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ABSTRACT

This dissertation answers some of the statistical challenges arising in spatio-

temporal data from Internet traffic, electricity grids and climate models. It begins

with methodological contributions to the problem of anomaly detection in communi-

cation networks. Using electricity consumption patterns for University of Michigan

campus, the well known spatial prediction method kriging has been adapted for iden-

tification of false data injections into the system. Events like Distributed Denial of

Service (DDoS), Botnet/Malware attacks, Port Scanning etc. call for methods which

can identify unusual activity in Internet traffic patterns. Storing information on the

entire network though feasible cannot be done at the time scale at which data ar-

rives. In this work, hashing techniques which can produce summary statistics for the

network have been used. The hashed data so obtained indeed preserves the heavy

tailed nature of traffic payloads, thereby providing a platform for the application of

extreme value theory (EVT) to identify heavy hitters in volumetric attacks. These

methods based on EVT require the estimation of the tail index of a heavy tailed dis-

tribution. The traditional estimators (Hill (1975)) for the tail index tend to be biased

in the presence of outliers. To circumvent this issue, a trimmed version of the classic

Hill estimator has been proposed and studied from a theoretical perspective. For the

Pareto domain of attraction, the optimality and asymptotic normality of the estima-

tor has been established. Additionally, a data driven strategy to detect the number

of extreme outliers in heavy tailed data has also been presented. The dissertation

xv



concludes with the statistical formulation of m-year return levels of extreme climatic

events (heat/cold waves). The Generalized Pareto distribution (GPD) serves as good

fit for modeling peaks over threshold of a distribution. Allowing the parameters of

the GPD to vary as a function of covariates such as time of the year, El-Niño and

location in the US, extremes of the areal impact of heat waves have been well modeled

and inferred.

xvi



CHAPTER I

Introduction

Research on modeling, analysis and inference of spatio-temporal processes has

been gaining pace over the last century owing to their predominance in many ap-

plication domains such as Internet traffic, communication networks, climatic events,

time evolving social networks, the stock market etc. In this dissertation, we analyze

a pool of techniques for the detection of anomalous events in multivariate time series,

each of which is contingent on the nature of data at hand. For example, electric-

ity consumption patterns are naturally modeled by Gaussian distributions, whereas

heavy tailed or power law distributions are prevalent in data arising from the stock

markets or Internet traffic. Therefore this dissertation has developed a wide range of

methods ranging from kriging, community detection to extreme value theory.

Chapter II. The first part discusses statistical tools for detecting intrusions and

failures in the electric smart gridin order to prevent widespread power outages and/or

breakdown of the electrical system in an area. A smart grid is composed of a multitude

of components, each with its own functionality such as power generation, transmission

and distribution. These components exchange information through the so called

Advanced Meter Infrastructure (AMI), which facilitates efficient operation of the grid

by allowing for near-real time adaptation to changes in demand. The AMI is often

1



vulnerable to attacks from malicious users especially from those with access to the

state or topology of the electric grids. An example of this includes tampering of meter

readings by introducing attack patterns which evade standard detection algorithms.

An added disadvantage is the scarcity of resources or physical access needed for

securing all the meters in the network. Kriging is a spatial prediction technique

which allows for optimal estimation of unobserved quantities from available closely

correlated observations. Therefore if a small subset of nodes in the network is secured,

kriging may used to curb false data injections on the remaining untrusted nodes. If

the size of the network is large, clustering based techniques may be used to obtain

a subset of nodes with similar energy patterns and thus reduce the dimensionality

of the problem. In Section 2.1.5, this method has been adapted for application to

real-world building data from a large university campus.

The second part of Chapter II involves a rather different spatio-temporal data

arising from the monitoring of Internet traffic at a large regional Internet Service

Provider (ISP). The predominance of Internet in every day life has made it all the

more susceptible to attacks from a multitude of sources. Bank frauds, cyber threats,

password hacks etc. have made the reliability of information transferred via Internet

questionable. Many companies like Akamai are constantly updating their Content

Delivery Network (CDN), to prevent Distributed denial of service (DDoS) attacks

on their client networks. Network monitoring is essential to network engineering,

capacity planning and prevention / mitigation of threats. Section 2.2 describes an

open source architecture AMON (All-packet MONitor) deployed at Merit Network1

which is currently processing 10Gbps+ live Internet traffic. The main challenge in

the analysis of network traffic is the shortage of memory resources for the storage of

1https://www.merit.edu/
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information exchange for such a large network. Also most of the existing methods

for anomaly detection are not scalable to the rate of flow for incoming traffic. To

circumvent the issue of memory constraint, AMON partitions traffic into sub-streams

by using rapid hashing and keeps track of heavy hitter2 IPs by employing a Boyer-

Moore majority algorithm.

Application of optimally chosen hashing techniques preserve most of the important

statistical properties of the underlying network traffic flows. These rapidly (online)

computed hash-summaries may be thus used for identification of anomalous events

in the network such as heavy hitters, DDoS, scanning or outrages. From statistical

perspective, this can be cast into the problem of identifying outliers or change-points

in multivariate, heavy-tailed time series. Volumetric attacks are identified as extreme

outliers in the data and are best detected by the application of Extreme Value Theory.

Specifically, robust and adaptive estimates of the heavy-tail exponent of the data are

utilized to calibrate an anomaly detection threshold. On the other hand, the stealthier

attacks arising from scanning or low-value DDoS are identified as high-connectivity

events from a graphical data structure that quantifies the source-destination commu-

nication patterns. This calls for other sophisticated techniques like the ones based on

community-detection type statistics. These themes are addressed in Sections 2.2.3,

2.2.4 and 2.2.5.

Chapter III. Most of the detection algorithms of Section 2.2 in Chapter II

require the estimation of the tail exponent of a heavy-tailed distribution. However,

in the presence of outliers, the classic Hill estimator is biased and its variance also

compromised. In Chapter III, we thereby introduce and study a trimmed version

of the Hill estimator for the index of a heavy-tailed distribution, which is robust

2IP contributing to usually large traffic in the network
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to perturbations in the extreme order statistics. In the ideal Pareto setting, the

estimator is shown to be finite-sample efficient among all unbiased estimators with a

given strict upper break-down point. For general heavy-tailed models, the asymptotic

normality of the estimator under second order regular variation conditions has been

established. The estimator is shown to achieve the minimax optimal rate in the

Hall class of distributions. A trimmed Hill plot to visually select the number of top

order statistics has been proposed. The main contribution is the development of an

automatic, data-driven procedure for the choice of trimming based on exponentially

weighted sequential testing. This yields a new type of robust estimator that can adapt

itself to the unknown level of contamination in the extremes. As a by-product we

also obtain a methodology for identifying extreme outliers in heavy tailed data. The

competitive performance of the trimmed Hill and adaptive trimmed Hill estimators

is illustrated with simulations against several established robust estimators.

Chapter IV. Extremes of weather conditions, be it high or low, may have a

devastating impact on the agricultural and industrial production of a country. As

stated by Christopher R. Adams3:“In the US, the 1976 - 1977 winter freeze and

drought is estimated to have cost $36.6 billion in 1980. In 1980 the nation saw a

devastating heat wave and drought that claimed at least 1700 lives and had estimated

economic costs $15 - $19 billion in dollars”. In Chapter IV, we develop a statistical

framework for prediction of areal impact of heat waves. The methodology applies to

cold waves as well. The approach adopted is the quantification of the area in US under

profound heat wave activity at given time point. The Pickands-Balkema-de Haan

theorem as well as extensive model diagnostic plots reveal that the generalized Pareto

distribution, GPD serves as an efficient tool in modeling the peaks over threshold for

3http://sciencepolicy.colorado.edu/socasp/weather1/adams.html
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the so-obtained time series. Several other factors like intensity level of the heat wave,

grid network of the US, season of the year and duration of heat wave events have

been explored in connection to the analysis of heat wave distribution. As a main

contribution, we obtain estimates for the out-of-sample return levels for a variety

of heat wave events as a function of the season (time of the year), ENSO index and

location in US. These estimates are based on the analysis of daily temperature records

for a period of 100 years for 424 stations spread across the continental US.

In summary, the dissertation is organized as follows. Chapter II presents two

different methodological contributions to anomaly detection in smart grids and com-

puter networks, respectively. These methods motivate the study of robust estimators

of heavy tail index in Chapter III. Chapter IV focuses on spatio-temporal infer-

ence in the context of extreme heat wave events over the continental US. Finally the

dissertation is concluded with the scope of each chapter.
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CHAPTER II

Anomaly Detection In Networks

2.1 Security Of Smard Grid Electrical Units

Contributions and due credit: Much of the material in this section is a col-

laborative work based on Kallitsis et al. (2016c). As the author of the thesis, we have

contributed primarily to the statistical aspects in Sections 2.1.2, 2.1.3 and 2.1.4 and

the proof of Proposition II.1.

2.1.1 Introduction

Smart grid meters were developed to overcome some of the drawbacks of tradi-

tional electric grids. For example, accurate estimation of the state of grid, incorpora-

tion of renewable energy sources etc. are some of the features specific only to smart

grids. The efficient communication between the various components of the smart grid

is facilitated by advanced metering infrastructure (AMI). Engineers are mostly inter-

ested in the security of AMI in order to ensure that the network can recover itself in

the presence of anomalies/ power outages etc Farhangi (2010).

The susceptibility of the smart grids to attacks has increased only very recently.

The smart grid infrastructure is often jeopardized by individuals who can manipulate
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the meter readings or inject unwanted load into the system. Some such activities

which have resulted in the breakdown of the grid include the Stuxnet worm and the

attacks against Iranian nuclear facilities Falliere et al. (2011), the compromise of a

steel mill in Germany Lee et al. (2014), and the cyber attacks on the Ukrainian power

gird Lee et al. (2016).

In order to control for these malicious behavior, AMI meters are often accessed

remotely. This however does not put an end to network changes caused by spoofed

message payloads that carry power demand / supply values. Since the power con-

sumption in an electric grid is usually determined by the state or topology matrix

H Liu et al. (2009), adversaries with access to it can severely compromise the meter

readings. Over the past few years, a lot of research has been done on attack which

can evade the security protocols of AMI (see McDaniel and McLaughlin (2009); Metke

and Ekl (2010); Bed and DOE (2009); Yu (2015)).
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Figure 2.1: Left : Power prediction (with 95-percentile bounds). Right: Model vali-
dation (real-data).

In this section, a statistical methodology for the detection of bad data injection

into wide-area smart grid networks has been proposed. We however make a crucial

assumption that the attackers can access only a subset of the total number of avail-

able meters. The other meters are however secure and can be used to predict the
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energy consumption patterns of the remaining ones. Since in an electric network, a

large number of meters are closely related in space (e.g., within the same residential

neighborhood, university campus, town, etc.), the spatial algorithms which borrow

strength from highly correlated observations may be used. Kriging is one such method

and is suitable for the data at hand subject to some modifications.

For Section 2.1, we assume that trusted readings involve nodes that transmit

encrypted data and whose identity is authenticated Bi and Zhang (2014). The set of

these trusted nodes shall be referred to as the observed set and the remaining ones

are categorized into the unobserved set. The rest of the work is organized as follows:

Section 2.1.2 discusses clustering algorithms to group buildings with high correlation

index in terms of electricity consumption, Section 2.1.3 details a factor model which

illustrates the energy patterns in the network can be explained by just a few factor

variables, Section 2.1.4 explains an adaptation of the kriging technique to allow for

detection of anomalous observation in the system. Section 2.1.5 finally evaluates the

proposed methodology when applied to real world electricity data from University of

Michigan campus.

2.1.2 Building grouping

Let Y (t) = (Yi(t))i∈B be the time series of electricity usage for a set of B =

{1, · · · , B} buildings recorded over the time t = 1, 2, · · · ,. For a monitoring window

of size m, we define the m×B as

D(t0,m) = [Yi(t)]t0−m≤t<t0, i∈B. (2.1)
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Next the data Y (t)t=1,2,··· , is partitioned into windows of size m and the mean con-

sumption for each window is considered as as

µ(t0,m) =
1

M

M−1∑
w=0

D(t0 − wm,m).

Treating each vector µ(t0,m) as one observation, buildings with similar usage patterns

can be identified by applying standard clustering techniques (K-means Kaufman and

Rousseeuw (1990)) to µ(t0,m) for varying values of m.

2.1.3 Modeling power consumption via linear factors

Using real-world AMI building data (see Section 2.1.5), we observed that much of

the variability in the Y (t)’s can be explained by only few principal components of the

matrix Q =
∑N

n=1 Y (n)Y (n)>. We therefore consider the eigen value decomposition

of Q

Q = V ΛV >

where V = [v1, · · · , vB] is a matrix with B orthonormal columns and Λ is a diagonal

matrix with entries λ1 ≥ λ2 ≥ . . . ≥ λB ≥ 0 and propose the following factor model,

Y (t) = µY (t) + Z(t) := Fβ(t) + Z(t), (2.2)

where F is a matrix B×k of factors, β(t) ∈ Rk is a parameter estimable from data and

Z(t) is the measurement noise which follows multivariate normal distribution with

zero mean and variance-covariance matrix Σ. The matrix F considered is constructed

from the first k columns of V which correspond to the eigen vectors for k largest eigen

values. The factor model (2.2) serves as an adequate model for capturing the temporal

variability of the Y (t)’s (see Vaughan et al. (2013), Prop. 1). Since the factors F and
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Σ remain constant only over shorter time scales, these are dynamically updated over

moving time windows (see Algorithm 1).

2.1.4 Kriging-based prediction and detection

Using the factor model in (2.2), we next propose an anomaly detection methodol-

ogy. Let Y (t) = (Yi1(t), · · · , Yib(t)), {i1, · · · , ib} ⊂ B denote the electricity consump-

tion of buildings within the same cluster. We partition meters into observed (trusted)

nodes, O ⊂ {i1, · · · , ib}, and unobserved U = {i1, · · · , ib}\O. Let Yo = (Yj)j∈O and

Yu = (Yj)j∈U denote the partitioned vector Y (for notation simplicity we drop t).

Thus, from (2.2),

Yu
Yo

 ∼ N

(Fuβ

Foβ

 ,

Σuu Σuo

Σou Σoo

). (2.3)

Given the limited set of observed nodes O, and if the true parameter β is known,

the minimum variance unbiased predictor of Yu is the kriging estimate Cressie (1993a);

Vaughan et al. (2013):

Ŷu(Yo, β) := Fuβ + ΣuoΣ
−1
oo (Yo − Foβ). (2.4)

In practice, the parameter β is unknown, but can be estimated from data on the

observed nodes using either a generalized least square regression :

β̂ = (F>o Σ−1
oo Fo)

−1F>o Σ−1
oo Yo = PYo. (2.5)
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or ordinary least squares as:

β̂ = (F>o Fo)
−1F>o Yo

For predictions for the unobserved nodes U , β̂ is used as the plug in estimator for β

in (2.4). This also simplifies the expression for Ŷu to Ŷu = FuPYo+ΣuoΣ
−1
oo (I−FoP)Yo.

For detecting anomalies in the set of unobserved meters, we need the distribu-

tion of the prediction errors (residuals) between the actual meter readings and their

predictions, i.e., Ye = Yu − Ŷu.

Proposition II.1. Under the Null hypothesis of no anomalies and the model of (2.2),

the prediction residuals Ye follow a multivariate normal distribution Ye ∼ N(0,Σerr), with

Σerr = Σuu −CΣou −ΣuoC
> + CΣooC

> (2.6)

and C = FuP + ΣuoΣ
−1
oo (I− FoP).

Proof. Observe that Ye = Yu − CYo is a linear transformation of Y , and therefore

Ye has a multivariate normal distribution. The expected error, µerr = E[Yu − CYo],

becomes µerr = FuE[β̂] − CFoE[β̂] from (2.2). PFo = I, which implies CFo =

FuPFo + ΣuoΣ
−1
oo (I − FoP)Fo = Fu, and, thus, µerr = 0. For the error variance,

Var(Yu −CYo) = E
[
(Yu −CYo)(Yu −CYo)

>], and the result follows using (2.3).

The prediction error Ye is used for identification of anomalies on the unobserved

meters. In this direction, we define the test statistic r2 = Y >e Σ−1
errYe, which corre-

sponds to the Mahalanobis distance whose p values can be obtained using Proposition

(II.1) as

p = 1− F (r2)
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Algorithm 1 Kriging for detection of data injection attacks.

Input: Training data D(t0) := {Yi(t), i ∈ {1, . . . , b}, t0 −N ≤ t ≤ t0 };
Input: Set of “observed” nodes O;
Input: Set of “unobserved” nodes U = {1, . . . , b}\O;
Output: Sequence of p-values for prediction errors.

1: Obtain b× k factor matrix F using PCA on data D(t0)
2: Estimate covariance matrix Σ using data D(t0)
3: for each new observation Y = Y (t), t = t0 + 1, . . . do
4: Partition vector Y into Yo and Yu
5: Estimation of β̂ = (F>o Σ−1

oo Fo)
−1F>o Σ−1

oo Yo = PYo.
6: Prediction: Ŷu = Fuβ̂ + ΣuoΣoo

−1(Yo − Foβ̂)
7: Calculate the error covariance matrix Σerr (see Eq. (2.6))
8: With prediction error Ye := Yu − Ŷu, get test statistic

r2 = Y >e Σ−1
errYe (Mahalanobis distance)

9: output p=1-F (r2), F (x) is a chi-squared cdf (d.f.= |U|).
10: end for

where F (x) is the chi-squared cumulative distribution function with degrees of free-

dom equal to rank(Σerr). Algorithm 1 explains this entire methodology. To tame the

false alarm rate, we apply an exponential weighted moving average (EWMA) control

chart to the standardized z-scores z = Φ−1(1− p) (see also Lambert and Liu (2006a);

Kallitsis et al. (2015)), where Φ(x) is the cumulative distribution for standard normal.

2.1.5 Performance evaluation

This section uses the electricity consumption data from University of Michigan

campus for evaluation purposes. The data set comprises of 163 buildings with obser-

vations recorded at the time scale of every 2 minutes. The data is available for almost

one year with a wide range of buildings such as health services, parking lots, student

housing, laboratories etc.

Fig. 2.1 gives a plot for p values are generated by Algorithm 1 for observations

from (2.2). As expected, behavior under true model is uniform. Fig 2.1 plots the p

values generated from Algorithm 1 but with observations from the data set described
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above. The uniformity in the p-value consolidates the model assumptions on the real

data.

We next describe the simulation setting used for the evaluation of the proposed

methodology. In these experiments, the factors and variance covariance matrix are

obtained from a two week training period using Algorithm 1. For each building,

the next 48 hours (720× 48 observations) are predicted using observations from the

remaining buildings. Finally EWMA control charts as described in Section 2.1.4

are used for determining out of control values. A simulated attack is injected at a

randomly chosen epoch (lasting 1 hour or 30 observations) in the 48 hours span for

the building under study. The detection accuracy of Algorithm 1 is determined in

terms of the precision and recall (see Kallitsis et al. (2015)). We also evaluate the

prediction accuracy for the building under study by the root mean square (rMSE)

defined as

rMSE =

√√√√ 1

T

T∑
t=1

(Yi(t)− Ŷi(t))2

. For building 1, Table 2.1 reports these values for different pairs (w,L) when averaged

over 50 independent realizations. The shift σ denotes the magnitude of the attack

injected. As the value of σ grows, the precision and recall improve thereby indicating

the successful detection of the false attacks. The false positive rate may be further

reduced considering the two-in-a-row rule Lucas and Saccucci (1990) or additional

values for the EWMA pairs (w,L).

To get a unified picture of what happens to all buildings, we first fix a time point

to inject attacks. Next a building is chosen and an attack is injected stretching for

an hour from that point. The remaining observations are used for predicting the

building under study and detecting the occurrence of an attack. This experiment is
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w L Shift (×σ) Precision Recall rMSE (KW)
1.00 3.719 1 0.07 0.08 12.6
1.00 3.719 2 0.43 0.72 13.5
1.00 3.719 3 0.53 0.99 15.0

0.53 3.714 1 0.05 0.21 12.6
0.53 3.714 2 0.18 0.94 13.6
0.53 3.714 3 0.19 1.00 15.1

0.84 3.719 1 0.07 0.11 12.6
0.84 3.719 2 0.37 0.84 13.6
0.84 3.719 3 0.42 1.00 15.0

Table 2.1: Evaluation of detection performance (meter 1).
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Figure 2.2: Left: Detection alerts (red) over a two-day period. The vertical red stripe
denotes an hour-long period of injected anomalies. We study the behav-
ior of each building; the building under study is consider as unobserved
(unsecure) and we use observations from the remaining ones. An EWMA
control chart was used with w = 1, L = 3.719. Right: The effect of clus-
tering in detection performance. (Due to sorting, the building orderings
in the top and bottom panels differ.)

repeated for all building and the results are reported in Fig. 2.2 left. In vast majority

of cases our methods detect the injected attacks, and that the false positive rate

is relatively low in all tests. With increase in the number of observed nodes, the

prediction accuracy improves but not substantially (results not reported here).

Lastly, we analyze the effect of clustering when applied with our methods. Fig. 2.2
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Cluster number 2 3 4 5 6 7 8 9
Silhouette score .81 .59 .60 .56 .52 .47 .43 .45

Table 2.2: Silhouette values for cluster number selection.

right examines the detection accuracy with and without clustering. The number of

K-means clusters was selected by looking at the silhouette Rousseeuw (1987) scores

(see Table 2.2); two main classes were identified. For a large number of buildings,

clustering provided better detection accuracy in terms of the precision and recall

values.

2.1.6 Conclusions

We have proposed an adaptation of the kriging model wherein the observations

from a few trusted nodes are used to predict the energy patterns of the remaining

ones. This naturally provides a method for the detection of bad data injection into

a smart grid by recording predicted values which go outside the control chart limits.

We verified these results in context of data from a wide area network, University of

Michigan campus. To handle the issue of dimension when the number of buildings is

large, clustering methodology has also been proposed.

Anomaly detection in smart grids can be broadly classified into three main cat-

egories signature-, specification- and anomaly-based methods Berthier et al. (2010);

Cleveland (2008); Wang and Lu (2013). Each of these methods has its own set of

challenges. For example whereas new attacks with signatures agnostic to signature-

based intrusion detection system (e.g., Snort) evade detection, specification-based

systems Carcano et al. (2010) are difficult to tune. Our method primarily falls under

the third category of anomaly detection. Other works in this direction include Kallit-

sis et al. (2015); et al. (2013); Bi and Zhang (2014); Yu (2015). The idea of using a
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few trusted node stems from Bi and Zhang (2014) which proposes a graph theoretic

method for securing an optimal set of meter measurements so that state estimation

is not compromised.

The main advantage of our method over the works in Liu et al. (2009); et al. (2010,

2013); Bi and Zhang (2014); Yu (2015), is that a prior of the system’s topology DC

power flow model Liu et al. (2009); et al. (2010) is not needed and the the power

consumption patterns suffice as an input variables. As a part of the future work

we wish to incorporate the temporal variations in the data via autoregressive (both

univariate and multivariate) processes. In addition, we wish to model the prediction

patterns where the set of unobserved and observed nodes is unknown. Predicting the

mean consumption patterns by known factors like building type, location, time of the

day etc. may be an interesting extension to this work.

Acknowledgements: This work is supported by NSF grant CNS-1422078.

2.2 Online Monitoring Of Internet Traffic: Challenges And

Solutions

Contributions and due credit: Much of the material in Sections 2.2.2, 2.2.3,

2.2.4, 2.2.5, 2.2.6, 2.2.7 is based on the collaborative work Kallitsis et al. (2016a),

done under the leadership of Dr. Michalis Kallitsis. As a author of the thesis, we

have contributed primarily to the statistical aspects in 2.2.3, 2.2.4, 2.2.5, which would

not have been possible without the real-world Internet data provided by the AMON

infrastructure Kallitsis et al. (2016a,b) developed by Dr. Kallitsis’ team at Merit

Network1.

1Merit Network, Inc. operates Michigan’s research and education network. It serves a population
of more than 1 million users, and its ingress/egress traffic exceeds 40Gbps during peak demand.
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2.2.1 Introduction

Over the years, Internet infrastructure has become more accessible but at the

same time more vulnerable to security threats. Cyber attacks like Distributed Denial

of Service (DDoS), port scanning, outages which are becoming increasingly common;

can overwhelm the network rendering it completely dysfunctional. Czyz et al. (2014)

presents a recent example of a large DDoS attack which was the outcome of mis

configured NTP (network time protocol) servers. Other examples include reflection

and amplification attacks from Kührer et al. (2014); Rossow (2014) where multiple

small requests are sent to several mis-configured NTP servers (or other UDP-based

services).

The predominance of Internet in all spheres (banks, universities, industries) calls

for the development of sophisticated tools which can help protect the system against

malicious users. Some methods such as Snort (see, snort.org), Bro (bro.org) and

Suricata(suricata-ids.org) which do exist are easily beguiled by malware existing

in varying forms by encryption (polymorphic).Thus the problem of anomaly detection

in Internet traffic requires a basic understanding of the network features in terms of

traffic flows, its composition, capacity, quality of service etc. In the past a lot of sta-

tistical work has been done in the direction of analyzing data from Internet, streaming

algorithms Gilbert et al. (2001); Muthukrishnan (2005), tomography Xi et al. (2006);

Lawrence et al. (2006) and analysis of heavy tails and long range dependence Stoev

et al. (2005, 2006); Stoev and Michailidis (2010).

A communication network like Internet involves information exchange across a

vast number of IP addresses. Storing information on traffic flows for all nodes is

often a challenging task if not impossible. Sketch based algorithms developed in

Krishnamurthy et al. (2003); Gilbert et al. (2007); Stoev et al. (2007) provide a solution
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to this by constructing small summary structures which capture all essential features

of the network. However, the amount of time taken in producing these sketches is quite

large when compared to the rate of flow of incoming traffic. Another alternative to

handling the storage constraint is using information available only through the packet

headers like source/destination addresses, application ports, payload size etc. Tools

like Netflow, sFlow etc. have been developed to facilitate the compression of packet

data by grouping them into flows. However, their compression mechanism does not

scale to the order at which packets arrive.

Even if it is possible to bypass the storage issue, there are relatively few algorithms

which can detect anomalous events from sketches or Netflows. Such algorithms, if

available are mostly sequential in nature and not deployable at shorter time scales.

Thus even with the best practices like (e.g., BCP38 recommendation Senie (1998)),

the identification and mitigation of events like Distributed Denial of Service (DDoS)

still seems a distant goal. In this chapter, we thereby develop the statistical framework

for AMON; a software which can read packet data from Netflows, compute real time

statistical summaries and flag alarms on the onset of any unusual activity in the

network (see Figure 2.3). In AMON, data is collected efficiently using a PF RING

ZC module employed at Merit Network (see Section II C in Kallitsis et al. (2016b)).

The packet data so obtained is then summarized using optimal hashing techniques

implementable at the time scale of routing (see Section II A in Kallitsis et al. (2016b)).

Our main contribution to this work has been the development of statistical al-

gorithms which when applied to the hashed outputs can detect the onset of both

volumetric and low lying DDoS. Some of the statistical approaches for detection of

heavy hitters or frequent items in a stream have been developed in Karp et al. (2003);

Cormode and Muthukrishnan (2005b); Cormode et al. (2003); Estan and Varghese
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Figure 2.3: High-level architecture of AMON.

(2002); Gilbert et al. (2006); Krishnamurthy et al. (2003); Schweller et al. (2006);

Cormode and Muthukrishnan (2004, 2005a); Porat and Strauss (2012); Gilbert et al.

(2012). However most of these algorithms provide efficient solutions to the problem

data storage rather than modeling the distribution of statistical flows. In this chapter,

we show that the summary structures obtained from hashing are indeed heavy tailed

and share most of the statistical properties of raw traffic. Thereby techniques from

extreme value theory may be used for detection of heavy hitters, i.e. IPs contributing

to unusually large traffic in the network. Sometimes smaller magnitude attacks may

be launched by a large number of IPs working together in which case a rather differ-

ent approach needs to be adopted. One such approach relies on recording of sudden

appearances communities and cliques, etc.(see Ranshous et al. (2015)) in the graph

of network flows. With a slight modification, this approach has been extensively used

in the paper for identification of low lying attacks.

Once the onset of an anomalous event is recorded, the true IPs associated with it

are traced back by using a extended version of the Boyer Moore majority algorithm
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(see Section II B in Kallitsis et al. (2016b)). The rest of the Section is organized

as follows: Section 2.2.2 describes how the synopsis data structures are constructed

from by application of hashing. It also serves as the link between groups C and D in

the architecture of AMON (see Figure 2.3) where the raw data in form of packets is

summarized to a form which can be used by the statistical algorithms for anomaly

detection. Sections 2.2.3 and 2.2.4 describes two detection algorithms based on the

heavy tailed nature of the Internet data; a property which is preserved even after the

application of hashing. These algorithm intend at identifying high volumetric attacks.

