Phase Dependence on Motion

OVERVIEW

We have seen that the refocusing of spins is equivalent to ensuring that all spins are in
phase at the echo. Spin echo sequences have the wonderful property that, even in the
presence of local field inhomogeneities, the spins rephase at the Hahn echo time, what
we conventionally refer to as Tg. The read gradient is then usually designed so that the
area under the dephasing portion is exactly balanced by the rephasing portion at the echo
time Tg. This coincidence of the two echo times, the Hahn echo and the gradient field
echo, is usually taken for granted. Ideally then, at least for spin echo sequences, the phase
will be zero at each pixel. For the gradient echo (see Fig. B7.1.1), the total phase of
spins is zero at the echo time if there is no flow motion in the imaged subject. For the
discussions in this unit, we will ignore the effects of field inhomogeneities.

Motion during the gradient moves the spin from one location to another and, therefore,
changes the effective field it sees. This field change leads to a frequency change in time
during either the dephasing or rephasing gradient, or both. As a result, the spins do not
refocus at the expected time. For a simple bipolar pulse (a negative square-pulse gradient
of amplitude G followed immediately by a positive square-pulse gradient of amplitude
G, see Fig. B7.1.1) and spins moving with a constant speed, the change in phase (¢) for
motion through the gradients is given in terms of -y, the gyromagnetic ratio, G, the above
mentioned gradient amplitude, the gradient pulse time T for each lobe, and the speed of
the spins during this time, v:

0=—YGvt* (B7.1.1)

o)

Figure B7.1.1 (A) A typical bipolar, square-pulse readout gradient waveform whose zeroth mo-
ment vanishes at the field echo time Fe. Recall that the negative lobe is referred to as the dephasing
lobe of the read gradient and the positive lobe as the rephasing lobe. (B) The phase accumulated
as a function of time for stationary spins (solid line) and the additional phase for spins moving
with a constant velocity (dashed line) along the direction of the gradient G. The actual value of
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Figure B7.1.2 Velocity compensation in the slice select direction. Transverse image of the knee
obtained with (A) an uncompensated slice select gradient structure and (B) a compensated slice
select gradient structure. The uncompensated image acquisition shows ghosting (arrows) as well
as some dephasing and consequent signal loss whereas both these effects are removed by velocity
compensation. The cancellation of signal from the ghosts in some cases (rather than coherent
addition to the background) occurs because the phase of that particular ghost is negative (relative
to the background). Imaging parameters: (A) Tr/Te = 15 msec/5 msec, Ts = 2.56 msec, AX x Ay x
Az =0.78 mm x 0.78 mm x 5.0 mm, N, x N, =256 x 256, 8 = 5°, Nyeq = 1,Trr = 1.024 msec,
Gss = 9.6 mT/m; (B) the same as in (A) except that Tr/Te = 14 msec/4.8 msec, tre= 1.0 msec,
Gss =7.2mT/m.
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Figure B7.1.3 lllustration of a (A) plug-flow velocity profile and (B) laminar-flow velocity profile
for a cross-sectional cut through a cylindrical vessel.

The presence of phase by itself is not a bad thing. Phase can be used to measure flow
under the right circumstances (see Equation B7.1.1) or local magnetic field, for example.
The problem arises when the velocity, and hence phase, changes in time, or if there is a
significant phase change across the voxel because of velocity dispersion across the voxel.
The first will cause ghosting, while the second will cause signal loss from intravoxel
dephasing. The pulsatility of the blood flow during the cardiac cycle causes changes in
velocity as a function of time and is a source of the first type of artifact. Figure B7.1.2
shows an example of ghosting artifacts in the leg of a volunteer. Laminar flow (see Fig.
B7.1.3) is an example of spatial changes in velocity and leads to the second type of
artifact.
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Figure B7.1.4 Ghosting artifacts due to periodic translational motion such as respiration can
be eliminated either by acquiring the entire data set over a short period of time or by avoiding
the motion. (A) When a Ty of 50 msec is used, the acquisition time is on the order of only three
breaths, and the ghosting artifact is imperceptible. Instead, it is replaced by a small blur of the edge
features where motion occurs. (B) With a breath-hold, the chest wall motion is completely avoided
and negligible blurring occurs. Using the same Ty of 50 msec, the entire slice can be acquired in
a short breath-hold period (in this case, ~13 sec). Now, there are no ghosting artifacts or blurring,
although subject cooperation is required. Imaging parameters: (A), (B) Tr/Te = 50 msec/12 msec,
Ts =7.68 msec, Ax x Ay x Az=1.95 x 1.95 x 10.0 mm, Ny x N, = 256 x 256, 8 = 45°, Nycq
=1, 1gr = 2.56 msec, Gss = 2.4 mT/m.

