

Enhancing Cache Robustness in Named Data Networks

by

John Phillip Baugh

A dissertation submitted in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

(Computer and Information Science)

in the University of Michigan-Dearborn

2018

Doctoral Committee:

 Associate Professor Jinhua Guo, Chair

 Associate Professor Bruce Elenbogen

 Associate Professor Di Ma

 Professor Weidong Xiang

John P. Baugh

jpbaugh@umich.edu

© John P. Baugh 2018

ii

DEDICATION

I dedicate this work to my mother, Ellen Arlene Baugh, who was widowed when I was 13

years old. She raised me nonetheless through both joy and sorrow, paid for my undergraduate

education so I could focus on my studies and not be burdened by debt - all while being slowly

ravaged by rheumatoid arthritis. She is the toughest woman I’ve ever known, and the most

sacrificial.

I dedicate this also to the memory of my father, Henry Jackson Baugh Sr., who worked

hard and provided for his family, which he had no way of knowing would impact us for decades

after his death.

Finally, but certainly not least, I dedicate this to God, who has sustained me, my mother,

and my family through great trials in our lives. I am thankful for this, and most of all, for the

Sacrifice of His Son, Jesus Christ, as a propitiation and atonement for our sin.

I love you mom, I love you dad, and I love you Lord.

iii

ACKNOWLEDGEMENTS

 I would like to give special thanks to Prof. Jinhua Guo, for being my doctoral advisor and

a great friend and mentor during this long and often stressful process. His advice is priceless, and

his patience is incredible. A lesser man would have certainly needed professional help after

dealing with me for the last thirteen or so years (seven years for doctorate advising, and for my

master’s degree advising a few years before that.) Thank you so much for everything! I look

forward to researching and working with you for years to come.

 Also, I thank Prof. Bruce Elenbogen, Prof. Di Ma, and Prof. Weidong Xiang for their

advice, example, and for agreeing to be on my doctoral committee. You have all had a great impact

on my life in various ways, and I am a better teacher, scholar, and person for it.

 I thank the CIS Department at the University of Michigan – Dearborn for being so helpful

and kind over the years. You have helped me grow as a researcher and instructor as well.

 I acknowledge the great students I’ve had over the years, and the friendships and bonds

I’ve developed with several of them post-graduation. Knowing I’ve had an impact on someone’s

life for the better is a gift greater than gold.

 I would like to acknowledge my family for the impact they have all had on my life – my

brother, Jackson, my sister-in-law, Jenny, my nephew Phillip and his wife Elizabeth, and my niece

Dana. I’d like to thank my numerous friends for being there for me and for understanding

iv

 when I couldn’t go out to eat or hang out because I had to run simulations, read, write, summarize

data, or do other “research things.”

I also have dozens upon dozens of uncles, aunts and cousins that I also love and appreciate

– you know who you are.

Finally, to all the great pets I’ve had in my life over the years. I’ve always owned dogs but

have been a cat owner recently. To my current cats, Orange and Hoppy, thank you for distracting

me and helping to relieve my stress… usually. To Hoppy, stop scratching the back door to death,

I’ll let you out when I get a chance.

v

TABLE OF CONTENTS

DEDICATION .. ii

ACKNOWLEDGEMENTS ... iii

LIST OF TABLES ... viii

LIST OF FIGURES ... ix

LIST OF EQUATIONS .. x

LIST OF ALGORITHMS .. xi

LIST OF THEOREMS ... xii

ABSTRACT ... xiii

Chapter 1 Introduction .. 1

1.1 Background and Motivation ... 1

1.1.1 Challenges of the Current Internet .. 1

1.1.2 Information-Centric Networking .. 2

1.2 Problem Statement and Methodology Overview ... 3

1.3 Contributions .. 5

1.4 Thesis Organization.. 6

Chapter 2 Literature Review ... 8

2.1 Information Centric Networking .. 8

2.1.1 Fundamental Design Considerations in ICN Architectures 10

2.1.2 Popular ICN Architectures .. 14

2.2 Review of Security and Privacy in Information-Centric Networks 28

2.2.1 Denial of Service Attacks ... 28

2.2.2 Content Poisoning Attacks .. 29

2.2.3 Privacy .. 30

2.3 Caching and Current Approaches to Mitigating Cache Pollution Effects 31

2.3.1 Cache Pollution ... 32

2.3.2 Current Related Research ... 33

vi

Chapter 3 Per-Face Popularity Scheme and Cache Replacement Algorithms 36

3.1 Overview of Per-Face Popularity Concepts ... 36

3.2 Equations, Analysis, and Theorems ... 38

3.2.1 Popularity Calculation .. 38

3.2.2 Analysis... 39

3.2.3 Theorems... 40

3.3 Per-Face Popularity (PFP) Cache Replacement Algorithm ... 43

3.3.1 The Popularity Manager (PopMan) .. 43

3.3.2 Simulator Modifications ... 45

3.3.3 Policy Subclassing .. 49

3.4 Per-Face Popularity with Dynamic Aging (PFP-DA) Cache Replacement Algorithm . 52

Chapter 4 Experimental Results.. 56

4.1 Simulation Environment and Set-up .. 56

4.1.1 Consumers and Producers ... 56

4.1.2 Adversarial Model .. 58

4.1.3 Simulation Scenarios .. 60

4.2 Topologies .. 61

4.2.1 Simple Topology .. 62

4.2.2 Advanced Topology ... 64

4.3 Results .. 65

4.3.1 Varying Cache Size.. 65

4.3.2 Varying Attacker Request Frequencies (Single Attacker) 70

4.3.3 Varying Number of Attackers .. 75

4.3.4 Varying Attacker Request Frequencies (Three Attackers) on Advanced Topology

 84

Chapter 5 Toward Zero Cache Pollution .. 88

5.1 Parameterized Exponentiation of Rankings in Popularity Contributions: PFP-β 88

Chapter 6 Conclusions and Future Work .. 94

6.1 Summary and Conclusions ... 94

6.2 Future Work ... 96

vii

References ... 98

viii

LIST OF TABLES

Table 1: Coordinated Attacks Through Two Faces .. 43

Table 2: ST with Varying Cache Size, Single Attacker at 720 Frequency 66

Table 3: AT with Varying Cache Size, Single Attacker, 720 Frequency - Pollution % 68

Table 4: AT with Varying Cache Size, Single Attacker, 720 Frequency - Hit % 68

Table 5: ST with Size 100 Cache, Single Attacker with Varying Request Frequency 70

Table 6: AT with Size 100 Cache, Single Attacker with Varying Request Frequency - Pollution %

... 73

Table 7: AT with Size 100 Cache, Single Attacker with Varying Request Frequency - Hit % ... 74

Table 8: ST with Size 100 Cache, 720 Attack Frequency, with Varying Number of Attackers .. 76

Table 9: AT with Size 100 Cache, 720 Attack Frequency, with Varying Number of Attackers –

Pollution %.. 81

Table 10: AT with Size 100 Cache, 720 Attack Frequency, with Varying Number of Attackers –

Hit % ... 81

Table 11: AT with Size 100 Cache, Varying Attack Frequency, with 3 Attackers – Pollution % 84

Table 12: AT with Size 100 Cache, Varying Attack Frequency, with 3 Attackers – Hit % 85

Table 13: Early Results of Varying β Value ... 90

Table 14: PFP- β with single attacker, cache size of 100, beta of 0.05, varying attack frequency91

Table 15: Two attackers, frequency of 720, cache size of 100, varying beta value 92

Table 16: Two attackers, frequency of 720, β value of 0.1, varying cache size 92

Table 17: Attacker frequency of 720, β value of 0.1, cache size of 100, varying number of attackers

... 93

ix

LIST OF FIGURES

Figure 1: Format of FIND packet in DONA ... 17

Figure 2: Format of Interest and Data Packets in NDN .. 22

Figure 3: Forwarding in NDN (Adapted from [11]) ... 23

Figure 4: Normalizing Popularity Contributions in PFP .. 38

Figure 5: UML Class Diagram of the FaceContentFrequency and ContentFrequency Classes ... 44

Figure 6: UML Class Diagram of the PopularityPolicy class ... 50

Figure 7: UML Domain-Level Class Diagram of App hierarchy ... 57

Figure 8: Simple Topology with Single Router and Ten Consumers ... 63

Figure 9: Advanced Topology with Five Routers, Twenty-Three Consumers, and a Producer ... 64

Figure 10: ST with 100 Cache Size, Single Attacker, Varying Attacker Request Frequency

Pollution %.. 71

Figure 11: ST with 100 Cache Size, Single Attacker, Varying Attacker Request Frequency Overall

Hit % ... 72

Figure 12: ST with 100 Cache Size, Single Attacker, Varying Attacker Request Frequency Top 50

Items Hit % ... 72

Figure 13: ST with 100 Cache Size, 720 Attacker Frequency, Varying Number of Attackers

Pollution %.. 77

Figure 14: ST with 100 Cache Size, 720 Attacker Frequency, Varying Number of Attackers Hit %

... 78

Figure 15: ST with 100 Cache Size, 720 Attacker Frequency, Varying Number of Attackers Top

50 Hit % .. 78

Figure 16: Per-Item Hit Rate, Zero Attackers, Simple Topology ... 80

Figure 17: AT with 100 Cache Size, 720 Attacker Frequency, Varying Number of Attackers

Pollution %.. 82

Figure 18: AT with 100 Cache Size, 720 Attacker Frequency, Varying Number of Attackers

Overall Hit % .. 83

Figure 19: AT with 100 Cache Size, 720 Attacker Frequency, Varying Number of Attackers Top

50 Hit % .. 83

Figure 20: AT with Size 100 Cache, Varying Attack Frequency, with 3 Attackers – Pollution %

... 85

Figure 21: AT with Size 100 Cache, Varying Attack Frequency, with 3 Attackers – Hit % 86

Figure 22: AT with Size 100 Cache, Varying Attack Frequency, with 3 Attackers – Top 50 Hit %

... 86

x

LIST OF EQUATIONS

Equation 1: Contribution from a Face .. 39

Equation 2: Overall Popularity, P(C) of a Content Object, C .. 39

Equation 3: Logical Quota of Cache Capacity ... 41

Equation 4: Cache Pollution Ratio For Two Attacker Scenario ... 42

Equation 5: LFU-DA Key Value Calculation .. 54

Equation 6: Parameterized Exponentiated Overall Popularity ... 89

xi

LIST OF ALGORITHMS

Algorithm 1: Popularity Manager's Get Overall Popularity Pseudocode 45

Algorithm 2: Popularity Manager's Record Interest Stats Pseudocode .. 47

Algorithm 3: Popularity Manager's Record Hit and Miss Info Pseudocode 48

Algorithm 4: PopularityPolicy's doAfterInsert Pseudocode ... 51

xii

LIST OF THEOREMS

Theorem 1: Single Face Attack Scenario .. 40

xiii

ABSTRACT

 Information-centric networks (ICNs) are a category of network architectures that focus on

content, rather than hosts, to more effectively support the needs of today’s users. One major

feature of such networks is in-network storage, which is realized by the presence of content storage

routers throughout the network. These content storage routers cache popular content object chunks

close to the consumers who request them in order to reduce latency for those end users and to

decrease overall network congestion.

 Because of their prominence, network storage devices such as content storage routers will

undoubtedly be major targets for malicious users. Two primary goals of attackers are to increase

cache pollution and decrease hit rate by legitimate users. This would effectively reduce or

eliminate the advantages of having in-network storage. Therefore, it is crucial to defend against

these types of attacks.

 In this thesis, we study a specific ICN architecture called Named Data Networking (NDN)

and simulate several attack scenarios on different network topologies to ascertain the effectiveness

of different cache replacement algorithms, such as LRU and LFU (specifically, LFU-DA.) We

apply our new per-face popularity with dynamic aging (PFP-DA) scheme to the content storage

routers in the network and measure both cache pollution percentages as well as hit rate experienced

by legitimate consumers.

xiv

 The current solutions in the literature that relate to reducing the effects of cache pollution

largely focus on detection of attacker behavior. Since this behavior is very unpredictable, it is not

guaranteed that any detection mechanisms will work well if the attackers employ smart attacks.

Furthermore, current solutions do not consider the effects of a particularly aggressive attack

against any single or small set of faces (interfaces.)

Therefore, we have developed three related algorithms, namely PFP, PFP-DA, and

Parameterized PFP-DA. PFP ensures that interests that ingress over any given face do not

overwhelm the calculated popularity of a content object chunk. PFP normalizes the ranks on all

faces and uses the collective contributions of these faces to determine the overall popularity, which

in turn determines what content stays in the cache and what is evicted. PFP-DA adds recency to

the original PFP algorithm and ensures that content object chunks do not remain in the cache longer

than their true, current popularity dictates. Finally, we explore PFP-β, a parameterized version of

PFP-DA, in which a β parameter is provided that causes the popularity calculations to take on

Zipf-like characteristics, which in turn reduces the numeric distance between top rated items, and

lower rated items, favoring items with multi-face contribution over those with single-face

contributions and those with contributions over very few faces.

We explore how the PFP-based schemes can reduce impact of contributions over any given

face or small number of faces on an NDN content storage router. This in turn, reduces the impact

that even some of the most aggressive attackers can have when they overwhelm one or a few faces,

by normalizing the contributions across all contributing faces for a given content object chunk.

 During attack scenarios, we conclude that PFP-DA performs better than both LRU and

LFU-DA in terms of resisting the effects of cache pollution and maintaining strong hit rates. We

also demonstrate that PFP-DA performs better even when no attacks are being leveraged against

xv

the content store. This opens the door for further research both within and outside of ICN-based

architectures as a means to enhance security and overall performance.

1

Chapter 1

Introduction

1.1 Background and Motivation

1.1.1 Challenges of the Current Internet

The architecture of the current Internet is host-based, depending heavily on location, which

is enabled through use of Internet Protocol (IP) addresses. The usage and needs of the Internet of

today is quite different from its inception. When the Internet was originally designed and

implemented, its usage was largely for disseminating research data and sharing expensive

resources, not content [1]. Security was an afterthought, as the need was far less in the earliest

years of its existence. Today, users of the Internet are increasingly mobile and more interested in

content, regardless of what server or source the desired content comes from.

On-demand content such as movies and television shows through popular content providers

such as Netflix [2] and YouTube [3] is expected to be delivered in a timely, streaming manner.

Since the Internet was not designed for such enormous amounts of content and performance,

overlay networks and other technologies were created to overcome some of the inherent problems

with the Internet. Content-delivery networks are one of these types of networks.

In North America alone, real-time entertainment is still a dominant player in downloads,

accounting for 71.02% of all download-related fixed Internet traffic and 38.29% of all download-

2

related mobile Internet traffic during peak hours [4]. Content delivery (or distribution) networks

(CDNs) are an application-layer solution to the limitations of the underlying Internet architecture.

These CDNs provide redundant copies of data and services in geographically dispersed locations

so that the content can be closer to the users that use them. The goal, of course, is to increase

performance and availability. One excellent pioneering example of content delivery networks is

the Akamai network [1]. This CDN was developed in the late 1990s and early 2000s to help

organizations overcome the obstacles that are present in the fundamental Internet. Other CDNs

such as Amazon CloudFront CDN [5] exist and provide similar services to companies and

organizations for a fee.

However, despite all the changes of Internet usage over time, the fundamental architecture

of the Internet itself remains the same as it was originally, namely: heavily host-centric. The

application overlay solutions such as the CDN virtual networks are piling up in an attempt to meet

the demands of today’s users. As a result, many researchers have suggested that the Internet needs

a fundamental re-design, such that it is information-centric rather than host-centric.

1.1.2 Information-Centric Networking

Information-centric networking (ICN) is one broad category of Future Internet

Architectures (FIAs) that was promoted and funded by the National Science Foundation’s Future

Internet Architecture Project [6] that provides an alternative to the current host-centric paradigm.

This new paradigm considers content (rather than hosts) as first-class citizens and the primary

focus of the architecture. An ICN is aware of content and works to deliver the requested content

to the user in an efficient manner, with full awareness of the underlying network, built-in security,

privacy, and mobility in many ICN architectures, and most importantly to this research, in-network

caching.

3

Several specific ICN architectures have been proposed. These include the Data-Oriented

Network Architecture, or DONA [7], the Network of Information, or NetInf [8], Content-Centric

Networking, or CCN [9], Named Data Networking, or NDN [10], [11], MobilityFirst [12], [13],

and PSIRP/PURSUIT [14], [15]. Arguably the most popular among these is NDN [11], which is

the specific ICN architecture considered in this work.

With the focus of this research being on in-network caching and related topics, it is

important to briefly discuss the enabling technologies here. In-network caching takes place in so-

called content storage routers throughout the network, which seek to accomplish what CDNs do,

but without application layer overhead. Thus, in comparison to the typical content custodians (e.g.,

CDN servers, origin servers) that cache content at the application layer, content in ICN is cached

throughout the network in the content storage routers. In-network caching is a very important

characteristic of many of the different ICN architectures and is intended to perform much of what

CDNs do, but at the network layer. More details on ICNs are discussed in Chapter 3.

1.2 Problem Statement and Methodology Overview

There are many interesting and unique challenges in information-centric networking

related to security, including those related to privacy, access control, denial of service, content

poisoning, and many others, but of the security issues being researched, cache pollution attacks

remain largely unexplored [16]. This type of attack and the mitigation or prevention of its effects

will undoubtedly become a topic of greater interest as the in-network caching mechanisms are

researched further and built [17]. As a result, this work explores the effects of cache pollution

attacks, and how they might be mitigated.

4

In ICN, a cache pollution attack is one in which an attacker seeks to decrease the

effectiveness of in-network caches by causing the content storage routers to cache unpopular

content objects, thus rendering the caches ineffectual. While some researchers consider cache

pollution attacks to be a subset of denial of service (DoS) attacks, many others tend to categorize

them separately. A few notable examples exist of research intending on reducing the effects of

cache pollution attacks in ICN and will be explored in more detail in the literature review in

Chapter 2.

However, none of the current research efforts, nor state-of-the-art approaches provide

special protection against very aggressive attackers that overwhelm one or a few faces. This

research is focused on providing protection against the ill-effects of cache pollution attacks in both

single attacker scenarios and multiple attacker scenarios.

Methodologically, some key statistics drive the assessment of algorithms in this work.

These include cache pollution percentage and hit ratio.

Cache pollution percentage is the percent of the cache of a content storage router that

contains content objects that were requested by the attacker. For effective measurement (and

related to the typical approach used by attackers), there should be little to no overlap between the

content objects requested by legitimate consumers and those requested by attackers. Regular

consumers in any given area tend to request the same popular content objects frequently, and less

popular objects less frequently. From the study of Web caching, we know that sets of consumers

generally request the more popular contents in a Zipf-like distribution [18], [19]. Attackers, on

the other hand, will request content objects that are far less popular in order to replace actually

popular content in the cache with their own.

