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Abstract 

 

ACL rupture is a major risk factor for post-traumatic osteoarthritis (PTOA) development. Little 

information exists on acute systemic metabolic indicators of disease development. 36 female 

Lewis rats were randomized to Control or noninvasive anterior cruciate ligament rupture 

(ACLR) and to three post-injury time points: 72 hours, 4 weeks, 10 weeks (n=6). Serum was 

collected and analyzed by 1H nuclear magnetic resonance (NMR) spectroscopy and combined 

direct injection and liquid chromatography (LC)-mass spectrometry (MS)/MS (DI-MS). 

Univariate and multivariate statistics were used to analyze metabolomic data, and predictive 

biomarker models were analyzed by receiver operating characteristic (ROC) analysis. 

Topological pathway analysis was used to identify perturbed pathways. 222 metabolites were 

identified by 1H NMR and DI-MS. Differences in the serum metabolome between ACLR and 

Control were dominated by medium- and long-chain acylcarnitine species. Further, decreases in 

several tryptophan metabolites were either found to be significantly different in univariate 

analysis or to play important contributory roles to multivariate model separation. In addition to 

acylcarnitines and tryptophan metabolites, glycine, carnosine, and D-mannose were found to 

differentiate ACLR from Control. Glycine, 9-hexadecenoylcarnitine, trans-2-

Dodecenoylcarnitine, linoelaidyl carnitine, hydroxypropionylcarnitine, and D-Mannose were 

identified as biomarkers with high area under ROC curve values and high predictive accuracies. 

Our analysis provides new information regarding the potential contribution of inflammatory 

processes and immune dysregulation to the onset and progression of PTOA following ACL 

injury. As these processes have most commonly been associated with inflammatory 
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arthropathies, larger-scale studies elucidating their involvement in PTOA development and 

progression are necessary. 

Keywords: Post-traumatic osteoarthritis, metabolomics, anterior cruciate ligament rupture, 

inflammation, immunity 

 INTRODUCTION 

Anterior cruciate ligament (ACL) rupture is a major risk factor for post-traumatic 

osteoarthritis (PTOA) development, and studies have demonstrated long-term incidences of 

PTOA following ACL rupture as high as 50-90% 1-4. The ACL is a major stabilizer of the knee, 

and its rupture is associated with high-energy joint trauma. This initial trauma, subsequent joint 

laxity, persistent inflammation, and non-native joint kinematics after surgical reconstruction are 

among the most commonly-proposed reasons for PTOA onset and progression 1; 2; 5; 6. 

Relatively little is known about specific biological pathways responsible for the initiation 

and progression of ACL rupture-induced PTOA. Mechanobiological responses of the synovium, 

ACL, articular cartilage, and other tissues trigger the release of pro-inflammatory cytokines, 

proteases, and extracellular matrix (ECM) products5-11, initiating what is generally accepted as an 

irreversible, degenerative cascade.1; 12 Protein- and gene-level changes in the synovium 

following ACL rupture induce chronic synovitis13, a tissue condition characteristic of PTOA, and 

the synovium is known to be a major modulator of joint inflammation and catabolism13. 

Compositional and morphological adaptation occurs in subchondral and trabecular bone 

following ACL rupture14; 15, and articular cartilage degeneration is thought to begin at the time of 

trauma, with processes responsible for chondrocyte apoptosis and altered protein expression 

initiated acutely after injury16. Although articular cartilage thinning and necrosis are generally 
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attributed to the OA process, recent studies have demonstrated that both pathologic thinning and 

hypertrophic thickening occur following ACL rupture17-19, indicating dynamic, time-dependent 

processes during PTOA initiation and progression.      

Given the plethora of biological processes potentially involved in PTOA, a need exists 

for more sensitive characterization of disease mechanisms that may be targeted for therapeutic 

intervention or improved, earlier diagnosis. An increasing number of publications have sought to 

identify biomarkers of PTOA, with numerous potential targets identified in urine, synovial fluid, 

and serum20. Metabolomics is a promising new technology enabling comprehensive and 

concurrent system-wide profiling of multiple metabolite concentrations in response to external 

stimuli including lifestyle, diet, disease and genetic influences21. The major analytical methods 

used for high throughput metabolomics consist of 1H nuclear magnetic resonance (1H NMR) and 

mass spectrometry (usually with a chromatographic component), collectively providing 

complementary structural and conformational information on numerous compounds classes in a 

single analyses21. Data acquired via these platforms are increasingly popular, as evidenced by the 

rise in the number of studies utilizing high resolution metabolomics platforms to identify 

metabolites and metabolic pathways associated with PTOA and OA progression22-25. 

Most preclinical animal studies employ surgically-induced models of PTOA (e.g. surgical 

ACL transection, medial meniscal destabilization), but these models may not accurately 

recapitulate the disease process in humans. With regards to metabolomics, these models could 

introduce confounding metabolites associated with surgical trauma, precluding accurate 

characterization of the pathology. In contrast, noninvasive injury models more accurately 

reproduce high-energy joint loading and induce a closed, clinically-relevant injury, representing 

a more useful tool to study metabolic pathways. Our group recently developed and characterized 
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a tibial compression model to induce closed, isolated ACL rupture in the rat 26. This injury leads 

to drastic morphological tissue changes representative of PTOA 14; 17. The purpose of this pilot 

study was to employ this model in combination with high-resolution 1H NMR and MS to study 

serum-levelmetabolic changes in the acute and intermediate post-injury timeframe of PTOA 

onset and progression.  

