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Last summer, one of my coworkers was collecting data for her dissertation in Ecuador in

one of our study communities. While she was there, she watched a young child die a sad

and gruesome death that could have been prevented with better access to medical care.

When I lived in Ecuador for six months, I too saw many more children suffer on a daily

basis from a lack of education and medical care. When I sit in my comfortable office, it is

easy for me to think in abstract terms and forget that these stories of suffering are the

daily experience of many children around the world. This dissertation is for these children

and for the millions of other children like them. While I have no delusions that my work

here has profoundly changed the world, I hope that the work I have done and continue to

do can be a part of creating a new narrative for them–one that is more filled with hope.
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ABSTRACT

Rotavirus is a major cause of under-five mortality, particularly in the developing world,

yet how it is transmitted is not well understood. How and why rotavirus spreads through

populations is a critical concern for both preventing disease and reducing the burden. In

this dissertation, I consider how rotavirus spreads through a region by focusing on two

important processes: human travel and hydrological transport. I also examine how the

introduction of the rotavirus vaccine in a remote region of Ecuador has changed rotavirus

transmission, affecting both direct and indirect pathways. I use a combination of regression

analysis and simulation modeling to address these questions. In chapter 2, I consider the

effect of human travel on rotavirus transmission. To do so, I use longitudinal data from 15

villages in rural, coastal Ecuador to identify important determinants of travel patterns and

the extent to which these variables are stable over time. I then incorporate these predic-

tors into a regional transmission model to assess how demographic heterogeneity in travel

impacts regional risk of rotavirus and the implications of this heterogeneity for disease

interventions. In chapter 3, I investigate the conditions in which rotavirus can be transmit-

ted through water sources and how this pathway depends on both temperature and local

hydrologic conditions. I use previously published empirical studies of temperature and

rotavirus persistence in water sources to conduct a meta-analysis relating temperature to

rotavirus decay in water sources. Then, I combine the resulting temperature-decay func-

tion with data on hydrological characteristics of our Ecuador study site to build a transmis-

sion model that accounts for both direct transmission and water-mediated transmission.

Using this model, I assess the importance of waterborne transmission to amplification of

rotavirus infection within communities and spread of rotavirus through hydrological trans-

xxiii



port within a watershed. In chapter 4, I consider how the Rotarix vaccine has changed

rotavirus transmission patterns in our study region. I combine data on rotavirus vaccina-

tion from local health posts with 10 years of data from a population based case control

study and 18 months of diarrheal disease surveillance to estimate: (1) the direct effect of

vaccination on the rate all-cause diarrhea, (2) the overall effect of vaccination on rotavirus

infection and all-cause diarrhea both by age group and at a population level, and (3) the

fraction of cases attributable to rotavirus in our study region.
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CHAPTER I

Introduction

Diarrheal disease is one of the top causes of child mortality worldwide and rotavirus is the

top cause of severe diarrhea for children under two [4, 5]. While public health efforts have

been successful at reducing, particularly among young children [6–8]. In 2013 alone, the

global burden of disease study estimated that 122,400 deaths in children under five world-

wide were attributable to rotavirus [5]. While rotavirus infection is ubiquitous worldwide,

most mortality occurs in Africa and Southeast Asia [9]. The introduction of two rotavirus

vaccines worldwide appear to have contributed to this decline, with rotavirus explaining a

smaller proportion of diarrheal cases in countries that have introduced vaccination [10]. In

this introduction, I will review the biological features of rotavirus, its transmission routes,

mechanisms of circulation through regions, and the impact of vaccination.

1.1 Biology of rotavirus

Rotavirus is a double stranded RNA virus with high genetic diversity. There are seven types

of rotavirus (A-G), but rotavirus A is the predominant type that infects humans. Type A

rotaviruses are classified further into serotypes on the basis of mutations in the G and P

protein, which are the surface proteins targeted by the immune system [11, 12]. As of

2004, there were 14 different G protein serotypes and 14 P protein serotypes. In many
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high income countries, four combinations of these G and P proteins (P[8]G1, P[4]G2,

P[8]G3, and P[8]G4) were responsible for over 90% of all reported rotavirus infections,

but in other low and middle income countries genetic diversity was much higher [12]. For

example, these same four genotypes explained only 50% of all circulating strains in Africa

and 68% in South Africa and Asia, where G9 was also an important serotype. This higher

level of diversity may be partially attributable to spillover events between animals and

humans [13]. For example, the G5 genotype has historically been found only in livestock,

but in the early 2000s appeared to be emerging as an important serotype in South America

[12].

The predominant circulating rotavirus strain varies both by transmission season and within

seasons in the same country [12]. In one city in Australia G9 explained roughly 12% of

rotavirus cases in another city it explained 80% of cases during the same season [12].

Various studies have shown changes in the predominant strains of rotavirus over time,

and there is some evidence that vaccine introduction may have led to a relative increase

in the prevalence of non-vaccine strains, particularly the G2 serotype [14, 15]. However,

because the dominant rotavirus strain has shifted over time prior to vaccine introduction,

these findings are not conclusive [12, 16].

The combination of high genetic diversity and propensity to re-infection make rotavirus

especially hard to control. In general, natural infection with one strain of rotavirus confers

some immunity against re-infection, but this immunity is generally strain-specific and also

wanes over time [17]. For this reason, individuals who have previously had rotavirus can

be re-infected with a different strain, although symptoms are generally less severe in sec-

ondary infections (e.g., rotavirus is an incompletely immunizing infection) [18]. Because

the majority of severe rotavirus infections occur early in life with nearly all children experi-

encing their first infection before two years of age, rotavirus is still considered a childhood

disease. However, adults can become infected with rotavirus and may also have symptoms
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[19]. Relative to other enteric viruses, rotavirus has one of the lowest infectious doses and

highest shedding rates [20, 21].

Rotavirus infects intestinal cells, where it destroys absorptive enterocytes and causes se-

cretory diarrhea. Infected individuals may shed up to 1010 virus particles per gram of stool,

whereas only 10 particles are needed to cause disease [11]. In general, symptoms resolve

in about five days, but shedding may continue for up to three weeks [22]. After shed-

ding, rotavirus can persistent on both contaminated surfaces (i.e., fomites) and in water

sources for months. For fomites, persistence on surfaces is highly dependent on humidity

[23–27] whereas rotavirus persistance in water sources is more strongly driven by temper-

ature [28–36]. The implications of this persistence is explored more in depth in chapter

3 of this thesis. Rotavirus infection also interacts synergistically with other co-infecting

pathogens, such that individuals that are infected with other pathogens are more likely to

have symptoms if they are also co-infected with rotavirus [37].

1.2 Transmission routes

Rotavirus is transmitted via the fecal-oral route. Rotavirus is highly infectious and is also

highly persistent both on fomites and in water sources. Because of the high shedding of

rotavirus relative to its infectious dose, rotavirus tends to produce explosive outbreaks. For

this reason, transmission through indirect pathways, which is inherently slower, is often

not considered for rotavirus. The primary mechanism of spread for rotavirus is thought

to be direct contact, with fomites (e.g., contaminated surfaces) as an intermediate [3, 38–

41].

However, the combination of the generally seasonal pattern of rotavirus infection and high

persistance of rotaviruses in water sources suggests that waterborne transmission might

also play a role. In chapter 3, we explicitly explore this possibility. In support of this
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possibility, some water-borne outbreaks of rotavirus have been reported [42]. In these

outbreaks, attack rates were higher among adults than children, unlike typical transmis-

sion patterns. In general, rotavirus incidence is inversely associated with temperature,

with higher rotavirus incidence being observed at lower temperatures [43–45]. In temper-

ate climates, this association is seasonal in nature, and rotavirus occurs more commonly

during the winter months [45]. In tropical climates, rotavirus occurs throughout the year.

However, in these settings, rotavirus is still associated with transient downward shifts in

temperature [43]. While some seasonality in rotavirus transmission might be explained

by temperature-dependent changes in rotavirus persistence on fomites, which would im-

pact direct transmission, the empirical associations between temperature and decay on

surfaces is not adequate to explain this seasonality [23–27]. Instead, seasonal changes in

fomite-mediated transmission are more likely to be driven by seasonal shifts in humidity,

where drier conditions promote increased fomite-mediated transmission [43]. More work

is needed to understand the factors underlying the seasonal nature of rotavirus infection

and whether or not indirect transmission through water sources might explain some of this

association.

1.3 Rotavirus circulation in regions with developing infrastructure

Human movement is an important determinant of the spatial spread of disease. For ex-

ample, the spread of outbreaks of SARS [46], pandemic influenza [47, 48], and cholera

[49] have all been tied to human travel. To capture how the spread of disease is affected

by movement, mathematical models that include more than one community account for

human travel either using data (cell phone data or survey data) [50] or simple, population-

level approximations based on population size and distance [51–53]. These population-

level proxies are frequently used when more detailed data are not available, particularly

early in disease outbreaks. However, given the speed of urbanization, it is unclear if these
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approximations will continue to be valid as travel infrastructure changes. For example, if

remote communities are targeted for road access by construction projects, travel patterns

might be more similar between communities than these population-level proxies would

predict. Conversely, if highly isolated comunities are especially slow to acquire road ac-

cess, these models might underestimate disparities in travel. Research that analyzes how

travel patterns evolve in tandem with developing infrastructure would help reveal whether

or not this concern is warranted. In chapter 2, we explicitly investigate this possibility by

assessing if the relative frequency of travel over time has changed in proportion to baseline

remoteness in a region with developing infrastructure.

While understanding the average travel behavior is important, more information about

which demographic subgroups are more likely to travel could inform intervention design.

In general, both survey data and cell phone data can provide information about relative

travel frequencies between community levels. However, cell phone data generally does

not provide detailed information about the demographics of travelers whereas survey data

can be used to gather this information. In contrast, while unbiased, survey data gener-

ally underestimates the total volume of travel [50]. Understanding these demographic

determinants of travel can be used in conjunction with other methods to model the spatial

spread of epidemics. In chapter 2, we explore the relevance of demographic heterogeneity

in travel to rotavirus transmission dynamics.

1.4 Vaccination

Two vaccines have been developed for rotavirus, and are now in widespread use world-

wide. The Rotarix vaccine is the version most commonly used in low resources settings

[54]. This vaccine requires two doses and is a monovalent, live, attenuated vaccine. Ro-

tarix has been effective at reducing severe rotavirus worldwide, but the strength of this

protection varies by context and depends both on compliance and the immune response
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of immunized children. In particular, randomized controlled trials showed that Rotarix is

more effective in developed countries than in the low resource settings where the vaccine

is most urgently needed [55–58]. Overall estimates of efficacy range from 96% in Asia

[56] to 61% in Africa [58]. There are many reasons for these differences, but at least

some of the disparity is probably related to the immune response to the vaccine and the

genetic diversity of circulating rotavirus strains[12, 59].

In remote regions, logistical difficulties with maintaining the cold chain and transporta-

tion to health posts to receive vaccines make achieving the maximal public health benefit

difficult [60–62]. Additionally, even with proposed price cuts for GAVI-eligible countries,

Rotarix vaccination is still far more expensive than most other vaccines included in the

expanded program on immunization [63]. Because the rotavirus vaccine is imperfect, this

high price tag has led some countries to conclude that vaccination is not cost-effective

[64]. More studies are needed to understand the effectiveness of rotavirus vaccination in

remote regions where barriers to access are high. In chapter 4 of this thesis, we assess the

extent to which rotavirus vaccination has improved health outcomes in a relatively remote

region of Ecuador.

In addition to direct benefits for vaccinated individuals, several studies have also shown

benefits to older children who could not have been vaccinated, suggesting indirect effects

[16, 65–67]. Due to the incompletely immunizing nature of rotavirus infection, these

indirect effects on population risk were not expected [16]. Because of logistical difficul-

ties with achieving full vaccination in low resource settings, indirect protection may be

especially beneficial in these contexts and could enhance the overall cost effectiveness of

vaccination for a given level of coverage [16]. In this context, establishing the benefits

of rotavirus vaccination in low to middle income countries and how these benefits relate

to herd protection is a key research need. We explore the impact of Rotarix vaccination

on these older, unvaccinated populations as well as younger children in chapter 4 of this
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thesis.

1.5 Study region

The data used in this dissertation was collected as part of a larger study in rural, north-

western coastal Ecuador, where there has been dramatic environmental and social change

due to the construction of a new road [68]. Prior to the start of the study, most communi-

ties in the region lacked road access. In 2003, a road construction project was completed

that connected the region with the rest of the country. During the course of the study, new

roads continued to be built, increasing road access for previously roadless communities.

The study was conceptualized as a natural experiment to document changes that occurred

in the region over time as a result of this increased road access.

The region covered by the study comprises approximately 150 villages located along three

rivers (the Santiago, Onzole, and Cayapas rivers). These three rivers have distinct hydro-

logical characteristics–the Onzole river is slowest and has both the highest turbidity and

warmest temperature. The Santiago and Cayapas rivers have much lower turbidity and the

Santiago is the fastest flowing river [69]. The region has a tropical climate and the water

temperature for all three rivers is over 24◦ C. Most study communities lack piped water

and rely on river water to meet their needs. Access to sanitation facilities is highly het-

erogeneous throughout the region, with some households having flush toilets and others

engaging in open defecation.

The urban center of the region is Borbón, a city of about 5,000 people. Most of the pop-

ulation of this region is Afro-Ecuadorian, with a few Chachi communities and a growing

Mestizo population. Communities that were enrolled in the study were selected to be a

representative sample of the area overall and varied in their remoteness from Borbón. In

total, 31 villages were followed at some point during the ten year study. During the course
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of the study, some communities were dropped and others were added. Fifteen communi-

ties were followed for the full ten year period.

1.6 Dissertation overview

In this dissertation, I aim to contribute to a greater understanding of how rotavirus is

transmitted, particularly in rural settings. In chapter 2, I explore the role of human travel

in the spread of rotavirus throughout our study region and investigate how accounting

for heterogeneity in travel leads to additional insights above and beyond modeling the

average behavior. In chapter 3, I assess the potential role of water-mediated transmis-

sion of rotavirus and use the result to help partially explain rotavirus seasonality and how

transmission pathways might vary by context. In chapter 4, I investigate how the intro-

duction of the Rotarix vaccine has altered rotavirus transmission in rural, coastal Ecuador,

suppressing both direct and indirect transmission pathways.
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CHAPTER II

Determinants of Short Term Movement in a Developing

Region and Implications for Disease Transmission

2.1 Introduction

Human mobility contributes to the spread of infectious disease at multiple spatial and tem-

poral levels [70–74]. Human migration–the long term process by which individuals perma-

nently or semipermanently relocate–has been implicated in the introduction of pathogens

to new locations. For example, movement along the Silk Road introduced the Black Death

to Europe in the 14th C., and the forced transatlantic migration of African slaves brought

malaria to the US [70]. Short-term movement–travel to another location with subsequent

return–can also introduce pathogens when it occurs over large distances [71]. Examples

of this process include the spread of SARS [46], pandemic influenza [47, 48], and cholera

[49]. Short-term movement also occurs over smaller distances more critical for pathogen

circulation, analysis of which can help reveal the spatial patterns of infection spread. Short-

term movement has been implicated in the 2010 cholera epidemic in Haiti [75] as well as

seasonal influenza [76] and dengue transmission [74, 77].

Road availability can influence both frequency and determinants of mobility. For example,

as remote towns gain road access, travel frequency and average distance may increase,
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and towns’ sociodemographic environment may change [78]. Easier access to roads also

makes urban markets more accessible to rural farmers, which may influence their economic

activities within the village as well as reasons for their travel [79]. Finally, road access may

also facilitate migrant labor, leading to a more transient population and changing social

network structure [68, 79, 80].

Therefore, in addition to the benefits of road access, construction of new roads might also

lead to increased regional risk of disease [68]. Other work has shown that environmental

change occurring in tandem with road construction projects may lead to increased local

risk of malaria and dengue [81, 82]. As previously remote regions gain access to new roads

in parts of Asia, Africa, and Latin America, their changing travel patterns may facilitate

both pathogen introduction and pathogen circulation, leading to convergence of regional

risk.

The relevance of both short- and long-term movement for transmission has been widely

recognized by transmission modelers, who regularly incorporate movement into their mod-

els [51, 75, 76, 83, 84]. For example, travel can increase transmission and allow for

pathogen invasion even when there would not otherwise be an outbreak [85–87]. Most of

this work has focused on developing models that adequately capture the average rate of

travel and distribution of destinations rather than the variability in these patterns by demo-

graphic subgroups [51–53]. A separate body of work has looked at the role of population

heterogeneity in disease transmission and has shown that outbreaks can occur when the

average basic reproduction number (R0) is less than one if a subgroup of superspreaders is

at higher risk [88, 89]. We aim to combine these two lines of research, investigating how

population heterogeneity in both disease susceptibility and travel frequency may influence

outbreaks. We use a transmission model, parameterized to reflect rotavirus, as a case study

because it is epidemiologically important in our study region and globally and because its

attack rate differs by age [3, 4, 37].
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This paper contributes to a more developed understanding of short-term movement. Using

data from a region in rural Ecuador that has been experiencing continuous road develop-

ment, we evaluate the changes in movement patterns and village demographics over a ten

year period (2003-2013) following the construction of a new road. We next identify de-

terminants of short-term travel outside the study region and evaluate the stability of these

determinants over time. Finally, we present a transmission model for rotavirus in our study

region that accounts for heterogeneity in both travel and disease transmission and illus-

trates how this heterogeneity can lead to both increased risk of disease and changes in

disease etiology.

2.2 Methods

2.2.1 Data

Data for this project were collected in rural Ecuador in conjunction with a larger study

[68]. In 1996, the government of Ecuador began a road construction project to link the

Andes with the Ecuadorian Pacific coast. The highway was completed in 2001, but new

roads continue to be built, increasing access for previously more remote villages. Our

EcoDess project was initiated in 2003 as a natural experiment to document longitudinal

changes that occurred in villages surrounding the local metropolitan center of Borbn due

to road construction. The present analysis focused on 15 study villages that were followed

from 2003-2013. See reference [68] for more details about the study region.

In this paper, we use data from movement surveys conducted in 2003, 2007, 2010, and

2013 and census data collected by our study at about the same times. We use stool sample

positivity for rotavirus from our ongoing case-control study from 2007–before the vaccine

was introduced [90]–to parameterize our transmission model [91]. The methods used to

identify rotavirus infection are described in detail elsewhere [37]. Our analyses considered
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15 villages, 1,347 households, 5,443 individuals, and 1-4 time points per individual, for a

total of 10,725 observations and a median of 2 observations per individual.

2.2.2 Software

Time trend analyses were conducted in R (v. 3.1.2) using the package gee, and other mul-

tivariate analyses were conducted in SAS (v. 9.4). Transmission modeling was conducted

in R (v. 3.1.2) using the package deSolve.

2.2.3 Defined measures

2.2.3.1 Remoteness

Remoteness reflects a number of interrelated factors that together capture the relative iso-

lation of a given community. Here, we assess remoteness using two measures: 1) travel

frequency, which varies over time, and 2) the feasibility of travel at baseline, based on

cost and travel time to reach the nearest large town. For the duration of this paper we

refer to the latter metric (cost and travel time) as ‘baseline remoteness.’ Travel frequency

The main outcome of interest in this study was whether an individual had traveled out-

side of the study region in the past seven days. Baseline cost and travel time Project staff

used data collected at the start of the study to develop a metric for the remoteness of

each village based on the cost and travel time required to reach Borbón, the largest town

in the region [68]. This measure was subsequently categorized into three groups: close,

medium, and far. While this metric reflects the feasibility of travel, actual travel frequency

may not necessarily be shaped only by road accessibility; thus, the two metrics may mea-

sure different aspects of remoteness. Even if the absolute cost and travel time to Borbón

changes over time as roads develop, if the relative isolation of these communities remains

constant, remoteness would remain an important predictor of travel. If, however, road
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development homogenizes travel frequency across the region, any differences in travel by

baseline remoteness should diminish over time. To determine whether or not the regional

risk appeared to be converging, we considered baseline remoteness as a covariate in all

multivariate models and investigated whether the association between baseline remote-

ness and travel frequency was stable over time.

2.2.3.2 Covariates

Occupation was classified as none, domestic, student, agriculture, salaried, or other. Age

was calculated using date of birth and was categorized into three groups: <5, 5-13, and

>13 years. Each individual’s duration of residence in the village was analyzed using z-

scores calculated within each age bracket. Highest household education was the highest

number of years of schooling reported by any individual of that household. Village-level

availability of secondary schools was included in the models as a binary variable and was

treated as time-invariant. The mean duration of residence for each village for all individ-

uals over the age of 13 was also included as a proxy for population stability. All of these

variables were taken from our census data.

2.2.4 Regression models

To investigate time trends and identify determinants of travel, we used a generalized esti-

mating equation (GEE) framework, which allowed us to account for community clustering

but retain a population average interpretation [92]. Because GEE models are not based

on maximum likelihood estimation, we compared model fit using quasi-information cri-

teria (QIC) [93]. Change-over-time was first evaluated by building regression models

containing only the covariate of interest and years since 2003. These time trends were

conceptualized as providing descriptive information about the study region and are there-

fore unadjusted. To identify determinants of travel, forward regression was used. Because
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all variables except baseline remoteness and secondary school availability were allowed to

change over time, our model also adjusts for time-dependent confounding. The stability

of associations over time was evaluated by comparing, for each study year, the model con-

taining only cost and travel time, the model containing all variables except cost and travel

time, and the full model.

2.2.5 Transmission model

We developed a disease transmission model with a susceptible, infectious, recovered (SIR)

framework (parameterized to reflect rotavirus) to investigate the impact of travel to an

urban center (here modeled as analogous to Borbón) on a small village. Because the ge-

ography and transportation network of the region causes most travel to traverse Borbón,

almost all travel outside the region is to another urban setting, and travel to the village

by city residents is assumed to be negligible, this relatively simple two-community model

suffices to investigate the impact of travel by members of the village on their community as

a whole. To capture heterogeneity in risk of infection and travel, we stratified the modeled

populations into two age categories (under and over 5 years), with children under five be-

ing more likely to become infected and less likely to travel (see Fig. 2.1 and the appendix

for additional details on model structure). The appendix also presents the equations, pa-

rameterization, a sensitivity analysis of the transmission parameters, and calculations of

the basic reproductive number for each community in isolation, which we call R0*. To

understand how disease risk (measured by cumulative incidence) might change with time,

we modeled an average close, medium, and far village, using travel frequency and popu-

lation size in the data for each of the four study years (2003, 2007, 2010, 2013) for a total

of 12 models (3 villages and 4 time points). To examine the separate roles of demographic

heterogeneity in travel and the level of travel, we conducted model analyses to investigate

changes in cumulative disease incidence as i) we increase the average travel frequency for
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all village residents (assuming children and adults travel the same) and ii) we fix the travel

frequency of children but increase the travel frequency of adults. These analyses used the

population size and structure from 2013 and considered rotavirus transmission rates cor-

responding to the maximum and minimum observed in the study region (corresponding

to R0* of 0.79 and 1.44 respectively).

2.3 Results

2.3.1 Evaluating demographic change

Baseline characteristics of the participants are shown in Table 2.1. Over time, the fraction

of individuals traveling outside the region increased for all remoteness levels, with a 9.1%,

8.2% and 4.4% increase in travel for close, medium, and far villages respectively (see Table

2.1 and Figure 2.2). In 2013, far villages had similar travel patterns to the close villages in

2003. Far villages consistently had lower levels of travel than the medium or close villages

with an average 6.0% and 3.2% difference comparing far with close and medium villages

respectively, suggesting that travel patterns for the communities had not yet converged

during the study. All far villages that showed an increase in travel patterns did not begin

their increases until 2010, suggesting a time lag in the effect of changing infrastructure for

more distant communities.

In addition to increased travel, there was also a tendency toward increased socioeco-

nomic status. The proportion of individuals having no occupation decreased over time.

