling. 

Then, what is the function of BMP signaling?  Given that blocking BMP signaling 

phenocopies the effect of inhibiting neural activity, we suspect that BMP signaling 

mediates the role of neural activity in instructing topography.  This model is consistent 

with the function of retrograde BMP signaling at the NMJ, where BMP signaling is 

required for activity-dependent stabilization of synaptic connections (Berke et al., 2013).  

BMP signaling in C4da neurons may similarly mediate the formation of synapses to 

stabilize only topographically correct connections (i.e. synapses of M neurons at the 

meddle layer of the C4da neuropil).  Besides this favored model, it is equally possible 

that BMP signaling controls topography by instructing the levels of neural activity.  In 

fact, a recent study demonstrates that BMP signaling impacts the levels of calcium 
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increases at the presynaptic terminals of C4da neurons (Tracey and Honjo, 2018).  A 

future study will distinguish these two models by determining whether neural activity 

requires BMP signaling.  The first model would be supported if the presynaptic terminals 

of V neurons that lack Mad function are not shifted dorsally by enhancing neural activity.  

Future research on this system is expected to elucidate detailed molecular mechanisms 

by which neural activity instructs fine-scale synaptic connections.  

 

Materials and Methods 

MARCM for Analyzing Topographic Mapping 

MARCM experiments were done as previously described (Ye et al., 2011).  We 

dissected only size-matched 3-day-old third-instar larvae to ensure consistency of the 

developmental stages of the analyzed animals.  Three hours after egg laying, the eggs 

were heat shocked at 37.5°C for ∼15–20 min.  For using MARCM to overexpress 

dTrpA1 in single C4da neurons, the eggs were kept at 30°C after heat shock and 

dissected 2.5 days later.  The same procedure was followed for the control experiments. 

 

Immunostaining, Imaging, Image Preprocessing, and Image Analysis 

Third-instar larvae were immunostained as described (Ye et al., 2004), with minor 

modifications.  All images were collected as 3D stacks using an SP5 confocal system 

(Leica Microsystems) equipped with a 63× oil lens (Plan-Apochromat, numerical 

aperture [NA] = 1.4, Leica Microsystems).  The axial sampling step (z-step) was 0.3 μm.  

Images were collected with minimum signal saturation.  Three steps were necessary to 

preprocess images for analyzing the topographic index, volume, and boundary location 
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of presynaptic terminals.  First, confocal image stacks were deconvolved with Huygens 

software (Scientific Volume Imaging).  Next, the VNC in each stack was aligned to 

uniform orientation with the 3D image analysis software Amira (FEI Visualization 

Sciences Group).  Third, the 3D image stacks were cropped to contain only the C4da 

neuropil with the single MARCM or FLP-out clones in them.  After preprocessing, the 

image stack was automatically analyzed by custom-designed software for topographic 

index, volume ratio, and boundary location. 

 

Algorithm for Analyzing the Topographic Index and Volume of Presynaptic Terminals 

The neuropil channel for TI and volume ratio calculation was obtained by combining the 

raw neuropil signal with the clone channel signal.  Because it was typically dim, the 

neuropil channel was enhanced by iterative histogram normalization:  The maximum-

intensity parameter during normalization was iteratively adjusted so that the mean 

foreground intensity was increased to 80.  The extraction of signals of C4 da neuropil 

and clone was extracted from background by using robust adaptive threshold selection 

(RATS) (Wilkinson, 1998). 

RATS is a segmentation method for extracting the foreground object out of a 

gray level image based on robust and adaptive thresholding.  It selects the thresholds 

by recursively dividing the image using quadtree structure and then automatically 

calculating the thresholds using intensity values as well as their gradients in the local 

region.  The thresholds for all local regions are then bilinearly interpolated across the 

entire image.  The advantage of the RATS approach is its local adaptability, which suits 

well to microscopic images with contrast variation among different local regions.  RATS 
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was applied to each slice of the 3D image stack.  The minimum region size (also called 

leaf size) of the quadrant was set to 5 pixels per side. 