MATERIALS AND METHODS:  

Treatment Groups, Noninvasive ACL Injury, and Specimen Collection  

Under an IACUC-approved protocol, 36 female Lewis rats aged 14 weeks, ~200 g 

(Charles River Laboratories, Wilmington, MA, USA) were acclimated to a 12-hr light/dark 

facility for one week. Using a computer algorithm, rats were randomized to a control group 

(anesthesia and analgesia only, no injury loading) or noninvasive ACL rupture (ACLR) group. 

Rats were then further randomized to three time points: 72 hours, 4 weeks, and 10 weeks (n=6 

rats per group per time point). Throughout the study, rats were allowed ad libitum cage activity 

and provided unlimited access to food and water. ACLR rats were subjected to a tibial 

compression-based noninvasive ACL rupture protocol, as previously described14; 17; 26. Briefly, 

rats were immobilized in prone position on a custom fixture on a materials testing system 

(Insight 5, MTS Systems, Eden Prairie, MN, USA). The right knee was flexed to 100° and 

constrained to restrict medial and lateral translation, and the right paw was mounted in 30° of 

dorsiflexion. After a preloading and preconditioning, a displacement of 3 mm was rapidly 

applied to the paw at a rate of 8 mm/s, causing anterior tibial subluxation and subsequent failure 

of the ACL26. Anesthesia was induced with intraperitoneal ketamine/xylazine and maintained 

with 1-2% inhaled isoflurane. Subcutaneous carprofen was administered for preemptive 

analgesia, and subcutaneous buprenorphine for post-injury analgesia. Characterization studies of 
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bony remodeling14, articular cartilage degeneration with documented worsening histologic grade 

(OARSI score of ~12 at 4 and 10 weeks) 17, and acute stem cell migration27 have been published 

on the same rats utilized in this study and can be referenced for further information on 

downstream joint changes and cellular phenomena.  

At respective 72-hour, 4-week, and 10-week time points, whole blood was collected via 

cardiac puncture and rats were euthanized by CO2 asphyxia. Serum was obtained via 

centrifugation at 1,200 g at 4°C for 10 mins, aliquoted, and stored at -80°C until processing.  

1H NMR Sample preparation and data acquisition 

Serum specimens were prepared as described by Mercier et al28. Briefly, 3 KDa cut-off 

centrifugal filter units (Amicon Microcon YM-3; Sigma-Aldrich, St. Louis, MO) were rinsed 

seven times by centrifugation (12,000 g for 30 min) using 0.5 ml of H2O to remove residual 

glycerol. Subsequently, 250 µl of rat serum was transferred to the filter units and centrifuged at 

13,000 g for 30 min at 4°C. 200 µl of filtered serum was combined with 25 µl of D2O and 21 µl 

of standard buffer solution consisting of 11.7 mM DSS [disodium-2,2-dimethyl-2-silapentane-5-

sulphonate], 1.75 M K2HPO4, and 5.84 mM 2-chloro pyrimidine-5-carboxylic acid (phasing 

standard) in H2O. Using an Eppendorf liquid handler, 200 µl were transferred to 3 mm NMR 

tubes for analysis by NMR. 

All 1H-NMR experiments were recorded at 300.0 K (±0.05) using a Bruker Avance III 

HD 600 MHz spectrometer coupled with a 5 mm TCI cryoprobe (Bruker-Biospin, Billerica, MA, 

USA). Using a randomized running order, 1D 1H NMR spectra were acquired using a pulse 

sequence developed by Ravanbakhsh et al29. Two hundred and fifty-six transients were acquired. 
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DSS was used as the internal standard for chemical shift referencing and quantification. 

Collected spectra were analyzed using a custom library of 59 metabolites using Bayesil29. 

Combined Direct Injection and LC-MS/MS (DI-MS) compound identification and quantification 

 A comprehensive description of this analysis has been previously described by our group 

30. Briefly, targeted analysis was carried out using AbsoluteIDQ p180 kit (Biocrates Life 

Sciences AG, Innsbruck, Austria) on a TQ-S mass spectrometer coupled to an Acquity I Class 

ultra-pressure liquid chromatography (UPLC) system (Waters Technologies Corporation, 

Milford, MA, USA). Serum samples were analyzed using the protocol described in AboluteIDQ 

manual.  

Univariate and Multivariate Statistical Analyses 

Univariate statistical analyses of all concentration data from 1H-NMR and DI-MS were 

performed using SPSS (v22, IBM, Armonk, NY, USA). Zero values were treated as missing 

values, and features with more than 50% missing values were excluded entirely. To assess 

differences in metabolite concentrations as a function of experimental group and time point, two-

way analysis of variance (ANOVA) was used. Post hoc analysis of multiple comparisons was 

performed with the Sidak P-value correction. ANOVA assumptions were assessed using the 

Shapiro-Wilk test for normality and Levene’s test for homogeneity of variances. Multivariate 

analyses of concentration data from 1H-NMR and DI-MS were performed using Metaboanalyst 

3.0, a free online analysis utility for metabolomics31; 32. Data were normalized to the sum and 

scaled by unit variance. To assess major variation in the dataset and to identify outliers, 

unsupervised principal component analysis (PCA) was performed. Outliers were defined as 

samples outside the 95% confidence limit (Hotelling’s T-squared distribution). Subsequently, 
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supervised partial least squares discriminant analysis (PLS-DA) was utilized. Variable 

importance in projection (VIP) plots listing the top 15 metabolites were generated for each PLS-

DA model. VIP scores estimate the relative importance of each metabolite in the projection of a 

PLS model, providing a quantitative parameter of a metabolite’s importance in distinguishing 

between two groups. Analyses were performed between the two experimental groups at each 

time point. PLS-DA models were then validated using permutation testing (2000 iterations).  

