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Key Points: 

• Model-data comparisons showed a relatively consistent depletion and 
enhancement in the ionosphere during and after the eclipse  

• GITM showed that the divergence of horizontal winds drove the increased O 
after the eclipse allowing an increase in the ionization rate 

• Slower charge exchange due to both the decreased ion temperature and N2 
density allowed an increase of O+ density in the F-region also  
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Abstract 

The total solar eclipse of August 21, 2017 was simulated with the Global 

Ionosphere-Thermosphere Model (GITM), and the results were compared with the 

total electron content (TEC) measurements provided by the Global Navigation 

Satellite System (GNSS), as well as F2 layer peak electron density (NmF2) derived 

from six ionosondes. TEC decreased over North America by ~54.3% in the model and 

~57.6% in measurements, and NmF2 decreased by ~20-50% in the model and ~40-60% 

in the measurements. GITM predicted a post-eclipse enhancement of ~10% in TEC 

and NmF2, consistent with observations which suggested an increase of ~10-25% in 

TEC and ~10-40% in NmF2. GITM showed that the divergence of horizontal winds 

drove the increase in Oxygen after the eclipse allowing an increase in the ionization 

rate. The slower charge exchange due to both the decreased ion temperature and N2 

density allowed an increase of O+ density in the F-region also. 

 

1. Introduction 

This article is protected by copyright. All rights reserved.



 
 

Numerous studies have been conducted to investigate the electron density (Ne), 

electron (Te) and ion (Ti) temperatures, gravity waves, irregularities, electric fields, 

etc. during solar eclipse events [e.g., Rishbeth, 1968, Chimonas and Hines,1970, 

Jakowski et al., 2008]. The locally direct ionospheric response includes the decrease 

of the electron and ion temperatures due to lack of the extreme ultraviolet (EUV) 

heating, as well as the depletion of the electron densities resulting from the reduction 

of the photo-ionization. Studies have shown that the density below the F layer 

decreases substantially, while the net ionization in the F layer may decrease slightly, 

remain unchanged, or even increase during the solar eclipse, depending on the 

competing effects of the loss in photo-ionization and the diffusion above the F2 peak 

[e.g., Boitman et al., 1999; Le et al., 2009; Ding et al., 2010]. Neutral composition 

and neural winds also play a crucial role in the ionospheric response to the eclipse [Le 

et al., 2008; Müller‐Wodarg and Aylward, 1998; Madhav Haridas and Manju, 2012; 

St.-Maurice et al., 2011, etc.].  

A solar eclipse provides a good opportunity to test thermosphere-ionosphere 

models’ response to the impulse variations of solar EUV over a limited region of the 

Earth, and the models can help to understand the unclear phenomena and mechanisms 

during the events. However, while an extensively large number of observational 

studies have been conducted to investigate the ionospheric response to solar eclipses, 
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there are only a few modeling studies [Roble et al., 1986; Salah et al., 1986, etc.]. 

Earlier simulations that lacked realistic boundary conditions, eclipse function, etc. did 

not match observations well and therefore needed improving [Korenkov et al., 2003a, 

2003b; Müller‐Wodarg and Aylward, 1998, etc.]. The Theoretical Ionospheric Model 

of the Earth in Institute of the Geology and Geophysics, Chinese Academy of 

Sciences (TIME-IGGCAS), was used to simulate the mid-latitude ionospheric 

response to solar eclipses over South and East Asia. It was found that due to the large 

plasma flux from the topside ionosphere, the TEC response around 30°N was mainly 

due to the electron density response below 200 km [Le et al., 2010]. Pitout et al. (2013) 

reproduced common features of the ionospheric response to a high-latitude eclipse 

over EISCAT Svalbard Radars with the 1-D TRANSCAR model that describes the 

dynamics of different ionospheric species along a magnetic field line. Huba and Drob 

(2017) applied SAMI3, a global ionosphere and plasmasphere model, to predict the 

ionospheric response to the August 21, 2017 solar eclipse quantitatively. It was 

indicated that the electron density decreased by 50% in the F region with O+ velocities 

changing from 40 m/s upward to 20 m/s downward.  