The fastest growing occupation was salaried worker, and this change was especially pro-

nounced in the most remote villages. The proportion of individuals working in agriculture

decreased slightly for close and far villages.
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Figure 2.1: Rotavirus transmission model diagram. Dashed arrows represent transmission
events and solid arrows represent movement of people. Villagers and city res-
idents are classified as susceptible (S), infected (I) and Recovered (R), with
separate compartments for individuals under age 5 and ages 5 and older (not
shown). Susceptible people can become infected by direct transmission within
their own community. Villagers can infect and be infected by the city during
travel. We ignore travel by city dwellers and between smaller villages. Village
SIR model is stratified by baseline remoteness (close, medium and far) and
both village and city SIR models are stratified by year (2004, 2007, 2010, and
2013) resulting in 12 models. Each model is stratified by age (less than or
greater than 5 yrs.). This stratification results in 8 transmission parameters (6
village-level due to 2 age-groups and three community groups, and 2 city level
due to two age groups), and 24 travel rate parameters to and from the city
(2 age groups, 4 years, and 3 community types, where). Population size also
varies by age, community type, and year. The recovery rate parameter is the
same for all SIR models. See supplement A.2 for model equations and details.
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2.3.2 Identifying predictors of travel

Gender was not associated with travel frequency and was therefore not included in the

regression models. Based on prior knowledge, we conceptualized remoteness as being

an ‘exposure’ whose effects were mediated by various demographic factors. However, to

estimate the effect of these mediators on travel, we adjusted our demographic models

for remoteness because it was a common cause of the various demographic characteristics

and travel and therefore a confounder of those associations. See supplement A.1 for causal

diagram.

Because the relationship between age and travel patterns was non-linear, we used a cat-

egorical age variable (<5, 5-13, >13). The results of model building are shown in Table

2.2. Although all variables except for age were associated with both remoteness and out-

of-region travel (Table 2.2), only secondary school availability appeared to be markedly

confounded by remoteness (comparing the Unadjusted and Remoteness Adjusted mod-

els). Secondary school availability and mean duration of residence appeared to be the

strongest mediators of the remoteness-travel estimate, as indicated by the reduction in

the point estimate (comparing the Unadjusted Model with Model 1). In general, occu-

pation and education appear to have independent effects. However, the point estimate

for salaried occupation attenuated after adjusting for education, most likely because of

the much higher required education for salaried workers. In other words, there was no

association between education and occupation except for salaried workers. The effect of

occupation also appeared to be confounded by age (comparing Models 3 and 4).

After adjusting for all variables, travelers were more likely to come from households

with higher education (OR=1.10, 95% CI 1.08, 1.12) and to work either in domestic

(OR=1.64, 95% CI: 1.14, 2.36), agriculture (OR=1.50, 95% CI: 1.13, 1.98), or salaried

work (OR=3.27, 95% CI: 2.15, 4.96). Remoteness remained a strong predictor of travel

(OR=0.51, 95% CI: 0.38, 0.67), with travel being more common among individuals living
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in less remote regions. Individuals living in areas with a secondary school were also less

likely to travel than people without secondary schools (OR=0.53, 95% CI: 0.37, 0.76).

The effect of age was non-linear; individuals aged 5-13 were less likely to travel than chil-

dren under five (OR=0.65, 95% CI: 0.50, 0.85) and adults over the age of 13 were more

likely to travel than children under five (OR=1.73, 95% CI: 1.30, 2.31).

Although the effect estimate for increased travel by household level of education is small

for each year increase in education (OR=1.10), the cumulative effect is substantial. For

instance, a five-year difference in household education (roughly the difference between

completing primary and secondary school) would correspond to an odds ratio of 1.61 for

traveling.

Overall, the full model, including both baseline remoteness (cost and travel time) and all

demographic variables was the best model for all four study years (Table 2.3). The QIC

values including demographic factors were consistently lower than those with remote-

ness only, suggesting that these variables combined provided more information than the

baseline remoteness metric alone. Although the cost and travel time metric provided less

information than the demographic variables, adding it to the model improved model fit for

each study year, supporting its continued use as a measure of remoteness in our region.

Table 2.3: Predicted cumulative incidence per 1,000 people by remoteness and study year.
Models were parameterized to reflect data collected in our field site over time
and from the literature regarding the three disease processes: travel to the city
(by community, age group, and study year), transmission rate (by community
and age group, but not time), and recovery rate (estimated from literature at
five days). Community population size and the fraction of children under 5
years of age were also estimated for each study year using survey data and were
incorporated into our model. The population of the city was fixed at 5,000 for
all study years. All parameter values are shown in the supplement section A.3
along with relevant derivations.

Remoteness 2003 2007 2010 2013

Close Villages 13 24 13 28
Medium Villages 12 16 16 31
Far Villages 7 10 10 14
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2.3.3 Travel and disease transmission

2.3.3.1 Component effects

To disaggregate the impact of travel from the impact of heterogeneity in travel by age,

we present simulated cumulative disease incidence that consider change in i) the overall

travel rate for all ages (homogeneous travel) and ii) a proportional increase in travel for

adults only (heterogeneous travel by age).

Homogeneity in travel As travel increased from levels seen in far villages to those in close

villages, the predicted disease incidence rate doubled (15, 27, and 31 per 1,000 people for

close, medium and far villages respectively, where R0*=0.79 for all village types). While

higher transmissibility within the village (R0*) increased risk, the effect of travel was much

stronger. In general, predicted incidence at the maximum transmission rate (R0*=1.44)

was only 1-2 cases per 1,000 people higher than risk at the minimum transmission rate

(R0*=0.79), less than a 7% increase (details in supplement, section A.4).

Heterogeneity in travel As the relative travel rates of adults increased compared to children,

the risk of infection for the village increased, suggesting that the adults disseminate the

infection into local communities (see Table 2.4). Although this increase in risk was great-

est for adults, risk also increased for children. Only results from close villages are shown;

results were qualitatively similar for medium and far villages. Based on our survey data

(Table 2.2), adults had 1.73 times the travel of children, so we would expect our study re-

gion to most closely resemble the medium travel heterogeneity scenario (scenarios defined

in table 2.4).

Further, as heterogeneity in travel increased, the attributable fraction (AF) of infections ac-

quired locally increased for children, but decreased for adults (Figure 2.3). The magnitude

of local transmission depended on transmissibility within the village. Under conditions of

high heterogeneity in travel and high transmission, 24% of all transmission to children
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Table 2.4: Percent difference in cumulative incidence predicted by the transmission model
for adults, children, and the whole community for increasing heterogeneity of
travel by age group. Increasing heterogeneity was done using a proportion-
ality constant where traveladult = ctravelchild and c takes values of 1 (low), 2
(medium), or 3 (high). Low-within village transmission corresponds to a base-
line R0 of 0.79 and high within village transmission corresponds to a baseline
R0 of 1.43 (R0 increases slightly with increasing heterogeneity)

Travel heterogeneity Adults Children Community

Low within-village transmission
Medium vs. None 1.6% 0.2% 1.4%
High vs. None 3.1% 0.3% 2.8%

High within-village transmission
Medium vs. None 1.7% 0.3% 1.4%
High vs. None 3.3% 0.6% 2.8%

originated within the village, compared to 6% for no heterogeneity in travel (i.e., adults

traveled the same as children) and low transmission. However, regardless of whether R0*

was greater than 1, most transmission for both age groups occurred in the city. This result

held over the transmission parameter sensitivity analysis, but was modified by village pop-

ulation size. Increasing the population of the village relative to the city led to proportional

increases in the AF for local transmission but slight decreases in the overall incidence (see

supplement section A.6).

2.3.3.2 Predicted Incidence

Over time, modeled risk increased for all three types of communities (Table 2.5). In 2013,

the risk in far villages was similar to that seen in close villages in 2003. At the end of the

study, the predicted risks for close and medium villages were similar, but the risk for far

villages remained lower. Thus, although all villages had predicted increases in risk over

the study period, the gradient of risk by remoteness was preserved for the most remote

villages. Comparison with our component effects model suggests that this increase in risk

was almost entirely driven by increased travel rather than changing demographics.
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Figure 2.3: Attributable fraction for local transmission by heterogeneity in travel (adults
vs. children) from the transmission model for A) low within-village trans-
mission (Baseline R0=0.79) and B) high within-village transmission (Base-
line R0=1.43). R0 increases slightly with increasing heterogeneity. Increasing
heterogeneity was done using a proportionality constant where traveladult =
ctravelchild and c takes values of 1 (none), 2 (medium), or 3 (high); c=1.73
in the study data. Adults are shown in black and children are shown in gray.
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Table 2.5: Predicted cumulative incidence per 1,000 people by remoteness and study year.
Models were parameterized to reflect data collected in our field site over time
and from the literature regarding the three disease processes: travel to the city
(by community, age group, and study year), transmission rate (by community
and age group, but not time), and recovery rate (estimated from literature at
five days). Community population size and the fraction of children under 5
years of age were also estimated for each study year using survey data and were
incorporated into our model. The population of the city was fixed at 5,000 for
all study years. All parameter values are shown in the supplement section A.5
along with relevant derivations.

Remoteness 2003 2007 2010 2013

Close Villages 13 24 13 28
Medium Villages 12 16 16 31
Far Villages 7 10 10 14

2.4 Discussion

Areas with changing transportation infrastructure undergo demographic change that can

impact community structure and increase infection risk. In our analysis, this increased

risk is largely driven by the city, highlighting the likely importance of population centers

for transmission into remote regions. Furthermore, we show that increasing adult travel

frequency can indirectly increase risk for those that travel less (e.g., children) and affect

the fraction of infections that are acquired locally for both age groups.

2.4.1 Demographic change

Medium and close villages had higher rates of travel than far villages at baseline (2003).

Over time, travel rates increased across the region. Similar increases in travel in our

transmission model led to increased risk of infection. Although we parameterize our model

to reflect rotavirus, our results naturally extend to other pathogens and demonstrate how

road construction can lead to increased regional risk of enteric infection and highlight the

need to consider the broader health impacts of constructing roads and other projects like

railroads that can increase opportunities for human movement.
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Several demographic variables were found to be important predictors of travel; the effect

of these variables did not appreciably change over time. Travelers were more likely to

come from households with higher education and to be salaried or domestic workers.

Individuals with salaried positions were the most likely to engage in out-of-region travel.

The increased travel seen among domestic workers may reflect fewer time constraints

placed on women who work inside the home. The tendency for young children under the

age of five to travel more than older children (aged 5-13) may be because the youngest

children are too young to be left behind in the villages when the mother is traveling.

2.4.2 Travel and disease transmission

Our transmission model found that increased travel led to increased infection; most of

this risk to the village appears to be driven by the city. Although the city had a higher

transmission rate than the villages, our sensitivity analysis revealed that the city’s popula-

tion size was the primary reason that it dominated transmission. Adults experienced the

greatest increases in infection risk due to their more frequent travel, but children were

also indirectly affected by the travel of adults. This result highlights the role of travelers

in dissemination of disease to remote communities and shows that population centers can

be important for driving risk in remote regions.

The increased travel observed across all villages over time indicates potentially increased

disease transmission for all types of communities–including those in remote regions–as

a function of changing mobility. In general, more remote communities tend to benefit

from less infection pressure due to their relative isolation [94]. In our study, remoteness

remained an important predictor of travel and infection throughout the study, despite

ongoing development. Therefore, at least in our study region, the erosion of a remoteness

advantage occurs over a time scale longer than 10 years. Thus, population-level proxies

(i.e., gravity models, radiation models, etc.) for travel may be reasonable predictors of

26



average travel behavior as development proceeds for capturing the average travel behavior.

Because of demographic differences in travel rates, local interventions may have a greater

impact on children than adults but targeting interventions in cities is likely to be the most

effective way to lower regional risk. Future studies comparing prevalence of infection and

diarrheal disease both by remoteness and over time in this region may provide further

insights into how changing travel patterns affect risk.

2.4.3 Strengths and Limitations

There are a few caveats to our study. First, our remoteness variable was defined at baseline.

If community remoteness confounds the association between the considered covariates and

travel, there may be some residual confounding by remoteness in later years that is not

captured by the baseline measure. Second, because of the lack of preexisting theory on

determinants of remoteness, we had to rely on the change in estimate criteria to evaluate

confounding and mediation.

Additionally, our estimate of R0* required an estimate of age at first infection. We used

age-specific prevalence of infection as a proxy for age at first infection. Because people can

be re-infected with rotavirus, this assumption may have led us to overestimate the average

age at first infection and thus underestimate both transmission rates and R0*. However,

sensitivity analysis demonstrated that i) our results were similar regardless of the actual

value of R0* and ii) relative infectivity (city vs. community and adults vs. children) was

more important than absolute infectivity for determining the source of cases. Because

this overestimation of β is non-differential by remoteness and thus relative infectivity is

unaffected, our main results should be unbiased. Furthermore, people are rarely infected

more than twice, and subsequent infections are less likely to be symptomatic and thus less

likely to transmit [3, 95, 96]. As such, any bias in the absolute infectivity is likely to be

minimal.
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These longitudinal data allow us to assess change over time and show that the covariates

considered have stable relationships with travel. Additionally, the analysis adequately

accounts for the clustered nature of the data. The timing of this study relative to the

completion of a road construction project is also a strength because the data provided

a useful natural experiment with a unique opportunity to answer these questions in a

population with new road development.

Overall, these findings provide useful data and a theoretical framework for future studies

investigating the determinants of movement in other populations, particularly areas that

are rapidly urbanizing. Given that rural-urban connections are increasingly more common,

the relevance of this work continues to increase [97].

2.4.4 Conclusions

Current methods for incorporating travel into disease transmission models generally rely

on proxies for travel (e.g., gravity and radiation models) that are based on distance and

population size, without any consideration of demographic heterogeneity [51, 75, 76, 83,

84]. Our results suggest that while these models may accurately estimate average travel,

accounting for travel heterogeneity in transmission models may both improve model pre-

dictions and identify opportunities to target public health interventions. Our results also

support the use of cell phone data to characterize mobility both because risk of infection for

children is largely dependent on the travel patterns of adults and because young children

often travel with their parents.
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CHAPTER III

Modeling Environmentally-Mediated Rotavirus

Transmission: the Role of Temperature and Hydrologic

Factors

3.1 Introduction

Diarrheal disease is the fifth leading cause of mortality worldwide and the third leading

cause of death among children under five. The World Health Organization estimated that

diarrheal disease accounted for 2.9% of the Disability Adjusted Life Years (DALY) burden

worldwide in 2015, making it the sixth leading contributor to the burden of disease [98].

A recent multi-country study on diarrheal disease etiology showed that rotavirus was one

of four pathogens that together accounted for the vast majority of severe diarrheal dis-

ease [4]. The recent introduction of rotavirus vaccines has reduced the prevalence of

severe cases but is less likely to impact the overall transmission rate, especially given vari-

able coverage of the rotavirus vaccine in low- and middle-income countries, as well as

lower vaccine efficacy in the developing world [61, 62]. As such, rotavirus is likely to

remain an important pathogen for the foreseeable future.

Like other waterborne pathogens, rotavirus can be spread either directly from person to

person or through contact with contaminated water. However, because of its low infectious
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dose and high shedding rate among infected individuals, environmental control is gener-

ally not considered effective for rotavirus [99] and indirect transmission through water is

often not considered when analyzing rotavirus transmission dynamics [3, 38–41]. Instead,

researchers have generally assumed that transmission through contaminated water is neg-

ligible in comparison with transmission occurring within homes and from person to person

(with fomites as an intermediary).

In the tropics, meta-analyses have estimated that every 1◦C increase in temperature is as-

sociated with a 4%–10% decrease in rotavirus-associated diarrheal disease incidence [43,

44]. Given that there is some evidence of publication bias for the temperature rotavirus

effect and that other seasonal processes may affect risk, the true association may be closer

to the lower end of this range [44]. In temperate regions, researchers have seen that

rotavirus is more common during the cooler weather months [45]. A number of stud-

ies have examined fomite transmission, and although rotavirus can survive on fomites for

long periods of time (on the order of weeks), there is a lack of evidence that temperature

has a strong effect on rotavirus persistence on fomites [23–27]. In LMIC tropical settings,

an alternative environmental pathway, such as water, may contribute to the temperature

driven incidence patterns. In temperate climates, seasonality in direct transmission is more

likely to be explained by large seasonal shifts in relative humidity, with drier conditions

promoting more direct transmission [23–27].

Various studies have attempted to predict the mechanisms by which increased temperature

might alter risk of diarrheal disease by changing pathogen survival and growth dynamics,

pathogen virulence, and human behavioral factors [1]. In general, the burden of diarrheal

disease is expected to increase as climate change progresses [100]; however, there is a

great deal of heterogeneity by pathogen [44]. For bacterial pathogens, increased tempera-

ture is related to decreased persistence but can also lead to expression of genes associated

with increased virulence [101, 102] and the net effect of increased temperature is thus
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expected to increase risk. In contrast, higher temperatures are only expected to decrease

environmental persistence of viruses, including rotavirus [1], and thus are expected to

reduce viral infection risks [43]. Although this body of work has helped establish the asso-

ciations between environmental factors and disease transmission risk, studies are needed

to better elucidate the mechanisms by which environmental changes like increased tem-

perature affect risk [103].

In this study, we use a meta-analysis of experimental data to derive a statistical model

for the relationship between temperature and rotavirus persistence in water. We then ap-

ply the resulting temperature sensitivity function within a mechanistic model of rotavirus

transmission in two communities linked by a flowing body of water, examining the po-

tential for waterborne transmission to disseminate rotavirus infections between communi-

ties and amplify cumulative incidence within communities. The hydrologic conditions in

these two communities were parameterized to reflect the conditions found in our study

site in rural, coastal Ecuador [68], which encompasses three rivers with distinct average

flow velocities: the Onzole (17 km/day), the Cayapas (26 km/day), and the Santiago (69

km/day) [69]. We also assess how changing temperature might impact risk at both the

community and regional scales and explore how local hydrologic conditions and access to

safe water and sanitation services could impact this relationship. The aim of this analysis

is to estimate how temperature-related changes in waterborne transmission, mediated by

the waterborne decay rate, might help explain correlations between rotavirus incidence

and temperature or season, especially in tropical settings.

3.2 Methods

An overall diagram of our conceptual framework and the flow of analysis is shown in

Figure 3.1 below (adapted from [1]). In brief, we conducted a meta-analysis of studies that

provided data on rotavirus die-off rates in water and developed a statistical model relating
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temperature to die-off rate. We then used this model to help parameterize an ordinary

differential equation (ODE) transmission model to examine the role of temperature on

rotavirus transmission patterns. All analyses were conducted in R (v. 3.1.2). We integrated

the ODE model using the deSolve package.

Ambient 
temperature

Survival of 
pathogens 

outside host

Ingestion of 
pathogens

Diarrhea 
incidence

Volume of the 
water reservoir

Meta-Analysis Transmission Model

A B C

Figure 3.1: Conceptual framework of the analysis. The meta-analysis portion of our study
informs arrow A, whereas the transmission model analysis informs arrows B
and C. The transmission model also considered the role of the size of the water
reservoir, which may vary based on the type of water source a community uses.
This figure was adapted from [1].

3.2.1 Literature Review and Meta-Analysis

3.2.1.1 Data Collection

We retrieved a comprehensive list of studies that estimate rotavirus die-off in water sam-

ples at known temperatures by querying PubMed, Scopus, and Web of Science with the

following search string:
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(rotavirus OR ’rotavira*’) AND (temperature OR heat) AND (’die off ’ OR inactivation OR

dieoff OR growth OR survival) AND (water OR aqueous OR aquatic OR marine).

Studies were included that: 1) reported results from at least one rotavirus experiment;

2) that took place in purified or treated water (i.e., reverse osmosis water, sterile dis-

tilled water, tap water, etc.), natural water (e.g., from lakes, rivers, creeks, etc.), post-

treatment (i.e., tap water, filtered water, etc.), or simple aqueous solutions at neutral pH

(i.e., phosphate-buffered saline (PBS)); 3) reported a steady water temperature that did

not fluctuate more than 5◦C during the course of the experiment; and 4) provided a clear

explanation of methods used to assay rotavirus concentration over time. Studies conducted

in more complex media (e.g., that added natural organic matter, humid sludges, etc. to

aqueous media) were examined for control experiments conducted in pure water but were

otherwise excluded. Also excluded were studies that reported only the time required for

total inactivation of the rotavirus population.

Temperatures reported in die-off experiments were recorded directly from reviewed stud-

ies. Where mean rotavirus concentration was available in a figure or plot, data were

extracted using DataThief software [104]. Additional information regarding rotavirus

serotypes, water source, water treatment, initial viral concentration was also recorded.

3.2.1.2 Statistical Analysis

We determined the relationship between temperature and die-off rates in two steps. First,

we estimated the die-off rate for each experiment. Second, we estimated the relationship

between die-off rates in each study and the corresponding temperatures.

The rate of change in viral concentration is commonly modeled as a simple first-order

decay process where N(t) is the pathogen population at time t; N0 is the initial population;

and K is the first-order rate constant [105]:
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N(t) = N0 × e−Kt (3.1)

We used this framework to model pathogen decay in our analysis. We also examined the

data for evidence of tailing off, or biphasic decay [106], but few experiments appeared to

exhibit biphasic decay and those that did lacked sufficient observations for us to estimate

the parameters. We therefore assumed that the true pattern of decay was monophasic for

all studies.

After obtaining an estimate of K in each experiment, we calculated the relationship be-

tween temperature and the decay rate of rotavirus in aqueous environments. We mod-

eled the decay rate K of rotavirus as a non-linear function of temperature (T ) and fit

this model using generalized least squares, following prior published approaches used for

other pathogens. In the equation below, K is the first-order rate constant at temperature

T , K25 is the value of the rate constant at 25◦C, and λ is a constant describing the change

in decay rate for each 1◦C change in temperature [107].

K(T ) = K25 × e−λ(T−25) (3.2)

3.2.2 Transmission Model

3.2.2.1 Model Structure

To explore the potential for hydrological transmission of rotavirus infections between sites,

as well as the climate sensitivity of such an epidemiological system, we developed a suscep-

tible, infectious, recovered (SIR) model representing two hydrologically connected com-

munities at either end of a 10 km river reach. In our model, susceptible, infectious, and

recovered individuals in community i are given by compartments Si, Ii, and Ri, and trans-

mission can be either direct—from contacts between susceptible and infectious persons,
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which occur at rate βH—or indirect—from ingestion of pathogens persisting in the aque-

ous environment (with contact rate βW and per contact volume ingested ρ). The water

compartments (W ), described in more detail below, model the concentration of pathogens

in the water. We assume that individuals within communities draw water from only one

water source, such that the concentration in the water compartment is a reasonable proxy

for exposure for all individuals within that community. We do not model human movement

between communities.

We assume that infectious individuals shed pathogens into the environment at daily rate φ,

but that the number of shed pathogens is attenuated prior to entering the water compart-

ment by a combination of natural environmental decay and local sanitation and hygiene

interventions (removing a fraction of pathogens c). In communities with built infrastruc-

ture, this parameter c reflects not only processes relating to runoff and decay in the envi-

ronment, but also processes related to wastewater treatment, and thus most likely has a

higher value. Larger cities may also have higher levels of attenuation due to their more

complex topology. Upon deposition in the water, pathogens are diluted based on the total

volume of the community’s water source (Vi). Prior researchers have suggested that the

per capita volume of water resources available may be smaller for large settlements with

built infrastructure than for smaller communities, like those modeled here, where the size

of the water reservoir is determined by natural rainfall and surface water flows, which of-

ten leads to greater dilution of shed pathogens [108]. We thus simulated across a range of

available volumes by adjusting to produce water reservoir sizes that were consistent with

a small pond (low dilution) to a medium-sized lake (high dilution) [109] (see supplement

B.4.1 for additional details). The low dilution scenario also approximates the minimum

the per capita rate of water availability targeted for larger cities with piped water [110].

