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ABSTRACT

This dissertation considers Spacecraft Relative Motion Planning (SRMP), where maneu-

vers are planned for one or more spacecraft to execute in close proximity to obstacles or to

each other. The need for this type of maneuver planning has grown in recent years as the

space environment becomes more cluttered, and the focus on space situational awareness

increases. In SRMP, maneuvers must accommodate non-linear and non-convex constraints,

be robust to disturbances, and be implementable on-board spacecraft with limited computa-

tional capabilities. Consequently, many standard optimization or path planning techniques

cannot be directly applied to SRMP. In this dissertation, three novel SRMP techniques are

developed and simulations are presented to illustrate the implementation of each method.

Firstly, an invariance-based SRMP technique is proposed. Maneuvers are planned to

transition a spacecraft between specified natural motion trajectories, which require no con-

trol to follow, while avoiding obstacles and accommodating minimum and maximum actu-

ation limits. The method is based on a graph search applied to a “virtual net” with nodes

corresponding to natural motion trajectories. Adjacency rules in the virtual net are based on

safe positively invariant tubes built around each natural motion trajectory. These rules guar-

antee safe transitions between adjacent natural motion trajectories, even when set-bounded

disturbances are present. Procedures to construct the safe positively invariant tubes and the

virtual net are developed. Methods to reduce calculations are proposed and shown to sig-

nificantly reduce computation time, with tradeoffs related to maneuver planning flexibility.

Secondly, a SRMP technique is developed for the specific problem of satellite inspec-

tion. In this setting, an inspector spacecraft maneuvers to gather information about a target

xiii



spacecraft. An information collection model is developed and used to construct a rapidly

computable analytical control law based on the local gradient of the information rate. This

control law drives the inspector spacecraft on a path along which the rate of information

collection is strictly increasing. To ensure constraint satisfaction, the local gradient con-

trol law is combined with a state feedback control law, and rules are developed to govern

switches between the two controllers. The method is shown to be effective in generat-

ing trajectories to gather information about a specified target point while accommodating

disturbances.

Finally, a control strategy is proposed to generate a formation containing an arbitrary

number of vehicles. This strategy is based on an add-on predictive control mechanism

known as a parameter governor. Parameter governors work by modifying parameters, such

as gains or offsets, in a nominal closed-loop system to enforce constraints and improve

performance. The parameter governor is first developed in a general setting, using generic

non-linear system dynamics and an arbitrary formation design. Required calculations are

minimized, and non-convex constraints are accommodated through use of a parameter up-

date strategy based on graph colorability theory, and by limiting parameter values to a

discrete set. A convergence analysis is presented, proving that under reasonable assump-

tions, the parameter governor is guaranteed to generate the desired formation. Two specific

parameter governors, referred to as the Scale Shift Governor and Time Shift Governor, are

proposed and applied to generate formations of spacecraft. These parameter governors en-

force constraints by modifying either scale- or time-shifts applied to the target trajectory

provided to each spacecraft in formation. Simulation case studies show the effectiveness of

each method and demonstrate robustness to disturbances.

xiv



CHAPTER 1

Introduction

Spacecraft Relative Motion Planning (SRMP) is the design and execution of maneuvers
relative to a nominal target. Depending on the mission application, this target could be
another spacecraft, a nominal position along a trajectory, or the center-point of a formation.
In this dissertation, novel methods are developed and demonstrated for two specific cases
of SRMP.

The first case, referred to as Basic Spacecraft Relative Motion Planning (bSRMP), in-
volves maneuvers planned for a single spacecraft to execute in close proximity to another
non-maneuvering spacecraft, and possibly to additional obstacles, e.g., orbital debris. Typ-
ical mission applications for bSRMP include satellite inspection and rendezvous and dock-
ing. In satellite inspection applications, one spacecraft executes maneuvers to gather in-
formation about a non-maneuvering spacecraft, whereas in rendezvous and docking appli-
cations, one spacecraft executes maneuvers to approach and dock with another spacecraft.
The second specific case of SRMP considered in this dissertation, referred to as Formation
Flying (FF), involves maneuvers planned for multiple spacecraft to execute simultaneously
to generate and maintain a specified formation, i.e., track and maintain desired separations
and positions among the spacecraft. Typical mission applications for FF include inter-
ferometry and gravity mapping. In interferometry applications, data from sensors aboard
multiple spacecraft arrayed in a precise formation are combined to provide increased data
quality, e.g., better image resolution. In gravity mapping applications, measurements of
the relative position between spacecraft over time are used to obtain detailed estimates of
abnormalities in Earth’s gravity field. In this dissertation, SRMP is used as a general term,
referring to both bSRMP and FF.

In this chapter, a brief historical background of SRMP is presented, the specific SRMP
problem addressed in this dissertation is defined, a brief survey of related literature is dis-
cussed, and the specific contributions of this work are stated.
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1.1 Historical Background

bSRMP has been an important area of space operations and research since NASA estab-
lished the Gemini program in the 1960s with a goal of developing techniques for ren-
dezvous and docking with another space vehicle [1]. The Gemini program’s success in
demonstrating techniques for rendezvous and docking led to further development and use
of these procedures in the Apollo program. Since the final moon landing in 1972, bSRMP
has remained a key component of manned space missions including the on-orbit satellite re-
pair and retrieval missions executed by the Space Shuttles [2], and crew change missions to
space stations including Skylab, Mir, Tiangong-1, Tiangong-2 and the International Space
Station (ISS).

bSRMP has become increasingly important for unmanned space missions as well. High-
profile examples of unmanned missions utilizing bSRMP techniques include those per-
formed by SpaceX’s Dragon spacecraft and Orbital ATK’s Cygnus spacecraft to rendezvous
with the ISS. In addition to these ISS resupply missions, several other unmanned missions
utilizing bSRMP have been flown to develop and demonstrate capabilities in two mission
areas that are becoming increasingly important in today’s space environment: Space Situa-
tional Awareness (SSA) and On-Orbit Servicing (OOS).

Developing and maintaining SSA, i.e., knowledge of spacecraft or other objects located
near a spacecraft of interest, is desirable because this knowledge can be used to ensure safe
operation of expensive satellites performing vital missions. The bSRMP portion of SSA
missions involves development of maneuvers to detect and characterize objects operating
near a spacecraft. A recent example of this type of mission is the Air Force Research Lab-
oratory (AFRL) Automated Navigation and Guidance Experiment for Local Space (AN-
GELS) program which developed and demonstrated bSRMP techniques to improve meth-
ods to detect, track and characterize objects in a local space environment [3].

Developing OOS capabilities is desirable because these capabilities may provide the
ability to extend the lifetime of spacecraft, reduce the cost of space operations, and/or re-
move dead or malfunctioning satellites from orbit. The bSRMP portion of OOS missions
necessarily includes rendezvous and docking, but these maneuvers are typically preceded
by an inspection phase that involves circumnavigations of the target satellite and/or addi-
tional maneuvers to provide high-resolution imagery of specific areas on the target space-
craft in order to diagnose malfunctions or develop repair plans.

Several missions have been flown in recent years to develop bSRMP methods for use in
OOS applications. In 1997, the Engineering Test Satellite-VII (ETS-VII) satellite operated
by the National Space Development Agency (NASDA) of Japan successfully performed the
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first autonomous rendezvous and docking between unmanned spacecraft, in part to develop
technologies for use in servicing spacecraft [4]. In a similar vein, the Orbital Express pro-
gram executed by Defense Advanced Research Projects Agency (DARPA) demonstrated
several bSRMP techniques including autonomous rendezvous with, and docking and close-
range circumnavigation of, a non-maneuvering spacecraft [5]. Other programs initiated to
develop capabilities for OOS and bSRMP include the joint Technology Satellite for demon-
stration and verification of Space systems (TECSAS) program involving Germany, Canada
and Russia [6], Germany’s subsequent Deutsche Orbitale Servicing Mission (DEOS) pro-
gram [7], and DARPA’s sequence of programs related to OOS including Spacecraft for the
Universal Modification of Orbits / Front-end Robotics Enabling Near-Term Demonstra-
tion (SUMO/FREND) [8], Phoenix [9], F6 [10], and the present-day Remote Servicing of
Geosynchronous Vehicles (RSGS) [11].

While bSRMP is useful for missions involving rendezvous and docking, SSA and OOS,
the utility of FF stems from several advantages offered by multi-spacecraft mission archi-
tectures compared to single-spacecraft architectures. Firstly, by utilizing sensors onboard
multiple spacecraft, FF allows for distributed and variable aperture sensing which can be a
useful capability for remote sensing mission applications. Secondly, by distributing sensors
and mission capabilities amongst spacecraft, FF missions can provide enhanced mission
survivability as the failure of a single spacecraft may not cause complete mission failure.
Finally, in certain cases, FF missions can yield cost savings as launching multiple small
spacecraft can be less expensive than launching a single, larger vehicle. Because of these
advantages, NASA, the U.S. Department of Defense, the ESA, and other agencies have
shown interest in developing FF missions [12].

Examples of past missions involving FF include NASA’s Gravity Recovery and Cli-
mate Experiment (GRACE) mission [13], which flew two spacecraft in close proximity to
map Earth’s gravity field, and the German TerraSAR-X/TanDEM-X (TSX/TDX) mission
that utilized two spacecraft to form a spaceborne radar interferometer [14]. Missions in-
volving more than two spacecraft include NASA’s Time History of Events and Macroscale
Interactions during Substorms (THEMIS) mission [15], which utilized five spacecraft to
study the causes of substorms in Earth’s magnetosphere, and the Aerospace Corporation’s
Aero-4 mission that utilized four spacecraft to study the use of differential drag for cube-
sat FF [16]. In addition to these historical examples, there are several FF flight missions
currently in the design and planning stages, see, e.g., [17].
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1.2 Motivation and Problem Statement

As the previous discussion illustrates, SRMP techniques have been used in space operations
for several decades. In the future, the use of SRMP techniques will likely increase as the
increasingly cluttered space environment leads to spacecraft more frequently operating near
other objects, and as the focus on missions to provide capabilities such as SSA and OOS
grows. To meet the requirements for these future missions, new and improved SRMP
techniques are needed due to five complicating factors, some of which can impede the
straightforward application of legacy SRMP techniques or motion planning methods used
in other fields, e.g., robotics [18].

Firstly, because of launch costs and the lack of on-orbit refueling capabilities, fuel
efficiency is an important consideration for SRMP. Secondly, SRMP problems typically
include constraints on control variables that must be enforced. Typical control variable
constraints include thruster saturation limits and minimum impulse bit limits. These con-
straints place upper- and lower-bounds on the control inputs available for maneuver plan-
ning, respectively. Thirdly, SRMP problems frequently involve state variable constraints
based either on exclusion zones centered on obstacles, or on minimum separation distance
limits between spacecraft. These constraints must be enforced to ensure no collisions with
obstacles, e.g., orbital debris, or between spacecraft in formation.

Considering only these three factors, it is possible to pose SRMP problems as con-
strained optimization problems. However, because of the types of constraints considered,
this optimization problem is typically non-linear and non-convex. While several methods
and solvers exist to handle optimization problems with these types of constraints, e.g., the
Gauss Pseudospectral Optimization Solver-II (GPOPS-II) [19], these methods can require
long solution times, and require a user-input initial guess that may be difficult to generate.
Additionally, both convergence and the quality of the solution is typically dependent on the
initial guess [20].

A fourth factor that complicates the development of SRMP techniques is the presence of
perturbations due to inexact dynamics modeling and control system performance. Because
of these perturbations, planned maneuvers must not only satisfy constraints and accomplish
mission objectives, they must also be robust to disturbances. This limits the utility of many
optimization and motion planning methods that calculate maneuvers to be executed open-
loop.

Finally, spacecraft typically have limited on-board computational capabilities. Because
many future SRMP-based mission concepts call for autonomous on-board implementation,
e.g., many of the FF missions discussed in [21], this limitation leads to the requirement that
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SRMP methods be computationally fast and straightforward.
Motivated by these five complicating factors, the general problem considered in this

dissertation is given as follows.

Problem Statement: Develop methods for SRMP that:

• Plan fuel efficient trajectories,

• Account for control constraints,

• Ensure no collisions with obstacles,

• Are robust to disturbances, and

• Use fast and straightforward calculations.

In the following sections, a review of literature related to this problem is presented, and
the specific contributions of the work in this dissertation are stated.

1.3 Literature Review

Because SRMP has been an active area of research for decades, there is an extensive
body of literature on the subject. Books by Alfriend, et al., [22], Wang et al., [23] and
Fehse [24], provide overviews of dynamics models, perturbations, and maneuver design
methods related to SRMP. Additionally, there are several relevant literature surveys that
provide overviews of SRMP-related research over the years. For example, surveys on tra-
jectory planning for rendezvous can be found in references [20] and [25], while a survey
on the broader field of numerical trajectory optimization was given by Betts [26]. A survey
and assessment of the many spacecraft relative motion dynamics models used in SRMP
was carried out by Sullivan et al., [27] and reviews of the guidance and control methods
developed for FF are presented in references [12], [28] and [29]. In Sections 1.3.1-1.3.3
below, subsets of the SRMP-related literature most relevant to the work in this dissertation
are summarized, and areas for improvement are highlighted.

1.3.1 Optimization Techniques

As discussed in Section 1.2, one of the main factors complicating SRMP is the presence
of obstacle avoidance requirements, resulting in non-linear and non-convex constraints.
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Several methods have been proposed to solve problems including these types of constraints
using optimization-based techniques.

Richards and How proposed a SRMP method based on Mixed Integer Linear Program-
ming (MILP) [30]. In this method, obstacles are represented as polytopes, and linear con-
straints that include binary variables are appended to a fuel-optimizing linear program. The
binary variables are used to activate and deactivate constraints as needed to ensure obstacle
avoidance. The resulting MILP can then be solved using standard solvers, e.g., the CPLEX
method [31]. Liu and Lu proposed a method to replace a single non-convex optimization
problem with a sequence of convex optimization problems that can be efficiently solved
with standard algorithms [32, 33]. In the original non-convex problem, obstacle avoidance
constraints are written as concave state inequality constraints. These constraints are then
linearized in order to make the problem convex. In [32], it is shown that the solution to
the converged sequence of convex problems is equivalent to the solution of the original
problem. The method is demonstrated through simulation with a bSRMP example of ren-
dezvous.

In a FF setting, several optimization-based methods have been proposed to generate or
reconfigure spacecraft formations while ensuring no collisions between spacecraft. Cetin
et al. proposed a method in which a MILP is formulated and then solved via a sequence
of linear programs [34]. Kim et al. developed a method to reconfigure a two-spacecraft
formation using state-constrained optimal control techniques [35]. Other optimal control-
based strategies for FF are described in Chapter 5 of reference [23].

While some of these methods can be used to recast non-convex problems into more
readily solvable forms, they still require the solution to one or more optimization problems
to obtain a single trajectory. This leads to computations that may not be fast or straight-
forward. Additionally, in many cases, the methods described above may not scale well to
accommodate multiple obstacles or formations with a large number of spacecraft.

1.3.2 Sampling- and Graph Search-based Motion Planning

SRMP using sampling-based algorithms, such as Rapidly exploring Random Trees (RRT)
[36], and graph search algorithms, such as Dijkstra’s algorithm [37], is attractive because
these algorithms can be simple and efficient. In sampling-based motion planning algo-
rithms, a path from an initial state to a goal state is built using a graph, with nodes (ver-
tices) corresponding to points in the state-space, generated by randomly selected samples
in the obstacle-free space [38]. Nodes are added to the graph if it is possible to execute a
collision-free trajectory from a previous node to the node currently being considered. Ma-
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neuvers planned using sampling-based algorithms can sometimes be executed closed-loop.
This is a desirable feature for SRMP applications because executing maneuvers closed-loop
allows for the rejection of disturbances encountered throughout the maneuver.

While sampling-based motion planning algorithms have been applied in FF settings,
e.g., [39], applications to bSRMP are most relevant to the work in this dissertation. RRT-
based algorithms have been applied to bSRMP and demonstrated the ability to generate col-
lision free trajectories for spacecraft maneuvering in cluttered environments [40,41]. Other
sampling-based algorithms developed for or applied to bSRMP include the Fast March-
ing Trees (FMT*) algorithm, which was modified and applied by Starek et al. to develop
safe trajectories for satellite rendezvous [42–44], and the Spherical Expansion-Sequential
Convex Programming (SE-SCP) algorithm proposed by Baldini et al. [45]. This algorithm
includes a spherical expansion-based sampling step to find a feasible path between start
and goal positions that avoids obstacles. Then, this feasible path is “locally” optimized us-
ing SCP. Other related work, not specifically developed for SRMP, includes an LQR-Trees
algorithm developed to exploit a set of trajectories, calculated using trajectory optimiza-
tion algorithms, and stabilized using time-varying Linear Quadratic Regulator (LQR) con-
trollers [46]. Finally, Singh et al. proposed a motion planning method involving invariant
“funnels” formed around a set of open-loop maneuvers [47]. These funnels are used to
piece together individual maneuvers to obtain an overall maneuver that avoids obstacles.

One drawback to using sampling-based motion planning techniques is that a separate
graph/tree must generated for each new trajectory, even if the environment is unchanged.
This leads to computations that may not be feasible to execute on-board a satellite. This
drawback can be mitigated by using motion planning methods based on graph search.

In graph search based methods, all calculations required to build the entire graph are
performed first. After the graph has been generated, shortest-path algorithms can be used to
plan multiple trajectories using the same pre-computed graph at low computational cost (as-
suming the environment does not change). In certain cases, computations required to build
the graph may be efficient and implementable on-board, while in other cases the graph may
be generated off-line and uploaded to the spacecraft. In reference [48], a bSRMP method
using graph-search was developed to plan paths that avoid obstacles while guaranteeing
robustness to set-bounded disturbances. These paths were generated using Dijkstra’s al-
gorithm on a graph with nodes corresponding to forced equilibria. Adjacency in the graph
was determined using safe (constraint admissible) positively invariant sets built around each
node. By weighting the graph based on the control (or time) required to transfer between
nodes, either fuel- or time-optimal paths (with respect to the graph) were planned. One
drawback to this method is that, by using forced equilibria as nodes (which require fuel to
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stay at), the resulting trajectories require constant control input to follow.

1.3.3 Predictive Control

In predictive control techniques, control inputs or other inputs to a nominal closed-loop
system are selected based on predicted system behavior. One popular predictive control
technique is Model Predictive Control (MPC) [49], in which a dynamics model is used to
predict system behavior, and system inputs are selected based on the solution to an opti-
mization problem formulated over a receding time horizon. Only inputs for the current time
instant are applied, and subsequent inputs are determined by new solutions to the optimiza-
tion problem at the next time steps. MPC is an attractive option for SRMP because it allows
for handling multiple constraints, and can accommodate disturbances. Several MPC-based
techniques have been proposed for both bSRMP applications, e.g., [50–52] and FF applica-
tions, e.g., [53–57]. While these references demonstrate that general MPC approaches are
promising for SRMP, in general, if a) the dynamics model is non-linear, b) the optimization
problem is non-convex, or c) the prediction horizon is large, then computations to obtain
control inputs at each time-step can be cumbersome. Several MPC-based approaches have
been developed to address these issues.

In an approach known as Parametrized MPC [58, 59], the set of admissible control val-
ues is reduced to a finite set through a parametrization defined by a set of parameters. Then,
to determine control inputs at each time step, the objective function is minimized over the
parameter set, rather than over the control inputs, thereby reducing the number of adjustable
variables in the optimization. Such Parametrized MPC schemes are shown in [58] to have
good performance for a variety of applications such as underactuated spacecraft attitude
control and aircraft stabilization. Other MPC-based approaches developed to reduce calcu-
lations by reducing the number of adjustable variables include [60–62]. In [60], the control
is parametrized using Laguerre functions. This reduces the number of variables needed to
describe the control trajectory and therefore reduces the number of adjustable variables in
the optimization problem. In [61], the control is first restricted to consist of a static-state
feedback term plus an adjustable offset, and then this offset is parametrized within a sub-
space of reduced dimension using a Singular Value Decomposition. The method is shown
to reduce computations while also ensuring recursive feasibility and robustness to bounded
disturbances. Finally, in [62], a method to decompose a system (state and control vec-
tors) in terms of basis vectors based on the system dynamics and cost function is proposed.
This decomposition is used to formulate a reduced-order optimization problem to deter-
mine control inputs at each time step. The resulting controller is shown have performance
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comparable to standard MPC approaches.
In addition to the MPC-based schemes mentioned above, another subset of predictive

control most relevant to the work in this dissertation are Reference Governors (RGs) and
Command Governors (CGs). RG and CG are add-on schemes used to enforce pointwise-in-
time state and control constraints by modifying the reference command provided to well-
designed (for small signals) closed-loop systems, when implementing the nominal refer-
ence command would lead to constraint violations [63]. The modified reference command
is obtained by solving a receding horizon optimization problem at each time step. RGs and
CGs enjoy two advantages over more general MPC controllers, related to the computations
required. Firstly, because of their add-on nature, use of a RG or CG ensures that desirable
properties of the inner-loop controller, possibly including simple calculations, are retained
whenever constraints are satisfied. Secondly, because the RG or CG is restricted to making
changes to only the reference provided to the inner-loop system, the optimization problem
to be solved has a small number of adjustable variables and can be solved quickly using
straightforward algorithms (as long as the optimization problem is convex). As a result of
these two properties, the computations required to implement RG or CG control schemes
are frequently fast and straightforward, and thus their use in SRMP settings is logical.

While RGs and CGs have been applied in bSRMP settings, e.g., [64–66], applications
to distributed systems in general, and FF specifically, are most relevant to the work in
this dissertation. Garone, Tedesco et al. have proposed several implementations of CG
for distributed systems [67–71]. In reference [67], a feed-forward CG was proposed to
control a multi-agent system with coupled constraints. In this approach, the frequency
and magnitude of changes to the reference commands were restricted. These restrictions,
along with assumed stability properties of the inner-loop controller, allowed each agent to
make independent modifications to their reference commands, without explicit state mea-
surements from other agents, while guaranteeing constraint satisfaction for the aggregate
system. In [68], a sequential update strategy was proposed in which a single agent updated
their reference command at each time step while all other agents held their commands fixed.
In [69,70], a new command update strategy was proposed where agents were grouped into
“turns” defined based on coupling between the agents. At each time step, all agents within
a specified turn update their commands while all other agents hold their commands fixed.
These command update strategies allow for simpler and faster calculations compared to
a centralized approach where all agents make updates simultaneously. Finally, in refer-
ence [71], a distributed CG is proposed that accounts for collision avoidance constraints
by formulating and solving a MILP at each time-instant. These distributed CG approaches
are promising in that they enable the distribution of computations over time and between
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agents. However, with the exception of [71], they have demonstrated only limited ability
to handle non-convex collision avoidance constraints important to FF applications. Addi-
tionally, all of the aforementioned distributed CG schemes are limited to linear systems.

In a FF setting, Bacconi et al. proposed a CG-based strategy to control both the posi-
tions and attitudes of spacecraft in formation [72]. Their approach enforced control con-
straints and formation accuracy constraints, but relied on pre-computed (offline) trajectories
for each spacecraft to follow in order to ensure no collisions between spacecraft.

The Parameter Governor (PG) is another add-on predictive controller similar to the
RG and CG [73]. PGs work by modifying parameters, such as gains or offsets, in nomi-
nal closed loop control schemes in order to enforce constraints and improve performance.
Parameters are updated based on a solution of a low-dimensional optimization problem,
where the parameters are the adjustable variables. In this respect, PGs are also related to
Parametrized MPC and other MPC-based control techniques discussed above. For PGs, in
some cases, the values of adjustable variables (parameters) can be confined to a finite set
of small cardinality so that the solution can be determined by direct search, i.e., running a
small number of simulations over the range of possible parameter values. For this reason,
PGs are an attractive option for SRMP. To the author’s knowledge, the work developed in
this dissertation represents the first application of PGs to SRMP, and specifically to FF.

1.4 Contributions and Outline

1.4.1 Contributions

The SRMP methods developed in this dissertation provide a means to partially overcome
some of the difficulties discussed in Section 1.3. Specifically, the bSRMP and FF meth-
ods developed here are shown to be capable of accommodating non-linear and non-convex
constraints to ensure collision avoidance, and use straightforward and fast computations
that may be implementable onboard spacecraft. Robustness to disturbances is either theo-
retically guaranteed and/or demonstrated through simulation. The specific contributions of
this dissertation are listed below.

Contributions related to bSRMP:

1. Development of an invariance-based satellite relative motion planning scheme. This
method:

• Plans maneuvers to transition a spacecraft between specified Natural Motion
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Trajectories (NMTs), which require no control to follow (or minimal control
with disturbances), utilizing a series of intermediate NMTs and fuel efficient
transfers between them,

• Determines maneuvers via graph search, yielding fast computations,

• Accommodates minimum and maximum actuation limits and guarantees avoid-
ance of prescribed exclusion zones (obstacles),

• Develops trajectories that are closed-loop followed,

• Accounts for set-bounded disturbances in the construction of the virtual net;
thereby guaranteeing robustness to disturbances.

2. Development of an information collection model and an analytical control law for
use in satellite inspection applications. This work:

• Generates maneuvers to obtain information about a target spacecraft,

• Utilizes a rapidly computable analytical control law that drives the spacecraft
toward the optimal location for information collection,

• Is shown to accommodate thruster saturation limits and collision avoidance con-
straints through construction of the control law and through simulation,

• Demonstrates robustness to disturbances through simulation.

These contributions stem from the work described in Chapters 3 and 4, respectively.

Contributions related to FF:

3. Development of a general PG-based control scheme to generate and maintain forma-
tions containing an arbitrary number of agents (spacecraft). This method:

• Is developed using generic non-linear dynamics and an arbitrary formation de-
sign,

• Guarantees convergence to the desired formation under a specified set of as-
sumptions,

• Enforces non-linear and non-convex constraints on state and control variables,

• Distributes required calculations over time and among agents,

• Develops trajectories that are closed-loop followed,

• Can be applied to spacecraft FF or other non-spacecraft formation control ap-
plications.
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4. Development of two specific PG-based control schemes to generate and maintain
spacecraft formations. This work:

• Illustrates two possible applications of the general framework described above,

• Generates formation of spacecraft travelling along NMTs at desired phasing,

• Enforces thruster saturation limits and separation distance constraints between
spacecraft,

• Generates maneuvers that are fuel efficient and closed-loop followed,

• Demonstrates robustness to disturbances through simulation.

These contributions stem from the work described in Chapter 5.

1.4.2 Outline

To begin the dissertation, in Chapter 2, topics, models and concepts common to the work
described in Chapters 3-5 are presented. These include a derivation of the satellite relative
motion dynamics model and basic state-feedback control law used in simulations. Addi-
tionally, a description of the various types of NMTs, i.e., trajectories that can be followed
with no control (fuel) use (or minimal control if disturbances are considered), that are ex-
ploited in Chapters 3 and 5 is included.

In Chapter 3, an invariance-based relative motion planning scheme is developed. This
method plans maneuvers using a graph search on a “virtual net” (directed graph) with nodes
corresponding to NMTs. Adjacency and connection information in the virtual net is deter-
mined by conditions defined in terms of Safe, Positively Invariant (SPI) tubes built around
each NMT. These conditions guarantee that transitions from one NMT to an adjacent NMT
can be completed without constraint violation, even when set-bounded disturbances are
present. Procedures to construct the SPI tubes and resulting virtual net are developed. Sim-
ulations demonstrate that the method can be used to plan and execute maneuvers that ac-
commodate upper and lower bounds on control inputs and avoid specified exclusion zones
(obstacles). While the computations required to plan each maneuver after the virtual net
has been formed are minimal, the nominal calculations required to form the virtual net
are extensive and may not be feasible for on-board implementation. Several methods to
reduce the required computations are presented and shown to reduce computation time
significantly with minor tradeoffs related to maneuver planning flexibility.

In Chapter 4, two tools are developed for use in satellite inspection applications. Firstly,
an information collection model is developed that expresses the rate of information collec-
tion as a function of both distance- and angle-to-target. This model is then used to develop
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a rapidly computable analytical control law that drives the inspector spacecraft on a path
along which the rate of information collection is strictly increasing. This control law, com-
bined with a simple state feedback control law, is shown through simulations to be capable
of executing maneuvers to obtain information about a target spacecraft while enforcing
thruster saturation limits and avoiding an exclusion zone centered on the target spacecraft.

In Chapter 5, a general PG-based control scheme is presented to generate and main-
tain multi-agent formations. The dynamics model and nominal inner-loop controller are
described, and the basic implementation of a PG-based controller is introduced. Proper-
ties of the system controller, formation reference trajectories, and PG cost function needed
to ensure convergence are clearly stated. To reduce the computations required in imple-
mentation, a “turn-based” parameter update method based on graph colorability theory
is described. A convergence analysis is presented showing that the PG can be used to
generate and maintain the desired formation if certain reasonable assumptions hold. Two
specific PGs, the Scale Shift Governor (SSG) and Time Shift Governor (TSG), are then in-
troduced as FF-specific applications of the general PG-based control scheme. The SSG and
TSG work by modifying, for each spacecraft in formation, a scale factor which enlarges
or shrinks the reference trajectory, or a time-shift along a specified reference trajectory,
respectively. Simulations are presented to illustrate the implementation of both the SSG
and TSG, and demonstrate robustness to additive input disturbances. Finally, concluding
remarks and a discussion of future research directions are presented in Chapter 6.

Relevant publications pertaining to the bSRMP techniques discussed in this dissertation
can be found in references [74–77], whereas publications pertaining to the FF techniques
discussed in this dissertation can be found in references [78, 79].

1.5 Notation

Standard notations are used throughout the dissertation. The set of real numbers is denoted
by R and the set of integers is denoted by Z. Subsets of these sets are denoted by a subscript,
e.g., the set of non-negative real numbers is denoted by R>0 and the set of integers between
0 and T is denoted by Z[0,T ]. A symmetric positive-(semi)definite matrix Φ is denoted
by Φ � (�)0. The p-norm of a vector v is denoted by ‖v‖p. The symbol k is used to
denote the discrete-time instant, while t is used to denote continuous-time. Other notations
are defined throughout the dissertation immediately following their first use. In sections
or chapters utilizing significant non-standard notations, these notations are summarized in
either tables or in stand-alone sections for easy reference.
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CHAPTER 2

Preliminaries

2.1 Relative Motion Dynamics

This section contains a brief derivation of the equations of relative motion used in this
dissertation. These equations express the position and velocity of a spacecraft maneuvering
relative to a nominal target, i.e., position along a nominal orbit. Firstly, non-linear equations
of relative motion are derived. Then, these equations are linearized, yielding the set of
Linear Time Invariant (LTI) equations that are used extensively in Chapters 3-5.

2.1.1 Reference Frames

The derivation for the equations of relative motion in the following subsections utilizes
two reference frames: an earth-centered-inertial (ECI) frame (denoted by FI ), and a local-
vertical-local-horizontal frame commonly known as Hill’s frame (denoted by FH), see Fig-
ure 2.1. The axes for each of these reference frames are defined in Table 2.1. The axes for
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Figure 2.1: Reference frames
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Hill’s frame are based on a nominal orbit, and a nominal position (target) along this orbit.
Note that as this nominal target moves along the orbit, Hill’s frame rotates, with respect to
the ECI frame, about the ẑ axis.

Table 2.1: Reference frame axes for ECI frame and Hill’s frame

Axes for ECI frame
î Vernal equinox direction
k̂ Earth’s axis of rotation
ĵ Completes right-handed coordinate frame

Axes for Hill’s frame
x̂ Along line from center of Earth to a nominal orbital position (radial)
ẑ Along nominal orbit angular momentum vector (cross-track)
ŷ Completes right-handed coordinate frame (in-track)

2.1.2 Non-linear Equations of Relative Motion

In this section, non-linear equations of motion are developed for a maneuvering spacecraft,
denoted by M , relative to the nominal orbital position, denoted by T , in Hill’s frame. The
position vector of M with respect to T is given by

rM/T = rM/O − rT/O, (2.1)

where O denotes the center of the Earth, see Figure 2.2.
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Figure 2.2: Basic set-up for derivation of equations of motion

Taking time-derivatives of (2.1) with respect to FI yields

I··
rM/T =

I··
rM/O −

I··
r T/O. (2.2)
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The two terms on the Right Hand Side (RHS) of (2.2) are simply the inertial equations
of motion for the maneuvering spacecraft and the nominal orbital position, respectively,
and are given by the Restricted Two-Body Equations of Motion (R2BEOM) (see Chapter
2 in [22]). Substituting the R2BEOM into (2.2) results in

I··
rM/T = −µ

rM/O

‖rM/O‖3
2

+ µ
rT/O
‖rT/O‖3

2

, (2.3)

where µ is the gravitational parameter for Earth.
The expressions on the Left Hand Side (LHS) and RHS of (2.3) are now resolved in

Hill’s frame. First, consider the LHS. Using the transport theorem, the LHS of (2.3) is
expressed as

I··
rM/T =

H··
r M/T + 2ωH/I ×

H·
r M/T +

H·
ωH/I × rM/T + ωH/I × (ωH/I × rM/T ), (2.4)

where ωH/I is the angular velocity of Hill’s frame with respect to the ECI frame, and the
superscripts H· and H·· denote first and second time-derivaties with respect to FH , respec-
tively. Equation (2.4) is resolved in Hill’s frame using the following notation,

rM/T

∣∣
H

= xx̂+ yŷ + zẑ = [x, y, z]T ,

ωH/I
∣∣
H

= [0, 0, θ]T ,
(2.5)

resulting in

I··
rM/T

∣∣∣
H

=

 ẍ

ÿ

z̈

+2

 0

0

θ

×
 ẋ

ẏ

ż

+

 0

0

θ̇

×
 x

y

z

+

 0

0

θ

×

 0

0

θ

×
 x

y

z


 .