Biomarker and Pathway Topology Analysis  

Data were analyzed using the Biomarker function in Metaboanalyst to determine which 

metabolite pairs would be best for developing predictive models for use as disease biomarkers. 

Predictive classification models were built using various combination pairs of the top 5 

metabolites, identified using least absolute shrinkage and selection operator (LASSO) regression 

analysis33. Predictive models were developed using a PLS-DA algorithm as the classification 

method and feature ranking method. The performance of predictive models was assessed using 

Monte-Carlo cross validation (MCCV) with balanced subsampling, and the area under the 

receiver operating characteristic curve (AUROC) and predictive accuracy were calculated for 

each metabolite combination as measures of predictive ability. 

Topological pathway analysis was performed in MetaboAnalyst to identify the most 

perturbed biological pathways, as previously described34; 35. Briefly, the Rattus Norvegicus 

library was chosen, and the test for pathway enrichment analysis and relative-betweenness 

centrality options for the pathway topology analyses were selected. Significance was set at 

P<0.1.  

Results 



Aut
ho

r M
an

us
cr

ipt

Aut
ho

r M
an

us
cr

ipt

Aut
ho

r M
an

us
cr

ipt

We accurately identified and quantified 58 metabolites using 1H NMR and 186 using DI-

MS. Some overlap was observed between the two platforms (22 metabolites) and as such, we 

took the average values for each individual metabolite measured using both analytical methods, 

yielding 222 unique metabolites (Supplemental Data, Table S1). 

Univariate Comparisons 

Based on two-Way ANOVA of raw data, 17 metabolites were found to be significantly 

different between ACLR and Control (P<0.05 after Sidak correction) at 72 hours (Table 1). At 4 

weeks, 8 metabolites had significantly different concentrations, and at 10 weeks, 3 metabolites 

were found to have significantly different concentrations (Table 1).  

Multivariate Modeling 

Unsupervised PCA modeling did not identify any significant outliers. The total 

percentage of explained variation by the first three principal components was 65.5% at 72 hrs, 

70.9% at 4 weeks, and 71.5% at 10 weeks. No notable separation was observed in any of the 

PCA models. (Supplemental Data, Figure S1). Subsequently, supervised PLS-DA modeling was 

applied, which yielded marked group separation between Control and ACLR at 72 hrs (Fig 2A) 

and 4 weeks (Fig 2C), and modest separation at 10 weeks (Fig 2E). Despite this observed 

separation, given the relatively small sample size (n=6), these models were not found to be 

significant following cross validation using 2000 iterations of permutation testing (72 hrs: 

P=0.760; 4 weeks: P=0.999; 10 weeks: P=0.928). VIP plots of respective models at each time 

point indicate the top 15 most contributory metabolites responsible for group separation (Fig 2B, 

D, F). At 72 hrs, increases in the concentrations of glycine and 9-hexadecenoylcarnitine, and 

decreases in carnosine were the three most-contributory metabolite features separating Control 
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and ACLR (Fig 2B). Based on univariate analyses, there were no significant differences in the 

concentrations of glycine (Control: 195.7 µM ± 32.5, ACLR: 214.5 µM ± 20.2, P=0.201) or 9-

hexadecenoylcarnitine (Control: 25.8 nM ± 6.14, ACLR: 30.5 nM ± 2.42, P=0.182), but a 

significant difference in carnosine concentration was observed (Control: 2.56 µM ± 1.80, ACLR: 

0.452 µM ± 0.304, P=0.007). In addition to these three metabolites, fumaric acid (Control: 17.51 

µM ± 7.41, ACLR: 9.750 µM ± 4.20, P=0.023), isopropyl alcohol (Control: 49.56 µM ± 23.51, 

ACLR: 78.45 µM ± 26.07, P=0.043), and 3,5-Tetradecadiencarnitine (Control: 0.0107 µM ± 

0.0023, ACLR: 0.0157 µM ± 0.0064, P=0.041) had significantly different absolute 

concentrations based on univariate analyses and were in the top-15 highest VIP scores (Fig 2B).  

At 4 weeks post-injury, the VIP plot demonstrates that increases in the concentrations of 

trans-2-dodecenoylcarnitine, acetic acid, and 9-decenoylcarnitine were the three most 

contributory features to group separation (Fig 2D). There were significant univariate differences 

in the concentrations of trans-2-dodecenoylcarnitine (Control: 0.216 µM ± 0.035, ACLR: 0.320 

µM ± 0.044, P=0.008) and 9-decenoylcarnitine (Control: 0.218 µM ± 0.031, ACLR: 0.313 µM ± 

0.041, P=0.012) but not in acetic acid concentration (Control: 73.43 µM ± 12.1, ACLR: 89.61 

µM ± 17.4, P=0.306). Furthermore, Linoelaidyl carnitine (Control: 0.025 µM ± 0.004, ACLR: 

0.014 µM ± 0.007, P 0.008), serotonin (Control: 3.460 µM ± 1.47, ACLR: 1.840 µM ± 0.470, 

P=0.006), and L-Palmitoylcarnitine (Control: 0.170 µM ± 0.046, ACLR: 0.116 µM ± 0.020, 

P=0.012) had significant differences in absolute concentrations and were in the top-15 highest 

VIP scores (Fig 2D).  