The TI of each clone voxel was calculated by measuring its relative position 

between dorsal and ventral neuropil boundaries: TIi = di/(di + vi), where di was the 

distance of the voxel i to the dorsal boundary and vi was its distance to the ventral 

boundary.  As such, the voxels at the dorsal side of the neuropil had TIs closer to 0; the 

voxels at the ventral side of the neuropil had TIs closer to 1.  The overall TI of a clone 

was the averaged sum calculated by TI = ΣTIi/n, where n was the total number of clone 

voxels in the 3D image stack.  Note that an overall TI ∈ (0, 1) can never be 0 or 1.  The 

volume ratio was the ratio between the volumes of clone and neuropil, with the volume 

being measured by the number of foreground voxels in the 3D volume. The volume of a 

clone or neuropil was represented by the total number of voxels in the 3D images of the 

clone or neuropil.  Thus, the result of this analysis is not affected by the “holes” in the 

3D image of a presynaptic terminal caused by the convoluted morphology of the 

terminal. 

The average dorsal boundary position of each clone was calculated by taking the 

mean of the normalized positions of the dorsal-most voxels of the clone.  To obtain the 

normalized position, we measured the distance (di) between the dorsal-most voxel of 

the clone and that of the neuropil at the same x position, and the distance between the 

dorsal-most and ventral-most voxels of the neuropil at that x position (Di).  The 

normalized boundary position (Bi) at a particular x position is calculated as the ratio 

between the two distances: Bi = di/Di.  The average boundary position of a clone was 

the averaged sum of the Bi for all x positions. 
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The software for quantifying TI, volume ratio, and boundaries was developed as an 

ImageJ (NIH) plugin. 
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Figure 3.1. Postsynaptic neurons support C4da topography possibly through 
retrograde BMP signaling 

(A) Deleting A08n neurons disrupts C4da topography.  Topographic Index (TI) 
indicates the relative positions of individual presynaptic terminals; a low TI means a 
dorsal position while a high TI means a ventral position (please see Materials and 
Methods for details).  In the control group, M neurons exhibit lower TI than V neurons, 
suggesting the presynaptic terminals of M neurons are located more dorsally than those 
of V neurons.  The deletion of A08n neurons through the expression of rpr and hid 
abolishes the topographic separation between the M and V terminals. 

(B) Inhibition of synaptic transmission has no effect on C4da topography.  The 
release of neurotransmitter is blocked by the expression of TNT. 

(C) BMP signaling is active in C4da neurons.  All of the three C4da subtypes 
express nuclear pMad, an indicator of BMP levels.  The M and V neurons (labeled in 
red by ppk-tdTomato) exhibit seemingly comparable levels of nuclear pMad signals 
(green).  Arrows indicate soma of C4da neurons.  Scale bar: 7.5 µm. 

(D) A08n neurons express the BMP ligand, Dpp.  The image shows the larval 
VNC. Dpp-Gal4 reporter drives the expression of UAS-nuclear GFP (in green) in A08n 
neurons labeled by cytosolic mcherry (in red).  Arrows indicate soma of A08n neurons.  
Scale bar: 25 µm. 
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Figure 3.2. C4da fine-scale topography requires BMP signaling 
(A) Deleting the BMP receptor, Wit, disrupts C4da topography.  MARCM 

technique was used to induce wit mutation in single C4da neurons. 
(B) Deleting the BMP effector, Mad, abolishes the M/V separation, whereas 

elevating BMP signaling through Tkv[CA] expression or Wit overexpression (o/e) has 
little effect. 

(C) The expression of Tkv[CA] results in overgrowth of the C4da axon terminals.  
The presynaptic terminals of all C4da neurons are labeled by ppk-tdTomato in red, and 
single C4da neurons (MARCM clones) are labeled by GFP in green.  Scale bar: 10 µm. 
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CHAPTER 4 

Discussion and Future Directions 

 
A part of this chapter includes excerpts from a review article in Journal of 

Comprehensive Physiology A, Fine-scale topography in sensory systems: insights from 

Drosophila and vertebrates, written by Takuya Kaneko and Bing Ye in 2016, and a 

research article in Neuron, Serotonergic Modulation Enables Pathway-Specific Plasticity 

in a Developing Sensory Circuit in Drosophila, written by Takuya Kaneko, Ann Marie 

Macara, Ruonan Li, Yujia Hu, Kenichi Iwasaki, Zane Dunnings, Ethan Firestone, Shawn 

Horvatic, Ananya Guntur, Orie T. Shafer, Chung-Hui Yang, Jie Zhou and Bing Ye in 

2017.  