Following our meta-analysis, we assume that the concentration of rotavirus in the water

attenuates as a first order reaction with rate µ = K(T ) (eq. ((3.2)). We model infections

produced by ingestion of contaminated water using a linear dose-response function [111],
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which we deemed adequate because the pathogen doses in our simulations fell within the

linear range of the typical dose–response curves [112].

We modeled movement of rotavirus from upstream to downstream communities using a

mixing cell hydrological transport model [113]. In brief, this model approximates the

advection–diffusion equation for solute transport, modeling downstream flow through a

series of compartments representing river reaches. While no diffusion of pathogens occurs

in the upstream direction from point source inputs, the method produces a moving distri-

bution of pathogen concentrations, with mean position at time after entering the system

determined by the velocity of advection, and variance in pathogen position at time , i.e.

rate of diffusion, proportional to the product of the advection velocity and cell length[113].

Thus, flowing systems and reasonably large spatial scales (i.e. where little diffusion in the

upstream direction of pathogen sources is expected), our mixing cell approach closely ap-

proximates a solution to the advection diffusion equation. In our model, we used a total of

11 compartments (one for each village and nine intermediary), each representing a 1 km

stretch of river, between which the rate of flow is determined by the flow velocity, which is

given by ν. We assume that there is no sedimentation of pathogen between communities

given the small virus particle size and the length of the river reach between communities.

However, attenuation due to sedimentation could be approximated by assuming a slightly

lower flow velocity. Pathogens entering the water at the upstream community are allowed

to either move to the next compartment or decay, and no pathogens can be shed into the

water between villages. More details about the mixing cell model, including comparisons

with other methods, is in the supplement (section B.3 ).

The model diagram is shown in Figure 3.2, and the model equations are given below.

Parameters used in simulations and their values are shown in Table 3.1.
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Ṡi = −βH
N
SiIi −

βWρ

2
SiWi,

İi =
βH
N
SiIi +

βWρ

2
SiWi − γIi

Ṙi = γiRi,

Ẇ1 =
(1− c)φ
V1

Ii − (µ+ ν)W1,

Ẇ int
0 = W1,

Ẇ int
j = pνW int

j−1 − (µ+ ν)W int
j , 1 ≤ j ≤ 9,

Ẇ2 =
(1− c)φ
V2

I2 + νW int
9 − (µ+ ν)W2,

(3.3)

The transmission rate parameters βW and βH and the recovery parameter γ are assumed

to be the same for both communities. In this simulation, the two communities have the

same population size and available water volume. Flow velocities between the two sites

are reasonable approximations of the hydrological characteristics of our study site in rural,

coastal Ecuador [68], which encompasses three rivers with distinct average flow velocities:

the Onzole (17 km/day), the Cayapas (26 km/day), and the Santiago (69 km/day) [69].

3.2.2.2 Model Analysis

All model simulations were seeded with one infectious case in the upstream community

and were run for 365 days. Both communities were assumed to have a population of 1,000.

To better understand the threshold and equilibrium features of our model, we calculated

the basic reproduction number, R0, using the next generation method [119, 120]. Briefly,

R0 captures the expected number of secondary cases produced by one case during its

infectious period after being introduced into a completely susceptible population [120]. If

this number is greater than 1 (e.g., greater than replacement) the outbreak will grow and

if it is less than 1 the outbreak will die out. Because no pathogen is in the water at the
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Figure 3.2: Rotavirus transmission model diagram. Dashed arrows represent transmission
events and solid arrows represent transition of people or pathogens between
model compartments. Villagers and city residents are classified as suscepti-
ble (S), infected (I) and Recovered (R). We also track contamination in the
village water source (W). Susceptible people can become infected by either
direct person to person transmission or indirect person-water-person transmis-
sion within their own community. Pathogens in the local water source can
travel from the upstream to the downstream community through the water
source. Pathogens in water sources can also decay in each community or be-
tween communities. The model parameters are defined in Table 1.
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Table 3.1: Parameter estimates, units, and their sources. Water volume calculations and
details regarding the scaling of flow velocity are shown in the supplement sec-
tions B.3.3 and B.4.1

Parameter Symbol Units Value Source

Transmission rate from βH 1/day [0, 0.6] Varied
human to human
Transmission rate from βW water contact/day 3 [114]
water to human
Recovery rate γ 1/day 0.2 [115]
Median infectious dose n50 ffu 10 [38]
Shedding rate φ n50/person/day 2,605 [38, 116–118]
Attenuation of shedding c – [0, 1] Varied
Water consumed per day ρ volume/water contact 0.4 [114]
Population size N people 1000 Assumption
Water volume Vi L [105, 109] Varied
Pathogen decay rate µ 1/day [0,1] K(T )
Flow velocity ν km/day [0, 69] [69]

disease free equilibrium, theR0 for the upstream community, the downstream community,

and the system as a whole are all equivalent.

Amplification. To determine if water could amplify infection by changing the size of the

outbreak, we estimated the overall attack ratio, that is, the cumulative incidence, as a func-

tion of the strength of each pathway and estimated how cumulative incidence changed as

temperature changes impacted rotavirus decay rates. We also assessed how local hydro-

logic conditions and attenuation of shedding might impact risk (defined by cumulative

incidence at the end of the simulation) both overall and from water sources alone.

Dissemination. We defined dissemination as 5% of the population in the downstream com-

munity being infected by the end of the simulation (365 days). We investigated how

dissemination might depend on temperature, river flow velocity, and dilution for biolog-

ically plausible parameter values (see table 2 for credible parameter ranges). Because

even established thresholds (R0 = 1) may not be stable in real world settings [119], i.e.,

outbreaks may be possible for R0 < 1 and knowing the parameters is alone is not always
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sufficient to predict whether or not an outbreak will occur, we also analyzed the stability of

this threshold for biologically plausible changes in initial conditions (initial outbreak sizes

up to 10%).

We recognize that human travel is also an important disseminator for rotavirus and is

needed to explain spread of disease to upstream communities that would not otherwise

become infected through flowing waterways. However, in this analysis, we aimed to de-

termine if water was also a sufficient disseminator to downstream communities. Thus, we

acknowledge that waterborne dissemination is not necessary to spread disease between

communities but aimed to determine if it was also a sufficient pathway.

For both dissemination and amplification analyses, we used the fitted model equation from

the meta-analysis to calculate decay rates at different temperatures, simulating across the

range of decay rates seen in the literature.

3.3 Results

3.3.1 Meta-Analysis: Temperature and Die Off

Our literature search returned 57 articles. Of these articles, we identified 9 that met our

inclusion criteria containing a total of 39 experiments for use in our analysis. These studies

are summarized in Table 3.2. More descriptive information is in the supplement section

B.1. We used data from these 39 experiments to estimate the die-off rate (/day) for each

study. The decay rates ranged from 0.008 to 0.996 per day, with a median decay rate of

0.056/day (corresponding to a mean survival time of 18 days).

Our pooled data across all 39 experiments support the hypothesis that the decay rate of

rotavirus is temperature dependent, with higher temperature leading to increased die-off

(λ=0.095, SE=0.018, p < 0.01). However, due to the exponential relationship between
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Table 3.2: Studies included in the meta-analysis. The phrase ‘combined’ is used for simple
aqueous solutions at a neutral pH, such as phosphate-buffered saline (PBS). The
phrase ‘purified’ is used for sterile, distilled water. The phrase ‘treated’ is used
for water taken from raw water or sewage that was treated to remove microbes
prior to analysis.

Author, Year No. Experiments Temperature Media Type Ref
Espinosa et al., 2008 4 15, 25◦C Natural, Combined [28]
Ward et al., 1986 9 4, 16, 23, 27, 29, 37◦C Natural [29]
Raphael et al., 1985 12 4, 20◦C Natural, Treated [30]
El-Sanousy et al., 2014 3 4, 22, 35◦C Natural [31]
Hansen et al., 2007 1 22◦C Treated [32]
Sattar et al., 1984 2 4, 20◦C Treated [33]
Höglund et al., 2002 2 5, 20◦C Combined [34]
Chung et al., 1993 2 5, 25◦C Natural [35]
McDaniels et al., 1983 4 8, 26◦C Purified, Treated [36]

temperature and die-off, the effect of a given change in temperature was small below

20◦C (Figure 3.3). It is known that competition between microbes can influence decay

rates and some of these experiments were conducted in natural water sources that could

contain other microbes. To account for the possibility that the association between tem-

perature and decay could be confounded by microbial competition, we also adjusted for

this variable, with natural water sources being the only water type likely to contain other

microbes. As expected, experiments conducted in natural water sources that could contain

other microbes had higher decay rates (χnat=1.21, SE=0.327, p < 0.01). Although the

effect estimate for temperature attenuated slightly after adjusting for this possible com-

petition effect, the association remained significant (λ=0.078, SE=0.016, p < 0.01). We

elected to use the adjusted results. We also ran the simulations using the unadjusted

model as a sensitivity analysis, and the results were similar (see supplement section B.2

for unadjusted results).

The adjusted, fitted regression is:

K(T ) = exp (−2.51 + 1.21χnat + 0.078(T − 25)) (3.4)
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Figure 3.3: Temperature and Decay Rate with prediction intervals from the adjusted
model. Data, predicted decay rates, and prediction intervals are shown in
black for natural water sources and in gray for all other water sources. The
predicted decay rates for each temperature are shown in solid lines and the
95% prediction intervals are shown in dashed lines for both types of water
sources. For a graph of these decay rates on the linear scale, see supplement
figure B.5.
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There was no significant interaction between water type and temperature in our dataset.

3.3.2 Transmission Model

3.3.2.1 The Basic Reproduction Number

Using the next generation approach, we derived the following expression for R0 (see sup-

plement):

R0 =
βH
γ

+
0.5βWNρ

(1− c)φ
V

γ(µ+ ν)
(3.5)

= R0,H +R0,W (3.6)

The basic reproduction number can be written as a sum of two submodel reproduction

numbers R0,H (the R0 from human-to-human transmission) and R0,W (the R0 for water-

to-human transmission).

This expression leads to several insights. First, when all transmission occurs from person

to person (βW = 0), the reproduction number reduces to the SIR form of β/γ, which is the

general formulation assumed by other rotavirus transmission models. Second, for water-

human transmission, the river flow velocity impacts how strong of an effect temperature

has on R0,W . For flowing water systems (ν > 0) temperature related die off (µ = K(T ))

has a negligible effect whereas in standing water (ν = 0), temperature related die off

becomes more important for determining transmission potential. Third, the river flow ve-

locity also impacts persistence in the local water supply. In flowing systems, the speed of

flow is generally much faster than the speed of pathogen decay. As such, the length of

pathogen persistence in the local water supply is much more strongly affected by hydro-

logical flow dynamics. In standing water systems, the length of pathogen persistence in
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the environment is entirely driven by temperature. Even in standing water, however, the

most important contributor to water-human transmission (R0,W ) is the size of the water

reservoir (V ) relative to the effective shedding rate (1− c)φ. Overall, the size of the water

reservoir relative to the human population is the critical driver of the strength of water-

human transmission as it determines the degree of dilution that occurs when pathogens

are shed into the water.

3.3.2.2 Amplification in Water Sources

In our simulations, for flowing systems, water can only amplify infection when the avail-

able volume of drinking water sources is low, because residence times in the local water

supply are too short for pathogen concentrations to accumulate locally. However, for stand-

ing water, temperature can be an important determinant of community risk at moderate-

to-high volumes, with higher temperatures reducing the strength of indirect transmission

(Figure 3.4) and leading to lower cumulative incidence (Figure 3.5).

The strength of the temperature effect depends on both the strength of direct person-to-

person transmission and the size of the water reservoir, with temperature having a stronger

effect when direct transmission is weaker and the per capita water availability is higher.

When per capita water availability is 1,000 L, temperature only affected risk at higher

temperatures, with an average risk difference per degree Celsius of 1.0%, 0.3%, and 0% for

temperatures between 20◦C and 37◦C forR0,H values of 1, 2, and 3 respectively. When per

capita water availability was 10,000 L, temperature had the largest effect on risk at lower

temperatures with risk differences of 2.4%, 0.5%, and 0.2% per degree Celsius between

10◦C and 20◦C for R0,H values of 1, 2, and 3 respectively. Between 20◦C and 37◦C, these

same risk differences were smaller, with values of 1.9%, 0.3%, and 0.1% respectively.

For standing water at moderate dilution, the amount of sanitation coverage needed to

reduce R0,W below 1 varied by temperature, with higher coverage needed to interrupt
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waterborne transmission at lower temperatures. When dilution was high,R0,W was always

less than 1 irrespective of the degree of attenuation of shedding. For flowing water, R0,W

was only greater than 1 when dilution was low, and the amount of sanitation coverage

needed to reduce R0,W below 1 depended on the flow velocity, with less coverage needed

in faster flowing rivers (Figure 3.4).
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Figure 3.4: The strength of indirect, water-human, transmission (R0,W ) for A) flowing
water (ν > 0) at low volume (105 L), B) standing water (ν = 0) at moderate
volume (1,000 L/person, 106 L total volume), and C) standing water (ν =
0) at moderately high volume (10,000 L/person, 107 L total volume). For
flowing water, the flow velocity (ν) is more important than decay rates, so the
sensitivity analysis is shown as a function of flow rates (ν) and attenuation
due to WASH interventions and natural processes (c). For standing water,
the water is not flowing so decay rates (µ) and attenuation of shedding (c)
become important for waterborne disease dynamics. For flowing water, the
pathogen decay rate was set to 0.056, the median decay rate found in the
studies included in our meta-analysis.

45



0.00

0.25

0.50

0.75

1.00

10 20 30
Temperature (C)

C
um

ul
at

iv
e 

In
ci

de
nc

e

A

0.00

0.25

0.50

0.75

1.00

10 20 30
Temperature (C)

C
um

ul
at

iv
e 

In
ci

de
nc

e

B

0.00

0.25

0.50

0.75

1.00

10 20 30
Temperature (C)

C
um

ul
at

iv
e 

In
ci

de
nc

e

C

Figure 3.5: Cumulative incidence (fraction) for different temperatures and strength of di-
rect transmission. R0,H values of 1, 2, and 3 are shown in solid, dotted and
dashed lines respectively for A) standing water (ν = 0) at low volume (105 L),
B) standing water (ν = 0) at moderate volume (1,000 L/person, 106 L total
volume), and C) standing water (ν = 0) at moderately high volume (10,000
L/person, 107 L total volume). For all three panels, attenuation of shedding
due to WASH interventions and natural processes (c) is set to 0.9. The maxi-
mum effect of temperature occurs at this level of attenuation and high dilution,
withR0,W decreasing from over 0.98 to 0.11 as temperature increases from 10
to 37◦ C for standing water. For flowing water, temperature has no effect on
cumulative incidence for any volume because flow is much faster than decay
and R0,W only changes from 0.05 to 0.04 as temperature increases from 10◦C
to 37◦C.
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3.3.2.3 Dissemination through water

In order for an outbreak to move downstream through water sources, we found thatR0 > 1

at the location of outbreak seeding was a sufficient condition for downstream outbreaks, as

long as the transmission term from water was positive (βW > 0). However, this condition

was not necessary when the water was highly concentrated (due to low volume and slow

flow rates) and when the initial size of the outbreak was large.

When stream volumes are low, our model suggests that dissemination can occur even if

the combined reproduction number (direct + indirect) is less than 1. This behavior is con-

sistent across a wide range of die-off and flow velocity values, including both when there

is no direct transmission (R0,H = 0, Figure 6) and when both pathways were activated

(R0,H > 0 and R0,W > 0 but R0,H +R0,W < 1). In this last condition, the R0 = 1 threshold

occurs at a higher flow rate whose value is proportional to the strength of direct transmis-

sion (Figure 6). At higher water source volumes above 100,000 L (100 L/person), there

is no dissemination to the downstream community when R0 is less than 1. In summary,

our simulations suggest that a sufficient condition for dissemination is that R0 > 1, and

that there is a narrow parameter regime when R0 is slightly less than 1 in the upstream

community where dissemination can also occur under low volume conditions.

When the system is driven by direct transmission, R0,H < 1 prevents dissemination, even

when the initial size of theinfectious state in the upstream community isup to 10% of

the population; i.e, R0,H is a stable threshold (Figure 3.7A). In contrast, when the system

is driven by indirect transmission, the presence ofdownstreamoutbreaks and their size is

sensitive to the initial sizeof the infectious state in the upstream communitywhen volume is

low (Figure 3.7B); i.e.,R0,W is not a stable threshold. The only time thatR0,W is a threshold

fordownstreamoutbreaks is when 1) the model is seeded with only one infectious casein

the upstream community(sufficient for upstream outbreaks), and 2) volume is moderate

to high (necessary for downstream outbreaks).
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cumulative incidence of at least 5% after 365 days. The solid line corresponds
to the situation when R0,W = 1. Above this line, R0,W < 1 and below this
line R0,W > 1. For these simulations, the sub-model reproduction number for
direct transmission was set to 0 and volume was set to 100,000 L.
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on cumulative incidence in the downstream community when A) Most trans-
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number for water is < 0.01. R0,H is a stable threshold; downstream outbreak
is driven by R0,H > 1; and B) All transmission occurs through the water and
direct transmission is set to 0, under conditions of low volumes (100,000 L).
Here, R0,W is not a stable threshold; i.e., downstream outbreaks are possible
for R0,W < 1.
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Another condition that might prevent dissemination is if rotavirus die-off rates are higher

than river flow rates. In our simulations, higher temperature resulting in higher die-off

rates was not sufficient to prevent dissemination through waterways. That is because

the die-off rates from our meta-analysis range from 0.008 to 0.996/day (corresponding

to mean survival times from 1–125 days), which is lower than the river flow rates we

observed in our Ecuador field site. Therefore, in practice, the parameter region where

die-off rates are higher than flow rates probably only occurs for very slow flowing river

systems where flow rates are less than 1 km/day. Furthermore, our simulations suggest

that even when flow rates are slower than 1 km/day, dissemination can occur if volume is

low.

3.4 Discussion

We find that environmental transmission of rotavirus through water sources may be an

important source of risk in tropical climates at both the community scale (due to amplifica-

tion) and regional scale (due to dissemination). The role of the environment in rotavirus

transmission was affected by temperature, river flow velocity, WASH interventions, and

the size of the water reservoir (which determines dilution). Increases in temperature were

found to be associated with exponential increases in the decay rate of rotavirus in water

sources. We would therefore expect temperature to only appreciably increase die-off in

tropical locations where the water temperatures can easily exceed 20◦C. However, even

at lower temperatures small changes in ambient temperatures can have a larger impact

on risk for communities drawing water from more dilute surfaces, such as lakes. Com-

munities linked by flowing rivers could disseminate infection but their water supplies did

not amplify within-community outbreaks unless dilution was low, whereas outbreaks in

communities with standing water sources could be amplified by environmentally medi-

ated transmission when dilution was low to moderate. In the real world, these patterns
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may help to describe distinct disease dynamics among communities using rivers—as op-

posed to ponds and lakes—for water sources, as well as communities with riverine water

sources with time-varying flow velocity and connectivity. Furthermore, even in communi-

ties served by flowing surface water sources, pathogens may accumulate in areas of slow

flow along the river’s edge [69]. Disease dynamics in communities where these zones serve

as foci for interactions between the human population and the water source may exhibit

qualities of both flowing and standing water communities as described by our model.

Prior researchers have attempted to understand how rotavirus may be influenced by tem-

perature and other seasonal factors using both time series analyses and meta-analysis tech-

niques. In general, these studies have found that rotavirus infections are more common in

cooler, drier seasons with average effects of 4–10% decrease in incidence per 1◦C increase

in temperature [43, 44]. In our model, every 1◦C increase in temperature leads to a total

0.1–2.4% decrease in incidence for standing water sources, which is at the lower end of the

average associations between temperature and rotavirus seen in prior meta-analyses. The

maximum temperature effect occurs when the reproduction number for direct transmission

is close to 1. While this level of transmission is far lower than estimates of infection poten-

tial from prior models, in situations where the population is composed of both susceptible

individuals and individuals with some immunity due to prior infection, the effective repro-

duction number is generally lower and may be close to 1 [121]. In situations like these, the

effect of temperature on disease may be similar to our maximum temperature effect. There

are a number of reasons that our results might not conform exactly to the results of these

prior time series studies. First, because the relationship between temperature and decay is

exponential, the effect of any temperature change depends on the baseline temperature.

This means that larger changes in pathogen survival are expected in areas that are already

hotter on average, such as the tropics. Second, many of the studies considered in these

meta-analyses may also be subject to confounding by other unmeasured factors including

differences in local hydrological conditions. Thus other seasonal processes are likely to
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explain much of the remaining temperature association, and the average associations in

the literature may be affected by publication bias [44].

The impact of temperature on disease transmission is likely to be different in temperate

compared with tropical climates. In temperate regions, many factors in addition to tem-

perature change seasonally that could cause a large shift in the strength of transmission,

including seasonal changes in humidity. Thus, rotavirus seasonality in temperate climates

is likely to be multifactorial and the result of many interdependent processes, which we

do not explore here. While humidity has a large impact on the decay rate of rotavirus on

fomites, temperature has a much smaller impact. The majority of the literature suggests

that at high humidity conditions such as those found in the tropics, rotavirus survival on

surfaces is likely to be long enough to sustain transmission for all temperatures [23–27].

Thus, while direct transmission may have a seasonal component, particularly in temperate

climates, it is unlikely that the seasonality of rotavirus transmission in the tropics can be

explained by temperature-related variations in fomite-mediated transmission alone [23–

27]. Although we do not explicitly model other processes that might change seasonally

in temperate climates, we do consider how population level impacts of changes in indi-

rect transmission depend on the strength of direct transmission. Thus, our model may be

thought of as modeling the variation in indirect transmission within a season in temperate

climates.

Although our meta-analysis showed that higher temperatures were associated with faster

decay, our model predicts that this effect of temperature would not be sufficient to prevent

dissemination through water sources in sites similar to our study site in Ecuador. For com-

munities with standing water sources, water also acted as an amplifier of local transmis-

sion. Even though the degree of coupling of infectious pathogens between the water supply

and infectious people is probably lower in large cities that use standing water sources, the

sensitivity of our model to the per capita water availability suggests that larger cities with
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poor sanitation infrastructure where most residents get their drinking water from a single

reservoir may be especially vulnerable to waterborne transmission. For communities us-

ing standing water sources, the effect of temperature was more pronounced, and higher

temperatures led to smaller outbreaks due to the decreased persistence of rotavirus in the

water supply.

3.4.1 Dissemination of rotavirus through flowing waterways

Together, our results suggest that water is likely to be a sufficient disseminator of infection

in most flowing systems. Although it is not necessary for the overall reproduction number

in the upstream community to be greater than 1 for dissemination to occur, in most con-

texts the sufficient condition (R0 > 1) is likely to be met either through direct transmission

alone (R0,H > 1) or indirect transmission if there is increased contamination levels due to

low water volumes (R0,W > 1). Because the overall reproduction number is a function of

both direct and indirect transmission, it is sufficient for the sum of both submodel R0’s to

be greater than 1. The submodel reproduction number R0,H is likely to be greater than 1

in most contexts in the absence of focused interventions targeting this pathway, both be-

cause the shedding rate of rotavirus is extremely high relative to its median infectious dose

and because rotavirus is persistent on a variety of environmental surfaces [23–27]. When

R0,H > 1 , the sufficient condition for dissemination will always be met, as long as water

remains sufficient to disseminate enough pathogens to cause an outbreak in downstream

communities. Even when direct transmission is not sufficiently high, low water volumes

(increasing indirect transmission) or high initial outbreak sizes (increasing the probability

of a breakthrough transmission event) may allow water to disseminate infection between

communities.
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3.4.2 Multiple pathways: direct and indirect transmission

While some seasonality patterns in rotavirus incidence may be partially explained by dy-

namic resonance related to the birth rate, many other factors may underlie this typical

seasonal pattern of risk [39, 40, 122], including environmental variables like temperature.

