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Abstract

Deletion of Mapt, encoding the microtubule-binding protein Tau, prevents

disease in multiple genetic models of hyperexcitability. To investigate whether

the effect of Tau depletion is generalizable across multiple sodium channel

gene-linked models of epilepsy, we examined the Scn1b�/� mouse model of

Dravet syndrome, and the Scn8aN1768D/+ model of Early Infantile Epileptic

Encephalopathy. Both models display severe seizures and early mortality. We

found no prolongation of survival between Scn1b�/�,Mapt+/+, Scn1b�/�,Mapt+/

�, or Scn1b�/�,Mapt�/� mice or between Scn8aN1768D/+,Mapt+/+, Scn8aN1768D/+,

Mapt+/�, or Scn8aN1768D/+,Mapt�/� mice. Thus, the effect of Mapt deletion on

mortality in epileptic encephalopathy models is gene specific and provides

further mechanistic insight.

Introduction

Deletion of Mapt, encoding the microtubule-binding pro-

tein Tau, has been shown to attenuate hyperexcitability

and prevent disease in a mouse model of Alzheimer’s Dis-

ease with epilepsy,1 the Kcna1�/� mouse model of tempo-

ral lobe epilepsy,2 the Scn1aR1407X mouse model of Dravet

syndrome (DS),3 and bang-sensitive Drosophila mutants.2

As a result of this work, Tau has been proposed to be a

viable target for the development of novel anti-epileptic

therapeutic agents. To investigate whether the effect of

Tau depletion is generalizable across additional gene

models of epilepsy with premature lethality, we conducted

a similar experiment using two different models of

sodium channel gene-linked epileptic encephalopathy: the

Scn1b�/� mouse model of DS 4 and the Scn8aN1768D/+

model of Early Infantile Epileptic Encephalopathy

(EIEE13).5
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Scn1b encodes the b1 and b1B subunits of voltage-

gated sodium channels.6 Homozygous Scn1b�/� mice are

underweight, have cardiac defects, develop severe sei-

zures at approximately postnatal day (P) 10, and 100%

die by approximately P21. SCN1B is the only known

genetic link to DS that is due to recessive inheritance.7,8

The limited number of reported SCN1B-linked DS cases

show seizure onset in the first months of life, dramatic

cognitive and motor delays, microcephaly, generalized

wasting, severe kyphoscoliosis, central hypotonia, and

spastic quadriplegia.7,8 SCN8A encodes Nav1.6, a pore-

forming a subunit of the voltage-gated sodium channel.

Heterozygous missense mutations of SCN8A have been

identified in more than 150 individuals with SCN8A-

EIEE13 many of which exhibit gain-of-function features.9

A mouse model expressing the patient mutation

p.Asn1758Asp (N1768D) exhibits seizure onset at 2–
5 months of age.5,10 Death is usually observed within

1 week of seizure onset.11 Since SCN1B-linked DS and

SCN8A-linked EIEE13 are both resistant to multiple

anti-epileptic drugs, there is a major need for the devel-

opment of novel therapeutics for these devastating epi-

lepsy syndromes.

Methods

Animals

All procedures were performed in accordance with the

guidelines of the National Institutes of Health, as

approved by the Animal Care and Use Committee of

the University of Michigan and Baylor College of

Medicine.

Scn1b+/� mice, congenic for over 20 generations

(N > 20) on the C57Bl/6J background, were generated as

described.4 Scn1b+/� mice were crossed with Mapt+/� mice

(JAX stock #007251,B6.129X1-Mapttm1Hnd/J) 12 to generate

Scn1b+/�,Mapt+/� mice, which were then bred to generate

Scn1b�/�,Mapt+/+, Scn1b�/�,Mapt+/�, and Scn1b�/�,
Mapt�/� mice for analysis. Scn8aN1768D/+ mice 13 were

backcrossed to strain C57BL/6J for six generations (N6)

and crossed with C57BL/6J.Mapt�/� mice. F2 mice with

genotypes Scn8aN1768D/+,Mapt+/+, Scn8aN1768D/+,Mapt+/�,
and Scn8aN1768D/+,Mapt�/� were used for analysis of sur-

vival. Additional Scn8aN1768D/+,Mapt�/�mice were obtained

by crossing F1 mice with Mapt�/� mice. Additional

Scn8aN1768D/+,Mapt+/+ were collected from generations N6

to N9 of the backcross to strain C57BL/6J. Male and female

mice were used for all experiments. Mouse survival was

monitored twice daily by individuals blinded to genotype.

