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Abstract

Cancer survivorship rates have drastically increased due to improved efficacy of

oncologic treatments. Consequently, clinical concerns have shifted from solely focusing

on survival to quality of life, with fertility preservation as an important consideration.

Among fertility preservation strategies for female patients, ovarian tissue cryopreserva-

tion and subsequent reimplantation has been the only clinical option available to cancer

survivors with cryopreserved tissue. However, follicle atresia after transplantation and

risk of reintroducing malignant cells have prevented this procedure from becoming

widely adopted in clinics. Herein, we investigated the encapsulation of ovarian follicles

in alginate hydrogels that isolate the graft from the host, yet allows for maturation after

transplantation at a heterotopic (i.e., subcutaneous) site, a process we termed in vivo

follicle maturation. Survival of multiple follicle populations was confirmed via histology,

with the notable development of the antral follicles. Collected oocytes (63%) exhibited

polar body extrusion and were fertilized by intracytoplasmic sperm injection and

standard in vitro fertilization procedures. Successfully fertilized oocytes developed to

the pronucleus (14%), two‐cell (36%), and four‐cell (7%) stages. Furthermore, ovarian

follicles cotransplanted with metastatic breast cancer cells within the hydrogels allowed

for retrieval of the follicles, and no mice developed tumors after removal of the implant,

confirming that the hydrogel prevented seeding of disease within the host. Collectively,

these findings demonstrate a viable option for safe use of potentially cancer‐laden
ovarian donor tissue for in vivo follicle maturation within a retrievable hydrogel and

subsequent oocyte collection. Ultimately, this technology may provide novel options to

preserve fertility for young female patients with cancer.
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1 | INTRODUCTION

Advances in chemo‐ and radiotherapy have significantly improved

cancer survivorship rates worldwide. As of 2016, the American Cancer

Society (ACS) estimates that more than 15 million individuals in the

United States are currently in remission. By 2024, ACS projects this

number will increase to more than 19 million, of which 9 million will be

female (American Cancer Society, 2014; 2017). In particular, the 5‐year
survival rate for pediatric patients (0‐ to 14‐year age group) has

improved to 87% during the 2008–2012 period (Wallace, Kelsey, &
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Anderson, 2016). Given these estimates, clinical concerns have shifted

to include fertility preservation after treatment.

Alkylating chemotherapy or irradiation to the pelvis or abdomen

in female patients can be gonadotoxic and cause irreversible damage

to the ovaries, reducing the patient’s ability to conceive successfully

by 50% (Salama & Woodruff, 2015; Shea, Woodruff, & Shikanov,

2014). In cases where doses of abdominal radiation of 20–30 Gy are

used, the risk of adverse pregnancy outcomes can be as high as 90%

(Kim, Kim, Lee, & Woodruff, 2016; Wallace, Shalet, Hendry, Morris‐
Jones, & Gattamaneni, 1989; Wo & Viswanathan, 2009). Currently

available options to preserve fertility before treatment include

embryo cryopreservation, oocyte cryopreservation, and ovarian

tissue cryopreservation, though embryo and oocyte cryopreservation

may not be applicable to pediatric patients.

The transplantation of cryopreserved ovarian tissue is the only

clinical option available to restore fertility using cryopreserved tissue

and has resulted in 60 live births reported to date (Donnez & Dolmans,

2015). This procedure does not require hormonal stimulation or a sperm

donor, preserves ovarian follicles at all stages of maturation, including

primary and primordial follicles, and can be applied to prepubertal girls

(Kim et al., 2016; Kondapalli & Ginsberg, 2012; Meirow, Ra, & Biderman,

2014). However, this method is still considered experimental and is

associated with several challenges related to reimplantation that prevent

it from becoming the gold standard for fertility preservation. These

challenges include ischemic injury early after transplantation due to

insufficient tissue revascularization, which significantly reduces the

ovarian follicle pool, follicular atresia, and risk of reseeding malignant

cancer cells (Demeestere, Simon, Emiliani, Delbaere, & Englert, 2009;

Donnez, Squifflet, & Dolmans, 2009; Salama & Woodruff, 2015). In

particular, the reintroduction of malignant disease remains a primary

concern as 12.4% of patients died due to recurrence after reimplantation

of cryopreserved ovarian tissue according to a 12‐year study (Imbert

et al., 2014). Thus, the presence of cancer cells in cryopreserved ovarian

tissue (Abir et al., 2014; Dolmans, Luyckx, Donnez, Andersen, & Greve,

2013; Rosendahl, Greve, & Andersen, 2013) has motivated strategies

such as follicle isolation and transplantation as a means to reduce or

remove the cancer cell population (Kniazeva et al., 2015).

