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This paper clarifies issues debated by A. C. Pigou and Frank Knight about correcting inefficient use of

congestible resources, focusing for concreteness on their original example of road congestion. Instead of

government-imposed Pigouvian access fees, Knight favoured access fees set by private toll-setters. We con-

sider the case of n ≥ 2 congestible roads and an uncongestible road of arbitrary speed. Knight argued that

in the case of a single congestible road, a private toll-setter would always choose the toll that Pigou rec-

ommended, hence the allocation would minimize aggregate commute time without government meddling.

We find instead that two or more toll-setters would never choose Pigouvian tolls except in the special case

of a sufficiently fast uncongestible road. Moreover, for uncongestible roads of slower speed, the allocation

of motorists under Knight’s proposal is almost never efficient. Whenever it is inefficient, motorists are

strictly worse off when they pay tolls set by private firms instead of paying government-imposed tolls, and

aggregate toll revenue is also lower. Nevertheless, if the private sector does set tolls, then the full cost to

motorists can be limited if the government provides an uncongestible alternative, such as a train, to offer

potential competition along the same route.

Introduction

You could put $5 trillion into America’s transportation system and if the money isn’t
directed in the right way, we will still have congestion, still have problems. (Trans-
portation Secretary Anthony Foxx, US News and World Report, 17 January 2017)

You won’t build many roads and the ones that you do will have such large tolls that the
very middle class people that Donald Trump says he wants to help will be dramatically
hurt. (Senate Minority Leader Chuck Schumer, PBS Newshour, 23 January 2017)

According to the American Society of Civil Engineers (ASCE), American drivers spent an
average of 42 hours delayed in traffic in 2014. ASCE gave US roads a grade of D in its 2017
infrastructure report card. ‘More than two out of every five miles of America’s urban interstates
are congested and traffic delays cost the country $160 billion in wasted time and fuel in 2014’
(ASCE 2017). Rectifying this situation is worth many times the cost. According to the Federal
Highway Administration, each dollar spent on road, highway and bridge improvements lowers costs
to society by $5.20.

Despite deep divisions within the US electorate, there is widespread agreement that in order
to alleviate traffic congestion, the nation’s road infrastructure badly needs repair and expansion.
Many on both sides of the political divide agree that motorists should be charged for their use of
congestible roads. There is also widespread agreement that motorists will respond to these tolls by
using the cheapest route to commute to work, taking into account tolls and lost wages commuting.

The disagreement concerns whether the government or the private sector should be the one to
incur infrastructure costs and set road tolls. Liberals argue that the government should borrow to
finance these projects, repaying the loans out of toll revenue.1 Conservatives, on the other hand,
feel that private firms should incur these expenses and then should earn the revenue from tolls of
their choosing.

This question is not new. Whether congestion tolls should be set by the government or the
private sector was the focus of a famous debate more than 90 years ago between A. C. Pigou and
Frank Knight. Pigou (1920) points out that in the absence of government intervention, motorists
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seeking the quickest way to work allocate themselves across roads in a way that fails to mini-
mize aggregate commute time. He uses the example of motorists choosing between two routes to
work—a fast, congestible road and a slow, uncongestible alternative. Motorists choose the faster
route until congestion slows traffic so much that the uncongestible route is just as attractive; the
remaining motorists then use the uncongestible route. Pigou points out, however, that this equi-
librium allocation does not minimize aggregate commute time. If a motorist is switched from the
congestible road to the uncongestible one, for example, then travel time does not change but the
aggregate commute time of those remaining on the congestible road decreases. Pigou shows that
to achieve the allocation that minimizes aggregate time lost commuting, the government should
charge every motorist using the congestible road a ‘Pigouvian’ toll, a user fee equal to the ag-
gregate loss in wages imposed on the remaining set of motorists because he added himself to the
congestible route.

Knight (1924) counters that government meddling is not required to achieve efficiency; once
property rights are properly assigned, such matters can be left to the private sector. He shows that
if a profit-maximizing private firm sets the toll on the congestible road, then that firm freely chooses
to set a Pigouvian toll, and an efficient allocation results without any need for the government.

It appears that the inefficiency that Pigou had identified was merely an artefact of his formu-
lation, which omitted a private toll-setter on the congestible road. Pigou dropped the congestible
road example from subsequent editions of his textbook The Economics of Welfare, an apparent
admission of error.2

Many have concluded from this debate that private toll-setting can always be relied on to
minimize aggregate time wasted commuting. For example, Ellis and Fellner (1943) assert that
Pigou’s contention ‘was proven to be fallacious by Professor Knight’. More recently, Demsetz (2011)
reaches a similar conclusion when recounting the two-road example in ‘Knight’s brilliant article’
(Demsetz 2011, p. 3). In Demsetz’s retelling, however, the second road becomes slightly congestible
and, in addition, acquires a second private toll-setter. Nonetheless, according to Demsetz, ‘Knight’s
private roads and Pigou’s recommended tax-subsidy remedy would result in an optimal amount of
congestion’ (Demsetz 2011, p. 4).

If the lesson that Demsetz and others have drawn from Knight’s discussion were correct, then
President Trump’s plan to delegate toll-setting to the private sector would not needlessly increase
the aggregate time workers spend commuting. But, in fact, neither Knight nor anyone since has
carefully examined the case of duopoly toll-setting identified by Demsetz. Lacking the game-
theoretic tools of modern industrial organization (IO) theory, the literature confined its attention
to the case of a single toll-setter.

In this paper, we consider the case of two or more congestible roads—each with its own private
toll-setter—and one untolled, uncongestible road of arbitrary speed. We show that for any number
of congestible roads, private toll-setters will set a Pigouvian toll, provided that the uncongestible
road is fast enough to be part of the solution that minimizes aggregate commute time. We can also
reproduce the case considered by Demsetz with two congestible roads and a uncongestible road so
slow that its existence is irrelevant. We also consider intermediate cases where the uncongestible
road is not fast enough to generate Knight’s case or slow enough to generate Demsetz’s case.

We show that, as a general matter, Pigou’s proposal for government tolls always restores
efficiency—for any number of congestible roads and any commute time on the uncongestible road.
In contrast, we show that Knight’s proposal for private toll-setting is problematic except in the
special case where the commute on the uncongestible road is sufficiently fast. If the uncongestible
road is slower and there are two or more congestible roads, then private toll-setters never set
Pigouvian tolls and almost never achieve the efficient solution. In particular, they never achieve
the efficient solution in the case identified by Demsetz where the two roads have different congestion
functions and there is no uncongestible alternative. Finally, we show that—except in the special
case of a fast uncongestible road—private toll-setting is strictly more costly to each motorist than
government-imposed tolls and generates strictly less toll revenue.

