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Abstract 

The analysis of the Kirchhoff plate is performed using rational Bézier triangles in 
isogeometric analysis (IGA) coupled with a feature-preserving automatic meshing algorithm. 
IGA employs the same basis function for geometric design as well as for numerical analysis. The 
proposed approach also features an automatic meshing algorithm that admits localized geometric 
features (e.g., small geometric details, sharp corners) with high resolution. Moreover, the use of 
rational triangular Bézier splines for domain triangulation significantly increases the flexibility in 
discretizing spaces bounded by complicated NURBS curves. To raise the global continuity to C1 
for the solution of the plate bending problem, Lagrange multipliers are leveraged to impose 
continuity constraints. The proposed approach also manipulates the control points at domain 
boundaries in such a way that the geometry is exactly described. A number of numerical 
examples consisting of static bending and free vibration analysis of thin plates bounded by 
complicated NURBS curves are used to demonstrate the advantage of the proposed approach. 

Keywords: isogeometric analysis; Kirchhoff plate; Bézier triangle; automatic meshing; feature 
preserving; Lagrange multiplier 

 

1. Introduction 

Numerical modeling and analysis of plates of complicated shapes has continuously been a 
popular research topic because of the widespread applications of plate structures in various fields. 
Finite element analysis (FEA) of plates can be categorized into thin plate analysis based on the 
Kirchhoff plate theory and thick plate analysis based on the Reissner-Mindlin plate theory.  The 
main difference between the two prevailing theories lies in the fact that thin plate analysis 
assumes that the vector normal to the plate mid-surface remains normal to the mid-surface during 
deformation and thus does not take into account transverse shear deformations, whereas thick 
plate analysis does. Due to the fact that Reissner-Mindlin plate elements can be joined with C0 
continuity, the use of very simple basis functions is allowed. On the contrary, in the Kirchhoff 
plate formulation, because of the presence of second-order derivatives, C1 continuity is 
demanded between elements which requires higher order basis functions. For this reason, the C0 
shear deformable Reissner-Mindlin plate element is more propagated in commercial finite 
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element codes. However, most of the plate structures in reality belong to thin and very thin plates, 
and the use of C0 basis functions would usually result in various shear locking problems. 

Although the numerical analysis of thin plates is already a very mature field, to exactly 
describe the plate geometry can be rather difficult and sometimes inaccurate, particularly when 
the structures have curved boundaries or complicated cutouts are involved. The main reason for 
this lack of accuracy lies in the fact that the model created from standard FEA, which is 
represented by Lagrange basis functions, is only an approximation of the original computer-
aided design (CAD) model, which is described by Non-Uniform Rational B-spines (NURBS). 
About a decade ago, isogeometric analysis (IGA) was proposed by Hughes et al. [1] as a novel 
approach to bridge the gap between design and analysis. By employing the same basis functions 
used in geometric design to approximate field variables in an isoparametric sense, the models 
created using IGA possess geometric exactness. Other appealing features of IGA include high-
order continuity of basis functions, which further leads to more stable numerical conditioning, 
faster convergence of solutions, and so on. NURBS-based IGA has since been applied to the 
analysis of thin and thick plates ([2–8], to name a few). 