The sources of these phase changes can come from the read gradient, from the slice select
gradient, and from the phase encoding gradient. For respiratory or cardiac motion, the
timing of the RF pulses is not guaranteed to be in synchronization with the period of these
two motions unless respiratory gating or cardiac triggering is used to do so. Examples of
these periodic motion effects are shown in Figures B7.1.4, B7.1.5, and B7.1.6. If these
last two procedures are used, the acquisition times often increase significantly. (Although
there is no avoiding this if the goal is to image the heart itself, it is not necessary for,
say, imaging the body or most other body parts.) The use of short 7r scans or other fast
imaging methods are being used more often today, and they will be susceptible to phase
changes in time when these timing mechanisms are not feasible. Generally, ghosting and
signal loss will then result.

There are also two other sources of error in the images caused by flow. One is caused
by the motion of the spins between the phase (or partition) encoding and the echo, and
is referred to as a misregistration artifact. This implies that the vessel appears shifted
in the image from its actual location spatially. This phenomenon is demonstrated in the
schematic drawing in Figure B7.1.7B, for a phantom in Figure B7.1.8A, and in a neck
example in Figure B7.1.9. The shift in position of spins leads to a bright line artifact
shown in the last two figures. The second comes about from the motion during the read
gradient itself. Even if motion at the echo is compensated, this effect remains and can
cause a blurring of the vessel.

All artifacts but the latter can be eliminated for constant velocity motion or flow if the
phase at the echo can be made constant independent of velocity. Evidently, by adding
another gradient lobe to the usual gradient structure, the effects of constant velocity flow
can be removed and the phase once again refocused as if the spins were not moving. (This
topic is discussed in UNIT 7.2.)
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Figure B7.1.5 Simple periodic translational motion, such as that in respiration, leads to ghost-
ing. A gradient echo sequence compensated in both read and slice select directions still exhibits
ghosting. Images (A) and (B) were collected with a Tz of 400 msec while images (C) and (D)
were collected with a Tg of 200 msec. Images (A) and (C) were acquired with the phase encoding
direction in the vertical direction along which chest wall motion occurs during respiration. Images
(B) and (D) are acquisitions of the same 2-D slice with the read direction now along the direction
of motion. In both cases, the ghosts appear along the phase encoding direction and their positions
are determined according to Equation B7.1.25. Imaging parameters: (A), (B) Tr = 400 msec,
Ts = 7.68 msec, Ax x Ay x Az = 1.95 x 1.95 x 10.0 mm, Ny x N, = 256 x 256,
0 = 45°, Nyoqg = 1, Trr = 2.56 msec, Gss = 2.4 mT/m; (C), (D) the same as in (A), (B) except
that Tr/Tg = 200 msec/12 msec.