These methods successfully identified the case where a DDoS attack was targeted at

a public library of University of Michigan traffic (see Section 2.2.7.1). Section 2.2.5

presents an algorithm for detection of high frequency low magnitude attacks. This

method which involves the source destination interaction matrix successfully identified

low volume attacks targeted to Michigan servers from an autonomous system in Asia-

Pacific (see Section 2.2.7.2). Finally a comparative performance of the methods. The

detection accuracy of these proposed methods has been studied under simulation

setting of Section 2.2.8.

2.2.2 Hashed binned data matrix and its visualization.

This section describes the construction of source destination flow matrix from

the packet header information of payload transfer across the network. Every packet

captured at the monitoring station can be viewed as a tuple (wn, vn) where wn is

the key and vn is the payload. In the context of Internet traffic, the key wn can

either denote an individual source/destination address or a source destination pair.

The payload vn can represent file sizes in bytes, packets or network ports. Using

the terminology in Muthukrishnan (2005), for wn ∈ Ω and vn ∈ V we the following
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function f

f : Ω→ V

for every incoming data point where Ω usually denotes the space of IPv4 addresses

(Ω ∈ {0, 1}32) or their cross product (Ω ∈ {0, 1}64 for source destination pair). Storage

of the signal f even for a small interval of time is practically impossible owing to the

high speed of incoming traffic and large dimension of Ω. Therefore hashing techniques

which can the distribute the space of IP addresses to a smaller number of bins have

been employed. Precisely, a hash function h is represented as

h : [N ]→ [m] (2.7)

where [N ] is the cardinality of Ω and [m] is the cardinality of the space over which the

keys are distributed. Extensive details on the choice of the hash function are covered

under Kallitsis et al. (2014) and Cormode and Muthukrishnan (2005b).

When a packet arrives for the key (s, d), one computes i = h(d) and j = h(s) and

updates the sketch matrix as

X[i, j] = X[i, j] + v (2.8)

This sketch matrix is stored at the time scale of every 10s. Direct products of this

matrix are the source and destination hashed arrays defined as

Source : Xt(i) =
m∑
j=1

Xt[j, i] (2.9)

Destination : Xt(i) =
m∑
j=1

Xt[i, j] (2.10)
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Figure 2.4: Sketch data blocks are used as the basic input structures for our detec-
tion algorithms. The databrick matrix; notice the horizontal stripes that
signify traffic from multiple destinations to multiple sources. Note also
the bold column at source bin 100 that depicts heavy source(s) activity.

The hash binned arrays (Xt(i))i=1,··· ,m will serve as the input to the statistical detec-

tion algorithm of Sections 2.2.3, 2.2.4 and 2.2.5. We next explore their distribution

properties for outgoing (Source) traffic at Merit Network for the period 17:30-18:30

EST on July 22, 2015. Figure 2.6 top panel shows a plot of the 360 hashed desti-

nation arrays collected for a span of 60 minutes and then stacked one after another.

The data reveals a few extreme peaks some of which may be attributed an attack

event (see the ‘Library’ case study, Section 2.2.7.1). A zoomed in version on a short

3-minute period (bottom right panel) show that the extreme peaks, although of lower

magnitude, persist. Apparent periodicities in extreme peaks may be attributed to

data concatenation.

Data arising from Internet traffic such as file sizes, web page counts etc. are well

modeled by heavy tailed or power law distributions Leland et al. (1994); Crovella and

Bestavros (1997); Faloutsos et al. (1999). This heavy tailed property is preserved

even after the application of hashing (provided the hash function in (2.7) distributes
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Figure 2.5: Left: View of source array, constructed by aggregating over the columns
of the matrix. Note the heavy source(s) at bin 100.Right: Destinations
array; observe how heavy destinations appears as heavy bins. In all cases
volume is in bytes in log scale.

the IP space uniformly). We thereby assume that X = Xt(i) satisfies

P (X > x) ∼ c/xα, as x→∞, (2.11)

where ∼ indicates asymptotic convergence and c, α are the parameters of power law

distribution. Smaller values of α correspond to heavier tails. Indeed for α < 2, the

mean does not exist and for α < 1 both mean and variance are both undefined.

To validate the assumption in (2.11), we consider the max spectrum plot of an hour

long time series of hash binned source traffic collected at Merit. The max spectrum

is a plot of the mean log block maxima versus the log block sizes of the data. A

linear trend indicates the presence of power-law tails with slope giving an estimate

for 1/α. The linearity in the bottom panel of Figure 2.6 shows that power law is a

fairly reasonable assumption for the time series of hash binned traffic. Steep slopes

in the max spectrum plot correspond to heavier tails (low α). An advantage of the

max spectrum plot is its ability to examine various log block sizes thereby allowing
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Figure 2.6: Time-series of Source hash-binned arrays (Top) and its zoomed-in version.
(Bottom right), computed over 10-second windows. The max-spectrum of
the entire time series is plotted on the bottom-left. Merit Network: 17:30-
18:30 EST, July 22, 2015.

for examination power law behavior in date varying time scales (see Stoev et al.

(2011)). Extensive experimentation showed that the power-law behavior (linearity in

the spectrum) extends over a wide range of time-scales from seconds to minutes with

α ≈ 1.6 and α ≈ 2.5 for shorter and intermediate time scales respectively (results not

reported here). For larger time-scales (hours) complex intermittent non-stationarity

and diurnal trends dominate and the heavy tailed characteristic of the data starts to

breakdown.

Remark II.2. The hash-array is obtained from the PF RING-based methodology at

the time scale of 10 seconds so that we do not run into the issue of empty bins and

algorithms of Sections 2.2.3, 2.2.4 and 2.2.5 can be suitably applied. For higher traffic
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rates, the methodology can be applied at an even shorter, sub-second time-scale.

2.2.3 Detection of heavy hitters

There has been a lot of work on the estimation of heavy hitters in fast network

traffic streams Karp et al. (2003); Cormode and Muthukrishnan (2005b); Cormode

et al. (2003); Estan and Varghese (2002); Gilbert et al. (2006); Krishnamurthy et al.

(2003); Schweller et al. (2006); Cormode and Muthukrishnan (2004, 2005a); Porat

and Strauss (2012); Gilbert et al. (2012). The definition of a heavy hitters is not

explicit and is often open to interpretations. In this section, we introduce a rather

new terminology in connection to the hash array inputs (2.9) where hash bins with

abnormally large traffic are identified as heavy hitters. By abnormally large we mean

observations which lie well above the quantile threshold for the baseline probability

distribution of hashed inputs. Since the nature of traffic changes quite frequently, the

baseline model needs to be dynamically updated while accounting for robustness and

adaptivity issues (see last paragraph under Section 2.2.3). Lastly the type I error for

the proposed test based algorithm is controlled by the choice of the quantile threshold.

In Section 2.2.2, we showed the heavy tailed nature of the hash binned arrays

defined in (2.9) (see Figure 2.7). For the source arrays, Xt(i) corresponds to the

number of bytes originating from all source IPs ω hashed to bin i, i.e. h(ω) = i over

the time-window t. Optimal hashing techniques Kallitsis et al. (2014) and Cormode

and Muthukrishnan (2005b) randomly distributes the IP addresses which more or less

ensures that Xt(i), i = 1, . . . ,m are independent and identically distributed (i.i.d.).

Abnormally large values of Xt(i)s, for some i’s correspond anomalous events such

as DDoS/outages etc. To this identify them, we consider the sample maximum of the
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hash-array:

Dm(Xt) := max
i=1,...,m

Xt(i). (2.12)

Proposition II.3. Let X(i), i = 1, . . . ,m be i.i.d. random variables with heavy tails

as in (2.11). Then, as m→∞, we have that

1

m1/α
Dm(X) ≡ 1

m1/α
max

i=1,...,m
X(i)

d−→ c1/αZα, (2.13)

where P (Zα ≤ x) = e−1/xα has the standard α-Fréchet distribution and c is the

asymptotic parameter in (2.11).

The proof is included in Section A.

A bin i ∈ {1, . . . ,m} is a heavy hitter, if its value is large, relative to the asymp-

totic approximation of Proposition II.3. Section 2.2.6 shows that the asymptotic

approximation kicks in even at values of m close to 128. We next define a heavy

hitter formally as:

Xt(i) ≥ Tp0(m,α, c) := m1/αc1/αΦ−1
α (p0) =

( c

log(1/p0))

)1/α

, (2.14)

where the sensitivity level p0 controls the type I error rate and Φ−1
α (p) = (log(1/p))−1/α,

p ∈ (0, 1) is the inverse of the standard α-Fréchet cumulative distribution function

Φα(x) = e−1/xα , x > 0. By increasing p0 one can indeed reduce the number of false

alarms (see Section 2.2.6). The methodology is summarized in the formal algorithm

(Algorithm 2).

Several methods exist for the estimation of the parameters α and c (Embrechts

et al. (1997),Hill (1975)). We however use the max-spectrum method in Stoev et al.

(2011) since it is computationally efficient and easier to tune. In order to reduced the
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Algorithm 2 Detection of heavy-hitter bins in traffic volume hash-arrays.

Input: Stream of hash-arrays Xt = {Xt(i)}mi=1; probability level p0 ∈ (0, 1); smooth-
ing coefficient λ ∈ (0, 1).

Output: Stream of significant heavy-hitter bins Ht ⊂ {1, . . . ,m} and their counts
kt = |Ht|.

1: for each stream item Xt do
2: Estimate the tail exponent α̂ := α(Xt) and scale coefficient ĉ := c(Xt) from the

sample Xt = {Xt(i)}mi=1 based on the max-spectrum.
3: if (t = 1) then
4: Set αt := α̂ and ct := ĉ
5: else
6: Perform EWMA smoothing: αt := λα̂ + (1− λ)αt−1 and ct := λĉ + (1−

λ)ct−1.
7: end if
8: Compute the significance threshold Tt := Tp0(m,αt, ct) using (2.14).

9: Estimate the set of heavy hitter binsHt at window t asHt :=
{
i ∈ {1, . . . ,m} :

Xt(i) ≥ Tt

}
.

10: return Ht and kt := |Ht|.
11: end for

susceptibility of estimates to outliers, we apply an EWMA smoothing to the values

of α̂ and ĉ (see Step 6 in Algorithm 2). The choice of the smoothing parameter is

described in details under Section 2.2.6.

2.2.4 Relative volume

In the previous section we discussed heavy hitters from an absolute threshold

standpoint (2.14). In this section, we analyze the scenarios where a small proportion

IPs generate abnormally large traffic relative to the remaining ones. In this direction,

consider the hash binned arrays in (2.9) and sort them in decreasing order as

Xt(i1) ≥ · · · ≥ Xt(ik) ≥ · · · ≥ Xt(im) ≥ 0.
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Then for a fixed integer k ∈ {1, . . . ,m}, we consider the relative volume of traffic

contributed by the top-k bins:

Vt(k) :=

∑k
j=1Xt(ij)∑m
j=1Xt(ij)

. (2.15)

These top-k bins may easily change from one time-window to another. High volu-

metric attacks launched by a small subset of k IPs relative to the rest produce large

values of Vt(k). In order to obtain significantly large values of Vt(k), we determine its

distribution using the heavy tailed property of the Xt(i)
′s (see Section 2.2.2). This

baseline distribution is updated periodically similar to the previous section.

The following fundamental representation results for the joint distribution of the

order statistics (see, e.g., p. 189 in Embrechts et al. (1997)).

Theorem II.4 (Rényi representation). Let U(1), . . . , U(m) be independent and iden-

tically distributed Uniform(0, 1) random variables. Consider the sorted sample (order

statistics) U(i1;m) ≤ · · · ≤ U(ik;m) ≤ · · · ≤ U(im;m). Then, we have the following

stochastic representation:

(
U(i1;m), · · · , U(ik;m), · · · , U(im;m)

)
d
=
( Γ1

Γm+1

, · · · , Γk
Γm+1

, · · · , Γm
Γm+1

)
,

where
d
= means equality in distribution and Γi = E1 + · · ·+ Ei, i = 1, . . . ,m+ 1 are

Gamma(i, 1)-distributed random variables, represented as cumulative sums of a fixed

set of independent standard Exponential random variables.

In the previous section we argued that Xt(i), i = 1, . . . ,m be i.i.d. with dis-

tribution as in (2.11). For a continuous distribution function (cdf) F is U(i) :=

F (X(i)), i = 1, . . . ,m are i.i.d. Uniform(0, 1) where F (x) = 1 − F (x) denotes the
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complementary cdf. Therefore, by Theorem II.4,

(
F (X(i1)), · · · , F (X(ik)), · · · , F (X(im))

)
d
=
( Γ1

Γm+1

, · · · , Γk
Γm+1

, · · · , Γm
Γm+1

)
.

By applying the inverse function F
−1

to all components of the above relation, we

obtain

(
X(i1), · · · , X(ik), · · · , X(im)

)
d
=
(
F
−1
( Γ1

Γm+1

)
, · · · , F−1

( Γk
Γm+1

)
, · · · , F−1

( Γm
Γm+1

))
.

(2.16)

This yields the following result about the distribution of the relative volume.

Proposition II.5. (i) Under the above assumptions, we have

{V (k;m), k = 1, . . . ,m} d
=
{∑k

j=1 F
−1

(Γj/Γm+1)∑m
j=1 F

−1
(Γj/Γm+1)

, k = 1, . . . ,m
}
. (2.17)

(ii) Under (2.11), for fixed 1 ≤ k < `, we have, as m→∞,

V (k;m)

V (`;m)

d−→ Wα(k, `) :=

∑k
j=1 Γ

−1/α
j∑`

j=1 Γ
−1/α
j

. (2.18)

The proof is given in Section A.

Remark II.6. Proposition II.5.(i) is remains valid even for discontinuous and also non-

invertible cumulative distribution functions with F
−1

replaced by the left-continuous

generalized inverse F
←

(p) := inf{x : F (x) ≤ p} (see, e.g. Lemma 4.1.9 on p. 188 of

Embrechts et al. (1997)).

With the asymptotic distribution of V (k; `) available, the occurrence of unusually

large values are flagged if

Vt(k; `) > qt
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Algorithm 3 Flagging significant peaks in the relative volume of the top-k hash-bins.

Input: Stream of hash-arrays Xt = {Xt(i)}mi=1; probability level p0 ∈ (0, 1); candi-
date value k ∈ {1, . . . ,m} (preferably � m); smoothing parameter λ ∈ (0, 1).

Output: Binary stream of alarm-flags ft ∈ {0, 1}.
1: for each stream item Xt do
2: Estimate the tail exponent α̂ := α(Xt) from the sample Xt = {Xt(i)}mi=1.
3: if (t = 1) then
4: Set αt := α̂
5: else
6: Perform EWMA smoothing: αt := λα̂ + (1− λ)αt−1.
7: end if
8: Compute the relative volume of of the top–k bins Vt(k) as in (2.15).
9: Using Monte Carlo simulations, compute numerically the significance threshold

qt = qt(p0; k, αt,m), such that

P (Wαt(k,m) ≤ qt) ≈ p0.

10: return ft := I{Vt(k) > qt}, i.e., flag Vt(k) as significantly large (at level p0) if
Vt(k) > qt.

11: end for

where qt is the pth
0 quantile for the distribution Wα(k; `). For application to data from

network traffic ` = m was found to be an adequate choice. This implies the left and

right hand side in (2.18) gets replaced by V (k;m) (since V (m;m) = 1) and Wα(k,m)

respectively.

The methodology is formally described under Algorithm 3.

Remark II.7. When Pareto approximation is not as accurate, lower values of ` < m

need to be used in Algorithm 3. However the choice of ` = m and V (k,m) = 1 worked

well enough with the data explored in this chapter.

Similar to Section 2.2.3, the parameter αt is estimated using the max spectrum

of Stoev et al. (2011). In order to reduce the susceptibility of the parameters to the

presence of outliers, we perform an EWMA smoothing on α̂ as in Step 6 of Algorithm

3. High values of λ ≈ 1 imply greater dependence on current estimate whereas small

valuesλ ≈ 0 tend to borrow strength from past observations. Whereas the prior is
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more adaptive to changing nature of the traffic, the later is more robust to outliers

(see Section 2.2.6 for more details).

We next propose a slight modification to the Algorithm 3 so that false alarm

rates can be further controlled. This especially useful when anomalies persist over

a long period of time. The pvalues are considered based on (2.18) have the form

pt := P (Vt(k) > Wαt(k,m)). Following Lambert and Liu (2006b), one considers the

EWMA on the z-scores as

zt := λpΦ
−1(1− pt) + (1− λp)zt−1,

for some λp ∈ (0, 1). An alarm is raised if zt/σz > L, for a given level parameter

L > 0. Section 2.2.6 describes the performance of the Algorithm 3 for choices of the

tuning parameter (λp, L).

2.2.5 Community detection

In this section we demonstrate a methodology which is more effective in identifying

low volume attacks which escape the detection by Algorithm 2.2.3 and 2.2.4 (see

Section 2.2.7.2). In order to identify subtle changes in the traffic patterns, we go

back to the original hashed matrix Xt = {Xt(i, j)}mi,j=1 in (2.8) which records the

byte payloads, obtained over a certain period of time t. Most of the information on

community structure is hidden in the top source-destination flows. We thus construct

a binary matrix At from Xt(i, j) such that at(i, j) = 1 if and only if bin (i, j) belongs

to the top N entries Xt[i, j].

The binary matrix At may be viewed as the adjacency matrix for a graph Gt

which essentially represents the connectivity structures between source destination
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pairs. An event like DDoS would cause the matrix At to show multiple 1 entries for

the row index equal to the hash value of the targeted IP (see Section 2.2.7.2 and

Figure 2.9). Thus we shall use the matrix At for detecting structural changes in the

graph Gt. A rather simple approach to do this is to consider row/column indices

with unusually large in/out degree. Next we only discuss the case where a particular

destination is under attack from a multiple sources but each with a comparatively

small magnitude.
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Figure 2.7: Merit Network 16:00-17:00 EST, Aug 1, 2015 – the ‘Tor’ event in Section
refsubsec:tor. (Top left) Ingress connectivity for the top N = 3000 hash-
binned flows per 10-second windows over 1-hour. (Top-right) QQ-plots
demonstrating accuracy of the Normal approximation of typical in-degree
distributions. (Bottom plots) QQ-plots for anomalous bins.

Let It(i) :=
∑m

j=1 at(i, j), i = 1, . . . ,m be the in-degree of node i for the graph Gt.

We wish to find extreme peaks in the values of It(i). Since the hash functions from

Section 2.2.2 randomly distribute the IPs to m bins, the It(i)
′s may be assumed to
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be independent. However in contrast to Sections 2.2.3 and 2.2.4, the counts It(i) are

no longer heavy-tailed but follow normal distribution. This for fixed i randomization

by hashing guarantees the independence of at(i, j)’s in j. The normal approximation

is a direct consequence of CLT when applied to
∑m

j=1 at(i, j) for m sufficiently large.

Indeed, Figure 2.6 (top-right plot) shows Normal quantile-quantile plots of It(i), t =

1, . . . , T for 5 typical (non-anomalous) bins i. The linearity in plot supports the

assumption of normality. The heatmap shows the entire array (It(i))m×T of in-degrees

computed over 10-second time windows over the duration of 1 hour for N = 3000.

The bottom plots in this figure show the QQ-plots corresponding to anomalous bins

with high in-degree corresponding to the higher intensity lines in the top-left plot.

Clearly these bins are quite off from the normal approximation which suggests that

extreme peaks in It(i) can be used to detect the onset of attacks. Note that N needs

to be large to ensure that CLT works but very large values may meddle with the

sparse nature of the matrix At.

We have thus shown that the in degrees It(i), i = 1, . . . ,m are independent and

identically distributed observations from N (µt, σ
2
t ). Thus for identifying unusually

large in degree values we consider

Dt := max
i=1,...,m

It(i),

by the independence of the It(i)’s follows:

P (Dt ≤ x) = Φ
(x− µt

σt

)m
,

where Φ is the standard normal CDF. Following the ideas if Algorithm 2, we flag a
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bin It(i) as anomalous if its values exceeds the threshold

ut(p0) ≡ u(p0,m, µt, σt) := µt + σt × p1/m
0 .

where p0 is the sensitivity parameter controlling for the type I error rate. The em-

pirical means and variances of the data serve as reasonably good estimates for the

quantities µt and σt. However to reduce their susceptibility to outliers, we use the

EWMA smoothing on the parameters µ̂ and σ̂ similar to Step 6 of Algorithm 2.

2.2.6 Detection accuracy

We next describe the detection accuracy of Algorithms 2 and 3 for artificially

constructed attacks. Table 2.3 and 2.4 report two metrics, namely precision and recall

(Kallitsis et al. (2015)). The data comprises of sketch matrices (databricks) collected

at Merit’s Detroit monitoring station using AMON from an anomaly-free period (one

hour during a holiday weekend in July). Attack vectors of varying magnitude (see

column three in Tables 2.3 and 2.4) are injected at five randomly chosen points. Three

different scenarios are considered: 1) many sources sending traffic to one destination;

2) one source sending traffic to many destinations, and 3) many to many. Each

individual experiment is repeated 50 times and we report the average performance in

terms of precision and recall. For scenario (3), the input comprises of both destination

and source hash binned arrays (see Figure 2.5). The other two scenarios are different

where one of destination and source arrays are provided for (1) and (2) respectively.

For all situations we allow a grace period of 3 minutes for detection.

Table 2.3 shows the detection accuracy for algorithm 2 for varying values of the

pair (p0, λ) = (p, λα) where the best performance was recorded for p = 0.95 and
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p λα Gbps P
(1)
d R

(1)
d P

(2)
s R

(2)
s P

(3)
s R

(3)
s P

(3)
d R

(3)
d

0.95 0.50 0.50 0.74 1.00 1.00 0.96 1.00 1.00 0.74 1.00
0.95 0.50 1.50 0.73 1.00 1.00 1.00 1.00 1.00 0.74 1.00
0.95 0.50 2.50 0.73 1.00 1.00 0.98 1.00 1.00 0.74 1.00

0.95 0.60 0.50 0.72 0.93 1.00 0.61 1.00 1.00 0.85 1.00
0.95 0.60 1.50 0.74 0.99 1.00 0.88 1.00 0.99 0.85 0.99
0.95 0.60 2.50 0.73 1.00 1.00 0.92 1.00 1.00 0.85 1.00

0.99 0.50 0.50 1.00 0.73 0.74 0.22 1.00 1.00 1.00 0.99
0.99 0.50 1.50 1.00 0.94 0.98 0.50 1.00 1.00 1.00 1.00
0.99 0.50 2.50 1.00 0.97 1.00 0.71 1.00 0.99 1.00 0.99

0.99 0.60 0.50 0.76 0.24 0.36 0.09 1.00 1.00 1.00 1.00
0.99 0.60 1.50 0.92 0.40 0.08 0.02 1.00 1.00 1.00 1.00
0.99 0.60 2.50 1.00 0.55 0.16 0.04 1.00 1.00 1.00 0.99

Table 2.3: Evaluation of detection Algorithm 2 in Section 2.2.3.

λα = 0.50. The parameter p0 controls for the false alarm rate. The tuning parameter

λ is used to robustify the estimation of the tail exponent α (see Algorithm 2). Values

of λ close to 1 imply that greater trust is placed on the current estimate of α over

the historic ones. This may be disadvantageous when outliers/big spikes are indeed

present in the data (large order statistic produce smaller α values). However too

much reliability on the past (λ close to 0) makes the algorithm less adaptable to the

changes in the traffic.

Table 2.4 illustrates the detection performance of a modification of Algorithm

3, which utilizes EWMA control charts on z-scores, as explained at the end of

Section 2.2.4. We employ our methodology for different EWMA pairs (λp, L) =

{(2, 0.5), (2, 0.6), (3, 0.5)} and λ = λα = 0.5. The simulation settings are the same

as that described in the previous paragraph. Best results are obtained for (λp, L) =

(0.60, 2). False alarm rates may be controlled with a higher L and/or decrease further

λp. These choices are more suitable when the anomalies last for longer durations.
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L λp Gbps P
(1)
d R

(1)
d P

(2)
s R

(2)
s P

(3)
s R

(3)
s P

(3)
d R

(3)
d

2.00 0.50 0.50 0.45 0.98 0.61 0.97 0.49 0.99 0.35 0.99
2.00 0.50 1.50 0.45 0.99 0.62 0.96 0.41 0.99 0.33 1.00
2.00 0.50 2.50 0.45 0.98 0.64 0.98 0.41 0.99 0.34 1.00

2.00 0.60 0.50 0.61 0.98 0.80 0.96 0.74 0.99 0.45 1.00
2.00 0.60 1.50 0.62 0.97 0.81 0.99 0.50 0.99 0.41 0.99
2.00 0.60 2.50 0.60 0.98 0.81 0.97 0.48 0.99 0.40 0.99

3.00 0.50 0.50 1.00 0.62 0.76 0.25 0.95 0.99 0.78 0.99
3.00 0.50 1.50 0.98 0.74 0.62 0.16 0.73 0.98 0.60 0.98
3.00 0.50 2.50 1.00 0.81 0.90 0.36 0.58 0.98 0.55 0.99

3.00 0.60 0.50 0.96 0.42 0.50 0.13 0.99 0.98 0.92 0.98
3.00 0.60 1.50 1.00 0.59 0.40 0.10 0.79 1.00 0.65 1.00
3.00 0.60 2.50 1.00 0.72 0.56 0.13 0.71 1.00 0.59 1.00

Table 2.4: Evaluation of detection Algorithm 3 in Section 2.2.4.

2.2.7 Case studies

2.2.7.1 Detection and identification of DDoS events

In this section, we apply the detection algorithms of Sections 2.2.3 and Section

2.2.4 to a real world security event recorded recently at Merit. The event which

shall be referred to as ‘Library’ case study’ involved a heavy UDP based DNS traffic

targeted to a public library in Michigan2. Top left panel in Figure 2.8 shows the

hashed array for a span of one hour where the attack between 30 to 45 minutes. The

top right panel shows a plot of the traffic volume for that hour. The dark strip in

the top left panel and the elevated volume in top right panel reveal that our data

products captures the attacks at least visually. Alarms raised by the algorithms 2

and 3 have been shown in red in the bottom panel of Figure 2.8. We observe that

both algorithms were able successfully identify the period of attack.

2This event was also reported from a PeakFlow appliance operated at Merit.
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Figure 2.8: Case Study of ‘Library’ event. Evaluation of our detection algorithm.

2.2.7.2 Case study: detection of structural changes

In this section, we discuss the identification of low volume DDoS attack events.

Most of these go unidentified by algorithms (Algorithms 2 and 3) which are better

suited for high volumetric attacks. However the community detection algorithm of

Section 2.2.5 which aims at identifying structure changes in the traffic comes in more

handy. Figure 2.9 presents example of a low volume DDoS where the black lines in the

right panel depict malicious activities. The small strip around bin number 52 was due

a UDP misuse affecting a Tor exit router within Merit, and the larger strip around

bin number 21 represent attempts of SSH-breaking into Michigan-located servers from

IPs registered to an autonomous system in the Asia-Pacific region. This case referred
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to as the ’Tor study’ was well identified by the community detection algorithm of

Section 2.2.5. However they escaped detection by algorithms 2 and 1 owing to the

sparse traffic behavior. Figure 2.10) shows a plot of the highly connected components

(exceeding the p-value threshold) for the time duration of 0-60 minutes. The number

are connected components rise from 1 to 2 between the time interval 15-45 minutes

when both the attacks present themselves.
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Figure 2.9: ‘Tor’ case study: Nature of the attacks.
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Figure 2.10: ‘Tor’ case study: Attacks detected by community detection.

To visualize additional structural behavior of the traffic, Figure 2.10 provides a

plot of cliques/ clique sizes etc. constructed from the adjacency matrix described
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in Section 2.2.5. These adjacency matrices provide additional insight into the co-

connectivity between sources/ destination via the co-citation/bibliographic matrices.

Specifically, let At be the matrix constructed as in Section 2.2.5 from the top 90%

observations. Then the co-connectivity matrix for sources is given by St = A>t At

and that for destinations is given by Dt = AtA
>
t . Figure 2.11 shows these co-citation

graphs for the period when UDP of misuse of the Tor exit router occurred (The nodes

have been relabeled based on the node-degree in decreasing order). The rather large

connectivity is clearly evident the src-src graph (top right panel). Indeed these events

can be better quantified by considering the clique size for each graph where sudden

appearance of large cliques correspond to events of suspicious activity (see bottom

panel in Figure 2.11).

2.2.8 Software implementation

We developed the statistical tools which when applied to the hashed array inputs

can detect the onset of malicious events like DDoS, power outages, scanning etc. The

statistical framework is however incomplete without two main components of AMON

viz the data collection software and identification of original IP addresses for heavy

hitter bins. The first task is accomplished with a PF RING ZC module installed

at Merit which transmits data on packet headers at a speed of around 10 Gbps+.