    The enhancement associated with the solar eclipse has been reported by both 

observational and simulational studies, but most of them were during the eclipse, 

especially during the first phase [e.g., Evans, 1965a; Anastassiades and Moraitis, 1968; 
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Cheng et al., 1992]. The during-eclipse enhancement is thought to result from the 

downward diffusion of ions due to the lowering of equilibrium scale height caused by 

a large drop in Te+Ti in the F region [Evans, 1965b; Boitman et al., 1999]. Compared 

to the enhancement during the eclipse, post-eclipse enhancement is rare and the 

physical processes are not clear. Chen et al. (2013) reported a post-eclipse 

enhancement due to downward transport from the plasmasphere after analyzing 

electron profiles at middle latitudes. Huang et al (1999) suggested that the 

post-eclipse enhancement in TEC was due to the daily variations of the equatorial 

ionization anomaly (EIA) at low latitudes, while Tsai and Liu (1999) theorized that 

the solar eclipse induced a strengthened pre-reversal enhancement resulting in the 

post-eclipse enhancement. Simulations with the Coupled 

Thermosphere-Ionosphere-Plasmasphere Model (CTIP) indicated that the enhanced 

[O]/[N2] ratio contributed to the electron density enhancement after the eclipse, and 

Korenkov et al. (2003b) suggested that the decrease of N2 due to cooling was the 

driver of the enhancement of the F2 layer critical frequency (foF2). 

In this letter, we present simulation results of the Global 

Ionosphere-Thermosphere Model (GITM), as well as the observations from GPS 

receivers and six ionosondes (see Figure 3) distributed in North and South America. 

The simulated response of TEC and NmF2 were consistent with observations, 
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especially an enhancement after the eclipse which was not reproduced by Huba and 

Drob (2017), who made the simplifying assumption that neutral thermospheric 

feedback effects were negligible. Detail analysis showed that the divergence of the 

horizontal winds caused drove the increase in Oxygen after the eclipse allowing an 

increase in the ionization rate. The slower charge exchange due to both the decreased 

ion temperature and N2 density allowed an increase of O+ density in the F region also. 

   

2. Methodology  

  The Global Ionosphere-Thermosphere Model (GITM) is a 3-D first-principles 

model, which allows different models of high-latitude electric fields, auroral particle 

precipitation, solar EUV inputs, and particle energy deposition to be used [Ridley et 

al., 2006]. During a solar eclipse, the Moon obscures the disk of the Sun and thus the 

solar EUV input into the upper atmosphere decreases in the limited region around the 

totality. In order to determine the path and mask for the eclipse, the coordinates of the 

GITM grid (X, Y, Z) were converted into the GSE (Geocentric Solar Ecliptic) system 

(XGES, YGES, ZGES), based on the local time, latitude, and solar declination angles. It 

was assumed that the Moon casts a circular shadow in the (YGSE, ZGSE) coordinates, 

while the XGSE of the grid points was assumed to be much smaller than the Earth- 

moon distance, such that the size of the occulted region was constant. Figures 1(a) and 
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(b) show the linear path of the center of the totality region in the GSE and Geographic 

coordinate systems and the path from a NASA website 

(https://informal.jpl.nasa.gov/museum/sites/default/files/ResourceLibrary/2017_eclips

e_path.kml). The NASA points do not make a perfectly straight line in GSE 

coordinates, while here it is approximated as one. The root-mean-square difference 

between the linear approximation and the NASA points is 14.7 km, which is 

significantly smaller than the grid cells in GITM. The occultation within GITM was 

calculated using the distance between the GITM grid point and the center of the 

totality in the (YGSE, ZGSE) plane. Figure 1(c) shows the percentage of the nominal 

EUV heating and ionization that occurred in the GITM cells as a function of distance 

away from the center point of the eclipse. It was assumed within GITM that the region 

of the mask has two stages: near the edge, the brightness decreased exponentially, 

while near the center, the brightness decreased linearly. 