TECHNICAL DISCUSSION

Spin Phase Caused by Constant Velocity Flow or Motion in the Read Direction for
a Bipolar Square Pulse Example

We start by examining the phase behavior of the spins during the dephasing and rephasing
lobes of the read gradient. The easiest motion to evaluate is simple translational motion
of an isochromat of spins during sampling:

x(t)=x,+v.t (B7.1.2)

where xj is the initial position at time ¢ = 0 and vy, is the uniform velocity within the
isochromat. These spins see a changing field as they move through the gradient. The
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Figure B7.1.6 Transverse images of the knee showing the Tg dependence of the ghosting of the
vessel signal in the phase encoding direction due to through-plane flow. (A) Tr = 14 msec, Nacq =
1, (B) Tr = 14 msec, Naqg = 2, (C) Tr = 14 msec, Nyq = 1, with no velocity compensation (all
other images shown here are velocity compensated), and (D) Tr = 28 msec, Nyeq = 1. Generally,
as Tg (or the effective Tr) increases the spacing between the ghosts increases—compare (B) and
(D) to (A). Imaging parameters: (A) Tr/Te = 14 msec/7.0 msec, Ts = 2.56 msec, AX x Ay x Az =
0.78 x 0.78 x 5.0 mm, Ny x Ny =512 x 512, 0 = 30°, Naeq = 1, Trr = 1.0 msec, Gss = 7.2 mT/m;
(B) Nacg = 2; (C) trr = 1.024 msec, Gss = 9.6 mT/m; (D) Tg = 28 msec, Naeq = 1.

phase behavior during the dephasing lobe of the read gradient (see Fig. B7.1.1A) is given
by:

o_(1)= —j dro(t) =—y j diB(t)

=[G, ()2 0<i<x
0

L,
=VG (xot+—v,t
GG+t (B7.1.3)

Hence, at the end of the dephasing lobe, the phase is:

1 2
=vG. —vGv.
0=y HTEFIONT (B7.1.4)
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Figure B7.1.7 lllustration of (A) the time line of the gradient structures, including the time differ-
ence (Te — ke) between the effective time when phase encoding occurs and the echo time, and
(B) the misregistration artifact due to oblique flow. The solid line represents the physical path of
the spins. The dashed line is where the same spins appear in the MR image. Spins at the physical
location (xre, yre) appear at their encoded position (xre, ype) in the resulting image.

The additional phase accumulated from T to a time ¢ during the rephasing of the read
gradient is:

0.0 =] d"G, (" 1x ()

:—nyO(t—r)—%vax(tz —1%)  1<t<3t

(B7.1.5)
and the total phase accumulated is given by:
o) =¢_(1)+0,(1)
:_nyo(z—zr)—%vax(ﬂ -27%) t<t<3t 6716

Using ¢ = ¢ — 27 (i.e., shifting the time origin to the expected echo time 27), leads to:
o) :—nyOz’—%vaX(z’% 411 +27%) —1<<n

1
=—vG(x,+2v. T —YGv T2 ——YGv 1
YO+ 2= YGY, 2 T (B7.1.7)
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Figure B7.1.8 Images showing an oblique cylindrical tube containing flowing material. The flow
is upward along the axis of the tube—i.e., in the plane of the image. The images were obtained
with a sequence that has no velocity compensating structure in the phase encoding direction.
Images obtained with a short Tz 2-D gradient echo sequence which is uncompensated in the
phase encoding direction (image A), and with a fully compensated sequence (image B). The pro-
files across the flowing material for these two images are shown in (C) and (D), respectively. The
boundaries between the flowing material and the surrounding no-signal region are demarcated as
A, B, A’, and B’ in graphs (C) and (D). The large peak in the profile in (C) represents spin signal
shifted to the left. The flat profile between A’ and B’ in (D) indicates a successful velocity com-
pensation along the phase encoding (horizontal) direction. Imaging parameters: (A), (B) Tg/Te =
60 msec/28 msec, Ts = 12.8 msec, Ax x Ay x Az=0.59 x 0.59 x 2.0 mm, Ny x N, =512 x
256, 0 = 25°, Nyeq = 4, Tre = 5.12 msec, Gss = 9.0 mT/m.