At 10 weeks, VIP plots indicate that a decrease in D-Mannose concentration and 

increases in hexanoylcarnitine and butyrylcarnitine concentrations were the three most 

contributory features separating Control and ACLR (Fig 2F). There was a trending univariate 
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difference in D-Mannose concentration between Control and ACLR (Control: 75.93 µM ± 26.4, 

ACLR: 31.98 µM ± 25.1, P=0.076) and significant differences in the concentrations of 

hexanoylcarnitine (Control: 0.129 µM ± 0.055, ACLR: 0.470 µM ± 0.322, P=0.020) and 

butyrylcarnitine (Control: 2.325 µM ± 1.30, ACLR: 6.965 µM ± 4.69, P=0.016). In addition, 

Hydroxypropionylcarnitine (Control: 9.00 nM ± 8.36, ACLR: 1.33 nM ± 1.75, P=0.024) had 

significantly different absolute concentration between Control and ACLR and were in the top-15 

highest VIP scores (Fig 2F) 

Predictive Biomarker Models 

Having established which metabolites had the greatest absolute concentration differences 

and contributed most notably to group separation of multivariate models (i.e. highest VIP 

scores), we used LASSO regression to identify 5 metabolites at each time point, and predictive 

models were built to determine the predictive ability of combination pairs of the 5 identified 

metabolites as potential biomarkers of PTOA onset and progression (Table 2, Figure 3). At 72 

hours, Glycine, 9-Hexadecenoylcarnitine, Fumaric acid, Methionine sulfoxide, and PC(o-

24:0/18:3(6Z,9Z,12Z)) were selected for biomarker analysis. AUROC values of combination 

pairs ranged from 0.848 to 0.952, and predictive accuracies of these models following 100-fold 

cross validation ranged from 71.0% to 82.0% (Table 2). The combination of Glycine and 9-

Hexadecenoylcarnitine generated the model with the highest AUROC of 0.952 (95% CI 0.75 – 

1.00) (Figure 3A), and this model had a predictive accuracy of 76.8%. At 4 weeks, trans-2-

Dodecenoylcarnitine, 9-Decenoylcarnitine, Acetic acid, Serotonin, and Linoelaidyl carnitine 

were selected for biomarker analysis. AUROC values of metabolite pairs at 4 weeks ranged from 

0.770 – 0.998, and following 100-fold cross validation, predictive accuracies ranged from 66.8% 

- 96.8% (Table 2). The combination of trans-2-Dodecenoylcarnitine and Linoelaidyl carnitine 
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produced the model with the highest AUROC of 0.998 (95% CI 1.00 – 1.00) (Figure 3B), and 

this model had a predictive accuracy of 96.8%. At 10 weeks, Hydroxypropionylcarnitine, D-

Mannose, Formic acid, Hexanoylcarnitine, and Propionylcarnitine were selected as the top 5 

metabolites for biomarker analysis. Combinations of these 5 metabolites generated AUROC 

values ranging from 0.712 – 0.975, with predictive accuracies following 100-fold cross 

validation found to range from 65.8% - 87.8% (Table 2). The combination of 

Hydroxypropionylcarnitine and D-Mannose produced the model with the highest AUROC of 

0.975 (95% CI 0.50 – 1.00) (Figure 3C), and this combination had a predictive accuracy of 

87.8%.  

Pathway Analysis 

Topological pathway analysis revealed several perturbed biochemical pathways due to 

alterations in metabolite concentration after ACL injury (Table 3). At 72 hours, 12 pathways 

were significantly perturbed (P≤0.1). The most significantly-affected pathways at 72 hours were 

cyanoamino acid metabolism (P=0.017), methane metabolism (P=0.030), sphingolipid 

metabolism (P=0.031), histidine metabolism (P=0.033), and glutathione metabolism (P=0.033). 

At 4 weeks, Tryptophan metabolism (P=0.063) and β-Alanine metabolism (P=0.081) were 

significantly perturbed, and at 10 weeks, fructose and mannose metabolism (P=0.020) and amino 

sugar and nucleotide sugar metabolism (P=0.020) were significantly perturbed.  

Discussion 

Despite the increasing incidence of PTOA in both military and civilian populations36, the 

exact mechanisms connecting joint trauma to the onset and progression of joint degeneration are 

poorly understood. Evidence supporting the existence of underlying acute biologic phenomena at 

the time of ACL injury that precipitate rapid joint degeneration continues to emerge5; 6. In the 
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present study, we applied high-resolution 1H-NMR spectroscopy and DI-MS to measure 

metabolite concentrations in the serum of rats subjected to a validated, non-surgical ACL rupture 

protocol26. We found that several carnitine and tryptophan metabolites distinguished ACLR from 

Control rats, and AUROC analysis of the top two LASSO regression-identified metabolites at 

each time point demonstrated predictive accuracies of 76.8%, 96.8% and 87.8% at 72 hrs, 4 

weeks and 10 weeks, respectively. These results demonstrate that the combined 1H-NMR and 

DI-MS platforms are powerful techniques to identify biomarkers and potential biologic 

mechanisms underlying PTOA development. 