Nevertheless, NURBS functions, which are the main tool for IGA, exhibit a number of 
defects. First of all, NURBS h-refinement propagates across the entire domain, which 
compromises the efficiency of the method. Secondly, the control mesh generated is restricted to a 
quadrilateral shape and is therefore not flexible in discretizing domains of arbitrary topology. 
Moreover, the smoothness in multi-patch analysis using NURBS is not satisfactory. The patch 
interface is either C0-continuous or simply not closed (i.e., non-physical gaps). To regain control 
of the smoothness across the patch boundaries, additional efforts such as the imposition of 
geometric constraints [9] or the bending strip method [10] are necessary, which requires extra 
computational time. On the other hand, a variety of local refinement techniques have been 
developed to overcome the problematic tensor-product structure of NURBS, such as hierarchical 
B-splines [11,12], truncated hierarchical B-splines (THB-splines) [13], T-splines [14], locally 
refined splines [15] and polynomial splines over hierarchical T-meshes [16]. However, the 
construction of the aforementioned local refinement splines relies on complicated algorithms and 
the resulting mesh is still dependent on the four-sided geometry. On the contrary, the use of 
spline basis functions for domain triangulation increases the flexibility in discretizing complex 
spaces. One way to realize this is to use certain triangle-splitting algorithms such as the Powell-
Sabin splines [17–19] and the Clough-Tocher splines [20], depending on particular macro-
triangle structures. Higher-order Powell-Sabin splines are also available to triangulate a given 
space [18,21,22]. However, for a given space for triangulation, the Powell-Sabin triangles are 
sometimes not unique [23]. Recently, NURBS have been successfully converted to the non-
uniform rational Powell-Sabin splines (NURPS) [24]. To exactly recover the boundary NURBS 
curve of degree p, NURPS of degree p or higher should be used. For the recovery of the interior 
domain described by NURBS of bi-degree (p1, p2), NURPS of degree p1+p2 or higher should be 
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used. Powell-Sabin B-splines have been applied to study Kirchhoff-Love plate problems [25] 
and fracture mechanics [26] with satisfactory results. 

An alternative is to construct the domain triangulation through the use of rational Bézier 
triangles [27]. This approach is more general and does not depend on specific triangle-splitting 
schemes. Since rational basis functions of the Bézier-Bernstein form are used to represent the 
parametric space, it has the potential to describe the exact geometry as well. In our work, the C0 
rational Bézier triangles are employed for the representation of the triangulated space. Since the 
Kirchhoff plate formulation involves second-order derivatives of the basis function, at least C1 
continuity is required. For this reason, the global continuity of the triangular Bézier splines is 
raised to C1. Note that the approach we adopted can be used to elevate the splines to any desired 
continuity rC . Lagrange multipliers are used to impose the Dirichlet boundary conditions and 
the continuity constraints. Considering that the use of Lagrange multipliers results in an increase 
of unknowns in the system equations, which hinders efficiency, an iterative approach for the 
solution of the Lagrange multiplier augmented system is provided as well.  

As to the parameterization of the boundary and interior space of the model, we leverage on 
the recently developed algorithm TriGA [28]. Specifically, a polygonal approximation of the 
NURBS boundary is first established through h-refinement and a dynamic quadtree 
decomposition algorithm. This procedure allows us to capture sharp geometric features with very 
good accuracy. With the polygonal approximation of the original NURBS curves computed, a 
linear domain triangulation can then be constructed by resorting to the meshing package mesh2d 
[29] that is available online. After that, the linear triangular elements are raised to cubic such that 
there are sufficient control points for imposing inter-element continuity constraints. The last step 
is to replace the control points at boundary with those governing the original NURBS curves. 
This boundary replacement algorithm is also discussed in [23]. Thus, a geometrically exact 
domain triangulation admitting sharp geometric features can be established. 

A Kirchhoff plate formulation is implemented into the algorithm. To verify our modeling 
approach, a number of plate models bounded by complicated NURBS curves are investigated in 
the context of static bending and free vibration analysis. Numerical results prove the accuracy 
and efficiency of the proposed method. 

2. A brief review of NURBS and rational Bézier triangles 

In this section, we give a brief review on the fundamentals of Bézier curves [30], NURBS [1] 
and the construction of rational triangular Bézier spline spaces [28]. 

2.1. Bézier and NURBS curve 

In one dimension, a degree-n Bernstein polynomial is defined as follows 
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The B-spline basis functions are related to the Bernstein basis through a Bézier extraction 
operator C [31] uniquely defined by a specified knot vector on the parametric space, and is 
written as 

( ) ( )tCBtN =  (3) 

Through projection of the B-splines from dℜ  to 1+ℜd  using the weights associated with the 
corresponding control points, a degree-n NURBS curve is then given as 
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where ncp  denotes the number of control points used to define the curve. 

2.2. Rational Bézier triangles 

A bivariate Bernstein polynomial can be constructed on a triangular domain as 

( ) kjin
ijk uuu

kji
nB 321!!!
!