Rewriting Equation B7.1.7 in terms of its stationary, s, and velocity, v, components gives:
o) =0,()+0,(£) (B7.1.8)
where:
0, (1) ==YGx,t’ (B7.1.9)
and:

’ 1 2 ’ ’2
tY=—=vyGv_ (2t + 41t +t¢
0.(6) 2y Vi ) (B7.1.10)

The phase behavior for o4(¢') and ¢,(¢') is plotted in Figure B7.1.1B, demonstrating that
the phase of a stationary spin is zero at the echo, but the phase for a moving spin does
not refocus at 7 = 0 for a conventional gradient echo. Specifically, at the echo in the
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¢ frame (i.e., the first term in Equation B7.1.10), the phase for a constant velocity spin
is:

0,9 =0,(0)=—YGv, 7’ (B7.1.11)

The middle term, —yGv,27t, looks suspiciously similar to ¢s(#). Adding these two
together yields the phase:

O(t") ==vGt'(x, +2v,) (B7.1.12)
or
b (k,) = =27k (x,+ 2v,) (B7.1.13)

which basically determines the position at which the spin is recorded. The term 2tv, can
be easily understood as a position shift equal to the distance the spin moves from the
beginning of the readout procedure to the echo. Finally, the term —yv,#? acts as a filter
on the signal which leads to blurring and some potential signal loss.

Itis worth reviewing some numerical examples. The phase effects will depend not only on
vy but also on the imaging parameters T and Ax. This can be seen by rewriting Equation
B7.1.11 using the Nyquist condition:

Y GAXT, =y GAx(27) =1 (B7.1.14)
to give:
w T
q)v() =- .
Ax (B7.1.15)

For T = 2.5 msec and Ax = 1 mm, the phase will be —2= for a speed of 80 cm/sec. Even
a flow of just 10 cm/sec will produce a phase of n/4. For an SNR (signal-to-noise ratio)
of 10:1, the phase error is 0.1 radian and n/4 is easily measured.

If the read gradient is the only gradient on, as is usually the case during data sampling,
then only the x component of the speed, vy, plays a role in causing a phase shift. That
is, only the projection V-Greag = vxGread causes the effects described. The effect of spins
moving along other axes will be discussed later.

For the bipolar pulse in Figure B7.1.1A, the phase produced by a flow with a constant
acceleration, ay, at the field echo time Fg (¢ = 0) can be calculated by similar mathematical
steps from Equation B7.1.3 to Equation B7.1.11. If the motion of spins is assumed to be
described by:

x(t)=x,+vt+ laxtz
2 (B7.1.16)

then the term associated with acceleration a, of the phase at the echo is —yGaxT3.
A similar term, also dependent on time cubed, exists even if the sequence is velocity
compensated.

Spin Phase Caused by Flow or Motion in the Slice Select Direction

The slice select gradient also naturally looks like a bipolar gradient design (see Fig.
B7.1.7). By assuming that spins are effectively tilted into the transverse plane at the
center of the RF pulse, the spins will dephase during the time Trp/2 during which the
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slice select gradient is still on. Stationary spins refocus during the rephasing lobe during
the next Trp/2 time interval. Again, the phase behaves according to Equation B7.1.11 but
with T replaced by Trp/2.

Spin Phase Caused by Flow or Motion in the Phase Encoding Direction

The phase behavior along the phase encoding direction is similar to the phase accumu-
lation along the read direction discussed above. If a flow is along the phase encoding
direction, y, then we can replace the variable x by the variable y in Equation B7.1.2 and
also replace vy by vy, where vy is a constant velocity of the flow in the phase encoding
direction. The phase accumulation in the phase encoding direction is then similar to the
formula given in Equation B7.1.3, with the read gradient G, replaced by the phase en-
coding gradient Gy. Usually, Gy is a constant through each phase encoding step and this
makes the calculation of phase accumulation in the phase encoding direction simpler than
the calculation of phase in the read direction; however, one should pay attention to the
fact that the phase encoding table in a sequence occurs at a finite time before the echo
(see Fig. B7.1.7). To understand the effects of motion along ¥, these timings must be
considered.