5

Hit ratio is a measurement of the number of hits on a cache in a given storage router versus

the total number of interest messages that have arrived at that same router. A hit occurs when an

Interest message arrives for a content object, and that content object is cached in the router’s cache.

A miss occurs when an interest message arrives for a content object, and the data is not in the

content store (cache.) For purposes of research, it is meaningful to only measure the hits and

misses of legitimate users, and not include those experienced by attackers.

For a content storage router’s cache to be effective, it is crucial that hit percentages be as

high as possible, and to minimize cache pollution percentages. This research is largely focused on

improving these two metrics under various conditions, in a named-data network (NDN) simulation

environment.

It should be noted that it is possible that one (or more) of the current approaches (e.g.,

CacheShield) could be used in tandem with our PFP-DA scheme, so the research done toward this

thesis need not be considered completely at odds with current approaches, but as potentially being

complementary to them, and being complemented by them. PFP-DA is used to mitigate the effects

of cache pollution, and improve cache robustness, while schemes such as CacheShield are

primarily involved in the detection of attackers. Thus, applying different approaches to improve

the overall performance is possible, and these technologies need not be treated as mutually

exclusive or adversarial to one another.

1.3 Contributions

The primary contributions of this work are as follows:

We have designed and constructed a new approach to cache replacement algorithms based

on fairness across a content storage router’s faces. This per-face popularity (PFP) approach

6

normalizes the contributions from consumers on any given face, such that the overall impact any

one face can have on the popularity of a given content object is no greater than the overall impact

of the aggregate contributions on any other face.

 We have revised the original PFP approach with a dynamic aging aspect, resulting in the

PFP-DA scheme, which is more scalable and more efficient, and ensures that no particularly

popular content object remains in the cache longer than its lifetime should allow. Thus, in addition

to the normalized frequency aspects of the PFP algorithm, a recency characteristic is added as well.

 To enable PFP-DA, modifications to the ndnSIM [20] simulator itself were necessary. This

includes introduction of a data manager class (PopMan), modification of the forwarding plane, and

modification of consumer types, such as enabling ConsumerCbr to behave as an attacker with the

appropriate parameters.

 The results from our tests discussed in detail later in this thesis indicate a clear advantage

of PFP-DA over LRU and LFU-DA cache replacement algorithms. The advantages are measured

by comparing pollution percentages, which we wish to minimize, and hit rates (hit percentages),

which we wish to maximize. PFP-DA shows a level of resilience against the effects of cache

pollution attacks that the current algorithms do not, as well as an overall improvement over LRU

and LFU-DA even in scenarios where no attacker is active.

1.4 Thesis Organization

The rest of this thesis is organized as follows:

Chapter 2 is a literature review of the current topics of interest to Information Centric

Networking (ICN), its goals, and some of the popular ICN architectures in the literature. It also

7

discusses the role of caching and the need to prevent cache pollution from having significant

impact on content storage routers in ICN networks, in more detail.

Chapter 3 discusses the per-face popularity (PFP) and its modified counterpart, per-face

popularity with dynamic aging (PFP-DA) and how content objects are maintained and removed

from a content storage router’s cache. Related equations and analysis of the scheme are presented

as well. Furthermore, the chapter highlights some of the important data structures and algorithms

related to the PFP schemes, modifications made to the simulator itself, and how the replacement

policy works.

In Chapter 4, the simulation environment is discussed further, and simulation scenarios are

defined. The two primary topologies used for the collected data, a simple and more advanced

topology, are presented. Finally, Chapter 4 ends with the results of the experiments that were

performed and how the results of PFP-DA compare with the popular LRU and LFU-DA cache

replacement algorithms.

Chapter 5 considers how slight modifications of the PFP-DA popularity calculations can

move us toward zero or at least far more negligible cache pollution. This is done by a small change

to the actual overall popularity calculations, using a special β value to reduce the differences

between the contributions for subsequent rankings for a given content object.

Finally, Chapter 6 covers conclusions made, and the opportunities for future research to

further improve the performance and effectiveness of PFP-DA.

8

Chapter 2

Literature Review

2.1 Information Centric Networking

The current architecture of the Internet was originally developed in a very different world.

The Internet was designed for sharing expensive resources, between cooperating, trustworthy, and

relatively few hosts. The organizations that shared these resources primarily consisted of academic

and governmental entities. In addition to sharing these expensive resources, the ability to add new

individuals to the network easily, and even connect new networks to the Internet were primary

goals.

While the Internet has made possible incredible technologies, communication, and

interconnectivity, the architecture itself is showing its age. The primary usage of the Internet has

changed dramatically since its inception. The primary goals of its users are no longer the sharing

of expensive resources and easy addition of networks and individual devices in a trustworthy

environment (although these are certainly supported); rather, users of today’s Internet are

interested in massive content upload and download, mobility, security, privacy, and other such

features that were never even considerations of the early Internet architects.

Because of the growing focus on content, rather than on hosts, many researchers in

information-centric networks (ICN) have suggested that there be a clean slate redesign of the

Internet architecture itself. This new architectural paradigm (ICN) focuses on the information, and

9

the requesters of the information (typically consisting of consumers, also called subscribers)

instead of focusing on hosts or locations, and the providers of the information (consisting of

publishers, producers, or other content custodians.)

In the current host-centric architecture, if a user wishes to acquire some content, the user

must know not only the content or service, but also that content or service’s location, often in the

form of a URL (or URI.) But the current needs of Internet users are not naturally satisfied by the

network. It is obvious that users can retrieve content in today’s Internet from a variety of locations

(such as CDNs, described earlier.) However, the “black boxing” or obfuscation of the location

and complexity of content retrieval is handled by application-level solutions and patches rather

than consisting of first-class solutions provided by the network-layer itself. This structure does

not take advantage of network layer optimizations.

Thus, information-centric networking fundamentally changes the way information is found

and delivered, in terms of how the information is associated with the location at which it is stored.

ICN decouples the information from the location(s) at which it is stored. Because this is so

incredibly different, the clean-slate approach is seen as the best approach to the future Internet.

Any other approaches to a Future Internet would take the form of application-layer patches on top

of the fundamentally aged Internet with its inadequate protocols. This is already done extensively

by many overlay networks.

There are multiple challenges in information-centric network research, including naming,

name resolution, data routing, mobility, security, efficient data delivery, and many others [17].

10

2.1.1 Fundamental Design Considerations in ICN Architectures

When designing a new architecture, especially one for something as large as the Internet,

it becomes more and more important to determine fundamental design goals. While different ICN

architectures may focus on different sets of design goals, many of the more important ones will be

discussed here.

Naming

Because the content in an information-centric network is the focus (rather than hosts), a

way by which we identify that content becomes crucial. The process of providing such identifiers

for content defines an architecture’s naming scheme. Naming is a large challenge in an ICN,

because instead of just providing “names” (IP addresses, for example) for devices within a

network, an effective ICN architecture must develop a scheme that is both efficient and effective

to distinguish between different information objects (data, content, services, etc.) The namespace,

which is the number of available names, must be enormous in such an architecture. In [21] the

authors estimate the namespace must be between 1013 and 1015.

A primary consideration regarding naming is whether the content object name will be flat

or hierarchical. A flat name is one that is not hierarchically or otherwise linked to other names.

However, one benefit of flat names is that they can be made to be more easily self-certifying. This

reduces or removes the need for a third-party authentication source, increasing efficiency and

could also reduce network traffic overall. A hierarchical name, on the other hand, is a name that

is related to other names or entities and classified in a hierarchy. An example of a human-readable

hierarchical name would be a URI/URL-like name, such as umdearborn/audio/bachconcerto.m4a.

However, it is important to note that hierarchical names need not necessarily be human-readable.

11

Name Resolution and Data Routing

Because they are related (often coupled tightly in some architectures), the topics of name

resolution and data routing should be discussed together. Name resolution is the process by which

a name is resolved to a location (or locations.) Although in an information-centric network, the

application layer does not generally need to know the location of a requested content item, the

network itself does. At some point, content must be located and transmitted back to the user, or if

the content cannot be found, the user must be informed of this fact. In other words the content

name must be matched to a content source.

Data routing is the process of producing a path through which the data travels from the

producer or content custodian (provider of information) and the consumer or subscriber (requester

of information.) How the name is resolved can dramatically affect how the data is routed.

There are two primary approaches in which the name resolution and data routing

characteristics of an ICN architecture are associated with one another. One of these ways is a

coupled approach. In a coupled approach, a request for information is sent to the publisher of the

content or a content storage source containing the requested content (typically through multiple

hops across various routers.) Then, when the publisher responds with the content itself, the content

travels the same path as the initial request, just in reverse order.

In a decoupled approach, on the other hand, the name resolution service doesn’t determine

the route between subscriber and publisher in a manner which causes the data to travel the reverse

path of the request.

Mobility

In the early Internet, devices and systems were relatively fixed. They didn’t move very

frequently. A lot has changed since these early devices were deployed. Mobility should arguably

12

be a high priority requirement of any architecture that will ultimately replace the current Internet

architecture. In fact, the traffic generated by mobile devices is expected to surpass the traffic

generated of PC traffic by 2021, with smartphones alone accounting for 33% of total Internet

traffic, and PCs to account for only 25% [22]. The addressing scheme of the Internet reflects the

fact that it was designed in consideration of fixed hosts, not mobile hosts.

Although mobile nodes can typically easily switch networks, changing their IP addresses

in the process, this type of approach does not provide continuous connectivity during periods of

mobility. This is an increasingly desirable feature.

Mobile IP ([23]) is not a very efficient solution. It is not a fundamental part of IP, but

rather a patch. Worse than this, it creates so-called triangular routing in which packets have to be

sent from the content source to a home agent, and then to the mobile device. Similar situations

occur when the mobile device generates data, the data may have to be transferred to a home

network agent first and then to the requesting entity. This is obviously very inefficient.

The ICN approach to mobility is built upon the publish/subscribe communication model (

[24].) Entities offering information or providing a service publish advertisements for the

information to the network. Entities that desire particular information subscribe to the information.

A special entity called a broker is responsible for matching the subscriptions with publications.

As the authors of [25] note, this is different than a traditional understanding of publish/subscribe.

In such a traditional scheme, the publishing function involves transmitting the data to the end

users/subscribers. In ICN, publishing just involves advertisement of availability of content.

It may not be clear why this aids in mobility for network entities. A fundamental

decoupling occurs between the subscribers and the publishers, both in terms of space (physical

location) and time (when the content is requested.) The publishers in such a model take a more

13

passive roll, and the subscribers have more control. The network causes the publishers and

subscribers to be relatively agnostic of one another.

Security

Another high priority consideration in ICN architectures is that of security [17] , [26]. The

host-based Internet that we use today was originally developed in an environment that depended

on trust. Trustworthy individuals sharing research and data across the early Internet didn’t have

to worry as much about issues of confidentiality and integrity of data or origin authenticity. The

Internet was relatively small and made up of individuals and entities that could trust one another.

It was also designed in such a way that any traffic injected into it, with the right information in

packets, will get forwarded. This design lends itself to denial of service (DoS) attacks and other

problems.

The requirements of the early Internet are quite different from the requirements we have

today. Security is of utmost importance. The security protocols and mechanisms that exist today

are primarily just patches that attempt to fill the gaps in security of the underlying network design.

ICN architectures are largely focused on subscriber-oriented data transmission. In other

words, there is no data flow unless the data is requested. This is an underlying network

characteristic that makes it much more difficult to perpetrate certain malicious attacks.

Furthermore, ICN architectures that use self-certifying names can aid the filtering of junk or

malicious data.

14

2.1.2 Popular ICN Architectures

 Although ICN can be viewed as a set of goals and principles, many different solutions have

been proposed to accomplish these goals. In this section, we discuss a few of the most popular

ICN architectures.

Data-Oriented Network Architecture (DONA)

The Data-Oriented Network Architecture (DONA) was originally proposed in [7] and is

one of the first fully defined ICN architectures. The naming scheme in DONA is flat instead of

hierarchical. This means that unlike other naming schemes, such as URLs, which have a

hierarchical structure (e.g. umdearborn.edu/courses/somecourse), DONA assigns names that are

truly flat and are not related to their location. The information in DONA can move about the

network, change networks, change content servers, and it will still keep the same name. This

strongly achieves the desired ICN goal of having decoupled location and information name.

In DONA, the names are dependent upon principals. A principal is essentially a trusted

entity that uses a public key cryptographic system and has the ability to authorize hosts to publish

(provide) data or services. A name in DONA is made up of a cryptographic hash (called P) of the

principal’s public key, and a label (called L), chosen by the principal for the named information.

The principal is also responsible for ensuring that the label is unique within its affected

authorization. Thus, a particular named item in DONA takes the form P:L.

When a client retrieves data, this means that the client will receive a triplet of the form

<data section, principal’s public key, principal’s signature> and possibly other related metadata.

This format of the data allows the clients to immediately determine the integrity of the data they

receive.

15

In other words, when a client requests data with the name P:L, it receives the

aforementioned triplet (<Data, Pk, Sig>), and can use the public key to ensure that it hashes

correctly to P. This helps to ensure the origin integrity (authenticity) of the data. Further, the key

can be used to ensure that it did in fact generate the signature for the particular data in the triplet.

This provides data integrity, to ensure that the data was not tampered with between its publisher

and the subscriber (origin and destination.) Due to these characteristics of the named data triplet

in DONA, the names are considered to be self-certifying. In other words, no additional parties are

needed to perform verification on the received data.

The recipient of the data can simply apply the aforementioned checks and determine

immediately if the data is genuinely what was requested, and that the provider of the data is

authorized/approved by the principal. As an additional note, another interesting aspect of names

in DONA is that, while primarily focused on information and services, the names could apply to

essentially any entity.

The flat names in DONA would not be very user-readable. So that brings up many

challenges and issues, such as how users will remember these long and difficult names. The

answer to that particular question is that users will not be expected to remember the full names,

but will, similarly to URLs in a DNS system, directly interact with a user-friendly name associated

to each content (service, etc.) item. One major difference however, between DNS and DONA, is

that the names in DONA will not be attached to a particular location. Furthermore, DONA does

not provide a reverse-lookup mechanism.

DONA is built around the goal of providing close-by copies of requested information and

reducing and recovering from failures. In every autonomous system (AS) in DONA, there will be

at least one logical Resolution Handler (RH.) These network entities will provide a DNS-like

16

service to the DONA system. The RHs themselves are organized in a hierarchical fashion. When

one RH is above another on the hierarchy, it is said that the higher RH is the parent of the RH

lower in the hierarchy.

To accomplish name resolution, DONA uses two message packets, FIND and REGISTER.

When a publisher/provider wishes to offer some data or service, it issues a REGISTER(P:L), where

P:L is the name based on the scheme described earlier. Each RH maintains a registration table that

has information in it about next hop (to the next RH) and distance to the available copy (or copies)

of the information being requested through a FIND(P:L) message.

The REGISTER messages must be authenticated by an RH. The RH issues a challenge to

the client, and it must be able to sign with the principal P’s private key (proving that it is the

principal), or provide a certificate or other proof of having been authenticated by the principal. It

is important to note that REGISTER messages can expire, since they have a TTL (time to live.)

Additionally, a publisher/provider of content can issue an UNREGISTER message to indicate that

they are no longer providing a particular piece of content.

The technique used by Resolution Handlers is LPM (longest prefix match.) Thus, if the

registration table of a particular RH contains an entry for P:* (any data under the hash of principal

P), then that is considered a match (on P.) However, if the RH has P:L as an entry in its registration

table, it obviously serves the information with the name P:L (or forwards the FIND to the next

hop), since this is the longest prefix match. If neither P:* nor P:L are found in a registration table,

then that RH is said to not have information on the data item being searched for. If the data item

is not found, then the RH forwards the FIND to its parent.

17

Additionally, the special form FIND(*:L) indicates that the subscriber is willing to accept

information with a matching label from any publisher/provider. The format of a FIND packet is

as follows, replicated from the original work of the authors of [7]:

IP header

Type Name(P:L) – 40 bytes Next Header Type

Transport Protocol Header

Figure 1: Format of FIND packet in DONA

The FIND messages continue to be forwarded up the RH hierarchy until they find a match,

or until the message reaches a Tier-1 Autonomous System. At this point, if the P:L is not found,

then a not-found error is generated and sent back to the issuer of the FIND message.

Also, RHs are not involved in the transport of the data resulting from a FIND message back

to the requester. The actual data transfer can be handled by standard IP network routing and

forwarding protocols.

Caching can also be done in DONA using the Resolution Handlers. The RHs decide what

information objects to cache. Once they do so, they take an incoming FIND request and replace

the source (the subscriber) IP address with its own to ensure that after the FIND request is

forwarded, the content requested will definitely be sent back to the RH. The RH will know to

forward the data further to the original subscriber, but the rest of the network will think that the

RH is the original subscriber. This is an appropriate approach, especially for the decoupled

approach with DONA. Note that DONA can be either coupled or decoupled. With the source

replacement technique in FIND messages, the information requested is guaranteed to be delivered

through the requesting RH to be cached. Then if subsequent requests for the information are made,

the RH can deliver the information instead of moving the request (FIND) up the RH hierarchy.

18

Mobility is naturally supported since it is a subscriber-driven architecture. Mobile entities

simply issue a FIND message from whatever their current location is, and the Resolution Handler

infrastructure provides them with the closest copy of the information. Even mobile publishers are

supported. They would simply have to unregister content from one network location and re-

register in another. There is overhead with this process, but it is straightforward and clean. As

noted earlier, security is also supported within the naming choice of DONA. The flat names are

self-certifying.

Network of Information (NetInf)

The ICN architecture, Network of Information, known also as NetInf [8] describes

information (content) as Information Objects (IOs), which are the center of the architecture,

relegating hosts to a secondary position. The actual bit and byte level of the content is referred to

as Data Objects (DOs), which are of less concern or interest to the user than are the IOs. However

it is important to note that DOs can be further broken down into chunks. It is a significant feature

of NetInf that there is a decoupling not only between host and content, but also between data object

and information object. An IO can be viewed as an aggregation of data objects. The data objects,

depending on the situation and type, could be swapped out, whereas the IO identifier would remain

(i.e., persistent identifier.) The authors in [8] do not give full implementation details, but rather

desirable characteristics and directions for development of a Network of Information (NetInf.)

NetInf and related research expands upon the notions of content as a centralized citizen in

the network from [10] and the importance of audio/visual, web, and e-mail and further promotes

the importance of real-time streaming, VoIP, and other live, time-sensitive technologies.

19

Information Objects contain metadata, which can be used to determine if a particular IO

satisfies subscriber interest, or if it is (and how it is) related to other information objects. Metadata

can take many forms, such as the use of RDF (Resource Description Framework) tags, which are

already popular in Semantic Web technology.