 

Sensory-pathway-specific plasticity: insights from Drosophila 

In this study, we demonstrate that a feedback circuit motif provides the basis for 

sensory-input-induced plasticity in the developing Drosophila nociceptive circuit.  We 

first show that functional development of the nociceptive circuit in Drosophila is 

regulated by noxious sensory inputs.  In investigating the underlying mechanism, we 

identified a group of second-order neurons (SONs) that receive inputs from nociceptors, 

but not mechanosensors, which reveals that the larval nociceptive circuit contains 

components for both multimodality integration and modality-specific processing.  Taking 
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advantage of this feature of the circuit, we demonstrate that sensory input-induced 

plasticity of the nociceptive circuit exhibits a striking degree of pathway-specific 

adaptation to noxious inputs.  We further show that this pathway specificity is, at least in 

part, achieved through feedback inhibition of the nociceptor presynaptic terminals by 

serotonergic interneurons.  This unique mechanism enables the nervous system to 

establish long-lasting functional changes in a sensory pathway-specific manner, without 

disrupting other modalities. 

 

Sensory Gating through Presynaptic Inhibition at the First Synapse of the Nociceptive 

Circuit 

To prevent an overload of irrelevant or low-priority information, the nervous system 

filters out sensory afferents elicited by redundant or unnecessary stimuli.  Although this 

process, referred to as sensory gating, occurs at multiple levels in the nervous system 

(Freedman et al., 1996; McCormick and Bal, 1994), presynaptic inhibition at the first 

synapse of sensory pathways appears to be a recurrent theme in sensory gating across 

species.  For example, in the Drosophila olfactory system, GABAergic inhibition of the 

terminals of olfactory receptor neurons (ORNs) controls the information flow in the 

olfactory circuit (Olsen and Wilson, 2008; Root et al., 2008); the levels of presynaptic 

inhibition, which are mediated by GABABR2 receptors, are different in distinct types of 

ORNs to achieve appropriate responses to various olfactory cues (Root et al., 2008). 

Previous studies in other organisms have shown that presynaptic inhibition of 

nociceptor terminals controls the sensory afferent in the nociceptive pathway.  Both 

external stimuli and internal activities can inhibit nociceptor-to-SON synaptic 



 

 105 

transmission and, consequently, alter the animal’s response to noxious stimuli (Fields, 

2004; Kuner, 2010).  This allows the animal to perform other behavior(s) that may be 

more important than nociceptive behavior even in the presence of noxious inputs.  

Whether or not the presynaptic inhibition of nociceptor terminals exists in Drosophila 

was unknown. 

In the present study, we discovered presynaptic inhibition at the first synapse of 

nociceptive circuit in the Drosophila larva.  Moreover, we found that serotonergic 

signaling mediates this presynaptic inhibition.  Serotoninergic systems are known to 

modulate sensory gating in several animal species.  For example, in the medicinal 

leech, feeding inhibits the synaptic transmission from tactile mechanosensory neurons 

to all their SONs (Gaudry and Kristan, 2009), which can be mimicked by serotonin and 

blocked by an antagonist of serotonin receptors.  Such a modulation of sensory gating 

establishes the priority of feeding over tactile behaviors.  Moreover, in Drosophila, 

serotonin modulates olfactory processing by enhancing olfactory responses of the 

SONs, the projection neurons, in an odorant-specific fashion (Dacks et al., 2009).  

Therefore, serotonergic inhibition of the first synapse of sensory circuits is a mechanism 

that underlies sensory gating in multiple sensory systems.  Our study shows that 

serotonergic neurons are part of a feedback loop that inhibits nociceptor-to-SON 

synaptic transmission in the Drosophila larva, which reveals a circuit motif that underlies 

the presynaptic inhibition of the first synapse of nociceptive circuit (Figure 2.13). 
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A Novel Mechanism that Underlies Sensory Pathway Specificity in Sensory Input-

Induced Plasticity 

Our results demonstrate pathway specificity in the plasticity of the Drosophila 

nociceptive circuit.  Although mechanosensory and nociceptive pathways converge on 

shared SONs (e.g., Basin-4) to integrate inputs from two different sensory modalities 

(Ohyama et al., 2015), developmental noxious input only modifies nociceptor-to-SON 

transmission.  A unique aspect of this form of plasticity is that it is mediated through a 

group of interneurons (i.e., the serotonergic neurons) that receive inputs from SONs 