The explicit details of the software and its online implementation are covered under

Section II C of Kallitsis et al. (2016b). When an alarm is raised by any one of

the three algorithms in Section 2.2.3, 2.2.4 and 2.2.5, one turns to the Boyer Moore

algorithm Boyer and Moore (1991); Kallitsis et al. (2014) for the identification of

culprit IPs. For a stream of inputs the Boyer Moore majority algorithm can keep

track of the IP contributing to at least 50% of the traffic volume in the stream. Since
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Figure 2.11: Visualizations readily available by our data products. Top: Adjacency
matrices of co-connectivity graphs (node indices sorted by degree - black
corresponds to locations of 1’s). Bottom: Size of max cliques over time
during the ‘Tor’ case study (Section 2.2.7.2). By observing clique size
changes in Dashboards like this, coupled with the detection method of
Section 2.2.5, such seemingly innocuous low-volume events are captured.

m is the dimension of hashed IP space, m instances of Boyer Moore are maintained

for each of the m substreams. Once an alarm for is flagged, the heavy hitter IP is

identified from these sub-streams by a majority vote algorithm. The explicit details

of the method and its application to heavy hitter IP identification are covered under

Section II B of Kallitsis et al. (2016b).
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Sections 2.2.3 and 2.2.4 heavily depend on the estimation of the tail index α

(see 2.14 and 2.18). When outliers are present in the data, the estimates may be

severely compromised. Though techniques like exponentially weighted moving aver-

age of Lambert and Liu (2006a) can reduce the sensitivity to outliers by relying on

historical data, they may be ineffective attacks last for a smaller duration of time.

This motivated the study of a tail index estimator robust to the presence of outliers

which is the topic of our next chapter.
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CHAPTER III

Adaptive Trimming of the Hill Estimator

Contributions and due credit: Much of the material in this chapter is based

on the work from Bhattacharya et al. (2017).

3.1 Introduction

The estimation of the tail index for heavy-tailed distributions is perhaps one of

the most studied problems in extreme value theory. Since the seminal works of Hill

(1975), Pickands (1975), Hall (1982) and others, numerous aspects of this problem

such rate optimality, parameter tuning and applications have been explored (see for

example the monographs of Embrechts et al. (1997), Beirlant et al. (2004b), de Haan

and Ferreira (2006), Resnick (2007) and the references therein).

Given the extensive work on the subject, it may appear naive to hope to say

something new. Nevertheless, some curious aspects of this fundamental problem

such as sensitivity to outliers, the effective sample size etc. have remained relatively

unexplored.

Suppose that X1, · · · , Xn is an i.i.d. sample from a heavy tailed distribution F .
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Namely,

P (X1 > x) ≡ 1− F (x) ∼ `(x)x−1/ξ, as x→∞, (3.1)

for some ξ > 0 and a slowly varying function ` : (0,∞)→ (0,∞), i.e., `(λx)/`(x)→

1, x → ∞, for all λ > 0. The parameter ξ will be referred to as the tail index of

F . Its estimation is of fundamental importance to the applications of extreme value

theory.

The fact that ξ governs the asymptotic tail-behavior of F means that, in practice,

one should estimate it by focusing on the most extreme values of the sample. In many

applications, one quickly runs out of data since only the largest few order statistics are

utilized. In this case, every extreme data-point matters. However the largest order

statistics could get corrupted in the presence of outliers. Depending on the nature of

the outliers, a severe bias may be introduced in the estimation of ξ (see, Tables 3.2

and 3.3 below). In fact, the computed estimate of ξ may be entirely based on these

corrupted observations. In such contexts, it is important to have a robust estimator

of ξ, which does not necessarily use the most extreme order statistics, perhaps puts

less weight on them, or indicates to what extent the most extreme data can be trusted

to come from the same distribution.

At first sight, this appears to be an ill-posed problem. Since the tail index ξ

is an asymptotic quantity, one has to focus on the largest order statistics and if

these statistics are corrupted, then there is little or no information left to estimate ξ.

Nevertheless, using the joint asymptotic behavior of the extreme order statistics, one

can detect statistically significant anomalies in the most extreme order statistics.

The problem of robust estimation of the tail index has already received some

attention (see for example Dutang et al. (2014), Goegebeur et al. (2014), Knight (un-

known), Brazauskas and Serfling (2000), Peng and Welsh (2001), Brzezinski (2016)).
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However, there are still open questions on the optimality and adaptivity of robust

estimators to the potentially unknown proportion of extreme outliers. In this chapter,

we address these two issues.

Recall the classic Hill estimator

ξ̂k(n) :=
1

k

k∑
i=1

log

(
X(n−i+1,n)

X(n−k,n)

)
, (3.2)

where 1 ≤ k ≤ n − 1 and X(n,n) ≥ X(n−1,n) ≥ · · · ≥ X(1,n) are the order statistics of

the sample Xi, i = 1, · · · , n. In Section 3.2, we introduce the trimmed Hill estimator:

ξ̂trim
k0,k

(n) :=
k∑

i=k0+1

ck0,k(i) log

(
X(n−i+1,n)

X(n−k,n)

)
, 0 ≤ k0 < k < n. (3.3)

Under the Pareto model (3.4), we obtain the optimal weights, ck0,k(i) such that ξ̂trim
k0,k

is the best linear unbiased estimator for ξ (see Proposition III.1, below).

Although the idea of trimming has been considered before by Brazauskas and

Serfling Brazauskas and Serfling (2000), and most recently by Zou et al. (2017),

the optimal trimmed Hill estimator has not been derived before. These two works

use equal weights in (3.3), thereby producing either suboptimal or biased estimators

respectively. Inference for the truncated Pareto model has been developed in the

seminal work of Aban et al. (2006) and recently by Beirlant et al. (2016). This

should be distinguished from the approach of trimming the data in order to achieve

robustness, which is the main focus of our work.

Note that the trimmed estimators in (3.3) do not depend on the top k0 order

statistics. Therefore, they have a strong upper break-down point (see Definition III.3).

In the ideal Pareto setting, it turns out that our trimmed Hill estimator is essentially

finite-sample optimal among the class of all unbiased estimators of ξ with a fixed
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strong upper break-down point (see Theorem III.4). In Section 3.3.2, we establish the

asymptotic normality of the trimmed Hill estimator in the semi parametric regime

(3.1), under second order conditions on the regularly varying function ` as in Beirlant

et al. (2006). The rate of convergence of these estimators is the same as that of the

classic Hill as long as k0 = o(k) (see Theorem III.5). The minimax rate–optimality

of the trimmed Hill estimators is established in Section 3.3.

These theoretical results though encouraging, are not practically useful unless

one has a data-adaptive method for the choice of the trimming parameter k0. This

problem is addressed in Section 3.4. There, we start by introducing trimmed Hill plot

which can be used to visually determine k0. Then, by exploiting the elegant joint

distribution structure of the optimal trimmed Hill estimators, we devise a weighted

sequential testing method for the identification of k0. The devised sequential testing

can be shown to be asymptotically consistent for the general heavy tailed regime.

This leads to a new adaptive trimmed Hill estimator, which works well even if the

degree of contamination in the top order statistics is largely unknown. This novel

adaptive robustness property is not present in the existing robust estimators.

In Section 3.6, we demonstrate the need for adaptive robustness and the ad-

vantages of our estimator in comparison with established robust estimators in the

literature. The finite–sample performance of the trimmed Hill estimator is studied in

the context of various heavy tailed models, tail indices, and contamination scenarios

in Section 3.5. We also propose a unified approach which can jointly estimate k0

along with k so that the method is more suited to practical applications. In Section

3.7, we finally summarize our contributions and outline some future problems and

practical challenges.
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3.2 The Trimmed Hill Estimator

In this section, we shall focus on the fundamental Pareto(σ, ξ) model and assume

that

P (X > x) = (x/σ)−1/ξ, x ≥ σ, (3.4)

for some σ > 0 and a tail index ξ > 0.

Motivated by the goal to provide a robust estimate of the tail index ξ and in view of

the classical Hill estimator in (3.2), we consider the class of statistics, ξ̂trim
k0,k

(n) defined

in (3.3). Proposition III.1 below finds the weights, ck0,k(i) for which the estimator

in (3.3) is unbiased for ξ and also has the minimum variance. Their optimality and

robustness are discussed in Section 3.3.

The following result gives the form of the best linear unbiased trimmed Hill esti-

mator. Its proof is given in Section B.

Proposition III.1. Suppose X1, · · · , Xn are i.i.d. observations from the distribution

Pareto(σ, ξ) as in (3.4). Then among the general class of estimators given by (3.3),

the minimum variance linear unbiased estimator of ξ is given by

ξ̂k0,k(n) =
k0 + 1

k − k0

log

(
X(n−k0,n)

X(n−k,n)

)
+

1

k − k0

k∑
i=k0+2

log

(
X(n−i+1,n)

X(n−k,n)

)
, 0 ≤ k0 < k < n.

(3.5)

For real data the observations may not be i.i.d. in which case the data may re-

quire additional pruning methods like hashing (Section 2.2.2) or declustering (Section

4.3.4). The choice of the trimming parameter k0 is of key importance in practice. In

Section 3.4, we propose an automatic data driven methodology for the selection of

k0, which is motivated by the following result.
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Proposition III.2. The joint distribution of ξ̂k0,k(n) can be expressed in terms of

gamma distributed random variables;

{
ξ̂k0,k(n), k0 = 0, . . . , k − 1

}
d
=
{
ξ

Γk−k0
k − k0

, k0 = 0, . . . , k − 1
}
, (3.6)

where the Γi’s are as in (B.1). Consequently, we have that

Cov(ξ̂i,k(n), ξ̂j,k(n)) =
ξ2

k − i ∧ j
, i, j = 0, 1, · · · k − 1 (3.7)

where ∧ denotes the min operator. Moreover, as k − k0 →∞,

√
k − k0(ξ̂k0,k(n)− ξ) d

=⇒ N(0, ξ2) (3.8)

The proof is given in Section B.

3.3 Optimality And Asymptotic Properties

3.3.1 Optimality in the ideal Pareto case

The trimmed Hill estimators in (3.3) possess a strict upper breakdown point in

the following sense.

Definition III.3. A statistic θ̂ is said to have a strict upper breakdown point β,

0 ≤ β < 1, if θ̂ = T (X(n−[nβ],n), · · · , X(1,n)) where X(n,n) ≥ · · · ≥ X(1,n) are the order

statistics of the sample. That is, θ̂ is unaffected by the values of the top [nβ] order

statistics.

Assuming that all observations are generated from Pareto(σ, ξ), the following the-

orem describes the optimality properties of the trimmed Hill estimator for both the
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asymptotic and finite sample regimes for a given value of strict upper break down

point.

Theorem III.4. Consider the class of statistics given by

Uk0 =
{
T = T (X(n−k0,n), · · · , X(1,n)) : E(T ) = ξ, X1, · · · , Xn

i.i.d.∼ Pareto(σ, ξ)
}

which are all unbiased estimators of ξ with strong upper breakdown point β = k0/n.

Then for ξ̂k0,n−1(n) as in (3.5), we have

ξ2

n− k0

≤ inf
T∈Uk0

V ar(T ) ≤ V ar(ξ̂k0,n−1) =
ξ2

n− k0 − 1
. (3.9)

In particular, ξ̂k0,n−1 is asymptotically minimum variance unbiased estimator (MVUE)

of ξ among the class of estimators described by Uk0.

The proof is given in Section B.

3.3.2 Asymptotic normality

Here, we shall establish the asymptotic normality of the trimmed Hill estimator,

ξ̂k0,k under the general semi-parametric regime (3.1). In addition, we also briefly

discuss the minimax rate optimality of the estimator.

The key idea used is that the trimmed Hill estimator can be expressed in terms for

trimmed Hill for ideal Pareto setting plus a remainder term which goes in probability

to 0. Next described are the tools to this end.

Consider the tail quantile function

Q(t) = inf{x : F (x) ≥ 1− 1/t} = F−1(1− 1/t), t > 1 (3.10)
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where F−1 is the generalized inverse of the distribution function F . As in Beirlant

et al. (2006), we assume the following equivalent representation of (3.1)

Q(t) = tξL(t) (3.11)

where L is a slowly varying function at ∞ (see, e.g., p. 29 in Bingham et al. (1989)).

Let Xi = Q(Yi), i = 1, · · · , n for Yi, i = 1, · · · , n i.i.d from Pareto(1, 1). Then

Xi, i = 1, · · · , n are i.i.d from the distribution F . Thus expressing (3.5) in terms

of the quantile function Q we have

ξ̂k0,k(n) =
k0 + 1

k − k0

log

(
Y ξ

(n−k0,n)

Y ξ
(n−k,n)

)
+

1

k − k0

k∑
i=k0+2

log

(
Y ξ

(n−i+1,n)

Y ξ
(n−k,n)

)
︸ ︷︷ ︸

ξ̂∗k0,k
(n)

+Rk0,k(n)

where Y ξ
(i,n)’s are the order statistics for the Y ξ

i ’s and the remainder Rk0,k(n) is:

Rk0,k(n) =
1

k − k0

(
(k0 + 1) log

L(Y(n−k0,n))

L(Y(n−k,n))
+

k∑
i=k0+2

log
L(Y(n−i+1,n)

L(Y(n−k,n))

)
. (3.12)

Since X∗i := Y ξ
i follow Pareto(1, ξ), the statistic ξ̂∗k0,k(n) in (3.12) is nothing but the

trimmed Hill estimator for the ideal Pareto data with tail index ξ. Under suitable

second order regularity assumptions on the function L,
√
k − k0 Rk0,k(n) converges

to a constant in probability which in view of (3.8) leads to the asymptotic normality

result for ξ̂k0,k(n). These second order conditions also used in Beirlant et al. (2006)

assume that

∀x > 1 :
L(tx)

L(t)
= 1 + cg(t)

x∫
1

ν−ρ−1dν + o(g(t)), t→∞ (3.13)
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where ρ ≥ 0 and g : (0,∞) → (0,∞) is a −ρ varying function 1. It can be shown

that (3.13) implies

sup
t≥tε

∣∣∣ log
L(tx)

L(t)
− cg(t)

x∫
1

ν−ρ−1dν
∣∣∣ ≤ { εg(t) if ρ > 0

εg(t)xε if ρ = 0.

(3.14)

for all ε > 0 and some tε dependent on ε and g (see Lemma A.2 in Beirlant et al. (2006)

for more details). Next stated is the asymptotic normality result for the trimmed Hill

estimator assuming that (3.14) holds.

Theorem III.5. Suppose (3.13) holds and let k →∞, n→∞ and k/n→ 0 be such

that for some δ > 0,

kδg(n/k)→ A (3.15)

for a constant A. Then,

kδ max
0≤k0<h(k)

∣∣∣∣∣ξ̂k0,k(n)− ξ̂∗k0,k(n)− cAk−δ

1 + ρ

∣∣∣∣∣ P−→ 0, (3.16)

where h(k) = o(k) and ξ̂k0,k(n) and ξ̂∗k0,k(n) are defined in (3.12).

The proof is given in Section B.

Corollary III.6. If k0 = o(k) and
√
kg(n/k)→ A,

√
k(ξ̂k0,k(n)− ξ) d

=⇒ N

(
cA

1 + ρ
, ξ2

)

The proof is a direct consequence of Theorem III.5 for δ = 1/2 and result (3.8).

1A ρ varying function g has the form g(x) = xρh(x) where h(x) is a slowly varying function

satisfying limx→∞
h(λx)
h(x) = 1 (see Theorem 1.4.1 in Bingham et al. (1987) for more details).
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We end this section with a brief discussion of the rate-optimality of the trimmed

Hill estimators in the context of the Hall class.

3.3.3 On the minimax rate–optimality

Consider the class of distributions D := Dξ(B, ρ) with tail index ξ > 0, such that

(3.11) holds, where

L(x) = 1 + r(x), with |r(x)| ≤ Bx−ρ, (x > 0) (3.17)

for some fixed constants B > 0 and ρ > 0 (see also (2.7) in Boucheron and Thomas

(2015)).

Theorem III.7 (uniform consistency). Suppose that k = k(n) ∝ n2ρ/(2ρ+1) and

h(k) = o(k), as n→∞.

Then, for every sequence a(n) ↓ 0, such that a(n)
√
k(n)→∞, we have

lim inf
n→∞

inf
F∈Dξ(B,ρ)

PF

(
max

0≤k0<h(k)
|ξ̂k0,k(n)− ξ| ≤ a(n)

)
= 1. (3.18)

where by PF , we understand that ξ̂k0,k(n) was built using independent realizations from

F .

The proof of this result is given in Section B. Relation (3.18) reads as follows.

The estimator ξ̂k0,k(n) is uniformly consistent (at the rate a(n)) in both the family of

possible distributions D and in the choice of the trimming parameter k0, so long as

k0 = o(k). This remarkable property shows that ξ̂k0,k(n) are minimax rate-optimal

in the sense of Hall and Welsh (1984). Indeed, Theorem 1 in Hall and Welsh implies

the following.
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Theorem III.8 (rate optimality). Let ξ̂n be any estimator of ξ based on an indepen-

dent sample from a distribution F ∈ Dξ(B, ρ). If we have

lim inf
n→∞

inf
F∈Dξ(B,ρ)

PF (|ξ̂n − ξ| ≤ a(n)) = 1 (3.19)

then nρ/(2ρ+1)a(n) =∞.

This result shows that no estimator can be uniformly consistent over the Hall

class of distributions D at a rate better than nρ/(2ρ+1). This is the minimax optimal

rate that one could possibly hope to achieve. Observe that this result applies also

to the trimmed Hill estimators. As seen in Theorem III.7 above the trimmed Hill

estimators attain this minimax optimal rates uniformly in k0 ∈ [0, h(k)], for any

h(k) = o(n2ρ/(2ρ+1)).

3.4 Data Driven Parameter Selection

3.4.1 Choice of k0

Suppose Xi, i = 1, 2, · · · , n are generated from the distribution F of the form

(3.1), then the optimal trimmed Hill statistic, ξ̂k0,k(n) is asymptotically an unbiased

estimator for the tail index ξ (see Theorem III.5) as long as the parameters k0 and

k satisfy (3.16). However, this result breaks down in the presence of outliers, i.e.

ξ̂k0,k(n) may be biased estimate of ξ for some 1 ≤ k0 ≤ k − 1. The intuition to this

end is illustrated via trimmed Hill plots explained below.

For a fixed value of k, trimmed Hill plot is a plot of the values of ξ̂k0,k(n) for varying

values of k0 (see Figure 3.1). The vertical lines correspond to ξ̂k0,k(n)+σ̂k0,k(n) where

σ̂k0,k(n) = ξ̂k0,k(n)/
√
k − k0 denotes the plug in estimate of the standard error of

ξ̂k0,k(n) (see Proposition III.2). In the presence of outliers, a change-point in the form
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of a knee occurs in the values of ξ̂k0,k(n), when k0 is close to true number of outliers, k∗0

(see the knee at k0 = 5 in Figure 3.1). In order to obtain a robust estimate of the tail

index ξ, it is essential to obtain an adaptive estimate of the k∗0. This can be achieved

by estimating the location of the knee, which serves as close approximation to the

true number of outliers k∗0. The plug in statistic, ξ̂k̂0,k(n) based on the so-obtained k̂0

serves as a robust estimate of the tail index, ξ.

0 20 40 60 80 100

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

1.
4

k0

ξ̂ k
0,

k

● ● ● ● ●

●
● ● ● ● ● ●

● ●
● ● ● ● ● ● ● ●

● ● ● ●

● ● ● ●
●

● ● ●
●

●
● ●

● ●
● ●

●
● ● ●

● ●
●

● ●
● ●

● ● ●
●

●
●

● ● ●
●

●
● ●

● ●
●

● ●
●

●

●

●
●

●

●
●

●
●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

● ●

0 5 10 15 20 25 30

0
1

2
3

k0

ξ̂ k
0,

k

●

● ●
● ●

● ● ●
● ● ●

●
● ●

●
●

●

●

●
●

●
●

●
●

●

●

●

● ●

●

Figure 3.1: Trimmed Hill Plot for 5 outliers and sample size 100. The first knee occurs
around k0 = 5. Left: Pareto(1,1) with k = 99. Right: Burr(1,0.5,1) with
k = 30 (see (3.30)).

In order to obtain an accurate estimate for ξ, it is an important task to get an

estimate of the parameters k0 and k. In the first section, we describe the methodology

for the estimation of k0 when k is fixed. Next we describe an iterative algorithm which

allows for the estimation of the parameters k0 and k simultaneously.

Proposition III.9. Suppose all the Xi’s are generated from Pareto(σ, ξ), then con-

sider the following class of statistics

Tk0,k(n) :=
(k − k0 − 1)ξ̂k0+1,k(n)

(k − k0)ξ̂k0,k(n)
, k0 = 0, 1, · · · , k − 2. (3.20)
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The Tk0,k(n)’s are independent and follow Beta(k − k0 − 1, 1) distribution for k0 =

0, 1, · · · , k − 2.

Proof. By (3.20) and Proposition III.2, we have

(
T0,k, · · · , Tk−2,k

)
d
=
(Γk−1

Γk
, · · · , Γ1

Γ2

)
, (3.21)

which implies

Tk0,k
d
=

Γk−k0−1

Γk−k0
∼ Beta(k − k0 − 1, 1), i = 0, · · · , k − 2.

To show the independence of the Tk0,k’s, from Relation (B.2) in Lemma B.1 observe

that Γm and {Γi/Γm, i = 1, · · · ,m} are independent for all 1 ≤ m ≤ k − 2. This in

turn implies that

(Γ1

Γ2

,
Γ2

Γ3

, · · · , Γm−1

Γm

)
and Γm are independent.

Since Γi, i = 1, · · · ,m and (Em+1, · · · , Ek) are independent, for all m = 1, · · · , k− 2,

we have

(Γ1

Γ2

, · · · , Γm−1

Γm

)
and (Γm, Em+1, · · · , Ek) are independent . (3.22)

The independence of the Tk0,k’s follows from (3.22) by observing that for all 1 ≤ m ≤

k − 2,
(

Γm
Γm+1

, · · · , Γk−1

Γk

)
is a function of (Γm, Em+1, · · · , Ek).

Remark III.10. We observe that the distribution of Tk0,k(n) depends only on X(n−k0,n),

· · · , X(n−k,n). Therefore the joint distribution of Tk0,k(n)’s and hence that of Uk0,k(n)’s
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remains unchanged as long as

(X(n−k0,n), · · · , X(n−k,n))
d
= (Y(n−k0,n), · · · , Y(n−k,n))

where Y(n,n) > · · · > Y(1,n) are the order statistics for a sample of n i.i.d. observations

from Pareto(σ, ξ). In other words, Proposition III.9 goes through for all k0 ≥ k∗0

provided that the top k∗0 outliers do not perturb the nature of the order statistics

X(n−k0+1,n), k0 ≥ k∗0. This motivates the sequential testing methodology discussed in

the next section.

Theorem III.11. Suppose (III.5) in Theorem III.5 holds for some δ > 0. Then,

kδ max
0≤k0<h(k)

∣∣∣∣∣Tk0,k(n)− T ∗k0,k(n)

∣∣∣∣∣ P−→ 0, (3.23)

where Tk0,k(n) and T ∗k0,k(n) are based on ξ̂k0,k(n) and ξ̂∗k0,k(n) respectively (see (3.12)

and (3.20) for explicit expressions).

The proof of this is described in Section B

Remark III.12. Observe that by Theorem III.11, the asymptotic distribution of Tk0,k(n)

and also that of Uk0,k(n) is same as described in Proposition III.9 as long as the num-

ber of outliers, k0 = o(k). This allows us to use the algorithm described below (see

Algorithm 4) for the estimation of k0 in general heavy tailed models (3.1).

3.4.2 Exponentially weighted sequential testing, EWST

Whereas the trimmed Hill plot provides an illustrative estimate of the number of

outliers k∗0, we discuss the weighted sequential testing algorithm for the estimation

of k∗0 in a principled manner. One strategy to estimate the true number of outliers,
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k∗0, is to look for the presence of outliers among the set of values, Tk0,k(n). In this

context, we define the following statistic

Uk0,k(n) := 2|(Tk0,k(n))k−k0−1 − 0.5|, k0 = 0, 1, · · · , k − 2. (3.24)

For i.i.d. observations from Pareto(σ, ξ), Uk0,k(n) are i.i.d. U(0, 1) random variables2.

An estimate of k∗0 is obtained by identifying the largest value of k0 for which the

hypothesis that Uk0,k(n) follows U(0, 1) gets rejected.

In this direction, we begin with a large value of k0 = f(k) and test the hypothesis:

Uk0,k(n) ∼ U(0, 1). If rejected, we stop our search and declare k̂0 = k0. Otherwise,

we decrease the value of k0 by 1 and proceed until the hypothesis Uk0,k(n) ∼ U(0, 1)

gets rejected or k0 = 0. The resulting value of k0 then gives an estimate of k∗0. The

level for these tests increases exponentially with decrease in k0. This is done in order

to guard against large values k0 close to k.

The methodology is formally described in the following algorithm.

Algorithm 4 Exponentially weighted sequential testing
1: Let q ∈ (0, 1) be the significance level.
2: Choose a constant a > 1 and set c = 1/

∑k−1
i=1 a

i.
3: Set k0 = f(k).
4: Compute Tk0,k(n) = ((k − k0 − 1)ξ̂k0+1,k(n)/((k − k0)ξ̂k0,k(n)).
5: Compute Uk0,k(n) = 2|(Tk0,k(n))k−k0−1 − 0.5| as defined in (3.24).
6: If log(Uk0,k(n)) < cak−k0−1 log(1− q), set k0 = k0 − 1 else goto step 8.
7: If k0 ≥ 0, goto step 3 else k0 = k0 + 1.
8: Return k̂0 = k0.

Proposition III.13. For i.i.d. observations from Pareto(σ, ξ) and q ∈ (0, 1), let

k̂0(q) be the estimate of k∗0 based on Algorithm 4 with f(k) = k − 2, then under the

null hypothesis H0 : k∗0 = 0, we have PH0 [k̂0 > 0] = q.

Proof. The type I error for Algorithm 4, PH0 [k̂0 > 0] = 1− PH0 [k̂0 = 0] where

2If X ∼ Beta(p, 1), Xp ∼ U(0, 1)
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PH0 [k̂0 = 0] = PH0

[
log(U0,k) < cak−1 log(1− q), · · · , log(Uk−2,k) < ca log(1− q)

]
= Πk−2

i=0PH0

[
Ui,k < (1− q)cak−i−1

]
= Πk−2

i=0 (1− q)cak−i−1

= (1− q)c
∑k−2
i=0 a

k−i−1

= 1− q.

where the last equality follows since c =
∑k−1

i=1 a
i =

∑k−2
i=0 a

k−i−1.

Remark III.14. For Pareto case we attain the the exact bound of type I error. The

bound is also attained asymptotically for the general heavy tailed distribution in (3.1)

but requires additional assumptions. The following theorem sheds light on the reason

behind the consistency of EWST for the more general heavy tailed setup.

Theorem III.15. If (3.23) holds for some 1 < δ < 2, then

k(δ−1) max
0≤k0<h(k)

∣∣∣∣∣Uk0,k(n)− U∗k0,k(n)

∣∣∣∣∣ P−→ 0, (3.25)

with Uk0,k(n) and U∗k0,k(n) are defined in (3.24). Moreover, if f(k) = O(kδ−1),

PH0 [k̂0 > 0]
P−→ q. (3.26)

The proof is described in Section B.
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3.5 Simulations

In this section, we evaluate the performance of the adaptive trimmed Hill estima-

tor, ξ̂k̂0,k̂(n), in terms of the mean squared error, MSE as

MSE(ξ̂k̂0,k̂(n)) = E(ξ̂k̂0,k̂(n)− ξ)2 (3.27)

For comparison, we compute the asymptotic relative efficiency, ARE with respect to

both the trimmed Hill estimator, ξ̂k0,k(n) and the classic Hill, ξ̂k(n). The formulas

are given by

ARETRIM = MSE(ξ̂k0,k(n))/MSE(ξ̂k̂0,k̂(n)) (3.28)

AREHILL = MSE(ξ̂k(n))/MSEξ̂k̂0,k̂(n))

respectively, where k0 is the true trimming parameter, and k is replaced by its optimal

choice as:

k∗n,k0 = arg min
k=k0+1,··· ,n−1

MSE(ξ̂k0,k(n)). (3.29)

We first explore the performance of exponentially weighted sequential testing algo-

rithm, EWST as described in Section 3.4.2 as an estimator of the trimming parameter

k0. In Sections 3.5.1, 3.5.2 and 3.5.4, we replace k̂ in (3.28) by the optimal values

k∗n,k0 in (3.29).

In Section 3.5.5, we will address the performance of the adaptive trimmed Hill,

ξ̂k̂0,k̂(n) where k is unknown and estimated from the data as described in Section

3.5.5.

The efficacy of the proposed algorithms have been explored in the light of the
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following heavy-tailed distributions.

Pareto(σ, α) : 1− F (x) = σαx−α; x > 1, α > 0; ξ = 1/α (3.30)

Frechet(α) : 1− F (x) : 1− exp(−x−α); x > 0, α > 0; ξ = 1/α

Burr(η, λ, τ) : 1− F (x) = 1−
(

η

η + x−τ

)−λ
; x, η, λ, τ > 0; ξ = 1/τ

|T|(t) : 1− F (x) =

∞∫
x

2Γ( t+1
2

)
√
nπΓ( t

2
)

(
1 +

w2

t

)− t+1
2

dw; x > 0, t > 0; ξ = 1/t

In Sections 3.5.2 and 3.5.4, the number of outliers k0 and the tail index ξ are kept

fixed. Varying values of ξ and k0 are studied in Section 3.5.3.

