
UNIT B6.2Signal-to-Noise Ratio as a Function of
Imaging Parameters

OVERVIEW

The degree to which noise affects a measurement is generally characterized by the
signal-to-noise ratio (SNR, as measured by the ratio of the voxel signal to the noise
standard deviation). SNR is the key parameter for determining the quality of any given
imaging experiment. If the SNR is not high enough, it becomes impossible to differentiate
tissues from one another or the background.

The choice of imaging parameters such as the number of repetitions, the number of
k-space samples (Nx, Ny, and Nz), the readout bandwidth, and voxel dimensions (∆x, ∆y,
and ∆z), directly affect the SNR of the resulting data sets (see Equation B6.2.8); therefore,
it is critical to know how SNR depends on imaging parameters prior to designing an MR
protocol.

The SNR depends on many parameters. We first give its general form and then discuss
the significance of imaging parameters:

where Ts = Nx∆t and Nacq is the number of acquisitions. Note that SNR/voxel in Equation
B6.2.1 indicates the SNR per voxel. One commonly used approach for improving SNR
is repeating the entire imaging experiment Nacq times and averaging the signal over these
Nacq measurements. Although this simple approach improves SNR as the square root of
the number of acquisitions, the total imaging time increases as the number of acquisitions.
The SNR dependence on other imaging parameters is quite complicated, since these
parameters are interrelated; therefore, prior to varying a specific imaging parameter to
improve SNR, its effects on other imaging parameters need to be checked. For example,
if Ny is doubled but Ly (field-of-view) is fixed, then ∆y is also cut in half and SNR drops
by √2 . Mathematically, it is possible to improve SNR by degrading resolution while
increasing the total sampling time; however, there is a limit as to how long Ts can be before
the signal completely dephases due to T2

* relaxation. Several practical cases are given in
Table B6.2.1 and Table B6.2.2 to illustrate the SNR dependence on read and phase
encoding direction parameters, including spatial resolution, field-of-view, and sampling
size. Generally, the larger the voxel size (the lower the resolution), the better the SNR
will be (see Equation B6.2.1). This trade-off between resolution and SNR is illustrated
with a phantom study as shown in Figure B6.2.1.

SNR also depends on inherent tissue parameters and field strength. For blood, the T1

relaxation time can be reduced to improve SNR by the injection of a contrast agent. In
addition, SNR can be improved with increased field strength; however, finding the optimal
field strength for imaging has always been complicated and controversial. This is due to
the fact that many factors may affect the outcome. Perhaps the most important are T1 and
the effects of field inhomogeneity, all of which lead to modifications of SNR as a function
of field strength. In this unit, we will give a prediction of the signal as a function of field
strength and a practical estimate of the ratio of the significance of the effective resistance
and thermal noise at one field strength.
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TECHNICAL DISCUSSION

SNR Dependence on Imaging Parameters

Signal and noise have been discussed separately in UNIT B6.1; however, signal or noise
information by itself does not determine the quality of an image. It is the ratio of signal
intensity to noise standard deviation (SNR) which determines image quality; therefore,
it is important to be aware of the imaging parameter effects on SNR prior to designing a
clinical or research protocol.

Improving SNR by averaging over multiple acquisitions
Repeating an entire imaging experiment Nacq times and averaging the signal over these
Nacq measurements to improve the SNR is a common practice. The MRI system typically
adds the signals directly to one another, and does not store them separately, saving a great
deal of data space. The averaged k-space sample sm,av(k) of sm(k) is:

This implies that

The noise from each of the Nacq acquisitions is assumed to be statistically independent
from one acquisition to the next. As a result, the noise variance σ2

m from each measure-
ment adds in quadrature to the total noise variance of the averaged signal sm,av(k), i.e.:

Therefore, the standard deviation of the noise is given by

The SNR of the k-space signal becomes

i.e., the SNR improves as the square root of the number of acquisitions if the noise is
uncorrelated from one experiment to the next; however, other sources of systematic noise
from the MR experiment can lead to σ2

m being greater than σ2
thermal and these sources will

not be reduced the same way by averaging.

