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Abstract 
 

Mathematics education researchers have sought to understand the knowledge that 

teachers need to teach mathematics effectively. Teachers need to know more than merely 

knowing how to "do the math" at a particular grade level. However, the research 

community differs on the nature of that knowledge. The construct of "horizon content 

knowledge" has emerged in the literature as a promising way to characterize advanced 

mathematical knowledge (AMK) as it relates specifically to teaching practice. Ball, 

Thames, and Phelps (2008) and Ball and Bass (2009) propose a kind of knowledge that is 

neither common nor specialized, that is not about curriculum progression, but is more about 

having a sense of the broader mathematical environment of the discipline. They call this 

horizon content knowledge (HCK) and argue that knowledge of the mathematical horizon 

can support teachers in hearing students' mathematical insights, orienting instruction to the 

discipline, and making judgments about what is mathematically important. However, 

operationalizing HCK in practice is still under development. Jakobson, Thames, and 

Ribeiro (2013) offer an overarching definition of HCK, which foregrounds some inherent 

characteristics of this knowledge.  



 xiv 

This dissertation examined cases of teaching and teachers for the purpose of 

collecting and analyzing examples of HCK in practice, understanding the interaction 

between teachers’ management of what I call "encounters with mathematics at the horizon" 

and students’ learning experiences in the classrooms, and to characterize the knowledge 

resources that teachers draw upon to make sense of the mathematics at the horizon. I 

identified and articulated a new domain of knowledge resources that the teachers draw 

upon, called professional practice knowledge (PPK). I define PPK as a form of 

mathematical knowledge derived from practice and experience. As PPK is knowledge that 

is shaped by experience, the culture in school, role of leadership, and kind of students’ and 

parents’ involvement impacts PPK.  If PPK is the only resource available to the teacher, 

then teachers’ explanations of mathematical deductions are often pseudo-mathematical. 

Pseudo-mathematical descriptions are generated by the teachers in such ways that they do 

not explain the concept, term, or formula but instead focus on memorization. These center 

on the visual patterns or syntactic patterns, use colloquial meanings of the mathematical 

terms, and often have a cue to remember the term, concept, or formula. These explanations 

can block mathematical access for the students to investigate or build further. However, if 

PPK remains rooted in other domains of HCK elaborated in the dissertation, teachers are 

able to manage encounters with HCK in more meaningful ways.



 1 

CHAPTER 1 

Introduction 
 

During my researching and teaching years in India, I once saw a documentary called 

“Young Historians.” This film documented a history teacher’s and his students’ 

interactions over one whole educational year. The methods that the teacher used were 

atypical. As part of learning history, the students interviewed families in the neighborhood, 

visited nearby monuments, read public documents, and annotated old newspapers, all to 

write various historical accounts of their locality. While doing this, students had to make 

many decisions, ranging from deciding the authenticity of their accounts to worrying about 

ways to represent those. The students argued over many things. Some of those are listed 

here: criteria for truth, consideration of contexts, various kinds of diagrams that would 

show chronology, and processes and relationships. They also envisioned the tools that 

would have helped them, like being able to ask many people at the same time, knowing 

geography to make sense of the elements present in the monuments, etc. By the end of the 

documentary, each child appears as a historian with her/his traits and strengths of engaging 

with the historical material. And with this training now, their reading of the school text was 

more meaningful and relevant from multiple perspectives. This documentary made me 
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question what those students were doing as part of learning history. How would a 

mathematics class look like if I had to engage my students similarly, in fundamental 

processes of doing mathematics? And what would it mean for me as a teacher to know and 

use that knowledge? I have shown this documentary to many teachers, and we together 

struggled over these questions. What do our students need to do to be “young 

mathematicians”?  And how would I know, what students need to do? What is the 

knowledge that one needs to identify to facilitate doing mathematics?   

The more I thought and heard others’ opinions on this the more I realized that there 

is no single view on “what mathematics is” and hence there exist multiple takes on what it 

means to do mathematics. During my graduate school years, I came across the book 

“Proofs and Refutations” by Lakatos. This book focuses on the “methodology of 

mathematics” and presents a hypothetical conversation between teacher and students who 

are engaged in creating, refuting and generalizing theories. Lakatos’ work in this book, 

though primarily philosophical in intent, also touched on other domains. Some of those are 

as follows.  

• Sociological: Studying the behavior of mathematicians and partially classifying 

the recurrent features in their practice of mathematics 

• Educational contestation: Considering the impact of the presentation of 

mathematical developments on students’ comprehension of the processes 

involved, arguing the merits of presentations which retain more of the original 

structure of the discoveries. 
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• Mathematical methodology: claiming that mathematicians practice heuristic rather 

than deductive methods. 

Lakatos’s challenge to formalism in mathematics opened up a number of ways one 

can learn to do the mathematics, in addition to traditional ones. Even though the discussion 

among the students wasn’t real and that was not a real class, I could relate some of my 

students’ work to a number of his ideas. For example, when students in my class believed 

that two even numbers add to an even number based on their trial of adding some even 

numbers, I knew it proved some individual cases but not a general proof that would hold 

for all even numbers. Therefore, when I read about local and global proofs in the book, I 

thought I could use it in my classroom to distinguish what is a proof and what is not. In 

some sense, this book partially responded to my curiosity about what it might mean to 

develop “young mathematicians.” However, what needs to be done to build such classroom 

settings and interactions remained a challenge. Some questions remain unanswered like, 

what are such other encounters where I could use my discipline sensibilities to design 

pedagogy around topics of school mathematics? And where would I learn about these 

discipline sensibilities? 

Many researchers thought the answer to developing these mathematical sensibilities 

that affect the pedagogy of the classroom interaction is to know more mathematics; some 

called it Advanced Mathematical Knowledge (AMK). This knowledge would include 

grasping topics and concepts taught at the higher level of education and reading of the 

mathematical text in the early grades from that lens. This notion does not make complete 

sense, especially AMK as mathematical knowledge for teaching. For example, I related to 
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the idea of local and global proofs as given in the Lakatos’s hypothetical classroom because 

I was familiar with it. My students thought that finding some supporting examples 

confirmed their theory. There was something I noticed in discussion around advanced 

mathematics because of my exposure to ways students do mathematics. It was not that I 

thought what students gave is a proof, but I did not know how to make the connection 

between what they produced and the proof. Let us take another example from the 

contemporary context to understand what kind of understanding I am referring to. The most 

recent standards in the United States, the Common Core State Standards Initiative (CCSSI, 

2010), define the rational numbers as numbers that can be expressed as positive and 

negative fractions. And fractions are defined as numbers that can be expressed in a specific 

form: “%
&
 where a is a whole number and b is a positive whole number” (CCSSI, 2010, p. 

85).  Although these are formal definitions, the way fractions are introduced in the school 

represent a more concrete perspective. One common way is to define these as some number 

of parts of all the parts of an equally partitioned whole. However, if one decides to look at 

this from an advanced mathematics point of view, there are multiple ways in which it can 

be done. For example, a mathematician or a person trained in mathematics might look at a 

fraction as an ordered pair (𝑎, 𝑏) belonging to ℤ	 × 	(ℤ/{0}), where ℤ is the set of integers 

and define all the operations, equivalence and the inverse of fractions within the realm of 

this set. Even though these comprehensions are beautiful, and there could be many, they 

are not helping me as a teacher to teach fractions, not directly. For example, when students 

learn fractions, they learn within the influence of understanding whole numbers. Often 
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teachers observe students seeing a fraction as made up of two numbers, leading to many 

responses similar to these shown in table 1.1. For students, each digit written in the fraction 

notation is a number, and therefore, they add, compare these numbers and not fractions. 

Table 1.1: Fractions under whole number influence 

One needs a sense of what students are going through to comprehend these 

responses. Here, for example, figuring out that the problem is not entirely of not 

understanding the definition of fractions but students trying to associate patterns across the 

number systems. Knowing these responses would make me sensitive to certain 

mathematical aspects of representing fractions and the arithmetic of fractions. It is not that 

you only know more mathematics and that lets you understand problems of teaching 

mathematics. Therefore, there is this connected and deep mathematics that you learn, 

because you know certain problems of teaching. It is the knowledge of mathematics at the 

horizon, but one notices it due to certain pedagogical encounters and familiarity with 

students’ thinking. I specifically ask the question – what such encounters are present in a 

mathematics classroom, encounters that have leverage in understanding advanced 

mathematics differently. Further, do teachers notice such encounters in their instruction 

and can they make use of it? It is complicated territory, as studying classroom practice 

itself has many facets, and then unpacking it to see what potential encounters are present 

2
3 +	

3
4 = 	

5
7 

3
2 	<

6
5 		𝑜𝑟	

1
5 	>

1
3 
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that productively make use of advanced mathematics. Conversely, suggesting knowledge 

at the mathematical horizon needed for teaching calls for a meticulous study of it. Before 

we dive into the details of the study, in the following paragraphs, I first expand on 

understanding mathematics and its connection with practice. It is a divide that rules the 

research on mathematics needed for teaching teachers. One side is about how one perceives 

elementary mathematics through a deep understanding of advanced mathematics, and the 

other about how mathematics in teaching lets one understand advanced mathematics. 

Further, I briefly describe the construct of mathematics at the horizon and present the 

research problem in the form of research questions.  

1.1 Two-pointed Understanding of Mathematics in Practice 

The contrast between the school mathematics and what could be produced using 

advanced mathematical knowledge (AMK) is enormous and therefore it is challenging to 

determine what form of AMK could be relevant in teaching elementary mathematics. On 

the other hand, using school maths, and problems of teaching and learning around it as a 

starting point seems more relevant resource for a discussion of knowledge required by 

teachers.  In the last two decades, researchers in mathematics education have produced 

convincing evidence that the teachers of mathematics require a kind of mathematical 

knowledge that is different from that of mathematicians. The most striking example is 

found in Ball’s (1988) dissertation where she asked pre-service teachers to design a 

situation representing “1 <
=
÷ ?

@
”. She found that some prospective teachers, who knew that 

it needs to be inverted and multiplied, could not comprehend what the answer 3 ?
@
 represents 
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with respect to 1 <
=
 and ?

@
. With the understanding of division as sharing or equally 

distributing as used with whole number division, arriving at the interpretation of  how many 

?
@
 s are there in 1 <

=
 was not easy. Along with this, comprehending how the answer to a 

division problem can be a bigger number than dividend and divisor, in this case, 3 ?
@
  was 

bigger than 1 <
=
 and ?

@
 , was not straightforward.  

Going back to the earlier discussion regarding AMK, interpreting every statement 

of a division as an inverse multiplication would be sufficient from the perspective of higher 

mathematics, and one need not engage in the operation of the division at all. However, the 

mathematics constructed around the knowledge that 𝑎 ÷ 𝑏, also represents how many 𝑏’s 

are there in 𝑎, and therefore, %
&
÷ A

B
 could also be calculated alternatively cannot be 

overlooked. For example, later when Ma (2010), took up these problems from Ball’s (1988) 

thesis, and presented them to in-service teachers from the U.S. and China, a number of 

strategies emerged in the Chinese teachers’ calculation. (See Table 1.2.) The one on the 

left is a conditional strategy and works only when the numerators and denominators of the 

divisor and dividend are divisible. In this case, 7 is divisible by 1 in the numerator, and 4 

is divisible by 2 in the denominator. The second strategy initially uses the division 

distributive law over addition and then exercises the division meaning to find out how 

many ½ s are there in 1 and how many in ¾.  
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Alternate strategies for division of fractions 1 <
=
÷ ?

@
 by 

Chinese teachers in Ma (1999) 

1
3
4
÷
1
2

 

=
7
4
÷
1
2

 

=
7 ÷ 1
4 ÷ 2

 

=
7
2

 

= 3
1
2

 

1
3
4
÷
1
2

 

= C1 +
3
4
D ÷

1
2

 

= C1 ÷
1
2
D + C

3
4
÷
1
2
D 

= 2 + C1
1
2
D 

= 3
1
2

 

Table 1.2: Strategies for division of fraction from Ma (2010) 

These strategies have emerged from the context of the specific meanings of the 

division algorithm. Just the definition of fractions need not necessarily give rise to these 

strategies. The teachers who proposed these strategies suggested that these derivations 

justified the division algorithm by drawing on another piece of knowledge that students 

had learned. The approach on the left illustrates the division of numerators by numerator 

and denominators by denominators. It is similar to the algorithm the students used for 

multiplying the fractions, and that is what the teacher has utilized here. The derivation on 

the right uses distributivity. The teacher in Ma’s study (Tr. Xie) commented that the 

derivation (on the right in Table 1.2) appears complicated, but for his students who had 

experience of using distributivity with whole numbers, it was simpler than the standard 

computation. These mathematical productions are situated in the practice of teaching, as it 

involves meaning-making of every step included in the computation concerning the 

specific context, and not necessarily because of knowledge of advanced mathematics.  
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1.2 Mathematical Knowledge for Teaching 

The findings that Ball (1988) and Ma (2010) brought to light gave rise to many 

studies that attempted to outline the mathematical knowledge required for teaching, as well 

as possible conceptualizations of it. These studies invested in both, in distinguishing the 

nature of such knowledge for teaching as well as ways to improve upon it. The literature 

review chapter elaborates on the development of mathematical knowledge for teaching 

mathematics. Here, I briefly describe the construct of mathematics at the horizon to make 

sense of the research questions of the study.  

Ball, Thames, and Phelps (2008) in their seminal work at the University of 

Michigan, first explicitly identified domains of teacher knowledge as part of Mathematical 

Knowledge for Teaching (MKT). They defined MKT as the mathematical knowledge, 

skill, and habits of mind entailed by the work of teaching and proposed a further refinement 

of subject matter and pedagogical content knowledge, which were earlier introduced by 

Shulman (1986) into sub-domains. Horizon content knowledge was one of the sub-

domains. 

Horizon content knowledge (HCK) as defined in Ball, Thames, and Phelps (2008), 

refers to an orientation to and familiarity with the discipline that contributes to 

understanding the school subject at hand, providing teachers with a sense of how the 

content being taught is situated in and connected to the broader disciplinary territory. This 

knowledge is a resource for managing the fundamental tasks of introducing learners to a 

vast and highly developed field of mathematics. It includes an awareness of core 

disciplinary orientations and values, and of essential structures of the discipline. HCK 
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might be a kind of knowledge that is responsible for the ability to make connections across 

a range of mathematical concepts. This conceptualization of HCK resonated with Ball’s 

(1993) first reference to the term “mathematical horizon” in the context of describing the 

dilemma and tensions faced by an elementary teacher while dealing with pedagogical and 

disciplinary mathematics concerns. For example, HCK might include choosing the 

representation of contexts (e.g. negative numbers) that are consistent with the ideas that the 

learner encounters in the future (e.g. absolute value) (example used in Ball, 1993). Even 

though middle-school mathematics might not involve components of a given concept, and 

students might face them in their later years of mathematics learning, choosing a 

representation at the primary level cannot be deceiving or so simplistic that it contradicts 

the advanced form of the concept. More importantly, teaching students so that they learn 

the potential meanings of the concepts as components of mathematics discipline and the 

curriculum of the middle-school requires a sense of the discipline of mathematics and its 

practices. This particular idea, which describes perpetuation of mathematical sensibilities 

in making decisions about teaching, forms the basis of knowledge of mathematics at the 

horizon.  

1.3 Research Questions and Definition of Terms 

In this study, I began analyzing the practice of teaching mathematics through aspects 

described in the definition of HCK as given in Jakobsen et al. (2013). I explain the 

definition and its features as presented in Jakobsen et al. in detail in the Conceptual 

Framework chapter. There are many definitions for HCK, but the horizon of mathematics 

upon which these definitions are built is often given as a metaphor. This study proposes a 
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definition of mathematics at the horizon and defined encounters with it. The following 

paragraphs provide these definitions before we understand the research questions of the 

dissertation.  

Drawing upon the definition of Horizon Content Knowledge given by Ball and her 

colleagues at the University of Michigan, which has been the basis of Jakobsen et al.’s 

elaborate description of HCK, this study used a more specific definition for the horizon of 

mathematics. The definition exercised is in alignment with what Ball (1993) and Ball & 

Bass (2009) envisioned as “mathematics at the horizon.” The definition used in this study 

is specific to the school mathematics curriculum. I define the mathematical horizon as "a 

projection of mathematical meanings, topics, and structures present in the curriculum into 

the mathematics extending beyond the support of the curriculum materials concerning a 

particular location of instruction, such that it enables meaningful learning of mathematics." 

The curriculum here, is used in a sense Remillard (2015) uses it, “printed, often published 

resources designed for use by teachers and students during instruction.” (p. 213). The 

meaningful learning of mathematics is defined through two specific frameworks – First, 

by the instructional triangle as described by Cohen, Raudenbush and Ball (2003) that 

represents the process of teaching. The instructional triangle positions meaningful listening 

to students at the core of impactful instruction. The second by mathematical sensibilities 

of knowledge for teaching that Jakobsen, Thames & Ribeiro (2013) delineate. Their 

delineation brings disciplinary mathematical norms and values to the center of instruction. 

I again elaborate these two frameworks in detail in the chapter on the conceptual 

framework. 
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An encounter with the horizon of mathematics would be an instance where the 

meaningful learning of mathematics could take place by taking supports outside the 

curriculum that are situated in disciplinary sensibilities, norms, and values. The encounter 

could be initiated by listening to students meaningfully, designing the instruction, 

developing mathematical explanations or by reading the curriculum. The management of 

such instances would require supports outside the curriculum, situated in disciplinary 

sensibilities and norms. At the operational level, an encounter will be considered as “an 

instance to establish any of the five components listed below to its potential” in a given 

location in the instruction. If there is an opportunity to  

1. establish truth in mathematics using mathematical tools and disciplinary ways 

in classroom instruction 

2. use core disciplinary values and orientation 

3. make explicit the knowledge of the ways and tools for knowing the discipline  

4. connect with structures in the discipline  

5. comprehend kinds of knowledge with its warrants 

then that would be considered as an encounter with HCK.  

Therefore, for this thesis encounter with HCK did not depend on whether teacher 

noticed such an encounter or not, but whether the classroom interaction had potential to 

establish any of the components listed above.   

I defined mathematics at the horizon and encounters with the mathematics at the 

horizon, and yet the research questions below are framed as “encounters with HCK.” In 

this paragraph, I explain the terminology glitch present in the research questions. The 
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encounters with HCK is used to mean encounters with the mathematics at the horizon, 

which is defined above and where the term “mathematics at the horizon” is in the similar 

sense that was used by Ball (1993) and Ball & Bass (2009). Ball’s use of the term was 

situated in the practice of teaching mathematics, specifically in the context of dilemmas 

that a teacher faces while choosing an appropriate representation, representations that do 

not distort the mathematics and increase the access to learning. However, the phrase 

“mathematics at the horizon” has been used with multiple meanings by various researchers, 

mainly to refer to the advanced mathematics that is “out there” at the horizon. This 

reference makes the mathematics at the horizon not rooted in the practice of teaching 

mathematics (E.g., Zazkis & Mamolo, 2013), and that is not what this dissertation has built 

upon, and therefore the term “mathematics at the horizon” is avoided in the research 

questions. Instead, “Horizon Content Knowledge”, i.e., mathematics at the horizon entailed 

through the practice of teaching is used here. 

This dissertation focused on three central questions: 

1. What kinds of “encounters with HCK” arise in classroom teaching? And:  How 

do teachers manage them?  

2. How are students’ opportunities for learning shaped by teachers’ encounters 

with HCK?  

3. What kind of mathematical knowledge do teachers exhibit while navigating 

encounters with HCK? 
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1.4 Structure of the Dissertation 

This dissertation unfolds in six chapters. Appended below is a summary of each 

chapter. A total 42 of cases of classroom teaching, interviews of 13 teachers of 

approximately 120 minutes each, and detailed analysis of the curriculum of grade 7 

comprise the data for the thesis. Each of these teachers also engaged in solving 

mathematical problems, which presented ways of doing mathematics from the teachers’ 

point of view. A total of 39 problem solutions by teachers constitute the data for solving 

mathematical problems.  

Chapter 1: Introduction. 

This chapter describes the personal journey towards the research problem, situates 

the problem in the current literature scenario and school settings, proposes the research 

questions, and defines the terms used in the research questions.  

Chapter 2: Conceptual framework. 

The chapter on Conceptual Framework provides a detailed account of the evolution 

and use of the construct HCK within the mathematics education research community and 

situates my understanding of the construct in the continuum. This chapter also distinguishes 

the construct of HCK from Advanced Mathematical Knowledge (AMK), which has been 

used by other researchers and essentially emphasizes a view of school mathematics from 

the advanced mathematics perspective to see the usefulness of both in school mathematics 

teaching. I also attempt to unpack the definition of teaching presumed in various 

conceptions of HCK in the literature and provide my understanding of what is entailed in 
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teaching mathematics before diving into the discussion of knowledge for teaching. The 

literature analysis is used to elaborate upon how the definitions used in the thesis – of 

mathematics at the horizon and encounters with mathematics at the horizon are derived 

from the literature.  

Chapter 3: Characterizing encounters with mathematics at the horizon. 

The chapter describes the design of the study. It gives a brief account of participants 

of the study, and describes the researcher’s position in understanding the classroom 

practice, the encounters emerged and their management. Towards the end, it discusses an 

example of an encounter to characterize and illustrate the analysis of classroom teaching 

practice. The case is on the congruence of triangles and illustrates how the encounter is 

initiated, and managed by the concerned teacher.   

Chapter 4: Encounters with HCK: Case of teaching algebraic identities. 

This chapter first provides a cross-case analysis of 6 cases of teaching algebraic 

identities (AI). It brings forward three dimensions of teaching AIs: explaining what AIs 

are, representing them and using them to solve other problems of Mathematics. The chapter 

provides an overview of the curriculum and analyses teachers’ reading and presentation of 

it in the classroom. In the second part, the analysis is used to make a case for what kinds 

of encounters were observed in the study, how they were initiated and what resources were 

used to manage these.  
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Chapter 5: Encounters with HCK: Case of teaching multiplication and division 

of fractions. 

The first part of the chapter provides a cross-case analysis of cases of teaching 

Fraction multiplication and division. It brings forward three dimensions of teaching 

Fraction multiplication and division: Understanding the algorithm, understanding area 

representation and connecting the two. The chapter provides an overview of the curriculum 

and analyses teachers’ reading and presentation of it in the classroom through encounters 

observed in their teaching. In the second part, the analysis is used to make a case for what 

kinds of encounters were seen in the investigation, how they were initiated and what 

resources were used to manage these.  

Chapter 6: Conclusion, implication and limitation. 

This chapter summarizes findings from the previous three chapters, phrases these 

findings in response to the three research questions asked. This chapter also discusses the 

construct of Professional Practice Knowledge in detail. The thesis ends with a description 

of implications of the study for research and possible forms of HCK for teacher education.  
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CHAPTER 2  

Conceptual Framework 
 

Concerns about the students’ learning across the world have brought researchers’ 

attention to the quality of mathematics instruction and therefore, to teachers’ knowledge of 

mathematics, their beliefs, and practices. In the last two decades, much research in 

mathematics education has investigated and analyzed teachers’ personal beliefs or their 

knowledge of various kinds. There has been no disagreement among researchers that 

teachers need a specialized understanding of the subject matter for effective instruction. 

Still, early studies about mathematics teachers and their content knowledge did not find a 

strong association between what a teacher knows and what the students learn (Begle, 1972; 

Eisenberg, 1977). Since then, the notion of content knowledge for teachers has been further 

conceptualized, e.g., Shulman, 1986 – leading towards a nuanced notion that matches the 

complexity of teaching. In attempts to characterize, explore, and understand the knowledge 

of mathematics that may be particularly important for teaching, different domains of 

teachers’ knowledge have been described (e.g., Ball, Thames, & Phelps, 2008; Ma, 2010; 

McCrory, Floden, Ferrini-Mundy, Reckase, & Senk, 2012). There also have been 
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distinctions made between knowledge for-, in-, and of-practice (Cochran-Smith & Lytle, 

1999).  

Meaningfully uniting knowledge demands with the work of teaching has been the 

prominent effort of researchers seeking to describe useful content knowledge. Ball et al. 

(2008), conceptualized a specialized content knowledge (SCK) for teaching. This 

knowledge includes, for example, understanding and appreciating various interpretations 

of operations, such as how rate, ordered pairs and repeated addition are all models of 

multiplication that differ mathematically. Such understanding is specific to teaching. 

Knowledge of these models or their representations is not very useful for a person who 

wants to find just the answer to a multiplication problem. Therefore, identifying different 

domains of teachers’ knowledge has led to creating more relevant opportunities for 

teachers to learn content that is important for teaching. However, how understanding the 

difference between the rate and grouping models of multiplication is utilized in dealing 

with students' thinking or delivering effective instruction is still to be understood. The 

question in this regard is, how teachers manage various situation within the instruction, and 

how do they make use of the specialized knowledge for teaching that they possess? So are 

there specific norms about teaching or about doing mathematics through which teachers 

frequently draw on their mathematical knowledge? 

The ways that content knowledge gets used often translate into moves or decisions 

that teachers make in the classroom. In this sense, we might consider actions that draw 

more explicitly on teachers’ mathematical knowledge as a kind of mathematically driven 

move in teaching. Such moves describe teachers’ responses—actions they take to help 
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students learn—that have a significant mathematical component to their nature and 

encompass strong mathematical consideration. For example, Ball and Bass (2000) 

described unpacking as central to the work of teaching. They discuss unpacking in two 

scenarios around mathematics teaching. One in preparation for teaching and another while 

teaching – what Lampert and Ball (1999, p.38) referred "being able to know things in the 

situation." The first example involved examining and preparing to teach a mathematics 

problem. The problem (taken from Gelfand & Shen, 1993) was as follows 

Write down a string of 8’s. Insert some plus signs at various places so that the 

resulting sum is 1,000. (p. 90) 

Ball and Bass (2000) describe the process of unpacking this problem. They say, on 

the surface this problem might look trivial and uninteresting. For example, adding 8s, 125 

times equals 1000, and even though this is a solution, it doesn’t make the problem very 

interesting. However, realizing that strings of 8, include 888, 88 opens up several 

possibilities as a solution. Like, 888+88+8+8+8 is a solution, as it follows the condition 

and sums to 1000. Therefore, a teacher preparing to use such a problem in the classroom 

would need to work on many aspects – like, what different solutions are there, do those 

solutions have any patterns, and can these patterns be used to predict a further answer or to 

record these solutions in a meaningful way. The essential noticing that, using only the 

addition of 8's to obtain zero at the unit place, requires 8 added five times or in a multiple 

of 5 times, makes the problem interesting. Ball and Bass (2000) describe the unpacking a 

teacher would require to work on this problem.  
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"A teacher preparing to use this task must contemplate: Would this be a good problem for 

my students? What would it take to figure out the patterns and nuances? Is it worthwhile in 

terms of what students might learn? At least it would be important to know what the 

problem is asking, whether it has one or many solutions, how the solutions might be found. 

How is it (or could be) related to other parts of the curriculum? It seems obvious that the 

task involves some computation – for example, verifying any one solution – but what is the 

mathematical potential of the task? Are there important ideas or processes involved in the 

problem? What would it take to use this task well with students? It would help to know 

what might make the problem hard, and how students might get stuck, and anticipate what 

the teacher might do if they did. Would students find this interesting? What might it take to 

hook them on it?" (p. 92) 

An analysis of this sort is central to the work of teaching when a teacher wants to 

reach to the potential of any mathematics problem, and reveal how much of significant 

mathematical reasoning is entailed within the teaching of the problem. The second example 

Ball and Bass (2000) gave for unpacking came from a classroom scenario in Ball’s 

teaching, where students are trying to answer and verify others' solutions. The problem is 

simple, where the students are expected to figure out the difference between 32 and 16. 

The students came up with the different strategies, and the authors discuss the complexity 

that the teacher faces while making a decision about moving forward, building upon 

responses and remaining on the task. Here, the process of unpacking is live, in action, and 

involves making various decisions. Some of them are – what the student is saying, what 

might be the context in which this reasoning is true, what is the mathematical explanation 
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portrayed in the response, is the given explanation enough, how to connect the mathematics 

in the students' responses, how to make students' see these connections, and many more. 

Both these examples illustrate the complexity in unpacking mathematics in teaching. Since 

unpacking mathematics for students in the context of teaching requires significant 

mathematical attention, this would be considered as an example of a move or action that 

draws on teachers’ mathematical knowledge.  

However, one needs to accept that knowledge necessary for effective instruction is 

closely tied to what is perceived as instruction of mathematics. One of the shifts the reform 

curricula through Common Core Standards (2009) in the USA and National Curriculum 

Framework (2005) in India brought forward is a new conception of teaching. These 

curriculum frameworks focused on students' learning, on how children learn. If we believe 

that students are passive learners, then the question of teacher knowledge would become 

trivial. However, we know that students require meaningful understanding and re-

discovery to learn new ideas. Primarily, we need to understand what mathematics 

instruction is with respect to developing citizens of the country. Do we want them to be 

rational thinkers and accept conceptions that are reasoned, or we want them to be passive 

listeners? Therefore, gaining a mathematical knowledge that gives autonomy and 

empowerment and allows them to do mathematics is need of the hour, making the issue of 

teacher knowledge of primary concern.  Therefore, this literature review not only describes 

the ecology of the construct of teacher knowledge, and the domain in the discussion, 

horizon content knowledge, but also attempts to unravel the teaching presumed for these 

knowledge demands.  
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In the first chapter, I already described the two aspects of AMK and the role of such 

knowledge in teaching mathematics. The two aspects presented the difference in the 

relationship between the middle-school mathematics or school mathematics and 

mathematics as a discipline. One view enables the understanding of school mathematics 

through the lens of advanced mathematics. According to this view, there is mathematics 

out there, and the horizon is far from the mathematics in teaching – perhaps consisting of 

the mathematics from the university courses. The second view, which enables a learner to 

make sense of advanced mathematics from the school mathematics point of view. This 

includes various derivations (see example from Ma (2010) in chapter 1, page 8) that would 

seem redundant from the maths point of view but still are mathematical in nature, and 

relevant to the learning of mathematics.  Based on the bipolar understanding of AMK, four 

main sections comprise this chapter. The first section starts with an emphasis on AMK in 

the literature because of its historical relationship to HCK and to lay the groundwork for 

the conversation I will have about horizon content knowledge. The second section 

describes theories of teachers’ mathematical knowledge and provides a historical framing 

of how research in this area has evolved to its current state. I then summarize the 

foundational mathematical knowledge for teaching (MKT) framework of Ball, Thames and 

Phelps, and her colleagues (Ball, 1993; Ball & Bass, 2009; Ball et al., 2008) and 

specifically focus on their construct of horizon content knowledge (HCK). This section 

thus addresses the question: What do teachers need to know to teach effectively? The third 

section discusses the construct of horizon content knowledge and attempts to delineate it 

from other domains of knowledge needed for teaching. HCK has emerged a key facet of 



 23 

researcher’s attempts to frame mathematical content knowledge for teaching and, in 

particular, to define the role of AMK in MKT. Following this summary, a description is 

provided of work that has been done to extend and elaborate on HCK since the introduction 

of the construct.  Building on this literature, I identify important features of HCK that will 

serve as the foundation for the theoretical framework of the present study, which I will 

elaborate in the last part of this chapter. In the last section, I discuss how HCK is a 

promising construct to understand effective and equitable teaching through an example, to 

connect knowledge of mathematics needed for teaching with what we understand as 

effective mathematics instruction. I conclude this chapter with the definition and aspect of 

teachers’ HCK, analyzed in the thesis.  

2.1 The Ecology of Mathematical Knowledge for Teaching Mathematics 

This section presents an ecological development of the research on teachers’ content 

knowledge. The analysis on MKT provides a critical foundation to this dissertation by 

simultaneously situating the theory of MKT in the more substantial body of research on 

teacher knowledge and acknowledging the growth in the field. Several studies during the 

1970s referred to as the educational production function studies examined the relationships 

between teacher knowledge and student achievement. These studies, typically used the 

number of undergraduate or graduate level mathematics courses taken, degrees earned, and 

performance on quantitative exams as markers of teacher knowledge (Begle, 1976; 

Goldhaber & Brewer, 2001; Monk, 1994; Rice 2003). 

For instance, Begle (1976) examined the role of teacher knowledge in students’ 

performance. He analyzed research conducted over a 16 year period, of how three markers 
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of teachers' qualification– the number of content courses at the level of calculus or beyond; 

the number of mathematics methods courses; and undergraduate major or minor in 

mathematics – influenced students' performance. Begle first found that the number of 

content courses taken at the calculus level or beyond was positively related to student 

performance in 10% of the studies, and negatively associated with student achievement in 

8% of the cases. He also claimed that taking mathematics methods courses yielded positive 

effects in 24% and negative effects in 6% of the cases. In the third case, having a major or 

minor in mathematics was positively associated with students' performance in 9% and 

negatively related in 4% of the studies. The students' performance involved significant 

observation of students' computational fluency, and not of cognitively demanding skills 

such as comprehension, application, or analyses. Begle, therefore, concluded that teachers’ 

subject matter knowledge was not as “powerful” (p. 54) as assumed earlier and proposed 

research that would not focus on teachers' knowledge and their characteristics (Begle, 

1979). There were other studies by Monk (1994), and Rice (2003) which studied the 

connection between the number of mathematics courses taken by a teacher with students' 

performance. They found similar, yet statistically not many significant results. For 

instance, Monk(1994), who used data from a longitudinal survey of American youth, found 

that every additional course in mathematics that teachers took accounted for 1.2% increase 

in students'  performance on standardized assessment developed by National Assessment 

of Educational Progress. However, the impact of taking undergraduate mathematics 

methods course was higher than taking content courses in Monk's study.  
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Overall, the studies mentioned above of production function did not provide a 

definitive answer for how markers such as the number of courses a teacher take influences 

student learning (Ball, Lubienski, & Mewborn., 2001; Fennema & Franke, 1992; Hill, 

Sleep, Lewis, & Ball, 2007). The production function studies incorrectly assumed that the 

markers were accurate depictions of teacher knowledge.  

In addition to the production function studies, other researchers examined how 

established teaching behaviors influenced students' learning, called the process-product 

studies. These studies examined a variety of behaviors that occurred inside the classroom. 

Few examples of these behaviors are –  time on task, wait-time, classroom management 

and organization, curriculum pacing, and question posing (Brophy, 1986; Brophy & Good, 

1986). The process-product studies do not explain to what extent teachers’ knowledge 

impacts teachers’ enactment of these behaviors.  

Shulman’s framework for knowledge for teachers. 

Shulman (1986) drew attention to the importance of content knowledge in teaching. 

He identified as the “missing paradigm,” (p. 6) the absence of research on teachers’ 

knowledge of content and the role such content knowledge played in instruction (Shulman, 

1986). However, the content knowledge he envisioned was not just limited to number of 

mathematics courses or mathematical performance. Schulman asked three sets of 

questions: 

1. What are the sources of teacher knowledge? What does a teacher know and 

when did he or she come to know it? How is new knowledge acquired, old 

knowledge retrieved, and both combined to form a new knowledge base? 
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2. How does the teacher prepare to teach something never previously learned? 

How does learning for teaching occur? 

3. How do teachers take a piece of text and transform their understanding of it 

into instruction that their students can comprehend? 

While answering these three sets of questions, Shulman proposed a new theoretical 

framework for teacher knowledge that suggested three domains of content knowledge: 

subject matter content knowledge, pedagogical content knowledge, and curricular 

knowledge. Subject matter content knowledge referred to the amount and organization of 

knowledge per se in the mind of teacher. Through the construct of pedagogical content 

knowledge, he distinguished knowing content "for oneself" as different from the special 

amalgam of content and pedagogy needed to teach the subject. Curricular knowledge refers 

to familiarity with the lateral and vertical curriculum. The lateral curriculum is the 

knowledge that underlies the teacher's ability to relate the content of a given course or 

lesson to topics or issues being discussed simultaneously in other subjects. The vertical 

curriculum knowledge is familiarity with the topics and issues taught in the same subject 

area during the preceding and later years in school, and the materials that embody them. 

These three domains of knowledge together comprise Shulman’s “missing paradigm.” 

Further, from the teaching teachers  point of view, he suggests categories of knowledge 

that would promote effective instruction.  
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• Content knowledge 

• General pedagogical knowledge, with special reference to those broad 

principles and strategies of classroom management and organization that 

appear to transcend subject matter 

• Curriculum knowledge, with particular grasp of the materials and programs 

that serve as “tools of the trade” for teachers 

• Pedagogical content knowledge, that special amalgam of content and 

pedagogy that is uniquely the province of teachers, their own special form of 

professional understanding 

• Knowledge of learners and their characteristics 

• Knowledge of educational contexts, ranging from workings of the group or 

classroom, the governance and financing of school districts, to the character 

of communities and cultures 

• Knowledge of educational ends, purposes, and values, and their 

philosophical and historical grounds (Shulman, 1987, p. 8) 

Table 2.1 Shulman’s categories of Teacher Knowledge 

The focus on teachers’ content knowledge was then revived and several studies 

followed Shulman’s work.  

Among others, the most influential work has been carried out by Ball and her 

research group at the University of Michigan. Ball and her colleagues strongly suggested 

the need to understand demands of teaching and therefore mathematical knowledge for 

teaching was through analyzing the practice of teaching. Ball (1999) describes examining 

mathematics teaching in their project Mathematics Teaching and Learning to Teach 

(MTLT) as follows:  
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We seek to analyze how mathematical and pedagogical issues meet in teaching – at times 

intertwining, at times mutually supporting, and at times creating conflicts. Through 

analyses of mathematics in play in the context of teaching, the project extends and 

challenges existing assumptions of what it is about mathematics that primary teachers need 

to know and appreciate, and where and how in teaching such understandings and 

appreciation are needed (p. 28). 

This analytical approach also broadened understanding of what the work of teaching 

is; it included many tasks that come in the context of teaching. And therefore included 

mathematical demands of planning a lesson, listening to children, coming up with an 

example or a question, validating, justifying or refuting mathematical claims, etc., 

everything that might arise in the context of teaching. 

Development of MKT framework and its measures.  

In 2000, Ball & Bass claimed that “although conceptions of what is meant by 

“subject matter knowledge,” as well as valid measures thereof, have been developing, we 

lack an adequate understanding of what and how mathematical knowledge is used in 

practice” (p.86). The University of Michigan’s Mathematics Teaching and Learning to 

Teach project (MTLT) spent about 15 years studying mathematics teaching and 

mathematics used in teaching (Ball & Bass, 2003; Ball et al., 2008). By examining the 

records of the teaching of an accomplished teacher, the MTLT project investigated the 

mathematical knowledge demands of teaching from which they developed a number of 

“testable hypotheses” (p. 390) about the domains of mathematical knowledge for teaching 

(MKT). The MTLT project then developed measures that assessed these identified 
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knowledge domains. The MKT construct developed in two significant ways. First, the 

MKT research group studied teaching practice to identify the mathematical entailments of 

engaging in the work of teaching. The second way involved an in-depth analysis of 

mathematics education literature that studied the work of teaching. The literature review 

founded on two main bodies of literature. Shulman’s (1986) work inspired the two aspects: 

“one on teachers’ subject matter knowledge and its role in teaching; and the second on the 

interplay of mathematics and pedagogy in teaching and teachers’ learning“ (Ball, 1999, 

p.22). The first body of literature examined teachers’ knowledge of specific subjects such 

as history (Wineburg, 1996), English (Grossman, 1990), mathematics (Wilson, 1988) and 

science (Carlsen, 1988). The second body of work was more focused on mathematics 

education (Borko, Eisenhart, Brown, Underhill, et al., 1992; Thompson, 1984). 