VIP plots from PLS-DA modeling demonstrated that increased glycine and 

hexadecenoylcarnitine concentrations, along with decreased carnosine concentrations, were most 

contributory to distinguishing ACLR rats from Control rats at 72 hours. At 4 weeks, increased 

concentrations of trans-2-dodecenoylcarnitine, acetic acid, and 9-decenoylcarnitine were the top 

three features, and at 10 weeks, decreased D-mannose and increased hexanoylcarnitine and 

butyrylcarnitine concentrations were most contributory to group separation. Mickiewicz et al 

employed 1H-NMR to characterize metabolites in synovial fluid two weeks after idealized ACL 

reconstruction procedure in sheep22. They found higher synovial fluid concentrations of 

isobutyrate and glucose in sheep that had undergone ACL reconstruction, while hydroxyproline, 

asparagine, serine, and uridine concentrations were lower. Similarly, we found that serum 

concentrations of L-serine and isobutyrate were increased in rats with an ACL rupture at the 72-

hour time point, though univariate analysis did not demonstrate significant concentration 

differences of these metabolites. Further, VIP analysis demonstrated that isobutyrate was among 

the key markers contributing to separation between the ACLR and Control group at the 72-hour 

time point. In another study by Mickiewicz et al, a combined 1H-NMR and GC-MS-based 
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approach was used to measure metabolite concentrations in synovial fluid from patients with 

chronic knee osteoarthritis and healthy controls23. They identified the 11 metabolites most 

responsible for OPLS-DA separation between OA and Control synovial fluid, and our analysis 

identified one serum metabolite in common with the synovial fluid results of Mickiewicz et al: 

the medium-chain acylcarnitine, hexanoylcarnitine.  

At each time point, the serum concentration of several acylcarnitine species contributed 

significantly to PLS-DA separation. Acylcarnitines are fatty acid esters of L-carnitine which play 

important roles in energy production by promoting the entry of long chain fatty acids into the 

mitochondrion via the carnitine shuttle. Univariate analysis showed that free carnitine (L-

carnitine) was significantly decreased in ACLR animals, while VIP analysis demonstrated that a 

total of 15 acylcarnitine species contributed substantially to model separation. Eight of these 

acylcarnitine species had significant univariate concentration differences between ACLR and 

Control, with five metabolites exhibiting increased and three metabolites displaying decreased 

concentrations. Low circulating levels of free carnitine and acylcarnitine species have been 

implicated in several immune/inflammatory conditions, including systemic lupus erythematous 

(SLE)37 and rheumatoid arthritis (RA)38. Prior to definitive clinical onset of RA, Surowiec et al 

observed a decrease in plasma acylcarnitines when compared to healthy controls39. Incomplete 

β-oxidation is implicated in the accumulation of esterified carnitine species, which may promote 

inflammation through the NF-κΒ pathway37.  Zhang et al defined OA phenotypes via 

metabolomic analyses and found that one specific phenotype was defined by differential 

expression of acylcarnitines40, though it was unclear if this was a post-traumatic OA phenotype. 

Adams, et al. demonstrated that acylcarnitine species were significantly increased in the 

synovium of patients with end-stage knee osteoarthritis41, compared to patients with little 
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evidence of OA that were undergoing surgery due soft tissue injury. Our present study indicates 

a strong influence from trans-2-docecenoylcarnitine at 4 weeks, with a 1.48-fold change relative 

to Control (P=0.008), the highest VIP value in PLS-DA modeling, and a 96.8% predictive 

accuracy (AUROC = 0.998, 95% CI 0.97-1.00) when paired with linoelaidyl carnitine in 

predictive modeling. These results and findings from the aforementioned studies indicate that 

free- and esterified carnitine metabolites may play a role in OA/PTOA development.  

Topological pathway analysis demonstrated several perturbed pathways due to ACLR 

(Table 3). One potentially important perturbed pathway in the context of arthritis was tryptophan 

metabolism. Several tryptophan metabolites were significantly different between ACLR and 

Controls at 72 hrs (decreased L-aspartic acid, 1-phenylethylamine, and serotonin concentrations). 

At 4 weeks, a decrease in L-kynurenine, serotonin, and L-aspartic acid were top VIP features, 

and at 10 weeks, an increase in 1-phenylethylamine was a top VIP feature. Kang, et al. 

demonstrated that synovial fluid from patients with RA showed significantly lower 

concentrations of tryptophan metabolites42, including kynurenine, indoelactic acid, N’-

Formylkynurenine and indoleacetaldehyde when compared to synovial fluid from OA patients. 

Kynurenine is an endogenous ligand for the aryl hydrocarbon receptor (AHR), and binding of 

AHR by kynurenine leads to production of Tregs and suppression of IL-17-producing Th cell 

populations43; 44. Further, Chen et al demonstrated that increasing kynurenine levels via 

indoleamine 2,3-dioxygenase (IDO)-targeted gene therapy promoted the resolution of collagen-

induced arthritis45, primarily by apoptosis of T-cells and reduction in synovial IL-17. We 

previously demonstrated that our ACL injury model leads to acutely-increased IL-17 expression 

in synovium27. Given the presently-demonstrated reduction in tryptophan metabolites that could 

serve as AHR ligands in ACLR animals, we hypothesize that a pro-inflammatory environment is 
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favored in the acute period after injury. Furthermore, the tryptophan metabolite serotonin has 

been closely linked with bone mineral density in the setting of osteoporosis46 and with IL-17-

associated osteoclastogenesis in autoimmune arthritis47, indicating that serotonin may play a role 

in the subchondral and epiphyseal bone remodeling we have observed following ACL rupture in 

this model 14.  

