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ABSTRACT 

 The usage of aluminum alloys for automotive applications has been growing rapidly. 

Research is being done to incorporate aluminum alloys as a replacement material for automotive 

components wherever possible. As aluminum itself has poor tribological properties, coatings are 

being developed to improve these properties. However, these conventional industrial coatings are 

not suitable to improve properties as they lack compatible materials and feasible manufacturing 

process. The purpose of this thesis is to develop low cost material with suitable manufacturing 

process that will improve the wear and corrosion properties of aluminum.  

 The material was iteratively developed from iron manganese (Fe-Mn) alloys which are 

used extensively in mining applications. Influence of aluminum, chromium and carbon additions 

were studied in order to improve both corrosion and wear resistance of the alloy. A laser cladding 

process was utilized to create desired alloys. To study the microstructure and other material 

properties, the deposited alloys was analyzed and tested for corrosion, wear, hardness, and x-ray 

diffraction. Wear resistance, corrosion, and hardness of the alloy was found to be superior to that 

of conventional cast iron and stainless steel.
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Chapter 1 Introduction

1.1 Additive Manufacturing (AM) 

 Additive Manufacturing (AM) is defined as "the process of joining materials to make 

objects from 3D model data, usually layer upon layer, as opposed to subtractive manufacturing 

methodologies, such as traditional machining"[1]. It is also known as additive fabrication, direct 

digital manufacturing, layer manufacturing and solid freeform fabrication. With over two decades 

of history during its early stages AM was mostly used for the creating functional prototypes, also 

known as Rapid Prototyping (RP). The prototypes were then used as communication and 

inspection tools, resulting in prototypes manufactured in short time directly from solid CAD 

models reducing the time required for production stages[2]. Through intensive research over the 

last 20 years, significant progress has been made in the development and commercialization of 

AM processes, with applications in several industries such as aerospace, automotive, biomedical, 

and other fields. The most aggressive application being in aerospace and automotive. Some of the 

commonly known AM processes are Stereolithography, Fused Deposition Modeling [3], Selective 

Laser Sintering [4], Laminated Objective Manufacturing [5], 3-D Printing[6], and Laser Metal 

Deposition [7]. Additive manufacturing allows manufacturing of geometrically complex parts 

without need for fixtures as required in subtractive processes. AM processes are cost-effective for 

small batches of parts, significantly shorten the manufacturing time, and can build parts that are 

difficult to manufacture with subtractive manufacturing processes[8].  In this study we will be 

using the laser metal deposition (LMD) technique to develop new alloy. 

 With Laser Metal Deposition (LMD) also called as Direct Metal Deposition (DMD) 

technology, materials that are difficult to be cast and thermo-mechanically process, or that cannot 

be solidified successfully by powder metallurgy, can be easily manufactured. Features such as 

internal protrusions, which cannot be machined directly or require extensive machining, can be 
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formed. Materials that require multiple steps can be formed in a single step, eliminating the need 

for special fixtures, additional equipment, and space required with each additional step[9].  

 

1.2 Direct Metal Deposition (DMD) 

 Laser assisted direct metal deposition refers to the additive manufacturing technique for 

building parts from a computer-aided design (CAD) model. Metal powders are directed into the 

laser focal zone and are melted with laser beam and then re-solidified into fully dense metal in the 

moving molten pool created by the beam. To control the motion of a laser focal spot over a part, a 

motion control program is developed according to CAD model. The Figure (1.1) below represents 

the basic working principle of direct metal deposition process[10]. 

 Successive layers are then produced to develop the entire component representing the 

desired CAD model. Motion paths are developed using CNC tool-path format (DLF) command 

motion for five motion axes. Additional axes control can allow additional degrees of freedom if 

required. Processing during the deposition of parts is performed usually in inert gas (nitrogen) 

environments, to reduce oxidation. Multiple powder compositions can be simultaneously fed into 

Figure 1.1 Direct Metal Deposition Process 
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the melt pool to produce alloying at the focal zone or provide material choice relative to certain 

location within a desired part[10].  

 Figure (1.2) shows the motion path of the laser deposition process. Each layer starts and 

stops at the part boundary until an entire first cross-sectional planar layer is formed by deposition 

of overlapping layers. The laser beam then moves away from the part depending upon layer 

thickness set by the motion system. The motion path which can be developed using CNC program 

controls the laser beam, powder feed and motion system to deposit linear layers of material that 

are laid side by side with fixed laps. Laser power, powder feed rate, and lateral velocity of beam 

are controlled to produce a full density layer of a given composition. Successive layers are 

deposited, and the entire part or features of a part assembly are then built additively[11].  

 Powders of desired compositions which can be pre-alloyed or pre-blended are directly fed 

into the molten pool through powder feeder. The ability to deposit unique alloys, and graded 

compositions, which can be pre-blended or combined at the focal zone, provide the capability to 

control properties within a manufactured part. The capability of DMD system to feed multiple 

alloy powders from multiple powder feeder system at the same time and ability to control their 

feed rates individually increases the flexibility and functionality of system. Any alloy composition 

Figure 1.2 Laser Metal Deposition 
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can easily be tried, by mixing the powders with appropriate particle size. Functional grades of the 

powder composition are developed by varying the feed rates up or down respectively with multiple 

feeders to obtain the desired powder composition gradients. Segregation in mixed powders, during 

agitation by feed systems can be eliminated, by feeding powders of different size separately[10][9].  