Practice-based nature of MKT. 

Study of teaching practice informs the theory of MKT; in this sense,  MKT, as 

proposed by Ball, is practice-based (Ball & Bass, 2003). To illustrate MKT as an important 

conception of teacher knowledge Ball and colleagues use an example of a multi-digit 

multiplication problem: 25 × 41 written in vertical form. They argue that teachers must be 

able to know how to do the multiplication problem but more importantly, this ability is not 

sufficient for teaching multi-digit multiplication. For instance, some students might solve 

the problem in different ways (see Figure 2.1). 
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Figure 2.1: Students’ ways of solving a multiplication problem 

When such responses emerge during classroom interactions, the actual ability to 

calculate  25 × 41 is not only what the teacher needs. A cursory analysis of the students’ 

work demands the following from the teacher: 

• Identifying the correct responses (responses A and D are correct). 

• Understanding the method used to arrive at the correct response, and whether it 

follows a logic that allows the process to be generalizable (i.e., finding the right 

answer was not just luck). 

• Diagnosing the reason for the emergence of the wrong answer and incorporating the 

analysis into the pedagogy; for example, a review of response C suggests the student 

has forgotten to add the carried over number, and in B, there is a problem with place 

value. 

• Figuring out an appropriate response to each student, so that they understand how 

to move ahead without getting discouraged. 
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The MKT research group argues that any teacher might be able to identify incorrect 

solutions. However, “skillful teaching requires being able to size up the source of a 

mathematical error” (p. 379) and the process of sizing up must be done “in-the-moment” 

of teaching. The MKT research group argues that error analysis of this nature is unique to 

the work that teachers do and posit that this kind of mathematical knowledge and reasoning 

is not likely to be encountered by other adults who are not teachers. Ball and her group also 

argue that other mathematical tasks of teaching are as crucial as error analysis. Some 

examples are analyzing students’ non-standard approaches to problem-solving, presenting 

mathematical ideas, linking representations to underlying concepts and other 

representations, and giving or evaluating mathematical explanations require mathematical 

knowledge, skills, and habits of mind that are unique to teaching (Ball et al., 2008). The 

above example illustrates the practice-based nature of MKT; it is both derived from and 

used in practice.   

Other conceptions of teachers’ mathematical knowledge. 

There are different widely held views about the kind of mathematical knowledge 

needed for teaching.  Senk and colleagues’ classified teacher knowledge as curricular 

knowledge, knowledge of planning for mathematics teaching and learning, and enacting 

mathematics for teaching and learning (Senk et al., 2012). Blum & Krauss’ classified tasks 

and multiple solution in misconceptions and difficulties, and explanations and 

representations (Blum and Krauss, 2008). Rowland and his colleagues (2005; 2008), 

similar to Ball and colleagues, studied videos of pre-service primary mathematics teachers 

and used a grounded approach to develop their domains of knowledge identified as the 
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Knowledge Quartet: Foundation, Transformation, Connection, and Contingency. Rowland 

and colleagues’ conception of teacher knowledge includes “beliefs” as a component of 

foundational knowledge. The inclusion of beliefs distinguishes Rowland and others’ 

conception from Shulman’s (1986) theories, which does not include a category for beliefs. 

Also, they propose contingency as a component of teacher knowledge. They define 

contingency to mean “a teachers’ preparedness to deviate from their teaching agenda” or 

“the ability to think on one’s feet” (Rowland et al., 2005, p. 263). Beliefs and contingency 

are distinct from Ball and others’ MKT.  Rowland and others do not report on ways to 

measures the Knowledge Quartet. 

In association with the Australian Council for Educational Research, the Teacher 

Education and Development Study in Mathematics (TEDS-M) research team carried out a 

study of primary and lower secondary school mathematics teacher preparation in 18 

countries to identify the nature and extent of their knowledge for teaching. Senk and her 

colleagues found the TEDS-M’s conceptualization of teacher knowledge be the most 

closely matched to Ball’s MKT. Their “enacting mathematics for teaching and learning” 

possesses features such as explaining or representing mathematical concepts or procedures, 

responding to unexpected mathematical issues, and analyzing or evaluating students’ 

mathematical solutions or arguments, which are similar to Ball’s conception of Specialized 

Content Knowledge. In addition, Senk and colleagues (2008) identify conceptual 

distinctions between content knowledge and pedagogical content knowledge similar to 

both Ball’s and Shulman’s conceptualization. There are some basic differences between 

these two conceptions. (Senk and others with Ball’s concpetualization of MKT). First, Senk 
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and others identify teacher knowledge not by a study of the mathematical demands of 

teaching, but by the content of school mathematics. Second, their school content is based 

on the Trends in International Mathematics and Science Study (TIMSS), and third, they do 

not assess the validity of their measures by studying teachers’ mathematical quality of 

instruction. 

The COACTIV project under the leadership of Baumert and his colleagues in 

Germany has focused on the mathematical knowledge of secondary (high) school 

mathematics teachers. Baumert et al.’s (2010) description of teachers’ mathematical 

knowledge for teaching showed the knowledge domains as distinctly Content Knowledge 

(CK), and Pedagogical Content Knowledge (PCK). Their conception was based on 

Shulman’s (1986) theory and they did not develop an independent theoretical framework. 

These scholars describe PCK to include the knowledge of mathematical tasks and tools and 

the knowledge of student thinking and assessment of mathematical understanding. CK is 

conceptualized as similar to Ma’s (2010) profound mathematical understanding of school 

mathematics. 

The QUANTUM project by Adler and others, addresses a need to contribute to 

shared-understanding of MKT from a contextual perspective — adapting to African 

teachers’ needs. The project’s goal is to develop a method to describe and explain what 

MKT is and how it is constituted across various instructional practices. Their goals are 

based on the assumption that teaching and mathematics are co-constitutive (Adler & Davis, 

2006) — where each shapes and is shaped by the other as they come live in practice.  
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Ball and her colleagues in the LMT project see the constitution of mathematics and 

teaching a bit differently. Ball (1988) makes a distinction between the content that one 

learns for ‘oneself’ and the one that is a special amalgam of content and pedagogy needed 

to teach the subject, similar to Shulman’s framework. One of her goals appears to be to 

find empirical evidences for what researchers think teachers need. For the last fifteen years, 

the work of the Mathematics Teaching and Learning to Teach (MTLT) project has focused 

both on the teaching of mathematics and on the mathematics used in teaching. The aim has 

been to investigate the demands of teaching. Instead of reasoning from the school 

curriculum to a list of topics teachers must know, the MTLT group developed an empirical 

approach to understanding the content knowledge needed for teaching. The first project 

focused on the work that teachers do in teaching mathematics and the second project 

developed survey measures of content knowledge for teaching mathematics.  

Silverman and Thompson's work is empirically grounded in a different direction. 

They focus more on the development of MKT rather investigating what MKT is, grounding 

their research in mathematics education and learning theories. Their investigation proposes 

a framework for teacher education subscribing to a constructivist perspective.  

Adler and her group in QUANTUM investigated questions regarding constitution 

and forms of MKT and how these forms relate to pedagogic practice, with focus on pre-

service and in-service teacher education. The sites of investigation were teacher education 

institutes and actual teaching practice in schools. The group does not claim any study 

indicating change in students’ performance, but reports their investigation of what 

constitutes MKT. Kazima and Adler (2006) pointed out two things. First, they argued that 
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Ball’s framework (Ball, Bass & Hill, 2004) disconnects mathematical terms—linguistic 

disconnection. For example, students equated disability to probability (Kazima & Adler, 

2008), due to a phonetic similarity and the teacher didn’t know how to respond to such a 

situation in the classroom.  Second, they argued that Ball’s framework does not elaborate 

learner’s intuitions that co-exist with mathematical notions. This challenge of learner’s 

intuition is regarding how teachers can handle students’ outside experience and beliefs in 

the classroom. In one of their studies students believed that it is harder to get six on a dice, 

even though they experimented and documented a frequency table in the classroom. The 

teacher’s persistence of working on more experimentation was not useful as students 

concluded it is easier to get six on the dice inside classroom but difficult to get it outside. 

Although it is not new to understand that students sometimes hold contradictory ideas 

(Watson and Moritz, 2003), according to Adler and her group it is challenging for a teacher 

to address such issues without preparation. Building on Ball et al's (2004) eight aspects of 

mathematical work of teaching that teachers engage with, Adler and her gorup developed 

six categories. Behind this their aim was to capture everything that the teacher did, 

irrespective of whether that was correct, appropriate or productive.  

Mathematical work in teaching mathematics 
Ball et al (2004) 

Work of Teaching mathematics 
Kazemi et al (2008) 

1. Design mathematically accurate 
explanations that are comprehensible and 
useful for learners; 

2. Use mathematically appropriate and 
comprehensible definitions;  

3. Represent ideas carefully, mapping between 
a physical and graphical model, the 
symbolic notation, and the operation or 
process; 

1. Defining – attempts to 
provide a defintion 

2. Explanations – teachers 
explain an idea or a 
procedure 

3. Representation – teachers 
represent ideas and in 
various ways 
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4. Interprete and make mathematical and 
pedogogical judgements ablout learner’s 
questions, solutions, problems and insights 
(both predictable and unusual); 

5. Be able to respond productively to learner’s 
mathematical questions and curiosities; 

6. Make judgements about the mathematical 
quality of instrucitonal material and modify 
as necessary; 

7. Be able to pose mathematical questions and 
problems that are productive for learners‘ 
learning; and  

8. Assess learner’s mathematics learning and 
take the next steps 

(Ball et al., 2004, p. 59) 

4. Working with learners' ideas 
– teachers engage with both 
expected and unexpected 
learners' mathematical ideas 

5. Restructuring tasks – 
teachers change set tasks by 
scaling them up or down 

6. Questioning – teacher ask 
questions to move the lesson 
on 
(Kazami et al., 2008, p. 288) 

Table 2.2: Tasks of teaching as Ball et al (2004) and Kazima et al (2008) 

Adler and her colleagues used these six categories to analyze the cases of teaching 

and quantify teachers‘ actions while teaching. The findings of these studies confirmed that 

the tasks identified by Ball et al. were not only mathematical but took on specific meanings 

across topics and different approaches to teaching. However, they suggest that each of 

those tasks needed to be understood more specifically about the topics in mathematics and 

to particular approaches to teaching, and are working towards it. 

Silverman and Thompson (2008), situate their understanding of MKT in students’ 

learning theories.  

Our perspective entails a fundamentally different foci than Ball’s MKT: rather than 

focusing on identifying the mathematical reasoning, insight, understanding and skill 

needed in teaching mathematics, we focus on the mathematical understandings “that carry 

through an instructional sequence, that are foundational for learning other ideas, and that 

play into a network of ideas that does significant work in students’ reasoning” (p. 1). 
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They situate their understanding of MKT in practice but in connection with 

students’ work and not as in Ball’s study where MKT is associated with “work of teaching”. 

However, the mathematical understandings mentioned by Silverman and Thompson (2008) 

were never elaborated further nor provided with examples.  

It is valuable to look at these theories because they provide the scope of research on 

teacher knowledge and the extent to which progress has been made in conceptualizing 

teacher knowledge and developing ways of measuring it. In spite of the growth in the field, 

none of those above conceptions of teacher knowledge is simultaneously grounded in the 

practice of teaching, is measurable at scale, and grounded in the discipline of mathematics. 

Shulman’s (1986) seminal work contributes much to work on teacher knowledge but is not 

rooted in teaching practice or disciplinary mathematics, and does not provide measures to 

assess his conception of teacher knowledge. Although Rowland and others (2008) 

conception are grounded in the teaching practice and disciplinary mathematics, they do not 

provide measures for assessing their understanding of teacher knowledge. Senk and others’ 

(2008) notion grounded in the discipline of mathematics and is measurable, but they do not 

ground their work in teaching practice. Baumert and his colleagues (2008) do not ground 

their work in teaching practice or disciplinary mathematics and do not have measures to 

assess their theory of teacher knowledge. In the following paragraph I describe the 

framework that has been accepted widely, situated in practice, measurable and grounds the 

the knowledge demands in mathematics at the horizon.   
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Domains of MKT. 

Ball, Thames, and Phelps (2008) in their seminal work at the University of 

Michigan, first explicitly identified this knowledge as Mathematical Knowledge for 

Teaching (MKT). They defined it as the mathematical knowledge, skill, and habits of mind 

entailed by the work of teaching and proposed a further refinement of subject matter and 

pedagogical content knowledge into sub-domains, which were earlier introduced by 

Shulman (1986) (see figure 2.2).  

 

Figure 2.2: MKT framework by Ball, Thames and Phelps (2008) 

The three subdomains on the left consist of subject matter knowledge, and the three 

subdomains on the right comprise pedagogical content knowledge. In subject matter 

knowledge, common content knowledge refers to the mathematical knowledge and skill 

possessed by any well-educated adult, while specialized content knowledge is the 
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mathematical knowledge and skill used by teachers in their work but not generally 

possessed by well-educated adults, such as how to accurately represent mathematical ideas, 

provide mathematical explanations for common rules and procedures, and examine and 

understand unusual solution methods to problems (Ball et al., 2005). In pedagogical content 

knowledge, knowledge of content and students involves knowing about both mathematics 

and students, that is, as content knowledge intertwined with knowledge of what students 

think about, and how they know or learn a particular content (Hill, Ball, & Schilling, 2008). 

Knowledge of content and teaching involves knowing about both mathematics and 

teaching (Delaney, Ball, Hill, Schilling, & Zopf, 2008), as content knowledge intertwined 

with knowledge of how best to build student mathematical thinking or how to remedy 

student errors. Knowledge of curriculum denotes all knowledge interconnected within 

curriculum. 

Horizon content knowledge (HCK) refers to an orientation to and familiarity with 

the discipline that contributes to the school subject at hand. It provides a sense of how the 

content taught is situated in the discipline of mathematics. This knowledge is a resource 

for balancing the fundamental tasks of connecting learners to a vast and highly developed 

field, and also includes an awareness of core disciplinary orientations and values, and of 

big ideas and essential structures of the discipline. These attributes of HCK suggest that 

HCK might be a kind of knowledge that is responsible for the ability to make connections 

across a range of mathematical concepts. This conceptualization of HCK resonated with 

Ball’s (1993) first reference to the term “mathematical horizon” in context of describing 

the dilemma and tensions faced by an elementary teacher while dealing with pedagogical 
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and disciplinary mathematics concerns. For example, HCK might include choosing 

representation of contexts (e.g. negative numbers) that are consistent with the ideas that 

will be encountered in the future (e.g. absolute value) (example used in Ball 1993). What 

this means is that, even though elementary mathematics might not involve certain 

components of a given concept, and a student might face them only in their later years of 

mathematics learning, choosing a representation at primary level cannot be deceiving or so 

simplistic that it leads to contradictions with the concept in their later years. This particular 

idea, which describes perpetuation of mathematical sensibilities in making decisions about 

teaching, forms the basis of knowledge of mathematics at the horizon. 

2.2 Delienating and Defining HCK 

Developing the idea of HCK further, Ball and Bass (2009) suggested that it might 

be productive to view HCK as an “elementary perspective on advanced knowledge.” In 

particular, they conceptualized HCK in four key elements:  

1. a sense of the mathematical environment surrounding the current “location” in 

instruction, 

2. major disciplinary ideas and structures, 

3. key mathematical practices, and 

4. core discipline values and sensibilities (p. 6). 

Despite these efforts of Ball and Bass (2009) in refining the notion of HCK, it has 

received relatively little attention in the research community and remains mostly 

undeveloped. The problem of defining HCK stems from multiple metaphors and from 

inadequate clarity and consensus, especially regarding HCK’s relation to teaching. 
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Therefore a detailed discussion of what HCK comprises is needed with examples 

that are embedded in the practice of teaching mathematics. This dissertation will mainly 

aim to contribute to this aspect of HCK along with bringing forward the connection 

between equitable access to mathematics and HCK.  

Ball and Bass (2009) described HCK as “a kind of mathematical ‘peripheral vision’ 

needed in teaching, a view of the broader mathematical landscape that teaching requires” 

(p. 1). Building on ideas of Ball and Bass, Zazkis and Mamolo (2011) use Husserl’s work 

to propose a conception of “knowledge at the mathematical horizon.” Zazkis and Mamolo 

elaborate upon inner and outer horizon of school mathematics that are formed due to 

knowledge of undergraduate mathematics. Their paper was followed by two responses. 

Foster (2011) proposed “peripheral mathematical knowledge” to refer to mathematics 

relevant to teaching but not visible to the learner. Figueiras, Ribeiro, Carrillo, Fernández 

and Deulofeu (2011) point out that the language for HCK needs to be consistent with basic 

assumptions of the nature and role of teacher content knowledge. They argue for locating 

the meaning of HCK in the work of teaching instead of conceptualising HCK as advanced 

knowledge that is then applied to teaching. They specifically say,  

“Our critique of Zazkis and Mamolo’s paper is much more in terms of their assumptions 

about the nature of the mathematical knowledge that elementary and secondary teachers 

need, rather than in terms of their conceptualization of knowledge at the mathematical 

horizon” (p. 26).  

They are raising the concern whether advanced knowledge would have a bearing on 

teaching practice or vice versa. Vale, McAndrew, and Krishnan (2011) use the phrase 
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“connecting with the horizon” to describe advanced mathematics in a professional learning 

context that helped teachers to see more connections and structure among representations 

and among topics.  

Many of these examples of HCK align with Klein’s idea of “elementary 

mathematics from an advanced point of view”. In contrast to this Ball and Bass (2009) 

described HCK as “a kind of mathematical ‘peripheral vision’ needed in teaching, a view 

of the broader mathematical landscape that teaching requires” (p. 1). Making this as 

“advanced mathematics seen from an elementary mathematics point of view.” In an attempt 

to figure out how “advanced mathematics” can be relevant to school mathematics teaching, 

Jakobsen et al. (2013) developed a definition of HCK: 

"Horizon Content Knowledge (HCK) is an orientation to, and familiarity with the 

discipline (or disciplines) that contribute to the teaching of the school subject at hand, 

providing teachers with a sense for how the content being taught is situated in and 

connected to the broader disciplinary territory. HCK includes explicit knowledge of the 

ways of and tools for knowing in the discipline, the kinds of knowledge and their warrants, 

and where ideas come from and how “truth” or validity is established. HCK also includes 

awareness of core disciplinary orientations and values, and of major structures of the 

discipline. HCK enables teachers to “hear” students, to make judgments about the 

importance of particular ideas or questions, and to treat the discipline with integrity, all 

resources for balancing the fundamental task of connecting learners to a vast and highly 

developed field" (P. 4642). 
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This definition helped distinguish HCK from the rest of the knowledge domains, 

especially from specialized content knowledge (SCK). For example, SCK is immediately 

about the content being taught, and HCK is not. From this definition, we see that HCK is 

neither common nor specialized. It is not about a vertical curriculum, but more about 

having a sense of the environment of the discipline that is being taught. Thus, when 

discussing HCK, it is not sufficient to simply consider knowledge about advanced 

mathematics, in the sense of knowledge beyond the grades that the teacher is teaching. It 

is also not about knowledge of different topics that students will learn in future. HCK 

empowers teachers to make sense of what mathematics is present in students'  responses. 

It enables them to make connections with topics that students might or might not face in 

their future. One key factor of HCK as perceived by Jakobsen et al. (2013) is the ability of 

the teacher to respond with an understanding of connections to topics that students may or 

may not meet in the future. (Ball & Bass, 2009, Jakobsen et al., 2013). 

I use this definition of HCK and other work that has been produced by Ball and her 

colleagues at the University of Michigan as a basis for developing a spcific defintion and 

investigation for encounters with such knowledge in the practice of teaching.  In the 

sections below, I first describe my research questions in light of the definition of HCK as 

given by Jacobson, Thames, and Ribeiro (2013), along with a description of what I mean 

by an encounter with HCK.  

Research questions. 

The definition given by Jakobson, Thames and Ribeiro (2013) brings forward how 

HCK is neither common nor specialized. It is not limited to only knowing advanced 
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mathematical knowledge, but also makes a call for the knowledge that allows teachers to 

make additional sense of what students are saying and to act with an awareness of topics 

that students may or may not meet in the future. A diagrammatic synthesis of what 

comprises HCK based on the defintion by Jakobson et al. is given below (Figure 2.3). It 

shows five main components of HCK derived from the definition. That HCK is – explicit 

knowledge of the ways of and tools for knowing in the discipline; the kinds of knowledge 

and their warrants; about knowing major structures of the discipline; about knowing how 

“truth” or validity is established in the discipline; and awareness of core disciplinary 

orientations and values.  

 

Figure 2.3: Five components of HCK mentioned in Jakobsen et al. (2015) 
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Each of these components guides certain actions of teaching, beliefs and attitudes 

that shape knowing of mathematics in the classroom setting.  

Drawing upon the definition of Horizon Content Knowledge given by Ball and her 

colleagues at the University of Michigan, which has been the basis of Jakobsen et al.’s 

elaborate description of HCK, this study used a more specific definition for the horizon of 

mathematics. The definition exercised is in alignment with what Ball (1993) and Ball & 

Bass (2009) envisioned as “mathematics at the horizon.” The definition used in this study 

is specific to the school mathematics curriculum. I define the mathematical horizon as "a 

projection of mathematical meanings, topics, and structures present in the curriculum into 

the mathematics extending beyond the support of the curriculum materials concerning a 

particular location of instruction, such that it enables meaningful learning of mathematics." 

The curriculum here, is used in a sense Remillard (2015) uses it, “printed, often published 

resources designed for use by teachers and students during instruction.” (p. 213). The 

meaningful learning of mathematics is defined through two specific frameworks – First, 

by the instructional triangle as described by Cohen, Raudenbush and Ball (2003) that 

represents the process of teaching. The instructional triangle positions meaningful listening 

to students at the core of impactful instruction. The second, mathematical sensibilities of 

knowledge for teaching that Jakobsen, Thames & Ribeiro (2013) delineates and brings 

disciplinary mathematical norms and values to the center of instruction. I again elaborate 

these two frameworks in detail in the chapter on the conceptual framework. 

An encounter with the horizon of mathematics would be an instance where the 

meaningful learning of mathematics could take place by taking supports outside the 
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curriculum and situated in disciplinary sensibilities, norms, and values. The encounter 

could be initiated by listening to students meaningfully, designing the instruction, 

developing mathematical explanations or by reading the curriculum. The management of 

such instances would require supports outside the curriculum, situated in disciplinary 

sensibilities and norms. At the operational level, an encounter will be considered as “an 

instance to establish any of the five components listed below to its potential” in a given 

location in the instruction. If there is an opportunity to  

1. establish truth in mathematics using mathematical tools and disciplinary ways 

in classroom instruction 

2. use core disciplinary values and orientation 

3. make explicit the knowledge of the ways and tools for knowing the discipline 

4. connect with structures in the discipline  

5. comprehend kinds of knowledge with its warrants 

then that would be considered as an encounter with HCK.  

Therefore, for this thesis encounter with HCK did not depend on whether the teacher 

noticed such an encounter or not, but whether the classroom interaction had potential to 

establish any component of the components listed above.   

I defined mathematics at the horizon and encounters with the mathematics at the 

horizon, and yet the research questions below are framed as “encounters with HCK.” In 

this paragraph, I explain the terminology glitch present in the research questions. The 

encounters with HCK is used to mean encounters with the mathematics at the horizon, 

which is defined above and where the term “mathematics at the horizon” is in the similar 
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sense that was used by Ball (1993) and Ball & Bass (2009). Ball’s use of the term was 

situated in practice of teaching mathematics, specifically in the context of dilemmas that a 

teacher faces while choosing an appropriate representation, representations that do not 

distort the mathematics and increase the access to learning. However, the phrase 

“mathematics at the horizon” has been used with multiple meanings by various researchers, 

mainly to refer to the advanced mathematics that is “out there” at the horizon. This 

reference makes the mathematics at the horizon not rooted into the practice of teaching 

mathematics (E.g., Zazkis & Mamolo, 2013), and that is not what this dissertation has built 

upon, and therefore the term “mathematics at the horizon” is avoided in the research 

questions. Instead, the Horizon Content Knowledge, i.e., mathematics at the horizon 

entailed through the practice of teaching is used here. 

Situated in this understanding this dissertation focused on three main questions: 

1. What kinds of “encounters with HCK” arise in classroom teaching? And:  How do 

teachers manage them?  

2. How are students’ opportunities for learning shaped by teachers’ encounters with 

HCK?  

3. What kind of mathematical knowledge do teachers exhibit while navigating 

encounters with HCK? 

There are specific characteristics of HCK that appear throughout a classroom 

teaching and are hard to pinpoint as encounters. For example, teachers’ beliefs about 

mathematics and what it means to know mathematics. These will be present in everything 

that teachers do in the classroom. In one of the cases of teaching, the teacher believed 
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knowing mathematics is about knowing it speedily. What he meant by that was, it is not 

enough if one can solve the problem, or remember formulae, but only if the person can also 

do it with speed does the person know the real mathematics. Now this belief could be about 

knowing in general, but the teacher expressed it for the case of mathematics. And, in all 

teaching lessons of this teacher, there was a constant attempt to create opportunities to do 

mathematics speedily. Now such understanding of the horizon will not be captured through 

an encounter; rather it would be present in all aspects of the work of teaching. And such 

beleifs therefore will guide many tasks of teaching as identified by scholars. The 

representaiton will be chosen such that speed of doing mathematics will increase, tasks will 

be given to complete in time, etc. The variety in answers or ways to solve problems will be 

superceded by who does faster in the class. In some sense, such strong beliefs manipulate 

the horizon. The belief has replaced meaningful learning with being able to quickly 

repeating. Such cases are not counted as encounters.  

 

2.3 Situating HCK in the Literature on AMK 

In analyzing MKT frameworks, I take advanced mathematical knowledge (AMK) 

to refer to both knowledge of tertiary mathematics and knowledge of mathematics of an 

advanced nature. In the former sense, I adopt Zazkis and Leikin’s (2010) definition of 

AMK as “knowledge of the subject matter acquired in mathematics courses taken as part 

of a degree from a university or college” (p. 264). In the latter sense, I take AMK to refer 

to a robust and connected knowledge of mathematical objects, structures, and ideas, such 

as that given by Liping Ma’s (2010) description of teachers’ profound understanding of 



 49 

elementary mathematics, or the knowledge of mathematical structure that corresponds to 

the disciplinary knowledge of an expert in the field (de Groot, 1965; Schoenfeld & 

Herrmann, 1982; Schwab, 1978). 

Researchers have struggled with the relationship between AMK and MKT. Davis 

and Simmt (2006) proposed that AMK provides the foundation for MKT. Their model of 

MKT emphasizes the figurative bases that give shape to mathematical structures, including 

various interpretations, metaphors, images, and applications. That is, in their framework, 

it is the images and metaphors used to establish mathematical structures that constitute a 

teacher’s knowledge of mathematical structure.  

Teachers seem to have little formal experience with such figurative aspects of core 

principles and as a consequence, their knowledge of these aspects is typically tacit rather 

than explicit (Davis & Simmt, 2006). For example, a teacher might be able to use an area 

model to successfully represent the product 12	 × 	13 but not explicitly recognize that the 

property of distribution of multiplication over addition has been invoked in this 

representation.  

Figure 2.4: Area model for 2-digit multiplication 
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Teachers’ advanced mathematical knowledge, from this perspective, can be viewed 

as involving the largely tacit knowledge regarding mathematical structures and how those 

structures are established. 

Researchers have argued on the source of this tacit knowledge, with some 

suggesting that it is not typically derived from tertiary mathematics courses (Davis, 2011) 

while others propose that the development of this kind of knowledge should be an explicit 

focus of preservice teachers’ mathematical training (Silverman & Thompson, 2008). Davis 

(2011) argues that teaching largely involves “drawing logical consistency from diverse 

instantiations, however, teachers’ university courses in mathematics typically focus on 

completed ideas” (p. 1507). That is, the content teachers typically encounter at the tertiary 

level involve explicit instantiations that may only be useful at that level and do not focus 

on connections to other instantiations or the evolution of ideas motivating the completed 

formulation. For example, multiplication can be conceptualized as representing area but it 

can also be given as an output of a linear function with vertical intercept equal to zero. 

Teachers may encounter linear functions in a course in college algebra, but that is not 

enough to make explicit connections to the area model of multiplication used in the school 

curriculum. According to Davis and Simmt’s (2006) perspective then, mathematical 

content encountered at the tertiary level may not directly contribute to the development of 

teachers’ knowledge of mathematical structures or how they are established. That is, AMK 

in Davis and Simmt’s (2006) MKT framework is not necessarily explicit knowledge 

acquired in tertiary level mathematics courses but appears to consist primarily of teachers’ 

tacit knowledge of mathematical structure and connections. Davis and Simmt (2006) 
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suggest that, in my two-part construct of AMK, teacher’s tacit knowledge is part of the 

disciplinary knowledge of an expert in the field and not typically developed in tertiary-

level courses. 

 In contrast, Silverman and Thompson (2008) propose a framework for MKT that 

focuses on the development of MKT continuously throughout teachers’ careers beginning 

with their mathematical learning as students. They argue that teachers gain knowledge of 

mathematical structures by making connections between, and relating, content knowledge. 

In particular, they draw on Piaget’s concept of reflective abstraction to describe how “new, 

more advanced conceptions develop out of existing conceptions and involves abstracting 

properties of action coordinations to develop new cognitive structures” (Silverman & 

Thompson, 2008, p. 506). In other words, according to Silverman and Thompson (2008), 

AMK in the structural sense includes the new cognitive structures that are formed by 

identifying relationships and making connections between mathematical content. Further, 

unlike the tacit understandings identified by Davis and Simmt (2006), this kind of AMK 

may be developed at the tertiary level in mathematics courses designed to increase 

prospective teachers’ depth of knowledge relating to elementary level mathematics content. 

Silverman and Thompson (2008) also caution, however, that these mathematical 

understandings in isolation do not constitute pedagogical understandings and must undergo 

further transformation to be useful for teaching. That is, similar to Davis’ (2011) 

observation that completed understandings are not sufficient for teaching, Silverman and 

Thompson (2008) also recognize that AMK alone requires additional transformations 

before it is pedagogically useful. As evidenced by the conclusion above that knowledge of 
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mathematical structures alone is not enough for AMK to be useful for teaching, researchers 

have made efforts to conceptualize AMK in a way that is more specifically oriented to 

teaching practice. One of such viable constructs is Horizon Content Knowledge, which 

involves knowledge of structures, but as situated in practice. In the vignette given in Ball 

and Bass (2009), where students are measuring the handprints on a graph paper, a student 

comes up with an idea of finer unit for measurement.  

One child suggested getting the graph paper used by older pupils because the squares 

were much smaller and they would be able to get a closer count of the area of their 

handprints. The teacher, who happened to have recently studied integral calculus, heard 

the comment as reflecting a surprising intuitive grasp of the fundamental idea that finer 

mesh affords more accurate measurement (p.1). 

Ball and Bass suggest here that with the view of mathematics at the horizon – here 

the knoweldge of limits, helped the teacher appreciate the students’ comment and use it in 

the class. I would like to add here, that there are other aspects of teacher knowledge 

involved here which shaped the instruction. And those aspects of knowledge are also part 

of the mathematics at the horizon. For instance, noticing that the student’s suggestion of 

finer unit for measurement is a mathematically relevant one, many teachers I know would 

have announced it to the students that using finer unit for measurement is a good idea, as 

it connects to the advance topic in mathematics such as limits. And that would just indicate 

the teacher’s AMK, but the decision that this teacher took involved other students listening 

to that idea, deciding whether it makes sense, and actually using a finer mesh to see what 

happens. These decisions come from a specific understanding of mathematics. The 
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mathematics used here is democratic, and aims to give access to everyone. There are other 

concerns that arise in this activity which on the surface appear as concerned with 

Specialized Content Knowledge (SCK). Some of these involve – 

• Knowing that Changing the unit of measurement will change the number in 

the measure, and would that cause any misconception in students that is 

related to measuring areas 

• How would student make connections when the same area measured using 

different measuring units leads to different measures.  

• And when the students all figure out that the measure became more accurate 

with a smaller mesh, how to talk about accuracy in that context such that it 

emphasises idea of limit (for e.g. why it became accurate? Operational 

understanding of accuracy?) 

These sensibilities again emphasise that such mathematical thinking is possible 

because of the particular sense about what mathematics is, and what the teaching is. 

Definitely this view of what is mathematics is much away from the mathematics in the 

tests. This is the view that superceded in valuing knowledge for teaching, and that is the 

sense in which I am talking about Horizon Content Knowledge.  

2.4 Situating HCK in Mathematics Instruction 

Teaching is a complex phenomena (Freeman, 1996). Therefore, it is difficult to 

explain it in an elegant and systematic way (Doyle, 1986). This statement about teaching 

implies that an honest understanding of teaching needs to take account of what teachers 

and students do in classrooms. In the dynamic situation of teaching, teachers are most 
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immediately confronted with diversity among their students, such as prior knowledge, 

cultural background, and so on. In this section I present what comprises teaching and 

therefore what knowledge of mathematics horizon forms the HCK for classroom teaching.  

Instruction and its components. 

Cohen et al. (2003) explained instruction and resources with a diagram. See figure 

2.5.  

Figure 2.5: Instructional triangle from Cohen, Raudenbush, Ball (2003) 

The definition that they provide is around this diagram, and it reads as follows.  

Instruction consists of interactions among teachers and students around contents in 

environment. … “Interaction” refers to no particular form of discourse but to teachers’ 

and students’ connected work, extending through, days, weeks, and months. Instruction 

evolves as tasks develop and lead to others, as students’ engagement and understanding 

waxes and wanes, and organization changes (Lampert, 2001). Instruction is a stream, not 

an event, and it flows in and draws on environments – including other teachers and 
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students, school leaders, parents, professions, local districts, state agencies, and test and 

text publishers (p.122). 

Instruction depends on interactions and evolves as the content progresses with the 

growth of the learners’ understanding. Cohen et al. describe instruction as two way 

interaction between teacher ßà student, student ßà student,  student ßà mathematics 

(directly or via teacher) and teacher ßàmathematics. The basis on which this thesis builds 

is that if the mathematics instruction envisioned is similar to what Cohen, et al. suggested, 

then teacher noticing student actions, thinking and skills becomes the core of effective 

instruction. There are studies that talk about how teachers improve upon this noticing. For 

example, Sherin & Han (2004) introduced “professional vision” as a measure to understand 

practicing teachers’ learning in educational research. van Es and Sherin proposed that 

noticing in teaching involves: (1) identifying what is important in teaching situation, (2) 

making connections between specific classroom interactions and broader principles of 

teaching and learning, and (3) using knowledge of teaching contexts (students, school, 

subject) to reason about a situation (Sherin & Van Es, 2005). The literature in noticing has 

made major strides in the decade since van Es and Sherin’s work. Most of these studies 

involve (a) facilitating teachers’ viewing and discussing video-recorded excerpts of 

classroom practice in video clubs or similar professional development settings, and (b) 

analyzing what participants notice and how they reason about it (e.g. Sherin and Han, 2004, 

Sherin and van Es, 2005 and van Es and Sherin, 2008). As a result, the construct of noticing 

has received much attention. Noticing within the midst of teaching, noticing details in the 

work of others and noticing through mediating tools such as video have all become 
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essential foci of teacher education (Sherin, Jacobs & Phillip, 2011). Van Es and Sherin 

(2008) include analysis of the relationships between teachers’ developing professional 

vision and their teaching activity, emphasizing, “if teachers are to use student thinking to 

inform pedagogical decisions, they need to “learn to notice” student mathematical 

thinking” (p. 101). The analysis reported that in the video-club meetings, teachers paid 

increased attention to students’ mathematical thinking. In interviews, these teachers 

reported having learned about students’ mathematical thinking, about the importance of 

attending to student ideas during instruction, and about their school’s mathematics 

curriculum. Finally, impacts of learning to notice were also uncovered in teachers’ 

instruction. By the end of the year, these teachers increasingly made space for student 

thinking to emerge in the classroom, probed students’ underlying understandings, and 

learned from their students while teaching. 

However, this presents only one side of the story. Teachers being able to notice what 

students say in the classroom is a two-fold phenomena. One is to be able to listen to what 

students say/think, to have patience, create publicly safe classrooms so that students share 

their thinking. The second is to be able to comprehend what the students have said from 

the point of view of the discipline, and using the practices of the discipline decide what 

contribution the student thinking makes at that moment of the teaching.  

This thesis, as mentioned earlier focuses on the latter – what mathematics do 

teachers hear in their students' voices, blackboard drawings, choice of examples, as well as 

what mathematics they chose to value when they give instruction to do mathematics in the 
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classroom. I believe that analyzing such encounters will unpack what knowledge of the 

disciplinary mathematics is at play in our classrooms.  

2.5 Assembling the Framework for the Study 

This chapter provided a brief review of the literature around mathematical 

knowledge needed for effective teaching. In the above literature review, I explored the role 

of advanced mathematical knowledge (AMK) in frameworks for mathematical knowledge 

for teaching (MKT). In particular, horizon content knowledge (HCK) seems to have 

emerged during the last decade as a promising construct for investigating the role of AMK 

specifically involved in the practice of teaching. 

As I have demonstrated, the MKT frameworks explored above collectively address 

the two aspects of AMK about advanced mathematical content acquired in tertiary-level 

courses and knowledge of connections and mathematical structure. Literature addressing 

AMK has made further distinctions and connections across these areas to highlight aspects 

that are important for teaching. In particular, authors have identified a dichotomy, which is 

often described as a contrast between elementary perspectives of advanced mathematics 

and advanced aspects of elementary mathematics (Ball and Bass, 2009; Zazkis & Mamolo, 

2011).  

In addition to distinguishing between elementary perspectives of advanced 

mathematics and advanced aspects of elementary mathematics, another issue faced by 

researchers regarding HCK is what belongs in the various categories of knowledge 

pertaining to a mathematical structure. This presents an especially challenging task given 

that the content of the elementary curriculum is already quite vast and the possible 
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connections between that content and mathematics on the horizon even more so. Most work 

has focused directly on generating categories of MKT that can be used to capture or identify 

specific mathematical content comprising HCK, whether it involves particular structures, 

broader connections, or a combination (Blackburn, 2011; Ball & Bass, 2009; Ball, et al., 

2008; Carrillo, et al., 2012; Zazkis & Mamolo, 2011). Fernández and colleagues (2011) 

depart from this approach by identifying types of connections present in teaching rather 

than the mathematical content itself, but their approach is still rooted in the identification 

of potential HCK and involves knowledge not identified to have a robust presence in 

teaching practice. 