(Figure 2.13).  Several aspects of this circuit motif contribute to sensory pathway 

specificity of the plasticity.  First, it is different from the serotonergic facilitation that 

occurs during sensitization of the defensive gill-withdrawal reflex in Aplysia, in which 

serotonergic neurons are activated by another sensory pathway (Kandel, 2001).  This 

makes sense, because the pathway-specific plasticity described here is not a form of 

associative learning.  Co-activation of SONs in the sensory circuit and modulatory 

interneurons, which provide a feedback control, forms a circuit motif that allows the 

establishment of long-lasting changes in the nociceptive circuit while maintaining the 

normal functions of other sensory modalities.  Second, the nociceptive circuit 

establishes plasticity by sensitizing nociceptor presynaptic terminals to serotonin, rather 

than by enhancing the activity of serotonergic neurons; this allows the nervous system 

to maintain other serotonin-dependent functions.  It is interesting to note that the 

plasticity achieved through this feedback motif implies a homeostatic mechanism that 

maintains the activity levels of serotonergic neurons when those of SONs are reduced.  

Last, by modulating the presynaptic terminals of nociceptors, but not the postsynaptic 
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neurons, nociceptor input-induced plasticity allows the postsynaptic neurons to maintain 

their normal responses in other modalities (e.g., mechanosensation). 

 

The Role of Serotonergic System in the Plasticity of Sensory Gating 

We found that the strength of serotonergic modulation is plastic, such that stimulation of 

nociceptors during development sensitizes nociceptor presynaptic terminals to 

serotonergic inhibition.  This plasticity is probably established through use-dependent 

strengthening of the serotonergic modulation; noxious input during development likely 

leads to chronic activation of serotonin receptors in nociceptor presynaptic terminals, 

which in turn sensitizes these presynaptic terminals to serotonergic modulation.  The 

enhanced sensitivity may be achieved through (1) an increase in the expression level of 

serotonin receptors in the presynaptic terminals, for example, through CREB-dependent 

gene expression (Bartsch et al., 1998; Dash et al., 1990); (2) modification of a signaling 

transduction pathway that leads to reduced presynaptic neurotransmitter release, which 

would be a novel form of synaptic scaling; or (3) modification of the function of the 

serotonin transporter in presynaptic terminals (Fabre et al., 2000).  Our study lays the 

foundation for future studies of the molecular pathways that underlie nociceptor input-

induced plasticity. 

 

Ethological Significance of Sensory Input-Induced Plasticity in the Nociceptive Circuit 

Developmental plasticity of the nervous system allows animals to adapt their behaviors 

to survive in a unique, yet stable, environment.  Larvae have fewer degrees of 

freedomin choosing their environments than do adult flies and vertebrates.  As 
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nociceptive curling and rolling are disruptive to baseline functions of the larval nervous 

system, it is conceivable that developing in an environment in which there is excessive 

noxious sensory input requires that the animal suppresses nociceptive circuit function 

for survival.  Identification of nociceptive circuit-specific plasticity suggests a neural 

mechanism for survivability in the presence of noxious environmental factors, such as 

noxious heat and plant-derived chemicals.  This type of behavioral modulation may be 

useful in the natural environment, as Drosophila melanogaster lives in a wide range of 

geographic locations and environments (Singh et al., 1982).  Moreover, some noxious 

chemicals have antimicrobial properties (Billing and Sherman, 1998; Zhang, 2010) and 

could potentially protect Drosophila from bacteria or deleterious fungi in rotten fruits.  

Finally, our data show that exposure to low levels of the insecticide AITC results in 

modulation of insect behavior, which indicates potential unintentional ecological 

consequences of insecticide off-target effects. 

 

Sensory-pathway-specific plasticity: future directions 

Although we provided a novel insight into the mechanism that enables sensory-

pathway-specificity, our study has opened up more questions to be addressed.  Most 

importantly, it needs to be determined whether the mechanosensory pathway is capable 

of expressing plasticity in response to enhanced mechanosensory inputs during 

development.  If mechanosensory synapses of Basin-4 neurons are incapable of 

expressing synaptic plasticity, it is no wonder that noxious inputs modify nociceptive 

synapses specifically without changing mechanosensory synapses.  The effect of 

mechanosensory experience can be examined by providing developing larvae with high 
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levels of vibration, because Basin-4 neurons receive inputs from mechanosensors that 

detect vibration.  As observed in C. elegans, enhanced mechanosensory experience 

may increase the sensitivity to mechanosensory inputs, which could help animals to 

prepare for future mechanosensory stimuli. 