In addition to metabolites involved in carnitine and tryptophan metabolism, several other 

key metabolites contributed to the observed PLS-DA separation. At 72 hours, glycine had the 

highest VIP score and was involved in the significant perturbation of several pathways (Table 3). 

Glycine has been recently implicated in muscle fibrosis in RA patients48 and as an amino acid 

crucial for collagen synthesis, it may be linked to acute tissue remodeling in our model, but 

further experimentation is necessary to elucidate its precise role in PTOA. At 72 hours, carnosine 

had the third-highest VIP rank and had significantly lower univariate concentrations in ACLR 

compared to Control (P = 0.007). Ponist et al recently demonstrated that oral carnosine reduced 

edema in the paws of carrageenan-treated rats in adjuvant arthritis and further demonstrated 

reduced oxidative stress in primary culture of articular chondrocytes49 – these findings may be an 

indication that reduced carnosine observed in our data is involved in post-injury inflammation. In 

addition, D-mannose was a strong contributor to model separation at 10 weeks, with a VIP value 

near 2.8 and a lower univariate concentration difference of trending significance (P = 0.076). 

Furthermore, D-mannose was a key metabolite in the significant perturbation of fructose and 

mannose metabolism (P = 0.020) and amino sugar and nucleotide sugar metabolism (P = 0.020). 

Mannose is a monosaccharide involved in protein N-glycosylation, which is integral to several 

physiologic functions including lectin-mediated cell-cell interactions. One hypothesis is that 

reduced serum mannose reflects consumption in N-glycosylation associated with stem and 
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immune cell trafficking to the injured joint, which we have observed in this model 27. Urita et al 

described decreased concentrations of N-glycan species in both human and murine osteoarthritic 

articular cartilage and demonstrated a correlation between high mannose N-glycans and 

chondrocyte production of matrix-degrading enzymes MMP-13 and ADAMTS-5 in response to 

interleukin-1α stimulation.50 Additional investigation into the roles of glycine, carnosine, and D-

mannose in the onset and progression of ACL rupture-induced PTOA is warranted.  

Our study is not without limitations. Our findings are limited by a small sample size 

(n=6), and our PLS-DA models were not found to be significant. Nonetheless, as a preliminary 

investigation of the serum metabolome after ACL injury, we found several significant univariate 

differences, significantly-perturbed pathways, and high AUROC and predictive accuracy values 

from predictive modeling. Another limitation is the lack of concomitant analysis of local joint 

tissue or synovial fluid – additional metabolic profiling of synovial fluid, synovial membrane, 

cartilage and subchondral bone would provide a greater understanding of local biochemical 

changes following ACL rupture. Although we performed a cross-sectional experiment to assess 

three distinct time points, we did not perform multivariate modeling as a function of time, which 

could characterize metabolites involved in disease progression. Future studies are planned to 

undertake more powered studies involving longitudinal multivariate analyses. Lastly,further 

characterization is warranted to determine whether the pattern of expression of the identified 

metabolites aids in distinguishing between PTOA, idiopathic osteoarthritis, and inflammatory 

arthropathies, which the present study did not address.  

To our knowledge, this is the first high-resolution metabolomics characterization of ACL 

rupture-induced PTOA utilizing both 1H NMR and DI-MS. Univariate and multivariate analyses 

indicated that serum concentrations of several acylcarnitine metabolites and tryptophan 
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metabolites differentiate Control and ACLR rats, and these factors may be regulators of the acute 

and intermediate phases of PTOA. Altered serum levels of carnitine species have been associated 

with several conditions involving immune dysregulation, including RA38. Reduced serum 

concentration of tryptophan metabolites may further support immune dysregulation in animals 

with ACL rupture, as decreased levels of tryptophan metabolites are frequently observed in 

inflammatory arthropathies37; 38 and are associated with increased pro-inflammatory cytokine 

production51 and decreased levels of immunomodulating Tregs
43. Glycine, carnosine, and D-

mannose were strong metabolites differentiating ACLR from Control rats, and each has been 

associated with immune and inflammatory conditions48-50. The findings from this preliminary 

investigation indicate a role of immune and inflammatory processes in the response to injury and 

progressive joint degeneration. 
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Figure Legends 

Figure 1. A representative 1D 1H NMR spectrum of serum used in this study. (A) Aliphatic 

region; (B) Aromatic region. 1. Histidine , 2. 1-methylhistidine, 3. Formate, 4. Tyrosine, 5. 

Phenylalanine, 6. Urea, 7. Hippurate, 8. Tryptophan, 9. 3-Methylhistidine, 10. Xanthine, 11. 

Fumarate, 12. 2-Hydroxybutyrate, 13.3-Hydroxybutyrate, 14. Leucine, 15. Isopropanol, 16. 

Isobutyrate, 17. Valine, 18. Propylene glycol, 19. Methanol, 20. Dimethyl sulfone, 21. Acetone, 

22. 3-Hydroxyisovalerate, 23. Isovalerate, 24. Acetate, 25. Betaine, 26. Acetoacetate, 27. 