Silverman & Thompson (2008) argue that while the task of identifying particular 

MKT for teaching specific mathematical content is essential, enumerating such knowledge 

entirely is challenging because of the vastness of mathematical content making up the K-

12 mathematics curriculum. Instead, they propose an MKT framework that shifts away 

from the goal of developing “particular MKT to developing professional practices that 

would support teachers’ ability to continue developing of MKT throughout their careers” 

(Silverman & Thompson, 2008, p. 509). In other words, with HCK in particular, it might 

be helpful to adopt an approach emphasizing the development of knowledge of structure 

rather than enumerating structural knowledge that teachers should ideally possess. In fact, 

Davis (2011) challenges the very assumption of the frameworks that emphasize cataloging 

knowledge, suggesting that particular instantiations may not even operate as fundamentals 

at all but “appear more to work as agents in an ever-evolving system” (p. 1507). As a 

consequence, Davis (2011) argues that rather than cataloging a set of basics, which are 
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likely too vast for any individual to have conscious awareness, it might be more productive 

to focus on developing teachers’ ability to identify, investigate, and connect useful 

instantiations to inform new practice. 

I have built upon the perspective of  Ball and Bass (2009), where they use the 

compelling metaphor of a tourist.  It suggests that HCK might involve an awareness of the 

mathematical landscape of present instruction that is more like that of “an experienced and 

appreciative tourist” rather than that of a “tour guide” (p. 6). Pushing this metaphorical 

description further, I point out that an experienced tourist does not always have the luxury 

of knowing what lies in store when they make a decision to explore an unfamiliar path and 

may not even be able to anticipate where it will lead. The very nature of operating in 

unfamiliar territory means limits to the kind of explicit knowledge available for navigation 

will exist and may require drawing on a more tacit and intuitive kind of knowledge to keep 

moving forward. Therefore, I am motivated by this image of the “tourist” to extend my 

definition of HCK to include the possibility of accounting for tacit knowledge of 

mathematical practices and values. 

In particular, I draw on the work of Polanyi (2009) who describes tacit knowledge 

regarding two features of an object: the proximal and the distal. A full elaboration of these 

terms is beyond the scope of this particular work, but the general sense is that tacit knowing 

involves the way that individuals “attend from the first term to the second term of the tacit 

relation” (p. 10). What this means is that in tacit knowledge, an individual is not able to 

attend to the particulars of an object (the first term) explicitly, but reasons from them to the 

coherent whole (the second term). Polanyi (2009) illustrates this process by demonstrating 
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how it is possible to know the face of a familiar person by attending from the perception 

of their distinct features to their face without being able to identify what those features are. 

Similarly, tacit knowledge of mathematical discipline would involve the ability to 

recognize a coherent connection of which a person is not explicitly aware. For example, 

tacit knowledge could be illustrated as a person using the distributive property of 

multiplication over addition to calculate multiplication between two numbers. For 

example, 23×7=(20+3)× 7=140+21=161, is procedurally just understood as multiplying 3 

by 7 first and then 2 by 7 leaving a placeholder zero (vertical representation).  

 On the other hand, an expert can identify when another person has a “certain 

knowledge that he cannot tell” (Polanyi, 2009, p. 8) when that expert has explicit 

knowledge of those particulars. Consequently, tacit understanding of mathematical 

sensibilities, practices, and norms should be identifiable when an expert recognizes that a 

teacher is engaging in mathematical activity indicating a perception of mathematical 

structure or practice, even if the teacher is not able to identify this knowledge explicitly 

herself. 

Keeping in mind the desire to define HCK in such a way that it can be used to attend 

to teachers’ tacit knowledge of mathematical sensibilities, practices, and values, I proceed 

with giving definitions of the mathematical horizon and horizon content knowledge. I 

propose to view the horizon as a projection of the mathematical topics and structures 

contained in the school mathematics curriculum in the discipline of mathematics. More 

specifically, I define the mathematical horizon as the projection of mathematical meanings, 

topics and structures in the curriculum in the discipline of mathematics to be able to learn 
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the school mathematics meaningfully. By curriculum, I mean what is defined in Remillard 

(2005), as the “printed, often published resources designed for use by teachers and students 

during instruction” (p. 213). 

My motivation for defining the mathematical horizon as the projection of 

mathematics in the curriculum to that in the discipline such that meaningful learning of the 

curriculum materials takes place. This could be seen as similar to what Ben-Peretz (1990) 

describes as curriculum potential, or the “reinterpretation of curriculum materials leading 

to classroom uses beyond the scope of developers’ intentions” (p. 49). By defining the 

horizon concerning this projection, horizon content knowledge can be described in terms 

of the mathematical knowledge that teachers draw on to navigate mathematical situations 

that engage them outside of the intentions and supports provided by the curriculum 

developers/materials.  

Further, the motivation to use this definition to analyze teaching practice is to 

provide insight into teachers’ tacit knowledge if teachers encounter students' reasoning that 

appears to be using or generating mathematical structures in their work beyond the support 

of the curriculum that they cannot explicitly identify. The definition of teaching as made 

in Cohen, Raudenbush, and Ball (2003), makes meaning-making of students' thinking as 

an essential part of instruction. Therefore, teaching actions can be understood as “skillful 

and deliberate teacher interpretation of student thinking” rather than an incidental or 

unintended outcome. Just as the tourist may deliberately choose to explore an unfamiliar 

path while at the same time while lacking an explicit knowledge of the landscape it 

traverses or the locations it connects, so the teacher may make curricular decisions despite 
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lacking a precise knowledge of how those choices will impact the mathematical structure 

of the lesson.  

And finally, building on Jakobsen et al. (2015) I define a horizon encounter (or an 

encounter with the horizon) to be a situation in which a teacher enacts or engages with 

curriculum and students' thinking reaching to its meaningful potential. Therefore, the 

conception of HCK in this study involves the mathematical knowledge that teachers draw 

upon when navigating encounters with the mathematical horizon. At an operational level, 

an encounter will be considered as “an instance to establish any of the five components to 

it ’s potential that are listed in the diagram.” This means if there is an opportunity to  

• establish truth in mathematics using mathematical tools and disciplinary ways in 

classroom instruction 

• use core disciplinary values and orientation 

• make explicit the knowledge of the ways of and tools for knowing in the discipline 

• connect with structures in the discipline 

• comprehend kinds of knowledge with its warrants 

 – then that would be considered as an encounter with HCK. Therefore, for the 

purpose of this thesis encounter with HCK does not depend on whether teacher noticed it 

or not, but whether any classroom interaction has potential to establish any component of 

HCK. An encounter would be an opportunity to construct mathematics using mathematics, 

its values, and practices. 

Using the language of curriculum and instructional triangle, encounters with the 

mathematical horizon could be described as instances of classroom teaching in which there 
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are differences between the potential mathematical learning and what mathematical gets 

learned. For example, during one lesson where the textbook suggested having students 

solve the profit and loss problems numerically, the teacher, Razak sir, instead of simply 

giving the numbers asked them to situate the story in their context, and then solve it. In this 

case, the teacher did not omit the original activity but replaced it with something different 

that expanded it beyond the scope of that suggested by the textbook. However, when 

students situated it in their contexts and started solving it using day-to-day strategies, the 

teacher could not accept those strategies as mathematical. This example shows that teacher 

could draw on his understanding that bringing students‘ context would increase students‘ 

access to mathematics, however, the mathematics situated in students' practices, went 

unnoticed. I will analyze such situations to make sense of what mathematical demands 

undergo making sense of students‘ thinking mathematically.  

In this chapter we understood the ecological development of the MKT construct and 

understood how meaningful understanding of HCK is needed to bind the domains of 

teacher knowledge for comprehensive teacher education. We saw how HCK itself lacks a 

definition with consensus and has been divided into two extreme positions. Further, we 

used the working definition given by Jakobsen et al. (2015) to elicit attributes of HCK, 

which could be used to study instruction. Then the derivation for the definition of 

mathematics at the horizon and encounters with such horizon was discussed.
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CHAPTER 3 

Study Design and Methodology 
 

As described in the introduction section, this study intended to investigate middle-

school mathematics teachers’ encounters with horizon content knowledge in their 

classroom practice and understand their views on managing these encounters. The chapter 

has four sections – Research design, Research Site and Participants, Data sources and data 

collection methodology, and Data Analysis. 

3.1 Research Design 

A case study is  “an exploration of a ‘bounded system’... a program, an event, an 

activity, or individuals” (Creswell, 1998, p. 61). Often a case study recounts a rare or 

unusual condition or incident, but a model or exemplar can also be a description of a classic 

situation. 

Multiple–case studies design. 

While much case study research focuses on a single case, often chosen because of 

its unique characteristics, the multiple–case study design allows the researcher to explore 

the phenomena under study through the use of a replication strategy. Yin (1994) compares 

the use of the replication strategy to conducting some separate experiments on related 
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topics. Replication is carried out in two stages a literal replication stage, in which cases are 

selected (as far as possible) to obtain similar results, and a theoretical replication stage, in 

which cases are chosen to explore and confirm or disprove the patterns identified in the 

initial cases. According to this model, if all or most of the cases provide similar results, 

there can be substantial support for the development of a preliminary theory that describes 

the phenomena (Eisenhardt, 1989). 

In the multiple—case studies design, there are no hard-and-fast rules about how 

many cases are required to satisfy the requirements of the replication strategy. Yin suggests 

that six to ten cases if the results turn out as predicted, are sufficient to “provide compelling 

support for the initial set of propositions” (1994, p. 46). Yin goes on to say that since the 

multiple–case studies approach does not rely on the type of representative sampling logic 

used in survey research, “the typical criteria regarding sample size are irrelevant” (p. 50). 

The number of cases required to reach saturation, such that no significant difference in 

findings, determines the sample size.  The sample participants should be selected explicitly 

to encompass instances in which the phenomena under study are likely to be found. This 

approach to sample design is consistent with the strategy of homogeneous sampling, in 

which the desired outcome is the description of some particular subgroup in depth (Patton, 

1990). 

The multiple case study design or collective case study investigates several cases to 

gain insight into a central phenomenon (Creswell & Maeitta, 2002; Stake, 2013; Yin, 

2003). Here the central event is an encounter with the horizon content knowledge; this 
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study used the cases to gain insight into teachers’ encounters with HCK and its 

management.  

In this study, I use a multiple-case study approach with cases drawn from kinds of 

curriculum and school systems. A multiple-case study enables the researcher to explore 

differences within and between cases. 

3.2 Trustworthiness of the Study 

In the following paragraphs, I describe how trustworthiness is taken care of through 

the four aspects – Credibility, Transferability, Dependability, and Confirmability 

applicable to a qualitative research study.  

Credibility.  

The credibility of any qualitative research study speaks to the issue of whether the 

findings are plausible. It depends upon the steps taken during the process of data collection 

and analysis. A key factor is to ensure completeness of the data (Yin, 1994). The 

researcher's field notes and observer's notes complimented the video recordings of the 

classroom. The video recordings of the lesson consisted of each teacher teaching three units 

of a mathematics textbooks. A total of 13 teachers taught, amounting to a record of 42 

teaching units. Ph.D. candidates for Science and Mathematics Education from Homi 

Bhabha Centre for Science Education, accompanied the researcher, one every time. They 

took detailed notes of what they had seen in the classroom. After each lesson,  both the 

researcher and the observer discussed their observations. And I wrote a memo of each such 

discussion. Along with this, the teacher viewed their lesson videos and presented their side 
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of making decisions in encounters that I chose. The teacher views were also video recorded 

and analyzed while discussing the encounters and their management.   

Transferability. 

The transferability of a research study addresses the question of whether the findings 

are “context-relevant” or subject to non-comparability because of situational uniqueness 

(Guba, 1981, p. 86). For this particular purpose, the schools have been chosen with the 

possible different context of – different administration, textbooks, the language of 

instruction and socio-economic status of the schools. Said this, the study is in the Indian 

context, and even though the purpose of the investigation was to see mathematics, its 

practices and sensibilities in teachers' instruction there will be a cultural edge to all of this 

pemeating in the analysis as well.  

Dependability. 

Two aspects achieve reliability – one is by replicability, and other by comparing the 

data analyzed with that by another individual/researcher (Guba, 1981). Replicability is very 

difficult to achieve in the way Guba defines it. It would mean that I work with one teacher 

then analyze the data, then form a theory. And then collect the data from another teacher 

to see whether the theory holds there too. One needs to keep doing this until satisfied. 

However, for practical reasons, this was not possible. The nature of the data also directed 

the course of analysis. For example, many teachers taught the same topic, such as algebraic 

identity, polygons, fractions multiplication and division, and the analysis needed to address 

these cases as one unit together. For the second aspect, some data of the encounters was 

initially coded by a research associate at the Homi Bhabha Centre for Science Education, 
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and the difference in the code was discussed and resolved. Although, due to the massive 

amount of the qualitative data, it was impossible to ask another coder to code more data. 

Confirmability. 

Confirmability was the most relevant threat for this research, mainly because of the 

topic of this research. Horizon Content Knowledge is very specialized knowledge. By its 

very definition, it depends on one’s understanding of mathematics, its values, and practices. 

It also depends on the goals of teaching. Therefore, addressing the researcher's view of 

mathematics and teaching was necessary. A memo of the researcher’s role is given at the 

end of this chapter, to familiarise the reader and therefore, do the further readings in light 

of that. This specific step is what Guba (1981, p.87) calls  “practicing reflexivity.” 

3.3 Background of the Study Setting 

This study was conducted in Mumbai, India with middle school mathematics 

teachers. Conducting the study in India had two main reasons. First, based on the research 

questions it was clear that the study would involve careful examination of teaching 

practice. Teaching is a cultural activity (Stigler and Heibert, 2009). Teaching, as we saw 

in the conceptual framework chapter, is very complicated phenomena and would involve 

practices, notations, and norms that are subtle and specific to a culture. Considering my 

experience of teaching mathematics and working with mathematics teachers in India, it 

made more sense to collect the teaching data from India, to be able to make sense of the 

cultural subtlety. The second reason was to see the diverse classroom settings. India has 

many kinds of school systems, where many things vary.  Like schools with free education 

too expensive education,  with low paid but secured jobs for government teachers to highly 
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paid but no security for private teachers, etc. In some sense such diversity was necessary – 

as one of the causes for which the HCK is essential is to create meaningful access to 

mathematics. And it was important to find out whether such meaningful access is available 

for all the classes and school cadres.  

For educational and maintenance purpose, every town in all the districts of India is 

divided into municipal wards. In Mumbai, there are total 24 wards, which monitor and 

supervise education, water, and other government provided facilities. This study was 

conducted in one such ward called M-East ward. (See Figure 3.1). The population in M-

East ward is 0.8 million people as per the 2011 Census report. There are 202 government 

schools in this ward. These run up to grade 7 only.  

 

Figure 3.1: Locality of the Schools in the Study 
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There are three kinds of schools in India:  public, private aided, and private un-aided 

schools. Public schools are often called as government schools. There are two kinds of 

government schools––ones that are supported by the state (local) government and the other 

supported by the government in the Centre. These schools are fully funded by the 

respective government and provide free education to everybody up to higher secondary (K 

to12). Up to grade 8, these schools also provide school uniforms, mid-day meals, 

textbooks, notebooks, and minimum supplies. The state public schools are commonly 

referred by the name of their municipality. For example, a state funded municipal school 

in Lucknow, will be referred as Lucknow Municipality Corporation School. Similarly a 

public school in Mumbai will be called as Mumbai Municipal Corporation (MMC) School. 

The state funded schools follow state curriculum framework and state textbooks. 

Considering that the education provided is free of cost, one would expect a very high 

enrollment in these schools. However, doubts about the quality of these schools mean that 

they struggle to maintain a healthy enrollment.  

The government schools supported by the central government operate as a chain of 

schools across the country. In earlier times, these schools primarily catered to the children 

of government officers who had moving jobs, like Army, Navy, government 

administration, etc. These schools across the country follow the same timetable, the same 

holidays, and the same curriculum in the same order. So even though a child’s parents are 

transferred in the middle of the year to some other state, the child studying in school funded 

by the government in the centre will face minimum disturbance. However, since Right to 
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Education Act (2009), these schools are expected to enroll 20% of their children from the 

families in the local community.  

Then there are private schools that are aided by the government. The aid varies from 

part to full support to the schools. The financial support is provided based on per child 

calculation and it is not rare to find a school where one of the divisions (e.g., 3rd standard 

division D) is not at all funded. All the private schools whether they are funded or not by 

the government, charge a minimal fee to the students. The aid is disbursed based on certain 

norms; one of the important ones is to follow the state curriculum. The private un-aided 

schools need to be registered as a school, but do not receive funding from the government. 

These schools are run by trustee boards and often are more or less experimental in their 

functioning, depending on the authorities involved. These schools could have their own 

philosophy of education and they fall into further categories as experimental, religious or 

international school.   

Participants in the study. 

The data collected includes 13 teachers’ classroom teaching videos. Brief 

information of these teachers is given in the table below (See Table 3.1). Each teacher's  

teaching of three mathematical units from the curriculum of grade 7 was observed. All the 

teachers except two used the same textbook. The state textbooks in India are first written 

in the language of the state in which they will be used, and in state of Maharashtra they are 

translated in to 13 mediums of instruction. The textbooks developed under the National 

council are written in English first and then trasnlated to other languages.  
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The textbooks used by the teachers in the study were in three main languages – 

Marathi (local language of the state of Maharashtra), Urdu (language spoken by the Muslim 

minority) and English (Third official language of the state, and popular among upper social 

and economic classes). The textbook developed by the State Council of Education, 

Research and Training (SCERT) for the state of Maharashtra was used by the 11 of the 13 

teachers in the study. The remaining two teachers used the textbook developed by the 

NCERT of the Central Government.  

Teacher name 
(pseudonyms) 

Gender  Medium of 
Instruction 

Teaching 
experience 

Education 
Academic 

Education 
Teaching 

Koregaonkar Female Marathi 23 years PhD, MA B.Ed. 
Bhinde  Male Marathi 22 years MA B.Ed. 
Tope Female Marathi 23 years BA B.Ed. 
Bhoke Male Marathi 18 years BA B.Ed. 
Ruksat  Female Urdu 24 years MSc B.Ed. 
Karim  Male Urdu 27 years BA B.Ed. 
Razak  Male Urdu 19 years BA B.Ed. 
Asmita Female Semi-English 7 years BA B.Ed. 
Parveen Female English 4 years B.Sc. B.Ed. 
Sangita Female English 12 years B.Sc.  B.Ed. 
Meenu Female English 16 years M.Sc. B.Ed. 
Damini Female English 23 years M.Sc. B.Ed. 
Nasir Male Urdu 27 years MA B.Ed. 

Table 3.1: Participants of the Study 

There are 8 female teachers and 6 male teachers. All of them have taught different 

grades ranging from 5th to 7th and during the educational year of the data collection, 2015 

they were all teaching grade 7. Seven of these 13 taught in government educational schools 

and therefore were teaching all the subjects to their respective class, except language and 

drawing.  
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3.4 Data 

The data for this study were collected in a setting that represents a mixture of  a 

variety of classes, castes and religions. The study was conducted in one of the municipal 

wards in Mumbai, called M-East ward. This ward has a mix of population and the school 

going children come from families of the very poor to families of rich business people. 

Often the government schools that provide free education, food and accessories are 

considered as lowest in the quality and any families that have a regular income, generally 

prefer to send their kids to private aided schools. The reason is not that they can easily 

afford the school but the status associated with the private schools. For example, often 

uniforms at such schools will involve wearing a tie and polished shoes, which is not the 

condition in the Mumbai Municipal Corporation (MMC) Schools. The medium of 

instruction is another variable that dictates the student enrollment rates in school. English-

medium schools often get more number of students enrolled than the vernacular (Marathi 

and Hindi in case of Mumbai) medium. And almost all the private schools provide 

education in English medium. Therefore, many low income families send their children to 

the private Englsih medium schools. The government schools have less number of students 

in the urban setting, who are often from extremely poor families.  

This study involves interaction with 13 middle school mathematics teachers. Seven 

of these come from the MMC Schools, five are from the private aided schools, and two are 

from the Kendriya Vidyalaya schools supported by the central government. These are all 

mathematics teachers teaching grade 7.  
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Official permission was obtained from school officials, superintendents and 

principals. (Please refer to the consent given in Appendix A). Even though the permission 

was obtained from higher authorities, a separate consent for participation and 

documentation (video and audio) was also obtained from each teacher. To each of the 

teachers, it was explained that the study is investigative in nature and aims to analyze their 

classroom practice, thoughts on the practice through interviews, and their work on a few 

mathematics problems.  

Classroom recordings. 

Three consecutive classes of each teacher were video recorded. All the recordings 

were done in the same month of the year to achieve maximum overlap in the content across 

teaching. As this was towards the end of the school year, topics such as algebraic identity, 

geometric constructions, surface area and volume were observed in almost every teacher’s 

teaching. See table 3.2 for the list of all the topics and their brief description in each class. 

 Teacher name 
(pseudonyms) 

Medium of 
Instruction 

Topics taught during the study in order of teaching 

1 Asmita Semi-English Circle and its properties 
Construction of quadrilaterals 
Algebraic identities 

2 Bhinde  Marathi Polygon surface area and volume of cube, cuboid 
Algebraic Identities 
Fraction operations – addition, subtraction 
Fraction Operattions -- multiplication, division 

3 Bhoke Marathi Algebraic identities 
Polygon surface area and volume of cube, cuboid 
Circle and its properties 

4 Damini English Multiplication of Fractions - Pictorial 
Multiplication of Fractions – Rule based 
Division of Fractions 

5 Jahir Urdu Algebraic identities 
Polygon 
Polygon surface area and volume of cube, cuboid 
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Word problems on profit and loss 
6 Koregaonkar Marathi Triangle and its properties 

Triangle Congruence 
Algebraic Identities 

7 Meenu English Addition-subtraction of fractions 
Multiplication of fractions 
Division of fractions 

8 Razak  Urdu Word problems on profit and loss 
Polygon surface area and volume 
Algebraic identities 

9 Ruksat  Urdu Algebraic identities 
Circle and its properties  
Polygon surface area and volume of cube, cuboid 
Fraction multiplication and division 

10 Samreen English Algebraic identities 
Polygon, surface area and volume of cube, cuboid 
Fraction multiplication and division 

11 Sonali Marathi Algebraic identities 
Polygon 
Word problems on profit and loss 

12 Tope Marathi Polygons 
Polygon surface area and volume of cube, cuboid 
Algebraic identities 

13 Nasir Urdu Algebraic Identities 
Fraction operations – multiplication, division 
Polygon surface area and volume 

Table 3.2 Topics taught by the teachers 

There were three kinds of documentation made for each lesson listed above. The 

researcher took extensive field notes of the class, a very careful video recording of the class 

and observer field notes. There was an external observer, mostly a student doing PhD in 

Science or Maths education in Homi Bhabha Centre for Science Education, a national 

centre of Tata Institute of Fundamental Research. The observer did not necessarily take the 

notes of what was happening in the classroom teaching but made note of things that he or 

she observed. I was present in all the teaching sessions with Ms. Tuba Khan, a project 

associate, who video recorded all the sesions. The observers were different every day. After 
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every class three of us shared each of our observations and the researcher wrote a memo of 

this discussion. Given here is a sample paragraph from a memo for one of the days –  

 

The memo above discusses challenges students faced while following a procedure 

to do the division. The topic came while observer, Tuba and I were discussing what 

mathematics the students were engaged with, and how were they learning it.  

Interview.  

The purpose of the interview was threefold – 1. To understand the teacher's journey 

as a student and teacher of mathematics, 2. To get teachers’ views and opinions on the 

classroom episodes that were selected by the researcher as vignettes for illustrating 
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encounters with HCK,  and 3. To understand teachers‘ HCK on a non-teaching task. To 

achieve these three goals the interview was divided into four sections. The meeting with 

the teacher was on a one-to-one basis and approximately lasted for 80 to 90 minutes. Here 

are the details of the four parts of the interview.  

A. Background information.  

This section of the interview was meant to break the ice. Teachers here spoke about where 

they have come from, how they became interested in mathematics, and in teaching 

mathematics, what was their teaching experience, and where have they worked for these 

many years. The protocol also involved asking them about their interest in mathematics 

and reasons for the same. One note to remember here, that each teacher that was part of 

this study was nominated as a good teacher by both, their superiors and colleagues. 

Therefore, the teachers who taught other subjects along with mathematics, like social 

studies or sciences, were confident about being mathematics teachers. The question of why 

I got access to teaching of "best mathematics teachers", could be mainly because of the 

granted video recording access. In my personal experience and the experience of other 

researchers, it has been very difficult to get video recording of the classroom. Although 

when superintendent gave this permission, they also made sure they nominated their best 

maths teachers. Appendix B gives the entire interview protocol of this section. 

B. Interview general. 

This section involved asking teachers about their teaching and mathematical 

practices. They were asked something like, how do they decide which students to call, how 
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do they prepare the content, what are the useful resources. For example, the teachers 

responded to questions involving how they make decisions about writing or making figures 

on the board. The teachers also spoke about how validity or mathematical truth is decided. 

This discussion led to what these teachers believe about teaching and learning mathematics. 

This protocol is given in the Appendix C.  

C. Interview specific. 

This section involved watching one or two video clips of the teacher's classroom 

teaching. These clips were what I identified as a vignette of an encounter with HCK. After 

viewing the clip together, the researcher asked them first to explain what they saw and 

thought about the clip. Then they answered some questions based on the content of the clip. 

A list of the questions for one of the vignettes is given as Appendix C. The entire list of the 

questions with a summary of each clip is presented in Appendix D.  

D. Problem solving/analyzing solutions. 

In the fourth section the attempt was to focus on other tasks of teaching, such as 

solving a problem or analyzing a solution. The teachers were given choice of three 

problems to solve and some students’ responses to analyze. Appendix  E provides the 

problems presented to the teacher and Appendix F gives an example of teachers’ response 

with analysis indicating how it relates to the HCK.  

Curriculum materials. 

 As the teaching data was all collected over about in one month, many 

teachers were teaching the same topic. In this dissertation, I analyze three cases in detail 
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(in chapter 4 and 5) and give examples of some cases in brief (chapter 3). The curriculum 

used across was of two kinds, and consist of following chapters from the mathematics 

textbook: 

• Identities chapter from Maharashtra State textbook 

• Polygon and their surface, volume of cube, cuboid from Maharashtra State 

textbook 

• Geometric construction from Maharashtra State textbook 

• Operations on Rational numbers from Maharashtra State Textbook 

• Fractions multiplication and division from the Central government NCERT 

textbook 

 

The data collected is summarised in the figure below.  
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Figure 3.2: Data collected at a glance 

3.5 Data Analysis 

The data are rich in quality from multiple perspectives. The records comprise an 

authentic representation of work of teaching. When I approached the school 

administrations for consent to collect data, the superintendent or superior authority in the 

administration nominated their “good mathematics teachers.” I did not ask for good 

teachers, rather asked for representative schools of M-East ward and any mathematics 

teachers in those school. The teachers in the study knew that they were nominated as good 

mathematics teachers. Due to this, the teachers were confident in what they did and how 

they spoke to the researcher. They shared how they have been teaching mathematics for so 

many years and how some of the lesson plans are thorough in their heads. They also 
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mentioned how often when other maths teachers are stuck they come asking for advise. 

These teachers spoke a lot and shared a lot.  

Analysis phase I: Identify encoutners to determine content of the interviews. 

The first phase of my investigation began during data collection and involved 

watching and logging the video recordings of the classroom observations and the selection 

of interview clips. My field notes included time stamps from the video recordings, 

descriptions of the class activities, and rough but relatively detailed transcription of the 

teachers’ talk during the enactment of the day’s lesson. I additionally made notes regarding 

the mathematical content of the teaching along with other connected and relevant 

mathematical ideas from established mathematics. These notes were used to identify the 

instances in which the teacher had possibilities of engaging students in potentially 

meaningful learning of mathematics. After the teachers finished teaching the three units, 

we met for the interview. During the meeting, the teacher saw these clips and presented 

their point of view about what is happening in the class. We will see some examples in 

detail.  

This initial analysis of identifying the encounters was the most challenging. 

Identifying knowledge encounters in the practice of teaching was one of the most 

challenging tasks that researchers have also reported on their work. In this study where the 

goal was to identify encounters with the knowledge that the teachers need to teach 

mathematics effectively, began with identifying locations for such encounters within the 

work of teaching. Based on teaching responsibilities given in Ball & Bass (2009), 

delineation of HCK as in Jakobsen et al. (2015) and based on my understanding of the 
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teaching of mathematics, I began with the following list of responsibilities of teaching 

mathematics that would entail examples of encounters with knowledge in classroom 

practice.  

1. Make students intellectually autonomous in mathematics 

2. Break the authority of who can decide the truth in mathematics 

3. Expose students to fundamental practices for engaging mathematically 

4. Make judgments about mathematical importance   

5. Hear mathematical significance in what students are saying  

6. Highlight and underscore key points  

7. Anticipate and make connections  

8. Notice and evaluate mathematical opportunities 

9. Catching mathematical distortions or misrepresentation 

Each of the responsibility listed above, which as per Ball and Bass (2009) also acts, 

as a dilemma of teaching was further segregated into actions of teaching in a classroom 

setting. For example in breaking the authority of who can decide the truth in mathematics, 

teachers’ action would depend on various things: initiating a discussion to validate the truth 

in mathematics by asking questions such as “why it’s true,” hearing mathematics in 

students’ thinking, etc. 

For example, while deciding if a number is prime or not, a student said, “One can 

start dividing with 2, but only needs to go up to half of that number”. This suggestion was 

in response to the algorithm s/he was following. The algorithm involved dividing a number 

(say n) by all the numbers between 2 to n – 1 to check its primeness. Now to notice the 
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mathematical significance and then to figure out, what to do with such a response, one 

requires a combination of understandings.  

• Awareness of the possibility that identifying such pattern is a byproduct of 

the work students were engaged with; 

• Knowing why would going till half of the number would work; 

• Knowing that checking till half is a good strategy but not the shortest; 

• Knowing why √n will give the smallest number of checks for testing the 

primeness of a number; 

• Notice the value of the response and figure out mathematical practices that 

other students can participate in to decide the validity of this response; and 

• Envision the kind of mathematical knowledge students will gain at the end 

of the discussion on the student’s identified pattern.  

This set of understandings combined with the responsibilities of teaching leads to 

teacher actions. In the example above a possible action would be to ask other students 

“what they think about the strategy?” or “is there a way to check whether the strategy is 

correct or not” or “why would such strategy work?”. Said this, the actions will occur only 

if the teacher heard the mathematical relevance of the student’s response and further judged 

it in relation to the objectives of the learning of that class. In the findings section, I list the 

examples of HCK and talk about the core responsibility of teaching from which most of 

the responsibilities are derived and also how HCK addresses this core responsibility. 
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Analysis phase II: Analyzing clasrooms and interview.  

Each video was transcribed for the encounters that were shown in the interview. 

There were 53 encounters in total on which the 13 teachers were interviewed. The 

encounters depended on the instruciton style of the teacher. Some lessons had more 

encounters that i discussed with the teacher and some lessons had less. Thirty of these 53 

encounters were in Marathi or Urdu. These were translated into English. The translations 

needed special care. English is the dominant language in cross-European projects and 

publications (Kushner 2003). According to Temple (2008), "language differences have 

consequences, because concepts in one language may be understood differently in another 

language." This is relevant for research where classroom and interview data is translated 

into English.  The ramification for the validity of moving across languages has gained 

considerable attention in many cross-cultural studies (Squires 2009). Therefore, as 

suggested by Van Nes F, et al.  (2010) specific parameters were maintained concerning the 

validity of the data. Some of those are as follows. 

• The original text was used for analysis and only translated when reporting for 

the readers. 

• I made all the translations with the help of professionals whenever needed.  

• Avoided one-word translation – like using the dictionary word, etc.  

The data in the interview consisted of interview transcriptions and scans of their 

problem-solving work. The analysis was geared towards the initial list of responsibilities 

in teaching that would involve examples of encounters with HCK. As the study planned to 

investigate what encounters are and how they were managed in the teaching, the initial 
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analysis involved looking at work of teaching corresponding to each responsibility of 

teaching.  

The following table lists actions involved in these responsibilities. These actions 

were then mapped on to the classroom teaching of the 13 teachers who are participants of 

the study to generate codes for each teaching action.   

No Responsibilities of teaching that 
involve examples of encounters 
with HCK 

Work of teaching within these encounters 

1 Make students intellectually 
autonomous in mathematics 

• (1)Respond to students 
queries/answers/explanation 

• (2)References for doing 
mathematics 

• (3)Design resources to do 
mathematics 

2 Break the authority of who can 
decide the truth in mathematics 

• (4)Initiating interaction for 
validating the truth in mathematics 

• (5)Validation of truth in 
mathematics 

• (6)References used to decide the 
truth 

3 Expose students to fundamental 
practices for engaging 
mathematically 

• (7)Introduction of practices 
• (8)Valuing practices in doing 

mathematics 
4 Make judgments about 

mathematical importance 
• (9)Valuing a response over the other 
• (10)Preference for certain strategies 

5 Hear mathematical significance in 
what students are saying 

• (11)Hearing students’ mathematics 
• (12)Responding to students’ 

mathematics 
6 Anticipate and make connections • (13)Hear mathematical value in 

students’ responses/ curriculum 
• (14)Exhibit connections with 

vertical and horizontal mathematics 
7 Notice and evaluate mathematical 

opportunities 
• (15)Identify scope for doing 

mathematics within student 
responses and curriculum 
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• (16)Negotiate this scope based on 
the objectives of learning 
mathematics 

8 Catching mathematical 
distortions or misrepresentation 

• (17)Choosing representations/ 
explanations/ materials that support 
learning of mathematical concepts 

• (18)Noticing and addressing the 
distortions within these 

Table 3.3 Teaching responsibiltities and work of teaching 

Detailed analysis of classroom teaching. 

Before we dive into the coding of the teachers’ actions, let us understand more about 

the structure of these classrooms. There are 8 distinct topics that these teachers taught, 

namely: (1) Algebraic identities, (2) Introduction to polygons, (3) Surface area of the 

polygons and volume of cube, cuboid, (4) Triangle and its properties, (5) Circle and its 

properties, (6) Operations on fractions, (7) Word problems on profit and loss, and (8) 

Construction of quadrilaterals.  The number of lessons for each topic is given in the table 

below.  

No.  Title of the topic Number of lessons  
1 Algebraic identities 11  
2 Polygons 3 
3 Surface area of the polygons and volume of 

cubes, cuboids 
8 

4 Triangle and its properties 1 
5 Circle and its properties 2 
6 Operations on fractions 11 
7 Word problems on profit and loss 4 
8 Construction of quadrilaterals 1 
  Total teaching sessions: 42 

Table 3.4: Number of lessons per topic 
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Structure of each teaching session was different for the topics but same for each 

topic across the teachers. This means the way algebraic identities were taught was different 

than the way triangle and its properties were taught. However, each teacher who taught 

algebraic identities had a similar class structure. Two of these lessons will be studied in 

detail in the next chapters.  

In the following paragraphs, I explain, how the process of coding evolved and 

towards the end provide final codes for encounter initiation, their management with kinds 

of knowledeg resources.  Here, is an example of the transcript which shows the initial 

tagging of the text.  

 Tags 
RK: [Shows a bangle] What is this? Raise your hand and then 
everybody answer it at a time. No chorus answer. 

Connecting maths with 
outside world 

RK: What is this? [students raise their hands]  
RK: Yes, Speak.  
GS: Circle (Daira). No consideration of 

dimensions 
RK: What is this?  
Ss: Circle.  
RK: What is this? For what purpose it’s used? Connecting maths with 

outside world 
G.S: For wearing.  
RK: Bangle (Kangan). For wearing purpose.  
RK: What is this? (Shows a metal ring – used to keep water pot) Connecting maths with 

outside world 
(Concretization) 
No consideration of the 
dimensions 

RK: Yes, speak Nasreen Anjum.  
Nasreen: This is the loop to place water pot (vessel)  
RK: To place water vessel upon this. Very good.  
RK: What is this? (Shows loop made of thread)  
RK: Muskaan, speak.  
RK: Say it.  
RK: Praveen, tell me, what is this? Where is it used?  
G.Ss: For cloth.  
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RK: For cloths. We use this to do embroidery on cloths. Teacher completed the 
student’s response 

RK: What is this? (Shows a rubber ring used in pressure cooker) 
Yes. Say Sakeena. 

 

Sakeena: Rubber from cooker.  
RK: Cooker's rubber. Very good.  
RK: What is this? Boys use to play with this. (Shows a wheel). 
Say Samiullah. 

Gender stereotyping 

Not audible.  
RK: Yes. Very good.  
RK: And this? At least everybody knows this? (Shows a CD)  
(Students raised their hands)  
RK: Say, back, Nasreen.  
Nasreen: Cassette.  
RK: Cassette or CD?  
Ss: CD.  
RK: CD. Cassette's CD.  
RK: These are so many things that we saw here. Okay? The 
shapes of all these things are identical to a shape? Which one? 

The concept of circular (but 
not being explicit) 

RK: Yes. No, not all together. Say, Saniya.  
Saniya: Same as circle.  
RK: Same as circle. Na? The shapes we saw here are all same, as 
circle. You will not respond in chorus, not together. Okay? 

Use of the term “circle”  
Definition not given, concrete 
examples used 

RK: So, today we will learn more information about this shape, 
the circle. 

 

RK: Now. Have you brought the color-paper, I asked for? Referred by the teacher as 
“activity-based” 

Ss: Yes.  
RK: Do you have it with you?  
Ss: Yes teacher.  
RK: Take those papers out.  
Ss: Yes teacher, taken out.  
(One student raised her hand to say something – RK did not see 
her.) 

 

RK: After taking out those papers, compass...open your 
geometry box. First, take your compass out. And then, do it the 
way I'm telling you...The way I'm telling you, you shall make 
the circle in that way. 

“I’m telling you”, the 
authority is with the teacher. 

RK: Take some distance between the compass point and the 
pencil and draw a circle like this. (Makes a circle on the board 
using the big compass from the teacher’s math box.) 

Why would this procedure 
give us a circle? Definition? 

RK: Like this, you will make it on your color-paper. Okay? Modeling for what the 
students need to do (modeling 
for making records) 
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(Some students were making circles on the color-paper)  
RK: Now, do this on the color-paper. Done?  
Ss: (one or two students said) Yes teacher.  
RK: Now, take out the scissors and cut the circle. Circle...Cut 
the circle? 