Security is a very important topic and fundamental NetInf primitive requirement [27]. The

flat names in NetInf are self-certifying and are designed such that they enable both data integrity

and origin/owner integrity (identification and authentication.) The content identifiers (IDs) persist

even when the owner or location may change.

The name resolution in NetInf is used to resolve the content name to a location (or

locations) at a high-conceptual level as the familiar host-based DNS works. However, it should

be noted that DNS requires a hierarchical namespace, so a flat namespace cannot use such a system

exactly like DNS.

NetInf distinguishes between global resolution which works at a global scale, much like

the current host-based Internet does, and local resolution, which allows for resolving and locating

local content available in near proximity or local scope (e.g., in the same building or locale), and

in intermittent scenarios (e.g., mobile ad-hoc networks.)

DHTs (distributed hash tables) are one of the most popular approaches to performing the

name resolution. DHTs are quite effective, especially in terms of local resolution. However, the

authors note that scalability becomes an issue largely due to the nature of autonomous systems

(ASs.) The authors note a preference for flat names due to their ability to be self-certifying, but

also realize the desirable characteristics of a hierarchical system in that names can be aggregated.

20

Therefore, an effective name resolution (NR) system would provide a trade-off between scalability

and name persistence.

NetInf utilizes a multilevel distributed hash table (MDHT) approach [28]. Regular DHTs

are typically quite good for intra-AS name resolution but can experience problems due to the

notoriously poor cooperation between various autonomous systems [8]. This MDHT system

allows multiple DHT areas (scopes) to exist. The content is registered at three levels, from most

local to more global: Access Node (AN), Point of Presence (POP), and finally Autonomous

System (AS.) For example, an access node (AN) DHT exists and can run its own DHT algorithm,

so intra-area routing is done using this algorithm. When performing inter-area communication, a

node must be found that can communicate with a higher level. For example, an AN that can

communicate with a POP node, or a POP node that can communicate with an AS node. It should

be noted that the content itself is registered at all three levels (AN, POP, and AS.)

If content is not found at the AS level in a particular autonomous system, then another level

entity, known as the Resolution Exchange (REX) system attempts to find the content. The REX

system itself is distributed among the top-level ASes.

The authors indicate that they are involved and encourage research in name-based

alternative implementations. This is due to research indicating that costs of communication in

dynamic networks cannot grow more slowly than linearly [29], [30].

Content-Centric Networking/Named Data Networking

Content-centric networking (CCN) [9], [10] is another one of the very few full-fledged,

early information-centric networking architectures. The goals of CCN are very similar to those of

21

DONA and other ICN architectures. The original CCN researchers sought to develop a scalable,

secure, and high-performance network architecture based upon named data.

Building upon the earliest CCN architecture, named data networking (NDN) extends on

Jacobson’s work and is one of five initiatives funded by the National Science Foundation under its

Future Internet Architecture Program (see [11]).

Taking a different approach to naming than DONA, NDN uses a hierarchical naming

scheme, where names can be like URLs. For example, the name of a given audio clip of a lecture

in computer science produced by a professor at University of Michigan – Dearborn might take the

form umdearborn/content/cis/audio/lec1cis427.mpg. Although this looks like a URL, this type of

name is not the same as a name interpreted by DNS. In fact, it need not even be human-readable.

The reason that NDN researchers have chosen a hierarchical naming scheme is because they see

it as being beneficial to aggregation.

Technically, in named data networking, the content or service publishers can choose the

naming scheme for specific applications since a precise naming architecture is not clearly defined

in NDN. This leaves a very large namespace available to publishers of content to choose from. It

is likely that if NDN is more fully adopted and implemented that publishers will have standards or

conventions, but NDN itself puts very few hard requirements on the name structure itself.

NDN uses longest-prefix matching to resolve name requests. It even allows for the

possibility of request content that hasn’t been produced yet (some content is produced on the fly.)

The publisher would create the name deterministically within the context of its naming scheme

and then send the information back to the requester.

The authors in [11] suggest that this can be done either by using a deterministic algorithm

that would allow both producer and consumer to arrive at the same name, or by using Interest

22

selectors along with the longest prefix matching to retrieve the desired data. The authors suggest

that a simple set of selectors can be used along with partially known names to retrieve the data.

In NDN, there are two kinds of messages: Interest messages and Data messages. Interest

messages are used by subscribers to indicate their interest in a particular piece of content. In

response, a provider (publisher) of the content responds with a stream of Data messages.

The format of the Interest and Data messages is as follows:

Interest Packet Data Packet

Name Name

Selectors

(preferences, filters, etc.)

 Meta Information

Nonce Content

Guiders

(scope, Interest lifetime, etc.)

 Signature

Figure 2: Format of Interest and Data Packets in NDN

Notice that both the Interest and Data packets contain the name of the information being

requested, or delivered, respectively. All messages are forwarded by Content Routers (CRs.)

These special routers maintain three data structures that are crucial to routing within the NDN

architecture:

• FIB (Forwarding Information Base)

• PIT (Pending Interest Table)

• CS (Content Store)

23

Figure 3: Forwarding in NDN (Adapted from [11])

Forwarding can be visualized as seen in Figure 3, with an X indicating a miss on a particular

data structure, and a ✓ indicating a hit. The forwarding information base (FIB) is like a forwarding

table in traditional host-based IP networks. However, the FIB maps the content names to output

interfaces used to forward Interest messages. The FIB has name-prefix entries and can map a

name to multiple output interfaces. To populate the FIB, routers advertise name prefixes (e.g.,

umdearborn.edu) so that the network will know that the CR has that particular content object.

As the name suggests, the pending interest table (PIT) maintains entries for Interest

messages that have been forwarded but have not yet been satisfied. The name of the data being

requested as well as the incoming and outgoing interfaces are all recorded in the PIT. When an

Interest message arrives, the content router’s content store (CS) is checked to see if the data exists.

If it does, the data is returned on the incoming interface.

The content store (CS) is where a router will cache data that it determines might be popular

or was requested recently, might be requested frequently, etc. If the data is not found in the content

store, the next check is the PIT. If it is found in the PIT, which as I noted lists all the pending

Interests, the PIT records only the incoming interface for that information that is being requested.

Why is the Interest message not forwarded on? Because the pending Interest indicates that when

24

(or if) the data is found, a Data message containing the information will find its way back to the

content router. Then, the Data will be forwarded on all the incoming interfaces, because these all

indicate requests for the same content. Forwarding the Interest message further would have been

a waste of resources.

If neither the CS nor the PIT contain the data that is being requested, then that means that

the Interest is a fresh request, and must be forwarded, so the incoming and outgoing faces are

recorded in the PIT until the request is satisfied.

The Data message follows the path back (similarly to the way a path is taken in a symmetric

routing protocol), and the Interest entries in the PIT that have no other outstanding incoming

interfaces are removed from the PIT after the forwarding of the Data on the incoming face has

been performed.

Like in DONA, mobility is supported naturally in NDN. Instead of FIND messages, the

mobile subscriber simply issues new Interest messages from its current location. If an Interest

were generated in one network, just before entering a second network, the first CR common to

both networks would suppress the Interest packets from going any further through the network.

This is essentially the same case as if the mobile node in network B having moved from network

A were simply a completely different node making a request for the same content. Note that an

attempted delivery of data will occur to the original location as well as the new location of the

mobile node. If a publisher moves, the forwarding information bases (FIBs) that point to that

publisher must be updated. Thus, the publisher must advertise the name prefixes that it can handle.

In terms of security, NDN does support human-readable names being associated with the

actual information object names. All Data messages include signatures based on the name and

other information that can be used to identify and certify the signer or certification authority. Thus,

25

all nodes, including mobile, static, individual, group, or even content routers can verify that the

name and packet are legitimate and belong together.

MobilityFirst

MobilityFirst [12], [13] is an information-centric Future Internet Architecture project that

focuses on security (specifically, trustworthiness) and as the name suggests, mobility, as its central

design goals. The fundamental support of mobility in the architecture means that mobile devices,

information, services, and other network entities must be able to seamlessly transition between

various networks. The recognition of the traditional IP architecture as being fragile when dealing

with mobile and wireless networks and the ever-growing number of mobile computing devices

were fundamental inspiration for the MobilityFirst project.

Names in MobilityFirst are GUIDs (globally unique identifiers.) These GUIDs are

assigned by a GNS (global naming service.) Names are used to identify a multitude of different

entities, known as principals in MobilityFirst such as interfaces, devices, services, human users,

content, or another collection of GUIDs. The GUIDs are self-certifying, flat, 160-bit strings. The

names can be one-way hashes of information fragments or entire information objects, one-way

hashes of public keys, or other entities. The self-certification property of the globally unique

identifiers means that any principal can authenticate other principals without using a third-party

certification authority.

One strength of MobilityFirst in terms of naming, is its ability to support both named data-

based information and service delivery as well as traditional host-to-host communication

(however, this is done by GUIDs, not directly by anything like an IP address.) Further, besides a

GUID, it is possible (and useful) for principals to be assigned a human-readable name. The GNS

(Global Naming Service) can translate the human-readable names into globally unique IDs.

26

It is also important to note that MobilityFirst uses NAs (network addresses.) These network

addresses essentially correspond to autonomous systems (ASes), but can also be used for a more

fine-grained network such as a subnet, or larger entities such as data centers or Internet service

providers (ISPs.)

The Global Name Resolution Service (GNRS) is the service that translates the GUIDs into

network addresses. As with most of the ICNs, we identify a requester of content or service as the

subscriber, and the provider of the content or service as the publisher. When a publisher wants to

offer some sort of content or service, it asks the GNS (global naming service) for a GUID and then

registers its network address, along with its name (GUID) with the GNRS.

When a subscriber requests some content or a service, it makes use of a GET message by

sending it to its local CR (Content Router.) The GET message contains the GUID of the requested

content or service, as well as the GUID of the subscriber. Since the content router (CR) forwards

the GET message if it doesn’t have the requested content or service to other CRs or other network

entities. Before it can do this, however, it must request the GNRS for a route.

It is interesting to note that the data routing is a hybrid approach, using both IP routing and

name-based routing. The GNRS is responsible for mapping addresses to GUIDs, so that traditional

IP routing can be used to forward the packets. But the initial request for information, and all end

host/end node communication is done by requesting a name. So, the end host interaction with the

network and content is based almost exclusively on interacting with names (GUIDs) rather than

addresses. The GNRS takes care of the mapping process.

The name resolution and data routing processes are decoupled. This is due to the fact that

the GET and content messages/fragments are routed based on their own destination GUIDs. The

27

path that the GET message took need not be the path that the delivery of the data or service takes

on the way to the requester/subscriber.

As the name suggests, mobility is a high priority in MobilityFirst. The GNRS is primarily

responsible for handling host mobility within the network. Security is also supported based on the

GUIDs being mapped to human-readable names. This is quite similar to the way that the name-

information object mapping occurs in NDN.

PSIRP/PURSUIT

As the name suggests, PURSUIT uses a Publish/Subscribe paradigm instead of a

Send/Receive paradigm. The authors identify three participants in PURSUIT: publishers,

subscribers, and a network of brokers. Publishers are the entities which produce, own and/or are

responsible for distributing content. Subscribers are the entities interested in the content – they

are essentially, the consumers of the content. The Information Brokers in the network are

responsible for matching publishers with subscribers, for routing the content, and for initiating the

movement of data through the network so that subscribers receive the published content. In

PURSUIT, the specific broker that is involved in the matching process between publisher and

subscriber is called the rendezvous point or just RV. Also, this point may be referred to as a

rendezvous node, or RN. This allows for effective decoupling of space/time constraints between

the subscriber and publisher.

In terms of naming, the fundamental PSIRP architecture (upon which PURSUIT builds)

uses flat names, but organizes these identifiers into scopes, allowing for some aggregation into

hierarchical structures. Scopes can be physical structures (e.g., campus network, corporate

network) or logical structures (e.g., Facebook friends, Twitter followers.) The identifiers are like

those used in DONA, in that there is a Sid (Scope identifier) and a Rid (Rendezvous identifier)

28

used to uniquely identify an item. This binary identification is common in DONA-like naming

schemes (e.g., P:L). PSIRP is a clean-slate approach to the Internet. In other words, it aims to

replace the current Internet architecture without relying on current protocols.

There are three foundational functions that are executed in PURSUIT: rendezvous

function, topology and routing function, and forwarding function. The rendezvous function

matches subscribers’ interests with specific content from publishers. The so-called topology and

routing module monitors the network topology and constructs and updates the routing tables,

effectively creating delivery paths for the content. And of course, the forwarding module is

responsible for forwarding information on the appropriate interfaces based on the paths established

by the routing function. Routers are also responsible, in many cases, for caching popular content

within a domain.

2.2 Review of Security and Privacy in Information-Centric

Networks

 While this paper focuses on cache pollution attacks, which will be covered later, other

security and privacy issues in ICNs are noteworthy and will be discussed here. The authors of [17]

provide a more comprehensive discussion of many different security, privacy, and access control

issues that are of importance in ICN. I will only cover a few topics here.

2.2.1 Denial of Service Attacks

 Denial of Service (DoS) and Distributed Denial of Service (DDoS) form a pattern of attack

in which an attacker wishes to reduce the availability of resources. DoS attacks focus on flooding

a network or a specific server with requests in order to make it difficult or impossible for legitimate

users to access the assets in which they are interested.

29

 Some researchers categorize interest flooding, content poisoning, cache pollution and other

attacks as DDoS techniques [31]. Interest flooding consists of an attacker sending interests into

the network for content that is unlikely to be cached in in-network storage devices. This is in order

to reduce the ability of these in-network storage devices to handle the interests, causing packet

drop and network congestion. In NDN, the attack is largely focused on filling the PITs with the

attacker’s interests. If the content being requested is fake (valid prefix, invalid suffix), then the

producers will simply disregard the requests, but the intermediate Pending Interest Tables are left

with the pending interests until they are purged due to expiration.

 The categories of countermeasure used against various DoS attacks in ICNs include rate

limiting on faces, monitoring of PIT size growth, statistical modeling approaches to detect

abnormal traffic patterns, and other detection mechanisms designed to punish attackers.

2.2.2 Content Poisoning Attacks

 As discussed earlier, some researchers consider content poisoning to be a subset of DoS

attacks. However, it is worth treating separately. Content poisoning attacks seek to fill in-network

storage devices with invalid or malicious content. This type of attack requires that an attacker

control at least one intermediate router so that it can inject invalid content into the network. The

content has a valid name, but fake or malicious content or a fake signature. Some ICN

architectures are more resilient to this type of attack than others, especially those architectures that

use self-certifying names.

 A DNS cache poisoning attack occurs when an attacker inserts bad data into a DNS server’s

cache so that they can control server responses for those names. Interest and data packets in NDN

are routed directly, and not converted to addresses, so it would seem the problem is solved.

30

However, this is incorrect. The authors of [32] note that NDN cache poisoning can be achieved

using a combination of route hijacking and content poisoning. If carefully planned, an attacker

can position themselves in a network to answer interests with invalid (and often, quite large)

content.

 In terms of countermeasures, many approaches exist. Digital signing and verification of

each packet is one especially popular approach. For example, SCID (self-certifying interest/data

packet) [32] are one such solution. These types of signatures allow the consumers to immediately

determine if content was poisoned or not.

 Another approach is exclusion-based feedback [33]. This approach takes advantage of a

feature in NDN called selectors. If a client independently determines content with certain data to

be invalid or poisoned, it can exclude this content and report to the network storage device (content

storage router) that it excluded that content. The content storage router can then use these

exclusions, collected from all consumers on all faces, to reduce the rank of a content object.

Although a potentially effective approach, malicious consumers could send false exclusion data to

the router to reduce the rank of normal content.

2.2.3 Privacy

 Privacy is an area of discussion that has been largely untouched in ICN architectures [26].

Many architectures naturally leak content and location information, names, payloads, signatures,

and other such information. To truly introduce privacy into ICN-based architectures would require

introduction of primitives into the network layer with no overlays.

If an overlay was used, this would cause leakage of current IP problems into ICN – duct-

taping a fundamental problem that should be solved and optimized at the network layer. However,

31

the authors of [26] argue that an upper-layer service might be required to provide privacy. They

even suggest that trying to provide privacy in a name-based architecture like NDN is a fool’s

errand.

The authors of [34] cover privacy as it relates to caching. They suggest that much

information can be gleaned simply by an attacker requesting content from a content storage router.

If the content was cached, then the attacker can assume that someone with which the attacker

shares a face must have requested the content also. This simple type of attack would be classified

as a timing attack.

They go further in establishing mitigation for two types of traffic: interactive (such as

streaming communication) and content distribution. One of the tactics involves artificial delay.

This too comes with problems and has a potential of reducing cache effectiveness. Other

approaches such as random cache to create an anonymity set of content. This too comes with

trade-offs, and efficiency considerations.

Few papers exist on privacy in ICN. Therefore, privacy remains largely an open issue in

ICN-based architectures.

2.3 Caching and Current Approaches to Mitigating Cache Pollution

Effects

In a normal situation within ICN, content storage routers (an enabling technology for in-

network caching) should cache the most popular content objects. These cached items typically are

requested following a Zipf-like distribution [18]. The goal of caching the most popular items is of

32

course to reduce the latency and network load associated with requests and data transfers for

specific content objects.

The goal then, of an attacker leveraging a cache pollution attack against an information-

centric network is typically to reduce the effectiveness of the cache by pushing popular contents

out. An attacker could do this in many situations by simply requesting less popular content

frequently (often with far more frequency than legitimate consumers’ typical request frequency.)

So, the goals of an attacker in a more granular view is to increase link utilization and to decrease

cache hits (and likewise, increase cache misses.)

2.3.1 Cache Pollution

Cache pollution is frequently divided into two categories: locality disruption and false

locality [17]. Locality refers to the phenomenon in which the same content set are accessed with

higher frequency than other contents [35]. The name is derived from the fact that a particular

locale (location or area of influence) is likely to have certain content sets that are more popular

than others, and thus more frequently accessed.

The locality disruption attack seeks to disrupt the area served by a particular cache (its

locale.) The requested contents may come from the entire content space and assume no special

knowledge on the part of the attacker. The entire purpose is to churn the cache. In other words,

the purpose is to move popular items around in the cache and ultimately cause some of the lower

ranked of the most popular items to be pushed out of the cache. This in turn, increases cache

pollution and decreases hit rate.

During a false locality attack, the attacker attempts to change the popularity distribution of

a given cache by requesting particularly unpopular contents. This type of attack, rather than

33

requesting randomly selected content objects from the universe of content or a very large subset,

involves the attacker continuously requesting a smaller number of items in an attempt to push even

the most popular content objects out of the cache.