1.3 High Manganese Iron Alloy 

The focus of this study is to develop a high manganese iron alloy as a coating material to enhance 

the wear and corrosion resistance of aluminum components. Compared to conventional stainless-

steel High manganese iron alloys have exceptional hardness and wear resistance. Fe-Mn or the 

Iron-manganese alloy was discovered in 1888 by Sir Robert Hadfield. The alloy has gained 

considerable interest particularly in automotive industry because of its high strength and ductility 

properties.  The presence of manganese in the Fe-Mn system is known to induce transformation 

or twinning of austenite phase resulting in unique work hardened material. Fe-Mn binary system 

which are used in automotive industry as TWIP (TWinning Induced Plasticity) and TRIP 

(TRansformation Induced Plasticity) represent a potential low-cost wear material compared to 

other alloys. The presence of manganese in these alloys reduces corrosion resistance but the 

Figure 1.3 Iron-Manganese Phase Diagram 
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corrosion properties can be improved by addition of chromium and aluminum as alloying 

elements[9]. 

  Fe-Mn Phase diagram as shown in Figure (1.3). The different phases that can be 

expected at different temperature and manganese content can be interpreted from the phase 

diagram. At the pressure of 101325 Pa the melting point of iron and manganese is 1538 °C and 

1246 °C, respectively. 

 Direct metal deposition technique is used as a manufacturing technique to melt the 

predetermined mixture of Fe-Mn alloy in this study. Direct metal deposition process has a 

advantage that the solidification rates achieved in the process are similar to that of the gas 

atomization of powders which are commonly used to manufacture precursors for coating 

deposition processes. To begin with, steel substrates were used to make this alloy[9]. 

1.3.1 Stainless Steel 316 

Stainless steel 316 was used as substrate for the sample deposition. The substrates used were from 

McMaster-Carr Supply Company. The following Figure (1.4) shows the composition of SS 316 

substrate. 

Figure 1.4 Stainless Steel 316 composition in wt.% 
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1.3.2 Stainless Steel 304 

 Stainless steel 304 was also used for the deposition of samples. SS-304 used was also from 

McMaster-Carr Supply Company. The following Figure (1.5) shows the composition of SS 304 

substrate. 

1.3.3 Low Carbon Steel 

 Low carbon steel was also used for the deposition of samples to see if there is change in 

deposition quality. LCS used was also from McMaster-Carr Supply Company. The following 

Figure (1.6) shows the composition of LCS substrate.

Figure 1.5 Stainless Steel 304 composition in wt.% 

Figure 1.6 Low Carbon Steel composition in wt.% 
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Chapter 2 System Descriptions and Analysis 

2.1 DMD 105D System Description

A 5-axis Direct Metal Deposition System as shown in Figure (2.1) (Part No. DMD 105D, 

University of Michigan,) manufactured by POM Group, Inc. is equipped here at Additive 

Manufacturing Process Lab (AMPL) in University of Michigan-Dearborn. Coordinate values for 

each axis are taken up to three digits after decimal point. Using computer numerical control (CNC), 

Figure 2.1 DMD 105D 3D Printer 
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the five defined axes are able to travel within the range of: 350mm for X, 300mm for Y, and 

350mm for Z, ±45 ̊ for B (rotatory motion along Y axis) and 360 ̊ for C (rotatory motion along Z 

axis). The system itself has a 3D static accuracy of ±75 microns and a repeatability of ±9 microns 

over workspace[12].  

 The DMD system is generally made up of four sub systems: laser system, powder feeder 

system, gas system and controller. There are two laser systems used here. The DMD system was 

equipped with a 1 Kw Nuvonyx Diode Laser (Nuvonyx, Inc.) of a wavelength of 805±10 nm. The 

spot size of laser beam for the system is about 2000 microns in diameter at the stand-off height of 

nozzle (13.5mm from nozzle tip to melting zone). A second backup laser (Disk laser) is also 

equipped into the system. It’s also a 1Kw Trumpf disk laser (Part No. TruDisk 1000, University 

of Michigan, Government Funded No381798). The Trumpf laser has a wavelength of 1030 nm. 

At the standard stand-off height, a 50-micron laser beam diameter is observed. The Laser beam 

first travels through fiber optic cable and then enters a collimator. The laser beam can be narrowed 

in collimator to make it more aligned in any one direction. Two 45 ̊ oriented mirrors are used to 

reflect the laser beam. Before entering the nozzle the laser beam travels through focusing lens and 

is collinear with nozzle axis [10] [12].  

 Four processing gases are used in the DMD system: argon, helium, nitrogen and air. 

Pressurized air is used for controlling pneumatic systems and it is also used for cooling of laser 

lens to avoid fogginess on lens. Nitrogen is used for powder hopper cover gas and carrier gas. The 

cover gas is used to keep stable pressure in deposition chamber while carrier gas is used for 

delivering of powder into melt pool. To focus the flow of powder directly into the melt pool from 

the exit of nozzle nitrogen also serves as shaping gas. During deposition process, the melt pool is 

shielded by pressurized nitrogen gas to keep the melt pool from oxide or nitride formation[12]. 