(2.6)
By carrying out the cross products and combining terms, (2.6) simplifies to

I··
rM/T

∣∣∣
H

=

 ẍ− 2θẏ − θ̇y − θ2x

ÿ + 2θẋ+ θ̇x− θ2y

z̈

 . (2.7)

Next, consider the RHS of (2.3):

− µ
rM/O

‖rM/O‖3
2

+ µ
rT/O
‖rT/O‖3

2

. (2.8)

16



The vectors rT/O and rM/O, resolved in Hill’s frame, are given by

rT/O
∣∣
H

=
[
‖rT/O‖2, 0, 0

]T
, (2.9)

and
rM/O

∣∣
H

=
[
‖rT/O‖2 + x, y, z

]T
, (2.10)

respectively. Substituting (2.9) and (2.10) into (2.8), and using the abbreviated notation
rT = ‖rT/O‖2 yields

[
−µ

rM/O

‖rM/O‖3
2

+ µ
rT/O
‖rT/O‖3

2

]∣∣∣∣
H

=


−µ rT +x

[(rT +x)2+y2+z2]3/2 + µ
r2
T

−µ y

[(rT +x)2+y2+z2]3/2

−µ z

[(rT +x)2+y2+z2]3/2

 . (2.11)

Setting (2.7) equal to (2.11) component-wise, and solving for the acceleration terms
yields the following non-linear equations of motion for the maneuvering spacecraft relative
to the nominal orbital position, expressed in Hill’s frame:

ẍ = − µ(rT +x)

[(rT +x)2+y2+z2]3/2 + µ
r2
T

+ 2θẏ + θ̇y + θ2x,

ÿ = − µy

[(rT +x)2+y2+z2]3/2 − 2θẋ− θ̇x+ θ2y,

z̈ = − µz

[(rT +x)2+y2+z2]3/2 .

(2.12)

If there are external disturbances (such as unmodeled dynamics), denoted by w =

[w1, w2, w3]T , or control forces, denoted by u = [u1, u2, u3]T , these can be added
to the RHS of (2.12) to yield

ẍ = − µ(rT +x)

[(rT +x)2+y2+z2]3/2 + µ
r2
T

+ 2θẏ + θ̇y + θ2x+ w1 + u1,

ÿ = − µy

[(rT +x)2+y2+z2]3/2 − 2θẋ− θ̇x+ θ2y + w2 + u2,

z̈ = − µz

[(rT +x)2+y2+z2]3/2 + w3 + u3.

(2.13)

2.1.3 Linearized Equations of Relative Motion

In most SRMP scenarios, the maneuvering spacecraft is in close proximity to the nominal
target, i.e., ‖rM/T‖2 � rT . In this case, the non-linear Equations (2.12) can be linearized
about the nominal target, i.e., the origin x = y = z = ż = ẏ = ż = 0, yielding the
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following linear equations of relative motion:

ẍ =
(

2µ
r3
T

+ θ2
)
x+ θ̇y + 2θẏ,

ÿ = −θ̇x+
(
θ2 − µ

r3
T

)
y − 2θẋ,

z̈ = −−µ
r3
T
z.

(2.14)

In general, these equations are time-varying. However, simplifications to this general
case can be made if the nominal target is along either an elliptical or circular orbit. If
the nominal target orbit is elliptical, then (2.14) are time-periodic, with a period equal to
that of the nominal orbit. In this case, (2.14) can be reformulated by scaling the position
coordinates by rT , and changing the independent variable from time to the true anomaly
along the nominal orbit. These operations result in a set of linear time-periodic equations
know as the Tschauner-Hempel (TH) equations [80]. Further simplifications are possible
if the nominal target is assumed to be along a circular orbit.1 In this case, (2.14) are time-
invariant.

2.1.3.1 The Clohessy-Wiltshire Equations

When the nominal target orbit is circular, the angular velocity θ in (2.14) is constant, and is
equal to the mean-motion, ω, of the orbit, i.e., θ = ω, θ̇ = 0 and ω =

√
µ/r3

T . In this case,
Equations (2.14) simplify to a set of LTI equations given by

ẍ = 3ω2x+ 2ωẏ,

ÿ = −2ωẋ,

z̈ = −ω2z.

(2.15)

The LTI equations of relative motion given by (2.15) were originally developed for
satellite rendezvous applications in the 1960s, and are commonly referred to as the Clohessy-
Wiltshire (CW) equations [82]. If there are control inputs, u = [u1, u2, u3]T , these can
be added to the RHS of (2.15), yielding

ẍ = 3ω2x+ 2ωẏ + u1,

ÿ = −2ωẋ+ u2,

z̈ = −ω2z + u3.

(2.16)

1The assumption of a nominal circular orbit is reasonable for many SRMP applications because the ma-
jority (79%) of satellite orbits are nearly circular, i.e., have an eccentricity of less than 0.025 [81].
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By defining a state vector X as

X = [x, y, z, ẋ, ẏ, ż]T , (2.17)

where x, y, and z, are the relative position coordinates of the maneuvering spacecraft in
Hill’s frame, and ẋ, ẏ, and ż are components of the relative velocity vector, (2.16) can be
written in continuous-time state-space form,

Ẋ(t) = AcX(t) +Bcu(t), (2.18)

where the dynamics matrix Ac is given by

Ac =



0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

3ω2 0 0 0 2ω 0

0 0 0 −2ω 0 0

0 0 −ω2 0 0 0


, (2.19)

ω =
√
µ/r3

T is the mean motion of the nominal circular orbit, and the matrix Bc can
take different forms depending on the nature of the control inputs. Note that the dynamics
matrix Ac has eigenvalues given by λ = ±ωj, ± ωj, 0, 0. Therefore, natural (unforced)
motion in the CW equations has both periodic and divergent modes.

Assuming a sampling period of ∆T seconds, (2.18) can be written in discrete-time,

X(k + 1) = AX(k) +Bu(k), (2.20)

where
A = exp(Ac∆T ), (2.21)

and, again, depending on the form of the control input, the discrete-time input matrixB has
different representations. In this dissertation, two types of control inputs are considered.
Firstly, when the control inputs correspond to continuous thrust forces, the discrete-time
input matrix is given by

B = Bf =

∫ ∆T

0

exp [Ac(∆T − τ)] dτ

[
03×3

1
m
I3×3

]
, (2.22)

where m is the mass of the maneuvering spacecraft (assumed to be constant), 03×3 is the
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3× 3 matrix of all zeros and I3×3 is the 3× 3 identity matrix. Secondly, when the control
vector corresponds to instantaneous velocity change (∆V ), the discrete-time input matrix
is given by

B = Bv = A

[
03×3

I3×3

]
. (2.23)

Additive disturbances, denoted w(k) = [w1(k), w2(k), w3(k)]T , can be included in
the model (2.20) by adding them to the RHS, yielding

X(k + 1) = AX(k) +Bu(k) +Bww(k), (2.24)

where the disturbance input matrix, Bw, is appropriately selected based on the nature of
the disturbance. For example, if the disturbances are forces, then Bw = Bf , where Bf is
defined in (2.22). The discrete-time LTI equations of relative motion without disturbances,
i.e., (2.20), and with disturbances, i.e., (2.24) are used throughout Chapters 3-5 of this
dissertation.

2.2 Natural Motion Trajectories

A Natural Motion Trajectory (NMT) is defined as a solution to (2.20) with u = 0, or a
solution to (2.24) with u = w = 0. As mentioned in Section 2.1.3.1, natural motions in
the CW equations exhibit both periodic and divergent modes. Therefore, depending on the
initial condition, X0, many different types of NMTs can be obtained. Specifically, if the
initial condition X0 = [x0, y0, z0, ẋ0, ẏ0, ż0]T is chosen to satisfy

ẏ0 = −2ωx0, (2.25)

then the resulting NMT will be periodic (closed) [83]. For example, with appropriate ini-
tial conditions selected, elliptical trajectories can be obtained.2 With other types of initial
conditions chosen, the resulting NMT will be non-periodic (open), e.g., a straight-line seg-
ment.

NMTs are useful in a SRMP setting for a number of reasons. Firstly, when a satellite is
traveling along a NMT, control must only be used to counteract disturbances, resulting in
minimal fuel use. Secondly, if obstacles are located in known regions, placing spacecraft
along NMTs which avoid these regions guarantees no collisions with obstacles. Addition-
ally, closed NMTs are particularly useful for SRMP since spacecraft travelling along these

2The shape of an NMT here refers to the shape traced out when the NMT is plotted in Hill’s frame.
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NMTs are able to circumnavigate or remain near the target indefinitely while using minimal
fuel.

Because of these advantages, several types of NMTs are used in the SRMP methods
discussed in Chapters 3-5, including closed NMTs such as ellipses, periodic line segments
and stationary points, and open NMTs such as helices and non-periodic line segments.
Figure 2.3 shows examples of these types of NMTs. Methods to generate initial conditions
for these types of NMTs are available in the literature (see, e.g., [84,85]). For completeness,
one such method is summarized in Appendix A.

-2
0.5

-1

0.5

0

Z
: 

C
ro

s
s

-T
ra

c
k

 [
k

m
]

1

Y: In-Track [km]

0

X: Radial [km]

0

2

-0.5 -0.5

Elliptical NMT

Periodic line segment NMT

Stationary point NMT

(a) Closed NMT examples

-0.5
1

0.5 1

0

Z
: 

C
ro

s
s

-T
ra

c
k

 [
k

m
]

0.5

Y: In-Track [km]

0

X: Radial [km]

0

0.5

-0.5
-0.5

-1 -1

Non-periodic line segment NMT

Helical NMT

(b) Open NMT examples

Figure 2.3: Examples of different types of NMTs plotted in Hill’s frame

2.3 Nominal Control law

The nominal control law used to obtain u(k) in (2.20) and (2.24) is a static-state feedback
control law given by

u(k) = K(X(k)−Xd(k)), (2.26)

where K is a gain matrix and Xd(k) is the controller reference point. Note that this refer-
ence point may be static, or time-varying, e.g., it may move along an NMT or other trajec-
tory. If the controller gain matrix K is selected such that the matrix Ā = A+BK is Schur,
i.e., all eigenvalues are in the interior of the unit disk on the complex plane, the space-
craft will asymptotically approach the controller reference if there are no disturbances.
If bounded disturbances are present, the spacecraft will instead approach a neighborhood
around the controller reference point, where the size of this neighborhood depends on the
size of the disturbances [86].
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Use of this type of control law in SRMP applications is beneficial for two reasons.
Firstly, the calculations required to obtain control inputs are minimal: only a simple matrix
multiplication is required, given the gain matrix K, a state measurement and a controller
reference point. Secondly, the state feedback nature of the control law naturally accommo-
dates sufficiently small disturbances, as disturbances encountered at a given time-instant
can be compensated for with the control input at subsequent time instances.

The specific controller gain matrix K used in this work is obtained via the solution to
the discrete-time LQR problem. In the discrete-time LQR problem, for an LTI system

X(k + 1) = AX(k) +Bu(k), (2.27)

a control law u(k) is sought to minimize a quadratic cost function given by

J(X0) =
∞∑
k=0

1
2
X(k)TQLQX(k) + 1

2
u(k)TRLQu(k), (2.28)

for any initial condition X0, where QLQ = QT
LQ � 0 and RLQ = RT

LQ � 0 are weighting
matrices penalizing state deviation from the origin and control usage, respectively.

In addition to the benefits of using a general stabilizing state-feedback control law dis-
cussed above, the use of the LQR control law provides the additional benefit of being able
to tune the weighting matrices QLQ and RLQ in (2.28) to provide either faster response, by
placing larger weights on state deviation, or more economical control use by placing larger
weights on control use.

The discrete-time LQR problem can be solved using Bellman’s principle for optimality
[87]. Bellman’s equation is given by

V (X(k)) = min
u(k)

[
1
2
X(k)TQLQX(k) + 1

2
u(k)TRLQu(k) + V (AX(k) +Bu(k))

]
.

(2.29)
We seek a V (X(k)) and u∗(x(k)) that satisfy (2.29). Consider a potential solution for
V (x(k)) of the form

V (x(k)) = 1
2
X(k)TPX(k), P = P T . (2.30)

Substituting (2.30) into (2.29) yields

1
2
X(k)TPX(k) = min

u(k)

[
1
2
X(k)TQLQX(k) + 1

2
u(k)TRLQu(k)

+1
2
(AX(k) +Bu(k))TP (AX(k) +Bu(k))

]
.

(2.31)
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To obtain u∗, the derivative of the RHS of (2.31) with respect to u is given by

∂

∂u(k)
= u(k)TRLQ +X(k)TAPB + u(k)TBTPB, (2.32)

and setting this expression equal to 0 and solving for u yields

u∗(k) = −(RLQ +BTPB)−1BTPAX(k). (2.33)

Hence the value for the RHS of (2.31) is given by

1
2

[
X(k)TQLQX(k) + u(k)TRLQu(k) + (AX(k) +Bu(k))TP (AX(k) +Bu(k))

]∣∣
u∗(k)

= 1
2
X(k)TQLQX(k)− 1

2
X(k)TATPB(RLQ +BTPB)−1BTPAX(k)

+ 1
2
X(k)TATPAX(k),

(2.34)
and (2.31) becomes

1
2
X(k)TPX(k) = 1

2
X(k)T

[
QLQ − ATPB(RLQ +BTPB)−1BTPA+ ATPA

]
X(k).

(2.35)
Equation (2.35) is satisfied by any matrix P that satisfies

P = QLQ − ATPB(RLQ +BTPB)−1BTPA+ ATPA, (2.36)

which is known as the Discrete Algebraic Riccatti Equation (DARE) [88]. Hence, if a
solution P = P T to the DARE exists (see Remark 2.1), then, Bellman’s equation (2.29) is
satisfied with V (X(k)) = 1

2
X(k)TPX(k), and the optimal control policy is given by

u(k) = KX(k), (2.37)

where the matrix K is a constant matrix given by

K = −(RLQ +BTPB)−1BTPĀ. (2.38)

Remark 2.1. If the pair (A,B) is stabilizable, QLQ = CTC, and (A,C) is observable,

then there exists a unique, positive definite solution to DARE (2.36), and the resulting con-

trol law given by (2.37) and (2.38) is asymptotically stabilizing, i.e., A+BK is Schur, see

Lemma 26.2 in [89]. In implementations, the solution to the DARE, P , and the associated

state feedback gain matrix K can be obtained via the “dlqr” function in MATLAB.
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CHAPTER 3

Invariance-Based
Spacecraft Relative Motion Planning

In this chapter, a novel method for bSRMP is developed to plan maneuvers that transition
a spacecraft between specified NMTs while satisfying constraints. The method is based on
a graph search applied to a “virtual net” composed of periodic (closed) and non-periodic
(open) NMTs. Adjacency (connectivity) between NMTs in the virtual net is determined
by conditions based on SPI tubes built around each NMT. For background information on
invariance, SPI sets, and their use, see, e.g., [90–94]. The bSRMP method described here
is based on a framework developed in [48] to plan maneuvers on a virtual net composed
of forced equilibria. The use of NMTs has several advantages compared with the forced
equilibria considered in [48]. Firstly, traveling along NMTs in steady state is possible with
zero fuel consumption (or minimal fuel consumption with disturbances). In contrast, zero
fuel consumption is only achieved for forced equilibria along the in-track (y) axis in the CW
equations. Secondly, the use of NMTs expands the set of trajectories available to compose
the overall maneuver from, while ensuring that the resulting maneuvers are fuel efficient.
Specifically, when the maneuver consists of NMTs and transfers connecting them, fuel is
consumed only during the transfers and to compensate for disturbances.

This chapter is organized as follows. Section 3.1 describes the spacecraft dynamics
model, the disturbance model and constraints, and the types of NMTs considered. Section
3.2 describes SPI tubes, and Section 3.3 provides procedures that can be used to construct
SPI tubes for NMTs. Section 3.4 describes the virtual net used for maneuver planning,
and provides rules used to define adjacency in the virtual net, and calculations used to
check these rules. The calculations developed in Section 3.4 are non-conservative, i.e.,
they correctly identify each pair of adjacent nodes in the virtual net, but they are slow. In
Section 3.6, faster calculations are developed to determine adjacency in the virtual net with
minor trade-offs related to maneuver planning flexibility and the fuel-efficiency of planned
maneuvers. Simulation results are presented in Sections 3.5 and 3.7.
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3.1 Modeling

In this chapter, spacecraft motion is modeled using the LTI discrete-time equations of rela-
tive motion (2.24), repeated here for clarity:

X(k + 1) = AX(k) +Bu(k) +Bw(k). (3.1)

In (3.1), the matrix A is given by (2.21) and both the control input u(k) and disturbance
w(k) correspond to continuous force, hence the matrix B is given by (2.22). The distur-
bance vector w(k) is assumed to belong to a compact setW , i.e., w(k) ∈ W ⊂ R3.

3.1.1 Natural Motion Trajectories

A periodic (closed) NMT, starting from initial condition X0, is defined as a finite set of
state vectors:

N (X0, kmax) = N =
{
Xn(k) | Xn(0) = X0, Xn(k + 1) = AXn(k), k ∈ Z[0,kmax]

}
,

(3.2)
where the parameter kmax is chosen such that the set N completely defines the NMT.
Specifically, the discrete-time update period, ∆T , is chosen such that τ

∆T
∈ Z>0, where τ

is the period of the nominal circular orbit, and

kmax =
τ

∆T
− 1. (3.3)

Note that the value for kmax depends only on the period of the nominal circular orbit and
the discrete-time update period. Consequently, kmax is constant for all closed NMTs. With
this choice of kmax, the sequence of state vectors repeats for k > kmax, i.e.,Xn(kmax+1) =

Xn(0), Xn(kmax + 2) = Xn(1), etc. For closed NMTs, in general, Xn(k) = Xn(k̃), where

k̃ = mod(k, kmax + 1), (3.4)

and the modulo function mod(x, y) returns the remainder after division of x by y. In the
subsequent developments, any k > kmax along a closed NMT is taken to be the equivalent
index k̃ ∈ Z[0, kmax] given by (3.4).

A portion of a non-periodic (open) NMT, starting from initial condition X0, is also
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defined as a finite set of state vectors:

N̄ (X0, k
N̄
max) = N̄ =

{
Xn(k) | Xn(0) = X0, Xn(k + 1) = AXn(k), k ∈ Z[0,kN̄max]

}
,

(3.5)
where the initial condition X0 and the parameter kN̄max are chosen such that the segment of
the open NMT defined by (3.5) lies in the region of interest for the present mission. Note
that for open NMTs, kN̄max may take different values for different NMTs.

3.1.2 Spacecraft Control Law and Closed Loop Dynamics

The nominal feedback law that guides the spacecraft to a given NMT is

u(k) = K(X(k)−Xn(k + δ)), (3.6)

where K is an LQR gain matrix, described in Section 2.3, for which the matrix Ā =

A + BK is Schur, X(k) is the current spacecraft state, Xn(k + δ) ∈ N (or ∈ N̄ ) is a
time-varying reference along the NMT, and δ ∈ Z is a shift which defines the controller
reference point at the first time-instant the controller is switched to the specified NMT as
the target.

Combining (3.1) and (3.6), the closed loop dynamics are given by

X(k + 1) = ĀX(k)−BKXn(k + δ) +Bw(k). (3.7)

Definition 3.1. [Reachable set for the closed-loop system (3.7)] The set of all states reach-

able at time instant k̄ for the closed-loop system (3.7), starting from the set X0 at time

instant 0, and with initial controller reference point Xn(0 + δ) = Xn0, under all possible

disturbances w(k) ∈ W , k ∈ [0, k̄ − 1], is denoted as

RX(k̄, X0, Xn0, W). (3.8)

Defining the state error as e(k, δ) = X(k)−Xn(k + δ), the error system dynamics are
given by

e(k + 1, δ) = Āe(k, δ) +Bw(k). (3.9)

Definition 3.2. [Reachable set for the error system (3.9)] The set of all error states reach-

able at time instant k̄ for the error system (3.9), starting from the set ε0 at time instant 0,

under all possible disturbances w(k) ∈ W , k ∈ [0, k̄ − 1], is denoted as

Re(k̄, ε0, W). (3.10)
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In the following, the notation for the state error is occasionally simplified by omitting
δ, and using a superscript + to denote the 1-step ahead error, i.e.,

e+ = Āe+Bw. (3.11)

3.1.3 Constraints

Three constraints are considered. Firstly, the thrust is limited by an upper bound in each
direction, i.e.,

‖u(k)‖∞ − umax ≤ 0, (3.12)

where ‖ · ‖∞ denotes the infinity-norm, and umax is the maximum allowable thrust in each
direction. Secondly, the satellite must avoid one or more exclusion zones, modeled as
ellipsoidal sets centered at specified points s ∈ R3. The ith exclusion zone is defined as

Oi(si, Si) = {X | (ΦX − si)TSi(ΦX − si) ≤ 1}, (3.13)

where Si � 0 is a matrix reflecting the shape characteristics of the obstacle, including any
uncertainty in its position, and the matrix Φ = [I3×3 03×3] isolates the position components
from the state vector, see Remark 3.1. The constraints on the spacecraft’s position based
on l exclusion zones are given by X(k) /∈ Oi(si, Si), i = 1, 2, · · · , l, which is equivalent
to the inequality constraints

1− (ΦX(k)− si)TSi(ΦX(k)− si) ≤ 0, i = 1, 2, ..., l (3.14)

The constraints (3.12) and (3.14) are enforced by incorporating them into the definition of
safe tubes described in Sections 3.2.1 and 3.2.2.

A third constraint is also considered in which the thrust magnitude is limited by a lower
bound in each direction, i.e.,

ui(k) ∈ [{0} ∪ {ui | |ui| ≥ umin}], i = 1, 2, 3, (3.15)

where ui(k) is the ith component of the control vector and umin is the minimum realizable
thrust. This non-convex constraint is similar to minimum impulse bit constraints, which
are common to operational spacecraft and result from hardware restrictions limiting the
shortest amount of time a thruster can be active. The minimum control constraint (3.15)
is incorporated in this work by treating the minimum thrust limit as a disturbance, as de-
scribed in the next subsection, and including these disturbances in the generation of SPI
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tubes described in Section 3.2.3. This approach ensures that all maneuvers planned us-
ing the proposed methodology avoid obstacles, even if control inputs violating (3.15) are
commanded, but cannot be implemented. See Remark 3.2.

Remark 3.1. Using ellipsoidal sets to model exclusion zones is beneficial in two respects.

Firstly, if the exact obstacle location is unknown, position estimation algorithms, e.g.,

Kalman filters, can be used to obtain ellipsoidal bounds for the obstacle. Secondly, the

use of ellipsoidal sets simplifies some of the calculations used to generate SPI tubes and

form the virtual net, described in Sections 3.2-3.4. Note also that if a given exclusion zone

is defined in more general terms, e.g., using polynomial barrier functions, these exclusion

zones can always be over-bound with an ellipsoidal set in the form of (3.13).

Remark 3.2. The choice to accommodate the non-convex minimum thrust constraint us-

ing disturbances was made to simplify the required calculations. Because the minimum

thrust limit is typically relatively small, this approach is not overly conservative. Other ap-

proaches to handling this type of constraint have been developed, e.g., [95]. Comparisons

between these different approaches is a topic for future research.

3.1.4 Disturbance Set

As previously noted, the disturbance vectorw(k) in (3.1) belongs to a compact setW ⊂ R3.
In this subsection, the form of the disturbances considered and the structure of the setW
are defined in detail. The disturbance vector w(k) consists of two parts:

w(k) = wp(k) + wu(k). (3.16)

In (3.16), the term wp(k) is randomly assigned from the set

Wp = {wp | ‖wp‖∞ ≤ ε}, (3.17)

and may account for orbital perturbations, thruster alignment errors, etc. The term wu(k)

in (3.16) directly accounts for the minimum thrust constraint (3.15),

wu(k) = [w1
u(k), w2

u(k), w3
u(k)]T ,

wiu(k) =

{
−ui(k) if |ui(k)| ≤ umin,

0 otherwise
i = 1, 2, 3.

(3.18)
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Hence, wu(k) ∈ Wu, where

Wu = {wu | ‖wu‖∞ ≤ umin}, (3.19)

and the total disturbance vector w(k) belongs to the set

W =Wp ⊕Wu = {w | ‖w‖∞ ≤ ε+ umin}. (3.20)

Note that the set W in (3.20) is a polytope, and is the convex hull of eight vertices, i.e.,
W = conv{w1, w2, · · · , wnw} where nw = 8.

3.2 Safe Positively Invariant Tubes for NMTs

In this section, a SPI tube is defined for a NMT. In this context, “safe” (constraint admis-
sible) implies that constraints (3.12) and (3.14) are satisfied point-wise within the tube.
“Positively invariant” implies that if the spacecraft state is within the tube at a given time
instant, and the spacecraft motion is given by (3.7), then it will remain within the tube, un-
der all possible disturbances, for all future time instants for a closed NMT or, for an open
NMT, until the controller reference point is set to the final state vector along the NMT, i.e.,
Xn(kN̄max). The SPI tube is formed by first generating safe ellipsoidal sets about each state
vector along the NMT. The union of these safe sets forms a safe tube around the NMT.
Then, adjustments to the safe tube are made such that the tube remains safe, but also enjoys
the property of positive invariance. Figure 3.1 summarizes the major steps required to gen-
erate a SPI tube for a NMT, and provides references to where each step is described in the
upcoming subsections. For brevity, the notationN is used to denote an NMT. However, all
developments in this section also apply to open NMTs, N̄ , unless otherwise noted.

3.2.1 Safe Sets

An ellipsoidal set centered at Xn(k) ∈ N with scale factor ρk ≥ 0 is defined as

Ek,N = {X | (X −Xn(k))TP (X −Xn(k)) ≤ ρk}, (3.21)

where the shape matrix P = P T > 0 is chosen to satisfy the discrete-time Lyapunov
inequality,

(A+BK)TP (A+BK)− P < 0. (3.22)
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NMT

Form Safe Ellipsoidal Sets

Form Safe Tube

Make adjustments to Safe Tube to 
ensure Positive Invariance

SPI Tube

Based on: Scale factor calculations for 
max control & exclusion zone constraints
Described in: Section 3.2.1

Based on: Union of safe ellipsoidal sets
Described in: Section 3.2.2

Based on: Smallest PI tube, & conditions 
in Theorem 3.1
Described in: Sections 3.2.3 – 3.3.3

Figure 3.1: Major steps involved in generating a SPI tube for a NMT

The set Esk,N defined by (3.21) with ρk = ρsk, i.e.,

Esk,N = {X | (X −Xn(k))TP (X −Xn(k)) ≤ ρsk}, (3.23)

is safe if the scale factor ρsk is set to the largest possible value such that:

a) The control constraint (3.12) is satisfied point-wise within the set with δ = 0, i.e.,
‖u(k)‖∞ = ‖K(X −Xn(k))‖∞ ≤ umax for all X ∈ Esk,N , and

b) The exclusion zone constraints (3.14) for i = 1, 2, · · · , l are satisfied for all
X ∈ Esk,N .

The scale factors ρsk, satisfying (a) and (b) above, are determined by first calculating the
maximum possible scale factor for which item (a) holds, denoted by ρu, and next separately
calculating the maximum scale factor for which item (b) holds for each exclusion zone,
denoted by ρOi

k . Then, ρsk is determined by

ρsk = min{ρu, ρOi
k , i = 1, 2, · · · , l}. (3.24)

Note that the parameter ρu is independent of Xn(k), i.e., the state vector along an
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NMT (which requires 0 control to follow) corresponding to the center of the ellipsoidal
set. Hence, ρu is constant for all Xn(k) and all NMTs, and must only be calculated once.
The parameter ρOi

k is dependent on Xn(k), therefore a separate ρOi
k must be calculated for

each Xn(k) along each NMT. Calculations for ρu and ρOi
k are based on methods developed

in [48], and are included in Appendix B.

3.2.2 Safe Tubes

Using the set of safe scale factors for an NMT, ρsk, k ∈ Z[0,kmax], a safe tube centered on the
NMT N is defined by

T sN =
⋃

k∈Z[0,kmax]

Esk,N . (3.25)

This tube is safe in the sense that for all X ∈ T sN , the exclusion zone constraints (3.14) are
satisfied and there exists δ ∈ Z such that the control constraint (3.12) is satisfied, i.e., there
exists Xn(k) ∈ N that can be used as the controller reference point and (3.12) is satisfied.

Figure 3.2 shows four views of the projection of the six-dimensional tube T sN onto the
position space for an example closed NMT. The tube was formed considering the control
constraint (3.12) and a single exclusion zone centered at the origin. In Figure 3.2, different
colors correspond to different ellipsoidal sets Esk,N ⊂ T sN . Note that, as illustrated in Figure
3.2b, the boundary of the safe tube does not always intersect the boundary of the exclusion
zone. Ellipsoidal sets Esk,N ⊂ T sN whose boundaries do not intersect the exclusion zone
have a scale factor equal to ρu, i.e., their size is limited by the control constraint (3.12).
Ellipsoidal sets Esk,N ⊂ T sN whose boundaries do intersect the exclusion zone have a scale
factor equal to ρOi

k , i.e., their size is limited by the exclusion zone constraint (3.14).
If the spacecraft initial state X(0) ∈ T sN , then, with a suitable choice of δ, constraints

are guaranteed to be satisfied at that instant. However, there is no guarantee that constraints
will be satisfied for k > 0. This deficiency is addressed in the next subsection.

3.2.3 Safe, Positively Invariant Tubes

A SPI tube, TN , is formed by generating new scale factors, ρk, from ρsk such that the prop-
erty of positive invariance holds and ρk ≤ ρsk for all k ∈ Z[0,kmax] (or k ∈ Z[0,kN̄max]). Hence,
TN ⊆ T sN and the safety of the tube is maintained. Because constraints are guaranteed to be
satisfied only if the spacecraft state vector is within the safe ellipsoidal set corresponding to
the current controller reference point, the following definitions for positive invariance are
used for closed and open NMTs:
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(a) (b)

(c) (d)

Figure 3.2: Visualization of the safe tube T sN projected onto the position space, R3
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Definition 3.3. Given a closed NMT N , a tube

TN =
⋃

k∈Z[0,kmax]

Ek,N (3.26)

is positively invariant with respect to the closed loop dynamics given by (3.7) if there exists

a δ ∈ Z such that

X(k1) ∈ Ek1+δ,N =⇒ X(k2) ∈ Ek2+δ,N

for all k2 ≥ k1, k1 ∈ Z≥0, k2 ∈ Z≥0, and all w(k) ∈ W , k ∈ Z[k1,k2].
(3.27)

Definition 3.4. Given an open NMT N̄ , a tube

TN̄ =
⋃

k∈[0,kN̄max]

Ek,N̄ (3.28)

is positively invariant with respect to the closed loop dynamics given by (3.7) if there exists

a δ ∈ Z such that

X(k1) ∈ Ek1+δ,N̄ =⇒ X(k2) ∈ Ek2+δ,N̄

for all k2 ≥ k1, k1 + δ ∈ Z[0,kN̄max], k2 + δ ∈ Z[0,kN̄max], and all w(k) ∈ W , k ∈ Z[k1,k2].
(3.29)

Remark 3.3. The difference between the definitions for positive invariance given for closed

NMTs (Definition 3.3) and open NMTs (Definition 3.4) is that, in Definition 3.3, the condi-

tion (3.27) must hold for all k1, k2 ∈ Z≥0, i.e., if the spacecraft state vector is within the

SPI tube for a closed NMT at any time instant, then it will stay within the tube for all future

time instants. In contrast to this, for open NMTs, the condition (3.29) must only hold for

k1 + δ ∈ Z[0,kN̄max], and k2 + δ ∈ Z[0,kN̄max], i.e., if the spacecraft state vector is within the

SPI tube for an open NMT at any time instant, then it will stay within the tube only until

the controller reference is set to the last state vector along the open NMT, Xn(kN̄max).

Remark 3.4. The Definitions (3.3) and (3.4) for positive invariance can also be writ-

ten in terms of the state error, defined in (3.9). Note that X(k) ∈ Ek+δ,N implies that

e(k, δ)TPe(k, δ) ≤ ρk+δ. Hence, line 1 of (3.27) can be re-written in terms of the error as

e(k1, δ)
TPe(k1, δ) ≤ ρk1+δ =⇒ e(k2, δ)

TPe(k2, δ) ≤ ρk2+δ, (3.30)

and similar for line 1 of (3.29).
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3.3 Safe Positively Invariant Tube Construction

In this section, procedures are given to construct SPI tubes for closed and open NMTs.
Specifically, Procedures 3.2 and 3.3 in Section 3.3.3 can be used to modify a set of safe
scale factors, ρsk, corresponding to a safe tube, to obtain a new set of scale factors, ρk, that
correspond to a tube that remains safe, but is also positively invariant. These procedures
are based on the smallest PI tube, defined in Section 3.3.1, and conditions for positive
invariance developed in Section 3.3.2.