2.3.2 Current Related Research

Much of the research that has been done to prevent cache pollution has involved CCN and

NDN. One such example is the work of Xie et al. with CacheShield in [36]. This particular work

is intended to work in most large generic networks, but the research specifically involves CCN.

The CacheShield approach is a proactive approach that attempts to thwart locality-disruption

pollution attacks by exploiting the ability to distinguish between the characteristics of normal

requests and malicious requests. The authors note that normal requests follow Zipf-like

distribution. As the name suggests, this distribution is based on Zipf’s law which, when applied

to content caching, states that the relative probability of a request for the ith most popular content

object is proportional to 1/i. Malicious requests, on the other hand, tend to follow uniform

distributions. CacheShield tracks the cached content objects, and even the requested objects’

names. Although the names take up some space, they take up, typically far less space than the

actual content objects. Therefore, when a content item is requested but not cached, its name is

recorded (if this is the first request), or the count of requests for that name is incremented by one

(if the content has been requested before.) Ultimately, if the content count reaches a certain

threshold, then the content will be cached. A major weakness of this approach is that the attacker

might be able to determine the threshold, t, and then simply request objects past that threshold,

causing their (previously unpopular) content to be cached.

34

Conti et al. [37] describe a somewhat more realistic threat model. This work differentiates

between two different attack strategies, called broad-selection and smart-selection. Broad-

selection, used by the authors of CacheShield [36] is a strategy in which the attackers would issue

interest messages for all existing content with equal probability. However, as Conti et al. [37]

point out, this is not always realistic in an attack scenario. Further, the authors’ findings show that

this attack is not effective with LFU (least-frequently used) cache replacement algorithms being

used. So, they enhance the threat model to test their own work using so-called smart-selection.

With smart-selection, the adversary focuses on a small subset of the universe of content.

Specifically, smart-selection is used to focus on the least-requested content in a Zipf distribution

(the tail of the distribution.) The authors vary the number of content objects used in the attack,

from 0.5 to 1.0 (50% to 100%) of the entire content domain. This would of course mean that 100%

would mimic the uniform attack scenario in [36].

This work of Conti et al. [37] uses a machine-learning based approach. Their algorithm

has two phases: learning and attack detection. The learning phase results in a calculation of an

attack detection threshold τ. The attack detection phase also uses a computed value δm, which for

a given measurement m, provides a measurement of the variability to determine normal behavior.

If at some point δm surpasses τ, then an attack is detected. This work is an improvement on

CacheShield, but still suffers from several weaknesses. For example, it detects the existence of an

attack but does not track which messages caused the attack or given any origin information.

Further, it assumes that normal behavior follows Zipf-like distribution, and attacks always follow

uniform distribution. The authors argue that an attacker could simulate a Zipf-like distribution, of

course, which would render this approach less effective. The authors also assume that a content

store has the capacity to store 1% of the entire content domain.

35

Karami et al. in [38] describe a cache replacement technique that helps to both detect and

mitigate both false locality and locality disruption attacks. This technique is based on the attributes

of content and their relationship to attack vs honest consumer content. The authors use the

Adaptive Neuro-Fuzzy Inference System (ANFIS) approach that has been used in linguistics

studies to find nonlinear relationships between inputs and outputs. This approach, as the name

suggests, uses a combination of both ANN (artificial neural networks) and fuzzy systems. The

neural networks are used to automatically extract fuzzy logic rules from the numeric data. The

membership functions are also adjusted in an adaptive manner through this process. There are

three steps in the technique, namely I/O pattern extraction, then accuracy verification of the

ANFIS, and finally integration into the cache replacement policy. The approach does show

promise in increasing cache robustness in mitigating cache pollution attacks. Although the

approach does show improvement over CacheShield, the scalability is somewhat questionable due

to the amount of memory and computational overhead required.

All these approaches, as [17] points out, and as seen above, suffer from various

deficiencies. The problems range from ineffectiveness against smarter attack scenarios to

extremely high computational overhead at routers. Therefore, even with the work that has been

done, the exploration of cache pollution attacks and their effects, and ways to overcome these

effects remain an open research area with room for significant improvement [16], [17].

36

Chapter 3

Per-Face Popularity Scheme and

Cache Replacement Algorithms

3.1 Overview of Per-Face Popularity Concepts

Previous approaches to cache pollution prevention are often highly susceptible to increases

in attack rate, and focus largely on detection mechanisms, which may be difficult if the attackers

are smart. Further, particularly aggressive attackers on a single, or even small percentage of faces

can potentially churn the cache quite substantially. Due to the limitations of previous approaches

in addressing cache pollution attacks in ICN, we have developed a scheme that prevents Interest

messages arriving over any one face from affecting the cache more than those arriving over any

other face. Our scheme is called the per-face popularity (PFP) scheme.

The goal of our scheme is to mitigate the effect that an attacker can have on a cache and

ultimately limit the percentage of the cache that can be polluted, and more importantly, increase

the overall hit rate of the most popular items. Although legitimate users can help hoist a given

content object into the cache if the items have borderline popularity, our scheme can significantly

reduce this impact.

Additionally, if the attacker(s) request content that is outside the set of typical content on

the higher frequency end of the Zipf-like distribution, our scheme shows significant protection

against even very aggressive false locality attacks from one or even several attackers against a

given content storage router.

37

When designing a PFP-based solution, one technique would be to give each face its own

cache. Although this is implementable, it is not feasible given performance requirements and the

desire to make the algorithm(s) scalable. Instead, the PFP scheme puts a limit on the amount of

influence each face can have on which items remain in the cache.

Our scheme uses a popularity manager (PopMan) class that maintains lists of content

request frequencies from different faces. Ultimately, the items that are maintained in the content

store (cache) are those that are most popular overall, given equally weighted influence from

consumers whose request ingress across all faces of the content storage router. Overall popularity

refers to what items are most popular based on the Interest messages entering a router across all

faces, without any one face having more influence than any other face.

In many current schemes such as the basic least-frequently used (LFU), least-frequently

used with dynamic aging (LFU-DA) or least-recently used (LRU) [39], any single face or small

set of faces can receive far more Interests than others and this can overwhelm the overall popularity

for a given content object or objects. This is particularly effective against LFU-based schemes,

since they are concerned with frequency of requests, but also affects LRU-based schemes, since

the likelihood of most recently requested items being attacker-requested items also increases.

38

Figure 4: Normalizing Popularity Contributions in PFP

In our PFP scheme, we normalize the contributions from each face so that Interests arriving

over any one face have no more effect on the popularity than those arriving over any other face.

This process is visualized in a simplified model in Figure 4. As a result, the items that remain in

the cache are those that have legitimate popularity, represented fairly across all faces. It is this

normalized overall popularity that is used to determine overall content store ranking and

ultimately, what items are evicted and what items remain.

3.2 Equations, Analysis, and Theorems

3.2.1 Popularity Calculation

 The popularity of items coming across any given face is based upon the frequency of

Interest messages arriving on that face. When the Interests arrive, they affect the frequency used

in calculating the popularity of any given item. This popularity is then used to rank items within

39

a list of most popular items, and then the rank, r, is presented by each face and used in the overall

popularity contribution, thusly:

𝑃𝐹𝑃 𝐶𝑜𝑛𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛 =
1

𝑟

Equation 1: Contribution from a Face

 If a content object is not ranked on a particular face, then its contribution is 0.

 The overall popularity of a content object C, across all faces, is the sum of the popularity

contributions from all the faces. That is:

𝑃(𝐶) = ∑
1

𝑟𝑖

𝑛

𝑖=1

=
1

𝑟1
+

1

𝑟2
+ ⋯ +

1

𝑟𝑛−1
+

1

𝑟𝑛

Equation 2: Overall Popularity, P(C) of a Content Object, C

where ri is the ranking of a given content object C from the ith face of n faces.

3.2.2 Analysis

 Given a content router with n faces, if cache pollution attacks are launched against k faces

on a router using the PFP scheme, the fraction of the cache that can be polluted (with no

contributions from non-attacker faces) is on average about
𝑘

𝑛
.

 To launch a pollution attack, attackers may control one or a small set of faces and send

large amounts of Interests through those faces. However, with the PFP scheme, we normalize the

contributions from each face so that Interests arriving over any one face have no more effect on

the popularity than those arriving over any other face. As a result, the percentage of cache that

attackers could pollute is approximately proportional to the faces they are able to have total control

against.

40

 As we shall see with the experimental results, even with a relatively high pollution

percentage, the hit rate of legitimate consumers can still be quite high. In many situations (e.g.,

when compared to LRU), PFP-DA has a higher pollution percentage, but also a much higher hit

rate.

3.2.3 Theorems

 Under certain assumptions, it is possible to establish an upper bound on the amount of

cache that an attacker can pollution, resulting in theorems related to the cache pollution percentage.

We assume that consumers are all requesting various content items, such that the total number of

content items being requested across the universe of contents is substantial enough to equal the

size of the cache, n. In other words, all the popular content is being requested by the various

consumers. In practice, the behavior observed might be different and the cache pollution

percentages can vary widely. However, given the aforementioned assumptions, we can establish

the subsequent theorems.

Theorem 1: Single Face Attack Scenario

 Given a content router with n faces, if a cache pollution attack is launched against a single

receiving face of that router on which the PFP scheme is used, the fraction of cache that can be

polluted is no more than 1/n.

Proof:

 Consider that an attacker controls a single face. If there are a total of n faces, then that

means the logical quota given to each face is t/n where t is the total cache capacity and n is the

number of faces.

41

 Let m be 1/n of the total cache capacity. That is,

𝑚 =
1

𝑛
∗ 𝑡 =

𝑡

𝑛

Equation 3: Logical Quota of Cache Capacity

To prove the theorem, we need only show that no more than m unpopular items (selected

by the attacker) can be cached with only one face receiving interests entirely from the attacker.

The top m ranked content objects (or object chunks) of each face have a popularity of 1, 1/2, 1/3,

…, 1/m, respectively. So there are m * n = t content objects with a minimum popularity of at least

1/m.

Therefore, in order for a content chunk to be cached, it must have an overall popularity of

at least 1/m. If an attacker can influence only a single face (and other faces are receiving interests

for the top n popular objects from legitimate consumers), then he can only cause m unpopular

objects to have a popularity of at least 1/m. Therefore, the attacker can only cache m items

maximally.

Thus, it is demonstrated that Theorem 1 holds.

Theorem 2: Coordinated Attacks Launched Through Two Faces

 Given the same assumptions as described earlier in this section for Theorem 1, we establish

a theorem related to an attack against k = 2 faces. Given a content router with n races, if cache

pollution attacks are launched against k = 2 faces, on that router on which the PFP scheme is used,

the fraction of cache pollution is no more than

42

 𝑘2

𝑛
=

 22

𝑛
=

4

𝑛

Equation 4: Cache Pollution Ratio For Two Attacker Scenario

Proof:

 If an attacker is coordinating a more sophisticated attack and has complete control of the

Interests entering two of the faces of a router, given no contribution from faces not under the

attacker’s control, the fraction of cache pollution is no more than

4

𝑛

 Again, for a content item to be cached, it must have an overall popularity of at least 1/m. First,

we show the maximum number of items that can be cached is no more than
4𝑚

𝑡
=

4

𝑛
. This is the

upper bound.

An item needs to be ranked at least 2m by at least one of the attacked faces. Otherwise the highest

overall popularity score for any item with ranking no better than 2m is

1

2𝑚 + 1
+

1

2𝑚 + 1
=

2

2𝑚 + 1
<

1

𝑚

 Thus, it would not be cached.

 Therefore, at most 2m items from each face can be cached, thus with control of two faces, as

most 4m items total can be cached by the attacker.

 Next, we demonstrate it is possible to have 4m items with an overall popularity of at least 1/m.

The top m ranked content items on each face have a popularity of at least 1/m. In additional, there

43

is a way to have an overall popularity of at least 1/m items ranked between m+1 and 2m. For

example, items ranked both by face 1 and face 2 (the attackers), as follows.

Ranking from i1 Ranking from i2 Overall popularity

m + 1 3m – 1 1/(m+1) + 1/(3m-1) = 4m/(m+1)(3m-1) > 1/m

m + 2 3m – 2 1/(m+2) + 1/(3m-2) = 4m/(m+2)(3m-2) > 1/m

m + 3 3m – 3 1/(m+3) + 1/(3m-3) = 4m/(m+3)(3m-3) > 1/m

… … …

m + (m-1) = 2m – 1 3m – (m-1) = 2m + 1 1/(2m-1) + 1/(2m+1) = 4m/(2m-1)(2m+1) > 1/m

1/2m 1/2m 1/2m + 1/2m = 2/2m = 1/m
Table 1: Coordinated Attacks Through Two Faces

 Thus, as we can see from the data in Table 1, items ranked between m + 1 and 2m by face 1 are

cached, and those ranked between m + 1 and 2m by face 2 are cached. But this is the maximal

amount an attacker with the Interests entering two faces on a router can control.

 Therefore, Theorem 2 holds.

3.3 Per-Face Popularity (PFP) Cache Replacement Algorithm

 The original system that we developed was the regular per-face popularity (PFP)

replacement scheme. This scheme uses several interactions among various components, including

custom components entirely of our design, as well as the ndnSIM [20], [40] system, which is a

network simulator extension built on top of the extremely well-known ns-3 [41].

3.3.1 The Popularity Manager (PopMan)

 A significant component of the overall PFP design is the popularity manager (PopMan.) It

contains several fields of useful data that are utilized by the overall system in calculating what

items should be evicted due to lowest popularity. One crucial field is a vector of

44

FaceContentFrequency objects. The FaceContentFrequency class and its composition relationship

with the ContentFrequency class is modeled below.

Figure 5: UML Class Diagram of the FaceContentFrequency and ContentFrequency Classes

 As we can see in Error! Reference source not found., the class diagram indicates a

composition relationship between the FaceContentFrequency and the ContentFrequency classes.

Obviously, this diagram does not cover the entire PFP design, but shows a little about its

subcomponents so that we may understand it better.

 From a bottom-up description, the ContentFrequency objects are used to encapsulate a

content object name with a frequency (the keyK field and associated methods are used with the

PFP-DA, and not with regular PFP.) Although this class is general enough to be used in a regular

45

popularity scenario without any per-face considerations, it is used by the PFP system by its

composing class, FaceContentFrequency. Namely, a vector of the ContentFrequency objects is

maintained within each FaceContentFrequency object. This vector is used so that each face can

keep a list of the names of all content objects requested on it.

 The popularity manager (PopMan) class (not indicated in Error! Reference source not

found.) maintains a vector of FaceContentFrequency objects itself. Thus, the PopMan can manage

and determine the rankings exposed by the FaceContentFrequency objects’ methods. This allows

the PopMan to utilize this data in its getOverallPopularity method, which directly applies Equation

2.

Input: contentName as string

Output: overall popularity as a double

overallPopularity := 0.0

facePopularity := 0.0

rank := 0

for every ci  faceContentFreqList do
 rank := ci.getRank()

 if(rank != -1)

 facePopularity := 1.0 / rank

 overallPopularity := overallPopularity + facePopularity

 end if

end for

return overallPopularity

Algorithm 1: Popularity Manager's Get Overall Popularity Pseudocode

Furthermore, the PopMan maintains a list of all the iterators to the content that live in the

actual content storage router’s cache. It then uses the getOverallPopularity method in its

getContentToEvict method, which is used directly by the eviction policy (more on this later.)

3.3.2 Simulator Modifications

46

 As a matter of necessity, we modified the ndnSIM simulator itself for various purposes,

including collection of the required hit and miss data from legitimate users. The PopMan class

was placed within the ns-3 and ndnSIM source to easily obtain and provide information to the

modified classes therein.

 Of particular interest is our modification of the Forwarder class, which is the powerhouse

of the Network Forwarding Daemon (NFD) [42]. Because ndnSIM does not currently expose any

methods to obtain actual Interest hit or miss data, this was implemented as a modification of the

Forwarder class to provide necessary bespoke functionality. Additionally, ndnSIM does not

provide any reasonable way of subclassing the Forwarder class and setting the subclassed

Forwarder as the new forwarder to use in the NFD. Therefore, modifying the actual class was the

only straightforward way of accomplishing our goals.

 The data collection done within the Forwarder class takes place primarily in its

onIncomingInterest, onContentStoreHit, and onContentStoreMiss methods. These methods were

provided by ndnSIM originally but have been modified in order to collect data about the interests

and their hit and miss values.

 The onIncomingInterest method of the Forwarder class calls the recordInterestStats method

of our popularity manager, PopMan. This is used by the PFP scheme to determine what content

should be evicted. This is done as follows.

47

Input: inFace of type nfd::Face, representing a specific face over which the
interest was made
Input: interest of type const ns3::ndn::Interest&, representing the interest
object that triggered this method call

if(this == nullptr or we’re not using PFP)
 return
end if

faceID := inFace.getId()
nameOfContent := getShortName(interest)
ind := getIndexOfFace(faceID)

if(ind == -1)
 construct faceCF(faceID, csLimit, whichRouter)
 faceCF.incrementFrequencyByContentName(nameOfContent)
 faceContentFreqList.push_back(faceCF)
else
 faceContentFreqList.at(ind).incrementFrequencyByContentName(nameOfContent)
end if

Algorithm 2: Popularity Manager's Record Interest Stats Pseudocode

Every node’s Forwarder object will automatically maintain a popularity manager object

variable. However, if the node is not a content storage router (e.g., a regular router, consumer,

producer) then, the object pointer will be null.

Only in the case of the storage router having a popularity manager object set will the pointer

not be null. In Algorithm 2, we can see that the first part ensures that whatever router we’re on is

a content storage router, and that it is using the PFP algorithm.

After obtaining the face, name of the content, and index of the face from the

faceContentFreqList, the algorithm either creates a new FaceContentFrequency object (if the ind

is -1, indicating that it was not found by getIndexOfFace) when the face is new, and otherwise uses

the found FaceContentFrequency object and increments its associated frequency.

The Forwarder class’s onContentStoreHit and onContentStoreMiss each call the PopMan

class’s recordHitMissInfo method. This method is for data collection and is not particularly useful

for the actual PFP scheme itself, so it can be considered part of the metrics collection, but is still

48

of important note here. They only do so if the content is not one of the attacker’s content. In a

deployable implementation, it would obviously render cache pollution attacks trivial if we knew a

priori which content requests were from an attacker. However, for data collection purposes, it’s

important that we only count the hits and misses that originate from legitimate consumers.

The fundamental recordHitMissInfo algorithm is shown below in pseudocode.