 Another question would arise if mechanosensory synapses of Basin-4 exhibit 

synaptic plasticity.  How do serotonergic neurons specifically modify one type of 

sensory neurons?  Considering the broad distribution of serotonergic neurites and the 

wide diffusion range of serotonin (Bunin and Wightman, 1999), it is conceivable that 

serotonin reaches both the presynaptic terminals of mechanosensors and those of 

nociceptors, which are immediately adjacent to each other (Grueber et al., 2007).  One 

possibility is that sensory-input-induced plasticity largely depends on the timing of 

neural activities in serotonergic neurons and sensory neurons.  The feedback motif in 

the nociceptive circuit causes the activation of serotonergic neurons immediately after 

the activation of nociceptive neurons.  This is consistent with the timing that enables 

serotonin to establish associative learning in Aplysia, where serotonergic neurons need 

to be activated slightly after the activation of sensory neurons (Kandel, 2013).  Similarly, 

this model is consistent with Hebb’s postulate on synaptic plasticity, which proposes 

that concurrent activation of pre- and post-synapses results in modification of only those 

synapses (Hebb, 1949).  In the nociceptive circuit, inhibition of the nociceptor-to-target 

transmission may be attributable to Hebbian plasticity in the connection between 

serotonergic neurons and nociceptor presynaptic terminals.  To test this model, future 

study can address whether silencing serotonergic neurons throughout development 
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prevents noxious inputs from sensitizing the nociceptor presynaptic terminals to 

serotonin. 

 

Activity-dependent topographic projections: insights from Drosophila 

Topographic maps are unique in that, although neurons in the map are of the same 

type, the axon terminals of neighboring neurons are continuously aligned to form point-

to-point connection specificity.  In the fly visual system, genetic programs sufficiently 

establish fine-scale topographic maps, whereas both vertebrate visual system and fly 

nociceptive system require the activity of afferent neurons for their fine-scale 

topographic alignments.  Despite these findings, many important questions remain to be 

answered in order to understand the mechanisms underlying activity-dependent fine-

scale topography. 

 

Genetic code versus neural activity in specifying synaptic connections 

Why is the genetic code insufficient for establishing fine-scale topography in the 

vertebrate visual system and fly nociceptive system but sufficient for the fly visual 

system?  The six photoreceptor axons from each ommatidium are bundled together in a 

fashion that preserves the spatial arrangement of the cell bodies (Clandinin and 

Zipursky 2002), which may require Eph gradients in the targets (Dearborn et al. 2002).  

Intrinsic differences in cell adhesion then precisely instruct the projections of the six 

axons to form specific connections with their respective targets.  These two steps 

prevent adjacent presynaptic terminals from overlapping with each other at any stage of 
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the development, resulting in a continuous map composed of a large number of neurons 

of the same type. 

The vertebrate visual systems take a different strategy.  Morphogens such as 

BMP construct broad gradients of Ephs and ephrins over large populations of pre- and 

post-synaptic neurons (Peters 2002).  These broad gradients are insufficient for 

endowing distinct identities to neighboring axon terminals, producing overlapping 

synaptic terminals among the neighbors. In order to refine the coarse topography, 

neuronal activity is used as an additional cue to distinguish adjacent axons for their fine-

scale separation.  The sorting of the larger number of axons in vertebrates might be 

beyond the capacity of genetic programs, and the difference in the strategies might be 

attributed to differences in the brain size across species. 

Our finding of activity-dependent topography in the fly nociceptive system 

demonstrates cross-species conservation of the activity-dependent fine-scale sorting of 

sensory afferents.  Among the three nociceptive neurons forming topography in one 

hemi-segment, two project their axons as a single nerve (Yang et al. 2014).  The axons 

of the two neurons are not patterned topographically in the nerve, and their presynaptic 

terminals overlap initially.  Despite the small number of afferents, the sorting of the 

adjacent terminals relies on the relative levels of neuronal activity.  Elucidating how 

neuronal activity generates molecular differences among neighboring neurons will shed 

light on how the nervous system uses neuronal activity for its development. 