3.3.1 Smallest Constant Cross-Section Positively Invariant Tube

Consider the error system (3.11), repeated here for clarity:

e+ = Āe+Bw. (3.31)

Because the matrix Ā is Schur, the error system is Input-to-State Stable (ISS) and the
function

V (e) = eTPe, (3.32)

where P = P T � 0 satisfies the discrete-time Lyapunov inequality (3.22), is an ISS Lya-
punov function [86]. In general terms, the ISS property means that the error trajectory
corresponding to a sequence of bounded disturbances will remain bounded, and that errors
eventually will become small if the disturbances are small, regardless of the initial condi-
tion. This implies that, since the disturbance set W is compact, the error trajectory will
converge to and remain within some bounded positively-invariant set (as long as the con-
troller reference point remains along a single NMT). Such positively-invariant sets can be
characterized using sub-level sets of the ISS Lyapunov function (3.32).

Consider the following sub-level set of the ISS Lyapunov function (3.32):

Ω(ρ) = {e | eTPe ≤ ρ}. (3.33)

A sub-level set Ω(ρ) is positively invariant if

e ∈ Ω(ρ) =⇒ e+ ∈ Ω(ρ) for all w ∈ W . (3.34)

The minimally sized sub-level set, Ω(ρmin) for which (3.34) holds can be determined as
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follows [48, 90]. Define

F (e, w, ρ) = 1
ρ
e+TPe+ = 1

ρ
(Āe+Bw)TP (Āe+Bw). (3.35)

Note that (3.34) holds if

max
e∈Ω(ρ), w∈W

F (e, w, ρ) = F ∗(ρ) ≤ 1, (3.36)

and therefore, ρmin corresponds to the value for which F ∗(ρmin) = 1.
Because the disturbance setW is the convex hull of nw vertices, the solution to (3.36)

can be obtained by considering only w ∈ {w1, w2, · · · , wnw}, and therefore replacing the
single optimization problem in (3.36) with nw simpler optimization problems given by

F ∗i (ρi) = max
e

1
ρi

(Āe+Bwi)TP (Āe+Bwi)

subject to eTPe ≤ ρi,
(3.37)

i = 1, 2, · · · , nw, that can be solved using, e.g., MATLAB’s fmincon function. The value
for ρmin is then found using the following iterative procedure:

Procedure 3.1 [Calculation of ρmin]
Inputs: Disturbance set vertices wi, i = 1, 2, · · · , nw,

Initial guess for ρi,
Shape matrix P ,
Convergence tolerance ε > 0.

Output: ρmin

1. For each i = 1, 2, · · · , nw

(a) Calculate F ∗(ρi)

(b) If F ∗(ρi) < 1− ε, decrease the value for ρi and go to step (1a),

(c) If F ∗(ρi) > 1 + ε, increase the value for ρi and go to step (1a),

(d) If |F ∗(ρi)− 1| ≤ ε, set ρi∗ = ρi.

2. Set ρmin = max{ρi∗, i = 1, 2, · · · , nw}.

End Procedure.

Remark 3.5. In steps (1b) and (1c) of Procedure 3.1, adjustments to the current value ρi

can be made via bisections. Note that the calculation of ρmin is independent of the location
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of any obstacles and depends only on the controller gain matrix K (which determines the

matrix Ā in the error dynamics) and the disturbance setW . Therefore, the calculation of

ρmin can be accomplished offline and uploaded to the satellite. Other methods to calculate

ρmin are also available. One of these is discussed later in Remark 3.14.

Remark 3.6. The parameter ρu, i.e., the maximum safe scale factor based on the maximum

control constraint (3.12), places an upper-bound on the value for ρmin. Specifically, if ρmin
calculated using Procedure 3.1 is larger than ρu, then this implies that no minimally sized

invariant set exists since the control system is incapable of counteracting the disturbances.

For implementation, because disturbances are typically relatively small compared to the

maximum control limit, ρmin � ρu.

As described above, the parameter ρmin corresponds to the smallest ellipsoidal set
eTPe ≤ ρ that is positively invariant for the error trajectory. This implies that

e(k1, δ)
TPe(k1, δ) ≤ ρmin =⇒ e(k2, δ)

TPe(k2, δ) ≤ ρmin for all k2 ≥ k1. (3.38)

In terms of the state trajectory, the parameter ρmin corresponds to the smallest tube, cen-
tered on an NMT, formed as the union of ellipsoidal sets with constant scale factor, i.e.,
ρk = ρmin for k ∈ Z[0,kmax], that is positively invariant by Definition 3.3 (or Definition 3.4
for open NMTs). This can be seen by writing (3.38) in terms of the state trajectory as

(X(k1)−Xn(k1 + δ))TP (X(k1)−Xn(k1 + δ)) ≤ ρmin =⇒
(X(k2)−Xn(k2 + δ))TP (X(k2)−Xn(k2 + δ)) ≤ ρmin for all k2 ≥ k1,

(3.39)

or, more compactly as

X(k1) ∈ Eρmin

k1+δ,N =⇒ X(k2) ∈ Eρmin

k2+δ,N for all k2 ≥ k1, (3.40)

where
Eρmin

k,N = {X | (X −Xn(k))TP (X −Xn(k)) ≤ ρmin}. (3.41)

Figure 3.3 shows the tube

T ρmin

N = ∪
k∈[0,kmax]

Eρmin

k,N (3.42)

projected onto the position space for an example elliptical NMT.
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Figure 3.3: Example of the smallest positively-invariant tube, T ρmin

N

3.3.2 Conditions for Positive Invariance

Given the Definitions 3.3 and 3.4 for positive-invariance, it is natural to specify a condition
on ellipsoidal set scale factors by looking forward in time, i.e., bounding ρk+1, the ellip-
soidal set size for state vector Xn(k + 1), given a value for ρk, the ellipsoidal set size for
state vector Xn(k), (see, e.g., Lemma 1 in [96], or Lemma 1 in [74]). However, applying
such a condition to modify the safe scale factors ρsk may require increasing the value of
certain ρsk, resulting in a tube that is positively invariant, but not safe. To ensure that any
adjustments to ρsk are downward (and therefore the tube remains safe), a condition for pos-
itive invariance is given by looking backward in time, i.e., bounding the ellipsoidal set size
at time instant k, (ρk), given the ellipsoidal set size at time instant k + 1, (ρk+1):

Theorem 3.1. [Conditions for Positive Invariance]
The tube TN is positively-invariant if

ρk ≤ ρk+1 + d(ρk+1) for all k ∈ Z≥0, (3.43)

where
d(ρk+1) = min

e+, w∈W
eTPe− e+TPe+

subject to e+TPe+ = ρk+1,

e = Ā−1(e+ −Bw),

(3.44)
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and

ρk+1 ≥ ρr0 for all k ∈ Z≥0, (3.45)

where

ρr0 = max
w∈W

wTBTPBw. (3.46)

The following remarks provide a description of some of the parameters defined in the
conditions of Theorem 3.1.

Remark 3.7. The parameter d(ρk+1) in (3.43) and (3.44) defines the largest allowable

increase from a given ρk+1 to the preceding ρk.

Remark 3.8. The parameter ρr0 in (3.45) and (3.46) corresponds to the scale factor for

the smallest ellipsoidal set, with shape matrix P , that containsRe(1, 0,W), i.e., the 1-step

forward reachable set for the error system starting from e = 0. Thus, if (3.45) does not

hold, it is impossible for the tube to be positively invariant because even if the spacecraft

started directly on the NMT at time-instant k, i.e., e(k) = 0, it would not be guaranteed to

be within the tube at time-instant k + 1.

Proof. Define the following sets:

D+
1 = {e+ | e+TPe+ = ρk+1},

D1 = {e | ∃ e+ ∈ D+
1 , and ∃ w ∈ W, such that e = Ā−1(e+ −Bw)},

D2 = {e | eTPe ≤ ρk},
D+

2 = {e+ | ∃ e ∈ D2, and ∃ w ∈ W, such that e+ = Āe+Bw},

(3.47)

and consider the following notation:

e+
1 ∈ D+

1 , e1 ∈ D1, e2 ∈ D2, and e+
2 ∈ D+

2 . (3.48)

Remark 3.9. The set D+
1 is the set of all state error vectors on the boundary of an ellip-

soidal set with scale factor ρk+1. The set D1 is the 1-step backward reachable set of the

error dynamics, from the set D+
1 , i.e., D1 = Re(−1, D+

1 ,W). The set D2 is the set of all

error vectors included in an ellipsoidal set with scale factor ρk, and the setD+
2 is the 1-step

forward reachable set of the error dynamics from the set D2, i.e., D+
2 = Re(1, D2,W).

The proof is completed in three main steps. These main steps are summarized here,
and the detailed arguments are provided below. As an initial step, the requirement (3.27) in
Definition 3.4 for positive invariance is rewritten in terms of the sets and notation defined
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in (3.47) and (3.48). This rewritten requirement for positive invariance is given by

e+T
2 Pe+

2 ≤ e+T
1 Pe+

1 . (3.49)

The requirement (3.49) is then shown to hold using two steps. Firstly, conditions (3.43)
and (3.44) from Theorem 3.1 are used to derive a relationship between vectors e2 ∈ D2 and
e1 ∈ D1, showing that any vector e2 can be written as a “shortened” version of a vector e1,
i.e., for any vector e2 ∈ D2, there exists an e1 ∈ D1 such that

e2 = λe1, λ ∈ [0, 1]. (3.50)

Finally, using arguments based on the linear error system and condition (3.45) in Theorem
3.1, it is shown that (3.50) implies (3.49), and therefore the tube is positively invariant. The
detailed arguments based on these major steps are as follows.

Without loss of generality, in (3.27), let δ = 0 and k2 = k1 + 1. Suppose X(k) ∈ Ek,N ,
i.e., X(k) − Xn(k) = e2 ∈ D2. For positive invariance to hold, i.e., condition (3.27), it
must hold that X(k + 1) ∈ Ek+1,N , or, equivalently, that

e+T
2 Pe+

2 ≤ ρk+1. (3.51)

Noting that e+T
1 Pe+

1 = ρk+1, requirement (3.51) is re-written as

e+T
2 Pe+

2 ≤ e+T
1 Pe+

1 . (3.52)

Hence, if (3.52) holds, the tube is positively invariant.
Next, we show that (3.52) holds if (3.43), (3.44) and (3.45) hold. Firstly, (3.43) and

(3.44) are used to derive a relationship between e2 ∈ D2 and e1 ∈ D1. Then, this relation-
ship is used, along with (3.45), to show that (3.52) holds.

Suppose (3.43) and (3.44) hold. From (3.44) it follows that

d(ρk+1) ≤ eT1 Pe1 − ρk+1, (3.53)

which is equivalently written as

eT1 Pe1 ≥ ρk+1 + d(ρk+1), (3.54)
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and, combining (3.54) with (3.43) yields

eT1 Pe1 ≥ ρk+1 + d(ρk+1) ≥ ρk. (3.55)

From (3.47) and (3.48), eT2 Pe2 ≤ ρk. This, along with (3.55) yields the following relation-
ship between e1 and e2:

eT2 Pe2 ≤ eT1 Pe1. (3.56)

Therefore, for any vector e2 ∈ D2, there exists an e1 ∈ D1 such that e2 can be written as

e2 = λe1, λ ∈ [0, 1]. (3.57)

Using the error dynamics e+
(·) = Āe(·) +Bw, and (3.57), e+

2 is re-written in terms of e+
1 ,

i.e.,
e+

2 = Āe2 +Bw

= λĀe1 +Bw

= λĀ(Ā−1e+
1 − Ā−1Bw) +Bw,

= λe+
1 + (1− λ)Bw.

(3.58)

Substituting (3.58), and the relationship e+T
1 Pe+

1 = ρk+1 into the requirement for positive
invariance given by (3.52) and rearranging terms yields

(λ2 − 1)ρk+1 − 2λ(λ− 1)wTBTPe+
1 + (λ− 1)2wTBTPBw ≤ 0. (3.59)

Note that if λ = 1, (3.59), and therefore (3.52), are trivially satisfied.
Consider now the case where λ ∈ [0, 1). Each side of (3.59) is divided by (λ− 1) < 0

and terms are rearranged to yield

(λ+ 1)ρk+1 + (λ− 1)wTBTPBw ≥ 2λwTBTPe+
1 . (3.60)

Consider the following proposition, used to establish an upper-bound for the RHS of
(3.60):

Proposition 3.1. The following holds:

max
e+1 ∈D

+
1

wTBTPe+
1 =
√
ρk+1

√
wTBTPBw

Proof. See Appendix E.1.
Based on Proposition 3.1, to show that (3.60) holds, it is sufficient to show that the
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following expression holds:

(λ+ 1)ρk+1 + (λ− 1)wTBTPBw ≥ 2λ
√
ρk+1

√
wTBTPBw. (3.61)

To show (3.61) holds, suppose condition (3.45) holds. This requirement can be written as

ρk+1 = wTBTPBw + ν, (3.62)

where ν ≥ 0. By substituting (3.62) into (3.61) and manipulating terms, (3.61) becomes

2λwTBTPBw + ν(λ+ 1) ≥ 2λ
√

(wTBTPBw)2 + νwTBTPBw. (3.63)

Note that all terms in (3.63) are non-negative. Squaring both sides of (3.63), and cancelling
terms results in

4λνwTBTPBw + ν2(λ+ 1)2 ≥ 0. (3.64)

Because ν ≥ 0, λ ∈ [0, 1), and P = P T � 0, it is clear that (3.64) holds. Therefore, the
tube TN is positively invariant.

Remark 3.10. For open NMTs, the conditions for positive invariance and the proof of

Theorem 3.1 also hold. The only change is that conditions (3.43) and (3.45) must hold only

for all k ∈ Z[0,kN̄max−1] rather than for all k ∈ Z≥0.

3.3.3 Procedures for SPI Tube Construction

SPI tubes are constructed by applying the conditions of Theorem 3.1 to modify the safe
scale factors ρsk and obtain a set of scale factors ρk that yield a tube that is still safe, but also
positively invariant. Below, procedures are given to generate these scale factors for both
closed NMTs and open NMTs.

3.3.3.1 Procedure for closed NMTs

The procedure for closed NMTs (Procedure 3.2 presented below) is based on the condition
for positive invariance in Theorem 3.1, and also on the parameter ρmin defined in Section
3.3.1. Because it is impossible for the spacecraft to reach any ellipsoidal set with ρ < ρmin

from a larger ellipsoidal set, if ρk+1 < ρmin, then d(ρk+1) defined in (3.44) is negative.
This intuitive result is confirmed through simulations. Hence, for a closed NMT, if any
ρsk < ρmin, then no SPI tube exists since it is not possible for (3.43) to hold for all k ∈ Z≥0

due to the periodicity, i.e., k and k + (kmax + 1) correspond to the same state vector along
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the NMT. This fact is reflected in step 1 of Procedure 3.2 below.

Procedure 3.2 [Calculation of SPI scale factors for closed NMTs]
Inputs: Set of safe scale factors, ρsk, k ∈ [0, kmax],

Scale factor for minimally sized positively invariant set, ρmin,
Disturbance setW .

Output: Set of SPI scale factors ρk, k ∈ [0, kmax].

1. If ρsk < ρmin for any k ∈ [0, kmax], set ρk = 0 for all k ∈ [0, kmax] and end procedure.

2. Start at k such that
k + 1 = argmin

k∈[0,kmax]

(ρsk) (3.65)

and set ρk+1 = ρsk+1. Note that if multiple k satisfy (3.65), any such k can be chosen
as the starting location.

3. Determine d(ρk+1) and set

ρk =

{
ρsk if ρsk ≤ ρk+1 + d(ρk+1),

ρk+1 + d(ρk+1) otherwise.

4. Increment k = k − 1 and repeat step 3. When k = −1, set k = kmax and continue
until returning to the starting index.

End Procedure.

Remark 3.11. If there exists a ρsk < ρmin then travel along the NMT is not safe. In this

case, the NMT could be removed the virtual net constructed Section 3.4. Alternatively,

setting all ρk = 0 as in step 1 above, guarantees that such an NMT will not be included

in any maneuvers planned using the virtual net. Hence, as long as the spacecraft does

not start on an unsafe NMT, safety is guaranteed. For completeness, an additional step

could be included after step 1 to account for the condition (3.45), stating “if ρsk < ρr0 for

any k ∈ [0, kmax], set ρk = 0 for all k ∈ [0, kmax] and end procedure.” In practice, this

additional step is not needed since simulations show ρmin > ρr0.

Figure 3.4 illustrates the implementation of Procedure 3.2 for an example closed NMT.
The dashed blue line shows the safe scale factors, and the solid red line denotes the set of
SPI scale factors determined using Procedure 3.2. The upper-limit on the scale factors due
to the control constraint (3.12) and the minimum scale factor for positive invariance, ρmin,
for this example are shown as dashed red and magenta lines, respectively.
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Starting point for 
Procedure 3.2

Figure 3.4: Illustration showing use of Procedure 3.2 to generate SPI scale factors ρk from
safe scale factors ρsk for an example closed NMT

3.3.3.2 Procedure for open NMTs

The procedure to generate SPI scale factors for open NMTs differs from Procedure 3.2
above for closed NMTs for two reasons. Firstly, because the NMT is open, the condition
(3.43) must only hold for k ∈ [0, kN̄max−1]. Secondly, it is possible to form an SPI tube for
an open NMT with some ρk < ρmin. This second reason is because a spacecraft travelling
along an open NMT only visits each state vector along the NMT once. Therefore, unlike in
the closed NMT case, there is no requirement that a spacecraft can return to the ellipsoidal
set for a given state vector along an open NMT.

Procedure 3.3 [Calculation of SPI scale factors for open NMTs]
Inputs: Set of safe scale factors, ρsk, k ∈ Z[0,kN̄max],

Scale factor ρr0 defined in (3.46),
Disturbance setW .

Output: Set of SPI scale factors ρk, k ∈ Z[kmin,kN̄max], 0 ≤ kmin ≤ kN̄max.

1. Set kmin = 0.

2. Define a set K containing the parameter kN̄max and the indices of strict local minima
of ρsk:

K = {kN̄max, k ∈ Z[1,kN̄max−1] | ρsk < ρsk−1 and ρsk < ρsk+1}.
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3. Form a vector v from the set K as follows:

(a) Initialize an index variable c = 1,

(b) vc = max{argmin
k∈K

(ρsk)},

(c) If vc = kN̄max, go to step 4,

(d) Increment c = c+ 1,

(e) Set vc = max{ argmin
k∈K,k>vc−1

(ρsk)}, go to step 3c,

4. Determine ρk from ρsk as follows:

(a) Initialize an index variable j = 1,

(b) Set k + 1 = vj , and set ρk+1 = ρsk+1,

(c) If ρk+1 < ρr0, set kmin = k + 1, set ρk̄ = 0 for all k̄ < k + 1 and go to step 4g.

(d) Determine d(ρk+1) and set

ρk =

{
ρk = ρsk if ρsk ≤ ρk+1 + d(ρk+1),

ρk = ρk+1 + d(ρk+1) otherwise

(e) If ρk < ρr0, set kmin = k, set ρk̄ = 0 for all k̄ < k and go to step 4g.

(f) Increment k = k − 1, if k > −1, go to step 4d,

(g) if j < c, increment j = j + 1, go to step 4b,

(h) if j = c, end procedure.

End Procedure.

Remark 3.12. Note that superscripts appended to the vector v denote the element of the

vector, i.e., v1 is the first element of v. Procedure 3.3 results in a set of SPI scale factors

for the portion of the NMT from Xn(kmin) to Xn(kN̄max). Steps 2 and 3 in Procedure 3.3

determine the starting points from which adjustments to ρsk are made. Specifically, the first

starting point, v1, corresponds to the index of the smallest strict local minima of ρsk (or

kN̄max), the second starting point, v2, corresponds to the index of the smallest strict local

minima larger than v1 (or kN̄max), etc. Step 4 in Procedure 3.3 makes adjustments to the

safe scale factors such that conditions (3.43) and (3.45) hold. Specifically, step 4d is used

to enforce condition (3.43) while steps 4c and 4e account for condition (3.45) by defining

a parameter kmin and setting all scale factors ρk for k < kmin equal to 0 if (3.45) is found

to be violated. In this case, travel along the NMT in question is not safe for state vector
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corresponding to k ∈ Z[0,kmin]. Setting all of these scale factors equal to zero ensures that

this portion of the NMT will not be included in any planned maneuvers.

Figure 3.5 illustrates the implementation of Procedure 3.3 for two example open NMTs.
In Figure 3.5a, an example NMT is shown for which kmin is determined to be 0. Therefore,
Procedure 3.3 yields a set of SPI scale factors, ρk, for k ∈ Z[0,kN̄max]. In Figure 3.5b, an
example NMT is shown for which kmin = 7. Therefore, for this NMT, Procedure 3.3
yields a set of SPI scale factors, ρk, for k ∈ Z[7,kN̄max].

3.3.3.3 Calculation of d(ρk+1)

Implementation of Procedures 3.2 and 3.3 require calculation of the parameter d(ρk+1)

for multiple values of ρk+1. The calculation of d(ρk+1) can be accomplished quickly using
straightforward calculations as follows. Firstly, because the disturbance setW is a bounded
polyhedron, the calculation of d(ρk+1) can be accomplished by considering only the ver-
tices of the disturbance set, i.e., taking w = wi, i = 1, 2, · · · , nw, and therefore replacing
the optimization problem in (3.44) with nw optimization problems given by

di(ρk+1) = min
e+

eTPe− e+TPe+ i = 1, 2, · · · , nw,

subject to e+TPe+ = ρk+1,

e = Ā−1(e+ −Bwi).

(3.66)

The solution to each of the nw Quadratically Constrained Quadratic Program (QCQP) in
(3.66) can be obtained by reducing the problem to a scalar root finding problem using the
method described in [97]. Details are included in Appendix C.1. After each di(ρk+1) is
obtained, then

d(ρk+1) = min
i=1,2,··· ,nw

di(ρk+1). (3.67)

Remark 3.13. It is also possible to pre-calculate d(ρk+1) for multiple values of ρk+1 using

the the method described above, and then fit a polynomial to this data. For on-line im-

plementation, rather than obtaining d(ρk+1) through solutions to (3.66), an approximation

for d(ρk+1) can be obtained using the curve-fit. Using this approximation can significantly

reduce the time require to generate SPI tubes, with certain trade-offs. This is discussed

further in Section 3.7.

Remark 3.14. The parameter ρmin can also be obtained through the calculation of d(ρk+1).

Specifically, ρmin corresponds to the value for which d(ρmin) = 0. Hence, ρmin can be ob-

tained by calculating d(ρ) for multiple values of ρ and setting ρmin equal to the value for
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(a) An example with all ρk > ρmin > ρr0, kmin = 0
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(b) An example with some ρk < ρr0 < ρmin, kmin = 7

Figure 3.5: Illustrations showing use of Procedure 3.3 to generate SPI scale factors ρk from
safe scale factors ρsk for two example open NMTs
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which d(ρmin) = 0. Simulations confirm that calculating ρmin using this method produces

the same value as the method described in Procedure 3.1, in less time.

3.4 Virtual Net for Safe Maneuver Planning

Using the SPI tubes generated in Section 3.3, a “virtual net” is formed. Using this virtual
net, safe maneuvers are planned to transition a spacecraft from an initial NMT to a desired
final NMT. The virtual net is formed from a given a set of NMTs,

M = {N1, N2, · · · ,Nlc , N̄1, N̄2 · · · , N̄lo}, (3.68)

whereN1 throughNlc are closed and N̄1 through N̄lo are open. This virtual net is a directed
graph, G(V ,A), where V is a set containing all nodes (vertices) in the virtual net, and
A ⊂ V × V is the edge set containing pairs of adjacent nodes.

The node set V contains two types of nodes:

1. Each closed NMT is a single node. These nodes are denoted by Ni ∈ V , i =

1, 2, · · · , lc.

2. Each state vector along each open NMT is a single node. The node for state vector
Xni(k) ∈ N̄i is denoted by (N̄i, k) ∈ V , where i = 1, · · · , lo and k ∈ Z

[0,k
N̄i
max]

.

Note that a single node is sufficient for each closed NMT due to the periodicity, i.e., if the
spacecraft is able to reach a single state vector along a closed NMT, it is able to reach all
state vectors along the NMT given sufficient time. However, for open NMTs, this property
does not hold. Therefore, a separate node is required to represent each state vector along
open NMTs. Each node in the virtual net is assigned a number between 1 and p, where p is
the total number of nodes in the virtual net,

p = lc +
lo∑
i=1

[
kN̄i
max + 1

]
. (3.69)

The edge set A ⊂ V × V contains all pairs of adjacent nodes in the virtual net, i.e., for
nodes n ∈ Z[1,p] and m ∈ Z[1,p], if node n is adjacent to node m, then (n,m) ∈ A. The
edge set A is determined by adjacency rules and calculations described in the following
subsections.

The remainder of this section is organized as follows. Adjacency definitions are pre-
sented in Section 3.4.1, and calculations used to check whether a given pair of nodes are
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adjacent are described in Section 3.4.2. Section 3.4.3 defines and describes the calculation
of an adjacency matrix and connection array used to represent the virtual net and plan safe
transfers between nodes. Specifically, the adjacency matrix is used to determine if a safe
transfer is possible, and the connection array provides the starting location and initial con-
troller reference point used to actually execute the transfer. After the adjacency matrix and
connection array have been calculated, efficient graph search algorithms, such as Dijkstra’s
algorithm, [37], are used to generate safe maneuvers connecting specified nodes in the vir-
tual net via a sequence of adjacent nodes. The generation of these maneuvers is described
in Section 3.4.4.

3.4.1 Virtual Net Adjacency: Definitions

Two nodes in the virtual net are adjacent if it is possible to execute a safe transfer from one
node to the other. In a virtual net consisting of both closed and open NMTs, there are four
types of adjacency to consider:

Adjacency Type (A1): Closed NMT node to closed NMT node,
Adjacency Type (A2): Open NMT node to closed NMT node,
Adjacency Type (A3): Closed NMT node to open NMT node,
Adjacency Type (A4): Open NMT node to open NMT node.

Definitions for each type of adjacency are provided below. Each type of adjacency
involves an “origin” NMT, from a which transfer is initiated, and a “destination” NMT, at
which the transfer completes. In the definitions and calculations below, a subscript i is used
to denote the origin NMT, and a subscript j is used to denoted the destination NMT. Fur-
thermore, discrete-time indices with a subscript i, i.e., ki, denote the discrete-time indices
for state vectors along the origin NMT (Xni(ki)). Discrete-time indices with a subscript j,
i.e., kj and k̂j , correspond to state vectors Xnj(kj) and Xnj(k̂j) along the destination NMT.
Key notation and parameters used in the adjacency definitions and calculations below are
summarized in Table 3.1.

The adjacency definitions for types (A1) and (A2), i.e., adjacency to closed NMTs, are
based on two observations. Firstly, a safe transfer to a desired closed NMT Nj can be
generated from the current state vector X(k) by setting the controller reference to Xnj(k+

δ) along the desired NMT for any Xnj(k + δ) that satisfies X(k) ∈ Ek+δ,Nj
. Secondly,

due to disturbances, the spacecraft state vector is only guaranteed to converge to the set
Eρmin

k,Nj
[defined in (3.41)] about any Xnj(k) along an NMT. The definitions for adjacency
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Table 3.1: Notation used for adjacency definitions and calculations

Symbol Description

Ni or N̄i Origin NMT
ki and Xni(ki) Discrete-time index and state vector along the origin NMT

at which a potential transfer begins
Nj or N̄j Destination NMT

k̂j and Xnj(k̂j) Discrete-time index and state vector along the destination NMT
used as the initial controller reference point for a potential transfer

kj and Xnj(kj) Discrete-time index and state vector along the destination NMT
corresponding to the destination node for adjacency types
(A3) and (A4)

k̄ Final discrete-time instant along a potential transfer trajectory,
starting at k = 0.

types (A1) and (A2) are give below. Figure 3.6 illustrates the parameters used in these
definitions.

Definition 3.5. [Adjacency Type (A1)] Node Ni is adjacent to node Nj if there exists

ki, k̂j ∈ Z[0, kmax], and α > 0 such that

Eρmin+α
ki,Ni

⊂ Ek̂j ,Nj
, (3.70)

where

Eρmin+α
ki,Ni

= {X | (X −Xni(ki))
TP (X −Xni(ki)) ≤ ρmin + α}. (3.71)

Definition 3.6. [Adjacency Type (A2)] Node (N̄i, ki) is adjacent to node Nj if there exists

k̂j ∈ Z[0, kmax] and α > 0 such that

Eρmin+α

ki,N̄i
⊂ Ek̂j ,Nj

. (3.72)

Remark 3.15. The requirement (3.70) could be replaced with

Eρmin

ki,Ni
⊂ int

(
Ek̂j ,Nj

)
, (3.73)

where int(·) denotes the interior of a set. If (3.73) holds, this implies that there exists an

α > 0 such that (3.70) holds. A similar replacement could be used for requirement (3.72).

The choice to use requirements (3.70) and (3.72) in the adjacency definitions was made
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Figure 3.6: Illustration of the parameters used in definitions for adjacency to closed NMT
nodes

because a) this simplifies the adjacency calculations described in Section 3.4.2, and b)

this facilitates the development of switching criteria used to plan maneuvers in the virtual

net. For implementation, a single small α > 0 is chosen and used for all calculations. In

general, choosing α to be larger will result in a virtual net with fewer pairs of adjacent

NMTs, limiting the manuevers that can be planned between NMTs. However, larger α may

allow for the generation of shorter (in terms of time) trajectories between given NMTs.

In Definitions 3.5 and 3.6, the requirements (3.70) and (3.72) ensure that, from all state
vectors near Xni(ki) along the origin NMT, the state vector Xnj(k̂j) can be selected as the
controller reference point, and constraints (3.12) and (3.14) will be satisfied at the current
time-instant. Furthermore, because the tube TNj

is SPI, these constraints are guaranteed
to be satisfied for all future time-instants, as long as the controller reference points remain
along Nj . Finally, because the NMT Nj is closed, the spacecraft state vector is guaranteed
to converge “close to” any state vector along Nj at some future time-instant. Specifically,
it is guaranteed that for each kj ∈ [0, kmax] and for any α > 0, there exists a k such that the
spacecraft state vector X(k) satisfies X(k) ∈ Eρmin+α

kj ,Nj
. However, if the destination NMT

is open, this property does not hold. Because of this, for adjacency types (A3) and (A4)
where the destination NMT is open, an additional requirement is included in the definitions
for adjacency provided below. Figure 3.7 illustrates the parameters used in Definitions 3.7
and 3.8.

Definition 3.7. [Adjacency Type (A3)] NodeNi is adjacent to node (N̄j, kj) if there exists
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ki ∈ Z[0, kmax], k̂j ∈ Z
[0, k

N̄j
max]

, k̄ ∈ Z≥0 and α > 0 such that

Eρmin+α
ki,Ni

⊂ Ek̂j ,N̄j
, (3.74)

and

RX(k̄, Eρmin+α
ki,Ni

, Xnj(k̂j), W) ⊂ Eρmin+α

kj ,N̄j
, (3.75)

where RX(k̄, Eρmin+α
ki,Ni

, Xnj(k̂j), W) is the reachable set at time-instant k̄ for the closed-

loop system (3.7), starting from the set Eρmin+α
ki,Ni

, and with initial controller reference point

Xnj(k̂j), introduced in Definition 3.1.

Definition 3.8. [Adjacency Type (A4)] Node (N̄i, ki) is adjacent to node (N̄j, kj) if there

exists k̂j ∈ Z
[0, k

N̄j
max]

, k̄ ∈ Z≥0 and α > 0 such that

Eρmin+α

ki,N̄i
⊂ Ek̂j ,N̄j

, (3.76)

and

RX(k̄, Eρmin+α

ki,N̄i
, Xnj(k̂j), W) ⊂ Eρmin+α

kj ,N̄j
. (3.77)

Portion of origin 
NMT, 𝒩" (or 𝒩#" ) Portion of 

destination NMT, 𝒩#$

𝑋&$(𝑘)$ )

𝑋&" (𝑘" ) ℰ,- ,𝒩-

/0-123

ℰ,)4,𝒩#4

ℰ,4 ,𝒩#4	
/0-123

ℛ7 𝑘8 ,ℰ,-,𝒩-

/0-123,𝑋&$ 𝑘)$ ,𝒲 ⊂ ℰ,4 ,𝒩#4
/0-123

𝑋&$(𝑘$ )

Closed-loop state 
trajectories

Figure 3.7: Illustration of the parameters used in definitions for adjacency to open NMT
nodes

In Definitions 3.7 and 3.8, the requirements (3.75) and (3.77) ensure that the closed-
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loop transfer trajectories, starting from any state vector near the origin node will reach (or
closely approach) the destination node at some future time instant.

3.4.2 Virtual Net Adjacency: Calculations

In this section, calculations are developed to determine if the adjacency requirements given
in Definitions 3.5-3.8 hold. Note that, in the adjacency definitions, there are two types of
requirements. The first type of requirement, represented by (3.70), (3.72), (3.74) and (3.76)
in Definitions 3.5-3.8, respectively, determine whether it is feasible to select a state vector
along the destination NMT as the controller reference point when the spacecraft state is
near the origin node. Hence, these requirements are referred to as “controller reference
point” adjacency requirements. The second type of requirement, represented by (3.75)
and (3.77) in Definitions 3.7 and 3.8, respectively, determine whether closed-loop transfer
trajectories starting near the origin node will approach the destination node along an open
NMT at some future time-instant. Hence, these requirements are referred to as “transfer
trajectory” adjacency requirements.