Distorting representation: 
practical concern (cutting 
circle using the scissors is 
difficult) 

Few voices: Yes teacher. (Students find cutting circle using 
scissors difficult and many get a distorted shape) 

 

RK: Now, show me where have put the tip of the compass. 
Show me this way (takes up one girl’s cut-out and holds it up) 

Modeling for what is expected 

RK: (looks across) Very good. What they have made are 
discs and not circles. 

RK: Now, the point at where you have put the tip of the 
compass, I have given a name 'C' to that point. To that point I 
have given the name 'C'. 

 

RK: This 'C', where we put the tip of the compass, that point we 
called as markaz or centre. What it is called? 

Operational definition of the 
centre (what about conceptual 
definition) 

Table 3.5: Sample tagging of the transcript 

This round of analysis made me familiar with the happenings in the class at another 

level than watching the video. It unpacked various levels of exmples, representations, 

questions, etc. that were not noticed while observing the classroom or watching the video. 

The first step of the analysis began with reading the transcript carefully, and highlighting 

the text with tags for its relevance in the current investigation. The tags in the intial coding 

were used on three more teaching transcripts to understand the pattern in encounters. This 

process led to the following table of codes that emerged from the classroom teaching data 

for each teaching actions. These descriptions were obtained by tagging the three classroom 

transcripts. 

Encounter location codes Management Codes 
Code Description of the 

instance 
Postponed/ avoided 
/missed 

Addressed 
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Intellectual 
autonomy 

To make students 
intellectually 
autonomous in 
mathematics 

By making judgments 
about what is 
mathematically 
important in the 
moment 

By giving freedom to 
explore and use the 
mathematics learned  

Mathematical 
Truth 

To break the 
authority of who 
can decide the 
truth in 
mathematics 

The teacher or subset 
of students decide 
whether something is 
true 

The teacher and 
student use 
mathematics to 
verify/find the truth 

Fundamental 
mathematical 
practices 

To expose students 
to fundamental 
practices for 
engaging 
mathematically 

Mathematical practices 
are not mathematics 

Explicit discussion on 
how to do 
mathematics 

Students’ 
responses 

To hear and 
understand 
mathematical 
significance in 
students’ talk 

Acknowledge the 
responses, and deal 
with them later 

Use the responses to 
the advancement of 
teaching or improvise 

Mathematical 
connections 

To anticipate and 
make 
mathematical/ 
integrative 
connections  

Make judgment about 
making connections 
later 

The teaching plan, 
representations 
illustrate anticipation 
of mathematical 
connection 

Mathematical 
distortion or 
misrepresentatio
n 

To chose or find 
mathematical 
distortion or 
misrepresentation 

The distorted 
representation for not 
the concept in 
discussion  

Representations that 
use mathematical 
sense 

Mathematical 
productions  

To guide students 
to produce 
mathematical 
objects that are 
coherent with the 
horizon 

The productions are 
guided by the 
pedagogical or 
managerial constraints 

Logical accuracy is 
considered  

Table 3.6: Initial coding for location and management 

Analysis of interviews involved two major steps. I describe these analytical steps in 

this section. The first step of this analysis required processing the video recordings of my 
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class observations and interviews. The second step involved the coding procedures that I 

employed in my analysis of the processed data that was produced as a result of the work in 

my first analytical step. 

The video recordings I collected during my class observations and interviews 

required processing before I could conduct my multiple case study analysis (Miles, 

Huberman, & Saldaña, 2014, p. 71). I transcribed both the classroom observations and 

interview data using Transana (Version 2.42b-Mac). In this section, I describe the coding 

methodology that I implemented in my analysis of the data. In addition, I also indicate the 

selective decisions in my process to determine the final data I considered for my in-depth 

case study analysis. For my early coding analysis, I utilized a two cycle coding method 

described by Miles, and colleagues (2014) that involves the initial assignment of codes to 

data chunks in the first cycle while second cycle coding involves identifying patterns in the 

first cycle codes. On some occasions, coding categories and definitions determined during 

the earlier stages in my analysis were adjusted during my in depth reviews of examples for 

the case study. 

No Responsibilities and 
dilemmas of teaching that 

involve examples of 
encounters with HCK 

Work of teaching within 
these encounters 

Codes for teaching 
actions 

1 Make students 
intellectually autonomous 
in mathematics 

1. Respond to 
students 
queries/answers/e
xplanation 

2. References for 
doing 
mathematics 

3. Resources to do 
mathematics 

Response:  
Zero – moved onto 
other student 
Evaluated – right/wrong 
Taken up for discussion 

• Textbook says 
• Collective 

understanding of 
maths 
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• Practices referred  
 

2 Break the authority of who 
can decide the truth in 
mathematics 

1. Initiating 
interaction for 
validating the 
truth in 
mathematics 

2. Validation of 
truth in 
mathematics 

3. References used 
to decide the 
truth 

Interaction: 
Not initiated 
Initiated 

• Discussed why 
its true 

• Referred – 
curriculum, 
textbook, 
collective 
understanding or 
teacher to 
validate 

3 Expose students to 
fundamental practices for 
engaging mathematically 

7. Introduction of 
practices 

8. Valuing practices 
in doing 
mathematics 

Doing mathematics 
involves: 

• Speedy 
calculations 

• Accurate 
drawing 

• Remembering 
formulae 

• Using proper 
tools 

• Knowing terms 
• Accurate answer 
• Writing “Steps” 

4 Make judgments about 
mathematical importance 

9. Valuing a 
response over the 
other 

10. Preference to 
certain strategies 

Students 
response/answer 
/explanation is better 
because 

• Better strategy 
• Faster to solve 
• Given in the 

textbook 
• Matches with the 

textbook answer 
5 Hear mathematical 

significance in what 
students are saying 

11. Hearing students’ 
mathematics 

12. Responding to 
students’ 
mathematics 

Students’ responses 
• Forgot the 

maths/formula 
• Didn’t pay 

attention 
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• Relevant for the 
next portion 

• Forgot last year’s 
maths 

6 Anticipate and make 
connections 

13. Hear 
mathematical 
value in students’ 
responses/ 
curriculum 

14. Exhibit 
connections with 
vertical and 
horizontal 
mathematics 

Students’ mathematical 
responses 

• Connect it with 
the mathematics 
they learned or 
will learn 

• Teach shortcuts 
 

7 Notice and evaluate 
mathematical opportunities 

15. Identify scope for 
doing 
mathematics 
within student 
responses and 
curriculum 

16. Negotiate this 
scope based on 
the objectives of 
learning 
mathematics 

Rearranging the 
curriculum 
 
Student responses 
noticed but not 
discussed 

8 Catching mathematical 
distortions or 
misrepresentation 

17. Choosing 
representations/ 
explanations/ 
materials that 
support learning 
of mathematical 
concepts 

18. Noticing and 
addressing the 
distortions within 
these 

Use of material to 
illustrate key concepts 

• Material used 
with drawbacks 

Table 3.7: Teaching actions for the responsibilities 

Here is a sample coding of one of episodes in the classroom. Analysing another 

classroom 
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Name 
(pseudonym) and 
other details of 
the teacher 

Summary 
of the 
class 

Summary of 
the clip 

Transcript (Yellow – 
encounters, Blue – 
management) 

Codes  Notes for 
writing 

Razak Sir, Class 
recorded on 16th 
February 2015. 
Day 1 of the 
recording. 
 
 

The class 
focused 
on the 
topic of 
'Profit 
and Loss'. 
In this 
class, the 
teacher 
tried to 
explain 
how to 
use 
formula 
of profit 
and loss. 
 
Razak sir 
teaches in 
Urdu 
medium 
governme
nt school. 
The girls 
wear 
hijab 
with their 
school 
uniform. 
The boys 
wear 
normal 
shirt and 
half-pant. 
The 
students 
did very 
little 
writing in 
their 
notebook
s and 
often 
volunteer
ed to 
write on 
the board. 

This clip 
covers the 
part of the 
class where 
the teacher 
gave a 
problem on 
finding 
profit. One 
of the girl 
students 
solved it on 
the 
blackboard. 
The 
question that 
the teacher 
asked is as 
follows: 
Saleem bhai 
bought eight 
dozens of 
bananas at 
the cost of 
rupees 
thirty. He 
sold five 
dozens of 
bananas at 
the cost of 
rupees forty-
five and 
three dozens 
of bananas 
for rupees 
thirty-five. 
So, is it a 
loss or a 
profit? 

[Samreen, the girl student 
solving given problem on 
blackboard. She wrote the 
following on the board] 

Answer: 
Cost price = 30 x 
8 = 240 rupees 
Selling price = 45 
x 5 = 225 rupees 
                      = 35 
x 3 = 105 rupees 
Profit = Selling 
price - Selling 
price - Cost price 
[She chose to 
subtract the selling 
price instead of 
adding those.] 
 
105 = 225 -     - 
240 

[She was not speaking 
anything but left blank 
space at the second place. 
She waited for sometime, 
other students were asking 
to interfere, the teacher 
suggested let her take 
some more time] 
Ss: Sir shall I go and do it? 
T: Let us give some more 
time to her. Wait. 
[Samreen was standing 
still without speaking and 
staring at the board. After 
a while, she wrote the 
following below the line 
above 

= 240 - 225 
T: Can't do this? Do you 
think you can do this? 
Samreen: I am solving.  
T: If you can’t solve then I 
will call someone else.  
[Even though the teacher 
said he would call 
someone else if she 

Encounters (M): 
mathematics 
explanation 
1. How did the 

student decide to 
write formula 
for profit? 

2. Why did she 
reformulate the 
formula for the 
profit? [Profit = 
Selling price – 
Cost price] 

3. Why did she 
switched the 
numbers? 

4. Why did she 
decide to 
subtract 15 
(240-225) from 
other selling 
price, i.e. 105? 

Management: 
1. Giving more 

time to the 
students to 
figure out on her 
own 

2. Asking her 
whether still she 
thinks she can 
solve the 
problem? 

3. Asking another 
students to solve 
the problem? 

4. Not 
discouraging the 
student but 
asking her to 
stop trying on 
the board. 

5. Not telling 
whether the 
work done is 
right or wrong. 

Samreen who 
wrote earlier 
225 –   – 240, 
switched the 
places of the 
numbers 
without 
saying 
anything or 
asking 
anything. In 
the beginning 
when she 
calculated the 
cost price and 
the selling 
price, she 
wrote the 
formula for 
profit, giving 
us the 
indication 
that somehow 
she knew that 
it is going to 
be a profit. 
However, 
when she 
wrote the 
expression 
where two 
selling price 
were 
subtracted 
from each 
other, she 
arrived at 105 
= 225 –    – 
240 . This 
expression 
was 
confusing 
and indicated 
that 105 is 
the profit. 
She spent 
some time 
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couldn’t solve, Samreen 
was interested in pursuing 
the problem. She kept on 
looking at the problem and 
was not ready to move 
from the board, she wrote 
the following as her next 
step.] 

= 105 – 15 
[Without saying or 
discussing what is done on 
the board is right or 
wrong.] 
T: Good, good. Now, go 
and sit. Go. Someone else 
wants to solve this? 
Someone here? [Pointing 
to the boys’ sections] 

6. But at the same 
time not 
discussing it at 
all.  

staring at it 
and finally 
wrote this as 
equal to 240 
– 225. So she 
switched the 
numbers, 
why? 
Because 1. 
She realized 
that 225 can 
not be 
subtracted 
from 240 or 
2. She 
realized that 
it is not profit 
but the loss 
situation. She 
definitely 
stumbled 
about use of 
105, but her 
reformulation 
of the 
formula 
indicates that 
she identified 
there are two 
selling prices.  
 

Table 3.8: Sample coding of the transcript 

3.6 Researcher Positioning 

Scholars agree that an essential aspect of qualitative research methodology involves 

the role of the researcher as an instrument in both data collection and analysis (Glesne, 

2006; Patton, 2002; Marshall & Rossman, 2011; Miles, et al., 2014). In this section, I 

address my positioning by describing my background, training, and professional activities 

to establish further the trustworthiness of the interpretations that I have ultimately reported 

in this final report of my research activities. 
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I started working at a research institute in India, where I first began to understand 

the problems of mathematics learning. I began observing teaching in elementary schools, 

where the teachers were using the research-based curriculum developed by the institute. I 

had been teaching the students of grade 9th and 10th, since I was in 10th grade, that is 

almost for 6 years before I joined the research institute. I began teaching to support my 

family, but I started understanding it as a process when I began observing the teaching. 

This was the time when I saw parallels in what teachers were doing and what students were 

experiencing. I used to analyze every students' work through their notebooks in a class of 

60. I did a similar exercise for one more school. We were asked to write a description of 

the analysis, chose the student work that is interesting, and that was the first time I learned 

there is so much mathematics in students' work that is more complicated than what they 

were asked to do. This encounter made me decide that I want to continue understanding 

the process of education. After this particular project, I was part of many projects around 

students‘ learning of number sense, operations on numbers, arithmetic-algebra, fractions-

ratio, integers, decimals, etc. I also became part of a group of teacher educators who share 

these research findings with the teachers, and I understood that teachers were not aware of 

many things that students do or think, like the way I was during my teaching years. 

Teachers' professional noticing seemed an essential component for learning from teaching. 

During these years I also pursued my masters degree in mathematics, which gave me an 

opportunity to see advanced mathematics from the perspective of the work I was doing at 

that time. I started understanding what it takes to do mathematics successfully. I was 

struggling to find generic aspects of doing mathematics, that we need to acquire and teach 
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to everyone who wants to study mathematics. It made me constantly dwell on the question 

of what is mathematics and what it takes to do mathematics. This particular aspect of my 

inquiry got more exposure during the coursework of the Ph.D. program, where we read 

about Lakatos, Poincare, Schoenfeld, etc. and learned from reflections how does one do 

mathematics. This particular sense about mathematics as a discipline, and simultaneously 

thinking about students‘ work, and goals of doing mathematics from students‘ perspective 

made me sensitive about components of mathematics instruction. Specifically, about how 

mathematical ideas can build in the classroom, through students‘ participation. I started 

feeling that many classrooms that I have seen so far never dealt with mathematics, its 

structure or the practices that are associated with it. I wanted to understand the scope of 

this observation, how is it possible that when most schools in India have a maximum 

number of teaching hours spent on mathematics, they are not doing mathematics. 

Therefore, I agree that I came with the assumption that the mathematical discourse in most 

Indian classrooms is inadequate to learn "real mathematics," where real mathematics would 

mean understanding logic beneath the procedure, justifications for the actions, and the one 

that empowers the learner to construct mathematics, to mathematize the situations. One 

more aspect that struck me about mathematics was about its connection to equity in the 

classroom. I realised that the appropriate way of learning mathematics is the way that 

creates access to learn more mathematics. The issue of access to mathematics in a school, 

therefore, is not only concerned with gender or class but more about how a teacher in the 

classroom creates this access. Consequently, it becomes about the nature of mathematics 

presented in the class. While working on this dissertation or asking research questions, I 
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have believed that having that particular sense of mathematics plays a more prominent role 

in mathematics instruction. And this investigation is a product of that specific concern.  

3.7 Limitations 

I conclude this section by listing some of the limitations of this study that have not 

already been explicitly identified above. In particular, I recognize limitations of research 

design and data analysis and how these limitations may impact the extent of validity of my 

conclusions and their suitability for generalization. 

The study uses a multiple case study approach, and that involves, studying cases to 

gain insight into one particular phenomenon. The phenomenon that I was investigating, 

which was to see how teachers encounter and handle the mathematical moments within the 

classroom teaching. Therefore, the study had a direct connection to teachers' knowledge of 

mathematics. Neither did I examine these teachers for what mathematics they know, nor 

for how much mathematical knowledge for teaching they exhibit. The argument that I 

would like to give for this is the purpose was not to see the connection between what these 

teachers knew and therefore could manifest it in their teaching. Instead, it was to see what 

are generic possibilities of such encounters and how teachers manage those. This limitation 

for the research design is more about the perspective one takes towards the data and 

analysis, and not indeed a limitation.  

On the other hand, the second limitation that I think about the data analysis is more 

concerning as it is about the subjectivities in valuing the mathematics instruction. The study 

needed a closer examination, and due to massive amount of data, there are numerous things 

that could be documented. However, this particular noticing in the mathematics teaching 
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is shaped by my understanding of the goals of education and in particular of mathematics 

education. There are other lenses through which this same data could be analyzed; few 

examples are – students‘ out of school mathematical knowledge, the contrast between the 

daily language of communication and mathematical language, intended and enacted 

curriculum, etc. All these would respond to the question of teacher knowledge, but not 

about teaching, its affordances and restraints. The analysis here is guided through my 

understanding of what teaching mathematics is, and that makes the interpretation valid for 

certain goals of mathematics education. 

3.8 Discussing Encoutners and their Management  

Here I narrate two encounters where access to mathematics was denied to students 

mainly because the teacher could not decipher the mathematics in the students‘ response. 

I also provide the teachers’ account of why that might have happened and understand how 

listening to students is filtered through teachers‘ beliefs about the students and their 

learning of mathematics.The following vignettes illustrate encounters where the student is 

denied an opportunity to engage with mathematics.  
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Vignette 1: Triangle of 13 cm. 

The teacher was teaching congruency of triangles. She drew two equilateral 

triangles of 13 cm dimension on the board, whose actual dimension was more than 13 cm.  

Figure 3.3: Triangle of 13cm on black board 

She explained the meaning of congruency as the condition that when two triangles 

when one superimposed, they match exactly. The students then said the corresponding 

sides in the given pair of triangles. After this, the teacher asked students to copy the 

diagrams in their notebooks. She provided a few instructions before the students began. 

They were to make careful use of the scale, of a pencil that has a sharp point and make the 

diagram in such a way that the two triangles will be beside each other in their notebooks. 

All the students began working in their notebooks. The students had a same sized notebook 

that had a plain brown cover with dimensions 18.5 cm x 14.5 cm. One of the boy students 

who had a challenge in fitting a 13cm triangle in his notebook had the following discussion 

with the teacher.  
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S: See my triangle, it is going outside the page 

T: What did I tell you? I told you to make the two triangles beside each other, side-by-side.  

Figure 3.4: 13cm triangle on the notebook 

S: I only made one, but it is going outside of the notebook area. 

T: No, no, that is not the way. Let me show you. [The teacher walks towards the front of the 

class] Who has finished drawing the two triangles? Can I see anyone’s diagram which has 

two triangles of 13 cm, same as what I drew on the board, side-by-side? Beside each 

other?[A girl student raises her hand, the teacher walks in her direction, takes her 

notebook in hand exclaims “haaaa”!] 

T: See this. Everyone pay attention here. See how neatly she drew it. [Teacher is holding 

the notebook up in the air so everyone can see it. In the notebook, there are two equilateral 

triangles, approximately of the length 4.5 cm and labeled as 13 cm. The triangles are 

beside each other.] 

T: She has drawn both the triangle beside each other as I asked. Very good work! Did 

everyone get it? You have to draw those two triangles beside each other. S do you get it 
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now? [S nods] Now everyone finish fast, once you finish drawing, label both the triangles 

as I have done, ABC, PQR, and also write the lengths. See, how I wrote 13 cm on the sides, 

write that. [S erases the incomplete triangle that he has drawn] 

The student here had a legitimate question about mathematics. There was no way 

the two triangles of length 13cm could be fitted in that notebook. However, the teacher 

failed to understand this question. Following questions were asked on this clip [the 

questions were presented in the spoken language and norm, for example, q2 below was 

asked like this “I saw you chose the example of an equilateral triangle of 13cm to talk about 

congruency, how did you think of that?”]:  

1. What did you notice in this clip? 

2. How did you decide the example of an equilateral triangle of 13 cm for 

teaching congruency? 

3. What do you think is most critical to understanding congruency of 

triangles 

4. What was the problem that the student S faced? 

5. Why was that student facing the difficulty in drawing the figures as you 

asked? 

6. What do you think the students in the class are thinking at the end of this 

class? 

While responding to these questions, the teacher still thought that the student was 

not paying enough attention and missed listening to her instruction of drawing two triangles 

beside each other. When probed further about what the student has not understood here, 
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she mentioned about how conditions of students in her class are deplorable and often due 

to lack of sleep; they miss what has been instructed to do.  

    Here, teachers understanding of students state of mind goes tangential to what the 

student is asking. There could have been multiple ways how this question could have been 

taken up only if the teacher has understood what it meant. For example, if one notices that 

the length of the notebook doesn’t permit triangle of such length what all things one might 

do: 

• Open that question to everyone — are there others who are experiencing the 

same problem 

• Discuss with the class, why two triangles of 13 cm side cannot be fitted in that 

notebook 

• Bring out the real question — would this mean we would never be able to draw 

triangles of longer length? 

• Think about ways of representing the triangle of 13 cm 

• Again, can each student represent the equilateral triangle with any dimension 

they want? 

• What implications would that have to the topic at hand — congruency?  

• And the broader concept of congruency that a 13 cm equilateral triangle will 

have the same area and perimeter irrespective of which country or in whose 

notebook it is drawn 
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• And if everyone can have their own 13 cm triangle what implication it might 

have to the real world (landowners' triangle of 13 cm will have more area than 

the laborers'?)  

All these and many more could have been possibilities, but the student who was 

made to refute his idea lost the opportunity to express his mathematical understanding, and 

everyone else in the room lost the opportunity to understand the topic of congruency — 

which was the topic at hand. 

Reading this episode, one would think, what can I infer, if the teacher would have 

noticed the mathematics in the student’s question. For example, if she would have noticed 

that it is the dimension of the triangle that is the issue. Suppose she assumed the student 

was paying attention and therfore his question is a legitimate question about mathematics 

in the class, and the line crossing out of his notebook is because 13cm is too long. What I 

think the teacher would have done here – is to create access to the mathematics at hand. 

There were two kinds of mathematical understanding at hand: 

• She definitely did not draw a 13cm triangle on the board, as that would be not at all 

visible to anyone. She drew something of the length 30 cm. She knew that, as she 

measured it using the whole "foot" scale. So there was the understanding of scale in 

mathematics, which lets one draw very large objects on a very small paper. 

• The second understanding was about congruence. Therefore it was not about getting 

a 13 cm triangle right in one’s notebook, but 13cm triangles worldwide being 

congruent to each other.  
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The scope of creating mathematical access was huge – concept of scale and deeper 

sense of congruency. A student noticing that, and then a teacher noticing the student 

noticing that would have led to access to both these ideas for the entire classroom, and not 

just the girl who herself understood the rules of the game (concept of scaling – in some 

sense). 

 

Vignette 2 : Real life contexts in school mathematics. 

 Punit Sir, is a middle school mathematics teacher and teaches students with diverse 

background, within a low socioeconomic locality. He was teaching profit and loss to the 

students on that particular day. After, a rhetorical explanation of how to decide profit or 

loss in a transaction, he ventured into solving “application” problems. The phrase 

“application” is commonly used to type of problems, where one uses the mathematics 

learned to solve real life problems. He wrote the following problem on the board.  

“Shaila bought something for Rs. 40 and sold it for Rs. 60, then what happened?” 

The students immediately responded in chorus as “profit of Rs. 20”. I got impression 

that, well, the students understood the concept of profit. However, Punit Sir was not happy 

about the chorus answer, he told everyone to speak one by one. He asked Raima to respond. 

As soon as she got up he asked her, what is given in the problem. She was confused for a 

moment, as I think she thought she had to solve the problem. Finally to answer, “what is 

given?” Raima read the question out-loud that was written on the board. May be because 

she thought the “given” is nothing but the problem. The teacher accepted it as an answer 

and re-phrased it as, “yes, what is given to us is the purchase price Rs. 40 and selling price 



 106 

Rs. 60”. Then he called on Shahid, and asked him what the next step would be. Shahid 

couldn’t respond at that moment. What Punit Sir expected from students was, to write down 

the formula for profit. The work expected to have specific labels – the “steps”, a routine to 

arrive at the answer. This routine includes, writing what is given, what is to be found, 

writing down the relevant formula and then actually substituting and solving it. We all are 

exposed to this at least once in our lives. But for the students the problem was already 

solved. Shaila gained profit of Rs. 20. And hereafter the whole confusion started. 

Students at this moment were quiet and listening, maybe they were not sure what 

was expected since they already gave the answer. The teacher then wrote the formula and 

“step-by-step” [formula → substitution → calculation → answer] arrived at the answer as 

“Shaila earned profit of Rs. 20”. Students were happy that their answer matched with their 

teacher’s answer. The teacher continued with the next problem that he narrated orally.  

The students seem to be fond of their teacher; they listened to him patiently. He had 

a certain way of speaking which sounded as if he was telling a story. In the next problem, 

while he was writing on the board, he was also narrating the problem loudly with pauses 

and change in pitch of his voice, making the narration of the problem much more 

interesting.  

“I bought a basket of oranges for Rs. 160. The basket contained 2 dozen oranges. I went to 

the market to sell these oranges. To the first customer I told that the oranges are for Rs. 

100 a dozen. The customer started bargaining and I sold the oranges for Rs. 65 a dozen. 

Did I earn profit or loss?” 
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 This problem was not from the textbook and the teacher made it up at that moment. 

The teacher called Aisha to the board. This time she knew that she was expected to produce 

the steps similar to the ones written on the other side of the board. She wrote the formula 

for profit, and then added 65 two times at the corner of the board (See Figure 3.5) and then 

subtracted the sum from the original purchase price Rs. 160. The teacher did not interfere. 

He let her finish.  

Figure 3.5: Aisha’s work on the board 

After Aisha finished writing, Punit Sir asked her to go back and asked if anyone else 

wants to “correct her answer”. I was not sure whether students understood that the solution 

written on the board was wrong. The teacher also did not point out that what she actually 

calculated was the loss, though the formula she wrote was for profit. It seemed to me that 

the first step of her solution was wrong and therefore there was no discussion on the steps 

that were followed.  

Even though the teacher did not discuss Aisha’s solution, he explained the context 

of the problem again. This time, making the story juicier. He used a lot of gestures to narrate 

how hot the day was when he went to market to sell the oranges, and how he decided to go 

home early and therefore, he sold all the oranges to the very first customer. And, then he 
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asked again, “so what happened?” To which the students responded, “it is actually a loss”. 

After spending a minute working in their notebooks, most of them started saying that it 

was a loss of Rs. 30. But the story doesn’t end here. Punit sir insisted on writing the solution 

of the problem in “steps” and this time the students also needed to notice that they have to 

use a different formula than what was written on the board. Students were quiet again.  

Now what could be the difficulty – the students understood that it was a loss-

problem, they even calculated the loss, and they were also convinced by the context of the 

problem. Still, they were unsure and a little bit confused about writing of the steps. There 

were two more problems and the scenario remained unchanged. Students were able to 

understand whether the situation presented leads to loss or profit, but as soon as they were 

asked to present the solution in steps there was uncertainty and fear to attempt the problem. 

Some examples that they solved together are given below. 

 

Salim bhai bought one bicycle for Rs. 2200. After a year, he sold his bicycle at the cost of 

Rs. 1800.  Find out whether he made profit or loss, and how much? 

 

Reena Auntie bought a TV for Rs. 15400/- and after she decided to move to another city. So 

she sold it to her neighbor friend for 13000/-. Find out whether she made profit or loss, and 

how much? 

 

These contexts due their familiarity made sense to the students. There was even a 

discussion of how a used TV will have reduced costs and therefore Reena Auntie’s deal 
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made sense. Some students raised a concern about the repairing expenses that Salim Bhai 

might have incurred on his cycle, but are not part of the problem. The situations in the 

context were active in students’ thinking about the problems, but the procedural part of the 

solution remained unaffected by this understanding. What were students’ ways to reach the 

answer, and why were they not part of the classroom discourse? And where is the space in 

school mathematics to account for the students’ ways of doing mathematics?  

Punit Sir always asked for a solution of a solved problem. “How did you arrive at 

the answers?” this one question would have given us insight into the students’ steps of 

solving problems. Punit Sir might have his own agenda to push for the steps, but it appeared 

to me that the students’ understanding of profit and loss in each problem was personalized. 

What I mean by personalized is students’ identifying with stories of Shaila, Salim Bhai and 

Reena Auntie, as it was Shaila’s profit for them, and Salim Bhai’s loss but not as an 

application of the general profit and loss formula.  

If context made the students understand the problem easily, it might have also 

played a role in how they solved the problem mentally. Nunes and her colleagues, in their 

work on coconut sellers brought forward some of these alternate strategies. The coconut 

seller in her study did not use the school-like strategy, which is , instead used his knowledge 

of the price of three coconuts i.e. 105 to find the price of 9 coconuts and then added the 

last 35 for the tenth one. Here is a transcript of their dialogue. 

Customer: How much is one coconut? 

M: 35 

Customer: I’d like 10. How much is that? 
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M: (Pause) Three will be 105; with three more, that will be 210. (Pause) I need four more. 

That is…(pause) 315…I think it is 350. 

 

The mathematical work that entails the work done by coconut seller is as follows: 

Figure 3.6: Non-formal way of doing multiplication 

May be in this case method shown in figure 3.6 would have been the efficient way 

of solving the problem, however the logical flow in seller’s response somehow reveals 

much more about his understanding of the mathematics. There are steps in this solution as 

well, but they are specific to this problem. The steps are derived from the inherent nature 

of the problem. In Punit Sir’s class something of similar nature could have been observed, 

but an emphasis on a specific format was a loss for us.  

It is not difficult to be convinced that early emphasis on generalised steps is going 

to be harmful. In Punit Sir’s class with his persistent instruction he made student follow 

the steps, and on the very next day the students stumbled upon the following problem that 

needed a little different method from the general method.  
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Anthony bought 8 dozens of banana at the cost of Rs. 30. He then sold 5 dozens for Rs. 45 a 

dozen and 3 dozens for Rs. 35 a dozen. Find out whether he gained profit or loss, and how 

much? 

I feel that so much energy of teachers is invested into arriving at a general format 

and then to teach variations of the generalised form, that there is very little energy and 

space remained to manage students’ mathematical ideas. I would hope that we facilitate all 

possible ways of doing problems and then abstract the general part of it. Moreover, real-

life contexts have the potential to derive different strategies of calculation as part of 

students’ shared knowledge. I believe as teachers we still need to explore this more.  

During the interview, when Punit sir was asked what he noticed about what students 

were doing when they were answering the problems correctly, especially the initial ones. 

When I asked this question, I was expecting him to say that these students use their own 

methods, but those won’t be useful as the examination requires them to write answers step-

wise. However, to my surprise, what he said suggested that he did not know how they got 

the answers. He also suspected the students might have looked at the answers given at the 

end of the textbook, and just telling those without actually understanding how one arrives 

at the answer. It was particularly surprising to know that the teacher excluded any 

possibility of students' ways of solving the problem. 
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CHAPTER 4 

Horizon Content Knowledge: Case of Teaching Algebraic Identities 
 

The study looks at the mathematics classroom practice in Grade 7 for eliciting and 

unpacking encounters with the mathematics at the horizon. Forty-two such lessons were 

analyzed, that were taught by altogether 13 teachers. A total of 53 encounters in these 42 

lessons were analyzed. As described in the earlier chapters, the encounters were set based 

on the interaction between student – teacher – curriculum and classroom material/media 

interaction. Each encounter identified either involved a question asked by a student, or 

teachers' choice of a representation, or teachers' explanation of mathematical entities. 

These encounters were then showed to the teacher, who were asked a set of questions. All 

the questions for each encounter are given in the Appendix C. Some examples are – what 

do you notice in this clip, why did you gave that explanation, whay did you use that analogy 

or that specific metaphor, etc. In this chapter I present the encounters around teaching 

algebraic identities (AI). Before we dive into the classroom details, I describe the 

mathematical relevance of the concept of AI and how it is situated in the curriculum. 

Further we see how students understand these based on the literature and what is the 

relvance of learning algebraic identities in developing understanding of algebra.  
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4.1 Algebraic Identities in Mathematics Curriculum 

Algebraic identities play an important part in the mathematics curriculum and in 

mathematics in general. Widespread research has been done to elicit and cognize students’ 

errors of equality and of concepts around equality. Researchers report varied conceptions 

of the “=” sign and how that functions in students’ understanding of other algebraic entities. 

Algebraic identities are one of the constructs that students experience in the middle grades, 

where the idea of “always equal” is explicitly introduced for the first time. Said this, not 

much has been examined around the mathematical knowledge for teaching algebraic 

identities. In this chapter, I present an analysis of the encounters with mathematics at the 

horizon while teaching algebraic identities (AI). Out of 13 teachers in the study six teachers 

taught AI. They each introduced the mathematical concept of AI giving some metaphors, 

made use of representations, and connected algebraic identities to application. These cases 

have been analyzed for mathematical explanations, use of representations, coherence with 

mathematical goals and described applications. The analysis shows how identities have 

become different mathematical entities in school algebra due to its preached pedagogy, and 

the explanations and representations used to introduce the concept are situated in the 

concept of algebraic identities through a pseudo—mathematical logic.  

The area of mathematics known as school algebra – and the research base 

accompanying this branch of mathematics education – has focused on forming and 

operating on polynomial and rational expressions, as well as representing word problems 

with algebraic expressions containing variables and unknowns. Freudenthal (1977) 

characterized school algebra as including not only the solving of linear and quadratic 
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equations but also algebraic thinking, which includes the ability to describe relations and 

solving problems in a general way. This characterization of school algebra, remains timely 

today as it covers not only the symbolic aspects of algebraic activity but also the kinds of 

relational thinking that underlie algebraic reasoning. Algebraic reasoning distinguishes 

algebra from arithmetic activity, which is computational in nature.  

There is considerable research on the learning of algebra since the 1970s. By the 

time learning of algebra begins, students are already operational with an arithmetical frame 

of mind, which predisposes them to think in terms of calculating an answer for every 

problem. Learning of algebra requires thinking toward a perspective where relations, ways 

of representing relations, and operations involving these representations are the central 

focus. However, based on the research we know that students have difficulty with 

conceptualizing certain aspects of school algebra, for example, (a) accepting unclosed 

expressions such as 𝑥	 + 	3 or 4𝑥	 + 	𝑦 as answers, and tending to close them as 3𝑥 or 4𝑥𝑦; 

(b) thinking outside of established natural-language-based habits in representing problem 

situations, such as for every professor in the school there are six students as 𝑃	 = 	6𝑆; (c) 

representing and solving of word problems with transformations that are applied to both 

sides of the equation; and (d) failing to see the power of algebra as a tool for representing 

the general structure of a situation. 

Teaching experiments have been designed to explore developing algebraic frame of 

mind among students. Some of the approaches that have been found to be successful 

include (a) generalizing and expressing generality by using patterns, functions, and 

variables; (b) focus on thinking about equality in a relational way and beginning to 
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understand the transformation first in arithmetic expressions; and (c) make use of 

technology as it has synonymous symbolic functionality. These teaching approaches have 

focused on some part of school algebra and respond to students’ learning of that specific 

section.  

Given that the main focus in most of the research in school algebra during the 1970s 

and 1980s was on the learner, and on teaching approaches aimed at improving student 

learning, not much was revealed about the teacher of algebra. From the few reports 

available, one could only discern that, just as with teachers of other mathematical subjects, 

algebra teachers viewed themselves primarily as providers of mathematical information 

and tended to follow the textbook in their teaching. However, a research interest in the 

teacher of algebra and the nature of algebra teaching practice took shape in the early 1990s 

and has continued to this day – research that has begun to deepen our knowledge of this 

domain. Doerr (2004) has stated that research on teacher of algebra tends to fall into three 

areas: teachers’ subject matter knowledge and pedagogical content knowledge, teachers’ 

conceptualizations of algebra, and teachers learning to become teachers of algebra. 

However, according to Doerr, progress in teacher-oriented research has been hampered by 

the lack of development of new methodological and theoretical approaches to effectively 

investigate the practices of teachers of algebra. 

Situated in these challenges, we investigate algebra teaching of six teachers to 

understand knowledge needed to teach algebra. We analyze these teachers’ encounters with 

situations that call for their knowledge for teaching algebra. In this paper a component of 

school algebra – teaching “algebraic identities” is discussed at length. All these teachers 
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who were identified as the best mathematics teachers by their superiors, noted teaching 

algebraic identities as one of the straightforward and easiest units among other units of 

school algebra. The 13 teachers are from three cadres of schools in India – governed by 

state or centre and privately run schools.  

Algebraic identities appear in grade 7 in the Indian mathematics textbooks. Three 

identities are introduced to students in this grade, and they are given here.  

(𝑎 + 𝑏)@ = 	 𝑎@ + 2𝑎𝑏 +	𝑏@,	 

(𝑎 − 𝑏)@ = 	 𝑎@ − 2𝑎𝑏 +	𝑏@, 

(𝑎@ −	𝑏@) = (𝑎 + 𝑏)(𝑎 − 𝑏).  

In this section we discuss what encounters with knowledge of mathematics these 

teachers face when they teach algebraic identities, and how they manage these. To 

understand these knowledge affordances of teaching algebraic identities at the school level, 

we describe what algebraic identities are and, how they are perceived mathematically. We 

further understand its emergence and relevance in school algebra. We present our analysis 

of these cases of teaching with the framework on teachers’ knowledge and knowledge of 

students’ errors in school algebra. Towards the end of the paper we narrate knowledge 

demands for teaching algebraic identities with specifics about knowledge needed of 

mathematics at the horizon.  

4.2 Algebraic Identities as Mathematical Entities 

One of the common misconceptions associated with symbolic notation in algebra is 

the concept of a variable. At present, variable occupies a prominent position in school 

algebra. In early algebra students are introduced to letters as unknown numbers. The 
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understanding of variable is built on this specific understanding of letters as unknowns.  An 

encounter of a different kind happens when the students are introduced to algebraic 

identities. Because that is the first time students are exposed to the equations where 𝑎	and 

𝑏 are not just unknown but could be any numbers from the students’ point of view. The 

variables undergo some operations on both sides where equality is not that explicitly 

visible. The equations students study prior to identities have a numerical value present on 

one of the sides of the equation. And that limits the possible values for the variables used 

in that equations. Table 1 lists the different entities that students learn in school algebra 

and how each of them uses the letter differently.  

Expression 𝑥	 + 	3 

Is an algebraic statement consisting of at least one variable and one 

number.  It has no equals sign and so cannot be solved. 

Equation 𝑥 + 3 = 10 

Is an algebraic statement consisting of an expression and a variable 

(or another expression) separated by an equal symbol. It can be 

solved to find the particular values of the variable for which it is 

true. 

Formulae 𝑎@ +	𝑏@ = 	 𝑐@ or 𝑐 = 2𝜋𝑟 

Relates one variable (letter) to another.  It consists of one variable 

and an expression separated by an equal symbol. 

Identity (𝑎 + 𝑏)@ = 	 𝑎@ + 2𝑎𝑏 +	𝑏@ 
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Is an equation that is always true for any values you choose for the 

variables. 

Table 4.1: Algebraic entities that use letters in school Algebra 

Expressions the way they are defined remain a number affected by the numerical 

value given with in the expression. Formulae actually emphasize the label aspect of the 

letter, where 𝑐 stands for circumference.   

