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Abstract

Background: We recently upgraded our [18F]fludeoxyglucose (FDG) production
capabilities with the goal of futureproofing our FDG clinical supply, expanding the
number of batches of FDG we can manufacture each day, and improving patient
throughput in our nuclear medicine clinic. In this paper we report upgrade of the
synthesis modules to the GE FASTLab 2 platform (Phase 1) and cyclotron updates
(Phase 2) from both practical and regulatory perspectives. We summarize our experience
manufacturing FDG on the FASTLab 2 module with a high-yielding self-shielded niobium
(Nb) fluorine-18 target.

Results: Following installation of Nb targets for production of fluorine-18, a 55 μA beam
for 22 min generated 1330 ± 153 mCi of [18F]fluoride. Using these cyclotron
beam parameters in combination with the FASTLab 2, activity yields (AY) of FDG were
957 ± 102 mCi at EOS, corresponding to 72% non-corrected AY (n = 235). Our workflow,
inventory management and regulatory compliance have been greatly simplified
following the synthesis module and cyclotron upgrades, and patient wait times for
FDG PET have been cut in half at our nuclear medicine clinic.

Conclusions: The combination of FASTlab 2 and self-shielded Nb fluorine-18 targets
have improved our yield of FDG, and enabled reliable and repeatable manufacture of
the radiotracer for clinical use.

Keywords: PET radiochemistry, Cyclotron targetry, Fludeoxyglucose (FDG), Fluorine-18,
Automation

Background
The global radiopharmaceuticals market is expected to reach $10 billion by 2024,

driven by growing demand for diagnostic imaging procedures (positron emission tom-

ography (PET) and single photon emission computed tomography (SPECT)) as well as

the introduction of radiotherapeutics such as Lutathera® and Xofigo® and their approval

by the U.S. Food and Drug Administration (FDA). In the context of PET imaging,

[18F]fludeoxyglucose (FDG) remains the most widely utilized radiopharmaceutical in

the world. The 1990s saw approval of FDG by the FDA and subsequent reimbursement

by the Centers for Medicare and Medicaid Services (CMS), and since that time the use

of FDG PET for imaging applications in oncology, neurology and cardiology has grown

steadily. Reflecting this, an estimated 1.945 million clinical PET (and PET/CT) studies
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occurred in the United States in 2017, up 15% from 2015, and makes FDG PET a multi-

million dollar market in its own right (PET Imaging Market Summary Report 2018).

The short half-life of fluorine-18 (109.77 min) necessitates that FDG is manufactured in

a radiochemistry facility, either on site in an academic medical center or at a centralized

nuclear pharmacy in close proximity to the clinical PET scanner(s). The daily synthesis and

delivery of FDG for human studies presents unique challenges including: i) a need for rapid

and reliable manufacturing since using short-lived 18F mandates a total preparation time of

~ 1–2 h and batch production on a daily basis; ii) radiation safety as multi-Curie amounts

of 18F are often employed in the synthesis of FDG; iii) pharmaceutical-quality procedures

to accommodate FDA regulated current Good Manufacturing Practice (cGMP); iv) reliabil-

ity to ensure excellent patient care; and v) economic considerations to maintain

cost-containment in health care operations. Initially, FDG was prepared using early home-

made remote synthesis systems under pharmaceutical compounding regulations (for a re-

view of FDG synthesis and quality control methods, see: Yu 2006). However, a changing

regulatory environment in addition to the need for synthesizing larger amounts of FDG to

meet the growth in FDG PET utilization have catalyzed a number of changes in the PET

community from regulatory and practical points of view. For example, the requirement to

manufacture FDG for clinical use as a generic drug in accordance with cGMP became a

mandate in the United States in 2012. The cGMP regulations for PET drugs are described

in 21CFR212 and enforced by the FDA (for an overview of PET drug regulatory consider-

ations, see: Schwarz et al. 2014). Cassette-based automated synthesis modules have also be-

come commonplace in FDG production sites, replacing the manual techniques and earlier

homemade systems employed in the 1980s and 1990s (for a perspective on future technol-

ogy developments as they pertain to PET radiochemistry, see: Thompson et al. 2016). Such

systems facilitate compliance with cGMP as they can be run by software compliant with