  To validate the simulation results of the ionosphere, the global TEC and the NmF2 

data from six ionosondes were analyzed. The TEC data were provided by the 

International GNSS Service Ionosphere Working Group with 15-minute time 

resolution (https://cdaweb.sci.gsfc.nasa.gov/index.html/). The NmF2 data were 

derived from the ionograms provided by the Digital Ionogram Database (DIDBase) 

and were manually scaled via the interactive ionogram scaling software (Reinisch et 
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al., 2009). The time resolution of NmF2 presented in this work was 15 minutes in 

North America and 10 minutes in South America. 

 

3. Results and Discussion 

The lunar umbra initiated contact with North America on the west coast at 

approximately 16:00 UT, and left the continent at approximately 20:00 UT on the east 

coast. Figure 2 shows the percentage differences of TEC between the eclipse and 

reference days. Figure 2(a) shows the difference between GITM simulation results 

with and without the eclipse. The red line represents the path of the eclipse and the 

red triangle is the umbra of the Moon at the moment that is labelled at the top of each 

sub-plot. Figure 2(b) is similar to Figure 2(a), except it shows the GPS observations, 

with the baseline reference being the average of 10 quiet days (Kp < 4): 5 days before 

and 5 days after the eclipse. Both simulations and observations showed a depression 

during and after the eclipse. In terms of the depression during the eclipse, the 

temporal and spatial variations were consistent in general. The depletion began in the 

northwest of North America at ~17:00 UT when the totality began. The depression 

then expanded and propagated southeast. At ~18:30 UT, the ionosphere above almost 

the entire United States was depressed. This depression then shifted southeast, 

eventually recovering gradually after the end of the eclipse and lingering until the end 
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of the day, although the simulated depletion disappeared more rapidly. Quantitatively, 

the depletion in GPS TEC was ~30-40% at 17:00 UT and reached a maximum of 

~57.6% at about 18:30 UT, while the depression in the model was ~40-50% at 17:00 

UT and a maximum was ~54.3% at 18:30. Coster et al. (2017) also showed difference 

variations of GPS TEC with Aug 29, 2017 as the reference day during the same 

eclipse event. The temporal and spatial variations of the depletion were consistent 

with the observational and modeling results here, though they showed a larger 

decrease exceeding 60%. This discrepancy might be caused by the different selection 

of the reference day. 

Figures 3(a)- 3(d) show NmF2 perturbations derived from four ionosondes in North 

America. The locations of the ionosondes are denoted by black triangles in the TEC 

maps in Figure 2. For each station, after the start of the eclipse, the simulated NmF2 

began to decrease, reached the minimum after the totality of the eclipse, and then 

gradually recovered. The maximum reduction in each of the four locations were 

~23.1%, ~40.0%, ~46.3%, and ~34.9% in GITM, and ~42.6%, ~58.3%, ~48.8%, and 

~44.3% from observations. Essentially, the simulations were consistent with the 

observations, though the observations showed a slower recovery from the eclipse, 

while the GITM results showed a much more rapid recovery. The observations may 

also have shown a slight lag between when the totality occurred and when the 
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minimum in NmF2 occurred, while GITM did not indicate an obvious lag. Just after 

the end of the eclipse, the NmF2 was still lower than the background at all the stations, 

although several hours later at three of the stations, the NmF2 became higher than the 

average. 

Figures 3(e) and 3(f) show comparisons between the simulation and observations at 

two stations in South America. The observational NmF2 was enhanced well before 

the eclipse, and revealed an increase during, as well as after the eclipse, while the 

simulated NmF2 showed little change, although extremely minor differences occurred 

after about 19 UT. Since the umbra of the Moon did not reach South America, it is 

difficult to say whether these observed variations were associated with the eclipse. 