=u  
(5) 

where n  is the polynomial order, the triplet ( )kji ,,  represent the ordinate index that sum to n , 
and { }321 ,, uuu=u  denote the barycentric coordinates of a point in the triangle. 

The rational form of the above Bernstein basis functions is written as 
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where w  is the weight. 

Finally, a rational triangular Bézier space can be defined as a linear combination of the 
rational Bernstein basis functions ( )un

ijkR  and the corresponding control points ijkb  
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n
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Fig. 1 illustrates the control lattice of linear, quadratic and cubic Bézier triangles on the 
parametric domain, respectively. 

3. Automatic domain triangulation based on dynamic quadtree decomposition 

Automatic mesh generation has been a very popular topic over the last a few decades and is 
by itself a very complicated process. Mesh generation using triangular segmentations is a very 
well developed field, and therefore our work resorts to a number of mesh generation algorithms 
that are available online, with a special leverage on TriGA [28] and mesh2d [29]. Our goal is to 
automatically generate a domain triangulation that is capable of capturing the local sharp features 
with high resolution and maintaining the exact geometry from the input NURBS curves. This is 
done via a dynamic quadtree decomposition algorithm presented in the work of Engvall and 
Evans [28]. To make this paper self-contained, we briefly discuss the algorithm. For details of 
the implementation aspects, the readers are recommended to look at the original paper.  

As illustrated in Fig. 2, the automatic mesh generation algorithm can roughly be divided into 
four steps: 

1). Constructing a polygonal approximation: the input NURBS curves are firstly subdivided 
through h-refinement (i.e., knot insertion) until a sufficiently close polygon approximating the 
NURBS curve is generated by connecting control points. This process is guided by a prescribed 
threshold ϕ  defined as the relative difference between the length of the NURBS curve on each 
knot span and the length of the polygon approximating it. Mid-span knot insertion is performed 
until the relative difference on every span is within the given limit. 

2). Generating quadtree background mesh: the mesh is further refined by evaluating a linear 
sizing function for every side of the polygonal approximation and subsequently comparing it to 
the side length. If the ratio exceeds a given threshold (normally 1.5), mid-span knot insertion is 
performed to enrich the local curve. The process iterates until the above ratio for all the sides is 
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below a prescribed tolerance. This part of the algorithm can be realized using the mesh2d.m 
function [29]. 

3). Triangulating polygonal domain: based on the polygonal approximation of the input 
NURBS boundary curves, a linear domain triangulation can be automatically constructed with 
any standard meshing tool available in commercial software or open source toolkit (e.g., the 
meshpoly function in mesh2d). 

4). Elevating polynomial degree and recovering exact boundary: the global continuity of the 
polynomials is raised to a desired order (usually bicubic as it is the standard in CAD) and knots 
that correspond to the polygon vertices are repeated 1−n  times such that C0 continuity at the 
vertices is imposed. Additionally, the control points at the boundary edges are substituted by the 
control points obtained from h-refinement of the original NURBS curves. In this way, the exact 
boundary is recovered. 

4. Enforcing high-order continuity via Lagrange multipliers 

In this section, the rC  continuity constraints for inter-element continuity are explicitly 
defined. In order to impose the continuity constraints, a number of approaches can be used: (1) 
the master-slave method, (2) penalty method, (3) boundary minimum determining set (BMDS) 
approach, and (4) Lagrange multipliers. The master-slave method is inferior in handling arbitrary 
constraints. The penalty method requires careful selection of the penalty weight to avoid ill-
conditioning. In the BMDS used in [23], solving for the reduced row echelon form is 
computationally expensive. Moreover, relaxing the constraints on the boundary vertices by 
restraining the internal free vertices that have influence on the constrained boundary vertices 
requires user intervention. In addition, careful selection of the free internal vertices is necessary 
to avoid inaccurate results. On the other hand, the continuity constraints can be exactly enforced 
through the use of Lagrange multipliers, but this method increases the size of the problem by the 
number of constraint equations. In the following, we provide an iterative solution procedure 
presented in [32] that solves the Lagrange multiplier augmented system without increasing the 
system size. 

In the domain discretized by Bézier triangles, the neighboring triangles are connected with C0 
continuity. However, the formulation of Kirchhoff plate involves second order derivatives of the 
basis functions, and therefore raising the degree of continuity at the common edges is necessary. 