3.4.2.1 Controller Reference Point Adjacency Requirement Calculations

The controller reference point adjacency requirement for adjacency type (A1) is given by
(3.70), repeated here for clarity:

Eρmin+α
ki,Ni

⊂ Ek̂j ,Nj
. (3.78)

In this section, calculations are developed to check if (3.78) holds for a given Ni, ki and
Nj , k̂j . Note that the controller reference point adjacency requirements for adjacency types
(A2)-(A4), given by (3.72), (3.74) and (3.76), respectively, are identical to (3.78), with the
exception that the origin NMT and/or the destination NMT are open, rather than closed.
Therefore, the calculations described in this section can be used to check the controller
reference point requirements for all adjacency types (A1)-(A4).

To determine whether (3.78) holds, the following procedure is executed:

Procedure 3.4 [Check for controller reference point adjacency requirement]
Inputs: Discrete-time index, and state vector, along the origin NMT: ki, and Xni(ki),

Discrete-time index, state vector, and SPI scale factor along destination NMT:
k̂j , Xnj(k̂j) and ρk̂j ,

Adjacency parameter α > 0,
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Scale factor for smallest SPI set, ρmin.
Output: Determination of whether the controller reference point adjacency requirement

holds.

1. Solve the following optimization problem:

F (ki, k̂j) = max
X

(X −Xnj(k̂j))
TP (X −Xnj(k̂j)),

subject to (X −Xni(ki))
TP (X −Xni(ki)) = ρmin + α,

(3.79)

2. If F (ki, k̂j) ≤ ρk̂j , then the controller reference point adjacency requirement holds,

3. If F (ki, k̂j) > ρk̂j , then the controller reference point adjacency requirement does
not hold.

End Procedure.
The value of F (ki, k̂j), i.e., the solution to the optimization problem in (3.79), cor-

responds to the scale factor for the largest ellipsoidal set, with shape matrix P and cen-
tered at Xnj(k̂j), that shares exactly one point of intersection with Eρmin+α

ki,Ni
. Calculation of

F (ki, k̂j) is fast and straightforward. Because the quadratic objective and constraint func-
tions in (3.79) share the same shape matrix P , the solution to (3.79) can be obtained by
solving a scalar quadratic equation, as described next. Figure 3.8 illustrates the parameters
used in the following discussion.

l

ℰ"# ,𝒩#

&'#()*

𝑋∗(𝑘/ , 𝑘01) = 𝑋41 𝑘01 + 𝜆∗𝑟(𝑘/ , 𝑘01)

𝑋4/ 𝑘/ 𝑋41 𝑘01
𝑟(𝑘/ , 𝑘01)

Figure 3.8: Illustration of the parameters used in controller reference point adjacency re-
quirement calculations

Define r(ki, k̂j) as the vector from Xnj(k̂j) to Xni(ki), i.e.,

r(ki, k̂j) = Xni(ki)−Xnj(k̂j). (3.80)
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Then, the line connecting Xnj(k̂j) to Xni(ki) is given by l = Xnj(k̂j) + λr(ki, k̂j), λ ∈ R.
The maximizer to (3.79), denoted by X∗(ki, k̂j), corresponds to the state vector along this
line, farthest from Xnj(k̂j), that also lies on the boundary of Eρmin+α

ki,N̄i
. The maximizer

X∗(ki, k̂j) can be found by determining the largest value (in terms of absolute value) for λ,
denoted λ∗, that satisfies

(X −Xni(ki))
TP (X −Xni(ki))− (ρmin + α) = 0, (3.81)

where
X = Xnj(k̂j) + λr(ki, k̂j). (3.82)

To determine λ∗, (3.82) is substituted into (3.81), and the resulting expression is simplified
to yield

λ2 − 2λ+

(
1− ρmin + α

r(ki, k̂j)TPr(ki, k̂j)

)
= 0. (3.83)

As (3.83) is a scalar quadratic equation in λ, the two roots can be obtained using the
quadratic formula, i.e.,

λ = 1±
√

ρmin + α

r(ki, k̂j)TPr(ki, k̂j)
, (3.84)

and therefore,

λ∗ = 1 +

√
ρmin + α

r(ki, k̂j)TPr(ki, k̂j)
. (3.85)

Then, the maximizer to (3.79) is given by

X∗(ki, k̂j) = Xnj(k̂j) + λ∗r(ki, k̂j), (3.86)

and the solution to (3.79) is given by

F (ki, k̂j) = (X∗(ki, k̂j)−Xnj(k̂j))
TP (X∗(ki, k̂j)−Xnj(k̂j)). (3.87)

3.4.2.2 Transfer Trajectory Adjacency Requirement Calculations

The transfer trajectory adjacency requirement for adjacency type (A3) is given by (3.75),
repeated here for clarity:

RX(k̄, Eρmin+α
ki,Ni

, Xnj(k̂j), W) ⊂ Eρmin+α

kj ,N̄j
. (3.88)
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In this section, calculations are developed to check whether (3.88) holds for given Ni, ki,
N̄j , k̂j and k̄. Note that the transfer trajectory adjacency requirement for adjacency type
(A4), given by (3.77), is identical to (3.88) with the exception that the origin NMT is open,
rather than closed. Therefore, the calculations described in this section can be used to check
the transfer trajectory adjacency requirements for adjacency types (A3) and (A4).

Recall that the set RX(k̄, Eρmin+α
ki,Ni

, Xnj(k̂j), W) is the set of all states reachable at
time instant k̄, starting from the set Eρmin+α

ki,Ni
with initial controller reference point Xnj(k̂j)

under all possible disturbances, w(k) ∈ W . To check requirement (3.88) directly, this set
must be calculated. However, while efficient methods exist to calculate reachable sets when
both the initial set and the disturbance set are ellipsoidal, e.g., [98], or when they are both
polyhedral, e.g., [99–101], calculation of the reachable set RX(k̄, Eρmin+α

ki,Ni
, Xnj(k̂j), W)

is not straightforward because the initial set Eρmin+α
ki,Ni

is ellipsoidal, while the disturbance set
W is polyhedral. Therefore, instead of directly calculatingRX(k̄, Eρmin+α

ki,Ni
, Xnj(k̂j), W),

a different approach is taken in which (3.88) is checked by formulating a single non-convex
optimization problem, and then solving this problem by breaking it into multiple simpler
QCQPs, each of which can be solved quickly.

The non-convex optimization problem is formulated through the following observations
and steps:

1. Note that the requirement (3.88) can be re-stated as

RX(k̄, Y, Xnj(k̂j), W) ⊂ Eρmin+α

kj ,N̄j
for all Y ∈ Eρmin+α

ki,N̄i
. (3.89)

2. Based on the closed-loop dynamics (3.7), for a given Y ∈ Eρmin+α

ki,N̄i
, the set

RX(k̄, Y, Xnj(k̂j), W) is given by

RX(k̄, Y, Xnj(k̂j), W) = {X(k̄) : ∃ w(k) ∈ W ∀ k ∈ [0, k̄ − 1]

such that X(k̄) = Āk̄Y −M(k̄)Xnj(k̂j)

+[Āk̄−1Bw(0) + Āk̄−2Bw(1) + · · ·+ Ā0Bw(k̄ − 1)]},
(3.90)

where the matrix M(k̄) ∈ R6×6 is given by

M(k̄) = Āk̄−1BKA0 + Āk̄−2BKA1 + · · ·+ Ā0BKAk̄−1. (3.91)
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3. Next, note that, for a given Y ∈ Eρmin+α

ki,N̄i
, (3.89) is satisfied if

(X(k̄)−Xnj(kj))
TP (X(k̄)−Xnj(kj)) ≤ ρmin + α

for all X(k̄) ∈ RX(k̄, Y, Xnj(k̂j), W).
(3.92)

4. The vector (X(k̄)−Xnj(kj)) in (3.92) can be written in terms of the error, i.e.,

(X(k̄)−Xnj(kj)) = X(k̄)−Xnj(k̄ + k̂j) +Xnj(k̄ + k̂j)−Xnj(kj)

= e(k̄, k̂j) + g(k̄, k̂j, kj),
(3.93)

where
g(k̄, k̂j, kj) = Xnj(k̄ + k̂j)−Xnj(kj), (3.94)

and, from the definition of the state error, e(k, δ) = X(k) − Xn(k + δ), and using
the error dynamics, (3.9), e(k̄, k̂j) is given by

e(k̄, k̂j) = Āk̄e(0, k̂j) + Āk̄−1Bw(0) + Āk̄−2Bw(1) + · · ·+ Ā0Bw(k̄ − 1),

w(k) ∈ W for all k ∈ [0, k̄ − 1],
(3.95)

where e(0, k̂j) = Y −Xnj(k̂j).

5. Define the tail of (3.95) containing the disturbance terms as a vector f , i.e.,

f = Āk̄−1Bw(0)+ Āk̄−2Bw(1)+ · · ·+ Ā0Bw(k̄−1), w(k) ∈ W for k ∈ [0, k̄−1],

(3.96)
and note that f ∈ Re(k̄, 0, W), i.e., f is in the reachable set for the error system at
time instant k̄ starting from e(0) = 0.

6. Based on (3)-(5), for a given Y ∈ Eρmin+α

ki,N̄i
, the first set inclusion in (3.89) is satisfied

if [
Āk̄e(0, k̂j) + g(k̄, k̂j, kj) + f

]T
P
[
Āk̄e(0, k̂j) + g(k̄, k̂j, kj) + f

]
≤ ρmin + α,

(3.97)
for all f ∈ Re(k̄, 0, W), where e(0, k̂j) = Y −Xnj(k̂j) and
g(k̄, k̂j, kj) = Xnj(k̄ + k̂j)−Xnj(kj).

7. Finally, note that Y ∈ Eρmin+α

ki,N̄i
⇐⇒ (Y −Xni(ki))

TP (Y −Xni(ki)) ≤ ρmin + α.

Therefore, considering items (1)-(7) above, the transfer trajectory adjacency require-
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ment (3.88) can be checked by solving the following non-convex optimization problem:

F (k̄, ki, k̂j) = max
Y,f

[
Āk̄e(0, k̂j) + g(k̄, k̂j, kj) + f

]T
P
[
Āk̄e(0, k̂j) + g(k̄, k̂j, kj) + f

]
,

subject to (Y −Xni(ki))
TP (Y −Xni(ki)) ≤ ρmin + α,

f ∈ Re(k̄, 0, W),
(3.98)

where e(0, k̂j) = Y −Xnj(k̂j) and g(k̄, k̂j, kj) = Xnj(k̄+ k̂j)−Xnj(kj). If F (k̄, ki, k̂j) ≤
ρmin + α, then the requirement (3.88) holds.

The optimization problem given by (3.98) can be solved quickly by breaking it into
several simpler QCQPs. Firstly, note that the set Re(k̄, 0, W) can be easily determined.
Because the setW is a polytope and the error system (3.9) is linear,Re(k̄, 0, W) is also a
polytope. Furthermore, the vertices of Re(k̄, 0, W) are obtained by mapping each vertex
ofW forward over k̄ time-instants through (3.9), i.e., the vertices ofRe(k̄, 0, W) are given
by

f l = (Āk̄−1 + Āk̄−2 + · · ·+ Ā0)Bwl, l = 1, 2, · · · , nw, (3.99)

where wl are the vertices ofW . Secondly, becauseRe(k̄, 0, W) is a polytope, the solution
to (3.98) can be obtained by considering only f ∈ {f 1, f 2, · · · , fnw}, and therefore,
replacing the single optimization problem in (3.98) with nw simpler optimization problems
given by

F l(k̄, ki, k̂j) = max
Y

[
Āk̄e(0, k̂j) + g(k̄, k̂j, kj) + f l

]T
P
[
Āk̄e(0, k̂j) + g(k̄, k̂j, kj) + f l

]
,

subject to (Y −Xni(ki))
TP (Y −Xni(ki)) ≤ ρmin + α,

(3.100)
where l = 1, 2, · · · , nw, e(0, k̂j) = Y −Xnj(k̂j) and g(k̄, k̂j, kj) = Xnj(k̄+ k̂j)−Xnj(kj).
The optimization problems in (3.100) can be simplified further due to the following propo-
sition:

Proposition 3.2. Let D ⊂ Rn be a compact, convex set with a non-empty interior, and let

f(X) : D → R be convex. If f(X) ≤ a when X ∈ ∂D, i.e., X is in the boundary of D,

then f(X) ≤ a for all X ∈ D.

Proof. Suppose X ∈ Int(D). Then, X can be expressed as

X = λX ′ + (1− λ)X ′′, (3.101)

where X ′ ∈ ∂D, X ′′ ∈ ∂D and λ ∈ [0, 1] can be found by drawing any line through X
and finding the points where that line intersects the boundary of D. Then, because f(X) is
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convex, and f(X ′) ≤ a, f(X ′′) ≤ a,

f(X) ≤ λf(X ′) + (1− λ)f(X ′′) ≤ λa+ (1− λ)a = a. (3.102)

Note that in (3.100), the objective function is convex since P = P T � 0, and the max-
imization is done over the compact, convex set {Y : (Y −Xni(ki))

TP (Y −Xni(ki)) ≤
ρmin + α}, with a non-empty interior. Therefore, by Proposition 3.2, the inequality con-
straint in (3.100) is replaced with an equality constraint, and (3.100) becomes

F l(k̄, ki, k̂j) = max
Y

[
Āk̄e(0, k̂j) + g(k̄, k̂j, kj) + f l

]T
P
[
Āk̄e(0, k̂j) + g(k̄, k̂j, kj) + f l

]
,

subject to (Y −Xni(ki))
TP (Y −Xni(ki)) = ρmin + α.

(3.103)
After solving (3.103) for each F l(k̄, ki, k̂j), the solution to the original optimization prob-
lem (3.98) is given by F (k̄, ki, k̂j) = max{F l(k̄, ki, k̂j)}.

The procedure to determine whether the transfer trajectory adjacency requirement holds
is as follows:
Procedure 3.5 [Check for transfer trajectory adjacency requirements]

Inputs: Discrete-time index, and state vector, along the origin NMT: ki, and Xni(ki),
Discrete-time index, state vector, and SPI scale factor along destination NMT:
k̂j , Xnj(k̂j) and ρk̂j ,

Destination node information: kj and Xnj(kj),
Number of discrete-time instants along transfer trajectory: k̄,
Adjacency parameter α > 0,
Scale factor for smallest SPI set, ρmin,
Vertices ofRe(k̄, 0, W): f l, l = 1, 2, · · · , nw.

Output: Determination of whether the transfer trajectory adjacency requirement holds.

1. Solve the following optimization problems:

F l(k̄, ki, k̂j) = max
Y

[
Āk̄e(0, k̂j) + g + f l

]T
P
[
Āk̄e(0, k̂j) + g + f l

]
,

subject to (Y −Xni(ki))
TP (Y −Xni(ki)) = ρmin + α,

(3.104)
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l = 1, 2, · · · , nw, where

e(0, k̂j) = Y −Xnj(k̂j),

g = g(k̄, k̂j, kj) = Xnj(k̄ + k̂j)−Xnj(kj),

f l = (Āk̄−1 + Āk̄−2 + · · ·+ Ā0)Bwl.

2. Set F (k̄, ki, k̂j) = max{F l(k̄, ki, k̂j)}.

3. If F (k̄, ki, k̂j) ≤ ρmin + α, then the transfer trajectory adjacency requirement holds.

4. If F (k̄, ki, k̂j) > ρmin + α then the transfer trajectory adjacency requirement does
not hold.

End Procedure.

Remark 3.16. The solution to each QCQP in (3.104) can be obtained quickly by reduc-

ing the problem to a scalar root finding problem. Details are included in Appendix C.2.

Note that using this solution method, numerical issues are observed when k̄ + k̂j � kj .

These issues, however, are not encountered in the calculation of the Virtual Net when using

Procedures 3.7 and 3.10 described below. Simulations also show that it may be possible

to solve (3.104) either numerically, e.g., using MATLAB’s fmincon function, or by using

the S-Procedure to reformulate the problem as a Semi-Definite Program (SDP) [102]. The

method described in Appendix C.2 was chosen for implementation because this method was

shown to be the fastest.

3.4.3 Virtual Net Matrix Representation

The virtual net is represented by a weighted adjacency matrix, Π, and a connection array,
Ξ. For a virtual net containing p nodes, the adjacency matrix Π ∈ Rp×p. For n ∈ Z[1,p],
m ∈ Z[1,p], if node n is not adjacent to node m, then the corresponding adjacency matrix
element is set to +∞, i.e., Π(n,m) = +∞. If node n is adjacent to node m, then the
corresponding adjacency matrix element is set to J ≥ 0, where J represents the cost of
transition from node n to node m.

Because fuel efficiency is an important consideration for SRMP, the cost of transition
is taken to be the total control used along the transfer trajectory connecting node the two
nodes. The calculation of this cost of transition depends on the type of adjacency for the
two nodes under consideration, i.e., adjacency type (A1)-(A4), and is calculated using Pro-
cedure 3.6.
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Procedure 3.6 [Calculation of transition cost between adjacent nodes]
Inputs: Discrete-time index and state vector along origin NMT: ki and Xni(ki)

Discrete-time index and state vector along destination NMT: k̂j and Xnj(k̂j)

Adjacency parameter: α > 0,
Scale factor for smallest SPI set: ρmin.
Adjacency type for the two nodes under consideration: (A1), (A2), (A3) or (A4)
If adjacency type is (A3) or (A4): Destination node, Xn(kj)

Output: Cost of transition between nodes, J .

1. If the adjacency type is (A1) or (A2), i.e., the destination nodes is a closed NMT, do
the following:

(a) Calculate a transfer trajectory from k = 0 to k = k̄ using

X(k + 1) = AX(k) +Bu(k) +Bw(k),

u(k) = K(X(k)−Xnj(k + k̂j)),

w(k) ∈ W ,

(3.105)

with X(0) = Xni(ki), and k̄ is determined as the first discrete-time instant for
which

X(k̄) ∈ Eρmin+α

k̄+k̂j ,Nj
. (3.106)

(b) Calculate the cost of transition as

J =
k̄∑
k=0

‖u(k) + wu(k)‖1. (3.107)

2. If the adjacency type is (A3) or (A4), i.e., the destination nodes is along an open
NMT, do the following:

(a) Calculate a transfer trajectory from k = 0 to k = k̄ using

X(k + 1) = AX(k) +Bu(k) +Bw(k),

u(k) = K(X(k)−Xnj(k + k̂j)),

w(k) ∈ W ,

(3.108)

with X(0) = Xni(ki), and k̄ is determined as the first discrete-time instant for
which

X(k̄) ∈ Eρmin+α

kj ,N̄j
. (3.109)
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(b) Calculate the cost of transition as

J =
k̄∑
k=0

‖u(k) + wu(k)‖1 (3.110)

End Procedure.

Remark 3.17. The difference in the calculation of J for adjacency types (A1) and (A2),

(Step 1 of Procedure 3.6), and the calculation of J for adjacency types (A3) and (A4), (Step

2), is in when the transfer trajectory is terminated, i.e., how k̄ is determined. For adja-

cency types (A1) and (A2), the destination node is a closed NMT. Hence, k̄ is determined

in (3.106) to be the first time-instant for which the spacecraft state is “close to” the cur-

rent controller reference point along the destination NMT (node), i.e, Xnj(k̄ + k̂j). For

adjacency types (A3) and (A4), the destination node is a state vector along an open NMT.

Hence, k̄ is determined in (3.109) as the first time-instant for which the spacecraft state is

“close to” the unique state vector that corresponds to the destination node, i.e., Xnj(kj).

Remark 3.18. In (3.105) and (3.108), the disturbance terms w(k) are determined as de-

scribed in Section 3.1.4, i.e., w(k) = wp(k) + wu(k), where wp(k) is randomly assigned

from a specified set, and wu(k) accounts for the minimum control constraint by cancelling

a commanded control input if the input violates the constraint. The cost J in (3.107) and

(3.110) is calculated as a summation of ‖u(k) + wu(k)‖1 because this quantity represents

the implemented (and not simply commanded) control inputs.

While the adjacency matrix Π stores the cost of transition between adjacent nodes as
described above, the connection array Ξ stores information used to generate the lowest-cost
transfer trajectory between each pair of adjacent nodes. Specifically, if node n is adjacent to
node m, then the corresponding element of the connection array contains the discrete-time
index for the transfer location along the origin NMT (ki) and the discrete-time index for
the initial controller reference point along the destination NMT that yield the lowest cost
transfer (k̂j), i.e., Ξ(i, j) = [ki, k̂j].

The weighted adjacency matrix and the connection array are generated using the fol-
lowing procedure. This procedure is based on the adjacency calculations described in Pro-
cedures 3.4 and 3.5, and the calculation of transfer costs given in Procedure 3.6:

Procedure 3.7: [Calculation of adjacency matrix and connection array]
Inputs: Set of lc + lo NMTs to be included in the virtual net:M,

Set of p nodes to be included in the virtual net,
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Final discrete-time index for all NMTs to be included in the virtual net:
kmax, and kN̄j

max, j ∈ Z[1,lo],
Initial adjacency matrix with Π(n,m) = +∞ for all n, m ∈ Z[1,p],
Initial connection array with Ξ(n,m) = [+∞,+∞] for all n, m ∈ Z[1,p].

Output: Final adjacency matrix, Π, and connection array, Ξ.

For all pairs (n,m), where n ∈ Z[1,p] is the origin node m ∈ Z[1,p] is the destination
node, do the following:

1. Determine the adjacency type, (A1)-(A4), for nodes n and m.

2. Extract parameters i and j, where i ∈ Z[1,lc+lo] corresponds to the NMT for the origin
node n, and j ∈ Z[1,lc+lo] corresponds to the NMT for the destination node m.

3. If adjacency type is (A1): For each pair (ki, k̂j), where ki ∈ Z[0,kmax] and k̂j ∈
Z[0,kmax], do the following:

(a) Set J = +∞.

(b) Determine whether controller reference point adjacency requirement (3.70) holds
using Procedure 3.4.

(c) If requirement (3.70) does not hold, continue to the next pair (ki, k̂j).

(d) If requirement (3.70) does hold, the nodes are adjacent. Calculate a transition
cost between nodes, Jn using Procedure 3.6. If Jn < J :

set Π(n,m) = Jn,

set Ξ(n,m) = [ki, k̂j],

set J = Jn.

Continue to the next pair (ki, k̂j).

4. If adjacency type is (A2): For each pair (ki, k̂j), where ki is a fixed value between 0

and kN̄i
max corresponding to the origin node, and k̂j ∈ Z[0,kmax], do the following:

(a) Set J = +∞.

(b) Determine whether controller reference point adjacency requirement (3.72) holds
using Procedure 3.4.

(c) If requirement (3.72) does not hold, continue to the next pair (ki, k̂j).
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(d) If requirement (3.72) does hold, the nodes are adjacent. Calculate a transition
cost between nodes, Jn using Procedure 3.6. If Jn < J :

set Π(n,m) = Jn,

set Ξ(n,m) = [ki, k̂j],

set J = Jn.

Continue to the next pair (ki, k̂j).

5. If adjacency type is (A3): For each pair (ki, k̂j) where ki ∈ Z[0,kmax] and k̂j ∈
Z

[0,k
N̄j
max]

, do the following:

(a) Set J = +∞.

(b) Determine whether controller reference point adjacency requirement (3.74) holds
using Procedure 3.4.

(c) If requirement (3.74) does not hold, continue to the next pair (ki, k̂j).

(d) If requirement (3.74) does hold, for each k̄ ∈ Z
[1,k
N̄j
max−k̂j ]

do the following:

i. Determine whether transfer trajectory adjacency requirement (3.75) holds
using Procedure 3.5.

ii. If requirement (3.75) does not hold, continue to the next k̄.

iii. If requirement (3.75) does hold, the nodes are adjacent. Calculate a transi-
tion cost between nodes, Jn using Procedure 3.6. If Jn < J :

set Π(n,m) = Jn,

set Ξ(n,m) = [ki, k̂j],

set J = Jn.

Continue to the next k̄.

(e) Continue to the next pair (ki, k̂j).

6. If adjacency type is (A4): For each pair (ki, k̂j), where ki is a fixed value between 0

and kN̄i
max corresponding to the origin node and k̂j ∈ Z

[0,k
N̄j
max]

, do the following:

(a) Set J = +∞.

(b) Determine whether controller reference point adjacency requirement (3.76) holds
using Procedure 3.4.

(c) If requirement (3.76) does not hold, continue to the next pair (ki, k̂j).

63



(d) If requirement (3.76) does hold, for each k̄ ∈ Z
[1,k
N̄j
max−k̂j ]

do the following:

i. Determine if transfer trajectory adjacency requirement (3.77) holds using
Procedure 3.5.

ii. If requirement (3.77) does not hold, continue to the next k̄.

iii. If requirement (3.77) does hold, the nodes are adjacent. Calculate a transi-
tion cost between nodes, Jn using Procedure 3.6. If Jn < J :

set Π(n,m) = Jn,

set Ξ(n,m) = [ki, k̂j],

set J = Jn.

Continue to the next k̄.

(e) Continue to the next pair (ki, k̂j).

End Procedure.

Remark 3.19. The following remarks provide a description of certain steps in Procedure

3.7.

• For adjacency type (A1), step (3a) sets a placeholder value for the cost of transition.

In step (3b), a determination is made as to whether the current nodes are adjacent

by the ki, k̂j under consideration. In step (3d), if the current nodes are adjacent, a

cost of transition is calculated using ki, k̂j . If this cost of transition is lower than

any previously calculated transition costs, then this cost is stored in the adjacency

matrix and the current indices ki, k̂j are stored in the connection array. A similar

discussion applies for adjacency type (A2).

• For adjacency type (A3), step (5a) sets a placeholder value for the cost of transition.

In step (5b) and (5di), a determination is made as to whether the current nodes

are adjacent by the ki, k̂j under consideration. Note that in step (5d), the values

of k̄ considered are restricted such that controller reference points remain along

the open destination NMT for the entire transfer trajectory, i.e., when k̄ = k
N̄j
max −

k̂j , the controller reference point will be the final state vector along the open NMT,

Xnj(k
N̄j
max). In step (5diii), if the current nodes are adjacent, a cost of transition

is calculated using ki, k̂j . If this cost of transition is lower than any previously

calculated transition costs, then this cost is stored in the adjacency matrix and the

current indices ki, k̂j are stored in the connection array. A similar discussion applies

for adjacency type (A4).

64



In implementation of Procedure 3.7, several simplifications and assumptions can be
made, if desired, to reduce calculations for adjacency types (A3)-(A4), i.e., cases where the
destination node is along an open NMT.

1. If origin node n and destination node m are both along the same given open NMT,
and ki ≤ kj , i.e., the destination node is past the origin node, then node n is adjacent
to node m with zero cost of transition.

2. If it has been determined that an origin node n is adjacent to a destination node m
along a given open NMT by state vectors Xni(ki) and Xnj(k̂j), and with cost of
transition J , then node n is also adjacent to any destination nodes m̄ that are past
node m along the same open NMT, by the same state vectors Xni(ki) and Xnj(k̂j),
and with the same cost of transition J .

3. In steps (5) and (6), the range of k̂j to consider can be restricted to k̂j ∈ [1,min{kj +

µ, k
N̄j
max}], where µ is a small integer. Using this restriction, only initial controller

reference points that precede, or are shortly after the destination node along the des-
tination NMT are considered. In steps (5d) and (6d), the range of k̄ can be restricted
to k̄ ∈ [1,min{kj + µ − k̂j, k

N̄j
max}]. Using this restriction, only transfer trajectories

that terminate when the controller reference point is near the destination node are
considered. These simplifications are reasonable because the satellite state-vector
asymptotically approaches a neighborhood around the current controller set-point.
Therefore, the satellite will generally be closest to the destination node at a time
instant when the controller reference point is near the destination node.

Note that items (1) and (2) above are non-conservative in that applying these simplifications
will not result in a loss of adjacency in the virtual net. Applying item (3) may result in
a slight loss of adjacency, but results in a significant decrease in computation time and
also avoids numerical issues in checking the transfer trajectory adjacency requirement,
described in Remark 3.16. Finally, note that, in item (2), the actual cost of transition to
each node m̄ along the destination NMT would be slightly higher than the cost of transition
to the preceding node. Similarly, in item (1) the actual cost of transition to nodes along the
same NMT would be non-zero due to disturbances. The choice to set the cost of transition
to the same value for all nodes in item (1) and to zero for item (2) is made to reduce and
simplify calculations.
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3.4.4 Maneuver Generation Using the Virtual Net

After the adjacency matrix and connection array have been calculated, safe maneuvers
can be planned between specified starting and ending nodes in the virtual net. Using the
adjacency matrix, Π, Dijkstra’s algorithm is applied to generate a sequence of nodes that
connects given starting and ending nodes. Then, using the connection array Ξ, a safe
maneuver is planned to transition the spacecraft from the starting node to the ending node.
This maneuver is planned by switching the controller reference to the next initial reference
point in the sequence once the spacecraft reaches a small neighborhood of each transfer
location. Specifically, for a spacecraft travelling toward node n before transferring to node
m, the connection array element is given by Ξ(n,m) = [ki, k̂j]. The controller reference
point is switched to Xnj(k̂j) at the first time instant k when the spacecraft state vector
satisfies

X(k) ∈ Eρmin+α

ki,Ni(orN̄i)
. (3.111)

Remark 3.20. The switching criteria given by (3.111) is consistent with the adjacency defi-

nitions developed earlier. Specifically, if the controller reference point is switched based on

(3.111), then the controller reference point adjacency requirements ensure that constraints

will remain satisfied. Furthermore, the periodicity of closed NMTs, and the transfer tra-

jectory adjacency requirements for connections to open NMTs, ensure that for any transfer

between NMTs, (3.111) will be satisfied for some k, i.e., the spacecraft will always be able

to switch to the next NMT in the sequence.

3.5 Simulation Examples

In this section, simulations are presented to illustrate the implementation of the invariance-
based SRMP method developed in Sections 3.1-3.4. Table 3.2 lists parameters used in
simulations. The state-feedback gain matrix K for the controller (3.6) is an LQR gain
matrix corresponding to the control and state weighting matrices given by RLQ = 2 ×
107I3×3 and QLQ = 100diag(1, 1, 1, 1 × 105, 1 × 105, 1 × 105). The shape matrix P
for the ellipsoidal sets is chosen to be the solution to the discrete-time Riccatti equation,
described in Section 2.3. For trajectory generation, Dijkstra’s algorithm is implemented
using the MATLAB BGL toolbox [103]. Ellipsoidal sets are plotted using the MATLAB
ellipsoidal toolbox [104].

The virtual net is formed from a set of 100 NMTs, including 84 closed NMTs (54 ellip-
tical NMTs centered at the origin, 15 periodic line segment NMTs, and 15 stationary point
NMTs), and 16 open NMTs (4 non-periodic line segment NMTs and 12 helical NMTs).
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Table 3.2: Parameters used in simulations

Parameter Symbol Value
Spacecraft mass m 140 kg
Nominal orbital radius R0 7728.137 km
Mean motion ω 0.001027 rad/s
Discrete-time update period ∆T 61.16 s
Closed NMT Max discrete-time index kmax 99
Maximum control limit umax 0.005 kgkm/s2

Minimum control limit umin 0.0001 kgkm/s2

Random disturbance norm bound ε 0.0001 kgkm/s2

Centers of exclusion zones s1, s2 [0 ±1 0]T km
s3 [1.5 0 1]T km

Exclusion zone shape matrices Si, i = 1, 2, 3 1
0.22 I3×3

Param. for adjacency/switching α 0.1

These NMTs are chosen to be evenly spaced within a box of 3.5 × 8 × 10 km in the x, y,
and z directions, respectively, centered at the origin. This virtual net contains 2, 882 nodes,
including 84 nodes corresponding to closed NMTs and 2, 798 nodes corresponding to state
vectors along open NMTs. Figure 3.9 shows the set of NMTs used to form the virtual net,
along with the three exclusion zones considered.

The control-cost for a simulated maneuver between specified initial and final NMTs is
calculated as

J = ∆T

kf∑
k=0

‖u(k)‖1, (3.112)

where kf is the final discrete-time instant for the maneuver. Because of the random nature
of the disturbances, the control-cost varies with each simulation. Therefore, the control
costs reported below are the average control-costs obtained over 20 simulated maneuvers
between specified initial and final NMTs.

The first example maneuver considered is one planned to transition a spacecraft be-
tween two elliptical NMTs. Figure 3.10a shows the trajectory for this maneuver (plotted
in pink). The spacecraft travels to four intermediate elliptical NMTs before reaching the
final NMT. The average control-cost for this maneuver is 1, 814 N·s. Figure 3.10b shows
that the maximum thrust constraint (3.12) and the exclusion zone constraints (3.14) are
enforced throughout the maneuver (recall that constraints are satisfied if they are ≤ 0).
Figure 3.10d shows commanded and actual thrust in the x, y and z directions, verifying
that the minimum thrust constraint (3.15) is accommodated throughout the maneuver, i.e.,
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(a) Elliptical NMTs (closed)
(b) Periodic line segment and stationary
point NMTs (closed)

(c) Non-periodic line segment NMTs (open) (d) Helical NMTs (open)

Figure 3.9: NMTs included in the virtual net; Grey ellipsoids represent exclusion zones
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only commanded thrust values satisfying (3.15) are implemented. Finally, to verify that the
spacecraft remains within the SPI tubes throughout the maneuver, the parameter

yel(k) = e(k)TPe(k)− ρk+δ (3.113)

is plotted in Figure 3.10c, where ρk+δ is the SPI ellipsoidal set scale factor for the current
controller reference point. Note that if yel(k) ≤ 0, then the spacecraft state is within the
SPI tube for the NMT corresponding to the current controller reference point.