Hydrogels have been used for the transplantation of ovarian tissue or

isolated follicles as a means to enhance efficacy. The three‐dimensional

architecture of the hydrogel physically supports the follicles, maintains

oocyte–somatic cell connections, and permits expansion of early‐stage
follicles (Shea et al., 2014). In particular, fibrin hydrogels have been used

for ovarian follicle transplantation to facilitate the interaction of the

transplant with the host. Transplantation of fibrin‐encapsulated follicles

has promoted their survival after transplantation, enabled growth and

maturation in vivo, and restored endocrine function in the ovariecto-

mized mice (Kniazeva et al., 2015; Luyckx et al., 2014; Smith et al., 2014).

Restoration of endocrine function is particularly important and necessary

for successful clinical pregnancies (Donnez et al., 2013; Oktay et al.,

2001). Fibrin hydrogels modified with vascular endothelial growth factor

(VEGF) and transplanted into the orthotropic site of ovarian bursa

have improved encapsulated murine follicle function and resulted in live

births via natural pregnancy (Kniazeva et al., 2015; Shikanov, Ph et al.,

2011; Smith et al., 2014). There are at least two significant challenges

with these approaches however: (i) the live births required a relatively

large number of transplanted follicles that may be difficult to obtain in a

clinical setting from human tissue, and (ii) the degradation of the fibrin

hydrogel and integration of the graft with the host tissue could allow for

dissemination of residual cancer cells.

In this report, we investigated a strategy for transplantation of

ovarian follicles within nondegradable alginate hydrogels to allow in

vivo follicle maturation, with subsequent retrieval of the graft to obtain

mature oocytes for in vitro fertilization (IVF). Alginate hydrogels have

been used for encapsulation to provide support for culture and

maturation of mouse follicles (Filatov, Khramova, & Semenova, 2014;

Hornick, Duncan, Shea, & Woodruff, 2012; Hornick, Duncan, Shea, &

Woodruff, 2013; Telfer & Zelinski, 2013; Xiao, Duncan et al., 2015; Xu,

Banc, Woodruff, & Shea, 2009) and human follicles (Laronda et al.,

2014; Xiao, Zhang et al., 2015) in vitro. Oocytes can be retrieved from

alginate‐encapsulated murine follicles for IVF and subsequently

implanted to produce healthy offspring (Xu, Kreeger, Shea, & Woodruff,

2006). Here, we proposed to apply the alginate hydrogels for in vivo

maturation at a subcutaneous site, with the hydrogels providing

support for follicle growth, while also presenting an effective barrier

that limits integration with the host tissue and potentially facilitates

implant retrieval. After encapsulation and transplantation, hydrogels

were extracted and carefully dissected to collect oocytes for in vitro

maturation (IVM) and subsequent fertilization by intracytoplasmic

injection and standard IVF. Furthermore, we assessed the ability of

cancer cells encapsulated together with the follicles to initiate tumor

development within the transplant recipient. We were able to

demonstrate that retrievable hydrogels used for follicle maturation

provide a unique opportunity to maintain follicle architecture and allow

maturation within the in vivo environment, while eliminating the risks

associated with potentially cancer‐laden ovarian tissue.

2 | MATERIALS AND METHODS

2.1 | Follicle isolation and hydrogel fabrication

Ovaries were extracted from 12‐day‐old C57BL/6j x CBA/Ca female

mice (Harlan Laboratories, Indianapolis, IN) and mechanically dis-

sected using insulin syringe needles (1cc, 28G1/2) (BD Biosciences,

Franklin Lakes, NJ). The tissue is dissected as a means to collect

follicles primarily and reduce the population of stromal cells. Although

stromal cells are present, their quantity has been reduced. The

resulting ovarian fragments, approximately 300 µm in diameter, were

allowed to aggregate in a 0.6‐ml Eppendorf tube in Leibovitz’s L‐15
media (Gibco, Carlsbad, CA) supplemented with 10% fetal bovine

serum (FBS; Gibco) and 1% PenStrep (Sigma‐Aldrich, St. Louis, MO).

Follicle isolation was performed on a heated stage at 37°C in a

sterilized hood to prevent contamination. Either three, two, or one

ovary was dissected and incorporated into each of the gels, which

correspond to a mixture of primordial, primary, and secondary follicles

with approximately 1,100, 730, or 360 follicles, respectively, based on

follicle quantification from native 12‐day‐old ovaries. To form alginate
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hydrogels, the supernatant was removed until only the follicle

aggregate remained. Next, 7 µl of 0.5% alginate (NovaMatrix, Sandvika,

Norway) mixed with sterile phosphate buffered saline (PBS−/–)

(Perkin Elmer, Waltham, MA) was slowly added to the tube without

disturbing the follicles, followed by 50 µl of thrombin/Ca2+ (Sigma‐
Aldrich, St. Louis, MO), and the resulting mixture was allowed to

crosslink for 3min. The thrombin/Ca2+ solution was created by

combining 50 IU/ml thrombin with 40mM CaCl2. Hydrogels were

approximately 3mm in diameter and kept in L‐15 media before

transplantation.