Assuming two adjacent triangles ( )321 ,, vvvT  and ( )234 ,,~ vvvT  that share the edge 32vv , they 
can be joined with rC  differentiability if and only if [27]: 
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where r≤≤ γ0 , nkj =++γ , { }321 ,, uuu  are the barycentric coordinates of the vertex 4v  
relative to T . An example is shown in Fig. 3 where two bicubic triangles are joined with C1 
continuity.  

Collecting the continuity constraints computed in Eq. (8), we can write them in matrix form 
as 

GLd =  (9) 

where L  is the matrix containing the coefficients of the constraints, d  is the vector including the 
ordinate information, and G  is the right-hand side of the continuity constraint equations. 0G =  
in the case of enforcing the continuity constraints. We use G  in the derivation to keep the 
method general. Note that, to avoid the ill-conditioning of the augmented stiffness matrix, in 
which the L  matrix is not of full rank, a preprocessing step is recommended to sort out the 
linearly independent rows in L  to use for enforcing higher-order continuity. 

The Lagrange multiplier augmented system can be expressed as follows 
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where K  is the stiffness matrix, F  is the forcing vector, and λ  denotes the Lagrange multiplier 
vector. 

When a large number of continuity constraints are to be enforced, solving Eq. (10) can be 
very costly. Alternatively, an iterative approach can be used to solve the problem without 
increasing the matrix size. Consider a variant of Eq. (10) where the lower diagonal block of zeros 
is replaced by a diagonal matrix consisting of small numbers, termed a constraint-scaling 
diagonal matrix, i.e. 
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where ε  is a small number and I  is the identity matrix. 

The above system can be expressed in an iterative form as 
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where i  indicates the thi  iteration. 

Multiplication of TL  to the second equation in Eq. (12) and rearranging terms yields 

( ) ( ) ( )iTTiTiT ww λLGLLdLλL +−= ++ 11  (13) 

where 
ε
1

=w  is the weight. 

Combining Eq. (13) with the first equation in Eq. (12) results in the following 

( ) ( ) ( )iTTiT ww λLGLFdLLK −+=+ +1  (14) 

Taking an initial guess of ( ) 0λ =0  yields 

( ) ( ) ( )GLFLLKd TT ww ++=
−11  (15) 

Recall from the first equation of Eq. (12) that ( ) ( )iTi λLKdF += . Substituting this into Eq. 
(14) leads to 

( ) ( ) ( )( )GLKdLLKd TiTi ww ++=
−+ 11  (16) 

Eq. (15) and Eq. (16) can be used to solve the augmented Lagrangian system iteratively. Note 
that this method essentially combines the penalty method with the Lagrange multiplier method. 
By solving the problem iteratively, it circumvents the problematic ill-conditioning issue 
exhibited in the penalty method. 

5. Governing equations for the Kirchhoff plate 

5.1. Kinematics 

Let ijm  be the bending moment of a plate and q  the external distributed load vector. The 
equilibrium equation for a Kirchhoff plate can be expressed as 

qm ijij =,  (17) 
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where the comma indicates differentiation and i , j  are the indexes ranging from one to two, 
since the out-of-plane stresses are assumed to be zero. 

Multiplying Eq. (17) with the variation in transverse displacement dδ  and integrating over 
the entire domain Ω  yields the following 

( ) ( ) ∫∫∫∫ ΩΩ∂Ω∂Ω
Ω=+−+−+Ω dqddsMnmddsQndmdmd ijijiijijijij δδδδ ,,,  (18) 

where ijijd κ=,  is the curvature The second and third terms on the left-hand side are the shear 
and moment boundary conditions on the boundary Ω∂ , respectively. Neglecting the boundary 
terms yields the weak form 

∫∫ ΩΩ
Ω=Ω dqddmijij δδκ  (19) 

In Eq. (19), the bending moments ijm  can be computed as 

∫−−=
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where t  is the thickness of the plate. 