Because rotavirus is highly infectious, direct transmission alone may be sufficient to cause

nearly universal infection of the susceptible population. However, in this analysis we have

identified situations in which indirect transmission can affect the spread of disease through

a watershed and may also be sufficient to cause large outbreaks. When two sufficient

causes (i.e., environmental and direct transmission) are both met in a population[123],

conventional epidemiologic studies that analyze case data alone may not detect this en-

vironmental transmission because multiple mechanisms are capable of explaining the ob-

served dynamics [3, 4, 124, 125]. By explicitly considering this environmental route of

transmission, we were able to better explore the potential importance of both pathways.

Our model shows that while direct human-to-human transmission is likely to be more

important for local amplification, indirect transmission may be sufficient to both sustain

and spread outbreaks. Furthermore, if one assumes uninterrupted flow and surface wa-

ter availability, waterborne transmission appears to be more important in cooler and drier

seasons, when rotavirus persistence in the environment is high and the dilution effect is

weak. In settings where certain assumptions of our model hold, i.e. that accumulation of

and exposure to waterborne rotavirus can be adequately represented with a single water

compartment and where access to safe water and sanitation is poor, inland cities with poor

sanitation access are also expected to be especially vulnerable to waterborne transmission

because of their relatively lower per capita water availability. In these settings, interven-

tions like vaccination that impact both direct transmission and indirect pathways may be

needed to reduce risk of infection within communities and to stop the spread of infection

through watersheds.
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Our model shows that the degree of intervention needed to interrupt water transmission

depends on both local hydrologic conditions and ambient temperature. For standing water

systems, less effort may need to be invested to prevent the accumulation of viruses in local

water bodies when ambient temperature is high. For communities that utilize flowing sur-

face water systems, targeting direct transmission alone may be sufficient to prevent disease

spread as long as the size of the water reservoir is relatively large. When the size of the

water reservoir is relatively small, the degree of intervention needed in flowing systems de-

pends on the speed of water flow. Furthermore, if water is in fact an effective disseminator

of rotavirus, restricting person-to-person contact may be sufficient to prevent the spread

of rotavirus between communities for systems with greater per-capita water availability.

In other types of communities, direct human-to-human transmission may be important

for local amplification, but indirect transmission may sustain and spread outbreaks. This

information can help public health practitioners identify optimal approaches to decrease

environmentally mediated rotavirus risks in resource limited settings by considering local

climatological and hydrological conditions.

We acknowledge that many questions remain about how rotavirus is transmitted: there

is strong evidence both that the overall reproduction number R0 is high and that the

environment can be mportant for transmission. In fact, the processes underlying rotavirus

transmission are likely to be highly complex, with the potential for super-spreading and

large heterogeneities in transmission by age [3]. In the United States, where drinking

water and sanitation facilities are generally safe, rotavirus was still a major source of

disease risk prior to the introduction of the vaccine, suggesting that water and sanitation

interventions alone are unlikely to be adequate to interrupt transmission [126]. Because

water remained an important source of risk in our model for communities resembling

larger cities even when shedding was highly attenuated, our results are consistent with this

line of research. Future work combining environmental sampling over multiple seasons

with case data would be particularly useful to help validate our conclusions. Genetic
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data could also help clarify the relative importance of different transmission routes. In

addition, future studies on the effect of humidity on rotavirus persistence on fomites could

help clarify other sources of seasonality in direct transmission.

3.4.3 Implications for trends in rotavirus risk under climate change

Given that global temperatures are projected to increase as climate change proceeds [127],

many researchers have attempted to understand the relationship between temperature and

risk of disease. In our model, we showed that one reason for the observed decrease in

rotavirus infections at higher temperatures might be increased die off of rotavirus in water

sources. Other pathogens, however, have different temperature signatures, and many

studies have shown that risk of bacterial and protozoan diarrhea is, in fact, slightly elevated

at higher temperatures [44]. However, these associations do not necessarily preclude

increased die-off at higher temperatures for bacteria, but rather reflect the net balance

of factors for bacteria compared with viral pathogens. For example, for many bacterial

species, temperature activated virulence genes have been identified which may lead to

increased risk of disease at higher temperatures even in the presence of faster die off

[101, 102]. Some bacteria may also have higher replication rates at higher temperatures

[44]. One implication, then, of our results is that the etiology of waterborne diarrhea

cases might shift away from rotavirus and towards bacterial and protozoal infections as

global mean temperatures continue to increase. On the other hand, rotavirus may be able

to adapt to slowly increasing temperature, suggesting the need to study the temperature

sensitivity of rotaviruses from different climates[128]. Another potential implication is

that the waterborne transmission route for rotavirus may become less important as the

average temperature increases, even if overall transmission does not decline. Given the

non-linear relationship between temperature and die off, this shift is more likely in the

tropics.
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3.4.4 Conclusions

While some researchers acknowledge that waterborne transmission of rotavirus can occur,

its importance is often downplayed relative to direct transmission [99]. Our model analysis

reaffirms that direct transmission likely plays a central role in amplifying rotavirus infec-

tion within communities. However, we used rotavirus die-off data and prior meta-analyses

to show that water is sufficient to both disseminate rotavirus infection between hydrologi-

cally connected communities, initiating local transmission cycles, and to amplify transmis-

sion under conditions of relative water scarcity in flowing systems and in standing water

for a wide range of water availability. Our model indicates these environmental effects

are most important in cooler seasons and, may be particularly important in larger cities

with poor sanitation. These findings highlight the need to consider waterborne pathways

in rotavirus control interventions, particularly in endemic regions in the tropics where the

accumulation of virus in waterways may be more pronounced.
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CHAPTER IV

Effect of Rotarix Vaccination in Rural, Coastal Ecuador

4.1 Introduction

Rotavirus is one of the top causes of severe diarrhea worldwide, particularly in children

between 7 and 24 months of age [4, 10, 129]. In 2006, two vaccines were approved for

use, Rotarix and Rotateq, with the objective of reducing severe disease [129, 130]. While

both vaccines have shown similar effectiveness worldwide, Rotarix is the version used in

Ecuador and in low resource settings in general [131]. However, this live, attenuated

vaccine has to remain cold to be effective [132] and obtaining high levels of coverage

is logistically difficult in remote regions [60–62]. To date, most studies on the efficacy

and effectiveness of vaccination have come from randomized control trials and hospital

based studies [55–58, 133–135]; data on how the vaccine performs in community settings

is lacking [131]. Furthermore, no study has investigated Rotarix vaccine performance in

Ecuador [131]. Here we examine Rotarix vaccine effectiveness in a community setting in

rural Ecuador where there remain high barriers to vaccine coverage.

Beyond coverage barriers, developing country settings tend to have high genetic diversity

of circulating strains [136], which results in repeated infection [18]. In part because of

this greater diversity [59, 136], Rotarix vaccine efficacy has been shown to be inversely

associated with overall childhood mortality, with weaker protection in countries with high
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overall childhood mortality [131]. Because of the frequency of re-infection, rotavirus vac-

cines were expected to be most effective against severe rotavirus, with the goal of con-

ferring protection similar to one natural infection [129]. A first natural infection gen-

erally provides strong homotypic protection against the infecting strain and subsequent

infection provide broader protection against multiple strains [129]. On the other hand,

rotavirus vaccines also provide some protection against severe all-cause diarrhea, poten-

tially because rotavirus interacts synergistically with other diarrheal pathogens [37]. To

our knowledge, the effectiveness of rotavirus vaccination against asymptomatic rotavirus

infection and milder diarrhea disease has not yet been investigated.

In addition to showing strong efficacy among young children, data from vaccine trials has

challenged prior understanding about how rotavirus is transmitted. In general, clinicians

assume that infections occur throughout life but that symptomatic infections primarily oc-

cur among young children [16]. Because natural infection confers little protection against

milder and asymptomatic infection, the vaccine was not expected to interrupt transmis-

sion a priori. However, a few studies have shown indirect effects on older populations that

were too old to be vaccinated [65–67], suggesting that the vaccine may be lowering the

overall transmission rate or potentially boosting antibody responses through circulation of

vaccine strains shed in stool [137]. Most studies that have shown this effect have been

conducted in the United States, where vaccine efficacy is highest and vaccine coverage is

better than could be attained in many low-resource settings [16]. Whether or not such

effects extend to low-resource settings is unclear. Determining if this indirect protection is

present in low-resource settings is important because such effects would both increase the

cost-effectiveness of vaccination and because they might stabilize the vaccine effect over

time in remote regions whose transmission patterns are driven by periodic reintroductions

of rotavirus by older, unvaccinated age groups [138].

Our objective in this analysis is twofold. First, we aim to determine if Rotarix implemen-
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tation has been effective at reducing rotavirus infection and all-cause diarrhea in a remote

region of Ecuador with high levels of endemic diarrheal transmission. Second, we hope

to gain a greater understanding of how rotavirus is transmitted and explain counterintu-

itive finding from prior studies by quantifying 1) indirect effects of vaccination on older

populations who were not vaccinated and 2) the impact of vaccination on asymptomatic

rotavirus infection.

4.2 Methods

4.2.1 Data

This analysis built on data that were previously collected for a larger parent study on

diarrheal disease in rural, coastal Ecuador [68]. This study collected yearly census infor-

mation, active all-cause diarrhea surveillance, and 11 cycles of case control data (collected

over a 10 year period). Some communities were dropped during the follow up period and

others were added, but a total of 15 communities were followed for the full period.

We also collected all available vaccine records for children born in our study villages be-

tween 2008- 2013. We did not collect vaccine records prior to 2008 because the Rotarix

vaccine had not yet been introduced at that time. Using date of birth, community of res-

idence, and name, we linked these vaccine records to individuals who participated in our

larger study. See supplement C.3 for more details about vaccination data collection.

We use this vaccine data along with ten years of case control data, 16 months of all-cause

diarrheal disease surveillance, and the corresponding census data to assess the effect of the

rotavirus vaccine on rotavirus infection, rotavirus-specific diarrhea and all-cause diarrhea

in our study region. We collected these data between 2003 and 2013(Figure 4.1). The

exact dates corresponding to the beginning of each study cycle are shown in the supple-

ment C.2. All data collection protocols were approved by Institutional Review Boards at
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University of Michigan and Universidad San Francisco de Quito. Details of the surveillance

and case control outcome data as well as relevant covariates are described below.

Figure 4.1: Data collection calendar, where each calendar year is shown in blue. Through-
out the ten year study period, we conducted 11 serial, population-based, case
control studies (timing of each is shown in red). The population based study
design means that each individual in the community had a known probability
of sampling. We conducted an active surveillance study between August 2011
and September 2013 (timing is shown in green), and a census in each cycle
prior to the start of the case control study. Rotarix was introduced in Ecuador
in 2007, but was not introduced in our study communities until late in 2008.

Surveillance outcome data. Between August 2011 and September 2013, we collected diar-

rheal surveillance data from all households every two weeks. However, there was a gap in

data collection in July 2012 and from November 21, 2012–August 1, 2013. We recorded

data for all cases of diarrhea.

Case control outcome data. Approximately once every 9 months from 2003 to 2013, field

staff vis- ited each community and conducted a two week, prospective, population-based

case-control study for symptomatic diarrhea. Due to the population-based design, we

know the probability of sampling for each person in our study and can use this data to

estimate population level prevalence and trends. In total, we have 11 cycles of case control

data for each community. During the 14 day period when field staff were in the village,

each case of diarrhea was identified prospectively. For the first seven study cycles, we

collected one household control and two community controls for each case. For cycles
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8-11, a random sample of 10% of the community population was sampled as controls at

baseline. We obtained stool samples from each case and control and these samples were

tested for rotavirus (and other pathogens).

Covariate data. Project staff used data collected at the start of the study to develop a metric

for the remoteness of each village based on the cost and travel time required to reach

Borbón, the largest town in the region [68]. This measure was subsequently categorized

into 3 groups: ‘close,’ ‘medium,’ and ‘far.’

Age was calculated using date of birth. For the surveillance analysis, we categorized age

into <2 and ≥2 years based on age at entry into the cohort. Further disaggregation was

not possible due to data sparsity. For the case control analysis, age was categorized into 3

groups: <1, 15, and ≥5 years.

We adjusted for household socioeconomic status using highest household education and

household size. We chose to adjust for socioeconomic status using education both because

it is generally considered to be an underlying cause of other socioeconomic indicators (such

as occupation and income) and because other socioeconomic information was not avail-

able for the full population. Highest household education was the highest number of years

of schooling reported by any individual of that household. Both variables were taken from

census data. For the active surveillance, household characteristics were calculated from

the census nearest to the child’s date of birth. For case control analyses, socioeconomic

indicators were taken from the census nearest to the case control cycle.

For the surveillance analysis, we also adjusted for BCG vaccination statues (yes/no) be-

cause it is generally administered at the same time as rotavirus and because it has been

shown to have beneficial non-specific effects [139].
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4.2.2 Analytic approach

To assess the effect of Rotarix vaccination in our study site, we conducted a three part

analysis. First, we assessed the direct effect of the rotavirus vaccine on all-cause diarrhea

illness using 16 months of active surveillance data (part 1). Second, we assessed the ef-

fect of community-level vaccine coverage (2 doses) on both rotavirus infection (including

asymptomatic infection) and all-cause diarrhea, using ten years of case control data (part

2). Third, we assessed the effect of community level vaccination on the fraction of symp-

tomatic diarrhea attributable to rotavirus infection using 10 years of case data (part 3).

More details about the derivation of all vaccine effectiveness measures (defined using the

convention of Halloran and Hudgens [140]) is in the supplement section C.1.

4.2.2.1 Part 1: Direct effects, cohort analysis

While both doses of Rotarix vaccine should be administered by four months of age, clin-

icians in our study region reported that the policy is to administer vaccination up to six

months of age. We created a dynamic cohort of children beginning six months after birth,

when both doses of the vaccine should have been administered. We then compared the

rate of all-cause diarrheal disease illness by vaccination status (2 doses, 1 dose, 0 doses)

using Poisson regression to estimate the direct effect of vaccination where 0 doses is the

reference group. We calculated the direct effect of vaccination using the following formula:

V E = (1− IRR)× 100 (4.1)

Based on our census records, there were 832 children born in our study communities be-

tween 2008 and September of 2013. Of these children, we have surveillance records for
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773 children after 6 months of age. We have vaccine records for 361 of these 773 children

and covariate information for 353 children. These 353 children (providing 5,945 person-

weeks of data) were used in the multivariate regression model. Because vaccine records

were not available for more than half of our study population, we also compared the demo-

graphic characteristics and diarrheal disease patterns of children with vaccine records and

those without records to assess whether or not these groups were comparable. In general,

children with records had higher rates of all-cause diarrhea than those without records.

Because diarrhea is not seasonal in our study region, we did not adjust for seasonality in

our model [44].

All statistical analyses were conducted in R (version 3.4). Weighted regression analyses

used the package ‘survey’ and clustered logistic regression used the package ‘gee.’ Poisson

regression analyses used the ‘glm’ function from the package ‘stats’.

4.2.2.2 Part 2: Overall effects and indirect effects, case-control analysis

We compared the risk of rotavirus infection and all-cause diarrhea over time to assess

whether the vaccine was associated with a change in transmission patterns in our study

region. Seven communities in our study region had at least one positive stool sample for

rotavirus in each cycle and we had vaccine records for six of these communities. While

zero is our best estimate of rotavirus infection prevalence for communities who had zero

positive stool samples for a given cycle, such estimates are subject to sampling error, par-

ticularly when prevalence is low, particularly because we only observing the population

during a two-week time frame for each cycle. Additionally, in larger communities, this

assumption could lead to bias in earlier cycles, when the control sampling strategy would

have tended to capture a much smaller fraction of the population than in smaller commu-

nities. To avoid making this assumption, we restricted our longitudinal analysis to the six

communities for which we had both vaccine data and positive stool sample data (n=2,489,
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150 rotavirus positive). This approach has a predictable bias towards the null, because by

design we could not have a 100% effectiveness estimate. In contrast, if we included all

study communities we would expect our results to be biased but could not predict the

direction a priori. To estimate confidence intervals for trends over time in the population

and by age group, we used the Horvitz-Thompson variance calculation method.

We used logistic regression models, weighted by inverse probability of sampling, to com-

pare the odds of rotavirus infection over time. We conducted this analysis separately by

age group (<1 year, 1-5 years, and ≥5 years) and for all three age groups combined. For

all models, community level coverage of two doses of vaccine was our exposure of interest

(the proportion of children with vaccine records who received with two doses of rotavirus

vaccine). We also considered a binary indicator (introduced/not introduced) but found

that community level coverage was a better predictor and was a significant predictor of

incidence patterns in the cycles after the vaccine was introduced. Thus, although average

vaccination in the communities in our study overall provides some benefit (using a binary

indicator), local coverage was an important determinant of community risk in later cy-

cles. For this reason, we used community vaccine coverage as our exposure of interest in

all regression models. We calculated overall vaccine effectiveness (VE) for all age groups

separately and the population overall using the following formula [140]:

V E = (1−OR)× 100 (4.2)

4.2.2.3 Part 3: Attributable fraction, case only analysis

In order to avoid changing the communities included in the analysis throughout the ten

year period, which could bias estimates of population level trends, we restricted our analy-

sis of symptomatic rotavirus to the 15 study communities that were followed for the study
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period (n=830). We had vaccine coverage data for all fifteen of these communities. All

fifteen communities had at least one case of diarrhea in every cycle. We used this data

to assess whether or not the fraction of diarrheal cases attributable to rotavirus changed

after the vaccine was introduced, using community vaccine coverage as our exposure of

interest just as we did in part 2. Six of these fifteen communities were also included in the

part 2 analysis. Thus, consistency between the symptomatic rotavirus regression in part 2

and the attributable fraction analysis in part 3 would increase our confidence that these

findings generalize more broadly across the region. Because all symptomatic cases should

be detected by our study design every case has a sampling probability of 1. Thus, these

regressions were not weighted. However, for this symptomatic rotavirus regression anal-

ysis, we accounted for clustering by community using a generalized estimating equation

(GEE) framework and an ‘independence’ correlation structure. We elected to use the GEE

framework to facilitate population level interpretability [92].

4.3 Results

4.3.1 Descriptive statistics

4.3.1.1 Part 1: Cohort analysis

Differences between vaccinated and unvaccinated children are shown in Table 4.1. Chil-

dren with vaccine records had higher rates of illness than children without vaccine records

and a higher proportion of them became sick during the surveillance period. While not sig-

nificant, there was a tendency for children with vaccine records to come from close/medium

villages and for those without vaccine records to come from far villages (p = 0.053). Chil-

dren without vaccine records also tended to come from houses with higher education

(p = 0.096).
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While some children may not have vaccine records because they were not vaccinated,

some of these vaccine records may have been lost and many may have been vaccinated

elsewhere, particularly Borbón, the nearest city in the region and location of the region’s

primary health center. Given that travel patterns in our study region are positively as-

sociated with socioeconomic status among adults [138], it is possible that the parents of

children without vaccine records had higher income levels and brought their children to

Borbón to receive vaccines. For this reason, we restricted our cohort analysis (part 1) to

children with vaccine records.

Children who were vaccinated, in general, received both doses by six months of age (see

table C.5 for details). Therefore, we assume that age upon entering the surveillance cohort

(six months) is a good proxy for time since vaccination.

One community had very few records and the data quality was low, so this community was

not included in the cohort analysis and is not shown in table 4.1. As a sensitivity analysis,

we re-ran the regression analyses with this community added and while the confidence

intervals were wider, the main results were unchanged.

4.3.1.2 Case control analyses (parts 2 and 3)

Vaccine coverage (exposure). For parts 2 and 3, we estimated vaccine coverage (our expo-

sure of interest) among children with vaccine records only. We estimated that the average

coverage was 74.6% for all cycles. Vaccine coverage was lowest in cycle 9 (66.4%) and

highest in cycle 8 (78.8%) (see Table 4.2). At the community level, coverage estimates

were variable, and ranged from 40.0% to 100%. The fraction of individuals with vac-

cine records was highest in moderately remote communities and among children with

records vaccine coverage was highest in close villages. Overall, only about half of our

study population had available vaccine records (see supplement section C.3 for vaccine

record availability by community).
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Remoteness Cycle 8 Cycle 9 Cycle 10 Cycle 11
Close Communities

Fraction with Records 40.2% (29/72) 56.6% (56/99) 52.5% (64/122) 32.9% (26/79)
Coverage of two doses 86.2% (25/29) 66.1% (37/56) 73.4% (47/64) 96.2% (25/26)

Medium Communities
Fraction with Records 66.7% (6/9) 70.8% (17/24) 63.6% (14/22) 37.5% (6/16)
Coverage of two doses 50.0% (3/6) 64.7%(11/17) 85.7% (12/14) 100% (6/6)

Far Communities
Fraction with Records 41.3% (31/75) 47.4% (46/97) 35.0 % (42/120) 53.6% (52/97)
Coverage of two doses 77.4% (24/31) 67.4% (31/46) 82.1% (32/39) 67.3% (35/52)

Overall Coverage 78.8% (52/66) 66.4% (79/119) 77.8% (91/117) 78.6% (66/84)

Table 4.2: Vaccine coverage over time by community remoteness

Time trends in all-cause diarrhea and rotavirus infection (outcomes). We estimated the

prevalence of both all-cause diarrhea and rotavirus infection over time using the six com-

munities included in the case control analysis. While older children and adults have the

lowest per-capita risk of rotavirus infection (Figure 4.2A), they explain a substantial pro-

portion of the infections due to their higher proportion in the population (Figure 4.2B).

In this older age group, diarrhea was also a causative diarrheal pathogen (based on the

odds ratio for diarrhea given rotavirus infection, see supplement section C.4). The to-

tal prevalence of rotavirus infection and all-cause diarrhea decreased after the vaccine

was introduced, with young children <1 year of age showing strong reductions beginning

in cycle 8 when the vaccine was first introduced and older age groups not showing this

benefit until 1 cycle later (Figure 4.2A). Graphs of rotavirus infection (symptomatic and

asymptomatic) and all-cause diarrhea over time are in the supplement section C.4.

Covariates for parts 2 and 3. In the case-control study, the prevalence of rotavirus infection

in the general population and among cases of diarrhea declined after the vaccine was intro-

duced (4.9% to 0.8% in the full population, 21.4% to 15.7% among cases, see Table 4.3).

The prevalence of all-cause diarrhea also declined (2.2% vs. 1.6%). In the full population,

the age distribution was similar throughout the study, but there was a tendency towards

increased socioeconomic status as indicated by smaller household size and higher average
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Figure 4.2: A) Percent of population infected with rotavirus by age group, B) Age distribu-
tion of rotavirus positive individuals (both symptomatic and asymptomatic) by
study year. For panel A, children <1 year of age are shown in green, children
between 1 and 5 years of age are shown in light blue, and older children (≥5
years) and adults are shown in gold. For panel B, older children and adults are
shown in gold and children under 5 years of age are shown in dark blue. The
vaccine was first introduced in this region during cycle 8 (late in 2008).
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Case control analysis (part 2) Case only analysis (part 3)
Pre-vaccine Post-vaccine Pre-vaccine Post-vaccine
(N=20,660) (N=7,497) (N=645) (N=185)

Symptomatic for diarrhea (%) 2.2(446) 1.6(122) 100 (case only) 100 (case only)
Male (%) 51.3 (10,617) 52.0 (3,902) 52.6 (327) 56.4 (101)
Age (%)
<1 3.5 (713) 3.8 (286) 18.4 (114) 13.9 (25)
1-5 10.9 (2,260) 10.4 (777) 49.4 (306) 48.0(86)
>5 84.9 (17,548) 85.6 (6,432) 32.3 (200) 38.0 (68)

Household size (n) 6.75 (2.89) 6.34 (2.83) 6.37 (2.80) 6.70 (3.73)
Highest household education (yrs) 7.90 (3.38) 8.3 (3.35) 7.24 (3.32) 6.74 (3.33)
Remoteness (%)

Close 66.1(13,653) 52.6 (3,944) 44.8 (289) 43.8 (81)
Medium 5.6 (1,158) 5.2 (390) 15.2 (98) 11.4 (21)
Far 28.3 (5850) 42.2 (3,164) 40.0 (258) 44.9 (83)

Positive for rotavirus (%) 4.9 (845) 0.8 (60) 21.4 (138) 15.7 (29)

Table 4.3: Characteristics of study sample before (cycles 1-8) and after (cycles 9-11) the
vaccine was introduced. For part 2 (columns 2 and 3) all statistics are weighted
by inverse probability of sampling and the total sample size (N) is the total
population size of the six communities included in the analysis. For part 3
(columns 4 and 5), the statistics are unweighted and the total sample size (N)
reflects the number of cases of symptomatic diarrhea for all 15 communities. For
both analyses (columns 2-5), continuous variables are shown as mean(standard
error) and categorical variables are shown as % (n).

household education in the later part of the study. Among cases of symptomatic diarrhea

(part 3), the average age cases appeared to increase after vaccine introduction and indi-

viduals who did have symptomatic diarrhea appeared to have worse socioeconomic status

as indicated by lower average levels of education and increased household size. Cases of

diarrhea were also more likely to be male after the vaccine was introduced and to live in

far villages.