The noise for a given voxel has already been shown to be proportional to σm (UNIT B6.1).
Hence, the same √Nacq  dependence carries over into the expression for the SNR/voxel,
i.e.:
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as well.

Generalized dependence of SNR in a 3-D sequence on imaging parameters
The SNR dependence on imaging parameters is complicated by the noise behavior.
Noise depends on many different imaging parameters. From Equations B6.1.9,
B6.1.10, B6.1.26, and B6.2.5:

Substituting BWread = 1/∆t (as given in Chapter B4) yields:

Since Ts = Nx∆t, substituting this into Equation B6.2.9 yields:

Equations B6.2.8 to B6.2.10 can be rewritten in a number of ways, depending on the
parameters. It is necessary to keep in mind that even though any parameters in Equation
B6.2.8 to Equation B6.2.10 may be varied without altering the validity of the relations,
the following relations, as derived in Chapter B4, hold:

These interrelations exist implicitly in each of the above expressions for the SNR;
therefore, whenever a parameter in a given expression for SNR is varied, the resultant
effects on the rest of the parameters must be checked. Also, it is obvious that through
these relations a number of other expressions for the SNR may be developed to highlight
the effects of varying a certain subset of these parameters. Often an expression for SNR
will be accompanied by a condition that some quantity be kept constant, which limits how
certain parameters may be varied.

To calculate what happens in the case of a fixed variable, an implicit form can be
substituted into Equation B6.2.10. For example, since ∆x = Lx/Nx, if ∆x is fixed, Lx and
Nx cannot vary arbitrarily and Equation B6.2.9 or Equation B6.2.10 is better written as:
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Other such specialized proportionalities can be derived.

An increase in the spatial resolution by a factor of two in both in-plane directions with
fixed fields of view leads to a factor of two loss in SNR when the increased spatial
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Figure B6.2.1 Two images collected with identical TR, TE, and Gx; however, Nx, Ny, and Ts in (B) are two
times of the same as those in (A), leading to an improvement in spatial resolution. This increase in resolution
leads to a reduction of the SNR by a factor of 2. Noise standard deviation inside the object is estimated by
taking 1/1.253 ≅ 0.8 times the mean measured in a region outside of the phantom where there is no signal.
This noise-only region has to lie reasonably away from the edge of the object, and there should be no artifacts
nearby. The profiles in (D) and (C) illustrate the larger variation in noise for (B) versus (A), respectively. They
also show the higher resolution associated with (D), where five distinct dips (each corresponding to one
resolution element) are visible versus only three in (C). The profiles were taken through the row cutting
through the last row of the smallest resolution elements. The imaging parameters used were (A) TR/TE =
1000 msec/14 msec, θ = 90°, Ts = 11.2 msec, Nacq = 1, ∆x × ∆y × ∆z = 0.5 mm × 0.5 mm × 2.0 mm, Nx × Ny
= 512 × 384, τRF = 2.56 msec, Gss = 6 mT/m; (B) Ts = 5.6 msec, ∆x × ∆y × ∆z = 1.0 mm × 1.0 mm × 2.0 mm,
Nx × Ny = 256 × 192.
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resolution is achieved by maintaining the read gradient fixed while Ts (or Nx) is doubled
(from Equation B6.2.10). Such an example is shown in Figure B6.2.1, from which the
mean and standard deviation estimates were obtained. Taking the ratio of the mean of the
background to the noise standard deviation in the two cases demonstrates the consistency
of the measured SNR with that expected from Equation B6.2.10. Doing this in a region
where the profile is flat yields an SNR/voxel of 187.5 for Figure B6.2.1A and 91.0 for
Figure B6.2.1B.