Carnitine, 28 Lactate, 29. Creatine, 30. Creatinine, 31. Dimethylamine, 32. Dimethylglycine, 33. 

Citratel, 34. Choline, 35. Ethanol, 36. Glucose, 37. Glycerol, 38. Glycine, 39. Glutamate, 40. 

Alanine, 41. Proline, 42. Threonine, 43. Asparagine, 44. Mannose, 45. Isoleucine, 46. Lysine, 47. 

Serine, 48. Methionine, 49. Malonate, 50. Pyruvate, 51. Succinate, 52.Aspartate , 53. Myo-

inositol, 54. Ornithine, 55. Pyroglutamate, 56. Sarcosine, 57. Arginine 58. Glutamine 
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Figure 2 – PLS-DA scores plots (A, C, E) and corresponding VIP plots (B, D, F) of Control and 

ACLR rats at 72 hours, 4 weeks, and 10 weeks. Shaded regions on PLS-DA plots correspond to 

the 95% confidence interval region. VIP plots rank metabolites by VIP score, a quantitative 

parameter of a given metabolite’s importance in observed group separation (i.e. projection of 

the PLS-DA model).  

Figure 3 – ROC curves of metabolite pairs used for predictive modeling at 72 hours (A), 4 weeks 

(B), and 10 weeks (C).  

 

Table Legends: 

Table 1 – Metabolites with significantly different concentrations between Control and ACLR 

based on univariate Two-Way ANOVA at 72 hours, 4 weeks, and 10 weeks.  

Table 2 – Area under the receiver operating characteristic curve (AUROC) with 95% CIs and 

Predictive Accuracy (PA) of Metabolite Pairs used to develop predictive biomarker models. 

Table 3 – Results of pathway topology analysis indicating perturbed biochemical pathways been 

Control and ACLR rats.  

 

Table 1 – Metabolites with significantly different concentrations between Control and ACLR 

based on univariate Two-Way ANOVA at 72 hours, 4 weeks, and 10 weeks.  

Time 
Point 

 
Metabolite 

Control  
(µM ± SD) 

ACLR 
(µM ± SD) 

Fold-
Change 

P  
Value 

L-Aspartic acid 102.73 ± 41.99 62.90 ± 21.58 0.612 0.002 

C5-DC/C6-OH 0.0238 ± 7.33E-3 0.013 ± 0.007 0.542 0.005 

72s 

hours 

 Carnosine 2.561 ± 1.805 0.452 ± 0.304 0.177 0.007 
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1-Phenylethylamine 6.517 ± 5.152 2.353 ± 3.687 0.361 0.009 

N-Acetylornithine 3.063 ± 0.697 2.100 ± 0.511 0.685 0.011 

Succinic acid 610.23 ± 396.11 300.70 ± 129.85 0.493 0.011 

C16-OH 0.00783 ± 4.08E-4 0.0130 ± 0.007 1.639 0.016 

Formic acid 87.50 ± 38.71 48.05 ± 18.87 0.549 0.021 

Fumaric acid 17.51 ± 7.413 9.750 ± 4.207 0.556 0.023 

C5-OH/C3-DC-M 0.0972 ± 0.0253 0.0730 ± 0.0160 0.751 0.023 

Serotonin 2.322 ± 1.324 1.023 ± 0.442 0.441 0.031 

L-Carnitine 48.20 ± 8.768 38.16 ± 9.988 0.792 0.034 

Spermidine 77.15 ± 117.10 189.20 ± 180.15 2.451 0.038 

3,5-Tetradecadiencarnitine 0.0107 ± 2.34E-3 0.0157 ± 6.41E-3 1.468 0.041 

Isopropyl alcohol 49.56 ± 23.51 78.45 ± 26.07 1.582 0.043 

H1 12811 ± 2613 10132 ± 2479.0 0.791 0.048 

 

3-Nitrotyrosine 0.831 ± 0.229 0.680 ± 0.209 0.818 0.048 

Serotonin 3.460 ± 1.470 1.840 ± 0.470 0.531 0.006 

Linoelaidyl carnitine 0.0250 ± 0.004 0.0140 ± 0.007 0.586 0.008 

trans-2-Dodecenoylcarnitine 0.216 ± 0.035 0.3200 ± 0.044 1.479 0.008 

L-Palmitoylcarnitine 0.170 ± 0.046 0.116 ± 0.020 0.683 0.012 

Stearoylcarnitine 0.100 ± 0.050 0.063 ± 0.009 0.636 0.013 

Oleoylcarnitine 0.100 ± 0.0220 0.0707 ± 0.0143 0.705 0.027 

9-Decenoylcarnitine 0.218 ± 0.031 0.313 ± 0.041 1.433 0.03 

4 weeks 

 

 

 

PC16:0/16:0 20.13 ± 16.48 10.68 ± 2.017 0.531 0.034 

Butyrylcarnitine 2.320 ± 1.30 6.960 ± 0.32 2.994 0.016 

Hexanoylcarnitine 0.129 ± 0.055 0.470 ± 0.32 3.650 0.020 

10 weeks 

 

Hydroxypropionylcarnitine 9.00E-3 ± 8.36E-3 1.33E-3 ±1.75E-3 0.176 0.024 

 

 

Table 2 – Area under the receiver operating characteristic curve (AUROC) with 95% CIs and 

Predictive Accuracy (PA) of Metabolite Pairs used to develop predictive biomarker models. 