Given this context, we understand that algebraic identities are the first direct 

encounter that middle grade students face with true meaning of variables. In identities the 

equality always holds for any value of the letter numbers. It is doubtful that how much of 

that is conveyed to the students and how much is understood.   

School textbooks are not very consistent in defining "variable" and in learning the 

concept. Sometimes, a variable is described as a quantity that changes or varies. The 

mathematical meaning of this statement is vague and obscure. At other times it is asserted 

that students’ understanding of this concept should be beyond recognizing that letters can 

be used to stand for unknown numbers in equations, but nothing is said about what lies 

“beyond” this recognition. For example, in the National Research Council volume, Adding 

It Up (The National Academy Press, 2001), there is a statement that students emerging 

from elementary school often carry the “perception of letters as representing unknowns but 

not variables” (p. 270). The difference between “unknowns” and “variables” is 

unfortunately not clarified. All this deepens the mystery of what a variable really is, and 

that lack of understanding is apparent while learning algebraic identities. 
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What are algebraic identities? 

The term identity is used in mathematics to indicate that equality is valid for a “large 

set” of numbers of interest. What “large” means will be indicated in each situation and, is 

usually clear from context. There is a debate among mathematicians about what the term 

“identity” precisely means (Wu, 2005). In the following paragraphs we attempt to 

understand what are the identities in school algebra.   

An approximate definition that is commonly accepted is that two given number 

expressions (where letters such as 𝑥, 𝑦… stand for numbers) are equal for every number in 

a given collection under discussion (such as all whole numbers, all positive numbers, or all 

numbers) allowing for a small set of exceptions. Wu (2005) emphasizes that an identity is 

not a precise concept within mathematics, but is no more than a terminology used loosely 

for convenience. In specific situations, there will be plenty of opportunities to discern what 

“the given collection under discussion” is and what the “small set of exceptions” means.  

The assertion that 𝑎𝑏	 = 	𝑏𝑎 is true for all numbers 𝑎 and 𝑏 is an example of an 

identity, and similarly M
N
	± P

Q
	= 	 MQ±PN

NQ
 for all integers 𝑘, 𝑙, 𝑚, 𝑛 provided 𝑙 ≠ 0 and 𝑛	 ≠

	0. The latter identity is one that doesn’t hold for 𝑙	 = 	0 and 𝑛	 = 	0. The stated equality 

M
N
	± P

Q
	= 	 MQ±PN

NQ
 therefore, is true for integers k, l, m, n, as well as for rational numbers 

provided 𝑙 ≠ 0 and 𝑛	 ≠ 	0. There are more examples like this, where equality holds for 

constrained set of numbers. For example, log 𝑥𝑦 = 	 log 𝑥 +	 log 𝑦 is an identity for all 

positive values of x and y.   
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The identities under discussion could be understood from arithmetic computations. 

Consider the computation of the square, 104@	for example. One can compute it directly, 

of course. But one can also proceed by appealing to the distributive law, as follows: 

104@	 

= (100 + 4)@	 

=	(100 + 4) × (100 + 4)	

= {(100 + 4) × 100} + {(100 + 4) × 4} 

=	 {100@ 	+ 	(4	 × 	100)} + 	{(100	 × 	4) + 	4@} 

=	100@ + 2 × (100 × 4) + 4@ 

At this point, it should be possible to mentally finish the computation as 10000	 +

	800 + 16	 = 	10816. These computations are well defined among the laws of numbers 

using distributive multiplication over addition. More than a trick, this idea of computing 

the square of a sum using the distributive law turns out to be almost omnipresent in 

algebraic manipulations of all kinds. It is a good idea to formalize it once and for all. We 

therefore have, in an identical fashion: 

(𝑎 + 𝑏)@ = 	 𝑎@ + 2𝑎𝑏 +	𝑏@, for all numbers 𝑎 and 𝑏. 

A similar consideration, but worth pointing out in any case, is the computation of 

the square of 497, for example. We recognize it as (500 − 3)@so arriving at (500 − 3)@ =

	500@ − 2 × (500 × 3) + 3@. 

And this computation also leads to: 
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(𝑎 − 𝑏)@ = 	 𝑎@ − 2𝑎𝑏 +	𝑏@, for all numbers 𝑎 and 𝑏. 

The identity for (𝑎 − 𝑏)@ can be obtained directly from the identity for (𝑎 + 𝑏)@. 

Since the identity (𝑎 + 𝑏)@ = 	𝑎@ + 2𝑎𝑏 +	𝑏@is valid for all numbers, one may replace 𝑏 

by an arbitrary number −𝑐 to get 

(𝑎 + (−𝑐))@ 	= 𝑎@ + 2𝑎(−𝑐) + (−𝑐)@ 	= 𝑎@ 	− 2𝑎𝑐 + 𝑐@ 

Since 𝑎 + (−𝑐) 	= 	𝑎 − 𝑐 by definition, implies (𝑎 − 𝑐)@ = 	𝑎@ − 2𝑎𝑐 + 𝑐@, and 

since 𝑐 is arbitrary anyway, we may replace 𝑐 by 𝑏 to obtain (𝑎 − 𝑏)@ = 	 𝑎@ − 2𝑎𝑏 +	𝑏@ 

for any number 𝑏. Thus one retrieves the second identity by way of the first. 

The third identity under the discussion could be introduced by a computation of 

another kind: 409	 × 	391	 =? We recognize that 409	 × 	391	 = 	 (400	 + 	9)(400	 − 	9), 

so the same reasoning carries over to any two numbers 𝑎 and 𝑏, so that (𝑎@ − 	𝑏@) =

(𝑎 + 𝑏)(𝑎 − 𝑏). Written in this form, the identity represents factorization of (𝑎@ − 	𝑏@). In 

this case if 𝑎	 + 	𝑏	 ≠ 	0, we can simplify the division as (%
^_&^)
(%`&)

= (𝑎 − 𝑏). 

Historical account of algebraic identities. 

The other account of algebraic identities comes from the history of mathematics. 

Our present ways of doing algebra has only been developed during the last 400 years, and 

some of the problems we solve and methods we use to solve the problems are ancient.  
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Figure 4.1: Abu Kamil’s Solution 

By the end of the 9th century, the Egyptian mathematician Abu Kamil had stated 

and proved the basic laws and identities of algebra. Karpinski (1914) suggests that Kamil 

used geometric representation to find solutions of quadratic equation. These geometric 

representations however indicate an implicit understanding of algebraic identities. Kamil’s 

solution of the equation given by Al-Kho-warizmi, 3𝑥 + 4 = 	 𝑥@, is given in Figure 1.  

He assumes the side 𝑎𝑔 as 𝑥, and the area of the square 𝑎𝑔𝑑𝑏 as 𝑥@. Taking the side 

𝑎ℎ as one and a half units, he then obtains the square ℎ𝑛𝑦𝑏 with the area 4 + (1 ?
@
)@, 

concluding 𝑥	 = 	4. Kamil cites Euclid 1for the validity of geometric representation and 

how 𝑥@ is sum of all the areas inside the square 𝑎𝑔𝑑𝑏. Unpacking this further we see that 

the geometric representation actually uses the fact that 𝑥@ = d𝑚(𝑔ℎ) + 𝑚(ℎ𝑎)e
@
, and 

illustrates the expansion geometrically. In all the six types of quadratic equations as 

suggested by Kamil, he uses this representation and expansion of the identity (𝑎 + 𝑏)@ to 

find values for 𝑥.  

Here, we see that the generality present in the algebraic identities is used in a 

different manner than what we see its usage in the school algebra. In the data presented 

below we see a range of interpretations made by teachers for the rational behind algebraic 

identities and their applications. In statements of equality there is a structural generalization 

                                                
1 Euclid's Elements, II, 6, " If a straight line is bisected and a straight line be added to it in a straight line, 
the rectangle contained by the whole with the added straight line and the added straight line, together with 
the square on the half, is equal to the square on the straight line made up of the half and the added straight 
line." 
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possible, as well as a numerical generalization. We see how different teachers approach 

this differently and its affordances to students understanding of school algebra, specifically 

meaning of variable. We attempt to elicit the implicit meaning of letters taught to students 

and what parts of these statements of equality in reality are understood as general and what 

parts as special. 

4.3 Students Difficulties in Learning Algebra 

For almost four decades, the researchers have analyzed students' understanding of 

symbols and variables in algebra. Many of these research studies cite students' prior 

knowledge about language, arithmetic and their exposure to mathematics as the basis for 

formulation of their ideas about symbols and letters in algebra.  

Stacey and MacGregor (1997) point out that teachers often think that students are 

completely new to algebra. They do not entertain a possibility or consider that students 

might already have ideas about the use of letters. According to Stacey and MacGregor 

algebraic thinking in students begins much before their exposure to school algebra. 

Arithmetic thinking about patterns in number, functions, and equivalence and equations 

forms the foundation for algebraic thinking (MacGregor & Stacey, 1999). The students' 

development of relationship within arithmetic procedure, spatial patterns and number 

sequence all include use of algebraic thinking. 

The students have knowledge of numbers and letters when they begin to learn 

algebra. While learning early algebra students come across letters in place of numbers in 

the expressions. A sudden use of letter creates conflict among children and that makes them 

feel confused or uncomfortable to process necessary information to understand algebra.  
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These letters are also used in many contexts within and outside of mathematics. We 

understand that students bring their own understanding of mathematical context into their 

learning. While they learn and educate themselves through formal schooling, they grasp 

and make few implicit understanding about structures, procedures and concepts. This 

understanding around specific concepts might become their strengths in performing 

various tasks or it could lead them to make certain kind of errors, develop misconceptions 

which might create hindrance to their further understanding of mathematical concepts 

(Stacey & MacGregor, 1997). These diverse ideas from school cultures are sometimes 

based on their previous understanding in arithmetic, from various topics that they learn in 

mathematics and may also stem from languages. Here, we present five prominent 

categories in students' understanding of “letter numbers” that are relevant to our work. 

Confusion with letters and its meaning. 

Algebra is a language where presence of letters in an expression denotes restricted 

meaning associated with it. The letter holds the presence of an unknown value i.e. number 

which will bring out to equate the given expression. Due to this reason, one can say that 

algebra has some limited vocabulary and it is a restricted language (Stacey & MacGregor, 

1997). The letters cannot be used in an expression to write many things. The structure of 

algebra is different from structure of language in the use of letters per se. The letters in 

language can be use to express a lot of things but not in algebra. 

Students’ prior experiences. 

Students' interpretation of letter is often influenced by prior experience. This 

interpretation not only comes from a particular subject but also from diverse and vast 
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exposure of information from various background like society, cultural use of letters to 

represent an idea, formal education, etc. Students tend to look at these letters in various 

forms aligned with their exposure to the use of language, like the use of letters as an 

abbreviations. For example, sometimes abbreviations stand for specific meanings in 

various contexts. Students tend to interprete letters as an abbreviation in algebra as well. 

For example, 'h' is used for height in an expression h + 10. The other idea is to use the letter 

as place value. Students might think the answer as 18 in an expression h + 10, since 'h' is 

the eighth letter in alphabetical order, 8 + 10 = 18 (Stacey & MacGregor, 1997). 

Use of equal sign. 

The restricted and familiar use of 'equal to' sign brings obstacles for students in 

understanding meanings and values associated with letter. Like in an expression a = 28 + 

b, students may attach the meaning of equal sign as the next step to solve the expression. 

It might mean as 'a' is equal to 28 and then add 'b' to it (Stacey & MacGregor, 1997).  They 

might think of equal to sign in an expression as something that “makes” or “gives” the 

other side. It may also be assumed that equal to sign is used to link other parts of 

calculation. For example in a study conducted by Naik, et al (2005), students’ response to 

the following question was studied; 38 + 17 = __ + 16. The initial response of students was 

55. 

Formal arithmetic education. 

The experience of multiple 'step' calculation that students have from arithmetic 

could also become a barrier. Bell (1988) brought forward some of the students' errors in 

algebra. One example would be 3 + b = 3b. Many researchers (Bell 1988 ; Booth 1988; 
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MacGregor & Stacey, 1997) have explained that accepting a “closed answer” is something 

that students are conditioned during their arithmetic training. An arithmetic expression 

when simplified gives one number as answer whereas bringing letters as an unknown 

number could lead to situations where the simplified answer is an expression itself, such 

as 5 + a. 5 + a does represent a number, a number that 5 more than an unknown number. 

However, from students’ point of view it is still a question to be solved and one answer to 

be calculated. Hence 5 + a = 5a is a very common error that students do. Banerjee & 

Subramaniam (2004), further explored the impact of other arithmetic structures on 

students’ work in algebra. They found that some errors such as detachment error, such as  

-3b + 2b = 5b, where the terms are added by detaching the negative sign, or opening bracket 

errors, such as 3 (a + b) = 3a + b where multiplicative distributivity over addition is 

disregarded, were present in students’ arithmetic work as well, and not really the errors due 

to letters in algebra. 

Letter could be one, understanding from school mathematics. 

Stacey & MacGregor (1997) point out that, “a prior experience of formal 

mathematics education might play as an obstacle in algebra learning. They said student 

might assume '𝑥' could be 1 or '𝑥' is just like 1, unless specified. This misunderstanding 

might have come while they learned co-efficients. Often while teaching co-efficients 

teachers say, “𝑥 without a coefficient means 1 like 1𝑥”. This can lead to an interpretation 

that the letter '𝑥' by itself is something to do with 1. There are other possible avenues for 

confusion such as power of '𝑥' is 1, that is if no index is written then 𝑥	 = 	𝑥1 and that 

𝑥0	 = 	1” (p. 309). The emphasis of co-efficients has seen much longer reach in even 
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teachers' understanding of mathematics. Naik (2008) reported that many teachers thought 

7	 × @
f
	and 7	 @

f
 as the same fractions. Their explanation was in algebra when we write 2𝑥 it 

means 2 into 𝑥. Therefore 2. 𝑥	– 	2𝑥	 = 	0, and this implies 7	 × @
f
	– 	7	 @

f
	= 	0. 

These study bring out students' conceptions about letter 'as an unknown' while 

learning algebra and try to highlight students' struggle in making connection from 

arithmetic to algebra while solving patterns. According to Carpenter, Frank and Levi 

(2003), the divide between arithmetic and algebra is artificial as they say, “the artificial 

separation of arithmetic and algebra deprives students of powerful ways of thinking about 

mathematics in early grades and makes it more difficult for them to learn algebra”. Studies 

that tried bridging the concept of arithmetic and algebra have seen some success in terms 

of students learning.  

Among other trajectories for teaching algebraic thinking prior to formal introduction 

to school algebra, Britt and Irwin (2011) proposed a pathway for teaching algebraic 

thinking through several layers of awareness of generality across all topics of mathematics 

curriculum. However, there was not much understanding available about the transition 

from numerical to symbolic computation. One study in the Indian context exhibited a 

teaching experiment bridging arithmetic and algebra. Banerjee & Subramaniam (2008) 

built a teaching trajectory focusing on construct of 'term'. In this trajectory the idea of term 

is brought forward as bridging concept between arithmetic and algebra. The 'term' is 

defined as a number (later also referred as letter number in their study) with + or – sign 

preceding it. For example, +	12 and +	4 are the two terms in the expression 12	 + 	4. 
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These trajectories that initially start with a proposal of arithmetic expressions and later goes 

on to the investigation of algebraic expression as a symbol manipulation (National Council 

of Teachers of Mathematics, 2000, p. 37) are the ones that introduce letter as a variable. 

The analysis in this chapter is around teaching algebraic identities and attempts to 

respond to two specific questions:  

• What encounters do teachers face while choosing representations and explanations 

to teach algebraic identities in school algebra?  

• How do these representations and explanations situate understanding of identities 

as entities of school algebra?  

I will first answer these two questions, and then use these descriptions to discuss 

mathematics at the horizon in the context of AI, and what encounters were observed in 

these lessons. In the following paragraphs, I first present description of teaching across 

these six cases.  The description involves how teachers opened the topic of algebraic 

identity, what logic or representation they used to persuade students of the mathematical 

truth and how teachers understood the role of identities in school mathematics.   

4.4 Teaching Descriptions  

The textbook of grade seven introduces three identities, namely (𝑎 + 𝑏)@ = 	 𝑎@ +

2𝑎𝑏 +	𝑏@, (𝑎 − 𝑏)@ = 	 𝑎@ − 2𝑎𝑏 +	𝑏@, and (𝑎@ − 	𝑏@) = (𝑎 + 𝑏)(𝑎 − 𝑏). These 

identities are labeled as “expansion formulas” in the textbook. The expansion is defined as 

the product of two algebraic expressions. The chapter on identities opens with the 

definition shown in Figure 4.2.  
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Figure 4.2: Opening section on algebraic identities in textbook 

The entire unit on algebraic identities as given in the textbook, is presented in 

Appendix G. In the following three sections we unpack six cases to understand – what the 

teachers mean by algebraic identities, what representations they use to verify or prove the 

identities and what relevance is made for learning of this concept in school algebra. We do 

this unpacking by studying their teaching as well as their own views on these episodes of 

teaching.  

Explanations for algebraic identities. 

The six teachers opened the topic of identities differently. Some of them opened the 

class saying that they are going to learn identities that day, whereas some preferred to 

remind students of arithmetic factorization.  
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Here are annotations from the transcript of teaching on how each teacher opened the 

topic of algebraic identities. Instead of the teacher names, a code for each teacher is used 

here2.  

BoS_D1_0216 

“We are going to study identities today and while studying identities, we will first look at 

the expansion formula. We will work on simple multiplication in expansion formula. 

Suppose there is a multiplication problem (𝑎 + 4)	(𝑎 + 3). How do we do the 

multiplication? (Explains the binomial multiplication, see Figure 4.3.) Like this only, we 

will learn a different type of multiplication. First we begin with	(𝑎 + 𝑏)	(𝑎 + 𝑏).” 

 

Figure 4.3: Binomial multiplication on board 

AM_D2_0318 

“What is identity3, that we will learn at the end of the class today. (Writes 3	 × 	7 on the 

board, and asks what is the operation used. Then takes 8	 × 	4, 6 × 	5, and asks students 

what is the product. She then highlights that 21 is the answer here.) What would be factors 

                                                
2 The non-italic text is added in the annotation is to provide extra information to the reader without 
increasing the text a lot. 
3 Identity in Marathi is referred as Nitya Samanata, which literally means “always equal” 



 131 

of 21? The factors of 21 are 3 and 7 and not 3 into 7. And this answer, like 21 here 

(pointing on the board) is called as expansion in mathematics. And how does one get the 

expansion – by multiplication. What do one has multiply to get the expansion – one has to 

multiply the factors.” 

 

JS_D2_0213 

“We already studied algebraic expressions, and we saw their expansion. In the expansion 

we saw how to multiply one algebraic expression by another. Today also we will study 

expansion of the algebraic expressions, let me tell you the only difference that we will do in 

today's work. For example first expression is 𝑎 + 𝑏 and the second one is also 𝑎 + 𝑏. We 

need to do expansion, the multiplication. Isn't it? Do you notice anything special here?” 

(The students respond the letters are the same and the teacher suggests the expression is the 

same and could be written as (𝑎 + 𝑏)@). 

 

KM_D3_0214 
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“Today we are going to see page number 120, the chapter on Identities (Writes the title on 

the board. Some students say that they do not have the textbook, and the teachers asks them 

to adjust among them, she also corrects the page number and says it is 126 not 120.) In 

front of you (Figure 4.4) there is fill in the blanks exercise. You are going to tell me the 

answers and I am going to write them.” 

 

Figure 4.4: Co-efficient and variable exercise 

RM_D3_0211 

“Listen kids the lesson we are learning today is the 18th lesson (from the textbook) called 

as Identity. Can someone tell me what is the meaning of Identity4? (A student responds that 

it is always equal, permanently equal.) And how can we prove that something is identity? 

How can we show something on the left is identical with something on the right side? What 

happens in identity? (A girl trying to respond, but inaudible to us. Teacher doesn’t consider 

                                                
4 Identity in Urdu is referred as Dayani Masaviyat, which literally means “always equal” 
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the response). See what we are going to learn today is a formula; it is called formula for 

expansion, expansion formula. It is very important because you will use it in your next 

classes as well as when you go to college.”  

 

SM_D3_0227 

“(Writes identity as a title on the board.) Close books and everything and sit straight. The 

term that is written over here (pointing at the board) is identity. Identity means…(makes an 

inconclusive gesture with her both hands). What do you call as an identity? See you come 

to this school, isn’t it? Then what is your identity, when you come to this school? (A student 

said i.d. card.) Id card? Okay. That is the proof that you are the students of some institute. 

Okay. That is the meaning of identity. Identity also means, that you can say it’s the same. 

Suppose, if these two terms are same (𝑎 + 𝑏)(𝑎 + 𝑏), then what will we do. First we will 

discuss the formula how to multiply the two brackets.” 

The six introductions of the concept are different in the metaphors they used, in 

pedagogical trajectory they choose and in the meanings they project of the identity.  

BoS_D1_0216 is not concerned what are identities in relation to expansion 

formulas, and treats them as one concept after the other. JS_D2_0213 takes exactly the 

same approach; by recalling the product of binomial expression students did in the earlier 

class. The interesting difference between the two approaches is that, BoS calls (𝑎 +

𝑏)	(𝑎 + 𝑏) a “different type of multiplication” where as JS_D2_0213 refers to it as a 

“special case”.  



 134 

AM_D2_0318 on the other hand, prioritizes explanation for the meaning of 

“expansion” in mathematics. She specifically mentioned that, “the answer 21 here, is called 

as expansion in mathematics”. She believes that not only the students have to understand 

what expansion means but also in a familiar context – that is the context of numbers and 

not letters. She defines expansion as the process of multiplying two factors as well as the 

product obtained by the process. Interestingly, she is taking the idea of process—product 

duality (Sfard, 1991) inherent to the algebraic symbolism, back to the arithmetic. “21 is 

called expansion in mathematics” and “one has to multiply factors to get expansion” 

indicates how expansion is a product as well as a process in algebraic manipulation. She 

somehow is preparing her students in advance to see 𝑎@ + 2𝑎𝑏 +	𝑏@as not just something 

that have to calculate but an answer for the expansion.  

KM_D3_0214 begins with a fill in the blanks exercise, as a preparation for the 

concept of identities. The list of questions suggest us what she considers as the prior 

knowledge for learning the identities. The first blank to be filled asks for coefficient in 

15𝑀.  The second one asks for co-efficient in 12𝑎𝑏. Interestingly the second blank to be 

filled states, 

• 12𝑎𝑏 –  ___coefficient and 𝑎	 + 	𝑏 variable 

Which is mathematically wrong, as the variable is not 𝑎	 + 	𝑏. What she meant here 

is 𝑎 and 𝑏 both are variables, however in the chart the “and” is replaced by plus sign. She 

doesn’t realize this when she discusses the solution in the class. 

The questions 3, 4 and 6 revise the concept of square, with the sixth question as a 

binomial in arithmetic. The fifth one assumes that there is only one answer.  
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• (𝑎	 + 	2)	___	(𝑎 + 3) What is the sign between the two 

There could be any sign between the two, however the teacher assumes the context 

of multiplication of binomials and expects multiplication as the only correct answer. Again 

while discussing this she does not notice the possibility of multiple answers.  

RM_D3_0211 is the only teacher who asks the question, “How can we prove that 

something is an identity”. She unpacks this question further as “how can one show that the 

right side is same as the left side”. However she does not begin to prove something is an 

identity, but describes what they will learn today is nothing but a formula. Formula is an 

identity in its mathematical sense, but sometimes formulas represent relationship between 

constructs, such as 𝐴	 = 	𝐿	 × 	𝑊. In this case, if there exists a rectangle with length 𝐿	and 

width 𝑊, then the area of the rectangle is 𝐿	 × 	𝑊. Usiskin (1998) notes that in arithmetic 

when two numbers are multiplied a third number is obtained. However, in school algebra 

this single operation may leave different senses. The product could be called as – formula 

(𝐴	 = 	𝐿	 × 	𝑊), equation (40 = 5𝑥), identity (sin 𝑥 = cos 𝑥 ∙ tan 𝑥), a property (1 =

𝑛	 × ?
Q
) and a function of direct variation (𝑦 = 𝑘𝑥). Understanding this delineation among 

senses of the same phenomenon is not obvious, and clearly was not known to any of these 

teachers.  

The metaphor used by SM_D3_0227 was the most complicated among the others. 

She tried to connect identity of a person to bring forward something that is the same. Her 

reference to (𝑎 + 𝑏) and (𝑎 + 𝑏) being the same indicates, what remains the same in 

identity is not obvious. This illustration by SM_D3_0227 opens possibility of different 



 136 

understanding the teachers might have about the identity. The sameness in identity that she 

refers to is of the expression: (𝑎 + 𝑏) and (𝑎 + 𝑏). This also makes us question the 

understanding demonstrated by JS_D2_0213, who calls it a special case and by 

BoS_D1_0216 who calls it a special multiplication.  

These openings suggest that there are two main structural understanding that the 

teachers need to develop. The first is the demarcation between formula, equation, identity, 

property and function, as they all could be represented as product of two quantities. And 

the second is to understand what does identity really mean? What is it that remains identical 

– the value on the both sides and not that the two expressions multiplied are identical.  

Representations for algebraic identities. 

The textbook used by all the teachers, gives the representation given Figure 4.5 as 

an alternative to arrive at the formula.  
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Figure 4.5: Diagramatic justification of the formula 

This diagram is similar to the ones recorded in historical write-ups in algebra, and 

similar to the one we saw in Kamil’s work in the sections above. Here, (𝑎 + 𝑏)@is 

understood as area of a square whose each side is of the dimension (𝑎 + 𝑏). By taking 𝑎	 >

	𝑏, the square is further divided into four quadrilaterals. The two of them are of the area 𝑎@ 

and 𝑏@, and the other two of the area ab. The sum of the areas hence is 𝑎@ + 2𝑎𝑏 +	𝑏@.  

 

Among the six teachers, only one teacher used this representation in her class. 

RM_D3_0211 made this representation in her class along with her students. She first 

calculated (𝑎 + 𝑏)@ = 	 𝑎@ + 2𝑎𝑏 +	𝑏@using multiplication of two binomials. Then she 

suggested her students that there is another way to arrive at this formula. She gave all of 

them a graph paper, and asked them to draw a square of side 8 cm. After all the students 

made squares, she gave the further instructions.    

RM: Here, I have given a name... 𝐴, 𝐵, 𝐶, 𝐷. Give a name in whatever way you want – 

clockwise or anticlockwise. Done? Now, you have learned this, how to find out the area of 

a square on the graph paper. How do you find? 

B.Std: By counting. 

RM: By counting? Very good! Tell me how much is it? 

RM: What does 'Raqba' mean? It means Area, isn't it? Square 𝐴, 𝐵, 𝐶, 𝐷. How much you 

got? Tell me. 

G.Std1: Eight... eight are... 
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G.Std2: Sixty-four. 

G.Std3: Eight, eights are sixty four. 

RM: Eight eights are sixty-four. You counted them? Yes. Sixty-four is correct? 

RM: Sixty-four. What sixty-four? 

Stds: Square cm. 

RM: Square cm. Finished this much? Now, in the square you have made, make one 

vertical and one horizontal line at five cm. Do it. Make horizontal line and vertical line, at 

five cm. Here (pointing in her model) 

(RM showing to different students on their desk) 

G.Std: Made it. 

RM: Good, very good! Okay. 

RM: Yes. Correct. Very good. Now, see... due to this line, in how many parts the square is 

divided? 

Stds: Four. 

RM: Four. Don't say it in chorus. 

RM: How many parts? Four. 

RM: Now, give a number to each part. Number one, number two, number three, and 

number four. Give it in any form. [RM pointed at the pre-made figure she was holding in 

her hand]. 

RM: Now, you have to find out the area of part one. The part one... you have this as part 

one? 

Std: Yes. 
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RM: What shape is this? 

(RM asked them to find the area of each part, and then at the end added 25	 + 	15	 +

15	 + 9 and showed that to be equal to 64) 

In this episode, RM uses the geometric representation, however her justification is 

based on the numerical values. She discusses the case when 𝑎	 = 	5 and 𝑏	 = 	3 and that 

also not explicitly. She never mentions that 𝑎 is 5 units in this case. And therefore, the 

opportunity to extend this representation to 𝑎 could be any number, and the area of that 

square will be square of that number, is missed.  

Using this representation to reveal the process of expansion and equality requires 

multi-layer understanding.  

• The area of the whole is same as the sum of the areas of its parts. 

• The sides of the square 𝑎 and 𝑏 are arbitrary, and could take any value.  

• In this representation	𝑎 and 𝑏 could take only positive values with 𝑎	 ≠ 𝑏. 

• If 𝑎	 = 𝑏 then the representation shows (𝑎 + 𝑏)@ = 	4𝑎@ = 	4𝑏@. 

The work of teaching to make the students understand what identities are – is to 

bring forward the powerful structure of equality, discuss the idea of variable, and even 

contrast these with the equations that are not identity.  

Therefore, while making the choice for representation one would consider such 

factors; the factors that unpack the concept of identity and the logic behind its expansion. 

However, the representation used by the other five teachers, brings forward the visual 

aspect of the identity.  



 140 

 

 

 

 

 

Figure 4.6: Representation of algebraic identity 

All the five teachers used what is shown in Figure 4.6 and called it a representation 

for algebraic identity. In this re-writing of the expression, what they have done is they have 

used different colors for 𝑎 and 𝑏. According to these teachers what this representation does 

is to help students remember what to square and what to multiply. This answer given by 

the teachers contradicts with their earlier answer, where I asked them to describe the 

difficulties student face in learning the algebraic identities. All of them unanimously 

mentioned the following two errors that students do. 

1. The students confuse the sign, especially in adding 𝑎𝑏 and 𝑎𝑏. When either 𝑎 

or 𝑏 is negative, they get confused 

2. The students find it difficult to apply this formula to something of the form 

(𝑎𝑥 + 𝑏𝑦)@, where 𝑎 and 𝑏 are coefficients.  

It is interesting to understand how this knowledge of teachers interferes with their 

choice of representation. The teachers concluded that for the confusion of the signs the 

students need to learn the mnemonics, such as + + à+, etc. On further questioning they 
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said the students still keep forgetting. When asked what they do about it, the teachers 

reiterated how students need to learn the mnemonics.  

Two of the teachers, AM_D2_0318 and AM_D2_0318 suggested a solution that 

they also used in their teaching. According to them the better representation for the 

algebraic identity than the one shown in Figure 4.6 is as follows.  

(𝑓𝑖𝑟𝑠𝑡	𝑡𝑒𝑟𝑚	 + 	𝑠𝑒𝑐𝑜𝑛𝑑	𝑡𝑒𝑟𝑚)@

= 	 (𝑓𝑖𝑟𝑠𝑡	𝑡𝑒𝑟𝑚)@ + 2	 × 	𝑓𝑖𝑟𝑠𝑡	𝑡𝑒𝑟𝑚	 × 𝑠𝑒𝑐𝑜𝑛𝑑	𝑡𝑒𝑟𝑚 +	(𝑠𝑒𝑐𝑜𝑛𝑑	𝑡𝑒𝑟𝑚)@ 

They both said that in emphasizing (𝑎 + 𝑏)@students forget about the co-efficient 

part of the term. The illustration above highlights the structural part of the equality.  

The discussion of teachers’ use of representation above indicates, that the teachers 

perceive some problems of teaching, however they are not aligned with the problems of 

mathematics. The teachers are concerned about students remembering the formula but not 

about what they learned in terms of mathematics from the representation. The justification 

they give for using the representation is not situated within the logic of the concept of 

identity, rather on how the identity looks. Such support that is not aligned with conceptual 

structure of the field is what I am referring as a pseudo-mathematical. A support that just 

looks mathematical. When asked why this structure works, why finding the square of the 

first term, and the second term and the sum of the product of the two terms gives us the 

square of the sum of the two terms, all of them said “it has been working for ages” and 

used numerical examples to show the equality. When they were asked how the 

multiplication in binomials relates to the multiplication the students learned earlier, 

BoS_D1_0216 said, 
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“This is like piece-wise multiplication in arithmetic. There are two terms and we make sure 

that we multiply each term. This is going on for ages, and that is why also this is true. But 

sometimes, students think differently. Somebody who is sitting in the back thinking, that we 

already know 8 x 8 = 64, and then why is our teacher doing this piecewise multiplication, 

when we can actually find the answer directly.” 

The teachers sense the problem of mathematical explanation, either directly or 

through students. What they are not sure is whether these are the questions of mathematics 

and could be discussed in the class or they are the question of the curriculum that somebody 

else needs to discuss.  

Applications of algebraic identities. 

The textbook suggests that the identity or expansion formula learned could be used 

to find the square of certain numbers (See Figure 4.7). Except JS_D2_0213 and 

SM_D3_0227, every teacher used finding square of a number as an application of learning 

the identity. They treated finding 52@as another kind of problem. This is what they said 

precisely. 

“Look at this problem carefully. In all the problems you solved so far there was a number 

with a variable. There used to be some letter a, b, c, or d and then there used to be a 

number. Here it is just the square of a number. And we can solve it like earlier using the 

formula.”(SM_D3_0227). 
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Figure 4.7: Use of the square identity  

In the quote above, SM is phrasing it as a new problem where letters are replaced 

by the numbers. The part to understand that 52 can be represented as a sum of two numbers 

and therefore sqaure of 52 as the square of the sum of those two numbers is a presumed 

equality here. Expanding the number in the binomial form, the students were expected to 

apply the expansion formula to find the sum of the three products. Two products arrived 

from the two squares and one from the middle term of the expansion. Although this way 

of solving involves adding three products, the teachers repeatedly proposed that using the 

identity was “the easier way” to find the squares. None of them explained to the students 

why it was easier, but when asked in the interview, they suggested, “finding squares of 

numbers with unit place as a zero is easier”. The “easier way” claim took some extra 

instructional space, in an interestingly conflicting way. Three of the teachers went on 

explaining other tricks for finding squares that are easier. The tricks involved finding 

squares of the numbers with unit place as 5 and with unit place as 0. See Figure 4.7.  
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BoS_D1_0216 introduced a technique that none of the teachers used. The technique is 

based on the logic of identity expansion; however, he did not realize it and introduced the 

technique as yet another easier way of finding the square.  

“Let us see one more method. Take 96	@, how will you do it, you will multiply 96 by 96. 

But see here, this is just a fun method, take a look. How are we taught, everywhere? We are 

taught to multiply 96 multiplied by 96 (writes on the board simultaenously) and this is how 

we are taught, but it actually is very simple. Say the square of 6 in you mind, 6, sixes are 

36 and nine nines are? 81 (students also say 81 in chorus. He writes 8136 on the board.) 

Write the product of 9 and 6 in the middle. (On the board as follows.) 

8136	

54	

54 

Now add these digits – 6, here 11, 1 carry 1, 12, 2 carry 1, and 8 plus 1 is 9. So 9216. 

This has to be the square. It ought to be.” 

 

BoS_D1_0216 was shown this clip of his teaching in the interview. I asked him 

whether he knows how this technique works. To that he responded, how he has learned 

many techniques over the years, and how he uses those to help the students. Further when 

I asked him, whether the logic of this method is similar to something he has taught, he said 

“not to something that I have taught to these students, but I teach to scholarship students 

and they learned different Vedic methods, and this is like those only.”  
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What this indicates to us is that the teacher is unaware of the mathematical logic 

behind this process. As what the method precisely does is find the square of first term, 

square of the second term and add it to the double of the product of two terms. But 

apparently that is not the end of the story. The problem of knowing the logic behind this 

technique becomes more complicated. One evidence of that is seen when he comes back 

to using the identity for finding the squares of a number after the small detour of “easier 

techniques”, he learns that the students are finding it difficult to add three numbers at a 

time. His suggestion to solve the problem is very similar to the logic he used in the 

technique. While finding the square of 42, he introduces the following representation. 

“You could make a mistake in adding these numbers, so write them to appropriate places. 

1	 6	 0	 0	

	 1	 6	 0	

	 	 	 4	

Draw lines in between the digits and be careful in adding the digits of the same 

placevalue.”  

How different are the two techniques? Just as one adds 54 to 54, one would realize 

the similarity. It is not likely that the teacher did not notice this because it was difficult, but 

perhaps because the teacher was not looking for it. The technique works when different 

numbers are substituted, and that is the dead end of mathematical exploration. The 

understanding of mathematics does not include – an attempt to unpack the logic of 

something or connect the two techniques to understand the logic. The teachers are away 

from mathematical logic in many such small tasks of teaching because they are not looking 
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for it, and because they are not looking for it, they don’t know the logic. The question goes 

back to square one, whether learning to find the logic is mathematics or knowing the logic 

is. It appears that school mathematics is not about either. It is about learning to apply the 

logic embedded in the structure of the identity and not in the concept.  

4.5 Encounters, Initiations and Management 

I defined mathematics horizon as "a projection of mathematical meanings, topics, 

and structures present in the curriculum into the mathematics extending beyond the support 

of the curriculum materials concerning a particular location of instruction, such that it 

enables meaningful learning of mathematics."  The encounter in mathematics is an instance 

that has potential to reach to this horizon, i.e., achieve access for meaningful learning for 

everyone in a classroom. What would be meaningful learning of algebraic identities? 

Would it mean to remember what happens to the first term and the second term? Or would 

it mean understanding the definition of the algebraic identities? There are many questions, 

and this cross-case analysis gave answers to some of these.  

Definition of algebraic identities. 

The textbook (See Figure 4.8) defines identity as “the equality relation in which, the 

left-hand side and right-hand side remain equal no matter what values are given to the 

variables is called an identity.”  
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Figure 4.8: Definition of algebraic identity 

What did we see in these cases of teaching? We saw that algebraic identities were 

not given a general understanding, despite this definition in the textbook, the algebraic 

identity was equated to the identity for a square of a binomial. So the first question is 

whether mathematical entities need definition and what do teachers think about it? 

Mathematical definition highlight structures, and describe those with minimum 

information. Do our mathematics teachers need to know that when we teach mathematical 

objects, we understand their definition and not just their examples? Recognizing that 

learning a definition is part of learning the concept is an example of mathematical 

sensibility – knowledge of norms and nature of the discipline. When the teachers 

introduced identities, this is what I see:  

• Out of the six cases of teaching, in three cases the teachers decided to use the 

defintion of identity. 

• This particular decision presented a challenge in front of them. 
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• The three teachers who decided not to talk about the definition, introduced 

identity as a product of two identical binomials and then giving the 

expansion for (𝑎 + 𝑏)@, which would be giving an example of the identity.  

• These three teachers, never went back to defining the identity, and stayed at 

the level of examples.  

• Soon the examples became formulae. 