 In this study the powders are stored in two powder feeders known as hoppers. A total of 

four hoppers are installed in the DMD system, but they are of different feed rate ranges. 

Recommended powder size for the system used is in between 45 to 150 microns [12]. Narrow and 

spherical powder shape help improve the powder flow in the system. To eliminate any moisture 

content in the powder the powder is first put into furnace and then used in the system [10] [12]. 
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 A computer aided manufacturing (CAM) software package was already installed with the 

DMD system which is called DMD CAM. After creating a 3D model using CAD software the 3D 

model would be loaded to DMD CAM package and then precise toolpaths and related CNC 

programs would be generated by the system. The movement of nozzle is programmed for each 

layer of deposition to move upward. This strategy protects the nozzle to avoid any collision and 

also gives sufficient cooling time for deposited part. For some simple structures, the forward and 

backward motion of nozzle is unnecessary and leads to wastage of time. To avoid this, a MATLAB 

program is used to generate the motion of nozzle and the coordinates are saved in a .txt file[12].  

  The CNC programming is similar to other standard systems only difference being the 

coordinate system. The command lines coded in the MATLAB are fixed and only point coordinate 

values are changed for desired tool path as per the CAD geometry. The CNC data points are 

recorded and a .TXT file is generated. The .txt file is then converted into .sub file which will be 

the input file extension for DMD system. This process is very convenient for simple geometry 

such as line or square. The MATLAB program which is used for generating CNC program for 

DMD is also readily available[12]. 

 A Closed Loop Feedback User Interface is implemented in the DMD system to control the 

components of system. Three cameras distributed 120 ̊ apart are used to view focused image of the 

melting. The image captured by these cameras are then transferred to the closed loop PC to process 

the images. The processing of images is done using real time CNC data and the position of laser 

beam and other system components is adjusted accordingly. The closed loop feedback control 

system is used to control build quality and build height. To improve the deposition quality and to 

eliminate the height variation, CNC programs play an important role. The starting points can be 

varied for each layer to avoid excess building at one spot. To avoid the problem with over building 

in any one spot the nozzle movement should be continuously varied clockwise and anti-clockwise 

for each subsequent layer [10] [12].  
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2.2 Hopper Test  

 

 The powder hopper test is carried out to know how much powder is delivered at the end of 

nozzle exit. The amount of powder delivered depends upon the hopper feed rate. The hopper feed 

rate depends upon the how fast the feeding wheel rotates. The hopper test is carried out under same 

cover gas and carrier gas flow values that will be used during the deposition.  

 The hopper test gives us an idea on how the powder is flowing through powder feeder to 

the nozzle exit. The flow of powder varies from powder to powder along with particle size 

distribution. It is necessary to know if the powder is flowing smoothly. A container is placed at 

the end of nozzle exit and the test is run for 1 minute. The amount of powder that is collected is 

then weighed and measured in grams/minute. The results of hopper test carried out for the powder 

that we used for deposition are given below in the Table (1).  

Table 1 Hopper Test results 

 

Feedrate 

Gas Values (SLPM)  

Powder Flow (g/min) Cover Gas Carrier Gas 

1000  

 

6 

 

 

6 

3.8 

1200 4.7 

1400 5.5 

1600 6.2 

1800 7.0 

2000 7.8 

 

2.3 Laser Power Test 
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 Laser power test gives an insight to the Power produced by laser in Watts at different 

Current (Ampere) values. The power produced at certain Current (Ampere) value depends upon 

the condition of system. The power values also give important information for the maintenance of 

system. Since the values vary depending upon the system condition it is important to know these 

values as it affects the deposition process. The power generated at the laser is never the same the 

power values obtained at nozzle exit as certain amount of power is lost during the transmission. If 

the total laser power loss is within 10-12%, the system is treated to be in good working condition. 

If the loss exceeds 12% further maintenance needs to be performed on the system. The power 

losses can be reduced by using proper methods such as proper beam alignment, cleaning of lenses 

and mirrors, cleaning of nozzle exit from any deposition of particles[10]. 

 The power test was carried out on Nuvonyx diode laser and the values were recorded using 

laser power meter (Pyrometer). The distance between Pyrometer surface and nozzle exit was kept 

between 20 to 25 mm. The input laser power was generated using two power supply. Both power 

supply was given same input values and were increased by 2 amperes for each new measurement. 

Following Table (2) shows the power and voltage values obtained at different current values. 

 

Table 2 Laser Power Test 

Current (Amperes) Power (Watts) Voltage (V) 

10 25 48.7 

12 57 49.1 

14 95 49.4 

16 135 49.7 

18 172 50.0 

20 210 50.3 

22 248 50.6 

24 285 50.8 

26 325 51.0 

28 358 51.2 

30 390 51.4 

32 418 51.6 
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34 448 51.8 

36 470 52.0 

38 495 52.2 

40 516 52.4 

42 542 52.8 

 

2.4 Microstructure Analysis 

 

2.4.1 Scanning Electronic Microscope (SEM) & Energy Dispersive Spectroscopy (EDS) Analysis 

 

 The microstructure of sample deposits was analyzed using a Hitachi Scanning Electron 

Microscope (SEM) (Model S-2600N, University of Michigan Property 374500). As shown in 

figure (2.2).  