2.2 | Ovariectomy and transplantation

Hydrogels were transplanted into C57BL/6j x CBA/Ca adult 6‐ to

7‐week‐old female mice after ovariectomy, either into the ovarian

bursa or subcutaneously in the dorsal region. Mice were anesthetized

with intraperitoneal injection of 100mg/kg of ketamine and 15mg/kg

of xylazine. Hydrogels were implanted into the bursa according to a

previous report (Kniazeva et al., 2015). For subcutaneous implants, a

small incision was made on the back to form a pocket, hydrogels

were inserted, and then the incision was closed using a 5‐0 vicryl

suture (Ethicon, Somerville, NJ). Sterile surgical procedures, post-

operative procedures, and daily care were performed according to

protocols approved by the Northwestern University Institutional

Animal Care and Use Committee.

2.3 | Retrieval and analysis of hydrogel transplants

After 7 days, mice were euthanized, and ovarian bursae or subcutaneous

implants were retrieved for histological analysis. On removal, samples

were fixed in 4% paraformaldehyde, dehydrated in 70% ethanol,

paraffin‐embedded, serial‐sectioned, and stained with hematoxylin and

eosin (H&E). Follicle counts were performed by an experienced

researcher blinded to experimental conditions. Follicles were quantified

according to the following classification scheme: primordial follicles

contained four to six squamous granulosa cells, primary follicles were

enclosed by and contained a mix of squamous and cuboidal cells,

secondary follicles contained two layers of cuboidal granulosa cells,

multilayered secondary follicles contained more than two layers of

cuboidal layers with no presence of a cavity (i.e., corpus luteum), and

antral follicles were identified by the presence of an oocyte surrounded

by several layers of cuboidal cells and a defined corpus luteum.

2.4 | Oocyte collection, IVM assay,
and immunofluorescence

Hydrogels were explanted 7 days after transplant in the bursa or

subcutaneous site and placed in L‐15 medium. Hydrogel samples were

mechanically dissected on a heated‐stage microscope using insulin

syringe needles (1cc, 28G1/2) to obtain antral follicles. Antral follicles

were carefully punctured to release oocytes into the surrounding

media. Only oocytes with a visible germinal vesicle, and thus arrested at

prophase I, were transferred to IVM media alpha minimum essential

medium (α‐MEM) with 10% FBS, 1.5 IU/ml human chorionic gonado-

tropin, and 10 ng/ml epidermal growth factor (BD Biosciences, Franklin

Lakes, NJ). Oocytes were incubated for 16 hr at 37°C in 5% CO2 and

then imaged to confirm MII status, denoted by polar body extrusion. A

subset of metaphase II (MII) oocytes derived from hydrogel samples

from the bursa or subcutaneous site was immunofluorescently stained

and imaged with a confocal microscope (Leica Microsystem) using

previously cited methods (Xiao, Zhang et al., 2015) to assess the

morphology of the meiotic spindle, a marker of egg quality.

2.5 | IVF and embryo development

Oocytes derived from subcutaneously transplanted hydrogel samples

containing 1,100 follicles were used for IVF and embryo development

studies. After confirmation of MII status via polar body extrusion

after IVM, oocytes were fertilized with sperm collected from the

epididymis of 8‐ to 10‐week‐old C57BL/6j x CBA/Ca male mice. Isolated

epididymides were placed in a 1.5‐ml Eppendorf tube with 1ml of

human tubular fluid (HTF) medium supplemented with 0.4% of bovine

serum albumin. Sperm were incubated for 30min at 37°C, and the

supernatant layer containing healthy and motile sperm was collected.

Sperm was either injected directly into oocytes using intracytoplasmic

sperm injection (ICSI) or placed in the HTF medium with oocytes using

the standard IVF procedures. For ICSI, MII oocytes were placed in 50 µl

drops of EmbryoMax KSOM Medium (1× with ½ amino acids; Millipore,

Burlington, MA) on a heated microscope stage (Nikon Eclipse TE300),

and sperm were microinjected using a Piezo‐drill tip (Eppendorf,

Hamburg, Germany) containing Fluorinert FC770 (Sigma‐Aldrich, St.
Louis, MO) to generate a pulse sufficient to penetrate the zona pellucida.