In the example maneuver shown in Figure 3.10, only closed NMTs are included in the
transfer. A second example maneuver between two elliptical NMTs is shown in Figure
3.11. In this example, the spacecraft travels to four intermediate NMTs, including three
elliptical NMTs and one open line-segment NMT, before reaching the final NMT. The av-
erage control cost for this maneuver is 1, 212 N·s, whereas a maneuver connecting the same
initial and final NMTs utilizing only closed intermediate NMTs has an average control cost
of 1, 545 N·s. Hence, in certain cases, the additional maneuver planning flexibility provided
by including open NMTs in the virtual net results in maneuvers requiring less control (fuel)
use.

A final example maneuver is shown in Figure 3.12. In this maneuver, the spacecraft
transitions from a stationary point NMT to a closed line-segment NMT by travelling to five
intermediate NMTs, including two elliptical NMTs, one open line segment NMT and two
open helical NMTs. In this example, utilizing open NMTs also results in fuel savings: the
average control cost for the maneuver in Figure 3.12 is 2, 247 N·s while the average cost
for a maneuver using only closed NMTs is 3, 798 N·s.

69



(a) Trajectory

50 100 150 200 250

Discrete-time instant

-6

-5

-4

-3

-2

-1

0

C
o

n
s
tr

a
in

t 
V

a
lu

e

Control Constraint*10
2

Excl. Zone 1 Constraint*10
-2

Excl. Zone 2 Constraint*10
-2

Excl. Zone 3 Constraint*10
-2

(b) Constraints

50 100 150 200 250

Discrete-time instant

-1.5

-1

-0.5

0

y
e

l*1
0

-3

(c) SPI tube verification

0 50 100 150 200 250

Discrete-time instant

-0.6

-0.4

-0.2

0

0.2
x
-a

x
is

 C
o

n
tr

o
l 
[N

]

0 50 100 150 200 250

Discrete-time instant

-0.2

0

0.2

0.4

0.6

y
-a

x
is

 C
o

n
tr

o
l 
[N

]

0 50 100 150 200 250

Discrete-time instant

-1

-0.5

0

0.5

1

1.5

z
-a

x
is

 C
o

n
tr

o
l 
[N

]

Commanded Thrust Actual Thrust Min thrust magnitude limits
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Figure 3.10: Example 1: maneuver connecting initial and final elliptical NMTs
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(d) Commanded and actual thrust

Figure 3.11: Example 2: maneuver connecting initial and final elliptical NMTs
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Figure 3.12: Example 3: maneuver connecting a stationary point NMT to a closed line
segment NMT
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3.6 Fast Calculations for Virtual Net Generation

Procedure 3.7 given in Section 3.4.3 to calculate the virtual net adjacency matrix and con-
nection array is non-conservative in that it will correctly identify each pair of adjacent
nodes, i.e., Procedure 3.7 results in an adjacency matrix such that, for all n ,m ∈ [1, p],
Π(n,m) < ∞ if and only if node n is adjacent to node m. This property follows from
the fact that Procedure 3.7 determines the adjacency matrix by performing exhaustive grid-
searches over all potential state vectors Xni(ki) and Xnj(k̂j), to check the controller ref-
erence point adjacency requirement, and over all potential transfer trajectory durations, k̄,
to check the transfer trajectory adjacency requirements for each pair of nodes. While this
property is desirable, implementing Procedure 3.7 is inefficient as a large number of checks
must be carried out to determine adjacency for each pair of nodes. For example, if nodes
n and m correspond to closed NMTs, then determining the adjacency of nodes n and m
requires (kmax + 1)2 checks.

In this section, a more efficient procedure is developed to generate an adjacency matrix
and connection array. This efficiency is achieved through faster adjacency calculations that
work by checking the controller reference point requirement without an exhaustive grid
search. Furthermore, a single value for k̄ is chosen and used to check the transfer trajectory
adjacency requirement for adjacency types (A3) and (A4). The faster adjacency calcula-
tions are developed in Sections 3.6.1 and 3.6.2. Then, a revised procedure to generate the
virtual net adjacency matrix and connection array is given in Section 3.6.3. Simulations
show that this revised procedure can be used to calculate an adjacency matrix and connec-
tion array much faster than Procedure 3.7, with minor trade-offs related to the number of
pairs of adjacent nodes in the resulting virtual net.

3.6.1 Fast Calculations for Controller Reference Point Adjacency Re-
quirements

Recall the controller reference point adjacency requirement for adjacency type (A1), given
by (3.70) and repeated here for clarity:

Eρmin+α
ki,Ni

⊂ Ek̂j ,Nj
. (3.114)

All calculations developed in this section to check requirement (3.114) can also be applied
to check the controller reference point adjacency requirements for adjacency types (A2)-
(A4) with minor notational adjustments. These minor changes are described in Remark
3.21.
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In Procedure 3.4, condition (3.114) was checked, for a given ki and k̂j , by calculating

F (ki, k̂j) = max
X

(X −Xnj(k̂j))
TP (X −Xnj(k̂j)),

subject to (X −Xni(ki))
TP (X −Xni(ki)) = ρmin + α,

(3.115)

or, equivalently by

F (ki, k̂j) = (X∗(ki, k̂j)−Xnj(k̂j))
TP (X∗(ki, k̂j)−Xnj(kj)), (3.116)

whereX∗(ki, k̂j) is the maximizer to (3.115), calculated using the methods given in Section
3.6.1. Then, if

F (ki, k̂j) ≤ ρk̂j , (3.117)

the controller reference point adjacency requirement holds.
Rather than checking (3.117) for each possible pair (ki, k̂j), adjacency can be checked

more efficiently based on two facts. Firstly, trivially, note that if (3.117) holds, then

F (ki, k̂j)− ρk̂j ≤ 0. (3.118)

Secondly, the controller reference point adjacency requirement (3.114) holds for a given
pair of nodes if (3.118) holds for any possible pair (ki, k̂j). Hence, the controller reference
point adjacency requirement holds for a given pair of nodes if

G = min
ki,k̂j

[
(X∗(ki, k̂j)−Xnj(k̂j))

TP (X∗(ki, k̂j)−Xnj(kj))− ρk̂j
]
≤ 0, (3.119)

where the minimization is carried out over the appropriate ranges of ki and k̂j , e.g., if the
origin NMT is closed, ki ∈ Z[0,kmax], and if the destination NMT is open, k̂j ∈ Z

[0,k
N̄j
max]

.

Because ki and k̂j are discrete variables, the solution to (3.119) can be obtained by
exhaustive grid search, similar to the methods used in Procedure 3.7. To facilitate faster
calculations, problem (3.119) is reformulated in continuous-time by replacing the discrete-
time variables ki and k̂j with continuous variables, ti and t̂j:

Gc = min
ti,t̂j

[
(X∗(ti, t̂j)−Xnj(t̂j))

TP (X∗(ti, t̂j)−Xnj(tj))− ρt̂j
]
≤ 0, (3.120)

where ti and t̂j are related to ki and k̂j through the discrete-time update period, ∆T , i.e.,
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ti = ∆Tki, and t̂j = ∆T k̂j , and the vectors Xnj(t̂j) and X∗(ti, t̂j) are defined as follows:

Xnj(t̂j) = exp(Act̂j)X0j, (3.121)

Xni(ti) = exp(Acti)X0i, (3.122)

where X0(·) is the initial condition for NMT N(·), and

X∗(ti, t̂j) = Xnj(t̂j) + λ∗r(ti, t̂j), (3.123)

where
r(ti, t̂j) = Xni(ti)−Xnj(t̂j), (3.124)

and

λ∗ = 1 +

√
ρmin + α

r(ti, t̂j)TPr(ti, t̂j)
. (3.125)

Note that the expressions for X∗, r and λ∗ in (3.123)-(3.125) are equivalent to the expres-
sions (3.80), (3.85-3.86) developed in Section 3.6.1, with the discrete-variables ki and k̂j
replaced with the continuous variables ti and t̂j .

The advantage of using (3.120), rather than (3.119) directly, to check the controller
reference point adjacency requirement is that, if, for each t̂j , the scale factor ρt̂j is approxi-
mated by a quadratic curve-fit through points in the discrete set of scale factors ρk̂j , then the
objective function [·] in (3.120) is twice continuously differentiable in ti and t̂j , and there-
fore local minima can be obtained via a Newton-type iteration. This iterative technique to
obtaining local minima is described in Appendix D. While this Newton-type iteration is
not guaranteed to find the global minimum, simulations show that if the iteration is started
from a few different initial conditions (ti, t̂j), the global minimum Gc in (3.120) can be
obtained in most cases.

After the global minimum Gc in (3.120) is obtained, the requirement (3.119) can be
checked by converting the continuous time variables (ti and t̂j) corresponding to the global
minimum Gc to the nearest discrete-time instants, i.e., ki = round(ti/∆T ) and k̂j =

round(t̂j,∆T ), where the function round(·) rounds the argument to the nearest integer,
and checking (3.119) using these values.

The preceding discussion is summarized in Procedure 3.8, which is used to check the
controller reference point requirements for a given pair of nodes corresponding to origin
NMT Ni and destination NMT Nj .
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Procedure 3.8 [Fast check for controller reference point adjacency requirement]
Inputs: Origin NMT information: Ni, and kNi

max,
Destination NMT information: Nj , k

Nj
max, and ρk, k ∈ Z[0,kmax],

Discrete-time update period: ∆T ,
Adjacency parameter: α,
Scale factor for smallest SPI set: ρmin.

Outputs: Determination of whether the controller reference point adjacency
requirement holds,
If the controller reference point adjacency requirement does hold:
parameters k∗i , k̂∗j .

1. Calculate the continuous-time “length” of each NMT:

Li = kNi
max∆T, Lj = kNj

max∆T, (3.126)

2. Specify three initial guesses for (ti, t̂j):

(ti, t̂j)1 = (0, 0), (ti, t̂j)2 =
(
Li

3
,
Lj

3

)
, (ti, t̂j)3 =

(
2Li

3
,

2Lj

3

)
(3.127)

3. Starting from each initial guess (ti, t̂j)l, l = 1, 2, 3, calculate a local minimum

Gl
c = min

ti,t̂j

[
(X∗(ti, t̂j)−Xnj(t̂j))

TP (X∗(ti, t̂j)−Xnj(tj))− ρt̂j
]
, (3.128)

using the Newton-type iteration described in Appendix D.

4. Define
l∗ = argmin

l=1,2,3

{Gl
c}, (3.129)

and
(t∗i , t̂

∗
j) = (ti, t̂j)l∗ , (3.130)

and calculate
k∗i = round(t∗i /∆T ), k̂∗j = round(t̂∗j/∆T ). (3.131)

5. Calculate

G = (X∗(k∗i , k̂
∗
j )−Xnj(k̂

∗
j ))

TP (X∗(k∗i , k̂
∗
j )−Xnj(k

∗
j ))− ρk̂∗j , (3.132)

where X∗(k∗i , k̂
∗
j ) is given by (3.86).
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6. If G ≤ 0, then the controller reference point adjacency requirement holds.

7. If G > 0, then the controller reference point adjacency requirement does not hold.

End Procedure.

Remark 3.21. The following remarks provide a description of certain steps in Procedure

3.8, and a description of notational changes needed for different adjacency types, (A1)-

(A4).

• In step 2, the three initial guesses used to initiate the Newton-type iteration were

selected because they yielded good performance in simulations, i.e., in most cases,

these three initial guesses were sufficient to obtain the global minimum of the objec-

tive function. Different and/or more/less initial guesses may be selected if desired.

Choosing more initial guesses may improve accuracy at the cost of computation time.

• Steps 4 and 5 are included to ensure no “false positives.” In certain cases, the mini-

mum Gc calculated using continuous-time variables may be non-negative, while the

minimum G calculated using discrete-time variables is positive.

• Regarding notation, if the origin NMT is closed, i.e., adjacency types (A1) and (A3),

then kNi
max = kmax. If the origin NMT is open, i.e., adjacency types (A2) and (A4),

then Ni is replaced with N̄i. Equivalent notational adjustments are made depending

on whether the destination NMT is closed or open.

3.6.2 Fast Calculations for Transfer Trajectory Adjacency Require-
ments

Recall that the transfer trajectory adjacency requirement for adjacency type (A3) is given
by (3.75), repeated here for clarity,

RX(k̄, Eρmin+α
ki,Ni

, Xnj(k̂j), W) ⊂ Eρmin+α

kj ,N̄j
. (3.133)

Given values for ki, k̂j , and k̄, requirement (3.133) can be checked using Procedure 3.5. To
reduce the number of calculations required to form the adjacency matrix and connection
array, rather than checking requirement (3.133) for each possible pair (ki, k̂j) and each
possible value for k̄ (as is done using Procedure 3.7), requirement (3.133) is only checked
once, for a single set of values k̄, ki and k̂j . These values are selected in steps 1-3 of
Procedure 3.9 below.
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Procedure 3.9: [Fast check for transfer trajectory adjacency requirement]
Inputs: Origin NMT information: Ni and kmax, or N̄i and kN̄i

max

Destination NMT information: N̄j , k
N̄j
max, and ρk, k ∈ Z

[0,k
N̄j
max]

Destination node information: kj and Xnj(kj),
Output parameters from Procedure 3.8: k∗i , k̂∗j ,
Adjacency parameter: α,
Scale factor for smallest SPI set: ρmin.

Outputs: Determination of whether the transfer trajectory adjacency requirement holds,
If the transfer trajectory adjacency requirement does hold:
parameters k∗i , k̂minj .

1. Given k∗i , use a backtracking line search starting from k̂j = k̂∗j to find the smallest
value of k̂j for which G ≤ 0, where G is given by (3.132). Denote this minimal k̂j
as k̂minj .

2. If k̂minj > kj , conclude that the transfer trajectory adjacency requirement does not
hold and end procedure.

3. Set
k̄ = kj − k̂minj , (3.134)

4. Using Procedure 3.5 with inputs of ki = k∗i , Xni(ki) = Xni(k
∗
i ), k̂j = k̂minj ,

Xnj(k̂j) = Xnj(k̂
min
j ), ρk̂j = ρk̂min

j
, kj , Xnj(kj), and k̄ = kj − k̂minj , determine

whether the transfer trajectory adjacency requirement holds.

End Procedure.

Remark 3.22. The following remarks provide a description of certain steps in Procedure

3.9.

• In step 1, the calculation of k̂minj estimates the “earliest” state vector along the des-

tination NMT for which the controller reference point adjacency requirement holds.

This state vector is the “earliest” state vector that can be used as the initial con-

troller reference point for a transfer. The calculation of k̂minj is beneficial because,

since the closed-loop system is ISS, the longer the controller reference point remains

along the destination NMT, the closer the spacecraft will converge to the tube defined

by ρmin. Therefore, choosing the smallest possible k̂j as the initial controller refer-

ence point for a transfer maximizes the chances that the transfer trajectory adjacency

requirement will hold.
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• In step 2, if k̂minj > kj , then it is impossible to choose any state vector that precedes

the destination node along the destination NMT as the initial controller reference

point for the transfer. In this case, it is unlikely that the transfer trajectory will

approach the destination node (although exceptions do occur, e.g., if Xni(ki) is very

close to Xnj(kj)).

• In step 3, the implicit assumption is made that if the transfer trajectory requirement

holds for any k̄, then it will hold at k̄ = kj − k̂minj . This assumption is reasonable; it

states that the closed-loop state trajectory will be “closest” to the destination node

Xnj(kj) at the time instant when the controller reference point is also Xnj(kj). Note

that with the choice of k̄ = kj − k̂minj , the parameter g(k̄, k̂minj , kj) in Step 1 of

Procedure 3.5 is equal to 0, slightly simplifying the calculation of F l(k̄, ki, k̂
min
j ).

3.6.3 Fast Calculation of Adjacency Matrix and Connection Array

Based on the fast adjacency calculations in Procedures 3.8 and 3.9, the revised procedure
to generate the virtual net adjacency matrix and connection array is given as follows:

Procedure 3.10: [Fast Calculation of adjacency matrix and connection array]
Inputs: Set of lc + lo NMTs to be included in the virtual net:M.

Set of p nodes to be included in the virtual net.
Final discrete-time index for all NMTs to be included in the virtual net:
kmax, and kN̄j

max, j ∈ [1, lo],
Initial adjacency matrix with Π(n,m) = +∞ for all n, m ∈ Z[1,p].
Initial connection array with Ξ(n,m) = [+∞,+∞] for all n, m ∈ Z[1,p].

Output: Final adjacency matrix, Π, and connection array, Ξ.

For all pairs (n,m), where n ∈ Z[1,p] is the origin node and m ∈ Z[1,p] is the desti-
nation node, do the following:

1. Determine the adjacency type, (A1)-(A4), for nodes n and m.

2. Extract parameters i and j, where i ∈ Z[1,lc+lo] corresponds to the NMT for the origin
node, n, and j ∈ Z[1,lc+lo] corresponds to the NMT for the destination node m.

3. If adjacency type is (A1), do the following:

(a) Determine whether controller reference point adjacency requirement (3.70) holds
using Procedure 3.8.
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(b) If requirement (3.70) does hold, the nodes are adjacent. Calculate a transition
cost between nodes, J using Procedure 3.6 and inputs of k∗i , Xni(k

∗
i ), k̂∗j and

Xnj(k̂
∗
j ), and:

set Π(n,m) = J,

set Ξ(n,m) = [ki, k̂
∗
j ].

4. If adjacency type is (A2), do the following:

(a) Determine whether controller reference point adjacency requirement (3.72) holds
using Procedure 3.8.

(b) If requirement (3.72) does hold, the nodes are adjacent. Calculate a transition
cost between nodes, J using Procedure 3.6 and inputs of k∗i , Xni(k

∗
i ), k̂∗j and

Xnj(k̂
∗
j ), and:

set Π(n,m) = J,

set Ξ(n,m) = [ki, k̂
∗
j ].

5. If adjacency type is (A3), do the following:

(a) Determine whether controller reference point adjacency requirement (3.74) holds
using Procedure 3.8.

(b) If requirement (3.74) does hold, determine whether the transfer trajectory adja-
cency requirement (3.75) holds using Procedure 3.9,

i. If requirement (3.75) does hold, the nodes are adjacent. Calculate a transi-
tion cost between nodes, J using Procedure 3.6 and inputs of k∗i , Xni(k

∗
i ),

k̂minj , Xnj(k̂
min
j ) and Xnj(kj), and:

set Π(n,m) = J,

set Ξ(n,m) = [ki, k̂
min
j ].

6. If adjacency type is (A4) do the following:

(a) Determine whether controller reference point adjacency requirement (3.76) holds
using Procedure 3.8.

(b) If requirement (3.76) does hold, determine whether the transfer trajectory adja-
cency requirement (3.77) holds using Procedure 3.9,

i. If requirement (3.77) does hold, the nodes are adjacent. Calculate a transi-
tion cost between nodes, J using Procedure 3.6 and inputs of k∗i , Xni(k

∗
i ),
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k̂∗j , Xnj(k̂
min
j ) and Xnj(kj), and:

set Π(n,m) = J,

set Ξ(n,m) = [ki, k̂
min
j ].

End Procedure.

Remark 3.23. Comparing Procedure 3.10 to Procedure 3.7, note that in Procedure 3.10,

all of the loops over indices ki, k̂j and k̄ have been eliminated through the use of the

fast adjacency calculations of Procedures 3.8 and 3.9. Simulations show that eliminating

these loops results in a significant reduction in the amount of time required to generate

the adjacency matrix and connection array. These simulations are detailed in Section 3.7,

along with additional comparison information between the virtual nets generated using

Procedures 3.7 and 3.10.

In the implementation of Procedure 3.10, additional assumptions and simplifications
can be made to further reduce calculations for adjacency types (A3)-(A4), i.e., cases where
the destination nodes is along an open NMT. Some of these assumptions and simplifications
are as follows:

1. If origin node n and destination node m are both along the same given open NMT,
and ki ≤ kj , i.e., the destination node is past the origin node, then node n is adjacent
to node m with zero cost of transition.

2. If it has been determined that the controller reference point requirement is not satis-
fied for an origin node n, and a destination node m along a given open NMT, then
node n is not adjacent to any node m̄ along the same open NMT.

3. If it has been determined that the controller reference point adjacency requirement is

satisfied for an origin node n, and a destination node m along a given open NMT,
by state vectors Xni(ki) and Xnj(k̂j), then the controller reference point adjacency
requirement is also satisfied by the same state vectors Xni(ki) and Xnj(k̂j) for node
n and any destination node m̄ along the same open NMT.

4. If it has been determined that an origin node n is adjacent to a destination node m
along a given open NMT by state vectors Xni(ki) and Xnj(k̂j), and with cost of
transition J , then node n is also adjacent to any destination nodes m̄ that are past
node m along the same open NMT, by the same state vectors Xni(ki) and Xnj(k̂j),
and with the same cost of transition J .
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3.6.4 Simulation Example

Figure 3.13 shows an example maneuver planned between two elliptical NMTs on a virtual
net generated using the fast calculations of Procedure 3.10. The simulation set-up, i.e.,
simulation parameters and NMTs included in the virtual net, is the same as that considered
in Section 3.5. In 3.13a, the spacecraft travels to five intermediate elliptical NMTs before
arriving at the final NMT. Constraint and SPI verification data for this maneuver is provided
in Figures 3.13b-3.13d, showing that constraints are enforced and the spacecraft remains
within the SPI tubes at all time-instants. The average control cost for this maneuver is
1, 755 N·s.
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Figure 3.13: Maneuver connecting initial and final elliptical NMTs
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3.7 Comparisons and Discussion

In this section, comparisons are made between the virtual nets calculated using the “base-
line” method of Procedure 3.7 and the “fast” method of Procedure 3.10. In the comparison,
both virtual nets are calculated using the simulation parameters and the set of 100 NMTs
described in Section 3.5. Based on this comparison, the utility of including open NMTs in
the virtual net is discussed, as well as possibilities for real-time implementation on-board a
spacecraft.

3.7.1 Comparisons

Table 3.3 contains data comparing the computation time1 required to generate the adjacency
matrix and connection array. This data illustrates the utility of using the fast calculations
of Procedure 3.10: the time required to calculate the adjacency matrix and connection
array is reduced by nearly 97% compared to the baseline method. Table 3.4 contains data
comparing the number of edges (pairs of adjacent nodes) in the corresponding virtual nets.
This data illustrates the primary drawback of using the fast calculations of Procedure 3.10:
the resulting virtual net has 14% fewer edges than the baseline case. This leads to less
flexibility in maneuver planning.

Table 3.3: Comparison of computation time required to generate virtual nets using Proce-
dure 3.7 and Procedure 3.10

Baseline Method Fast Method
(Procedure 3.7) (Procedure 3.10)

Adjacency Type Computation Time Computation Time % Reduction
A1 562.3 sec 35.1 sec 93.8%
A2 189.3 sec 75.4 sec 60.1%
A3 41, 410.7 sec 165.8 sec 99.6%
A4 28, 641.6 sec 1, 938.9 sec 93.2%

Totals 70, 803.9 sec 2, 215.2 sec 96.9%

3.7.2 Discussion

While the simulation examples in Section 3.5 demonstrated one benefit to including open
NMTs in the virtual net, i.e., the ability to plan lower-cost maneuvers in certain cases,

1All computation times are for simulations run using MATLAB r2016a and a 2.8 GHz processor
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Table 3.4: Comparison of number of edges included in the virtual nets calculated using
Procedure 3.7 and Procedure 3.10

Baseline Method Fast Method
(Procedure 3.7) (Procedure 3.10)

Adjacency Type ] of Edges ] of Edges % Reduction
A1 1, 754 1, 749 0.3%
A2 19, 058 18, 249 4.2%
A3 59, 549 45, 533 23.5%
A4 840, 524 726, 425 13.6%

Totals 920, 885 791, 956 14.0%

the data in Tables 3.3 and 3.4 illustrate several drawbacks to including open NMTs in the
virtual net. Firstly, including open NMTs results in a severe increase in computation time
(recall that adjacency type A1 involves only closed NMTs, while types A2-A4 involve open
NMTs). This sharp increase is mainly due to the need to represent each state vector along
open NMTs as a single node, leading to a much larger number of pairs of nodes to check
for adjacency. In the virtual net considered here, the addition of 16 open NMTs results
in an additional 2, 798 nodes. Secondly, in addition to the increased computation time,
the large increase in the number of nodes resulting from including open NMTs leads to
increased memory requirements for on-board storage of the virtual net data. Finally, if the
fast calculations are used to reduce computation times, most of the edges lost (compared to
the baseline case) involve open NMT nodes: of the 128, 929 edges lost, only 5 involve only
closed NMTs.

For possible implementation of the invariance-based SRMP method proposed in this
chapter, two options may be feasible. Firstly, a mix of on-line and off-line calculations
could be considered. Specifically, all calculations to generate SPI tubes and form the adja-
cency matrix and connection array could be done offline, and the adjacency matrix, connec-
tion array and initial condition for each NMT could be uploaded to the spacecraft. Then,
maneuvers between specified initial and final NMTs could be planned on-line using Dijk-
stra’s algorithm and implemented using the method described in Section 3.4.4. Simulations
show that individual maneuvers can be generated on the order of 0.1 sec. If this option is
chosen, then it may be feasible to include open NMTs in the virtual net.

Secondly, if only periodic NMTs are included in the virtual net, it may be feasible to
perform all calculations on-line. For the example set of 100 NMTs used here, generating
SPI tubes using procedures described in Section 3.3 takes approximately 120 sec (see Re-
mark 3.24), and calculation of the adjacency matrix and connection array using Procedure
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3.10 takes approximately 35 seconds. Hence, it may be feasible to perform these on-board
if the spacecraft was first maneuvered to an NMT known to be safe. The advantage of this
second method, i.e., complete on-board implementation, is that the spacecraft could au-
tonomously re-form the virtual net if additional obstacles are identified during operations.

Remark 3.24. The time required to generate SPI tubes can be sped up dramatically by

approximating d(ρk+1) with a curve-fit. This curve-fit could be generated offline and up-

loaded to the satellite. For the set of 100 NMTs used here, simulations show that doing

this can reduce the time required to generate SPI tubes from approximately 120 seconds to

less than 10 seconds. Using an approximation for d(ρk+1) has trade-offs, e.g., if the ap-

proximation is higher than the actual value, then tubes generated using the approximation

may not be positively-invariant. Further investigation into the potential use of curve-fits to

approximate d(ρk+1) is left to future work.
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CHAPTER 4

Relative Motion Planning for Satellite Inspection

In this chapter, two tools are developed for the specific bSRMP problem of satellite inspec-
tion. In this setting, sensors onboard an “inspector” spacecraft are used to collect informa-
tion about a “target” spacecraft. Firstly, an information collection model is developed that
expresses the rate of information collection as a function of both angle and distance to a
specified target point on the target satellite. Then, this information collection model is used
to develop an analytical control law based on the Local Gradient (LG) of the information
collection rate.

The LG control method developed here is related to vehicle motion planning methods
using “source seeking” or “gradient ascent/descent” techniques. In these methods, vehicles
are guided to a location corresponding to the maximum (or minimum) of a field, based on
the direction of the gradient of this field, where the direction of the gradient is obtained
through sensor measurements. These methods have been studied for application both to
single vehicles, e.g., [105] and to vehicle networks, e.g., [106, 107].

LG methods have also been applied to satellite attitude control problems involving
Control Moment Gyroscopes (CMGs) and Reaction Wheel Assemblies (RWAs). In these
methods, control inputs in the actuator null space are calculated based on the gradient
of a suitably defined objective function. For CMGs, these methods have been applied to
develop steering algorithms used to avoid singularities [108, 109], while for RWAs, LG
methods have been applied to the problem of parameter identification [110].

The LG control law developed in this chapter is based on the gradient of the informa-
tion rate. This control law can be used to drive the inspector spacecraft to the location
corresponding to the maximum information collection rate, on a path along which the rate
of information collection is strictly increasing.

This chapter is organized as follows. In Section 4.1, the dynamics model and con-
straints are described and the problem statement is defined, and in Section 4.2, the infor-
mation collection model is introduced. In Section 4.3.1, a control law based on the LG
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of the information collection rate is proposed, and closed-loop trajectories using this LG
control law are analyzed. Based on this analysis, a state feedback controller is developed
in Section 4.3.2, and a switching scheme between the LG and state-feedback controllers
is proposed to promote constraint satisfaction. Simulations are presented in Section 4.4
to illustrate the implementation of the proposed methods, and, finally several options to
improve performance are discussed in Section 4.5.

4.1 Modeling

4.1.1 Relative Motion Dynamics

The target spacecraft is assumed to be non-maneuvering, and operating on a known, nom-
inal circular orbit. The inspector spacecraft is assumed to be maneuvering near the target
spacecraft, hence the motion of the inspector spacecraft relative to the target spacecraft is
modeled by the discrete-time CW equations derived in Section 2.1.3.1 and repeated here
for clarity,

X(k + 1) = AX(k) +Bu(k), (4.1)

where the matrix A is given by (2.21), and control inputs u correspond to instantaneous
velocity change, ∆V , hence, the matrix B is given by (2.23).

4.1.2 Constraints

Constraints on control and state variables are considered. Firstly, the inspector spacecraft’s
propulsion system has limited control authority, i.e.,

u(k) ∈ U = {u | ‖u‖∞ − umax ≤ 0}, (4.2)

where umax is the maximum allowable ∆V in each direction. Secondly, the inspector
spacecraft must stay out of a spherical exclusion zone, with radius rmin, centered on the
target spacecraft, i.e., the origin of Hill’s frame. This exclusion zone ensures no collisions
between the inspector and target spacecraft, and also may account for considerations such
as thruster plume impingement and any uncertainty in the position of the target spacecraft.
The constraint on the inspector spacecraft state vector, based on this exclusion zone, is
given by

X(k) ∈ X = {X | rmin − ‖ΦX‖2 ≤ 0}, (4.3)

where the matrix Φ = [I3×3 03×3] isolates the position components from the state vector.
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4.1.3 Problem Statement

The goal of the inspector spacecraft is to obtain information about a point rT ∈ R3, located
on the surface of the target spacecraft, while satisfying constraints. Associated with the
target point rT is the unit vector n̂ ∈ R3, which is normal to the surface at point rT . Both
rT and n̂ are assumed to be static (in Hill’s frame) and known:

rT = [xT , yT , zT ]T , n̂ = [nx, ny, nz]
T . (4.4)

It is assumed that information about the target point can only be obtained when there is
an unobstructed line of sight from the sensor to the target point. Hence, the rate at which
information is obtained is necessarily a function of both distance and angle to target. These
functional dependencies are included in the information collection model developed in the
next subsection.

4.2 Information Collection Model

The rate at which information is collected is assumed to be constant over the discrete-time
update period, ∆T , and is determined by the inspector spacecraft position at the beginning
of the update period. Hence, the information dynamics are modeled in discrete-time as

I(k + 1) = I(k) + İ(X(k))∆T. (4.5)

The information rate, İ(X(k)), is dependent on both distance-to-target and angle-to-target,
i.e.,

İ(X(k)) = İd(X(k))İφ(X(k)), (4.6)

where the term İd(X(k)) describes the dependence on distance-to-target and the term
İφ(X(k)) describes the dependence on angle-to-target.

The dependence on distance-to-target is modeled with an expression based on the Shan-
non channel capacity equation [111], which gives the maximum rate at which data may
be sent over a channel with zero losses. This approach is similar to approaches used
in work related to path planning and information collection for Unmanned Aerial Vehi-
cles (UAVs) [112–114]. The distance-to-target dependence is given by

İd(X(k)) = α log2

(
1 +

β

‖d(X(k))‖2

)
, (4.7)
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where α > 0 is a constant representing channel bandwidth, and the term

β

‖d(X(k))‖2

(4.8)

represents the signal-to-noise ratio. In (4.8), β > 0 is a constant representing the target’s
visibility and ‖d(X(k))‖2 is the Euclidean distance from the inspector spacecraft to the
target point, i.e.,

d(X(k)) = [x(k)− xT , y(k)− yT , z(k)− zT ]T . (4.9)

The inspector spacecraft’s attitude control system is assumed to utilize a dedicated con-
troller that is capable of keeping the sensor pointing directly at the target at all times.
Hence, the sensor bore sight axis is represented by d(X(k)). Furthermore, it is assumed
that due to considerations such as the target satellite’s shape, and sensor limitations, use-
able information may only be obtained when the angle, φ, between d(X(k)) and n̂ is below
some prescribed value, φmax, i.e., when the inspector spacecraft position vector is within
an “information collection cone”, defined by angle φmax, with vertex at point rT and a cen-
tral axis of n̂. More specifically, the information rate’s dependence on angle-to-target is
modeled by the following expression:

İφ(X(k)) = exp

(
−φ(X(k))2

2
9
φ2
max

)
, (4.10)

where
φ(X(k)) = cos−1

(
d(X(k)) · n̂
‖d(X(k))‖2

)
. (4.11)

Note that (4.10) is a normal distribution-like function, with the standard deviation of φmax

3
,

scaled such that the maximum value is 1. Combining (4.7) and (4.10), the total rate at
which the inspector satellite collects information about the target point is given by

İ(X(k)) = İd(X(k))İφ(X(k)) = α log2

(
1 +

β

‖d(X(k))‖2

)
exp

(
−φ(X(k))2

2
9
φ2
max

)
.