The stress-strain relationship for a homogeneous and isotropic plate is 
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where E  and ν  represent the Young’s modulus and Poisson’s ratio, respectively. Eq. (21) can 
be written in shorthand as ijij εσ C= . The strain vector can be rewritten in terms of transverse 
displacement as 
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Substituting Eq. (21) and Eq. (22) into Eq. (20) leads to the moment-curvature relationship 
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Combining Eq. (23) and Eq. (19) gives 

∫∫ ΩΩ
Ω=Ω dqddijij δκδκ C  (24) 

where C  is the material matrix shown in Eq. (23). 

5.2. Discretized form 

The input NURBS geometry is triangulated using the approach discussed in Section 3 along 
with the rational triangular Bézier splines. Recall from Section 2 that R  is the rational Bézier 
basis function used to represent a triangular patch. The transverse displacement in one patch can 
then be represented using the following 

Rd=d  (25) 

Differentiating Eq. (25) twice with respect to the physical coordinates results in the 
expression for the curvature 

Bd=κ  (26) 

where 
T
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Substituting Eq. (25) and Eq. (26) into Eq. (24) leads to the final expression of the weak form 

∫∫ ΩΩ
Ω=Ω qdd TTT RdCBdBd δδ  (27) 

From the virtual work equation (i.e., Eq. (27)), we obtain the stiffness K  and forcing terms 
F , i.e., 

∫Ω Ω= dTCBBK  

∫Ω Ω= qdRF  

(28) 
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5.3. Free vibration analysis 

For free vibration analysis of the Kirchhoff plate, the weak form of the elastodynamic 
equilibrium equation is written as follows: 

0=Ω+Ω ∫∫ ΩΩ
dtd TT uuCεε ρδδ  (29) 

where ρ  is the mass density, u  is the displacement tensor and u  represents the acceleration 
tensor. The displacement tensor is defined as 
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and the acceleration tensor is obtained from Eq. (30) by differentiating twice in time. 

Eq. (29) can be concisely expressed in the form 

 0dMKd =+   (31) 

Based on Eq. (25) and integrating over the thickness, the mass matrix takes the form 
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The general solution of Eq. (31) is 

( )θωφ += tsindd  (33) 

where ω  is the frequency and φd  denotes the eigenmode obtained from the following 
eigenvalue problem 

( ) 0dMK =− 2ω  (34) 

The above problem essentially amounts to a generalized constrained eigenvalue problem, the 
solution of which requires special treatment. To solve Eq. (34), a solution procedure presented in 
[33] is used to compute a constrained stiffness matrix incorporating Lagrange multipliers. The 
natural frequencies and eigenmodes governing the vibration are further obtained from the 
eigenvalue analysis. 

6. Numerical examples 
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In this section, four numerical examples of Kirchhoff plates of complicated geometries are 
demonstrated in the context of static bending and free vibration analysis. For all of the examples 
shown, a 28-point quadrature rule is used for the integration over the triangle, and a 5-point 
quadrature rule is employed for the integration over the edges to ensure the accuracy of the 
solution. The results are compared to analytical solutions, if available, or converged finite 
element solutions using Abaqus. 

 

6.1. Bending of a simply supported circular plate  

To verify the plate formulation, a simply supported circular plate subjected to uniform 
loading is analyzed. For this example, an exact solution is available in [34] and is reproduced 
here in Eq. (35). The geometry and material properties are illustrated in Fig. 4 along with the 
deformed shape.  
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where r  is the radius of the point at query and ( )2

3

112 ν−
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EtD . 

Four meshes with different thresholds ϕ  are illustrated in Fig. 5, from which it is easy to see 
that the boundary mesh becomes finer as the threshold value ϕ  gets smaller. The relative error at 
the center of the plate and the L2 relative error norm 2Le  are measured against the analytical 
solution. Results are also compared with uniform meshing using Abaqus linear triangular shell 
element S3 (see Table 1). Note that, Eq. (36) was used to calculate the L2 norm 2Le . In terms of 
the relative error at the center of the plate, we observe that our solution with %3≤ϕ  already 
outperforms the Abaqus model with 604 nodes.  The L2 relative error norm also shows a faster 
convergence with our proposed model. Worth noting is that the Abaqus S3 element for thin plate 
analysis employs five degrees of freedom (DOF) per node, whereas our proposed element has 
only one DOF per node, which further demonstrates a significant saving in computational cost. 
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6.2. Bending of a perforated circular plate 
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In this example, a more complicated geometry is used to demonstrate the ability of the 
proposed approach in capturing local geometric features. Specifically, a perforated circular plate 
with simply supported boundary condition is subjected to uniformly distributed load. The 
dimensions, loading condition, and the simulation results are shown in Fig. 6. The material 
properties are the same as in the first example. 