After sperm injection, MII oocytes were left in 50 µl of KSOM medium

submersed in Embryo Culture Oil (Irvine Scientific, Santa Ana, CA) and

monitored for up to 96 hr to evaluate embryo outcomes. Standard IVF

was also used to fertilize MII oocytes. In brief, the zona pellucida was

denuded using acetic acid and transferred to HTF medium. A low sperm

concentration of 5,000 sperm total was added to 1ml of HTF with MII

oocytes for 24 hr and then transferred to a fresh 50 µl of KSOMmedium

without sperm. MII oocytes were then cultured for another 72 hr for a

total of 96 hr to assess embryo outcomes after fertilization.

2.6 | Cancer‐cell‐laden hydrogel transplants,
in vivo luminescence imaging, and organ histology

Alginate hydrogel (7 µl, 0.5%) containing approximately 200 triple

negative breast cancer cell line (MDA‐MB‐231 BR) cells expressing

luciferase and approximately 360 ovarian follicles from a cluster of

differentiation-1 (CD‐1) female mouse donor was transplanted into

the dorsal subcutaneous site of non-obese diabetic-severe com-

bined immunodeficiency (NOD-SCID) gamma (NSG) mice. At Day 7,

mice were injected (150 mg/kg) with D‐luciferin firefly (20 mg/ml in

sterile PBS) and imaged 10 min after injection on an in vivo imaging

system (IVIS; Perkin Elmer Xenogen IVIS Spectrum Bioluminescence

System) to confirm the presence of cancer cells in the gel. Hydrogel

implants were removed after imaging, and mice were monitored for

3 weeks after removal of the gel, at which time the mice were

imaged again to determine if cancer cells were present at the
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subcutaneous transplant site. Liver and lungs were excised from all

recipients within a week after the last imaging time point, fixed in

4% paraformaldehyde (PFA), paraffin‐embedded, and stained with

H&E to assess if metastasis occurred from the initial transplant site.

3 | RESULTS

3.1 | In vivo follicle transplantation within
hydrogels and histological analysis

Hydrogel encapsulation was evaluated for its ability to support

follicle survival and development in vivo. Specifically, alginate was

chosen to encapsulate mechanically isolated follicle aggregates

and subsequently transplanted subcutaneously in the dorsal

region (a heterotopic site) of ovariectomized female recipient

mice, with transplantation into the ovarian bursa (an orthotopic

site) used as a control based on the previous reports of follicle

maturation and consequent successful live births. A range of

follicle quantities (1,100, 730, or 360) was encapsulated within

hydrogels, and surviving populations of follicles at all develop-

mental stages were observed in grafts extracted from both the

subcutaneous and bursa transplant sites (Figure 1a–d). Notably,

antral follicles containing oocytes were identified within the

hydrogel explants (Figure 1a,c), which were not initially present

within the encapsulated follicle populations and thus developed

from this original pool (Supporting Information Figure 1a–c).

Quantification of follicle populations from removed grafts

implanted subcutaneously indicated that a majority of the follicles

2078 | RIOS ET AL.

F IGURE 1 Follicle survival and growth in hydrogel explants 7 days after transplantation in subcutaneous and bursa sites. Antral,
multilayered secondary, and secondary follicles were observed in extracted ovarian grafts from the subcutaneous and bursa sites (a, b and c, d).
In panel (a), surrounding alginate material served to maintain the separation of host tissue from follicles transplanted subcutaneously.

A representative antral follicle is denoted with an asterisk (*) in panels (a) and (c). Large numbers of primordial and primary follicles were
identified in all extracted hydrogels and denoted with a single (*) or double asterisk (**), respectively, in panels (b) and (d). Hydrogel implant in
panels (a)-(b) and (c)-(d) contained approximately 360 and 1,100 follicles, respectively. Similar results were observed for alginate hydrogels with

follicle populations of approximately 730 ovarian follicles at both sites. Scale bar: 100 μm [Color figure can be viewed at wileyonlinelibrary.com]



were primordial, with antral follicles observed in all conditions

(Figure 2a,b). For the subcutaneous grafts, the greatest number of

transplanted follicles resulted in the smallest percentage of surviving

follicles (Figure 2c). Transplantation of the smallest initial follicle

numbers resulted in the greatest survival percentage (≈76%).