SNR Dependence on Read Direction Parameters

From Equation B6.2.10, with all other parameters maintained constant, the SNR depend-
ence on read direction parameters can be reduced to

Although Equation B6.2.13 depends only upon two parameters, dependencies on Lx,
BWread, etc. are implicit in this expression (see Equations B6.2.10 and B6.2.11). Due to
the importance of understanding the effects of altering read direction parameters, several
example situations are shown in Table B6.2.1. Case 1 is chosen as a reference and given
an SNR of unity. Also, note that in order to simplify the treatment, all of the situations in
Table B6.2.1 are restricted to doubling or halving the parameters involved. There are also
practical aspects to these choices, which will be discussed below.

From Equation B6.2.13, it appears that it might be possible to obtain very high resolution
without reducing SNR by shrinking ∆x while increasing Ts. Realistically, however, there
is a limit as to how long Ts can be before the signal is seriously degraded by T2

* effects.

Oversampling to avoid aliasing
Although the topic of aliasing has been dealt with in Chapter B4, it is useful here to revisit
it in terms of how changing the FOV (field of view) affects the SNR in a given experiment.
In Table B6.2.1, cases 2 and 3 demonstrate that altering the FOV does not alter the SNR

sread
SNR/voxel x T∝ ∆ (B6.2.13)

Table B6.2.1 SNR/Voxel: When Voxel Size Is Changed in the Read Direction Under Different
Conditionsa

Case no. ∆x Nx Lx Gx ∆t Ts SNR

Reference case
1 ∆x0 N0 L0 G0 ∆t0 Ts,0 1

Data reduction and oversampling
2 ∆x0 N0/2 L0/2 G0 2∆t0 Ts,0 1
3 ∆x0 2N0 2L0 G0 ∆t0/2 Ts,0 1

Degrading spatial resolution
4 2∆x0 N0/2 L0 G0 ∆t0 Ts,0/2 √2
5 2∆x0 N0/2 L0 G0/2 2∆t0 Ts,0 2

Improving spatial resolution
6 ∆x0/2 N0 L0/2 G0 2∆t0 2Ts,0 1/√2
7 ∆x0/2 N0 L0/2 2G0 ∆t0 Ts,0 1/2
8 ∆x0/2 2N0 L0 2G0 ∆t0/2 Ts,0 1/2
9 ∆x0/2 2N0 L0 G0 ∆t0 2Ts,0 1/√2
aThe SNR/voxel is given with respect to that of case 1 and can be seen to correlate exactly with ∆x(Ts)

1/2 or equivalently,
(∆x/Gx)1/2.
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of an experiment as long as Ts and ∆x are unchanged. There are two important implications
of this result.

First, it is possible to avoid aliasing in a given experiment by doubling the FOV in the
read direction. This is accomplished by collecting twice as many points without varying
the read gradient Gx or Ts (referred to as oversampling; case 3), which neither degrades
nor improves the SNR of the experiment. Therefore, in many practical imaging situations,
oversampling is used to double the FOV in the read direction and reduce aliasing artifacts
without sacrificing SNR, lengthening Ts, or the acquisition time.

Consider acquiring a transverse image of the human chest—e.g., where the left to right
dimension of the chest is very large and is most likely to be chosen as the read direction.
Oversampling in the read direction is then used to guarantee that the FOV extends past
the patient’s arms without increasing imaging time, or degrading SNR. The data are
usually oversampled by a factor of two and then just the central data are kept. In this way,
the arms don’t even appear in the image because the outer quarters of the originally
reconstructed image are discarded. Higher levels of oversampling are also possible. This
may prove useful for sagittal or coronal imaging when a large coil or surface coil is used
and the region of interest is small. Alternatively, for a small object, where aliasing is not
a problem and data storage space is a premium, choosing a smaller FOV and collecting
fewer data points (case 2) does not reduce SNR.