3.5.1 Performance under H0 (k0 = 0)

In this section, we let X1, · · · , Xn be i.i.d. generated from one of the four distri-

butions in (3.30). The tail index ξ is fixed at 1. We assume that there are no outliers,

i.e. k0 = 0 which in turn implies that the trimmed Hill coincides with the classic Hill

estimator.

Assuming k = k̂ = k∗n,0, we evaluate the performance of the adaptive trimmed

Hill, ξ̂k̂0,k̂(n) with respect to the classic Hill, ξ̂k(n) in terms of ARE using (3.28). The

trimming parameter estimate k̂0 is obtained using EWST as in Section 3.4.2. The

ARE’s are based on 5000 independent Monte Carlo realizations. For EWST , the

significance level, q and the exponentiation parameter a are fixed at 0.05 and 1.2

respectively.
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n Pareto(1,1) Frechet(1) Burr(1,0.5,1) T(1)
100 99.17 97.19 86.25 97.22
200 99.53 99.33 96.64 99.83
500 99.85 99.88 98.27 99.85

Table 3.1: ARE of the adaptive trimmed Hill with respect to the classic Hill, k0 = 0
and ξ = 1.

As seen in Table 3.1, apart from the Burr distribution, we have fairly large ARE

values (almost 100%) even at sample size n = 100. This indicates that the EWST

algorithm picks up the true k0 = 0 in almost all of the cases. As the sample size

grows (n = 500), the behavior is more uniform across different distribution and we

achieve nearly 100% asymptotic relative efficiency even for the Burr case. This may

be explained by the asymptotic Pareto-like behavior of the heavy tailed distributions

(see (3.1)).

In the following section, we explore the behavior of adaptive trimmed Hill when

there are non zero outliers in the data, i.e. k0 > 0.

3.5.2 Inflated outliers (k0 > 0)

We simulate from one of the distributions in (3.30) with ξ = 1. We introduce

k0 outliers by perturbing the top-k0 order statistics using one of the following two

approaches

X(n−i+1,n) := X(n−k0,n) + (X(n−i+1,n) −X(n−k0,n)))
L, i = 1, · · · , k0, L > 1(3.31)

X(n−i+1,n) := X(n−k0,n) + C(X(n−i+1,n) −X(n−k0,n))), i = 1, · · · , k0, C > 1(3.32)

For L,C > 1, the transformations (3.31) and (3.32) lead to inflation of the top-k0

order statistics while still preserving their order.

We first fix k0 = 10 and assume that k = k̂ = k∗n,10. We then obtain the trimming
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parameter estimate, k̂0 and the corresponding adaptive trimmed Hill estimator, ξ̂k̂0,k̂

by using the EWST algorithm in Section 3.4.2. The performance is evaluated in

terms of the ARE relative to the trimmed Hill and ξ̂k0,k(n) and the classic Hill ξ̂k(n),

as in (3.28). Tables 3.2 and 3.3 show the performance of the adaptive trimmed Hill

for varying values of L and C respectively.

n 100 200 500
L 1.2 1.5 5 20 1.2 1.5 5 20 1.2 1.5 5 20

Pare(1,1) 0.92 0.54 0.94 0.99 0.94 0.77 0.98 1.00 0.95 0.94 1.00 1.00
1.03 2.95 76.5 1808 1.02 3.58 644.9 1608 1.02 3.21 45.7 1114

Frech(1) 0.82 0.26 0.69 0.96 0.74 0.37 0.89 0.99 0.71 0.56 0.97 1.00
11.6 3.66 10.4 13.9 21.7 10.8 26.5 28.9 45.4 35.7 59.8 62.2

Bu(1,0.5,1) 1.13 0.33 0.21 0.94 0.87 0.26 0.54 0.96 0.74 0.37 0.88 0.99
5.19 1.48 0.88 4.24 9.47 2.92 10.3 19.7 5.87 10.3 23.8 25.8

|T|(1) 0.87 0.29 0.56 0.96 0.79 0.36 0.85 0.98 0.75 0.62 0.95 1.00
15.6 5.11 10.0 17.0 31.7 14.5 33.3 38.0 71.6 58.4 88.6 94.7

Table 3.2: ARE of the adaptive trimmed Hill k0 = 10, ξ = 1 and L > 1. For each
distribution, top row corresponds to ARETRIM and bottom row indicates
AREHILL.

n 100 200 500
C 2 10 20 100 2 10 20 100 2 10 20 100

Pareto(1,1) 0.93 0.57 0.64 0.95 0.95 0.73 0.80 0.98 0.98 0.87 0.93 0.99
1.01 1.85 3.33 12.7 1.01 1.57 2.57 7.22 1.00 1.29 1.79 3.52

Frechet(1) 0.84 0.29 0.37 0.70 0.81 0.39 0.45 0.83 0.81 0.51 0.60 0.92
11.8 3.94 5.44 10.3 22.7 11.8 13.9 23.7 50.2 31.6 37.7 59.6

Burr(1,0.5,1) 0.98 0.33 0.27 0.37 0.86 0.33 0.33 0.62 0.8 0.44 0.47 0.83
4.52 1.44 1.20 1.58 9.17 3.58 3.65 6.82 21.3 12.0 12.7 22.3

|T|(1) 0.80 0.28 0.30 0.58 0.77 0.38 0.47 0.86 0.83 0.54 0.65 0.93
14.5 4.97 5.34 10.6 31.4 15.2 18.9 31.9 80.5 53.0 61.4 87.4

Table 3.3: ARE of the adaptive trimmed Hill k0 = 10, ξ = 1 and C > 1. For each
distribution, top row corresponds to ARETRIM and bottom row indicates
AREHILL.

We first observe the ARE values compared to the oracle trimmed Hill statistic

are relatively stable and improve considerably with the increase in sample size n. For

outliers of small magnitude, i.e L = 1.2 and C = 2, the ARE values are relatively

higher as compared to the case of moderate outliers, i.e. L = 2, 5 or C = 10, 20. This

is natural, since small values of L and C are indicative of lower levels of contamination
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and thus the estimation of ξ is accurate even if k0 is underestimated. For L = 2, 5 and

C = 10, 20, we have for estimation accuracy for the trimming parameter k̂0 (observed

in histograms of k̂0 not reported here). However, the increase in severity of outliers

produces a greater error in the estimation of ξ. Outliers of large magnitude, i.e.

L = 20 and C = 100, allow for nearly perfect detection accuracy for the trimming

parameter k0 and hence the ARE values close to 100%.

The estimation of k0 is best under the Pareto setting followed by Frechet and

the T-distribution. Of all cases, the Burr distribution is most challenging. This is

explained by the slow rate of convergence of Burr tails to Pareto tails and hence

the relatively lower efficiency of the adaptive trimmed Hill. For large sample sizes

n = 500, sensitivity of the adaptive trimmed Hill to underlying distribution structure

decreases and we attain nearly 100% accuracy uniformly across all distributions when

L > 2 and C > 20.

Finally, we observe the unusually large ARE values relative to the classic Hill.

It is remarkable that even small perturbations in the top order statistics (L = 1.2

and C = 2) lead to an unacceptable bias of the classic Hill estimator. The MSE

deteriorates by a factor of 14 or 15 in case of the T-distribution for n = 100 and it

could be as bad as 80 when n = 500. This highlights the importance of considering

adaptive robust estimators of ξ in real data problems where the observations could

be contaminated. For the remaining section, we shall thus consider the ARE values

relative to the trimmed Hill only.

3.5.3 Role of ξ and k0

In this section, we explore the influence of the tail exponent ξ and the extent

of contamination k0 on the EWST algorithm of Section 3.4.2. Figures 3.2 and 3.3
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display the ARE values of the adaptive trimmed Hill, ξ̂k̂0,k̂(n) for varying values of ξ

and k0 respectively.
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Figure 3.2: Performance for varying values of tail exponent ξ. Left and right panels
correspond to n = 100 and n = 500, respectively.

We first inject k0 = 10 top outlier statistics as in (3.31) with L = 5. The un-

derlying distributions from which the data is generated correspond to Pareto(1, 1/ξ),

Frechet(1/ξ), Burr(1, 0.5, 1/ξ) and |T |(1/ξ) with ξ in the range {0.5, 0.67, 1, 2, 5}.

With k = k̂ = k∗n,10, we consider the ARE values of the adaptive trimmed Hill,

ξ̂k̂0,k̂(n) relative to the trimmed Hill, ξ̂k0,k for varying values of ξ. Figure 3.2 shows

this behavior for varying sample sizes.

We observe that the efficiency of the proposed adaptive trimmed Hill approaches

100% for ξ > 0.67 for all distributions with increase in sample size n. This is ex-

pected as the heavy tailed distributions in (3.1) get closer to the Pareto distribution

asymptotically. Whereas the Pareto distribution is more or less robust to the change

in the tail exponent ξ, the other three heavy tailed distributions suffer from a mild

loss in efficiency in the range ξ < 2. The superior performance at higher values of

ξ indicates easy identification of outliers in heavier tails. The performance of our

estimator improves on both sides of ξ = 0.67 for all distributions apart from the

Burr. The Burr distribution is the most challenging in terms of identification of the
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trimming parameter k0 and has relatively low efficiency for 0.67 < ξ < 2 especially

for smaller sample sizes.
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Figure 3.3: Performance for varying amount of outliers. Left and right panels corre-
spond to the number k0 and the proportion k0/k of outliers respectively.

We next inject k0 top outlier statistics as in (3.31) with L = 5 and distribution

in (3.30) with ξ = 1. The underlying distributions from which the data is generated

correspond to Pareto(1, 1), Frechet(1), Burr(1, 0.5, 1) and |T |(1). We consider two

different scenarios, one where k0 ∈ {1, 5, 10, 15, 20, 40} and the other where k0/k ∈

{0.01, 0.02, 0.05, 0.1, 0.2}. For scenario 1 (varying k0), we let k = k̂ = k∗n,k0 and for

scenario 2 (varying k0/k), we let k = k̂ = k∗n,0. We then apply the EWST algorithm

for estimation of k0. Figure 3.3 displays the ARE values of the adaptive trimmed

Hill, ξ̂k̂0,k(n) relative to the trimmed Hill, ξ̂k̂0,k.

We observe that with increase in both number (k0) and proportion of outliers

(k0/k), naturally the efficiency of the proposed adaptive trimmed Hill decreases. This

may be attributed to the fact that the detection accuracy of k0 becomes increasingly

difficult with increase in both number and proportion of outliers. From Figure 3.3,

we observe that when the number of outliers, k0 is kept constant, the ARE of Pareto

is the greatest while that of Burr is the least. On the other when the proportion k0/k

is kept constant, the performance under Burr is the best while that under Pareto is
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the worst. This unusual phenomenon can be explained as follows. For same sample

size, the optimal k = k∗n,k0 is the largest for Pareto followed by T, Frechet and Burr.

Since a large effective sample size allows for better estimation of k0, therefore the

highest ARE values are obtained corresponding to the Pareto distribution in 3.3 left.

For k0/k constant, large k = k∗n, k0 implies large number of outliers, k0. Since k∗n,0 is

smallest in case of the Burr distribution, we record largest ARE values for the Burr

distribution in Figure 3.3 right.

3.5.4 Deflated outliers, k0 > 0

We simulate from one of the distributions in (3.30) with ξ = 1. We introduce

k0 outliers by perturbing the top order statistics as in (3.31) and (3.32) where now

L,C < 1. For L,C < 1, the transformations (3.31) and (3.32) lead to the deflation

of the top-k0 order statistics while still preserving their order.

n 100 200 500
L 0.005 0.05 0.5 0.005 0.05 0.5 0.005 0.05 0.5

Pareto(1,1) 0.99 0.82 0.90 1.00 0.88 0.90 1.00 0.96 0.93
Frechet(1) 1.35 1.64 2.87 1.20 1.54 1.92 1.12 1.23 1.68

Burr(1,0.5,1) 1.59 3.04 5.14 1.38 1.97 2.91 1.21 1.46 2.06
|T|(1) 1.31 1.59 2.33 1.17 1.22 1.59 1.10 1.13 1.42

Table 3.4: ARE of the adaptive trimmed Hill relative to trimmed Hill for k0 = 10,
ξ = and L < 1.

With k0 = 10 and k = k̂ = k∗n,10, we obtain the trimming parameter estimate,

k̂0 and the corresponding adaptive trimmed Hill estimator, ξ̂k̂0,k̂ using the EWST

algorithm in Section 3.4.2. Their performance is evaluated in terms of the ARE

relative to the trimmed Hill ξ̂k0,k(n) in Tables 3.4 and 3.5.

65



n 100 200 500
L 0.005 0.05 0.5 0.005 0.05 0.5 0.005 0.05 0.5

Pareto(1,1) 0.97 0.75 1.05 0.98 0.87 1.02 1.00 0.94 1.00
Frechet(1) 1.09 1.68 2.22 1.06 1.97 1.71 1.07 1.75 1.46

Burr(1,0.5,1) 1.11 3.46 3.51 1.05 2.95 2.48 1.08 1.99 1.78
|T|(1) 1.06 1.50 1.94 1.06 1.40 1.52 1.03 1.32 1.29

Table 3.5: ARE of the adaptive trimmed Hill relative to trimmed Hill for k0 = 10,
ξ=1 and C < 1.

For the Pareto distribution, the ARE is higher in for more severe outliers L =

0.005, C = 0.001 than the case of moderate outliers L = 0.05, C = 0.1. This is

because more extreme outliers facilitate easier estimation of k0 and hence the large

ARE. However observe that for L = 0.5, C = 0.5, we have greater than the case of

L = 0.05, C = 0.1. This is because values of L and C close to 1 under estimation of

k0 does not have a huge impact on the MSE of the adaptive trimmed Hill. For the

distributions apart from Pareto, we obtain ARE values which are greater than 100%.

The detection accuracy of EWST in determining k0 has the exact same trend as that

for the Pareto case. However, for other heavy tailed distributions, a few downscaled

outliers sometimes helps in improving the MSE value of the adaptive trimmed Hill. As

a result, the adaptive trimmed Hill outperforms the oracle trimmed Hill benchmark

based on the true value of k0.

3.5.5 Joint estimation of k and k0

From Relation (3.18) in Theorem III.7 and Theorem III.8 , we observe that if

k0 = o(n2ρ/(2ρ+1)), the asymptotic mean squared error (AMSE) of the trimmed Hill

estimator is same as that of the classic Hill. Therefore following Hall and Welsh
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(1985), the value of k which minimizes the AMSE of the trimmed Hill is

kopt
n ∼

(
C2ρ(ρ+ 1)2

2D2ρ3

)1/(2ρ+1)

n2ρ/(2ρ+1).

The finite sample equivalent of kopt
n is given by k∗n,k0 as in (3.29). Drees and

Kaufmann in Drees and Kaufmann (1998) provide a methodology for the estimation

of kopt
n for the classic Hill. Motivated by their approach, we propose a method for the

joint estimation of k0 and k under the following assumptions

k0 = o(n2ρ/(2ρ+1))

1− F (x) = Cx−1/ξ(1 +Dx−ρ/ξ + o(x−ρ/ξ)) (3.33)

F−1(1− t) = ct−ξ exp

 1∫
t

ε(s)

s
ds


The last two assumptions correspond to Eqs (2) and (5) in Drees and Kaufmann

(1998) respectively.

Suppose the trimming parameter, k0 is known. We define the modified version of

Eq (4) in Drees and Kaufmann (1998) as

k̄n,k0(rn) = min

{
k ∈ {k0 + 1, · · · , n− 1}

∣∣∣ max
k0+1≤i≤k

(i− k0 + 1)1/2|ξ̂k0,i(n)− ξ̂k0,k(n)| > rn

}
(3.34)

where ξ̂k0,i is the trimmed Hill based on i−k0 observations. We conjecture a modified

version of Theorem 1 in Drees and Kaufmann (1998), where the classic Hill estimator

gets replaced by its corresponding trimmed version as follows:

Proposition III.16. Suppose rn = o((n− k0)1/2), log log(n− k0) = o(rn) and (3.33)

holds. Then if ρ̂n is any consistent estimator of ρ and ξ̃n is a consistent initial
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estimator of ξ, then for ε ∈ (0, 1) and (log log(n− k0))1/2ε = o(rn), we have

k̂opt
n,k0

= (2ρ̂n + 1)−1/ρ̂n(2ξ̃nρ̂n)1/(2ρ̂n+1)

(
k̄n,k0(r

ε
n)

(k̄n,k0(rn))ε

)1/(1−ε)

(3.35)

is a consistent estimator of k∗n,k0 in the sense that k̂n,k0/k
∗
n,k0

converges in probability

to 1. In particular, ξ̂k0,k̂optn,k0

(n) has the same asymptotic efficiency as ξ̂k0,k∗n,k0
(n).

The trimmed estimator, ξ̂k0,2
√
n can be used as an initial consistent estimator of ξ

for a wide range distributions from (3.1). As in Drees and Kaufmann (1998), it can

be shown that for λ ∈ (0, 1), a consistent estimator of ρ is given by

ρ̂
(1)
n,k0,λ

(rn) = logλ
maxk0+1≤i≤[λk̄n,k0 (rn)](i− k0 + 1)1/2|ξ̂k0,i(n)− ξ̂k0,[λk̄n,k0 (rn)](n)|

maxk0+1≤i≤[k̄n,k0 (rn)](i− k0 + 1)1/2|ξ̂k0,i(n)− ξ̂k0,[k̄n,k0 (rn)](n)|
− 1

2

(3.36)

The detailed presentation of the proof of Proposition III.16 shall be the subject of

another work. Here, we shall only demonstrate its application in practice (see Tables

3.6 and 3.7).

We next describe a methodology which allows for the estimation of k when the

trimming parameter k0 is unknown. In this direction, we start with an initial choice of

the parameter k. From this initial choice of k, we estimate the trimming parameter,

k0 using EWST Algorithm 4. With this choice of k̂0, we obtain an estimate for

k by using Proposition III.16. We iterate between the values of k and k0, unless

convergence is obtained. Next, we describe the methodology more formally:
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Algorithm 5 Joint estimation of k0 and k.
1: Set a threshold τ and i = 1.
2: Choose k as a function of n. Let k̂(0) be this initial choice.
3: Let i = i+ 1.
4: With k = k̂(i), obtain k̂

(i)
0 using Algorithm 4

5: With k0 = k̂
(i)
0 , obtain k̂(i+1) using (3.35) in Proposition III.16.

6: If |k̂(i+1) − k̂(i)| > τ , goto step 4 else goto step 7

7: Return k̂ = k̂(i) and k̂0 = k̂
(i)
0 .

In order to evaluate the performance of Algorithm 5, we first consider the ARE

of the adaptive trimmed Hill, ξ̂k̂0,k̂ relative to the trimmed Hill, ξ̂k0,k∗n,k0
where k∗n,k0

is obtained as in (3.29). Table 3.6 shows the ARE values of for Frechet and T

distributions with varying tail indices (see (3.30)). The number of outliers k0 is fixed

at 10 and two values of L = 5, 20 are chosen. The two columns correspond to the

case where ρ is either fixed at constant 1 or estimated using (3.36) for λ = 0.6.

L n Frech(5) Frech(2) Frech(1) |T|(4) |T|(10)

1 ρ̂(1) 1 ρ̂(1) 1 ρ̂(1) 1 ρ̂(1) 1 ρ̂(1)

100 0.74 0.63 0.31 0.18 0.27 0.24 0.86 0.63 0.88 0.64
5 200 0.71 0.64 0.37 0.51 0.72 0.49 0.87 0.66 0.86 0.64

500 0.78 0.60 0.66 0.53 0.71 0.46 0.83 0.62 0.80 0.69
100 0.76 0.61 0.87 0.68 0.50 0.55 0.94 0.74 0.90 0.77

20 200 0.74 0.71 0.86 0.60 0.74 0.47 0.89 0.66 0.85 0.69
500 0.79 0.63 0.88 0.51 0.75 0.44 0.82 0.80 0.63 0.68

Table 3.6: ARE of the adaptive trimmed Hill relative to trimmed Hill for k0 = 10.

We observe that the ARE values are nearly 75% for the Frechet and become as

large as 90% for the T distribution. The performance is better when ρ = 1 rather

than estimated from the data using (3.36). Large values of α = 1/ξ lead to greater

ARE values for both T and Frechet. This behavior is similar to that observed in the

case of known k (see Figure 3.2). Increase in the severity of outliers, L leads to overall

improvement in the efficiency, a phenomenon also seen previously in Section 3.5.2.

In order to allow for a comparative baseline to our results in Table 3.6, we replicate

the settings of Tables 3 and 6 in Drees and Kaufmann (1998). We consider the ratio
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of root mean squared error of the adaptive trimmed to that of the trimmed as:

R =
√

MSE(ξ̂k̂0,k̂)
/√

MSE(ξ̂k0,k∗n,k0
)

The results in Drees and Kaufmann (1998) correpond to k0 = 0 and k∗n,k0 = kopt,sim
n .

As can been from the Table, our results nearly match the ones obtained from Drees

and Kaufmann (1998) (denoted by ds). This further indicates the efficiency of the

proposed Algorithm 5 in the joint estimation of k0 and k.

n L Frech(5) Frech(2) Frech(1) |T|(4) |T|(10)

1 ρ̂(1) 1 ρ̂(1) 1 ρ̂(1) 1 ρ̂(1) 1 ρ̂(1)

5 1.16 1.26 1.80 2.34 1.93 2.04 1.08 1.26 1.06 1.25
100 20 1.15 1.28 1.07 1.22 1.41 1.35 1.03 1.16 1.05 1.14

ds 1.29 1.22 1.08 1.24 1.28 1.12 1.36 1.15 1.24 1.48
5 1.18 1.25 1.65 1.40 1.18 1.44 1.07 1.23 1.08 1.25

200 20 1.16 1.19 1.08 1.30 1.16 1.46 1.06 1.23 1.09 1.20
ds 1.19 1.21 1.08 1.23 1.34 1.14 1.28 1.14 1.28 1.46
5 1.14 1.29 1.23 1.38 1.18 1.48 1.10 1.27 1.12 1.20

500 20 1.12 1.26 1.07 1.40 1.16 1.51 1.11 1.12 1.26 1.21
ds 1.12 1.18 1.05 1.26 1.30 1.12 1.27 1.14 1.3 1.41

Table 3.7: Ratio of mean squared errors: adaptive trimmed Hill to trimmed Hill for
k0 = 10.

3.6 Comparisons With Existing Estimators And Adaptivity

3.6.1 Comparison with other robust estimators

In this section, we present a comparative analysis of the performance of our pro-

posed trimmed Hill estimator, ξ̂k0,k with respect to the already existing robust tail

estimation procedures in the literature. For observations from the Pareto distribu-

tion, a robust estimator of α based on the trimmed Hill estimator, ξ̂k0,n−1 is given

by

α̂TRIM =

(
1− 2

n

)
1

ξ̂k0,n−1

(3.37)
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where (1− 2/n) is the correction factor for α̂MLE as in Brzezinski (2016).
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Figure 3.4: Performance of robust estimators for 0.9P (α, 1) + 0.1P (α, 1000) at
ARE=78%. Top left and right correspond to RB and RRMSE values
for α = 1. Bottom left and right correspond to RB and RRMSE values
for α = 3.

The comprehensive comparative analysis in Brzezinski (2016) evaluates many ro-

bust estimators of the exponent α = 1/ξ with respect to the maximum likelihood esti-

mator α̂MLE for i.i.d. Pareto observations. The class of estimators used in Brzezinski

(2016) include the optimal B-robust estimator, (OBRE) proposed in Victoria-Feser

and Ronchetti (1994), the weighted maximum likelihood estimator (WMLE) intro-

duced in Dupuis and Victoria-Feser (2006), the generalized median estimator (GME)

of Brazauskas and Serfling (2000), the partial density component estimator (PDCE)

proposed in Vandewalle et al. (2007) and the probability integral transform statistic

estimator (PITSE) of Finkelstein et al. (2006). Among these estimators of α, the

OBRE, PITSE and GME exhibit a superior performance in comparison to the rest
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and shall be used as the comparative baseline.
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Figure 3.5: Performance of robust estimators where 5% observations of P (α, 1) are
inflated by 10 at ARE=78%. Top left and right correspond to RB and
RRMSE values for α = 1. Bottom left and right correspond to RB and
RRMSE values for α = 3.

The comparison criterion chosen is the relative bias, RB and relative mean squared

error, RRMSE as in Brzezinski (2016). The explicit formulas for RB and RRMSE

are given by

RB(α) =
1

α

( 1

m

m∑
i=1

(α̂i − α)
)
× 100% (3.38)

RRMSE(α) =
1

α

( 1

m

m∑
i=1

(α̂i − α)2
)1/2

× 100%

where the α̂i’s are independent realizations of a particular estimator of α = 1/ξ.

To be able to compare with Brzezinski (2016), we need to determine k0 in (3.37)

so as to match the target ARE (Asymptotic Relative Efficiency) of the estimators
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considered therein. By relation (3.7) in Proposition III.2 it is easy to see that

ARE(α̂TRIM) =
Var(α̂MLE)

Var(α̂TRIM)
≈ 1/n

1/(n− 1− k0)
(3.39)

where the last asymptotic equivalence follows by a simple application of delta

method to the function form of α̂TRIM in terms of the statistic ξ̂k0,n−1. Given n, to

achieve a target ARE, we use (3.39) to solve for k0.
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Figure 3.6: Performance of robust estimators for 0.9P (α, 1) + 0.1P (α, 1000) at
ARE=94%. Top left and right correspond to RB and RRMSE values
for α = 1. Bottom left and right correspond to RB and RRMSE values
for α = 3.

As in Brzezinski (2016), the data sets are simulated from the Pareto distribution

Pareto(1, 1) and contaminated in two ways. In the first method of introducing outliers,

we generate observations from the following mixture distribution

F = (1− ε) Pareto(α, 1) + ε Pareto(α, 1000) (3.40)
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for ε ∈ (0, 1) and α > 0. In the second method of contamination, s proportion of

the observations is randomly selected from Pareto(α, 1) and multiplied by a constant

factor of 10.
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Figure 3.7: Performance of robust estimators for 0.95P (α, 1) + 0.05P (α, 1000) at
ARE= 94%. Top left and right correspond to RB and RRMSE values
for α = 1. Bottom left and right correspond to RB and RRMSE values
for α = 3.

For both methods of data contamination, we analyze performance of the four

estimators viz OBRE, PITSE, GME and TRIM. We first fix the asymptotic relative

efficiency for these estimators at 78%. Figure 3.4 shows the performance under the

first method of data contamination with ε = 0.9 and α = 1 and 3. We observe that

the performance of α̂TRIM closely follows that of α̂OBRE, α̂PITSE and α̂GME. In fact, all

the estimators are relatively similar in this case and their difference is relatively small

as the sample size n grows. Figure 3.5 on the other hand, shows the performance
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under the second method of data contamination with s = 0.05 and α = 1 and 3.

For this case, we observe the superior performance of α̂TRIM in comparison to the

estimators. This behavior is more apparent in larger sample sizes (n = 200) where

the trimmed estimator has more than 50% lower RRMSE values than the rest.

We next fix the asymptotic relative efficiency for these estimators at 94%. Figure

3.6 shows the performance under the first method of data contamination with ε = 0.9

and α = 1 and 3. We observe that in this case the performance of α̂TRIM is relatively

poor when compared to that of α̂OBRE, α̂PITSE and α̂GME especially for larger sample

sizes, n. However this phenomenon gets entirely reversed when ε = 0.95 (see Figure

3.7). The performance of α̂TRIM improves drastically with increase in sample size n

and surpasses the performance of all the other robust estimators. For n = 200, the

improvement is up to a factor 200% in the RRMSE values. The surprising difference

in the performance observed in Figures 3.6 and 3.9 can be explained as follows.

Since the ARE of α̂TRIM is directly related to the trimming value k0 (see (3.37)),

large ARE or small k0 values can control against small proportion of contamination

(1−ε = 0.05) but not against large proportions (1−ε = 0.1). In scenario of Figure 3.6,

setting the ARE as 94% and contaminating 10% of the data, our trimmed estimator

is artificially forced to include outliers. This leads to the relatively poor performance

of α̂TRIM. For other estimators, the link between ARE and robustness is not as direct

which gives them an advantage. At 5% contamination, our trimmed estimator picks

up all the outliers at ARE level 94% and hence outperforms the competitors (Figure

3.7).

In the following section, we illustrate an important advantage of our trimmed

estimator when k0 is estimated from the data. This allows us to adapt the degree of

robustness to the proportion of outliers.
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3.6.2 Adaptive robustness
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Figure 3.8: Performance of robust estimators at ARE=78%. Top left and right cor-
respond to RB and RRMSE values.