 

 

 



 

 112 

The link between neural activity and synaptic specificity in fine-scale topography 

Despite remarkable progresses in understanding activity-dependent fine-scale 

topography, how neural activity leads to specific synaptic connections in fine-scale 

topography remains undetermined.  Studies of the fly visual system revealed that fine-

scale topography requires a network of cell-cell adhesion, which is based on differential 

regulation of adhesion properties between neighboring neurons (Figure 4.1).  In this 

system, interactions among axons with different levels of cadherin activity direct the 

axons to their correct targets. 

Axon-axon interactions appear to be a conserved mechanism underlying the 

formation of neural maps.  In the vertebrate olfactory system, receptor neurons 

detecting different odors project their axons to anatomically separated glomeruli.  The 

formation of such a discrete map relies on axon-axon interactions of olfactory receptor 

neurons, which are partly regulated by stimulus-induced activity of these neurons 

(Sakano 2010; Nishizumi and Sakano 2015).  Odor-driven neuronal activity produces a 

difference in the expression profile of cell surface molecules among neurons with 

different receptors (Serizawa et al. 2006).  The activity-dependent membrane molecules 

include adhesive molecules, such as kirrel2/3, and repulsive molecules, such as 

ephrinA/EphA.  Interactions between afferents with different levels of these proteins 

contribute to the receptor-type specific axonal segregation in the olfactory system. 

In the vertebrate visual system, it is possible that the retinal waves dynamically 

control adhesive characteristics of individual RGC axons (Figure 4.1).  For example, the 

waves might produce transient gradients of adhesion activity among neighboring axons 

along the axis of its propagation.  Such local gradients can instruct individual synaptic 
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connections through a network of cell-cell interactions.  In this regard, the activity-

dependent regulation of Trim9 levels might act as a mediator between neural activity 

and cell adhesion.  It is interesting to note that Trim9 protein, which is specifically 

expressed in the nervous system in mammals (Berti et al. 2002; Tanji et al. 2010), 

exhibits a gradient along the dorsal-to-ventral axis in mouse spinal cord (Berti et al. 

2002).  This raises the possibility that Trim9 gradient instructs fine-scale topography in 

vertebrates. 

 

The role of axon-target interactions and BMP signaling in establishing topography 

Besides axon-axon interactions mentioned above, topographic maps of sensory 

afferents are commonly established through interactions of the afferents with their 

postsynaptic targets, i.e. axon-target interactions.  In the fly visual system, topographic 

projections of photoreceptors require Ncad-mediated attractive interactions of the 

photoreceptors with their postsynaptic neurons in the lamina.  In the case of the 

vertebrate visual system, a necessary step for establishing RGC topography is 

activation (i.e. depolarization) of postsynaptic neurons by neuronal activity of 

presynaptic RGCs.  Consequent synchronization of neural activities in pre- and 

postsynaptic terminals leads to activation of NMDA receptors on the postsynaptic 

terminals, which in turn stabilizes their synaptic connections and establishes fine-scale 

topography.   

Our study further identified that topographic projections of fly larval nociceptors 

require A08n neurons, one group of postsynaptic targets of nociceptors.  Although 

similar to the vertebrate visual system, fine-scale topography of nociceptors is instructed 
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by neural activity of these nociceptors, it is unlikely that nociceptor activity does so 

through activation of postsynaptic A08n neurons.  Indeed, our result demonstrated that 

neural activity of nociceptors can instruct topography, even in the absence of 

neurotransmitter release from the nociceptors, ruling out the possibility that 

synchronized neural activities between pre- and postsynaptic terminals instruct 

topography even in this fly system.  It is easy to speculate that a different strategy has 

been evolved to accommodate particular needs of the fly nervous system, where the 

majority of neurons (likely including nociceptors) are cholinergic and communicate with 

postsynaptic targets through acetylcholine receptors rather than through NMDA 

glutamate receptors necessary for co-activity detection. 