To illustrate the capability of the proposed approach in discretizing space bounded by 
complicated NURBS curves, four meshes of the perforated plate are shown in Fig. 7. As we can 
see, the holes in the plate are accurately captured. To verify the deformation, our results are 
compared with the converged solution using the Abaqus linear shell element S3, as listed in 
Table 2. Again, we observe that the results agree very well.  

Note that the relative error at %3≤ϕ  is fairly large, but it does not indicate that %3≤ϕ  is 
not a good setting for all cases. The threshold ϕ  is merely a control parameter relative to the 
dimension of the local feature. In other words, %3≤ϕ  is likely to result in very satisfying result 
if the radius of the holes in the plate is not very small. 

6.3. Free vibration of a square plate with an elliptical hole 

In this section, the undamped free vibration analysis of a simply supported square plate with 
an elliptical hole of varying radius is investigated. The dimension of the plate is illustrated in Fig. 
8. The thickness of the plate is mt 05.0= . The material properties are: Young’s modulus 

211102 mNE ×= , Poisson’s ratio 3.0=ν  and mass density 38000 mkg=ρ . The mesh 
generated with %1≤ϕ  is shown in Fig. 9. 

The dimensionless parameter ndΩ  is used to measure the natural frequency and is defined as 
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(37) 

The solutions are compared with those modeled using the Abaqus linear shell element S4R 
and are listed in Table 3. As we can see, the results are in very good agreement. The first 10 
vibration modes are plotted in Fig. 10 for illustrative purposes. 

6.4. Free vibration of a square plate with a heart-shape cutout 

In the last example, a simply supported square plate with a heart-shape cutout is used to 
demonstrate the performance of the proposed plate model. The dimension of the plate is shown 
in Fig. 11. The thickness of the plate is mt 05.0= . The material properties are the same as the 
third example. Free vibration analysis is conducted, for which a number of reference solutions 

This article is protected by copyright. All rights reserved.



are available in the literature [8-10]. The dimensionless parameter ndΩ  defined in Eq. (37) is 
used to measure the natural frequency. 

The automatically generated meshes are shown in Fig. 12, in which we can observe that the 
proposed approach is able to handle sharp geometric corners fairly easily. The natural 
frequencies and mode shapes of the first 10 modes are listed and plotted in Table 4 and Fig. 13, 
respectively. As we can see, the free vibration results match very well with those in literature. 

7. Concluding remarks 

In this paper, we solved the Kirchhoff plate problem using isogeometric analysis (IGA). The 
parameter space was represented by rational Bézier triangles, and the analysis was further 
facilitated by an automatic meshing algorithm that admits local geometric features with high 
resolution. Due to the use of rational Bézier splines, the proposed model was extremely flexible 
for representing geometries comprised of complex topologies. In addition, the replacement of 
control points at domain boundaries yielded a geometrically exact model to be analyzed. By 
resorting to the Lagrange multipliers, the global continuity of the domain triangulation was 
elevated to C1, which is suitable for Kirchhoff plate analysis. Numerical examples comprised of 
static bending and free vibration analysis of plates bounded by complicated NURBS curves 
verify the accuracy and efficiency of the proposed modeling approach. In the future, we intend to 
investigate the performance of the developed plate model for stability analysis. 
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Table 1. Relative error in deflection using different thresholds 

