
Understanding Deregulated Retail Electricity Markets in the Future:
A Perspective from Machine Learning and Optimization

by
Tao Chen

A dissertation submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy
(Electrical and Computer Engineering)
in the University of Michigan-Dearborn

2018

Doctoral Committee:
Assistant Professor Wencong Su, Chair
Associate Professor Yi-Su Chen
Associate Professor Sridhar Lakshmanan
Assistant Professor Samir Rawashdeh



ACKNOWLEDGEMENTS

Firstly I would like to thank to Prof. Wencong Su, for his guidance and support through

all the three years of my PhD study. It was a great pleasure to learn academics and much

more than academics from him. Thanks for numerous discussion and idea exchange hap-

pening on his cosy office. His sharp advices and remarkable help concluding all the pub-

lications contained in this dissertation. I really appreciate it!

For willing to be on my doctoral committee and for helpful comments on my research,

I thank Yi-Su Chen, Sridhar Lakshmanan, and Samir Rawashdeh. I also thank Luis Or-

tiz and Jian Hu for their kindly acceptance of the invitation. Furthermore, I am greatly

thankful to the excellent cooperation with all my coauthors, many colleagues in Umich

and GEIRINA, and Pertti Järventausta for providing dataset and hosting for visiting back

Finland. Of course, there is a huge research community of many people and friends who

supported me deeply. I don’t have the space or time to thank everyone I met in my doctoral

journey, but they’ve all made me become myself.

This thesis is dedicated to my family. To my grandparents, Rongxiu Ye and Xianfu Chen.

To my parents, Jinghua Jiang and Yimin Chen, for their unconditional love and always

support. To my wife, Yajuan Cao, without her forever love and support, this dissertation

would not have been possible.

ii



TABLE OF CONTENTS

ACKNOWLEDGEMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

CHAPTER

I. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Retail Electricity Market with Pure Consumers . . . . . . . . . . . . . . . . . . . . 4

1.2.1 DSO with Distribution Level Pricing . . . . . . . . . . . . . . . . . . . . 4
1.2.2 Decision Making of Retailers . . . . . . . . . . . . . . . . . . . . . . . 6
1.2.3 Price Scheme and Demand Response . . . . . . . . . . . . . . . . . . . 7
1.2.4 Transactive Energy and Transactive Control . . . . . . . . . . . . . . . . 8

1.3 Retail Electricity Market with Prosumers . . . . . . . . . . . . . . . . . . . . . . . 9
1.3.1 Prosumer Grid Integration . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.3.2 Inter-Network Trading with Peer-To-Peer Models . . . . . . . . . . . . . 11
1.3.3 Indirect Customer-To-Customer Trading . . . . . . . . . . . . . . . . . . 12
1.3.4 Prosumer Community Groups . . . . . . . . . . . . . . . . . . . . . . . 13

1.4 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
1.4.1 Optimization, Distributed Optimization and Blockchain . . . . . . . . . 15
1.4.2 Game Theoretic Method and Prospect Theory . . . . . . . . . . . . . . . 17
1.4.3 Agent-Based Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . 18
1.4.4 Machine Learning Techniques . . . . . . . . . . . . . . . . . . . . . . . 19

1.5 Discussion and Policy Issues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
1.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

II. DSO service . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.2 eVoucher program . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.3 Problem formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.3.1 EDC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.3.2 Parking lot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
2.3.3 Frequency-deviation-based price component . . . . . . . . . . . . . . . 36
2.3.4 eVoucher price . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
2.3.5 Implementation issues . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.4 Numerical case studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
2.4.1 eVoucher program . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
2.4.2 Frequency-deviation triggered component in eVoucher . . . . . . . . . . 43

iii



2.4.3 Economic analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
2.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

III. Utility service . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.2 Framework and methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.2.1 Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
3.2.2 Price Scheme design . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.3 Results and discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
3.3.1 Individualized price scheme design . . . . . . . . . . . . . . . . . . . . 55
3.3.2 Economic analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

IV. Modeling of energy broker . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
4.2 Event-driven Market Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
4.3 System model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.3.1 Market operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
4.3.2 Sellers and buyers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
4.3.3 Retail energy broker . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
4.3.4 Real-world implementation issues . . . . . . . . . . . . . . . . . . . . . 72

4.4 Markov Decision Process and Modified Q-learning Algorithm . . . . . . . . . . . . 73
4.5 Numerical results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.5.1 Smart strategy with learning . . . . . . . . . . . . . . . . . . . . . . . . 76
4.5.2 Advantages of LEM . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
4.5.3 Sensitivity analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
4.5.4 The impact of H and search friction . . . . . . . . . . . . . . . . . . . . 85

4.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

V. Modeling of prosumer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
5.2 Holistic local energy market model . . . . . . . . . . . . . . . . . . . . . . . . . . 91
5.3 Prosumer model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

5.3.1 Wind power generation model . . . . . . . . . . . . . . . . . . . . . . . 94
5.3.2 Energy storage system model . . . . . . . . . . . . . . . . . . . . . . . 95
5.3.3 Trading actions and utilities . . . . . . . . . . . . . . . . . . . . . . . . 95
5.3.4 Self-adaptive learning problem . . . . . . . . . . . . . . . . . . . . . . . 98

5.4 Deep reinforcement learning and solution algorithms . . . . . . . . . . . . . . . . . 99
5.4.1 Markov decision process . . . . . . . . . . . . . . . . . . . . . . . . . . 100
5.4.2 Deep Q-learning algorithm . . . . . . . . . . . . . . . . . . . . . . . . . 102
5.4.3 Experience replay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

5.5 Numerical results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
5.5.1 Simulation setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
5.5.2 Performance evaluation of the proposed method . . . . . . . . . . . . . . 107
5.5.3 Economic analysis of the prosumer . . . . . . . . . . . . . . . . . . . . 109

5.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

VI. Conclusion and future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

BIBLIOGRAPHY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

iv



LIST OF FIGURES

Figure

1.1 The deregulation of the wholesale electricity market. . . . . . . . . . . . . . . . . . . . . 3

1.2 The further deregulation of the retail electricity market. . . . . . . . . . . . . . . . . . . . 4

1.3 The new role design of the DSO. ACOPF, alternating current optimal power flow. . . . . . 5

1.4 The localized retail market with energy broker and search theory. SCP, sellers’ commit-
ment probability. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.1 The eVoucher program features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.2 Retail electricity market structure for EV parking lots . . . . . . . . . . . . . . . . . . . . 33

2.3 Normal and abnormal frequency ranges . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.4 f -τ characteristics of frequency-deviation triggering . . . . . . . . . . . . . . . . . . . . . 37

2.5 Decision process of eVoucher price . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.6 Time-of-use price scheme for different parking lots . . . . . . . . . . . . . . . . . . . . . 41

2.7 SoC status of all the EVs in different parking lots . . . . . . . . . . . . . . . . . . . . . . 42

2.8 Real time price spike and mismatch of day-ahead power commitment . . . . . . . . . . . 43

2.9 Aggregated demand adjustment from all the parking lots . . . . . . . . . . . . . . . . . . 43

2.10 Detection window for frequency deviation triggering . . . . . . . . . . . . . . . . . . . . 44

2.11 One day modified FNET frequency data . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

2.12 Final negotiated eVoucher price for parking lot No.1 . . . . . . . . . . . . . . . . . . . . . 45

3.1 Structure of an SLFN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.2 Flowchart of the price scheme design process . . . . . . . . . . . . . . . . . . . . . . . . 54

3.3 Clustering of 1500 customers into 16 groups . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.4 The electricity price scheme design for a typical load profile with SAX . . . . . . . . . . . 56

3.5 The design of an individualized price scheme structure for every group . . . . . . . . . . . 57

v



4.1 The future retail electricity market . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.2 Holistic market model design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.3 Physical connection of consumer/prosumer and REB . . . . . . . . . . . . . . . . . . . . 65

4.4 Timeline of the proposed market model . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.5 Market-clearance of the double-auction model . . . . . . . . . . . . . . . . . . . . . . . . 72

4.6 The market model as an MDP with agent-environment interaction . . . . . . . . . . . . . 73

4.7 Smart strategy (with learning) vs dummy strategy (without learning) . . . . . . . . . . . . 77

4.8 Optimal policy with chosen actions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.9 Results of running for a longer time with more experience accumulated . . . . . . . . . . 78

4.10 Optimization benchmark with perfect forecast . . . . . . . . . . . . . . . . . . . . . . . . 79

4.11 The annual benefit effect (per capita) on participants in a LEM (values in dollar are revenue
for seller and REB, and cost for buyer) . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

4.12 The impact of the number of time intervals . . . . . . . . . . . . . . . . . . . . . . . . . . 83

4.13 The obtained profit with different exploration ratios . . . . . . . . . . . . . . . . . . . . . 83

4.14 The effect of price margin εp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

4.15 The impact of parameter H . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

5.1 Prosumer with energy trading conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

5.2 Local energy market with prosumer’s participation . . . . . . . . . . . . . . . . . . . . . 92

5.3 Holistic market model design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

5.4 Experience replay with transition state buffer . . . . . . . . . . . . . . . . . . . . . . . . 104
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ABSTRACT

On top of Smart Grid technologies and new market mechanism design, the further

deregulation of retail electricity market at distribution level will play a important role in

promoting energy system transformation in a socioeconomic way. In today’s retail elec-

tricity market, customers have very limited ”energy choice,” or freedom to choose different

types of energy services. Although the installation of distributed energy resources (DERs)

has become prevalent in many regions, most customers and prosumers who have local en-

ergy generation and possible surplus can still only choose to trade with utility companies.

They either purchase energy from or sell energy surplus back to the utilities directly while

suffering from some price gap. The key to providing more energy trading freedom and

open innovation in the retail electricity market is to develop new consumer-centric busi-

ness models and possibly a localized energy trading platform. This dissertation is exactly

pursuing these ideas and proposing a holistic localized electricity retail market to push the

next-generation retail electricity market infrastructure to be a level playing field, where all

customers have an equal opportunity to actively participate directly. This dissertation also

studied and discussed opportunities of many emerging technologies, such as reinforce-

ment learning and deep reinforcement learning, for intelligent energy system operation.

Some improvement suggestion of the modeling framework and methodology are included

as well.

viii



CHAPTER I

Introduction

1.1 Background

1 Although electricity market deregulation has been underway since the United King-

dom opened a power pool in April 1990 [2], competitive forces in the U.S. electricity

market have been largely silent since the early-2000s California electricity crisis. Then,

since the 2010s, many power sector reforms and new market mechanism designs have

been under intense discussion again due to the emerging smart grid technologies plus some

innovative information technology (IT) business models and an Internet-inspired commer-

cial paradigm [3]. However, most research on the electricity market still focuses on the

wholesale market, particularly the bidding process and financial transmission rights [4]

[5]. The development of the retail electricity market seldom borrows much experience

from such bulk power transactions, though. Instead, it prefers to follow principles, like

multi-options, peer-to-peer, sharing economy friendliness, negotiability, and so on, that

are utilized successfully in the customer-centric IT industry. This characteristic is also the

reason for popular proposals such as the energy Internet [6] and digital grid [7] in many

references.

Around the world, many countries are also pushing the reform of the electricity power
1This chapter was previously published as an article in a peer-reviewed journal: [1] T. Chen, Q. Alsafasfeh, H. Pourbabak, and W.

Su, ”The Next-generation Retail Electricity Market with Customers and Prosumers - A Bibliographical Survey”, Energies, vol.11, no.1
2017.
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sector very positively. Chile pioneered in the 1980s the deregulation of the electric power

industry [8]. The European Union had taken steps to liberalize its electricity industries in

the 1980s and, late in the 2000s, allowed all customers to choose their electricity suppliers

[9]. The restructuring and regulatory reforms in the PR China’s power sector happened

in the 2000s along with other Asian countries [10]. The electricity retailing in Japan was

fully deregulated with fierce competition in April 2016 [11]. In today’s U.S. retail electric-

ity market, 14 states have already adequate retail competition with Texas, Illinois and Ohio

having 100%, 60% and 50% of their residential customers receiving service from electric-

ity suppliers [12]. However, many customers still have very limited “energy choice” or

direct participation in the existing retail electricity market.

The key to open innovation in the power sector has been believed to be the development

of consumer-centric business models and well-designed demand side management (DSM)

programs [13] [14]. Following these ideas, the recent work in [15] looks even further

forward to more subtle modeling of customer behavior, with considerations of their will-

ingness to participate and even emotional or irrational features. With these prevailing ideas

in the research community, the next-generation retail electricity market infrastructure will

be a level playing field, where all energy end-users and customers have equal opportu-

nity to play the role of active participants rather than pure passive price-takers [16] [17].

Fortunately, the recent development of the functionalities of the energy service companies

(EsCos) and the distribution system operator (DSO) has opened many new possibility for

monitoring, coordinating and controlling short-term or real-time delivery of electricity at

the distribution level [18]. Especially with the further development of the concept of the

DSO, deregulation of the electricity market has been spreading out from wholesale market

design into retail market design, as shown in Figures 1.1 and 1.2. In the new paradigm for

energy transactions, different customers or customer groups (e.g., energy communities)

2



are free to choose their service provider, either a distribution company or utility company,

including even pure energy retailers, periodically.

GenCo GenCo GenCo

EsCo EsCo EsCo

Customer Customer Customer

GenCo: Generation company       EsCo: Energy service company

Transmission System 
Operator

W
h

o
lesale &

 R
etail M

arket

Figure 1.1: The deregulation of the wholesale electricity market.

Moreover, in smart grids, more and more customers will be able to have local gen-

eration capability, i.e., distributed energy resources (DERs), along with various flexible

controllable loads, such as thermostatically-controlled loads (TCLs), distributed energy

storage devices (DESDs) and washing machines [19] [20]. Electric vehicles (EVs) and

plug-in electric vehicles (PEVs) are also appealing as the most controllable loads because

they can be curtailed for significant periods of time (e.g., several hours) without impact on

end-use function [21] [22]. These kinds of customers are encouraged to actively partici-

pate in the retail market to provide demand response or localized power balance between

energy surplus and energy deficit.

Some existing survey papers focus mainly on the decision-making process of retailers

in the wholesale market and somehow ignore the significant effect that various types of fu-

ture energy end-users will have on the whole electricity market landscape [17]. The entire

3
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Customer Customer Customer

GenCo: Generation company           EsCo: Energy service company

Large 
customer

Customer
Group

Retail Market

Wholesale Market
Transmission System 

Operator

Distribution System 
Operator

Figure 1.2: The further deregulation of the retail electricity market.

energy business ecosystem will be re-formed if the most recent research trends and princi-

ples, such as transactive energy [23] [24], transactive control [25] (Transactive energy and

transactive control are explained further in Section 2.4), an energy sharing economy [26],

and so on, are adopted.

1.2 Retail Electricity Market with Pure Consumers

In most scenarios, customers play a passive role as price-takers in retail electricity,

purely serving as consumers of energy at different locations. Those who have the capabil-

ity to generate power locally with the help of microgrids and are able to supply electricity

to other customers are called prosumers at the distribution level. We will leave the discus-

sion of the retail electricity market that includes prosumers for the next section.

1.2.1 DSO with Distribution Level Pricing

As a result of the distribution grid’s increasing number of roles and functionalities, the

deployment of a DSO is becoming a necessity to ensure efficient and reliable delivery of

electricity to emerging proactive customers. Customers now have more willingness to con-

4



trol their energy use and transactions with the utility grid, as their energy preferences have

evolved. In parallel, there is a potential need for an intermediate entity between the re-

gional transmission operators (RTOs) or independent system operators (ISOs) and energy

end-users due to the limited visibility and control over the meter resources (e.g., advanced

metering infrastructure) at the customer side [27]. A DSO in the future energy system

and energy market design may be considered the evolution of a distribution management

system, with, however, more functionality at different layers (Figure 1.3).

1

Control/Protection Layer

Market Layer

Information Layer

• Control/Protection Layer sets the constraints 
(acceptable range) for Market Layer

• Reduce the frequency of running ACOPF too much in 
real time (much faster)

• Announce pricing scheme and market-clearance 
mechanism, negotiating economic incentives with 
customers

• Coordinate information 
exchange between 
retailers and customers

• Collect different requests 
from customers (e.g., 
willing to sell/buy)

Figure 1.3: The new role design of the DSO. ACOPF, alternating current optimal power flow.

In addition to the traditional mission to operate, maintain and develop an efficient elec-

tricity distribution system, the DSO possesses more functionality rather than only mimick-

ing the ISO’s pure responsibility of electricity pricing and independent market-clearance

at the transmission level as a non-profit entity. In the wholesale market, many ISOs nation-

wide implement the locational marginal pricing (LMP) strategy either in the form of ex

ante LMP, for example New York ISO (NYISO), or ex post LMP, for example ISO-New

England (ISO-NE), PJM and Midcontinent-ISO (MISO) [28]. Based on the fact that LMP

has been widely adopted to compute electricity prices in the wholesale electricity market

[29], some scholars have begun to downscale the LMP schema for distribution networks
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by proposing its counterpart, distribution locational marginal pricing (DLMP) [30], which

can directly work for individual energy end-users without referring to a load serving entity

(LSE) or other demand bidding aggregators. It has been applied to several scenarios, such

as the congestion management problem and the electric vehicle charging problem [31].

However, as shown in Figure 1.3, the DSO may not only play the role of an ISO at

the distribution level since there is a huge difference between a distribution network and

a transmission network, such as three-phase imbalance, radial system topology, high ratio

of power loss, numerous low-voltage buses, and so on. To some extent, DLMP is hardly

effectively obtained through running alternating current optimal power flow (ACOPF) for

a distribution system. A very recent three-phase ACOPF-based approach has been devel-

oped to define and calculate DLMP accurately [32].

1.2.2 Decision Making of Retailers

Retailers in the electricity market are supposed to purchase electricity in the whole-

sale market and sell electricity to their subscribed end-user customers through assigning

appropriate tariffs, either in a temporal variance way or at a flat rate. Currently, the elec-

tricity retail company is usually operated as an entity that is independent of any generation

or distribution company [17]. The decision-making process involved in buying and sell-

ing strategies usually contains some volatile market risks that are similar to the ones in

any other market, such as the stock market and oil market. Especially with the further

deregulation of the electricity market, along with the development of DSM and the prolif-

eration of DERs, retailers participating in both the wholesale market and the retail market

should carefully design their buying-selling trade-off and electricity portfolio optimization

[33]. In the future, many innovative pricing schemes will be necessary, taking into account

emerging factors such as the increasing penetration of renewable energy, wide deployment

of storage devices, adoption of advanced information and communication technologies
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(ICT) and rising customer awareness of switching among electricity suppliers. These new

challenges also require retailers to incorporate some typical operations into their decision-

making processes, which include retail energy forecasting, portfolio evaluation and risk

management.

Due to the page limit and many mature approaches that already exist for residential

load forecasting [34] [35] and portfolio evaluation [36] [37], risk management will be the

focus of discussion here, along with many recent advances in the research community. In

a typical example such as [38], the author utilizes stochastic programming techniques to

determine the day-ahead market bidding strategies for retailers with flexible demands to

maximize their short-term profit, specifically including a case study based on Sweden’s

electricity market and consideration of the demand uncertainty of retail customers. In

most studies of retail electricity market operation, with risk from either real-time price or

demand uncertainty, conditional value-at-risk (CVaR) is widely used to consider risk man-

agement [39]. CVaR is a risk assessment technique often used to reduce the probability

that a portfolio will incur large losses, which is performed by taking a weighted average

between the value at risk and losses exceeding the value at risk [40].

1.2.3 Price Scheme and Demand Response

On the customer side, energy end-users do respond to the long-term electricity con-

tract and price schemes offered by the utilities; however, they are usually insensitive and

uncomfortable with respect to the highly dynamic or real-time pricing, due to the lack

of competence to immediately respond to the price signal or little awareness of instan-

taneous opportunity [41] [42]. However, electricity prices that describe marginal costs

can vary substantially over time. Fixed rates may ignore continuous changes in the elec-

tricity system conditions. Setting prices that differ for certain periods is an approach to

approximating the real-time price. If rates are set much in advance and fixed over pe-
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riods of time, they miss the majority of the potential gain as measured by the variance

index [43]. Both time-of-use (TOU) and critical-peak pricing (CPP) play crucial roles in

providing load flexibility and tariff design in the retail electricity market [44]. Based on

the similar idea of rationalizing energy consumption behavior for the whole system cost,

a prediction-of-use (POU) tariff is proposed and believed to better reflect the predicted

cost for a customer [45]. The possible combination of POU with the more widely-known

TOU tariffs is also considered, which allows customers to fully benefit from meaningfully

managing their consumption, as well as from their contribution to the system’s delivering

energy-efficient solutions.