• The three teachers who wanted to give a generic definition were stuck in 

their next steps:  

o The teacher who thought identity is like identity card, fumbled upon 

what is identical in identity, and ended up highlighting how two 

binomials are identical. 

o The teacher who understood the definition but was stuck at the word 

"expansion", decided to go back in the domain of multiplication of 

whole numbers and re-define that multiplication as expansion, and 

therefore calling 21 as expansion of 3	 × 	7. 

o The teachers who told her students that when the left side is same as 

the right side, it becomes identical, was stuck at how can she show 

that it remains identical. This is what she said: " Can someone tell 

me what is the meaning of Identity? And how can we prove that 

something is identity? How can we show something on the left is 

identical with something on the right side? " She started with all the 

right questions. But what it means to show equality in the concrete 
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sense – it meant learning a formula. This is how she continues: “ 

What happens in identity? See what we are going to learn today is a 

formula; it is called formula for expansion, expansion formula." 

These instances illustrate two layers of the mathematical horizon. The first was 

about deciding the role of definition in introducing mathematical objects, and second was 

once you choose to use the definition, how do you make sense of it and then persuade 

students to make sense of it. All these teachers used the same textbooks. Each of them had 

an opportunity to create access for meaningful mathematics, and they tried and fumbled at 

different locations.  

Based on algebra education research, the different openings of the concept suggest 

two main structural understanding needed for effective instruction. The first is the 

demarcation between formula, equation, identity, property, and function, as they all could 

be represented as a product of two quantities. And the second is to understand what does 

identity really mean? What is it that remains identical? Knowing multiple meanings of a 

single denotation is part of specialized knowledge needed for teaching mathematics 

efficiently, but the horizon is formed based on this understanding and further building on 

this to make sense of equality within the identities. The problem of inequality also becomes 

the part of this horizon as mathematical norms suggest counterexamples as an extension 

for a meaningful understanding of the concept.  

Noticing variables. 

As the definition of the encounters suggests in this study, one possible encounter 

that the teachers missed was an opportunity to see those letters as variables. RM’s question 
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that how do we know that the left and the right side would always remain the same, needed 

the understanding of those letters as variables. She began with that question, however, 

turned back to the formula. Again when RM started the geometric representation for the 

square of a binomial, she couldn’t use it as verification. She made it into a problem of 

finding sums of areas (See RM’s transcript, p. 149). The reason she was unable to do it, 

because she needed the idea of a variable, to understand the diagram generically.  

The teachers’ use of representation partially illustrated the idea of the variable, but 

it happened without them noticing it. Look at the following illustration that the teacher 

gave: 

(𝑓𝑖𝑟𝑠𝑡	𝑡𝑒𝑟𝑚	 + 	𝑠𝑒𝑐𝑜𝑛𝑑	𝑡𝑒𝑟𝑚)@

= 	 (𝑓𝑖𝑟𝑠𝑡	𝑡𝑒𝑟𝑚)@ + 2	 × 	𝑓𝑖𝑟𝑠𝑡	𝑡𝑒𝑟𝑚	 × 𝑠𝑒𝑐𝑜𝑛𝑑	𝑡𝑒𝑟𝑚 +	(𝑠𝑒𝑐𝑜𝑛𝑑	𝑡𝑒𝑟𝑚)@ 

One could show this but highlight a different explanation, like why the two sides 

could remain the same. Asking students to look at the structure of this and raising the 

question would the left, and the right side will always be equal and why? Interestingly, 

teachers made these colored writings on chart papers, but to remember the formula. Now, 

this particular decision is wholly situated in their teaching experience. In the interview – 

each teacher said, the students forget the formula and therefore they have to emphasize this 

again and again. When I asked them what do they mean by students forget the formula, 

how they know that, these are the responses the teachers gave.  

(2𝑎 + 3𝑦)@ = 2𝑎@ + 6𝑎𝑦 + 3𝑦@	 

(𝑥 + 𝑦)@ = 𝑥@ + 𝑦@ 
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They also shared identities with a negative sign. The question is why students do it? 

Is this solely the problem of identities? Or it is a problem carried from arithmetic structures 

like other errors described in section students' errors in algebra. The point here is that the 

teachers' notice that the students make such errors, their experience is enabling them to 

foresee this particular issue around identities. Although, their experience is not helping 

them why students do this. The teachers' thinking was, students forget, so let us make them 

remember, but why do they forget, that question was not part of their experiential learning.  

I describe in detail, the role of teachers' experience in deciding what to do with 

varied students responses in the last chapter. I define a resource that teachers make use of 

and is called Professional Practice Knowledge. 

 Another perspective through which one could analyze the teachers' actions is the 

perspective of what is understood as mathematical in identities. The teachers were 

concerned about students remembering the formula but not about what they learned in 

terms of mathematics from the representation. The justification they gave for using the 

representation of the area or writing the terms in visually explicit ways is not situated within 

the logic of the concept of identity, rather on how the identity looks. The teachers wanted 

students to learn how the identity looks. When asked why this structure works, why adding 

the square of the first term, and the second term and the sum of the product of the two terms 

gives us the square of the sum of the two terms, all of the teachers said “it has been working 

for ages” and used numerical examples to show the equality. Like what AM did, she 

decided to understand the idea of whole number multiplication. This move by AM exhibits 

her understanding of mathematical practice. She tried using the meaning of multiplication 
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to understand why the expansion works. If multiplication is understood as repeated 

addition, then to understand (a + b)(a + b) one would think that (a + b) needed to be 

added (a + b) times. And therefore, one could add (a + b), a times and then add (a + b), 

b times. Adding (a + b), a times would mean (a + b) × 𝑎 and adding (a + b), b times 

would mean (a + b) × 	𝑏. This same explanation otherwise was given as a heuristic in the 

instruction. AM’s attempt showed interaction with the mathematics at the horizon.  

Access to mathematics. 

In the last section (p.155-158) we saw the work of teaching needed to understand 

the logic behind two techniques. How different were those two techniques? The teacher 

did not notice the logical similarity. Why? When asked he said, "Because one is a technique 

in mathematics and other is mathematics."  The technique works when different numbers 

are substituted, and that is the dead end of the mathematical exploration for a technique. 

The question goes back to square one, whether learning to find the logic is mathematics or 

knowing the reasoning is. It appears the school mathematics is not about either. It is about 

learning to apply the logic embedded in the structure of the mathematics, where the 

structure is seen without its conceptual basis.
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CHAPTER 5 

Encounter with Horizon Content Knowledge: Case of Teaching 

Multiplication and Division of Fractions 
 

This chapter reports on an analysis of in-service secondary teachers’ use of 

representations for teaching multiplication and division of fractions. Out of 13 teachers 

who were part of this study 5 teachers taught the topic of fractions division and 

multiplication. Fractions and its operations is one of the most challenging topics of middle 

school. The teachers used representations, diagrams to make it understandable for students. 

In this chapter, I present what the teachers did with those representations, and then discuss 

the kind of encounters they experienced while teaching operation on fractions.  

For introducing fractions multiplication and division, teachers built upon 

representations given in the Maharashtra state and NCERT textbooks. While doing so, they 

developed mathematical explanations around these representations so that students can 

make sense of algorithms involved in these operations on fractions.  It was observed that 

the teachers knew procedures for multiplying and dividing two fractions; however, they 

encountered a problem with the explanation, especially in connecting procedures with the 

representations. While using a particular model, context or representation to explain a 
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procedure, teachers seem to be looking for parallels to "steps" within the procedure to 

actions in the representation or models they use. The dynamism within the representation 

of multiplication of fractions was conjectured as repeated addition, so the illustration was 

about adding repeatedly. This created conflicting conclusions for multiplication of two 

fractions. With representation for the division of fractions, the teachers built two kinds of 

explanations – partitive and quotitive. However, identifying situations with quotitive 

meanings was not dealt with  an overemphasis on the partitive meaning of division in 

explanations for division by fractions confounded the real understanding of division of 

fractions.  

I first provide descriptions of the teaching, that is summarised in the paragraph 

above and then use the descriptions to understand encounters and teachers' knowledge 

resources in managing those. 

5.1 Fractions Division and Multiplication in Mathematics Education 

Ma (2010) illustrated that inadequate understanding of the procedure impedes 

designing of representations. Although, the teachers in the study showed confident 

knowledge of procedures they still created flawed explanations for the representations. 

Digging deep into the teachers’ mathematical explanations around the representations, 

their meaning-making of students’ responses and choice of teaching trajectory or examples 

indicate that making sense of dynamism within representations (how actions within 

representations exhibit steps in a procedure) and seeing its parallel in the algorithm requires 

a kind of mathematical inquiry that is external to school mathematics. 
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In the upper elementary grades, the emphasis changes from a focus on the additive 

to the multiplicative structure of numbers and relationships. Therefore, the students face 

new kinds of numbers, fractions, and decimals and rely on multiplication for their 

underlying structure. These numbers are useful in making new kinds of comparisons that 

rely on two measures (or more) of phenomena. For example, which is cheaper, 5 kg 

tomatoes for 60 or 8 kg for 90? Simple subtraction will not resolve the issue. A comparison 

taking into account both the quantity and the prices is required. Having two measures, 

instead of one, on attributes that we are trying to compare leads us into the world of derived 

measures (Vergnaud, 1998) that are often per quantities or rates. These new mathematical 

ideas contain intellectual challenges for the students that are as conceptually difficult as 

anything anywhere else in the school mathematics curriculum.  

Many of these mathematical ideas will not reach their full maturity in the middle 

years, but it is in the middle grades that the firm foundation for understanding is laid. 

NCTM (2000) proposes that 

“…it is here (middle grades) that students have time to experiment, to ponder, to play with 

mathematical ideas, to seek relationships among ideas and concepts, and to experience the 

power of mathematics to tackle problem situations that can be mathematized or modeled. It 

is also here in the middle years that the serious development of the language of 

mathematics begins.”  

We are far far away from achieving this level of learning in the middle grades.  The 

study of mathematics involving quantitative reasoning invariably means reasoning about 

mathematics in contexts and representations. Part of what makes mathematics so powerful 
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is its science of abstraction  from real contexts and symbolic representations. To quote 

Lynn Steen (p. xxiii, 1997):  

“The role of context and representations in mathematics poses a dilemma, which is both 

philosophical and pedagogical. In mathematics itself…. context or representations 

obscures structure, yet when mathematics connects with the world, context provides 

meaning. Even though mathematics embedded in representations or contexts often loses 

the very characteristics of abstraction and deduction that make it useful, when taught 

without relevant representation it is all but unintelligible to most students. Even the best 

students have difficulty applying context-free mathematics to problems arising in realistic 

situations, or applying what they have learned in another context to a new situation.”  

Fractions, decimals are topics in the middle grades where often contexts and 

representations are used to convey meanings. We focus on this aspect of teaching 

multiplication and division of fractions and analyze teachers mathematical explanations 

around these representations and contexts.  

This study investigates teachers' encounters with mathematics at the horizon — 

mathematics as a discipline and unpacks teachers’ management of such encounters. In this 

chapter, I report on how teachers make sense of representations used for multiplication and 

division of fractions, internalize them for pedagogical use and how they actually enact 

them, what encounters they face while doing so, and how do they manage these. In the 

following paragraphs, I first summarise students’ conception around division and 

multiplication of fractions and offer a preview of research on teacher knowledge for 

teaching fraction operations. I present the representations given in the textbook and 
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teachers' mathematical explanations around these representations.  I present the encounters 

with HCK teachers face while choosing these representations and how they manage these. 

We conclude by eliciting HCK needed for teaching division and multiplication of fractions.  

5.2 Students’ Challenges in Multiplying and Dividing Fractions 

Streefland (1991) proposed that early teaching episodes can and should be built 

upon realistic mathematics situations and contexts from the students’ actual world. The 

suggestion was based on the thesis that students intertwine fractional ideas as they resolve 

realistic situations. Later, they can begin to use tools such as pictures, tiles, or symbols to 

think about and communicate about the fractional situations. Similarly, Kieren (1993) 

claimed that children build sophisticated knowledge of thought, informal language, and 

images on their ethnomathematical knowledge before making consistent use of 

conventional language, notation, or algorithms. However, Kieren suggested that, as 

needed, students return to prior types of thinking when they encounter unfamiliar or 

perplexing situations. It is not uncommon for students to flow back and forth between and 

among ethnomathematical, intuitive, and symbolic types of thinking. 

The division of two common fractions remains a problematic aspect of children’s 

middle school experiences with fractions (Capps, 1962; Elashhab, 1978; McMeen, 1962; 

Warrington, 1997). The two most discussed algorithms for the division of fractions are 

presented in Table 5.1.   
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Common-Denominator Method Invert and Multiply method 

3	 ÷	
1
4
= 	
12
4
	÷ 	

1
4
= 	
12 ÷ 1
4	 ÷ 4

=
12
1

= 12 

3	 ÷	
1
4
= 3	 ×	

4
1
= 	
12
1
= 12 

Table 5.1: Two algorithms for fraction division 

The results from the two algorithms are mathematically equivalent. The common-

denominator algorithm is based on a familiar definition for the division, whereas the invert-

and-multiply algorithm is based on division’s relationship to multiplication. The common 

denominator algorithm is often accompanied with a diagrammatic representation. See 

Figure 5.1.  

Figure 5.1: Common-denominator methods of division 

The repeated-subtraction definition of the division is familiar to most middle-grade 

students because of their work with whole numbers. To begin the process, students must 

subtract fractions, which requires a common denominator. Then, they must determine how 

many subtractions can be made. To make sense of the invert-and-multiply algorithm, 

students must understand the inverse nature of multiplication and division (an algebraic 

idea) and use it to rewrite the expression. Proofs of the invert-and-multiply algorithm often 

include a foray into complex fractions an even deeper algebraic idea. In contrast, students 
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can rely on whole number ideas for the division to understand the least-common-

denominator algorithm. 

In both these algorithms, I believe that it is complicated for students to comprehend 

the division aspect of the procedure. What does division mean, and what does it mean when 

we say division by fractions? Here, we present a brief overview of students’ errors on 

division by fractions. 

Procedure based errors. 

The most common errors as recorded by Ashlock, 1990 and Barsh and Klein 1996 

are around the invert and multiply procedure. As these rules are often rote memorized 

students invert dividend instead of the divisor, or invert both the dividend and divisor 

before multiplying numerators and denominators. This also indicates that the algorithm is 

seen as a meaningless series of steps, and unconnected with operation of division.  

Hart (1981) reported that students think that division is commutative, and stated ?
@
÷

1 = 1 ÷ ?
@
. When asked how 2 is an answer for ?

=
÷ ?

@
, they responded using invert and 

multiply ?
=
÷ ?

@
= =

?
× ?

@
= 2. When counter questioned with ?

@
÷ ?

=
, they said by 

commutativity it would be 2, and concluded that ?
@
÷ ?

=
= ?

=
÷ ?

@
= 2.  

Interference with division meanings. 

These errors occur from intuitions held about division. Research on the conception 

of operation indicates that students overgeneralize properties of operations in natural 

numbers to fractions (and rationals). Therefore they tend to use the partitive model of the 

division. In this model of division, an object or collection of objects is divided into a 
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number of equal parts. For example, 15 packets of biscuits are shared among 5 friends 

equally. How many packets did each of them get? The three criteria that this model uses 

are as follows: 

• The divisor must be a whole number 

• The divisor must be less than the dividend 

• The quotient must be less than the dividend 

The dominance of this primitive model of the division has limited students' and 

teachers' ability to respond to division word problems (Fischbein, Deri, Nello & Marino, 

1985). Some children argue that it is not possible to divide less among more. (Graeber et 

al. 1983).  

Multiplication of fractions is a deceptively easy skill for students to learn. Often it 

is seen that students have difficulty with every operation on fractions except multiplication. 

In a study conducted by the University of Wisconsin, they found that 18 percent of a 

students’ population could find the sum of ?
@
 and ?

f
, where 75 percent could find the product 

of @
<
 and =

}
. The answer, f

@?
, can be calculated without considering the meaning of either of 

the fractions or of the solution. Therefore, it is more challenging to find what really students 

understand about multiplication of fractions.  

Since students can learn the algorithm for multiplying fractions with little 

conceptual understanding, the instructional goal for multiplying fractions should 

emphasize the interpretation of situations involving a product of two fractions, the 
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modeling of those situations physically or pictorially, and the explanation of why the 

product, for example, <
=
 and @

<
 is ?

@
. 

5.3 Teachers’ Knowledge Needed for Teaching Fraction Multiplication and 

Division 

What knowledge is needed to teach multiplication and division of fractions 

effectively, is a very challenging question. There are very few studies which actually 

address this specific concern. In the seminal work by Deborah Ball in her dissertation and 

its extension study by Liping Ma, pre-service and in-service teachers’ understanding of 

division by fractions was discussed respectively. When asked to make a representation of 

1 <
=
÷ ?

@
, the common response was to make a representation for 1 <

=
÷ 2. In both the studies 

in-service and pre-service, many teachers created a representation of following kind: 

If we have 1 and 3/4 pizza left, and we have to equally split between the two, how much of 

pizza each one would get? 

Some teachers also presented pictures for their representation. For example, the 

teacher Anne explained how she would give two one fourths and two one sixths to each 

person sharing pizza. See following example from Ball (1988):  

Figure 5.2: A teacher's response from Ball (1988) 
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Some of the observations these researchers made about teacher knowledge were as follows: 

• The teachers saw the question as one about fractions instead of about division. 

• The teachers confounded between everyday and mathematical language.  

• The prospective teachers tend to confuse dividing in half with dividing by one-

half, and they did not seem to be aware of the difference. This confusion went 

unnoticed even though the answer they got using algorithm was <
@
  (double of 

1 <
=
) and often their representations got share of each person as }

f
.  

In many instances in the context of Indian teachers, I have seen teachers responding 

similarly. Ma (2010) suggested profound understanding of operations is needed to be able 

to design and use representations. In alignment with Duckworth (1979), a former student 

and colleague of Piaget, she equates profoundness with making connections, building 

multiple perspectives and understanding mathematical ideas longitudinally.  

However, an attempt to make connections — for example connecting ideas of 

division in representation with its algorithm, developing mathematical explanations for the 

representation and its association with the concept are poorly studied. In this study, I 

attempt to throw some light on these aspects of knowledge for teaching division by 

fractions.  

Apart from these, some research has been carried out to see how knowledge of 

students’ ideas and errors, can impact teachers’ knowledge of teaching division by 

fractions. (Tirosh, 2000; Fennema et al. 1996; Warrington 1997). However, we also 
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propose that to notice and understand students’ alternative thinking, teachers themselves 

require in-depth knowledge of concepts and its connection with other related topics. 

Sub-construct theory of meanings of fractions and fraction operations. 

The fractions have five subconstructs as defined by Keiran (1976), which means 

fractions notation could be understood in five meanings. Those five subconstructs denote 

fractions as 

• a part of a whole 

• a ratio 

• a measure 

• an operator 

• a quotient 

Each of these subconstructs emphasis different meaning of fraction notation. The 

part-whole subconstruct is defined as a situation in which a continuous quantity or a set of 

discrete objects are partitioned into equal size parts (Lamon, 1999; Marshall, 1993).  So, 

the fraction represents a comparison between the number of parts of the partitioned whole 

to the total number of parts the whole is partitioned. Through part of a whole meaning m/n 

represents m parts out of equally partitioned whole in n parts. From this definition, the 

numerator of the fraction must be less or equal than the denominator. The ratio subconstruct 

of fractions conveys the notion of a comparison between two quantities; therefore, it is 

considered comparative index, rather than a number (Carraher, 1996). In the measure 

interpretation of fractions, the fraction is seen as a number formed by repetition of units. 
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So in P
Q

, the unit is ?
Q
 and it is repeated m times. In the operator interpretation of fractions, 

they are regarded as functions applied to some number, object, or set (Behr et al., 1992). 

So P
Q

 as on operator, will scale up the quantity m times and scale it down to n times. Within 

the quotient subconstruct, any fraction can be seen as the result of a division situation. In 

particular, the fraction P
Q

 indicates the numerical value obtained when is m divided by n, 

where m and n are whole numbers (Kieren, 1993).  

One of the speculated reasons for the confounding understanding of division of 

fractions is the explicit emphasis on the part-whole meaning of fraction notation. Although 

there has been much research on how to make sense of fractions using different sub-

constructs of fractions, there is not much written about how these different meanings 

impact meanings of operation of fractions.  

Guiding questions. 

In this chapter, I present the analysis of teachers’ use of representations and 

mathematical explanations in teaching division by fractions. The two specific questions 

that will be answered are as follows: 

1. What encounters did teachers face while chosing representation, giving 

explanations to teach division and multiplication of fractions?  

2. How do these representations and explanations connect with each other and 

with the algorithms taught to students? 

In the following paragraphs, I first present what representations are given in the 

textbook, how they are used in the classroom and what mathematical explanations are 
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given to the students. Then I use these descriptions to discuss the mathematical horizon 

and encounters with it.  

5.4 Teaching Operation on Fractions 

Fractions multiplication and division are difficult topics to teach and learn in the 

middle school years. The textbook and curriculum reform in India has been partly 

addressing that. The curricula post-NCF (2005), attempt to be more child-centered and 

therefore include more representations to facilitate child-centered pedagogy. In this 

section, we first present the illustrations given in the textbook, that teachers use to build 

upon. Then we move on to teachers' representations and mathematical explanations around 

those.  

Division and multiplication of fractions in textbook. 

As I mentioned earlier, the representations for division of fractions are given 

through two meanings — (1) repeated subtraction or grouping by finding equivalent form 

of fractions such that the denominators are same and (2) invert and multiply to find the 

quotient.  

The NCERT textbook, uses the former to introduce division of fractions. For 

example to divide 3 ÷ ?
=
, following illustration is used and the question asked is how many 

?
=
 parts do you see?  
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Figure 5.3: Textbook illustration for whole number divided by fractions 

Here, the expectation is that the students count and say 12. Once students are done 

counting, and have arrived at 12, the textbook offers an observation —  

Table 5.2: Textbook algorithm invert and multiply 

What precisely the observation says that 3 × =
?
= 3 × 4 = 12. One needs to note 

here that the two expressions are equivalent as they lead to same answer, till that part this 

derivation works fine. However, why in the first place inverting and multiplying gives the 

same as as equal grouping or repeated subtraction is not discussed here. In the classroom 

episode reported later in the paper, one of the students suggests, that 6 × 2 = 12, and can 

they use that expression to solve this problem. The student’s question creates an interesting 

opportunity for the teacher to clarify why really this specific multiplication matters, but it 

also indicates how that student has noticed the absurdity of this observation.  Later, in the 

textbook a fact is given — “Dividing by a fraction is the same as multiplying by its 

reciprocal." This textbook uses the term reciprocal and then defines it separately. No or 

little attention is given to the meaning of division with fractions and no connections are 

made between division with fractions and division with whole numbers. Each is treated as 

a special case. Since division with fractions is most often taught algorithmically, such 
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representations are a strategic site for examining the extent to which teachers understand 

the meaning of division itself. The Maharashtra or state textbook, uses the term 

multiplication inverse instead of reciprocal, but other than that the logic of moving from 

division by making dividend  and divisor with equal denominators to invert and multiply 

is exactly the same. See Figure 5.4. 

Figure 5.4: Word problem illustration 

And some more similar representations as these are given.  

Figure 5.5: Word problem illustration numerical 
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The teachers in this study worked with these representations. I have identified 

certain gaps within the representations, and when teachers made sense of it, they stuck 

upon these gaps. The following paragraphs describe what mathematical explanations were 

built around these representations to justify the algorithm for division by fractions. 

5.5 Teachers’ Use of Representations and Mathematical Explanations. 

Out of the five cases of teaching three did not attempt to explain what is the division 

of fraction, and therefore did not use any representation at all. They provided the rule 

“invert and multiply” and offered a symbolic justification. During their interviews, they 

described a rationale for teaching only by rule. Remaining two teachers used the exact same 

representation as given in the textbook. One teacher encountered a student question that 

required an explanation for why division by a divisor is the same as multiplication by its 

reciprocal. Between these two, one teacher showed depth in the understanding division by 

fractions and hence used a comprehensive pedagogy and explanation to illustrate the same.  

Concerns with textbook representations. 

During the interview, the teachers were asked about how they make sense of 

representation in the textbook. The three teachers who did not use any symbolic 

representations responded they had no specific reason other than “this is the way I learned 

division of fractions.” However, when asked further Samreen teacher thought that the 

representations given in the textbooks has some limitations, and she describes them here.  

“… the representation given in the textbook is confusing. It changes 1 to @
@
 or 3 to ?@

=
, which 

is confusing for students. Also one can do this only when the first number [dividend] is a 
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whole number. Like, students can use this method for 2 ÷ ?
<
= ~

<
÷ ?

<
= ~÷?

<÷<
= 6, where 

first number is a whole number. But how can they use this method for say <
�
÷ ?

=
?”  

She has understood the representation given in the textbook but has not internalised 

the equal denominator aspect of it. The example she cited is possible to represent using this 

meaning — it  requires both the fractions to be converted into equivalent fractions such 

that they would have the same denominator. The part of the worry would be how to make 

sense when the numerator is a fraction and not a whole number.  

Another teacher was not one of the teachers who actually taught operation on 

fractions in her class. However, she contacted me after I finished the data collection in her 

school. She wanted to discuss the unit operation on rational numbers. At that same time I 

was working with Bhinde sir, so I asked some similar questions to her about representations 

in the textbook. Asmita, mentioned a different limitation than Samreen, but one connected 

to that. She understood that making equal denominators is what is suggested in the 

representation. However, she was not clear why, and also thought that once denominators 

are made equal and if the numerator of the divisor is not 1, then further simplification is 

not possible.  

“…the representation given in the textbook does not make sense. See we make 

denominators equal in addition and subtraction of fractions. We don’t do that in 

multiplication. That is what makes them different. So making denominators same for 

division does not make sense. Also if divisor is not 1, then it is not possible.” 

When prompted to illustrate her claim using an example — this is what she explains. 
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“Okay. I need two numbers. Say 3 ÷ �
}
. Now I have to get 7 as a denominator for 3, like 

they have shown in the textbook. So I get, ummm, @?
}
÷ �

}
. Now I can divide 7 by 7, but how 

to divide 21 by 5. How can the numerator be a fraction?” 

Asmita, has internalized the equal denominator part of the representation, but 

highlights that @? �⁄
?
= @?

�
 would require different kind of convincing with students. Her 

reference to associating equal denominators to operations such as addition and subtraction 

was interesting, where operation is not possible as the size of the unit is different. It also 

indicates that for her the operation of division and multiplication are not connected with 

operation of addition and subtraction. Asmita is the same teacher who redefined 

multiplication of whole numbers when encountered with term "expansion" in the context 

of algebraic identities.  

Bhinde sir directly taught invert and multiply as a rule without giving any 

representation or explanation, he used his own language to state the “invert and multiply” 

rule. It created some confusion in the classroom.  

In the classroom, Bhinde sir said, 

“to do division of fractions, you write first number as it is and you write multiplication sign, 

and you change the numbers in the second number [he used numbers in a number — 

referring to numerator and denominator in the fractional number] and write those next to 

multiplication sign. This is called opposite operation. Then just use the multiplication 

rule.” 
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He did not introduce the idea of reciprocal or the term reciprocal like others, he said 

“change the numbers in the second number”. Many students in this class used completely 

new sets of numbers to replace the divisor and then multiplied with the dividend. This led 

to a lot of repetition of that rule in the class.  

When asked why he said change the numbers, and also did not use the 

representation, he said, 

“Maybe I should have used the word interchange, the numbers in the second fraction get 

interchanged. The representation given in the textbook does not explain this interchange. 

The explanation for interchanging of numbers comes from opposite operations. I think 

because division and multiplication are opposite action, we change the numbers and 

multiply.” 

Bhinde sir has sensed that there is something about multiplication and division being 

opposite operation, but he hasn’t been able to pin point why the interchange works.  

Using textbook representations.  

Two teachers used the exact same representation that was given in the textbook. 

They used the same numbers and mentioned the same observations as presented in the 

textbook to connect common denominator representation to “multiply by a reciprocal” 

representation. The descriptions below will illustrate how the two varied in their use and 

understanding of teaching division by fractions.  

Damini was one of them; she used the same observations as in the textbook. (Refer 

to Figure 5.1 and 5.2). The comment in the textbook mentioned that 3 × =
?
= 3 × 4 = 12. 
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By common denominator method, the answer was 12, by inverting and multiplying too the 

answer is 12. The logic of the argument goes like this — the two expressions are equivalent 

as they have the same value, and untill this part, this derivation works fine. However, why 

inverting and multiplying gives the same value as equal grouping or repeated subtraction 

(common denominator method) is not discussed here.  

In Damini's classroom, one of the students suggested, that as 6 × 2 = 12, they could 

use that expression to solve this problem, he said, “we get the answer 12”. The student’s 

question created an interesting opportunity for Damini, where she could clarify why really 

this specific multiplication matters. She initially responded to that student as one can’t use 

any number that gives the answer 12; and moved on in completing her explanation. But 

after some time she came back to the question, and this is how she addressed that question.  

“The answer is 12. And it has come as in number 3 there are 12 pieces of ?
=
. And we are 

solving the problem 3 ÷ ?
=
, so we want to find how many ?

=
 in 3. Like you do in 18 ÷ 9. 

What is the answer here? [students say 2 in chorus] Two. Because we are finding how 

many 9s are there in 18. How many 9s? [students say 2 in chorus] Two nines. Similarly 

when we divide here by fraction we find how many ?
=
 in 3. Is that clear to everyone? 

[students say yes in chorus] Clear? See when you move on you will see many complicated 

fractions for division, and every time you will not be able to find how many of second 

number in to the first number [pointing at ?
=
 and 3 respectively], so we see that there is 

pattern. The two problems — 3 ÷ ?
=
 and 3 × =

?
 always give the same answer. See we notice 



 173 

that now, we notice it early only. So we can use it in the problems. Therefore, we did 

3 × 4, we did not first decide that we want 12 as an answer, we say that  3 ÷ ?
=
 and 3 × =

?
 

always give the same answer. That is why. Is that clear?”  

This question from the student did create an encounter where the teacher needed to 

respond why 3 × 4. In her interview when asked about this episode she said first she 

thought the student is doing mistake by giving 6 × 2 = 12 as suggestion for answer, but 

she said, she realised a little later that may be he is confused about why do we multiply by 

4. This noticing by Damini5, provided a hint into how she thinks about the representation 

as well as about what students say. This indicated that she did doubt the representations, 

and hence noticed the students' query as not just a wrong answer but as a possibility of 

thought due to the use of representation. To clarify the meaning of division, Damini used 

examples in whole numbers first, and also highlighted the limitation of that meaning with 

fractions.  

How many 𝟏
𝟔
 in 𝟏

𝟐
? 

Parveen, another of the two teachers, was the only one teacher who presented depth 

in her inquiry, and designed teaching aid to illustrate her own understanding. She had cut 

outs of different unit fractions, fractions with denominator one. She is the same teacher 

who used the paper cut-outs for algebraic identity (referred in chapter 4) and cut-outs for 

circle (referred in chapter 3). Look at the following representation used by her. (See  

                                                
5 Damini was also part of another mathematics education dissertation study in 2009. She was intriduced to 
meanings of division and multiplication in that study. She was also part of discussions on meanings of 
fractions.  
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Figure 5.6: Paper cuttinngs for fraction division 

She asked the question how many ?
~
 s in ?

@
 ? Like Damini, but much early in her 

instruction she pointed out that this question is same as the division problem earlier. She 

used a whole number division example, just like Damini to connect with the questions of 

finding how many as a question of division. In her interview when asked why she used this 

teaching aid, she demonstrated a depth in understanding division overall.  

“Division is tricky. We can teach the division in two ways. One of the way is forming 

groups, like forming groups of certain size, like taking a classroom of 56 students and 

making groups of 4. This is a division question. At the same time, you could ask the 

question differently, like making parts. You could ask if I made 4 groups in 56 students, 

how many students would be there in each group? Here you go on dividing…assigning one 

student to each group, that is your process, but the answers to both the questions are 

exactly the same.” 

What Parveen is referring to, is nothing but the two interpretations of the division 

— one is measure understanding and other is partitive understanding of the division. As 

we move on in the number systems we realise that the fractions and rational numbers it is 

always measure meaning of division — as fractions in itself involve a process of division.  
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Parveen spoke a lot about making and using teaching aid, and she showed us how 

she uses various unit fractions to do the same.  

Figure 5.7: Circular discs for fraction division 

Here is one illustration where she is measuring how many ?
?@

 are there in @
<
. When 

asked why does she think the invert and multiply works, this is what she said — 

“Multiplication and division are opposite operations. I won’t be able to prove why they are 

exactly the same, but I know fractions involve division in them and that has to do something 

with it. See if you open the division in fractions you would get something like this, say 

[thinks for a while and then writes]  @
<
÷ <

=
= (2 ÷ 3) ÷ (3 ÷ 4), now division of division 

would mean multiplication, I think [smiles].” 

Symbolic derivation. 

Tope who did not use the representation given in the textbook, provided some kind 

of justification why the division of fractions will use “invert and multiply” rule. Presented 

in Figure 5.8 is a derivation that he used in the interview. He also did these derivations in 
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the classroom mentioning what they learned in the multiplication of fractions. After he 

finished writing the derivation, he asked students to pay attention to step number 3 in the 

derivation. Each expression after the first equal to sign is called as a step for solving a 

problem. This terminology is common to Indian classrooms. He said,  

“if you look at step 3, it is going to be one, and that is always going to be the case as we are 

multiplying reciprocal of the denominator fraction or the second fraction in the division 

problem. That will always be one, and therefore we don’t need to write that. We can just 

write the expression in the top — <
=
× ~
?
 to find the answer. So students only need to 

remember invert and multiply.” 

Figure 5.8: Symbolic derivation 



 177 

I was not sure whether students understood the derivation at all, but he did. When I 

asked whether he can use algebra to show that this will be true for any two fractions, he 

immediately said yes, but did not present any algebraic derivation.  

5.6 Encounters, Initiation and Management 

Each teacher who was part of these cases had given some thought about the division 

of fractions. I realized during the interview, that fraction division was treated much more 

seriously than say, algebraic identities. All of them agreed that operation on fractions 

requires "special teaching." What they meant by this was some preparation from their side 

is needed before they teach this topic. The representations in the textbook is a recent 

change. The teachers said earlier there were no pictures for the common-denominator 

method, and one teacher said the technique of common-denominator was not in the 

textbooks previously. The teachers showed a lot of interest in talking about fractions. There 

were some teachers who also contacted me after the data collection was over (like Asmita 

mam), and my colleague went and observed their classes, after the data collection was over. 

These efforts from them gave me the impression regarding how serious they are about the 

topic of division by fractions.  

While teachers worked through the teaching and interview, I observe some 

encounters that they faced and managed. In the following paragraphs, I describe these and 

illustrate their knowledge resources while managing those.  

Making sense and connecting of generic aspects of representation. 

The two representations given in the textbook gave the teachers an opportunity to 

explain the meaning of division. Especially the common denominator method, where the 
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diagram used by the textbook, and various teaching aid designed by Parveen mam involved 

measuring one fraction with another. The teachers who use it thought it explained the 

meaning of division to the students, and those who did not use it said that it only added 

complexity – as each fraction needed to be re-written with its equivalent form. It seemed 

each of them understood the representation. Said this, I am not sure whether any of them 

followed the generic aspect of the representation. When Asmita and Samreen pointed out 

issues with the representation, they identified the symbolic complexity of it, and also a 

glitch that Asmita pointed out.  

“Okay. I need two numbers. Say 3 ÷ �
}
. Now I have to get 7 as a denominator for 3, like 

they have shown in the textbook. So I get, ummm, @?
}
÷ �

}
. Now I can divide 7 by 7, but how 

to divide 21 by 5. How can the numerator be a fraction? “ 

She notices that @?	÷�
?

= 	 @?
�

 requires an explanation, and may be she is not aware of 

that but, she knows that it requires an explanation. However, the process internalized in the 

representation was not generalized by any. The process demands to measure one fraction 

by another. Even though the teacher said how many 9s will make 18, and it had the notion 

of measurement implicitly present in it, they did not quiet generalized the same with 

fraction division. What does it mean to measure a fraction by another fraction? What if the 

dividend fraction is smaller than the divisor fraction – what does that mean? So even though 

they said the common denominator method explains the meaning of division, they relied 

on whole number examples to illustrate that. An instance like how many halves are there 

in a quarter was at the horizon of this specific meaning of definition by fractions, but it was 
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never referred or thought about. The generic structure present in the representation is part 

of the horizon. The teachers' frustration about the representation indicated they did not have 

access to it and hence gave explanations like this.  

“Like you do in 18 ÷ 9. What is the answer here? [students say 2 in chorus] Two. 

Because we are finding how many 9s are there in 18. How many 9s? [students say 2 in 

chorus] Two nines. Similarly when we divide here by fraction we find how many ?
=
 in 3. Is 

that clear to everyone? [students say yes in chorus] Clear? See when you move on you 

will see many complicated fractions for division, and every time you will not be able to 

find how many of second number in to the first number [pointing at ?
=
 and 3 respectively], 

so we see that there is pattern.” 

The teacher is valuing the patterns that she observes as mathematical, and seems to 

be saying that one also gets an answer by "invert and multiply." Using common 

denominator method is not possible for all kinds of fractions so that the students can use 

"invert and multiply". So the gist is – the meaning of division is to find how many second 

number in first, but the meaning cannot be used every time, so there exists an algorithm 

that gives the same answer as what one would get using the meaning of division. And as 

it’s seen working for number of examples, it should always work. This is where the access 

ends, what is "invert and multiply," it is a procedure? Does it have a meaning? Why does 

it work in the division? If it's because of the opposite nature of multiplication and division, 

would something similar work in multiplying two fractions too? All these questions form 

the horizon of mathematics for this topic.  
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Encountering mathematics in students’ question. 

The student’s remark that 12 is also the answer to the problem 6 times 2 was initially 

disregarded by the teacher (refer to Damini’s episode), as "you can’t use any numbers." 

However, later the teacher came back to that query – although not explicitly referring to 

that student, but she connected the mathematical query that the student raised. She 

responded that not only in this particular problem but in any problem, the number of times 

the second number (divisor) is present in the first (dividend) is the same that they get after 

doing the invert and multiply algorithm. This was not a proof, but the teacher allowed the 

possibility that the way connection is presented in the textbook – "they have the same 

answer so the algorithms must be equal“ could have contributed to the student’s confusion. 

This sensitivity from the teacher shows that she could manage the encounter more 

productively than "you can’t use any numbers," because, somewhere she has noticed the 

incomplete nature of the connection between the two representation given in the textbook. 

This is an important acknowledgment, where the teacher knows what textbook 

claims as the explanation of the algorithm is actually not. And she adds into that the pattern 

seen after doing many examples would justify the algorithm. Interestingly, I can not 

conclude whether it was that she always noticed the two representations were unconnected 

– at least are not explanations for each other, or she sensed that when the student made the 

remark. 
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CHAPTER 6 

Conclusion, Implications and Limitations 
 

Teaching mathematics at the middle grades level is a complex task, and it requires 

specialized knowledge of mathematics. My motivation for this study was to investigate the 

role of teachers’ mathematical sensibilities in the practice of teaching. In particular, 

following research questions guided the inquiry behind this dissertation. 