Relative to the transplanted population, the number and percentage

of primordial follicles had decreased, with a corresponding increase

in the number and percentage of primary and secondary follicles,

suggesting follicle maturation within the bead during the time of

transplantation. The number of recovered follicles from the bursa

significantly decreased, and recovery from this site was inefficient

relative to the subcutaneous site. Transplantation of the smallest

initial numbers of follicles (i.e., 360 follicles) in the bursa had the

greatest survival percentage of 20%. As with the subcutaneous site,

the largest follicle populations were in primordial and secondary

stages. Finally, despite the lower resulting number of primordial and

secondary follicles, the number of antral stage follicles was similar to

the subcutaneous site.

3.2 | Hydrogel retrieval, oocyte collection,
and IVM studies

On retrieval, the subcutaneously transplanted hydrogels were used

to obtain antral follicles for the investigation of oocyte quality.

Alginate hydrogels retained their integrity on extraction and allowed

for easy follicle dissection (Figure 3a). For transplantation of the

largest initial follicle numbers, a total of 54 oocytes in the germinal

vesicle stage were retrieved, transferred to IVM media, and imaged

after a 16‐hr incubation period. Polar body extrusion was evident

in 34 oocytes (MII stage), which corresponds to a 63% MII rate

(Figure 3b,c). For transplants with the reduced number of follicles

transplanted, the oocytes had an MII rate of 55% (730 follicles

transplanted) and 46% (360 follicles transplanted). Importantly, the

MII rate was comparable between all three conditions, suggesting

that MII oocytes can be achieved with modest numbers of follicles

transplanted. Finally, normal spindle morphology was confirmed in

MII oocytes derived from alginate hydrogels initially loaded with

1,100 follicles (Figure 3d).

Germinal vesicle oocytes isolated from antral follicles trans-

planted into the bursa (Figure 4a) underwent IVM to produce an MII

rate of 20% (Figure 4b,c). Normal spindle morphology indicative of

oocyte quality was confirmed in MII eggs after IVM (Figure 4d).

Intact hydrogel retrieval from the bursa was more challenging than

from the subcutaneous space, which resulted in a lower yield.

Subsequent studies thus focused only on the subcutaneous site.

3.3 | Fertilization and embryonic development

The fertilization competency of the MII stage oocytes that were

obtained from the subcutaneously transplanted follicles were

subsequently investigated (Figure 5a). ICSI was used to fertilize

eggs, and embryo development was monitored for 96 hr after ICSI.

Of the 14 MII eggs that were successfully injected with sperm,

oocytes progressed to the pronucleus (14%), two‐cell (36%), and

four‐cell (7%) stages, whereas 40% of oocytes remained in MII arrest

(Figure 5b). Embryos fertilized via standard IVF progressed to the
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F IGURE 2 Percentage of follicle populations recovered from alginate hydrogel explants 7 days after transplant. Follicle populations

(primordial, primary, secondary, multilayered secondary, and antral) were quantified and displayed as a percentage of recovered follicles for
the 1,100‐, 730‐, and 360‐follicle implant conditions for the (a) subcutaneous (n = 3/follicle condition) and (b) bursa transplant sites (n = 4
for 1,100‐follicle and 730‐follicle condition, n = 3 for 360‐follicle condition). (c) Percentage of surviving follicles for the subcutaneous and
bursa transplant sites (± standard error of the mean)



pronucleus (20%) and two‐cell (40%) stages, whereas 40% of oocytes

remained in MII arrest (Figure 5c).

3.4 | Cancer‐laden hydrogel implants and in vivo
imaging

We next investigated the safety of this strategy by the addition of cancer

cells to the isolated follicles followed by their encapsulation and

transplantation. We hypothesized that the alginate hydrogel, which

prevents direct contact between the host and transplanted tissue, would

prevent the escape of cancer cells into the host tissue after

transplantation and during retrieval. Approximately 200 MDA‐MD‐231
BR cells expressing luciferase were encapsulated with approximately

360 ovarian follicles into alginate hydrogels and implanted subcuta-

neously into NSG mice. The delivery of 20 cells or more of the MDA‐
MD‐231 BR cells can lead to tumor formation in this model (Supporting

Information Figure 2a–d). In vivo bioluminescence imaging of the follicle/

cancer cell transplants at Day 7 confirmed the presence of cancer cells

within the implant (n =4), whereas a luminescence signal was not

detected in the follicle transplant‐only control group (n = 4; Figure 6a).

Hydrogels were then removed, and recipient mice were imaged again at

3 weeks after removal of the gel, with no detection of a bioluminescence

signal (Figure 6b). The lung and liver were removed within 1 week after

imaging and analyzed for metastases. Histology confirmed no metastatic

lesions in the lungs or liver compared with control organs in all recipient

mice, supporting the safety of this strategy (Figure 7a–d).