Degrading resolution to increase SNR
In case 4, ∆x is increased by a factor of 2, the number of data points collected is halved,
and Ts is also halved. As seen from Table B6.2.1, SNR is increased by √2. If lower
resolution can be tolerated, this increase in SNR could lead to a better tissue recognition,
and the reduction in Ts could be beneficial in reducing the chemical shift artifact, in
overcoming static field inhomogeneity effects (since bandwidth per voxel is increased),
and in reducing relaxation effects during sampling.

In case 5, resolution is reduced by a factor of 2 and SNR is doubled because this increase
in resolution is achieved while Ts is held constant. A doubling of SNR can significantly
improve signal quality. Note that this effect is achieved by reducing the read gradient by
a factor of 2. In most cases, reducing the gradient is not a problem, but it must be kept in
mind that if the applied gradient strength reduces to a level comparable to those produced
by local field inhomogeneities, then severe image distortion will occur. This trick of using
a fixed Ts with the read gradient halved to acquire low resolution images and obtain a
factor of 2 improvement in SNR is commonly used in clinical applications.

Improving resolution in the read direction
In both cases 6 and 7, ∆x is halved by reducing the FOV by a factor of 2 without changing
the number of sampled points. This should be done only if the FOV in case 1 is greater
than or equal to twice the width of the object in the read direction so that aliasing will be
avoided. In case 6, Ts is doubled by doubling ∆t. This method leads to a reduction of SNR
of only √2  since bandwidth per voxel is again halved. Realistically, Ts must be short
enough in case 1 so that when it is doubled, it is still much shorter than T2

*. In case 7, Lx

is halved by doubling the read gradient Gx. This approach requires that enough gradient
power be available to double Gx. Unfortunately, SNR is reduced by a factor of 2, making
this a very inefficient approach.

In case 8, ∆x is halved by doubling Nx and keeping Lx and Ts fixed, which requires doubling
Gx and halving ∆t0. This also leads to a halving of the SNR. In case 9, ∆x is halved by
doubling Nx while keeping both Lx and Gx fixed. This requires doubling the total sampling
time, but is accompanied by only a √2  reduction in SNR. This is probably the optimal
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way to double the resolution of the experiment as long as the increased Ts is not
comparable to T2

*, and storing the extra data is not a problem, although it is similar to
case 6 which requires less storage space but a smaller object.

Since Ts equals 1/(γ−Gx∆x), the proportionality in Equation B6.2.13 can be rewritten as

A better understanding and feel for the SNR/voxel variation in the read direction can be
obtained by relating the SNR/voxel to a combination of ∆x and bandwidth per voxel. To
this end, Equation B6.2.14 can be rewritten in terms of bandwidth per voxel as follows:

where we have used Ts = Nx ∆t = Nx/BWread.

Both Equations B6.2.14 and B6.2.15 contain no hidden dependencies and require none
of the imaging parameters to be fixed—i.e., they can be applied to any situation for
computing the relative SNR change. According to these expressions, the SNR/voxel
decreases only by a factor of √2  for every halving of ∆x as long as the read gradient is
fixed. SNR, however, reduces by a factor of 2 if this improvement in spatial resolution is
accompanied by a doubling of Gx. Note the consistency with these observations for cases
6 through 9 in Table B6.2.1 and in Figure B6.2.2.

x

SNR/voxel
x

G

∆∝ (B6.2.14)

s read xSNR/voxel BW / bandwith per voxelx T x N x∝ ∆ = ∆ = ∆ (B6.2.15)

∆x (Lx, Nx, Gx, ∆t, Ts, SNR)

Ts doubled
Gx fixed

Ts fixed
Gx doubled

∆x/2 (Lx/2, Nx,

2∆t, SNR/   2) 

half FOV
case 6

∆x/2 (Lx/2, Nx,

∆t, SNR/   2) 

full FOV
case 9

∆x/2 (Lx/2, Nx,

∆t, SNR/2) 

half FOV
case 7

∆x/2 (Lx, 2Nx,

∆t/2, SNR/2) 

full FOV
case 8

Figure B6.2.2 Different ways of achieving improved spatial resolution in the read direction, and
their effects on SNR. This figure summarizes cases 6 through 9 in Table B6.2.1, showing also what
parameters were changed in comparison with case 1 to attain high resolution. For a fixed Ts, either
approach yields a loss of 2 in SNR while for Ts doubled, only a loss of √2 in SNR occurs. 
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SNR Dependence on Phase Encoding Parameters