 

1. What  kinds of “encounters with HCK” arise in classroom teaching? And:  

How do teachers manage them?  

2. How are students’ opportunities for learning shaped by teachers’ encounters 

with HCK?  

3. What kind of mathematical knowledge do teachers exhibit while navigating 

encounters with HCK? 

 

In order to address these questions, I drew on the construct of horizon content 

knowledge, and defined the mathematical horizon as the projection of the mathematics in 

the curriculum to the mathematics extending beyond the supports of the curriculum 
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materials for a particular location of instruction. In particular, throughout these case 

studies, I have attempted to highlight the knowledge that teachers utilized as they navigated 

the mathematical territory. 

In this chapter, I discuss the broader conclusions of my analysis, implications, and 

recommendations for future research. However, before I begin those discussions, I would 

be remiss if I did not also honor the teaching practices that my participants skillfully 

exercised over the duration of this study, particularly during those moments when faced 

with mathematical ideas in the curriculum or students responses. I begin my discussion of 

this study’s findings, therefore, with some observations about the educational context in 

India and the participants’ noteworthy teaching practices. 

6.1 Educational Context in India 

Indian students perform particularly low in accepted measures of mathematical 

skills. In a comparative study on mathematics achievement for 8th grade students among 

79 countries  (PISA, 2009), India ranked 78th, almost making it to the end of the list. India 

has struggled with issues such as school enrollment, basic literacy and sustainability in 

schooling since its independence. Therefore, the Indian government has taken many 

initiatives to bring every child into the school6. According to the 10th Annual Status of 

Education Report (ASER, 2014) now 96% of the child population between the ages of 6 

to14 is entering the schools, but 73.1% of these students can neither perform the calculation 

as expected in the procedure nor apply the conceptual understanding to any real-life 

                                                
6 Different initiatives for quantity in education 
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problems. These results are significantly similar, and fairly independent of the medium of 

instruction (vernacular or English) and the setting (rural or urban) of the school. In a way, 

the resources and focus are exercised more on quantitative aspects of the education but 

sideline the efforts for quality in education.  

For almost a decade now the educational community in India is voicing concerns 

about the poor quality of Indian education. Documents such as National Curriculum 

Framework (NCF, 2005) and National Curriculum Framework for Teacher Education 

(NCFTE, 2010) went through huge democratic iterations, consolidating the voices of 

teachers, students, teacher educators and parents. These documents show that the existing 

ways in which the students’ learn mathematics constitute a root cause for weak quality of 

their learning. Out of the six vision statements envisioned for students’ learning in the 

position paper on mathematics education in NCF 2005, three focus on mathematical 

problem solving and practices. Expectations include that children be able to pose and solve 

meaningful problems, use abstractions, perceive relationships, see structure, reason, argue 

the truth or falsity of statements, and understand the basic structure of mathematics. By 

pointing out the abstraction, relationships, basic structure and connectedness in 

mathematics, these vision statements are pointing to the nature of mathematics.  This is 

different from the existing focus in mathematics teaching, which is on computation, 

procedures and remembering formulae. However through the research in reform 

mathematics education, we know that a reform such as this could be brought in the 

classroom only when the teachers’ knowledge of mathematics for teaching and their views 
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about nature of mathematics are aligned with the reform (Kennedy 2009, Ball & Cohen, 

1999; Cohen, 1993) 

6.2 Local Precision and Pedagogical Simplicity 

Although some problems of teaching are identified, one of the challenges seems to 

be the ability to understand and transact the new vision in actual teaching. One needs to 

investigate what our teachers think and believe with respect to these reforms in education. 

Do they themselves consider posing and solving meaningful problems or using abstractions 

or perceiving relationships and structure is part of doing mathematics? The research in 

teacher knowledge is dealing with some of these concerns in order to determine what 

knowledge of mathematics teachers need to teach mathematics. It is generally agreed that 

teachers need to know more than simply how to "do the math" at a particular grade level.  

The analysis of the classroom teaching demonstrated how prevalence of teaching 

that emphasizes procedures leads to inconsistent mathematical experiences for students. It 

was seen that, frequently, teaching of one specific procedure ignored a range of cases, and 

was disconnected from students’ prior experiences. Pedagogical simplicity was achieved, 

as a particular form of mathematical precision is valued in one context and not in other, at 

the cost of inconsistency. For e.g., precision for constructing geometrical shapes was the 

focus when the lesson was on construction, whereas in the lesson on congruency “similar 

looking triangles” was considered as enough. When students pointed out such 

inconsistencies, they were asked to focus on the current context. Furthermore, it was seen 

that the justifications for the procedures were “non-conceptual” and “perceptual”. For e.g., 

often as justification for a computational ”shortcut”, the teachers said “square of zero is 
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two zeros”, which comes from identifying the pattern in squares of numbers [20@ =

400, 40@ = 1600, etc.], but it does not explain the conceptual part, that is, adding zeroes 

at the end is actually changing the place value of the digits to the left.  

These accounts of teachers’ mathematical sensibilities that emerged from analysis 

of their teaching, points to the choice of perceptual mathematics [patterns, rules, etc.] over 

the conceptual mathematics [why these patterns/rules work]. The perceptual mathematics 

with lack of conceptual understanding creates inconsistent learning experiences for 

students, leading to confusion and a view of mathematics as being arbitrary. 

Perceptual vs conceptual maths. 

A critical aspect of learning to be an effective mathematics teacher for diverse 

learners is developing knowledge, dispositions, and practices that support building on 

children’s mathematical thinking, as well as their cultural, linguistic, and community-based 

knowledge. This kind of research has linked teachers’ understanding of children’s 

mathematical thinking (e.g., strategies, conceptual milestones, and common confusions) to 

productive changes in teachers’ knowledge and beliefs, classroom practices, and student 

learning (Carpenter et al. 1989; Fennema et al. 1996). Other research has argued that 

teachers need to understand how children’s funds of knowledge—the diverse cultural and 

linguistic knowledge, skills, and experiences found in children’s homes and 

communities—can support children’s mathematical learning, particularly for historically 

underrepresented groups (González et al. 2001; Ladson-Billings 1994). 

Attending to younger ones, and listening to them seriously is managed differently 

in different cultures. However, when it comes to learning in classrooms attending to 



 186 

students is frequently equated with bringing closure to students’ queries and doubts. In the 

Indian context, it is common to see how teachers worry when students ask any question in 

front of a superior authority. A teacher who opens up that question for other students is a 

rare occurrence and often seen as “not responding” to students. We complicate these 

conceptions, unpacking specific practices that teachers acquire in the classroom around 

listening to students, and illustrate how certain practices are barriers in creating equal 

access in a mathematics classroom.  

Equity in instruction. 

By defining the horizon and the encounter with the horizon a call is made for 

mathematical knowledge needed for equitable instruction. By analyzing classroom 

teaching and identifying encounters — where students have asked meaningful questions or 

have made meaningful comments, and are still denied the access to potential mathematics 

that exploration of those questions could have led to. The denial of access in all these 

encounters was not because the teacher did not have time to attend to these questions and 

comments, or not because they were irrelevant to the discourse of the classroom, but 

because the teacher did not notice the mathematics in those questions.  

I analyzed instruction in grade 7 mathematics classes to elaborate on aspects of 

being able to listen to students. I distinguish hearing from listening, where the latter 

involves a meaningful hearing. Irrespective of the teacher being gender fair and alert in 

giving equal opportunities to her students, NOT hearing them constrains students’ access 

to meaningful mathematics. Such denial of access also has dangers of developing deep-

rooted pseudo-mathematical ideas. 
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Teachers' work with students in individual classrooms is at the core of any program 

designed to attain equity for all students. However, teachers do not and cannot work in 

isolation to accomplish broadly conceived goals for equity in mathematics education. 

Administrators, teacher educators, researchers, and policymakers must all understand the 

issues, take the initiative, and commit to supporting students and teachers in a collaborative 

effort to address the complex issues involved in achieving mathematics for all.  

A definition of equity is an essential starting point and can lead to a different 

understanding of equitable instruction. My definition begins with the premise that all 

students, regardless of their class, gender, community or language proficiency, will learn 

and use mathematics. A second premise is that all the people who are involved with the 

education of children must become aware of the social, economic, and political contexts of 

school education that can either hinder or facilitate learning of mathematics for 

underrepresented students (Apple, 1992). Equity in mathematics education requires: (a) 

equitable distribution of resources to schools, students, and teachers, (b) equitable quality 

of instruction, and (c) equitable outcomes for students. Equity is achieved when differences 

among subgroups of students in these three areas are decreasing or disappearing (Hewson 

& Kahle, 2001).  

National Curriculum Framework (2005) and National Curriculum of Teaching 

Standards (1989; 2009) both ensure that all students are afforded high-quality instruction. 

As Allexsaht-Snider and Hart (2001) said, “Teachers’ knowledge of mathematics, their 

preparation to teach mathematics, and their beliefs about and skills for teaching diverse 
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students are all aspects of equitable instruction” (p. 94). Therefore, there are ways though 

which one can approach equity in classroom instruction.  

In the example of the triangle of 13cm, a girl student who figured out the rules for 

the game in the class drew two tiny equilateral triangles with a measure of the side as 

4.5cm. She labeled them as 13cm. I am not sure whether she had any idea of "scale," but 

the student who noticed that 13cm triangle could not fit on his tiny notebook was denied 

this understanding. And every student was denied the broader sense of congruency, where 

the triangle of 13cm, would be congruent to itself, no matter on which notebook it is drawn 

or in which country it's drawn.  

6.3 Observations from Teaching Practice. 

One of the notable aspects of teaching practice demonstrated by all the teachers 

during their encounters with the mathematical horizon was their focus on steps and 

procedures involved in obtaining correct answers. Therefore, the horizon encounters I 

observed in this study were typically present in choices teachers make of examples, in 

accuracy and in justifications they provided. As researchers attest, teaching involves 

respecting children as mathematical thinkers (e.g., Ball, 1993; Carpenter et al., 1996). All 

the teachers in the study made decisions about representations out of their motivation to 

support their struggling students and to provide them with meaningful and accessible 

mathematical experiences. Throughout the study, I observed that teachers demonstrated a 

desire to provide their students with diverse learning experiences. While not explicit in my 

analysis of the cases described in Chapters 4-5, the teachers encountered the horizon when 

they left the exact text of the curriculum by making modifications to the lesson in order to 
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provide their students with additional, kinesthetically oriented activities. For example, 

when Ms. Asmita tried to teach the meaning of algebraic identity to students, she decided 

to talk about factors and how the product of factors is an expansion similar to the identity. 

What she was trying to say that, as 3 divides 21, and 7 divides 21, we know that 3 and 7 

are factors of 21. Perhaps she also meant that 3 times 7 is equal to 21, it's like a fact. But 

what she ended up telling the students was that “factors are the same as the expansion.” 

This is how her board looked.  

 

Identities 

Operation |= Multiplication 

3	 × 	7 |= 21 

8	 × 	4 |= 32 

6	 × 	5 |= 30 

 

21 is answer of what two numbers? 

3 and 7 

∴ so factors of 21 = 3 and 7 

The factors we obtained are called expansion in mathematics 

 

Figure 6.1: Factors on blackboard 
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So the point I am trying to make here is that every occasion which was meant to 

transform the curriculum in an understandable set of instruction included some encounters 

with the horizon. It was prejudiced by what teachers assumed students know, but it was 

more about what structural similarity the teacher observed in the mathematics of that 

specific topic or definition. The teacher thought the identity is expansion and expansion 

means multiplication. It is hard to pin point this as right or wrong, but what it elicited was 

what structure the teachers perceived.  

There were encounters that arose due to what they perceived as “student-centered” 

reading of the curriculum, and there were also encounters that arose due to their 

“curriculum-centered” reading of students’ responses. For example, in one of the classes, 

Bhinde sir was teaching about finding the volume of a cube – a straightforward formula. 

He also explained why do we find the cube of the side to find the volume. The term for 

volume in Marathi is ghanaphal, where ghana means cube, the word literally means 

“answer when we find cube (raise to 3)”. The explanation for finding the cube of the side 

in the formula was given like this. 

“When we say square we multiply sides 2 times, when we say cube (ghana) what would we 

do? We find cube of the number?” 

This explanation was cyclic in nature. Because volume gives the answer to finding 

the cube of a number we find the cube of a number. The interesting part was that the 

students bought the emphasis that the teacher made in the pattern; they understood that area 

is calculated by finding squares, and volume by finding cubes. One of the students asked 

so when they find "raise to 4 of a number“, what do they get? What is the word for it?" 
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This particular encounter is complicated. The reason such encounter arose is two-fold – 

one because the teacher thought of highlighting the pattern that he observed within the 

mathematics of measuring cubes, and second because the teacher stuck to what is in the 

curriculum and therefore just laughed at the student and responded "it is not in your chapter, 

you will learn that in the next year". What will be learned in the next year was not clear, 

and during the interview, the teacher discussed that student question as "they always see 

patterns that we don’t want to show them. I was telling them about square and cubes, but 

they want to talk about something else." The teacher was smiling while saying this, and 

somewhere understood what the student was asking, but did not see the relevance of it to 

what he was teaching. 

The teachers displayed positive attitudes toward the mathematics they were 

teaching. They did not display anxiety about the material, even in situations where they 

faced unfamiliar content. They also modeled reasoning through ideas by appealing to the 

belief that mathematics should be accurate and consistent and encouraged their students to 

do the same. For example, Bhoke sir regularly advised his students to “check their answers 

with what is given at the end of the textbooks.” It seems reasonable to assume that modeling 

these attitudes and beliefs has the potential to impact their students and support the 

development of one-answer oriented attitudes and beliefs toward mathematics. 

6.4 Teachers’ Knowledge: Encounters with the Mathematical Horizon 

The intent of this study has been to explore the role of mathematical sensibilities 

that come from the discipline in the practice of teaching school mathematics. In the 

literature, the construct of horizon content knowledge (HCK), first proposed by Ball and 
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colleagues (2008), has emerged as a helpful tool for analyzing and identifying such 

advanced knowledge of mathematics for and in teaching practice. Though there is no 

agreement regarding how HCK should be defined, knowledge of mathematical sensibilities 

and structure stands out as an integral part of the various treatments of HCK. In this section, 

I will discuss how my study is positioned with respect to the existing research, how my 

findings have contributed to the literature, and propose directions for further research. 

Ball’s (1993) foundational conceptualization of HCK, for example, emphasizes 

bringing a sense of how mathematical topics are related across the span of mathematics in 

the curriculum to bear on a particular moment of instruction. In their later work, Ball and 

Bass (2009) elaborate that HCK might involve an elementary perspective on advanced 

ideas including an understanding of major disciplinary structures and ideas. Zazkis and 

Mamolo (2011) propose HCK as including AMK acquired in tertiary level mathematics 

courses regarding features of mathematical objects and features connected to the object 

with respect to the disciplinary structure acquired during the course of undergraduate 

studies in mathematics. In particular, Zazkis and Mamolo (2011) draw on the metaphorical 

definition of horizon, “where the land appears to meet the sky” (p. 9) to define the 

mathematical horizon as the “place where advanced mathematical knowledge of a teacher 

(the sky) appears to meet mathematical knowledge reflected in school mathematical 

content (the land)” (p. 9). 

The above definitions evoke a sense of distance between the mathematical content 

of the elementary curriculum and advanced mathematical knowledge along dimensions of 

“space” and “time.” By evoking a sense of space, I mean that the above definitions of the 
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mathematical horizon lend themselves to a kind of separation between elementary content 

and advanced mathematical knowledge. Where the definitions of the mathematical horizon 

proposed by Ball and colleagues (Ball, 1993; Ball & Bass, 2009; Ball et al., 2008) refer to 

an awareness of the mathematical landscape, especially with an “eye on the mathematical 

horizon” (Ball, 1993, p. 394). They seem to imply that the mathematics under consideration 

are positioned at a continuuam with the elementary content under consideration. But, the 

sense of “space” is especially powerful in the work of Zazkis and Mamolo (2011), who 

draw on the metaphorical definition of the horizon to define the mathematical horizon as 

where advanced mathematical knowledge and the mathematical knowledge reflected in 

elementary content meet. The metaphorical horizon is an imaginary point that can never 

be reached, as its location is defined with respect to the position of the observer and is 

constantly changing because the two mathematical worlds never actually meet in reality. 

However, this conception also gives rise to the notion of "individual horizons" which would 

be obstructing to equal access towards mathematics. Also, defining the horizon as an 

intersection of AMK obtained in tertiary level mathematics courses and the mathematical 

knowledge reflected in the elementary level content could suggest that their intersection, 

assuming the two do meet, is located far from the context of the elementary classroom. In 

other words, this definition of the mathematical horizon, though it represents an 

intersection of advanced and elementary mathematical content, seems to establish a kind 

of distance or separation between the mathematics under consideration in the classroom 

and mathematics at the horizon. 
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One of the challenges I have encountered in this study is that the space between the 

content under consideration in the elementary classroom and advanced ideas is not actually 

very great at all. For example, most teacher participants in this study spoke about learning 

through activities. Where activites are portrayed as the one that are liked by students and 

because they have less concentration of the content. Working on an activity, like in 

Ruksat’s class,  the student used paper cutting and assembling to make sense of how 

diferent areas -- 𝑎𝑏, 𝑎@, 𝑏@ together formed the area of (𝑎 + 𝑏)@. Considering this activity 

as easier because it dilutes the content is a belief that suggests the mathematics here is 

much distant from the discipine mathematics. Here, the mathematics at the horizon is 

understood as located far from the curriculum, but understanding space on paper and how 

the space gets added, how dimensions for the sides are obtained, have much deeper scope 

of learning fundamental mathematics. Where as take the episode of “Sean Numbers” 

described in several of Ball’s discussions of the the horizon (Ball, 1993; Ball & Bass, 

2009). It is an example of work in the classroom that was initiated and led by students. In 

that case, the teacher (Ball) facilitated a class discussion involving concepts arising in 

number theory, such as modular arithmetic. My findings, and Ball’s example, demonstrate 

that school mathematics content is rarely more than a “stone’s throw” away from advanced 

mathematical content and the boundary between them, artificial. Further, my findings 

indicate that time does not appear to be necessary either to encounter those advanced ideas 

or to work with them effectively to a large degree. These metaphors additionally convey a 

sense of distance between elementary mathematical content and the mathematical horizon 

along a time dimension. By conveying a sense of distance along a time dimension, I refer 
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to the time between the elementary content under consideration and the timeframe in which 

students or teachers will encounter more advanced topics. The challenges related to 

distance along the dimension of time are multifaceted. One challenge relates to the ability 

of differentiating HCK from other subdomains of content knowledge. Another challenge 

relates to the potential HCK that might relate to a particular area of elementary content. In 

terms of the challenge relating to differentiating between HCK and other subdomains of 

MKT, Ball and colleagues (Ball, 1993; Ball & Bass, 2009; Ball, et al., 2008, Jakobson, et 

al., 2015 ), for example, emphasize the anticipation of mathematics at the horizon. That is, 

anticipating or attending to mathematical content that students will encounter in the future, 

or drawing on mathematical content that students have encountered in the past. For 

example, evidence of HCK might involve recognizing that a whole number comparison 

strategy that depends on the length of a number will not work in the future for decimal 

comparisons. One of the challenges this perspective poses is whether or not HCK can be 

differentiated from simply the knowledge of number comparison strategies (and possibly 

their development and relationship to student learning).  The more profound challenge that 

seems to arise when considering distance between elementary content and the 

mathematical horizon along the dimension of time involves the potential HCK that might 

relate to that particular area of elementary content. This is especially true for 

characterizations of HCK involving the acquisition of AMK in tertiary level mathematics 

classes. For example, proportional relationships, which appear in the elementary 

curriculum from the time students begin to generate multiples of whole numbers, are 

foundational to the study of linear relationships, which appear as prominent concepts in 
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tertiary level courses in mathematics from calculus to linear algebra. In other words, as 

time passes for an individual studying mathematics, more connections between 

mathematical ideas can be generated to the point that all the potential connections between 

a particular area of elementary content and the mathematical horizon simply cannot be 

enumerated. This poses two related concerns: 1) No one person can be expected to acquire 

all possible HCK if it is too vast to enumerate and 2) Individuals acquiring a substantial 

amount of any such knowledge are likely to require a significant investment of time as 

well. 

In my analysis of the classroom data, I drew extensively on my own mathematical 

training and understanding of matehmatics teaching – more than a decade of mathematics 

education study – which allowed me to see how classroom interactions and encounters 

could contribute valuable insights into many aspects of the curriculum design for teacher 

education. In particular, the teachers in my study seemed to be making sense of the body 

of mathematics from a perspective that was entirely different from both the worlds – that 

of a mathematician’s and that of a specialist in mathematics education.  

These challenges have prompted me to propose that teachers appear to draw on an 

entirely new kind of HCK that has not yet been identified in the literature. In the next 

section I elaborate on a new organizational perspective for viewing HCK to better describe 

how this new mathematical knowledge is related to the knowledge identified in the current 

conceptions of HCK in the literature. 
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6.5 Organizing Content Knowledge from a Horizon Perspective 

My findings have indicated the presence of a kind of HCK not adequately captured 

by descriptions in the current literature. In this section, I propose a way of organizing 

teachers’ mathematical content knowledge that I have found helpful as I have reflected on 

what I have learned about teachers’ HCK in this study. The purpose of this framework is 

to highlight different areas of teachers’ content knowledge that seemed to contribute to 

their ability to use and generate mathematical representations, explanations and contexts 

in their practice.  

I initially embraced Silverman and Thompson’s (2008) observation that the content 

of a teacher’s knowledge for teaching mathematics is so vast that it cannot simply be 

enumerated. In particular, defining horizon knowledge as a vast understanding of 

mathematical structure or setting the horizon far away from the elementary curriculum 

makes it challenging to identify what kind of knowledge is important and how it can be 

used to help in teaching. Ball and Bass (2009) also admit that they are uncertain as to “how 

to estimate how far out or in what direction the pedagogically relevant and useful horizon 

extends” (p. 11) or “the level of detail that is needed for horizon knowledge to be useful” 

(p. 11). These challenges have led me to further this exploration of HCK by developing an 

alternative operationalization of the concept to those in the current literature. For this study, 

I defined the mathematical horizon as the projection of mathematics in the curriculum to 

the enacted mathematics that extends beyond curriculum materials. I have defined HCK as 

the mathematical knowledge teachers draw on when they encounter such horizons. These 

definitions have enabled me to explore the vast potential HCK in terms of teachers’ 
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knowledge resources thus distinguishing this HCK from the majority of researchers who 

focus on identifying particular mathematical content and notions.  

In the paragraphs below, as I describe my model of HCK, I will elaborate on these 

distinctions. By drawing on the existing literature on MKT and the results of the present 

study, I propose a way of organizing teachers’ HCK. I have identified four overlapping 

domains of knowledge and visually represented them in Figure 6.2.  

 

 

Figure 6.2: Horizon Content Knowledge 

Two of these domains, specialised content knoweldge (SCK) and subject matter 

knowledge (SMK), are based on the current literature on MKT. The third domain, 

knowledge of discpline sensibilities and norms is also defined in the research recently as 

HCK, and situates in the definition given by Jakobson et al. The knowledge of discipine 
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sensibilities and norms will be referred as disciplinary normative knowledge (DNK). The 

fourth category is a new one, called professional practice knowledge (PPK), represents an 

additional kind of knowledge of mathematics developed through teaching and re-teaching 

over time. The evidence of this knowledge is pertinent in more experienced teachers than 

the novice teachers with in the study. This knowledge is not always strictly mathematical 

in nature but informs teachers’ professional judgment regarding their interpretations and 

generation of mathematical notions in their teaching. Because of the way in which the 

teachers in this study used this knowledge as a resource for using and generating 

mathematical notions, repersentations, explanations, etc., even though I do not consider it 

to be mathematical in nature, I do propose that it is a kind of content knowledge of 

mathematics.  PPK seems to capture the kind of knowledge I observed in use by the 

teachers of this study as they endeavored to make sense of mathematics in curriculum, in 

students’ responses and make decisions to make instruction effective. I will elaborate on 

this domain as the discussion continues.  

By defining overlapping regions of these four domains of knowledge, I am able to 

remove the trouble encountered by defining the mathematical horizon in a way that 

artificially creates distance between elementary and advanced mathematical knowledge 

along the dimensions of space and time. 

Experienced teachers’ horizon content knowledge includes a situated, professional 

practice knowledge. Several of the approaches to the study of HCK that I identified in the 

literature have drawn heavily on the knowledge of teaching experts. Fernández and 

colleagues (2011), for example, explored HCK by attending to the insights of teachers with 
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experience at both the primary and secondary levels. I argue that the knowledge of 

mathematics that middle school teachers require in order to teach may be qualitatively 

different from that of a tertiary or high school teacher.  

Experienced teachers’ PPK also appeared to have become self-sufficient with roots 

detached from the SMK and DNK. For example, many teachers in this study explained 

reasoning for why square of 40 is 1600. They often said square of 4 is 16 and square of 0 

is two zeroes. They are obviously right if one decided to generalize a pattern here, like 

seeing square of 40, 20, 30 one would observe that pattern. But, can we count this as a 

mathematical explanation? The teachers often said, this is the explanation that help students 

remember how to find the square of a number with 0 at the unit place. This knowledge is a 

resource for handling many encounters – the knowledge that is developed over the years, 

has some benefit for students, but has detached from the other three domains of the HCK.  

Basically I saw evidence of each kind of PPK, where connection or overlap with 

one or the other domains is lost. Here is an example of PPK that has roots with SCK. One 

of the teachers who was teaching volume of a cube, spent extensive time on teaching how 

to draw a cube. She suggested that there are many students who don’t know how to draw 

a cube, so she showed them 3 techniques for drawing a cube. It was an interesting point, 

as during the data collection, in other schools, I found one of the teachers not being able to 

draw a cube on the board.  
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Figure 6.3: Drawing a cube 

Being able to draw a cube on the board is definitely a specialized understanding for 

mathematics teaching. However, deciding to make it part of instruction and figuring out 

multiple ways of doing the same is a professional knowledge that the teachers develop over 

time.  

Another example is from teacher’s DNK who considers speed as an important 

criteria for learning mathematics. In the class where Bhoke sir made students recite 
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everything very quickly. If the students said a formula right, he insisted that they repeat it 

faster and again still faster.  

PPK is knowledge that is inevitable and is shaped by culture in school, role of 

leadership to kinds of students and parents' involvement, as each of these are part of 

teachers' expereince. But as long as PPK remains rooted in other domains of HCK, the 

teachers would be able to manage encounters with HCK in more meaningful ways. If PPK 

is the only knowledge resource available to the teacher then teachers’ explanations of 

mathematical deductions are pseudo-mathematical. Pseudo-mathematical explanations are 

generated by the teachers not to explain the concept/term/formula but to aid the 

memorization of the concept/term/formula. These explanations call heavily upon the visual 

patterns or syntactic patterns, use colloquial meanings of the mathematical terms and often 

has a cue that could be used as a key to remember the term/concept or a formula. Being 

pseudo-mathematical in nature these explanations block access for the students to 

investigate or build further.  

Risks of only PPK. 

In the thesis, we saw many vignettes from different cases of teaching, and saw how 

teachers are present in the classroom, hearing the students but NOT really listening to them. 

The students in all these classes where PPK dominated without being rooted into other 

knowledge were denied opportunity to engage with mathematics. Here, are some reasons 

given by teachers for such management of these encounters: 

• Students from poor background have lack of attention based on their 

backgrounds. 
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For example, not much effort was made to understand the students’ questions 

imagining that this poor student, due to lack of resources might not have slept well and 

therefore may not be paying any attention. Hence repeating the instruction was  the action 

taken — not really thinking that it could be a fundamental question about mathematics. 

• Students require techniques. 

Most of the time the classroom teaching is spent on teaching techniques, and 

therefore conceptual explanation took secondary importance. Students who remembered 

techniques were considered as good student of mathematics. 

• Doing speedily is the only way one learns mathematics. 

It was common to see students were asked to recite expansion formula, that too very 

fast. Therefore, a child who was speaking slow with less speed was labeled as a student 

who doesn’t know the formula.  

Forms of HCK for teacher education. 

Lesh and Zawojewski (2007) also observed that the users of mathematics in 

professions requiring heavy use of substantive mathematics “tend to organize their 

mathematical ways of thinking around situations and problem contexts” (p. 787). Further, 

the situations encountered in these environments “often require users to draw on powerful 

industry-based mathematical models and procedures learned in professional settings” 

because the problems they encounter “frequently do not fit the assumptions underlying the 

relevant conventional mathematical approaches and therefore are actively adapted or 

discarded and recreated to meet challenging and novel conditions” (p. 787). I argue that in 

a similar way, knowledge for teaching school mathematics is a situated and professional 
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practice knowledge that differs from knowledge of school mathematics. Further, this 

professional practice knowledge is situated in the practice of teaching, not in the discipline 

of mathematics. Therefore, teachers’ efforts to interpret and use curriculum materials are 

not typically conducted from the perspective of a mathematical disciplinary task but as a 

task situated in the teaching profession. That is, the decisions made by the teachers in this 

study, resulting in their encounters with the horizon and requiring them to engage with 

mathematics beyond the curriculum, seemed to have been the result of sense making that 

utilized a situated, professional teaching knowledge. 

In summary, my findings suggest that experienced teachers seem to draw on a kind 

of situated, professional practice knowledge to make sense of mathematics in the 

curriculum and in students’ responses. In particular, this knowledge impacts the 

mathematical notions, representations and contexts that teachers may use and generate as 

they interpret and enact mathematical content in and beyond the curriculum. 

Reading curriculum same as problem solving. 

In their handbook chapter on problem solving and modeling, Lesh and Zawojewski 

(2007) have observed that the definition of problem solving in mathematics education is 

moving away from traditional views of problem solving and “towards a view of complex 

mathematical activity and the mathematics of modeling complex systems” (p. 782). They 

additionally propose that a modeling perspective toward problem solving is one of the 

distinguishing characteristics of a mathematician’s perspective that differentiates their 

expert knowledge from that of novices, emphasizing that mathematics is the study of 

structure and that a models-and-modeling perspective leans toward producing 
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mathematical descriptions and explanations that focus on structural characteristics of a 

given situation. Rather than viewing curriculum interpretation and implementation as a 

problem solving activity in which mathematics specialists are defined as experts, I propose 

that experienced teachers possess a kind of PPK that defines them as experts in the 

profession of teaching. I would argue that my findings suggest that these teachers view 

mathematical notions from a modeling perspective in the teaching discipline and not 

mathematics as a discipline.  

Teachers rely on their reasoning and are guided by concerns for students and real-

life considerations. The interesting aspect is that the concerns for students also shaped by 

their PPK, and therefore may not reflect real challenges that students face. During data 

collection for this study, it was clear that the teachers in my study often preferred to rely 

on their own reasoning to make sense of both the mathematics in the curriculum and the 

mathematics they engaged with during their encounters with the horizon.  

My findings also suggest that these teachers’ reliance on their reasoning was also 

something of a double-edged sword. For example, consider the case where Punit makes 

changes in the lesson to make it closer to students‘ real life. On one hand, the problems 

became relevant for students, but on the other Punit sir had difficult time understanding 

their solutions in the context of curriculum. 

Teachers’ situated, professional practice knowledge: A complete departure 
from AMK. 

The present study suggests that teachers’ thinking about and interpretations of 

mathematical representations may be a productive area of research for such a model of 
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teachers’ mathematical thinking. For example, the case of Parveen and the representation 

for fractions multiplication suggests that she was drawing on her knowledge of procedure 

of multplying two numbers. I am thus prompted to ask if this interpretation is unique to 

Parveen or if there might be a collection of common interpretations that teachers would 

predictably produce for this situation. Further, choosing one representation to highlight 

specific variables will often decrease the emphasis of others. Therefore, making 

simplifying assumptions and allowing some relationships to be represented “untruthfully” 

is more a matter of decreasing the emphasis on certain aspects that might be recovered if 

another representation is chosen in order to highlight it. 

In conclusion, I propose that teachers’ modeling perspective may be complemented 

by involving their recognition that data loss occurs when information from real-life 

contexts are represented mathematically in order to support their ability to make 

simplifying assumptions. In particular, this combination of knowledge may be helpful in 

supporting teachers’ ability to choose representations that highlight only the aspects of the 

real-life situation that they wish to emphasize and accept the decreased emphasis on other 

variables and relationships that are more mathematical in nature. I also propose that this 

kind of reasoning could be potentially valuable in courses for preservice teachers in which 

the content involves emphasis on mathematical representations.  

6.6 Concluding Remarks 

Teaching middle school mathematics is a complex task requiring specialized 

knowledge. The goal of this study was to investigate the role of mathematical sensibilities 

in teaching. The existing work investigating teachers’ mathematical knowledge for 
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teaching incorporated advanced mathematical knowledge into perspectives regarding 

knowledge of mathematical conceptions, explanations and representations by using the 

construct of horizon content knowledge (HCK). 

 
There is no consensus in the literature regarding the definition of the mathematical 

horizon or what kind of knowledge comprises HCK. By defining the horizon as the 

projection of the curriculum to established mathematics beyond curricular supports, I have 

been able to identify and classify the kind of knowledge that teachers use when they 

encounter the horizon and engage in mathematics that is present in the curriculum and 

students’ responses. In studying these teachers’ encounters with the horizon, I identified 

that experienced teachers seem to exhibit a situated professional teaching knowledge to 

make sense of and navigate mathematical territory. This knowledge both greatly supported 

teachers’ ability to use and generate mathematical repersentations, explanations, etc., that 

aligned with established mathematics while in other cases added pseudo-mathematical 

nature to their work and limited their ability to move forward. 

Rather than requiring an enumeration of specific mathematical knowledge with 

regard to concepts, I propose that teachers’ mathematical knowledge might be thought of 

in terms of four overlapping domains that decrease in specificity depending on the extent 

to which all teachers can be expected to obtain explicit understandings of the mathematical 

knowledge in that domain. The domain of PPK consists of teachers’ situated, professional 

teaching knowledge encompassing the whole of their professional understandings across 

content domains and developed through practice, along with their tacit knowledge of 
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mathematical topics.  This study reveals that teachers draw on this professional teaching 

knowledge to navigate unfamiliar mathematical territory and may include realworld and 

student considerations, existing knowledge of mathematical representations, assumptions 

about the nature of mathematics, and reasoning about correspondences between real-world 

factors and mathematical representations of those factors. 

Further, I have recommended that additional research should be conducted to 

identify if teachers’ professional knowledge results in common interpretations of 

mathematical representations in well-defined content areas. If so, this information could be 

valuable in guiding mathematics educators, and other experts, in their work to support the 

development of teachers’ formal knowledge of mathematics by using teachers’ 

mathematical thinking as a basis. 
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Appendix A 

Interview Part I 
 

1. Name: 

2. Age:  

3. Educational and professional qualifications (Mention subject specialization and 

qualifying year): 

4. Places/cities where you received your education: 

5. Teaching experience (mention which classes and subjects you have taught and 

for how many years): 

6. Number of years in service: 

7. Present position: 

8. Have you conducted workshop sessions for mathematics teachers?  

9. If yes, write some details (roughly how many, on what subjects/topics, teachers 

at which level, etc.) 

10. If there is anything else that you would like to mention about yourself, please 

do so here: 
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Appendix B 

Interview Part II 
 

• How did you decide to be a mathematics teacher? 

• Can you narrate me your experience of being a mathematics teacher so far? 

o This is an opening-up question; it helped me get the continuum of 

their experience as a teacher. There is a chance that that there will be 

few open ends here – and which might tempt me to ask further 

questions, but I will take up only if they are relevant to the research 

questions. 

• Please describe any mathematical experience from your school or college 

days that you remember distinctly. Why do you think it is special or 

distinct? 

• What according to you are the most crucial things for anybody to be good 

in mathematics? 

o This gave me idea of their views about mathematics and what it 

takes to be good in mathematics. As they had to talk about someone 



 212 

else here, the accountability was less and therefore they describe 

their opinion clearly and freely.  

• When you write on the board, what do you make sure you do?   Are there 

specific things you aim for in asking your pupils to write in their 

notebooks? What is important when writing mathematics? 

o As I had been to their classes, I know that good percentage of the 

class time is spent in writing on the board or copying in the notebook 

or writing in the notebook. Therefore, it was important to find out 

what are their views about writing mathematics and what kind of 

writing they value. The question was geared towards finding their 

understanding of precision and doing mathematics. 

o A sub-question could be asked here as How do you think writing in 

mathematics helps in learning mathematics? 

• When you draw on the board, what do you make sure you do?   Are there 

specific things you aim for in asking your pupils when they draw in their 

notebooks? What is important in drawing in mathematics? 

o Same as above, copying geometric figures was another big chunk of 

the class on geometry and therefore, what mathematics was learned 

or exercised could be extrapolated from this question.  

• How do you think precision in drawing helps in learning mathematics? 



 213 

• How do we know that things mentioned in the textbooks are true? [See 

whether the teacher use some example, if don’t use one of the examples 

from their teaching] 

o Here is one example that was asked based to a teacher. For example, 

how do we know that square of 40 is 1600, in one class the teacher 

said square of 4 is 16 and square of zero is two zeros – how do you 

respond to such teacher or why do you gave this shortcut, how it 

works; how do we know that volume is written in cubic cm [the 

teacher said because the cube has three sides when we write volume 

of the cube we write 𝑐𝑚<]
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Appendix C 

 Interview Part III 
The interview in the third section involved teachers watching their teaching clips, 

as selcted by the researchers and describing their side of decision making in that particular 

episode of teaching.  

Clip 1: Day 1 

1:30 to 2:30 

• What did you notice in this clip? 

• What according to you is difficult in learning algebraic identities? 

• When you explained the multiplication of two binomials, you gave a 

specific explanation, why do you think this bracket multiplication 

actually works? 

Day 1 

39:30 to 40:10 

• What did you notice in this clip? 

• What according to you is difficult in learning squaring of the numbers? 
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• When you explained this short method, you were very confident that it has 

to be the square of 96, how do you know that shortcut will give you the 

correct answer? 

Day 2 

33:10 to 36:21 

• What did you notice in this clip? 

• Why were you asking students to make questions? 

• What does making questions has to do with learning of mathematics? 

Day 3 

8:53 to 10:15 

• What did you notice in this clip? 

• What do you think is difficult in learning volume of the 3d shapes? 

• What did you think of the definition that student said and you gave? 
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Appendix D 

Problems Solved by the Teachers 
Problem 1 

A printer only prints the page numbers of a book. While doing so printer uses 999 

digits. What is the last page number of the numbered pages? 

 

Problem 2 

I have a barrel of sharbat, and you have a cup of tea. I put a teaspoon of my sharabat 

into your cup of tea. Then you take a teaspoon of the mixture from your teacup, and put it 

back into my sharabat barrel. Is there now more sharabat in the teacup than there is tea in 

the sharabat barrel, or is it the other way around? 