4 | DISCUSSION

This report presents a strategy for in vivo maturation of ovarian

follicles, which involved the isolation and encapsulation of follicles into

alginate hydrogels, transplantation into the subcutaneous space, and

their subsequent retrieval for recovery of antral follicles containing

mature oocytes. Alginate hydrogels have been widely used for in vitro

follicle culture (Brito et al., 2014; Camboni et al., 2013; Hornick et al.,
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F IGURE 3 Egg retrieval from encapsulated follicles in alginate hydrogels in subcutaneous site 7 days after transplant and their meiotic

maturation in vitro. (a) Follicles were easily identified in explanted hydrogels. (b) MII oocytes were confirmed via polar body extrusion (indicated
with black arrows). (c) Egg retrieval and MII status from the subcutaneous site. Of the GV oocytes collected from antral follicles in Day 7
explants with 1,100 ovarian follicles, 34 of 54 oocytes were MII after in vitro maturation (63% MII rate) from three trials. Oocytes collected

from Day 7 explants with 730 or 360 ovarian follicles resulted in an MII rate of 55% (6 MII oocytes/11 GV oocytes) and 46% (10 MII oocytes/22
GV oocytes), respectively (d) Normal spindle morphology (indicated by an arrow) was also confirmed in subcutaneously matured oocytes. Image
(d) depicts an oocyte obtained from an explant containing ovarian follicles from three ovaries. Scale bar: 100 μm (a, b). DAPI, 4ʹ,6-diamidino-
2-phenylindole; GV, germinal vesicle; MII, metaphase II [Color figure can be viewed at wileyonlinelibrary.com]



2012; Kniazeva et al., 2015; Kreeger, Deck, Woodruff, & Shea, 2006;

Laronda et al., 2014; West, Xu, Woodruff, & Shea, 2007; Xiao, Duncan

et al., 2015; Xiao, Zhang et al., 2015; Xu et al., 2009) and for cell

transplantation, such as encapsulated islets as a therapy for type 1

diabetes (Köllmer, Appel, Somo, & Brey, 2015; Ludwig et al., 2013; Qi,

2014; Scharp & Marchetti, 2013) and also ovarian follicles (David et al.,

2017; Vanacker, Dolmans, Luyckx, Donnez, & Amorim, 2014). Islets

are encapsulated within the hydrogel for isolation from the host

over several months, yet the islets are able to survive, sense blood

glucose levels, and secrete insulin that can distribute systemically to

normalize blood glucose levels. Herein, we used alginate hydrogels for

the transplantation of ovarian follicles with the objectives of sensing

the hormonal milieu that can drive follicle development and matura-

tion, yet also isolation of the follicles from the host to facilitate their

recovery on maturation and prevent the reseeding of cancer cells that

may be present within the donor tissue. For the studies herein, the

hydrogel was loaded primarily with early‐stage follicles (i.e., primordial

and primary follicles); the extracted hydrogel grafts contained follicles

at all developmental stages, with a notable number of antral follicles.

Of the MII oocytes identified after IVM from matured antral follicles,

more than a third progressed to the two‐cell embryo stage after either

ICSI or standard IVF, which is consistent with results found in the

previous fertilization studies (Ellenbogen, Shavit, & Shalom‐Paz, 2014;
Jin, Lei, Shikanov, Shea, & Woodruff, 2010; Walls, Junk, Ryan, & Hart,

2018). These findings confirm the feasibility for use and utility of

alginate hydrogels for in vivo maturation of ovarian follicles to obtain

meiotically competent oocytes.

Subcutaneous implantation of the hydrogel grafts was initially

investigated based on the potential for relatively easy implantation and

retrieval, yet the number of follicles recovered was significantly

enhanced relative to implantation in the bursa. The bursa site was

used as a control for comparison at the subcutaneous site based on the

previous reports of live births achieved with transplantation of ovarian

tissue and ovarian follicles (Kniazeva et al., 2015; Shikanov, Zhang et al.,

2011). Although antral follicles could be recovered from alginate

hydrogels implanted into the bursa, and oocyte maturation produced
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F IGURE 4 Egg retrieval from encapsulated follicles in alginate hydrogels in bursa site 7 Day after transplant and their meiotic maturation in
vitro. (a) GV oocytes were retrieved from antral follicles. (b) MII oocytes were confirmed via polar body extrusion (indicated with black arrows).