4.3.2 Cohort analysis (part 1)

Among young children (under 2 years of age), rotavirus vaccination was associated with

a decreased rate of all-cause diarrhea (Incidence rate ratio (IRR)=0.491, 95% CI: 0.289,
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0.832). This IRR corresponds to a vaccine effectiveness of 50.9% (Figure 4.3 and Table

S6). Among older children (over 2 years of age), the rate of diarrheal illness was similar

regardless of vaccine status. While children who received one dose of rotavirus also tended

to have lower rates of diarrhea than unvaccinated children during the first two years of

life, this association was not significant (IRR=0.834, 95% CI: 0.453, 1.53), which most

likely reflects the small sample size of this under-vaccinated group.
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Figure 4.3: Effect of rotavirus vaccination on the rate all-cause diarrhea by age. Inci-
dence rate ratios (IRR) are adjusted for community remoteness, gender, high-
est household education, household size, and BCG vaccination. For all rate
ratios, the reference group is children less than 2 years of age who received
zero doses of vaccine.
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4.3.3 Case control analysis (part 2)

The community level vaccine coverage (among children who were vaccinated) was an

important predictor of reduced rotavirus infection, with a 100% increase in coverage being

associated with 0.118 times the odds of rotavirus infection in the fully adjusted model

(Table 4.4), corresponding to an overall vaccine effectiveness of 88.2% (95% CI: 68.9%,

95.5%) (Table 4.5). While the strongest effect was observed among young children (<1

year) (Table 4.5), all age groups had reduced in rotavirus infection, including people who

were too old to have been vaccinated (indicating the presence of indirect effects).

The overall effect of vaccination on asymptomatic infection was 92.8% (95% CI: 67.1-

98.4%) (Table 4.5), which was stronger than the effect of vaccination on symptomatic

rotavirus infection (VE=53.5%, 95% CI: 10.2-75.9%). For young children (<1 year), the

effect estimate for symptomatic infection was 80.0% (95% CI: -17.8-96.8%). In later cy-

cles, there were zero cases of asymptomatic rotavirus infection among children less than

five years of age. Rotarix vaccination was associated with reduced all-cause diarrhea

(VE=26.5%), but this association was only significant for young children (VE=73.3%,

95% CI: 3.3-92.5%). See table C.6 for a similar regression table for all-cause diarrhea.

4.3.3.1 Case-only analysis (part 3)

The community level vaccine coverage (among children who were vaccinated) was an

important predictor of reduced rotavirus infection, with a 100% increase in coverage being

associated with a 55% reduction in the odds of diarrheal cases being positive for rotavirus

(see table 4.6). Despite the difference in communities included in the analysis, this result

is similar to the reduction in symptomatic rotavirus in the full population based on the

case control analysis (part 2), which found a 53.2% reduction. We also ran this model for

each age group separately and found that the protective effect was strongest among the
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Unadjusted Model 1 Model 2
OR (95% CI) OR (95% CI) OR (95% CI)

Symptomatic for diarrhea 8.20 (4.94, 13.61) 8.54 (4.32, 16.8) 8.69 (4.31, 17.5)
Male 2.13 (0.993, 4.57) 2.19 (0.995, 4.82) 2.19 (0.991, 4.83)
Age
<1 3.29 (1.04, 10.4) 2.71(0.727, 10.1) 2.74 (0.716, 10.5)
1–5 1.28 (0.531, 3.10) 0.766 (0.270, 2.17) 0.767 (0.270, 2.19)
≥5 Ref Ref Ref

Household size 1.13 (0.922, 1.41) 1.17 (0.955, 1.43) 1.15 (0.941, 1.41)
Highest household education 0.968 (0.842, 1.11) 0.928 (0.841, 1.02) 0.937 (0.848, 1.03)
Remoteness

Close Ref Ref Ref
Medium 0.942 (0.352, 2.52) 1.09 (0.402, 2.95) 1.09 (0.397, 2.97)
Far 0.202 (0.074, 0.551) 0.202 (0.074, 0.553) 0.241 (0.088, 0.662)

Community vaccine coverage 0.112 (0.042, 0.296) – 0.118 (0.045, 0.311)

Table 4.4: Logistic regression of rotavirus infection (combined symptomatic and asymp-
tomatic). All cells represent OR (95% CI). Reference group for categorical vari-
ables are noted above. OR for vaccine coverage compares 0 to 100%. The
vaccine introduced variable is no for Cycles 1 ? 8 and yes for Cycles 9 –11.
Model 1 is adjusted for symptomatic diarrhea, gender, age, remoteness, house-
hold size, and highest household education. Model 2 is adjusted for all variables
in Model 1 plus community vaccine coverage.
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Unadjusted Adjusted
OR (95% CI) OR (95% CI)

Vaccine coverage (100% vs. 0%) 0.464 (0.293, 0.735) 0.453 (0.278, 0.739)
Male 0.855 (0.642, 1.14) 0.834 (0.625, 1.11)
Age
< 1 1.68 (1.11, 2.53) 1.73 (1.06, 2.84)
1-5 0.642 (0.449, 0.917) 0.639 (0.448, 0.912)
≥5 Ref Ref

Household size 1.02 (0.969, 1.08) 1.03 (0.964, 1.09)
Highest household education 0.992 (0.957, 1.03) 1.01 (0.975, 1.05)
Remoteness

Close Ref Ref
Medium 1.34 (0.878, 2.05) 1.40 (0.943, 2.09)
Far 1.13 (0.852, 1.49) 1.18 (0.869, 1.59)

Table 4.6: Propensity for symptomatic diarrhea cases to be positive for rotavirus. Model
adjusted for vaccine coverage, gender, age, remoteness, and household size.

youngest age group (<1 year), analogous to the results from the case-control analysis.

4.4 Discussion

In this study, we have shown that Rotarix vaccination has strong effectiveness on both

rotavirus infection and all-cause diarrhea in a rural, nonclinical population in Ecuador

despite modest vaccine coverage. These effects are strongest among young children who

are generally at highest risk of severe disease. However, we also found indirect effects on

both outcomes among older children and adults who could not be vaccinated, indicating

indirect effects. These indirect effects are most likely due to suppression of the overall

transmission rate, including asymptomatic infection, among all age groups.

Specifically, children < 1 year old were protected from illness (VE = 83% for symptomatic

rotavirus infection and 73% for all-cause diarrhea; Table 4) at a higher level than previ-

ously reported in randomized clinical trials (RCTs) in Latin America. These RCTs found

that rotavirus vaccination was associated with a 39%-42% risk reduction of hospitaliza-
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tion for all-cause diarrhea [57, 141]. Our higher VE estimates for all-cause diarrhea can

at least partially be explained by the fact that we were observing community-level illness

of any severity. The overall effects for symptomatic rotavirus infection in our field site for

<1 year olds (VE = 83%; Table 4.5) was in close agreement with similar vaccine trials in

Latin America among young children (VE 81%; [57]).

While young children had the strongest protection against illness, all age groups were sig-

nificantly protected from asymptomatic infection, including the oldest, unvaccinated age

group (VE=92%). This result implies that Rotarix vaccination suppresses not only severe

disease but also interrupts overall transmission and helps explain why we and others have

observed indirect effects of vaccination in older age groups. We find that this benefit is

attainable in low resource settings, despite modest levels of vaccine coverage (76% on av-

erage). The effect on older children and adults that we have found here may help reduce

community exposure to rotavirus and ultimately improve health outcomes in younger chil-

dren, who are at higher risk of severe disease. Such a reduction in infection might also

help sustain the beneficial effects of rotavirus vaccination over time. Adults may play an

important role as reservoirs for infection given their higher prevalence in the population,

and may also be important for introducing pathogens into remote communities like these,

which cannot sustain rotavirus transmission in isolation [138].

The suppression of asymptomatic infection (92%) also suggests that prior studies, which

focused on clinical rotavirus infection, may have underestimated the total impact of vac-

cination. Evidence of a strong VE on infection is important for two reasons. First, there is

increased evidence that repeated subclinical infections is linked to long-term sequelae of

stunting and environmental enteric dysfunction [142]. Second, older children and adults

can serve as reservoirs of rotavirus community-level transmission. Indeed, we found strong

indirect effects on rotavirus infection in older children and adults.

The lag between vaccination of young children and protection of adults (Figure 4.2A)
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suggests that the benefit to adults may be partially attributable to reduced amplification

of rotavirus infection within communities by young children who were vaccinated for ro-

tavirus [16, 138]. However, this delay may also reflect the time needed for pathogen decay

in environmental sources. While we could not formally assess the fraction of transmission

due to environmental transmission without environmental sampling data, we did find that

rotavirus cases did not cluster very strongly within households (see supplement C.4.3),

suggesting that most rotavirus infections do not occur in the household. Follow-up studies

could combine environmental sampling with surveillance data to better assess the fraction

of transmission due to this pathway.

Our vaccine data was collected retrospectively from secondary sources, which led to high

levels of missing data for the all-cause diarrhea cohort analysis and forced us to use a

smaller sample size. Because the children for whom we have vaccine records were sicker

than children without vaccine records, our results may not be generalizable to children

without vaccine records. However, given that the population level effects of vaccination

were strongly dependent on our vaccine coverage estimates rather than vaccine introduc-

tion alone, it is likely that the actual vaccine coverage within our study communities is

at least proportional to the coverage estimates from children with vaccine records. As a

sensitivity analysis, we also estimated the effectiveness of two doses of rotavirus vaccine

on all cause diarrhea in children under two years of age in the serial case control study

(using community vaccine coverage as the main exposure), and found very similar reduc-

tions in the odds of all cause diarrhea (45%) (see supplement C.7). As such, it is likely

that our estimates of vaccine coverage from the health post data are valid approximations

of vaccine status in our study communities overall.

Although we did not conduct a formal analysis to explore to what extent the effect of

vaccination was driven by interaction with other pathogens, the 73.3% effect estimate for

younger children (Table 4.5) is larger than the fraction of cases that were attributable to
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rotavirus for this age group for any cycle in the case control study. Thus, it is likely that the

vaccine also affects risk of infection with other diarrheal pathogens, as others have also

suggested [37]. We plan to conduct follow-up analyses to better address how synergistic

effects might vary by co-infecting pathogens and whether or not this effect has led to a

decline in stunting in our study region.

Because this is an observational study, we cannot guarantee that all of our exposure groups

are comparable even after adjusting for relevant confounders. We plan to conduct follow-

up analyses using simulation models to model counterfactual contrasts between vaccine

groups explicitly, such that our exposure groups will be comparable by design. Finally, we

are in the process of genotyping all rotavirus positive stool samples after the vaccine was

introduced. We plan to use this data to assess whether or not the circulating strains of

rotavirus have changed over time in response to vaccine introduction.

Rotarix vaccination can substantially improve health outcomes in remote communities

with significant barriers to vaccination. Much of this effect is driven by suppression of

overall rotavirus transmission at a population level–including among older age groups

who were too old to be vaccinated. We find that the impact of rotavirus vaccination may

be higher than previously estimated given its effect on milder diarrheal disease and asymp-

tomatic infections. Because vaccination also reduces diarrheal disease morbidity, long-term

health benefits, such as reduced prevalence of stunting, may also occur after vaccine intro-

duction.
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CHAPTER V

Conclusion

5.1 Summary

This dissertation expands our knowledge of the epidemiology of rotavirus transmission in

low resource settings. In the introduction, I elaborate on the gaps in our understanding of

rotavirus epidemiology. In the conclusion, I elaborate on how this dissertation addresses

these gaps and how each one has advanced our understanding of rotavirus epidemiol-

ogy. Specifically, in this thesis, we have examined the role of travel, the potential for

environmental rotavirus transmission, and how the introduction of the rotavirus vaccine

has affected transmission dynamics in rural Ecuador, impacting both direct and indirect

transmission pathways.

5.2 Travel and pathogen introduction

5.2.1 Travel and urbanization: modeling the mean

With the rise of big data, many infectious disease researchers have begun using data from

cell phone companies to estimate travel rates for disease transmission models for a variety

of pathogens. However, such data may be difficult to obtain quickly during public health
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emergencies [143]. Furthermore, these data are not always of high quality in remote

regions, where cell phone towers are sparse. In such situations, simple approximations

using gravity models and other similar approaches [51–53] are often used as a first ap-

proximation. Given the urbanization that is occurring in many countries worldwide, such

approaches could be biased if infrastructure development does not occur in proportion to a

region’s remoteness. For example, if remote regions are particularly slow to acquire trans-

portation infrastructure, communities might be more different than such approximations

would predict. However, we find that in our study site in northern coastal Ecuador, the

gradient in travel by remoteness has been maintained over time in a setting with ongoing

road construction. Our results suggest that at least in our study region this concern of

bias is unwarranted and that population level approximations should accurately capture

average travel rates even in a setting with rapid change.

5.2.2 Adults and rotavirus transmission: the role of heterogeneity

At the same time, accounting for heterogeneity in travel patterns within communities may

provide useful insights about sources and sinks of transmission. In our study region, we

were able to show that age was an important determinant of travel patterns. Adults are

key disseminators of infection throughout our study region and outbreaks cannot be main-

tained in isolation without the reintroduction of pathogens through human movement.

In contrast, children are important for amplifying infection within communities and tend

to be infected locally. These results are likely to be similar in other remote regions, and

reinforce prior research suggesting that intervening in large cities is crucial for reducing

regional risk of disease.

These two key results help contextualize the results from our vaccine analysis and ex-

plain why population level impacts of vaccination in remote regions might be greater than

expected from vaccine coverage estimates alone. In our study region, we see substantial
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vaccine benefits at around 75% vaccine coverage. Because the infection patterns of remote

regions are strongly dependent on pathogen introduction, lower local levels of vaccine cov-

erage may still provide a substantial benefit. Furthermore, because rotavirus infection in

older children and adults is also indirectly reduced after vaccine introduction, the rate

of rotavirus introduction through travel may decrease over time. This result enhances

the population level impact of vaccinating young children and also helps to stabilize this

benefit over time by reducing community susceptibility to small, sporadic introductions.

While our focus was on understanding rotavirus dynamics, subgroups may be important

for spreading disease for other infectious diseases as well. For example, in Cambodia,

forest workers are particularly likely to travel and may be important for spreading malaria

between forest regions and larger cities [144]. In situations like these, both identifying

and accounting for heterogeneity in travel can reveal opportunities to target interventions

and help both predict and explain the impact of intervening on one group in isolation.

5.3 Water can both disseminate and amplify rotavirus infection

Our analysis in chapter three highlights that water can be an important transmission path-

way for rotavirus, a pathogen that is commonly assumed to be transmitted directly. Water-

borne transmission of rotavirus can partially explain temperature-dependent seasonality

in rotavirus that has been observed in the literature, and also suggests mechanistic reasons

why the association between temperature and rotavirus incidence varies by study. For ex-

ample, the effect of temperature on decay also depends on the size of the water reservoir,

the speed of water flow, and the baseline temperature. Because rotavirus is highly infec-

tious and shedding is much higher than the infectious dose, both direct and indirect trans-

mission is likely to be sufficient to cause substantial outbreaks. For this reason, traditional

epidemiology studies that focus on surveillance data might overlook the environmental

transmission pathway. Our work highlights the need for future studies to combine envi-
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ronmental sampling with disease surveillance to assess how much transmission is occur-

ring through both direct person-to-person and indirect person-to-environment-to-person

pathways.

Given that adults are historically more likely to be infected from environmental sources

than children and can function as a reservoir of infection in endemic settings [42, 145],

interventions like vaccination, that impact both direct and indirect transmission pathways,

are needed to reduce rotavirus disease at a population level. In addition to delays as-

sociated with vaccine rollout, environmental transmission for adults might contribute to

delayed time between vaccine introduction and full benefit. The low level of clustering

of rotavirus infections within households supports, but does not prove, this interpreta-

tion. While this analysis is a useful first step to establish the feasibility of water-mediated

rotavirus transmission, more work remains to be done. Future studies that couple environ-

mental sampling with epidemiological surveillance data would help reveal the importance

of this indirect pathway and could also assess the relevance of within-household transmis-

sion. Additionally, although we found that temperature-related changes in rotavirus decay

in water sources explains some of the seasonality of rotavirus in the tropics, our model

does not capture the full association. Additionally, the water-borne pathway is less likely

to explain seasonality in temperate climates, where water quality is far better. Future stud-

ies are needed to better understand the seasonality of rotavirus infection both in lower to

middle income countries in the tropics and in high income countries, where seasonality is

likely to have different environmental and social drivers.
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5.4 Rotarix vaccination impacts rotavirus infection and all-cause di-

arrhea

We have shown that Rotarix vaccination is associated with substantial reductions in both

rotavirus infection and all-cause diarrhea in a region of Ecuador with high barriers to

vaccination. This benefit extended to asymptomatic infection and also impacted older age

groups, who could not have been vaccinated. Because most prior studies have focused

on clinical populations [55–58, 133–135], effects on milder rotavirus infection have not

been well-established. Furthermore, we are not aware of any previous study has shown

an impact of vaccination on asymptomatic infection. For this reason, the total impact of

vaccination on overall rotavirus transmission may have been underestimated previously.

The suppression of rotavirus transmission has key implications for the long-term benefits

of rotavirus vaccination. In general, the goal for rotavirus vaccination is to reduce the

incidence of severe disease outcomes. However, if asymptomatic transmission is also sup-

pressed, as our results suggest, Rotarix vaccination also ultimately reduces population level

exposure to rotavirus, which can have huge morbidity benefits. Repeated infections with

diarrheal disease pathogens, particularly in childhood, can cause long-term alterations in

gut function [146]. This dysfunction can also lead to growth faltering [146]. Reduction

in overall rotavirus circulation also helps explain why rotavirus vaccination has been as-

sociated with substantial benefits in unvaccinated populations [16, 65–67]. In our study

region as well as in other endemic settings, rotavirus is not only a childhood disease but

also affects adults [145]; these adults are also at risk of symptomatic diarrhea, suggesting

that infection is not purely silent for this group. In addition to these direct benefits, adults

may function as a reservoir for rotavirus and suppressing transmission from this group is

important for reducing population risk.

Although these findings provide useful information about the effectiveness of rotavirus in
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community settings many more questions remain. In addition to its impact on diarrhea, the

suppression of rotavirus infection suggests that the vaccine may have broader impacts on

other health outcomes like stunting that are related to diarrheal morbidity. Future research

is needed to assess the potential long-term benefits of rotavirus vaccination. While we did

not do formal synergy analysis for this dissertation, the vaccine effectiveness estimates

we found are higher than would be expected if Rotarix only reduced risk of rotavirus.

This result is consistent with other work by Bhavnani et al., which shows that rotavirus

synergistically interacts with other co-infecting pathogens [37]. In our case control study,

an average of 27.3% of cases of symptomatic diarrhea among children under two were

positive for rotavirus before the vaccine was introduced. Therefore, even with a perfectly

effective vaccine, only about 27% of all-cause diarrhea cases would be expected to be

averted by the vaccine, which is far less than the 50.9% effectiveness we found among

young children under 2 years of age. We plan to conduct follow-up analyses to better

understand how the vaccine has impacted infection with other diarrheal pathogens in our

study region.

While the rotavirus vaccine has shown high effectiveness initially, more work is needed to

characterize how the vaccine might change the strains of rotavirus in circulation [16].

Several studies have shown that after vaccine introduction, the prevalence of the G2

serotype has increased, which one strain against which the rotavirus vaccine is less pro-

tective [147, 148]. In our study region, we previously showed that the circulating strains

of rotavirus can change rapidly [149], which can lead to larger outbreaks. Furthermore,

some of the strains circulating in our region could not be genotyped, suggesting that they

may be new, emerging strains [150]. Although it is outside the scope of this disserta-

tion, we are currently genotyping stool samples from Ecuador during the later part of the

study after the Rotarix vaccine was introduced to determine how the circulating strains are

changing.
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5.5 Conclusions

The past few decades have been accompanied by dramatic progress in reducing rates of

diarrheal disease. The global burden of disease project estimates that the burden of di-

arrheal disease overall dropped by 51.2% between 1990 and 2010 and the burden of ro-

tavirus dropped by 55.8% [6]. However, diarrhea remains an important part of the disease

burden worldwide. This dissertation has advanced our understanding of how rotavirus is

transmitted. Hopefully this improved understanding can inform ongoing control efforts.

Our finding that adults are important for rotavirus transmission in endemic settings like

our study context highlights the need to consider their contribution to overall dynamics. In

particular, adults are important for disseminating infection between remote communities

due to their higher rates of travel [138]. Given that adults are important for rotavirus

circulation in endemic settings like our study context, it is encouraging that we find that the

Rotarix vaccine also reduces rotavirus infection among the oldest age group. These indirect

effects may be crucial for maintaining the benefits of vaccination in endemic settings.

Because adults are more likely to become infected through water sources than children

[42], understanding this indirect pathway is especially important in endemic settings.

In small communities like ours, transmission dynamics are strongly dependent on pathogen

introduction and outbreaks for some pathogens like rotavirus cannot be maintained in

isolation. The importance of pathogen introduction most likely varies by pathogen and

depends on the ability for pathogens to persist in environmental sources. We previously

showed that the gradient in infection risk by remoteness is strongest for E. coli, interme-

diate for rotavirus, and weakest for Giardia, which could be explained by differences in

environmental persistence and shedding duration by pathogen [68]. Outside of the di-

arrheal disease literature, pathogens that can also infect wildlife reservoir species, like

Chagas disease [151] might also be able to circulate within relatively isolated communi-

ties in the absence of periodic reintroductions, whereas infections like measles that cannot
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persist outside of human hosts [152] might also show similar dependence on pathogen

introduction [153].

Given that rotavirus can be transmitted through both direct contact and the environment,

our results suggest that neither interventions that affect direct transmission alone (such as

hand hygiene) nor those that impact water transmission only (such as water treatment)

will be sufficient to stop transmission. For this reason, the rotavirus vaccine is an impor-

tant tool that can greatly enhance rotavirus control because it impacts both transmission

pathways. However, more work is needed to understand its effects in community settings

and to determine if vaccination will be successful in the long term. Follow up studies could

also help determine if one of these two transmission pathways is more strongly impacted

than the other.

87



APPENDICES

88



APPENDIX A

Appendix for Chapter 2

A.1 Causal Diagram

The causal diagram relating demographic variables to travel is shown in eFigure1 below.

Baseline remoteness is considered a common cause of all demographic variables as well as

a cause of travel patterns (not shown).