21CFR11 (the FDA regulations covering electronic records) and utilize single use cassettes

that are sterile, manufactured according to cGMP and which are compatible with cleaning

validation protocols (Haka et al. 2017). In addition, the transition to automated systems

has also enabled the production of larger amounts of FDG, sometimes in excess of > 20 Ci,

in a manner that still ensures the safety of production radiochemists and adheres to the As

Low As Reasonably Achievable (ALARA) principle.

Since 2006, the University of Michigan PET Center has generated fluorine-18 on a Gen-

eral Electric (GE) PETTrace cyclotron equipped with silver (Ag) fluorine-18 targets, and

manufactured FDG using the GE TRACERLabMX-FDG synthesis module (formerly the FDG

Synthesizer from Coincidence Technologies, until its acquisition by GE in 2001 (GE plans

acquisition of PET device maker Coincidence Technologies 2001)). As of 2015, we have also

manufactured generic FDG under an approved Abbreviated New Drug Application

(ANDA). In the last two decades there has been steadily increasing demand for clinical PET

within Michigan Medicine, the vast majority (> 80–90%) of which are FDG scans (Fig. 1).

For example, 151 patients received PET scans in 1997 (0.6 per day over 250 scanning days),

compared to 1960 in 2007 (9.3 per day over 210 scanning days), and 6777 in 2017 (26.79

per day over 253 scanning days). In addition, we have received a number of inquiries about

the possibility of our center supplying FDG to various outside entities which we are actively

exploring. Coupled with an “end-of-life” announcement from GE for the TRACER-

LabMX-FDG, we had an urgent need to futureproof our FDG production capabilities, while

also increasing FDG yields and expanding the number of batches of FDG we could
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manufacture each day. In order to address these issues, we have updated our FDG manufac-

turing program in two phases. Phase 1 consisted of replacing TRACERLabMX-FDG single

cassette synthesis modules with FASTLab 2 modules and DUO cassettes (Fig. 2), while

Phase 2 involved updates to the cyclotron, including upgrading the fluorine-18 targets on

the PETTrace from traditional Ag targets to high yielding self-shielded Nb targets (Fig. 3).

In this article we report our experience with these upgrades from both practical and regula-

tory perspectives, and summarize our experience manufacturing FDG at each phase.

Methods
General considerations

Unless otherwise stated, kits and supplies were commercially available and used as re-

ceived: TRACERLabMX-FDG cassettes were purchased from ABX or Rotem, FASTLab 2

DUO cassettes were purchased from GE, and Modular Lab dispensing cassettes were

obtained from Eckert and Ziegler. H2
18O was obtained from ABX or Rotem. Sodium

Fig. 1 Clinical PET utilization at the University of Michigan PET Center (*estimated)
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phosphates, USP and sterile water for injection, USP were purchased from Hospira.

Sterile product vials were purchased from Hollister-Stier.

Generation of [18F]fluoride on the GE PETtrace cyclotron

[18F]Fluoride was produced via the 18O(p,n)18F nuclear reaction using a 16 MeV GE PET-

Trace cyclotron using either Ag or Nb targets as summarized in Table 1.

Synthesis of [18F]Fludeoxyglucose

The synthesis of FDG was performed on either a GE TRACERLabMX-FDG as previously

described (Richards and Scott 2012), or FASTLab 2 synthesis module as follows:

[18F]fluoride was delivered from the cyclotron and trapped on a quarternary methylam-

monium (QMA) cartridge. The [18F]fluoride was eluted from the QMA into the reactor

with an eluent mixture (0.5 mL of a solution containing 3.75–5.75 mg of K2CO3 and

Fig. 2 FASTLab 2 equipped with dual run FDG DUO cassette (image courtesy of GE Healthcare)