(c) Egg retrieval and MII status from the bursa site. Of the 15 GV oocytes collected at Day 7 from one trial, 3 were MII after IVM (20% MII rate).
Note: MII follicles were only observed with the 1,100‐follicle condition and not for the 730‐ or 360‐follicle condition. (d) Normal spindle
morphology (indicated by an arrow) was also confirmed in MII oocytes. Image (d) depicts an oocyte obtained from an explant containing ovarian
follicles from three ovaries. Scale bar: 100 μm (a, b). DAPI, 4ʹ,6-diamidino-2-phenylindole; GV, germinal vesicle; IVM, in vitro maturation,

MII, metaphase II [Color figure can be viewed at wileyonlinelibrary.com]



MII stage oocytes, the hydrogel retrieval was challenging and reduced

the yield of follicles. The retrieval process likely contributed to the

relatively low number of retrieved follicles from the bursa relative to

the subcutaneous site. An additional advantage of subcutaneous

implantation is that follicle growth can easily be monitored via

ultrasound (Oktay et al., 2001), and human antral follicles can be

removed when they mature (typically >15mm) for oocyte collection.

Previous studies by Oktay et al. (2004) demonstrated that although a

four‐cell human embryo could be obtained from a subcutaneous

transplant of ovarian tissue, it failed to implant. To date, only two live

human births have been achieved worldwide for transplantation of

ovarian tissue at this location (Salama & Woodruff, 2015). The

transplantation of ovarian follicles, rather than ovarian tissue, may

enhance the development of the follicles to improve oocyte quality.

Murine oocytes from extracted alginate hydrogels in the subcuta-

neous site matured to MII could be fertilized and developed to the four‐
cell embryo stage. The duration of in vivo implantation (7 days) suggests

that the antral follicles developed from secondary follicles. Longer

transplantation times, approximately 3–7 weeks, are necessary for

primordial follicles to develop to the antral stage (Zheng et al., 2014).

Collectively, the primordial and primary follicles constitute the most

abundant populations in the ovarian reserve. The ability to mature these

populations for oocyte collection would ultimately provide options for

fertility preservation (Laronda et al., 2014). Future studies may explore

the use of exogenous gonadotropins to promote ovarian follicle

maturation and increase the number of oocytes retrieved for fertilization

(Drummond, 2006; Yang et al., 2006). For either ICSI or standard IVF,

40% of MII oocytes remained in MII arrest (i.e., did not progress). This

result may suggest that oocyte quality can be improved to facilitate

progression to a blastocyst stage for embryo transfer. Oocyte quality

may be improved by longer maturation periods (>7 days), or modulation

of the hydrogel (e.g., alginate and fibrin; Papavasiliou, Sokic, & Turturro,

2012; Shikanov, Smith, Xu, Woodruff, & Shea, 2011) or transplant

environment. Heterotopic sites offer advantages regarding ease of

access, yet may lack the natural cues present at orthotopic sites.

Localized delivery of exogenous growth factors, hormones, antioxidants,

or pharmacological agents [e.g., phosphatase and tensin homolog (PTEN)

inhibitors] provides a means to locally modulate the transplant

environment to improve follicle viability and oocyte output after

transplant (Demeestere et al., 2009). Gonadotropin treatment before

transplant has been shown to improve follicle survival after transplant

(Imthurn, Cox, Jenkin, Trounson, & Shaw, 2000). Such modulation may
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F IGURE 5 Fertilization competency of MII oocytes matured in a subcutaneous site is assessed via ICSI and IVF. (a) Ater ICSI, MII oocytes

progressed to the pronucleus, two‐cell, and four‐cell embryonic stages. After IVF, denuded eggs progressed to the pronucleus and two‐cell
stages. Scale bar: 100 μm. (b) After 14 MII oocytes were injected with sperm via ICSI, embryos progressed to the pronucleus (14%), two‐cell
(36%), and four‐cell (7%) stages, whereas 43% of oocytes remained in MII arrest. (c) Embryos resulting from 10 MII oocytes denuded and placed

in an IVF dish with sperm, progressed to the pronucleus (20%) and two‐cell (40%) stages, whereas 40% of oocytes remained in MII arrest.
Results obtained from two ICSI trials and one IVF trial. ICSI, intracytoplasmic sperm injection; IVF, in vitro fertilization; MII, metaphase II [Color
figure can be viewed at wileyonlinelibrary.com]



enhance new blood vessel formation around the bead and can be

triggered mechanically (Demeestere et al., 2006) or through the delivery

of angiogenic factors (e.g., VEGF; Kniazeva et al., 2015; Shikanov, Zhang

et al., 2011). Gonadotropin delivery can also upregulate VEGF to induce

vessel formation (Demeestere et al., 2009). Taken together, modification

to the hydrogel or subcutaneous site may ultimately improve oocyte

quality and thus clinical outcomes.