For the Scn1b mice, half of the animals were bred and ana-

lyzed at the University of Michigan and half at Baylor

College of Medicine. There were no differences in the

results and thus the data were pooled.

PCR analysis of mouse tail DNA: DNA was prepared

from mouse tail biopsies at P 10-14 using standard

methods.4

For Scn1b,Mapt mice

Two sets of primers were used in genotyping: Mapt pri-

mers: Mapt�/� forward 50-GCC AGA GGC CAC TTG

TGT AG-30; reverse 50-ATT CAA CCC CCT CGA ATT

TT-30; Mapt+/+: forward 50 AAT GGA AGA CCA TGC

TGG AG 30; reverse 50-ATT CAA CCC CCT CGA ATT

TT-30. Scn1b primers: Scn1b�/�: forward 50- AGA GAG

AAT GGA GAA TCA AGC CAT AG-30; reverse 50-GCT
ACT TCC ATT TGT CAC GTC CTG CAC-30; Scn1b+/+:
forward 50-CTT CTT TGA TCC CTC ACT GTC CG -30;
reverse 50-AGG TGG ATC TTC TTG ACG ACG CTG-30.
The two primer sets were mixed and used together in a

single PCR performed according to the following proto-

col: an initial denaturation step at 95°C for 2 min, fol-

lowed by 30–35 cycles of denaturation at 94°C for 30 sec,

annealing at 60°C for 30 sec, and elongation at 71°C for

1 min 20 sec, and a final step at 72°C for 7 min. The

results were analyzed by agarose gel electrophoresis.

For Scn8aN1768D, Mapt mice, PCR primers 50-TACTGC
TGCCAATCCTGAAC-30 and 50-CAAAGTCGGCCAGCT
TACA-30 were used to amplify a 306 bp product. An ini-

tial denaturation at 95°C for 2 min was followed by 35

cycles of 95°C for 45 sec, 60°C for 30 sec, 72°C for

40 sec. The reaction was then digested with HincII

restriction enzyme. The amplicon is resistant to HincII

when amplified from the WT allele. When amplified from

the mutant allele the presence of a HincII RE site results

in digestion to a 146 bp and a 160 bp fragment. Geno-

typing of the MapttmHnd allele was based on the protocol

published on the Jackson Laboratory website (stock num-

ber 007251). Primers 50- AATGGAAGACCATGCTGGAG-
30, 50-ATTCAACCCCCTCGAATTTT-30 and 50-GCCAG
AGGCCACTTGTGTAG-30 were used in a touchdown

PCR. After initial denaturation at 95°C for 2 min, 10

cycles of 95°C for 30 sec, 65°C (decreasing by 0.5°C per

cycle) for 30 sec, 72°C 30 sec, was followed by 28 cycles

of 95°C for 30 sec, 60°C for 30 sec, 72°C for 30 sec.

Amplification of the WT allele results in a 269 bp

product, whereas the MapttmHnd allele gives a 190 bp

product.

Statistical analysis

Mouse survival was analyzed by Kaplan–Meier Log Rank

(Mantel–Cox).
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Results

In contrast to Kcna1�/� and Scn1aR1407X mice, Mapt dele-

tion had no observable effects on survival of Scn1b DS

mice. Scn1b�/�,Mapt+/+, Scn1b�/�,Mapt+/�, and Scn1b�/�,
Mapt�/� mice have overlapping survival curves (Fig. 1).

Although affected mice were too young and too small for

electroencephalographic monitoring prior to their death

in the third postnatal week, all three groups of animals

showed similar and clearly visible behavioral seizures up

until death. In addition, the time of death was not signifi-

cantly different between genotypes.

Deletion of Mapt alleles also had no effect on the survival

of Scn8aN1768D/+ mice. Comparison of survival during a 10-

month observation period did not detect any difference

between Scn8aN1768D/+ mutant mice with the compound

genotypes of Mapt+/+, Mapt+/�, and Mapt�/� (Fig. 2).