(4.12)
Figure 4.1 shows the information rate plotted as a function of d and φ. For this example,
the information collection parameters α and β are taken to be α = 1.0 and β = 0.01, and
the angle φmax = 30o.

Note that the information rate (4.12) is undefined if the inspector spacecraft is exactly
at the target point because, in this case, ‖d(X(k))‖2 = 0. In practice, this is not an issue
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Figure 4.1: Information rate plotted as a function of d and φ

because the target point, which is assumed to be on the surface of the target satellite, lies
within the exclusion zone.

Remark 4.1. As mentioned previously, it is assumed that useable information can only be

obtained when the satellite is within the cone defined by φmax, rT and n̂. The inclusion

of the angular dependence term İφ(X(k)), defined in (4.10), results in İ(X(k)) taking

“large” values only when X(k) is within this cone, while outside of this cone, İ(X(k)) is

nearly 0. This approach is used, rather than an alternative approach in which İ(X(k))

is set to exactly 0 outside of the cone, because this allows the gradient of İ(X(k)) to be

defined almost everywhere, facilitating the development of the LG control law described in

Section 4.3.1.

4.3 Control Law for Safe Information Collection

In this section, a two-phase control law is developed to drive the inspection satellite on a
path along which information about the target point can be obtained, while all constraints
remain satisfied. Firstly, an analytical control law is developed based on the local gradient
of the information collection rate, i.e.,

∂İ

∂X
=

[
∂İ

∂x
,
∂İ

∂y
,
∂İ

∂z
,
∂İ

∂ẋ
,
∂İ

∂ẏ
,
∂İ

∂ż

]
. (4.13)
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where İ is given by (4.12). This control law is used to drive the inspection satellite on
a path along which the rate of information collection is strictly increasing. Secondly, a
state-feedback controller is developed to guide the inspector spacecraft to a static reference
point selected by a simple RG-like controller. This state-feedback controller is switched on
as the inspector spacecraft approaches the target point, and ensures that constraints remain
satisfied.

4.3.1 Local Gradient Control Law

In this section, a rapidly computable analytical control law is developed such that the rate
of information collection using this control law is strictly increasing, i.e., the information
collection rate satisfies İ(X(k + 1)) > İ(X(k)), or, equivalently,

İ(X(k + 1))− İ(X(k)) > 0. (4.14)

To obtain the control law satisfying (4.14), İ(k + 1) is expanded in a Taylor series about
X(k), i.e.,

İ(X(k + 1)) = İ(X(k)) +
∂İ

∂X
[X(k + 1)−X(k)] + · · · . (4.15)

For sufficiently small [X(k + 1)−X(k)], higher order terms may be neglected. Then,
substituting (4.15) into the requirement (4.14) yields

∂İ

∂X
[X(k + 1)−X(k)] > 0, (4.16)

and, substituting the CW dynamics (4.1) for X(k + 1) in (4.16) results in

∂İ

∂X
(A− I6×6)X(k) +

∂İ

∂X
Bu(k) > 0. (4.17)

Hence, a control u(k) is sought such that (4.17) is satisfied.
Choosing

u(k) =
umag
‖ū‖2

ū, (4.18)
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where umag is a positive parameter chosen by the mission designer1 and

ū =

[
∂İ

∂X
B

]T
, (4.19)

the second term on the LHS of (4.17) is guaranteed to be at least non-negative. To promote
(4.17), and to improve the approximation in (4.15) by keeping X(k + 1)−X(k) small, an
additional term is added to u(k):

u(k) =
umag
‖ū‖2

ū+ u∗, (4.20)

where u∗ is given by
u∗ = −B†(A− I6×6)X(k). (4.21)

In (4.21), B† is the pseudo-inverse of the matrix B, and is given by

B† = (BTB)−1BT . (4.22)

Hence, (4.21) minimizes
‖Bu∗ + (A− I6×6)X(k)‖2

2, (4.23)

see Remark 4.2.
The local gradient control law is now given by

u(k) =
umag
‖ū‖2

ū−B†(A− I6×6)X(k). (4.24)

The physical result of this control law is that the inspection spacecraft traverses a path
closely corresponding to the direction of the local gradient of İ at each discrete-time instant.
Therefore, along this path, the rate at which information is collected is increasing.

Remark 4.2. An alternative approach is to define u∗ in (4.20) as

u∗ = −

[
∂İ

∂X
B

]†
∂İ

∂X
(A− I6×6)X(k), (4.25)

where [
∂İ

∂X
B

]†
=

[
∂İ

∂X
B

]T [ ∂İ
∂X

B

][
∂İ

∂X
B

]T−1

, (4.26)

1Selection of the parameter umag is discussed in Section 4.3.1.2
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which gives the minimum 2-norm solution to

∂İ

∂X
Bu∗ +

∂İ

∂X
(A− I6×6)X(k) = 0. (4.27)

Simulations show that defining u∗ as in (4.21) provides better performance. This is possibly

a result of (4.21) facilitating better approximation accuracy for (4.15) by keeping X(k +

1)−X(k) small and reducing the influence of the dynamics.

4.3.1.1 Addressing Singularities in the Gradient

To ensure that the control given by (4.24) is always defined, singularities in the gradient ∂İ
∂X

are addressed and patched as follows. The first component of the information rate gradient
vector is given by

∂İ

∂x
=

9φİ
[
nx

‖d‖2 −
x−xT
‖d‖22

cos(φ)
]

φ2
max

√
1− cos2(φ)

− αβİφ(x− xT )

log(2)‖d‖3
2

(
β
‖d‖2 + 1

) . (4.28)

Note that the second and third components, ∂İ
∂y

and ∂İ
∂z

, are given by (4.28) after substituting
y, yT , and ny, or z, zT and nz for x, xT , and nx, respectively, and the final three components,
∂İ
∂ẋ

, ∂İ
∂ẏ

and ∂İ
∂ż

, are all equal to 0.
Based on (4.28), the gradient is undefined (a) when ‖d‖2 = 0, and (b) when φ = 0, π.

As discussed in Section 4.2, case (a) when ‖d‖2 = 0 is not encountered in practice as the
point where ‖d‖2 = 0 will lie within the exclusion zone. To address case (b), note that when
φ = 0, the inspector spacecraft is directly “above” the target point, i.e., along the normal
vector to the target point, n̂, and within the information collection cone. Conversely, when
φ = π, the inspector spacecraft is “below” the target point, i.e., along −n̂ and outside of
the information collection cone, see Figure 4.2. Hence, when φ has a value near 0 or π
radians, the gradient is patched using the following rules:

1. When φ < ε, where the tolerance ε is a small positive value, the gradient is set to
point directly at the target point, i.e.,

∂İ

∂X
=
[
−d(X)T , 0, 0, 0

]
. (4.29)

2. When φ ≥ π−ε, the gradient is set to point in a direction perpendicular to the current
position vector, i.e.,

∂İ

∂X
=
[
p(X)T , 0, 0, 0

]
, (4.30)
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Figure 4.2: Depiction of lines defined by φ = 0 and φ = π where the gradient is undefined

where p(X) ∈ R3 satisfies p(X) · [x, y, z]T = 0.

In simulations, setting ε = 1× 10−5 was shown to yield good performance.

4.3.1.2 Constraint Satisfaction

Using the LG control law (4.24) does not guarantee that the control and state constraints
given by (4.2) and (4.3), respectively, will be satisfied. However, simulation results using
this method show that a control of the form (4.24) with appropriate umag < umax selected
is sufficient to satisfy both the requirement given by (4.17) and the control constraint given
by (4.2). To obtain insight into the satisfaction of the state constraint (4.3), the expected
behavior of the closed loop trajectories using (4.24) is now analyzed.

As noted above, the LG control law drives the inspector spacecraft in the direction of
the gradient of the information rate, ∂İ

∂X
, at each discrete-time instant. Figure 4.3 includes

three plots showing the direction of ∂İ
∂X

for a sampling of points in the position space. Table
4.1 contains parameters used to produce the data in Figure 4.3.

Note that everywhere away from the φ = 0 line, i.e., everywhere where φ is large, a
path following the direction of ∂İ

∂X
will travel around the exclusion zone, and stay a nearly

constant distance from the origin. This behavior is best illustrated in Figures 4.3b and 4.3c
by the arrows outside of the information collection cone. Hence, a closed-loop trajectory
is expected to trace a nearly circular arc around the exclusion zone, until it approaches the
line defined by φ = 0. This expected behavior is confirmed by simulations.

95



(a) 3-d view

(b) Slice through the plane z = 0 (c) Slice through the plane x = 0

Figure 4.3: Direction of ∂İ
∂X

at sampled points in the position space
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Table 4.1: Parameters used to calculate LG direction in Figure 4.3

Parameter Symbol Value
Target Point rT [0, − 0.001, 0]T km
Target Normal Vector n̂ [0, − 1, 0]T

Information Collection Cone Angle φmax 30 deg
Tolerance for Gradient Patching Rules ε 1×10−5

At points near the φ = 0 line, the direction of the gradient begins to point toward
the exclusion zone, as illustrated in Figures 4.3b and 4.3c by the arrows near the φ = 0

line. Hence, as a closed-loop trajectory approaches the φ = 0 line, it will dive toward the
inspection target point at an increasingly steep angle, and, therefore, eventually enter the
exclusion zone. To prevent this, and ensure that the constraint (4.3) remains satisfied, a
state-feedback control law is switched on once the inspection spacecraft is near the exclu-
sion zone and target point. Specifically, the control is switched to the state-feedback control
law at the first time instant when both of the following requirements are met:

1. The inspection satellite is near the exclusion zone, i.e.,

r =
√
x2 + y2 + z2 ≤ rs, (4.31)

where rs > rmin, and

2. The inspection satellite is near the φ = 0 line, i.e.,

φ ≤ φs, (4.32)

where φs is a small, positive value.

Remark 4.3. The parameters rs and φs used to determine when the LG control law is

switched off, and the state feedback law is switched on, can be determined off-line through

numerical experiments. Additional related discussion is included in Section 4.5.

4.3.2 State-Feedback Control Law

At the first time instant when r ≤ rs and φ ≤ φs, the control law is switched to a state
feedback law given by

u(k) = KX(k) + ΓXd(k), (4.33)
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where Xd(k) is the controller reference point given by

Xd(k) = ΦT [rT + δ(k)n̂] , (4.34)

where δ(k) ∈ R≥0 and Φ = [I3×3 03×3]. In (4.33), the matrix Γ is given by

Γ =
[
Φ
(
I6×6 − Ā

)−1
B
]−1

Φ. (4.35)

Note that the controller reference point Xd(k) corresponds to a point at or directly above
the information collection point rT along the normal vector n̂, with zero velocity. Further-
more, the closed loop trajectory under control law (4.33) will asymptotically approach the
reference point Xd(k) if Xd(k) is held fixed.

To determine the controller reference point at each time instant k, the parameter δ(k) >

0 in (4.34) is determined by considering the following optimization problem over a predic-
tion horizon of T discrete-time steps:

min
δ(k)

δ(k)

subject to X(k + σ|k) ∈ X, σ ∈ Z[0,T ],

u(k + σ|k) ∈ U, σ ∈ Z[0,T−1],

δ(k + σ|k) = δ(k), σ ∈ Z[0,T−1],

δ(k) ≥ 0,

X(k|k) = X(k),

(4.36)

where X(k + σ|k) denotes the predicted state vector at time instant k + σ, when the pre-
diction is made at time instant k, and u(k+ σ|k) and δ(k+ σ|k) are similarly defined. The
state and control predictions, X(k+σ|k) and u(k+σ|k), are made using (4.1), (4.33), and
(4.34). Note that the optimization problem (4.36) is non-convex because the constraint set
X is non-convex. To quickly obtain a reasonable approximation to the exact minimizer, a
direct search is carried out over δ(k) ∈ {0, ν, 2ν, · · · }, for some small step size ν > 0,
and selecting δ(k) to be the smallest value corresponding to a feasible solution to (4.36).
Several other options are available to determine a solution to (4.36), and to determine the
controller reference point Xd; see Remark 4.4

Remark 4.4. The optimization problem (4.36) can be made convex by replacing the non-

convex state constraint (4.3) with a planar constraint. Specifically, the state-space can be

bisected with the hyperplane that is tangent to the exclusion zone boundary at the point

where the line segment, starting from rT and proceeding in the direction of n̂, intersects

this boundary. Then, the inspector spacecraft state vector can be constrained to always be
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within the half-space defined by this hyperplane that does not contain the exclusion zone.

Using this planar constraint, the problem (4.36) becomes a LP.

Another option to determine the controller reference point Xd is to obtain, through

off-line simulations, a constant value for δ in (4.34) that is sufficiently large to ensure

constraint satisfaction. Then, set δ(k) = δ for all k.

4.3.3 Combined Control Law

The complete control law proposed for satellite inspection is as follows:

1. While φ > φs or r > rs, the LG controller is used:

u(k) =
umag
‖ū‖2

ū−B†(A− I6×6)X(k), where ū =

[
∂İ

∂X
B

]T
. (4.37)

2. At the first time instant k when φ ≤ φs, and r ≤ rs, the control law switches to the
state feedback controller:

u(k) = KX(k) + ΓXd(k), where Γ =
[
Φ
(
I6×6 − Ā

)−1
B
]−1

Φ, (4.38)

with reference point Xd(k) determined at each discrete-time instant as the solution
to (4.36).

4.4 Simulations

Simulation case studies are now considered to demonstrate the utility of the proposed ap-
proach. Parameters used in simulations are shown in Table 4.2.

Three simulations are run, starting from initial state vectors given by

X1(0) = [ −0.1 0 −0.1 0 0 0 ]T ,

X2(0) = [ 0 −0.2 0 0 0 0 ]T ,

X3(0) = [ 0.1 0 0 0 −0.2ω 0 ]T ,

(4.39)

respectively. Note that X1(0) is located on the opposite side of the exclusion zone from
the information collection cone, i.e., it is along −n̂, X2(0) corresponds to an unforced
equilibrium point in the CW dynamics andX3(0) is along a closed NMT in the x−y plane.
Data from these simulations is shown in Figure 4.4. Trajectories are shown in Figure 4.4a,
and a view showing the trajectory behavior near the exclusion zone is shown in Figure 4.4b.
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Table 4.2: Parameters used in simulations

Parameter Symbol Value
Nominal orbital radius R0 6828.137 km
Mean motion ω 0.001112 rad/s
Discrete-time update period ∆T 10 s
State-error weighting matrix used QLQ diag(10, 10, 10, 0.01, 0.01, 0.01)
to obtain LQR gain matrix, K
Control weighting matrix used RLQ 106I3×3

to obtain LQR gain matrix, K
Maximum control limit umax 0.001 km/s
Exclusion zone radius rmin 0.02 km
LG control law scale factor umag 0.0004
Target point rT [0.001, 0, 0.001]T km
Target normal vector n̂ [ 1√

2
, 0, 1√

2
]T

Info. collection cone angle φmax
π
6

rad (30 deg)
Info. collection parameter α 1.0
Info. collection parameter β 0.01
Tolerance for gradient patching rules ε 1×10−5

Control switching parameter rs 0.05 km
Control switching parameter φs 5 deg
Prediction horizon used to determine T 100
state-feedback control reference point
Step size used to determine state- ν 0.001
feedback control reference point
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Note that the closed-loop trajectories starting from each of these initial conditions approach
the φ = 0 line using the LG control law given by (4.37), and then approximately follow
this line until they reach the control switching region, shown in Figure 4.4b. At this point,
the control switches to the state feedback law given by (4.38) and the trajectories approach,
but do not enter, the exclusion zone.

The information collection rate at each discrete-time instant k along the trajectories is
shown in Figure 4.4c. The time instants where the control law switches from the LG law
to the state-feedback law are shown as dashed black lines. Note that the information rate is
strictly increasing for all time instants from 0 to the switching time, as expected. The total
information obtained along these trajectories, calculated using (4.5), is shown in Figure
4.4d. The control and state variable constraints, (4.2) and (4.3), are plotted in Figures 4.4e
and 4.4f, respectively. These plots show that constraints are satisfied along the trajectories
(constraints are satisfied if they are ≤ 0).

Remark 4.5. The simulations presented here demonstrate that the proposed methodology

is capable of generating trajectories useful for information collection. As currently imple-

mented, these trajectories end with the inspector spacecraft “hovering” above the target

point. Additional rules could be developed to safely transition the spacecraft to a closed

NMT, or unforced equilibria, after a desired amount of information is collected. Develop-

ment of such rules is left to future work.
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(a) Trajectories (b) Close-up view of trajectories
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(c) Information rate

0 50 100 150 200 250

Discrete-Time Instant

0

200

400

600

800

1000

1200

1400

In
fo

rm
a
ti

o
n

Trajectory 1

Trajectory 2

Trajectory 3
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(e) Control constraint
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(f) Exclusion zone constraint

Figure 4.4: Example trajectories and associated data
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To demonstrate that the methodology is robust to choice of initial conditions, simu-
lations are run from 369 initial state vectors. Of these initial states, 342 have position
components evenly spread throughout a cube of 0.4× 0.4× 0.4 km, centered at the origin,
and velocity components all set to 0. The remaining 27 initial states are along closed ellip-
tical NMTs. The resulting trajectories are shown in Figure 4.5, and a close-up view of the
portion of these trajectories near the exclusion zone is shown in Figure 4.6. In Figure 4.6,
note that some of the trajectories exhibit a slight chatter back and forth along the φ = 0

line before reaching the control switching region. In Section 4.5, several ways to address
this undesirable behavior are discussed and compared.

Figure 4.5: Closed-loop trajectories from a variety of initial conditions
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Figure 4.6: Close-up of closed-loop trajectories near exclusion zone

4.5 Discussion

The tendency of trajectories to chatter around the φ = 0 line, illustrated in Figure 4.6, is a
result of two factors. Firstly, the gradient of the information rate points toward the φ = 0

line at all points near this line (see Figure 4.3). Secondly, the inspector spacecraft dynamics
are modeled in discrete-time. Therefore, when near the φ = 0 line, the satellite state can
transition from one side of the φ = 0 line to the other, and, hence, at the next time instant
the LG control law pushes the satellite back in the opposite direction.

Below, four options are proposed to reduce the prevalence and severity of this chatter.
These options are based on either modifying parameters in the inspector spacecraft dynam-
ics, or modifying parameters in the criteria used to switch from the LG control law to the
state-feedback control law, originally described in Section 4.3.3. Figure 4.7 illustrates the
results of using each option2. The trajectories plotted in Figures 4.7a-d are based on the
same set of initial states used to generate the trajectories in Figures 4.5 and 4.6.

Option 1: Shorten the discrete-time update period, ∆T . This option results in the inspector
spacecraft covering less distance in each discrete-time update period, thereby

2The discontinuous line-segments appearing in 4.7c-d are portions of trajectories. These trajectories only
appear discontinuous due to the axis limits selected for these figures.
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reducing chatter. Figure 4.7a shows trajectories with ∆T = 5 sec (reduced
from ∆T = 10 sec in Figure 4.6).

Option 2: Reduce the value of the LG control scale factor, umag in (4.37). This option also
results in the inspector spacecraft covering less distance in each discrete-time
update period, thereby reducing chatter. Figure 4.7b shows trajectories with
umag = 0.0002 (reduced from umag = 0.0004 in Figure 4.6).

Option 3: Increase the value of rs, used to determine when to switch from the LG control
law to the state-feedback control law. In Figure 4.6, note that the chattering
behavior occurs only when the inspector spacecraft is near the exclusion zone.
Hence, because this option results in the state-feedback law being switched on
when the inspector spacecraft is farther from the target point, the chatter is
eliminated. Figure 4.7c shows trajectories with rs = 0.1 km (increased from
rs = 0.05 km in Figure 4.6).

Option 4: Eliminate the parameter rs from the control switching criteria, i.e., switch to the
state-feedback control law at the first time-instant when φ ≤ φs. This option
also results in the state-feedback law being switching on when the inspector
spacecraft is farther from the target point (in most cases), and therefore elimi-
nates chatter. Figure 4.7d shows trajectories with switching determined based
only on angle, i.e., when φ ≤ φs.

To compare the utility of Options 1-4 for satellite inspection purposes, simulations are
run using each method from the 369 initial state vectors described in Section 4.4 and used
to generate Figures 4.5-4.7. Each trajectory is propagated for a total of 3, 000 seconds, i.e.,
over discrete-time instants k = 0, 1, · · · , kf = 3,000

∆T
. For each trajectory, the total infor-

mation obtained is calculated using (4.5) and the total control used along each trajectory is
calculated as

utot =

kf−1∑
k=0

‖u(k)‖1. (4.40)

In Table 4.3, the number of initial states with trajectories corresponding to maximum and
minimum information obtained, and maximum and minimum control used, is reported for
each option. This analysis suggests that if control usage is an important consideration,
Option 2 may be preferable. Conversely, if fast information collection is important, Option
4 may be the best solution. Further analysis to determine what values of ∆T , umag, rs and
φs result in the best performance for a given mission application is left to future work.
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(a) Trajectories using Option 1 - reduced ∆T
(b) Trajectories using Option 2 - reduced
umag

(c) Trajectories using Option 3 - increased rs
(d) Trajectories using Option 4 - angle-only
switching criteria

Figure 4.7: Simulations illustrating different options to reduce chatter

Table 4.3: Number of trajectories with Max/Min information collection and control used
for Options 1-4

Max Info Min Info Max Control Min Control
Option 1 26 0 6 0
Option 2 0 369 0 369
Option 3 3 0 20 0
Option 4 340 0 343 0
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Remark 4.6. Note that Option 1 (reducing ∆T ) may be infeasible due to computational

considerations or sensor limitations, i.e., a certain amount of time may be required to

obtain sensor readings needed to produce a state estimate.

Remark 4.7. Other options may also be useful in improving performance. For example,

modifications to other parameters, such as the angular tolerance ε used to patch singu-

larities in the gradient (described in Section 4.3.1.1), or the gain matrix K used in the

state-feedback control law may also have an effect on control used and/or information ob-

tained along trajectories. Additionally, other potential options to reduce chatter include

defining the direction of the gradient near the φ = 0 line using rules based on a hysteresis

region [115], rather than the simple rules described in Section 4.3.1.1. Investigation of

these options is left to future work.

4.6 Robustness to Disturbances

To demonstrate that the proposed methodology is robust to sufficiently small disturbances,
consider inspector spacecraft dynamics modeled by the discrete-time CW equation with
additive disturbances, i.e.,

X(k + 1) = AX(k) +Bu(k) +Bw(k), (4.41)

where w(k) ∈ R3 is the disturbance vector randomly assigned from a uniform distribution
over an infinity-norm ball centered at the origin with a radius of 0.025 m/sec. Simulations
using these dynamics show that closed-loop trajectories using the LG control law are rel-
atively unchanged. Hence, it is expected that constraints will remain satisfied when the
LG control law is used, even with small disturbances are considered. Furthermore, as ex-
pected, when disturbances are included, closed loop trajectories using the state feedback
control law converge to a small region around the controller reference point, rather than
exactly to the reference point. Hence, to ensure that the exclusion zone constraint remains
satisfied, the reference point must be chosen to be “sufficiently far” from the exclusion
zone. Simulations imply that, for the simulation parameters considered here, requiring the
controller reference pointXd(k) in (4.34) to be at least three meters outside of the exclusion
zone is sufficient to guarantee constraint satisfaction.

To illustrate the preceding points, three simulations are run from the initial states given
by (4.39), using satellite dynamics given by (4.41), simulation parameters given in Table
4.2, and the nominal control switching rules described in Section 4.3.3. Simulation data,
including trajectories, information collection data, and constraint data are shown in Figure
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4.8. Note that constraints are satisfied along all three trajectories.
To identify the impact of disturbances, the data in Figure 4.8 are compared to Figure

4.4, which contains data for trajectories starting from the same initial states, but without
disturbances. In Figures 4.8a and 4.4a, note that the beginning portions of the trajecto-
ries are nearly identical and in Figures 4.8c and 4.4c, note that the control switching times
are similar. This illustrates that small disturbances have little impact on the closed loop
trajectories when the LG control law is used. A comparison of 4.8c and 4.4c also shows
that when disturbances are included, the information collection rate exhibits greater vari-
ability after the control switching time, and, for large k, the information collection rate
with disturbances is lower than it is without disturbances. These differences are due to the
disturbances pushing the inspector spacecraft away from the specified controller reference
point, and due to this reference point being farther from the target point when disturbances
are included.
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(a) Trajectories (b) Close-up view of trajectories

0 50 100 150 200 250

Discrete-Time Instant

0

0.1

0.2

0.3

0.4

0.5

In
fo

rm
a
ti

o
n

 R
a
te

Trajectory 1

Trajectory 2

Trajectory 3

Control switching times

(c) Information rate
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(e) Control constraint
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(f) Exclusion zone constraint

Figure 4.8: Data for trajectories including bounded disturbances
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CHAPTER 5

Parameter Governors for Constrained Control
of Multi-agent Formations

In this chapter, an add-on predictive controller known as a Parameter Governor (PG) is
developed and applied to generate and maintain a formation of agents (vehicles). The PG
is applied to a nominal inner-loop system, composed of an arbitrary number of agents, and
modifies parameters, such as gains or offsets, to enforce point-wise in time constraints on
state and control variables, and to improve system performance. PGs were first proposed
in [73], and were demonstrated to be effective in enforcing constraints for a monolithic
systems. To the author’s knowledge, the work in this dissertation (and associated publica-
tions [78, 79]) represents the first application of PGs to formation control, or to control of
distributed systems in general.

As discussed briefly in Chapter 1, as an add-on control scheme, the PG is similar to
the RG and CG [63]. The PG enjoys several advantages compared to either the RG or CG.
Firstly, the PG offers additional flexibility: while the RG and CG are limited to only mak-
ing adjustments to the system reference, the PG can, depending on the types of parameters
chosen, either adjust the system reference or make modifications to the inner-loop system
dynamics through, e.g., adjustments to controller gains. Secondly, the PG developed here
offers the benefit of fast and straightforward calculations even when constraints are non-
convex. Specifically, the parameters can be confined to a finite set of small cardinality,
and updated parameter values can be chosen by running a small number of simulations and
choosing the values that minimize (or possibly simply decrease) a cost function subject to
constraints. In this way, computations remain fast and tractable even if the optimization
problem and/or the constraints are non-linear or non-convex. Figure 5.1 provides a gen-
eral schematic of a PG applied to a nominal inner-loop system composed of q individual
subsystems.

This chapter is organized as follows. Notation is summarized in Section 5.1, and in
Section 5.2, the PG is introduced and analyzed in a general setting. Section 5.2.1 defines
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Figure 5.1: A general schematic of the parameter governor

the system dynamics and control law for each agent in the formation and Section 5.2.2 de-
scribes how the overall inner-loop system is composed from a collection of agents. The PG
is defined in Section 5.2.3, including the set of admissible parameters, and the form of the
cost function used to determine parameter updates. In Sections 5.2.1-5.2.3, required prop-
erties of the system dynamics, controller and cost function are clearly stated. Section 5.2.4,
describes the method to obtain updated parameter values at each time instant, and a conver-
gence analysis is presented in Section 5.2.5, showing that, under reasonable assumptions,
the PG is guaranteed to generate and maintain the desired formation. The general frame-
work for PGs developed in Section 5.2 can be applied to a variety of distributed systems,
and is not limited to FF applications. In Section 5.3, two specific PGs, referred to as the
SSG and TSG, respectively, are proposed and applied to the specific problem of FF. Simu-
lation results demonstrate that each PG is capable of generating and maintaining formations
of spacecraft while satisfying constraints, including non-convex constraints that ensure no
collisions between spacecraft.

5.1 Notation

For convenience, a summary of the notation used in this chapter is as follows. The set of
integers is Z and the set of real numbers is R. Subsets of these sets are identified by a
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subscript, e.g., Z[0,T ] denotes the set of integers between 0 and T , and R≥0 denotes the set
of non-negative real numbers. A superscript b appended to a set Λ denotes the bth order
Cartesian product of the set, i.e., Λ3 = Λ×Λ×Λ. For a vector v, a subscript of an i, a j or
an integer denotes a subsystem, e.g., vi is the vector v for the ith subsystem. A superscript
of an i, a j, or an integer appended to a vector denotes the ith element of the vector, e.g.,
vi denotes the ith element of vector v. This notation is abused slightly in the case of a
superscript 0. In this case v0 denotes a nominal value for the vector v. The p-norm of a
vector v is denoted ‖v‖p. A superscript appended to this notation denotes the vector norm
raised to a power, i.e., ‖v‖3

2 = ‖v‖2 · ‖v‖2 · ‖v‖2. For a vector v and a square positive
definite matrix Ξ, ‖v‖2

Ξ = vTΞv.
The symbol k ∈ Z denotes the discrete-time instant. The predicted value of a variable

s, which is a function of variable r, at time instant k+σ when the prediction is made at time
instant k is denoted by s(k + σ|k, s(k), r). The shorthand s(k + σ|k) is occasionally used
for brevity when there is no ambiguity. A normed unit ball is denoted by B and, finally, the
modulo function mod(x, y) returns the remainder after division of x by y.

5.2 General Framework

5.2.1 Individual Agent Modeling

Consider a system composed of q subsystems (agents) and let S = {1, 2, · · · , q}. The
state Xi ∈ Rl of each subsystem i ∈ S evolves in discrete-time according to

Xi(k + 1) = f(k, Xi(k), ui(k)), (5.1)

where ui(k) ∈ Rm is the control for the ith subsystem. The function f is identical for each
subsystem, and is assumed to satisfy the following property:

P1) f is globally Lipschitz in k, Xi and ui.

The control objective is to guide the subsystems to reference points, denoted byXdi(k),
along nominal reference trajectories, while satisfying constraints on both state and control
variables. The nominal reference trajectory for the ith subsystem is defined by a nominal
control input of ūdi(k), and a specified initial condition, X̄0

di, and is given by

X̄di(k + 1) = f(k, X̄di(k), ūdi(k)), X̄di(0) = X̄0
di. (5.2)

The controller ui(k) in (5.1) contains both a feed-forward term, and a feedback term
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designed to track the specified reference trajectory, i.e.,

ui(k) = udi(k, pi(k)) + ufi(pi(k), Xi(k), Xdi(k, pi(k))), (5.3)

where pi(k) ∈ P ⊂ Rn is a vector of parameters that are adjusted by a PG in order to
enforce constraints and improve system performance. The PG, and the selection of pi(k),
are described in detail in Sections 5.2.3 and 5.2.4, respectively. The feedback portion of
the control law (5.3) is assumed to satisfy the following property:

P2) ufi is continuous in its arguments and ufi(pi(k), Xdi(k, pi(k)), Xdi(k, pi(k))) = 0

for all pi(k) ∈ P.

Note that the latter property simply states that if the current subsystem state is equal to the
current controller reference point, i.e., Xi(k) = Xdi(k, pi(k)), then the feedback control is
0.

In (5.3), the feed-forward term, udi(k, pi(k)), and the controller reference point,
Xdi(k, pi(k)), in the feedback term are related to the nominal reference trajectory and con-
trol inputs by

udi(k, pi(k)) = ūdi(k + θi, pi(k)), (5.4)

and
Xdi(k, pi(k)) = X̄di(k + θi, pi(k)), (5.5)

respectively, where θi ∈ Z is a constant time-shift specifying the desired phasing along the
nominal reference trajectory. In (5.3)-(5.5), the additional argument pi(k) in ufi, ūdi and
X̄di, respectively, is included to show that the parameter governor may either modify the
nominal target provided to each subsystem or modify the action of the feedback portion of
the control law.

It is assumed that the control ui(k) is stabilizing to the reference point when any ad-
justments made to the parameter do not change the reference trajectory, i.e., the following
property holds

P3) Xi(k + σ|k)→ Xdi(k + σ, pi(k + σ)) as σ →∞
whenever Xdi(k+σ, pi(k)) = Xdi(k+σ, pi(k+σ)), pi(k+σ) ∈ P for all σ ∈ Z≥0.

Note that line 2 of property (P3) holds if pi(k) is held fixed, i.e., if pi(k) = pi(k + σ) for
all σ ∈ Z≥0.

Based on (5.5) and (5.2), the controller reference point evolves according to

Xdi(k + 1, pi(k + 1)) = f(k,Xdi(k, pi(k + 1)), udi(k, pi(k + 1))). (5.6)
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5.2.2 Overall Inner-loop System

The overall inner-loop system is composed from the q subsystems and has state, control,
parameter, and reference (controller reference point) vectors corresponding to

X(k) = [X1(k)T , X2(k)T , · · · , Xq(k)T ]T ,

u(k) = [u1(k)T , u2(k)T , · · · , uq(k)T ]T ,

p(k) = [p1(k)T , p2(k)T , · · · , pq(k)T ]T ,

Xd(k, p(k)) = [Xd1(k, p1(k))T , Xd2(k, p2(k))T , · · · , Xdq(k, pq(k))T ]T ,

(5.7)

respectively. Pointwise-in-time constraints are imposed on the state, control and parameter
of the overall system as

X(k) ∈ X, u(k) ∈ U, p(k) ∈ Pq, (5.8)

where X, U and P are compact sets. The sets X and U are defined in terms of inequalities,
i.e,

X = {X | yxci(X) ≤ 0, i = 1, 2, · · · , nx}, (5.9)

and
U = {u | yuci(u) ≤ 0, i = 1, 2, · · · , nu}, (5.10)

where each constraint yxci and yuci may be a function of the overall system state or control,
respectively, e.g., yxci = yxci(X(k)), a function of the state or control of two or more sub-
systems, e.g., yxci = yxci(X1(k), X2(k)), or a function of the state or control of a single
subsystem, e.g., yxci = yxci(X1(k)). The parameter set P is defined in more detail in the next
subsection.