Threshold 
ϕ  

%3≤  %1≤  %5.0≤  %1.0≤  Abaqus exact 
solution 

#nodes 169 481 1273 3004 37 105 237 604 - 
#DOF 169 481 1273 3004 185 525 1185 3020 - 
center 

deflection
310−×  

 
-8.699 

 
-8.690 

 
-8.694 

 
-8.699 

 
-7.996 

 
-8.430 

 
-8.564 

 
-8.655 

 
-8.695 

relative 
error 

0.046% 0.058% 0.005% 0.050% 8.039% 3.048% 1.507% 0.460% - 

2Le   
0.803% 

 
0.181% 

 
0.065% 

 
0.012% 

 
7.724% 

 
2.287% 

 
0.910% 

 
0.311% 

 
- 
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Table 2. Relative error in deflection using different thresholds 

Threshold ϕ  %3≤  %1≤  %5.0≤  %1.0≤  Abaqus 
#DOF 2949 5154 9219 17109 162600 

max deflection -0.007367 -0.008273 -0.008608 -0.008772 -0.008950 
relative error 17.687% 7.564% 3.821% 1.988% - 
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Table 3. Natural frequencies of the square plate with an elliptical hole 

 
Mode 

1=ba  2=ba  3=ba  4=ba  
Abaqus %3≤ϕ

 
%1≤ϕ

 
%5.0≤ϕ  Abaqus %1≤ϕ  %5.0≤ϕ  Abaqus %1≤ϕ  %5.0≤ϕ

 
Abaqus %1≤ϕ

 
%5.0≤ϕ

 
#nodes 11734 585 1128 2001 11382 1314 2034 10835 1644 2505 10623 1530 2196 

1 4.3876 4.5419 4.4809 4.4423 4.3725 4.5058 4.4587 4.3550 4.5108 4.4755 4.3436 4.5455 4.4970 
2 6.9581 7.1086 6.9936 6.9669 6.6411 6.6689 6.6613 6.0098 6.0724 6.0484 5.3019 5.3728 5.3734 
3 6.9582 7.1720 6.9937 6.9683 6.9127 6.9162 6.9227 6.9298 6.9783 6.9681 6.9975 7.1451 7.0998 
4 8.7803 8.8150 8.8040 8.8067 8.6904 8.6915 8.7006 8.4595 8.4901 8.4783 7.9516 8.0177 8.0112 
5 9.7965 9.8998 9.8113 9.8027 9.6815 9.6819 9.6840 9.6498 9.6792 9.6723 9.7759 9.9202 9.8772 
6 10.0848 10.4552 10.3084 10.2298 10.3845 10.5686 10.5129 10.4431 10.5391 10.5203 10.3834 10.4428 10.4390 
7 11.2292 11.3397 11.2882 11.2987 10.8277 10.9352 10.9038 10.4642 10.5433 10.5284 10.4189 10.4877 10.4871 
8 11.2293 11.3483 11.2883 11.2994 11.2325 11.2764 11.2692 11.3071 11.3736 11.3502 10.9105 11.0077 11.0073 
9 12.7027 12.9518 12.8121 12.8005 12.0485 12.1568 12.1390 11.5094 11.5863 11.5666 11.5470 11.6823 11.6525 
10 12.7032 12.9707 12.8124 12.8012 12.9157 13.0627 13.0437 12.8471 13.0027 12.9357 12.2924 12.4050 12.4054 
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Table 4. Natural frequencies of the square plate with a heart-shape cutout 

 
Mode 

Threshold ϕ  Cubic 
NURBS [2] 

Moving Kriging 
interpolation [35] 

Radial point 
interpolation [36] %3≤  %1≤  %5.0≤  

#nodes 384 777 1671 512 506 - 
1 5.3688 5.1618 5.0386 5.193 5.3898 4.919 
2 6.6041 6.4982 6.4205 6.579 7.5023 6.398 
3 7.1068 6.9956 6.8818 6.597 8.3470 6.775 
4 8.7629 8.6670 8.6151 7.819 10.6358 8.613 
5 9.3238 9.1539 9.0555 8.812 11.0484 9.016 
6 10.9440 10.7818 10.7140 9.420 12.8945 10.738 
7 11.1755 11.0085 10.9480 10.742 13.7100 10.930 
8 11.9959 11.7631 11.6683 10.776 14.0620 11.601 
9 13.4042 12.9533 12.8590 11.919 16.6492 12.903 

10 13.6026 13.3453 13.2412 13.200 17.3641 13.283 
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