Discussion

We report that the effects of Mapt deletion on genetic

models of neural hyperexcitability are not uniform across

all mouse models of epileptic ion channelopathy. Mice

bearing the null mutation in Scn1b, a regulatory subunit

of voltage-gated neuronal and cardiac sodium channels,

show epilepsy even in the absence of Tau protein, and

loss of Tau does not prevent or delay premature lethality

in this model. This is likely explained by the increased

molecular complexity of Scn1b interactions with ion

channel pore-forming subunits. The mouse phenotype of

SCN1B-linked DS 4,8 is more severe than models of

SCN1A-linked DS,14,15 and may involve more subclasses

of neurons and brain regions. b1/b1B subunits associate

with and modulate the voltage-gating properties of all

sodium channel and some potassium channel a subunits.6

b1 and b1B are multifunctional, with nonconducting

functions resembling those of immunoglobulin superfam-

ily cell adhesion molecules.6 In addition to brain, Scn1b is

expressed in heart, where it contributes to the regulation

of cardiomyocyte excitability and excitation-contraction

coupling.16,17 SCN1B mutations are linked to cardiac

arrhythmia in humans and Scn1b �/� mice have pro-

longed QT and RR intervals on the ECG.18 Scn1b is also

expressed in pancreatic beta cells. Scn1b�/� mice display a
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Figure 1. Mapt deletion does not affect survival of Scn1b�/� mice. Kaplan–Meier analysis shows that Mapt deletion does not alter survival in

Scn1b�/� mice (Scn1b�/�, Mapt+/+: n = 11;Scn1b�/�, Mapt+/�: n = 26; Scn1b�/�, Mapt�/�: n = 11; Kaplan–Meier log rank). v2 = 1.063,

P > 0.05. Log rank (Mantel–Cox) Chi square was calculated in GraphPad Prism assuming 2 degrees of freedom.
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metabolic hypoglycemic phenotype due to abnormal insu-

lin and glucagon release, likely contributing to failure to

thrive and early neurologic hypofunction.19 Thus,

SCN1B-linked mortality may relate to combined down-

stream excitability disturbances in brain, heart, and neu-

roendocrine cells, not all of which can be rescued by loss

of Tau, and the human disease may be more challenging

in terms of therapeutic development.

SCN8A gain-of-function mutations are associated with

EIEE13, with onset ranging from prenatal life to 1 year of

age. The functional effects of patient mutations in this

pore-forming subunit include premature channel opening

and delayed channel inactivation.9 Elevated neuronal fir-

ing rates have been observed in hippocampal20 and corti-

cal21 neurons from mice carrying the patient mutation

SCN8A-N1768D, which is located in the last transmem-

brane segment of the channel. Nav1.6 is concentrated at

the axon initial segment (AIS), where it mediates action

potential initiation in neurons throughout the CNS and

PNS. The lack of effect of Mapt deletion on survival of

mice with the N1768D mutation suggests that Tau may

not be involved in the mechanism of Nav1.6 localization

to the AIS. SCN8A is also expressed at low abundance in

cardiac myocytes, which exhibit arrhythmic contractions

and altered calcium handling in Scn8aN1768D/+ mice.22

The role of cardiac arrhythmia in premature lethality of

this mouse model remains unclear. At the cellular level,

the effects of gain-of-function mutations of SCN8A are

quite distinct from the loss-of-function mutations of

SCN1A responsible for DS. How this difference in mecha-

nism leads to divergent responses to Mapt deletion is a

question for the future.

The mechanism of sudden unexpected death in epilepsy

(SUDEP) in epileptic encephalopathy is not known,

although spreading depolarization to the brainstem, respi-

ratory compromise, autonomic dysfunction, and cardiac

arrhythmias have been implicated.22–27 Mapt deletion,

which has been shown to prolong life in the Kv1.1 null

model of SUDEP, also restores the normal brainstem

threshold for spreading depression,23 possibly implicating

Mapt in SUDEP mechanisms. Nevertheless, our results

provide the first indication that targeting Tau will not

provide general protection against premature lethality

among all genetic channelopathies, which may require

development of gene-specific therapies for individual

subtypes of epileptic encephalopathy.
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Figure 2. Mapt deletion does not affect survival of Scn8a EIEE13 mice. The survival of Scn8aN1768D/+ mice was unaffected by their Mapt

genotype (Scn8aN1768D/+,Mapt+/+ : n = 217; Scn8aN1768D/+,Mapt+/� : n = 54; Scn8aN1768D/+,Mapt�/� : n = 36; Kaplan–Meier log rank).

v2 = 5.968, P > 0.05. Log rank (Mantel–Cox) Chi square was calculated in GraphPad Prism assuming 2 degrees of freedom.
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