Although our findings should make advocates of private-sector toll-setting abandon the idea,
we recognize that some policymakers are heavily invested in this solution. Accordingly, we propose
a way in which the government can indirectly regulate private toll-setting by providing motorists
with an attractive, uncongestible public option for commuting to work. This option would limit
the full cost that motorists would incur by using private toll roads.3

We have formulated our analysis in terms of roads because that is the congestible resource
that Knight, Pigou and Demsetz discussed, and, in addition, because President Trump’s plan to
improve US roads depends on tolls set by the private sector.
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But our analysis applies equally to other congestible resources. If fishermen can choose whether
to fish on one of several congestible lakes, for example, then the fishermen will allocate themselves
among the lakes in a way that equalizes their earnings on each lake. But this allocation fails
to maximize their aggregate earnings because no one takes any account of how they reduce the
aggregate fish catch of others fishing on the same lake. Instead of a lake-specific Pigouvian fee
imposed by the government to restore efficiency, however, disciples of Knight, such as Demsetz,
would recommend empowering one private firm per lake to set a lake-specific access fee in the mis-
taken belief that the revenue-maximizing fee on each lake would equal the lake-specific Pigouvian
tax and would restore efficiency.

Our analysis also applies to other traditional congestible resources such as common oil pools,
grazing areas and hunting grounds. These contexts may seem dated and remote, but modern
congested resources confront us every day: bridges, tunnels, the internet, the radio frequency
spectrum, airport runways (Brueckner 2002; Pels et al. 2000) and the electricity grid (Borenstein
et al. 2000).

Congestion problems are ubiquitous, but are not always recognized. To take one example,
suppose that there are N biomedical researchers, each of whom can be deployed in the search of
a cure for one of n (n ≪ N) diseases. Suppose that discovering a cure for each disease has a
specified social value. This is a congestion problem since when any researcher seeks a cure for a
given disease, he reduces the chance that others searching for a cure for the same disease will be
the first to discover one, an effect that a planner would take into account but that a private agent
would ignore when deciding which activity to pursue.

A planner could work out how many of the researchers should be deployed on each disease to
maximize expected social welfare, and to decentralize this efficient solution, the government could
set ‘Pigouvian prizes’. However, disciples of Knight would erroneously argue that the government
is unnecessary; each of n independent private agents would offer a prize for the first research to
find a cure for a given disease in exchange for the right to market the drug. In fact, competing
prize-setters will never achieve the efficient allocation of researchers. Moreover, this private-sector
solution will always short-change researchers compared to Pigouvian prizes. The government can
limit researchers’ losses, however, by providing alternative employment research positions (e.g.
at the National Institutes of Health) provided that the wage there is high enough to affect the
prize-setting equilibrium.4

The literature following the Knight–Pigou debate can be divided into two parts, one focused
on applications in transportation economics and the other focused on the ability of markets to
restore efficiency.5 The literature on transportation economics has solved increasingly complex
planning problems, often taking into account real-world constraints. For example, William Vickrey
promoted congestion tolling for 40 years, expanding the analysis to include land use, parking fees
and automated tolls.6 A large literature extends this work to second-best pricing cases; for example,
when there exist bottlenecks and untolled alternatives (Braid 1989, 1996; Verhoef et al. 1996).7

Beckmann et al. (1956) expand the two-road model to an entire transportation network with elastic
demand for trips from any point i to any destination j. They find that the first-best solution in
the expanded model is the same as Pigou’s solution with two roads.

The second strand of the literature has examined the validity of Knight’s contention that private
toll-setting will restore efficiency. Like Knight, contributors to this literature restrict attention to a
single private toll-setter. Buchanan (1956) and Edelson (1971) show that Knight’s lone toll-setter
would not always set Pigouvian tolls but identifies conditions where Knight’s contention is correct,
such as when motorists have identical wages and access to the same uncongestible alternative. Mills
(1981) provides a broader condition for Knight’s claim to hold, which encompasses the conditions of
Edelson and Buchanan.8 Several authors indicate that Knight’s contention requires ‘competition’
from many toll-setters, but, lacking the tools of modern oligopoly theory, they could not be more
precise.

Our paper contributes to this second strand of literature. We make assumptions that Buchanan
(1956), Edelson (1971) and Mills (1981) show ensure that private toll-setting is efficient when there
is a single congestible road. We extend this analysis and ask whether efficiency is ensured when
there are two or more congestible roads, each with its own toll-setter, as well as an untolled
uncongestible road of arbitrary speed. We also address considerations ignored in the previous
literature: whether the welfare of motorists is better and the aggregate toll revenue generated
higher under private tolls or government-imposed tolls.

Although Knight, Pigou and their followers assume that one road is uncongestible, many con-
temporary readers find this assumption implausible. We bridge this divide by assuming that, in
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addition to the n congestible roads, there exists one uncongestible road of arbitrary exogenous
speed. If this speed is sufficiently fast, then we get the case discussed by Knight and Pigou; if
this speed is sufficiently slow, then we get the case that many contemporary readers (including
Demsetz) find more plausible. As we show, the intermediate case is also of interest because it
shows the value of a public option in limiting toll-gouging.

As we demonstrate, Knight’s result that private toll-setters will set Pigouvian tolls depends on
the existence of an uncongestible road of sufficient speed. This is a strong assumption, and the
result may disappear if it is altered in seemingly innocuous ways. For example, it may seem that
Knight’s result would surely continue to hold if the fast uncongestible road were replaced by one
that is equally fast and congests only when used by more motorists than a planner would allocate
to it. After all, such a substitution would not alter the planning solution. But it would give a
monopolist toll-setter an incentive to raise his toll above the Pigouvian level, causing motorists to
switch to the replacement road. The result would be inefficiency and toll-gouging. This is another
way that Knight’s result is fragile.

We proceed as follows. In Section I, we discuss the planning problem and show why government-
imposed Pigouvian tolls induce self-interested motorists to act in ways that solve the planning
problem. In Section II, we discuss the equilibrium with two or more congestible roads, each
with an independent private toll-setter, and an untolled, uncongestible alternative of arbitrary
speed. We compare the welfare of motorists and the aggregate toll revenue generated under private
tolls and government-imposed tolls. In Section III, we conclude with a discussion of how private
toll-setting can be regulated by potential competition from a public option. Convergence to the
efficient allocation as the oligopolist toll-setting economy is replicated without bound is discussed
in Appendix A, and technical details underlying one result are relegated to Appendix B.