GITM predicted a post-eclipse enhancement in North America associated with the 

solar eclipse with TEC and NmF2 increased by ~10%. In Figure 2(a), the TEC 

enhancement began in the west at approximately 19:30 UT (not shown here), and then 

spread southeast along the totality path of the eclipse. About two hours later, the 

enhancement overcast the entire United States. Accordingly, in Figures 3(a)- 3(d), 

GITM showed enhanced NmF2 at all of the four locations after the eclipse. In 

Boulder (40°N, 254.7°E) and Idaho (43.8°N, 247.3°E) which were closer to the 

totality of the eclipse, NmF2 was increased by ~10%, while in Austin (30.4°N, 

262.3°E) and Millstone Hill (42.6°N, 288.5°E) which were relatively far from the 
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totality, NmF2 was increased less than 10%. This enhancement agreed relatively well 

with the measurements. In Figure 2(b), from 21:00 UT to 23:00 UT, the GPS TEC 

was enhanced by ~10-25% in the United States. The enhancement also started from 

the west of the continent and then evolved along the totality path until it covered the 

entire region that was depressed during the main phase of the eclipse. In Figures 3(a)- 

3(d), the NmF2 was increased up to ~30-40% in Boulder and Idaho and ~10% in 

Millstone Hill after approximately 22:00 UT. And Austin didn’t show a clear increase 

in NmF2 after the solar eclipse. Though all geomagnetic effects cannot be excluded in 

the observations, based on the comparisons with model and associations with the 

totality path, it appears likely that the enhancement recorded by the measurements 

was caused by the eclipse. Note that the variance was very large at 22 UT, indicating 

that the reference days may not have been very quiet.  

The continuity equation of ions may help to determine what caused the density 

increase, and can be written as [Schunk and Nagy, 2000]: 

∂𝑁𝑁𝑖𝑖
∂t

+ ∇⋅(𝑁𝑁𝑖𝑖𝐕𝐕𝒊𝒊) = 𝑆𝑆 − 𝐿𝐿                                              (1) 

where 𝑁𝑁𝑖𝑖 is the number density of the ions, 𝐕𝐕𝒊𝒊 is the velocity of ions, S is the 

production rate, and L is the loss rate. The source of the enhancement could be due to 

advection, changes in production, or recombination processes. Evans (1965b) 

investigated six ionosondes distributed in Alaska, Canada, and North America 
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revealing an enhancement of foF2 during the first phase of the eclipse. He suggested 

that the downward diffusion of ions resulted in the increase of electron density. Chen 

et al. (2013) used measurements from a network of ionosondes showing an 

enhancement after the solar eclipse on 15 January 2010. The electron density profiles 

indicated that a downward plasma flux from the plasmasphere was the driver. At 

low-latitudes, the variations of the electron density may have been associated with the 

pre-reversal enhancements lifting the ionosphere from below [Tsai and Liu, 1999]. 

Müller-Wodarg and Aylward (1998) suggested that an electron density enhancement 

after an eclipse was related to the neutral composition (enhanced [O]/[N2] ratio) with 

the Coupled Thermosphere-Ionosphere-Plasmasphere Model (CTIP). Korenkov et al. 

(2003b) modeled the 11 August 1999 solar eclipse and compared foF2 with 

experimental data. An enhanced foF2 after the eclipse could be discerned, which was 

suggested to be driven by a decrease of N2 due to cooling. 