Fig. 3 Self-shielded high yielding niobium target for production of fluorine-18 (image courtesy of GE Healthcare)
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23–30 mg of kryptofix-2.2.2 (K2.2.2) in a 1:4 mixture of water and acetonitrile) and

azeotropically dried. A solution of mannose triflate 1 (33 ± 3 mg in 1.7 mL acetonitrile)

was added and the radiofluorination was conducted at 125 °C for 2 min to give

[18F]fluoro-1,3,4,6-tetra-O-acetyl-D-glucose ([18F]FTAG, 2) (Scheme 1). The reaction

mixture containing 2 was diluted with water (11 mL) and passed through a C-18

Sep-Pak cartridge. [18F]FTAG (2) was trapped on the C-18 Sep-Pak cartridge, washed

with additional water (13 mL), and base hydrolysis occurred on the cartridge at room

temperature using 2 N NaOH (1 mL) for 3 min to give FDG. FDG was then eluted

from the cartridge with citrate buffer (1.7 mL), passed through a second C-18 Sep-Pak

(to remove any partially-protected FDG) followed by an alumina-N cartridge (to re-

move any unreacted [18F]fluoride ion) and diluted with water (~ 19 mL) before being

dispensed into a sterile intermediate vial pre-charged with water for injection, USP

(7.6 mL), and sodium phosphate buffer for injection, USP (0.35 mL). The resulting so-

lution (~ 29 mL) was then passed through a 0.22 μm sterile filter, and dispensed into

patient (~ 26 mL), quality control (~ 0.5 mL) and sterility (~ 2.5 mL) vials using an

Eckert and Ziegler Modular Lab automated dispensing system (Fig. 4).

Quality control of [18F]Fludeoxyglucose

Quality control (QC) testing of FDG doses was conducted according to the guidelines

outlined in 21CFR212, and as previously described (Richards and Scott 2012). Daily

QC testing consisted of visual inspection (doses must be clear, colorless and free of par-

ticulates), pH (pH paper, must be 4.5–7.5), residual K2.2.2 (spot test, must be ≤50 μg/

mL), radiochemical purity (TLC, must be > 90%), radiochemical identity (TLC, RF of

radiotracer and reference standard match), radionuclidic identity (half-life must be

105–115 min), residual solvent analysis (GC, < 410 ppm MeCN; < 5000 ppm EtOH),

sterile filter integrity (bubble point, ≥50 psi), bacterial endotoxin analysis (Endosafe,

≤175 endotoxin units / dose), and sterility per USP Chapter 71 (fluid thioglycolate

media and soybean casein digest agar media tubes, no evidence of microbial growth

found). Additional periodic QC testing including radionuclidic purity (MCA, ≥99.5%)
and osmolality (osmometer, 270–330 mOsmol/kg) was conducted quarterly. All doses

of FDG discussed in this article met or exceeded all of these quality control release cri-

teria, and were stable for 24 h after end-of-synthesis (EOS).

Table 1 Production of [18F]fluoride on a PETtrace Cyclotron

Beam parameters Target Volume of H2
18O Starting fluoride (mCi)

Historical (n = 2137) 40 μA, 22 min Ag 1.6 mL 1011 ± 116

Phase 1 (n = 383) 40 μA, 30 min Ag 1.6 mL 1179 ± 106

Phase 2 (n = 235) 55 μA, 22 min Nb 2.7 mL 1330 ± 153

Scheme 1 Synthesis of FDG
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Results and discussion
Practical considerations

Historically, we have generated fluorine-18 on a GE PETTrace cyclotron equipped with

Ag fluorine-18 targets, and manufactured FDG using the GE TRACERLabMX-FDG synthe-

sis module (Table 2). A typical production of FDG began by generating [18F]fluoride with

the PETtrace cyclotron via the 18O(p,n)18F reaction. Bombarding an Ag target containing