 The Figure (2.3) below represents the basic working principle of SEM and EDS. The SEM 

scans a sample surface with a finely converged electron beam in a vacuum, detects the information 

Figure 2.2 SEM and EDS analysis machine 
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(signals) produced from the sample, captures an enlarged image of the sample surface, and displays 

on the monitor screen. 

 Irradiation of an electron beam in a vacuum chamber and on to the sample surface generates 

multiple x-ray signals such as characteristic X-rays, secondary electrons (SE), backscattered 

electrons (BSE), and other signals are generated as indicated in the figure above. Images of sample 

surface are generated by using Secondary and Back-Scattered electrons. The topographical 

structure of the sample is obtained from detection of Secondary electrons (SE) produced near the 

surface of sample. To determine the composition of sample Backscattered electrons (BSE) are 

used as they reflect the sample and depends upon atomic number, crystal orientation of the sample. 

A BSE image, therefore, reflects the compositional distribution on the sample surface. An X-ray 

detector can be mounted to the SEM for conducting elemental analysis using Energy-Dispersive 

X-ray analysis. Hence the SEM serves two purposes. One for observing the sample structure, and 

second for determining the elements and their composition amount in the sample[13]. 

 The deposition structure was studied layer by layer as the deposition was done. Height wise 

the SEM images of Surface layer, Middle layer, and the Interface layer were captured and studied. 

Figure 2.3 SEM working principle 
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The composition of deposition was studies using Energy-Dispersive Spectroscopy. The analysis 

was done at nine different points on the sample. Three points on the Surface layer, three points on 

the middle layer, and three points on the Interface layer. The composition of different metals was 

studied during the analysis. EDS mapping was also carried out on sample at random position to 

study how well each metal powder was distributed during the deposition. 

2.4.2 Wear Test  

 The complete wear test was carried out in two parts. The first part was done using CSW 

Tribometer (model TRB) shown in Figure (2.4). The tribological behavior of the deposited alloy 

was studied using the CSW Tribometer. The tribometer probe is placed on the sample surface 

under a precise load of 5N which is constant for all the samples tested. The sample then 

reciprocates in a linear track horizontally on the samples for 8000 cycles. The ball used for wear 

test were tungsten carbide balls and the same was used for all the samples tested. All the samples 

were polished to mirror finish before performing the wear testing. When conducting tests, the 

samples mounted and the tribometer probe were both kept flat using spirit level.  

Figure 2.4 Wear Testing machine Tribometer CSM 
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2.4.3 Wear Depth Profile Test 

 After the wear test were performed the samples were placed under a profilometer to 

measure the depth of wear profiles as shown in Figure (2.5). The probe of the profilometer is 

placed on the samples at the center of the wear profile which then moves for a length 6mm 

perpendicular to direction of the profile. The depth values were then recorded and plotted in excel 

as output. The stylus type Mitutoyo surface measurement tester was used for measuring the depth 

of the wear. 

2.4.4 Hardness Test 

Figure 2.5 Wear Depth Profile testing machine 
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The hardness testing was carried out by using the Struers Microhardness Tester (University 

of Michigan Property 572831) shown in Figure (2.6). The hardness was measured using Vickers 

hardness scale for a load of 0.3 Kg. The load was applied for 10 seconds and the hardness values 

were calculated using the width of diamond shape indent on the sample. The width is then 

compared with Vickers scale to determine the hardness. Hardness was measured on 9 different 

places on each sample. Three readings on the surface, three readings on the center on deposition 

and three readings on the interface. All the hardness readings were taken on the same sample used 

for SEM & EDS analysis. 

 The Figure (2.7) represents the points where hardness readings were recorded. One 

advantage of recording readings at multiple points on sample is that it gives us information about 

uniformity in distribution of elements and its deposition.  

Figure 2.6 Vickers Hardness testing machine 
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2.4.5 X-Ray Diffraction  

 

 X-Ray diffraction is a non-destructive tool for identification of crystalline phases of various 

materials. X-ray diffraction techniques are superior compared to other techniques in elucidating 

the three-dimensional atomic structure of crystalline solids. Figure (2.8) represents the basic 

working principle of XRD. The properties and functions of materials largely depend on the crystal 

structures. 

The X-Ray diffraction works on the principle of Braggs equation: 

        n𝜆 = 2dsin𝜃 

Figure 2.7 Location of hardness points on deposited samples 

Figure 2.8 XRD working principle 
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 where n is an integer, λ is the characteristic wavelength of the X-rays impinging on the 

crystallize sample, d is the interplanar spacing between rows of atoms, and θ is the angle of the X-

ray beam with respect to these planes. When this equation is satisfied, X-rays scattered by the 

atoms in the plane of a periodic structure are in phase and diffraction occurs in the direction defined 

by the angle θ. This diffraction pattern can be thought of as a chemical fingerprint, and chemical 

identification can be performed by comparing this diffraction pattern to a database of known 

patterns[14]. 