Pulling out just the SNR dependence on parameters which change only the image
characteristics in the in-plane and through-plane phase encoding directions (ŷ and ẑ,
respectively) gives

(recall Ly = Ny∆y and Lz = Nz∆z). There are only two alternate methods for improving
spatial resolution in the phase encoding directions: first, decreasing ∆y or ∆z by
increasing Ny or Nz while keeping Ly or Lz fixed (case 3 in Table B6.2.2), or second,
decreasing ∆y or ∆z by decreasing Ly or Lz while keeping Ny or Nz fixed (case 2 in Table
B6.2.2).

Consider halving ∆y using either of these methods. In the first method, the SNR decreases
only by a factor of √2 , whereas in the second method, the SNR decreases by a factor of
2. What are the advantages or disadvantages of either method? The first method, requiring
doubling Ny, takes twice as long to complete compared to that of the second method. If
the SNR is good enough and aliasing is avoided, the second method is twice as fast as the
first while having √2 worse SNR in comparison with the first approach. Of course, in the
same imaging time as required by the first method, two acquisitions can be performed
with the second method to reclaim the factor of √2  SNR loss, while maintaining the
advantage of requiring less image storage space. These two cases are highlighted in Table
B6.2.2.

SNR in 2-D Imaging

The SNR expression in Equation B6.2.10 can be rewritten for a 2-D imaging experiment.
The voxel now has dimensions of ∆x × ∆y × TH, where TH is the slice thickness. Also,
Nz is replaced by unity; therefore:

In other words, a 2-D imaging experiment performed with exactly the same imaging
parameters (including TR, TE and flip angle) with TH = ∆z has √Nz  worse SNR in
comparison with the 3-D imaging experiment; however, the 2-D imaging experiment
requires an imaging time which is Nz times shorter than the 3-D experiment. It is typically
possible to collect the data for only one slice per TR when the TR value in the 2-D imaging
experiment equals the practically sensible choice of short TR in the 3-D imaging experi-
ment. To obtain the same spatial coverage in the slice select direction requires Nz imaging
experiments, increasing the total imaging time by Nz in the 2-D imaging case. If the same
imaging time is used for both the 2-D and 3-D imaging experiments, the same volume of
coverage and the same contrast as the 3-D can be achieved in 2-D imaging albeit only

y zSNR/voxel y z N N∝ ∆ ∆ (B6.2.16)

y s2
(SNR/voxel) TH

D
x y N T− ∝ ∆ ∆ (B6.2.17)

Table B6.2.2 Two Different Ways to Improve Spatial Resolution in the Phase
Encoding Direction, and Their Effects on the SNR and Total Imaging Time

Case no. ∆y Ny Ly Gy,max TT SNR

Reference case
1 ∆y0 Ny,0 Ly,0 Gy,0 TT0

1

Improved spatial resolution
2 ∆y0/2 Ny,0 Ly,0/2 2Gy,0 TT0

1/2
3 ∆y0/2 2Ny,0 Ly,0 2Gy,0 2TT0

1/√2
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with √Nz  less SNR. Alternatively, a single slice with the same SNR as the 3-D experiment
(obtained by imaging with Nacq2-D = Nz) can be obtained. The most efficient means of
collecting 2-D data and covering the same region-of-interest as in the 3-D imaging case
is to use TR2-D = NzTR3-D and use a multi-slice acquisition (although this guarantees neither
that the 2-D SNR is as good as the 3-D SNR, as discussed above, nor that the contrast is
comparable with the 3-D imaging method).
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