GITM is not coupled with a plasmasphere, and Huba and Drob (2017) did not 

reproduce the post-eclipse enhancement with the ionosphere-plasmasphere model, 

therefore the downward diffusion of ions is most likely not the source during this 

particular eclipse, even though there was a strong change in Te. Also, the enhanced 

region was too far away from the EIA to be affected by the electrojets. Figures 4(a)- 

4(g) show simulated variations of neutral temperature, ion temperature, neutral 
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vertical wind, zonal wind, meridional wind, N2 density and O density at 300 km in 

Idaho (43.8°N, 247.3°E). At the onset of the eclipse, the neutral temperature, as well 

as the ion and electron (not shown) temperatures, decreased dramatically. The upward 

vertical neutral wind reversed direction due to the lowering of pressure, while both the 

westward and northward winds increased after the totality. The downwelling of the 

pressure level decreased the neutral density at a fixed altitude [Müller-Wodarg and 

Aylward, 1998], although the individual species variation differed due to the different 

gradients involved. After the maximum obscuration, the neutral temperature started to 

recover and the atmosphere began to expand. Simultaneously, the O and N2 densities 

started to increase towards the non-eclipse state, however, the O density was 

enhanced above the non-eclipse case after and even before the end of the eclipse, 

while the N2 density was still lower than the expected value after the eclipse, driving 

an increased [O]/[N2] ratio. In the F region, the O+ ions are mainly produced by the 

ionization of O, and lost due to charge exchange with N2. The increase of the [O]/[N2] 

ratio therefore was likely to be the source of the enhanced electron density after the 

eclipse.  

The different dynamics of O and N2 are puzzling. The vertical continuity equation 

for each species is:  

∂𝑁𝑁𝑛𝑛
∂𝑡𝑡

= −𝑁𝑁𝑛𝑛∇⋅𝐕𝐕𝒏𝒏 − 𝐕𝐕𝒏𝒏⋅
∂𝑁𝑁𝑛𝑛
∂𝑟𝑟

                        (2) 
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where 𝑁𝑁𝑛𝑛 and 𝐕𝐕𝒏𝒏 are the number density and the vertical velocity of the neutral 

species respectively, −𝑁𝑁𝑛𝑛∇⋅𝐕𝐕𝒏𝒏 is the divergence term, and −𝐕𝐕𝒏𝒏⋅
∂𝑁𝑁𝑛𝑛
∂𝑟𝑟

 is the advection 

term. The total of the divergence term and advection term determines the change of 

density. Based on equation (2), the rate of change of O and N2 density were calculated 

in both vertical and horizontal directions. The integral of the rate of change caused by 

the different terms was also calculated. Figures 4(h)- 4(j) show the density differences 

caused by different terms for O and N2 between runs with and without the eclipse as a 

function of time at 300 km in Idaho (43.8°N, 247.3°E). In the vertical direction (blue 

lines), the divergence term (4h) contributed a slight increase of O and N2, while the 

advection term (4i) drove a substantial decrease in the density. Therefore, in the 

vertical direction (blue lines), the total for O and N2 (4j) was decreased by 

~0.8×1014/m3 and ~0.4×1014/m3 during the eclipse and started to recover before the 

end of the eclipse. Consequently, if only the vertical direction was considered, both 

the O and N2 densities would have decreased though out the eclipse, taking several 

hours to recover. In the horizontal direction (red lines), the divergence term (4h) was 

dominated for both O and N2, while the advection term (4i) was quite small. These 

two terms together (4j) resulted in an increase of O by ~0.9×1014/m3 and N2 by ~ 

0.3×1014/m3 after the beginning of the solar eclipse. The sum of the total in the 

vertical and horizontal direction showed that the O and N2 decreased at the onset of 
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the eclipse, then started to recover after the totality. However, the O was enhanced 

before the end of the eclipse, while N2 remained lower than the non-eclipse state. For 

O, the minimum of the depression was ~-0.3×1014/m3 while the maximum was 

~0.2×1014/m3. The divergence in the horizontal wind caused the increase in Oxygen 

after the eclipse. When the eclipse started, the decrease of the temperature caused the 

decrease in the pressure, resulting in the contraction of the atmosphere and the 

convergence of winds. The downward winds led the decrease of the density. As the 

horizontal winds accelerated away from their nominal behavior, a convergence in the 

winds started to develop. Because the density of O was much larger than the density 

of N2, the horizontal convergence term in O became larger than vertical downwelling, 

resulting in a net increase in O, while N2 continued to be lower than nominal 

conditions. 