 To perform the phase analysis and determine the crystal structure of the samples and the 

powders X-Ray Diffraction tests were carried out. The tests were executed using Rigaku 

Miniflex XRD (Cu K𝑎 radiation with 𝜆 = 1.5402 0A) machine (Michigan Registration Num. 

26423) as shown in Figure (2.9). 

Figure 2.9 Rigaku XRD testing machine 
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2.4.6 Corrosion Test 

 The corrosion testing of the samples was performed by using an AMETEK Princeton 

Applied Research (PAR) Flat Cell model K103. Figure (2.10) shows the corrosion testing setup. 

The surface of the corrosion specimens was grinded on 240-800-grit emery paper and were cleaned 

with distilled water and alcohol prior to each corrosion test. To establish the free corrosion 

potential (Ecorr) all samples were kept in solution before polarization. To evaluate the galvanic 

current Zero Resistance Ammetry (ZRA) technique was implemented. Anodic polarization tests 

were carried out in a 0.5-wt. % NaCl solution prepared using analytical grade reagents. The initial 

pH value of the solution was 5.8 and the initial temperature of the solution was at 22°C. The 

specimen was driven from an Ecorr value of −1 to 2V (vs ref) at a scanning rate of 1.66 mV/s to 

produce potentiodynamic polarization graphs. All potentials were measured with reference to a 

standard electrode, saturated calomel electrode (SCE). Apart from the alloy samples tests were 

also carried out on aluminum, stainless steel 316, and cast-iron samples[9].

Figure 2.10 Corrosion testing setup 
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Chapter 3 Alloy Development

 Conventional alloying methods have certain limitations that are difficult to overcome. 

Alloys with phases that have higher melting points are difficult to melt, solidification of alloy is 

slow and resulting in segregation and separation of constituent’s phases in the alloys. To overcome 

these issues alternate approaches can be used such as use of atomized powders, but the cost and 

time involved are huge in these processes. In direct metal deposition technique using laser as a 

source of heat with high power density provides a clean thermal energy. The clean heat source can 

provide homogeneous micro-structure and can adapt to change in variation[9].  

 High manganese steel alloys are known for their properties such as high tensile strength 

and high wear resistance. The mechanical properties of these high manganese steels can be varied 

by varying the manganese content in them. In this study a combination of Fe-Mn-Cr-Al-C are 

studied for wear and corrosion resistance[9].  

 

3.1 Effects of Alloying Elements 

 

 Manganese is a strong austenite former and is also a potential cost-effective replacement 

for nickel. The disadvantage of manganese is the tendency form beta manganese by segregation 

and also its high affinity for oxygen at higher temperature. This often results in the alloy with 

depleted manganese content at higher processing temperature. Manganese stabilizes the austenite 

phase and prevents the formation of e martensite phases. Carbon and Nitrogen both have higher 

solubility in austenite matrix. Carbon is also a strong austenite former that also significantly 

increases mechanical strength, but excess content can lead to brittleness. Chromium increases the 

resistance to oxidation at high temperatures which is helpful for retaining manganese content. To 

improve the corrosion resistance, Chromium additions to Fe-Mn alloys have been widely studied. 

Chromium results in increased yield strength and flow stress resulting in enhanced wear property. 

Nitrogen is also a very strong austenite former and increases mechanical strength[9].  
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3.2 Alloy Development Process 

 

 Alloy powders with different compositions were iteratively deposited using the direct metal 

deposition technique (laser cladding technique). The powders were initially hand mixed and later 

in a rotating powder mixer at least for an hour to get uniform powder particle distribution. The 

powders were then sieved using sieving machine for 2 hours and the powder size between 45 

microns 150 microns was used for deposition. The deposition took place 2 layers per cycle. After 

every 2 layers the deposition was rapidly cooled in nitrogen atmosphere for 3 minutes and the 

process was repeated again. The total process was repeated for 8 layers with total deposition 

thickness of 3mm approximately. All the samples deposited were of 1-inch square in size with 

3mm thickness and the substrate used was stainless steel 316. After the samples were deposited, 

they were cut, mounted and polished using standard procedures. 

 

3.3 Alloy-1: 22% Mn, 6% Al, 10%Cr, 0.1%C, 61.9 %Fe (in wt.%) 

 The alloy with above composition was deposited on stainless steel 316 substrate. After 

the deposition following analysis were carried out:  

The results for Alloy-1 are shown below.  

 

3.4.1 SEM ANALYSIS: 
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 The Figures (3.1-3.4) above show the cross-section of sample after polishing it to mirror 

finish. Both the images are of Alloy-1 observed under SEM. The figures show surface with 300X 

zoom, 700X zoom 900X zoom and 1000X zoom. Both images clearly show the interface of alloy 

with the substrate. The top half darker part is of Alloy-1 while the bottom half lighter part is of 

stainless steel substrate. The small black spots represent the pores in the samples. 