Input: interest of type const ns3::ndn::Interest&, used to indicate the interest
Input: isHit of type bool, to distinguish between a hit (true) and a miss (false)

if(this == nullptr)
 return
end if

nameOfContent := getShortName(interest)
seqNumOfContent := empty
component := interest.getName().at(1)

if(component.isSequenceNumber())
 seqNumOfContent := to_string(component.toSequenceNumber())
end if

index := getIndexOfCHMF(nameOfContent)

if(index != -1)
 construct chmf(nameOfContent, seqNumOfContent)
 if(isHit)
 chmf.incrementHitFrequency()
 else
 chmf.incrementMissFrequency()
 end if

 contentHMFreqList.push_back(chmf)
else
 if(isHit)
 contentHMFreqList.at(index).incrementHitFrequency()
 else
 contentHMFreqList.at(index).incrementMissFrequency()
end if

Algorithm 3: Popularity Manager's Record Hit and Miss Info Pseudocode

 Algorithm 3 has some similar features that we’ve discussed before. Initially, it ensures that

the popularity manager object pointer is not null. This time, however, it does not ensure we are

49

using PFP. This is because we want to record hit and miss data regardless of whether PFP is

enabled or not.

Afterwards, we set the content name, sequence number, and component variables. It is

important to note that in ndnSIM, different data is stored as interests. For example, handshakes,

acknowledgements, and other setup information can travel as Interest messages. However, the

different content objects in ndnSIM are identified by different sequence numbers. Therefore, only

actual content object interests have a sequence number. Therefore, we test the component to

ensure it is a sequence number, and then obtain it if it is (as a string.) We attempt to find the name

of the content in our list of ContentHMFrequency objects (content hit/miss frequency objects.)

These objects are used to maintain hit and miss information for our data collection. If an object

corresponding to the interest exists in our list, positive integer is returned. If not, a -1 is returned,

indicating this is the first time we’ve seen this content interest.

If the returned value is -1, we create and push back a new ContentHMFrequency object

with the appropriate hit or miss incrementation, and if it’s not -1, we use the index of the found

object, and just increment its hit or miss frequency.

The data that is collected regarding interests is ultimately used to determine what content

item should be evicted from the actual content store when eviction is required.

3.3.3 Policy Subclassing

 Continuing our discussion, the next important component of the PFP scheme is the custom

Policy class. The UML diagram below shows the fields and methods related to our discussion,

even though others are inherited (and left empty.)

50

Figure 6: UML Class Diagram of the PopularityPolicy class

 The PopularityPolicy class is a subclass of the Policy class, provided by ndnSIM. This

class is responsible for the decisions that are made regarding cache replacement for the content

store. Fortunately, unlike the Forwarder class, the Policy class can be subclassed and then the

subclass can be set as the ndnSIM system’s policy to indicate the custom replacement policy that

is to be used.

 The PopularityPolicy class maintains a shared smart pointer, popularityManager, to the

popularity manager object. The constructor sets the managed popularityManager pointer to

nullptr.

 Arguably, the most interesting of the methods is doAfterInsert, which is a pure virtual

(abstract) method in the Policy class. Of the inherited pure virtual methods (doAfterRefresh,

doBeforeErase, doBeforeUse and evictEntries being the others), this is the only one that our

scheme fully implements, while the others are simply left as stub methods.

 This method, doAfterInsert is called by the system after an insertion is made into the cache

of a given router to which the policy object is applied. An interesting aspect of ndnSIM is that it

automatically caches everything by default. Even if someone wishes to implement a cache

insertion algorithm (rather than a cache replacement algorithm), they must emulate this behavior

by immediately evicting the content object that was cached. Therefore, from a purely technical

51

perspective, all the caching algorithms are cache replacement algorithms, even if some

implementations imply they are implementing a caching (cache insertion) algorithm.

 The system removes an item from the content store (cache) when emitSignal is called. This

(macro) method has two parameters passed to it: the signal to emit, and the associated data to

perform its duty. Specifically, for evicting content objects, the signal beforeEvict is passed in to

emitSignal, along with the iterator that is to be removed from the content store.

 Because of the work done in the PopMan class, only minimal work is done in the

PopularityPolicy class in doAfterInsert, as follows.

Input: it of type nfd::cs::iterator, the iterator representing the item in the
content store that was just inserted

dataIt := it->getData()
dataName := dataIt.getName().toUri()
popularityManager->addIterator(it)

if(getCs()->size() > getLimit())
 iterator iteratorToRemove := popularityManager->getContentToEvict()

 popularityManager->removeIterator(iteratorToRemove)

 this->emitSignal(beforeEvict, iteratorToRemove)
end if

Algorithm 4: PopularityPolicy's doAfterInsert Pseudocode

The code in Algorithm 4 is quite straightforward for the most part. As an item is added to

the content store (the default behavior, done automatically when a Data message enters the router

across any face), the name is obtained and the popularityManager pointer adds the iterator to its

object’s list of iterators.

The size of the content store, which is the number of items currently in the cache itself, is

compared to the limit, and if it exceeds the limit, the cache replacement routine is initiated. If the

52

size is not greater than the limit, then there is room in the content store and no need to initiate the

cache replacement algorithm. This is done primarily by calling the popularity manager object’s

getContentToEvict method through its iterator.

After the iterator is obtained, the popularity manager object removes the iterator from its

own list, which reflects the content of the actual cache. Finally, the signal to remove the given

content object from the content store is emitted. A clear separation of concerns is established to

decrease coupling and increase cohesion in the software, as the popularity manager does the

majority of the work related to determining what to evict, and the policy simply uses this

information to do the actual eviction.

3.4 Per-Face Popularity with Dynamic Aging (PFP-DA) Cache

Replacement Algorithm

 A somewhat subtle issue with the original PFP scheme that reduces scalability is in its

maintaining of names and frequencies of all items for which interests have been expressed and

doing so for each face. The problem with this is that the entire universe of contents is massive and

maintaining even the names of all contents (or all of what is requested of it) is simply not scalable.

Many items in the universe of content might be requested only once and never have a chance of

entering the actual cache, yet a potentially enormous list1 of content object names is maintained

for each face of the router.

1 The phrase “list” in this context is used as a general term for a collection, and does not necessarily refer to an

implementation of the ADT List

53

Therefore, using techniques that have been applied in other algorithms, such as LFU-DA

[39], these name lists can be dramatically reduced, improving scalability without the PFP

algorithm being reduced in any substantial way.

 Considering some background information first, the least frequently used with dynamic

aging algorithm (LFU-DA) takes the least frequently used (LFU) algorithm and adds an aging

component to the items to ensure that no items remain in the cache longer than they should. The

fundamental LFU algorithm maintains items in its cache based on the frequency of request. Quite

simply, the most frequently accessed item remains at the “top of the list”, and less popular items

below it, with the least popular item(s) in the cache being pushed out as necessary to make room

for new popular items.

 However, a flaw with the basic LFU algorithm is this – it doesn’t take recency into

consideration. For example, a content object Cj might be cached at some time and might be

extremely popular – receiving thousands upon thousands of requests. Therefore, every time a

request is made, the frequency counter of Cj is incremented. Later, this item may not be nearly as

popular, perhaps rarely or never receiving requests. But, because it was so incredibly popular at

some time in the past, it continues to occupy space in the cache even though it is not currently

popular.

 The solution used in LFU-DA is to use a dynamic aging aspect to maintaining items in the

cache. While some LFU-A (LFU with aging) algorithm exist, they require special parameters to

be passed in a priori, and to be manually tuned, which is undesirable. The dynamic aging aspect

allows the system itself to tune the system and manage the aging. One specific variation of the

LFU-DA algorithm found in [39], and uses the following criteria.

54

• Ki, the key value of content object i

• L, which is the running age factor, that starts at 0 and is updated every time an item in the

cache is replaced. For an item f that is being replaced, Kf is the priority key of that item.

When the item is replaced, L := Kf.

• Fi is the frequency (number of requests) for the item

We calculate the key for an object being brought into the cache as follows:

𝐾𝑖 = 𝐹𝑖 + 𝐿

Equation 5: LFU-DA Key Value Calculation

Instead of being kept in a cache by means of the frequency alone, the key value is used

instead. Since this key value reflects a larger value than the frequency itself (typically), it helps to

ensure a natural churn of the cache with recency considered.

Drawing upon the LFU-DA approach, PFP-DA (Per-Face Popularity with Dynamic Aging)

uses the keys (as mentioned earlier) to organize the popularity rankings themselves. We do not

apply the key technique directly to the content store itself. Instead, the key technique controls

what remains in the popularity ranking lists of content names and what is evicted from them.

Instead of having a hypothetically unbound list of content names for each face that could

be as large as the entire content space, we limit the size of each of these popularity-ranking lists to

the size of the cache. For example, if the content store of the router can hold 100 items, then each

face maintains a list of up to 100 items each. Therefore, one could even say that there are two

planes of cache replacement algorithms at play here. One is for the “cache” of content names for

each face, which adds item names as they are received until the list is full and then applies to

55

replacement routine; the other is the actual content storage router cache, which uses the PFP

algorithm. Combined, these form the PFP-DA algorithm.

56

Chapter 4

Experimental Results

4.1 Simulation Environment and Set-up

 As mentioned previously in this dissertation, the network simulation environment that was

chosen was ndnSIM (specifically, version 2) [20], an extension built on top of the extremely

popular ns-3 simulator [41]. This choice was made largely due to the extensive use of ndnSIM for

NDN-related research throughout the research community.

 Since ns-3, and as a result, ndnSIM do not work on Windows platforms yet, a Linux-based

machine was utilized. Specifically, the machine has a System76 Gazelle laptop, with Ubuntu

16.04.1 LTS (64-bit) as the operating system. The processor consists of a quad-core 6MB cache

3.5 GHz i7-6700HQ. 16 GB of DDR4 RAM are installed as well.

 The ndnSIM simulator consists of many components extending the use of the ns-3

simulator. Although a full coverage of the entire simulation system could easily fill several books,

a few of the significant classes and features are discussed here. Note that some of these have

already been discussed to some extent, and I will avoid undue repetition in this section.

4.1.1 Consumers and Producers

Using the ns-3 Application class as its base, ndnSIM created the ns3::ndn::App class and

from that, has created several node roles. Two of the most important are the Consumer and

57

the Producer classes. As the name suggests, objects of classes in the Consumer hierarchy request

content by issuing Interest messages. Producers of course, generate the content to fulfill request.

Figure 7: UML Domain-Level Class Diagram of App hierarchy

In Figure 7, the Application class is from ns-3. ndnSIM creates its own hierarchy by

extending Application with the ns3::ndn::App class. The other classes in this hierarchy are also in

the ns3::ndn namespace as well, but the scope resolution and namespace names have been removed

in order to save space and avoid redundancy.

The descendants of Consumer are particularly noteworthy, especially

ConsumerZipfMandelbrot. As the name suggests, this type of consumer is used to request content

objects using a Zipf-like distribution. Various attributes can be applied to the consumers to control

how they work. One such parameter in the ConsumerZipfMandelbrot is indicated by the character

“s”, which represents the α value [43], [44]. While Zipf’s law implies a normalizing constant, Ω

58

is used in a distribution of items, where item i is ranked
Ω

𝑖
, a Zipf-like distribution results in items

ranked by
Ω

𝑖𝛼
. Content requests over the Web have been recorded as typically falling in a Zipf-like

distribution with α ranging between 0.64 and 0.83. Therefore, ndnSIM researchers have typically

set their α value to 0.6, 0.7, 0.8, or 0.9. For consistency in my research, I have recorded the data

with Zipf’s α value set to 0.8. And, although the formal experimentation has been done with 0.8,

informal simulation runs have ranged from 0.6 to 0.9 with extremely similar results to the data

collected in this work.

4.1.2 Adversarial Model

In addition to the major modifications mentioned earlier in this work, I added an additional

attribute to the ConsumerCbr to support the adversarial model. Although an entirely new subclass

could have been created, I chose to add a simple attribute to indicate whether the consumer was

an attacker or not. If it was, then it would look for items to request from a special file, attack.txt,

in the simulation directory in ndnSIM.

Because the attack is launched with a small subset of the overall content space, and the

attacker attempts to move unpopular items into the cache from this set, it could be best classified

as a false locality attack. The false locality attack is generally considered to be the more effective

attack when compared to the locality disruption attack [45].

We assume a rather powerful attacker model, in that the attackers know the popularity

distribution of the content space. Therefore, as mentioned, the false locality attack becomes

possible. We assume that when a face is under attack, that the attacker(s) completely control that

face. In other words, no non-attacker content is being requested through interests on that face.

59

Furthermore, in some of our experiments described later, we assume that attackers can

control more than one face. The frequency with which the attackers send interests varies by the

experiments being performed. These experiments typically range from six times the normal

consumer at a rate of 720 (normal consumers request at 120 interests/second) to eight times the

normal consumer at a rate of 960.

In the simulation scenarios that were run with multiple attackers, the coordination among

attackers can be seen resulting from the shared set of items used in the attack. These are the items

described above that come from the attack.txt file used in the simulation. Therefore, the theoretical

maximum damage against a cache would be the size of the content object list used by the attackers.

However, in practice, multiple variables affect this situation. For example, if the attacker content

list was larger than the items that could be held in the content store, then the size of the content

store would be the theoretical maximum.

Also, the range of unpopular content objects being requested can affect this situation as

well. For example, if the attackers request items that are somewhat popular, then legitimate

consumers as well as attackers contribute to the popularity of these items. This would have far

less impact on the hit rate, since some of the items that may make their way into the cache would

be requested by legitimate consumers.

Therefore, to give our attackers the best possible chance of causing the most damage

possible, we have given them all benefits related to the simulation. The attackers are assumed to

know the least popular contents, so that there would be little to no legitimate consumer contribution

to their popularity. The attackers also have substantially faster request frequencies than typical

users. Our tests do not assume any detection mechanisms, so that only the robustness created by

the cache replacement schemes and associated algorithms affect the cache churn.

60

4.1.3 Simulation Scenarios

 An important aspect of ndnSIM and ns-3 simulations is the concept of a scenario. A

scenario is the actual client application of ndnSIM that sets up the simulation, and ultimately

launches it. Features such as the frequency of consumer and attacker requests, the size of the

content store, the policies to be used, and many others are typically set in the scenario.

Additionally, the number of simulated seconds is set in a scenario as well.

Note that this does not necessarily correspond to actual seconds. In fact, it typically takes

a significant amount more real time to simulate any given simulated time than what the simulated

time implies. Because ndnSIM is a discrete event simulator, the real time it takes to run an

application can vary significantly depending on the complexity of the data structures and

algorithms employed.

For the experimentation, I employed three different scenarios:

• PFP-DA

• LFU-DA

• LRU

These scenarios correspond to the three algorithms for comparison. The PFP-DA is of

course our cache replacement scheme, Per-Face Popularity with Dynamic Aging. The LRU (least

recently used) is considered one of the most basic cache replacement algorithms and provides a

look at how an algorithm that doesn’t consider request frequency at all works. LFU-DA (least

frequently used with dynamic aging) is an efficient LFU implementation that serves as a good

comparison against our PFP-DA given that it does take frequency into consideration and should,

61

theoretically, protect against cache pollution and especially keep the most popular items in the

cache.

4.2 Topologies

 A multitude of topologies exist, including several custom topologies that could be tested.

To test the focus of our PFP-DA against other algorithms, it was conducive to data gathering to

devise a very simple single router scenario, as well as a more advanced scenario to see how the

algorithms affect intermediate routers, particularly those that have no consumers directly attached

to them. The data collected from the core routers and the edge routers in the slightly more

advanced scenario can tell us a lot about the algorithms’ effectiveness depending on the situation.

Some information about where content storage routers can also be gleaned from the data as well.

 To obtain the clearest picture possible given resource constraints, the topologies were kept

relatively simple, but the scenarios applied a multitude of variations, including:

• Cache size as a percentage of the content space

• Request frequency (speed) of a single attacker across a single face

• Number of attackers requesting at same frequency across multiple faces

Each of these is important for determining the overall effect that each algorithm has on the

cache pollution percentage and the hit rate. We wanted to know which, or if, varying these aspects

of the scenarios would have a significant impact on any given algorithm. The impact (or lack

thereof) gives us insight into the resistance of each algorithm against attack, as well as general

performance – scenarios when there are no attackers.

62

As a reminder of how the Interests and Data messages work in NDN, an Interest message

is sent into the network. If a (close) content storage router has the requested content cached in its

content store, it responds with the associated Data message (containing the content object being

requested.) Frequencies, recency, or other statistics are recorded as necessary depending on the

algorithm being used.

However, if an Interest message cannot be satisfied by a given content router, the router

inserts the Interest information into its PIT (Pending Interest Table.) If other Interest messages

arrive for the same content object, and if the Data message has not arrived to satisfy the request

yet, these subsequent Interest messages are stored in the PIT as well. Then, when the Data message

finally arrives, it will satisfy the requests made from all different consumers on different faces.

An important side effect of the way this system works is that Interests for the same object

are not forwarded further into the network if Interests for that object exist in the PIT. This is called

interest aggregation. This prevents unnecessary congestion, but also means that since the Interests

aren’t forwarded, the cache replacement algorithms on routers beyond the routers connected

directly to consumers (both legitimate consumers and attackers) will likely not be pushed to their

limits to obtain metrics. Therefore, the routers connected to the most consumers are of particular

interest.

Our findings were exciting and, in some cases, a bit unexpected. We will discuss more

thoroughly the results later in this chapter. Needless to say, the PFP-DA algorithm produced

interesting results both when under attack, and when no attackers were requesting content objects.

4.2.1 Simple Topology

63

Figure 8: Simple Topology with Single Router and Ten Consumers

 The network diagram of Figure 8 shows the simple topology (ST) consisting of ten

consumers connected to a single content router, which is then connected to a content producer.

Although this specific diagram indicates a single red consumer (an attacker), this is only true of

the single-attacker scenarios used in testing. Larger number of attackers were used in other tests

to see how strong the PFP-DA (and other algorithms) are against multi-face attacks.

 Another important point to make is that each of these consumers could technically

represent an aggregate set of incoming interests, and not just a single consumer. So, whether there

are one or one hundred consumers sending requests over the same face, the situation is essentially

the same. To simplify the discussion and the understanding of the scenarios, we view the

relationship between consumer and face to be a one-to-one relationship.

64

 We note that for the PFP-β tests later in this dissertation, a modified version of the simple

topology, called the larger simple topology (LST) was used. This is identical to the ST, but with

20 consumers (including attackers) attached to the router instead of 10.

4.2.2 Advanced Topology

Figure 9: Advanced Topology with Five Routers, Twenty-Three Consumers, and a Producer

The topology modeled in Figure 9 (AT) is similar to the so-called merging scenario used

in Xie’s CacheShield test cases [36], with ours being slightly more complex with more consumers

and routers. Again, although the three consumers with red color indicate three attackers leveraging

a cache pollution attack against router R1, this is only one variation of the attacks that were

launched.