I. Overuse of Congestible Roads and Pigou’s Proposal to Restore Efficiency

Suppose thatN drivers must commute to work from the same starting point to the same destination
using one of n < ∞ congestible roads and one uncongestible road. They have no alternatives to
this commute.9 The cost incurred by drivers from choosing a given road is denoted in dollars of
wages foregone while commuting. We assume that each motorist earns the same wage, and we
denote the commuting cost (in dollars) on a congestible road i as Ai(xi), where xi is the number
of drivers on road i.10 We assume that (i) Ai(xi) is differentiable, (ii) Ai(xi) is strictly increasing,
and (iii) xiAi(xi) is strictly convex. To eliminate corner solutions, we also assume Ai(0) = 0.

We denote the commuting cost on the fastest uncongestible road as c; if there are slower
uncongestible roads (with even higher c values), then we disregard them, because motorists would
never use them.11 Therefore motorists choose between congestible roads, which increase in cost
with the number of motorists on the road, and an uncongestible road, which provides a constant
cost independent of the number of motorists on the road.

The planning problem

As a benchmark, consider how a planner would allocate N motorists to the n congestible roads
and one uncongestible road to minimize the total cost of commuting in terms of forgone wages (or,
equivalently, work hours lost while commuting):

n
∑

i=1

xi Ai(xi) +

(

N −
n
∑

i=1

xi

)

c, subject to N −
n
∑

i=1

xi ≥ 0.

Since the minimand in the planning problem is strictly convex, the solution of the n first-order
conditions is unique.

The unique solution has one of two characteristics, depending on whether or not the planner
finds using the uncongestible road to be optimal. In both, the planner equates the marginal social
cost on each of the n congestible roads:

Ai(x
s
i ) + xs

i A
′
i(x

s
i ) = Ai+1(x

s
i+1) + xs

i+1 A
′
i+1(x

s
i+1) for i = 1, . . . , n− 1,

where the n variables {xs
i}

n
i=1 are defined as the socially efficient allocation of drivers. These

n − 1 equations are supplemented by a final equation. In the first case, the planner assigns some
motorists to the uncongestible road:

Ai(x
s
i ) + xs

i A
′
i(x

s
i ) = c

(

and N −
n
∑

i=1

xs
i > 0

)

.

4
This	article	is	protected	by	copyright.	All	rights	reserved

A
u

th
o

r 
M

a
n

u
s
c
ri
p

t



In the second case, the planner does not use the uncongestible road:

N −
n
∑

i=1

xs
i = 0

(

and c−Ai(x
s
i )− xs

i A
′
i(x

s
i ) > 0

)

.

The planner utilizes the uncongestible road if and only if its exogenous commuting cost c is
smaller than the threshold cost, denoted cK . Intuitively, if lost wages from using the uncongestible
road are low (c < cK), then the planner will add motorists to every congestible road until its
marginal social cost equals c, and will assign the remaining commuters to the uncongestible road.
The higher c is, the more commuters will be assigned to each congestible road and the fewer will
be left for the uncongestible road. Eventually c = cK and all motorists will be on the congestible
roads: N −

∑n

i=1
xs
i = 0. The threshold cK and the allocation {xs

i}
n
i=1 are defined by the n + 1

equations

cK = Ai(x
s
i ) + xs

i A
′
i(x

s
i ) for i = 1, . . . , n, and N −

n
∑

i=1

xs
i = 0.

For any c > cK , the planner maintains this same allocation across the n congestible roads and does
not use the uncongestible road.

Pigou’s proposal

Pigou (1920) points out that each motorist would adhere to the planner’s solution if the government
taxed each motorist for the use of congestible road i at the rate of θPi = xs

i A
′
i(x

s
i ) per trip. For in

that case, when the motorist compared highways i and j, he would discover that Ai(x
s
i ) + θPi =

Aj(x
s
j) + θPj . Hence there would be no incentive to switch to a different route. If c < cK , then

Ai(x
s
i )+θPi = c and the remainder of the motorists would use the untaxed and uncongestible road.

If c > cK , then all N motorists would use the n taxed roads: N −
∑n

i=1
xs
i = 0. In either case,

Pigouvian tolls would implement the efficient solution for any number of roads. Pigou’s solution
is, therefore, completely general.

II. Knight’s Proposal to Privatize Toll-setting

Knight’s response

In response, Knight (1924) argues that government intervention is unnecessary. Private toll-setters
in search of profits will always set their tolls at the levels recommended by Pigou; hence the
private market will achieve the efficient allocation of motorists without any need for government
intervention. Knight implicitly confines attention to the region where c < cK and hence Ai(xi) +
θi = c. Although Knight considers only the case of one congestible road, his conclusions are valid
for n ≥ 2 as well.12

Each of Knight’s n toll-setters maximizes revenue xiθi subject to Ai(xi)+ θi = c. That is, each
toll-setter sets his toll simultaneously and anticipates that motorists will observe these n tolls,
conjecture the congestion on each road, and choose the route with the lowest overall cost (lost
wages plus tolls). As a result, in each subgame indexed by the vector of tolls, the overall cost on
every congestible road will equal c, the lost wages on the uncongestible road. Substituting out
of θi, each toll-setter maximizes xi(c − Ai(xi)). Thus the allocation of the planner and the Nash
equilibrium allocation coincide. Each solves c − Ai(xi) − xi A

′(xi) = 0. Denoting the number of
motorists on road i in the efficient solution as xs

i and in the Nash equilibrium as x∗
i , we conclude

that x∗
i = xs

i . Moreover, if we now use the constraint to solve for θ∗i in the Nash equilibrium, then
θ∗i = x∗

i A
′
i(x

∗
i ). But since x∗

i = xs
i , the private tolls would exactly match the user fees that Pigou

recommended. That is, θ∗i = θPi .

Result 1 (c < cK). In the subgame-perfect equilibrium of the toll-setting game, private toll-setters
will (i) charge tolls equal to the Pigouvian user fees, and therefore, in their quest for profits,
(ii) achieve the efficient allocation.

Given the two conclusions in Result 1, assigning property rights and letting the private sector
correct the congestion externality without any government intervention look appealing.

The failure of Knight’s response

Although Knight’s two conclusions are remarkable, they are misleading. As we will show, neither
one survives when c > cK . Commute times are then almost never minimized. And in the excep-
tional cases where they are minimized, every motorist always pays more in tolls than he would
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pay in Pigouvian user fees, even though his commute time is the same. Note that the efficient
allocation is the same for all c ≥ cK , and is equal to the allocation at c = cK , where no motorists
uses the uncongestible option. In contrast, as we will see, the allocation with private toll-setters
changes for different values of c > cK .

To show this, we consider the case of n ≥ 2 congestible roads in the absence of an uncongestible
road.13 The toll chosen by player i maximizes his revenue (xiθi) and solves

xi + θi
∂xi

∂θi
= 0.

This condition says that when toll i is set to maximize the revenue of player i, the amount of
revenue lost from his old customers from lowering the toll by $1 will equal the increase in revenue
from attracting motorists from the road with an unchanged toll.