Time Point Metabolite 1 Metabolite 2 AUROC (95% CI) PA 
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72 hours Glycine 9-Hexadecenoyl-carnitine 0.952 (0.75-1.00) 76.8% 

  Fumaric acid 0.912 (0.75-1.00) 82.0% 

  Methionine sulfoxide 0.908 (0.50-1.00) 70.2% 

  PC(o-24:0/18:3(6Z,9Z,12Z)) 0.925 (0.62-1.00) 77.8% 

 9-Hexanedecenoyl-carnitine Fumaric acid 0.895 (0.50-1.00) 78.8% 

  Methionine sulfoxide 0.938 (0.50-1.00) 76.8% 

  PC(o-24:0/18:3(6Z,9Z,12Z)) 0.925 (0.50-1.00) 82.0% 

 Fumaric acid Methionine sulfoxide 0.860 (0.50-1.00) 71.0% 

  PC(o-24:0/18:3(6Z,9Z,12Z)) 0.848 (0.50-1.00) 70.2% 

 Methionine sulfoxide PC(o-24:0/18:3(6Z,9Z,12Z)) 0.942 (0.75-1.00) 81.8% 

4 weeks trans-2-Dodecenoylcarnitine 9-Decenoylcarnitine 0.828 (0.50-1.00) 66.8% 

  Acetic acid 0.910 (0.25-1.00) 82.5% 

  Serotonin 0.998 (1.00-1.00) 93.0% 

  Linoelaidyl carnitine 0.998 (1.00-1.00) 96.8% 

 9-Decenoylcarnitine Acetic acid 0.830 (0.25-1.00) 79.0% 

  Serotonin 0.998 (1.00-1.00) 94.5% 

  Linoelaidyl carnitine 0.962 (0.50-1.00) 91.0% 

 Acetic acid Serotonin 0.938 (0.62-1.00) 83.2% 

  Linoelaidyl carnitine 0.912 (0.50-1.00) 82.0% 

 Serotonin Linoelaidyl carnitine 0.770 (0.25-1.00) 66.2% 

10 weeks Hydroxypropionylcarnitine D-Mannose 0.965 (0.50-1.00) 87.8% 

  Formic acid 0.875 (0.50-1.00) 78.0% 

  Hexanoylcarnitine 0.900 (0.50-1.00) 77.5% 

  Propionylcarnitine 0.910 (0.50-1.00) 78.2% 

 D-Mannose Formic acid 0.712 (0.25-1.00) 69.2% 

  Hexanoylcarnitine 0.840 (0.50-1.00) 75.7% 

  Propionylcarnitine 0.840 (0.50-1.00) 72.0% 

 Formic acid Hexanoylcarnitine 0.740 (0.25-1.00) 67.0% 

  Propionylcarnitine 0.745 (0.12-1.00) 65.8% 

  Hexanoylcarnitine Propionylcarnitine 0.780 (0.25-1.00) 70.5% 
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Table 3 – Results of pathway topology analysis indicating perturbed biochemical pathways been 

Control and ACLR rats.  

Time Point Pathway(s) Total 
Compounds 

Hits (number of hits) P Value 

72 hours Cyanoamino acid metabolism 6 Glycine, L-Serine (2) 0.017 

 Methane metabolism 9 Glycine, Methanol, Formic acid, L-Serine (4) 0.030 

 Sphingolipid metabolism 21 SM, L-Serine (2) 0.031 

 Histidine metabolism 15 L-Glutamic acid, L-Histidine, Histamine, 

Carnosine, L-Aspartic acid, 1-Methylhistidine (6) 

0.033 

 Glutathione metabolism 26 L-Glutamic acid, Glycine, Pyroglutamic acid, 

Ornithine, Putrescine, Spermidine, Spermine (7) 

0.033 

 Porphyrin and chlorophyll 

metabolism 

27 Glycine, L-Glutamic acid (2) 0.037 

     

 Primary bile acid biosynthesis 46 Glycine, Taurine (2) 0.038 

 Nitrogen metabolism 9 L-Glutamic acid, L-Glutamine, L-Histidine, 

Glycine (4) 

0.053 

 Propanoate metabolism 20 Succinic acid, 2-Hydroxybutyric acid (2) 0.063 

 Purine metabolism 68 Xanthine, L-Glutamine, Urea (3) 0.075 

 Arginine and proline metabolism 44 L-Glutamine, Ornithine, Citrulline, L-Aspartic 

acid, L-Arginine, L-Glutamic acid, N-

Acetylornithine, L-Proline, Hydroxyproline, 

Creatine, Putrescine, Spermidine, Fumaric acid, 

Urea, Spermine (15) 

0.075 

 Glycine, serine, and threonine 

metabolism 

32 L-Serine, Choline, Betaine, Dimethylglycine, 

Glycine, Sarcosine, L-Threonine, Creatine, 

Pyruvic acid (9) 

0.087 

4 weeks Tryptophan metabolism 41 L-Tryptophan, Serotonin, L-Kynurenine (3) 0.063 

 ß-Alanine metabolism 19 L-Aspartic acid, Spermidine, Spermine (3) 0.081 

10 weeks Fructose and mannose metabolism 19 D-Mannose (1) 0.020 

 Amino sugar and nucleotide sugar 

metabolism 

37 D-Mannose (1) 0.020 
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Figure 1 - Spectrum  . 
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Figure 2 - PLSDA  . 
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Figure 3 - ROC composite  . 

 