Rather than by directly activating postsynaptic targets, neural activity in 

nociceptors possibly impacts axon-target interactions indirectly by regulating intrinsic 

signaling molecules.  In fact, at the fly NMJ, neuronal activity in motor neurons indirectly 

affects axon-target interactions by regulating signaling molecules inside the motor 

neurons.  In this system, individual motor neurons connect with specific muscle cells 

with high fidelity during the embryonic stage (Ruiz-Canada and Budnik, 2006).  This 

target selection is partially regulated by motor neuron activity, whose role exhibits at 

least three similarities to that of nociceptor activity (Carrillo et al., 2010).  First, inhibition 

of neural activity of motor neurons results in their synaptic connections with incorrect 

muscle cells.  Second, neural activity regulates motor neuron projections, even in the 

absence of depolarization of postsynaptic muscle cells.  Third, the function of neural 

activity in motor neurons is likely mediated by the intrinsic signaling molecule, CaMKII, 

whose overexpression in motor neurons suppresses the defects caused by the 
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inhibition of motor neuron activity.  Importantly, in addition to these three similarities, 

activity-dependent CaMKII signaling seems to instruct target selection by sensitizing 

motor neurons to Semaphorin-2a signaling, a retrograde repellent signaling derived 

from muscle cells.  The potential targets of this activity-dependent regulation are 

signaling pathways downstream of plexin B, a receptor for Semaphorin-2a.  Based on 

this important research, we favor a model of nociceptor topography in which neural 

activity in nociceptors similarly control nociceptors’ responses to retrograde signaling 

from postsynaptic A08n neurons through Trim9-mediated signaling pathways. 

We identified Dpp as a potential retrograde signaling molecule secreted from 

A08n neurons to nociceptors, which may act as a guidance molecule.  The role of Dpp 

as an attractive guidance cue was demonstrated in two tissues in the fruit fly.  First, in 

the developing wing disc, Dpp-expressing epithelial cells physically contact distant 

tracheal primordial cells by recruiting long protrusions of the tracheal cells that contain 

the Dpp receptor, Tkv (Roy et al., 2014; Roy and Kornberg, 2011).  Second, in the testis 

of adult flies, Dpp-expressing somatic “niche” cells recruit Tkv-containing cellular 

protrusion of male germline stem cells in order to provide niche signals to the stem cells 

(Inaba et al., 2015).  In both of these two tissues, Dpp is required and sufficient to 

attract Tkv-expressing cellular processes, and ectopic Dpp expressions cause incorrect 

targeting of these processes, suggesting that Dpp-mediated BMP signaling directs cell-

cell connections. 

Given the possible role of Dpp as an attractive guidance cue, we propose that 

neural activity in nociceptors instructs fine-scale topography by sensitizing nociceptors’ 

responses to retrograde Dpp signaling, which may involve translocation of Tkv to the 
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presynaptic terminals.  We further suspect that this activity-dependent regulation 

sensitizes the presynaptic terminals of M neurons, more than those of V neurons, to 

Dpp-mediated recruitment by postsynaptic A08n neurons.  Consistent with this model, a 

recent EM reconstruction demonstrated that Dpp-expressing A08n neurons form more 

synapses with M neurons than V neurons (Gerhard et al., 2017).  This EM study further 

determined that the primary presynaptic partners of A08n neurons are D neurons, 

suggesting that postsynaptic terminals of A08n neurons are dorsally located within the 

synaptic areas of nociceptors (i.e. C4da neuropils).  The recruitment of the M axons to 

this dorsally-located A08n postsynaptic terminals may be the direct cause of the 

termination of the M axons dorsally to the V axons. 

BMP signaling may regulate nociceptor topography through more indirect 

pathways, such as the induction of other guidance molecules.  In the vertebrate visual 

system, RGC topography is indirectly regulated by the mammalian homologs of Dpp, 

BMP2 and BMP4, which are expressed specifically in the dorsal side of the retina.  This 

dorsally restricted BMP expression drives the formation of D-V gradients in signaling 

molecules that directly instruct RGC topography as guidance cues (e.g. 

EphB2/EphrinB2) (Peters, 2002; Plas et al., 2008).  Similarly, in the fly visual system, 

Dpp-mediated BMP signaling indirectly regulates topographic projections of 

photoreceptors by specifying the cell fate of photoreceptor targets in the lamina 

(Yoshida et al., 2005).  Besides these functions of BMP signaling, a recent study of fly 

nociceptors revealed an additional one; BMP signaling enhances calcium responses in 

the presynaptic terminals of nociceptors (Tracey and Honjo, 2018).  This interesting 

finding raises the possibility that this BMP-induced calcium enhancement mediates the 
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role of neural activity in establishing topography.  To examine this possibility, future 

research needs to address whether the levels of calcium responses in the nociceptor 

presynaptic terminals determine their topographic projections, and whether the calcium 

responses are controlled by axon-target interactions (e.g. A08n-derived Dpp signaling). 