A.2 Transmission Model Details

We developed a deterministic, compartmental susceptible, infected, recovered (SIR) trans-

mission model with two patches at a time. One patch was parameterized to reflect a

generic close, medium, or far village, and the other patch had the same size and population

structure as Borbón. All disease processes were parameterized to represent rotavirus. Con-

tact between the communities occurred when members of the in-region village traveled to

the out-of-region city. Each simulation only considered one village (close, medium, or far)

in addition to the city; interactions between the modeled village and other villages were

not considered both because these communities villages are relatively small and would
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Figure A.1: Demographic Variables Conceptual Diagram. Dashed boxes, thick boxes, and
think boxes are shown for community, household, and individual variables
respectively.
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not be expected to sustain an outbreak in isolation and because of the geography of our

study region. Although villagers might leave our study region to travel to other remote

communities and not urban centers, due to the geography and transportation network of

our study region, these travelers would have to pass through the larger city of Borbon to

access transportation to other more distant communities. We stratified the model by age,

dichotomized at five years, to capture heterogeneity in risk of infection and travel. Chil-

dren under five were more likely to become infected and less likely to travel. Both travel

patterns and disease transmission parameters were allowed to vary by age. For this model,

we allow travelers to infect and be infected during travel. To do this, we allowed mem-

bers of the village compartments to move back and forth to a corresponding ”traveling”

compartment imagined to be physically located at the other patch; the transmission rates

of villagers in the traveling compartment are the same as the people in that new patch

until they return, following the method of Knipl [87]. We also assume that infected and

susceptible individuals have the same travel probabilities.

This model includes three different transmission relevant processes: (1) infection, (2)

recovery, and (3) travel. We used survey data to estimate parameters for infection and

travel. The recovery rate and relative transmission rates for adults and children were

taken from prior literature [31]. To estimate the transmission β terms for each community,

we used age-specific prevalence of infection data from stool samples collected as part

of the population-based case control study in 2007, before the vaccine was introduced.

Because our study region is near its endemic equilibrium, we used steady state formulas to

calculate the value of R0 based on life expectancy and average age at first infection [37],

and corrected for the fraction of cases that were symptomatic. We used prevalence ratios

by remoteness [16] to fix the value of relative β terms by remoteness. To parameterize the

travel portion of our model, we used the survey data for each survey year (2003, 2007,

2010, and 2013) to derive daily travel rates to the city for close, medium, and far villages.

Additionally, we used census data collected as part of the EcoDess study to account for the
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relative population sizes of the different community population sizes and the fraction of

the village in each age group for each of the four study years.

In this model, the Si,j, Ii,j, and Ri,j compartments represent susceptible, infectious, and

recovered individuals in patch i, where i = 1 is the within-region village and i = 2 is the

city, and of age group j (where A is ≤5 and C is < 5 ). Compartments S∗1,j, I
∗
1,j, and

R∗1,j denote villagers of age j who have traveled to the city. The daily transmission rate

from age group j to age group k in community i is given by βjk,i. The travel rate from

community i to ` is given by τi`. The recovery rate is given by γ and is independent of age

or community. The ordinary differential equations for this model are shown below.
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Ṡ1,C =− S1,C [βCC,1I1,C + βAC,1I1,A]− τ12,CS1,C + τ21,CS
∗
1,C

İ1,C =S1,C [βCC,1I1,C + βAC,1I1,A]− τ12,CI1,C + τ21,CI
∗
1,C − γI1,C

Ṙ1,C =γI1,C − τ12,CR1,C + τ21,CR
∗
1,C

Ṡ1,A =− S1,A[βAA,1I1,A + βCA,1I1,C ]− τ12,AS1,A + τ21,AS
∗
1,A

İ1,A =S1,A[βAA,1I1,A + βCA,1I1,C ]− τ12,AI1,A + τ21,AI
∗
1,A − γI1,A

Ṙ1,A =γI1,A − τ12,AR1,A + τ21,AR
∗
1,A

Ṡ∗1,C =− S∗1,C [βCC,2(I
∗
1,C + I2,C) + βAC,2(I

∗
1,A + I2,A)]− τ21,CS∗1,C + τ12,CS

∗
1,C

İ∗1,C =S∗1,C [βCC,2(I
∗
1,C + I2,C) + βAC,2(I

∗
1,A + I2,A)]− τ21,CI∗1,C + τ12,CI1,C − γI1,C

Ṙ∗1,C =γI ∗1,C −τ21,CR ∗1,C +τ12,CR1,C

Ṡ∗1,A =− S∗1,A[βAA,2(I
∗
1,A + I2,A) + βCA,2(I

∗
1,C + I2,C)]− τ21,AS∗1,A + τ12,AS

∗
1,A

İ∗1,A =S∗1,A[βAA,2(I
∗
1,A + I2,A) + βCA,2(I

∗
1,C + I2,C)]− τ21,AI∗1,A + τ12,AI1,A − γI1,A

Ṙ∗1,A =γI∗1,A − τ21,AR∗1,A + τ12,AR1,A

Ṡ2,C =− S2,C [βCC,2(I2,C + I∗1,C) + βAC,2(I
∗
1,A + I2,A)]

İ2,C =S2,C [βCC,2(I2,C + I∗1,C) + βAC,2(I
∗
1,A + I2,A)]− γI2,C

Ṙ2,C =γI2,C

Ṡ2,A =− S2,A[βAA,2(I2,A + I∗1,A) + βCA,2(I
∗
1,C + I2,C)]

İ2,A =S2,A[βAA,2(I2,A + I∗1,A) + βCA,2(I
∗
1,C + I2,C)]− γI2,A

Ṙ2,A =γI2,A

To fully understand the impact of travel and transmissibility on disease risk (measured by

cumulative incidence for all models), we used a series of models. To assess the overall

changes over time and their effects on risk, we used survey data from all time points in
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our study region for close, medium, and far villages to estimate the net effects of these

on risk of rotavirus. The derivation of all parameters and their values are described in de-

tail below. However, because many variables changed for each time point simultaneously,

we also conducted what we call a pure effects analysis where we changed only the travel

parameters and kept all other factors constant. For our first pure effects model, we system-

atically increased the average travel. For the second pure effects model, we fixed the travel

patterns of children and increased the travel of adults by a proportionality constant to ex-

plore the role of heterogeneity. This model allowed us to assess the effect of heterogeneity

in travel on disease risk. Using these models, we were able to assess to what extent the

changes in our study region were driven by demographic change versus changes in travel.

A.3 Model Parameterization

We used a combination of literature and survey data to parameterize our model. Parameter

values and their sources are shown in eTable 1 below. When the source is ”Estimated,” we

describe the estimation in a later section.

Table A.1: Parameters used in model simulations. All parameters have units of days−1.
Parameter Value Source

Close Medium Far City

Child-Child Transmission Rate (βCC) 0.275 0.5 0.331 0.66 Estimated
Child-Adult Transmission Rate (βCA) 0.138 0.25 0.166 0.33 Estimated
Adult-Child Transmission Rate (βAC) 0.275 0.5 0.331 0.66 Estimated
Adult-Adult Transmission Rate (βAA) 0.138 0.25 0.166 0.33 Estimated
Village-city Travel Rate for Adults (τ12,A) 0.029 0.027 0.014 — Estimated
City-Village Travel Rate for Adults (τ21,A) 1 1 1 — Estimated
Village-city Travel Rate for Children (τ12,C) 0.017 0.03 0.0063 — Estimated
City-Village Travel Rate for Children (τ21,C) 1 1 1 — Estimated
Recovery Rate (γ) 0.2 0.2 0.2 0.2 [3]

In addition to differences in disease and travel parameters by community, we accounted

for their different population sizes by fixing the relative proportions of susceptibles in the

out of region community and the community of interest. To get the size of the ‘close’,
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‘medium’ and ‘far’ villages, we used the mean population size for all time points for the

15 communities in our study, stratified by remoteness. We elected to use the mean for all

time points and not the last time point because there were no significant time trends in

population size. The mean population sizes were 575, 108, and 246 for close, medium,

and far villages respectively. We assume that the out of region village has a population size

of 5,000, comparable to Borbón.

A.3.1 Transmission Rate Calculations

Because our study region is close to its endemic equilibrium, we used the following steady

state formula to calculate the value of R0 [91]:

R0 =L/A

In this equation, L is the average life expectancy and A is the average age of first infection.

Other researchers have used an alternative formulation ofR0 (R0 = 1+L
A

) but later analysis

by Dietz has suggested that omitting the 1 (R0 = L
A

) is more accurate [91]. We also

conducted sensitivity analysis for a wide range of β values and these results are presented

in a later section. We assumed a life expectancy of 70 years and approximated the average

age of first infection in our study region using the average age of those infected in 2007,

corrected for the fraction symptomatic. In 2007, the average age of first infection was

15.7 for all cases and 11.4 for symptomatic cases. Since the only pathway of infection

in this model is direct transmission, the average R0 is simply β
γ
. Fixing the value of γ to

0.2, we estimated that the average β value for the region overall was 0.315. To estimate

the local transmission parameters for close, medium, and far villages, we used ratios of
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prevalence of infection by remoteness as a proxy for the β term of that village [68]. In

this paper, the prevalence of symptomatic infection was found to be 0.6, 0.9, and 0.5 per

100 persons for remote, medium, and close villages respectively and 1.2 per 100 persons

in Borbón. Taking Borbón as the reference, these values translate to prevalence ratios of

0.5, 0.75, and 0.42 for remote, medium and close villages versus Borbón respectively. To

be consistent with prior literature, we assumed that transmission to children had a β term

that was twice as high as transmission to adults [3]. Thus the estimated β term for a given

age group within a particular village was a weighted average of the transmission patterns

of adults and children based on their population size.

Patch Specific R0

For the full model, the absolute value of R0 is not especially informative. What is more

useful is the patch-specific R0 values, which suggest the transmission potential within a

community after the outbreak is seeded by travel to the city. The reduced model for a

single village and the resulting R0 calculations are shown below.

ṠA =− SA[βAIA + βCAIC ]

İA =SA[βAIA + βCAIC ]− γIA

ṘA =γIA
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ṠC =− SC [βCIC + βACIA]

İC =SC [βCIC + βACIA]− γIC

ṘC =γIC

Using the next generation matrix approach, we calculate the matrices F, V, and V −1. The

largest eigenvalue of the matrix product FV −1 is R0. The calculations that lead to this

result are shown below.

f =

βASAIA + βCASAIC

βCSCIC + βACSCIA



v =

γIA
γIC


Now we take the Jacobians of both matrices at the disease free equilibrium to produce F

and V.

F =

 βASA βCASA

βACSC βCSC
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V =

γ 0

0 γ


Then, we take the inverse of V

V −1 =

1/γ 0

0 1/γ


Then the matrix product FV −1 is

FV −1 =

 βASA

γ
βCASA

γ

βACSC

γ
βCSC

γ



The largest Eigenvalue of this matrix was calculated using Mathematica and is:

√
(βA)2(SA)2 − 2βAβACSASC + (βAC)2(SC)2 + βASA + βACSC

2γ

A.3.1.1 Global Reproduction Number

In all cases, the system R0 once travel is included are greater than 1 because of travel to

the city.

Although the basic reproduction number for the full model will always be greater than

1 in our study villages, we show our basic setup to allow other researchers to apply our

findings to other settings in which travel is needed to bring the global R0 above 1.

To calculate R0, we begin by calculating the matrices F and V representing the rates of new
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infections and net compartment transfer, respectively.

f =



S1,C (βCC,1I1,C + βAC,1I1,A)

S1,A (βCA,1I1,C + βAA,1I1,A)

S∗1,C
(
βCC,2(I2,C + I∗1,C) + βAC,2(I2,A + I∗1,A)

)
S∗1,A

(
βCA,2(I2,C + I∗1,C) + βAA,2(I2,A + I∗1,A)

)
S2,C

(
βCC,2(I2,C + I∗1,C) + βAC,2(I2,A + I∗1,A)

)
S2,A

(
βAC,2(I2,C + I∗1,C) + βAA,2(I2,A + I∗1,A)

)



v =



τ12,CI1,C − τ21,CI∗1,C + γI1,C

τ12,AI1,A − τ21,AI∗1,A + γI1,A

τ12,CI
∗
1,C − τ21,CI1,C + γI∗1,C

τ12,AI
∗
1,A − τ21,AI1,A + γI∗1,A

γI2,C

γI2,A
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Now we take the Jacobians of both matrices at the disease free equilibrium

F =



βCC,1S̄1,C βAC,1S̄1,C 0 0 0 0

βCA,1S̄1,A βAA,1S̄1,A 0 0 0 0

0 0 βCC,2S̄
∗
1,C βAC,2S̄

∗
1,C βCC,2S̄

∗
1,C βAC,2S̄

∗
1,C

0 0 βCA,2S̄
∗
1,A βAA,2S̄

∗
1,A βCA,2S̄

∗
1,A βAA,2S̄

∗
1,A

0 0 βCC,2S̄2,C βAC,2S̄2,C βCC,2S̄2,C βAC,2S̄2,C

0 0 βCA,2S̄2,A βAA,2S̄2,A βCA,2S̄2,A βAA,2S̄2,A



V =



τ12,C + γ 0 −τ21,C 0 0 0

0 τ12,A + γ 0 −τ21,A 0 0

−τ12,C 0 τ21,C + γ 0 0 0

0 −τ12,A 0 τ21,A + γ 0 0

0 0 0 0 γ 0

0 0 0 0 0 γ



We then take the inverse of V .

V −1 =



γ+τ21,C
γ2+2τ12,Cτ21,C+γ(τ12,C+τ21,C)

0 − τ21,C
γ2+2τ12,Cτ21,C+γ(τ12,C+τ21,C)

0 0 0

0
γ+τ21,A

γ(γ+τ12,A+τ21,A)
0

τ21,A
γ(γ+τ12,A+τ21,A)

0 0

τ12,C
γ2+2τ12,Cτ21,C+γ(τ12,C+τ21,C)

0
γ+τ12,C

γ2+2τ12,Cτ21,C+γ(τ12,C+τ21,C)
0 0 0

0
τ12,A

γ(γ+τ12,A+τ21,A)
0

γ+τ12,A
γ(γ+τ12,A+τ21,A)

0 0

0 0 0 0 1
γ

0

0 0 0 0 0 1
γ



To calculate R0, the next steps are to calculate the matrix product FV −1 and its eigenval-

ues. The largest eigenvalue of the next generation matrix FV −1 is the global R0. While

this matrix product and its eigenvalues can be calculated, the next generation matrix is
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quite large and the resulting eigenvalues are on the order of 6000 terms long. For this

reason, they are not presented here. Readers interested in calculating the global R0 for

similar systems might wish to do so numerically.

A.3.2 Travel Rate Calculations

The fraction of people in a given age group traveling to the out-of-region city in the last

seven days is known from survey data and is denoted ω. Assume that the time between

travel is exponentially distributed with mean 1/τ . Then, the relationship between ω and τ

is

ω =

7∫
0

τe−τt dt = 1− e−7τ ,

implying

τ = − log(1− ω)

7
.

For example, if 17.5% of people (the value for close villages) traveled in the last seven

days, then τ =0.0275, with an average of travel every 36 days. Similarly, if only 8.5% of

people (the value for far villages) traveled in the last seven days, then τ = 0.013, with an

average of travel every 79 days. We assume duration of travel is short, one day on average.

A.4 Simulation Approach

For each model, we simulated for 200 days with an infection seed of 1% of the population

in the city and calculated the cumulative incidence for each age group as well as the

fraction of infections acquired in the in-region village.
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We investigated the impact of changing the average frequency of travel, the average rate of

transmission, and heterogeneity in both factors by age (children vs. adults). To investigate

the average effects of travel and transmission, we used the range of travel and infectivity

parameters estimated from our data. For travel, we used the measured values of travel for

each remoteness level. Because the village-specific R0 values in our study region varied

from 0.79 (close villages) to 1.43 (medium villages), we used the β parameters from these

two village types to represent the range of transmission rates seen in our study region.

To investigate heterogeneity in travel, we kept the travel rates of children constant at

their measured value for close villages (τ=.017 visits/day) and increased travel rates for

adults only by a proportionality constant. To investigate heterogeneity in transmission,

we fixed the transmission rates of adults and increased transmission for children by a

proportionality constant.

A.5 Net Effects: Parameter Values

The parameter values for each study year for the net effects models are shown in the tables

below. Parameters for close, medium, and far villages are shown in eTable 2, eTable 3, and

eTable 4 respectively. Parameters for the city are shown in eTable 5 below. The parameters

that were varied for the pure effects models are also indicated with a † symbol in each

table.

A.6 Sensitivity Analysis

To enhance the generalizability of our findings to other regions that might have different

levels of disease transmissibility and population structures, we also conducted sensitivity

analysis across a range of β values and population sizes. We also considered a model with

three age groups to account for the greater complexity of our data (<5, 5–13, >13) but
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Table A.2: Model parameters for close villages for each study year. Population sizes were
based on census data. Travel was based on the proportion reporting travel in
the sociometric survey, which was then used to derive the specific τ parameters,
as described above. We used stool sample data to estimate transmission param-
eters but assumed the ratio children: adults was 2 and fixed gamma based on
prior literature [3]

2003 2007 2010 2013

Population size (Survey Data)
Overall 616 683 741 686
Proportion < 5 years 0.192 0.221 0.205 0.145
Proportion >= 5 years 0.808 0.779 0.795 0.855
Ratio Population Village: City 0.11 0.12 0.13 0.12

Travel
Survey Data
Overall Travel 0.082 0.14 0.075 0.175
Travel < 5 0.043 0.081 0.069 0.113
Travel >= 5 0.093 0.156 0.077 0.185
Derived Model Parameters
τ Average † 0.012 0.022 0.011 0.027
τ12,C 0.006 0.012 0.010 0.017
τ12,A 0.014 0.024 0.011 0.029
τ Ratio (Adult to Child)† 2.22 2.01 1.12 1.71

Transmission Parameters
βC 0.275 0.275 0.275 0.275
βAC 0.275 0.275 0.275 0.275
βA 0.138 0.138 0.138 0.138
βCA 0.138 0.138 0.138 0.138
γ 0.2 0.2 0.2 0.2

Within Patch R0 0.82 0.84 0.83 0.79

†Varied for pure effects models
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Table A.3: Model parameters for medium villages for each study year. Population sizes
were based on census data. Travel was based on the proportion reporting travel
in the sociometric survey, which was then used to derive the specific τ param-
eters, as described above. We used stool sample data to estimate transmission
parameters but assumed the ratio children: adults was 2 and fixed gamma
based on prior literature [3]

2003 2007 2010 2013

Population size (Survey Data)
Overall 119 118 121 123
Proportion < 5 years 0.214 0.221 0.196 0.135
Proportion >= 5 years 0.786 0.779 0.804 0.865
Ratio Population Village: City 0.023 0.023 0.024 0.024

Travel
Survey Data
Overall Travel 0.071 0.08 0.092 0.155
Travel < 5 0.015 0.013 0.044 0.189
Travel >= 5 0.086 0.099 0.104 0.15
Derived Model Parameters
τ Average† 0.011 0.012 0.014 0.024
τ12,C 0.002 0.002 0.006 0.030
τ12,A 0.013 0.015 0.016 0.023
τ Ratio (Adult to Child) † 5.95 7.97 2.44 0.776

Transmission Parameters
βC 0.5 0.5 0.5 0.5
βAC 0.5 0.5 0.5 0.5
βA 0.25 0.25 0.25 0.25
βCA 0.25 0.25 0.25 0.25
γ 0.2 0.2 0.2 0.2

Within Patch R0 1.52 1.53 1.5 1.42

† Varied for pure effects models
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Table A.4: Model parameters for far villages for each study year. Population sizes were
based on census data. Travel was based on the proportion reporting travel in
the sociometric survey, which was then used to derive the specific τ parameters,
as described above. We used stool sample data to estimate transmission param-
eters but assumed the ratio children: adults was 2 and fixed gamma based on
prior literature [3]

2003 2007 2010 2013

Population size (Survey Data)
Overall 307 305 326 313
Proportion < 5 years 0.196 0.197 0.187 0.141
Proportion >= 5 years 0.804 0.803 0.813 0.859
Ratio Population Village: City 0.058 0.057 0.061 0.059

Travel
Survey Data
Overall Travel 0.04 0.063 0.054 0.086
Travel < 5 0.021 0.023 0.034 0.043
Travel >= 5 0.044 0.072 0.058 0.093
Derived Model Parameters
τ Average† 0.006 0.009 0.008 0.013
τ12,C 0.003 0.003 0.005 0.006
τ12,A 0.006 0.011 0.009 0.014
τ Ratio (Adult to Child) 2.12 3.21 1.73 2.22

Transmission Parameters
βC 0.331 0.331 0.331 0.331
βAC 0.331 0.331 0.331 0.331
βA 0.166 0.166 0.166 0.166
βCA 0.166 0.166 0.166 0.166
γ 0.2 0.2 0.2 0.2

Within Patch R0 0.99 0.99 0.99 0.95

† Varied for pure effects models
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Table A.5: Model parameters for city for each study year. Population sizes were assumed
constant and based on Borbon and the ratio of children to adults was set to
like close villages. We did not consider travel from the city except returning
villagers. Since we assumed the travel duration was 1 day, all τ values for the
city were fixed to 1. As for the villages, we used stool sample data to estimate
transmission parameters but assumed the ratio children:adults was 2 and fixed
gamma based on prior literature [3]

2003 2007 2010 2013

Population size
Overall 5000 5000 5000 5000
Proportion < 5 years 0.192 0.221 0.205 0.145
Proportion >= 5 years 0.808 0.779 0.795 0.855

Travel Parameters
τ Average † 1 1 1 1
τ21,C 1 1 1 1
τ21,A 1 1 1 1
τ Ratio (Adult to Child)† 1 1 1 1

Transmission Parameters
βC 0.66 0.66 0.66 0.66
βAC 0.66 0.66 0.66 0.66
βA 0.33 0.33 0.33 0.33
βCA 0.33 0.33 0.33 0.33
γ 0.2 0.2 0.2 0.2

Within Patch R0 1.97 2.01 1.99 1.89

†Varied for pure effects models for the villages, but not the city
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found that the results were qualitatively similar.

In all of our analyses, the city was the major driver of transmission. To determine if this

effect was predominantly driven by the population size of the city relative to the village or

the relative infectivity in the city, we systematically varied both characteristics.

A.6.1 Population Size

For this sensitivity analysis, travel patterns for adults and children were fixed to the aver-

age for close villages (0.027) for both children and adults. The transmission terms for the

village (patch 1) were allowed to differ by age and were set to the estimated values for

medium villages. As stated in the text, as the population sizes of the city and village be-

came more similar, the fraction of transmission attributable to local transmission increased

proportionally with population size but the overall incidence decreased. See eTable 6 be-

low.

Table A.6: Cumulative incidence and proportion of locally acquired infection by relative
population size.

Village population size Low within-village transmission High within-village transmission
(% of total population) Children Adults Children Adults

Cumulative Incidence
5% 0.056 0.029 0.057 0.030
10% 0.052 0.027 0.055 0.028
15% 0.048 0.025 0.053 0.027
20% 0.044 0.022 0.050 0.025
25% 0.038 0.019 0.046 0.023

Proportion Locally Acquired
5% 0.03 0.03 0.06 0.06
10% 0.06 0.06 0.12 0.11
15% 0.10 0.09 0.17 0.17
20% 0.13 0.13 0.24 0.23
25% 0.16 0.16 0.30 0.30
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A.6.2 Transmissibility

We also considered the impact of varying the transmissibility of rotavirus in each commu-

nity. We considered three approaches: 1) increasing the transmissibility (β terms) in the

village only, such that the local R0 of the village and the city became more similar; 2) in-

creasing transmissibility for both the village and the city proportionally, such that the ratio

of the R0 for the village and the city remained the same; and 3) allowing transmission

parameters to be equal (such that the ratio of R0 values was 1) in the city and the village

but increasing the value of R0. This increase in R0 was done by keeping transmission to

adults constant and increasing it for children only.

In scenario 1, we found that increasing the R0 of the village had no effect on risk (see

eTable 7), but impacted the distribution of cases for children and led to more local trans-

mission. When both the transmissibility of the village and the city were increased (scenario

2, see eTable 8), the total number of cases increased. The fraction of cases that were lo-

cally acquired increased slightly, but the majority of cases were acquired in the city. When

the values of R0 for the city and village were kept equal, the city remained the primary

source of cases although the total number of cases increased as the value of R0 increased.