In this section, we describe the superior performance of the adaptive trimmed

Hill estimator (ADAP), ξ̂k̂0,k, relative to several well known existing estimators when

the degree of contamination is unknown. The performance of these existing robust

estimators depends on the choice of parameters, which is directly related to their

asymptotic relative efficiency.

For example, the optimal B-robust estimator (OBRE) requires a suitable choice

of the parameter c (see Victoria-Feser and Ronchetti (1994)) and the probability

integral transform estimator (PITSE) requires a suitable choice of the parameter t

(see Finkelstein et al. (2006))in order to allow for a given degree of robustness. Unless

the degree of contamination is pre specified, it is impossible to accurately determine

these parameters, which control the degree of robustness. Our estimator, on the other

hand is adaptive in nature and automatically picks the trimming parameter, thereby

producing a estimator of the tail index which can adapt to potentially unknown degree

of contamination of the top order statistics.

We demonstrate the adaptive property of the proposed estimator, ADAP for the

Pareto model where the outliers are injected as in (3.31). For comparative purposes,
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we use the three best robust estimators, OBRE, PITSE and GME from Brzezinski

(2016) also described in Section 3.6.1. The comparison is made in terms of RRMSE

and RB values as in (3.38). As in Section 3.6.1, we calibrate the parameters of the

competing estimators by setting the ARE to be 78% or 94%.
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Figure 3.9: Performance of robust estimators at ARE=94%. Top left and right cor-
respond to RB and RRMSE values.

Figure 3.8 demonstrates the performance of ADAP against the three competitors

at ARE=78%. Observe that the competitors fail to adapt to the growing degree of

contamination and essentially break down at k0/n = 40%. On the other hand, apart

from a mild loss in efficiency, our estimator is resilient to the degree of contamination

and adapts itself even to higher values of k0/n. This feature is even more prominent

in Figure 3.9 where the ARE for all estimators is fixed at 94%. Even at contamination

proportion as low as 10%, ADAP outperforms all the competitors. This is expected

since the performance of the competitors is sensitive to the choice of ARE. Large ARE

values (94%) allow for a smaller degree of robustness, hence the poor performance of

the OBRE, PITSE and GME even at lower contamination levels. To the best of our

knowledge, the remarkable adaptive robustness property inherent to our estimator is

not present in any other estimator in the literature.
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3.7 Discussion

In this chapter, we introduced the trimmed Hill estimator for the heavy-tail ex-

ponent ξ. We established its finite-sample optimality in the ideal Pareto setting and

its asymptotic normality under a second order regular variation condition. In Section

3.3.3, we established a uniform consistency result for the trimmed Hill estimator.

For the Hall class of distributions, we argued that the trimmed Hill estimator at-

tains the same minimax optimal rate as in the case of no outliers, provided that

k0 = o(n2ρ/(2ρ+1)), where ρ > 0 is the second order regular variation exponent. One

open problem is to establish the minimax optimal rate of the trimmed Hill estimator,

in the case when the rate of contamination k0 exceeds the minimax optimal rate.

In Section 3.5.5, we develop a methodology for the joint selection of the parameters

k0 and k, based on the work of Drees and Kaufman Drees and Kaufmann (1998). We

formulate an extension of their results when k0 = o(n2ρ/(2ρ+1)). This leads to a

practical method for the joint selection of k0 and k. This method is shown to work

as well as the original method of Drees and Kaufman even if the top order statistics

are contaminated. As in the case of uncontaminated extremes, however, the main

challenge is the accurate estimation of the second order exponent ρ. In the future,

perhaps other bootstrap-based methods for the joint estimation of k0 and k should

be explored as in Danielsson et al. (2001).

Our key methodological contribution is the data–driven selection of the trim-

ming parameter k0 using weighted sequential testing. It leads to a robust estimator

that adapts to the potentially unknown degree of contamination in the extremes.

This unique feature is not available in many other robust estimators, which require

the selection of tuning parameters. As demonstrated in Section 3.6.2, the adaptive

trimmed Hill estimator has superior performance with practically no tuning. As an
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added bonus, we obtain a method for the identification of suspect outliers in the

extremes of the data, which can be used to perform forensics or detect anomalies

Kallitsis et al. (2016a).

Finally, we would like to advocate broadly for using robust methods for the es-

timation of the tail index. Our experience with extensive simulation studies (see

e.g., Tables 3.2 and 3.3) convinced us that contamination in small proportion of the

extreme order statistics leads to severe bias in the non-robust estimation methods.

Trimming and especially data–adaptive trimming provide good alternatives at the

expense of little to no loss in efficiency in the case when no contamination is present.
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CHAPTER IV

Extremes Of The Spatial Impact Of Heat waves

4.1 Introduction

Heat waves are becoming more common, especially in the U.S. West, although

some of the largest heat waves were recorded during the time period 1930s (caused

by the Dust Bowl and other factors). Extreme heat can increase the risk of different

types of disasters1. Meehl and Tebaldi (2004) show based on the severe heat waves

in Chicago in 1995 and Paris in 2003 that future heat waves in Europe and North

America will become more intense, more frequent, and longer lasting in the second

half of the 21st century.

Heat waves are often described by events when the daily maximum temperature

remains above a given threshold for a span of ∆ consecutive days. This notion of

heat waves has been widely used in the papers of Croitoru et al. (2016), Ouzeau et al.

(2016), Capozzi and Budillon (2017) and the references therein. Other representatives

of heat waves like those based on the Heat Wave Magnitude Index daily (HWMId)

has been used in papers like Ceccherini et al. (2017). In this chapter, we expand

on this definition in Croitoru et al. (2016) by adding a spatial context to it. We

1https://www.c2es.org/content/heat-waves-and-climate-change
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study the spatial distribution of the heat waves across the continental US, similar to

Dian-Xiu et al. (2014) and suggest a unified measure to describe this distribution.

This measure aims at computing the proportion of US area under unusually large

heat waves at a given point in the year (see (4.9)). The chapter aims at modeling

the extremes of the time series thus obtained. Previously, the approach of fitting a

Generalized Extreme Value distribution to climatic extremes has been explored in

the works of Jonathan et al. (2018) and Huang (2017). Another approach based on

Generalized Pareto Distribution (GPD) for modeling peaks over threshold in climatic

events has been explored under Davison et al. (2012) and Davison and Smith (1990).

We shall adopt the later approach in the context of extremes in spatial distribution

of heat waves.

Model diagnostic Coles (2001) plot reveal that the dependence of only the scale

and not the shape of the GPD through covariates well explains the distribution of

extremes. The impact of El Niño Southern Oscillation Index2 (ENSO) on extreme

temperature events has been well studied under McKinnon et al. (2016) and Winter

et al. (2016). Inspired by these works, ENSO was added as covariate in the GPD

modeling which turned out to be a significant one for the scale parameter. Seasonal

and cyclic patterns in the time series of areal extremes is almost inevitable, all of

which have been accounted for the covariate described by 365-periodic splines. The

overwhelming impact of seasonality motivated us to perform the global analysis on

each season individually. The choice of the seasons is based on the work of Cressie

and Kang (2016). Interestingly enough, depending on the season under study one or

more of the covariates may lose their significance in terms of the model fit.

The rest of the chapter is organized as follows. In Section 4.2, we describe the

2https://www.ncdc.noaa.gov/teleconnections/enso/indicators/soi/
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data that has been used for the evaluation of our proposed methodology. In Section

4.3, we discuss techniques for obtaining a stationary signal for the time series of daily

temperatures. Additionally, spatial heat waves and modeling of their block maxima

or peak over threshold have been discussed. In Section 4.4, we discuss the GPD model

and how its parameters vary as a function of known covariates. Effectiveness of the

chosen model has been described in terms of the AIC criterion and model diagnostic

plots. In Section 4.5.3, we finally describe the distribution of heat waves with respect

to the season and location across US. Section 4.6 concludes all the results by discussing

the caveats and roles of varying parametric assumptions in the development of the

methodology.

4.2 Data Description

Since 1987, the National Oceanic and Atmospheric Administration’s (NOAA) Na-

tional Centers for Environmental Information (NCEI-NC) has used observations from

the U.S. Historical Climatology Network (USHCN) to quantify national- and regional-

scale temperature changes in the conterminous United States (CONUS). The USHCN

is actually a designated subset of the NOAA Cooperative Observer Program (COOP).

The USHCN sites having been selected according to their spatial coverage, record

length, data completeness, and historical stability. The first development of USHCN

datasets were at NOAA’s NCEI in collaboration with the Department of Energy’s

Carbon Dioxide Information Analysis Center (CDIAC) in a project that dates to the

mid-1980s (Quinlan et al. 1987).

Since then, the USHCN dataset has been revised several times (e.g., Karl et al.,

1990; Easterling et al., 1996; Menne et al. 2009). The three dataset releases de-

scribed in Quinlan et al. 1987, Karl et al., 1990 and Easterling et al., 1996 are now
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referred to as the USHCN version 1 datasets. These version 1 datasets contained ad-

justments to the monthly mean maximum, minimum, and average temperature data

that addressed potential changes in biases (inhomogeneities) in data from USHCN

stations documented in NCEIs station history archives. In 2007, USHCN version 2

serial monthly temperature data were released and updates to the version 1 datasets

were discontinued. In October 2012, a revision to the version 2.0 dataset was released

as version 2.5.

This chapter uses version 2.5 of the data set with daily record maximum and

minimum temperature data from 424 U.S. Historical Climatology Network stations

meeting stringent data completeness requirements. These 424 stations represent the

2nd phase of defining a subset of the 1218-station U.S. Historical Climatological

Network that enables robust assessment of trends in record-setting daily Tmax and

Tmin temperatures since 1911 (i.e., a century-scale period of record). Many USHCN

stations do not allow for such an assessment due to significant amounts of missing

data early in their periods of record.

This 424-station subset includes the initial 200-station subset3 that was identified

using especially stringent missing data requirements4. The additional 224 stations

have slightly less stringent missing data requirements, but the average percentage of

missing data across all 424 stations is still just 2.4%. A graphical user interface for

exploring these station data is available online5. Also, an inventory file containing

metadata for the 424 stations is available through the USHCN website6.

3http://cdiac.ornl.gov/ftp/us_recordtemps/sta200/
4/http://cdiac.ornl.gov/climate/temp/us_recordtemps/dayrec.html
5http://cdiac.ornl.gov/climate/temp/us_recordtemps/ui.html
6http://cdiac.ornl.gov/epubs/ndp/ushcn/daily_doc.html#stations
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4.3 Preliminary Analysis

Let Xt(s) be the daily temperature measurement on day t at site s. We have

observations at a collection of sites s1, . . . , s` ∈ D in a region D over a period of T

days. In this chapter, we study the spatial impact of extreme heat-wave events over

the entire region D.

4.3.1 Standardization of the data

It is commonly understood that at site s, one experiences a heatwave event if the

temperatures are unusually high (relative to the average seasonal temperature) for

a prolonged period of time. Depending on the temperature amplitude and tempo-

ral duration of the event one encounters different types of heatwaves. We consider

heatwave events identified by ∆ consecutive days of daily maximum temperatures

exceeding a level u0. To be able to account for trend in temperature patterns (be it

seasonal or global), we need to consider a threshold u0 that varies slowly with the

season. Alternatively, one can consider deviations from the mean temperature curve

of a station with respect to its standard devation curve.

Specifically, let Xt be the daily temperature maxima over a period of ∆ = 7

consecutive days starting on day k. Several sophisticated techniques, both parametric

Ramsay et al. (2005) and non parametric Ferraty and Vieu (2006) techniques exist

for modeling of functional curves, we rather use the one motivated from Section 3.5

of Ramsay et al. (2005). We assume the following representation for the mean of the
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time series Xt(s):

E(Xt) := µ(t) = γ(µ) +

m
(µ)
1∑
i=1

α
(µ)
i φ

(µ)
i (t)︸ ︷︷ ︸

A(µ)(t)

+

m
(µ)
2∑

j=1

β
(µ)
j ω

(µ)
j (t)︸ ︷︷ ︸

B(µ)(t)

(4.1)

where γ(µ) is a constant term and α
(µ)
i and β

(µ)
j are the coefficients corresponding to

the covariates of seasonal fluctuations and global trends respectively.

The functions φ
(µ)
i , i = 1, · · · ,m(µ)

1 denote a 365- periodic cubic7 spline basis

representation8 of the range 1, 2, · · · , 365T with T = 100 with m = m
(µ)
1 degrees of

freedom. Figure 4.1 left panel displays a plot of 365-periodic cubic splines with 3

degrees of freedom when evaluated on the time span 1986-1990. The quantity A(µ)(t)

thus captures the portion of the mean curve that may be attributed to seasonal

variations.

On the other hand, the functions ω
(µ)
i , i = 1, · · · ,m(µ)

2 denote a cubic spline basis

representation9 of the range 1, · · · , 365T . Figure 4.1 middle panel displays a plot of

cubic splines with 3 degrees of freedom when evaluated on the time span 1911-2010.

B(µ)(t) thus captures the portion of the mean curve that may be attributed to slowly

varying trends over time like global warming, shifting weather conditions etc.

The residuals: X̃t = Xt − µ̂(t) obtained from the linear regression model in (4.1)

provides a way for the estimation of the standard error curve. We propose the fol-

7Knott (2000)
8Since seasonal patterns are expected to repeat themselves after a span of 365 days, 365-periodic

spline functions with m degrees of freedom are constructed as in Bojanov et al. (1993):

φi(a) = φ(a+ 365), a = 1, · · · , 365, i = 1, · · · ,m.
The pbs function under R package pbs (2013) automates this process periodic spline generation.

9For m degrees of freedom, the spline basis functions ωj , j = 1, · · · ,m are constructed as in
Bojanov et al. (1993) to describe the yearly trends and phenomenon like global warming, shifting
weather conditions etc. The bs function under R package splines (2000) automates this process the
spline generation.
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lowing representation of variance of time series X̃t.

E(log |X̃t|) :≈ log(cη(t)) = γ(η) +

m
(η)
1∑
i=1

α
(η)
i φ

(η)
i (t)︸ ︷︷ ︸

A(η)(t)

+

m
(η)
2∑

j=1

βjω
(η)
j (t)︸ ︷︷ ︸

B(η)(t)

(4.2)

where γ(η) is a constant term and α
(η)
i and β

(η)
j are the coefficients corresponding to the

covariates of seasonal fluctuations and global trends respectively. A normal approxi-

mation to the time series X̃t provides a choice for the parameter c = 0.5298. Similar

to the model in (4.1), the functions φ(η)(t) are 365-periodic cubic splines and ω(η)(t)

are ordinary cubic splines for the basis representation of the range 1, 2, · · · , 365T with

m = m
(η)
1 and m = m

(η)
2 degrees of freedom respectively. Thus, the quantities A(η)(t)

and B(η)(t) denote the portion of the standard deviation explained by seasonality and

global trend respectively.

For known values of m
(µ)
1 , m

(µ)
2 , m

(η)
1 and m

(η)
2 , the unknown coefficients in models

(4.1) and (4.2) may be easily estimated using a simple linear regression approach.

Figure 4.1: Spline basis functions evaluated. Left panel corresponds to the periodic
splines for seasonal activity, middle panel corresponds to splines for global
activity and right panel corresponds to splines for ENSO activity

Exploratory analysis revealed little sensitivity to the choice of the parameters m
(µ)
1 ,

m
(µ)
2 , m

(η)
1 and m

(η)
2 . We however added an additional criterion to guard against large

86



choices of these quantities to en certain that meaningful information does not get lost

from the time series in the process of following the mean or standard deviation too

closely. We next explain the simultaneous choice of m
(µ)
1 , m

(µ)
2 .

(m∗1,m
∗
2) = argmin

{m1≤κ1,m2≤κ2}
n log(RSS/n) + 2(m1 +m2) (4.3)

where RSS is the residual sum of squares obtained from the linear regression fit in

(4.1) with m
(µ)
1 = m1 and m

(µ)
2 = m2. A choice of thresholds as low as κ1 = 6 and

κ2 = 6 produced standardized z scores which were fairly stationary (see right panel

in Figure 4.3) and seemed to provide a promising choice for the remaining analysis.

The quantities, m
(η)
1 and m

(η)
2 are also estimated according to the criterion in (4.3)

but for the linear model in (4.2). Section 4.6 further sheds some light on the choice

of the parameters κ1 and κ2.
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Figure 4.2: Seasonal and trend components for historical temperature mean (top
panel) and standard error (bottom panel) curves over the period 1911-
2010 for Ann Arbor, MI.

Figure 4.2 top panel illustrates the seasonal and trend components, A(µ)(t) and

B(µ)(t) of the mean curve µ(t) respectively. The bottom panel in 4.2 illustrates

seasonal and trend components, A(η)(t) and B(η)(t) of the standard error curve η(t).

These reported graphs are obtained from the historical daily temperature records over

period 1911 − 2010 at the monitoring station of Ann Arbor in continental US. The

degrees of freedom m
(µ)
1 , m

(µ)
2 , m

(η)
1 , m

(η)
2 are chosen according to the criterion in (4.3)

with κ1 = 6 and κ2 = 6.

4.3.2 Distributional properties of the standardized time series

Our goal is to examine the extreme fluctuations of Xt(s) relative to the estimated

mean and standard deviation. To this end, we consider the time series

Yt(s) :=
Xt(s)− µ̂(t)(s)

η̂(t)(s)
, t = 1, 2, . . . , (4.4)

where µ̂(t) and η̂(t) are obtained as in Section 4.3.1 for the station s. The time series

{Yt(s)} is standardized to have zero mean and unit variance marginal distributions.
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Figure 4.3 left shows a plot of the standardized time series and also the auto co-

variance plot for the station, Ann Arbor. The auto-covariance plots reveal that the

standardized time series is fairly stationary and can be suitable for analysis.

We explore next the empirical distribution of the standardized time series {Yt(s)}.

It turns out that the standard Normal model offers a fairly adequate approximation

to the time series for most of the stations s. Indeed, in Figure 4.4, we show nor-

mal quantile-quantile plots for the empirical distribution of {Yt(s)} for two stations,

Faulkton North West, SD and Pasadena, CA. Qualitatively, the QQ-plots for all other

stations look nearly identical. While the standardization does not remove periodic

dependencies and non-stationarity, it puts the temperature fluctuations in different

seasons across different stations on the same scale.

Figure 4.3: Standardized daily time series for Ann Arbor, MI. Left and right panels
indicate the standardized time series, Yt(s) and its corresponding auto-
covariance function.
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Figure 4.4: Normal quantile-quantile plots for standardized weekly min Yt(s). Left panel

and right panels correspond to stations Faulkton North West, SD and Pasadena, CA re-

spectively.

4.3.3 Defining heat waves

In order to define heat waves, we first define the minimum of the standardized

time series Yt(s) over a span of ∆ = 7 days as:

Zk,∆(s) = min
t=k,...,k+∆−1

Yt(s) (4.5)

We have a heatwave event at location s starting on day k if

Zk,∆(s) > U(u0, s,∆) (4.6)

where u0 is the intensity level, s is the station and ∆ is size of the window. With ∆

fixed the heat wave is defined as: if

Zk(s) > F−1
s (u0) (4.7)
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where u0 is a quantile level and

F−1
s (u0) = inf{x ∈ R : Fs(x) ≥ u0} (4.8)

with Fs denoting the empirical cumulative distribution function of Zk(s). Therefore,

values of Zk(s) well above its extreme quantiles correspond to the occurrence of a

heat wave event.

To explore the spatial impact of the so-defined heat waves, we define

Ak(u0) :=

∫
D

I(Zk(s) > F−1
s (u0))ds, (4.9)

which is the total area of the sites s in region D experiencing a heatwave during week

k. Since the area Ak(u0) is bounded above by the total area of the region D, we

consider

Qk(u0) :=
Ak(u0)

|D|
∈ [0, 1],

which is the proportion of the region D experiencing a heatwave of intensity level u0

during week k.

For the stations s = s1, s2, · · · , s` ∈ D, the series Zk(s) and F−1
s (u0) is determinis-

tic. However, for the computation of the integral in (4.9), the series Zk(s) and F−1
s (u0)

needs to be evaluated at all values of s ∈ D. This is facilitated by using thin plate

splines smoothing approach where a surface is fit to the values Zk(si), i = 1, · · · , `,

with some error allowed at each si, i = 1, · · · , `. At every iteration, a station is

omitted from the estimation of the fitted surface and the mean error is found. This

procedure is repeated over a range of values of the smoothing parameter and the

value that minimizes the mean error is taken to give the optimum smoothing (also
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called minimizing the generalized cross validation criterion). Chapter 12 in Wilson

and Mair (2004) and Section 2.4 in Tait et al. (2006) explain the thin spline interpo-

lation when applied to rainfall data. The tps function in fields (2018) package of R

automatically applies this methodology to produce an integral approximation to the

quantity (4.9).
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Figure 4.5: Distribution of the time series Qk(u0) for varying values of the quantile
level u0 for the period 1911-2010. Extreme events in the series have been
marked with red.

Figure 4.5 gives a plot of the time series Qk(u0) for two different values of u0 viz

0.95 and 0.99. As is evident from the plot, depending on value of the quantile u0,

the extremes of the time series Qk goes on changing. For example, the second largest

value for Qk(0.95) is recorded for December 31, 2010 in contrast to the second largest

value for Qk(0.95) which is recorded on November 28, 1998. The largest value for

both Qk(0.95) and Qk(0.99) is however on the same date, December 5, 1939. Figure

4.6 gives a plot of the spatially interpolated time series Zk(s) corresponding to the top

record events in the time series Qk(u0), u0 = 0.95, 0.99. If one were to interpret these

plots, the weeks starting on December 5, 1939 and November 28, 1998 experienced a

heat wave of intensity 0.95 over 63% and 61% of the territory in US respectively.
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Figure 4.6: Thin spline interpolated time series Zk(s) for s ∈ D on time points cor-
responding to extreme values of Qk(s)
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Figure 4.7: Histogram of the seasonal distribution of Qk > p for varying values of
proportion p.

A natural question which arises is the seasonal distribution of the most extreme
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heat-waves is. In this direction, we consider histogram of

{(k mod 365)|Qk(u0) > p}

for u0 = 0.95. The histograms corresponds to nothing but the daily distribution of

extreme events with at least 100p% of spatial coverage . Figure 4.7 clearly demon-

strates that with increase in proportion p, only the most extreme heat wave events

present themselves. For an intensity level of 0.95, it seems spatially extreme heatwave

events tend to occur less often in the summer than during the other seasons. This

hypothesis is further corroborated under Sections 4.4.4 and 4.5.3.

4.3.4 Declustering

In order to estimate/predict return levels (see Section 4.4.4) of extremes in the time

series Qk, one employs tools from extreme value theory. Specifically, the Generalized

Pareto Distribution, GPD (see (4.10)) model serves as a good fit to the peaks over

a high threshold and may be used for the extrapolation and computation of out-of-

sample tail probabilities (see Beirlant et al. (2006)). The accuracy of the approach

however hinges to a great extent on the degree to which the excesses may be assumed

to be independent.

Since the heatwave events are defined over overlapping windows, a substantial

temporal dependence is likely to be present in the time series {Qk(u0)}. Enunciating

further, a heat-wave event at site s of duration d > ∆ = 7 will trigger relatively large

values of Zk(s) statistics in (4.4) for at least d − ∆ consecutive values of k. This

ultimately leads to clustering of extremes for the time series {Qk}, which is certainly

more difficult to characterize since it involves multiple sites. The latter assumption

94



is well characterized by the extremal index θ of the time series (see Section 10.2.3 in

Beirlant et al. (2004b)). If the extremal index θ ∈ [0, 1] is significantly lower than 1,

then the excesses tend to cluster with a mean cluster size approximately 1/θ.

A well established way to identify clusters of extremes is the method of runs. For

a threshold q0 and a runs parameter r ≥ 1, a cluster of exceedance begins when Qk

exceeds q0. The subsequent exceedances of level q0 belong to the same cluster as

long as there are no more than r consecutive time-points where Qk falls below q0.

After seeing r + 1 consecutive values of Qk below q0, another, separate cluster will

commence the first time when Qk exceeds q0 again. Thus, a data set Qk, k = 1, . . . , T

is partitioned into clusters Ci = {Qk(i,1), · · · , Qk(i,Ci)}, i = 1, . . . , nC , where Ci is the

number of exceedances in the i-th cluster.

Under the assumption of stationarity and mild dependence conditions on the time

series {Qk}, we have that E(C1)→ 1/θ, as q0 ↑ xQ, where xQ is the upper end-point

of the distribution of the Qk’. This suggest the following estimator for θ:

θ̂r :=
( 1

nC

nC∑
i=1

Ci

)−1

.

as in Beirlant et al. (2004a), Smith (1989). The Ci’s and ultimately the estimators

θ̂r depend on the choice of the threshold v0 as well as on the runs parameter r. The

runs method is somewhat sensitive to the choice of r but when an optimal value of

that parameter is available, it has a superb performance. Ledford and Tawn (2003)

provides some of the diagnostic tools for the choice of the tuning parameter r.

The Ferro-Segers estimator of θ in Ferro and Segers (2003) is more robust tech-

nique for de-clustering the exceedances in extremes. This estimator relies on the fact

that, under appropriate normalization, the time between two consecutive clusters is
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asymptotically a mixture distribution from degenerate 0 and standard exponential.

This de-clustering methodology does not depend on the choice of a tuning parameter.

The number of clusters nC is asymptotically equivalent to bKθc where K is the total

number of exceedances over the threshold q0 and θ is the extreme value index (see

Beirlant et al. (2004a)). Thus, Ferro and Segers suggest using inter-exceedance times

that exceed the nC-th order statistic of inter-exceedance times.

Let Ti1 , Ti2 , · · · , TinC denote these inter-exceedance times and t1 = Ti1 , t2 = Ti2 −

Ti1 , · · · , tnC = TinC − TinC−1 the corresponding differenced series. The Ferro Segers

estimator of θ is then defined as:

θ̂F =


1 ∧ 2(

∑nC
i=1 ti)

2

(nC−1)
∑nC
i=1 t

2
i

if maxi ti ≤ 2

1 ∧ 2(
∑nC
i=1(ti−1)2

(nC−1)
∑nC
i=1(ti−1)(ti−2)

if maxi ti > 2
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Figure 4.8: Extremal index for the time series Qk for varying declustering techniques.
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The clusters are obtained by considering exceedances separated by the average

cluster size, 1/θ. The maxima of these clusters are nearly independent and can be

modeled as a GPD model as described under Section 4.4.3. The decluster function

in the R package extRemes (2016) automatically applies this declustering procedure

and produces independent cluster maximas for GPD model fitting.

Figure 4.8 shows the estimates of the extremal index for Qk(0.95) for a range of

thresholds q0 = F−1(v0). Here F is the empirical distribution function the time series

Qk constrained to Qk > q0 and F−1 is given by (4.8). The extremal index estimates

for the runs method, r = 1 and r = 2 and the Ferro-Segers closely agree. The average

value of θ over all threshold levels for the two runs estimators and the Ferro-Segers

estimator are 0.22, 0.21 and 0.20, respectively. These estimates correspond to an

average cluster size of about 5. Since the time series Qk is built by taking minima

over overlapping periods of size ∆ − 1 = 6, hence a clustering size of around for the

extremes.

In the following subsections, we use the method of runs estimate with r = 2 for

all the analysis and inference on GPD modeling.

4.4 Model

Having obtained a nearly independent sample of excesses – one from each ”cluster”

– we use maximum likelihood to fit a GPD model with likelihood function of the form

P [X > z|X > u] =

[
1 + ξ

(
z − u
σ

)]−1/ξ

(4.10)

By the Pickands-Balkema-de Haan Theorem Pickands (1975), Balkema and de Haan

(1974), the excess over a given threshold are well modeled by the Generalized Pareto
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Distribution of the form (4.10).

With a little abuse of notation, we shall henceforth refer to the declustered time

series obtained from Qk also as Qk. Since the Qk’s are bounded above, theoretically,

only models with tail index ξ ≤ 0 are reasonable. In practice, when considering

quantiles that are away from the upper bound, a GPD model with negative tail index

may provide a better fit. We shall later show that the resulting estimates based on

the data do not reject the common sense hypothesis that ξ ≤ 0. This is because the

pointwise confidence intervals always cover zero for a wide range of thresholds (see

Section 4.4.3).

4.4.1 Covariates

For the time series Qk, we model the scale and shape parameters as a function of

k as

P [Qk > z|Qk > q0] =

[
1 + ξ(k)

(
z − q0

σ(k)

)]−1/ξ(k)

(4.11)

for a given threshold value q0 where the quantities σ(k) and ξ(k) are allowed to vary

as a function of k. In this direction, we assume the following model for the scale

parameter σ:

log(σ(k)) = γ(σ) +

m
(σ)
1∑
i=1

α
(σ)
i φj(k) +

m
(σ)
2∑

j=1

δ
(σ)
j ψj(ENSO(k)) (4.12)

where γ(σ) is a constant term and α
(σ)
i and δ

(σ)
j are the coefficients for diurnal

periodic patterns and El-Niño Southern Oscillation (ENSO) activity Philander et al.

(1989) respectively.