We remain focused in our testing on a single router taking most of the Interest messages

and which is attached to the most consumers. However, in this scenario, unlike the simple

topology, we sprinkle a few consumers down the path toward the producer, and leave some routers

as content storage routers, but not directly attached to any consumers (e.g., R3, R0.)

65

This advanced topology can give us interesting insights into the effects of the various cache

replacement algorithms at each of the intermediate routers, as well as the edge routers. It can also

help us decide what routers might benefit from being given caches, and which do not provide as

much benefit.

The routers connected directly to many consumers (in our case, R1) will provide the most

meaningful data. This is due to many factors but is especially true because of interest aggregation

(described earlier.)

4.3 Results

 In this section, we display and discuss the experimental results. As mentioned before, we

test the topologies running the three different algorithms against various cache sizes, various

attacker request frequencies (while the legitimate consumer request frequencies remain the same),

and various number of attackers. Note that the baseline metrics consist of a single attacker, 720

frequency of the attacker vs 120 frequency of a legitimate consumer, and 100 cache size (1%).

 In each subsection, we examine the results of modifying the single variable in that

subsection and explore the implications of the data collected to determine how each algorithm

performs under the different circumstances.

 The content space used in these tests consists of 10,000 content objects, with sequence

numbers 1 through 10,000.

4.3.1 Varying Cache Size

66

 In this set of tests, there was one attacker for both the simple and advanced topologies,

requested at a frequency of 720 requests per second, with regular consumers requesting at 120

requests per second. The only item that was varied was that of the cache size, ranging from 100

(1%) to 500 (5%) out of the overall content space size of 10,000. The number of items requested

by an attacker is equal to the cache size to make it possible for the attacker to try to completely

overwhelm the cache (e.g., if all consumers attached to a router were attackers and the cache size

was 500, the attackers could completely fill the cache with unpopular items.)

Algorithm Cache Size Cache % Pollution % Hit % Top 100 Top 50

PFP-DA 100 1% 15.00% 19.02% 62.80% 75.53%

LFU-DA 100 1% 36.00% 12.67% 41.17% 50.00%

LRU 100 1% 36.00% 8.82% 28.72% 34.64%

PFP-DA 200 2% 14.00% 25.57% 80.02% 91.53%

LFU-DA 200 2% 39.00% 17.08% 52.83% 62.73%

LRU 200 2% 37.00% 14.66% 46.04% 54.76%

PFP-DA 300 3% 12.67% 29.32% 87.76% 97.96%

LFU-DA 300 3% 42.00% 20.53% 62.67% 72.19%

LRU 300 3% 38.00% 18.58% 56.46% 66.13%

PFP-DA 500 5% 12.40% 34.89% 93.65% 98.96%

LFU-DA 500 5% 39.40% 25.84% 73.58% 81.03%

LRU 500 5% 39.00% 24.53% 70.51% 80.25%

Table 2: ST with Varying Cache Size, Single Attacker at 720 Frequency

 The Pollution % metric indicates the percent of the cache at the router occupied by attacker

content. The Hit % is the overall hit percentage (hit rate) over all requests. To determine if the

algorithms are effective at maintaining the most popular items in the caches, we look at the top

100 and top 50 items, according to the sequence number, which reflects the Zipf-like distribution.

In other words, how good are the algorithms at maintaining the truly popular contents in the

caches?

67

 The PFP-DA cache pollution percentage holds well against the single attacker across all

cache sizes, decreasing the percentage of pollution from 15.00% with a cache size of 100, to

12.40% with a cache size of 500. The other two algorithms, LFU-DA and LRU all experience

pollution increases. With LFU-DA, this is expected since the frequency of the attacker is

reasonably aggressive compared to the nine legitimate consumers. LFU-DA experiences a slight

drop with a 500 limit of its cache. With LRU, which is not based on frequency, the attacker’s

frequency likely increases the probability that during a snapshot of the cache contents, that attacker

content will populate the cache during the frequent and continuous churn.

 Even more striking, arguably, is with the hit percentages. All three algorithms experience

increases in hit percentage as the cache size increases. This is to be expected, since the caches can

accommodate a larger portion of the content space and therefore this increases the probability that

an item being requested will be in the cache.

 The overall percentage of PFP-DA across all cache sizes is better than both LFU-DA and

LRU. Because LFU-DA does attempt to maintain the most popular items in the cache, it performs

better than LRU in each of the different cache size variation tests. However, PFP-DA holds a

6.35% to 9.05% better overall hit percentage than the LFU-DA algorithm.

 The difference of these algorithms becomes even more evident when we examine the top

100 and top 50 hit percentages. Again, while all three algorithms experience top 100 and top 50

item hit percentage improvement as the cache size increases, for top 100, PFP-DA maintains a

21.63% lead on LFU-DA for 100 content items (1%), and then a 27.19% lead for 200 content items

(2%), 25.09% lead for 300 content items cache (3%), and 20.07% for 500 content items cache

(5%.) For the top 50 items, PFP-DA maintains a range of 17.93% (for 500 content items cache,

68

or 5% of the content space) to 28.80% (for 200 content items cache, or 2% of the content space)

lead over LFU-DA. This is substantial, under all conditions.

 Now, we observe the results from the advanced topology for pollution and hit rates.

 Pollution %

Algorithm Cache Size Cache % R0 R1 R2 R3 R4

PFP-DA 100 1% 18.00% 8.00% 23.00% 16.00% 8.00%

LFU-DA 100 1% 17.00% 22.00% 17.00% 22.00% 14.00%

LRU 100 1% 18.00% 18.00% 17.00% 19.00% 17.00%

PFP-DA 200 2% 22.00% 7.00% 24.00% 23.00% 7.50%

LFU-DA 200 2% 21.50% 23.50% 21.50% 21.50% 19.50%

LRU 200 2% 17.00% 22.00% 19.00% 22.00% 16.50%

PFP-DA 300 3% 22.33% 7.00% 14.67% 21.67% 8.67%

LFU-DA 300 3% 22.33% 22.33% 21.67% 22.67% 22.00%

LRU 300 3% 17.33% 22.33% 19.67% 19.67% 17.67%

PFP-DA 500 5% 23.40% 6.60% 12.40% 19.20% 9.20%

LFU-DA 500 5% 23.00% 24.60% 22.80% 23.40% 23.20%

LRU 500 5% 19.80% 25.00% 22.80% 22.20% 20.60%

Table 3: AT with Varying Cache Size, Single Attacker, 720 Frequency - Pollution %

 Hit % R1 Special Hit %

Algorithm
Cache
Size R0 R1 R2 R3 R4 top 100 top 50

PFP-DA 100 0.55% 16.78% 4.97% 1.56% 2.52% 67.17% 81.07%

LFU-DA 100 0.01% 10.78% 2.19% 0.58% 2.35% 42.61% 53.34%

LRU 100 0.00% 6.89% 1.20% 0.05% 1.19% 26.05% 31.98%

PFP-DA 200 0.74% 21.98% 6.07% 1.48% 4.05% 81.55% 93.42%

LFU-DA 200 0.04% 15.36% 3.57% 0.52% 3.23% 59.16% 71.41%

LRU 200 0.00% 11.94% 2.13% 0.12% 1.86% 44.07% 53.03%

PFP-DA 300 0.79% 25.40% 7.64% 1.57% 5.20% 89.16% 97.69%

LFU-DA 300 0.01% 18.10% 4.23% 0.51% 3.92% 65.42% 77.52%

LRU 300 0.00% 15.54% 2.82% 0.15% 2.52% 54.99% 65.08%

PFP-DA 500 0.88% 30.93% 10.83% 2.26% 6.33% 96.15% 99.62%

LFU-DA 500 0.01% 23.36% 5.65% 0.83% 5.01% 78.37% 88.69%

LRU 500 0.00% 21.57% 3.94% 0.18% 3.61% 70.49% 80.84%

Table 4: AT with Varying Cache Size, Single Attacker, 720 Frequency - Hit %

69

 For this topology, there are five routers to consider. Therefore, the tables have been split

to accommodate the data.

Table 3 and

Table 4 demonstrate that overall cache pollution percentage does not always correlate with a higher

hit rate. For example, LRU has lower percentage rates on router R0 for all cache sizes from 200

up to 500. However, when we observe the hit percentage of LRU at this router is 0% across all

router sizes. And while the other algorithms don’t have particularly high percentages, they at least

register with some. PFP-DA, as low as the R0 percentage is, dominates LFU-DA.

 We observe similar pollution percentage situations on routers R2 and R3, where LRU has

less cache pollution percentage but substantially lower hit rate than both LFU-DA and PFP-DA.

What causes this seeming contradiction? Although lowering the cache pollution percentage is a

goal, it is important to keep two aspects of this data in mind: 1.) the data is derived from a snapshot

in time at a given point in the simulation (i.e., the end of the simulation), and 2.) the overall

percentage of pollution says nothing of which items remain in the cache. LRU likely has mostly

less popular items in the cache than both LFU-DA and PFP-DA.

This is confirmed by the hit percentages across all routers and all cache sizes. PFP-DA

always performs better than LFU-DA, and LFU-DA always performs better than LRU using the

hit rate metrics.

Since R1 is the router with the most consumers attached to it, we can glean the most useful

information about the algorithms’ performance metrics. Again, like in the simple topology tests,

PFP-DA maintains a substantial lead on LFU-DA, and even more significant lead over LRU. This

is particularly obvious, once again, when we observe the hit rates of the top 100 and top 50 items

on router R1. PFP-DA demonstrates resilience against the attack and maintains a substantially

70

higher percentage of popular content objects, especially from the top 100 and top 50, than do either

LFU-DA or LRU.

4.3.2 Varying Attacker Request Frequencies (Single Attacker)

 To determine the effect of varying the attacker request frequencies on the cache pollution

and hit rate, we maintained one attacker, with a size 100 (1%) cache, and consumers with a request

frequency of 120. The attacker request frequency (attacker speed) was varied to determine the

abilities of the three algorithms when being attacked by an aggressive attacker.

Algorithm
Attacker

Speed
Pollution % Hit % top 100 top 50

PFP-DA 360 16.00% 19.04% 62.85% 75.60%

LFU-DA 360 22.00% 13.36% 42.15% 50.74%

LRU 360 24.00% 10.13% 32.74% 39.34%

PFP-DA 720 15.00% 19.02% 62.80% 75.53%

LFU-DA 720 36.00% 12.67% 41.17% 50.00%

LRU 720 36.00% 8.82% 28.72% 34.64%

PFP-DA 960 15.00% 19.03% 62.83% 75.56%

LFU-DA 960 41.00% 11.67% 38.11% 45.92%

LRU 960 39.00% 8.23% 26.85% 32.41%

PFP-DA 1200 15.00% 19.03% 62.84% 75.58%

LFU-DA 1200 44.00% 11.65% 38.41% 46.39%

LRU 1200 45.00% 7.77% 25.43% 30.71%

Table 5: ST with Size 100 Cache, Single Attacker with Varying Request Frequency

With the simple topology, we observe in

71

Table 5 that the pollution percentage of the cache running PFP-DA remains essentially

unaffected by the change in attacker speed. The LFU-DA and LRU, on the other hand, are directly

impacted by this increased aggression against their content stores and grow quickly.

Figure 10: ST with 100 Cache Size, Single Attacker, Varying Attacker Request Frequency Pollution %

 Graphically, we can see in Figure 10 that varying the attacker’s request frequency has

virtually no impact on the cache running PFP-DA. However, we can also see that LFU-DA and

LRU are both impacted significantly by the attacker’s frequency, with their pollution percentages

increasing steadily as the attacker’s frequency of requests increases from 360 to 1200.

 The phenomenon exhibited by PFP-DA is clearly related to its normalization of the per-

face contributions to the overall popularity, thus affecting the overall cache. Since only one

attacker (or more correctly, one face of attackers) is present, the attack frequency on that face has

no impact on the contribution of that face. All other faces (all other consumers) have equal

contributions, even though their request frequencies are substantially less.

10.00%

15.00%

20.00%

25.00%

30.00%

35.00%

40.00%

45.00%

50.00%

360 720 960 1200

Pollution Percentage

PFP-DA LFU-DA LRU

72

Figure 11: ST with 100 Cache Size, Single Attacker, Varying Attacker Request Frequency Overall Hit %

Figure 12: ST with 100 Cache Size, Single Attacker, Varying Attacker Request Frequency Top 50 Items Hit %

 Both Figure 11 and Figure 12 clearly demonstrate PFP-DA’s superiority across all attack

speeds in terms of hit rate (hit %.) LFU-DA does a reasonably good job of maintaining the hit

rate, since it is frequency-based, but it is affected somewhat by the increase in attacker frequency.

0.00%

2.00%

4.00%

6.00%

8.00%

10.00%

12.00%

14.00%

16.00%

18.00%

20.00%

360 720 960 1200

Overall Hit %

PFP-DA LFU-DA LRU

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

360 720 960 1200

Top 50 Items Hit %

PFP-DA LFU-DA LRU

73

However, LRU clearly does not protect against the attacker’s requests for unpopular contents, as

its hit rate decreases steadily as the attacker’s request frequency increases.

 Interestingly, not only does PFP-DA do the best job at maintaining its hit rate as the

attacker’s frequency increases, it also starts with a substantially better hit rate the LFU-DA. PFP-

DA starts with around 5% better overall hit rate than LFU-DA, and 25% better hit rate the top 50

items. The resistance to the effects of the cache pollution attacks in these scenarios is significant,

and the results clearly demonstrate PFP-DA’s dominance with a simple topology and single

attacker.

 Let us now consider the AT (Advanced Topology) tests with a single attacker and variation

of only the request frequency.

 Pollution %

Algorithm Attacker Speed R0 R1 R2 R3 R4

PFP-DA 360 11.00% 8.00% 11.00% 11.00% 3.00%

LFU-DA 360 11.00% 12.00% 11.00% 12.00% 11.00%

LRU 360 11.00% 14.00% 14.00% 12.00% 10.00%

PFP-DA 720 18.00% 8.00% 23.00% 16.00% 8.00%

LFU-DA 720 17.00% 22.00% 17.00% 22.00% 14.00%

LRU 720 18.00% 18.00% 17.00% 19.00% 17.00%

PFP-DA 960 21.00% 8.00% 13.00% 18.00% 7.00%

LFU-DA 960 22.00% 27.00% 25.00% 25.00% 19.00%

LRU 960 15.00% 28.00% 19.00% 16.00% 16.00%

PFP-DA 1200 26.00% 8.00% 26.00% 24.00% 7.00%

LFU-DA 1200 27.00% 29.00% 25.00% 27.00% 23.00%

LRU 1200 16.00% 11.64% 20.00% 19.00% 14.00%

Table 6: AT with Size 100 Cache, Single Attacker with Varying Request Frequency - Pollution %

For the pollution percentage on the advanced topology, we focus on R1, as it is the router

that is directly attached to the most consumers. We see that under these conditions, the R1 running

74

PFP-DA experiences the least cache pollution (8% throughout all attacker frequency tests.)

However, the values vary greatly for both LFU-DA and LRU. LFU-DA experiences an overrun

of pollution as the frequency increases, but LRU appears to be all over the place. However, even

looking at all other routers, LRU has better (lower) cache pollution percentages than LFU-DA,

and even in most cases, PFP-DA.

At any given time, the LRU cache will have whatever items were most recently requested.

Although it appears to be naturally resistant against cache pollution, it is equally “resistant” against

maintaining popular items in the cache. This is clear from the hit rate statistics from earlier, as

well as below.

 Hit %
R1 Special

Hit %

Algorithm
Attacker

Speed
R0 R1 R2 R3 R4 top 100 top 50

PFP-DA 360 0.63% 16.60% 5.22% 1.58% 2.57% 66.75% 80.49%

LFU-DA 360 0.04% 12.58% 2.75% 0.38% 2.18% 50.25% 62.00%

LRU 360 0.00% 7.46% 1.23% 0.06% 1.23% 28.18% 34.55%

PFP-DA 720 0.55% 16.78% 4.97% 1.56% 2.52% 67.17% 81.07%

LFU-DA 720 0.01% 10.78% 2.19% 0.58% 2.35% 42.61% 53.34%

LRU 720 0.00% 6.89% 1.20% 0.05% 1.19% 26.05% 31.98%

PFP-DA 960 0.58% 16.84% 4.98% 1.51% 2.44% 67.18% 81.02%

LFU-DA 960 0.02% 10.80% 2.01% 0.29% 1.82% 42.54% 52.83%

LRU 960 0.00% 6.58% 1.20% 0.06% 1.15% 24.94% 30.67%

PFP-DA 1200 0.58% 16.87% 4.88% 1.49% 2.48% 66.98% 80.65%

LFU-DA 1200 0.15% 11.64% 2.45% 0.33% 2.32% 46.22% 58.57%

LRU 1200 0.00% 6.41% 1.18% 0.06% 1.14% 24.36% 29.95%

Table 7: AT with Size 100 Cache, Single Attacker with Varying Request Frequency - Hit %

Again, in

75

Table 7, we observe what we’ve seen before. The hit rates are quite low for the routers R0,

R2, R3, and R4. This is largely due to them not being connected directly to any, or in the cases of

R2 and R4, not many consumers. From the perspective of network design, the routers with very

low hit rates could just be regular non-storage routers since their contributions are mostly

negligible for all three algorithms.

Therefore, we once again turn our attention to the router R1. Running PFP-DA, R1

maintains around 16.6 – 16.9% hit rate throughout all attack frequencies. LFU-DA appears to

have reasonably good resistance to the attack, even increasing its overall hit rate when attacked

with 1200 frequency from the attacker. Due to the minimal variation, this indicates that the

algorithm is maintaining the percentage, and the variation itself is due to natural fluctuations

between scenario launches.

However, there is still no question – PFP-DA maintains the highest percentage of overall

hit rate. When we consider the top 50 items, PFP-DA has anywhere from 20-30% better hit rate

than LFU-DA. For the top 50, we can also see that LFU-DA, especially from the change of

frequencies of 360 to 720, drops in hit rate substantially. In this case, this appears to be more than

just simple variation between scenario launches, although it certainly contains some variation due

to this phenomenon. LFU-DA cannot fully resist the flooding of requests from the attacker.

4.3.3 Varying Number of Attackers

 To further our understanding of how the three algorithms we are testing work under

different conditions, we turn our attention to varying the number of attackers. In the scenarios

used for these tests, the cache size is held at 100 (1%), the attackers’ request frequency is 720

requests per second, with regular consumers requesting at 120 requests per second.