In addition to the enhanced O density, the ion temperature (4b) and the N2 density 

(4g) were decreased both during and after the eclipse. Both the ion temperature and 

the N2 density play a strong role in the charge exchange rate between O+ and N2, the 

main loss mechanism in the F2 ionosphere. The decreased ion temperature reduced the 

charge exchange rate constant[Torr and Torr, 1978], while the decreased N2 would 

have directly reduced the loss rate, which may have contributed to the enhanced 

electron density after the eclipse. 
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4. Conclusions 

   We have simulated the total solar eclipse of August 21, 2017 with the Global 

Ionosphere-Thermosphere Model (GITM) and compared the results with GPS TEC, 

as well as NmF2 derived from six ionosondes. The conclusions we have made from 

the simulation and data-model comparisons are: 

1. A direct decrease of TEC was revealed by both the model and measurements with 

consistent temporal and spatial variations. The TEC was reduced by ~54.3% in the 

model and ~57.6% in measurements, while the NmF2 was decreased by ~20-50% in 

the model and ~40-60% in measurements. The fact that the simulated TEC was 

consistent with measurements and NmF2 was underestimated during the solar eclipse 

might be due to the lack of a plasmasphere in GITM. After the eclipse, the depression 

shifted southeast recovering gradually and lingered until the end of the day.   

2. A post-eclipse enhancement that was not reproduced by SAMI3, which ignored 

neutral thermospheric feedback effects, was discerned after ~21:00 UT over the 

United States where the TEC increased by ~10% in GITM and ~10-25% in the 

measurements, and NmF2 increased by ~10% in GITM and ~10-40% in the 

measurements which is likely to be caused by enhanced [O]/[N2] ratio due to different 

dynamics of O and N2, as well as decreased ion temperature.  
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3. Detail analysis of the terms in the continuity equation indicated that the divergence 

in the horizontal wind drove the increase in Oxygen after the eclipse allowing an 

increase in the ionization rate. The slower charge exchange caused by both the 

decreased ion temperature and N2 density allowed an increase of O+ density in the F 

region also. 
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Figure 1. The path of the center of totality in GSE (a) and geographic coordinates (b). 

The solid lines indicate the linear path as described here; the triangles indicate the 

NASA specified locations of the totality. The stars in (a) indicate the linear path at the 

same times as the triangles. The percentage of the total EUV heating and ionization in 

GITM as a function of distance from the center of totality(c). The solid line indicates 

the total percentage change; the dashed line indicates just the linear portion. 

 

Figure 2. Percentage difference of TEC from GITM(a) and GPS(b) with the solar 

eclipse path (red solid line) and the totality at the moment (red triangle). 

 

Figure 3. NmF2 in GITM with (blue solid line) and without (blue dashed line) eclipse 

and in measurements on August 21 (red line) and reference days (black line) as a 

function of UT hours in North America (a-d) and South America (e, f). The gray error 

bars represent one standard deviation. The three dashed grey lines are the start, the 

max obscuration, and the end of the total eclipse, respectively. 

 

Figure 4. Simulated neutral temperature (a), ion temperature (b), neutral vertical wind 

(c), zonal wind (d), meridional wind (e), N2 density (f) and O density (g) with (solid 

line) and without eclipse (dashed line) as a function of UT hours; density difference of 
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O (solid lines) and N2 (dashed lines) between runs with and without eclipse as a 

function of UT hours derived from the divergence term (h), advection term (i) and 

total (j) in the continuity equation for the vertical (blue lines), horizontal direction (red 

lines) and total of the two directions (black lines). 
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