Specifically, φ and ψ represent the covariates for daily patterns and ENSO levels

respectively. Since seasonal patterns are expected to repeat themselves after a span of
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365 days, φi, i = 1, · · · ,m(σ)
1 represent 365-periodic spline basis representation of the

range 1, · · · , 365T as described in Section 4.3.1 with m = m
(σ)
1 degrees of freedom.

With historical data10 on the ENSO index, ψi, i = 1, · · · ,m(σ)
2 denote a spline basis

representation of the range of ENSO values for the period 1, · · · , 365T for m = m
(σ)
2

degrees of freedom. The so-obtained splines are then evaluated at the ENSO index

for each time point k. Figure 4.1 right panel displays a plot of cubic splines with 3

degrees of freedom when evaluated at the ENSO values for the time span 1986-1990.

Similar to the scale parameter the regression equation for the shape parameter ξ

is given by:

ξ(k) = γ(ξ) +

m
(ξ)
1∑

i=1

α
(ξ)
i φj(k) +

m
(ξ)
2∑

j=1

δ
(ξ)
j ψj(ENSO(k)) (4.13)

Since Qk ∼ GPD(σ(k), ξ(k)), the likelihood function for the Qk’s may be ex-

pressed as

L =
∏

αNk=1f(qk; q0, σ(k), ξ(k))

where qk is the observed qk and f is the density obtained from the probability distri-

bution function in (4.11). Assuming that the threshold parameter v0 is fixed, the log

likelihood function has the form

l(σ(k), ξ(k)) = −N log σ(k)−
N∑
k=1

(
1 +

1

ξ(k)

)
log

(
1 + ξ(k)

(qk − qs0

σ(k)

))
(4.14)

Thus using (4.12) and (4.13) allows us to write the log likelihood function (4.14)

in terms of the parameters γ(ξ), α
(σ)
1 , · · · , α(σ)

m
(σ)
1

, δ
(σ)
1 , · · · , δ(σ)

m
(σ)
2

, γ(ξ), α
(ξ)
1 , · · · , α(ξ)

m
(ξ)
1

,

δ
(ξ)
1 , · · · , δ(ξ)

m
(ξ)
2

. The maximum likelihood estimators may be obtained using the fevd

function of R package extRemes (2016) . The explicit details on the method of

10https://www.esrl.noaa.gov/psd/enso/data.html
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maximum likelihood fitting are covered under Section 4.3.2 in Coles (2001).

4.4.2 Model selection and diagnostics

For this section, we keep the value of u0 fixed at 0.95 and that of v0 = 0.9. We

consider the following competing class of models:

Mi(σ),j(σ),i(ξ),j(ξ) := m
(σ)
1 = c

(σ)
1 I[i(σ)=1], (4.15)

m
(σ)
2 = c

(σ)
2 I[j(σ)=1],

m
(ξ)
1 = c

(ξ)
1 I[i(ξ)=1],

m
(ξ)
2 = c

(ξ)
2 I[j(ξ)=1].

where i(σ), j(σ), i(ξ), j(ξ) ∈ {0, 1} and c
(σ)
1 , c

(σ)
2 , c

(ξ)
1 , c

(ξ)
2 are arbitrary constants not

equal to 0. Thus the modelM0,1,1,0 represents a model where the ENSO covariate is

used for explaining the scale parameter and day covariate is used for explaining the

shape parameter. The AIC value for models in (4.15) determines which covariates

need to be used for explaining the scale and shape parameters of the GPD.

Ideally c
(σ)
1 , c

(σ)
2 , c

(ξ)
1 , c

(ξ)
2 should be chosen optimally but for preliminary analysis,

we consider each of these to be constant at 3. In order to determine the optimal

model, AIC/ BIC criterion is used. The fevd function of R package extRemes (2016)

provides an AIC value corresponding to a maximum likelihood fit for each model.

Table 4.1 gives the AIC values for all models in (4.15). The lowest AIC value is

recorded for the model M1,1,1,0 which suggests that the scale parameter is explained

by both ENSO and day covariate and the shape parameter is explained only through

the day covariate. Indeed the model diagnostic plot (see Section 6.2.3 of Coles (2001))

in Figure 4.9 left shows the adequacy of fit for model M1,1,1,0.
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(m
(ξ)
1 ,m

(ξ)
2 )\(m(σ)

1 ,m
(σ)
2 ) (0,0) (0,1) (1,0) (1,1)

(0,0) -2172.975 -2178.631 -2209.116 -2210.846
(0,1) -2174.337 -2173.342 -2208.481 -2205.862
(1,0) -2193.007 -2196.098 -2209.690 -2212.647
(1,1) -2194.066 -2192.216 -2211.096 -2208.089

Table 4.1: AIC values for varying models Mi(σ),j(σ),i(ξ),j(ξ) with c
(σ)
1 = c

(σ)
2 = c

(ξ)
1 =

c
(ξ)
2 = 3.

The analysis so far confirmed that the shape parameter depends on both the

covariates (m
(σ)
1 ,m

(σ)
2 6= 0) whereas the scale parameter depends only through day

covariate (m
(ξ)
1 6= 0). The next step of determining optimal values of m

(σ)
1 , m

(σ)
2 and

m
(ξ)
1 is accomplished by using the model with minimum AIC. Performing a grid search

over different values m
(σ)
1 ,m

(σ)
2 and m

(ξ)
1 , it so turns out that their optimal values are

recorded as 5, 3 and 3 respectively.

The model diagnostic plot for the AIC based optimal choice m
(σ)
1 , m

(σ)
2 and m

(ξ)
1

is shown in the right panel of Figure 4.9. It clearly elucidates the adequacy of the

chosen parameters in terms of the model fit.
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Figure 4.9: Model Diagnostic Plot.
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4.4.3 Model estimates

Based on the analysis of previous subsection, we saw that the best model is de-

scribed by

Qk ∼ GPD(σ(k), ξ(k)) (4.16)

log(σ(k)) = γ(σ) +

m
(σ)
1∑
i=1

α
(σ)
i φj(k) +

m
(σ)
2∑

j=1

δ
(σ)
j ψj(ENSO(k))

ξ(k) = γ(ξ) +

m
(ξ)
1∑

i=1

α
(ξ)
i φj(k)

with m
(σ)
1 = 5, m

(σ)
2 = 3 and m

(ξ)
1 = 3. We next analyze the estimates for the

coefficients and their corresponding standard errors.

Table 4.4.3 gives the estimates of coefficients for day covariate (both scale and

shape parameter) and ENSO covariate (only scale parameter) . The ones highlighted

in red correspond to significant coefficients (|Estimate/StandardError| > Φ−1(0.95) =

1.645).

α
(σ)
1 α

(σ)
2 α

(σ)
3 α

(σ)
4 α

(σ)
5 δ

(σ)
1 δ

(σ)
2 δ

(σ)
3 α

(ξ)
1 α

(ξ)
2 α

(ξ)
3

Est 0.598 -0.341 0.589 0.755 0.892 -2.031 0.406 -1.543 0.762 0.007 0.411
S.e. 0.374 0.240 0.324 0.280 0.307 0.720 0.300 0.510 0.347 0.143 0.338

Table 4.2: Estimates and their standard errors

With estimates α̂
(σ)
i , i = 1, · · · ,m(σ)

1 and δ̂
(σ)
j , j = 1, · · · ,m(σ)

2 at hand, it is easier

to visualize the scale parameter σ as a jointly varying function of ENSO level and

day of occurrence:

σ(k, x) = exp
(
γ(σ) +

m
(σ)
1∑

j=1

α
(σ)
j φj(k)︸ ︷︷ ︸

A(σ)(k)

+

m
(σ)
2∑

j=1

δ
(σ)
j ψj(x)︸ ︷︷ ︸

D(σ)(x)

)
= exp(γ(σ) + A(σ)(k) +D(σ)(x))

(4.17)
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In order to study the impact of daily fluctuations on σ(k, x), we consider the plot of

A(σ)(k) as function of k. The effect of ENSO level on σ(k, x) is best described through

the plot of D(σ)(x) versus x. Figure 4.10 gives a plot of the functions A(σ)(.) and

D(σ)(.). The left panel suggests that extreme heat wave events seem to be prevalent

during the winter months when compared to summer months. Also during the mid

winter and mid summer, the heat waves seem to gain in terms of their intensity.

During the fall and spring months, there seem to be little instances of extreme heat

wave activity. We study the seasonal behavior in more details under Section 4.5.3.

From the middle panel, one may conclude that La Niña phases (ENSO ∈ [-2,-1.5])

seem to under greater heat wave activity when compared to El Niño phase (ENSO ∈

[1.5,2]).

Figure 4.10: Scale parameter and shape parameters as a function of k and x.

With estimates α̂
(ξ)
i , i = 1, · · · ,m(ξ)

1 at hand, it is easier to visualize the shape

parameter ξ a function of day of occurrence:

ξ(k) = exp
(
γ(ξ) +

m
(ξ)
1∑

j=1

α
(ξ)
j φj(k)︸ ︷︷ ︸

A(ξ)(k)

)
= exp(γ(ξ) + A(ξ)(k)) (4.18)

In order to study the impact of daily fluctuations on ξ(k), we consider the plot of
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A(ξ)(k) as function of k. Figure 4.10 right panel gives a plot of function A(ξ). With

respect to the shape parameter, extreme heat wave events seem to more prevalent in

the fall months. Also during the mid fall and mid spring, the heat waves seem to gain

in terms of their intensity. During the summer and winter months, there seem to be

little instances of extreme heat wave activity with respect to the shape parameter.

The behavior of shape with respect to the seasons is almost contrary to the behavior

of scale.

4.4.4 Return levels

If X ∼ GPD(σ, ξ) , then the unconditional distribution of X using (4.10) may be

written as

P [X > z] = τu

[
1 + ξ

(
z − u
σ

)]−1/ξ

(4.19)

τu = P [X > u]. Thus an mth year return level for the random variable X is given by

rm = inf
{
z : P (X > z) ≥ 1

m

}
= u+

σ

ξ
[(mτu)

ξ − 1] (4.20)

where rm denotes the level that is exceeded on average once every m observations.

Since rm is obtained corresponding to the excess distribution, m should be large

enough to guarantee rm > u.

Based on (4.16), the distribution function for time series Qk is given by:

P [Qk > z] = τq0

[
1 + ξ(k)

(
z − q0

σ(k)

)]−1/ξ

Using (4.17) and (4.18), one may equivalently express the return level rm as a bivariate
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function of the covariates day in year and ENSO level as:

rm(k, x) = v0 +
σ(k, x)

ξ(k)
[(mτv0)

ξ − 1] = v0 +
exp(w>1 ρ1)

w>2 ρ2

[(mτv0)
w>2 ρ2 − 1] (4.21)

with w1, w2, ρ1 and ρ2 given by

w1 =

[
1 φ1(k) · · · φ

m
(σ)
1

(k) ψ1(x) · · ·ψ
m

(σ)
2

(x)

]>
(4.22)

ρ1 =

[
γ(σ) α

(σ)
1 · · · α

(σ)

m
(σ)
1

δ
(σ)
1 · · · δ(σ)

m
(σ)
2

]>
w2 =

[
1 φ1(k) · · · φ

m
(ξ)
1

(k)

]>
ρ2 =

[
γ(ξ) α

(σ)
1 · · · α

(ξ)

m
(ξ)
1

]>

The estimate for the return level in (4.21) and its standard error are obtained in

accordance to Lemma C.1 in Section C.

Figure 4.11, left explores in details the variations in the 10-year return levels r̂m

as a function of k and x. For m = 10× 365, the behavior of r̂m is fairly similar across

different values of m and has not been reported in here. The right panel explores in

details the variations in the standard error of return level estimates, r̂m. We observe

unusually large values of the standard error for ENSO levels close to -2 which may

be attributed to the non-availability of observations at such low values of the ENSO.

Heat wave activity is most profound during the months of February and December

especially with ENSO level close to [-1.7,-1] and [0.3,1.1].
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Figure 4.11: Return level r̂m for m = 10× 365 as a function of Day and the ENSO.

We next study the behavior of return levels cross sectionally. Figure 4.12 allows

us to study the univariate effect of the ENSO factor (x) at at varying levels of day

of the year (k). Left panel in Figure 4.12 corresponds to a day in the winter season,

middle panel for a day in the summer season and the right panel is for a day in

the fall season. The shape of the curve is almost similar to the ENSO variation

curve in Figure 4.10 with a change in the location depending on the season under

consideration. This is expected since the return level in (4.20) is directly proportional

to the scale parameter and the shape parameter is free from the ENSO covariate. As

is evident in the graphs, the heat waves seem to be of a larger amplitude for the winter

and summer months. They’re relatively smaller during the fall season, an observation

which is further consolidated under Section 4.5.3.
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Figure 4.12: Return levels r̂m for m = 10 × 365 as a function of ENSO on various
days of the year.

Figure 4.13 allows us to study the univariate effect of day of the year (k) at varying

levels of the ENSO factor (x). Left in Figure 4.13 corresponds to time point from

the La Niña phase of ENSO whereas the right panel corresponds to the El Niño

phase of ENSO. The shape of the curve is almost similar to the day variation curve

in left panel of Figure 4.10 with a change in the location depending on the ENSO

value under consideration. This is because the effect of day covariate on the scale

predominates the effect on shape parameter (see Table 4.4.3). The figure further

supports the hypothesis that heat waves seem to be more severe during the El Niño

periods of the climate.

Figure 4.13: Return levels r̂m for m = 10 × 365 as a function of year for different
levels of ENSO.

In the following subsections, we explore other factors which impact the return
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levels.

4.5 Factors Influencing Return Levels

4.5.1 Role of u0

In this section, we explore the role of intensity level u0 in defining the heat wave

Qk(u0). Two values of u0 viz 0.92 and 0.97 are chosen and v0 is fixed at 0.9. Repeating

the analysis in Section 4.4.2, we obtain the AIC values for the models described in

(4.15) with c
(σ)
1 = c

(σ)
2 = c

(ξ)
1 = c

(ξ)
2 = 3.

(m
(ξ)
1 ,m

(ξ)
2 )\(m(σ)

1 ,m
(σ)
2 ) (0,0) (0,1) (1,0) (1,1)

(0,0) -1921.077 -1918.981 -1969.000 -1964.619
(0,1) -1919.191 -1914.037 -1965.394 -1961.123
(1,0) -1941.193 -1939.125 -1974.936 -1971.605
(1,1) -1941.953 -1936.630 -1974.770 -1970.822

Table 4.3: For u0 = 0.92, AIC values for varying models in (4.15) with c
(σ)
1 =

c
(σ)
2 =c

(ξ)
1 = c

(ξ)
2 = 3.

(m
(ξ)
1 ,m

(ξ)
2 )\(m(σ)

1 ,m
(σ)
2 ) (0,0) (0,1) (1,0) (1,1)

(0,0) -2551.725 -2558.228 -2576.183 -2581.193
(0,1) -2554.783 -2553.041 -2578.132 -2576.145
(1,0) -2564.781 -2568.790 -2577.530 -2582.244
(1,1) -2566.841 -2564.423 -2579.275 -2577.585

Table 4.4: For u0 = 0.97, AIC values for varying models in (4.15) with c
(σ)
1 =

c
(σ)
2 =c

(ξ)
1 = c

(ξ)
2 = 3.

For u0 = 0.92, the optimal model is M1,0,1,0 which implies only the day covariate

is significant for both the shape and scale parameter. The ENSO covariate seems to

be of little importance be it in terms of explaining the shape or the scale parameter.

For u0 = 0.97, the optimal model is M1,1,1,0 which implies only the day covariate

is significant for both the shape and scale parameter. The ENSO covariate however

only explains variations in the scale parameter.
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We end this section by exploring the return levels for all three values of u0 =

0.92, 0.0.97 and comparing it to u0 = 0.95 as in Section 4.4.4 as a function of the

season and ENSO covariate as in Section 4.4.4. For u0 = 0.92, since only the day

covariate is significant, the return levels and their standard errors are computed using

Lemma C.1 of Section C with w1, ρ1, w2 and ρ2 given by

w1 =

[
1 φ1(k) · · · φ

m
(σ)
1

(k)

]>
(4.23)

ρ1 =

[
γ(σ) α

(σ)
1 · · · α

(σ)

m
(σ)
1

]>
w2 =

[
1 φ1(k) · · · φ

m
(ξ)
1

(k)

]>
ρ2 =

[
γ(ξ) α

(σ)
1 · · · α

(ξ)

m
(ξ)
1

]>

where m
(σ)
1 and m

(ξ)
1 are chosen optimally by the AIC criterion . These values are

equal to 3 and 4 respectively. Figure 4.14 top left panel gives the return levels for

u0 = 0.92 as a function of day in the year. For u0 = 0.97, the day covariate is

significant for both shape and scale parameter and ENSO covariate is significant only

for the scale parameter. Therefore the return levels and their standard errors are

computed using Lemma C.1 of Section C with w1, ρ1, w2 and ρ2 replaced by values

in (4.26).

Figure 4.14 top right and bottom panel shows a plot of the return levels as a

function of day of year for 3 different values of the enso. The return levels curves

for u0 = 0.97 match the patterns in Figure 4.13. The effect of season is quite small

when we are in the regime of extreme heat waves (u0 = 0.97). However season has

a significant impact on heat waves of comparatively lower intensity. Also the return

levels decrease monotonically with increase in the intensity quantile u0.
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Figure 4.14: Return levels r̂m for m = 10 × 365 as a function of year for different
levels of ENSO for u0 = 0.92, 0.97

4.5.2 Role of ∆

From (4.6), it is clear that the threshold for defining heat waves can vary as a

function of s, ∆ and u0. In this section, we explore the role of ∆ by two approaches,

(1) U(u0, s,∆) = Φ−1(u0) where Φ is cumulative distribution function of standard

normal(2) U(u0, s,∆) = F−1
s,∆(u0) where Fs,∆ is the empirical cumulative distribution

function of Zk,∆(s) (see (4.5)). Whereas, the first case correspond to the case of an

absolute threshold which is free from the parameters s and ∆ , the second one denotes

a relative threshold. In the following subsections both these cases have been explored
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for three values of ∆ = 2, 7, 14.

4.5.2.1 Absolute threshold

For an absolute threshold U(u0, s,∆) = Φ−1(u0), we explore the role of ∆ on heat

waves. For u0 = 0.85 and v0 = 0.85, the analysis in Section 4.4.2 is repeated, wherein

the AIC values for the models in (4.15) are obtained with c
(σ)
1 = c

(σ)
2 = c

(ξ)
1 = c

(ξ)
2 = 3.

Tables 4.5, 4.6 and 4.7 tabulates these AIC values for three different values of ∆ =

2, 7, 14.

(m
(ξ)
1 ,m

(ξ)
2 )\(m(σ)

1 ,m
(σ)
2 ) (0,0) (0,1) (1,0) (1,1)

(0,0) -3818.555 -3817.642 -3874.286 -3871.342
(0,1) -3816.362 -3814.471 -3872.872 -3867.557
(1,0) -3839.510 -3838.591 -3870.374 -3867.406
(1,1) -3840.595 -3835.849 -3868.910 -3863.821

Table 4.5: For ∆ = 2, AIC values for varying models in (4.15).

(m
(ξ)
1 ,m

(ξ)
2 )\(m(σ)

1 ,m
(σ)
2 ) (0,0) (0,1) (1,0) (1,1)

(0,0) -6636.493 -6640.659 -6653.301 -6656.352
(0,1) -6635.730 -6636.347 -6652.806 -6652.012
(1,0) -6639.743 -6643.132 -6650.894 -6653.515
(1,1) -6638.546 -6639.437 -6649.615 -6648.591

Table 4.6: For ∆ = 7, AIC values for varying models in (4.15).

(m
(ξ)
1 ,m

(ξ)
2 )\(m(σ)

1 ,m
(σ)
2 ) (0,0) (0,1) (1,0) (1,1)

(0,0) -9552.274 -9555.518 -9550.450 -9553.115
(0,1) -9552.516 -9550.439 -9551.234 -9548.361
(1,0) -9549.035 -9551.949 -9550.942 -9552.849
(1,1) -9547.751 -9546.568 -9549.003 -9546.918

Table 4.7: For ∆ = 14, AIC values for varying models in (4.15).

For ∆ = 2, the optimal model is M1,0,0,0 which implies only the day covariate

plays a role in terms of determing the scale parameter. The shape parameter is free

from the influence of the covariates. For ∆ = 7, the optimal model is M1,1,0,0 which
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implies both day and ENSO covariates influence the shape parameter and the scale

parameter is free from the effect of the covariates. Lastly for ∆ = 14, the optimal

model is M1,0,0,0 which implies that only the shape parameter is influenced by the

ENSO covariate. For the case of absolute threshold, a value of Φ−1(0.85) = 1.03

corresponds to very extreme quantiles in the distribution of Zk,14(s) in contrast to

Zk,10(s) where it corresponds to moderately large quantiles (see Figure 4.17). These

results corroborate the fact that patterns of the unusually large extreme heat waves

are determined by the ENSO covariate whereas day covariate influences reasonably

large ones.

Figure 4.15: Quantiles for the distribution of Zk,∆(s) for varying values of ∆. The
gray lines represent different stations

For all the three values of ∆ = 2, 7, 14, the shape parameter was found to be free

from the covariates. For ∆ = 2, since the scale parameter is a function of the day

covariate only, the return levels and their standard errors are computed using Lemma
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C.1 of Section C with w1, ρ1, w2 and ρ2 given by

w1 =

[
1 φ1(k) · · · φ

m
(σ)
1

(k)

]>
(4.24)

ρ1 =

[
γ(σ) α

(σ)
1 · · · α

(σ)

m
(σ)
1

]>
w2 = 1

ρ2 = γ(ξ)

where m
(σ)
1 , chosen optimally by the AIC criterion turned out to be 5. Figure 4.16 left

panel gives the return levels for ∆ = 2 as a function of day in the year. For ∆ = 14,

since the scale paramter is a function of the ENSO covariate only, the return levels

and their standard errors are computed using Lemma C.1 of Section C with w1, ρ1,

w2 and ρ2 given by

w1 =

[
1 ψ1(x) · · · ψ

m
(σ)
2

(x)

]>
(4.25)

ρ1 =

[
γ(σ) δ

(σ)
1 · · · δ

(σ)

m
(σ)
2

]>
w2 = 1

ρ2 = γ(ξ)

where m
(σ)
2 , chosen optimally by the AIC criterion turned out to be 8. Figure 4.16

right panel displays the return levels for ∆ = 14 as a function of the ENSO level. The

return levels are much lower for ∆ = 14. This is an expected phenomenon because

for an absolute threshold U = Φ−1(u0), there will be much fewer events of duration

∆ = 14 than ∆ = 2.
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Figure 4.16: Return levels r̂m for m = 10 × 365. Left panel: for ∆ = 2, r̂m is a
function of day in year. Right panel: For ∆ = 14, r̂m is a function of
the ENSO value.

For ∆ = 7, the scale paramter is a function of both the ENSO covariate and day

covariate, the return levels and their standard errors are computed using Lemma C.1

of Section C with w1, ρ1, w2 and ρ2 given by

w1 =

[
1 φ1(k) · · · φ

m
(σ)
1

(k) ψ1(x) · · ·ψ
m

(σ)
2

(x)

]>
(4.26)

ρ1 =

[
γ(σ) α

(σ)
1 · · · α

(σ)

m
(σ)
1

δ
(σ)
1 · · · δ(σ)

m
(σ)
2

]>
w2 = 1

ρ2 = γ(ξ)

where m
(σ)
1 and m

(σ)
2 , chosen optimally by the AIC criterion turned out to be 5 and 8

respectively. Figure 4.17 shows a plot of the return levels as a function of day in year

for varying levels of the ENSO. The return levels are smaller than those for ∆ = 2

but larger than ∆ = 14. Lower values of ENSO (ENSO=-1.5) produce higher return

levels than higher values (ENSO=1.5) similar to the patterns of Figure 4.16 right

panel. Winter months lead to greater heat wave activity when compared to summer
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months which is similar to the phenomenon observed in left panel of Figure 4.16.

Figure 4.17: Return levels r̂m for m = 10 × 365 for ∆ = 7 at varying values of the
ENSO level. Left panel: ENSO=-1.5, Middle panel: ENSO=0, Right
panel: ENSO=1.5.

4.5.2.2 Relative threshold

For a relative threshold U(u0, s,∆) = F−1
s,∆(u0), we explore the role of ∆ on heat

waves. For u0 = 0.85 and v0 = 0.9, the analysis in Section 4.4.2 is repeated, wherein

the AIC values for the models in (4.15) are obtained with c
(σ)
1 = c

(σ)
2 = c

(ξ)
1 = c

(ξ)
2 = 3.

Tables 4.8, 4.9 tabulates these AIC values for two different values of ∆ = 2, 14. The

case of ∆ = 7 is already covered under Section 4.4.

(m
(ξ)
1 ,m

(ξ)
2 )\(m(σ)

1 ,m
(σ)
2 ) (0,0) (0,1) (1,0) (1,1)

(0,0) -3479.055 -3477.243 -3517.548 -3512.506
(0,1) -3475.539 -3473.329 -3513.286 -3507.706
(1,0) -3488.920 -3485.434 -3513.475 -3508.528
(1,1) -3485.150 -3481.592 -3509.262 -3503.693

Table 4.8: For ∆ = 2, AIC values for varying models in (4.15).

(m
(ξ)
1 ,m

(ξ)
2 )\(m(σ)

1 ,m
(σ)
2 ) (0,0) (0,1) (1,0) (1,1)

(0,0) -1470.400 -1471.985 -1505.599 -1500.582
(0,1) -1471.434 -1466.701 -1500.822 -1494.961
(1,0) -1494.420 -1490.413 -1504.187 -1498.983
(1,1) -1490.143 -1485.925 -1499.059 -1493.498

Table 4.9: For ∆ = 14, AIC values for varying models in (4.15).
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The table clearly shows that for ∆ = 2, 14, the shape parameter is free from the

covariates unlike the case of ∆ = 7 where the shape parameter was influenced by

day covariate. The day covariate only affects the scale parameter. This is behavior

however contradictory to that for ∆ = 7 where both day and ENSO covariates were

significant for the scale parameter (see Table 4.1).

For ∆ = 2, 14, since the scale parameter is a function of the day covariate only,

the return levels and their standard errors are computed using Lemma C.1 of Section

C with w1, ρ1, w2 and ρ2 given by

w1 =

[
1 φ1(k) · · · φ

m
(σ)
1

(k)

]>
(4.27)

ρ1 =

[
γ(σ) α

(σ)
1 · · · α

(σ)

m
(σ)
1

]>
w2 = 1

ρ2 = γ(ξ)

where m
(σ)
1 , chosen optimally by the AIC criterion turned out to be 3 and 5 for ∆ = 2

and ∆ = 14 respectively. Figure 4.18 plots the 10-year return levels of heat waves

for ∆ = 2, 14. The return levels of ∆ = 14 seem to greater than ∆ = 2 which is

in contrast to Figure 4.16. The reason behind the phenomenon is: when relative

thresholds are considered the decrease in Zk,∆(s) with increase in ∆ is accompanied

with an increase in the threshold U(s, u0,∆) (see Figure 4.17 which is nothing but

a quantile of Zk,∆(s). For both values ∆, heat waves are least extreme during the

summer months and most extreme for the winter ones.This is exactly similar to the

phenomenon as that seen for ∆ = 7 (see Figure 4.13) . When compared with Figure

4.13, the return levels for values of ENSO close to -1.5 seem to be higher than all

values displayed under Figure 4.18.
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Figure 4.18: Return levels r̂m for m = 10× 365 as function of window size ∆.

4.5.3 Role of season

Based on the work of Cressie (1993b), we segregate the months of the year into

four different seasons as: Spring:{March, April, May}, Summer:{June,July,August},

Fall:{September,October,November}, Winter:{December, January,February}. For a

given value of u0, we consider the time series Qk := Qk(u0) restricted to a season as

follows

{Qseas
k } = {Qk, k ∈ Dseas}

where Dseas corresponds to the day indices in a given season, for example Dspring =

{(365i+ j), i = 1, · · · , 100, j = 61, · · · , 150}. Moreover, the threshold q0 for GPD fit

is given byq0 = (F seas)−1(v0) where F seas is the empirical cdf of the time series Qseas
k .

Also, the k varies over the range 1, · · · , dseasT , where dseas denotes the number of days

in that season of the year (e.g. dsummer = 90).

As in (4.16), Qseas
k is assumed to follow GPD(σ(k), ξ) with σ(k) as in (4.12). The

construction of cubic spline functions, φ and ψ differs marginally from that shown in

Section 4.4.1. The function φ still correspond to periodic patterns and ENSO levels
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respectively. Since in a given season, patterns are expected to repeat themselves after

a span of dseas days, the functions φ form dseas-periodic spline basis representation

(see Section 4.3.1) of the range 1, · · · , dseasT .

In order to generate the function ψ in (4.12), the range of ENSO values restricted

to the particular season are considered and a spline basis representation for that range

obtained. The splines are then evaluated at the values of ENSO levels {ENSO(k),

k = 1, · · · , dseasT}. Depending on the season under consideration, the effect of either

the ENSO or the seasonal covariate may be insignificant.