Using TOU, CPP or other price schemes as baselines, some additional incentive mech-

anisms are also proposed on top of them to reflect the demand response from customers

with energy awareness, which are aware of the electricity price elasticity and reasonable

energy saving. Energy tokens, coupons and eVouchers, similar to their literal meaning in

daily commercial activities, are proposed in [46] [47] [18] to encourage voluntary energy

demand adjustment based on the negotiation principle. These kinds of negotiation-based

demand response programs can be categorized as incentive mechanisms [48] that provide

an additional economic management tool for the power system and market efficiency.

1.2.4 Transactive Energy and Transactive Control

In order to combine power systems tightly with economic or market-based operation,

the term “transactive energy” has begun to be used to refer to techniques for managing

the generation, consumption or flow of electric power within an electric power system

through the use of economic or market-based constructs, while considering grid reliabil-

ity constraints [49]. In fact, transactive energy (TE), one of many promising solutions to

electrical grid restructuring issues, has gradually become a more and more concrete con-

cept among many discussions [50]. Some experts give it the official definition of “a set of
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economic and control mechanisms that allows the dynamic balance of supply and demand

across the entire electrical infrastructure using value as a key operational parameter” [49].

Specifically, transactive energy mainly focuses on the value or economic operation of a

modernized electrical grid, primarily from an economic perspective. It emphasizes the

innovative business models and new consumption patterns in electric markets, along with

taking some social impact into consideration. Some researchers [51] also believe TE is a

potential framework to close the gap between wholesale and retail markets. Most DERs

and demand resources can be aggregated as virtual power plants (VPPs) to provide bulk

power adjustment capacity in different markets.

In practice, analogous to the price reaction approach, a concept named transactive con-

trol [25] allows the operation of flexible devices to be optimized economically by a local

intelligent controller (or agent) under the control of the end-user and follows the principles

of TE. In a way, a society of intelligent devices is formed to allow for market bids to be

sent by a particular group of devices (e.g., hot water buffer, dishwasher, air conditioner,

etc.) [24]. The local-level bidding process, or laminar market architecture, is extremely

suitable for thermostatically-controlled loads [52]. Furthermore, both transactive energy

and transactive control concepts are becoming more and more widely adopted by many

recent pilot projects [24, 50].

1.3 Retail Electricity Market with Prosumers

In this section, the retail electricity market with prosumer participation in the local

power supply will be discussed. Prosumers are defined as agents that both consume and

produce energy [53]. With the growth in the number of small- and medium-sized energy

entities using solar photovoltaic panels, small wind turbines, vehicle-to-grid EV/PEVs,

home storage energy systems, smart meters and other smart devices, prosuming offers the
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potential for consumers and smart device owners to re-evaluate the energy practices in

their daily lives. As the number of prosumers increases, the retail electricity market of

today is likely to undergo significant changes over the coming decades, not only offering

possibilities for localized inter-network energy trading and balance, but also introducing

many challenges and risks that need to be identified and managed. To develop strategies

for the future, policymakers and planners need knowledge of how prosumers can be inte-

grated effectively and efficiently into a competitive retail electricity market. Some promis-

ing potential market mechanisms, such as prosumer grid integration, peer-to-peer models,

indirect customer-to-customer trading and prosumer community groups, along with their

implementation approaches, are identified and discussed below.

1.3.1 Prosumer Grid Integration

Most prosumer integration problems can be incorporated by extending the conventional

optimization model to solve the pure energy consumption and energy management prob-

lems. However, some characteristics of two-way power flow need to be carefully consid-

ered for various types of challenges and optimization constraints, such as inverse current

fault detection, distribution topology estimation, power surplus balance, and so on. When

leveraged by an energy storage system (ESS), including vehicle-to-grid (V2G) technol-

ogy, distribution network operation with a high penetration of prosumers needs to make

sure that prosumers’ benefits are aligned with the regulator/DSO’s concerns, thus satisfy-

ing the requirements of both sides. The authors in [54] propose a market-based control to

solve this issue. The complexity in the environment and in the interactions among play-

ers prompts techniques derived from complex systems theory. The work in [55] analyzes

the optimal planning and operation of aggregated DERs with participation in the electric-

ity market. In most cases, the aggregator of a large amount of DERs can operate as a

virtual power plant (VPP) [56], which is connected as part of the main grid and partici-
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pates directly in the wholesale electricity market. Many similar ideas based on aggregation

frameworks have been frequently employed in solving the prosumer grid integration prob-

lem. However, from an energy utilization and market efficiency point of view, localized

integration at low voltage levels with direct delivery to end-users is still highly encour-

aged. More and more decentralized decision-making frameworks without the necessity of

aggregation are welcome nowadays.

The integration of various DERs and EVs also provides a new chance for building an

innovative business model and a new energy ecosystem. There is a plethora of research

and development areas related to prosumer grid integration that can be exploited for new

business opportunities, thus spawning another branch of the so-called “green economy”

focused on turning smart energy usage into a profitable business [57].

1.3.2 Inter-Network Trading with Peer-To-Peer Models

The encouragement of localized energy trading within a distribution network at low

voltage levels promotes an eBay-like market platform and peer-to-peer models. Addi-

tionally, a high penetration of distributed energy resources raises operational and market

challenges such that existing incentives and tariff support cannot be sustained with pene-

tration growth at the microgrid level. As a result, some competitive market mechanisms

or peer-to-peer models are required at the local distribution level. In [58], a matching

mechanism is proposed to allow individual generators and load units to meet to conduct a

bilateral trade. Each unit interested in maximizing its benefit adopts its own bid strategy.

Trade between a randomly matched generation and load unit is established if their bids are

compatible, which does not require the units to share their private cost or value informa-

tion.

Sometimes, this type of peer-to-peer energy sharing is described as “Energy AirBnB”

for future electricity retail markets. Furthermore, some peer coalition might be allowed in
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the electricity retail market and work as a new business model for a very short term. Some

possible strategic coalitions among independent electricity retailers or prosumers may hap-

pen under the designed distributed framework [59] to maximize profits, which implies that

electricity retailers may solely compete with each other, while some of them may coop-

erate with others to form a coalition in the economic operation of future electricity retail

markets. In [60], a scalable and modular system is proposed and demonstrated for en-

ergy trading between prosumers. Even a novel decentralized digital currency, named after

NRGcoins, is proposed by the same group of researchers to encourage prosumers to lo-

cally trade their excess energy while payments are carried out using NRGcoins [61].

The driving force of such a peer-to-peer mode becoming welcome in the retail elec-

tricity market is mainly due to two facts. The first one is frequently discussed: that the

rapid adoption of DERs enhances people’s willingness to trade in a decentralized way.

The centralized operation will put too much burden on the central controller when all the

individual customers send the trading requests at the same time. The other fact seems not

so explicit: that the rise of Internet-connected devices (e.g., Internet of Things) has led to

a wide energy connection, which is also strengthened by the disappearance of the concep-

tual gap between energy as a physical supply service and energy as an information service.

The behavior of trading energy among peers more or less carries some meaning of social

interactions. It is also another important source for the proposed idea: the energy Internet.

1.3.3 Indirect Customer-To-Customer Trading

Although peer-to-peer models are very attractive for a highly decentralized energy sup-

ply, some customers or prosumers can find it difficult and time-consuming to search for

suitable partners. They may feel more comfortable and find more convenience trading

through an intermediate trader, like an agent or broker in real estate business. This role

of intermediate trader particularly in a local retail electricity market allows them to keep
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additional energy transaction options besides only selling back or buying from utility com-

panies. There are already several pilot projects and demonstration projects underway,

verifying the possibility of monetized local energy exchange. For instance, since 2010,

Pecan Street Inc. (Austin, TX, USA) has been collecting high-resolution data on how and

when homes and small businesses in the United States use and, when PV is present, gen-

erate energy [62]. Then, this temporal and spatial information of energy usage/generation

can be used to test potential energy trading programs along with predicting the market

capacity. On the other hand, in order to reduce the energy transaction cost and search fric-

tion in such an indirect customer-to-customer trading paradigm, a local energy market is

proposed in [63] to accommodate localized energy trading and exchange for communities,

buildings and campuses, which may own surplus local energy produced by on-site DERs.

In this framework, as shown in Figure 1.4, an important new role, named the energy

broker (EB) and working as a middleman or trader in this localized retail electricity mar-

ket, is introduced to get buyers and sellers together, serving as a solution to search friction

[64]. Both the buyers and sellers who would like to participate in this local energy market

will provide bid/offer information of price-quantity pairs (price (PC) and amount (AM) in

Figure 1.4) in each open time interval. The trader itself will also choose to maximize trans-

action efficiency or revenue with consideration for search cost in each open market time

interval accordingly. The index of historical credit for energy transactions, sellers’ com-

mitment probabilities (SCPs), is also proposed for power allocation of different trading

peers. In this way, the proposed market structure can be modeled based on search theory

and an optimal stopping problem (OSP) [63]. Some other similar works about this topic

can also be found in [65].
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Figure 1.4: The localized retail market with energy broker and search theory. SCP, sellers’ commitment
probability.

1.3.4 Prosumer Community Groups

The prosumer community group is another typical prosumer paradigm that aims to pro-

vide common platforms for coordinating neighboring or local prosumers for exchanging

energy and information within the local community or interfacing with outside energy en-

tities as a whole. The authors in [26] argue that energy sharing among neighboring PV

prosumers in the microgrid could be more economical than the independent operation of

prosumers. They propose an energy-sharing model with price-based demand response

(DR) for microgrids of peer-to-peer (P2P) PV prosumers to validate the benefit of form-

ing prosumer communities. In [66], a new vision for local distribution systems is pro-

posed, in which prosumers are encouraged to better balance their electricity usage in a

local community through psychological balancing premiums. Even the social behaviors

and some quantitative psychological characteristics of self-interested prosumers are con-

sidered in modeling the energy exchange and transactions. Price-responsive generation

and demand of an individual prosumer are affected by his/her inherent characteristics and

the individual’s attitudes toward benefit and comfort, which evolve during social interac-

tions. The authors in [67] also introduce a novel concept to manage prosumers in the form

of goal-oriented virtual communities. They meanwhile discussed different aspects of the

formation, growth and overall management of a prosumer-community. The main signif-
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icant implication of this approach is that the prosumer-communities are able to facilitate

the joining together of prosumers with similar interests. In this way, the quantity of en-

ergy to be auctioned to the smart grid can be increased accordingly, and furthermore, the

prosumers’ bargaining power is increased in the energy market. In a smart community,

the benefits of DERs can also be considered in an energy management scheme, where a

large number of residential units can participate and a shared facility controller (SFC) can

be introduced [68]. The SFC is defined as a public controller that exclusively controls

electricity for those publicly sharing used equipment, devices and machines (e.g., water

pumps, lifts, parking lot gates, lights, etc.) by the residents of the community. Therefore,

the SFC needs to afford all its energy cost either buying from the main grid or buying from

the residential units with DERs due to its lack of electricity generation capability.

1.4 Methodology

The methodology used in the study of the retail electricity varies greatly according

to particular application scenarios, including making market rules, predicting customer

behavior, reducing system operation cost, and so on. On the other hand, all the methods

applied in different projects also depend on how to describe the dynamics of the market

mechanism in a quantitative way, namely system modeling. In this section, some common

methodologies are discussed. However, those methodologies are usually not applied very

independently and have the trend of being combined in a hybrid framework to make the

system modeling more accurate and efficient.

1.4.1 Optimization, Distributed Optimization and Blockchain

Optimization methods are still dominant in most decision-making problems pertain-

ing to system and market operation. Stochastic optimization, robust optimization, multi-

objective optimization and mathematical programming have been widely adopted for re-
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search on the wholesale market for market-clearance, and most of this research takes into

consideration various types of uncertainties resulting from variable demand or renewable

energy supply [36] [30] [59]. Retailers in the retail electricity market often refer to these

optimization methods to guarantee their revenue through deterministic analysis. However,

since there are numerous decision variables at the distribution level associated with fre-

quent monitoring activities and a large number of customers, especially given more and

more small-sized local generation units, global optimization has become rarely imple-

mented due to its increasing computational complexity. Consequently, the state-of-the-art

strategy has begun to shift to distributed optimization with necessary decomposition, such

as the alternating direction method of multipliers (ADMM), consensus-based algorithms,

proximal message passing (PMP), and so on [20] [69].

Blockchain technology, borrowed from the IT industry, has also attracted much at-

tention due to the prevailing distributed optimization implementation in practice. It has

been suggested as promising and suitable for such a decentralized decision-making pro-

cess [70]. The authors in [71] present an architecture for peer-to-peer energy markets that

can guarantee that operational constraints are respected and payments are fairly rendered,

without relying on a centralized utility or microgrid aggregator. They demonstrate how

to address trust, security and transparency issues by using blockchains and smart con-

tracts, two emerging technologies that can facilitate decentralized coordination between

non-trusting agents. While blockchains are receiving considerable interest as a platform

for distributed computation and data management, this work may be the first one to exam-

ine their use to facilitate distributed optimization and control of DERs. Some other works

also introduce the utilization of blockchains in local energy transactions between DERs,

including a custom-designed blockchain mechanism designed to maintain a distributed

database trusted by all DERs and to stipulate and store a smart contract that enforces pro-
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portional fairness [72].

1.4.2 Game Theoretic Method and Prospect Theory

In prosumer-centric energy trading, since most interconnected microgrids or DERs op-

erate autonomously and have their own goals of optimizing performance and maximizing

benefits through energy trading, the selfish nature of players participating in local energy

transactions is inclined to be described by game theoretic methods. A Nash bargaining

theory-based incentive mechanism is proposed and designed in [73] to encourage proac-

tive energy trading and fair benefit sharing. It takes autonomous microgrids independent

self-interested entities, without assuming that all the microgrids are coordinated by a com-

mon grid operator or controlled following a hierarchical structure. In [74], game-theoretic

day-ahead energy scheduling in a residential distribution system is proposed, in which the

distributed electricity prosumers may only compete with each other while some of them

may cooperate with others to form a coalition. A similar noncooperative Stackelberg game

between the residential units and the shared facility controller is proposed in [68] in order

to explore how both entities can benefit, in terms of achieved utility and minimizing total

cost, respectively, from trading energy with each other and with the grid.

It is noteworthy that the proposed game in [75] accounts for each prosumer’s subjective

decision when faced with the uncertainty of profits, induced by the random future price. In

particular, the framing effect from the framework of prospect theory is used to account for

each prosumer’s valuation of its gains and losses with respect to an individual utility refer-

ence point. Prospect theory (PT) is mainly an interpretative theory that considers weight-

ing effect to transform the objective probabilities into subjective probabilities, which was

proposed to explain the fact that people usually over-weigh the low probability bad out-

comes and under-weigh their favorite outcomes with high probabilities [75]. PT is helpful

for modifying conventional game-theoretic methods because it relaxes the assumption of
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rationality in most game frameworks by taking into account subjective irrational decision

behavior [15, 76]. It is not at the same level as game theory, but possible to be combined

into building utility functions in game models. Even so, most game-theoretic methods still

possess too much simplification, making it hard to find the equilibrium solution, especially

for large-scale systems with high computational complexity.

1.4.3 Agent-Based Simulation

Agent-based simulation (ABS) has been another popular tool, since at least the early

1990s, to model the dynamics of the electricity market, including both the wholesale mar-

ket and the retail market [77]. ABS is particularly suitable for large-scale systems in-

volving various types of interacting system participants. These participants are usually

assigned distinct roles, functionalities, behaviors and decisions, which depend on different

objective design and interactions with other system participants [78]. In an agent-based

system, an agent can be as simple as a single variable (e.g., energy price-amount pair)

within a computer program or as complex as an intelligent object, such as a human be-

ing (e.g., speculator), involving possibly an infinite number of states, decisions and ac-

tions/reactions. However, most ABS are mainly designed for the electricity wholesale

market, neglecting transmission/distribution grid constraints [79] [80]. The difficulty of

validating an ABS model’s outcomes against empirical data is also one of the weaknesses

of the ABS methodology.

In recent years, many agent-based systems have become popular again for electricity

market simulation, due to the further development of reinforcement learning and the other

computational resources available. The Power Trading Agent Competition (Power TAC)

is an influential event and simulator that allows rich competitive simulation of future re-

tail power markets and helps with understanding the dynamics of customer and retailer

decision-making and the robustness of market designs. Power TAC models a liberalized
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retail electricity market, where competing business entities or brokers offer energy ser-

vices to customers through tariff contracts [81]. On the other hand, some researchers also

mimic the wholesale market mechanism to study the behavior of a day-ahead retail electri-

cal energy market with price-based demand response from air conditioning loads through

a hierarchical multi-agent framework [82]. Meanwhile, ABS is also frequently used as a

validation tool for testing certain market rules for policy makers. For instance, an agent-

based simulation of the liberalization of a retail electricity market has been developed to

introduce competition into a sector historically characterized by the regional monopoly of

retail electricity [83]. It is worth mentioning that most existing ABS usually assign some

learning capability to intelligent agents and often leverage the Q-learning algorithm from

the machine learning field [82].

1.4.4 Machine Learning Techniques

Machine learning has become the status quo for most intelligent systems, including

power systems and the electricity market. Utilizing machine learning techniques to detect

distinct energy consumption patterns of customers and select high-quality customers for

energy programs (e.g., demand response programs) is becoming more and more popular

in addressing competitive utility companies and the future energy business ecosystem [84]

[85] [86] [87].

Together with various types of machine learning techniques, including successful appli-

cation of supervised learning in demand response targeting [85] and unsupervised learning

in individualized pricing design [87], reinforcement learning (RL) is also believed to have

the potential to deal with the energy trading problem and guide energy entities to interact

with the market environment. The most important feature distinguishing RL from other

types of learning is that it uses training information that evaluates the actions taken rather

than instructions by giving correct actions [88]. This is very suitable for economic activ-
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ities (e.g., energy transactions) that are based on the voluntary principle and associated

with privacy issues regarding consumption information. On the other hand, the online na-

ture of RL makes it possible to approximate the best decision-making strategy or optimal

policies in ways that put more effort into learning to make good decisions for frequently-

encountered states (e.g., high energy demand during the daytime), at the expense of less

effort for infrequently-encountered states (e.g., peak load happening at night). The project

in [89] demonstrates a data-driven control approach for demand response in real-life resi-

dential buildings, in which the objective is to optimally schedule the heating cycles of the

domestic hot water (DHW) buffer.

However, most RL applications in power systems depend heavily on Q-learning or

other tableau methods, which are based on look-up tables and afford low computational

efficiency with increasingly big datasets. In recent research advancements, combining

deep learning (DL) and RL to form a deep Q network (DQN) is suggested as a good ap-

proach for value function approximation and improving algorithm performance [90]. It

can also conquer many of the weaknesses (e.g., feedback delay, partially-observable envi-

ronments, numerous enumerations) in the energy system decision-making process for the

retail electricity market.

These methods, including the optimization model, game-theoretic model, agent-based

simulation and machine learning, are usually correlated with each other and often com-

bined together as hybrid frameworks. For instance, the game-theoretic method that finds

the equilibrium point is easily transformed to an optimization problem that solves for

equivalent optimal results [74]. Agent-based simulation is mostly combined with machine

learning techniques to facilitate the interaction dynamics among different agent entities

[82]. The machine learning technology also frequently uses optimization methods to train

its model parameters and hyper-parameters [85]. Last but not least, the summary of each
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individual modeling method is shown in Table 1.1.

Table 1.1: Solution methods for the new paradigm of the retail electricity market.
Solution
methods

Advantage Disadvantage Prosumer
easily
consid-
ered

Computational
complexity

(Distributed)
optimization

Accurate analytical solution re-
sult with clear interpretation;
Easily consider power flow con-
straint and network operation
conditions; Deterministic con-
clusion;

Hard to describe every trad-
ing features in constraints; Cen-
tral or regional controllers are
needed; Usually need high com-
putational resources;

Yes Medium

Game theo-
retic method

Intuitive description about dif-
ferent market participants; Suit-
able for distributed control;
Good economic interpretation;

Convergence is not guaranteed
and hard to find the equilibrium
point; Limited to stylized trad-
ing situations involving few ac-
tors;

No High

Agent-based
modeling

Highly adaptive to market and
trading environment; Hetero-
geneity of different types of
market participants; Easily in-
corporate social abilities to ex-
change information;

Most neglect transmis-
sion/distribution grid con-
straints; Results are mostly
non-deterministic with poor
interpretation; Not reliable due
to external conditions and for
policy makers;

Yes Low

Machine
learning
techniques

Very autonomous decision-
making process; Insensitive to
market structure and large data
sources;

Data-driven and need realistic
experiments; Usually need high
computational resources;

Yes Medium

1.5 Discussion and Policy Issues

Based on the various aforementioned studies of the retail electricity market in recent

years, some trends can be easily observed that: (1) the system or market operation is more

fine-grained from different perspectives, trying to balance credits’ assignment and benefit

sharing among many types of market entities, including suppliers, speculative retailers,

utilities, service providers, customers and other new parties introduced by new business

models; (2) more and more consideration is given for economic operation on top of pure

system requirement satisfaction, and a certain degree of risk is acceptable given the im-

proving uncertainty of the whole system; (3) customers are expected to be more active in

this market-loop instead of passive participants, which are allowed to directly interact with

other market participants and exercise negotiation power.