76

Algorithm #Attackers % Attackers Pollution % Hit % top 100 top 50

PFP-DA 0 0.00% 0.00% 20.69% 69.67% 82.96%

LFU-DA 0 0.00% 0.00% 14.82% 47.55% 55.59%

LRU 0 0.00% 0.00% 12.17% 38.59% 46.40%

PFP-DA 1 10.00% 15.00% 19.02% 62.80% 75.53%

LFU-DA 1 10.00% 36.00% 12.67% 41.17% 50.00%

LRU 1 10.00% 36.00% 8.82% 28.72% 34.64%

PFP-DA 3 30.00% 41.00% 16.29% 54.60% 66.76%

LFU-DA 3 30.00% 65.00% 9.16% 29.78% 35.31%

LRU 3 30.00% 64.00% 5.86% 19.34% 23.50%

PFP-DA 5 50.00% 68.00% 12.67% 43.89% 53.83%

LFU-DA 5 50.00% 74.00% 3.17% 9.62% 9.77%

LRU 5 50.00% 74.00% 3.86% 12.95% 15.82%

PFP-DA 7 70.00% 83.00% 7.97% 27.88% 34.80%

LFU-DA 7 70.00% 85.00% 0.70% 1.83% 1.67%

LRU 7 70.00% 88.00% 2.07% 6.91% 8.57%

Table 8: ST with Size 100 Cache, 720 Attack Frequency, with Varying Number of Attackers

 The data in Error! Reference source not found. for the Simple Topology gives us insight

into the typical performance of the algorithms, including when there are no attacks occurring. In

the tests involving no attackers, the pollution, as expected, is 0%.

 For the ST, the number of attackers is out of the total number of consumers, which is 10.

Therefore 1 attacker is 10%, 3 attackers is 30%, and so on.

77

Figure 13: ST with 100 Cache Size, 720 Attacker Frequency, Varying Number of Attackers Pollution %

 Graphically, we can observe that all three algorithms are susceptible to being overwhelmed

when the number of attackers is great enough. However, we observe that LFU-DA and LRU don’t

have substantial differences between them in this set of tests. In terms of pollution, PFP-DA

performs substantially better from the single attacker scenario with 10% compromised nodes, up

to about the 7 attacker (70% compromised nodes) scenarios.

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

100.00%

0 1 3 5 7

Pollution

PFP-DA LFU-DA LRU

78

Figure 14: ST with 100 Cache Size, 720 Attacker Frequency, Varying Number of Attackers Hit %

Figure 15: ST with 100 Cache Size, 720 Attacker Frequency, Varying Number of Attackers Top 50 Hit %

 As expected, in both Figure 14 and Figure 15, all three of the algorithms show hit rates that

fall as the number of attackers increase. LFU-DA appears to plummet as 5 attackers (50%)

overwhelm the algorithm. Although PFP-DA clearly suffers as the number of faces being attacked

0.00%

5.00%

10.00%

15.00%

20.00%

25.00%

0 1 3 5 7

Hit %

PFP-DA LFU-DA LRU

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

0 1 3 5 7

Top 50 Hit %

PFP-DA LFU-DA LRU

79

increases, the drop is steady. LFU-DA experiences becomes overwhelmed because the sum of the

frequencies of the attackers, regardless of the face on which the attacks arrive, matter. Since LFU-

DA has no normalization of the per-face contributions, the sum of multiple attackers across

multiple faces, or a single attacker with a very aggressive request frequency would all cause a

massive overwhelming of the algorithm. For example, at the 5 attacker (50%) mark, LFU-DA

feels the entire brunt of the attackers, with 720 * 5 = 3,600 requests per second being for attacker

contents. This is six times as much as the requests from all the legitimate consumers, that is, 5 *

120 = 600 requests per second. This results in over 85% of the total requests received coming

from attackers, even though the attackers make up only 50% of the total consumers.

 PFP-DA, on the other hand, experiences a more near-linear decline with respect to the

number of attackers. This is due to the normalization that takes place upon the contribution of

each of the faces, which scales the contributions so that the overall contribution of requests on any

given face does not substantially diminish the contributions of requests on any other face.

 Before continuing with a different topology, we discuss the per-item hit rate briefly, in the

scenario with no attackers. These results were very impressive as they demonstrate the

effectiveness of PFP-DA at expressing the true popularity of items, normalized across all faces.

The results from the recent attacker-variation graphs and tables clearly show PFP-DA is superior

to both LFU-DA and LRU by about 6% better hit rate overall, and around 30% for the top 50

items. This demonstrates that PFP-DA is the best cache replacement algorithm overall, even

during periods where no attack is being launched. The explanation for this is that because of the

normalization across the multiple faces, the items that remain in the cache give a truer and fair

indication of what is popular, not just popular across one or two faces with higher frequencies of

request.

80

Figure 16: Per-Item Hit Rate, Zero Attackers, Simple Topology

 The results are displayed graphically in Figure 16, which charts the moving average with

an x-axis logarithmic scale. Clearly, PFP-DA outperforms LFU-DA and LRU for the top content

objects, maintaining a very strong hit rate until around the item 100, where the results are less

clear. Our previous results show that PFP-DA performs better with maintaining the most popular

items in the cache, and this figure reinforces that PFP-DA is better, even with no active attack.

 Now, we move our attention to the Advanced Topology (AT). For the AT, we consider

the total number of attackers as being out of 22 total consumers, but since all of them are connected

to R1, we are mostly concerned with this percentage. Therefore, the calculated percentage is based

on the number of total consumers attached to the router R1.

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

100.00%

1 10 100 1000 10000

Per Item Hit Rate

PFP-DA LFU-DA LRU

81

 Pollution %

Algorithm #Attackers
% Attackers on

R1
R0 R1 R2 R3 R4

PFP-DA 0 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

LFU-DA 0 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

LRU 0 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

PFP-DA 1 5.26% 18.00% 8.00% 23.00% 16.00% 8.00%

LFU-DA 1 5.26% 17.00% 22.00% 17.00% 22.00% 14.00%

LRU 1 5.26% 18.00% 18.00% 17.00% 19.00% 17.00%

PFP-DA 3 15.79% 39.00% 30.00% 25.00% 25.00% 14.00%

LFU-DA 3 15.79% 39.00% 46.00% 37.00% 42.00% 34.00%

LRU 3 15.79% 14.00% 32.00% 16.00% 17.00% 14.00%

PFP-DA 5 26.32% 50.00% 44.00% 27.00% 30.00% 16.00%

LFU-DA 5 26.32% 46.00% 67.00% 46.00% 47.00% 46.00%

LRU 5 26.32% 25.00% 52.00% 28.00% 24.00% 23.00%

PFP-DA 10 52.63% 66.00% 77.00% 17.00% 32.00% 25.00%

LFU-DA 10 52.63% 67.00% 78.00% 63.00% 67.00% 61.00%

LRU 10 52.63% 22.00% 73.00% 32.00% 32.00% 25.00%

Table 9: AT with Size 100 Cache, 720 Attack Frequency, with Varying Number of Attackers – Pollution %

 Hit % R1 Special Hit %

Algorithm #Attackers
% Attackers

on R1
R0 R1 R2 R3 R4 top 100 top 50

PFP-DA 0 0.00% 0.46% 17.52% 4.21% 1.29% 2.61% 69.71% 84.75%

LFU-DA 0 0.00% 0.06% 13.15% 1.95% 0.44% 2.41% 51.08% 64.39%

LRU 0 0.00% 0.00% 8.30% 1.28% 0.07% 1.21% 31.20% 38.16%

PFP-DA 1 5.26% 0.55% 16.78% 4.97% 1.56% 2.52% 67.17% 81.07%

LFU-DA 1 5.26% 0.01% 10.78% 2.19% 0.58% 2.35% 42.61% 53.34%

LRU 1 5.26% 0.00% 6.89% 1.20% 0.05% 1.19% 26.05% 31.98%

PFP-DA 3 15.79% 0.54% 16.13% 4.37% 0.99% 2.83% 64.87% 79.22%

LFU-DA 3 15.79% 0.00% 9.25% 2.04% 0.76% 2.20% 36.44% 45.02%

LRU 3 15.79% 0.00% 6.54% 1.42% 0.08% 1.27% 24.67% 30.50%

PFP-DA 5 26.32% 0.53% 14.74% 4.70% 1.67% 3.22% 60.95% 75.69%

LFU-DA 5 26.32% 0.04% 7.62% 3.08% 0.83% 2.18% 31.38% 40.66%

LRU 5 26.32% 0.00% 4.65% 1.57% 0.08% 1.33% 17.95% 22.38%

PFP-DA 10 52.63% 0.36% 10.22% 6.94% 1.96% 4.08% 42.28% 55.36%

LFU-DA 10 52.63% 0.00% 7.07% 1.97% 1.32% 2.44% 27.18% 34.60%

LRU 10 52.63% 0.00% 3.14% 2.19% 0.16% 2.10% 11.29% 13.87%

Table 10: AT with Size 100 Cache, 720 Attack Frequency, with Varying Number of Attackers – Hit %

82

The results in Table 9 show the effect of increasing the number of attackers in the AT test

scenarios. Not surprisingly, we again see that 0% attackers yields 0% cache pollution. Once we

increase this to 1 attacker, we have our base scenario that we’ve seen before. The cache pollution

for all three algorithms increases on R1 as the number of attackers increases. Until the 10-attacker

scenario, PFP-DA holds a substantially lower percentage than in the LFU-DA and LRU. For other

routers, this is less predictable. For example, R0 indicates a very low cache pollution percentage

for LRU when compared with both LFU-DA and PFP-DA. PFP-DA, overall has the worst cache

pollution percentage on R0. However, none of the pollution percentages give us a qualitative look

at the cache.

Figure 17: AT with 100 Cache Size, 720 Attacker Frequency, Varying Number of Attackers Pollution %

As we’ve seen before, the hit rate is what really gives us insight into the qualitative aspect

of the items that are being cached. Thus, in Table 10 we see that PFP-DA dominates every router

in every test set. Again, R1 is the most important router since it is the one with the most consumers

(including all attackers.)

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

0 1 3 5 10

Pollution %

PFP-DA LFU-DA LRU

83

Figure 18: AT with 100 Cache Size, 720 Attacker Frequency, Varying Number of Attackers Overall Hit %

Figure 19: AT with 100 Cache Size, 720 Attacker Frequency, Varying Number of Attackers Top 50 Hit %

 Graphically, the difference of hit rates is most obvious. Both Figure 18 and Figure 19 show

a tremendous advantage when PFP-DA is compared against LFU-DA and LRU. We see that in

both the overall and top 50 hit rates that PFP-DA seems to hold very steadily until approximately

0.00%

2.00%

4.00%

6.00%

8.00%

10.00%

12.00%

14.00%

16.00%

18.00%

20.00%

0 1 3 5 10

Hit %

PFP-DA LFU-DA LRU

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

0 1 3 5 10

Top 50 Hit %

PFP-DA LFU-DA LRU

84

50% (10) of the total consumers are attackers. At this point, PFP-DA performs less impressively

against the LFU-DA and LRU, but still maintains a significantly higher hat rate.

4.3.4 Varying Attacker Request Frequencies (Three Attackers) on

Advanced Topology

 We performed some additional tests to gain more insight into the attacks and their effects.

For this series, we used a combination of a constant number of attackers greater than one (3), while

also varying attacker request frequencies.

 Pollution %

Algorithm Attacker Speed R0 R1 R2 R3 R4

PFP-DA 720 39.00% 30.00% 25.00% 25.00% 14.00%

LFU-DA 720 39.00% 46.00% 37.00% 42.00% 34.00%

LRU 720 14.00% 32.00% 16.00% 17.00% 14.00%

PFP-DA 840 40.00% 29.00% 26.00% 28.00% 14.00%

LFU-DA 840 41.00% 39.00% 44.00% 44.00% 39.00%

LRU 840 17.00% 33.00% 16.00% 14.00% 13.00%

PFP-DA 960 42.00% 26.00% 26.00% 28.00% 16.00%

LFU-DA 960 39.00% 35.00% 42.00% 45.00% 38.00%

LRU 960 19.00% 29.00% 19.00% 15.00% 16.00%

Table 11: AT with Size 100 Cache, Varying Attack Frequency, with 3 Attackers – Pollution %

85

Figure 20: AT with Size 100 Cache, Varying Attack Frequency, with 3 Attackers – Pollution %

 In terms of the pollution percentage seen in

Table 11 and Figure 20, all three algorithms seem to remain quite steady as the attacker speed is

increased on all the routers. On R1, we see that PFP-DA does maintain the lowest pollution

percentage, but it is not by a substantial amount when compared with LRU. However, it is

significant against LFU-DA, which matters more in this type of comparison since it is frequency-

based.

 Hit % R1 Special Hit %

Algorithm Attacker Speed R0 R1 R2 R3 R4 top 100 top 50

PFP-DA 720 0.54% 16.13% 4.37% 0.99% 2.83% 64.87% 79.22%

LFU-DA 720 0.00% 9.25% 2.04% 0.76% 2.20% 36.44% 45.02%

LRU 720 0.00% 6.54% 1.42% 0.08% 1.27% 24.67% 30.50%

PFP-DA 840 0.58% 16.38% 4.31% 0.87% 2.82% 65.65% 79.83%

LFU-DA 840 0.00% 9.77% 1.48% 0.28% 1.67% 38.21% 48.03%

LRU 840 0.00% 6.28% 1.46% 0.08% 1.26% 23.80% 29.37%

PFP-DA 960 0.66% 16.44% 4.34% 0.88% 2.78% 65.81% 79.92%

LFU-DA 960 0.02% 9.27% 2.32% 0.64% 1.87% 36.13% 44.33%

LRU 960 0.00% 6.19% 1.45% 0.08% 1.27% 23.46% 28.98%

0.00%

5.00%

10.00%

15.00%

20.00%

25.00%

30.00%

35.00%

40.00%

45.00%

50.00%

720 840 960

Pollution

PFP-DA LFU-DA LRU

86

Table 12: AT with Size 100 Cache, Varying Attack Frequency, with 3 Attackers – Hit %

Figure 21: AT with Size 100 Cache, Varying Attack Frequency, with 3 Attackers – Hit %

Figure 22: AT with Size 100 Cache, Varying Attack Frequency, with 3 Attackers – Top 50 Hit %

The combination of more attackers and increasing attacker request frequency as seen in

0.00%

2.00%

4.00%

6.00%

8.00%

10.00%

12.00%

14.00%

16.00%

18.00%

720 840 960

Hit %

PFP-DA LFU-DA LRU

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

720 840 960

Top 50 Hit %

PFP-DA LFU-DA LRU

87

Table 12 as well as in Figure 21 and Figure 22 seems to have very little effect on the hit

rates for any of the algorithms as far as considering the attacks across the three frequencies.

However, from the very beginning, PFP-DA shows superiority against the other algorithms. This

is especially clear on R1, and with the top 100 and top 50 hit rates. PFP-DA maintains a better hit

rate by over 30% against LFU-DA throughout each test set.

88

Chapter 5

Toward Zero Cache Pollution

5.1 Parameterized Exponentiation of Rankings in Popularity

Contributions: PFP-β

 Let us consider Equation 2 again.

𝑃(𝐶) = ∑
1

𝑟𝑖

𝑛

𝑖=1

=
1

𝑟1
+

1

𝑟2
+ ⋯ +

1

𝑟𝑛−1
+

1

𝑟𝑛

 This equation calculates the overall popularity of a content object C. If we consider the

contributions from each of the faces, recall that we use the ri of the content object C from each

given face i. The ri represents the rank of the given content object C in face i's popularity ranking

list. For example, if face 1 has C ranked third in its popularity ranking list, then its contribution to

P(C) is
1

3
. The fourth ranked item would contribute

1

4
, and so on.

 From each face, therefore, contributions resembling that of a Zipf distribution are observed.

Thus, as the rankings move farther away from the top item, the contribution of an individual

ranking becomes less. To reduce the difference of rank contributions of the top item and

subsequent items, let us consider modifying the overall popularity equation to raise each rank

contribution value to β, a value ranging from 0 to 1. Although α could be used, this would likely

cause confusion with the Zipf-like distribution used as a parameter in ndnSIM and in the discussion

of consumer request patterns.

89

 So, our equation now becomes:

𝑃(𝐶, 𝛽) = ∑
1

𝑟𝑖
𝛽

𝑛

𝑖=1
0 ≤ 𝛽 ≤1

=
1

𝑟1
𝛽

+
1

𝑟2
𝛽

+ ⋯ +
1

𝑟𝑛−1
𝛽

+
1

𝑟𝑛
𝛽

Equation 6: Parameterized Exponentiated Overall Popularity

Here, the lower the β, the smaller the difference between the per-face contribution for each

item. With small β values, there is a reduction in the difference between any given ranked item

and the top ranked item, and contributions from multiple faces are favored as they contribute larger

amounts, overall.

To ensure zero or very low pollution percentage, we could set β to be very small (e.g., 0.1.)

Thus, the PFP contribution differences between the top ranked items and lower ranked items

becomes small. A low ranked item may still be cached if it receives contributions from multiple

faces. On the other hand, even the top ranked items of a single attacker may not be cached due to

the contributions for those items having come from a single or very few faces.

To obtain some initial data about what the addition of this parameter might have on

preventing cache pollution and increasing hit rate, we ran some preliminary tests. The tests were

performed with a single attacker on the Simple Topology (ST), with the attacker requesting at a

frequency of 720 requests per second, with a cache size of 100 (1%) and only varying the beta

value. Furthermore, we only performed these tests on PFP-DA since this is the only algorithm in

which β has meaning.

90

Note that our original Equation 5 essentially is a special case of Equation 6 with β set to 1.

In other words, we ran a set of truly Zipf-like contributions. Values of β less than 1 mark a Zipf-

like distribution of contributions.

Beta Value Pollution % Hit % top 100 top 50

1.00 14.00% 19.60% 65.04% 78.44%

0.90 15.00% 19.90% 66.07% 79.44%

0.70 14.00% 20.43% 68.03% 81.38%

0.50 12.00% 21.43% 71.22% 84.51%

0.30 8.00% 22.71% 75.42% 88.76%

0.10 4.00% 23.30% 76.96% 89.88%

0.05 4.00% 23.32% 77.01% 89.92%

Table 13: Early Results of Varying β Value

Although this modification of PFP is preliminary, it indicated impressive early results and

implied that lower pollution and higher hit rate are possible. Table 13 shows at the top, the β value

equal to 1.00, which is the case used throughout most of the research for this dissertation, as PFP-

DA can be seen now as a special case of PFP-β. Although the pollution and hit rate are both good,

they generally improve as the β value is lowered. The most drastic change in pollution is noticed

from 0.50 to 0.10 and 0.05. The pollution lowers dramatically from 12.00% to 4.00%, and the hit

rate also increases, both in terms of the overall hit rate, but also the top 100 and top 50.

 The motivation for this variation on PFP-DA is to see if we can further lower cache pollution

and increase hit rate. Through our initial tests, we have made some very interesting discoveries.