H2
18O (~ 1.6 mL) with a 40 μA proton beam for 22 min produced 1011 ± 116 mCi of

[18F]fluoride. FDG was then prepared by standard fluorination of mannose triflate (1),

followed by base hydrolysis (Scheme 1). Typical non-corrected yields of FDG using this

setup were 527 ± 95 mCi (n = 2137), corresponding to 52% activity yield (AY). This

amount of FDG was adequate when scanning up to ~ 15 or 16 patients per day at

Michigan Medicine. However, as discussed above, there has been steadily increasing de-

mand for FDG within our PET Center (Fig. 1), as well as inquiries about the possibility of

our center supplying FDG to a number of outside entities. Concurrent with this growth,

GE released an “end-of-life” announcement for the TRACERLabMX-FDG because of obso-

lete parts. As a result, in Phase 1 of the updates to our FDG production operation, two

TRACERLabMX-FDG modules were replaced with FASTLab 2 synthesis modules.

From a practical perspective, the transition from TRACERLabMX-FDG modules to

FASTLab 2 was seamless. Replacement of both modules was completed within 7

business days, including Install Qualification and Operation Qualification (IQOQ). Since

the DUO cassettes allow manufacture of two batches of FDG within a 26 h period, our

Fig. 4 Modular Lab Automated Dispensing System

Table 2 FDG Production Data

Starting 18F− (mCi) Synthesis Module FDG (mCi) a RCYa

Historicalb (n = 2137) 1011 ± 116 TRACERLabMX-FDG 527 ± 95 52%

Phase 1b (n = 383) 1179 ± 106 FASTLab 2 839 ± 77 71%

Phase 2b (n = 235) 1330 ± 153 FASTLab 2 957 ± 102 72%

a non-corrected yields at end-of-synthesis; b Historical: TRACERLab/Ag targets; Ph 1: FASTLab/Ag targets; Ph 2:
FASTLab/Nb targets
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production capacity increased to 200% of our previous levels; FDG production capacity of

our lab doubled from 2 batches of FDG per day on 2 x TRACERLabMX-FDG modules to 4

batches of FDG per day on 2 x FASTLabs. Notably, this increased capacity was accom-

plished without the need to install costly new hot-cells in the laboratory. We considered

installing both FASTLabs in a single mini-cell since their size allows this configuration.

This would have made one of our two mini-cells occupied by the TRACERLabMX-FDG

modules available for other applications. However, in the end we reasoned that having

both FASTLabs in the same mini-cell would not allow us to run one while conducting

maintenance on the other. Therefore we elected to install them in separate mini-cells.

The transition to FASTLab also simplified our workflow and inventory management.

Since all of the reagents for 2 FDG production runs are contained within a single

FASTLab 2 cassette, manufacturing 2 batches of FDG per day is quite straightforward

when compared to ordering, receiving and utilizing the separate hardware kits, reagent

vials and other components required for 2 separate runs a day using the TRACER-

LabMX-FDG modules.

In anticipation of an increase to ~ 25 patients scanned with FDG per day at our

facility, we increased the beam time to 30 min and deployed the FASTLab 2 modules

(Table 2). Thus, bombarding an Ag target containing H2
18O (~ 1.6 mL) with a 40 μA

proton beam for 30 min produced 1179 ± 106 mCi of [18F]fluoride. FDG was then pro-

duced using the FASTLab 2, and typical yields were 839 ± 77 mCi (n = 383), corre-

sponding to 71% non-corrected AY. We were gratified to observe that the optimized

manufacturing process developed for the FASTLab 2 offered a significant increase in

AY of FDG (cf. 52% for the TRACERLabMX-FDG).

In late 2017, there was a move to further expand the number of patients that could

be scanned with FDG to 30–32 per day. Operations at our PET Center are complex

and include 4 radiotracers manufactured for routine clinical use, 35 different PET ra-

diotracers manufactured routinely for clinical research, as well as a basic science re-

search program developing new radiochemistry methodology and novel radiotracers.

Given this operational complexity, we do not have bandwidth to monopolize the cyclo-

tron for hours every day and run long fluorine-18 beams to increase our FDG output

like commercial nuclear pharmacies. Moreover, in the clinic, multi-dose vials of FDG

are used in combination with the Bayer Medrad® Intego PET Infusion System (Fig. 5).