Effects of constant velocity flow in the phase encoding direction:
The misregistration artifact

The main effect of flow parallel to the phase encoding direction is one of spatial misreg-
istration. Spins along each axis in the reconstructed image appear at the location where
they were at the time they were encoded by the associated gradient. If they continue to
move before the data are collected, they will still appear at the position where they were
encoded. For example, consider phase encoding a moving spin at a time #,. (assume phase
encoding to be instantaneous) when the spin’s y position is ype. Some time later, at the
echo, the data for the same spin are collected, but the spin has moved to a new position
y1E- In the reconstructed image, the spin will appear at the y position, ype, where it was
encoded. This leads to a spatial misregistration artifact in the resulting reconstructed im-
age. A common manifestation of this artifact occurs for an in-plane vessel, with velocity
components along the x and y axes as shown in Figure B7.1.7.

In Figure B7.1.7B, the physical location of a particular spin is plotted at different times.
It is seen that the spin is phase encoded at the position ype, at a time #,e. Its x position is
encoded later at the echo, when data are collected at the position xt,. Therefore, in the
resulting image, the spin appears at the point (xty, ype), at the location where information
for each axis was encoded, but a location that the spin never physically occupies.

Usually, it is assumed that the spin should appear in the image at the physical location it
occupies at the echo, but the spin is shifted from its physical location in the y direction
because it moves between the time it is phase encoded and the time the data are read.
Given a spin with a constant y velocity, the shift of the spin along y in the image can be
calculated from:

Ay, =—v, (T —1,) (B7.1.17)

The direction of the shift is dependent on the direction of flow but independent of the point
along a vessel (see Fig. B7.1.9). For plug flow, the whole vessel is shifted or misregistered
in the image. In Figure B7.1.9A, the read gradient is horizontal and flow in the phase
encoding direction leads to misregistration in that direction (see the blurring of the signal
in the vertical direction, i.e., the bright bands). In Figure B7.1.9B, the phase encoding is
horizontal and the bright bands now appear on the left/right sides of the vessel. If flow
is in the reverse direction to that shown in Figure B7.1.7, the shift is up instead. For Tg
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Figure B7.1.9 Images showing an oblique vessel imaged with a normal (single-lobe) phase
encoding gradient structure. In (A), the read direction is in the left-right direction while in (B) it
is in the up-down direction. Note the misregistration artifact (as shown by the arrows) changes
its direction as the phase encoding direction changes. Imaging parameters: (A), (B) Ta/Te = 27
msec/11.25 msec, Ts = 10.24 msec, Ax x Ay x Az = 0.78 x 0.78 x 1.0 mm, Ny x N, x
N, =512 x 384 x 50, 0 = 20°, Nyoq = 1, Trr = 1.28t msec, Gss = 4.4 mT/m.

— tpe = 5 msec, and a flow of 80 cm/sec, the misregistration is 4 mm (up to a four pixel
shift). When a vessel shifts this far, it leaves behind zero signal (i.e., there is a black line
where the vessel used to be) and it enhances the signal for the tissue on which it now sits.
Methods of flow compensation to reverse this artifact are discussed in unIT B7.2.

Phase variation view of the shift artifact and the effective time of phase encoding

A signal processing view of the misregistration problem adds further insight into this
vessel-shifting effect. Recall from the Fourier transform shift theorem that such a constant
shift occurs in the image if the k-space data has a linear phase shift proportional to the
shift in the image domain. The correct y position of the isochromat at t = Tg (the time of
spatial encoding in the x direction and data measurement) was assumed to be:

Y(Te) =ype +v, (T — 1) (B7.1.18)

This implies that to find the shift of the vessel coordinates relative to this actual position,
the extra phase accumulated by moving spins must be determined relative to a time origin
¢ = 0, such that / = ¢ — Tg. Time origin matters for the phase encoding gradient first
moment calculation because it has a nonzero zeroth moment (see unit B7.2). The phase
accumulated by constant velocity spins needs to be calculated during a phase encoding
gradient waveform on a time-scale as shown in Figure B7.1.7A. The phase accumulated
by a constant velocity isochromat up to a time ¢ = 0 in the presence of a general phase
encoding gradient waveform G,(7') is given by:

O ()| ==, M, (t')‘teo (B7.1.19)

where M (?) is the first moment of the gradient waveform G, () evaluated at time t = 7"

.
M) = LfGy (1)dt (B7.1.20)

For the phase encoding gradient waveform in Figure B7.1.7, using | = (t; — Tg) to refer

to the time at the end of the gradient in the primed time frame, the first moment M;(7)
is given by:
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’ Gv ’ 2
M, () :7(21’[’64 — rpe)

(B7.1.21)
This implies that the accumulated phase is:
2 ’ Tpe
q)v(ll):_’YVyGyTpe 4h - 7
T
=—2TC/€V [VV 11’_ Pe }
N J 2
=—2nk Ay, (B7.1.22)
since ky, = YGyTpe. The shift term, Ay,, is then:
’ Tpe
Ayv = vy(tl _7)
=Vyloe (B7.1.23)

where 7| is a negative number. The measured k-space signal for the flowing spins viewed
as a function of k, alone, s,(ky), is:

s, (k) =s, (k)

_ —i 21k, Ay,
=s,(k,)e (B7.1.24)

where s,(k,) represents the k space data for stationary blood. Hence, the vessel shifts
by an amount Ay, in the y-direction according to the Fourier transform shift theorem.
This solution indicates that, effectively, the instant at which phase encoding occurs for
constant velocity spins is exactly half-way through the phase encoding gradient.

Ghosting Due to Periodic Motion

Flow artifacts generally occur because the spins are not located at the same position
throughout the encoding process. The most obvious effect is one of blurring. However,
another artifact occurs because of the reconstruction method, and that is ghosting. Regard-
less of the direction of motion, this ghosting appears along the phase encoding direction.
There are two sources of ghosting. One is the fact that the phase varies from one phase en-
coding step to another (see Equation B7.1.25 below) and the other comes from variations
in the signal intensity caused by changes in effective magnetization from pulse-to-pulse.
The latter can be caused by a variable saturation of spins from pulse-to-pulse, for example.

An interesting flow artifact is found if the effect of motion on the readout data varies
from one TR to the next with a given periodicity. Regardless of the direction of the flow,
or translational motion, the artifacts it creates will manifest themselves along the phase
encoding direction as ghosts. A discussion of how ghosting would occur for the case
of uncompensated flow is presented below. Fortunately, using velocity compensation
techniques (unIT B7.2), these ghosts can be minimized.

Ghosting due to periodic flow
In practice, flow rates in blood vessels change during the cardiac cycle (of period T) due to

the pulsatile nature of the flow. Consider motion along the read or slice select directions.
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For Tr = T/2, all even k, steps will have phase ¢; such that ¢; = —vasz (see Equation
B7.1.11) and all odd ky lines will have phase ¢, such that ¢, = —vasz. Here vy is the
plug flow velocity along the gradient direction during the first repeat time, during which
even lines are acquired, and v, is the plug flow velocity during the second repeat time,
during which odd lines are acquired. The gradient G is the amplitude of a simple bipolar
pulse which occurs either in the read (Fig. B7.1.1A) or slice select directions. This phase
variation leads to aliasing of the vessel.