Table A.7: Sensitivity analysis for scenario 1. The R0 of the city is constant and the R0 of
the village increases.

R0 Ratio City R0 Village R0 Fraction City Fraction City Relative Infectivity Cumulative Incidence
Children Adults (Children vs. Adults) (CI)

2.74 1.89 0.69 0.92 0.93 1 0.04
2.39 1.89 0.79 0.87 0.92 2 0.04
2.12 1.89 0.89 0.82 0.92 3 0.04
1.91 1.89 0.99 0.77 0.92 4 0.04
1.73 1.89 1.09 0.72 0.92 5 0.04
1.59 1.89 1.19 0.68 0.92 6 0.04
1.47 1.89 1.29 0.65 0.92 7 0.04
1.36 1.89 1.39 0.61 0.92 8 0.04
1.27 1.89 1.49 0.58 0.92 9 0.04
1.19 1.89 1.59 0.55 0.91 10 0.04

For all three scenarios, the majority of cases originated in the city, regardless of the local
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Table A.8: Sensitivity analysis for scenario 2. The R0 and the village and the city are both
increased but their ratio is kept constant

R0 Ratio City R0 Village R0 Fraction City Fraction City Relative Infectivity Cumulative Incidence
Children Adults (Children vs. Adults) (CI)

2.39 1.65 0.69 0.88 0.92 1 0.03
2.39 1.89 0.79 0.87 0.92 2 0.04
2.39 2.13 0.89 0.86 0.92 3 0.04
2.39 2.37 0.99 0.85 0.91 4 0.05
2.39 2.61 1.09 0.84 0.91 5 0.05
2.39 2.85 1.19 0.83 0.91 6 0.05
2.39 3.08 1.29 0.83 0.90 7 0.05
2.39 3.32 1.39 0.81 0.89 8 0.06
2.39 3.56 1.49 0.80 0.89 9 0.06
2.39 3.80 1.59 0.79 0.89 10 0.06

Table A.9: Sensitivity analysis for scenario 3. The transmission parameters for the village
and the city are equal but the value of R0 is increased.

R0 Ratio City/Village R0 Fraction City Fraction City Relative Infectivity Cumulative Incidence
Children Adults (Children vs. Adults) (CI)

1.00 0.69 0.96 0.97 1 <0.01
1.00 0.79 0.95 0.97 2 <0.01
1.00 0.89 0.95 0.97 3 <0.01
1.00 0.99 0.94 0.97 4 <0.01
1.00 1.09 0.94 0.96 5 <0.01
1.00 1.19 0.94 0.96 6 <0.01
1.00 1.29 0.93 0.96 7 0.01
1.00 1.39 0.93 0.96 8 0.01
1.00 1.49 0.93 0.96 9 0.01
1.00 1.59 0.92 0.95 10 0.01
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transmission parameters. Even when the village β term for children was over 3.5 times

that of children in the city, the majority of village child cases still originated in the city. We

therefore concluded that the major reason for the influence of the city was its population

size.
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APPENDIX B

Appendix for Chapter 3

B.1 Additional Descriptive Graphics for Meta-Analysis

The distribution of temperature from the studies included in the meta-analysis is shown in

Figure B.1. The majority of studies were in the <10◦C or 20-30 ◦C range, with very few

studies conducted in temperatures over 35◦C.

The distribution of the estimated die-off rates from all 39 studies is shown in Figure B.2.

The distribution was right skewed-many studies had decay rates that were close to 0 with

a long tail of studies showing higher decay.

The relationship between temperature and decay rate by the type of water in which the

experiment was conducted is shown in Figure B.3. The studies conducted in natural waters

appeared to have the highest decay rates. The distribution of experimental temperatures

by water type was uneven, with higher proportions of natural water samples tested at

higher temperatures. No obvious interaction was observable between temperature and

water type, which is unsurprising given the low number of studies conducted in treated,

combined, or purified water at higher temperatures.
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Figure B.1: Distribution of temperature from studies included in the meta-analysis
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Histogram of Decay rate (K)
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Figure B.2: Distribution of decay rates estimated from studies included in the meta-
analysis
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Figure B.3: Relationship between temperature and decay rate by water type
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The relationship between temperature and decay rate by study is shown in Figure B.4.

While only one study considered temperatures over 30◦C, the estimated association be-

tween temperature and decay rates was generally consistent across studies. Thus the

temperature effect was not completely explained by a study effect.
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Figure B.4: Temperature versus decay rate by study (different studies shown in different
colors). In general, decay rates were positively associated with temperature
for all studies.

B.2 Multivariate prediction of decay rates

Because the studies were conducted in different types of water solutions, we also esti-

mated the effect of water type on decay to determine if the temperature association was

confounded by differences in water type. We expected the primary reason for differences
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in rotavirus decay rates between different water types to be antiviral activity of microbial

communities, with natural water sources being the only source likely to contain other mi-

crobes or their virucidal secretions. For this reason, and because we had few observations

for all of the different water types, we used a binary indicator for water type categorizing

studies into natural or non-natural water classes. We also tested to see if the effect of tem-

perature was modified by this water type indicator, which would indicate that temperature

has a stronger effect on decay in certain types of water sources. Results of the regression

modeling are shown in Table B.1 below.

Table B.1: Regression results. The unadjusted model contained only one variable at a time:
temperature or water type. The adjusted model contained both temperature
and water type. The adjusted + interaction model contained temperature, the
natural water sources indicator, and their interaction

Unadjusted Adjusted Adjusted + Interaction
estimate (s.e.) estimate (s.e.) estimate(s.e.)

Temperature 0.095 (0.019) 0.075(0.016) 0.070(0.021)
Natural Water 1.62(0.39) 1.21(0.33) 1.03(0.44)
Temperature*Natural Water -0.02(0.03)

Although water type was also a significant predictor of decay rate, the effect of temperature

remained significant. Furthermore, the interaction between water type and temperature

was not significant, indicating that our data did not contain evidence for variable effects

of temperature by water type. We elected to use the results from the adjusted model

to parameterize the transmission model. The results were qualitatively similar using the

unadjusted model. The maximum temperature effect was 3% per degree Celsius for the

unadjusted model compared with 2.4% for the adjusted model. A plot of the temperature

effect for both models is shown in Figure B.5.

Although we fit this model on the log scale, we have also plotted the results on the linear

scale to illustrate the predicted decay rates by temperature (Figure B.6).

We acknowledge that there may be some residual confounding by water type (and other
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Figure B.5: Cumulative incidence of rotavirus infection (fraction) as a function of temper-
ature for different levels of direct transmission (dashed: R0,H = 3; dotted:
R0,H = 2; and solid: R0,H = 1). Adjusted estimates come from the ad-
justed model in table S1, which was adjusted for water type (natural water
sources=1, other=0). Estimates come from standing water with A) moderate
volume (1,000 L/person, 106 L total volume) from the adjusted model B) Mod-
erately high volume (10,000 L/person, 107 L total volume) and the adjusted
model, C) moderate volume from the unadjusted model, and D) moderately
high volume for the unadjusted model. The maximum effect of temperature
occurs at higher volumes because at lower volumes R0,W is greater than 1 for
all temperatures.
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Figure B.6: Predicted relationship between temperature and decay rates on the log scale
(panel A) and the linear scale (panel B).
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variables) and that there may also be other confounders or effect modifiers that impact

this relationship. We were underpowered to detect these factors here, but future studies

investigating the impact of other environmental variables in addition to temperature would

be useful to help address this concern.

B.3 The mixing cell model

B.3.1 Overall Structure

Most water quality models parameterize pathogen transport using the advection-diffusion

equation (ADE). The ADE describes the movement of a ‘packet’ (i.e. the mass input at

one location during a single time step) of solutes or suspended constituents in flow as a

distributed concentration, with mean position proportional to average downstream flow

velocity (advection) and variance in position (due to fluctuations in the velocity field, i.e.

from turbulence) proportional to a diffusion or dispersion rate constant. The ADE partial

differential equation in one dimension is:

∂W

∂t
= −v∂W

∂x
+D

∂2W

∂x2
+G

Where W is pathogen concentration within some frame of reference, is time, is flow veloc-

ity, is downstream distance, is the rate of diffusion or dispersion, and is a term for sources

or sinks of pathogens, such as shedding of pathogens to the waterway, deposition / resus-

pension processes or decay. Under the ADE, at time t the distribution of a packet pathogens

along the flow axis, referenced to the source location, is normal with mean vt and variance

2Dt.
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A commonly used discrete distance approximation to the ADE represents river reaches as

networks of interconnected cells, and the change of pathogen concentration over time for

each cell is represented with a biased random walk. In a non-branching network, this

formulation may be written as:

dWi

dt
=
Li
vb

(PWi−1 + (1− P )Wi+1 − (P + (1− P ))Wi) +G

Where Wi is pathogen concentration in cell i of the network, Li/vb (the length of cell

divided by a velocity term) is the average residence time of pathogens in cell i, and P [0, 1]

is the bias term, or probability that a pathogen moves downstream upon leaving the cell.

The net downstream advective velocity is given by the difference in average downstream

rate of movement and average upstream rate of movement, i.e. vb(P−(1−P )) = vb(2P−1).

For a series of cells of equal length L, the variance in position of pathogens at time t is

vbLt. Thus, the biased random walk formulation approximates the ADE when vb, P , and L

are chosen such that v = vb(2P − 1) and D = vbL/2.

The mixing cell formulation used in this paper is a further simplification, equivalent to the

biased random walk model when P = 1:

dWi

dt
=
Li
v

(Wi−1 −Wi)

In the mixing cell model, no upstream movement is possible, and pathogen concentrations

become Poisson distributed with mean position (relative to initial position) vt and variance

vLt. Thus, while behavior at the upstream border of pathogen sources differs somewhat
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from the ADE, the two models behave similarly in flowing systems when D = vL/2. Cu-

mulative pathogen residence times per length of stream reach, the key determinant of

epidemiological consequences of hydrological transport, behave similarly in the ADE, bi-

ased random walk, and mixing cell formulations. The simpler biased random walk and

mixing cell implementations have advantages with respect to numerical tractability and

stability when implemented on larger scales.

B.3.2 The use of intermediate boxes

We found that using only one box overestimates the probability of a pathogen surviving

downstream. A proof is shown below.

In each box, pathogens die at rate µ and leave for the next box at rate npν where n is the

number of boxes the length is divided into. If there is just one box, the probability that the

pathogen survives downstream is
pν

pν + µ
.

In reality, we should find the probability as n→∞,

lim
n→∞

(
npν

npν + µ

)n
(B.1)

= lim
n→∞

(
npν + µ

npν

)−n
(B.2)

= lim
n→∞

(
1 +

(
µ

pν

)
1

n

)−n
(B.3)

= exp

(
− µ

pν

)
. (B.4)

This gives the true probability of a pathogen surviving downstream.

Now, let x = µ/(pν). In the one-box approximation (Bertuzzo, etc), they estimate the
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survival of the pathogen to be 1/(1 + x) while the true probability is e−x. Since

1

1 + x
> e−x,

the approximation will overestimate the likelihood of an outbreak downstream.

Through simulation, we found that only one box is needed to correct this problem. How-

ever, we elected to use 10 boxes in our model to make the unit conversions more trans-

parent. To determine the number of boxes needed, we used three models. These models

are diagramed in Figure B.7 below. In all three models, we model 10 villages that are each

10 km apart, volume is low (100 L/person), and the effective river velocity is 10 km/day.

Results were similar for other initial conditions.

In model 1, the villages are contiguous and no intermediate boxes are used. In this exam-

ple, river speed is 10 km/d, so the rate of leaving a 10km long water box is 10/10=1/d.

In model 2, there are no people outside of the 2km long borders of the villages. There

is one intermediate water box. River speed is 10km/d, so the rate of leaving a 2km long

water box is 10/2=5/d, and the rate of leaving an 8km long water box is 10/8= 1.25/d.

In model 3, there are no people outside the 2 km borders of the village and there are 4

intermediate boxes (each corresponding to a 2 km length of river). Since river speed is 10

km/d, the rate of leaving a 2 km river box is 10/2=5/day. We simulated each of these three

models for 150 days and the resulting incidence curves are shown in Figure B.8 below.

B.3.3 Unit conversions

B.3.3.1 River Velocity

To convert measured flow velocities to daily rates with units of inverse days, we divided

the measured flow velocity by the length of river represented by each compartment in our
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Village 1 Village 2

River 1 River 2

Model 1: Contiguous Villages

Village 1
Village 2

River 1 Intermediate 1 River 2

Model 2: One Intermediate Box

Village 1 Village 2

River 1 River 2

Model 3: Four 
Intermediate Boxes

Figure B.7: Conceptual diagram of the three models used to evaluate the number of boxes
needed.

A B C

Figure B.8: Incidence curves for each of the three models. Models 1, 2, and 3 are shown
in figure panels A, B, and C respectively.
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model (called l, measured in km) as below:

v(/day) =
V elocity(km/day)

l(km)

Because we chose to have each compartment in our model represent a 1 km stretch of

river, the measured flow velocities and the parameter v have the same numerical values,

but different units.

In our distributed delay model, since each box is equal to a 1 km stretch of river, v was

simply equal to the overall measured river flow velocity, in km/day. Since there was no

upstream flow in this model and the first village was located at the source of the river, no

pathogens flowed into community 1. The water supply for community 1 is assumed to

arrive via runoff and the volume of the water supply in both communities is determined

by recent rainfall.

B.3.3.2 Dose response curve

The force of infection in an environmentally mediated infectious disease transmission

model is

βWρπW

Where β is the contact rate, ρ is the volume of water per contact, π is the probability of

infection per pathogen consumed, and W is the concentration of pathogens. Now, we want
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to scale W by the median infectious dose, N50, such that:

W ∗ =
W

N50

Because N50 is the median infectious dose, we have

πN50 = 0.5

So, in terms of W*, the force of infection is

βWρπW = βWρπ(N50W
∗) = 0.5(βWρW

∗)

B.4 Calculating the volume of the water reservoir

B.4.1 Average Volume

We based our volume calculations on work by Downing et al. that describes the size distri-

butions of lakes worldwide [109]. In this analysis, the minimum surface area analyzed was

0.001 km and the average surface area of lakes worldwide was 0.012 km2. Because we

conceptualized the water reservoir as a section of a flowing stream, we would not expect

the volume of water accessible to a community along the water front at any one time to

be greater than that of an average lake. Given this size, we selected values of α to roughly

correspond to a lake with a surface area of 0.012 km2 (the average surface area found

by [109]) and a depth of 10 m (maximum α). The moderate volume scenario roughly
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corresponds to this same surface area with a depth of 1 m. The low volume scenario was

more similar to the volume expected for a small pond.

B.4.2 Effect of Seasonal Rain

In our study region, the water level for the Cayapas increases by an average of 0.3 m be-

tween December and January, when the rainy season generally begins. For the Santiago

River, this increase in rainfall is about 0.48 m. Assuming channel width is fixed, this in-

crease in depth corresponds to a volume increases of 3200 and 4800 L for the Cayapas

and Santiago rivers respectively. To assess the effect of changes in seasonal rain on tem-

perature effects, we fixed the baseline volume and then increased rainfall by 3200 L for

the Cayapas river and 4800 L for the Santiago River. The result of this sensitivity analysis

is shown in Figure B.9 below. The increased volume resulting from seasonal differences in

water level was not expected to dilute the reservoir enough to lead to a decrease in risk.

Therefore, it is likely that most of the changes in risk due to rainfall occur on much shorter

timescales or more sporadically, e.g., during flooding events which temporarily raise the

river level much more dramatically. Such transient effects of dilution are beyond the scope

of this paper and are not considered here.

B.5 Calculating the basic reproduction number

To calculate the basic reproduction number, we use the model equations corresponding to

the source of the river network, where the outbreak is seeded. These equations are shown

below.
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Figure B.9: Relationship between temperature and cumulative incidence by level of sea-
sonal rain. Panels A, B, and C respectively show these relationships when the
strength of direct transmission is 1, 2, and 3 respectively. The color of the
points indicates the temperature used in the simulation with the lowest tem-
perature (darker color) producing the highest risk and the higher temperatures
being shown in lighter color.
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Ṡ =− βHSI

N
− βWSρW

2

İ =
βHSI

N
+
βWSρW

2
− γI

Ṙ =γI

Ẇ =
(1− c)φ

V
I − µW − vW

Using the next generation matrix approach, we calculate the matrices F, V, and V −1. The

largest eigenvalue of the matrix product FV −1 is R0. The calculations that lead to this

result are shown below. For ease of calculation, we replace (1− c)φ with the quantity φ*.

In these calculations, we adapt the notation φ for φ*.

First, we define vectors corresponding to the generation of new cases (the f vector) and

all other terms (the v vector). These vectors are shown below. There are two infected

compartments in our model (I and W ), so there are two items in each vector.

f =

βHSIN
+
βWSρW

2

0



v =

 γI

µW + vpW − φ∗
V



Now we take the Jacobians of both vectors to produce 2 by 2 matrices. The matrix F

is the matrix corresponding to the generation of new cases in each compartment and V
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corresponds to the net transfer out of each compartment.

F =

βHSN βWSρ

2

0 0



V =

 γ 0

−φ ∗ /V µ+ v



At the disease free equilibrium, V does not change because it does not depend on the

relative number of people in each compartment, but F becomes:

F =

βH βWNρ

2

0 0



Then, we take the inverse of V

V −1 =


1

γ
0

φ ∗ /V
γ(v + µ)

1

v + µ


Then the matrix product FV −1 is

FV −1 =

βWγ + 0.5βWNρφ∗
V γ(v+µ)

0.5βWNρ
v+µ

0 0
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The largest Eigenvalue of this matrix is:

R0 =
βH
γ

+
0.5βWNρ

φ∗
V

γ(v + µ)

=R0,H +R0,W

Substituting for φ∗ = (1− c)φ, the R0 equation can be re-written as follows:

R0 =
βH
γ

+
0.5βWNρ

(1− c)φ
V

γ(v + µ)

For cities, the volume of the water reservoir (V ) is better interpreted as a per capita water

availability. In this case, we can replace V with αN , where the parameter α describes the

per capita water availability. The equation then becomes:

R0 =
βH
γ

+
0.5βWρ(1− c)φ
αγ(v + µ)
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APPENDIX C

Appendix for Chapter 4

C.1 Defining vaccine effectiveness parameters

We use the counterfactual framework described by Halloran and Hudgens [140] to esti-

mate vaccine effectiveness. For all equations, we let two doses of vaccine be defined by a

parameter called vaccinated, which takes a value of 1 for fully vaccinated individuals and

a value of 0 for unvaccinated individuals. The variables α and α′ define the regional or

community coverage of vaccination. Each variable is defined in its corresponding section.

In all equations, ȳ is a statistic that quantifies the average outcome (rate or odds depending

on the model) for a given covariate pattern. All effectiveness parameters are conceptually

defined based on a counterfactual contrast, but all variables in these equations are repre-

sented by statistics within our sample because all individuals at risk are not observed (i.e.,

our statistics are random variables that depend on our sampling process).

Vaccine effectiveness measures can be classified into four groups: direct effects, indirect

effects, overall effects, and total effects. A diagram of each of these possible effectiveness

measures and how they were estimated in our study is shown in Figure C.1.
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1A:Disease	in	
unvaccinated	
individuals

Pre-vaccine	Introduction

2A:	Disease	in	
unvaccinated	
individuals

2B:	Disease	in	
vaccinated	
individuals

Post-vaccine	Introduction

Direct	Effect:	VE=(1-(2B/2A))	x	100
Cohort	analysis,	all-cause	diarrhea

Overall	Effect:	VE=(1-(2A+2B)/1A	x	100
Case	control	analysis,	all-cause	
diarrhea	and	rotavirus	infection

Indirect	Effect:	VE=(1-2A/1A)	x	100

Total	Effect:	VE=(1-2B/1A)	x	100

Figure C.1: Diagram showing how each vaccine effectiveness measure was calculated. This
figure was adapted from Panozzo et al, 2014 [2]. In this analysis, we estimated
the overall effect of vaccination using data from the case control study (green)
and the direct effect using data from the diarrheal disease surveillance to con-
duct a cohort analysis (blue). While not directly estimated, the overall effect
of vaccination is equivalent to the indirect effect (orange) for older children
and adults (age ≥ 5) because there were no vaccinated individuals in that age
group (i.e., 2B=0). The total effect (black) was also not directly estimated,
but is approximated by the overall effect for younger age groups when vaccine
coverage is high (i.e., 2A is approximately equal to 0).
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C.1.1 Direct Effect (DE)

The general equation for calculating direct effects is shown below.

DE(α) =ȳ(vaccinated = 0|α)− ȳ(vaccinated = 1|α)

Under 5 years of age In our analysis, we estimate the direct effect of vaccination on all

cause diarrhea using Poisson regression analysis. To estimate this quantity, we compare the

rate of diarrhea for fully vaccinated children with children who were not vaccinated. We

estimate this quantity for all study communities simultaneously, so α is equal to the average

vaccine coverage after introduction (around 76%). We estimate this quantity separately

for 2 doses and 1 dose and code the model as below using dummy variables. In the

equation below, the ‘offset’ term quantifies the person-time observed for each individual.

The intercept term, β0 is the estimated rate of diarrhea when all other covariates (Xi) are

equal to 0. Then, each βXi
term is the multiplicative increase in the rate of diarrhea for

a one unit increase in covariate Xi for continuous variables or an indicator variable for

it’s presence/absence for binary variables. The variable εi is the error not captured by our

regression model.

log(µi) = log(offset) + β0 + β2dosesXi,2doses + β1doseXi,1dose + ...+ εi

Because this equation estimates the average rate of rotavirus infection for a given covari-

ate pattern, the difference in outcomes is given by exponentiating β2dose for two doses
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of vaccine and β1dose for one dose of vaccine. When the interaction term with age>2

years is added to the model, this contrast gives the vaccine efficacy for children under

2 years of age. So the indirect effect of vaccination is given by (1 − exp(β2doses) × 100 =

(1−IRR2dose)×100 for two doses of vaccine and (1−exp(β1dose)×100 = (1−IRR1dose)×100.

This equation takes the same form for non-diarrheal illness.

Over 5 years of age Because no one over the age is vaccinated with rotavirus, there is no

direct effect of vaccination.

C.1.2 Indirect Effect (IE)

The general equation for calculating indirect effects is shown below.

IE(α, α′) =ȳ(vaccinated = 0;α)− ȳ(vaccinated = 0;α′)

Under 5 years of age Because we do not know the vaccination status of every child after the

vaccine was introduced and because only 8 children who received 0 doses of vaccine were

sampled in the case control study after vaccine introduction, we are not able to estimate

the indirect effect on this age group.

Over 5 years of age Because no one over the age of five is vaccinated with rotavirus, only

the indirect effect of vaccination can be calculated for this age group and in this case the

overall effect is equal to the indirect effect. In our analysis, we estimate this indirect using

logistic regression analysis for the sub-sample of our case control population over 5 years

of age.

We compare the effect of vaccine introduction in general, so that α takes a value of 0 and α′
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is equal to the average vaccine coverage after introduction. To compare rotavirus infection

and diarrheal illness before and after the vaccine was introduced, we can code a dummy

variable for cycle which takes values of 0 before the vaccine was introduced and during the

first cycle of introduction and takes a value of 1 beginning 1 study cycle after the vaccine

is introduced to account for the fact that children must seroconvert before adults can be

indirectly protected.

The logistic regression model for rotavirus infection and for diarrhea illness in the case

control then has the following form:

log
( P (Rota = 1)

1− P (Rota = 1)

)
=β0 + βintroducedXi,introduced + ....+ εi

In this equation, the intercept term, β0 is the estimated odds of rotavirus infection when

all other covariates (Xi) are equal to 0. Then, each βXi
term is the multiplicative increase

in the odds for a one unit increase in covariate Xi for continuous variables or an indicator

variable for it’s presence/absence for binary variables. The variable εi is the error not

captured by our regression model.