The Intego is compatible with vials containing 700–750 mCi of FDG. Above these

radioactivity levels, dose preparation and radiation shielding are compromised (Bayer

Medrad Intego Brochure 2017). We therefore wished to increase our yields of

[18F]fluoride from the cyclotron (and the corresponding yields of FDG) within the con-

fines of a short beam (≤30 min) such that an FDG beam could be efficiently slotted in

around 10–12 other beams that are run on our PETTrace during a typical work day.

Phase 2 of our facility updates occurred in January 2018, when we undertook the

manufacturer-recommended ten year life extension and refurbishment (TYLER)

maintenance on the PETTrace cyclotron. This program was undertaken to update the

cyclotron with the latest technology (water pump, magnet power supply etc.), while

concurrently increasing our radionuclide production capacity. Updates included re-

placing outdated Ag body fluorine-18 targets with new high yield Nb body self-shielded

fluorine targets. These targets use 2.7 mL of H2
18O, and can be run on our updated

system at beam currents up to 85 μA on a single target, or 130 μA on dual targets. As
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a side note, the tungsten-copper alloy in the self-shielded target is specified to lead to a

10 to 20-fold reduction in exposure resulting from the target foil, and 100-fold reduc-

tion in exposure due to any residual 18F in the target. We have only been working with

the targets for 6 months but our initial experiences appear to be in line with these

manufacturer specifications.

Fig. 5 Bayer Medrad® Intego PET Infusion System
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Following these system updates, our goal was to generate ~ 950 mCi of FDG at EOS.

After removal of sterility and QC samples, this would provide ~ 850 mCi in the patient vial

to be transported to the PET imaging suite. Allotting a further 0.5 h for radioactive decay as-

sociated with completion of QC testing and transporting FDG to the PET suite would allow

us to deliver ~ 700 mCi, which is compatible with the limits of the Intego PET Infusion sys-

tem (vide supra). After several optimization studies with the updated cyclotron, we decided

upon a 55 μA proton beam for 22 min, which generates 1330 ± 153 mCi of [18F]fluoride

(n = 235). Using these cyclotron beam parameters in combination with the DUO cassettes

on FASTLab 2, yields of FDG were 957 ± 102 mCi at EOS, corresponding to 72% AY

(Table 2). Manufacturing this amount of FDG at 8:00 am and 2:00 pm allows us to run

two clinical PET-CT scanners for 12 h per day, and scan up to 32 patients a day with FDG.

Regulatory considerations

When updating the manufacture of FDG, as an FDA-approved drug there were two

main regulatory considerations to address in addition to the practical aspects outlined

above. The first of these was establishing that FDG manufactured on the FASTLab

(using Ag or Nb targets) was equivalent to FDG made using the TRACERLabMX-FDG,

and that in each case the product matched the Reference Listed Drug (RLD) that was

the basis for our ANDA (Table 3). An RLD is the approved drug product to which a

new generic version is compared. The FDA Guidance on the content for PET drug

ANDAs requires drug producers to demonstrate that the generic PET drug can be ef-

fectively substituted and provide the same benefit as the RLD drug that it copies (FDA

Guidance 2011). The ANDA must show that the generic drug is the same as the RLD

version in the following ways:

� The active ingredient in the generic drug is the same as in the RLD.

� The generic drug has the same strength, use indications, form (such as a tablet or

an injectable), and route of administration.

� The inactive ingredients of the generic drug are acceptable and within +/− 5%

of the RLD, or where such ingredients and their amounts have been previously

Table 3 Comparison of FDG with Reference Listed Drug after each update

RLD Requirement Historicala Phase 1a Phase 2a

Conditions
of Use

Neurology, oncology,
cardiology

Neurology, oncology,
cardiology

Neurology, oncology,
cardiology

Neurology, oncology,
cardiology

Active Ingredient FDG FDG FDG FDG

Route of
Administration

Intravenous Intravenous Intravenous Intravenous

Dosage Form Injection Injection Injection Injection

Strength 20–300 mCi/mL
(@ EOS)

24 29 33

Specific activity No-carrier-added (NCA) NCA NCA NCA

Inactive
Ingredients

4.5 mg/mL NaCl
in citrate buffer

4.58 mg/mL 4.55 mg/mL 4.55 mg/mL

Osmolality Isotonic Isotonic Isotonic Isotonic
aHistorical: TRACERLab/Ag targets; Ph 1: FASTLab/Ag targets; Ph 2: FASTLab/Nb targets
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approved in a drug product and do not significantly affect the physical or chemical

properties of the drug.