In a Nash equilibrium, four sets of conditions making up 2n equations in the 2n unknowns
{θ∗i }

n
i=1, {x

∗
i }

n
i=1 must hold for i = 1, . . . , n− 1:

Ai(x
∗
i ) + θ∗i = A∗

i+1(x
∗
i+1) + θ∗i+1 (n− 1 conditions),(1)

n
∑

i=1

x∗
i = N (1 condition),(2)

θ∗i = x∗
i

(

A′
i(x

∗
i ) + (1− ηi)A

′
i+1(x

∗
i+1)

)

(n− 1 conditions),(3)

θ∗n = x∗
n

(

A′
n(x

∗
n) + (1− ηn)A

′
1(x

∗
1)
)

(1 condition),(4)

where

ηi = −
1

dxi

n
∑

k 6=i,i+1

dxk ∈ [0, 1) for i = 1, . . . , n− 1 and ηn = −
1

dxn

n
∑

k 6=n,1

dxk ∈ [0, 1).

The first set of n − 1 conditions holds since the overall cost, lost wages plus toll, must be equal
across all roads—a consequence of the motorists’ second-stage decisions. The second condition
reflects the requirement that each motorist must use exactly one road. The third and fourth sets
of conditions, respectively, are the first-order conditions for the toll-setters,

xi + θ
∂xi

∂θi
= 0.

To write the conditions in (2) and (3), we use the fact that

∂xi

∂θi
= −

(

A′
i(xi) + (1− ηi)A

′
i+1(xi+1)

)−1
.

To derive this partial derivative, assume that only toll-setter i changes his toll, and totally differ-
entiate the equation indicating that the full cost per customer (lost wages plus the toll) is identical
on roads i and i+ 1 for any i = 1, . . . , n− 1, and the equation indicating that all motorists must
use one of the n congestible roads.14 Since ηi is the fraction of the motorists that leave road i and
go to all roads other than road i+ 1, it is always smaller than 1 and equals 0 if and only if n = 2.
These equations must hold in a toll-setting equilibrium if there is no uncongestible road or if the
uncongestible road is so slow that the full (equalized) cost of using the tolled, congestible roads is
strictly cheaper. We denote the lowest cost with this property cI , where cI = Ai(x

∗
i ) + θ∗i . Under

the privatization solution proposed by Knight, if c > cI , then there are two possibilities.

Result 2 (c > cI). Under privatization, either (i) aggregate commute times are not minimized (the
equilibrium is inefficient) or (ii) the equilibrium is efficient but workers pay higher tolls than they
would under government-imposed Pigouvian tolls.15

Proof. To see that when private toll-setting minimizes aggregate commute times, every motorist
pays higher than Pigouvian tolls, note that if x∗

i = xs
i for all i, then equations (3) and (4) imply

that
θ∗i = θPi + (1− ηi)x

∗
i A

′
i+1(xi+1) > θPi for i = 1, . . . , n− 1.

In addition,
θ∗n = θPn + (1− ηn)x

∗
n A

′
1(x1) > θPn .
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Private toll-setting is efficient in rare circumstances. It would always occur, for example, if each of
the n congestion functions were identical. For then the toll-setting equilibrium is symmetric and
N/n of the motorists use each road, as they would in the planning solution. �

The following example demonstrates in the two symmetric roads case that the private toll-
setting equilibrium is efficient but has higher tolls.

Example 1 : Two symmetric roads.
Consider the case when n = 2 and Ai(xi) = aixi, such that a1 = a2 = a. Aggregate commute

time is minimized by dividing motorists so that x1 = x2 = N/2. The Pigouvian tolls are given by
θPi = xs

iA
′
i(x

s
i ) = axs

i = aN/2. The equilibrium tolls are found by solving the system of equations
in conditions (1)–(4), which reduces to

ax1 + θ∗1 = ax2 + θ∗2 ,(5)

x∗
1 + x∗

2 = N,(6)

θ∗1 = x∗
1(a+ a) = 2ax∗

1,(7)

θ∗2 = x∗
2(a+ a) = 2ax∗

2.(8)

In the privatized solution, the equilibrium tolls derived from this system of equations are θ∗1 =
θ∗2 = 2(aN/2) = 2θP1 = 2θP2 .

In this simple example, the socially efficient and privatized equilibrium number of motorists on
each road is N/2; but the tolls are twice as high in the privatized equilibrium.

However, unnecessarily long aggregate commute times (inefficiency) are more likely. The fol-
lowing example demonstrates that the private toll-setting equilibrium is inefficient with two asym-
metric roads.

Example 2 : Two asymmetric roads.
Consider the case when n = 2 and Ai(xi) = aixi, such that a1 6= a2. Aggregate commute time

is minimized by dividing motorists so that

xs
1 =

a2N

a1 + a2
and xs

2 =
a1N

a1 + a2
.

For motorists to allocate themselves in this way on the two roads, the duopolist toll-setters would
have to set the same toll on each road. But any pair of private tolls that are equal would give
at least one of these toll-setters a strict incentive to unilaterally deviate because conditions (3)
and (4) would be violated: xs

1(a1 + a2) 6= xs
2(a2 + a1).

16

What happens in the toll-setting equilibrium when the exogenous commute time on the uncon-
gestible road is so long that a planner would not use it, c > cK , but the cost of using this toll-free
road in terms of lost wages is lower than the equilibrium cost to motorists of using any of the toll
roads in the absence of an uncongestible alternative c < cI? In this case, c ∈ (cK , cI), the toll
plus foregone wages on each road must equal the exogenous cost c, but every motorist nonetheless
avoids the uncongestible road.17 In this intermediate case, the uncongestible road displaces the

private toll-setting equilibrium by providing potential competition if toll-setters would raise their
toll.

In a Nash equilibrium, the following n+1 equations in the 2n unknowns {θ∗i }
n
i=1, {x

∗
i }

n
i=1 must

hold:

Ai(x
∗
i ) + θ∗i = A∗

i+1(x
∗
i+1) + θ∗i+1, i = 1, . . . , n− 1 (n− 1 conditions),(9)

A1(x
∗
1) + θ∗1 = c (1 condition),(10)

n
∑

i=1

x∗
i = N (1 condition).(11)

The final set of conditions produces n− 1 weak inequalities that ensure that no toll-setter can
strictly benefit from raising or lowering his toll unilaterally, captured by

∂Ri

∂θi

∣

∣

∣

∣

θ
−i

= xi + θi
∂xi

∂θi

∣

∣

∣

∣

θ
−i

.