When restricted to a season, the number of observations in the extremes are very

few. Therefore, for seasonal analysis we allow only the scale parameter to depend

on the covariates day and ENSO. Table 4.4.3 shows that number of significant coef-

ficients for the scale parameter is comparatively much larger than that for the shape

parameter. For most of the cases in Sections 4.5.1 and 4.5.2, the effect of covariates

on the shape parameter was negligible. Thus we repeating the analysis in Section

4.4.2 but only for the following four set of models derived from (4.15):

Mi(σ),j(σ) := m
(σ)
1 = c

(σ)
1 I[i(σ)=1], (4.28)

m
(σ)
2 = c

(σ)
2 I[j(σ)=1],

m
(ξ)
1 = = 0,

m
(ξ)
2 = 0.

where i(σ), j(σ) ∈ {0, 1} and c
(σ)
1 snd c

(σ)
2 are arbitrary constants not equal to 0.

Thus the modelM0,10 represents a model where only the ENSO covariate is used for

explaining the scale parameter. The AIC value for models of the for (4.28) determines
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which covariates need to be used for explaining the scale of the GPD. For c
(σ)
1 = c

(σ)
2 =

3, Table 4.10 gives the AIC values for all models in (4.28) for different seasons. The

optimal model goes on varying with respect to the season

Season\(m(σ)
1 ,m

(σ)
2 ) (0,0) (0,1) (1,0) (1,1)

Winter -623.2626 -623.5936 -619.1384 -618.9644
Spring -777.1376 -772.8495 -777.6741 -776.1906

Summer -849.1791 -846.1126 -850.3411 -847.5327
Fall -776.9355 -772.7973 -791.1087 -786.7266

Table 4.10: AIC values for varying models in (4.28) for c
(σ)
1 = c

(σ)
2 = 3 for different

seasons.

For the seasons like Spring, Fall and Summer, the optimal model is M1,0 which

implies ENSO based covariate is no longer significant. On the contrary, for Winter

season the optimal model is M0,1 which implies that only the ENSO and not day

covariate is significant.

Since depending on season the significance of a covariate varies, we consider the

return levels as a function of day kseas = 1, · · · , dseas in each season. For the spring,

fall and summer seasons, the return levels and their standard errors are computed

using Lemma C.1 of Section C with w1, ρ1, w2 and ρ2 given by

w1 =

[
1 φ1(kseas) · · · φm1(k

seas)

]>
(4.29)

ρ1 =

[
γ(σ) α(σ)

1 · · · α(σ)
m

(σ)
1

]>
w2 = 1

ρ2 = γ(ξ)

which takes into account that the ENSO based covariate is no longer significant. The

optimal value for m
(σ)
1 is chosen by the AIC criterion. These values were found to be
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3,3 and 8 for spring, summer and fall seasons respectively. For the winter season only

the ENSO based covariate is significant, therefore we consider

w1 =

[
1 ψ1(xseas) ψ2(xseas) · · · ψm2(x

seas)

]>
(4.30)

ρ1 =

[
γ(σ) δ

(σ)
1 · · · δ(σ)

m
(σ)
2

]>
w2 = 1

ρ2 = γ(ξ)

where xseas belongs to the range of ENSO values restricted to winter season. The

optimal value for m
(σ)
2 , chosen by the AIC was found to be 3.

For m = 10× dseas, Figures 4.19 give a plot of the return levels and the standard

errors for the fall, spring, summer and winter seasons. Since the return levels of the

fall, spring and summer season are heavily influenced by the value of season based

covariate, the return levels are a function of the day in the season only. The return

levels for summer season are the largest followed by spring and fall. Towards the end

of both season, the return level seems to a bit on the higher end. The return levels

for the fall and spring are lower when compared to the winter season. For the winter

season, since only the ENSO is significant, we report only the values of the return

levels at varying values of the ENSO. At ENSO ≈ -1.2, we observe that the return

levels are the highest. This further corroborates that La-Niña phases combined with

winter season produce the highest intensity heat waves even greater than those of

the summer season. For other values of the ENSO, the return levels in winter are

comparable to the spring and fall and smaller than the summer season.
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Figure 4.19: Return levels r̂m for m = 10× 90.

4.6 Summary And Discussion

In this chapter, we introduce the concept of areal footprint of heat waves and

analyzed the behavior of its extremes. The Generalized Pareto Distribution has been

used in modeling the peaks over threshold for the time series of areal impact of heat-

waves. Covariates like day of the year and ENSO level are shown to be significant in

modeling of extreme heat waves events. In Section 4.4.4, we discuss the return levels

of the so-defined areal heat waves with respect to variations in the covariates.

Section 4.5 explores the factors which influence the return levels of the areal heat
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waves. Depending on the value of u0, either one or both the covariates day and

ENSO level may be significant in determining the shape and scale of the GPD. As

expected large values of u0 usually produce smaller return levels which vary with

respect to the ENSO levels. In contrast, the return levels are influenced by the day

covariate for smaller values of u0. Section 4.5.2 explores the role of window size ∆ in

determining the heat waves under two scenarios, one where the threshold of defining

heat wave varies as a function of ∆ and the other where it is a constant. Large values

of ∆ correspond to smaller areas of US under extreme heat wave activity. Therefore,

under a constant threshold return levels are much smaller for larger ∆. However

when relative thresholds are considered, this phenomenon reverses itself. Explaining

the return levels as a function of ∆ when the threshold varies as a function of ∆ is

still left for exploration.

An important contribution of the chapter has been the distribution of the heat

waves and their return levels with respect to the season. Indeed when restricted to

a season, the effect of the week covariate decreases significantly. The ENSO levels

seem play a role only during the winter season and do not influence the other seasons.

This section also corroborates the observation that heat waves are more severe during

winter months. An interesting extension of the chapter is the regional analysis of the

extremes in areal distribution of heat waves. A Dirichlet model with time varying

coefficients can be employed for modeling the regional distribution over continental

US given an extreme event has occurred. These time varying coefficients can be made

correlated in space either by a regularization approach or by priors as in Cooley et al.

(2007), Besag and Kooperberg (1995), Rue and Held (2005).
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CHAPTER V

Conclusions And Future Work

We presented a technique where the security of smart grid networks may be en-

abled by securing a suitably chosen subset of nodes in the grid. However when the

number of these trusted nodes is unknown, the kriging methodology cannot be ap-

plied for predictive modeling of energy consumption. Other sophisticated time series

based techniques like vector auto regression and dynamic factor models need to be

explored. This shall form the platform of our next work of developing a predictive

model for which can be used both for anomaly detection and future consumption

forecasts.

Cyber activites like Denial of Service, Network Jam etc. all require sophisticated

statistical and computational techniques for their detection and prevention. In this

work, we presented a few techniques for the identification of heavy hitter IPs for both

high and low volume attacks. The community detection algorithms which targeted at

detecting structural changes in traffic flow have however not been covered in details.

As a part of the future work we wish to develop a principled way for identification

of cliques in the co-citation and bibliographic matrices1 obtained from the adjacency

matrix of source-destination flow. Also, the robust estimation of the tail exponents

1http://www.pitt.edu/ kpele/Materials15/module1.pdf
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may boost the results for our algorithms dependent on the heavy tailed nature of

hash binned traffic.

The trimmed Hill estimator presented in this work well identifies the outliers for

distribution in the Pareto domain of attraction, i.e. ξ > 0. However its behavior with

varying nature of the outliers need to be explored. An extension of the work shall

be to identify outliers for all domains of attraction, i.e. ξ <=> 0. In this direction,

a trimmed version of the generalized hill estimator in Beirlant et al. (2004b) shall

provide a starting point of the research.

We have so far quantified the notion of heat waves and presented their m-year

return levels as a function of covariates like Season, Enso and Location. A comparison

of the proposed techniques to already existent methods in literature needs to be

made. Additionally, the proposed methodology needs to be applied on other climatic

databases2. Sensitivity of the proposed methodology to other climatic events like cold

waves, precipitation and depression shall be explored as a part of the future work.

2North American Regional Climate Change Assessment Program (NARCAP) http://www.

narccap.ucar.edu/data/
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APPENDIX A

AMON

Proof of Proposition II.2. This result is a simple consequence of Theorem 3.3.7,

p. 131 in Embrechts et al. (1997).

By the independence of the X(i)′s, for all fixed x > 0, we have

P(m−1/α)Dm(X) ≤ x) = P(X ≤ m1/αx)m = (1− P(X > m1/αx))m

Since P(X > x) ∼ c/xα, thus with x replaced by m1/αx, we have

P(m−1/αDm(X) ≤ x) ∼ (1− c/mxα)m → e−c/x
α

, m→∞

This implies the convergence in (2.13) since for a standard Fréchet distributed random

variable Z, P (Z ≤ c−1/αx) = e−c/x
α
.

Proof of Proposition II.6. Part (i) is a direct consequence of (2.17). From part
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(i), we have

{V (k;m), k = 1, . . . ,m} d
=
{∑k

j=1 F
−1

(Γj/Γm+1)∑m
j=1 F

−1
(Γj/Γm+1)

, k = 1, . . . ,m
}
. (A.1)

From Lemma B.3, we have Γj/Γm+1 ∼ Γj/m as m → ∞ almost surely for all j =

1, · · · , `. In view of (2.11), F
−1

(p) ∼ (p/c)−1/α as p ↓ 0 and hence for all j = 1, · · · , `,

with probability one, we have

F
−1
( Γj

Γm+1

)
∼
( Γj
cΓm+1

)−1/α

, m→∞.

This implies that the right hand side of (A.1) converges almost surely to

∑k
j=1 Γ

−1/α
j (cΓm+1)1/α∑`

j=1 Γ
−1/α
j (cΓm+1)1/α

= Wα(k, `),

which completes the proof of Part (ii).
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APPENDIX B

Robust Hill

Lemma B.1. Let Ej
i.i.d∼ Exp(1), j = 1, 2, · · · , n+ 1 be standard exponential random

variables. Then, the Gamma(i, 1) random variables defined as

Γi =
i∑

j=1

Ej i = 1, · · · , n+ 1, (B.1)

satisfy ( Γ1

Γn+1

, · · · , Γn
Γn+1

)
and Γn+1 are independent. (B.2)

and ( Γ1

Γn+1

, · · · , Γn
Γn+1

)
d
= (U(1,n), · · · , U(n,n)) (B.3)

where U(1,n) < · · · < U(n,n) are the order statistics of n i.i.d. U(0,1) random

variables.

For details on the proof see Example 4.6 on page 44 in Ahsanullah et al. (2013).

The next result, quoted from page 37 in de Haan (2006), shall be used throughout

the course of the chapter to switch between order statistics of exponentials and i.i.d.

exponential random variables.
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Lemma B.2 (Rényi, 1953). Let E1, E2, · · · , En be a sample of n i.i.d. standard

exponential random variables and E(1,n) ≤ E(2,n) ≤ · · · ≤ E(n,n) be the order statistics.

By Rényi’s (1953) representation, we have for fixed k ≤ n,

(E(1,n), · · · , E(i,n), · · · , E(k,n))
d
=
(E∗1
n
, · · · ,

i∑
j=1

E∗j
n− j + 1

, · · · ,
k∑
j=1

E∗j
n− j + 1

)
(B.4)

where E∗1 , · · · , E∗k are also i.i.d. standard exponentials.

Lemma B.3. For Γm = E1 + E2 + · · · + Em where the E ′is are i.i.d. standard

exponential random variables, for any ρ

sup
m≥M

∣∣∣(Γm
m

)−ρ
− 1
∣∣∣ a.s.−→ 0, M →∞ (B.5)

sup
m,n≥M

∣∣∣(Γm/m

Γn/n

)−ρ
− 1
∣∣∣ a.s.−→ 0, M →∞ (B.6)

Proof. The proof is a direct consequence of the Strong Law of Large Numbers (SLLN).

Lemma B.4. For all ρ > 0, we have

sup
m≥M

∣∣∣ 1

m

m∑
i=1

( Γi+1

Γm+1

)ρ
− 1

1− ρ

∣∣∣ a.s.−→ 0, M →∞

Proof. It is equivalent to show that, as m→∞,

∣∣∣ 1

m

m∑
i=1

( Γi+1

Γm+1

)ρ
− 1

1 + ρ

∣∣∣ a.s.−→ 0. (B.7)

For a fixed ω ∈ Ω, let us define the following sequence of functions

fm(x) =
m∑
i=1

(Γi+1/Γm+1)ρ(ω)1( i−1
m
, i
m

](x), x > 0
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Suppose x ∈ ((i− 1)/m, i/m], then

fm(x) = (Γ[mx]+1/Γm+1)−ρ(ω) =
( [mx] + 1

m

)−ρ(Γ[mx]+1/([mx] + 1)

Γm/m

)ρ
(ω)→ x−ρ

(B.8)

where the convergence follows from (B.6). Moreover since Γ[mx]+1 < Γm and ρ < 0,

therefore |fm(x)| ≤ 1, for all x > 0. Thus by dominated convergence theorem,

1∫
0

fm(x)dx =
1

m

m∑
i=1

(Γi+1/Γm+1)−ρ(ω)→
1∫

0

x−ρdx =
1

1− ρ
(B.9)

Since (B.8) hold for all ω ∈ Ω with P [Ω] = 1, so does (B.9). This completes the

proof.

Lemma B.5. If Ei’s i = 1, · · · , n are i.i.d. observations from Exp(ξ), the best linear

unbiased estimator (BLUE) of ξ based on the order statistics, E(1,n) < · · · < E(r,n) is

given by

ξ̂ =
1

r

r−1∑
i=1

E(i,n) +
n− r + 1

r
E(r,n)

Proof. Let ξ̂ =
∑r

i=1 γiE(i,n) denote the BLUE of ξ. By Relation (B.4) in Lemma

B.2, the BLUE can then be expressed as

ξ̂ =
r∑
i=1

γi

i∑
j=1

E∗j
(n− j + 1)

=
r∑
j=1

E∗j

r∑
i=j

γi
(n− j + 1)

=:
r∑
j=1

E∗j δj (B.10)

where the E∗j are i.i.d. from Exp(ξ).

For i.i.d. observations from Exp(ξ), the sample mean is the uniformly minimum

variance unbiased estimator for ξ (see Lehmann Scheffe Theorem, Theorem 1.11, page

88 in Lehmann and Casella (1983)). Thus δj = 1/r yields the required best linear

unbiased estimator.

130



Using the fact that
∑r

i=j γi = δj(n− j + 1) = (n− j + 1)/r, we obtain

γi =


n−r+1

r
i = r

1
r

i < r

This completes the proof.

Lemma B.6. Suppose g is −ρ-varying for ρ ≥ 0 and Y(n−k,n) is the (k + 1)th order

statistic for n observations from Pareto(1, 1), then

g(Y(n−k,n))

g(n/k)

P−→ 1 (B.11)

provided k →∞, n→∞ and k/n→∞.

Proof. Since g is −ρ varying, g may be expressed as g(t) = t−ρl(t), for some slowly

varying function l(·). Thus, we have

g(Y(n−k,n))

g(n/k)
=
(Y(n−k,n)

n/k

)−ρ l(Y(n−k,n))

l(n/k)

From (B.12), we have Y(n−k,n)
d
= Γn+1/Γk+1 and therefore, by weak law of large

numbers, we have Y(n−k,n)/(n/k)
P−→ 1.

Thus to prove (B.11), it suffices to show l(Y(n−k,n))/l(n/k)
P−→ 1. In this direction,

observe that for some δ > 0, we have

P

[∣∣∣ l(Y(n−k,n))

l(n/k)
− 1
∣∣∣ > ε

]
≤ P

[∣∣∣ l(Y(n−k,n))

l(n/k)
− 1
∣∣∣ > ε,

∣∣∣Y(n−k,n)

n/k
− 1
∣∣∣ ≤ δ]+ P

[∣∣∣Y(n−k,n)

n/k
− 1
∣∣∣ > δ

]

≤ P

[
sup

λ∈[1−δ,1+δ]

∣∣∣ l(λn/k)

l(n/k)
− 1
∣∣∣ > ε

]
+ P

[∣∣∣Y(n−k,n)

n/k
− 1
∣∣∣ > δ

]

The first term on the right hand side goes to 0 by Theorem 1.5.2 on page 22 in
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Bingham et al. (1989). The second term goes to 1 since Y(n−k,n)/(n/k)
P−→ 1.

Proof of Proposition III.1. Observe that Xi’s can be alternatively written as

Xi = σU−ξi , i = 1, · · · , n,

where Ui’s are i.i.d. U(0, 1). Therefore by Relation (B.3) in Lemma B.1, we have

(X(n,n), · · · , X(1,n)) = σ(U−ξ(1,n), · · · , U
−ξ
(n,n))

d
= σ

(( Γ1

Γn+1

)−ξ
, · · · ,

( Γn
Γn+1

)−ξ)
(B.12)

where X(n,n) > · · · > X(1,n) are the order statistics for the Xi’s. Hence, for all

1 ≤ k ≤ n− 1, we have

(
log
( X(n,n)

X(n−k,n)

)
, · · · , log

( X(k)

X(n−k,n)

))
d
= −ξ

(
log
( Γ1

Γk+1

)
, · · · , log

( Γk
Γk+1

))
d
= −ξ(logU(1,k), · · · , logU(k,k)), (B.13)

where the U(i,k)’s are the order statistics for a sample of k i.i.d. U(0, 1) and the

last equality in (B.13) follows from Relation (B.3) in Lemma B.1. Since negative log

transforms of U(0, 1) are standard exponentials, one can define E(i,k), i = 1, · · · , k as

(
log
( X(n,n)

X(n−k,n)

)
, · · · , log

( X(k)

X(n−k,n)

))
=: (E(k,k), · · · , E(1,k)) (B.14)

such that the E(i,k)’s are distributed as order statistics of k i.i.d. exponentials with

mean ξ, henceforth denoted by Exp(ξ). One can thereby simplify ξ̂trim
k0,k

in (3.3) as

ξ̂trim
k0,k

=
k∑

i=k0+1

ck0,k(n− i+ 1, n)E(k−i+1,k) =

k−k0∑
i=1

δiE(i,k) (B.15)
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where δi = ck0,k(k− i+ 1). The optimal choice of weights δi’s which produce the best

linear unbiased estimator (BLUE) for ξ is obtained using Lemma B.5 as:

δopt
i =


1

k−k0 i = 1, · · · , k − k0 − 1

k0+1
k−k0 i = k − k0

(B.16)

Rewriting E(i,k)’s in terms of X(n−i+1,n)’s as in (B.14) completes the proof.

Proof of Proposition III.2. From (B.15) and (B.16) in Proposition III.1, we have

{
ξ̂k0,k, k0 = 0, . . . , k − 1

}
=
{ 1

k − k0

k−k0−1∑
i=1

E(i,k) +
k0 + 1

k − k0

E(k−k0,k), k0 = 0, . . . , k − 1
}

(B.17)

Using Relation (B.4) from Lemma B.2, for all k0 = 0, 1, · · · , k − 1, we have

ξ̂k0,k =
1

k − k0

k−k0−1∑
i=1

i∑
j=1

E∗j
(k − j + 1)

+
k0 + 1

k − k0

k−k0∑
j=1

E∗j
(k − j + 1)

(B.18)

Interchanging the order of summation in the first term in the right hand side of

(B.18), for k0 = 0, 1, · · · , k − 1, we obtain

ξ̂k0,k =

k−k0−1∑
j=1

E∗j
k − j + 1

k−k0−1∑
i=j

1

k − k0

+
k0 + 1

k − k0

k−k0∑
j=1

E∗j
(k − j + 1)

=

k−k0−1∑
j=1

E∗j
k − j + 1

(
k−k0−1∑
i=j

1

k − k0

+
k0 + 1

k − k0

)
+
E∗k−k0
k − k0

=

k−k0−1∑
j=1

E∗j
k − j + 1

(k − j + 1)

k − k0

+
E∗k−k0
k − k0

=
1

k − k0

k−k0∑
j=1

E∗j ,

Since E∗j , j = 1, · · · , k − k0 are rescaled i.i.d. standard exponentials, Relation (3.6)
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follows.

The covariance structure in (3.7) readily follows from (3.6) and the fact that

Cov
(Γi
i
,
Γj
j

)
= Cov

(E1 + · ·+Ei
i

,
E1 + · ·+Ej

j

)
=
i ∧ j
ij

=
1

i ∨ j
, i, j = 0, 1, · · · , k

where ∨ denotes the max operator. This completes the proof.

Proof of Theorem III.4. Suppose for the moment σ is known and consider the

class of statistics:

Uσk0 =
{
T = T (X(n−k0,n), · · · , X(1,n)) : E(T ) = ξ, X1, · · · , Xn

i.i.d.∼ Pareto(σ, ξ)
}
.

Since σ is no longer a parameter, every statistic in Uσk0 can be equivalently written

as a function of log(X(n−i+1,n)/σ), i = k0 + 1, · · · , n. Therefore, the set of random

variables in Uσk0 equals

Uσk0 =

{
S = S

(
log
(X(n−k0,n)

σ

)
, · · · , log

(X(1,n)

σ

))
: E(S) = ξ,X1, · · · , Xn

i.i.d.∼ Pareto(σ, ξ)

}
.

Since Xi’s follow Pareto(σ, ξ), we have log(Xi/σ) ∼ Exp(ξ) and therefore

(
log
(X(n−k0,n)

σ

)
, · · · , log

(X(1,n)

σ

))
d
=
(
E(n−k0,n), · · · , E(1,n)

)
,

where E(1,n) ≤ · · · ≤ E(n,n) are the order statistics of n i.i.d. observations from

Exp(ξ). Therefore

Uσk0
d
=
{
S = S(E(n−k0,n), · · · , E(1,n)) : E(S) = ξ, E1, · · · , En

i.i.d.∼ Exp(ξ)
}
, (B.19)

where we observe that the distribution of the Ei’s does not depend on σ.
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Using Relation (B.4) from Lemma B.2, we have

S(E(n−k0,n), · · · , E(1,n)) = S
( n−k0∑

j=1

E∗j
n− j + 1

, · · · ,
n−k∑
j=1

E∗j
n− j + 1

)
= R(E∗1 , · · · , E∗n−k0)

Using this on the right hand side of (B.19), we get

Uσk0
d
= Vk0 :=

{
R = R(E∗1 , · · · , E∗n−k0) : E(R) = ξ, E∗1 , · · · , E∗n−k0

i.i.d.∼ Exp(ξ)
}
.

(B.20)

where the first equality is in the sense of finite dimensional distributions.

Therefore, L = infT∈Uσk0
Var(T ) = infR∈Vk0 Var(R). The quantity L can be easily

obtained as

L = Var(E
∗
n−k0) =

ξ2

n− k0

(B.21)

since the sample mean, E
∗
n−k0 =

∑n−k0
i=1 E∗i /(n − k0) is uniformly minimum variance

estimator (UMVUE), for ξ among the class described by Vk0 . This follows from the

fact that E
∗
n−k0 is an unbiased and complete sufficient statistic for ξ (see Lehmann

Scheffe Theorem, Theorem 1.11, page 88 in Lehmann and Casella (1983)).

To complete the proof, observe that every statistic, T in Uk0 is an unbiased es-

timator of ξ for any arbitrary choice of σ. This implies that T ∈ Uσk0 and therefore

L ≤ infT∈Uk0 Var(T ), which yields the lower bound in (3.9).

For the upper bound in (3.9), we observe that ξ̂k0,n−1 ∈ Uk0 , which in view of

Proposition III.2 implies

inf
T∈Uk0

Var(T ) ≤ Var(ξ̂k0,n−1) =
ξ2

n− k0 − 1
.
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This completes the proof.

We shall next present the proof of Theorem III.5. To begin with we state the

following two lemmas which shall be used as a part of the proof.

Lemma B.7.

max
0≤k0<k

∣∣∣ k − k0

kg(Y(n−k,n))
Sk0,k +

c

1 + ρ

(
k0

k

)1+ρ

− c

1 + ρ

∣∣∣ P−→ 0. (B.22)

where Sk0,k is defined as

Sk0,k :=
cg(Y(n−k,n))

k − k0

(
(k0+1)

Y(n−k0,n)/Y(n−k,n)∫
1

ν−ρ−1dν+
k∑

i=k0+2

Y(n−i+1,n)/Y(n−k,n)∫
1

ν−ρ−1dν
)
.

(B.23)

where Yi’s are n i.i.d observations from Pareto(1,1)

Proof. The proof of (B.22) involves two cases: ρ > 0 and ρ = 0.

Case ρ > 0: Using the expression of Sk0,k in (B.23), we get

k − k0

kg(Y(n−k,n))
Sk0,k = − c

kρ

(
(k0 + 1)

(Y(n−k0,n)

Y(n−k,n)

)−ρ
+

k∑
i=k0+2

(Y(n−i+1,n)

Y(n−k,n)

)−ρ
− k

)

=
c

kρ

k0∑
i=1

{(Y(n−i+1,n)

Y(n−k,n)

)−ρ
−
(Y(n−k0,n)

Y(n−k,n)

)−ρ}

− c

kρ

k∑
i=1

{(Y(n−i+1,n)

Y(n−k,n)

)−ρ
− 1

}
(B.24)

Expressing the order statistics of Pareto in terms of Gamma random variables as in

(B.12), we get
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k − k0

kg(Y(n−k,n))
Sk0,k + c1+ρ

(
k0

k

)1+ρ
d
= c1+ρ

(
k0

k

)1+ρ

+
cρ
k

k0∑
i=1

{(Γi+1

Γk+1

)ρ
−
(Γk0+1

Γk+1

)ρ}
︸ ︷︷ ︸

Bk0,k

− cρ
k

k∑
i=1

{(Γi+1

Γk+1

)ρ
− 1
}

︸ ︷︷ ︸
Ak

with ct = c/t.

To prove (B.22), we first show that max0≤k0<k |Ak + c/(1 + ρ)| a.s.−→ 0. For this (B.7),

we have |(1/k)
∑k

i=1(Γi+1/Γk+1)ρ − 1/(1 + ρ)| a.s.−→ 0. Therefore for any ω ∈ Ω with

P [Ω] = 1,

∣∣∣Ak(ω)+
c

1 + ρ

∣∣∣ =
∣∣∣ c
ρk

k∑
i=1

(Γi+1

Γk+1

)ρ
(ω)− c

ρ
+

c

1 + ρ

∣∣∣ =
∣∣∣cρ
k

k∑
i=1

(Γi+1

Γk+1

)ρ
(ω)− cρ

1 + ρ

∣∣∣→0

We next show that max0≤k0<k Bk0,k
a.s.−→ 0. For this observe that for any ω ∈ Ω,

max
0≤k0<M

Bk0,k (ω) ≤ max
0≤k0<M

{
c1+ρ

(
k0

k

)1+ρ

+
cρ
k

k0∑
i=1

∣∣∣( Γi+1

Γk+1

)ρ
(ω)−

(Γk0+1

Γk+1

)ρ
(ω)
∣∣∣}

≤ max
0≤k0<M

{
c1+ρ

(
k0

k

)1+ρ

+ cρ
2k0

k

}
(since (Γi/Γk+1)

ρ ≤ 1, 1 ≤ i ≤ k, ρ > 0)

≤ c1+ρM1+ρ + 2cρM

k
=
B0M

k
(B.25)
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Additionally,

max
M≤k0<k

Bk0,k (ω) ≤ max
M≤k0<k

∣∣∣∣∣c1+ρ

(
k0

k

)1+ρ

+
cρ
k

k0∑
i=1

{( Γi+1

Γk+1

)ρ
(ω)−

(Γk0+1

Γk+1

)ρ
(ω)
}∣∣∣∣∣

≤ max
M≤k0<k

(
k0

k

)1+ρ
∣∣∣∣∣c1+ρ

cρ
+

(
k0

k

)ρ
1

k0

k0∑
i=1

{( Γi+1

Γk+1

)ρ
(ω)−

(Γk0+1

Γk+1

)ρ
(ω)
}∣∣∣∣∣

≤ max
M≤k0<k

∣∣∣∣∣ ρ

1 + ρ
+
(Γk0+1/k0

Γk+1/k

)ρ
(ω)
{ 1

k0

k0∑
i=1

( Γi+1

Γk0+1

)ρ
(ω)︸ ︷︷ ︸

Ck0 (ω)

−1
}∣∣∣∣∣

= max
M≤k0<k

∣∣∣∣ ρ

1 + ρ
+ (Ck0(ω)− 1) + (Ck0(ω)− 1)

{(Γk0+1/k0

Γk+1/k

)ρ
− 1
}∣∣∣∣ (B.26)

Since Γi+1 < Γk0+1 and ρ > 0, thereby |Ck0| < 1. This allows us to simplify (B.26)

max
M≤k0<k

Bk0,k(ω) ≤ sup
M≤k0

∣∣∣∣Ck0(ω)− 1

1 + ρ

∣∣∣∣︸ ︷︷ ︸
B1M (ω)

+2 sup
M≤k0,k

∣∣∣∣(Γk0+1/k0

Γk+1/k

)ρ
(ω)− 1

∣∣∣∣︸ ︷︷ ︸
B2M (ω)

Thus

max
0≤k0<k

Bk0,k(ω) ≤ B0M

k
+B1M(ω) +B2M(ω).