� The generic drug is manufactured under the same standards as the RLD.

� The container in which the PET drug will be shipped and sold is appropriate,

and the label is the same as the RLD label.

Updating the manufacturing process had no impact on the active ingredient, dosage

form, route of administration or conditions of use.

The strength (mCi/mL) of the product changed as a result of the increased yields, but

this was a small change that was within the approved range for the RLD. Similarly, the

NaCl concentration is slightly different for FDG produced on the FASTLab, stemming

from a different product volume (29 mL for the FASTLab vs 22.25 mL for the TRACER-

Lab), but the final NaCl concentration is within the range required (4.5 mg/mL ± 5%) to

demonstrate that the generic drug is both qualitatively (Q1) and quantitatively (Q2) the

same as the RLD and thus qualify for a waiver from full pharmacokinetic bioequivalence

studies. Notably, in order to achieve this NaCl level, we need to further dilute the product

obtained from both synthesis modules. Citrate buffer for injection, USP is not commer-

cially available, diluting with 0.9% saline for injection, USP would change the NaCl con-

centration outside of the range of the RLD, and diluting with sterile water for injection,

USP (SWFI) would alter the tonicity of the final product. For these reasons, we elected to

dilute the product from the synthesis module with a mixture of commercially available

SWFI and sodium phosphates for injection, USP (see Methods section) to achieve

4.5 mg/mL NaCl and an isotonic solution. These diluents are common components of

other FDA-approved injectable drugs and, reflecting this, the formulation was granted a

bioequivalence waiver and approved by FDA in our original ANDA submission.

The second major regulatory consideration was how to document changes to our

manufacturing process with the FDA. Our original ANDA included use of both Ag and

Nb targets to produce fluorine-18 and therefore did not represent a change to our

process from a regulatory point of view. In contrast, our original ANDA only contained

production of FDG using a TRACERLabMX-FDG. Pursuant to section VII.D.1 of the

FDA Guidance for Industry: Changes to Approved NDA or ANDA, for drug products

changes to equipment of the same design and operating principal is considered a minor

change that can be documented in the next annual report submitted for the ANDA

(FDA Guidance for Industry 2004). The FASTLab 2 has the same design and operating

principal as the TRACERLabMX-FDG identified in our original ANDA submission, and

both systems are from the same manufacturer. Moreover, no additional changes were

made to the manufacturing process, quality control, formulation specifications, aseptic

processing, sterilization of the final product or labeling and, as stated above,

consistency with the RLD was maintained. As such, we completed verification batches

during Performance Qualification (PQ) of the FASTLab 2 modules prior to beginning

clinical delivery of FDG to establish that product made using the FASTLab 2 met or

exceeded all established quality specifications and was identical to that prepared on the

TRACERLabMX-FDG module. We documented the equipment change in our 2017 an-

nual report, presenting a side-by-side comparison of the verification data from both

synthesis modules to the FDA, and have been manufacturing FDG under our ANDA

using FASTLab 2 for about 18 months.
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Conclusion
In summary, we have found the combination of FASTLab 2 and self-shielded Nb

fluorine-18 targets enables reliable and repeatable manufacture of FDG. In the 18 months

since we began using FASTLab 2 to manufacture FDG, it has proven to be a robust and

reliable platform with an uptime > 99%. Our workflow, inventory management and regula-

tory compliance have been greatly simplified following the synthesis module and cyclotron

upgrades and, as a result of our increased FDG production capacity, patient wait times for

FDG PET have been cut in half from four days to two days at our nuclear medicine clinic.
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