These conditions are inequalities because of the asymmetry in the response of motorists to a
lowering or raising of a toll in this intermediate range, c ∈ (cK , cI). In response to a unilateral
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lowering of a toll, motorists from other congestible roads move to the road with the now lower
toll; no motorists are attracted from the uncongestible road since there are no motorists on it to
attract:

∂xi

∂θi

−

= −
(

A′
i(xi) + (1− ηi)A

′
i+1(xi+1)

)−1
.

In response to a unilateral raising of a toll, motorists leave that congestible road for the uncon-
gestible road; no motorist moves to the other toll roads since, if anyone joined it, that road would
become more congested and strictly less attractive than the uncongestible road:

∂xi

∂θi

+

= −
(

A′
i(xi)

)−1
.

Intuitively, the magnitude of this response is smaller when the toll is reduced unilaterally
because the other congestible roads (unlike the uncongestible road) become more attractive as
motorists leave them. Because in an equilibrium, toll-setter i cannot benefit from increasing or
reducing his toll unilaterally, we have

∂Ri

∂θi
∈

(

x∗
i −

θi
A′

i(x
∗
i )
, x∗

i −
θi

A′
i(x

∗
i ) + (1− ηi)A′

i+1
(x∗

i+1
)

)

.

We conclude that in a Nash equilibrium, the following weak inequalities must also hold for i =
1, . . . , n− 1:

(12) x∗
i

(

A′
i(x

∗
i ) + (1− ηi)A

′
i+1(x

∗
i+1)

)

≥ θ∗i ≥ x∗
i A

′
i(x

∗
i )

and
x∗
n (A

′
n(x

∗
n) + (1− ηn)A

′
1(x

∗
1)) ≥ θ∗n ≥ x∗

n A
′
n(x

∗
n).

These inequalities allow for a continuum of equilibrium tolls that satisfy the conditions (9)–(12).
To characterize these equilibria, first note that when c = cK , private toll-setters would duplicate
Pigouvian user fees and the equilibrium allocation minimizes aggregate commute time. To verify
this, note that when x∗

i = xs
i and θ∗i = xs

i A
′
i(x

s
i ) = θPi , conditions (9)–(12) are all satisfied. Note

in particular that θ∗i is at the lower end of each closed interval in (12).
If c is ∆ > 0 higher than cK , then the same allocation of motorists across the congestible roads

is efficient. This allocation can occur in a Nash equilibrium provided that each toll is also increased
by ∆. In that case, no motorist has an incentive to switch roads, so conditions (9)–(11) continue to
hold. Moreover, as long as ∆ < min{(1− ηn)x

s
i A

′
i+1(x

s
i+1)}

n−1

i=1
, each θ∗i will be in the interior of

its respective closed interval. Although aggregate commute time is minimized in this equilibrium,
each motorist would pay ∆ > 0 more to private toll-setters than he would have paid in Pigouvian
user fees.

For this same cost of the uncongestible road (cK +∆), there is a continuum of other equilibria.
Since motorists are reallocated in these equilibria, each of them is inefficient. For example, if θi is
raised slightly, then motorists will leave that toll road until its full cost falls back to cK +∆. These
additional motorists will raise congestion on the n− 1 other toll roads, and in the new equilibrium
θj for j 6= i must be decreased slightly so that the full cost there is restored to cK +∆.

Panel A of Figure 1 (constructed from an example with linear congestion functions and n = 2)
compares the aggregate commute time in the efficient solution to the commute time in the toll-
setting equilibrium for every exogenous speed on the uncongestible road. The aggregate commute
time in the planning solution is strictly increasing in c until c = cK and is constant thereafter since
the planner finds the uncongestible road too slow to utilize.

Figure 1 near here

Aggregate commute time in the toll-setting equilibrium coincides with that in the planning
solution for c ≤ cK . At the other extreme (c ≥ cI), aggregate commute time is strictly longer than
in the planning solution provided that the congestible roads are heterogeneous. In the intermediate
region (c ∈ (cK , cI)), there is a continuum of equilibria. In panel A of Figure 1, cF divides this
interval into two parts. For each c ∈ (cK , cF ) there is a continuum of equilibria, all but one of
which is inefficient. For c > cF , the Nash equilibrium never minimizes aggregate hours spent
commuting (assuming that the congestible roads differ); this should not be surprising given the
strict inefficiency of the Nash equilibrium at c = cI .

18

Result 3 (c ∈ (cK , cI)).
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(i) There is a continuum of equilibria. In each, no motorist uses the uncongestible road, but
every motorist would find the uncongestible road strictly more attractive if the toll he is
paying were unilaterally raised in the slightest.

(ii) For some values of c in this interval, no equilibrium minimizes aggregate time lost commuting;
for other values, every equilibrium but one in the continuum of equilibria is inefficient.

(iii) Whenever the equilibrium is efficient, and therefore every motorist has exactly the commute
time as under Pigou’s solution, every motorist pays a higher toll than if under Pigou’s
solution.

To summarize, Knight’s contention—that government intervention is unnecessary in congestion
problems because private toll-setters will set access fees at the same levels as the government user
fees recommended by Pigou—is mistaken. As Figure 1 makes clear, Knight’s novel contention is
correct for c ≤ cK .19 Whenever c > cK , Knight’s claims are false. Private toll-setters will almost
never minimize aggregate hours lost commuting; when they do, motorists will pay strictly more
than in the solution proposed by Pigou. Thus private toll-setters never all set Pigouvian tolls except
in the special case examined by Knight. In contrast, regardless of the speed of the uncongestible
road, the government can always achieve efficiency by imposing the road-specific taxes proposed
by Pigou.

The welfare of motorists

Motorists care about the full cost of commuting, that is, the sum of tolls paid plus wages foregone
while en route to work. The welfare of each motorist increases when the full cost of commuting
falls.

Knight shows—for the special case where c ≤ cK—that the full cost to motorists is the same
whether tolls are set by private toll-setters or by a government following Pigou’s recommendations.
Does Knight’s insight generalize? The following result is definitive.

Result 4 (c > cK). In every equilibrium, every motorist is strictly worse off if toll-setting is left to
the private sector than if tolls are set by the government at Pigouvian levels.

To see why this is true, note that under Pigouvian tolls the full cost on every motorist’s use
equalizes, and the resulting allocation of motorists to roads is efficient. With the uncongestible
road speed c < cK , this means that the full cost on all n + 1 roads is c. With the uncongestible
road speed c > cK , the uncongestible road is empty and the full cost on the n congestible roads
is ck.

On the other hand, private toll-setters limit-price when c ∈ (cK , cI ], so for c in this intermediate
interval, the full cost to each motorist under private toll-setting increases linearly from cK to cI .

20

If c is even larger (c > cI), then the full cost paid by each motorist under Pigou’s solution
remains constant at cK , while the full cost under Knight’s private-market solution remains constant
at cI > cK . The full cost paid by each motorist under Pigou’s proposal and under Knight’s proposal
is depicted in panel B of Figure 1.