The study of the electricity market is more or less not a pure technique problem, espe-
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cially considering the fairness rule (e.g., non-discrimination), data privacy and renewable

energy subsidy policy in the retail electricity market close to the customer side. In North

America, the U.S. electricity ownership structure is actually quite complex. The U.S. elec-

tric power industry consists of approximately 3300 publicly-owned, investor-owned and

cooperative utilities; more than 1000 independent power generators; 3 regional synchro-

nized power grids; 8 electric reliability councils; about 150 control-area operators; and

thousands of separate engineering, economic, environmental and land use regulatory au-

thorities [16]. We provide a retrospect of the history of U.S. electricity deregulation in

Table 1.2 based on our previous work in [16] and hope to remind that electricity dereg-

ulation should keep track of the development of emerging technologies, especially con-

sidering the manipulative market power brought by these technologies and new business

models. Further deregulation of the retail electricity market definitely requires cooperation

and technical support from the wholesale market, which is still under intense discussion

across the industry and the academic community [91].

Table 1.2: History of U.S. electricity deregulation.
Year Effect
1935 Congress passes the Public Utility Holding Company Act of 1935 (PUHCA) to require

the breakup and the stringent federal oversight of large utility holding companies.
1978 Congress passed the Public Utility Regulatory Policies Act (PURPA) which initiated

the first step toward deregulation and competition by opening power markets to non-
utility electricity producers.

1992 Congress passed the Energy Policy Act of 1992 (EPACT), which promoted greater
competition in the bulk power market. The Act chipped away at utilities monopolies.

1996 FERC implemented the intent of the Act in 1996 with Orders 888 and 889, with the
stated objective to remove impediments to competition in wholesale trade and to bring
more efficient, lower cost power to the nations electricity customers.

2005 Congress passed the Energy Policy Act of 2005, a major energy law to repeal PUHCA
and decrease limitations on utility companies ability to merge or be owned by financial
holding/non-utility companies.

2007 FERC issued Order 890, reforming the open-access regulations for electricity trans-
mission, in order to strengthen non-discrimination services.

2008 FERC issued Order 719 to improve the competitiveness of the wholesale electricity
markets in various ways, and to enhance the role of RTOs.

2012 FERC issued Order 768 to facilitate price transparency in markets for the sale and
strengthen the Commissions ability monitor its retail markets for anti-competitive and
manipulative behavior.
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Although our discussion is mainly focused on the U.S. electricity market, it is worth

mentioning that many countries in Europe and on other continents also meet similar chal-

lenges with the retail electricity market, such as electricity buy-back volatility, cross-

subsidies, distribution cost allocation, and so on [92]. Take for instance the residential

U.K. electricity market: it was opened for the first time in 1999, introducing the choice

of supplier, and about 40% of households changed supplier in the first four years. Af-

ter three years, price caps were removed. The work in [93] reviews this process and

assesses the competitiveness of the market by examining how the charges levied by sup-

pliers depend on cost and demand factors for three different payment methods and con-

sumption levels, whose experience may be helpful for U.S. retail electricity market devel-

opment. However, the market deregulation process is not always so successful and full of

various kinds of challenges that are far beyond our expectation. Some researchers have

summarized two main negative phenomena that could reduce the impact of introducing

competition in the retail electricity market: cognitive bias affecting consumers’ decisions

to switch and a technological paradigm reducing innovation opportunities in commercial-

ization [94]. These discussions can go on and on due to the many research perspectives

involved in this field. Research on the electricity market is always hungry for more inter-

disciplinary study from other fields, such as economics, computer science and operational

research.

1.6 Conclusions

To help researchers have an overall understanding of the recent research work on the

retail electricity market, different sub-topics with/without prosumers and commonly-used

methodologies are surveyed and discussed in this paper. The state-of-the-art, emerging

new market functionalities (e.g., DSO’s new role, incentive mechanisms, transactive en-
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ergy, prosumer community groups) and recent innovative techniques (e.g., prospect theory,

blockchain, reinforcement learning) have been discussed, covering the entire landscape of

the retail electricity market.

In the survey of more than 90 papers published within the last five years that study the

retail electricity market, the phenomenon can be observed that more and more intelligent

system technology, like machine learning and the Internet of Things, is coming into play

in this field. These new automation methods and autonomous systems or controllers allow

customers to easily coordinate with each other and actively participate in the electricity

market, instead of only passively accepting what they are provided. Another observation

is that innovative business model design remains the key driving force behind the reform

of traditional energy exchange and transactions.

We intentionally skip some common topics, such as load forecasting and demand re-

sponse, covered by many existing survey papers, and mainly focus on the most recent

developments in the area of innovative conceptual frameworks in the study of the retail

electricity market. In the future, more localized energy market models under incubation

will come into practice and revolutionize the whole energy ecosystem.
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CHAPTER II

DSO service

2.1 Introduction

1 Although electricity market deregulation has been under way since the United King-

dom opened a Power Pool in April 1990 [2], competitive forces in the U.S. retail elec-

tricity market have been largely silent since the early-2000s California electricity crisis.

In today’s retail electricity market, customers have very limited ”energy choice” or par-

ticipation, i.e., ability to choose their supplier from competing electricity retailers. The

key to open innovation in the retail electricity market is the development of a consumer-

centric market and well designed demand side management (DSM) programs [13][14].

The work in [15] looks even further forward to more subtle modeling of customer behav-

ior with consideration for emotional or irrational features and their willingness to partici-

pate. It is believed that the next-generation retail electricity market infrastructure will be

a level playing field, where all customers have an equal opportunity to actively participate

[16][17]. Fortunately, the recent development of functionalities of the distribution system

operator (DSO) and the electricity distribution company (EDC) has already opened new

possibilities of coordinating, monitoring, and controlling short-term or real-time delivery

of electricity at the distribution level.
1This chapter was previously published as an article in a peer-reviewed journal: [95] T. Chen, H. Pourbabak, Z. Liang, and W. Su,

”An Integrated eVoucher Mechanism for Flexible Loads in Real-Time Retail Electricity Market”, IEEE Access, vol. 5, pp. 2101-2110,
2017.
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Moreover, in the smart grid, more and more customers will be able to have local gener-

ation capability, i.e., distributed generation (DG), along with various flexible controllable

loads, such as thermostatically controlled load (TCL), distributed energy storage device

(DESD) and washing machine [19][20]. Plug-in electric vehicles (PEVs) are also appeal-

ing as the most controllable loads because they can be curtailed for significant periods of

time (e.g., several hours) without impact on end-use function [21][22]. Sooner or later,

PEVs will shift the traditional energy demand from crude fossil energy to electricity for

the personal transportation sector and also heavily impact power system operation [96].

In the future, through aggregators or parking lots, PEVs will play a much more proactive

role in the retail electricity market as very flexible loads with the capability to provide

ancillary services, such as power system frequency support [97], and participate in many

DSM programs [98][99].

In this paper,In this paper, we aim to study how incentive-based demand response pro-

gram can benefit both utility company and energy end-users. We proposed an integrated

eVoucher mechanism for customer participation in the real-time retail electricity market

based on a new designed voluntary demand response program. This integrated eVoucher

mechanism also has the potential to support reducing the frequency-deviation in power

system, with the idea that demand response can be utilized as a load control tool to re-

alize reliability goals [100]. Conventional demand response programs are easily imple-

mented and straightforward for customers understanding, however typically assume a pre-

defined price scheme or mandatory instruction acceptance after a customer has signed a

contract. In addition, most DSM programs are not implemented in a real-time manner,

which depends heavily on day-ahead forecasting. However, both the real-time price in

the wholesale electricity market and the loads at the distribution level are volatile and un-

predictable in a long time interval [101]. Retail customers are also usually insensitive to
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pre-defined multi-phase price schemes (e.g. time-of-use (TOU) price) or distribution loca-

tional marginal price (DLMP), and not used to making day-ahead decisions [102]. In this

way, the electricity retailer (e.g. EDC) may be exposed to the risks involved in the differ-

ence between the real-time wholesale electricity market and the retail electricity market.

Some economic mechanisms are needed to deal with such risks and improve market di-

versity. In [102] and [103], the authors propose a coupon-incentive-demand-response pro-

gram to solve the problem of the high risk of the wholesale electricity market. However,

they did not consider the demand adjustment in an increasing way and required a large

amount of aggregated load demand to bid directly in the wholesale market, which may

make small customer participation hard. Some works [104] also estimate the impact of

different distribution tariff structures on residential customers, which even include a power

related component to reduce the peak load. Other works use dynamic subsidy [92], cus-

tomer reward [105] and monetary incentives [106] to better schedule the demand response

or load management on top of the usual electricity price schemes. The authors in [107]

design a non-discriminatory individualized demand aware price scheme to optimize the

economic benefit for every customer, and claim to reduce the ”rebound peak”. In contrast,

our proposed eVoucher consists of several different components that target both engineer-

ing and economic advantages. More importantly, the implementation of the eVoucher is

based on a voluntary principle and can also avoid the effect of rebound peak through man-

aging the individualized incentives. Additionally, it can include the frequency-deviation

triggered component in eVoucher price signal to benefit the power system operation. Some

authors, such as in [108][109] have tried some demand side management frameworks to

promote the efficient frequency control and make demand response from customers con-

tribute more to the system stability. Similar to [110], the embedded frequency-deviation

triggered component in the eVoucher program is reflected through a dynamic pricing pro-
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cess and, as an engineering signal, coupled with economic incentive. We study this prob-

lem mainly because the conventional demand response programs have aforementioned

disadvantages compared with the new incentive-based demand response program, and the

concept of energy coupon should be fully explored.

In this paper, our contribution is to: (1) explore the potential coordination among DSO,

EDC and other participants in the retail electricity market; (2) propose an eVoucher mech-

anism to provide opportunities for all customers at distribution levels to actively participate

and improve economic efficiency; (3) verify various applications of the proposed eVoucher

program in different scenarios from both engineering and economic perspectives; (4) dis-

cuss the extension of the high-level framework for more business models in an efficient

and fair retail market.

The remainder of this paper is organized as follows: Section II introduces the basic

features of the eVoucher program and its components. Section III gives the mathematical

description of the eVoucher mechanism for several parking lots with a high penetration

of electric vehicles. Section IV presents several case studies for different applications.

Section V summarizes the major findings of this paper.

2.2 eVoucher program

In the electricity retail market, energy users usually passively accept offers from energy

providers without much economic consideration or negotiation. We hope to design a kind

of energy token similar to a Voucher or Coupon used in daily commercial activities, which

aims to guide the consumption behavior by economic incentives. The energy token, named

after eVoucher, can encourage energy customers at the distribution level to actively par-

ticipate in the energy transaction and load management based on discount or reward. The

eVoucher based customer participation program for parking lot owners is different from
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Table 2.1: The Innovation and Uniqueness of the eVoucher Program
	

Price-based	DR	 Incentive-based	DR	 The	Proposed	eVoucher	
Program	

Examples	

Time-of-Use	(TOU)	
Real-time	Pricing	
(RTP)	Critical	Peak	
Pricing	(CPP)	

Emergency	Demand	
Response	Program	
(EDRP)	Direct	Load	
Control	(DLC)	

New	Concept	Energy	Users	
and	Coalitions	(consumers	
and	prosumers),	EDC,	and	
DSO	

Participants	
Consumers;	EDC	 Consumers;	EDC	 Active	energy	users	and	

energy	community,	EDC,	
and	DSO	

Flexibility	

	

Mandatory	 Mandatory	after	signing	
contract	

Voluntary	at	any	time	and	
any	location	

Control	
Strategy	

	

EDC	reshapes	load	
using	pre-defined	price	
over	a	long	time	scale	
(hours)	

EDC	applies	the	direct	
load	control	at	peak	
periods	(minutes)	

Self-guided	control	of	DG,	
DESD,	dispatchable	loads	
through	near-real-time	
eVoucher	negotiation	
(seconds-minutes)	

Dynamics	

	

Pre-defined	electricity	
price	

	

Pre-defined	rate	and	
one-time	incentive	

	

Reflect	the	temporal	and	
spatial	values	of	electricity	
in	a	competitive	market	

	

conventional demand response (DR) programs that are either incentive or price based. It

can reflect more dynamic features from both market and system operation perspectives.

A comparison between the eVoucher and other kind of demand response programs is pre-

sented in Table 2.1. The features of the eVoucher are shown in Figure 2.1 and summarized

as follows:

DSO

Fast Negotiation

EDCs

Energy User 
#1

Accept an eVoucher

Reject an eVoucher

<Voluntary>

<Frequency-deviation 
Triggered Component>

Energy User 
#2

Energy User 
#3

Energy User 

#n
<Hybrid Scheme>

GENCOs
No eVoucher is 
offered here.

<Dual Status>
eVoucher

±ΔD(t)

F_trigger = {0,1}

DLMP, TOU, eVoucher

Figure 2.1: The eVoucher program features

Voluntary: Customers can freely decide whether and when to accept the eVoucher.
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There are no specific contracts for customers to obey the instructions or accept the pre-

defined price scheme mandatorily. The customers can even take into account their own

attitude toward the extra financial benefit. Customers may reject the eVoucher without any

penalty. For example, a savings of $10 per month may not seem like a significant gain for a

relatively wealthy customer; however, a poor customer might view this amount as a highly

significant reduction. Clearly, the objective measure of $10 can be viewed differently by

different customers. Additionally, DSO facilitates a fast negotiation between customers

and EDC, which is simply not possible in the existing DR programs.

Frequency-deviation event triggered: The integrated eVoucher program does not ad-

vocate real-time frequency-based price that may expose customers to the risk of price

volatility. Instead, it will use the grid frequency deviation as an event-trigged (e.g., a

preset deadband frequency threshold) and location-based signal. Customers can read this

signal locally and respond to the needs of EDC directly (e.g., providing frequency regula-

tion as an ancillary service). With minimal communication between customers and DSO,

the frequency- deviation-based signal is able to incentivize customers to limit frequency

deviation at local levels, ultimately creating a more stable and reliable grid as a whole

while allowing increased customer participation.

Dual status: While traditional DR compensates end-users for reducing their electricity

use (load) or shifting the peak periods, the proposed eVoucher program provides customers

with temporal-spatial-dependent incentives for changing power in the positive or negative

direction. In other words, some customers may increase their demand if needed.

Hybrid scheme: It is also worth noting that either the flat rate or the day-ahead price

(e.g. TOU) can still serve as a baseline price and reflect the regular retail price. In this way,

the eVoucher program can provide real-time-like flexibility with a hybrid electricity price

scheme, and meanwhile keep the price clearing process easy and the system operation
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efficient.

In our assumption, the economic token named after the eVoucher, as a signal, can be

broadcast with the help of DSO to energy users. However, the benefit is mainly shared

by the EDC and energy users (e.g. parking lots), since the DSO is non-profit seeking.

Sometimes, an EDC may also sacrifice some economic benefit by adjusting the eVoucher

price to achieve the goal of maintaining system reliability.

2.3 Problem formulation

The economic benefits achieved through the eVoucher program are considered as fol-

lows for both EDC and parking lots. In the whole system, DSO is assumed to be similar

to an independent system operator (ISO) at the transmission level with non-profit char-

acteristics, playing a role as a third party to coordinate the system integration. Thus, we

will model the two profit-seeking entities involved in the negotiation process of energy

consumption. The variables used are defined in the following table 2.2. Figure 5.2 shows

how parking lots participate in the real-time retail electricity market with EVs as flexi-

ble loads. It is noteworthy that the eVoucher mechanism can generally be utilized for the

management of various types of flexible loads. Here, EV is used as a typical example to

demonstrate some basic dynamic features of the integrated eVoucher program.

2.3.1 EDC

The EDC participates in bidding and the day-ahead energy commitment in the whole-

sale market and purchases a few part in the real-time wholesale balance market, possibly

with some forecasting capability. It then resells energy to customers or end-users in the re-

tail electricity market. Due to the highly stochastic and dynamic real-time pricing scheme

for power balance in the wholesale electricity market, the EDC has to face some unpre-

dictable risks when a real-time price spike appears. On the other hand, it also has some

31



Table 2.2: Parameters of different parking lots
DRT Real time power demand of EDC

DDA Day-ahead power commitment of EDC

Di,0 Original power demand for ith parking lot

∆Di Demand adjustment from ith parking lot

Rev Revenue for EDC

Revi Revenue from ith parking lot

πRT P Real-time energy price

πDA Day-ahead energy price

πTOU,i Time-of-use energy price for ith parking lot

πPEN Penalty for day-ahead energy commitment

πV,i eVoucher price assigned for ith parking lot

πr,i Rebate rate in ith parking lot

SoCi, j State-of-charge of jth EV in ith parking lot

Rpa,i Parking revenue for ith parking lot

Rch,i Charging revenue for ith parking lot

rpa,i Parking rate in ith parking lot

rch,i Charging rate in ith parking lot

Cop,i Operation cost for ith parking lot

T pa
i, j Parking time for jth EV in ith parking lot

T out
i, j Departure time for jth EV in ith parking lot

T in
i, j Arrival time for jth EV in ith parking lot

Pi, j(t) Charging power for jth EV in ith parking lot at time t

Pmax Maximum charging power

µi, j(t) Binary variable to control charging status

Bi, j Battery capacity for jth EV in ith parking lot

T The number of time intervals

responsibility to maintain the system reliability of the distribution network, especially the

nominal frequency in the power system. In this way, the EDC has strong motivation to

accepted some well-designed incentive mechanism to deal with these situations. Parking

lots with a high penetration of EVs, as a typical kind of flexible loads, happen to be able

to provide the control flexibility necessary for an EDC to consider utilizing such demand

response capacity with our proposed eVoucher program. According to different day-ahead

power commitment and real-time price scenarios, the EDC can decide the eVoucher price

as an incentive to induce the voluntary demand adjustment in the retail electricity market.
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EDC

Parking 
Lot N

…

EV1 EV2 EVM
…

RTP to TOU
(Voucher)

TOU to FR
(Rebate)

πV,i πTOU,i

πr

ΔDi

SoC

ISO

πRTP , πDA DDA , DRT

Parking 
Lot 2

Parking 
Lot 1

Nonflexible
Loads

πTOU,1

DSO

πTOU,2

Figure 2.2: Retail electricity market structure for EV parking lots

DRT > DDA

In scenario DRT > DDA, the EDC can increase its profit or reduce its economic loss by

assigning eVoucher price πV,i ∈ {0,πRT P−πTOU,i}, as economic incentive to encourage

parking lots to adjust their energy demand Di,0± ∆Di, according to different real-time

prices in (2.2).

Rev =
N

∑
i=1

Revi−
N

∑
i=1

∆DiπV,i(2.1)

(2.2) Revi =



(
Di,0−∆Di

)(
πTOU,i−πRT P

)
πRT P > πTOU,i(

Di,0 +∆Di

)(
πTOU,i−πRT P

)
πRT P < πTOU,i

(2.3) 0 < πV,i < πRT P−πTOU,i
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DRT < DDA

In scenario DRT < DDA, the real-time demand is less than the day-ahead energy com-

mitment, therefore EDC should consider economic effect of penalty (πPEN) in wholesale

electricity market when making decisions about negotiated eVoucher price. It can only in-

crease its profit by assigning eVoucher price πV,i ∈ {0,πTOU,i−πDA+πPEN}, as economic

incentive to encourage parking lots to adjust their energy demand, Di,0 +∆Di, as in (2.5).

Rev =
N

∑
i=1

Revi−
N

∑
i=1

∆DiπV,i(2.4)

(2.5) Revi = (Di,0 +∆Di)
(

πTOU,i−πRT P

)

(2.6) 0 < πV,i < πTOU,i−πDA +πPEN

The eVoucher price should be within a certain range according to cost-revenue consid-

eration to satisfy the requirement of maximizing the EDC’s economic benefit. However,

the specific value of the eVoucher accepted by both sides (i.e., EDC and parking lots)

can be determined and negotiated based on different conditions. These conditions will be

discussed later in this section.