Taking lim sup w.r.t to k on both sides we get

lim sup
k→∞

max
0≤k0<k

Bk0,k(ω) ≤ B1M(ω) +B2M(ω) (B.27)

Using Lemmas B and B.3 shows that B1M(ω) → 0 and B2M(ω) → 0 for all ω ∈ Ω

with P [Ω] = 1.

Thus taking lim sup w.r.t M on both sides of (B.27) completes the proof for ρ < 0.
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Case ρ = 0: Using the expression of Sk0,k in (B.23), we get

k − k0

kg(Y(n−k,n))
Sk0,k +

ck0

k
=

c

k

(
(k0 + 1) log

(Y(n−k0,n)

Y(n−k,n)

)
+

k∑
i=k0+2

log
(Y(n−i+1,n)

Y(n−k,n)

))
+
ck0

k

d
=

c(k − k0)

k
ξ̂∗∗k0,k +

ck0

k
d
= c

(Γk−k0
k
− k − k0

k
+ 1
)

(B.28)

where ξ̂∗∗k0,k is the trimmed Hill estimator in (3.5) with Xi’s replaced by the i.i.d.

Pareto(1, 1).

Thus to prove (B.22), it suffices to show max0≤k0<k |Γk−k0 − (k − k0)|/k a.s.−→ 0.

For every ω in Ω with P [Ω] = 1, we have

max
0≤k0<k

|Γk−k0(ω)− (k − k0)|
k

= max
0≤k0<k

(k − k0)

k

∣∣∣ Γk−k0
k − k0

(ω)− 1
∣∣∣ (B.29)

≤ M

k
max

0≤k−k0<M

∣∣∣ Γk−k0
k − k0

(ω)− 1
∣∣∣︸ ︷︷ ︸

F1M (ω)

+ sup
k−k0≥M

∣∣∣ Γk−k0
k − k0

(ω)− 1
∣∣∣︸ ︷︷ ︸

F2M (ω)

Observe that by the SLLN, |Γn/n−1| a.s.−→ 0. Therefore supn |Γn(ω)/n−1| is bounded

for all ω ∈ Ω with P [Ω] = 1. This implies F1M(ω) ≤ supn |Γn(ω)/n− 1| is bounded.

Thus taking lim sup with respect to k on both sides of (B.29) we get

lim sup
k→∞

max
0≤k0<k

|Γk−k0(ω)− (k − k0)|
k

≤ F2M(ω)

Taking limM→∞ on both sides and using (B.6), the proof follows.

Lemma B.8. Assumption (3.13) imply

max
0≤k0≤k

( k − k0

kg(Y(n−k,n))
|Rk0,k − Sk0,k|

)
P−→ 0 (B.30)

where Rk0,k and Sk0,k are defined in (3.12) and (B.23), respectively.

Proof. The proof of (B.30) involves two cases: ρ > 0 and ρ = 0.
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Case ρ > 0: Since Y(n−i+1,n)/Y(n−k,n) > 1, i = 1, · · · , k, over the event {Y(n−k,n) > tε},

by (3.13):

(k − k0) |Rk0,k − Sk0,k| ≤ (k0 + 1)

∣∣∣∣∣∣∣log
L(Y(n−k0,n))

L(Y(n−k,n))
− cg(Y(n−k,n)

Y(n−k0,n)/Y(n−k,n)∫
1

ν−ρ−1dν

∣∣∣∣∣∣∣
+

k∑
i=k0+2

∣∣∣∣∣ log
L(Y(n−i+1,n))

L(Y(n−k,n))
− cg(Y(n−k,n)

Y(n−i+1,n)/Y(n−k,n)∫
1

ν−ρ−1dν

∣∣∣∣∣
≤ (k0 + 1)g(Y(n−k,n))ε+

k∑
i=k0+2

g(Y(n−k,n))ε = g(Y(n−k,n))kε.

Therefore over the event {Y(n−k,n) > tε}

max
0≤k0≤k

( k − k0

kg(Y(n−k,n))
|Rk0,k − Sk0,k|

)
≤ ε. (B.31)

From (B.12) we get Y(n−k,n)
d
= (Γk+1/Γn+1)−1. By Lemma B.3, we have

Y(n−k,n)
d
=
n

k

(Γk+1/k

Γn+1/n

)−1 P−→∞

which implies P [Y(n−k,n) > tε]→ 1 and hence completes the proof.

Case ρ = 0: As in the previous case, over the event {Y(n−k,n) > tε}, by (3.13) we

have

(k − k0) |Rk0,k − Sk0,k| = (k0 + 1)

∣∣∣∣∣∣∣log
L(Y(n−k0,n))

L(Y(n−k,n))
− cg(Y(n−k,n)

Y(n−k0,n)/Y(n−k,n)∫
1

dν

ν

∣∣∣∣∣∣∣
+

k∑
i=k0+2

∣∣∣∣∣∣∣log
L(Y(n−i+1,n))

L(Y(n−k,n))
− cg(Y(n−k,n)

Y(n−i+1,n)/Y(n−k,n)∫
1

dν

ν

∣∣∣∣∣∣∣
≤ ε

(
(k0 + 1)g(Y(n−k,n))

(Y(n−k0,n)

Y(n−k,n)

)ε
+

k∑
i=k0+2

g(Y(n−k,n))
(Y(n−i+1,n)

Y(n−k,n)

)ε)

140



Since Y(n−i+1,n) ≥ Y(n−k0,n) for i = 1, · · · , k0 + 1, we further obtain

max
0≤k0≤k

( (k − k0)

kg(Y(n−k,n))
|Rk0,k − Sk0,k|

)
≤ ε

k

k∑
i=1

(Y(n−i+1,n)

Y(n−k,n)

)ε
≤ 2ε (B.32)

over the events {Y(n−k,n) > tε} and {(1/k)
∑k

i=1(Y(n−i+1,n)/Y(n−k,n))
ε < 2}.

For {(1/k)
∑k

i=1(Y(n−i+1,n)/Y(n−k,n))
ε < 2}, from (B.12), we observe that

1

k

k∑
i=1

(Y(n−i+1,n)

Y(n−k,n)

)ε d
=

1

k

k∑
i=1

(Γi+1

Γk+1

)−ε
=

1

k

k∑
i=1

U−εi,k
P−→ 1

1− ε

where the last convergence follows from weak law of large numbers.

Thus P [(1/k)
∑k

i=1(Y(n−i+1,n)/Y(n−k,n))
ε < 2] → 1 as long as ε < 0.5. Since we

already proved that P [Y(n−k,n) > tε]→ 1, the proof for the case ρ < 0 follows.

Proof of Theorem III.5. Using (3.12), we can rewrite (3.16) as

kδ max
0≤k0<h(k)

∣∣∣Rk0,k −
k−δcA

(1 + ρ)

∣∣∣ P−→ 0 (B.33)

In this direction, observe that

∣∣∣Rk0,k −
k−δcA

(1 + ρ)

∣∣∣ ≤ |Rk0,k − Sk0,k|+
∣∣∣Sk0,k − k−δcA

(1 + ρ)

∣∣∣
where Sk0,k is defined in (B.23).

To prove (B.33), we first show that kδ max0≤k0<h(k) |Rk0,k − Sk0,k|
P−→ 0. In this
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direction, we have

kδ max
0≤k0<h(k)

|Rk0,k − Sk0,k| = kδ max
0≤k0<h(k)

kg(Yn−k,n)

k − k0

( k − k0

kg(Y(n−k,n))
|Rk0,k − Sk0,k|

)
≤ ∆1k

1− h(k)/k
max

0≤k0<h(k)

( k − k0

kg(Y(n−k,n))
|Rk0,k − Sk0,k|

)
︸ ︷︷ ︸

∆2k

where ∆2k
P−→ 0 by Lemma B.8. Since h(k) = o(k), 1 − h(k)/k → 1 and ∆1k =

kδg(Y(n−k,n))

∆1k = kδg(n/k)
g(Y(n−k,n))

g(n/k)

P−→ A (B.34)

where (B.34) follows from assumption (4.9) and Lemma B.6.

Towards the proof of (B.33), we finally show that

kδ max0≤k0<h(k) |Sk0,k − (k−δcA)/(1 + ρ)| P−→ 0. In this direction, we have

kδ max
0≤k0<h(k)

∣∣∣Sk0,k − k−δcA

(1 + ρ)

∣∣∣ = kδ max
0≤k0<h(k)

kg(Yn−k,n)

k − k0

∣∣∣ k − k0

kg(Y(n−k,n))
Sk0,k −

cA(k − k0)

k(1 + ρ)∆1k

∣∣∣
≤ ∆1k

1− h(k)/k
max

0≤k0<h(k)

∣∣∣ k − k0

kg(Y(n−k,n))
Sk0,k −

cA(k − k0)

k(1 + ρ)∆1k

∣∣∣︸ ︷︷ ︸
∆3k

where ∆1k
P−→ A as in (B.34) and 1− h(k)/k → 1. ∆3k can be further simplified as

∆3k ≤ max
0≤k0<h(k)

∣∣∣ k − k0

kg(Y(n−k,n))
Sk0,k + c

(k0

k

)1+ρ

− c

1 + ρ

∣∣∣︸ ︷︷ ︸
∆4k

+ max
0≤k0<h(k)

∣∣∣ c

1 + ρ
− c
(k0

k

)1+ρ

− cA(k − k0)

k(1 + ρ)∆1k

∣∣∣︸ ︷︷ ︸
∆5k

where ∆4k
P−→ 0 by Lemma B.7. Since max0≤k0<k(k0/k)1+ρ ≤ (h(k)/k)1+ρ → 0, thus
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to prove ∆5k
P−→ 0, it suffices to show that

max
0≤k0<h(k)

∣∣∣ c

1 + ρ
− cA(k − k0)

k(1 + ρ)∆1k

∣∣∣ P−→ 0

In this direction, we observe that

max
0≤k0≤h(k)

∣∣∣ c

1 + ρ
− cA(k − k0)

k(1 + ρ)∆1k

∣∣∣ ≤ |c|
1 + ρ

max
0≤k0<h(k)

(∣∣∣1− A

∆1k

∣∣∣+
Ak0

k∆1k

)

≤ |c|
1 + ρ

(∣∣∣1− A

∆1k

∣∣∣+
Ah(k)

∆1kk

)
P−→ 0

since h(k)/k → 0 and A/∆1k
P−→ 1 as in (B.34). This completes the proof.

Proof of Theorem III.11. From (3.20) we have

kδ max
0≤k0<h(k)

|Tk0,k − T ∗k0,k| = kδ max
0≤k0<h(k)

k − k0 − 1

k − k0

∣∣∣ ξ̂k0+1,k

ξ̂k0,k
−
ξ̂∗k0+1,k

ξ̂∗k0,k

∣∣∣
≤ kδ

1− h(k)/k
max

0≤k0<h(k)

∣∣∣ ξ̂k0+1,k

ξ̂k0,k
−
ξ̂∗k0+1,k

ξ̂∗k0,k

∣∣∣︸ ︷︷ ︸
Wk0,k

Since h(k) = o(k), to prove (B.35), we show kδ max0≤k0<h(k) Wk0,k
P−→ 0. In this

direction, we observe that

Wk0,k ≤
∣∣∣ ξ̂k0+1,k

ξ̂k0,k
−
ξ̂∗k0+1,k

ξ̂k0,k
− cAk−δ

(1 + ρ)ξ̂k0,k

∣∣∣+
|c|Ak−δ

(1 + ρ)ξ̂k0,k

∣∣∣1− ξ̂∗k0+1,k

ξ̂∗k0,k

∣∣∣
+

∣∣∣ ξ̂∗k0+1,k

ξ̂k0,k
−
ξ̂∗k0+1,k

ξ̂∗k0,k
+

cAk−δ

(1 + ρ)ξ̂k0,k

ξ̂∗k0+1,k

ξ̂∗k0,k

∣∣∣
=

1

ξ̂k0,k

(∣∣∣Rk0,k − cAk−δ

1 + ρ

∣∣∣+
|c|Ak−δ

(1 + ρ)

∣∣∣1− ξ̂∗k0+1,k

ξ̂∗k0,k

∣∣∣+
ξ̂∗k0+1,k

ξ̂∗k0,k

∣∣∣ cAk−δ
(1 + ρ)

−Rk0+1,k

∣∣∣)
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where Rk0,k is defined in (3.12). Thus to show kδ max0≤k0<h(k) Wk0,k
P−→ 0, it

max
0≤k0<h(k)

kδWk0,k ≤
(
M1k +

|c|A
(1 + ρ)

max
0≤k0h(k)

|1−Bk0,k|+M1k max
0≤k0≤h(k)

Bk0,k

)
max

0≤k0<h(k)

1

ξ̂k0,k

=
(
M1k max

0≤k0≤h(k)
(1 +Bk0,k) +

|c|A
(1 + ρ)

max
0≤k0≤h(k)

|1−Bk0,k|
)

max
0≤k0<h(k)

1

ξ̂k0,k

where M1k = kδ max0≤k0<h(k) |Rk0,k − (k−δcA)/(1 + ρ)| P−→ 0 is a direct consequence

of Theorem III.5. Using (B.17), we next observe that

max
0≤k0≤h(k)

|1−Bk0,k|
d
= max

0≤k0≤h(k)

∣∣∣1− Γk−k0−1/(k − k0 − 1)

Γk−k0/(k − k0)

∣∣∣ (B.35)

≤ 1

1− h(k)/k
max

k−h(k)≤i≤k

∣∣∣ Γi/i

Γi+1/(i+ 1)
− 1
∣∣∣ a.s.−→ 0

is a direct consequence of (B.6) in Lemma B.3. (B.35) also proves that max0≤k0≤h(k)(1+

Bk0,k) is bounded in probabibilty.

Thus, to complete the proof of kδ max0≤k0<h(k) Wk0,k
P−→ 0, we show that min0≤k0<h(k)

|ξ̂k0,k| is bounded away from 0 in probability as follows:

min
0≤k0<h(k)

ξ̂k0,k ≥ min
0≤k0<h(k)

ξ̂∗k0,k − max
0≤k0<h(k)

|ξ̂k0,k − ξ̂∗k0,k| (B.36)

For δ > 0, Theorem III.5 implies max0≤k0<h(k) |ξ̂k0,k − ξ̂∗k0,k|
P−→ 0. Therefore

min0≤k0<h(k) ξ̂k0,k is bounded away from 0 as long as min0≤k0<h(k) ξ̂
∗
k0,k

is bounded

away from 0. This can be easily shown because

min
0≤k0<h(k)

ξ̂∗k0,k
d
= min

0≤k0<h(k)

Γk−k0
k − k0

≥ 1− max
k−h(k)≤i<k

∣∣∣Γi
i
− 1
∣∣∣ a.s.−→ 1

where the last convergence is a direct consequence of (B.5) in Lemma B.3. This

completes the proof.
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Lemma B.9. Assumption (3.17) implies there exist M > 0 such that

inf
F∈Dξ(B,ρ)

PF

[
max

0≤k0<k

√
k|Rk0,k| ≤M

]
→ 1 as h(k)→∞ (B.37)

where Rk0,k is defined in (3.12) and k = O(n2ρ/(1+2ρ)).

Proof. By (3.17), we have 1−Bx−ρ ≤ L(x) ≤ 1 +Bx−ρ. Therefore

(k − k0)Rk0,k ≤ (k0 + 1) log
1 +BY −ρ(n−k0,n)

1−BY −ρ(n−k,n)

+
k∑

i=k0+2

log
1 +BY −ρ(n−i+1,n)

1−BY −ρ(n−k,n)

(B.38)

≤ k log
1 +BY −ρ(n−k,n)

1−BY −ρ(n−k,n)

since Y −ρ(n−k,n) ≥ Y −ρ(n−i+1,n) for i = k0 + 1, · · · , k. Similarly, we also have

(k − k0)Rk0,k ≥ k log
1−BY −ρ(n−k,n)

1 +BY −ρ(n−k,n)

(B.39)

and thus, (B.38) and (B.39) together imply

max
0≤k0<h(k)

√
k|Rk0,k| ≤

√
kY −ρ(n−k,n)

1− h(k)/k
max

0≤k0<h(k)

1

Y −ρ(n−k,n)

log
1 +BY −ρ(n−k,n)

1−BY −ρ(n−k,n)

(B.40)

where h(k) = o(k) and

√
kY −ρ(n−k,n)

1

Y −ρ(n−k,n)

log
1 +BY −ρ(n−k,n)

1−BY −ρ(n−k,n)

d
=
√
k(Γk+1/Γn+1)ρ︸ ︷︷ ︸

∆1k

1

(Γk+1/Γn+1)ρ
log

1 +B(Γk+1/Γn+1)ρ

1−B(Γk+1/Γn+1)ρ︸ ︷︷ ︸
∆2k

Now, by relation (B.5) in Lemma B.3, we have ((Γk+1/k)/(Γn+1/n))ρ
a.s.−→ 1. For

k = O(n2ρ/(1+2ρ)), ∆1k is bounded almost surely and ∆2k
a.s.−→ 2B. Therefore there
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exist M such that

inf
F∈Dξ(B,ρ)

PF

[
max

0≤k0<k

k − k0

kY −ρ(n−k,n)

|Rk0,k| ≤M
]
≥ P [∆1k∆2k ≤M ]→ 1

This completes the proof.

Proof of Theorem III.7. Let Pn = infF∈Dξ(B,ρ) PF

[
max0≤k0<h(k) |ξ̂k0,k−ξ| ≤ a(n)

]
,

then

Pn = inf
Dξ(B,ρ)

PF

[
max

0≤k0<h(k)

√
k|Rk0,k| ≤ (

√
ka(n))/2︸ ︷︷ ︸

A1n

∩ max
0≤k0<h(k)

√
k|ξ̂∗k0,k − ξ| ≤ (

√
ka(n))/2︸ ︷︷ ︸

A2n

]

Since
√
ka(n)→∞, by Lemma B.9, infF∈Dξ(B,ρ) PF [A1n]→ 1. We also have that,

inf
F∈Dξ(B,ρ)

PF [A2n] = P
[

max
0≤k0<h(k)

√
k|ξ̂∗k0,k(n)− ξ| ≤ (

√
ka(n))/2

]

since ξ̂∗k0,k does not depend on F ∈ Dξ(B, ρ).

By using Donsker’s principle, we will show that

max
0≤k0<h(k)

|ξ̂∗k0,k(n)− ξ| = oP (a(n)),

which will imply PF (A2n)→ 1. Indeed, without loss of generality, suppose ξ = 1 and

let Ei, i = 1, 2, . . . be independent standard exponential random variables. For every

ε ∈ (0, 1), we have that

Wk = {Wk(t), t ∈ [ε, 1]} :=


√
k

[kt]

[kt]∑
i=1

(Ei − 1), t ∈ [0, 1]

 d→ {B(t)/t, t ∈ [ε, 1]},

(B.41)
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as k →∞, where B = {B(t), t ∈ [0, 1]} is the standard Brownian motion, and where

the last convergence is in the space of cadlag functions D[ε, 1] equipped with the

Skorokhod J1-topology. (In fact, since the limit has continuous paths, the convergence

is also valid in the uniform norm.)

Recall that by (3.6), we have

{ξ̂∗k0,k(n), 0 ≤ k0 < k} d
=

{
k−k0∑
i=1

Ei/(k − k0), 0 ≤ k0 < k

}
.

Thus,

√
k max

0≤k0<h(k)
|ξ̂∗k0,k(n)− ξ| d= sup

t∈[1−h(k)/k,1]

|Wk(t)| ≤ sup
t∈[ε,1]

|Wk(t)|, (B.42)

where the last inequality holds for all sufficiently large k, since 1 − h(k)/k → 1,

as k → ∞. Since the supremum is a continuous functional in J1, the convergence

in (B.41) implies that the right–hand side of (B.42) converges in distribution to

supt∈[ε,1] |B(t)/t| = OP (1), which is finite with probability one. This completes the

proof since a(n)
√
k(n)→∞.

Proof of Theorem III.15. We first begin with the proof of (3.25). For this from

(3.24) we have

max
0≤k0<h(k)

|Uk0,k − U∗k0,k| = max
0≤k0<h(k)

2
∣∣∣|(Tk0,k)k−k0−1 − 0.5| − |(T ∗k0,k)

k−k0−1 − 0.5|
∣∣∣

≤ 2 max
0≤k0<h(k)

∣∣∣|(Tk0,k)k−k0−1 − (T ∗k0,k)
k−k0−1|

∣∣∣
≤ 2 max

0≤k0<h(k)

∣∣∣(Tk0,k
T ∗k0,k

)k−k0−1

− 1
∣∣∣

where the last inequality holds since T ∗k0,k ≤ 1(see III.9). Thus to prove (3.25), it
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suffices to show

kδ−1 max
0≤k0<h(k)

∣∣∣(Tk0,k
T ∗k0,k

)k−k0−1

− 1
∣∣∣ P−→ 0 (B.43)

To prove (B.43), we begin by showing

kδ max
0≤k0<h(k)

|Tk0,k
T ∗k0,k

− 1| P−→ 0. (B.44)

In this direction, from (3.23), we observe that

kδ max
0≤k0<h(k)

∣∣∣Tk0,k
T ∗k0,k

− 1
∣∣∣ ≤ 1

min0≤h(k) T
∗
k0,k

max
0≤k0<h(k)

kδ|Tk0,k − T ∗k0,k|︸ ︷︷ ︸
∆k

From (3.23), we have ∆k
P−→ 0. Thus (B.44) holds as long as min0≤k0<h(k) T

∗
k0,k

is

bounded away from 0 in probability. This can be easily seen as follows

min
0≤k0<h(k)

T ∗k0,k
d
= min

0≤k0<h(k)

Γk−k0−1/(k − k0 − 1)

Γk−k0/(k − k0)

≥ 1− max
k−h(k)≤i<k

∣∣∣ Γi/i

Γi+1/(i+ 1)
− 1
∣∣∣ a.s.−→ 1

where the last convergence is a direct consequence of (B.6) in Lemma B.3.

In view of (B.35), for a subsequence, {kl} there exists a further subsequence k̃

such that

k̃δ max
0≤k0<h(k̃)

∣∣∣Tk0,k̃
T ∗
k0,k̃

− 1
∣∣∣ a.s.−→ 0

This implies there exists M such that for every k̃ ≥M and 0 ≤ k0 < h(k̃),

1− ε

k̃δ
≤
(Tk0,k̃
T ∗
k0,k̃

)
(ω) ≤ 1 +

ε

k̃δ
(B.45)
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for all ω ∈ Ω with P [Ω] = 1. (B.45) further implies

k̃δ−1
((

1− ε

k̃δ

)k̃−h(k̃)−1

− 1
)

︸ ︷︷ ︸
−a

k̃

≤ k̃δ−1
((

T
k0,k̃

T∗
k0,k̃

)k̃−k0−1

(ω)− 1
)
≤ k̃δ−1

((
1 +

ε

k̃δ

)k̃−1

− 1
)

︸ ︷︷ ︸
b
k̃

Therefore,

k̃δ−1 max
0≤k0<h(k̃)

∣∣∣(Tk0,k̃
T ∗
k0,k̃

)k̃−k0−1

(w)− 1
∣∣∣ ≤ ak̃ ∨ bk̃ (B.46)

First observe that both the sequences ak̃ and bk̃ converge to ε as k̃ → ∞. Thereby,

taking limsup w.r.t k̃ on both sides of (B.46), we get

lim sup
k̃→∞

k̃δ−1 max
0≤k0<h(k̃)

∣∣∣(Tk0,k̃
T ∗
k0,k̃

)k̃−k0−1

(w)− 1
∣∣∣ ≤ ε (B.47)

Since (B.47) holds for all ε > 0, we have

k̃δ−1 max
0≤k0<h(k̃)

∣∣∣(Tk0,k̃
T ∗
k0,k̃

)k̃−k0−1

(w)− 1
∣∣∣→ 0

This entails the proof of convergence in probability of (B.43).

We next begin with the proof (3.26). To this end, we have

1− PH0 [k̂0 = 0] = 1− PH0

[ f(k)⋂
i=0

{Ui,k < (1− q)cak−i−1}︸ ︷︷ ︸
Ak

]
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where we shall show P [Ak]→ 1− q as follows.

PH0

[
Ak

]
≤ PH0

[
Ak ∩ {kδ−1 max

0≤i<f(k)
(Ui,k − U∗i,k) < ε}︸ ︷︷ ︸
B1k

]
+ P [Bc

1k]

≤ PH0

[ f(k)⋂
i=0

{U∗i,k < (1− q)cak−i−1

+ εk1−δ}︸ ︷︷ ︸
A∗1k

]
+ P [Bc

1k]

since Ak ∩ B1k =⇒ A∗1k and P [Bc
1k] → 0 by (3.25). It remain to show PH0 [A

∗
1k] →

1− q. In this direction, we observe that

PH0 [A
∗
1k] =

f(k)∏
i=0

(1− q)cak−i−1

f(k)∏
i=0

(
1 +

εk1−δ

(1− q)cak−i−1

)
≤

(
1− q

)a(k−1)−a(k−f(k)−2)

a(k−1)−1︸ ︷︷ ︸
c0k

(
1 +

ε

(1− q)kδ−1

)f(k)

︸ ︷︷ ︸
c1k

since (1− q)cak−i−1 ≥ (1− q). Observe that for f(k)→∞, we have

c0k → 1− q. (B.48)

For f(k) = O(kδ−1), lim supk→∞ c1k ≤ (1 +Mε/(1− q)) for some M > 0. Thus

lim sup
k→∞

PH0 [A
∗
1k] ≤ (1− q) +Mε
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holds for every ε > 0 which implies lim supk→∞ PH0 [A
∗
1k] ≤ (1− q). Additionally,

PH0

[
Ak

]
≥ PH0

[
Ak ∩ {kδ−1 max

0≤i<f(k)
(Ui,k − U∗i,k) > −ε}︸ ︷︷ ︸
B2k

]

≥ PH0

[ f(k)⋂
i=0

{U∗i,k < (1− q)cak−i−1 − εk1−δ}︸ ︷︷ ︸
A∗2k

]
− PH0 [B

c
2k]

since A∗2k ∩ B2k =⇒ Ak ∩ B2k and P [Bc
2k] → 0 by (3.25). It remain to show

PH0 [A
∗
2k]→ 1− q. In this direction, we observe that

PH0 [A
∗
2k] =

f(k)∏
i=0

(1− q)cak−i−1

f(k)∏
i=0

(
1− εk1−δ

(1− q)cak−i−1

)
≥

(
1− q

)a(k−1)−a(k−f(k)−2)

a(k−1)−1︸ ︷︷ ︸
c0k

(
1− ε

(1− q)kδ−1

)f(k)

︸ ︷︷ ︸
c2k

since (1 − q)cak−i−1 ≥ (1 − q). As before, for f(k) → ∞, we have that c0k → 1 − q.

For f(k) = O(kδ−1), lim supk→∞ c1k ≥ (1−Mε/(1− q)) for some M > 0. Thus

lim sup
k→∞

PH0 [A
∗
2k] ≥ (1− q)−Mε

holds for every ε > 0 which implies lim supk→∞ PH0 [A
∗
2k] ≥ (1− q).

Thus limk→∞ PH0 [A
∗
2k] = 1− q which completes the proof.
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APPENDIX C

Spatial Extremes

Lemma C.1. Suppose X ∼ GPD(σ, ξ) for X > u and σ and ξ are a linear function

of known covariates w1 and w2 as:

log(σ) = w1
>ρ1

ξ = w2
>ρ2.

Then the return level in (4.21) is expressed as

rm = v0 +
exp(w1

>ρ1)

w2
>ρ2

[(mτv0)
w2
>ρ2 − 1] (C.1)

with standard error given by

Var(r̂m) = ∇>rm Σ∇rm (C.2)
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where the variance covariance matrix, Σ of[τ̂v0 , ρ̂
(σ), ρ̂(ξ)] has form

Σ =

τv0(1− τv0)/n 0

0 H−1
ρ1,ρ2


where H, the hessian matrix of (ρ1, ρ2) is a direct product of the maximum likelihood

fit to the time series Qk and the expressions for ∇rm are given by:

∇>rm =

[
∂rm
∂τv0

,∇>ρ1rm,∇
>
ρ2
rm

]

where

∂rm(k, x)

∂τv0
= exp(w1

>ρ1)mw2
>ρ2τw2

>ρ2−1
v0

∇>ρ1rm(k, x) = exp(w1
>ρ1)

((mτu)
w2
>ρ2 − 1

w1
>ρ1

)
w1

∇>ρ2 = −exp(w1
>ρ1

>)

w2
>ρ2

(
(mτv0)

w2
>ρ2 − 1

w2
>ρ2

− (mτv0)
w2
>ρ2 log(mτv0)

)
w2

.

Proof. The proof (C.1) is straightforward. The proof of (C.2) is a direct application

of Delta method and Section 4.3.3 in Coles (2001).
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