We conclude this subsection by noting an apparent paradox. Suppose that a new congestible
road is built and the toll on it is set by an additional profit-maximizer. If the uncongestible road
continues to offer actual or potential competition for the n+1 congestible roads, then, paradoxically,
motorists are no better off than before construction of the new road, regardless of their route to
work. Even though commuters earn more because they get to work sooner, all of their additional
earnings are paid in tolls. The full cost to them remains c.

We note that this paradox differs from the two celebrated paradoxes in the literature: the
Pigou–Knight–Downs paradox (Downs 1962; Arnott and Small 1994) and Braess’s paradox (Braess
1968; Murchland 1970).21 Both of these concern paradoxical behaviour in an equilibrium without

toll-setters when an additional road is made available to motorists. Our paradox occurs in an
equilibrium with toll-setting.

Toll revenue: does private toll-setting generate more revenue?

When an additional road is built and the private builder sets its access toll to maximize profit,
the toll not only alters congestion on competing routes (and hence aggregate time commuting)
but also generates revenue that can be used to finance, in part or in whole, the road construction.
We therefore conclude by asking whether toll-setting by the private sector generates more revenue
than government toll-setting. Obviously not, since the government can duplicate the private-sector
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tolls. However, it may not be clear that the private-sector tolls are almost surely inferior. We close
this subsection with our final result.

Result 5 (c > cK). Whenever private toll-setting in inefficient, the government can set tolls in a way
that simultaneously generates (1) strictly more aggregate toll revenue, (2) strictly less aggregate
time lost commuting, and (3) strictly lower full cost for every motorist.

With private toll-setting, the full cost to motorists of using alternate routes will equalize (at
min(c, cI)), but when c > cK the allocation is likely to be inefficient. With government-imposed
Pigouvian tolls, the full cost to motorists will equalize at a lower level (cK), and if one adds the
same fee (min(c, cI) − cK) to each Pigouvian toll so that the full cost of each route is the same
(min(c, cI)) as under private toll-setting, then aggregate commute time will remain strictly lower
(since it is minimized)—hence aggregate toll revenue will be strictly higher than if the private
sector sets tolls. Since these two inequalities are strict, they will continue to hold even if each
addition to the Pigouvian tolls is reduced by some small ε > 0. But with the toll on road i of
θPi +min(c, cI)− cK − ε, the full cost to each motorist will also be smaller than when the tolls are
set by the private sector.

Thus Knight’s private-sector toll-setting is never better for motorists, and whenever c > cK ,
it is strictly worse for them than government-implemented tolls. However, politicians currently
favour private toll-setting. As Bertrand Russell (1936) remarked in another context, the case for
government-imposed tolls ‘ignores those higher considerations that transcend mere logic’. If the
private market must be relied on, then our analysis suggests how the government can limit the full
costs inflicted on commuters. We discuss government provision of an uncongestible ‘public option’
in the concluding section.

III. Conclusion

This paper has revisited the debate between Pigou and Knight about how to correct the inefficient
use of congestible resources. Pigou favours access fees set by the government, while Knight favours
access fees set by private toll-setters. Although congestion problems abound (as any internet user,
commercial airline passenger or commercial fisherman can attest), we framed our discussion in
terms of congestible roads—the example Knight and Pigou used in their original debate.

Pigou argues that the government should impose road-specific Pigouvian tolls on motorists
using congestible roads to induce them to take full account of the negative social cost that their
use imposes on fellow commuters in terms of aggregate wages foregone. Knight responds that
government intervention is never necessary since private toll-setters in pursuit of maximum profit
would set tolls at exactly the level Pigou recommended and hence would achieve efficiency without
government meddling. The debate centred on the case where commuters could choose between a
single congestible road and the fastest uncongestible alternative, and was further limited to the
special case where that alternative was fast enough to be utilized in the commute-time minimizing
solution.

We have examined the issues debated by Knight and Pigou more generally, considering the case
of two or more congestible roads and one uncongestible road of any exogenous speed. We have
shown that Pigou’s proposed governmental solution is correct regardless of the commute time on the
uncongestible road and regardless of the number of congestible alternatives. In contrast, Knight’s
private solution is, in general, incorrect. Private toll-setters can never be relied on to set Pigouvian
tolls except in the special case to which Knight confined attention. Beyond that case, Knight’s
proposed solution almost never minimizes aggregate commute time. If the uncongestible alternative
is sufficiently slow (c ≥ cF ), then none of the profiles of tolls that arise in equilibrium minimizes
aggregate commute time; if the uncongestible alternative is somewhat faster (c ∈ (cK , cF )), then
only one among a continuum of equilibrium toll profiles minimizes aggregate commute time.

We also considered the impact of private toll-setting on the welfare of motorists. While commute
time is important to them because of the foregone wages, so are the tolls that they must pay to
get to work. We concluded that motorists are never better off, and for c > cK are strictly worse
off if the private sector sets tolls, than under Pigou’s proposal.

If private toll-setters are nonetheless allowed the freedom to set tolls on congestible roadways,
then our analysis suggests how the government can complement private toll-setters to limit the
costs that workers must bear. Specifically, the government can provide an uncongestible (or nearly
so) alternative as a public option.22 In the context of roads, the government could provide a train,
varying the number of cars, speed, and time between departures to ensure that this option was
sufficiently uncongestible. If the train is sufficiently fast that some motorists ride it, then it will
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complement tolls set by the private sector by ensuring that those tolls allocate motorists across
roads efficiently. But even if the train is slow, such that only non-motorists (such as seniors and
other discounted fare riders) use it, then the train could still complement private-sector tolls if
it induced limit-pricing by toll-setters.23 In this case, the full cost to motorists of commuting on
private toll roads would be limited by the full cost at the margin of taking the train.