Problem 3 

The following picture shows a 3-step staircase made up of cubes. How many cubes 

are needed to make an n-step staircase?
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Appendix E 

Maharashtra State Textbook Pages 
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Appendix F 

NCERT Textbook Pages  
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Appendix G 

Encounters Summary Table  
 
Summary of the chunks Questions asked during the interview 
After a student drew one of the radii, the teacher asks 
everyone, what is the length of that line. All the 
students notice that it is one of the radii and say that 
the length of the radius is 3 cm. Then the teacher asks 
if radius is 3 cm and the diameter is 6 cm what is the 
relationship between the two. Students come up with 
various relations between the two except that it is 
double the radius. Different things that the students 
said were – the diameter is more than the radius, the 
measure is more, etc. When the teacher gave different 
measures for radius the students gave correct answer 
for the diameter by doubling the number. When one of 
the students responds that the diameter is double the 
radius, the teacher becomes happy.  

What did you notice in this clip? 
Why you think student were finding 
difficult to answer the relationship 
between radius and diameter? 
Why is it important to understand this 
relationship? 
 

The teacher revises the topic that they studied the 
earlier day, i.e. on Circle sectors. In this clip she asks a 
question that if I draw a circle what one should do to 
get two circle segments. She doesn’t ask who will 
come and draw a chord, rather asks to get circle 
segments.  

What did you notice in this clip? 
What is important to understand circle 
sectors? 
Why do you ask questions as – what 
will we do that will make the two parts 
in the circle area? Why didn’t you ask 
who will make the sector? 
Why such questioning is important in 
learning mathematics? 
 

In this clip the teacher begins with simple 
multiplication facts to highlight that those are the 
factors of a product and then attempts to connect it 
with Algebraic identities. This connection is not that 
explicit, so she faces some challenges while doing so. 

What did you notice in this clip? 
What is more difficult to understand in 
learning identities? 
This class was on identities, why did 
you decide to talk about factors and 
products? 
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In this clip the teacher is discussing the expansion of 
binomials. She emphasized that one of the meanings 
of multiplication is to expand and she highlights some 
of the steps in the process of multiplication as the 
important ones.  

What did you notice in this clip? 
What is important to understand in 
expansion of binomials? 
You taught the students to multiply one 
term at a time while expanding the 
binomials; why does that technique 
work? Can you explain? 
 

In this clip the teacher is explaining the vertices, edges 
and sides of the cube. He makes a wrong drawing of a 
cube and realizes only when he is counting vertices. 
He makes 9 vertices. He doesn’t tell students what 
happened but he erases the diagram. This time he 
holds the textbook in front of him and then draws the 
cube. Then he discusses the corners of the video. He 
reads all the vertices and then says that the vertices are 
called as edges.  

What did you notice in this clip? 
What is important in drawing a cube? 
Why was there confusion before?  
What instruction would you give 
someone to be able to construct a cube? 
Why we should draw mathematical 
objects? 
 

In this clip the teacher asks students to make questions 
for opposite side, he also tells what they should be 
asking. Like, “Ask question about opposite side, ask 
about which side is opposite.” Similarly he asked them 
to make questions for opposite angles. 

What did you notice in this clip? 
Why were you asking students to make 
questions? 
What does making questions has to do 
with learning of mathematics? 
 

This clip begins with a definition of what is volume of 
an object. The teacher first gives idea of space, the 
space around and then highlights that it is the space 
occupied by that object. He also shows that these 
objects occupy the space by taking examples of 
objects keeping in the box or water spilling when the 
rod is inserted.  

What did you notice in this clip? 
What do you think is difficult in 
learning volume of the 3d shapes? 
What did you think of the definition that 
student said and you gave? 
 

In this clip the teacher is explaining how formula for 
finding volume of a cube is hidden in the word 
“volume” (ghanphal) itself. Ghanphal is a word for 
volume and ghan also means cube of a number. He is 
using this similarity to mention that taking the cube of 
the side is implicit in the word ghanaphal or volume.  

What did you notice in this clip? 
What is most crucial concept in 
understanding of volume of a cube? 
What is volume of a cube? 
Do we use volume of a cube in any 
other topics of mathematics? 
 

This clip also has an example of SCK, as the students 
are attempting to do the 

multiplication 
15	 × 	15	 ×
	15. When they 
multiplied 
15	 × 	15, 
using the 

traditional steps, where they multiplied by 5 first and 

What that girl has done? 
Why do you think it is wrong? 
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then by 1, the teacher did not recognize what students 
were doing, the problem the students were facing was 
in multiplying 1 by 1 and the teacher thought the 
problem is in 15 x 15, the students are not using table 
of 15 correctly. See in the pictures below work by two 
students: 
6 x (7.5) the teacher refers to 7.5 as 75 and says we do 
not the square of 75. Then we he gets the answer as 
56.25, the students refer to it as 5 thousand six 
hundred twenty five. 

What did you notice in this clip? 
Can we read the number 56.25 as fifty 
six point twenty five? Why? 
 

This whole section is on calculating volumes of cube 
in the real contexts – such as finding the pain price for 
cubic shaped safe, etc. This particular chunk has 
example for everything – SCK, PCK, CCK and HCK 
In this clip the teacher is teaching the multiplication of 
rational numbers. He explains the procedure of 
multiplying and then talks about simplifying the 
numbers to “small numbers”. His reference to small 
numbers is problematic as it indicates that the reduced 
form of the number is smaller than the actual form. So 
equivalency is not understood.  

What did you notice in this clip? 
What according to you is difficult in 
learning multiplication of fractions? 
Why did you go on simplification of the 
fractions? 
Why simplification is difficult to learn? 
Do you think any student in this class 
faced any challenge in understanding 
multiplication of fractions? If so, what 
is it? 
What do you think the students in the 
class are thinking at the end of this 
class? 
 

In this clip the teacher is explaining the expansion of 
(𝑎 + 𝑏)(𝑎 + 𝑏). He describes that to do such 
multiplication first multiply by 𝑎 and then multiply by 
𝑏 to the whole bracket (𝑎 + 𝑏). 

What did you notice in this clip? 
What according to you is difficult in 
learning algebraic identities? 
When you explained the multiplication 
of two binomials, you gave a specific 
explanation, why do you think this 
bracket multiplication actually works? 

The teacher in this clip demonstrates a method for 
finding square of 96. He describes that generally the 
way all of them have been taught is to multiply the 
same number twice. But the method he shows, 
involves squaring last digit, placing square of the first 
digit in front of it and adding product of the two digits 
twice in the middle of this four digit number. Then he 
says, “it has to work” – multiple times. He doesn’t 
explain why, but he says it has to work, as if it is 
magic. Square of 96 is calculated as 8136 +0540+0540 

What did you notice in this clip? 
What according to you is difficult in 
learning squaring of the numbers? 
When you explained this short method, 
you were very confident that it has to be 
the square of 96, how do you know that 
shortcut will give you the correct 
answer? 
 

The teacher asks what is the meaning of 2	 × 	?
@
. She 

first shows a pictorial presentation of it. She calls a 
student to do the work on the board. The student does 
not speak, but draws two wholes (not at least looking 
equal), shades half of each of the whole and then gives 

When you explained the multiplication 
using diagrams, you showed that 2	 × ?

@
 

could be understood as taking 2 halves, 
or as you concluded, two times repeated 
addition of ½. What other meaning the 
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equal to sign and draws another whole whose both 
parts are shaded and marks each part as ½. Later he 
writes a mathematical sentence as ½ + ½ = 2/2, which 
teacher says is equal to 1. The teacher explains that 2 
times ½ is same as ½ taken two times. And therefore, 
when you shade ½ of one and again ½ of one, in total 
it becomes two parts shaded out of 2. Then she 
suggests that she will give a diagram like this and the 
students will have to figure out what is the 
mathematical expression for it. She draws two circles 
shaded 2/8 each and asks a girl student to come to the 
board. The girl student draws another circle and marks 
all the four pieces together in it. The teacher asks her 
to write answer in number, and further to reduce it.  

expression 2	 × ?
@
 has, other than the 

repeated addition meaning?  
How would you use the repeated 
addition meaning of multiplication of 
fractions in the following problem – 
<
�
	× ?

@
 

What are the most crucial things one 
needs to understand in multiplication of 
fractions? 
 

In this clip the teacher is making 
pictorial representation for half 
of one third. She drew one circle 
on the board and then made 
three equal parts of it. Asked the 
entire class whether they know 

how to find half of this one third. The students were 
busy drawing the same figure in their notebook and 
therefore did not respond. The teacher then repeated 
the question, and answered herself, by drawing a line 
on the shaded 1/3rd portion of the figure. She cross—
shaded one of the two parts. As shown in the image 
here. She labeled that part as ½ of 1/3. Then asked, 
what is ½ of 1/3 (and writes on the board ½ x 1/3 =). 
Students respond something that is not audible, then 
one of the students said, that it is 1x 1 upon 2 x 3. 
Someone said 2/6 and then all of them changed the 
answer to 1/6. The teacher wrote on the board. She 
explains this answer further as “if at all you are 
making six equal parts of the circle then this one part 
will be 1/6”. She further explained that we only made 
it in one part, but the each part is 1/3 (labeled them 
simultaneously). This one part we divided into two 
and that is ½ of 1/3. And concludes that ½ of 1/3 is 
1/6. And she concluded the solution with “again the 
answer is product of the numerators and product of the 
denominators.” 

What did you notice in this clip? 
How can one show the answer is ?

~
 even 

in the diagram explanation? 
 

In this clip the teacher has given the problem 2/5 x ½. 
What students did was to make 5 parts of an half. And 
they called as 2/5. The teacher said, that won’t be 
correct and she attempted to answer how 1/5 that the 
students drew is of ½. First she removed the other 

What do you notice here? 
What are you trying to convince the 
students? 
Why do you choose this explanation? 
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semicircle and highlighted how the 1/5 they drew is of 
only half. Then she drew a full circle and drew 1/5 in 
it and showed that is 1/5 of the complete circle. And 
then she also showed that another way for 2/5 would 
be to draw two circles, and shade 1/5 in each circle. 
Then to explain that 1/5 of ½ will be 1/10 and 2/5 of ½ 
will be 2/10 she used the multiplication algorithm as a 
justification.  
In this class the teacher kept on practicing on the 
problems of the kind 𝑎	 ×	&

A
,			 %

&
	×	 A

B
 . In the first kind 

students need to write that the denominator of 𝑎 is 
nothing but 1 and then use that in the algorithm for 
multiplication numerator x numerator divided by 
denominator x denominator.  
There is no particular clip here, as she mainly took 
different exercise of the form a/b × c/d in the class and 
while doing that she used various explanations around 
it. The questions are on those. Remind her of the topic 
of that day.  
 
 

When you took an example ¼ x ¼, the 
students calculated its answer as ?

?~
. 

Even though they did multiply the 
answer they got ?

?~
 is smaller than ¼. 

Why do you think this happened?  
You taught some rules like, “product of 
proper fraction is smaller”, “product of 
improper fraction is greater”, etc. Why 
did you teach this? Can you provide a 
proof for any one of these rules? Can 
you prove that they are true? 
 

The teacher worked on the word problems that 
involved multiplication as a repeated addition with 
fractions. Therefore the problem types were 𝑎	 ×	&

A
 . 

The problems involved contexts of distance, reading 
number of pages of book, number of days for certain 
works, etc. This involved many other procedural steps 
such as converting mixed fraction to improper 
fractions before/ during solving the problem and again 
converting improper fraction to mixed fraction for the 
final answer if needed.  

On this day many word problems were 
solved that used multiplication as 
repeated addition. 
Design a word problem based on what 
you taught these three days. 
Design a word problem for the problem 
<
=
	÷ 	?

@
  

Where do you think division and 
multiplication of fractions is used in the 
curriculum after 7th grade? 
 

The teacher here is discussing how to multiply two 
binomials. The example chosen is (𝑎 + 2)(𝑎 + 3). 
After the first step that	𝑎 multiplies the bracket 	(𝑎 +
3) the teacher now is unpacking the multiplication 
with the bracket. The student after some discussion 
have come up that	𝑎	 × 	𝑎 is	𝑎@ and now the discussion 
is going on whether	𝑎	 × 	3 becomes	𝑎3 or 3𝑎. Jahir 
sir writes the two options on the board and asks which 
one of these is correct. A boy student responds that we 
could use any of these. The teacher uses example of 
2	 × 3 or 3 × 2 to show how the product of the two 
will remain same and hence the product of 𝑎	 × 	3 will 
as well remain the same. He further says, however 

What do you notice here? 
What are you trying to convince the 
students? 
Why do you choose this explanation? 
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when you work with algebraic expressions, the 
number is usually written before the letter, and that is 
why we will write this product as 3𝑎 and not 𝑎3. Then 
proceeding the expansion for 2	 ×	(𝑎 + 3) another 
student responded the first product as 𝑎2. The teacher 
reminded him of the discussion just happened and 
asked another boy student who responded 2𝑎. 
Interestingly when they discuss 2 × 3 a girl student 
gave the answer 5. He reminds her that the operation 
they are expected to do here is multiplication. He then 
himself says the product is 6 and writes that beside 2𝑎, 
without writing a plus sign before that. Students start 
saying it is wrong and ask the teacher to put a plus 
sign. The teacher repeats their answer and emphasizes 
the importance of putting plus sing before the product.   
While finding the square of a binomial (2𝑥 + 𝑦) a girl 
student wrote, 2𝑥@as square of the first term. The 
teacher stopped her and corrected her answer. Then he 
corrects her error of +2𝑥𝑦 + 2𝑥𝑦. Initially he asked 
her but he does not wait for her answer and then 
dictated her steps – as first write 2 then write the 
multiplication sign, then the first term 2𝑥, and then the 
second term 𝑦. And then he says, not this is correct.  

What did you notice in this clip? 
What challenges the girl is facing here? 
 

The teacher has finished explaining the expansion of 
an algebraic identity (𝑎 − 𝑏). Now they are reaching 
to a reduced form. So the discussion is about 
simplifying −	𝑎𝑏 − 	𝑎𝑏. The first response is – 𝑎𝑏@ 
and then the next response is -2ab. The teacher writes 
both the responses and then discusses with them which 
one is correct. Most say -2ab, and then the teacher 
asks why? Then the teacher uses the metaphor of 
chalks to explain how two chalks together will make a 
set of two chalks. He then explains how two – 
quantities get combined together to form a new minus 
quantity*.  

What did you notice in this clip? 
What is difficult in expansion of 
binomials? 
Why can’t we add ab and ba? 
Why did the girl made that mistake of 
ab + ab = ab2 
 

The teacher begins with the problem of finding the 
square of a binomial (𝑎 + 𝑏). She first explains the 
meaning of square of binomial. She says it is nothing 
but square of first term and second term together*. She 
then describes what is a square, and she mentions a 
square is same as doubling. Then she explains how to 
proceed. She describes that they have to keep the first 
binomial expression same, and they need to break the 
second. If they will do that then only they get the “true 
terms”. Then she explains that they need to multiply 
by each of the term. She doesn’t talk much about 

What did you notice in this clip? 
What do you mean by true terms? 
What is important to understand in 
expansion of binomials? 
You explained that they need to 
multiply the whole bracket term by one 
term at a time, why does that technique 
work? Can you explain? 
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adding 𝑎𝑏	 + 	𝑏𝑎, rather makes students repeat the 
expansion of it.  
In this clip the teacher has worked on the problem of 
expansion (𝑚 + 4)@. They all have arrived at the 
answer 𝑚@ + 8𝑚 + 16 and the teacher asks them the 
question, how did they find the answer. She doesn’t 
ask that question to students but answer herself as due 
to the expansion formula that they learned of 
(𝑎 + 𝑏)@. Therefore she emphasizes that it is 
important to remember the formula. And she read the 
entire formula and asks student to read it again. 
However students reading does not match with each 
other due to different speeds of talking, so she asks 
them again to read it together. She specifically says, 
that as you are not speaking together it is appearing as 
chaos, so just repeat after me. After this she reads the 
expansion formula in a rhythm and students repeat 
after her for 2 times. * 

What did you notice in this clip? 
What is important to say these loudly? 
Do you find student forgetting this 
formula is the main problem in learning 
to do expansion of algebraic identities? 
 

The teacher has drawn the two triangles on the board. 
One equilateral triangle of 13𝑐𝑚 and another a scalene 
triangle of dimension 12𝑐𝑚, 17𝑐𝑚 and 11.5𝑐𝑚. Here 
on the scale she is measuring by inches and writing as 
centimeters. While she is measuring one of the 
lengths, the students make a guess for it as 12	𝑐𝑚, she 
says no, it is not 12	𝑐𝑚, and it is actually 11.5𝑐𝑚. She 
further insists that when you measure the lengths, you 
need to write the exact measurement. You can’t write 
anything that you think, you need to write the exact 
measurement. Then she says that she is going to draw 
exactly same triangle as the one there, the 13𝑐𝑚 
triangle. Then with a scale she draws 13𝑖𝑛𝑐ℎ segment, 
holds the scale on one of its corner and draws another 
13𝑖𝑛𝑐ℎ	segment. The she doesn’t actually measure the 
third side and join the ends of two segments. Then she 
labels each side as 13𝑐𝑚. And then she names the 
triangle as △ 𝑃𝑄𝑅.  

What did you notice in this clip? 
How did you make the drawing of that 
triangle? 
Why did you choose that way to draw? 

In this clip the teacher is asking students how do they 
simplify ?�

=
+	}

~
. She asks all the students what they 

will do. Then she asks, “you will take LCM of?” The 
students respond to this by saying 4 and 6. Then she 
asks what is the LCM of 4 and 6. Many students say 
that it is 24. Meanwhile the teacher writes the title of 
the class as “Fractions and Decimals”. After that she 
again asks what is the LCM and this time students 
loudly say, “it is 24”. She asks the question, “is it 24?” 
and in the background starts checking it. She get the 

What do you notice in this clip? 
What could have happened if you would 
have used 24 instead of 12 as suggested 
by the students? 
Why 24 is not LCM of 4 and 6? 
Why do we need to find LCM when we 
equal the denominators?  
 



 236 

answer 12 on the board and then she asks “how 
much?” Then some already start saying that it is 12. 
Then she asks one student to get up and he answers 
that its 12. She says after this, “it is 12. You don’t 
have to just multiply the two numbers but find proper 
LCM of it. You find out before you decide (pointing to 
her method on board for finding LCM), don’t just 
multiply numbers.  
In this class the teacher tells the general rule for 
multiplying fractions. She tells them that whatever 
number of numerators are there, they need to multiply 
them together and same with denominators. She 
covers multiplying by whole numbers as the fractions 
with denominator 1. She also asks them to reduce the 
answer to the lowest form. She defines the lowest 
form as “the fraction where there is no common factor 
between numerator and denominator”. And lastly 
when the answer is in the reduced form, she asks them 
to convert to the mixed fractions from. To find the 
mixed fraction she says that they need to divide 
numerator by denominator.  And shows how to use 
quotient, remainder and divisor. At one incidence a 
student who makes the mistake of converting the 
fraction @?

�
 as 4 @?

�
, is asked how come he didn’t know 

how to write mix fractions. And the student responds 
that he has “forgotten it”. This cycle keeps on 
happening for various examples – multiply, reduce to 
lowest form and find the mixed form of it if possible.  

There is no particular clip here, as she 
mainly took different exercise of the 
form a × c/d in the class and while 
doing that she used various explanations 
around it. The questions are on those. 
Remind her of the topic of that day.  
What are the most crucial things one 
needs to understand in multiplication of 
fractions? 
At one place a student wrote 4 @?

�
 as a 

mixed fraction for @?
�

, instead of 4 ?
�
. 

How could you prove that the correct 
mixed fraction is 4 ?

�
 and not 4 @?

�
? 

What is the difference and relationship 
between lowest fraction and a mixed 
fraction?  
 

In this clip the teacher is going to talk about division 
of fractions. She takes the first category of the division 
problem as whole number divided by a fraction. She 
takes the problem 12	 ÷ <

=
. She then says that they 

have to make this as a multiplication problem and 
multiply by the reciprocal. She asks a girl student to 
say the reciprocal of <

=
. She gives the correct answer as 

=
<
. She says, “so division what we do is change to 

multiplication by changing it by reciprocal of the 
fraction”. The teacher then calls a student to the board 
who solves the problem 12	 × =

<
 by canceling 3 and 12, 

with replacing 12 as 4. The teacher says yes they can 
cancel numerator and denominators if they have any 
common factor. What is not allowed is cancel 
something across numerators. The teacher then writes 
the answer as 16. Then she summarizes the division 

What did you notice in this clip? 
Why did you change the division 
problem in to a multiplication one? 
Why did you take reciprocal of ¾? Why 
not of 12? 
When you calculated the answer you 
got 16, which is bigger than 12 and ¾, 
how is that possible? How can one get a 
bigger answer by division? 
Can you make a word problem that 
would require division of a whole 
number by a fraction? 
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process again as multiplication by the reciprocal of the 
second number. Then she moves on to taking another 
example.  
In this class the teacher is working on profit and loss 
word problems. [Samreen, the girl student solving 
given problem on blackboard. She wrote the following 
on the board] 
Answer: 
Cost price = 30 x 8 = 240 rupees 
Selling price = 45 x 5 = 225 rupees 
                      = 35 x 3 = 105 rupees 
Profit = Selling price - Selling price - Cost price 
[She chose to subtract the selling price instead of 
adding those.] 
 
105 = 225 -     - 240 
[She was not speaking anything but left blank space at 
the second place. She waited for sometime, other 
students were asking to interfere, the teacher 
suggested let her take some more time] 
Ss: Sir shall I go and do it? 
T: Let us give some more time to her. Wait. 
[Samreen was standing still without speaking and 
staring at the board. After a while, she wrote the 
following below the line above 
= 240 - 225 
T: Can't do this? Do you think you can do this? 
Samreen: I am solving.  
T: If you can’t solve then I will call someone else.  
[Even though the teacher said he would call someone 
else if she couldn’t solve, Samreen was interested in 
perusing the problem. She kept on looking at the 
problem and was not ready to move from the board, 
she wrote the following as her next step.] 
= 105 – 15 
[Without saying or discussing what is done on the 
board is right or wrong.] 
T: Good, good. Now, go and sit. Go. Someone else 
wants to solve this? Someone here? [Pointing to the 
boys’ sections] 
Further the teacher himself solves the problem. 

What did you notice in this clip? 
What is crucial in understanding profit 
and loss? 
What mathematics that girl student 
know and what she don’t know? 
 

The class is working on solving word problems on 
concept of area. A girl has come to the board to solve 
the problem. She asks is this problem same as the one 
we solved before, and the teacher responds – yes, it is 
exactly the same, only the numbers are different. The 

What did you notice in this clip? 
Why students were writing so much to 
find the area or rectangle? 
Is there any other way to understand 
area of the rectangle?  
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teacher asks her to write bigger on the board, the girl 
tries but falls back to writing in small letters. All other 
students are watching her solve on the board. After she 
finishes the writing, the teacher asks, is she right? 
Everyone nods as yes. He says, area of rectangle is 
length into breadth. But she has written it too small. 
So the length is 15 and the width is 5, and she has 
multiplied 15 by 5. And then he asks how much is 15 
times 5, everyone in chorus says, its 75. The teacher 
then says, as she has solved it correctly we will clap 
for her and everyone claps. 
The teacher then concludes that this is how you solve 
the problem of finding area of a rectangle when both 
sides are given. He further adds that if suppose the 
area is given and one of the dimension is given then 
how would one find the other dimension, and they will 
solve such problem after this point.  

What would be the definition of area of 
rectangle? How is that definition related 
with this formula? 
 

In this class the teacher talks about variable and 
teaches the students about how to solve algebraic 
statement. He writes an algebraic statement on the 
board, as 𝑥	 + 	4	 = 	9. Then he says that the letter x 
here is a variable. He describes them what is a 
variable. He says that variable always changes. It 
increases or decreases. He explains that in a market 
the price of things keeps on changing, it either 
increases or decreases. He then says that something 
that is variable is not a constant. The he says that they 
will try different values for x and writes on the board 
that for x = 0, 1, 2, 3. He calls these 1, 2, 3 as constant 
numbers. Then he asks students that they will try each 
of this value and see whether they achieve equality. 
He then asks, how equality is achieved; and responds 
himself that it could be achieved only when both sides 
are equal in value. He elaborates this further – when 
the left side is equal to the right side then only it can 
be called as equality. “And we need to prove that the 
left side is same as the right side and then only we can 
call it as equality”.  

What did you notice in this clip? 
What is an algebraic expression? 
What is an algebraic equation?  
Why x + 4 = 9 would have more than 
one solution? 
Why the values of x would be 
ascending or descending? 
When x = 0 does not satisfy the 
equation, does one need to check for 
other values to see whether the given 
equation is equality or not? 
What would be an example of equality? 
 

In this clip the teacher is doing an activity. She along 
with everyone has a circular cut-outs in their hands. 
She is also making diagrams on the board that 
corresponds to the actions she is making on the paper. 
She first asks every one to fold the circular paper such 
that two halves superimpose on each other. Then she 
asks to draw a line on the fold. While asking students 
to draw lines on their paper, she herself draws lines on 

What did you notice in this clip? 
What is important in constructing 
circle? 
Why didn’t you teach the definition of 
circle? 
Why understanding the relationship 
between radius and diameter is 
important? 
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the board. She then points to half of the diameter – 
assuming that it would be, she said if this is half of the 
diameter, what should we call it. The all agree to the 
name half-diameter – this is how radius is called in 
Urdu. Then she makes a chord by folding the paper. 
Her speed of doing things is too fast for many kids and 
they are still drawing lines on their paper. Still the 
teacher continues and finishes what she has planned to 
do.  Then while making the chord she suddenly asks 
how many radius (half-diameter) can they make. 
While asking she points to the figure on the board. 
One of students says “unlimited” and repeats the 
answer as “unlimited”. She then adds to that, that see 
these lines could be numerous; again pointing to the 
figure on the board.  

How do we know that there are infinite 
radii? 
 

The teacher is discussing construction of square. She 
first gives the name of square and writes it down on 
the board. The she writes the dimension of the board. 
She asks everyone that for every construction – there 
are three stages, and what are those three stages. 
Different students respond as – rough diagram, fair 
diagram and check the authenticity. She agrees with 
the students and repeats names of the three stages. 
Then she does the first step of making the rough 
diagram. Then to move on to the next step that is 
making a fair diagram – she asks the students to make 
a segment of 8 cm. She then tells them that she will be 
using a scale and reminds them that on the scale we 
always start with zero. She marks a point for zero and 
then counts up to 16, for 8 units – she doesn’t tell this 
to students but she is using two units as one unit (may 
be for visibility).  

What did you notice in this clip? 
What is crucial in constructing? What is 
a rough figure? Why it is important in 
mathematics? 
 

In this clip the teacher is finding square of a binomial 
(a+b). She asks a student to come to the board and do 
the expansion. Other students are working with her 
simultaneously. The girl finds the answer as square of 
a + 2ab + square of b, the teacher reads them and says 
this is the expansion of the formula.  

What did you notice in this clip? 
What is important to understand in 
expansion of binomials? 
You explained that, we need to multiply 
by one term at a time, why does that 
technique work? Can you explain? 
 

In this clip the teacher is giving geometric verification 
of the algebraic expansion. At this moment the 
students have made a square with dimension 8, and 
following the instruction by the teacher. She asks them 
to draw lines at 5 cm on two sides, and this makes the 
4 parts of the square. Then she asks them to label each 
part of the square as 1, 2, 3 and 4. Further she asks 

What did you notice in this clip? 
You showed the geometric 
representation of (a + b) whole square, 
what is the meaning of that 
representation? 
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them to find area of each of the part, however, she 
doesn’t give them any time and starts asking sub 
questions as what is the shape of this part. The 
students give numerical answer for the area, for the 
bigger square they give answer 25. Then asks them to 
find area of each part, and at last ask them to add all 
the areas.  She points out that the sum of the area of all 
the parts is same as the area of the big square. Then 
she draws another square and names it as EFGH. And 
this time she makes the partition as 𝑎 and 𝑏, and 
derives area of each part, and then sums it.  

Why does the geometric representation 
get the same areas as the ones in the 
algebraic identities? 
What was “a” and what was “b” in your 
diagram?  
Why to make lines on 5 cm? 
 

The teacher is teaching the topics indices. A very 
simple exercise is been conducted where the teacher 
writes; index with power and the students have to 
write what is base and what is index. While doing so, 
the teacher herself adds an example (-1)^2 and asks 
how would they write base and index in this case. She 
begins the discussion as, “when the base is negative 
how do you write a base”, and then in the example of 
square of (-1), she says, “the base is negative and you 
have to write it as a negative”. Unlike other problems 
where she has stopped at writing what is base and 
index, here she mentions that if they do not write the 
minus sign there will be problem. To explain what that 
problem could be, she writes the expansion (−1)@ =
	−1	 × −1. Then she asks everyone, what is 1	 × 	1, 
and they all say 1. Then she asks what is −	× − and 
responds herself that two negative always make it 
positive. Next she takes example of (−2)�and 
calculates the answer for it using the logic she just 
gave above, two minus signs make it plus, and one 
minus sign alone is minus.  

What did you notice in this clip? 
Why it is so important to learn the 
language of index and base? 
When do you first teach them, two 
minus become plus or alone minus is 
minus? 
How did you teach back then? What is 
the explanation for two minus to be plus 
and one alone minus to be minus? 
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In this clip the teacher is teaching construction of 
square, when the side is given. She first draws a 
segment and then uses a compass to mark a point at 
ninety degrees measuring at the end points of the 
segment. She emphasizes on how to measure the 
angle, as the 
students make 
more mistakes 
in that. She 
shows how to 
measure the 
angle; 
interestingly she 
herself doesn’t 
know how to 
use her instrument correctly. It is not that she doesn’t 
know how to use the compass, however the compass 
she is using has specifically made for the classroom 
demo and therefore has a particular structure to it. See 
the figure here. Therefore she ends up using it wrongly 
and measures angle more than 90 degrees.  
 

What did you notice in this clip? 
What is crucial in constructing angles 
for a given measurement? 
Why do you think the protractor does 
not have straight base? 
 

In this clip the teacher has written (a + b)(a+b) on the 
board and asks students about what they see here. 
Without actually waiting to find out what students 
noticed she starts asking sub-questions – whether they 
see the same thing twice here, is there a variable and 
then asks what is a variable? She then tells them about 
variable. She provides the definition of variable as 
“the letter keeps changing, then it is called a variable”. 
She further adds that “in different expressions that are 
given in the textbook, there are different letters, we do 
not use a and b again and again and therefore we call 
them variables”. 

What did you notice in this clip? 
What is important to understand in 
expansion of binomials? 
You explained that we need to multiply 
by one term at a time, why does that 
technique work? Can you explain? 
 

The teacher often teaches a procedure or a rule on the 
board. Most of the time she is clear but she is a little 
fast also, she is less bilingual than the other teachers in 
her school. And therefore there are many students who 
are still blank after she has finished teaching, and then 
she reaches out to them and teaches the same thing on 
the black board.  

I often observed that you did a lot of 
Re-teaching after the instruction. Can 
you tell us what is happening in your 
class that you have to do a lot of re-
teaching? 
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She is rhythmic teacher, she 
teaches like a poem. In this 
clip the teacher has given a 
table, with buying price and 
selling price. The values 
used are two digit numbers 
and easy to calculate the 
difference. For each pair the 
student have to find which is more selling or buying 
price and then decide whether it is profit or loss. She 
calls different students and asks them to write the 
answer in the tabular form. See the picture below.  
 

What did you notice in this clip? 
What is critical in understanding profit 
and loss? 
What is the benefit of such tabular 
exercise? 
How did you choose these values? 
 

In this clip the teacher is 
discussing construction of a 
square when the length of the 
side is given. Again this 
teacher is using the 
instrument that has a special 

cut—for a pedagogic purpose so that one can match 
the line and also show students the alignment with the 
line of zero. However this teacher again does the 
similar error and measures the angle that is more than 
90 degrees.  

What did you notice in this clip? 
What is important in constructing a 
square? 
Why did you choose 3 cm as a side? 
The one you drew on the board is not 3 
cm, why did not you tell this to 
students? 
Do you know why the protractor does 
not have straight edge? 
Why is naming of geometric figure is 
important? 
 

This class the teacher keeps on giving problems of 
area, she begins with the definition of area, however 
she gives very simple examples such as 3cm side, not 
clear what was her goal in this class. She emphasizes a 
lot on writing the steps in the problem. 

You taught area of square and rectangle, 
and used very simple examples, as the 
side is 3 and 10 cm or 4 and 2 cm. why 
were you taking so simple example? 
What was your goal of this class? 

The teacher in this clip is teaching how to draw a 3-
dimensional figure. This is how she teaches – first 
draw a square then find the mid-point of the figure, 
and draw square from that point, now join these two 
squares with horizontal lines. She repeats the 
instruction and then asks student to name the figure, 
reminds them how to be clock or anticlockwise they 
need to be.  

What did you notice in this clip? 
How did you make the drawing of that 
triangle? 
Why did you choose that way to draw? 
Why do you think it is important to 
teach student to draw the cube? 
 

The teacher holds a cube in her hand and says that 
there are three sides that we will use to find the 
volume, (in Marathi the term for volume and for cube 
has similarity). Then she says that because we use 
three sides to multiply we will write unit as cubic. 

How do we know that volume is written 
in cubic cm [the teacher said because 
the cube has three sides when we write 
volume of the cube we write cm3 
What do we write cube in the unit, 
because there are three sides?  

The teacher has brought various objects in the class 
that have the shape cube, cuboid and then she is 

You taught surface area and volume of 
cube and cuboid. What is important in 
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Table A-G.1: Summary of the encounters 

  

discussing the total surface area formula for each of 
the shape 

learning this? What should one learn to 
understand this? What mistakes student 
make?  
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Appendix H 

School and Teacher Consents 
Consent to Participate in a Research Study 

 
Title of the Project: Teachers’ Encounters with Horizon Content Knowledge: Investigating the 
Knowledge Sensibilities for Teaching Mathematics 
Principal Investigator: Shweta Shripad Naik, Doctoral Candidate, School of Education 
University of Michigan  
Faculty Advisor: Prof. Deborah Ball, The Dean of School of Education University of Michigan 
 

Invitation to Participate in a Research Study 
 
I invite you to be part of a research study about teachers’ encounters with horizon content 
knowledge. This study analyses practice of teaching closely to understand the encounters that 
teachers face with mathematical knowledge at the horizon and traces management of such 
encounters.  
 

Description of Your Involvement 
 
If you agree to be part of the research study, we will ask for your consent to use your classroom 
teaching videos and your interview audios, which we recorded with your and your school head’s 
permission. We require the consent to analyze your teaching for identifying the encounters you 
face with the mathematics at the horizon.  
 

Benefits of Participation 
 
Although you may not directly benefit from being in this study, other than getting an opportunity 
to see your own teaching (in the forms of video record), prospective teachers would benefit from 
this study as the analysis will identify patterns of opportunity in teaching practice that would 
facilitate quality of instruction. The analysis will not only inform the practices that leverage the 
quality of instruction but also contribute to understanding of mathematical knowledge that 
teachers of mathematics need.   
 

Risks and Discomforts of Participation 
 
I do not believe that there are any risks or discomforts from participating in this research. 
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Confidentiality 

 
I plan to publish the results of this study. I will not include any information that would identify 
you.  Your privacy will be protected and your research records will be confidential. 
 

It is possible that other people may need to see the information you give us as part of the study, 
such as organizations responsible for making sure the research is done safely and properly like the 
University of Michigan, government offices. The video or audio data of your teaching will never 
be showed to any of your peers, administrators or anyone related to your school system. The data 
will not be seen by anyone other than the researchers engaged with the research issue. 
 

Storage and Future Use of Data 
 
Your classroom teaching videos and interview audios are stored for the analysis of encounters 
and for the further research studies. Your name, and any other identifying information is not 
attached with any of the actual data. The data is encrypted and will be stored with password 
protection to maintain the confidentiality. Only Ms. Shweta Naik, the principal investigator 
would have information of your name and other details. During the analysis phase the data 
around your teaching will be shared with other researchers but utmost care will be taken such 
that it will not contain any information that could identify you. 
 

Voluntary Nature of the Study 
 
Participating in this study is completely voluntary. Even if you decide to participate now, you 
may change your mind and stop at any time. You do not have to answer a question you do not 
want to answer. Just tell me and I will go to the next question.  If you decide to withdraw your 
consent before the study ends or anytime in future, you can do so. The contact details are 
provided in further section. 
 

Contact Information for the Study Team 
If you have questions about this research, including questions about your participation, you may 
contact  

 
Shweta Shripad Naik (principal 
investigator) 
315 Catherine Street, Apt. No. 5, Ann 
Arbor, MI 
Contact: 7342772642, 
919757180111(India), 
shwetan@umich.edu 

 

 
Prof. Deborah Loewenberg Ball 
(faculty advisor), William H. Payne 
Collegiate Professor and Arthur F. 
Thurnau Professor in Education; 
Dean, School of Education 
University of Michigan 
Ann Arbor, MI 48109-1259, 
734.647.1637 (office phone) 
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If you have questions about your rights as a research participant, or wish to obtain information, 

ask questions or discuss any concerns about this study with someone other than the researcher(s), 

please contact the:  

 

University of Michigan Health 

Sciences and Behavioral Sciences 

Institutional Review Board  

2800 Plymouth Road 

Ann Arbor, MI 48109-2800,  

Phone:  +1 (734) 936-0933 

Email: irbhsbs@umich.edu 

 

Prof. K. Subramaniam  

Dean, Homi Bhabha Centre for 
Science Education, (TIFR) 
V. N. Purav Marg, Mankhurd, 
Mumbai-400 088, India 
Tel : 091-22 2557 0813 (Direct) 
Email: subra@hbcse.tifr.res.in,  

  

 

Consent 
 
By signing this document, you are agreeing to be in the study. I will give you a copy of this 
document for your records. I will keep one copy with the study records. Be sure that I have 
answered any questions you have about the study and that you understand what you are being 
asked to do. You may contact the researcher if you think of a question later. 
 

I agree to participate in the study.  
 
 
_________________________________________________________________________ 
Participant’s Name     Signature                Date 
 
 
 
_________________________________________________________________________ 
Researcher’s Name     Signature                Date 
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Please provide a separate consent on the way this classroom teaching data was collected and how 
it should be used further in research.   
 
Consent to be video recorded  

I agreed to be video recorded for my classroom teaching.     
YES_________ NO_________ 

 

Consent to be audio recorded  

I agreed to be audio recorded for my interviews.     
YES_________ NO_________ 

 

Consent to use data/specimens in future research 

I agree that my data/specimens may be used in future research.  
YES_________ NO_________ 

 

Consent to be contacted for participation in future research 

I agree to be contacted for participation in future research.   
YES_________ NO_________ 

 
 
Name ____________________  Signature ___________________ 
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