91

Attacker Speed Pollution % Hit % top 100 top 50

720 0.00% 22.76% 87.98% 98.83%

840 0.00% 22.81% 87.97% 98.83%

960 0.00% 22.84% 87.98% 98.83%

Table 14: PFP- β with single attacker, cache size of 100, beta of 0.05, varying attack frequency

 Firstly, we can observe the effects (or lack thereof) of varying the attack speed of the single

attacker. The pollution is 0%, which is impressive. The hit rates are substantially better than the

single attacker scenarios we tested for PFP-DA. Of course, with PFP-DA, the regular Simple

Topology was used, with 10 nodes attacked to the router, whereas our PFP- β was tested with the

Larger Simple Topology (LST), which has 20. However, we will find that even with two attackers

(10%) against the LST, considering the coordination and the consistency of percentage, the

pollution will remain at 0%, with almost identical hit rates.

 Therefore, we can conclude that if we consider the PFP-DA tests from earlier to be a special

case of PFP- β where β = 1.0, that the smaller β = 0.05 for essentially the same variations, performs

approximately 16% better in terms of cache pollution, approximately 3.7% better for overall hit

rate, about 25% better for the top 100 items (by Zipf-like distribution), and about 23% better for

top 50 items (98.83% vs 75.53%, for a rate of 720.) Astonishingly, the top 50 items experience

just under 99% hit rate with our β = 0.05. Although 75.53% was incredibly good, and totally

outperformed LFU-DA (50% top 50 hit rate), our β = 0.05 tests far surpass our previous PFP-DA

tests in terms of small attacker percentage with varying attacker frequency.

92

Beta Pollution % Hit % top 100 top 50

0.10 0.00% 22.55% 89.56% 97.91%

0.30 3.00% 22.09% 87.89% 97.79%

0.50 10.00% 20.51% 81.84% 94.81%

0.70 13.00% 19.13% 76.34% 90.23%

Table 15: Two attackers, frequency of 720, cache size of 100, varying beta value

 Secondly, we tested variations of β value, keeping the number of attackers at 2 with attack

frequencies of 720 each, a cache size of 100. As we see in Table 15, increasing the β value

increases the pollution percentage, and decreases the hit rates in these scenarios. Ceteris paribus,

as β moves toward the regular PFP-DA (β = 1.0), the performance drops.

Cache Size Pollution % Hit % top 100 top 50

200 0.00% 29.65% 99.05% 99.69%

300 0.33% 33.98% 99.53% 99.73%

500 0.40% 40.49% 99.60% 99.76%

Table 16: Two attackers, frequency of 720, β value of 0.1, varying cache size

 Thirdly, we held the number of attackers at 2 with attack frequencies of 720 each, a constant

β = 0.1, and varied the cache size. As more spaces become available, the pollution percentage

increases extremely slightly. However, it is negligible, even for a cache size of 500 (5% of the

content space), as only a few items, accounting for 0.4% of the entire cache, can make it in to the

content store’s cache.

 The overall hit rate increases significantly, as would be expected since more items can

reside in the cache, overall. The top 100 and top 50 hit rates increase slightly, but they are so close

to 100% already, there is little room for improvement.

93

Attackers % Attacker Pollution % Hit % top 100 top 50

1 5% 0.00% 22.76% 87.98% 98.83%

2 10% 0.00% 22.55% 89.60% 97.96%

3 15% 8.00% 21.00% 81.99% 95.86%

4 20% 26.00% 19.25% 81.59% 95.45%

5 25% 52.00% 15.43% 68.14% 87.85%

6 30% 63.00% 13.10% 60.38% 80.39%

Table 17: Attacker frequency of 720, β value of 0.1, cache size of 100, varying number of attackers

 In Table 17 we see where the PFP-β falls short. Although the performance of PFP-β is

better than PFP-DA for small percentages of attackers, PFP-β performs worse than PFP-DA when

the number of attackers increases. In other words, it appears that lower β values are resistant to

cache pollution under a small percentage of attackers (less than 15%, for example), but higher β

values (such as the original PFP-DA, technically holding β = 1.0) allow for more resistance against

larger percentages of attackers.

94

Chapter 6

Conclusions and Future Work

6.1 Summary and Conclusions

 The needs of users of the Internet have changed greatly since its inception. Originally,

features such as e-mail, sharing research data and other static content, and the sharing of expensive

resources among mutually trusting parties were the primary goals. However, modern usage

focuses far more on the content itself rather than the origin. Security, privacy, mobility, streaming

data, large file transfer, and many other aspects of the current Internet usage are commonplace.

 Due to the disparity between the current Internet architecture at the network level and the

needs of modern users, many overlays and patches have been applied to the aging architecture. As

a result, many researchers have begun to consider the future of the Internet and concluded that its

architecture should undergo a complete redesign, resulting in the category of future Internet

architectures known as Information-Centric Networks (ICN). Several architectures have been

proposed, one of the most important being Named Data Networking (NDN) [10], due largely to

its wide early support and growing research community.

 Among the many goals of NDN (and most ICN architectures), in-network storage stands

out as a major feature. Unlike the current solution deployed as an application overlay (CDN), in-

network storage takes advantage of optimizations at the network layer and spreads more storage

95

across larger regions in so-called content storage routers, which maintain a content store (cache)

of popular content objects (more correctly, content object chunks.)

 Because of its prominence within ICN architectures, the in-network storage devices and

their caches will undoubtedly be major targets for attackers. One attack that is leveraged against

the in-network storage capabilities of NDN to reduce its effectiveness is the cache pollution attack,

which involves attackers trying to get their (unpopular) contents cached instead of legitimately

popular contents. The ultimate goal of these attacks is to pollute the caches and reduce hit rate.

 In this thesis, I have discussed several current schemes to mitigate the effects of content

pollution, and to improve cache robustness. While these schemes [36], [37], [38] are effective in

some circumstances and show promise, they do not attempt demonstrate any specialized mitigation

measures against particularly aggressive attackers overwhelming one or a small percentage of

faces on a router with Interests for unpopular contents. Additionally, current cache replacement

algorithms (LRU, LFU, LFU-DA) are quite susceptible to aggressive attacks, which ultimately

pollute the cache, and moreover reduce the hit rate.

 Our research has focused largely on reducing the impact of a given attack against a face or

small number of faces. Each face has an associated ranked list of popular items on that face, and

their rankings contribute to the overall popularity calculation that is calculated at the router. This

scheme is called per-face popularity (PFP.) To ensure recency is also considered, and that no

content object remains in the cache too long beyond its genuine popularity, dynamic aging was

added to the algorithm, resulting in per-face popularity with dynamic aging (PFP-DA.) PFP-DA

also improves scalability by reduction in size and bounding of each face’s content ranking lists.

96

 Our tests in both very simple and slightly more advanced topologies result in lower cache

pollution in many circumstances, and more importantly, higher hit rate, especially for the most

popular items.

 Furthermore, we found that PFP-DA performs better even when no attacks are being

leveraged against the content store. Due to the power law distribution of Interest requests, many

items are requested only a single time. Unlike LRU and LFU, which cache every request item,

PFP-DA will not likely cache any of these single-request items since they usually receive only a

small contribution (due to low ranking) from a single face.

 To further explore the PFP-DA scheme, a β parameter was added, which, when sufficiently

small, reduces the numeric distance between the rank contribution of the top ranked item, and any

subsequent item. We can consider our regular PFP-DA as a special case of PFP-β with β = 1.0.

The PFP-β tests yielded interesting results. For smaller values of β, the cache pollution tended to

be less (even 0%), and hit rates tended to be greater (nearly 100% for top 100 and top 50 items),

but only if the percentage of attackers was relatively small.

 In conclusion, we have created a new approach to increasing cache robustness by means

of normalizing influence on the caching decisions, by a per-face fairness technique called Per-Face

Popularity, or PFP. We have improved the original algorithm substantially and created many

additional opportunities for future research as well.

6.2 Future Work

 This thesis and the associated research demonstrate dramatic improvement over current

cache replacement algorithms. Although substantial promise has been shown, a more powerful

testbed is required to effectively and efficiently test larger topologies, and more variations.

97

 Realistically, it may be quite some time until the current IP protocols are replaced. Until

then, making CDNs and related technologies as efficient as possible is an important goal.

Applying PFP-DA to current technology could improve the state-of-the-art and that which is

already deployed.

 Furthermore, PFP-DA shows great promise, but it is certainly not as good as it can be. As

mentioned earlier, we strive toward zero cache pollution (or as little as possible.) Our PFP-β tests

have indicated that for lower percentages of attackers, zero or near-zero cache pollution can be

achieved, with very high hit rates. However, more tests with the β value applied in the popularity

calculations are needed to test its limits under more circumstances.

 Furthermore, we will continue to refine our techniques and attempt to arrive at precise

mathematical or statistical models to better predict and describe the behavior of our schemes. We

look forward to investigating these research opportunities.

98

References

[1] E. Nygren, R. Sitaraman and J. Sun, "The Akamai Network: A Platform for High-

Performance Internet Applications," 2010.

[2] V. Adhikari, Y. Guo, F. Hao, M. Varvello, V. Hilt, M. Steiner and Z.-L. Zhang, "Unreeling

Netflix: Understanding and Improving Multi-CDN Movie Delivery," INFOCOM, 2012.

[3] R. Torres, A. Finamore, J. R. Kim, M. Mellia, M. M. Munafo and S. Rao, "Dissecting Video

Server Selection Strategies in the YouTube CDN," in IEEE 31st International Conference

on Distributed Computing Systems, Minneapolis, MN, 2011.

[4] "Sandvine Global Internet Phenomena Report - 2016,"

https://www.sandvine.com/hubfs/downloads/archive/2016-global-internet-phenomena-

report-latin-america-and-north-america.pdf.

[5] Amazon, "Amazon CloudFront CDN," [Online]. Available:

http://aws.amazon.com/cloudfront/.

[6] "NSF Future Internet Architecture Project," [Online]. Available: http://www.nets-fia.net/.

[Accessed 21 March 2018].

[7] T. Koponen, M. Chawla, B.-G. Chun, A. Ermolinskiy, K. H. Kim, S. Shenker and I. Stoica,

"A Data-Oriented (and Beyond) Network Architecture," in SIGCOMM '07, Kyoto, Japan,

2007.

[8] B. Ahlgren, M. Marchisio, M. D'Ambrosio, I. Marsh, C. Dannewitz, B. Ohlman, K.

Pentikousis, O. Strandberg, R. Remarz and V. Vercellone, "Design Considerations for a

Network of Information," ACM ReArch '08, 2008.

[9] "Content Centric Networking Project," [Online]. Available: www.ccnx.org.

[10] V. Jacobson, D. K. Smetters, J. D. Thornton, M. F. Plass, N. H. Briggs and R. L. Braynard,

"Networking Named Content," in CoNEXT '09, Rome, Italy, 2009.

[11] L. Zhang, k. claffy, C. Papadopoulos, L. Wang, P. Crowley and B. Zhang, "Named Data

Networking," ACM SIGCOMM Computer Communication Review, vol. 44, no. 3, 2014.

[12] I. Seskar, K. Nagaraja, S. Nelson and D. Raychaudhuri, "MobilityFirst Future Internet

Architecture Project," in Proceedings of the ACM AINTec 2011, Bangkok, Thailand, 2011.

[13] A. Venkataramani, J. F. Kurose, K. Raychaudhuri, K. Nagaraja, S. Banerjee and Z. M. Mao,

"MobilityFirst: A Mobility-Centric and Trustworthy Internet Architecture," ACM

SIGCOMM Computer Communication Review, vol. 44, no. 3, pp. 74-80, 2014.

99

[14] D. Lagutin, K. Visala and S. Tarkoma, "Publish/subscribe for internet: PSIRP perspective,"

in Towards the Future Internet - Emerging Trends from European Research, IOS Press,

2010.

[15] N. Fotiou, P. Nikander, D. Trossen and G. Polyzos, "Developing Information Networking

Further: From PSIRP to PURSUIT," International ICST Conference of Broadband

Communications, Networks, and Systems (BROADNETS), 2010.

[16] A. Seetharam, "On Cachine and Routing in Information-Centric Networks," IEEE

Communications Magazine, vol. 56, no. 3, pp. 204-209, 2018.

[17] R. Tourani, T. Mick, S. Misra and G. Panwar, "Security, Privacy, and Access Control in

Information-Centric Networking: A Survey," IEEE Communications Surveys and Tutorials,

vol. 20, no. 1, 2018.

[18] L. Breslau, P. Cao, L. Fan, G. Phillips and S. Shenker, "Web Caching and Zipf-like

Distributions: Evidence and Implications," in INFOCOM '99. Eighteenth Annual Joint

Conference of the IEEE Computer and Communication Societies, New York, NY, 1999.

[19] T. Yamakami, "A Zipf-Like Distribution of Popularity and Hits in the Mobile Web Pages

with Short Life Time," in IEEE Proceedings of the Seventh Internation Conference on

Parallel and Distributed Computing, Taipei, Taiwan, 2006.

[20] A. Afanasyev, I. Moiseenko and L. Zhang, "ndnSIM: NDN simulator for NS-3," NDN

Technical Report NDN-0005, 2012.

[21] M. D’Ambrosio, C. Dannewitz, H. Karl and V. Vercellone, "MDHT: A hierarchical name-

resolution service for information-centric networks," Information Workshop on Information-

Centric Networking (ACM), 2011.

[22] "Visual Networking Index: Forecast and methodology, 2016-2021 (White Paper)," Cisco,

2017. [Online]. Available: http://www.cisco.com/go/vni. [Accessed April 2018].

[23] C. E. Perkins, S. R. Alpert and B. Wolf, Mobile IP: Design Principles and Practices, Boston,

MA: Addison-Wesley, 1997.

[24] P. Eugster, P. Felber, R. Guerraoui and A. Kermarrec, "The many faces of

publish/subscribe," ACM Computing Surveys, vol. 35, no. 2, pp. 114-131, 2003.

[25] G. Xylomenos, C. N. Ververids, V. A. Siris, N. Fotiou, C. Tsilopoulos, X. Vasilakos, K. V.

Katsaros and G. C. Polyzos, "A Survey of Information-Centric Networking Research,"

Communication Surveys and Tutorials, vol. 16, no. 2, pp. 1024-1049, 2014.

[26] E. Ngai, B. Ohlman, G. Tsudik, E. Uzun, M. Wählisch and C. A. Wood, "Can We Make a

Cake and Eat it Too? A Discussion of ICN Security and Privacy," in ACM SIGCOMM

Computer Communication Review, Dagstuhl, Germany, 2016.

100

[27] C. Dannewitz, J. Golic, B. Ohlman and B. Ahlgren, "Secure Naming for a Network of

Information," INFOCOM IEEE Conference on Computer Communication Workshops, 2010.

[28] M. D'Ambrosio, C. Dannewitz and H. Karl, "MDHT: A hierarchical name resolution service

for information-centric networks," ACM SIGCOMM Workshop on Information-Centric

Networking, 2011.

[29] Y. Afek, E. Gafni and M. Ricklin, "Upper and Lower Bounds for Routing Schemes in

Dynamic Networks," in Proceedings of the 30th Symposium on Foundations of Computer

Science, 1989.

[30] D. Krioukov, K. Claffy, K. Fall and A. Brady, "On Compact Routing for the Internet,"

SIGCOMM Computer Communication Review, 2007.

[31] M. Aamir and S. Zaidi, "Denial-of-service in content centric (named data) networking: A

tutorial and state-of-the-art survey," Security and Communication Networks, vol. 8, no. 11,

2014.

[32] P. Gasti, G. Tsudik, E. Uzun and L. Zhang, "DoS and DDoS in Named Data Networking,"

in 22nd International Conference on Computer Communications and Networks (ICCCN),

Nassau, Bahamas, 2013.

[33] C. Ghali, G. Tsudik and E. Uzun, "Needle in a Haystack: Mitigating Content Poisoning in

Named-Data Networking," in NDSS Workshop on Security of Emerging Networking

Technologies, San Diego, CA, 2014.

[34] G. Acs, M. Conti, P. Gasti, C. Ghali, G. Tsudik and C. A. Wood, "Privacy-Aware Caching

in Information-Centric Networking," IEEE Transactions on Dependable and Secure

Computing (Early Access), 2017.

[35] P. Denning, "The Locality Principle," Communications of the ACM, vol. 48, no. 7, pp. 19-

24, 2005.

[36] M. Xie, I. Widjaja and H. Wang, "Enhancing Cache Robustness for Content-Centric

Networking," in 2012 Proceedings of the IEEE INFOCOM, 2012.

[37] M. Conti, P. Gasti and M. Teoli, "A lightweight mechanism for detection of cache pollution

attacks in Named Data Networking," Computer Networks 57 (2013), 2013.

[38] A. Karami and M. Guerrero-Zapata, "An ANFIS-based cache replacement method for

mitigating cache pollution attacks in Named Data Networking," Elsevier Computer Networks

80, pp. 51-65, 2015.

[39] M. Arlitt, L. Cherkasova, J. Dilley, R. Friedrich and T. Jin, "Evaluating Content Management

Techniques for Web Proxy Caches," Hewlett Packard, Palo Alto, CA, 1999.

101

[40] S. Mastorakis, A. Afanasyev, I. Moiseenko and L. Zhang, "ndnSIM 3: An updated NDN

simulator for NS-3," NDN Technical Report NDN-0028 (Revision 2), 2016.

[41] "NS-3 Discrete-Event Network Simulator," [Online]. Available: https://www.nsnam.org/.

[Accessed 28 October 2017].

[42] "Named Data Networking Forwarding Daemon (NFD) Documentation," [Online].

Available: http://named-data.net/doc/NFD/current/. [Accessed 27 October 2017].

[43] "ndnSIM Documentation," [Online]. Available: http://ndnsim.net/2.4/doxygen/ndn-

consumer-zipf-mandelbrot_8cpp_source.html. [Accessed 25 March 2018].

[44] L. Breslau, P. Cao, L. Fan, G. Phillips and S. Shenker, "Web Caching and Zipf-like

Distributions: Evidence and Implications," in IEEE INFOCOM, 1999.

[45] Y. Gao, L. Deng, A. Kuzmanovic and Y. Chen, "Internet Cache Pollution Attacks and

Countermeasures," in Proceedings of the 2006 14th IEEE International Conference on

Network Protocols, Santa Barbara, CA, 2006.

[46] V. Jacobson, D. Smetters, J. Thornton, M. Plass, N. Briggs and R. Braynard, "Networking

Named Content," ACM CoNEXT '09, 2009.

[47] J. Rexford and C. Dovrolis, "Future Internet architecture: clean slate versus evolutionary

research," Communications of the ACM, vol. 53, no. 9, pp. 36-40, 2010.