2.3.2 Parking lot

Similar to electric vehicle charging operators [111], every parking lot aims to maximize

its own revenue through controlling the EV charging load and responding to the eVoucher

price signal from the EDC. A parking lot also provides a rebate πr,i, similar to [112], to dis-

count EV parking time while an EV is under charging service. The following optimization

model (2.7)-(2.14) is solved in every negotiation process for the rest of the time intervals

to satisfy EV charging requirements.
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(2.7) max Rpa,i +Rch,i +πV,i∆Di−Cop,i

s.t.

(2.8) Rpa,i = rpa,i

M

∑
j=1

T pa
i, j

(2.9)
M

∑
j=1

T pa
i, j =

M

∑
j=1

(
T out

i, j −T in
i, j

)
−πr,i∆t

M

∑
j=1

t0+T

∑
t=t0

µi, j(t)

(2.10) Rch,i =
M

∑
j=1

t0+T

∑
t=t0

[
rch,i−πTOU(t)

]
Pi, j(t)

(2.11) SoCi, j

(
T in

i, j

)
+

t0+T

∑
t=t0

Pi, j(t)∆t
Bi, j

= 1

(2.12) 0≤ Pi, j(t)≤ Pmaxµi, j(t)

(2.13) Pi, j(t) = 0, ∀t /∈
[
T in

i, j ,T
out

i, j

]

(2.14)
M

∑
j=1

Pi, j(t)≤ Di,0−∆Di(t0), ∀t ∈
[
t0, t0 +T

]
The eVoucher price signal πV,i in (2.7) will seduce and compensate the adjusted demand

∆Di in the current time interval. Meanwhile, a parking lot that accepts such eVoucher

compensation must guarantee all the state-of-charge (SoC) statuses (i.e. the percentage of

charged battery capacity) are satisfied before the EVs’ departure.
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� Keep the system in a stable condition.

� Operate the system so that it remains in a reli-
able condition even if a contingency occurs,
such as the loss of a key generator or transmis-
sion facility (the “N-1 criterion”).

� Plan, design, and maintain the system to oper-
ate reliably.

� Prepare for emergencies.

These seven concepts are explained in more detail
below.

1. Balance power generation and demand contin-
uously. To enable customers to use as much
electricity as they wish at any moment, produc-
tion by the generators must be scheduled or
“dispatched” to meet constantly changing
demands, typically on an hourly basis, and then
fine-tuned throughout the hour, sometimes
through the use of automatic generation con-
trols to continuously match generation to actual
demand. Demand is somewhat predictable,
appearing as a daily demand curve—in the
summer, highest during the afternoon and eve-
ning and lowest in the middle of the night, and
higher on weekdays when most businesses are
open (Figure 2.3).

Failure to match generation to demand causes
the frequency of an AC power system (nomi-
nally 60 cycles per second or 60 Hertz) to
increase (when generation exceeds demand) or
decrease (when generation is less than demand)
(Figure 2.4). Random, small variations in fre-
quency are normal, as loads come on and off
and generators modify their output to follow the
demand changes. However, large deviations in
frequency can cause the rotational speed of gen-
erators to fluctuate, leading to vibrations that
can damage generator turbine blades and other
equipment. Extreme low frequencies can trigger

automatic under-frequency “load shedding,”
which takes blocks of customers off-line in
order to prevent a total collapse of the electric
system. As will be seen later in this report, such
an imbalance of generation and demand can
also occur when the system responds to major
disturbances by breaking into separate
“islands”; any such island may have an excess
or a shortage of generation, compared to
demand within the island.

2. Balance reactive power supply and demand to
maintain scheduled voltages. Reactive power
sources, such as capacitor banks and genera-
tors, must be adjusted during the day to main-
tain voltages within a secure range pertaining to
all system electrical equipment (stations, trans-
mission lines, and customer equipment). Most
generators have automatic voltage regulators
that cause the reactive power output of genera-
tors to increase or decrease to control voltages to
scheduled levels. Low voltage can cause electric
system instability or collapse and, at distribu-
tion voltages, can cause damage to motors and
the failure of electronic equipment. High volt-
ages can exceed the insulation capabilities of
equipment and cause dangerous electric arcs
(“flashovers”).

3. Monitor flows over transmission lines and
other facilities to ensure that thermal (heating)
limits are not exceeded. The dynamic interac-
tions between generators and loads, combined
with the fact that electricity flows freely across
all interconnected circuits, mean that power
flow is ever-changing on transmission and dis-
tribution lines. All lines, transformers, and
other equipment carrying electricity are heated
by the flow of electricity through them. The

� U.S.-Canada Power System Outage Task Force � August 14th Blackout: Causes and Recommendations � 7

Figure 2.3. PJM Load Curve, August 18-24, 2003

Figure 2.4. Normal and Abnormal Frequency
Ranges

Figure 2.3: Normal and abnormal frequency ranges

2.3.3 Frequency-deviation-based price component

In the supply-side paradigm, many generators nowadays are equipped with frequency

responsive governors that produce an output change proportional to the frequency devia-

tion. If system frequency deviates sufficiently far from its setpoint (e.g., 35 mHz in Figure

2.3 [113]), governor response is activated to prevent further growth of the deviation.

There are also some early stage efforts to support maintaining frequency with a frequency-

responsive load by providing the equivalent of generator droop [114] [115] in the demand

side. Furthermore, one of the most recent interesting works in [110] designs a pricing

mechanism for power system frequency and utilizes economic incentive to encourage de-

mand adjustment for frequency-deviation or potential contingency. In [110], the assumed

electricity price changes continuously with the frequency and requires frequent responsive

load control. However, here we just consider the very high frequency-deviation as a trig-

gered event to modify the corresponding eVoucher price and focus on demand adjustment

as potential protective actions. In addition, the triggering cannot be too sensitive and must

follow the detection band when the frequency goes above or below some threshold value

36



[116]. In other words, we do not only consider the frequency deviation f , but also the

evolution over time of f . The f -τ characteristics of frequency-deviation triggering are

presented in Figure 2.4. A detection method similar to the one in [108] is used.

Control region I

Control region I

Control region II

Control region II

Control region III

Control region III

f

Ƭ

Figure 2.4: f -τ characteristics of frequency-deviation triggering

The different control regions in Figure 2.4 represent different triggering sensitivities

according to the eVoucher implementation in different scenarios. Once the frequency de-

viation goes out of range n f times , where n f is larger than threshold value Nth, a binary

variable ξ ∈ {0,1} is set to assign ξ ×
√n f

β
additional value to the eVoucher price. Fi-

nally, the frequency deviation will be reflected as economic incentive to facilitate load

adjustment.

2.3.4 eVoucher price

The status and price decision process of the eVoucher program can be summarized

generally as in Figure 2.5 and described in detail as follows:

Step 1: EDC forecasts a potential price spike πRT (t) in the wholesale market and

receives a frequency-deviation triggered signal through an informational message sent by
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price (m = 1) for every parking lot
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spike is expected
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all the corresponding parking lots
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requirement with demand adjustment
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convergence

End

m = m + 1

Increase the eVoucher
price by a step size

N
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coupon price and EV charging status

Every parking lot calculate and response its 
own demand adjustment to EDC
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N

Figure 2.5: Decision process of eVoucher price

the network operation monitoring system.

Step 2: Both the price gap πRT (t)−πTOU(t) and the severity of the frequency-deviation

are estimated, and one of two modes (i.e., demand increase or decrease) of the eVoucher

will be determined to be implemented in the next step. In some rare extreme situation, the

consideration for system reliability may dominate the economic benefits.

Step 3: Based on the chosen mode and locational information (e.g., number of EVs)

of every parking lot, the EDC will set the eVoucher status, f lag = 1 when ∆D(t) > 0 or

f lag = −1 when ∆D(t) < 0, as well as the initial individual eVoucher price, πm
V,i(t) with

m = 1.

Step 4: The required demand adjustment direction, f lag ∈ {−1,1}, and individualized
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eVoucher price information for the current time interval will be broadcast to each parking

lot with the help of DSO.

Step 5: After receiving the eVoucher information from the DSO, every parking lot

will determine whether to participate or not according to the EV charging status (e.g.,

SoC). Each of them estimates their accepted demand adjustment, ∆Dm
i (t), and solves an

optimization problem (2.7)-(2.14). Then, the available decreased or increased demand will

be reported back to the EDC.

Step 6: The EDC decides whether or not to increase the eVoucher price for each park-

ing lot in the next negotiation iteration, according to its satisfaction and the total demand

response from all the parking lots. If the EDC still would like to encourage more de-

mand adjustment and the parking lots still have motivation to increase their revenue, the

eVoucher price will be increased by a fixed step size, π
m+1
V,i (t) = πm

V,i(t) + km× πm
V,i(t).

Then, Step 3 is repeated with m = m+1, and the negotiation process continues.

Step 7: The DSO checks the convergence based on a limited number of negotiation

rounds and revenue increase (loss reduction), making sure the EDC and parking lots are

no longer negotiating after the convergence. The EDC finishes the implementation of

the eVoucher program in the current time interval and prepares for the next time interval,

t = t +1.

2.3.5 Implementation issues

In order to implement the eVoucher program, it was assumed that every targeted park-

ing lot is able to be controlled automatically using an energy management system (EMS),

which is similar to the home energy management system used by most residential cus-

tomers [117]. As long as the economic preference setting (e.g., willingness or sensitivity

level) is determined beforehand while participating in the eVoucher program, the EMS

will take over the specific response process without referring to the decision maker every
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time. In short, the proposed mechanism is likely to be more effective in cases where there

is an intelligent energy management system available, which can automatically respond to

external signals and make decisions, rather than depending on an indirect or manual user

response to the price signal [107]. The communication hardware cost of implementing

such a program is expected to be low and without too much hardware modification, since

the maximum number of iterations and the number of variables in the negotiation process

are limited to only a few in a single time interval. Since it is a voluntary demand response

program, some target customers could be selected according to their daily consumption

flexibility reflected in their historical records. Meanwhile, some energy aggregators, like

parking lot operators, will be motivated to participate if the increased economic profit are

considerable. For residential customers, some potential lottery-based incentives can also

be designed to encourage the small energy users to participate in the promoted demand

response program with low-probability but high-gain bonus. With increasing awareness

of energy saving and possible contribution to non-dispatchable renewable energy, it is be-

lieved that more and more customers would like to actively participate in the carefully

designed demand response programs.

2.4 Numerical case studies

The demonstrated system contains four parking lots at different locations with different

EV population sizes and various parameters. They charge different service fees and have

different electricity pricing schemes, according to the locational traffic flow information

and regional distribution network conditions. The owners of these parking lots try to

increase their own profit by responding to the eVoucher price signal. We use 15 min as

the time interval. The parameters of the parking lots are given in Table 2.3. Their location

related TOU pricing schemes serve as a baseline price as shown in Figure 3.5. In the
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following test cases, we will show that the eVoucher price can be combined with TOU to

create a dynamic hybrid pricing scheme to benefit all the participants in the retail electricity

market.
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Figure 2.6: Time-of-use price scheme for different parking lots

Table 2.3: Parameters of different parking lots
#Parking lot No.1 No.2 No.3 No.4

Number of EVs 50 70 80 100

Charging fee 1.80 $/h 1.60 $/h 2.00 $/h 1.70 $/h

Parking fee 1.20 $/h 1.50 $/h 1.80 $/h 1.60 $/h

Parking rebate 0.40 0.35 0.45 0.40

2.4.1 eVoucher program

With the integrated eVoucher program, all four of these parking lots decrease or in-

crease their demand when the EDC experiences a real-time price spike in the wholesale

market, there is a huge gap between the real-time load and the day-ahead committed power

consumption, or some serious frequency-deviation events are detected. Meanwhile, the

charging requirements of any parking EV should always be satisfied, as shown in 2.7, no
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matter how parking lots negotiate with EDC. The real-time price and mismatched day-

ahead committed power are shown in Figure 2.8. Figure 2.9 shows the aggregated demand

adjustment of all the four parking lots at different time intervals.
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Figure 2.7: SoC status of all the EVs in different parking lots

It is interesting to observe the real-time price and corresponding aggregated demand

adjustment during time intervals 60-70. An extremely high real-time price appears in this

range, and, due to a response induced by the negotiated eVoucher, the aggregated demand

is able to decrease significantly (the positive direction is defined as reduction in Figure

2.9) due to the flexible charging loads of EVs. However, during time intervals 80-90,

when another price spike appears, the eVoucher negotiation process will terminate quickly

since few EVs are parking there to provide demand response capability.
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Figure 2.9: Aggregated demand adjustment from all the parking lots

2.4.2 Frequency-deviation triggered component in eVoucher

The integrated eVoucher program considers frequency deviation in its operation, which

makes customers unconsciously contribute to improving the system reliability based on

economic incentives. However, due to the uncertainty of demand response rate, automatic

generation control (AGC) still works as a dominant tool for frequency regulation by fre-

quent adjustments to the output of generators and change in the load [118]. The eVoucher

43



program brings extra adjustment flexibility on top of AGC. Based on the method discussed

in section 3.3, we use Figure 2.10 as a detection window for frequency deviation trigger-

ing. The fact that it is the frequency deviation evolution rather than individual anomaly that

can affect the final eVoucher price, should be emphasized. We chose N f = 50, β = 100,

and used modified FNET frequency data [119], obtained through CURENT, the University

of Tennessee, Knoxville, and Oak Ridge National Laboratory, to show the application of

the eVhoucher program.
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Figure 2.10: Detection window for frequency deviation triggering

In Figure 2.11, some under-frequency can be observed during roughly the time in-

tervals 4.9× 105 ∼ 6.1× 105 in 0.1s. If we use 1s moving average data to detect the

frequency deviation and trigger the corresponding eVoucher price component, some very

high eVoucher price signal after the final negotiation can be observed from 50 to 70 time

intervals in 15min for parking lot No.1 (Figure 2.12) and all the other parking lots. In

other words, there will be more economic incentive caused by frequency-deviation to en-

courage demand response from rational customers to help system operation. However, as

44



Time intervals #105

0 1 2 3 4 5 6 7 8 9

F
re

qu
en

cy
(H

z)

59.2

59.4

59.6

59.8

60

60.2

60.4

60.6

60.8
Original frequency data in 0.1s
Moving average data in 1s
Moving average data in 1min

Figure 2.11: One day modified FNET frequency data
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Figure 2.12: Final negotiated eVoucher price for parking lot No.1

shown in Figure 2.9, the eventual load adjustment is usually not just in proportion to the

eVoucher price, since both the economic incentive (e.g., TOU, eVoucher price) and the

physical constraint (e.g., SoC, congestion) should be considered.

45



2.4.3 Economic analysis

The integrated eVoucher program will entail reducing loss or improving the part of the

revenue associated with available flexible loads for the EDC when it meets some real-time

price spikes like in Figure 2.8. It should be pointed out that actually both very high real-

time price spikes and frequency deviation can be considered some type of extreme events,

which implies the eVoucher program can also be used for many other extreme events,

such as natural disasters. As long as the cost of the extreme events can be quantified and

amortized with economic analysis, the eVoucher mechanism will be utilized to benefit

both market and system participants.

Table 2.4: Economic benefit of EDC and parking lots
Participants Without eVoucher With eVoucher

EDC $1087.6 $3174.8

PL No.1 $1988.5 $2067.7

PL No.2 $3107.4 $3189.2

PL No.3 $4055.3 $4099.6

PL No.4 $6154.8 $6206.3

In Table 2.4, it is observed that all the participants in the retail market benefit themselves

by improving the revenues. One important phenomenon is that the EDC improves its

revenue dramatically compared with that of the parking lots because only the EDC is

exposed to volatile real-time price as its main risk source. In contrast, the buying price in

the retail electricity market is more stable and just a small part of the whole operation cost

for parking lots.

2.5 Conclusion

This paper proposes an integrated eVoucher mechanism to encourage typical flexible

loads, such as parking lots with a high penetration of electric vehicles, to participate in

real-time retail electricity market. This eVoucher program can work for various scenarios
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involving economic or physical extreme events (e.g. frequency-deviation). The ultimate

goal is to explore the possibility of introducing a more flexible hybrid price scheme and

operation reliability into the redefined distribution network, meanwhile evaluating the po-

tential of innovative business models in the power industry. In future work, we may com-

bine the eVoucher program with some behavioral economic models, like prospect theory,

to analyze more characteristics of human-in-the-loop energy systems.
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CHAPTER III

Utility service

3.1 Introduction

1 Smart grids have been revolutionizing electrical generation and consumption through

a two-way flow of power and information. As an important information source from the

demand side, advanced metering infrastructure (AMI) has gained increasing popularity

worldwide. For example, in Nordic countries, the Finnish government passed a new act,

which states that at least 80% of the customers of each distribution system operator (DSO)

must have a smart meter by December 2013, and nowadays in 2017 almost every customer

(98%) in Finland is supplied with a smart meter [121]. The abundant data set of electric-

ity consumption of residential customers enables accurate load profiling and data analytic

application [85][86]. Usually, the load profiles refer to electricity consumption behaviors

of customers over a specific period, e.g., one day, and can help utility companies under-

stand how electricity is actually used for different customers and obtain the load patterns

to provide better customized service.

Traditionally, the information or data set about an individual energy customer’s load

profile has been unavailable or incomplete. Consequently, research on retail electricity

price design usually assumes that all energy customers have very similar electricity usage
1This chapter was previously published as an article in a peer-reviewed journal: [120] T. Chen, K. Qian, A. Mutanen, B. Schuller,

P. Jarventausta, and W. Su, ”Classification of Electricity Customer Groups Towards Individualized Price Scheme Design”, 2017 North
American Power Symposium (NAPS), Morgantown, WV, USA, September 17-19, 2017.

48



patterns [84]. Thus, the implemented retail price schemes are designed independent of en-

ergy customers’ load profiles, even for some demand response (DR) projects. Nowadays,

however, with the comprehensive data sets of individual load profiles having been made

available, many researchers have found remarkable heterogeneity in energy customers’

load profiles [122][123].

In this paper, we aim to study how energy customers are divided into different cus-

tomer groups and provided different price schemes. Instead of focusing on the clustering

of different load curves, we mainly focus on the design of individualized electricity price

schemes, such as time-of-use (TOU) [44], for different types of residential electric cus-

tomers based on their clustering results. Most similar works only consider extracting typ-

ical load profiles from clustering results, and do not study the further utilization of these

obtained load profiles for end-users, such as customized pricing or individualized demand

response program design. However, the clustering of load profiles still plays a vital role

in the reasonable price design. So far, a large number of clustering techniques, includ-

ing K-means [124], hierarchical clustering [125], self-organizing maps (SOM) [126] and

support vector machines (SVM) [127], have already been widely applied in power sys-

tems. Most of these do not provide a concrete description of how to utilize the clustering

results towards improving electricity services though. Here, we use the simple K-means

method combined with a dimensionality reduction technique, principal component anal-

ysis (PCA), and a fast efficient supervised learning method, extreme learning machine

(ELM) [128][129], to make the classification of load profiles more reasonable. Then, the

achieved typical daily load profiles in every group can serve better for the design of an indi-

vidualized electricity price scheme, with the help of the symbolic aggregate approximation

(SAX) method. At the high level of a distribution network, the proposed method aims to

provide a potential tool for price-based coordinated control and future DR programs in a
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Smart Grid.

3.2 Framework and methods

The proposed price scheme design mechanism can be separated into two parts: achiev-

ing the typical daily load profiles of every assigned group after classification, and matching

a suitable price structure to every typical daily load profile.

3.2.1 Classification

Data normalization

Data preparation including data cleaning is not the subject of this paper, and will not be

discussed. In order to focus on the relative consumption level of specific energy customers

and make the load profiles comparable, the normalization process transforms the AMI

data, yi j, as shown in (3.1).

(3.1) yi j =
yold

i j − yi,min

yi,max− yi,min
,

where, yold
i j denotes the actual electricity consumption for customer i at time j, and yi,max

and yi,min denote the minimum and maximum consumption over T periods, respectively.

Principal component analysis

PCA is one of the most widely used dimension reduction techniques available. It aims

to find a small set of orthogonal variables with manageable reduced dimensionality. These

principal components are actually linear combinations of original variables, which repre-

sent the variance of the original data set in a low dimensional subspace [130]. The purpose

of utilizing PCA is to speed up the convergence of the following clustering algorithm and

make the result more robust [131]. More specifically, lower dimensional data will ratio-

nalize the clustering of time series based on the Euclidean distance.
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K-means

The aim of classification is to divide a set of objects into different groups such that

objects in the same group are more similar to each other than to those in other groups.