Cryopreserved ovarian tissue from young patients with cancer can

contain tens to hundreds of thousands of follicles depending on the age

of the patient, and advances in the cryopreservation approach have

supported long‐term storage of ovarian tissue. One report has confirmed

normal tissue morphology for up to 18 years after cryopreservation

(Fabbri et al., 2016). Ovarian tissue is typically dissected into relatively

small pieces that can be more readily cryopreserved relative to large

ovarian tissue chunks. The dissection of ovarian follicles from the tissue

can be challenging, owing to the relative dense extracellular matrix of

the ovary. Dissecting the ovarian pieces results in retrieval of modest

numbers of ovarian follicles (Telfer & Zelinski, 2013), and thus the

fertility preservation strategy must efficiently support survival and

maturation given the low numbers of available follicles. The average

number of follicles transplanted herein ranged from 360 to 1,100

follicles, with the lowest number of follicles transplanted producing the

greatest efficiency for maturating to the antral stage. Additional

reductions in follicle number may be necessary for translation.

We demonstrated that the in vivo maturation strategy involving an

alginate hydrogel, which does not permit integration of host tissue with

the graft, can prevent the escape of cancer cells into vital organs, such as

the liver and lungs. The cryopreserved tissue may contain cancer cells,

such as those present within the circulation (i.e., circulating tumor cells).

In the particular case of leukemia, more than 50% of cryopreserved

ovarian tissue can contain leukemic cells (Soares et al., 2015). The

reseeding of disease has been observed clinically with ovarian tissue

transplantation (Dolmans et al., 2013). Protocols are being developed to

rid ovarian tissue of cancerous cells (Soares et al., 2015) but have not

been widely adopted for clinical use, which underscores the need to

develop technologies that prevent reseeding of cancer cells. Isolation of

transplanted follicles from host tissue has the potential to substantially

reduce the number of cancer cells in the graft (Donnez et al., 2011;

Kniazeva et al., 2015), yet follicle isolation may not be able to remove the

presence of all tumor cells in every graft. Herein, the hydrogel provided
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F IGURE 6 In vivo imaging of NSG mice before and after removal of cancer‐laden alginate hydrogels. (a) Representative image of an NSG
mouse with a subcutaneously transplanted alginate hydrogel containing 200 MDA‐MB‐231 cells expressing luciferase (imaged Day 7 after

transplant). The presence of cancer cells in the hydrogels was confirmed by the positive luminescent signal (signal detection is 600–60,000
counts). The hydrogel implant at Day 7 is denoted with a black arrow. For the control group, mice transplanted with only ovarian follicles were
imaged. Cancer cells were present only in the gel implant. (b) Mice were imaged 3 weeks after removal of hydrogels to assess the cancer cell

presence. Cancer cells were not detected in experimental mice that had cancer‐laden hydrogels removed at Day 7. Cancer cells were not detected
in negative controls as well. Three hundred and sixty ovarian follicles were also incorporated into transplanted alginate hydrogels. n = 4 per group.
MDA‐MB‐231, triple negative breast cancer cell line; NSG, non-obese diabetic-severe combined immunodeficiency (NOD-SCID) gamma
[Color figure can be viewed at wileyonlinelibrary.com]



an additional safety precaution by preventing direct contact of the host

tissue with the graft, and it did not allow the escape of the tumor cells to

colonize alternative tissues. Previous studies with the transplantation of

ovarian tissue indicated that alginate may lose integrity with the

expansion of many follicles growing and maturing simultaneously (David

et al., 2017). Herein, transplantation was performed with isolated

ovarian follicles, which did not allow the escape of cancer, yet the studies

were performed for transplant times of 7 days, which was sufficient for

the maturation of murine follicles and to confirm the feasibility of the

approach. The translation of this strategy to humans may require

substantially longer periods of time and development of alternative

materials with tunable degradation and mechanical properties to

maximize oocyte maturation and recovery.

5 | CONCLUSION

We present an alginate hydrogel as a retrievable technology to

mature ovarian follicles subcutaneously and to prevent escape and

subsequent metastasis of cancer cells. Early‐stage follicles were

transplanted within alginate hydrogels, resulting in retrieval of

antral follicles and subsequent collection of oocytes. After IVM,

MII oocytes were fertilized and progressed to the two‐cell and
four‐cell embryo stages. These findings collectively demonstrate

retrievable hydrogels as a novel approach to mature ovarian

follicles to obtain fertilizable oocytes, and also prevent direct

contact with host tissue to alleviate concerns related to reseeding

disease from cryopreserved autotransplanted ovarian tissue. This

strategy may provide a method to enhance safety and improve

oocyte quality relative to ovarian tissue transplantation with the

potential to improve clinical outcomes for female cancer patients

aiming to preserve their fertility.
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