Because the nominal control law for each system is stabilizing to the reference point
(due to property P3), this control law can be used to generate and maintain the desired
formation without the addition of a PG, i.e., with no PG, the subsystems would converge
to reference points corresponding to X̄di(k+ θi) along their nominal reference trajectories.
However, with this simple approach, there is no guarantee that the system response would
satisfy constraints. The addition of a PG provides this guarantee of constraint satisfaction,
while requiring minimal additional calculations at each discrete-time instant.

5.2.3 The Parameter Governor

The PG is added to the nominal inner-loop system, and selects p(k) at each discrete-time
instant in order to enforce constraints and improve overall system performance. Figure 5.2
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illustrates the application of the PG to the nominal inner-loop system.
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Inner-Loop System

𝑋1 𝑘 + 1 = 𝑓 𝑘,𝑋1 𝑘 ,𝑢1 𝑘
𝑢1 𝑘 = 𝑢41 𝑘, 𝑝1 𝑘 + 𝑢61 𝑝1 𝑘 , 𝑋1 𝑘 , 𝑋41 𝑘, 𝑝1 𝑘

Subsystem 1

𝑋7 𝑘 + 1 = 𝑓 𝑘, 𝑋7 𝑘 , 𝑢7 𝑘
𝑢7 𝑘 = 𝑢47 𝑘,𝑝7 𝑘 + 𝑢67 𝑝7 𝑘 ,𝑋7 𝑘 , 𝑋47 𝑘,𝑝7 𝑘

Subsystem 2

𝑋8 𝑘 + 1 = 𝑓 𝑘,𝑋8 𝑘 ,𝑢8 𝑘

𝑢8 𝑘 = 𝑢48 𝑘,𝑝8 𝑘 + 𝑢68 𝑝8 𝑘 , 𝑋8 𝑘 , 𝑋48 𝑘, 𝑝8 𝑘

Subsystem q

...

Parameters:
𝑝 𝑘 ∈ ℙ8

Modified Reference 
Trajectories: 
𝑋4 𝑘, 𝑝 𝑘 ,
𝑢4 𝑘, 𝑝 𝑘

Figure 5.2: The parameter governor

The parameter vector pi(k) for each subsystem i ∈ S is selected from a prescribed set,

pi(k) ∈ P ⊂ Rn. (5.11)

The set P is defined as the Cartesian product of n finite sets, Pj , j = 1, 2, ..., n, i.e.,

P = P1 × P2 × · · · × Pn, (5.12)

where

Pj = {pjmin, p
j
min + ζj, pjmin + 2ζj, · · · , pjmin + αjζj} ⊂ R, j = 1, 2, · · · , n, (5.13)

and where pjmin ∈ R is the minimum value for the jth element of the parameter vector,
ζj ∈ R>0 is the step size for the jth element of the parameter vector, and αj ∈ Z≥0 defines
the number of elements in the set Pj . Note that pjmin, ζj and αj are all fixed, chosen values
(see Remark 5.1), and that the set P is compact, and has finite cardinality, i.e., has a finite
number of elements. Note also that the parameter vector for the combined system belongs
to the set Pq, i.e., p(k) ∈ Pq.

Remark 5.1. Choosing a smaller value for pjmin, a larger value for ζj or a larger value for

αj results in a larger range of parameter values. This may improve the performance of the

PG by providing additional flexibility to enforce constraints. Choosing a smaller value for

ζj facilitates satisfaction of Assumption (A5) used in the convergence analysis in Section
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5.2.5; hence, smaller ζj may enable the parameter governor to obtain convergence to the

desired formation. However, smaller ζj values may also result in longer convergence times

because, using the parameter update strategy described in Section 5.2.4, a smaller step-

size results in more adjustments that must be made before reaching the desired parameter

values.

Define the minimum and maximum parameter step sizes as

ζmin = min{ζj, j = 1, 2, · · · , n}, (5.14)

and
ζmax = max{ζj, j = 1, 2, · · · , n}. (5.15)

The parameter vector is selected at each discrete-time instant to minimize, or possibly
simply to decrease (when feasible) the following cost function over a horizon of T steps:

J(k, p(k), X(k)) = W (p(k)) + Ω(k, p(k), X(k)), (5.16)

subject to the condition that constraints are satisfied with the parameter held constant over
the prediction horizon, i.e., p(k+σ|k) = p(k) ∈ Pq and X(k+σ|k) ∈ X, u(k+σ|k) ∈ U
for σ = 0, 1, ..., T . In (5.16), the term W is the parameter cost that depends only on the
parameter value for the combined system. The term Ω is the incremental cost that may
depend on the parameter, control and state of the combined system. The functions W and
Ω can be flexibly defined by the user, subject to properties (P4)-(P7) below, based on the
desired formation (system configuration), the types of parameters included in p, and desired
performance characteristics.

The function W (p(k)) : Pq → R≥0 is constructed such that the following properties
hold:

P4) W (p) is continuous in p and bounded for p ∈ Pq,

P5) If W (p) = 0, then p corresponds to the desired overall system configuration, and,

P6) Whenever W (p) > 0, there exists p̂ ∈ Pq such that

W (p̂) ≤ W (p)− ζ i, (5.17)
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where
p = [p1 p2 · · · pi · · · pnq]T ,
p̂ = [p1 p2 · · · p̂i · · · pnq]T ,
p̂i ∈ {pi + ζ i, pi − ζ i} ∩ Pi,

(5.18)

ζ i is the step size for parameter pi, and Pi is the admissible set of values for parameter
pi. This property ensures that whenever W (p(k)) > 0, there always exists a single
parameter that may be adjusted by a single step to obtain a decrease in W . See
Remark 5.2.

Remark 5.2. Note that if the current value for an element of the parameter vector is on the

boundary of the admissible set, adjustments to this element can only be made in a single

direction, e.g., if pi = pimin, then the value p̂i = pi − ζ i is not feasible. This restriction

is captured in line 3 of (5.18) by intersecting the set of possible values for p̂i with the

admissible set: p̂i ∈ {pi + ζ i, pi − ζ i} ∩ Pi.

Designing a function W (p) to satisfy properties (P4)-(P6) is straightforward. For example,
suppose there exist desired values for each element of the parameter vector, denoted by pid,
i = 1, 2, ..., nq. Then, the function W (p) =

∑nq
i=1 |pi − pid| satisfies properties (P4)-(P6).

The function Ω(k, p(k), X(k)) : Z × Pq × Rql → R≥0 in (5.16) contains terms that
penalize deviation from the reference trajectory,

Ω(k, p(k), X(k)) =
∑q

i=1

∑T
σ=0 {Ei[Xi(k + σ|k)−Xdi(k + σ|k, pi(k))]+

Ui[ui(k + σ|k)− udi(k + σ|k, pi(k))]} ,
(5.19)

and is constructed to satisfy the following property:

P7) The functions Ei and Ui are continuous and strictly positive-definite, i.e.,

Ei(Xi −Xdi) = 0 if Xi −Xdi = 0,

Ei(Xi −Xdi) > 0 otherwise,
(5.20)

and
Ui(ui − udi) = 0 if ui − udi = 0,

Ui(ui − udi) > 0 otherwise.
(5.21)

Based on property (P7), it follows that Ω = 0 if and only if each subsystem has reached
its specified location along the reference trajectory. Designing a function Ω(k, p(k), X(k))

to satisfy property (P7) is straightforward. For example, Property (P7) can be satisfied by
taking Ei = ‖Xi−Xdi‖2

Φ and Ui = ‖ui−udi‖2
Θ, where Φ � 0 and Θ � 0 . Note that based
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on the form of the cost (5.16), i.e., J = W + Ω, and Properties (P5) and (P7), the desired
formation is attained if J = 0.

5.2.4 Parameter Update Strategy

As mentioned previously, the PG updates the parameter vector p at each discrete-time in-
stant to minimize, or possibly simply decrease, the cost J subject to constraints. There
are several possibilities for how the updated parameter values can be obtained. In this sec-
tion, a centralized update strategy is first proposed and its limitations are identified. Then,
a turn-based strategy is introduced that can be used to obtain convergence to the desired
formation at a lower computational cost.

5.2.4.1 Centralized Strategy

In a centralized parameter update strategy, the parameter vectors for each subsystem are
updated concurrently at each time instant. Such a centralized scheme determines the pa-
rameter vector p(k) by obtaining the solution to the following optimization problem at each
discrete-time instant:

min
p(k)

J(k, p(k), X(k))

subject to X(k + σ|k) ∈ X, σ ∈ Z[0,T ],

u(k + σ|k) ∈ U, σ ∈ Z[0,T−1],

p(k + σ|k) = p(k), σ ∈ Z[0,T ],

p(k) ∈ Pq,
X(k|k) = X(k).

(5.22)

By finding the exact minimizer to (5.22) at each time-step, this centralized method may
provide the fastest convergence and result in trajectories with the lowest overall cost. How-
ever, if the constraint sets X and/or U are non-convex, obtaining the exact minimizer may
be complicated. Furthermore, if the number of subsystems and/or parameters is large, the
number of adjustable variables in (5.22) becomes large, which also complicates computa-
tions. These difficulties may be partially overcome if the parameter set P is discrete, as in
this case the solution to (5.22) can be obtained by running a finite number of simulations.
However, again, if the number of subsystems and/or parameters is large, running the full
set of simulations may be time consuming and therefore not possible in real-time.

Another limitation of the centralized scheme is that the calculations must either be done
at a centralized location, or within a single subsystem, and then the solution (p(k)) must
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be shared with all other subsystems at each time instant so that each subsystem can apply
its new parameter values. This implies that the communication graph of the overall system
must be connected, i.e., there must be a communication path from the centralized location
to each subsystem, at each time instant.

To overcome these issues, while still maintaining desired convergence properties, a
“turn-based” parameter update strategy is used, based on a similar strategy for distributed
command governors introduced in [69, 70].

5.2.4.2 Turn-based strategy

In the turn-based strategy, rather than updating all subsystem parameters concurrently at
each time instant, only a subset of subsystems update their parameters at a given time
instant while all other subsystem parameters are held fixed. The turn-based strategy is
based on the following definitions:

Definition 5.1 (Neighborhood). The neighborhood of the ith subsystem, denoted by Ni,

consists of all subsystems j ∈ S for which either of the following properties hold:

a) the jth subsystem evolution is jointly constrained with the ith subsystem evolution,

i.e., there exists a constraint of the form yxc (Xi(k), Xj(k)) or yuc (ui(k), uj(k)),

b) the parameter cost function W (p(k)) in (5.16) contains one or more terms coupling

the ith and jth subsystems.

If subsystem j ∈ Ni, then subsystem j is referred to as the “neighbor” of subsystem i.
Note that j ∈ Ni ⇐⇒ i ∈ Nj .

Definition 5.2 (Turn [69]). A turn T ⊂ S is a subset of non-neighboring subsystems, i.e.,

∀i, j ∈ T such that i 6= j, it follows that j /∈ Ni. (5.23)

With these definitions, it is clear that for a given turn at time instant k, Tk, if i, j ∈ Tk
then pi(k) and pj(k) can be updated independently and concurrently while guaranteeing
that all constraints will be satisfied. This fact leads to the basic mechanism of the turn-
based strategy: at time k, update pi(k) for all i ∈ Tk and set pi(k) = pi(k − 1) for all
i /∈ Tk.

At a given time instant k, updates to each pi(k), i ∈ Tk, are determined by solving a
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local optimization problem, i.e.,

min
pi(k)

J(k, p(k), x(k))

subject to X(k + σ|k) ∈ X, σ ∈ Z[0,T ],

u(k + σ|k) ∈ U, σ ∈ Z[0,T−1],

p(k + σ|k) = p(k), σ ∈ Z[0,T ],

pi(k) ∈ Γ(pi(k − 1)),

X(k|k) = X(k),

(5.24)

where Γ(pi(k − 1)) is defined as follows: For p0
i ∈ P,

Γ(p0
i ) = {p0

i }∪
{
pi | pi = p0

i + δ, for all δ ∈ {[±ζ1, 0, ..., 0]T ,

[0, ± ζ2, 0, ..., 0]T , ..., [0, ..., 0,±ζn]T} such that pi ∈ P
}
.

(5.25)

In (5.24), the adjustable variables are restricted to pi(k) ∈ Γ(pi(k − 1)) ⊂ P. This
restriction is useful because it facilitates obtaining the solution even when X or U are non-
convex.Specifically, the solution to (5.24) can be obtained by running a maximum of 3n

simulations, where n is the number parameters that can be adjusted for a single subsys-
tem. These simulations can be carried out easily, even when non-convex constraints are
considered.

Remark 5.3. Note that if the optimization problem (5.24) is convex, e.g., the objective

function is convex in p and the sets X, U and P are convex, then it may be possible to

quickly perform the optimization over all pi(k) ∈ P using standard convex optimization

algorithms, see [116]. Such an approach could yield faster convergence, or improved

system performance compared to the method described above, when pi(k) is restricted to

pi(k) ∈ Γ(pi(k − 1)). The choice to restrict pi(k) to pi(k) ∈ Γ(pi(k − 1)) was made

because in typical formation control settings, the constraint set X is non-convex due to

collision avoidance requirements.

To implement the turn-based update strategy, the sequence of turns Tk, k ∈ Z≥0 must
be defined. As discussed in [69], in order to ensure convergence, any sequence of turns
must periodically include each subsystem of the overall system, i.e.,

∃ k′ ∈ Z>0 such that for all k > 0, ∪k′i=0 Tk+i ⊃ S = {1, 2, · · · , q}. (5.26)

A straightforward way to determine a sequence of turns satisfying (5.26) is to generate a
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sequence of turns T1, T2, · · · , Tc such that

∪ci=1 Ti ⊃ S = {1, 2, · · · , q}. (5.27)

Then, the overall sequence of turns is obtained by simply repeating the sequence
T1, T2, · · · , Tc until convergence is achieved, i.e.,

Tk = Tmod(k,c). (5.28)

A sequence T1, T2, · · · , Tc satisfying (5.27) can be obtained by solving a vertex
coloring problem, [117], for the graph G(S,E) with one node (vertex) corresponding to
each subsystem and the edge set E ⊂ S × S connecting neighboring subsystems, i.e.,
(i, j) ∈ E if and only if j ∈ Ni. The general vertex coloring problem is stated as follows:

Definition 5.3. [Vertex Coloring Problem (VCP)] Find an assignment of colors to each

node (vertex) of G(S,E) such that, for all i, j ∈ S, if (i, j) ∈ E, then i and j have different

colors.

Several algorithms exist to obtain solutions to the VCP; some of these are discussed in
Appendix F. Note that a trivial solution to the VCP is to assign a different color to each
node.

In terms of fast response, it is desirable to determine the sequence of turns that max-
imizes the frequency with which each subsystem parameter is updated, i.e., determining
the shortest sequence of turns satisfying (5.27). Obtaining this shortest sequence involves
solving the minimal VCP:

Definition 5.4. [Minimal Vertex Coloring Problem (mVCP)] Find the minimal number of

colors that can be assigned to nodes (vertices) of G(S,E), such that, for all i, j ∈ S, if

(i, j) ∈ E, then i and j have different colors.

Remark 5.4. Note that the solution to the mVCP (commonly referred to as the “chromatic

number” of a graph) is also a solution to the VCP. The mVCP is an NP-hard problem [118].

For formations with a small number of agents, or for graphs G(S,E) with simple structures,

e.g., complete graphs or cycles, it may be possible to quickly solve the minimal vertex

coloring problem to obtain the minimal sequence of turns. In the general case, it is possible

to solve the mVCP using brute force algorithms, or to obtain approximate solutions using

heuristic-based algorithms. See Appendix F for additional discussion.

After obtaining a solution to either the VCP or the mVCP, the composition of each turn
in the repeating sequence T1, T2, · · · ,Tc, where c is the number of colors used to color
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the graph, is defined by grouping all nodes (subsystems) with the same color into a single
turn.

The turn-based parameter update method is summarized in the following procedure.
Procedure 5.1 [Turn-based Parameter Update Procedure]

Inputs: Initial state: X(0),
Nominal control for reference trajectories: ūdi(k)

Initial states for reference trajectories: X̄0
di

Constant time-shifts specifying desired relative phasing: θi
The sequence of turns: T1, T2, · · · , Tc

Initialization at time instant k = 0:

1. Obtain any feasible solution, p0 to (5.22) and set p(0) = p0,

2. Send p(0) to all subsystems,

3. For all i ∈ S, apply pi(0).

Repeat at each time instant k > 0:

4. If i ∈ Tmod(k,c)

(a) Obtain Xj(k), pj(k) for all neighbors, i.e., all j ∈ Ni

(b) Solve (5.24) to obtain pi(k).

(c) Send Xi(k) and pi(k) to all neighbors.

5. If i /∈ Tmod(k,c)

(a) Set pi(k) = pi(k − 1)

6. Apply pi(k).

End Procedure.
In the initialization steps (1-3), any feasible solution to (5.22) can be used. Such a

feasible solution could be calculated offline and sent to all subsystems in advance. In
Step (4a), the state Xj(k) is obtained by propagating the last state vector received from
subsystem j to the current time-instant, i.e., Xj(k) = Xj(k|k̃, Xj(k̃), pj(k̃)), where k̃ is
the last time instant at which the jth subsystem parameter was updated. The parameter
value pj(k) = pj(k̃) since each subsystem parameter is held fixed in between turns.

Using Procedure 5.1 to update the parameter leads to the following desirable properties:
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1. Parameter updates are distributed over time and between spacecraft, i.e., each space-
craft must only update its own parameter every c time-steps.

2. The updated parameter value can be obtained by solving (5.24) by running, at most,
3n simulations, where n is the number of parameters that can be adjusted for a single
subsystem. (Note that this can be reduced further to only 3 simulations, by only
considering changes to a single element of the parameter vector for a given turn, and
convergence properties of the parameter governor are maintained; see Remark 5.5).

3. The number of simulations, i.e., computation time, required to update the parameter
is independent of the number of subsystems. Therefore, computations do not increase
as additional subsystems are added and larger formations are considered.

4. Parameter updates are made based only on local information, i.e., information from
neighbors. This information only needs to be exchanged when one neighbor updates
its parameter. (Note that this does not necessarily imply that a subsystem is able to
communicate directly with all neighbors after it makes an update. Rather, this implies
that there must exist a communication path (possibly including other subsystems)
between any subsystem updating its parameter and all of its neighbors). In other
words, the communication graphs within each neighborhood must be connected.

In the next section, the convergence properties of Procedure 5.1 are established.

Remark 5.5. It is possible to reduce computations even further, at the possible expense

of increased convergence time. In the formulation described above, modifications to each

element of the parameter vector pi(k) are considered each time i ∈ Tmod(k,w). However, it

is possible to only consider modifications to a subset of pi(k), or even a single element of

pi(k) at a time. Specifically, (5.24) is replaced by

min
pji (k)

J(k, p(k), X(k))

subject to X(k + σ|k) ∈ X, σ ∈ Z[0,T ],

u(k + σ|k) ∈ U, σ ∈ Z[0,T−1],

p(k + σ|k) = p(k), σ ∈ Z[0,T ],

pji (k) ∈ {pji (k − 1)− ζj, pji (k − 1), pji (k − 1) + ζj} ∩ Pj,
X(k|k) = X(k),

(5.29)

where there is now only a single scalar adjustable variable, pji , and the solution to (5.29)

is obtained by running, at most, 3 simulations. Then, at the first time instant k such that

i ∈ Tmod(k,w), adjustments to p1
i are considered, i.e., j = 1 in (5.29). At the next time
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instant k such that i ∈ Tmod(k,w), j = 2, etc. This sequence continues until j = n, after

which, at the next time instant k when i ∈ Tmod(k,w), the sequence repeats, i.e., j = 1 and

adjustments to p1
i are again considered. Note that the convergence analysis presented in

the next section still holds for this revised parameter update strategy because updates to

each element of the parameter vector are still considered periodically.

5.2.5 Convergence Analysis

Define the set of all feasible states and parameters at time-instant k as follows:

D(k) = {(X0, p0) | X0 ∈ Rql, p0 ∈ Pq, X(k) = X0 : p(k + σ|k) = p0

=⇒ X(k + σ|k) ∈ X, u(k + σ|k) ∈ U, σ ∈ Z[0,T ]}.
(5.30)

Then, the set of feasible states, denoted C(k), is the projection of D(k) onto the state
coordinates in Rql. Note that because the constraint sets X and U are compact, the sets
D(k) and C(k) are also compact. Consider the following assumptions:

A1) X(0) ∈ C(0).

A2) There exists ν ∈ R[0,1) such that, for all (X0, p) ∈ D(k) and all k ∈ Z≥0,

Ω
(
k + 1, p,X(k + 1|k, p,X0)

)
≤ νΩ(k, p,X0).

A3) There exist ε > 0 and k∗ ∈ Z≥0 such that, for all k ≥ k∗, all p0 = [p0T
1 · · · p0T

q ]T ∈ Pq,
and all φ(p0) ∈ Γ(p0

1)× · · · × Γ(p0
q), the following holds:

(Xd(k, p
0) + εB, φ(p0)) ⊂ D(k).

A4) There exists ρi ≥ ζmax, Mi ≥ 0, Ni ≥ 0 and ε > 0, such that, if ‖p̂i − pi‖1 ≤ ρi,
p̂i ∈ P, then, for all X ∈

⋃
k∈Z≥0,p∈Pq

Xd(k, p) + εB, and all k sufficiently large, it

follows that∣∣Ei[Xi(k + σ|k)−Xdi(k + σ|k, p̂i)]− Ei[Xi(k + σ|k)−Xdi(k + σ|k, pi)]
∣∣ ≤Mi‖p̂i − pi‖1,∣∣Ui[ui(k + σ|k)− udi(k + σ|k, p̂i)]− Ui[ui(k + σ|k)− udi(k + σ|k, pi)]
∣∣ ≤ Ni‖p̂i − pi‖1,

(5.31)

for i ∈ S.

A5) The prediction horizon T > 0 satisfies (T + 1)(Mi +Ni) < 1 for i ∈ S.

These assumptions are reasonable, as discussed in the following comments. Assumption
(A1) ensures that the initial state is feasible. Assumption (A2) ensures that, if p is held
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constant, Ω is strictly decreasing with time. This assumption is reasonable given the con-
struction of Ω in (5.19) and the assumed stability property for the system, (P3), and is
satisfied for sufficiently long prediction horizons. Assumption (A3) ensures that, if the sys-
tem state is sufficiently close to the reference trajectory, the parameters pi can be adjusted
by at least one step, i.e., ±ζ i without causing constraint violation [recall that the sets Γ(p0

i )

are defined in (5.25)]. This assumption can be thought of as a strict steady-state feasibil-
ity condition, and it is similar to the common assumption that constraint sets contain the
origin in their interiors, e.g., Assumption (A2) in [119]. This assumption typically holds
in the case of state and control constraints on individual subsystems, e.g., control vector
magnitude limits, but may not hold when considering constraints coupling two or more
subsystems. Assumption (A4) is a locally Lipschitz type assumption on the state and con-
trol penalty functions in the cost when the system state is close to the system reference,
and is reasonable due to the construction of Ei and Ui described in Property (P7). Finally,
Assumption (A5) is needed to ensure that changes in p close to the system reference lead
to a decrease in the cost. This assumption can be satisfied through the construction of Ω, or
by decreasing the parameter step-sizes, ζ i.

In addition to the assumptions stated above, the convergence analysis relies on the fol-
lowing two results. Firstly, due to the assumed stability property of the system (P3), the
compactness of D(k) and Pq, and Assumption (A3), the following result holds:

Proposition 5.1. There exists T ∗ ∈ Z>0 such that, for (X0, p) ∈ D(k), k ∈ Z≥0, if

X(k+σ|k, p,X0) ∈ X and u(k+σ|k, p,X0) ∈ U for σ ∈ Z[0,T ∗], thenX(k+σ|k, p,X0) ∈
X and u(k + σ|k, p,X0) ∈ U for all σ > T ∗.

Proof. Suppose (X0, p) ∈ D(k), X(k + σ|k, p,X0) ∈ X and u(k + σ|k, p,X0) ∈ U for
σ ∈ Z[0,T ∗] and some T ∗ > 0. Based on Property (P3) and Assumption (A3), the desired
property, i.e., X(k + σ|k, p,X0) ∈ X and u(k + σ|k, p,X0) ∈ U for all σ > T ∗, is shown
to hold for a sufficiently large T ∗.

With p held fixed, by the compactness of D(k) and Pq and Property (P3), for any ε̄ > 0,
there exists a finite time-instant T ∗ ≥ 0 such that

X(k + σ|k, p,X0) ∈ Xd(k + σ, p) + ε̄B, for all σ ≥ T ∗. (5.32)

Hence, there exists a finite T ∗ such that (5.32) holds with ε̄ = ε, where ε is defined in
Assumption (A3). Without loss of generality, suppose this T ∗ ≥ k∗, where k∗ is defined
in Assumption (A3). Then, by Assumption (A3), (X(k + σ|k, p,X0), p) ∈ D(k + σ) for
all σ ≥ T ∗, and therefore X(k + σ|k, p,X0) ∈ X and u(k + σ|k, p,X0) ∈ U for all
σ > T ∗.
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Secondly, Proposition 5.2 establishes that the cost is non-increasing when Procedure
5.1 is used to update the parameter.

Proposition 5.2. Suppose the parameter p(k) is updated using Procedure 5.1, and the

prediction horizon satisfies T ≥ T ∗, where T ∗ is defined in Proposition 5.1. Then, the cost

(5.16) is non-increasing, i.e.,

J(k + 1, p(k + 1), X(k + 1)) ≤ J(k + 1, p(k), X(k + 1)). (5.33)

Proof. Since T ≥ T ∗, the choice p(k + 1) = p(k) is always a feasible choice (guarantees
constraint satisfaction). At time-instant k+1, parameter values pi(k+1) for each i ∈ Tk+1

are chosen in step (4b) of Procedure 5.1 as the minimizer of J(k + 1, p(k + 1), X(k + 1))

over pi(k + 1) ∈ Γ(pi(k)). Note that:

a) pi(k) ∈ Γ(pi(k)), therefore the choice pi(k + 1) = pi(k) is allowed by Procedure
5.1.

b) By the definition of a turn, only subsystem parameters that are not coupled in the
objective function J are updated at a given time-step. Therefore, a decrease in cost
resulting from a single subsystem’s parameter update cannot be negated by another
subsystem update during the same turn.

Hence, since p(k + 1) = p(k) is a feasible choice, (5.33) holds.

The following theorem summarizes the convergence properties of the PG.

Theorem 5.1. Suppose Assumptions (A1)-(A5) hold, the prediction horizon T satisfies T ≥
T ∗, where T ∗ is defined in Proposition 5.1, and p(k) is determined using Procedure 5.1.

Then, the following properties hold:

1. X(k) ∈ C(k), X(k) ∈ X, and u(k) ∈ U for all k ≥ 0,

2. Ω(k, p(k), X(k))→ 0 as k →∞,

3. ui(k)→ udi(k) as k →∞ for i = 1, 2, ..., q,

4. ei(k) = Xi(k)−Xdi(k, pi(k))→ 0 as k →∞ for i = 1, 2, ..., q,

5. There exists k̃ > 0 such that W (p(k)) = 0 for all k ≥ k̃,

6. J(k)→ 0 as k →∞.
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Proof. The proof is similar to the proofs of Theorems 2 and 3 in [73]. The main steps are
summarized here, and the detailed arguments are provided below. Property (1) is shown
to hold due to Assumption (A1), which ensures the initial state is feasible, and because
the prediction horizon, T , is sufficiently long to ensure recursive feasibility, i.e., p(k) is
always a feasible choice at time instant k + 1. Properties (2)-(4) are shown to hold by
demonstrating that, as a result of Assumption (A2) and Proposition 5.2, the total cost J
converges to a limit as k → ∞. Property (5) is shown by contradiction, i.e., assuming
that for large k, W (p(k)) > 0, and applying Assumptions (A3)-(A5) to show that when
W (p(k)) > 0 for large k, there always exists a feasible alternate parameter p̃(k) that the
PG can select to decrease the cost. Property (6) then follows directly from properties (2)
and (5). The detailed arguments based on these main ideas proceed as follows.

By Assumption (A1), there exists a p(0) such that (X(0), p(0)) ∈ D(0). The parameter
governor updates p to ensure thatX(k+σ|k, p(k), X(k)) ∈ X and u(k+σ|k, p(k), X(k)) ∈
U for σ ∈ Z[0,T ], and, by Proposition 5.1 and the statement of the theorem, T is sufficiently
large so thatX(k+σ|k, p(k), X(k)) ∈ X, u(k+σ|k, p(k), X(k)) ∈ U for all σ ∈ Z≥0. This
implies thatX(k+1) = X(k+1|k, p(k), X(k)) ∈ X, u(k+1) = u(k+1|k, p(k), X(k)) ∈
U, and a feasible choice p(k+ 1) = p(k) exists at time k+ 1. Since k is arbitrary, property
(1) holds.

To show properties (2)-(4), consider the change in the cost (5.16) over one time step
with p(k) held fixed. At time step k + 1, the cost is given by

J(k + 1, p(k), X(k + 1)) = W (p(k)) + Ω(k + 1, p(k), X(k + 1)). (5.34)

Adding and subtracting Ω(k, p(k), X(k)) to the right-hand side of (5.34) results in

J(k + 1, p(k), X(k + 1)) = W (p(k)) + Ω(k, p(k), X(k))

+Ω(k + 1, p(k), X(k + 1))− Ω(k, p(k), X(k)).
(5.35)

Using J(k, p(k), X(k)) = W (p(k)) + Ω(k, p(k), X(k)), (5.35) is re-written, yielding the
following expression relating J(k + 1, p(k), X(k + 1)) to J(k, p(k), X(k)):

J(k+1, p(k), x(k+1)) = J(k, p(k), X(k))+Ω(k+1, p(k), x(k+1))−Ω(k, p(k), X(k)).

(5.36)
By Assumption (A2), Ω(k + 1, p(k), X(k + 1)) ≤ νΩ(k,X(k), p(k)), ν ∈ [0, 1). Hence
(5.36) becomes an inequality

J(k + 1, p(k), X(k + 1)) ≤ J(k, p(k), X(k))− (1− ν)Ω(k, p(k), X(k)), (5.37)

127



and, from (5.33) in Proposition 5.2, it follows that

J(k+1, p(k+1), X(k+1)) ≤ J(k+1, p(k), X(k+1)) ≤ J(k, p(k), X(k))−(1−ν)Ω(k).

(5.38)
Because ν ∈ [0, 1) and Ω is non-negative by construction, (5.38) shows that the sequence
J(k, p(k), X(k)) is bounded and non-increasing with time, and therefore converges to a
limit. Hence, Ω(k, p(k), X(k)) → 0 as k → ∞ and Property (2) holds. From (5.19)-
(5.21), it follows that Ei(k) → 0, Ui(k) → 0, ei(k) → 0 and ui(k) → udi(k) as k → ∞.
Hence, Properties (3) and (4) hold.

As a result of Properties (3) and (4), the subsystems asymptotically approach their
specified reference points. Furthermore, since J reaches a limit and Ω → 0 as k → ∞,
this implies that W (p(k)) converges to a limit, denoted by β, as well. By the definition of
the parameter set P, and by the parameter update procedure defined in Procedure 5.1, any
adjustment toW (p(k)) is by a finite amount. Hence,W (p(k)) is a discrete-valued sequence
and therefore converges to its limit in finite time, i.e., there exists k̃ such that W (p(k)) = β

for all k ≥ k̃. The property β = 0, i.e, Property (5), is shown by contradiction.
Suppose, β > 0, i.e., for large, finite k, W (p(k)) > 0. Without loss of gener-

ality, suppose 1 ∈ Tmod(k,w), and, per (P6), an adjustment to p1
1(k) would result in a

reduced value for W . Consider a new value for p1
1(k), denoted by p̂1

1, while all other
parameter values, i.e., p2

1(k), · · · , pn1 (k), p2(k), p3(k),· · · ,pq(k), remain unchanged. Let
p̂1 = [p̂1

1, p
2
1(k), · · · , pn1 (k)]T , and p̂(k) = [p̂1, p2(k), p3(k), · · · , pq(k)]T . By Assump-

tion (A3) and Property (P6), for large k, it is possible to select p̂1 ∈ P so that

W (p̂(k)) ≤ W (p(k))− ζ1, (5.39)

where ζ1 is the parameter step-size for parameter p1
1, and system trajectories remain feasi-

ble. The difference in total cost J resulting from the change in p(k) is written as

J(k, p̂(k), X(k))− J(k, p(k), X(k)) = W (p̂(k))−W (p(k))

+ Ω(k, p̂(k), X(k))− Ω(k, p(k), X(k))

≤ −ζ1 + Ω(k, p̂(k), X(k))− Ω(k, p(k), X(k)),
(5.40)
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where Ω(k, p̂(k), X(k))− Ω(k, p(k), X(k)) is given by (5.19) as

Ω(k, p̂(k), X(k))− Ω(k, p(k), X(k)) =
∑T

σ=0 {E1[X1(k + σ|k)−Xd1(k + σ|k, p̂1)]

−E1[X1(k + σ|k)−Xd1(k + σ|k, p1)]

+U1[u1(k + σ|k)− ud1(k + σ|k, p̂1)]

−U1[u1(k + σ|k)− ud1(k + σ|k, p1)]} .
(5.41)

By Assumption (A4), there exist M1 > 0 and N1 > 0 such that for each time instant
σ = 0, 1, ..., T ,

|E1[X1(k+σ|k)−Xd1(k+σ|k, p̂1)]−E1[X1(k+σ|k)−Xd1(k+σ|k, p1)]| ≤M1‖p̂1−p1(k)‖1,
(5.42)

and

|U1[u1(k+σ|k)−ud1(k+σ|k, p̂1)]−U1[u1(k+σ|k)−ud1(k+σ|k, p1)]| ≤ N1‖p̂1−p1(k)‖1.