K-means, as the most widely used and easily implemented clustering algorithm, will

divide the input data set into K groups by their similarity [132]. Consider a data set

{x1,x2, . . . ,xN} consisting of N independent input vectors with D-dimension. The goal

of the algorithm is to partition the data set into K groups. In order to obtain those groups, a

set of vectors µk, with D-dimensionallity and k = 1, . . . ,K, is introduced to indicate centers

(centroids) of K clusters. In other words, an assignment of data points to clusters is found,

along with a set of vectors {µ i}, to ensure that the sum of the squares of the distances of

each data point to its closest vector µk is minimized as in (3.2). In this paper, xi stands for

the PCA components of normalized AMI measurements, and yi, for an input vector.

(3.2) J =
N

∑
j=1

K

∑
i=1

ri j ‖ x j−µ i ‖2,

(3.3) ri j =


1 if i = argmini ‖ x j−µ i ‖2

0 otherwise.

Extreme learning machine

The ELM is a comparably novel learning technology for working with generalized sin-

gle hidden layer feed-forward neural networks (SLFN) [133]. An SLFN usually includes

three layers, which are the input layer, hidden layer, and output layer, as shown in Figure

3.1. Given a training data set with N samples, the output function of the SLFN with L

hidden nodes and the activation function θ is as shown in (3.4).

(3.4) fL(x j) =
L

∑
i=1

βiθ

(
ωix j +bi

)
= t j, j = 1,2, . . . ,N
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Figure 3.1: Structure of an SLFN

ELM distinguishes itself from other conventional iterative learning algorithms because

it randomly selects the biases and input weights for hidden nodes, ω and b. Besides, it

usually calculates the output weights, θ , analytically by finding a least-square solution.

In [133] and [134], the authors theoretically prove that the training error are usually min-

imized with better generalization performance and higher accuracy. The reason of why

ELM can be calculated quicky is because that it uses only single hidden layer and calcu-

late the weighting terms analytically by satisfying ridge regress theory and neural network

generalization theory [128].

3.2.2 Price Scheme design

Symbolic aggregate approximation

SAX mainly works as a powerful technique for the representation of time series data

with lower bounding of the Euclidean distance [135]. Through the following two steps –

transforming the load data into a piecewise aggregate approximation (PAA) representation

and then symbolizing the PAA representation into a discrete string –, SAX can discretize

a numeric time series into symbolic strings. As shown in (3.5), the intuitive idea of PAA

is to use the mean values to represent the amplitude values that fall into the same time
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interval.

(3.5) x̄′i =
1

ki− ki−1

ki

∑
j=ki−1+1

x′j,

where j is the index of the normalized load data; i is the index of the transformed PAA load

data; ki is the ith time domain breakpoint; and x̄′i is the average value of the ith segment

[136]. In many applications, the averaging feature of the PAA can be utilized to smooth

out short-duration, sudden and large ‘spikes’ of time series [85]. PAA has been proven to

have all the pruning power of the Haar-based discrete wavelet transform (DWT) and can

be defined with lower computation cost for arbitrary length queries [136].

Flowchart

The complete framework and method will follow the general principles of data analytics-

type processing, including normalization, feature extraction (dimensionality reduction)

and data post-processing of the clustering results.

Step 1: Pre-process the collected AMI data of regional energy customers, which in-

cludes removing of invalid data sets and normalizing of customers’ daily load profiles.

Step 2: Implement the dimensionality reduction with the PCA technique to make daily

load profiles more suitable and easier for classification.

Step 3: Cluster the PCA components of the analyzed daily load profiles into initial K

typical groups of energy customers with the K-means classification algorithm.

Step 4: Check the clustering index and accuracy with ELM. If the training and testing

accuracy are below a chosen threshold T h, the number of clusters will be decreased by

K′ = K−Nc, and Step 3 will be repeated again.

Step 5: Obtain the typical daily load profiles for every energy customer group by aver-

aging the grouped daily load profiles based on the clustering index.

Step 6: Use SAX to assign symbols to the segmentations of the obtained typical daily

53



load profiles in every customer group.

Step 7: Match the symbols associated with every typical daily load profile to suitable

energy price levels.

Step 8: Analyze the economic effect and explore the different potential demand re-

sponse programs for all the energy customer groups.

Start

Data pre-processing and 
normalization

Dimensionality reduction 
with PCA

Clustering of daily load 
profiles

Check clustering index and 
accuracy with ELM

Accuracy > Th ?

Obtain the clustering index

Find the typical daily load 
profile for every group

Use SAX to assign  symbols to the 
segmentations of  typical daily load profile

Match the symbols with suitable 
price level for every group

Explore potential demand 
response programs

end

Classification

Electricity Price 
Scheme design

Yes

No

K’ = K-Nc

Figure 3.2: Flowchart of the price scheme design process
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3.3 Results and discussion

The following test cases include an AMI data set collected from a realistic Finnish dis-

tribution system operator (DSO), which includes 3,398 non-empty low voltage customers

in a small region. We randomly picked 1,500 customers from them, and chose several typ-

ical normal dates (without special national holidays) to demonstrate the proposed frame-

work.

3.3.1 Individualized price scheme design

In the classification stage, 90% is chosen as a criteria for the explained variance in the

PCA and T h. 16 energy customer groups are obtained (as shown in Figure 3.3) to stand

for the typical energy consumption patterns extracted from the chosen 1,500 customers.

In most groups, one or two peaks can be observed during a typical 24-hour time interval.
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Figure 3.3: Clustering of 1500 customers into 16 groups

The dynamic behavior of energy consumption for the whole group can be represented

by SAX symbols as shown in Figure 3.4. It is noteworthy that the number of symbols
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forming a string can be very flexible. For simplification purposes and implementation

easiness of the utility company (retailer), we just use three different symbols “a, b, c”

in this test case. While, a larger number of symbol types will produce more accurate

pricing for electricity products of different energy customers, it will also produce more

complexity in terms of utility operation. The mapping between these SAX symbols and

specific energy price levels should depend on a utility’s historical operation experience

and market analysis. A typical example of an electricity pricing level based on an existing

global TOU pricing scheme is presented in Table 3.1. Accordingly, the individualized

price scheme designs for all 16 energy customer groups are shown in Figure 3.5.

 

Figure 3.4: The electricity price scheme design for a typical load profile with SAX

Table 3.1: Price scheme design with symbols in SAX

Symbols in SAX Pricing Level Price

a Low level pricing 0.013 $ / kWh

b Intermediate level pricing 0.075 $ / kWh

c High level pricing 0.180 $ / kWh
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Figure 3.5: The design of an individualized price scheme structure for every group

3.3.2 Economic analysis

In the retail electricity market, different energy customers are usually given different

preferences and actually have cross-subsidy with each other [84]. By testing those 1,500

customers, we found that, as shown in Table 3.2, the individualized TOU proposed in this

paper mainly benefits retailers rather than energy customers in the short-term. However, if

some demand response programs are introduced for customers, and their awareness of DR

is reflected by some responsive rates, customers will still be able to achieve smart energy

usage and economic benefit. In this way, retailers and customers will interact with each

other more actively to commonly reach a better energy management and service.

Table 3.2: Economic analysis of the revenue and payment

Pricing strategy Customers Retailer Retailer

(payment) (cost) (revenue)

Global TOU $1458.33 $1178.12 $280.21

Individualized TOU $1525.34 $1178.12 $347.22

Individualized TOU with DR $1429.42 $1148.89 $280.53
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3.4 Conclusion

In this paper, we proposed an individualized electricity price scheme design mechanism

for various types of customers based on SAX and some combined classification methods,

namely K-means and ELM. The final goal is that the utility company can make better use

of the collected smart meter data and provide customized service to end-users. The cus-

tomers can also reach more awareness of the possible energy usage strategy. In the future,

some more accurate and computationally efficient classification method should be studied

for other related applications involving large-scale distribution networks with an industri-

alized big-data platform. More innovative business models of demand response programs

based on the designed individualized electricity price scheme may also be discussed in the

Smart Grid context.
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CHAPTER IV

Modeling of energy broker

4.1 Introduction

1 In today’s retail electricity market, customers have very limited ”energy choice,” or

freedom to choose different types of energy services. Although the installation of dis-

tributed energy resources (DERs) has become prevalent in many regions, most customers

and prosumers who have local energy generation and possible surplus can still only choose

to trade with utility companies. They either purchase energy from or sell energy surplus

back to the utilities directly while suffering from some price gap. The key to providing

more energy trading freedom and open innovation in the retail electricity market is to de-

velop consumer-centric business models and possibly a localized energy trading platform.

The current research community is pursuing these ideas so that the next-generation retail

electricity market infrastructure will be a level playing field, where all customers have an

equal opportunity to actively participate directly [16].

Many works have proposed future market mechanisms with promising potential, such

as prosumer grid integration [55], peer-to-peer models [58][60], and prosumer commu-

nity groups [138][139]. Direct integration of DERs in the main grid and participation

in the electricity market through aggregators are widely accepted ideas because of their
1This chapter was previously published as an article in a peer-reviewed journal: [137] T. Chen, and W. Su, ”Indirect Customer-to-

Customer Energy Trading with Reinforcement Learning”, IEEE Trans. on Smart Grid, 2018. (accepted)
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simple applicability and manageability. The work in [55] describes a typical model that

analyzes the optimal planning and operation of aggregated DERs with participation in the

electricity market as a whole. However, in order to diversify the customer-side energy

ecosystem and promote a deregulated market, a peer-to-peer (P2P) energy trading model

with an eBay-like market platform is also frequently discussed and attracting more and

more research interest, although still at a very conceptual level [140][141][142]. Admit-

tedly, the e-commerce-like retail activity of energy trading presents only a small ratio of

the overall energy business, especially of the wholesale market or bilateral contracts. The

trend of gamification of energy activities [143] and novel business model design is still

being intensively pursued to drive the new energy ecosystem building and market refor-

mation. For instance, the concept of a prosumer community is utilized in [138][144] for

local energy sharing and internal trading. In [58], a matching mechanism based market

model is proposed to allow individual prosumers to meet each other to conduct a bilateral

trade. In [60], a scalable and modular P2P system is designed, along with a prototype, to

demonstrate on-site building energy trading between prosumers. Even a novel decentral-

ized digital currency, named after NRGcoins, is proposed by the same group of researchers

to encourage prosumers to locally trade their excess energy while carrying out payments

using NRGcoins [61].

In this work, we aim to study how to use reinforcement learning framework to solve a

decision-making problem of the local energy market clearance, from the traders perspec-

tive. We explore the role of emerging energy brokers (middlemen) in a localized event-

driven market (LEM) at the distribution level for facilitating indirect customer-to-customer

(iC2C) energy trading. On one hand, many customers are expecting a higher degree of

”energy choice” so that they can locally share or exchange self-generated electricity. As a

perfect complement to the existing market mechanism, localized energy trading will also
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reduce distribution loss due to long-distance exchange and improve the efficiency of re-

source allocation with consideration for both attitudinal and contextual factors [145]. On

the other hand, small-scale electricity consumers and prosumers usually cannot afford a

time-consuming search for a particular trading partner, which makes the pure P2P mode

unsuitable. In contrast, the specialty associated with a localized adaptive service can help

collect, synthesize, and explore distinct renewable energy trading characteristics, as well

as size-related regularities [146]. In such a localized electricity market, trade does not in-

volve just buyers and sellers, but also multiple middlemen serving as intermediaries [147].

Classical economic approaches to studying electricity markets, such as competitive equi-

librium analysis, largely abstract away the role of such middlemen. That said, there is a

need to understand middlemen’s optimal strategies when choosing from a series of poten-

tial opportunities of random quality, under the assumption that delaying choice is costly.

In this paper, our contribution is to: (1) propose a new paradigm of indirect customer-

to-customer energy trading in a localized event-driven market; (2) introduce a new energy

trading role called the retail energy broker to facilitate market operation with different

well-defined actions; (3) utilize reinforcement learning techniques to benefit all market

participants based on a smart strategy with learning capability; and (4) provide some in-

teresting observations for the proposed market mechanism based on various simulation

results.

The remainder of this paper is organized as follows: Section II introduces the event-

driven market architecture and emphasizes the motivation. Section III introduces the sys-

tem modeling of the proposed market mechanism with a REB. Section IV gives a math-

ematical description of a Markov decision process with a modified Q-learning algorithm.

Section V presents several numerical results in different scenarios. Section VI summarizes

the major findings and potential extensions of this paper.
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4.2 Event-driven Market Architecture

A LEM is designed at the distribution level for facilitating retail energy trading aided

by the new role of the middleman, called a retail energy broker (REB). This market mech-

anism will provide additional energy trading opportunities, besides the existing utility ser-

vice, to allow customers to directly participate in the local energy transaction platform

with the help of the REB as a trader. This market is named event-driven, similar to [148],

because it is only supposed to work as a back-up trading platform, unnecessary to be open

permanently for the whole year, and is affected by local requirements and seasonal events,

such as high solar irradiance or energy shortages in regional grids. In this way, the future

retail electricity market, including the LEM, can be shown as in Figure 4.1.

Day-ahead 
Market
(DAM)

Localized Event-
driven Market

(LEM)

Small 
customers

Small 
Prosumers

Real-time 
Market
(RTM)

Aggregator

Retailer A Retailer B

…

Retail Energy 
Broker (REB)

Seasonal, back-up, optional

Figure 4.1: The future retail electricity market

All the energy entities, including buildings, campuses, communities, etc., can choose to

participate in the local energy trading platform as sellers or buyers according to their own

forecasting of their energy surplus or deficit. The LEM model is built as a Markov deci-

sion process (MDP) [149] from the REB’s perspective. The REB can operate this market

while obtaining increasing trading experience and experience-based strategies formulated

by reinforcement learning techniques. Given this setup, by applying intelligent methods
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and taking into account the characteristics of customers’ behavior, it can be proven that

both customers and traders benefit more at the same time. Some economic concepts, like

search friction [150], related to this kind of typical search cost involved market model are

also discussed in following sections, which offer insight into the improvement of energy

market efficiency.

The market model of a LEM is not chosen because of its best performance. The motiva-

tion for developing such a localized occasional energy market is twofold: 1) deregulation,

may sound a little cliché, is still the driving force for reshaping the legacy energy land-

scape. The deregulation of the airline industry and telecommunications industry proves

how it can benefit consumers. The emergence of Priceline and Uber are also good ex-

amples of two of the few notable industries that contextualize both deregulation and new

platforms that boost new business paradigm design and new ecosystem building within the

existing market context. Meanwhile, the electricity energy industry is one of the largest

in the world, yet it is also considered the least innovative because of its highly regulated

market structure; 2) there is a need for a new business model design and even gamification

of the energy ecosystem. If successfully implemented, the new model will significantly

promote the massive introduction of new players (e.g., REBs) in a more competitive re-

tail market. Rather than passively accepting the trend of the emerging energy trading

paradigm, we can help customers attain a better understanding of the future energy land-

scape. Taking smartphone as an example, before the boom of the smartphone, mobile

internet occupied only 5% of the overall internet connections. Nowadays, mobile internet

connections have become mainstream and account for half of the overall connections. We

should create the same ”desire” for local energy trading. In light of these reasons, the LEM

seeks to improve the efficiency of regular retail activity mainly through diversifying the

existing energy business models (commercial strategies) and providing energy trading op-
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portunities at the edge of the distribution network, near the source of the energy demand.

In the conceptual design of our holistic market model 2 (Figure 4.2), the major func-

tionalities of each entity are highlighted. For example, the proposed localized event-driven

market (LEM) will facilitate the short-term or immediate local energy transactions. The

Distribution System Operator (DSO) or Distribution Network Operator (DNO) is respon-

sible for market regulation (e.g., reliability and security checks). The electric utility will

not only serve customers as per usual but will also offer various long-term retail plans.

Meanwhile, customers may develop their own bidding/offering strategies in this local en-

ergy trading platform by using various types of energy devices (e.g., batteries, DGs, flex-

ible loads, etc.) that are available to them. A local energy transaction will be physically

fulfilled by leveraging the existing distribution line and smart meters (for billing and pay-

ment).

Consumers/
Prosumers

DSO/DNO
Electric
Utility

Retail Energy
Broker

Retail Plan 
Recommender

long-term retail contract

Self-Adapted 
Learning Model

Bid/Offer

Intelligent Local 
Energy Trading

Security check

Market clearing

System Reliability 
Check

Available system operation margin

Holistic Market Model and Local Energy Trading Framework

Time Scale

Minutes-Hours Event-driven Month-Year Daily

DSO: Distribution System Operator               DNO: Distribution Network Operator

Event-driven

Figure 4.2: Holistic market model design

It is worth noting that it is not our intention to cover every aspect of the aforementioned

market model in a single paper. In this paper, we mainly focus on the new role of the

retail energy broker (REB), as highlighted in an orange box in Figure 4.2. Without loss of
2The comprehensive system regarding holistic market model will be presented in our recent work.
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generality, we assume that most local participants are geographically close to each other.

In other words, they are most likely connected to the same distribution feeder, as illustrated

in Figure 4.3. Therefore, this paper does not explicitly model the AC power flow constraint

of distribution networks. In the future, we will further investigate the impacts of physical

constraints on the proposed LEM. Distribution substations connect to the transmission

system and lower the transmission voltage to medium voltage ranging between 2 kV and

35 kV with the use of transformers. Usually the standard primary distribution voltage

levels include 4.16kV, 7.2kV, 13.2kV, 23.9kV, and 34.5kV.

P

PROSUMER (P)
✓ Distributed generation
✓ Energy demand
✓ Bid / Offer
✓ Entering market time

UTILITY COMPANY
✓ Utility service price
✓ Utility buy-back price
✓ Long-term contract recommender

Prosumer i

CONSUMER (C)
✓ Buy electricity from prosumers 

via retail energy broker
✓ Buy electricity from grid
✓ Adjust local energy usage

RETAIL ENERGY BROKER (REB)
✓ Event-driven market
✓ Receive bids/offers from local participants
✓ Fetch electricity price from utility website
✓ Clear local energy transactions

Consumer j

PC

C

REB

Figure 4.3: Physical connection of consumer/prosumer and REB

4.3 System model

We consider a localized market model that consists of a REB, a set of consumers (buy-

ers) I b and a set of prosumers (sellers) I s. The market is operated in a day-ahead

bidding and time-slotted fashion, where each time slot has an equal duration and allows

for the REB’s decision-making. At each time slot, the REB can choose different actions

to clear the market so far and satisfy sellers and buyers on both sides. Hence, the market

model will be formulated as an MDP problem, which enables a multi-scenario study of

the dynamics and characteristics of the proposed market mechanism.
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4.3.1 Market operation

The market mechanism is designed following a day-ahead bidding process similar to

the day-ahead market in the wholesale electricity market [151]. Moreover, each day will

be divided into n time slots during which the market will be open for sellers’ or buyers’

participation, as shown in Figure 4.4. Thus, each time interval T will be equal to 24

hours /n. No matter when the sellers (buyers) enter the market, there will be initially

at most consecutive H time intervals for them to stay in the market after entering. The

REB can choose different actions for each time interval according to the current market

status. It is also noteworthy that sellers and buyers usually enter the market following

heterogeneous time schedules due to the fact that the renewable energy supply (e.g., PV

roofing) may not overlap with the demand peak load of energy consumption. Buyers are

highly likely to enter the market around the early morning or late afternoon when they

experience the twin-peak energy consumption pattern, while sellers prefer to enter the

market around noon or midnight, when the solar radiance or wind source is at maximum.

Without considering energy storage system (ESS), this temporal heterogeneity requires

the REB to use tricky decision-making strategies, depending on whether it is a buyer’s

market or a seller’s market. In particular, taking into account search friction 3, similar to

opportunity cost, the decision-making delay or waiting time of the REB can give rise to

totally different market-clearance results.

This timeline design allows for future extension of customers’ behavioral dynamics,

such as withdrawing or modifying their bids (offers) in consecutive time slots. However,

in this paper, we mainly consider the market dynamics from the REB’s perspective and

limit the customers’ participation to one-time bidding/offering. Additionally, we introduce

a remaining time counter hs
i,t ∈H s

t and hb
j,t ∈H b

t associated with each seller and buyer

3Search friction will be introduced and discussed in following sections
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Figure 4.4: Timeline of the proposed market model

to record their staying status in this market with an initial value of hs
i,ts

i
= H and hb

j,tb
j
= H,

respectively, where the subscript ts
i ∈ T s (tb

j ∈ T b) indicates the market entering time of

each seller (buyer). As the time evolves t ← t + 1, the remaining time counter decreases

accordingly after each time interval: hs
i,t ← hs

i,t −1, hb
j,t ← hb

j,t −1. If the remaining time

counter approaches empty, hs
i,t = 0 or hb

j,t = 0, the seller (buyer) will quit this market and

exercise direct transaction with the utility company.