Figure 3.2 SEM of Alloy 1 

Figure 3.3 SEM of Alloy 1 Figure 3.4 SEM of Alloy 1 

Figure 3.1 SEM of Alloy 1 
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3.4.2 EDS ANALYSIS: 

Figure 3.5 and Figure 3.6 both show the composition of each element present in the sample. The 

distribution of aluminum is shown little higher compared to 6% as input. This could be because 

of aluminum is lighter compared to other elements. Both the EDS analysis were done at random 

place on deposition. There is 0.5-1.5% loss of manganese. This could be because of oxidation at 

Figure 3.6 EDS of Alloy 1 

Figure 3.5 EDS of Alloy 1 
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high laser power. The composition of carbon is not shown because of its 0.1% overall 

distribution which is very less compared to other element compositions to detect. Overall the 

composition is very similar to the input compositions. 

 

3.4.3 HARDNESS: 

Following figure shows the average hardness values for Alloy 1. 

 The hardness values for Alloy-1 are between the range of 278-294. This shows a little 

variation in the distribution of elements. The hardness value at interface is little higher. This could 

be due to mixing of chromium from substrate while the initial layer was being deposited. The 

uniformity of hardness values throughout sample also confirms the uniform distribution of 

elements which was carried out by EDS analysis.  

The hardness and wear properties can be further improved by performing nitriding process. 

Nitriding can be performed on either chromium, aluminum, iron, or manganese. Of all the elements 

of Alloy-1 manganese is the easiest to work on. Nitrides with chromium, aluminum, or iron are 

difficult to form and difficult to deposit because of the power required to melt chrome nitrides, 

aluminum nitride or iron nitrides is very high. However, manganese nitrides can be easily formed 

in pure nitrogen stream and is easy to deposit.  For this study nitriding will be carried out on 

manganese to improve the properties of Alloy-1. 
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3.4.4 WEAR TEST & WEAR DEPTH: 

 

 The following Figure (3.8) shows the wear test results for Alloy 1 sample. The wear 

coefficient for Alloy 1 is around 0.4 ± 0.05. 

 

 

 

Figure 3.8 Wear result of Alloy 1 
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Figure 3.9 Wear Depth result of Alloy 1 
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The wear tests were repeated on the sample twice to confirm the uniformity of the results. Alloy-

1 sample has shown good wear results compared to that of cast iron. The second figure shows the 

wear depth of the same sample. The width of wear profile was approximately 2mm and the depth 

was between -20µm to -30 µm. 

 

3.4.5 CORROSION TEST 

Following figure shows the corrosion result for Alloy 1. The x-axis shows the current density in 

logarithmic scale and the y-axis represents the potential in volts
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Chapter 4 Nitriding 

4.1 Nitriding Set-Up 

 

The Nitriding experiments were carried out using following equipment: 

1) Tube Furnace (Eurotherm Carbolite) 

2) Mass Flow Controller (MKS Instruments) 

3) Process Gas (90%H, 10%N) (100% N) 

Figure 4.1 Nitriding setup 
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4) Quartz Tube 

 In this study a series of manganese nitrides were prepared by nitriding high purity 

(~99.9wt%) Mn Powders at various time and temperatures. Manganese nitride is usually produced 

by nitriding metallic Mn powder in nitrogen or in ammonia under ambient gas pressure. At 

elevated temperature manganese reacts with both nitrogen and ammonia. For this study the 

nitriding experiments will be carried out using Nitrogen (90%)-Hydrogen (10%) as a process gas. 

Literature data on the kinetics of formation of manganese nitrides and on the optimum conditions 

of synthesis of individual nitride phases are non-existent. Very few information is present about 

the properties of manganese nitrides. The manganese nitrides, Mn4N is ferromagnetic and Mn3N2 

is a paramagnetic. Manganese nitrides have unique magnetic properties. There are four stable 

phases (𝜀, 𝜂, 𝜁, 𝜃) in the Mn-N binary system. The 𝜁 phase (Mn6N2.58) has hexagonal closed-

packed (hcp) structure. The 𝜀 phase (Mn4N) has a face-centered cubic (FCC) structure. The 𝜂 

phase (Mn3N2) and 𝜃 phase (MnN) have face-centered tetragonal (FCT) structures[15]. For this 

study, 200 g of manganese powder was used for each experiment carried out. The powder size 

used was between 45µ to 150µ. The powder is nitrided in the corrugated glass tube which is rotated 

continuously throughout the whole process so that most of the powder is exposed to nitrogen flow. 

The process chamber was purged with nitrogen-hydrogen gas for 90 minutes to attain pure nitrogen 

filled atmosphere. After purge was completed the heating temperature and dwell time for that 

temperature was set using the furnace micro-controller. Mass flow meter was then used to control 

the flow rate of gas during the process. After the heating process was done the powder was cooled 

within the process chamber, while still under the protection of the nitrogen-based atmosphere, thus 

reducing the risk of distortion yet still improving the hardness, wear resistance and corrosion 

resistance properties. Phase analysis was carried out using the Rigaku Miniflex (Cu Kα radiation 

with 𝜆 = 1.54020𝐴) XRD machine (Michigan Registration Num. 26423). The samples for X-Ray 