In general, if TR = T/n, there will be n multiple images (ghosts) across the field-of-view
L, in the phase encoding direction, each separated from the other by a distance of Ly/n
(see Fig. B7.1.2)—i.e.:

T, p
ANy =pl&|L =L
Y p(T J Ton? (B7.1.25)

where p is an integer running from minus infinity to infinity. The reconstructed image will
contain information from Ay(p) by summing through the whole range of p. The reason
that there are n ghosts is that the data are sampled at n-different locations periodically.
(Actually, when p/n is an integer in Equation B7.1.25, there is no phase shift: the original
image with a lower magnitude is obtained in those cases.) Fourier transforming this data
then leads to aliasing which creates the n objects. From Equation B7.1.25, one can also
see that when p is larger than n/2, the object center will be folded (aliased) back within
the field-of-view and appear on the left side of the original image. Figure B7.1.2A shows
multiple ghosts from the femoral artery. They are closely spaced as indicated by the
arrows. They are of low amplitude but still high enough to be bothersome. They are
caused by the variations in flow rate from the pulsatility of the arterial flow. This changes
the effective periodically changing phase from pulse to pulse causing the ghosting. They
are effectively gone in Figure B7.1.2B when flow compensation is used.

The above discussion helps understand the positioning of the ghosts but does not give
a prediction of their amplitudes. Fortunately, in this case, where only flow is assumed
to be involved, velocity compensation, as discussed in UNIT B7.2, will eliminate the phase
differences between different phase encoding lines, and the ghosts will largely, but not
completely be eliminated.

Another method to reduce ghosting is to choose a short T and average the data over Nycq
such that NyeqTR is roughly T (i.e., n = Nycq). In this case, only a blur of the image will
occur. The spatial extent of this blur is equal to the motion during the acquisition (Fig.
B7.1.4A). When the total acquisition is ~15 sec or less, a breath-hold image is possible
(Fig. B7.1.4B). In this case, no motion from respiration remains and an excellent image
is obtained.

For motion along the phase encoding direction, similar ghosts will occur. These follow
the same general characteristics and are in the same direction (the phase encoding) as
those caused by motion along £ (see Figs. B7.1.5A and B7.1.5C).

Examples of ghosting from pulsatile flow

Even with velocity compensation, ghosting can still occur due to flow. For example, if
p (x,y) becomes a periodic function of time due to varying inflow (see unir B7.3 for a
detailed description of inflow effects), then the measured k-space signal will vary from
one phase encoding line to the next, leading to ghosting (see Fig. B7.1.6). The spacing
of the ghosting still obeys Equation B7.1.25.
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If each given phase encoding line is acquired twice for purposes of averaging, then
the ghosts will behave as if the Tr in Equation B7.1.25 were effectively twice the ac-
tual value—i.e., Treff = 2TR. For Nyq acquisitions, TR eff = NacqTR. If 3-D imaging is
performed, TR e = N, TR should be used to compute the ghost positions with N, the
number of 3-D partitions. Ghosting from pulsatile (time-varying, but periodic) flow will
be dramatically reduced if Tg s equals the period of the flow variation (physiologically,
the pulsatile flow period is determined by the cardiac cycle). In other words, if the signal
variation is periodic, as TR ¢fr increases, the ghosts get farther apart and eventually vanish
for Trefr = T (see Equation B7.1.25).

The effects of motion (spin dephasing and ghosting), as just described, are most dramatic
in 2-D slice selective imaging because of the large slice select gradients used for thin
slices. An example of the ghosting for a short Tr gradient echo imaging sequence is
shown in Figure B7.1.6 for two different 7g values to illustrate both the dependence
of the ghost amplitude and position on 7R relative to 7, the period of the motion. Two
comments are made here. The first is that the artifacts which appear in Figure B7.1.6C are
worse than the artifacts in the other images in Figure B7.1.6 because Figure B7.1.6C was
not velocity compensated. (Velocity compensation is the topic of unviT B7.2.) The second
is that the ghosts in Figure B7.1.6B and Figure B7.1.6D are spaced twice as far apart as
those in Figure B7.1.6A and Figure B7.1.6C, because TR fr of the former is twice as large
as the latter. Also in this figure, all images show how the ghosts can add coherently (see
upper ghosts in the muscle in Fig. B7.1.6B and Fig. B7.1.6D) or cancel muscle signal as
in Figure B7.1.6A and Figure B7.1.6C where the black lobes appear.
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