4.3.2 Sellers and buyers

Consumers and prosumers participate as sellers or buyers in the localized retail elec-

tricity market according to their power demand and generation surplus. Different types of

prosumers are considered uniformly with simplification of their particular generation re-

sources (e.g., wind, PV, biomass, etc.). As long as the prediction for the next hourly time

interval is obtained, seller i provides bidding information with selling price ps
i and supply

energy block es
i as price-quantity pairs to the REB. Meanwhile, it should be guaranteed

that

(4.1) pub ≤ ps
i ≤ pu− εp, ∀i ∈I s

Where pub is the buy-back price of utility if sellers directly sell their energy surplus to

the utility company, and pu is the regular electricity service price of the utility if buyers
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directly purchase energy from the utility company. The lower-bound pub of a seller’s

bidding price ps
i is intuitive because the only motivation for sellers’ participation in this

market is the fact that the seller can sell energy at a higher price than through direct trading

with the utility. However, the upper-bound pu− εp is implicitly established because any

bidding price higher than pu will force buyers to prefer direct trading with the utility,

pushing them away from participating in this localized market. Furthermore, item εp

is a small speculation margin controlled by the REB to guarantee fairness and enhance

the seller/buyer’s pairing chance (no exactly equivalent price to the utility’s is allowed to

participate, otherwise all customers will bid the same as the utility’s price). Similarly, the

same principle also applies to buyers and their offering information, with demand energy

block eb
j and purchasing price pb

j as

(4.2) pub + εp ≤ pb
j ≤ pu, ∀ j ∈I b

Therefore, buyers can benefit from purchasing electricity at a lower price than the utility’s

regular service price pu while leaving enough price margin to attract sellers, and vice versa.

These price-quantity pairs of both sellers and buyers can be contained in sets, Ps = {ps
i},

Pb = {pb
j}, E s = {es

i} and E b = {eb
j}. These sets, along with sets of the remaining time

counters at time t, will be reformulated again as follows:

(4.3) P = Ps×Pb, E = E s×E b, Ht = H s
t ×H b

t

We also use It = I s
t ×I b

t to denote the set of sellers (buyers) that are still present in

the market at current time t with hs
i,t ,h

b
j,t > 0. In this way, the market status at current

time t will be totally determined by all the current customers’ bidding parameters, the

current timestamp and the status of the remaining time counters associated with current

customers. Thus, the transition probability of the market status, consisting of the status of

sellers and buyers, from state st =
(
Ht ,It

)
to state st+1 =

(
Ht+1,It+1

)
with the REB’s
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given action at can be represented as:

pm
(
st+1

∣∣st ,at
)
= ∏

i∈I s
t

ps
(
hs

i,t+1
∣∣st ,at

)
× ∏

j∈I b
t

pb
(
hb

j,t+1
∣∣st ,at

)(4.4)

Where It implicitly contains all the information associated with parameter sets P and E ,

and H explicitly indicates the possible action candidates available to the energy broker.

4.3.3 Retail energy broker

In the proposed market model, the REB will be responsible for determining the oc-

casional market open rate when any events or requests are detected. It plays a role as a

middleman between sellers and buyers to enable local energy transactions in a LEM in an

indirect way (i.e. iC2C). Thus, the seller or buyer does not need to search for a particular

trading partner during the searching and pairing process.

For the REB, how to choose actions is totally dependent on current time t and cur-

rent market situations given different price-quantity pairs collected from present seller

(buyer) bid (offer) information. In other words, the REB determines mapping function

at : R
|S |
+ →A as follows

(4.5) at

(
Ht ,It , t

)
= ai, i = 1,2, ...,A

From there, it decides how to process the market-clearance at current time-slot t, where

|S | denotes the cardinality of market status tuple set S = H s
t ×H b

t ×I s
t ×I b

t and

A denotes finite action set {a1,a2, ...,aA}, as follows (let A = 4; four types of actions are

designed here):

1) Waiting: do not accept any bid or offer price-quantity pairs and delay the market-

clearance until the next time slot, t +1; expect more sellers or buyers to enter the market

with more speculative bidding (offering). However, search friction should be considered
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in this action since the REB may lose the opportunity to achieve more or even myopic

profit. The seller and buyer’s remaining time counters will be updated by h← h− 1 for

the next time interval.

2) Retention: do not accept any bid or offer price-quantity pairs and delay the market-

clearance until the next time slot, t+1; however, in contrast to waiting, the REB will issue

a retention bonus ξ to all the sellers/buyers present in the current market to compensate

for the delay of the market-clearance. Moreover, the seller and buyer’s remaining time

counters will be updated by h← h+1 for the next time interval.

3) Partial-clearance: accepts the highest bid ps
high and lowest offer pb

low associated

with a price-quantity pair to lock the instant profit so far, setting the chosen seller/buyer’s

remaining time counter h← 0, meanwhile delaying the rest of the market-clearance until

the next time-slot, with all the other sellers/buyers’ remaining time counters updated by

h← h−1.

4) Clearance: accept all the bids and offers belonging to price-quantity pairs to exercise

the standard double-auction market (action at = a4 in (4.7) and Figure 4.5), and set all the

chosen sellers/buyers’ remaining time counters h← 0 to force them to quit the market.

The rest of the customers that fail to be selected continue to stay in the market for future

chances, with their remaining time counters updated by h← h−1.

The goal of the REB in this LEM is to choose a series of actions to maximize its profit

with constant consideration of some opportunity cost when many a seller/buyer frequently

enters and quits the market. The optimal policy π∗ can be defined as: 1) the best action

is always correctly chosen for maximizing long-term expected profit (reward), and 2) the

decision is always made at the most suitable time without any delay. Thus, the expected
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discounted revenue of the REB is defined as in the following MDP problem P:

(4.6) P : max
π:S→A

E

[
nT

∑
t=0

(γ)trt

(
st ,π(st)

)]

where 0 ≤ γ ≤ 1 is the discount factor, which represents the relative importance of the

future market profit compared with that of the present market profit. The reward function

rt

(
st ,π(st)

)
is calculated according to different chosen actions, as follows:

(4.7) rt

(
st ,at

)
=



0 at = a1

−ξ at = a2

ps
highes

high− pb
loweb

low at = a3

z? at = a4

where a1,a2,a3 and a4 indicate the actions of waiting, retention, partial-clearance and

clearance, respectively, ps
high = max{ps

i |i ∈ I s
t }, and pb

low = max{pb
j | j ∈ I b

t }. The nu-

merical value z? corresponding to at = a4 in (4.7) is obtained as an optimal value through

solving the following optimization problem, Pa, in (4.8)-(4.11), which is also a double-

auction problem, as shown in Figure 4.5. It follows a pay-as-bid model, in which all the

price-quantity pairs left at the equilibrium price will be cleared.

(4.8) Pa : max
xs

i ,x
b
j

z = ∑
j∈I b

t

pb
jx

b
j − ∑

i∈I s
t

ps
i x

s
i

s.t.

(4.9) ∑
j∈I b

t

xb
j − ∑

i∈I s
t

xs
i = 0

(4.10) 0≤ xs
i ≤ es

i , ∀i ∈I s
t

(4.11) 0≤ xb
j ≤ eb

j , ∀ j ∈I b
t
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Figure 4.5: Market-clearance of the double-auction model

It is also worth commenting that in a reinforcement learning framework, the defined ac-

tions can be low-level controls, such as assigning a particular numerical value to a variable,

or high-level decisions, such as whether or not to solve a sub-decision problem [152] like

ours. Additionally, retention bonus ξ in retention explicitly indicates the fact that decision

delay is costly, and some other implicit search cost is also contained in waiting because

delaying the decision-making by waiting may often introduce some regret or opportunity

cost, which will be quantitatively measured in Section 4.5.4.

4.3.4 Real-world implementation issues

In order to implement the overall local energy trading process, it is assumed that every

interested participant is able to join the LEM in an intelligent way by using a home energy

management system (HEMS) [153] with trading functionality embedded. The trader also

must have access to a regional central market operation system that will be responsible

for collecting the local customers’ subscription to this optional energy service. In the long

term and as more trading experience is accumulated, both customers and the trader will be

able to adapt to the daily, weekly or even seasonal patterns of energy trading activities. The
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communication hardware cost of implementing such an energy trading service is expected

to be low and without too much hardware modification, since no subjective negotiation

process is involved in the intelligent trading platform, and localized energy service activi-

ties are usually stable when considering only nearby customers in a neighborhood or local

community. The current distribution network would be better to support such local en-

ergy trading if real-time monitoring, two-way communication and feeder reconfiguration

devices are widely available. However, there is no need to increase the distribution line

capacity since the congestion can even be relieved to some extent if many energy sources

are generated and consumed locally without long distance transmission.

4.4 Markov Decision Process and Modified Q-learning Algorithm

An MDP is usually described by state space S , action space A , reward function set

R, state transition probability matrix P and a discount factor γ ∈ [0,1]. It is also assumed

that an MDP remains the Markov property, which implies the transition probabilities of

a state are only affected by the previous one step with no memory [152]. As our market

model and problem P is built as an MDP (Figure 4.6), it can be supposed to be solved by

any standard reinforcement learning techniques, such as temporal-difference learning.

Retail	Energy	
Broker	(REB)	

Market	Environment	with	
Customers’	Entering	and	Quitting	

Market									
State			
	st	

	Profit		
				rt	

rt+1	
st+1	

Clearance	
Action	
	at	

Figure 4.6: The market model as an MDP with agent-environment interaction

However, there will always be some issues associated with most similar practical prob-

lems, namely how to deal with the continuous state space. For instance, the market status

73



S in this paper consists of price information, energy quantity, customers’ entering time,

and many possible combinations of customers’ staying status, which are all continuous

variables or hard to be enumerated. In order to deal with the continuous state space, one

possible solution is to take it as a multi-armed bandits problem, especially a contextual

bandits problem [154]. We can take timestamp t as the only state space and other infor-

mation {P,E ,T s,T b,Ht ,It} as pure reward parameters or external guiding signals in

a contextual bandits problem with the assumption of some certain distribution of these pa-

rameters. That said, the learning ability of the decision-maker will be very limited since no

knowledge of previous experience is utilized when choosing the next actions. In a bandits

problem, each action affects only the immediate reward. If actions are allowed to affect the

next situation as well as the reward, then we have to take it as a full reinforcement learning

problem [152]. In our market model, how to choose the current action (i.e., waiting, reten-

tion, partial-clearance and clearance) determines how much profit will be exploited right

now and how much will be left for the next time interval. The chosen action will obviously

affect the market situation and profit capacity (reward structure) in the next time interval

in a certain episode. Therefore, we introduce an episode-dependent modified Q-learning

algorithm, as shown in Algorithm 2, based on the temporal-different learning structure and

theoretic analysis in [155] to solve the problem. We named the market operation method

based on this modified Q-learning algorithm smart strategy, which we use in following

sections.

The function φ(τ) in Algorithm 2 refers to the tabular non-stationary reward structure

described in [155]. Here, in our market model, the term non-stationary is twofold: 1) the

reward distribution is affected by the market status, which changes along episodes (days)

and may follow some certain probability distribution functions, with one sample generated

in each episode, and 2) the action chosen in each step of a given episode will affect the
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Algorithm 1 Modified Q-learning algorithm
1: Initialize Q(s,a),∀s ∈ S,a ∈ A(s) arbitrarily
2: Repeat (for each episode τ):
3: Initialize s with episode dependent information
4: Repeat (for each step of episode):
5: Choose a from s using policy derived from Q (e.g., ε-greedy)
6: Take action a, observe r ∈ φ(τ) via (4.7) and s′

7: Update the non-stationary reward structure φ(τ)
8: Q(s,a)← Q(s,a)+α

[
r+ γ maxa′Q(s′,a′)−Q(s,a)

]
9: s← s′

10: Until s is terminal

potential reward value in following steps. It is these mechanisms that will introduce the

many interesting market dynamics demonstrated in the next section through various cases

studies. In this paper, we will not go deep into the theoretic fundamental that is still under

study and has produced many cutting edge research topics. Interested readers may refer to

[155][156][157] for more details.

Similar to the basic Q-learning algorithm, the optimal stationary policy π∗ can be well

defined by using the optimal action-value function Q∗ : S ×A →R, which satisfies the

following Bellman optimality equation:

(4.12) Q∗(s,a) = r(s,a)+ γ ∑
s′∈S

p
(
s′
∣∣s,a)V ∗(s′),

where V ∗
(
s′
)

is the optimal state-value function [152], which is defined as

(4.13) V ∗
(
s′
)
= min

a∈A
Q∗(s′,a), ∀s ∈S .

Since V ∗
(
s′
)

is the expected discounted system cost, with action a in state s, we can obtain

the optimal stationary policy as

(4.14) π
∗(s)= argmina∈A Q∗(s,a).

In solving problem P, any temporal-different learning based method, unlike dynamic pro-

gramming methods [158], can provide the solution without acquisition of the state transi-

tion probabilities ps
(
st+1

∣∣st ,at
)
,∀s∈S a priori [159]. In this way, reinforcement learning
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techniques based on an MDP will allow the REB, as a trader, to take the LEM as a pure

data-driven model to build its strategy intelligently with increasing experience.

4.5 Numerical results

In this section, we provide numerical results to show some interesting observations re-

garding the proposed LEM model and evaluate the performance of our market learning

algorithm. Unless specifically indicated, the timeline, one day, consists of 72 time inter-

vals, each of which lasts for 20 min. The simulation environment is Python 3.6 running on

a desktop with an Intel i7 and 16.0 GB RAM.

4.5.1 Smart strategy with learning

In this first case study, we run a basic market model to initially compare the results

of the smart strategy with learning and a dummy strategy without learning. The dummy

strategy means the trader REB does not utilize any knowledge of historical trading expe-

rience to operate this market and clears the market immediately, as much as possible, with

the myopic action to maximize its current profit. In contrast, the smart strategy allows

utilizing learning capability to choose different actions (i.e., waiting, retention, clearance

and partial-clearance ) to maximize profit along the complete time horizon for the whole

day. All the parameters of the market model in this case are defined in Table 5.2.

Table 4.1: Parameters of the market model

Parameter sets Values

T s, T b T s ∼N
(

39,122
)

, T b ∼N
(

54,122
)

Ps, Pb U
(

0.4,0.6
)

E s, E b U
(

20,40
)

εp = 0, |I s|= 100, |I b|= 110, H = 3,

n = 72, ξ = 0.5

It is noteworthy that this market model is totally data-driven, with accumulated trading
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experience, and independent of the choice of distribution. The parameter sets, T s and T b,

are chosen as normal distributions just for convenience and reasonable assumption; how-

ever it is not necessary that they are chosen as normal, Weibull, uniform or any particular

distribution. Some more sensitivity analysis in following study cases will show similar

results with a hybrid distribution or purely messy random data. Some parameters related

to the modified Q-learning algorithm are also given as follows: ε = 0.1,α = 0.5,γ = 1.

The algorithm runs 500 episodes in total and provides the last 400 episodes’ results while

averaging over 20 independent runs in Figure 4.7. The learned optimal policy with chosen

actions is also shown in Figure 4.8. The action code is defined to be the same as in eq.

(4.7): 1→ waiting,2→ retention,3→ partial− clearance,4→ clearance.
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Figure 4.7: Smart strategy (with learning) vs dummy strategy (without learning)

From Figure 4.7, it can be observed that the smart strategy actually does not work

well at the beginning since it is still undergoing trial and error as part of its learning pro-

cess. However, with more experience obtained through running more episodes and for a

longer time, the smart strategy starts to adapt to the market characteristics and exploits

this knowledge to adjust its optimal policy [152]. In the long term, it will outperform the
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Figure 4.8: Optimal policy with chosen actions

dummy strategy that has no learning capability. In order to see a more obvious compari-

son in the long term, we run the algorithm again for around 2000 episodes and show the

complete results, from the very beginning episode, in Figure 4.9.
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Figure 4.9: Results of running for a longer time with more experience accumulated

It is interesting to see the smart strategy with learning can improve its performance

quickly and stably outperform the dummy strategy without learning in the long term.

Additionally, the optimal policy will also be adjusted accordingly with more experience
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obtained. That said, it is noteworthy that Figure 4.8 and Figure 4.9a do not imply the

smart strategy will always outperform the dummy strategy strictly in every case every day

(episode), which is because the comparison result is not a deterministic one, and occasion-

ally it might be true that the smart strategy is worse (obtains less profit) than the dummy

strategy according to a particular market status. We can only conclude that in the long

term and in most scenarios, the smart strategy with learning wins in a statistical way.
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Figure 4.10: Optimization benchmark with perfect forecast

As shown in Figure 4.10, analysis of a benchmark optimization model similar to (4.8)-

(4.11) with consideration for all the time intervals and perfect forecast (for future time

horizons) is also conducted to compare with the reinforcement learning method. The

objective function is given as follows:

(4.15) max Zopt = ∑
j∈I b

pb
jx

b
j − ∑

i∈I s
ps

i x
s
i

Where I b =
⋃nT

t=1 I b
t and I s =

⋃nT
t=1 I s

t . We can see that because of the assumption that

perfect forecast is available and given as a priori, the benchmark optimization actually has

the best performance with maximum profit. However, this perfect forecast that removes all
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the uncertainty characteristics of customers’ trading behavior is rarely the case in reality.

Considering its adaptivity to volatile local market situations, it is still reasonable to accept

reinforcement learning as a well-performing method for the proposed market model.

4.5.2 Advantages of LEM

In order to show the advantages the LEM model has over the current existing energy

service without a local energy trading platform, we firstly present the total benefit for all

the participants at different levels of participation in a one-day market operation in Table

4.2. The sellers’ economic benefit achieved thanks to the LEM is described by how much

they were able to increase their revenue by bidding, while the buyers’ is described by how

much they were able to reduce their cost by purchasing for energy demand.

Table 4.2: The benefit ($) of a LEM for all participants

Participation level
Sellers Buyers Trader

Mean Std. Mean Std. Mean Std.

Low (∼200) 240.4 16.8 265.2 12.4 121.1 2.4

Medium (∼400) 501.2 27.8 552.6 21.5 276.8 4.2

High (∼1000) 1307.9 49.0 1441.9 39.2 698.9 9.1

It is interesting to observe that the total benefit at the medium participation level (∼ 400

sellers plus buyers) is slightly more than two times of that at the low participation level

(∼ 200 sellers plus buyers), because more participation of customers (buyers or sellers)

usually means more additional energy transaction opportunities if more different types of

customers enter the market with a volatile range of bid/offer prices. Secondly, we also

reflect the average annual benefit of each participant (per capita) at different participation

levels in the LEM with the assumption of occasional opening of the market across the
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whole year, using a one-time average benefit (4.16).

Rseller =
1

3Nr

[
1

Ns
low

Nr

∑
k=1

Ns
low

∑
i=1

Rs
low(i,k)+

1
Ns

med

Nr

∑
k=1

Ns
med

∑
i=1

Rs
med(i,k)+

1
Ns

high

Nr

∑
k=1

Ns
high

∑
i=1

Rs
high(i,k)

](4.16)

Rseller indicates the average revenue of a seller for one-day participation in different sce-

narios, where Ns
low,N

s
med,N

s
high are the number of customers in different participation level,

respectively. Nr is the number of algorithm running times. The annual revenue of a seller

in a LEM can be calculated by 365× ro×Rseller, where ro indicates the occasional market

open rate. The average annual cost of a buyer and the average annual profit of a trader can

be calculated in a similar way. The overall annual benefit effect (per capita, with ro = 20%)

of introducing a LEM in addition to an existing utility’s energy service is shown in Figure

4.11.
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Figure 4.11: The annual benefit effect (per capita) on participants in a LEM (values in dollar are revenue for
seller and REB, and cost for buyer)

4.5.3 Sensitivity analysis

In this market model, a lot of market parameters and learning parameters are involved,

and many of them are significant in the REB’s decision-making process. Here, some im-
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portant parameters are studied during the sensitivity analysis with many interesting results

and phenomenon observed. In the following cases, we use a uniform distribution for mar-

ket entering time and a bid/offer price with |I s|= 200, |I b|= 220 and other parameters

the same as in Section 4.5.1 if without explicit illustration.

Time intervals

The number of time intervals determines how many chances customers have to enter

the market each day. If we fix the value H of the remaining time counter, fewer time

intervals implies a larger ratio of customers’ staying time in the market for the whole

time horizon. Thus, the sellers and buyers may have a higher possibility of being chosen

for market-clearance, which meanwhile provides the trader REB more chances to pursue

profit, as shown in Figure 4.12. On the other hand, increasing the number of time intervals

is actually also equivalent to reducing the value of the remaining time counters while

improving some sort of opportunity cost from the trader’s perspective. This behavior is

related to a microeconomic concept, search friction, which will be discussed in Section

4.5.4.