Diffraction analysis were prepared by coating the powder on black carbon tape and sticking the 

tape on a clear glass slide. The morphology and composition of the powder was studied using the 

scanning electron microscope (SEM) and energy-dispersive x-ray (EDX) detector. The powder 

samples for SEM and EDX analysis were prepared by coating powder on carbon tape mounted on 

an aluminum tub[10].  
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4.2 SEM Analysis 

 

The morphology of nitrided Mn (Mn-N) Particles was analyzed using the SEM plan view 

secondary electrons (SE) imaging. The morphology of the nitrided powders is very similar for all 

experiments, hence images are presented for only one experiment. Irregular shaped particles with 

different sizes were observed. Fig 4.2 below shows SEM of Mn powder particles before nitriding 

and all other figures show after nitriding is done on the same powder. As it can be seen from the 

figures below nitrides are formed on Mn Particles as a result of process.  

      

 

 

Figure 4.2 SEM of Manganese powder 

before Nitriding 

Figure 4.3 SEM of Nitrided powder 

Figure 4.5 SEM of Nitrided powder Figure 4.4 SEM of Nitrided powder 
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4.3 Cooling Rate  

 

 Above figure shows the kinetics involved in cooling of the Mn Powder after the nitriding 

process. Cooling is carried out in same process gas N2H2 stream in order to avoid contact with 

oxygen and reduce the chances of formation of oxides. As it can be seen from the plot it takes 12 

hours approx. for temperature to drop to room temperature from 850°C. The initial temperature 

drop is quick and slows down as the temperature decreases. 
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Figure 4.8 Cooling rate after Nitriding process 

Figure 4.7 SEM of Nitrided powder Figure 4.6 SEM of Nitrided powder 
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4.4 Nitriding Parameters & Nitrogen Content 

Table 3 Nitrided powders with parameters and Nitrogen Content 

 

4.5 Phase Analysis 

 

 

 Temperature 

(°C) 

Time Gas Flow 

Rate(SCCM) 

Initial Purge 

Time(min) 

Nitrogen Content 

(%wt.) 

MnN(3) 850°C 4 Hrs. 30 SCCM 90 min 7.43%wt. 

MnN(10) 1000°C 1 Hr. 30 SCCM 90 min 7.62%wt. 

MnN(11) 575°C 12 Hrs. 30 SCCM 90 min 1.59%wt. 

MnN(12) 850°C 4 Hrs. 15 SCCM 90 min 8.09%wt. 

MnN(13) 1000°C 2 Hrs. 30 SCCM 90 min 8.08%wt. 

Figure 4.9 XRD patterns of Mn and nitrided Mn powder showing different phases 
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Fig (4.9) shows XRD pattern for Mn powder before nitriding along with patterns for nitrided 

powders at different time and temperatures. The nitrided powders are named as MnN(3), MnN(10), 

MnN(11), MnN(12), MnN(13) and the manganese powder without nitriding is named as Mn 

Powder. The parameters at which the powders were nitrided are provided in the table. The peaks 

from the XRD patterns for the nitrided powders can be ascribed to four separate phases i.e., Mn4N, 

Mn3N2, MnO, Mn6N2.58. MnO phase is likely due to reaction with residual oxygen in the furnace. 

The amount of nitrides formed were investigated using LECO furnace method. It can be observed 

that the nitrides formed for MnN(11) powder is less (1.59%wt) compared to other powders. This 

is because of the low nitriding temperature of 575°C and longer time of 12 Hrs. Powders MnN(3) 

and MnN12 were nitrided using same time and temperature parameters but the gas flow for 

MnN(12) was reduced to half 15 SCCM that of MnN(3). This resulted in 0.66%wt more nitrogen 

absorption. A slight reaction between manganese and nitrogen can be observed at a temperature 

as low as 400°C. With rise in temperature the amount of nitrogen grows, attaining its maximum 

value at 800°C (nitriding time 25-60 min). As the temperature is still raised further, the nitrogen 

content of the reaction products slowly falls. At a temperature of 1100°C manganese nitrides are 

unstable and dissociates into the elements. As it can be seen from the patterns the formation Mn4N 

phase is higher compared to other phases. The optimum condition for synthesis of phase Mn4N are 

at temperature of 1000°C for 60 min[16].
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Chapter 5 : Alloy Development with Nitrided Powders

 For the second phase of alloy development nitrided powders were used. Manganese was 

nitrided in the lab, while commercially available aluminum nitride powder was used.  

 

5.1 Alloy 2: 22% Mn(N13), 6% Al(N), 10% Cr, 0.1%C, 61.9%Fe (in wt.%) 

 The Alloy 2 was deposited with the same composition but instead of manganese and 

aluminum, manganese nitride and aluminum nitride powders were used. As discussed previously 

in the Nitriding chapter, nitrided powders are more stable and have good wear, corrosion and 

hardness properties. The deposition was once again carried out on stainless steel 316 substrate. 

Because of higher melting point of aluminum nitride and manganese nitride the deposition was 

done with 38 A for 8 layers. 

 

5.2 SEM Analysis 

 From the SEM images it can be seen that the deposition with manganese nitride and 

aluminum nitride is better compared to Alloy 1. The sample has less pores and cracks. 