As described in the method section, this regression analysis was weighted to account for

complex sampling design. Because this equation estimates the average odds of rotavirus

infection for a given covariate pattern, the difference in outcomes is given by exponentiat-

ing βintroduced. So the indirect effect of vaccination is given by (1− exp(βvaccinated))× 100 =

(1−OR)× 100. This equation takes the same form for diarrheal infection.
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C.1.3 Total Effect (TE)

The general equation for calculating total effects is shown below.

TE(α, α′) =ȳ(vaccinated = 0;α)− ȳ(vaccinated = 1;α′)

Under 5 years of age. Unfortunately, we were not able to directly estimate this quantity

with confidence using the data that we had.

Ideally, this quantity would be calculated by comparing the rates of diarrhea for children

with two doses of vaccine after introduction with the general unvaccinated population

before vaccination (i.e., comparing α = 0 with α′ = 0.76). However, because we only

had case control data for 53 children who were fully vaccinated and 3 children who were

vaccinated with one dose of vaccine, we could not assess the effectiveness of vaccination

on rotavirus infection.

To estimate this quantity for all cause diarrhea, We could have compared the rates of diar-

rhea in the 2011-2013 surveillance for fully vaccinated individuals with all children under

five in the 2003-2007 surveillance but we elected not to do this because our missing data

analysis suggested that children who did not have vaccine records were not comparable to

those with vaccine records in 2011-2013. As such, in order to estimate this quantity with

minimal bias, we would need to compare this two dose group with children who received

as least one vaccine from 2003-2007. These earlier vaccine records had been lost, so we

were not able to make this comparison. To deal with this issue, we could have matched

children with vaccine data to other children during the surveillance period by education

and community (accounting for the key differences between children with and without
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vaccine records in the 2011-2013 surveillance), but such an analysis would have required

assuming that the two time periods were otherwise comparable (i.e., there were no secular

trends not attributable to vaccination). We previously showed that the strains of rotavirus

circulating in this region have changed rapidly over time and that strains varied widely

between seasons in our case control analysis. For this reason, we were not comfortable

making this assumption.

However, the total effect should be similar to the overall effect of vaccination for children

less than 5 years of age when vaccine coverage is high (estimation procedure for overall

effects is described below).

Over 5 years of age. Because individuals over five are not vaccinated, this quantity is not

defined for this group.

C.1.4 Overall Effect (OE)

The general equation for calculating overall effects is shown below.

OE(α, α′) =ȳ(α)− ȳ(α′)

For all groups, we estimated the overall effects using case control data on rotavirus posi-

tivity. We considered both vaccine introduction (binary) and vaccine coverage (continuous

with values between 0 and 1) for each age group separately and for the population over-

all. We found that actual vaccine coverage predicted odds of rotavirus infection among

children and the general population in later cycles, after the vaccine had been introduced.

This procedure is described more in detail below.
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Under 5 years of age We compared both the effect of vaccine introduction in general using

a dummy variable as described above (so that α = 0 and α′ = 0.76) and using the vaccine

coverage among children with vaccine records, treating alpha as a continuous variable (so

that α = 0 and α′ = 1).

For vaccine introduction, this gives:

log
( P (Rota = 1)

1− P (Rota = 1)

)
=β0 + βintroducedXi,introduced + ....+ εi

For vaccine coverage, this gives:

log
( P (Rota = 1)

1− P (Rota = 1)

)
=β0 + βcoverageXi,coverage + ....+ εi

When vaccine coverage is high, the contrast of the βcoverage term describes the compar-

ison between 0 vaccine coverage and 100% vaccine coverage, in which case all eligible

individuals are vaccinated so that the overall effect in this group approximates the total

effect.

Over 5 years of age. We compared both the effect of vaccine introduction in general using

a dummy variable as described above (so that α = 0 and α′ = 0.76) and using the vaccine

coverage among children with vaccine records, treating alpha as a continuous variable

(so that α = 0 and α′ = 1) but found that because older children and adults were not

vaccinated, the actual coverage of the vaccine did not impact the odds of rotavirus after

introduction–the entire effect was driven by whether or not the vaccine had been intro-

duced. Thus, we used the binary classification (introduced vs. not introduced) for this
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group.

General Population. For the general population, we used the vaccine coverage classification

to estimate overall effects because actual coverage was found to be important.

C.1.5 Summary

A summary of the vaccine effectiveness measures calculated in this study and their sources

is summarized in the table below.

C.2 Study cycle dates

The dates corresponding to the start of each case control cycle are shown in table C.2.

C.3 Vaccine Data

C.3.1 Data collection details

We collected vaccine data from both local health posts and the regional health center. The

regional health center stored copies of all vaccine records from health posts throughout the

region, so theoretically these two sources should be redundant. However, in practice there

were communities that were in one source and not the other. By triangulating data from

both sources, we obtained the maximum amount of data possible. Vaccine records were

available for 22 communities from at least one source: six communities had data from the

health post only, four communities had data from the regional health centers only, and

twelve had data from both sources.
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Table C.2: Cycle dates
Cycle Date Start Date End

1 8/01/2003 1/21/2004
2 1/21/2004 10/24/2004
3 11/07/2004 7/28/2005
4 8/01/2005 3/31/2006
5 5/01/2006 12/20/2006
6 1/19/2007 7/24/2007
7 8/10/2007 10/31/2008
8 11/01/2008 12/30/2009
9 1/01/2010 12/31/2010
10 1/01/2011 5/30/2012
11 6/01/2012 12/31/2013

C.3.2 Vaccine coverage

The fraction of community members with vaccine records is shown in table C.3 and the

coverage of two doses of vaccine among children with records by community is shown

in table C.4. For both tables, communities that were included in the rotavirus positivity

analysis are shown in bold. Of children who received both doses of vaccine, most received

both doses by 6 months of age (Table C.5).

C.4 Supplemental information for overall effects analysis (part 1, case

control analysis)

C.4.1 Population level trends in rotavirus infection and diarrhea over time

The prevalence of diarrhea declined over time for both rotavirus and non-rotavirus di-

arrhea (Figure C.2). For rotavirus, this change was stronger for asymptomatic rotavirus

infection than symptomatic rotavirus infection(Figure C.3).
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Table C.3: Vaccine record availability by community. Each cell is presented as Percent with
Vaccine Records (Number with Vaccine Records/Number Eligible). Communi-
ties that were included in the rotavirus positivity analysis are shown in bold

Community Cycle 8 Cycle 9 Cycle 10 Cycle 11
Close Communities

1 58.3 (7/12) 45.0 (9/20) 44.4 (8/18) 81.8 (9/11)
2 43.8 (7/16) 61.9 (13/21) 34.3 (12/35) 0 (0/22)
3 44.4 (12/27) 67.8 (25/37) 80.0 (28/35) 85.0 (17/20)
4 0 (0/7) 45.5 (5/11) 50.0 (8/16) 0 (0/14)
5 30.0 (3/10) 40.0 (4/10) 44.4 (8/18) 0 (0/12)

Total 40.2 (29/72) 56.6 (56/99) 52.5 (64/122) 32.9(26/79)
Medium Communities

6 50.0 (1/2) 100 (2/2) 50.0 (2/4) 100 (1/1)
7 66.7 (2/3) 54.5 (6/11) 100 (6/6) 60.0 (3/5)
8 100 (1/1) 100 (3/3) 40.0 (2/5) 0 (0/7)
9 50.0 (1/2) 80.0 (4/5) 66.7 (2/3) 50.0 (1/2)
10 100 (1/1) 66.7 (2/3) 50.0 (2/4) 100 (1/1)

Total 66.7 (6/9) 70.8 (17/24) 63.6 (14/22) 37.5 (6/16)
Far Communities

11 19 (3/16) 36.4 (4/11) 29.4 (5/17) 50.0 (3/6)
12 100 (7/7) 100 (6/6) 66.7 (2/3) 100 (4/4)
13 0 (0/1) 33.3 (1/3) 75.0 (3/4) 33.3 (1/3)
14 62.5 (5/8) 60.0 (15/25) 45.0 (9/20) 46.2 (6/13)
15 75.0 (3/4) 0 (0/3) 0 (0/3) 0 (0/8)
16 0 (0/3) 12.5 (1/8) 40.0 (4/10) 71.4 (5/7)
17 76.9 (10/13) 66.7 (12/18) 50.0 (6/12) 75.0 (12/16)
18 0 (0/2) 40.0 (2/5) 50.0 (2/4) 60.0 (3/5)
19 60.0 (3/5) 50.0 (3/6) 25.0 (5/20) 46.2 (6/13)
20 0 (0/4) 0 (0/3) 0 (0/7) 36.4 (4/11)
21 0 (0/12) 18.2 (2/11) 30.0 (6/20) 72.7 (8/11)

Total 41.3 (31/75) 47.4 (46/97) 35.0 (42/120) 53.6(52/97)
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Table C.4: Coverage of two doses of rotavirus vaccine among children with vaccine
records. All cells show % Vaccinated (n vaccinated/n with vaccine records).
A value of ‘N/A’ indicates that no vaccine records were available for that cycle.

Community Cycle 8 Cycle 9 Cycle 10 Cycle 11
Close Communities

1 85.7 (6/7) 77.8 (7/9) 87.5 (7/8) 88.9 (8/9)
2 57.1 (4/7) 46.2 (6/13) 50.0 (6/12) N/A
3 100 (12/12) 88.0 (22/25) 100.0 (28/28) 100.0 (17/17)
4 N/A 20.0 (1/5) 37.5 (3/8) N/A
5 100 (3/3) 25.0 (1/4) 37.5 (3/8) N/A

Total 86.2 (25/29) 66.1 (37/56) 73.4 (47/64) 96.2 (25/26)
Medium Communities

6 0 (0/1) 100 (2/2) 100 (2/2) 100 (1/1)
7 50.0 (1/2) 33.3 (2/6) 100 (6/6) 100 (3/3)
8 0 (0/1) 66.7 (2/3) 50.0 (1/2) N/A
9 100 (1/1) 75.0 (3/4) 50.0 (1/2) 100 (1/1)
10 100 (1/1) 100 (2/2) 100 (2/2) 100 (1/1)

Total 50.0 (3/6) 64.7 (11/17) 85.7 (12/14) 100 (6/6)
Far Communities

11 100 (3/3) 100 (4/4) 100 (5/5) 100 (3/3)
12 57.1 (4/7) 50.0 (3/6) 50.0 (1/2) 75.0 (3/4)
13 N/A 100 (1/1) 66.7 (2/3) 100 (1/1)
14 100 (5/5) 73.3 (11/15) 88.9 (8/9) 83.3 (5/6)
15 66.7 (2/3) N/A N/A N/A
16 N/A 100 (1/1) 100 (4/4) 60.0 (3/5)
17 70.0 (7/10) 66.7 (8/12) 66.7 (4/6) 100 (12/12)
18 N/A 50.0 (1/2) 100 (2/2) 33.3 (1/3)
19 100 (3/3) 66.7 (2/3) 60.0 (3/5) 33.3 (2/6)
20 N/A N/A N/A 25.0 (1/4)
21 N/A 0 (0/2) 33.3 (2/6) 50.0 (4/8)

Total 77.4 (24/31) 67.4 (31/46) 82.1 (32/39) 67.3 (35/52)

Children receiving one dose Children receiving two doses
(N=47) (N=264)

Records with date information 76.7% (n=36) 73.8% (n=195)
Vaccinated by six months of age 91.7% (n=43) 88.7% (n=173)
Vaccinated by seven months of age 100% (n=46) 96.2% (n=188)

Table C.5: Fraction of children receiving rotarix vaccine by age. These results are shown
for all children for whom we had vaccine records, which includes some children
who were not in the full regression analysis due to missing data on socioeco-
nomic indicators.
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C.4.2 Additional regression results

C.4.2.1 Socioeconomic status

The socioeconomic indicators used here were not significant in the full population for ei-

ther rotavirus infection or all-cause diarrhea, but had stronger associations for the youngest

age group in the age-stratified model. In general, higher household education and smaller

household size would both be expected to indicate higher socioeconomic status.

For the youngest age group, increased household size was associated with increased diar-

rhea and rotavirus whereas it was protective among older age groups. For this age group,

education was a significant predictor of rotavirus infection, with higher education being

associated with decreased rotavirus infection. This association was not significant for all-

cause diarrhea for any age group. Conceptually, this result is somewhat intuitive because

the younger age groups with lower socioeconomic status would tend to get exposed earlier

in life and might have increased protection as adults.

C.4.2.2 All-cause diarrhea

The full regression table for the general population is shown in table C.6. After adjusting

for relevant confounders, community vaccine coverage was no longer significantly associ-

ated with all-cause diarrhea in these six communities.

In this table, model 2 adjusts for rotavirus infection. In the main text (table 4), the vaccine

efficacy estimate is not adjusted for whether or not rotavirus was a cause of that diarrhea in

order to capture the full effect, given that we are not explicitly modeling synergy between

rotavirus and co-infecting pathogens. The vaccine effectiveness estimates for all-cause

diarrhea were extremely similar when adjusted for rotavirus infection, but were slightly

attenuated and the effect estimates crossed the null.
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Unadjusted Model 1 Model 2
Rotavirus positive 8.16 (4.92, 13.56) 7.40 (3.29, 14.0) 7.26 (3.83, 13.7)
Male 1.12 (0.914, 1.39) 1.05(0.770, 1.43) 1.05 (0.770, 1.43)
Age
<1 12.5 (8.27, 18.9) 10.3(6.03, 17.6) 10.3 (6.04, 17.7)
1–5 12.9 (9.87, 16.9) 13.3 (9.73, 18.1) 13.2 (9.72, 18.0)
≥5 Ref Ref Ref

Household size 0.967 (0.934, 1.00) 0.965 (0.918, 1.02) 0.965 (0.917, 1.02)
Highest household education 0.949 (0.920, 0.979) 0.971 (0.931, 1.01) 0.972 (0.932, 1.01)
Remoteness

Close Ref Ref Ref
Medium 1.29 (0.883, 1.87) 1.87 (1.16, 2.99) 1.88 (1.17, 3.02)
Far 0.848 (0.670, 1.07) 1.17 (0.851, 1.60) 1.19 (0.865, 1.62)

Community vaccine coverage 0.672 (0.505, 0.895) – 0.872 (0.603, 1.26)
Vaccine introduced 0.729 (0.571, 0.931) – –

Table C.6: Vaccination coverage and all-cause diarrhea. All cells represent OR (95% CI).
Odds ratios are calculated with respect to the reference group for categorical
variables. Vaccine coverage is included as a proportion, taking a minimum value
of 0 and a maximum value of 1. Model 1 is adjusted for rotavirus infection, gen-
der, age, remoteness, household size, and highest household education. Model
2 is adjusted for all variables in Model 1 plus community vaccine coverage. Note
that to calculate vaccine effectiveness, we did not adjust for rotavirus infection
and re-ran model 2 without adjusting for this variable.
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Age group Unadjusted Adjusted
OR (95% CI) OR (95% CI)

<1 5.61 (1.24, 25.2) 5.19 (1.16, 23.2)
1-5 5.86 (1.87, 18.3) 5.51 (1.74, 17.5)
≥5 10.1 (5.37, 19.0) 10.8 (5.85, 19.8)

Total population 8.20 (4.94, 13.61) 8.69 (4.31, 17.5)

Table C.7: Effect of rotavirus infection on diarrhea illness by age. The adjusted odds ratios
are adjusted for sex, household size, highest household education, and remote-
ness. Each odds ratio can be interpreted as the multiplicative increase in odds
of diarrhea, given rotavirus infection.

C.4.2.3 Rotavirus and diarrhea by age group

In order to determine if rotavirus was a causative diarrheal pathogen for all age groups, we

also calculated the odds ratio for diarrhea given rotavirus infection relative to the odds of

having diarrhea given no rotavirus infection. The results are shown in table C.7. Rotavirus

is strongly associated with diarrheal symptoms in all age groups, including older children

and adults (age ≥ 5).

C.4.3 Household clustering of rotavirus infection

In order to better understand if infection was occurring within households, we examined

how many people who were infected with rotavirus could have been exposed within their

households. We did this for all communities, not only communities that were included

in the case-control analysis. The resulting diagram is shown in Figure C.4. In our study,

we measured a total of 354 rotavirus infections. Of these, we had a stool sample from

at least one other household member within the same cycle for 279 (70%). While we

did not collect stool samples from all household members, only 25 of these individuals

had another household member with a detected infection. While we likely missed some

rotavirus infections within these households, this result suggests that, even with sampling

error, it is unlikely that the majority of infections could be explained by within-household
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transmission. While this result cannot prove that environmental transmission is occurring,

it does suggest that a large proportion of rotavirus transmission occurs outside of the

household.

It is possible that within-household clustering of infection could be different by age group

and/or after the vaccine was introduced. However, we did not have enough secondary

cases to investigate this difference. Future studies could collect data from more house-

hold members to better evaluate clustering. Ideally, combining household stool samples

with environmental surveillance of rotavirus in water and on surfaces could show more

definitively the relevance of different transmission routes.

Total	Rotavirus	
Infections	
(N=354)

Have	stool	samples	
from	other	
household	
members
(N=279)

No	stool	samples	
from	other	
household	
members
(N=75)

Number	with	
>1	other	

infection	in	
house	
(N=25)

Number	with	
no	other	
infected	in	
house
(N=254)

Only	9.0%	of	people	infected	with	rotavirus	were	
exposed	within	their	household

We	have	other	household	
stool	samples	for	70%	of	
all	rotavirus	infections

Figure C.4: Schematic diagram illustrating the degree of clustering of rotavirus infections
within households
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C.5 Supplemental information for attributable fraction analysis (part

2, case only analysis)

A graph of the attributable fraction over time is shown in Figure C.5.
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Figure C.5: Fraction of symptomatic diarrhea attributable to rotavirus infection over time
(AF)

C.6 Supplemental information for direct effects (part 3, cohort anal-

ysis)

The regression results presented in Figure 5 in the main text are also shown in Table C.8

to illustrate differences between the adjusted and unadjusted models. In this population,

none of the socioeconomic indicators were significantly associated with all-cause diar-

rhea, unlike in the case control study. This difference is probably due to the fact that
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Table C.8: Poisson Regression Model for the rate of all-cause diarrhea among children.
Models 2 and 3 are adjusted for household size, highest household education,
gender, community remoteness, and BCG vaccination.

Model 1 Model 2 Model 3
Unadjusted Adjusted Adjusted + Interactions

IRR (95% CI) IRR (95% CI) IRR (95% CI)
Rotavirus Vaccine

0 doses Ref Ref Ref
1 dose 1.22(0.730, 2.04) 0.861 (0.493, 1.50) 0.834 (0.453, 1.53)
2 doses 0.771(0.501, 1.18) 0.619 (0.386, 0.993) 0.491 (0.289, 0.832)

Age ≥2 years 0.539(0.374, 0.778) 0.499 (0.344, 0.725) 0.260 (0.087, 0.774)
Male 0.980 (0.721, 1.33) 0.966 (0.704, 1.33) 0.968 (0.705, 1.33)
BCG Vaccination 1.33 (0.654, 2.71) 1.63 (0.747, 3.57) 1.78 (0.808, 3.91)
Household Size 0.98 (0.939, 1.02) 0.976 (0.931, 1.02) 0.971 (0.926, 1.02)
Highest Household Education 1.01 (0.957, 1.06) 0.997 (0.948, 1.05) 1.00 (0.951, 1.05)
Remoteness

Close Ref Ref Ref
Medium 1.41 (0.852, 2.33) 1.45 (0.870, 2.41) 1.57 (0.942, 2.74)
Far 1.68 (1.21, 2.34) 1.88 (1.32, 2.66) 1.93 (1.35, 2.74)

Age x Vaccine Interaction
Age(≥2) x 1 dose – – 1.04 (0.245, 4.39)
Age (≥2) x 2 doses – – 2.60 (0.80, 8.46)

children with vaccine records were not comparable to children without vaccine records–

children with vaccine records had lower household education than children without vac-

cine records.

C.7 Internal consistency of results between analysis parts 1 and 3

Prior to doing any analysis, we decided which communities would be included in each

part of the analysis in an effort to minimize bias in our vaccine effectiveness estimates.

Because we used different communities for different parts of this analysis, we compared

the results between them to ensure that our analysis was generalizable to all communities

across the region and that the associations we found were not purely the result of our

sampling process. In general, our results were highly internally consistent throughout the
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Case-Control Analysis (Part 1) Cohort Analysis (Part 3)
OR (95% CI) IRR (95% CI)

Male 1.04 (0.699, 1.55) 1.05(0.770, 1.43)
Age
<2 Ref Ref
2–5 0.406 (0.271, 0.606) 0.519 (0.358, 0.752)

Household size 0.967 (0.898, 1.04) 0.970 (0.926, 1.02)
Highest household education 0.941 (0.885, 1.00) 1.00 (0.951, 1.05)
Remoteness

Close Ref Ref
Medium 1.99 (0.893, 4.44) 1.44 (0.865, 2.39)
Far 0.961 (0.599, 1.54) 1.89 (1.34, 2.66)

Effect of 2 doses* 45.3% (-29.0%, 75.0%) 50.9% (16.8%-71.1%)
*Contrast calculated using the overall coverage parameter for Part 1 and the individual coverage of
2 doses for part 3

Table C.9: Comparison between parts 1 and 3. All parameters except the effect of two
doses were calculated using all children in the case-control dataset under 5
years of age for part 1 and all children in the cohort of part 3 and were esti-
mated in a single model. For the effect of two doses, we subset both data files
at 2 years of age and presented calculated vaccine effectiveness using the over-
all coverage parameter for the case control analysis and the two doses for the
cohort analysis.

region.

To compare parts 1 and 3, we subset the data from the overall case-control study and com-

pared the results only among children less than five years of age. Because the all-cause

diarrhea estimates from the case control study were highly similar both before and after

adjusting for vaccine coverage (i.e., the covariates and vaccine coverage were independent

predictors of all-cause diarrhea, see Table C.6) we included all study years in this compar-

ison, including time both before and after the vaccine was introduced. By design, the

odds ratio approximates the rate ratio in the case control study because controls were time

matched to cases and because the outcome was rare in all exposure groups. The results

are shown in table C.9.

In general, these results are similar. The main difference is the association between re-

152



moteness and all-cause diarrhea. In the case control analysis, far communities had similar

rates of disease to close communities whereas in the cohort analysis, far communities were

at higher risk of disease. This difference most likely arose because children with vaccine

records tended to come disproportionately from close/medium villages. Therefore, it is

likely that we are not estimating the rate ratio well for far communities in the cohort

analysis. The association with education was also slightly different in the cohort analysis,

which is also consistent with the marginally significant association we found comparing

children with vaccine records to children without vaccine records.

For vaccine coverage, we found somewhat less protection in the case control analysis com-

pared with the cohort. However, for the case-control analysis we excluded all communities

with zero rotavirus cases, which limited the effect size we were able to detect. As a result,

we would expect the case control analysis to estimate somewhat less protection than the

cohort analysis. Despite this difference, the results are quite similar, with less than a 5%

difference in estimated vaccine effectiveness.

While not directly comparable to any of our other analyses, it is encouraging that the

results from part 2 (attributable fraction analysis) also demonstrated strong associations

with vaccination status that were similar to the effects on symptomatic rotavirus infection

in part 1 (53.2% efficacy against symptomatic rotavirus compared with a 54.5% decrease

in the attributable fraction). The results from part 2 are not exactly parallel to the case

control analysis because in part 2 we assess the impact of rotavirus vaccination among

cases whereas in part 1 we assess the impact of vaccination among both cases and controls

(i.e., the denominator for the calculation is different). Because rotavirus infection is com-

mon among cases, we would generally expect any effects among cases of diarrhea to be

larger than those among the full population, which is exactly what we see.
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