Exploration ratio

Most reinforcement learning methods always need to trade-off exploration and ex-

ploitation, which means the agent has to exploit what it already knows in order to obtain

a reward, but it also has to explore in order to make better action selections in the future

[152]. The exploration ratio ε controls how much effort the agent, such as the REB, will

exert to select an action with non-maximum reward value in every episode. In order to see

the effect of the exploration ratio in the long term, we extend the run of the algorithm to

1000 episodes and show the result in Figure 4.13.

We can observe that a very low exploration ratio ε = 0.05 introduces very low profit
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Figure 4.12: The impact of the number of time intervals
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Figure 4.13: The obtained profit with different exploration ratios

at the beginning; however, the profit will gradually converge to a normal level, similar to

that of other choices, in the long term. In contrast, a very high exploration ratio ε = 0.5

provides higher profit at the beginning but will suffer some loss in the long term because

of the inefficient effort on random exploration.
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Price margin

In Section II-B, the price margin εp is used to provide the price bar for customers

who would like to participate in this market, as they have to guarantee trading partners’

benefit for fairness instead of only maximizing their own profit. The sensitivity analysis

of parameter epsilon is also provided in Figure 4.14 to demonstrate the effect of different

values of epsilon for overall trading profit. On the other hand, the price margin is allowed

to be 0 set by the REB, and most customers can bid/offer at the same price as the utility

service, though they may suffer the risk of never being selected. However, increasing the

price margin to a reasonable level can improve the REB’s profit and the market efficiency

through facilitating customers’ trading as quickly and frequently as possible. Since the

price margin can only affect the price samples statistically, we compare the results with

different εp in a violin plot, as shown in Figure 4.14. It can be seen that with a little higher

price margin, the total profit distribution from customers’ trading will shift right towards a

larger number.
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Figure 4.14: The effect of price margin εp
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4.5.4 The impact of H and search friction

As this market operation is event-driven and only open occasionally to customers when

there is a seasonal weather event, such as high solar irradiance or an energy supply shortage

from the main grids. How actively participants join this local trading platform during these

occasional scenarios will also determine the efficiency of the market operation, since some

customers may quit the market if long-time waiting is needed for an occasional trading

opportunity with few customers present. The kind of anxiety caused by staying idle in the

market and searching for a suitable trading opportunity can be described qualitatively and

quantitatively.

In this test case, we will try different values of parameter H, which is used to describe

the remaining time counter, hs
i,ts

i
,hb

j,tb
j
= H, or how many chances each customer (seller or

buyer) still has before they must quit the market, to see the impact on the final profit of the

REB for the whole day. Some other parameters are the same as in the first case study with

more customers, |I s| = 200 and |I b| = 210, distributed more intensively over all the

time intervals. The result is averaged over 10 independent runs and shown in Figure 4.15.

It matches the intuition that the more chances to enter or the longer customers are allowed

to stay in the market, the more profit the REB can obtain by delaying its decision-making

until the overlap of many a suitable bid and offer.

In microeconomics, the concept of search friction that arises in a search process can

be used to explain such a phenomenon. A search process is seen as sequential sampling

of a population X , in which the sample points xt can be energy prices, quality of services,

bids for an asset, and so on [150]. The 2010 Nobel Prize in Economics was awarded

for an analysis of markets with search frictions [160]. Additionally, the optimal stopping

problem is a typical application example involving search friction, which tries to solve

a problem that involves choosing a suitable time to take a particular action, in order to
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Figure 4.15: The impact of parameter H

maximize an expected reward or minimize an expected cost [161]. In this energy mar-

ket model, if we go into the details of the single time interval decision problem, at the

beginning of every interval t, the REB, as the decision-maker, will look forward to the

following time horizon and suffer some type of loss when making its decision too early

or too late. The REB cannot make a decision too early because some more suitable cus-

tomers (i.e., with lower bids or higher offers) may come in the next few time intervals.

Similarly, the REB cannot make a decision too late because it may regret the opportunity

cost when some potential customers quit the market in the next few time intervals. This

problem is also studied quantitatively, with a certain assumption regarding the probability

distribution of customers’ quality and market entering time, in our previous work [162].

The optimal stopping result can be estimated by eq. (4.17), where Pdummy is the baseline

profit collected by the dummy strategy, and eq. (4.18) indicates the normalized profit in

an optimal stopping problem while assuming an equal chance of profit distribution in each

time interval [163]. Additionally, the reduced search friction of the learning method can

also be obtained by averaging the profit gap in Figure 4.15. Some results associated with
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the search friction analysis are summarized in Table 4.3. In this paper, the actions retention

and partial-clearance are actually designed accordingly for the purpose of reducing search

friction while locking in a portion of the potential profit (partial-clearance) and increasing

the chance of decision-making.

(4.17) C f riction = n× min
c=2,...,H

[
VT (c)−VT (c−1)

]
×Pdummy

VT (c) =
H−1

∑
t=c

[
t−1

∏
w=c

(
w−1

w

)](
1

t +1

)
+

0.5

[
H−1

∏
w=c

(
w−1

w

)](4.18)

Table 4.3: Reduced search friction by learning method (daily)

Remaining time counter Reduced cost Analytical cost estimation

H = 3 $5.96 $23.33

H = 6 $17.32 $46.67

H = 9 $19.12 $62.22

H = 18 $40.25 $81.67

H = 36 $63.45 $97.22

4.6 Conclusion

In this paper, we studied how the retail energy broker facilitates indirect customer-to-

customer energy trading using reinforcement learning techniques. The localized event-

driven market model can provide customers or prosumers additional energy trading op-

tions, besides the conventional utility service, and further promote the deregulation of the

retail electricity market, perhaps reshaping the future energy business landscape. It should

be emphasized that this innovative local energy market does not aim to replace any exist-

ing energy service, nor is it proposed as a best market paradigm. Instead, it mainly seeks

to diversify or even gamify the energy ecosystem at the edge of distribution networks and
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near end-users. Without loss of generality, this paper assumes that most local participants

are geographically close to each other. In other words, they are most likely connected

to the same distribution feeder. Therefore, this paper does not explicitly model the AC

power flow constraint of distribution networks. In the future, we will further investigate

the conceptual market model design under more realistic operating conditions. We may

also try some virtual experience or experience replay based deep reinforcement learning

techniques to improve the intelligence and learning capability of the market operator. It

is believed that in the next-generation distribution network, more relevant energy business

models and local energy trading platforms under incubation will come into practice and

revolutionize the overall energy ecosystem.
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CHAPTER V

Modeling of prosumer

5.1 Introduction

1 In today’s retail electricity market, customers have very limited ”energy choice” or

freedom to choose different types of energy services. Although the installation of dis-

tributed energy resources (DERs) has become prevalent in many regions, most customers

or prosumers who have local energy generation and possible surplus can still only choose

to trade with utility companies. They either purchase energy from or sell energy surplus

back to the utilities directly while suffering some price gap. The key to providing more

energy trading freedom and open innovation in the retail electricity market is to develop

consumer-centric business models and possibly a localized energy trading platform. Fol-

lowing these ideas in the current research community, the next-generation retail electricity

market infrastructure will be a level playing field, where all customers have an equal op-

portunity to actively participate directly [16].

Recently, many a market mechanism has been proposed to support prosumers’ partici-

pation, such as prosumer grid integration [55], peer-to-peer models [58][60], and prosumer

community groups [138][139]. Direct integration of prosumers’ DERs in the main grid

with or without aggregators is still the most widely accepted idea because of its simple
1This chapter was planned to be published as an article in a peer-reviewed journal: [164] T. Chen, and W. Su, ”Local Energy

Trading Behavior Modeling with Deep Reinforcement Learning”, prepared to be submitted.
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applicability and manageability. The work in [55] describes a typical model that encour-

ages the aggregation of prosumers’ DERs and participation in the electricity market as a

whole. However, in order to diversify the customer-side energy ecosystem and promote

a deregulated market, prosumers’ participation in a peer-to-peer (P2P) eBay-like market

is also frequently discussed. In [58], a matching-mechanism-based market model is pro-

posed to allow individual prosumers to meet each other to conduct bilateral trades. The

concept of a prosumer community is studied in [138][144] for local energy sharing and

trading. In another example, a new vision of local distribution systems with embedded

trading functionality is also proposed [66], in which prosumers are encouraged to better

balance their electricity usage in a local community through psychological balancing pre-

miums and internal trading.

In this work, we aim to study how to use deep reinforcement learning to solve a

decision-making problem of selling or buying energy in the local market, from the pro-

sumers perspective. We aim to study prosumers’ trading behavior in a similar local energy

market (LEM), with utilization of new advances in reinforcement learning technologies.

The description of the LEM will be given in Section 5.2, and the physical feeder con-

nection of a prosumer is given in Figure 5.1. For simplification and specification, the

prosumer is assumed to have only one wind turbine (WT) and only one energy storage

system (ESS), which can be easily extended and modified for multiple installations and

other types of renewable energy resources.

With increasing installation of distributed energy resources and development of dereg-

ulated retail electricity market, the prosumer will be able to make the best use of all the

energy resources (e.g., DERs, ESS, flexible loads) available on-site to maximize its own

benefit strategically. The trading process of a prosumer will be modeled as a Markov

decision process (MDP) to fully account for the volatile market and physical conditions.
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Figure 5.1: Prosumer with energy trading conditions

With the help of the deep reinforcement learning (DRL) method, the prosumer can exer-

cise trading actions without analytical calculation (e.g., optimization) and knowledge of

the market model. The use of DRL also abandons many assumptions due to discretiza-

tion of various continuous variables. Although, the application of reinforcement learning

techniques for microgrid energy management is commonly found recently in other recent

works [165][166], the application of the DRL technique, which combines deep learning

and reinforcement learning, is firstly studied in this paper, as it is especially suitable for

such a unique local energy trading problem with many external data collections.

In this paper, our contribution is to: (1) propose a new paradigm of local energy trading

in a carefully designed local energy market; (2) study the prosumer’s trading strategy with

well-defined trading actions; (3) explore the features of the deep reinforcement learning

technique for dealing with a data-driven market model; and (4) provide some interesting

findings through experiments on prosumers’ participation.

5.2 Holistic local energy market model

The LEM is operated at the distribution level for facilitating local retail energy trading

aided by a retail energy broker (REB). This market mechanism can provide extra energy

transactions options for customers or prosumers, who have the willingness to directly par-
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ticipate in the retail electricity market, on top of the existing utility service. This LEM is

event-driven, similar to [148], because it works only as a back-up trading platform, unnec-

essary to be open permanently for the whole year. It is affected by local requirements and

seasonal events, such as high solar irradiance or energy shortages in regional grids. In this

way, the future retail electricity market, including the LEM, can be shown as in Figure 5.2.
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Figure 5.2: Local energy market with prosumer’s participation

The motivation of introducing such a localized occasional energy market is twofold: 1)

continuous deregulation, which may sound a little cliché, is still the driving force for re-

shaping the legacy energy landscape. The deregulation of the airline industry and telecom-

munications industry proves how it can benefit customers. The emergence of Priceline

and Uber are also good examples of two of the few notable industries that contextual-

ize both deregulation and new platforms that boost new business paradigm design and

new ecosystem building within the existing market context; 2) there is a need for a new

business model design and even gamification of the energy ecosystem. If successfully

implemented, the new model will significantly promote the massive introduction of new

players (e.g., REBs) in a more competitive retail market. Rather than passively accepting

the trend of the emerging energy trading paradigm, we can help customers attain a bet-
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ter understanding of the future energy landscape. Taking the smartphone as an example,

before the boom of the smartphone, mobile internet occupied only 5% of the overall in-

ternet connections. Nowadays, mobile internet connections have become mainstream and

account for half of the overall connections. We should create the same ”desire” for local

energy trading. Given these reasons, the LEM seeks to improve the efficiency of regular

retail activity mainly through diversifying the existing energy business models (commer-

cial strategies) and providing energy trading opportunities at the edge of the distribution

network, near the source of the energy demand. The conceptual design of our holistic

market model, as shown in Figure 5.3, and the major functionalities of each entity are

presented.
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Recommender

Long-term retail contract

Self-Adapted 
Learning Module

Buy/Sell

Intelligent Local 
Energy Trading

Security check

Local market price

System Reliability 
Check

Available system operation margin

Holistic Market Model and Local Energy Trading Framework

Time Scale

Minutes-Hours Event-driven Month-Year Daily

DSO: Distribution System Operator               DNO: Distribution Network Operator

Event-driven

Figure 5.3: Holistic market model design

For example, the proposed LEM will facilitate short-term and immediate local energy

transactions. The distribution system operator (DSO) or distribution network operator

(DNO) is responsible for market regulation (e.g., reliability and security checks). The

electric utility will not only serve customers as per usual but will also offer various long-

term retail plans. Meanwhile, prosumers may develop their own trading strategies by using

various types of energy devices (e.g., batteries, DERs, flexible loads) that are available. A
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local energy transaction will be physically fulfilled by leveraging the existing distribution

line and smart meters for billing and payment. It is worth noting, however, that it is not

our intention to cover every aspect of the aforementioned market model in a single paper.

In this paper, we mainly focus on the self-adapted learning module for prosumers, as

highlighted in an orange box in Figure 5.3. More description regarding other modules can

be found in [137].

5.3 Prosumer model

A prosumer is always trying to benefit by making the best use of the energy resources

available, while observing the energy trading conditions of the LEM and the utility com-

pany. As shown in Figure 5.1, we explicitly consider a wind turbine and only one ESS for

a prosumer. However, the generic model described in this section can be easily applied for

prosumers with other renewable energy resources and multiple ESSs.

5.3.1 Wind power generation model

The wind turbine is used as the major power supply unit owned by the prosumer, which

is integrated into the system as a renewable source. The generation power output can be

related to wind speed, approximately, by using the following function [167],

(5.1) Gt(v) =



0 v < vci or v > vco

Gr(v−vci)
(vr−vci)

vci ≤ v≤ vr

Gr vr ≤ v≤ vco

where vci is cut-in speed, vco is cut-off speed, vr is the rated wind speed, and Gr is the rated

output power of the wind turbine.
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5.3.2 Energy storage system model

The ESS is another one of the core parts of the energy management system for a pro-

sumer. The strategy of operating the ESS (i.e., charging and discharging) significantly

impacts the performance of the overall trading behavior. We consider the SOC at time t

with current remaining energy storage Rt with charging and discharging power, Pch and

Pdis,

(5.2) SOCt+∆t = SOCt +
Pchηc∆t

B
− Pdis∆t

Bηd

(5.3) Rt+∆t = Rt +Echηc−Edis/ηd

where B is the capacity (kWh) of the ESS, and ηc (ηd) (%) is the charging (discharging)

efficiency.

Additionally, the ESS wear cost will be taken into account in the energy trading decision-

making, in which myopic reliance on charging and discharging of the ESS to arbitrage in

the local energy market is discouraged, since it may lead to an increased long-term cost

caused by ESS degradation. An analysis of the effect of the weighting factor of the SOC

and batter wear cost can be found in [168]. The empirical ESS wear cost coefficient κ

($/kWh) is expressed as follows:

(5.4) κ =
Ci

ηdBNcδ

where Ci is the initial investment cost for the ESS, Nc is the corresponding number of life

cycles at a rated depth of discharge (DOD), and δ is the DOD of the ESS.

5.3.3 Trading actions and utilities

In this section, we will define the local energy trading actions of the prosumer, which

form its trading strategies and behaviors when participating in the local energy market.
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The prosumer can choose to buy or sell energy with consideration for the energy deficit

or surplus conditions and ESS operation. Usually, the ESS can have three statuses in

each scenario, namely charging, discharging and idle. However, the idle status can be

easily combined with either charging or discharging status when let Pch = 0 or Pdis =

0. Thus, we define the energy trading actions with four possible options: (buy,charge),

(buy,discharge), (sell,charge) and (sell,discharge). They are also indicated by a11, a10,

a01 and a00, respectively, with detailed explanation and justification given in the following

subsections.

Buy and charge, a11

This action is suitable for the scenario where the prosumer has little energy stored and a

huge load demand that cannot be covered by its on-site generation. The price signals from

the utility company and the LEM are also a very significant factor that will determine the

trading benefit with consideration for the wear cost of the ESS. The utility function of this

action is as follows:

(5.5) u
(

Gt ,Rt ,Dt

∣∣∣ a11

)
=
(

Pu
t −Pm

t

)
×Eb−κ×

(
B−Rt

)
where,

(5.6) Eb = max
{

0, (B−Rt)/ηc +Dt−Gt∆t
}

The underlying trading benefit mainly comes from the price gap between buying energy

from the utility company directly, Pu
t , and purchasing in the LEM, Pm

t . The second term

in (5.5) indicates the wear cost of the ESS. Purchasing energy amount Eb in (5.6) should

be evaluated strategically according to the estimation of random variables Gt and Dt . The

charging action is also assumed to be always fully charge.
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Buy and discharge, a10

This action is similar to a11; however, it considers discharging of the ESS in the cir-

cumstance where the purchasing price is high and unnecessary energy import should be

avoided. Both the energy obtained from purchasing and battery discharging can be used

for the energy consumption. In other words, the ESS can be used for arbitrage purpose if

the market price is extremely high.

(5.7) u
(

Gt ,Rt ,Dt

∣∣∣ a10

)
=
(

Pu
t −Pm

t

)
×Eb−κ×Edis

where,

(5.8) Eb = max
{

0, Dt−Gt∆t−Rtηd
}

(5.9) Edis = min
{

max
{

0,Dt−Gt∆t
}
,Rtηd

}
The utility function is given in (5.7) with adjusted discharging energy amount Edis.

Sell and charge, a01

This action takes into account the situation where power surplus is huge and can be

exported (sold). The trading benefit of a01 comes from the price gap between selling

energy back to the utility company directly, Pub
t and selling in the LEM, Pm

t . The utility

function of this action is as follows:

(5.10) u
(

Gt ,Rt ,Dt

∣∣∣ a01

)
=
(

Pm
t −Pub

t

)
×Es−κ×Ech

where,

(5.11) Es = max
{

0, Gt∆t− (B−Rt)/ηc−Dt
}

(5.12) Ech = min
{

max
{

0,Gt∆t−Dt
}
,(B−Rt)/ηc

}
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As presented in (5.11) and (5.12), it is also implicitly assumed that the power generation

would give priority to the charging of the ESS. The remaining energy left after charging

the ESS will then be sold in the LEM.

Sell and discharge, a00

This action is similar to a01; however, it considers the scenario of an extremely high

selling price for a given arbitrage opportunity. The ESS will be fully discharged in order to

earn extra revenue, and then charge again in other time intervals with a lower purchasing

price. The utility function of doing so is given as follows:

(5.13) u
(

Gt ,Rt ,Dt

∣∣∣ a00

)
=
(

Pm
t −Pub

t

)
×Es−κ×Rt

where,

(5.14) Es = max
{

0, Rtηd +Gt∆t−Dt

}
It is worth noting that all these actions cannot be intuitively decided only according to

the observation of the current market price and generation-demand balance, because the

random variables Gt and Dt possess high stochasticity and can only be realized at the

end of every decision-making step. Besides, the prediction and historical knowledge of

the market price, as well as its impact on ESS charging and discharging coordination,

also contribute to the difficulty of choosing the most suitable action. However, a very

intuitive rule-based dummy trading strategy is still provided in Section 5.5.2 to help with

the benchmark analysis.

5.3.4 Self-adaptive learning problem

The trading strategy design problem is to maximize the total utility or economic benefit

Ut for a prosumer across the overall time horizon, which can be written as:

(5.15) P1 : max Ut =
T

∑
t=0

u
(

Gt ,Rt ,Dt

∣∣∣ π(Gt ,Rt ,Dt , ŝt)
)
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where ŝt contains all the price-related uncertain information that can be realized and ob-

tained at the beginning of each time interval while making decisions; Gt and Dt are random

variables that can only be realized at the end of each time interval; π(·) is a policy function

that determines the current trading action according to the uncertain market information

obtained so far and predictions, as well as the estimation of random variables Gt and Dt

using accumulated historical knowledges. In this way, the problem P1 can actually also

be described as a self-adaptive learning problem that deals with decision-making under

many uncertainties with learning through historical knowledge. Further description of this

learning problem and solution method will be provided in the next section.

5.4 Deep reinforcement learning and solution algorithms

DRL is a cutting-edge ML technique that has arisen just recently in the research com-

munity of intelligence systems, and has been experimented with to be able to achieve

human-level or better control performance in various decision-making contexts [169].