 

The role of topography of the nociceptive system in fly larvae 

Topographic maps generally encode the positional information of sensory stimuli, and 

allow animals to respond differently to sensory inputs from different body locations.  

Indeed, fly larvae respond differently to noxious inputs based on the location of the 

stimuli along the larval body axis (Robertson et al., 2013).  For example, noxious stimuli 

on the posterior region usually elicit rapid forward locomotion, whereas the same type of 

stimuli on the middle part of the larval body often elicits rolling behavior.  Additionally, 

the initial direction of rolling behavior tends to be towards the side of the body that is 

stimulated by the noxious inputs; larvae preferentially roll to the right in response to 

noxious inputs on the right side of the body (Hwang et al., 2007).  Each behavior seems 

to allow larvae to efficiently escape from individual noxious stimuli.  

However, although we identified the topographic alignment of nociceptors along 

the D-V axis, no study has demonstrated any difference in larval behavior in response 

to sensory inputs from the dorsal side vs. ventral side.  If the positional information of 

stimuli along the D-V axis is unnecessary for larval behavior, the topographic alignment 

of three neurons along the D-V axis may merely be a strategy to allow the synaptic 

areas to be equally occupied by the presynaptic terminals of the three neurons.  

Whether larvae exhibit distinct behavior in responses to different noxious inputs along 
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the D-V axis of the larval body needs careful examination to better understand the role 

of topographic maps and to study the behavioral consequences of topography defects. 

 

Activity-dependent topographic projections: future directions 

The formation of a topographic map of sensory axons is a general strategy used by the 

nervous system to detect the locations of sensory stimuli.  It is demonstrated that 

stimulating sensory neurons in different locations elicits different responses in the 

downstream circuit.  However, do spatially separated sensory neurons of the same type 

connect to the same types of target neurons?  This is a fundamental open question in 

developmental neuroscience and sensory neuroscience.  Moreover, whether sensory 

experience during development affects the types of postsynaptic neurons that 

nociceptors connect to is another important open question.  Topography in the 

Drosophila nociceptive system, which we identified, offers an opportunity to address 

these issues.  

Our finding that the nociceptor topographic projections require neuronal activity 

raised the possibility that the activity of nociceptors instructs the choice of postsynaptic 

targets during the establishment of nociceptor-to-target connections.  Moreover, the 

other project of my dissertation research revealed that the nociceptor-to-target 

transmission is suppressed by sensory inputs during development.  This suppression 

may be caused by changes in the postsynaptic neuron types that nociceptors select.  

Based on these findings, I suspect that the levels of neuronal activities in the 

nociceptors direct their selection of postsynaptic partners. 
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In the past few years, we and others have identified many different types of 

postsynaptic targets of nociceptors in Drosophila larva (Burgos et al., 2018; Gerhard et 

al., 2017; Kaneko et al., 2017; Ohyama et al., 2015; Takagi et al., 2017; Vogelstein et 

al., 2014; Yoshino et al., 2017).  I expect that individual nociceptors structurally connect 

to different groups of target neurons and elicit responses differently in the downstream 

circuit.  This idea is consistent with a recent EM reconstruction demonstrating that 

postsynaptic target neurons form different numbers of synapses with individual 

nociceptors, although this study needs further verification with more samples (Gerhard 

et al., 2017).  Future studies will analyze synaptic connections of individual nociceptors 

in detail and address whether the connections change upon manipulation of neural 

activity.  This study would further improve our understanding of how sensory inputs and 

neuronal activities contribute to the formation of functional neural networks.  
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Figure 4.1. Mechanisms underlying fine-scale topography 
In Drosophila, local gradients of intrinsic molecules (e.g. cell adhesion molecules in the 
visual system and Trim9 in the somatosensory system) instruct fine-scale topography.  
In the vertebrate visual system, broad gradients of guidance molecules are not sufficient 
to distinguish neighboring afferents.  The retinal wave of neuronal activity might 
transiently provide a local gradient of intrinsic molecules, which in turn specifies 
individual connections. 
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