APPENDIX A: EFFICIENCY RESTORED IN THE TOLL-SETTING GAME IN THE LIMIT
OF A REPLICA ECONOMY

Suppose that instead of N motorists spread across n motorways congestible to different extents,
there is an M -fold replication with MN motorists spread across n types of congestible roads, with
M identical roads of each type. We wish to show that as M → ∞, the efficient allocation of
motorists can be supported as a subgame-perfect equilibrium of the toll-setting game.24

The efficient solution in this case uniquely solves the following n+1 equations defining {xs
i}

n
i=1

and λs:

Ai(x
s
i ) + xs

i A
′
i(x

s
i ) = λs, i = 1, . . . , n, and

n
∑

i=1

xs
i = N,

where λs denotes the value of the Lagrangian multiplier at the social optimum.
Define the Pigouvian tolls as θPi = xs

i A
′
i(x

s
i ) for i = 1, . . . , n. Suppose at the first stage

of the two-stage game, every player but one type i chooses the Pigouvian toll, while this one
remaining type i player chooses some θi ∈ [θmin

i , θmax
i ]. Define these minimum and maximum

tolls as θmax
1 = µ − A1(0) and θmin

1 = µ − A1(MN), where µ in the first condition is equal to
min{Aj(0) + θPj } and in the second is equal to the common cost given by Aj(xj) + θPj . Then in
the Nash equilibrium of the second stage, the motorists will allocate themselves so that the full
cost (the toll plus the lost wages) is the same on every motorway. Denote this common cost as µ.
Then the following n+ 2 equations define the n+ 2 variables xd

i , {xj}
n
j=1 and µ:

Ai(x
d
i ) + θi = µ,(A1)

Aj(xj) + xs
j A

′
j(x

s
j) = µ for j = 1, . . . , n,(A2)

xd
i + (M − 1)xi +M

∑

j 6=i

xj = N.(A3)

Anticipating these second-stage responses and conjecturing that the other toll-setters will main-
tain their tolls at the Pigouvian level, the deviating type i player can set any toll θi in the closed
interval. A marginal increase in his toll would then cause his profits to increase at the rate

∂πi

∂θi
=

∂(θi x
d
i (θi))

∂θi
= xd

i + θi
∂xi

∂θi
.

Let θi = εi + θPi = εi + xs
i A

′
i(x

s
i ). Differentiating equation (A1), we obtain

∂xi

∂θi
=

(

∂µ

∂θi
− 1

)

1

A′
i(x

d
i )
.

Substituting for θi and recognizing that as M → ∞, ∂µ/∂θi → 0, we conclude that

(A4)
∂πi

∂θi
=

xd
i A

′
i(x

d
i )− xs

i A
′
i(x

s
i )− εi

A′
i(x

d
i )

.

If ε = 0, then the toll under consideration is the Pigouvian toll. By definition, xd
i = xs

i . So
the expression in (A4) equals zero. If ε > 0, then the toll exceeds the Pigouvian level (θi > θPi ),
less than the efficient number of motorists take the route (xd

i < xs
i ), and the expression in (A4)

is strictly negative. Finally, if ε < 0, then the toll is smaller than the Pigouvian level (θi < θPi ),
more than the efficient number of motorists take the route (xd

i > xs
i ), and the expression in (A4)

is strictly positive.
It follows that for any toll θi in the closed interval, the payoff of player i is single-peaked at the

Pigouvian toll. Moreover, any toll so high that no one uses the motorway, or so low that raising it
would not alter the number of motorists using his route, is clearly suboptimal for toll-setter i. But
these arguments apply to every toll-setter. Hence, in the limit, no toll-setter has a strict incentive
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to deviate unilaterally from the profile of Pigouvian tolls, even when there is no uncongestible
motorway.

Intuitively, for any M , the efficient number of motorists on any road of a given type does not
change. Moreover, for any profile of tolls, the number of motorists choosing a roadway of a given
type does not change. What changes is the rate at which a toll-setter on a road of a given type
anticipates that he will lose customers if he marginally increases his toll. For small M , this rate
of loss is dampened since every competing road is rendered less attractive as the motorists fleeing
the increased toll add to its congestion. But as M grows, the fleeing motorists locate on so many
different roads that the additional congestion imposed on any one of them becomes negligible. In
the limit, therefore, it is as if the alternative to any individual toll-setter’s road is a completely
uncongestible alternative.

Assigning property rights to toll-setters eliminates the inefficiency in a thick market because
the effect of a change in toll on one road has increasingly less effect on the number of drivers on
other roads until in the limit dxj/dθi → 0. In this case the second term that produces the wedge
in −dθ1/dx1 = A′

1(x1) +A′
2(x2) goes to zero and efficiency is restored.

Knight (1924, p. 591) alludes vaguely to ‘competitive conditions’ being necessary for his result,
but never clarifies what such conditions entail. They entail either (1) an uncongestible road fast
enough that a planner would utilize it, or, in the absence of such a road, (2) a replica economy
with a sufficiently large number of roads of each type.

APPENDIX B: DERIVING THE CONDITIONS FOR NASH EQUILIBRIUM IN THE
TOLL-SETTING GAME

The first-order condition for the revenue-maximizing toll-setter is

xi + θi
∂xi

∂θi
= 0,

which can be rewritten as

θi = −xi

(

∂xi

∂θi

)−1

.

To derive ∂xi/∂θi, we totally differentiate the conditions that indicate that all motorists must be
on one of the congestible roads, and the full cost of driving on road i is equal to the full cost of
driving on road j:

n
∑

i=1

xi = N, dxi+1 = −dxi −
n
∑

k 6=i,i+1

dxk.

Notice that if dxi < 0, as is the case in dxi/dθi, then
∑n

k 6=i,i+1
dxk ≥ 0.25 Intuitively, this says

that if the number of motorists on road i decreases, due to the toll being raised on road i, then
the number of motorists on all of the other roads will weakly increase:

Ai(xi) + θi = Ai+1(xi+1) + θi+1,

A′
i(xi) dxi + dθi = A′

i+1(xi+1) dxi+1,

A′
i(xi) dxi + dθi = −A′

i+1(xi+1) dxi −A′
i+1(xi+1)

n
∑

k 6=i,i+1

dxk,

A′
i(xi) dxi + dθi = −A′

i+1(xi+1) dxi +A′
i+1(xi+1) ηi dxi,

(

A′
i(xi) + (1− ηi)A

′
i+1(xi+1)

)

dxi = −dθi,

dxi

dθi
= −

(

A′
i(xi) + (1− ηi)A

′
i+1(xi+1)

)−1
,

where

ηi = −
1

dxi

n
∑

k 6=i,i+1

dxk ∈ [0, 1).

The derivation of equation (4) is virtually identical.
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NOTES

1. President Trump’s plan is summarized in Zanona (2017). The liberal response is summarized
by Krugman (2016). He writes: ‘Imagine that you are building a toll road. If the government
builds it, it ends up paying interest but gets the future revenue from the tolls. If it turns
the project over to private investors, it avoids the interest cost—but also loses the future
toll revenue. The government’s future cash flow is no better than it would have been if it
borrowed directly . . . .’

2. Cheung (1973, footnote 2), for example, interprets Pigou’s withdrawal of the highway example
from his opus as an attempt to avoid further criticism by Knight.

3. For this reason, one should anticipate fierce opposition to a public option from the private
toll-setter lobby.

4. Prizes are becoming an important mechanism in many areas. See Brennan et al. (2011) for
a partial list. We thank the late Molly Macauley for helpful discussions on this application.