Figure 5.2 SEM of Alloy 2 Figure 5.1 SEM of Alloy 2 
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   5.3 EDS Analysis 

  The EDS analysis show us that some aluminum nitride is lost or hasn’t been 

deposited. This is because of the high melting point of aluminum nitride compared to just 

aluminum. The other values are around the range of input values. 

 

  

Figure 5.4 SEM of Alloy 2 Figure 5.3 SEM of Alloy 2 

Figure 5.5 EDS of Alloy 2 
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     5.4 Hardness 

 Following figure shows the average hardness values for Alloy 2 sample. The readings were 

taken in the similar points as the previous sample from Alloy 1. The hardness values for Alloy 2 

are higher by 40 to 50 values compared to Alloy 1. This is a significant improvement in the 

hardness property for the alloy. The addition of nitrided powder has significantly improved the 

hardness property. 

 

338

340

342

344

346

348

350

Surface Center Interface

Alloy 2 - Hardness Results
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5.5 Wear Test 

 

 The following figure shows the wear results for Alloy – 2 sample. The wear coefficient of 

friction coefficient for Alloy 2 is around 0.3±0.05. The wear coefficient of Alloy 2 sample is less 

compared to Alloy 1 which means the nitriding has improved the wear properties of the sample.  

 

   

Figure 5.8 Wear result of Alloy 2 sample 

Figure 5.9 Wear result of Alloy 2 sample 
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Fig (5.9) shows the wear depth of the same sample. The width of wear profile was approximately 

1.5 mm and the depth were between -10µm to -20 µm. The wear depth is less compared to Alloy 

1 which means the Alloy 2 sample has worn less in comparison.  

 

5.6 Corrosion Test 

 

Following Figure (5.10) shows the corrosion result for Alloy 2. The x-axis shows the current 

density in logarithmic scale and the y-axis represents the potential in volts.   
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Figure 5.10 Corrosion result of Alloy 2 sample 
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Chapter 6 Results and Discussion

6.1 Wear Results 

 

 Following Figure (6.1) shows the wear results for Alloy 1 and Alloy 2 in in comparison 

with cast iron and stainless steel 316 samples. All the samples were tested for 8000 cycles for a 

load of 5 N. The total time for each wear test was around 2 hours 45 minutes. Each sample had 

been tested with new tungsten carbide ball. Both the alloys have better wear coefficient than cast 

iron and SS 316. For cast iron the wear coefficient varies greatly and is around 0.4±0.2. For 

stainless steel 316 the wear coefficient is around 0.45±0.05.  

Figure 6.1 Wear comparison of Alloy 1, Alloy 2, Cast Iron, SS316 
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6.2 Hardness Results 

 

  The above Figure (6.2) shows the hardness results for Alloy 1 and 2 in comparison with 

cast iron and stainless steel 316. The hardness readings are from the surface of samples. Total of 6 

values were recorded at different places on the surface of sample and the average values were then 

plotted. The average value for Alloy 1 is 292.83 Vickers Hardness. For Alloy 2 it is 346.33.  Vickers 

Hardness And for cast iron and SS 316 it is 275 Vickers Hardness and 295.5 Vickers Hardness 

respectively. Alloy 2 hardness is greater than both cast iron and SS316. 

 

6.3 Corrosion Results 
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 The corrosion tests on all the samples were carried out using AMETEK Princeton Applied 

Research (PAR) Flat Cell model K103. All samples were polished with grit emery papers starting 

with grade 240 up to 800 grade. The tests were carried in 0.5-wt. % NaCl solution prepared using 

analytical grade reagents. Following Figure (6.3) shows the results of corrosion test of Alloy 1 and 

Alloy 2 in comparison with cast iron and aluminum samples. 
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Chapter 7 Conclusion

 The goal of the study was to develop a low-cost wear and corrosion resistant coating 

material for aluminum alloys as an automotive brake rotor material. High manganese iron alloys 

present a potential solution and can be adapted to suit this application. Fe-Mn-Al-Cr-C alloys were 

laser clad onto stainless steel substrates with minimum dilution. A microstructure property 

evolution of these alloys was then performed to study the effects of alloying elements.  

 It is found that the Fe-Mn-Al-Cr-C alloy had better wear, corrosion and hardness properties 

compared to cast iron. To further improve properties a series of nitriding experiments were carried 

out at various time and temperature parameters using nitrogen-hydrogen as a process gas at 

ambient pressure. It is observed that multiple phases of manganese nitrides were formed during 

the process. It is shown that the only phase that can be purely synthesized using nitrogen as a 

process gas is Mn4N. It was also established that nitride formation was higher with high 

temperature and less time as process parameters. According to X-Ray diffraction exposure of 

manganese to nitrogen for a period of 60 min to 240 min between temperature range of 575°C to 

1000°C results in the formation of Mn4N, Mn3N2, MnO, Mn6N2.58 phases with nitrogen absorption 

between 1.5%wt. - 8.08%wt. 

 Further Fe-Mn(N)-Al(N)-Cr-C alloy was tried with nitrided manganese and aluminum 

powders. The use of nitrided powder has improved the wear, corrosion, and hardness properties of 

the alloy.
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