DRL is poised to revolutionize the field of intelligence systems with many unpredictable

achievements and represents a step towards building autonomous systems, such as pro-

sumer communities or other intelligent energy systems, with a higher level understanding

of the decision-making environment. In particular, the leveraging of deep learning is en-

abling reinforcement learning to scale to problems that were previously computationally

intractable [170]. In theory, the DRL technique shares many common characteristics with

conventional RL technology and is organized on top of an MDP model, which will be

discussed in following subsections. Here, we use Table 5.1 to summarize the comparison

between DRL and conventional RL.

The DRL technique is suitable for solving an MDP problem like local energy trading,

because the prosumers’ decision-making and trading behavior will highly depend on var-
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Table 5.1: Reinforcement learning v.s. deep reinforcement learning

Features 
 

Reinforcement learning Deep reinforcement learning 

Typical algorithm Q-learning 
 

Deep Q-Network 

System scale Usually deal with small or 
middle-scale problem for 
computational tractability; 

Able to handle extremely 
large problem with leverage 
of deep learning techniques 
for data analytics; 

Solution methods Mostly work with tabular 
methods or policy-gradient 
methods; 

Mostly use embedded neural 
network for value function 
approximation and actor-
critic methods; 

Function 
approximation 

Inclined to use basic 
regression model or hand-
crafted features; 

Usually use deep neural 
network, such as CNN, RNN 
with LSTM as default; 
Ensemble methods are also 
commonly used; 

Experience replay Almost not used; Use transition states buffer 
to realize experience replay 
with batch training; 

Relation to other 
methods 

Close relation to dynamic 
programing and simulation 
based methods; 

Close relation to deep 
learning and most data-
driven methods; 

 

ious types of continuous variables that are hard to be discretized as state space in conven-

tional Q-learning. Additionally, with the help of an experience replay module embedded in

DRL, the best use of the stochastic market information and renewable energy generation,

as well as prosumer’s load demand pattern, will be possible.

5.4.1 Markov decision process

An MDP usually provides a mathematical description for situations where a system can

be partly under the control of decision-making, while also partly random and independent

of the control. An MDP model is described by state space S , action space A , reward

function set R, state transition probability matrix P and a discount factor γ ∈ [0,1]. It is

often assumed that an MDP model keeps the Markov property, which implies the transition

probabilities of a state are only affected by the previous one step with no memory. By
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following the principle of MDP modeling, we can design the reward function to be,

(5.16) rt = u
(

Gt ,Rt ,Dt

∣∣∣ at

)
where u(.|at) can be calculated according to prosumer’s utility estimation (5.5)-(5.14) and

affected by various forecasting or historical information organized in the state variable

st = {XT
t , ŝt ,Gt ,Dt ,Rt}; where XT

t is the time stamp, XT
t ∈ {1,2,3, ...,T}, and ŝt stores all

the price-related uncertain information at time t, ŝt = {Pm
t ,Pu

t ,P
ub
t }. In this way, the total

utility or economic benefit Ut for a prosumer beginning from time t can be written as:

(5.17) Ut =
T

∑
k=0

γ
krt+k+1

(
π(st+k+1),st+k+1

)
It should be noted that the policy function at+k+1 = π(st+k+1) will often affect the next

time-step st , and most information stored in st is highly stochastic with dependent rela-

tionships between some of them. To explicitly model the decision-making process under

uncertainties with consideration of expectations, the problem P1 can be re-written as:

(5.18) P2 : max
π:S→A

E

[
T

∑
t=0

(γ)trt
(

st ,π(st)
)]

As our local energy trading model of customer-side learning is built as an MDP model,

the problem is supposed to be solved efficiently by dynamic programming techniques,

once the transition probability set is given. However, this is not the case, since the tran-

sition probability is usually extremely hard to estimate under most circumstances. There-

fore, some standard reinforcement learning techniques, such as temporal-difference learn-

ing or specifically Q-learning, are supposed to be helpful in dealing with model-free prob-

lems, in which no information regarding transition probability is needed. On the other

hand, there will also be some issues associated with the model-free techniques in practice,

namely how to deal with the continuous state space. For instance, the market status S
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in this paper consists of various types of contentious variables, such as price information,

energy demand and generation, and ESS status, which are hard to enumerate or even dis-

cretize. In order to deal with the continuous state space and overcome the disadvantages

of tabular methods [152], we leverage deep neural network (DNN) technology to realize

a deep Q-learning algorithm for local energy trading (DQL-LET), similar to another suc-

cessfully applied algorithm DQN in playing video game Atari [171]. In the next sections,

the DQL-LET algorithm and its novel characteristics, especially experience replay, will be

described to help solve a continuous, highly stochastic local energy trading problem.

5.4.2 Deep Q-learning algorithm

Similar to the basic Q-learning algorithm, the overall utility of the prosumer can be

evaluated by value-function Q(·) or V (·), and the optimal stationary policy π∗ can be well

defined by using the optimal action-value function Q∗ : S ×A →R, which satisfies the

following Bellman optimality equation:

(5.19) Q∗(s,a) = r(s,a)+ γ ∑
s′∈S

p
(
s′
∣∣s,a)V ∗(s′),

where V ∗
(
s′
)

is the optimal state-value function [152], which is defined as

(5.20) V ∗
(
s′
)
= min

a∈A
Q∗(s′,a), ∀s ∈S .

Since V ∗
(
s′
)

is the expected discounted system cost with action a in state s, we can

obtain the optimal stationary policy:

(5.21) π
∗(s)= argmina∈A Q∗(s,a).

In maximizing the overall utility Ut since time t, any model-free learning based method,

unlike dynamic programming methods [158], can provide a solution without acquisition of

the state transition probabilities ps
(
st+1

∣∣st ,at
)
,∀s ∈S a priori [159]. Furthermore, DRL
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will enable an intelligent agent to make decision without discretization of the continuous

state space and make better use of historical data samples, which is called experience

replay.

In the RL research community, a linear function approximator based on hand-crafted

features is often used to estimate the action-value function,

(5.22) Q(s,a;θ)≈ Q∗(s,a).

However, a non-linear function approximator, such as DNN, can be used instead with

features extracted automatically. In this way, we can refer to this neural network function

approximator with weights θ as a Q-network. A Q-network can be trained by minimizing

a sequence of loss functions Lk(θk) that changes at each iteration k,

(5.23) Lk(θk) = Es,a∼ρ(.)

[(
yk−Q(s,a;θk)

)2
]

where yk = Es′∼S

[
r+ γmaxa′Q(s′,a′;θk−1)|s,a

]
is the target for iteration k and ρ(s,a) is

a probability distribution (i.e., behavior distribution) over sequences s and actions a. It is

worth mentioning that in contrast with the fixed targets used for supervised learning, in

DRL, the targets depend on the network weights. Thus, differentiating the loss function

(5.23) with respect to the weights can be written as follows,

∆θkLk(θk) =Es,a∼ρ(.);s′∼S

[(
r+ γmaxa′Q(s′,a′;θk−1)

−Q(s,a;θk)
)
∆θkQ(s,a;θk)

]
(5.24)

Rather than computing the full expectations of the gradient, it is often computationally

expedient to optimize the loss function by stochastic gradient descent. Based on the RL

framework and DNN function approximation for evaluating a prosumer’s current trading

strategy, Algorithm 2 is presented to facilitate local energy trading and is named after the

deep Q-learning for local energy trading (DQL-LET) algorithm.
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Algorithm 2 Deep Q-Learning for Local Energy Trading (DQL-LET) Algorithm
1: Initialize trading replay memory D to capacity Nmax
2: Initialize DNN based action-value function Q with random weights
3: Repeat for each episode = 1, ...,M:
4: Collect the current market, ESS and demand conditions
5: Forecast the wind power generation via (5.1)
6: Initialize sequence s1 = {XT

1 ,Pm
1 ,Pu

1 ,P
ub
1 ,G1,D1,R1} and preprocessed sequenced φ1 = φ(s1)

7: Repeat for each time step of episode, t = 1, ...,T :
8: With probability ε select a random action at ∈ {a00,a01,a10,a11}, otherwise select at = maxaQ∗

(
φ(st),a;θ

)
9: Execute trading action at in emulator and observe reward rt = u(.|at) via (5.5)-(5.14)

10: Set st+1 = st ,at and preprocess φt+1 = φ(st+1)
11: Store transition (φt ,at ,rt ,φt+1) in trading replay memory D
12: If |D|> batch size
13: Sample random minibatch of transitions (φ j,a j,r j,φ j+1) from D

14: Set y j =

{
r j for terminal φ j+1

r j + γmaxa′Q(φ j+1,a′;θ) for non-terminal φ j+1

15: Perform a gradient descent step on
(
y j−Q(φ j,a j;θ)

)2 according to (5.24)
16: If exploration rate ε > εmin
17: ε ← ε× εdecay
18: End loop
19: End loop

In this paper, we will not go deep into the theoretic analysis of the algorithm con-

vergence and boundary conditions, which are still under study with many cutting edge

research topics. Interested readers may see [170] and [171] for additional information.

That said, the features of DQL-LET with experience replay are further discussed here.

5.4.3 Experience replay

One of the challenges of general DQL is that the neural network used in the algorithm

tends to forget its previous experiences as it overwrites them with new experiences, which

is similar to updating of the Q table in Q-learning. So we need to maintain a list of previous

experiences and observations to re-train the model with its previous experiences. This list

of previous experiences forms a dataset of transitions and can be called the replay buffer,

as shown in Figure 5.4.

Dataset of transitions
(“replay buffer”)

Environment

(s, a, s’, r)

𝜋 (a|s) (e.g., є-greedy)
Off-policy Q-learning

with DNN

On-policy sample collection

x f(x)

Figure 5.4: Experience replay with transition state buffer
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The experience replay procedure stores transition samples and repeatedly presents them

to a gradient and DNN-based, incremental RL algorithm. Thus, we can make better use

of the computational efficiency of the underlying gradient-based algorithm, while also

obtaining high data efficiency by reusing the samples. Meanwhile, the approximate Q-

function and the greedy policy are able to remain constant during the interval between

consecutive parameter updates of the DNN. The term trajectory can be used to refer to

every sequence of batch size samples (mini-batch) collected between two consecutive up-

dates [172]. If the weights are updated after every time-step, and the expectations are

replaced by single samples from the behavior distribution ρ(·) and the emulator S re-

spectively, then the algorithm will degenerate to the conventional Q-learning algorithm.

5.5 Numerical results

In this section, we provide numerical results to show some interesting observations

regarding the proposed prosumer energy trading behavior model and evaluate the perfor-

mance of the algorithm for local energy trading strategies. Unless specifically indicated,

the timeline, one day, consists of 24 time intervals, each of which lasts for 1 hour. The

simulation environment is Python 3.6 running on a desktop with an Intel i7 and 16.0 GB

RAM.

5.5.1 Simulation setup

Since the proposed market design of local energy trading is still at a conceptual level

without field test data, some distribution generated data are used first to test the validity of

the DQL-LET algorithm. The system parameters are given in Table 5.2 with battery model

parameters provided in Table 5.3. Some realistic dataset representing the load demand will

be assumed for several different prosumers to demonstrate the economic benefit within the

proposed framework of local energy trading in section 5.5.3.
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Table 5.2: Parameters of the system model

Parameters Values

Pm U
(

0.42,0.48
)

Pu U
(

0.47,0.53
)

Pub U
(

0.37,0.43
)

G Gnoise ∈N
(

0,1.22
)

, Gmax = 12, Gmin = 3

D Dnoise ∈N
(

0,1.12
)

, Dmax = 10, Dmin = 0

ε = 0.1, εdecay = 0.995, εmin = 0.01, α = 0.001

NT = 24, ηd = ηc = 0.90, batch size = 32, γ = 0.95

Table 5.3: Battery parameters
Battery Lead-Acid
Type 2 V/1000 Ah

Capacity 20 kWh
Minimum limit 3 kWh

Cycle life 1000 @ 30% DOD
Charging and discharging efficiencies 90%

Battery cost $70 per kWh
Installation cost $25 per kWh

Transportation cost $20 per kWh

The stochastic load demand and wind generation are assumed based on typical gen-

eration Ĝt and demand D̂t curves (as shown in Figure 5.5) of a typical prosumer with

modifications as follows:

(5.25) Gt = min
{

max
{

Ĝt +Gnoise,Gmin
}
,Gmax

}

(5.26) Dt = min
{

max
{

D̂t +Dnoise,Dmin
}
,Dmax

}
For the neural network embedded in the DQL-LET algorithm, we use three hidden lay-

ers with fully connected architecture and ReLU as the activation function. The network is

trained with an adaptive stochastic gradient descent based on estimates of lower-order mo-

ments (i.e., Adam [173]), which can speed up convergence and is appropriate for problems

with very noisy and/or sparse gradients.
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Figure 5.5: Wind generation Ĝt and typical load demand D̂t of a prosumer

5.5.2 Performance evaluation of the proposed method

In this case study, we will present the advantages of using DRL technology for guiding

prosumers’ trading behaviors in the LEM. We call the trading strategy aided by the DQL-

LET algorithm a smart strategy, and in contrast, we call arbitrary trading actions a dummy

random strategy, in which the prosumer chooses the trading action randomly without any

analysis. In addition, a rule based trading strategy is also designed as a benchmark in

Figure 5.6 to reflect prosumers’ intuitive trading behaviors with reasonable choices based

on myopic analysis.

As shown in Figure 5.6, the prosumer will make a decision mainly depending on the

current market information obtained so far. The prosumer will try its best to sell or buy

in the LEM immediately if the local market price is significantly too high, Pm > Pu, or

too low, Pm < Pub, using the utility price as a reference. While the local market price is

among a certain range, Pu < Pm < Pub, the prosumer will have multiple choices according

to his/her own estimation of the demand load and generation. However, perfect coordi-

nation between the future market price and battery storage, as well as accurate estimation

of stochastic demand and generation, is hard to be captured by a prosumer’s intuition.
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G < D ? SoC<SoCmax? 

SoC<SoCmax? 
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States at time t

Figure 5.6: Intuitive rule based trading strategy

We can easily observe in Figure 5.7 that the smart strategy with DQL-LET outperforms

significantly both the rule-based strategy and dummy random strategy.
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Figure 5.7: Prosumer’s daily economic benefit in local energy trading

In addition, it should be emphasized that as deep reinforcement learning technology is
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usually data-driven and dependent on historical experience replay, it cannot guarantee the

learned trading strategy is deterministic and the best every time, every day. We can only

conclude that the learning algorithm will perform very well in a statistical way in the long

term.

5.5.3 Economic analysis of the prosumer

This case study uses a load demand dataset collected from a realistic Finnish distri-

bution system operator in northern Europe, which includes 3,398 non-empty low voltage

customers in a small region [120]. We randomly picked nine customers out of them to

analyze the annual economic benefit of these prosumers when participating in local en-

ergy trading intelligently. They are assumed to have similar wind turbines and ESSs in-

stalled. As shown in Figure 5.8, the load demand data is collected within 20,999 hours

from 2010.06.10 to 2012.10.31.
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Figure 5.8: The load demand curves of random selected 9 customers , numbering customers from top (No.1)
to bottom (No.9)

In order to compare prosumers’ economic benefit from trading in the LEM with trading

directly with the utility company and fully consider the stochasticity of renewable gener-
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ation and load demand, as well as uncertain market conditions, under different scenarios,

the average annual economic benefit for each prosumer can be calculated as follows:

(5.27) Ryear = 365× r0×
1

NdNs

Nd

∑
k=1

Ns

∑
i=1

Rday(i,k)

where Ryear and Rday indicate the average annual benefit and daily benefit achieved from

trading in the LEM, respectively; r0 indicates the occasional market open rate determined

by an event-driven LEM. As mentioned before, since the smart trading strategy outper-

forms others in a nondeterministic way, the simulation will run for Nd = 20,999/24≈ 874

days (episodes) for different wind generation scenarios and power output (low, medium

and high), with Ns = 3. The final result with r0 = 20% and consideration of whether an

ESS is available or not is shown in Figure 5.9.

Customer #1Customer #2Customer #3Customer #4Customer #5Customer #6Customer #7Customer #8

with Utility 1448.1 4197.5 4386.1 4033.9 5047.4 2955.8 4400.9 4365.6

with LEM 1921.3 4672 4897.9 4534.1 5560.4 3473.4 4862.5 4838.4

with LEM + ESS 2631 5387.4 5563.2 5184.4 6227.3 4146.3 5601 5500.2
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Figure 5.9: The annual economic benefit of each prosumer

5.6 Conclusion

In this paper, we proposed an event-driven local energy market for facilitating energy

trading at the distribution level. We also studied how the prosumer chooses its local energy

trading strategies given the available energy resources. The problem is built as an MDP

and is solved by using new advances in reinforcement learning technology, namely deep

reinforcement learning. It should be emphasized that this innovative local energy market

does not aim to replace any existing energy service, nor is it proposed as a best market
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paradigm. Instead, it mainly seeks to diversify or even gamify the energy ecosystem at

the edge of distribution networks and near end-users. In the future, some additional en-

ergy business models and services provided by the local energy market will be carefully

designed. It is also believed that the active participation of end-users will revolutionize the

overall energy ecosystem and reshape the energy business landscape.
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CHAPTER VI

Conclusion and future work

The massive technology and industry transformation is rapidly reshaping the upgraded

power system, also known as Smart Grid, to help improving the energy efficiency. On top

of many upgraded energy infrastructures and new market mechanism, the further deregula-

tion of retail electricity market at distribution level will play a important role in promoting

such transformation in a socioeconomic way. It is believed that in the next-generation

distribution network, more relevant energy business models and local energy trading plat-

forms under incubation will come into practice and revolutionize the energy ecosystem

for end-users. Thus, understanding the deregulated retail electricity markets in the future

from a perspective of machine learning and optimization is very inspiring for facilitat-

ing intelligent operation of the economy-engineering nexus. The global Smart Grid and

electricity market development is expected to continue its growth momentum in the next

decade. This dissertation proposed a localized electricity market and discussed opportuni-

ties of emerging technologies for intelligent energy system operation. Chapter 4 studies a

decision-making process aided by reinforcement learning for the retail energy broker, who

plays a role of trader or middleman. While chapter 5 considers a decision-making process

for an individual prosumer with suitable operation of the energy storage system. This dis-

sertation also suggested many improvement and future work for the proposed framework
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and methodology.

The main contributions of this dissertation are as follows:

(1) Provided a new holistic localized electricity retail market design for future local

energy trading happening at distribution level;

(2) Explored the utilization of machine learning (reinforcement learning) technologies

for new paradigm of power system operation and future smart grid;

(3) Combined the adaptive data-driven methods with the static optimization framework

to solve a decision-making problem within distribution network;

(4) Suggested new paradigm of research framework based on agent-based modeling for

studying interactions among various kinds of energy entities.

In the future, this work can be improved and enhanced from different aspects: 1) for

methodology, we can further improve the reinforcement learning efficiency by leverage

of actor-critic methods, and combine the data-driven optimization methods, such as dis-

tributionally robust optimization, with machine learning methods; 2) for modeling, we

may consider multi-type batteries, solar panels, combined-heat-pumps and thermostati-

cally controlled loads; 3) for implementation, we will use some agent-based simulation

software packages, such as Repast Symphony and JADE, to consider multi-agents inter-

actions and group behavior in the proposed localized electricity market.

Based on the various aforementioned studies of the retail electricity market in recent

years, some trends can be easily observed that: (1) the system or market operation is more

fine-grained from different perspectives, trying to balance credits’ assignment and benefit

sharing among many types of market entities, including suppliers, speculative retailers,

utilities, service providers, customers and other new parties introduced by new business

models; (2) more and more consideration is given for economic operation on top of pure

system requirement satisfaction, and a certain degree of risk is acceptable given the im-
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proving uncertainty of the whole system; (3) customers are expected to be more active in

this market-loop instead of passive participants, which are allowed to directly interact with

other market participants and exercise negotiation power. The study of the electricity mar-

ket is more or less not a pure technique problem, especially considering the fairness rule

(e.g., non-discrimination), data privacy and renewable energy subsidy policy in the retail

electricity market close to the customer side. As concluded, this work will also contribute

to the socioeconomic development of our society and energy sector reform with consider-

ation for the societal impact on customer-customer interactions, energy communities, and

energy policy making. Simply put, the changes brought by the deregulated retail market

will be far beyond the scope of merely the engineering and economic fields. Its develop-

ment will ultimately benefit the value monetization of new technologies and produce ways

in which human beings can interact better with each other. Although it is hard to say how

long to realize such an open and diverse energy ecosystem. Retail electricity markets are

truly reaching something of a breaking point now. This is because the fundamental and

underlying architecture of electric power systems are changing in major ways, which will

enable a tremendous transformation in just a few decades.
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