5. The debate also stimulated a related literature on ‘club goods’, originating with Buchanan
(1965). Many others followed this intellectually attractive approach, including Ellickson et al.
(1999). The competitive equilibria of clubs are also discussed by Berglas (1976, 1981), Berglas
and Pines (1981), Boadway (1980), Berglas et al. (1982), Hillman and Swan (1983), Sandler
and Tschirhart (1980), Scotchmer (1994), and Scotchmer andWooders (1987). Seegert (2011)
discusses the equilibrium in clubs in the context of cities.

6. Vickrey (1963) is one of his earliest contributions, and a survey of Vickrey’s influential work
is given in Arnott et al. (1994).

7. For more on second-best pricing and auction mechanisms, see Verhoef (2002a,b, 2007), Ver-
hoef and Small (2004), and Ubbels and Verhoef (2008).

8. Edelson (1971) finds that Knight’s private solution is inefficient when it is extended to the
case of two congestible roads, but Edelson’s demonstration is marred by his assumption that
only one of those congestible roads has a toll-setter. To see the problem, suppose that the two
roads are identical. Then a planner would assign half of the motorists to each road, but in
Edelson’s formulation, the lone toll-setter would set a strictly positive toll and would attract
less than half of the motorists. This is clearly inefficient, but the source of the inefficiency is
the absence of the second toll-setter. Once a second toll-setter is introduced, the equilibrium
becomes symmetric, with equal tolls on the two roads and half the motorists on each road.
Hence Edelson’s formulation was the source of the inefficiency in this example. Therefore it
cannot be ruled out as the source more generally.

9. In more general formulations, motorists have different alternatives to this commute so N is
endogenous.

10. Throughout, we treat the number of drivers on road i (denoted xi) as a real number rather
than an integer.

11. Our model follows Knight and Pigou in the context of roads, but in a model sufficiently
general to be applicable to other settings with congestion. For models with more detailed
application to road congestion, see Braid (1989, 1996), Verhoef et al. (1996, 1997), and
Verheof (2007).

12. For n = 1, private tolls induce efficiency even when c ≥ cK , because in that case, it is efficient
that all N motorists use the congestible road.

13. Many readers will regard the case where no alternative is uncongestible as the rule rather
than the exception.
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14. See Appendix B for details.

15. As shown in Appendix A, efficiency does reappear as a limiting result in a replica economy.

16. To see that inefficiency is not an artefact of linearity, replace each linear congestion function
with a strictly convex congestion function tangent to it at xs

i . Since N , Ai(x
s
i ), A

′
i(x

s
i ) and

xs
i are unchanged from the linear case, the same division of the motorists will still solve the

equations for an efficient allocation but will still violate conditions (3) and (4).

17. Readers preferring a derivation of the best-reply of each duopolist in response to any conjec-
tured toll of the other player (even non-equilibrium conjectures) should consult Salant and
Seegert (2014).

18. As depicted in Figure 1, there are even equilibria with aggregate commute times longer than
in the solution with no uncongestible road. We provide intuition here and refer readers to
Salant and Seegert (2014) for a proof. Suppose that there are two congestible roads with
different congestion functions, and consider the aggregate commute time in the unique but
inefficient equilibrium when c = cI . Suppose that c is reduced by some small ∆ > 0. If
both tolls are reduced by that amount, then the aggregate commute time will not change.
Suppose that aggregate commute time could be reduced if fewer motorists traveled on road 1.
If instead more motorists travelled on road 1, then aggregate commute times would be even
longer than in the unique equilibrium when c = cI . This assignment of motorists can be
supported as a Nash equilibrium by setting the tolls on the two roads so that the full cost
on each road is cI −∆. Then no motorist wants to deviate unilaterally since the full cost of
the three alternative routes is the same; and a unilateral deviation by either toll-setter would
strictly reduce his toll revenue.

19. This is at first surprising since the well-known conditions for a market solution to be efficient
are violated; but the conditions of the first welfare theorem are sufficient, not necessary,
conditions for efficiency. As discussed in Appendix A, Knight’s claims are also true if the
numbers of road types and motorists are replicated without bound. But this is hardly a
realistic situation.

20. It is striking that the full cost to motorists is the same (c) across the continuum of equi-
libria induced by any given c ∈ (cK , cI) although the aggregate cost in lost wages increases
monotonically as one moves vertically up in panel A of Figure 1. Motorists pay a full cost of
cN , of which cN −

∑n

i=1
xi Ai(xi) is paid in tolls. Since the aggregate cost in lost wages is

smallest at each point on the lower boundary in panel A of Figure 1, aggregate toll revenue
must be largest in that equilibrium. Toll revenue decreases monotonically as one moves due
north.

21. In the Pigou–Knight–Downs paradox, the addition of a fast but congestible road with the
same origin and destination as the others will not reduce anyone’s commute time if the
uncongestible road continues to be used after the new road is made available; the new road
merely absorbs some of the traffic that used to use the uncongestible alternative. In Braess’s
paradox, the additional road connects the two congestible roads and may be uncongestible
and lightning fast. Congestion worsens in the scramble to access the new road.

22. Following Knight and Pigou, we have assumed that the alternative without a toll-setter is
uncongestible. But if that option were instead slightly congestible, our points would continue
to hold. If the train were sufficiently slow (even without passengers to congest it), then
its provision would not displace the toll-setting equilibrium. If the train were sufficiently
fast (when uncongested), then its provision would attract some motorists, providing actual
competition; if the train was of intermediate speed, then its provision would provide ‘potential
competition’ since the slightest unilateral increase in any toll would induce the first motorists
to switch to the train. Of course, in this intermediate case, the train need not run empty
since non-motorists could take advantage of it.

23. For it to be effective, the full cost of commuting by train would have to be smaller than the
full cost of commuting by the next best uncongestible alternative.

24. Seegert (2011) demonstrates the efficiency of this system in the limiting case in the context
of a system of cities.
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25. If toll-setter i increases his toll unilaterally, then he must conjecture that the marginal costs
of the n− 1 roads with unchanged tolls rise or fall in unison to remain equal to each other.
However, they cannot fall since then congestion on road i would also have to fall for its
marginal cost to match the others despite i’s toll increase, and this would leave some of the
N motorists with no road to drive on. So toll-setter i will conjecture that if he raises his toll,
then congestion on each road with an unchanged toll will strictly increase, which implies the
assertion in the text.
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FIGURE CAPTION

Figure 1. Commute time and full cost as speed on uncongestible road varies.
Notes : Panel A provides visual evidence that the commute times are never shorter and some-

times longer with private tolls (given by the solid curve and grey region). Panel B provides an
example of the full cost (time and tolls) with Pigouvian tolls (dashed line) and private tolls (solid
line).
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