(5.43)
Given (5.42), (5.43) and the fact that ‖p̂1 − p1(k)‖1 = ζ1, over the entire prediction

horizon, the change in Ω due to the change in p1 is bounded by

|Ω(k, p̂(k), X(k))− Ω(k, p(k), X(k))| ≤ (T + 1)(M1 +N1)ζ1, (5.44)

and, by Assumption (A5), it follows that

|Ω(k, p̂(k), X(k))− Ω(k, p(k), X(k))| ≤ (T + 1)(M1 +N1)ζ1 < ζ1. (5.45)

Considering (5.45) and (5.40),

J(k, p̂(k), X(k))− J(k, p(k), X(k)) < 0, (5.46)

and the cost would decrease by replacing p(k) with p̂(k). This fact, along with Procedure
5.1 which ensures adjustments to p(k) are made at least every c time instants whenever
such an adjustment is feasible and leads to a decreased cost, contradicts the assumption
that W (p(k)) > 0 for large k. Therefore, there exists k̃ such that W (p(k̃)) = 0 and, due to
(5.33), W (p(k)) = 0 for all k ≥ k̃. Thus, Property (5) holds. Property (6) follows directly
from Properties (2) and (5)

Remark 5.6. Due to the state-feedback nature of the nominal controller (5.4), sufficiently

small disturbances are naturally accommodated. It is expected that bounded disturbances

may be incorporated into the convergence analysis presented above using an ISS analysis
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similar to that used for other MPC controllers, e.g., [120]. While this extension is left to

future work, simulation results in Section 5.3.6 show that two different parameter governors

based on the general framework described above are able to generate and maintain desired

formations of spacecraft even when bounded disturbances are present.

In the proof of Theorem 5.1, it is shown that J → 0 and therefore the desired formation
is attained. In this analysis, it is not required, or shown, that the parameter p(k) converges
to a limit. While not required, the property that p(k) converges to a limit in finite time
may be desirable because this implies that the parameter governor becomes inactive and no
adjustments are made for large k. This property can be shown to hold in several situations,
and/or under additional assumptions. Some of these results are provided in the corollaries
below.

Corollary 5.1. Suppose all conditions of Theorem 5.1 hold, and W (p(k)) is constructed

such that there exists a unique p̃ ∈ Pq such that W (p̃) = 0. Then, all conclusions of

Theorem 5.1 hold and there exists a k̃ such that p(k) = p̃ for all k ≥ k̃.

Proof. In this case, W (p(k)) = 0 =⇒ p(k) = p̃. Therefore, the desired property follows
directly from Property (5) in Theorem 5.1.

Corollary 5.2. Suppose all conditions of Theorem 5.1 hold, and Procedure 5.1 is modified

such that parameter adjustments are only made when they result in a reduced parameter

cost, i.e,

W (p(k + 1)) < W (p(k)), whenever p(k + 1) 6= p(k). (5.47)

Then, all conclusions of Theorem 5.1 hold and there exists a k̃ and p̃ such that p(k) = p̃

for all k ≥ k̃.

Proof. The desired result follows directly from the fact that W (p) is non-negative by con-
struction, Property (5) in Theorem 5.1 and (5.47).

The proof of the next Corollary relies on the following two propositions. Consider a
function f(x(k)) : V→W.

Proposition 5.3. Suppose the following properties hold:

1. y(k)→ x(k) as k →∞,

2. f is globally Lipschitz on V.

Then, f(y(k))→ f(x(k)) as k →∞.
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Proof. See Appendix E.2.

Proposition 5.4. Suppose the following properties hold:

1. f(x(k))→ f(y(k)) as k →∞,

2. The inverse of f(x(k)) exists for all x(k) ∈ V, and this inverse is unique and globally

Lipschitz, i.e., for all x(k) ∈ V, there exists a function f−1 : W → V such that, for

all x(k) ∈ V, f(x(k)) = w(k) ⇐⇒ f−1(w(k)) = x(k).

Then, x(k)→ y(k) as k →∞.

Proof. See Appendix E.2.

Corollary 5.3. Suppose all conditions of Theorem 5.1 hold, and the reference trajectory

Xdi satisfies the following property:

P8) for all k ∈ Z≥0, Xdi(k, pi) is invertible with respect to pi ∈ P, and this inverse is

unique and globally Lipschitz in pi.

Then, all conclusions of Theorem 5.1 hold and there exists a k̃ such that p(k) = p̃ for all

k ≥ k̃.

Proof. The desired property follows from Properties (3) and (4) from Theorem 5.1 along
with Property (P8). Consider the state error dynamics for the ith subsystem,

ei(k + 1) = Xi(k + 1)−Xdi(k + 1), (5.48)

which is re-written using (5.1) and (5.6) as

ei(k + 1) = f(k,Xi(k), ui(k))− f(k,Xdi(k, pi(k + 1)), udi(k, pi(k + 1)). (5.49)

Next, f(k,Xdi(k, pi(k)), udi(k, pi(k))) is added and subtracted to the RHS of (5.49), re-
sulting in

ei(k + 1) = f(k,Xi(k), ui(k))− f(k,Xdi(k, pi(k + 1)), udi(k, pi(k + 1)))

+f(k,Xdi(k, pi(k)), udi(k, pi(k)))− f(k,Xdi(k, pi(k)), udi(k, pi(k))).
(5.50)

From Properties (3) and (4) in Theorem 1, ei(k) = Xi(k)−Xdi(k, pi(k))→ 0 and ui(k)→
udi(k) as k → ∞. Hence, as k → ∞, (5.50)→ 0, and by Proposition 5.3, because f is
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globally Lipschitz in X and u (Property (P1)), the first and last terms on the RHS of (5.50)
cancel each other. Therefore, (5.50) yields

lim
k→∞

f(k,Xdi(k, pi(k)), udi(k, pi(k)))− f(k,Xdi(k, pi(k + 1)), udi(k, pi(k + 1))) = 0.

(5.51)
Using (5.6), (5.51) is equivalently written as

lim
k→∞

Xdi(k + 1, pi(k))−Xdi(k + 1, pi(k + 1)) = 0. (5.52)

Because pi(k), pi(k + 1) ∈ P, by Proposition 5.4 and Property (P8), (5.52) implies that

lim
k→∞

pi(k)− pi(k + 1) = 0. (5.53)

Because pi(k) ∈ P and P is a discrete-set, pi(k) is a discrete-valued sequence. Therefore
(5.53) implies that pi(k) converges to a limit, denoted p̃i, in finite time, i.e., pi(k) = p̃i for
all k ≥ k̃.

Remark 5.7. Corollary 5.1 applies, for example, to the parameter governors considered

in [73]. In Corollary 5.2, the condition (5.47) reduces the flexibility of the parameter

governor in choosing the parameter at each time instant; however, if this property holds,

then convergence can be achieved using a cost function only containing the parameter

cost, i.e., J(k) = W (p(k)). This may be desirable as it eliminates calculations required

to determine the incremental cost Ω at each time-step. The Property (P8) in Corollary 5.3

can typically be satisfied if the parameter modifies the controller reference-point and the

parameter set is properly bounded. Examples of this are the SSG and TSG PGs, discussed

in the next section.

Remark 5.8. The convergence analysis above was based on the parameter being confined

to a discrete set. As previously discussed, this is useful because even if the optimization

problem (5.24) is non-convex, a solution can be obtained quickly by running a small num-

ber of simulations. However, convergence may still be achieved even if the parameter is

allowed to vary continuously within a bounded set. A continuously varying parameter may

be beneficial as this increases the flexibility of the PG. In this case, the convergence analysis

is similar to that presented in Theorem 5.1 with the following changes:

1. Assumptions (A3) and (A4) are modified such that they hold for an arbitrarily small

but finite adjustment to the parameter values, instead of adjustments by a single

discrete step, ζ . Note that this change weakens Assumptions (A3) and (A4).
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2. The Property (5) in Theorem 5.1, i.e., W (p(k)) = 0, only holds as k → ∞, rather

than for all k ≥ k̃, and, if the parameter converges by Corollaries 5.1, 5.2, or 5.3, this

convergence also only occurs as k →∞. Note that this implies that if the parameter

is allowed to vary continuously, convergence may be slower.

5.3 Parameter Governors for Coordinated Control of Space-
craft Formations

To demonstrate implementations of the general PG framework described above, two spe-
cific PGs are proposed and applied to the problem of spacecraft FF. These PGs, referred
to as the SSG and TSG, can be used to guide an arbitrary number of spacecraft to speci-
fied NMTs in Hill’s frame, and then maintain the spacecraft at the desired phasing along
the NMTs, thereby generating and maintaining a spacecraft formation. The SSG and TSG
are added onto a nominal inner-loop system in order to enforce constraints and improve
performance. In Sections 5.3.1-5.3.2 below, this nominal inner-loop system is described,
including the dynamics for each spacecraft in formation and the nominal controller for each
satellite. Constraints on both control and state variables are also defined.

5.3.1 Nominal Inner-Loop System

The dynamics of each spacecraft (subsystem), i ∈ S = {1, 2, · · · , q}, are expressed using
the LTI discrete-time CW equations of relative motion (2.20), repeated here for clarity:

Xi(k + 1) = AXi(k) +Bui(k). (5.54)

In (5.54), the matrix A is given by (2.21), and the control input, ui, corresponds to in-
stantaneous velocity change (∆V ), hence the matrix B is given by (2.23). Note that the
subsystem dynamics (5.54) satisfy property (P1), hence (5.54) is applicable to the gen-
eral framework described above. To facilitate implementation for the TSG, described in
Section 5.3.4, it is assumed that the nominal orbital period is an integer multiple of the
discrete-time update period ∆T , i.e., (2π)/(ω∆T ) ∈ Z, where ω is the mean motion for
the nominal circular orbit.

The formations considered in this work are similar to the series of concentric passive
relative orbits described in [121]. The objective of the SSG and TSG is to place the satel-
lites onto specified closed, unforced NMTs in Hill’s frame with the correct phasing while
satisfying constraints. Such a target trajectory for the ith spacecraft in discrete-time is given
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by
X̄di(k + 1) = AX̄di(k), (5.55)

with an initial condition X̄di(0) selected such that the resulting trajectory is periodic, i.e.,
the initial condition satisfies (2.25). To achieve a prescribed position in the formation, the
nominal target for the ith spacecraft is given as

Xdi(k) = X̄di(k + θi), (5.56)

where θi ∈ Z≥0 specifies the desired phase shift along the trajectory. Each spacecraft is
controlled with a nominal inner-loop static state feedback law that tracks the prescribed
target,

ui(k) = K(Xi(k)−Xdi(k)), (5.57)

where K is gain matrix selected such that the matrix Ā = A+BK is Schur, and therefore
the dynamics for each spacecraft are asymptotically stable. Recalling that X(k) and u(k)

denote the state and control vectors for the overall system, i.e.,

X(k) = [X1(k)T , X2(k)T , · · · , Xq(k)T ]T ,

and
u(k) = [u1(k)T , u2(k)T , · · · , uq(k)T ]T ,

a schematic of the inner-loop system for the formation as a whole is shown in Figure 5.3.

𝑋(𝑘)

𝑢(𝑘)

Nominal 
Reference 

Trajectories

𝑋&' 𝑘 = 𝑋)&'(𝑘 + 𝜃')
𝑋&, 𝑘 = 𝑋)&,(𝑘 + 𝜃,)

⋯
𝑋&. 𝑘 = 𝑋)&. 𝑘 + 𝜃.

Inner-Loop System

𝑋' 𝑘 + 1 = 𝐴𝑋' 𝑘 + 𝐵𝑢' 𝑘 ,
𝑢' 𝑘 = 𝐾 𝑋' 𝑘 − 𝑋&' 𝑘

Spacecraft 1

𝑋, 𝑘 + 1 = 𝐴𝑋, 𝑘 + 𝐵𝑢, 𝑘 ,
𝑢, 𝑘 = 𝐾 𝑋, 𝑘 − 𝑋&, 𝑘

Spacecraft 2

𝑋. 𝑘 + 1 = 𝐴𝑋. 𝑘 + 𝐵𝑢. 𝑘 ,
𝑢. 𝑘 = 𝐾 𝑋. 𝑘 − 𝑋&. 𝑘

Spacecraft q

...

Figure 5.3: The inner-loop system for the formation
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5.3.2 Constraints

Constraints on state and control variables are imposed as follows. Firstly, the control for
each spacecraft is limited by an upper-bound at each time instant, i.e.,

yuci = ‖ui(k)‖2
2 − u2

max ≤ 0, i = 1, 2, · · · , q, (5.58)

where umax is the upper-bound on control. Secondly, a minimum separation distance is
enforced between each pair of spacecraft at each time instant, i.e.,

yxci = r2
min − ‖S(Xj(k)−Xl(k))‖2

2 ≤ 0, i = 1, 2, · · · , q!
2(q−2)!

, (5.59)

where j and l denote different spacecraft, i.e., j, l ∈ S, j 6= l, the matrix S is given by
S = [I3×3 03×3], and rmin is the minimum separation distance.

Remark 5.9. Given the constraints (5.58), the control constraint set U is compact as re-

quired by the general formulation of Section 5.2. Given only the constraints (5.59), the

state constraint set X is not compact. Additional state constraints can be added to make

the set X compact. Because of the state feedback nature of the nominal control law (5.57),

these constraints could be generated by reformulating the control constraint (5.58) in terms

of the state variables. Alternatively, an artificial constraint could be introduced such as

X(k)TX(k)− δ2 ≤ 0, for some large δ.

Although the control law (5.57) is capable of guiding each spacecraft to its specified
reference trajectory, and therefore generating and maintaining the desired formation, the
response may not satisfy constraints (5.58)-(5.59). Hence, to enforce these constraints, a
PG is added to the inner-loop system described above. In Sections 5.3.3 and 5.3.4, two
specific PGs are described and implemented.

5.3.3 The Scale Shift Governor

The SSG enforces constraints by modifying the nominal target provided to each spacecraft
according to

Xdi(k, gi(k)) = gi(k)X̄di(k + θi), (5.60)

where gi(k), which is the parameter adjusted by the SSG, is a scale factor that enlarges or
shrinks the nominal reference trajectory (5.56). Figure 5.4 illustrates the application of the
SSG to the nominal inner-loop system.
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𝑋 𝑘 ∈ 𝕏

𝑢 𝑘 ∈ 𝕌

Modified Reference
Trajectories
𝑋'( 𝑘, 𝑔( 𝑘
𝑋'+ 𝑘, 𝑔+ 𝑘

⋯
𝑋'- 𝑘, 𝑔- 𝑘

Nominal 
Reference 

Trajectories

𝑋'( 𝑘 = 𝑋/'((𝑘 + 𝜃()
𝑋'+ 𝑘 = 𝑋/'+(𝑘 + 𝜃+)

⋯
𝑋'- 𝑘 = 𝑋/'- 𝑘 + 𝜃-

SSG

Inner-Loop System

𝑋( 𝑘 + 1 = 𝐴𝑋( 𝑘 + 𝐵𝑢( 𝑘 ,
𝑢( 𝑘 = 𝐾 𝑋( 𝑘 − 𝑋'( 𝑘, 𝑔( 𝑘

Spacecraft 1

𝑋+ 𝑘 + 1 = 𝐴𝑋+ 𝑘 + 𝐵𝑢+ 𝑘 ,
𝑢+ 𝑘 = 𝐾 𝑋+ 𝑘 − 𝑋'+ 𝑘, 𝑔+ 𝑘

Spacecraft 2

𝑋- 𝑘 + 1 = 𝐴𝑋- 𝑘 + 𝐵𝑢- 𝑘 ,

𝑢- 𝑘 = 𝐾 𝑋- 𝑘 − 𝑋'- 𝑘, 𝑔- 𝑘

Spacecraft q

...

Figure 5.4: The Scale Shift Governor

The scale factor (parameter) gi(k) for each spacecraft is limited to a discrete set:

gi(k) ∈ PSSG = {gmin, gmin + ζ, gmin + 2ζ, · · · , gmin + αζ}, (5.61)

where gmin > 0 is the minimum possible scale factor, ζ ∈ R≥0 is the parameter step size,
and α ∈ Z>0 defines the maximum possible scale factor. Based on (5.57) and (5.60), the
inner-loop controller for each spacecraft is given by

ui(k) = K(Xi(k)−Xdi(k, gi(k))). (5.62)

Note that the control law (5.62) satisfies property (P2), and, because the matrix Ā = A +

BK is Schur, the required stability property for the inner-loop system (P3) also holds.
Defining g(k) = [g1(k)T , g2(k)T , · · · , gq(k)T ]T , the cost function used by the SSG is

given compactly as

J(k, g(k), X(k)) = Wg(g(k)) + Ω(k, g(k), X(k)), (5.63)

where

Wg(g(k)) =

q∑
i=1

|gdi − gi(k)|, (5.64)
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the parameter gdi is the desired scale factor for the ith spacecraft, and

Ω(k, g(k), X(k)) =

q∑
i=1

T∑
σ=0

(
‖Xi(k+σ|k)−Xdi(k+σ|k)‖2

Θ + ‖ui(k+σ|k)‖2
Φ

)
, (5.65)

where Θ and Φ are symmetric positive definite weighting matrices, T is the prediction
horizon, and the predicted state and control, i.e., Xi(k+ σ|k) and ui(k+ σ|k), also depend
on the same g(k) and X(k). Desired system performance, i.e., either fast convergence to
the controller reference trajectory or low control (fuel) usage, can be encouraged through
appropriate selection of the weighting matrices Θ and Φ, respectively. Note that the cost
function defined by (5.63)-(5.65) satisfies the properties (P4)-(P7).

5.3.3.1 Parameter Update Strategy

The SSG updates the parameter g(k) according to Procedure 5.1 and the turn-based strategy
described in Section 5.2.4.2. Due to the constraints (5.59) enforcing a minimum separation
distance between each pair of spacecraft in formation, the neighborhood of each spacecraft
consists of the entire formation, i.e., Ni = S for all i ∈ S, and therefore, a) each turn
consists of a single spacecraft, and b) the repeating sequence of turns used to periodically
update each spacecraft parameter is given by

T1 = {1}, T2 = {2}, · · · ,Tc = {c},where c = q. (5.66)

The initial parameter vector at k = 0, i.e., g0, is determined based on a feasible solution
to the following global optimization problem,

min
g(k)

J(k, g(k), X(k))

subject to r2
min − ‖S(Xi(k + σ|k)−Xj(k + σ|k))‖2

2 ≤ 0, i, j ∈ S, i 6= j, σ ∈ Z[0,T ],

‖ui(k + σ|k)‖2
2 − u2

max ≤ 0, i ∈ S, σ ∈ Z[0,T−1],

g(k + σ|k) = g(k), σ ∈ Z[0,T ],

g(k) ∈ PqSSG,
X(k|k) = X(k),

(5.67)
and updates to the parameter for individual spacecraft are made based on the solution to
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the following local optimization problem:

min
gi(k)

J(k, g(k), X(k))

subject to r2
min − ‖S(Xi(k + σ|k)−Xj(k + σ|k))‖2

2 ≤ 0, j ∈ S\{i}, σ ∈ Z[0,T ],

‖ui(k + σ|k)‖2
2 − u2

max ≤ 0, σ ∈ Z[0,T−1],

g(k + σ|k) = g(k), σ ∈ Z[0,T ],

gi(k) ∈ Γ(gi(k − 1)),

X(k|k) = X(k),
(5.68)

where Γ(gi(k − 1)) is defined as follows: For g0
i ∈ PSSG,

Γ(g0
i ) = {g0

i − ζ, g0
i , g

0
i + ζ} ∩ PSSG. (5.69)

The parameter update strategy for the SSG is given by the Procedure 5.2 below. Note
that Procedure 5.2 is an SSG-specific procedure, and is equivalent to Procedure 5.1 for the
general framework.
Procedure 5.2 [SSG Parameter Update Procedure]

Inputs: Initial state: X(0),
Initial states for reference trajectories: X̄0

di, i ∈ S,
Constant time-shifts specifying desired relative phasing: θi, i ∈ S,
SSG Parameter set: PSSG.

Initialization at time instant k = 0:

1. Obtain any feasible solution, g0 to (5.67) and set g(0) = g0,

2. Send g(0) to all spacecraft,

3. For all i ∈ S, apply gi(0).

Repeat at each time instant k > 0:

4. If i = mod(k, q),

(a) Obtain Xj(k), gj(k) for all spacecraft in formation, i.e., all j ∈ S

(b) Solve (5.68) to obtain gi(k).

(c) Send Xi(k) and gi(k) to all spacecraft in formation.

5. If i 6= mod(k, q),

(a) Set gi(k) = gi(k − 1)
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6. Apply gi(k).

End Procedure.

Remark 5.10. In the implementation for the SSG, because of the separation distance con-

straints coupling each pair of spacecraft in formation, only a single spacecraft updates its

parameter at each time instant (step 4). The updated parameter value, i.e., the solution to

(5.68), is obtained quickly by running, at most, 3 simulations and selecting the parameter

value gi(k) ∈ Γ(gi(k − 1)) that yields the lowest cost, subject to constraints. Note that, in

step 4c, it is assumed that the communication graph for the entire formation is connected at

every time-instant. This strong assumption can be weakened, and convergence properties

are maintained. For example, it is sufficient for each spacecraft, after updating its param-

eter value, to send this updated value and the current values for all other spacecraft in

formation (which are unchanged) only to the spacecraft that will update it’s parameter at

the next time instant. Further investigation into requirements for formation communication

architectures is left to future work.

5.3.3.2 Simulations

In this section, two simulations are presented to illustrate the implementation of the SSG to
generate and maintain a formation of 3 spacecraft. Parameters used in the simulations are
shown in Table 5.1. The parameter set for the SSG contains 50 distinct scale factors and is
given by

PSSG = {0.5, 0.6, · · · , 5.4}. (5.70)

The first simulation shows an example in which the objective of the SSG is to place the
spacecraft onto the same elliptical NMT, separated in phase by roughly 120o. The reference
trajectory for each spacecraft is given by

X̄di(k + 1) = AX̄di(k + θi), X̄di(0) = X̄0
di, (5.71)

where X̄0
di = [1, 0, 0, 0, −2ω, 0]T , for i = 1, 2, 3, and the parameters specifying the

spacecraft phasing along this reference trajectory are given by

θ1 = 16, θ2 = 0, θ3 = 33. (5.72)

The desired scale factors (parameters) for each spacecraft are gdi = 1.0 for i = 1, 2, 3.

Figure 5.5 shows the desired spacecraft formation.
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Table 5.1: Parameters used in simulations

Parameter Symbol Value
Nominal orbital radius R0 6, 728 km
Mean motion ω 0.001144 rad/s
Discrete-time update period ∆T 109.84 sec ( 1

50
of nom. orbital period)

State-error weighting matrix used QLQ diag(1, 1, 1, 0.001, 0.001, 0.001)
to obtain LQR gain matrix, K
Control weighting matrix used RLQ 108I3×3

to obtain LQR gain matrix, K
Maximum control umax 0.001 km/s
Minimum separation distance rmin 1 km
Prediction Horizon T 75 discrete-time steps
State-error weighting matrix for Θ 0.1I6×6

the incremental cost, Ω
Control weighting matrix for Φ I3×3

the incremental cost Ω
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Figure 5.5: Desired formation: single reference trajectory
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The spacecraft are initially located along a different elliptical NMT, with initial state
vectors given by

X1(0) = [ 0.5000, 0.0000, −0.8660, 0.0000, −0.0011, 0.0000]T ,

X2(0) = [−0.2679, 0.8443, 0.4640, 0.0005, 0.0006, −0.0008]T ,

X3(0) = [−0.2129, −0.9048, 0.3687, −0.0005, 0.0005, 0.0009]T ,
(5.73)

where units for position are km and units for velocity are km/s. The SSG is used to re-
position the spacecraft to the desired NMT at the appropriate phasing. Figure 5.6 demon-
strates the effectiveness of the SSG. Figure 5.6a shows that, with no SSG, two of the three
minimum separation distance constraints are violated (constraints are violated if yxci(k) > 0.
Figure 5.6b shows that, after adding the SSG, all constraints are strictly enforced. Figure
5.6c illustrates how the SSG adjusts the parameter for each spacecraft with time, and Figure
5.6d shows the total cost, J(k). Note that Wg(g(k)) = 0 for large k, and J(k) approaches
0 as k increases, hence, the desired formation is attained. Figure 5.6e shows spacecraft
trajectories, also illustrating that the desired formation is attained.

Next, a second simulation is shown in which the SSG objective is to place the spacecraft
onto three concentric elliptical NMTs, again separated in phase by roughly 120o. As in the
first example simulation, the reference trajectory X̄di and the phase parameters, θi are given
by (5.71) and (5.72), respectively. However, unlike the first simulation where the desired
scale factors (parameter) for each spacecraft was equal to 1, in this example the desired
scale factors are gd1 = 0.5, gd2 = 1.0 and gd3 = 1.5. The desired spacecraft formation is
shown in Figure 5.7.

The spacecraft are initially located at unforced equilibria along the in-track (y) axis,
with initial state vectors given by

X1(0) = [0, −6, 0, 0, 0, 0]T ,

X2(0) = [0, −8, 0, 0, 0, 0]T ,

X3(0) = [0, −10, 0, 0, 0, 0]T ,

(5.74)

where units for position are km and units for velocity are km/s. Figure 5.8a shows that,
with the SSG inactive, the control constraint for one spacecraft and one separation distance
constraint are violated, while Figure 5.8b shows that with the SSG, constraints are strictly
enforced. Figure 5.8c shows parameter updates and the parameter cost, Wg(g(k)), and
Figure 5.8d shows the total cost, J(k), illustrating that the desired formation is attained.
Finally, spacecraft trajectories are shown in Figure 5.8e.

Remark 5.11. For the simulations described in this section, using MATLAB 2016a and
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a 2.8 GHz processor, the worst-case computation time for an initial feasible solution at

k = 0 is approximately 1 minute, whereas the time required to update the parameter at

each time-instant k > 0 is approximately 0.005 seconds.
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5.3.4 The Time Shift Governor

The TSG enforces constraints by modifying the nominal target provided to each spacecraft
according to

Xdi(k, τi(k)) = X̄di(k + θi + τi(k)), (5.75)

where τi(k), which is the parameter adjusted by the TSG, is a time-shift along the nominal
reference trajectory. Whereas the SSG expanded and contracted the nominal reference
trajectory, the TSG leaves the nominal reference trajectory unchanged, and instead shifts
the controller reference-point along the nominal trajectory at each time instant. Note that
the desired formation is attained if and only if, for large k, τi(k) = τj(k) for all i, j ∈ S, see
Remark 5.12. Figure 5.9 illustrates the application of the TSG to the nominal inner-loop
system.

𝑋 𝑘 ∈ 𝕏

𝑢 𝑘 ∈ 𝕌

Modified Reference
Trajectories
𝑋'( 𝑘, 𝜏( 𝑘
𝑋'+ 𝑘, 𝜏+ 𝑘

⋯
𝑋'- 𝑘, 𝜏- 𝑘

Nominal 
Reference 

Trajectories

𝑋'( 𝑘 = 𝑋/'((𝑘 + 𝜃()
𝑋'+ 𝑘 = 𝑋/'+(𝑘 + 𝜃+)

⋯
𝑋'- 𝑘 = 𝑋/'- 𝑘 + 𝜃-

TSG

Inner-Loop System
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...

Figure 5.9: The Time Shift Governor

The allowable time-shifts for each spacecraft are limited to a single period of the nom-
inal circular orbit, i.e.,

τi(k) ∈ PTSG = {τi ∈ Z≥0 | 0 ≤ τi < N}, (5.76)

where
N =

2π

ω∆T
, (5.77)

and where ω is the mean motion of the nominal circular orbit and ∆T is the discrete-time
update period. From (5.75) and (5.76), it follows that the TSG is able to select any discrete
state vector along the nominal closed reference trajectory (X̄di) as the controller reference
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point (Xdi(k, τi(k))) at any time instant.

Remark 5.12. Unlike in the SSG case, for the TSG there does not exist a unique set of

parameters that yield the desired formation. Rather, the desired formation can be attained

with any time-shift parameter value τ̃ ∈ PTSG, as long as all spacecraft share this same

value, i.e., τi = τ̃ for all i ∈ S.

Based on (5.57) and (5.75), the inner-loop controller for each spacecraft is given by

ui(k) = K(Xi(k)−Xdi(k, τi(k))). (5.78)

Note that the control law (5.78) satisfies property (P2), and, because the matrix Ā = A +

BK is Schur, the required stability property for the inner-loop system (P3) also holds.
Defining τ(k) = [τ1(k), τ2(k), · · · , τq(k)]T , the cost function used by the TSG is

given compactly as

J(k, τ(k), X(k)) = Wτ (τ(k)) + Ω(k, τ(k), X(k)), (5.79)

where the parameter cost is given by

Wτ (τ(k)) =

q−1∑
i=1

q∑
j=i+1

|τi(k)− τj(k)|, (5.80)

and the incremental cost is given by

Ω(k, τ(k), X(k)) =

q∑
i=1

T∑
σ=0

(
‖Xi(k+σ|k)−Xdi(k+σ|k)‖2

Θ + ‖ui(k+σ|k)‖2
Φ

)
, (5.81)

where Θ and Φ are symmetric positive definite weighting matrices, T is the prediction
horizon, and the predicted state and control, i.e., Xi(k+ σ|k) and ui(k+ σ|k), also depend
on the same τ(k) and X(k). Desired system performance, i.e., either fast convergence to
the controller reference trajectory or low control (fuel) usage, can be encouraged through
appropriate selection of the weighting matrices Θ and Φ, respectively. Note that the cost
function defined by (5.79)-(5.81) satisfies properties (P4)-(P7).

Remark 5.13. The parameter cost Wτ (τ(k)) in (5.80) is the sum of the absolute values of

the difference between parameters τi for each pair of spacecraft in formation. For example,

if there are three spacecraft in formation, i.e., q = 3, then

Wτ (τ(k)) = |τ1(k)− τ2(k)|+ |τ1(k)− τ3(k)|+ |τ2(k)− τ3(k)|.
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This parameter cost is 0 if and only if all parameters τi share a common value.

5.3.4.1 Parameter Update Strategy

The TSG updates the parameter τ(k) according to Procedure 5.1 and the turn-based strategy
described in Section 5.2.4.2. Due to the constraints (5.59) enforcing a minimum separation
distance between each pair of spacecraft in formation, and because of the coupling between
spacecraft in the parameter cost (5.80), the neighborhood of each spacecraft consists of the
entire formation, i.e., Ni = S for all i ∈ S, and therefore, a) each turn consists of a
single spacecraft, and b) the repeating sequence of turns used to periodically update each
spacecraft parameter is given by

T1 = {1}, T2 = {2}, · · · ,Tc = {c}, (5.82)

where c = q.
The initial parameter vector at k = 0, i.e., τ 0, is determined based on a feasible solution

to the following global optimization problem,

min
τ(k)

J(k, τ(k), X(k))

subject to r2
min − ‖S(Xi(k + σ|k)−Xj(k + σ|k))‖2

2 ≤ 0, i, j ∈ S, i 6= j, σ ∈ Z[0,T ],

‖ui(k + σ|k)‖2
2 − u2

max ≤ 0, σ ∈ Z[0,T−1],

τ(k + σ|k) = τ(k), σ ∈ Z[0,T ],

τ(k) ∈ PqTSG,
X(k|k) = X(k),

(5.83)
and updates to the parameter for individual spacecraft are made based on the solution to
the following local optimization problem:

min
τi(k)

J(k, τ(k), X(k))

subject to r2
min − ‖S(Xi(k + σ|k)−Xj(k + σ|k))‖2

2 ≤ 0, j ∈ S\{i}, σ ∈ Z[0,T ],

‖ui(k + σ|k)‖2
2 − u2

max ≤ 0, σ ∈ Z[0,T−1],

τ(k + σ|k) = τ(k), σ ∈ Z[0,T ],

τi(k) ∈ Γ(τi(k − 1)),

X(k|k) = X(k),
(5.84)
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where Γ(τi(k − 1)) is defined as follows: For τi(k − 1) ∈ PTSG,

Γ(τi(k−1)) = {mod(τi(k−1)−1, N+1), τi(k−1), mod(τi(k−1)+1, N+1)}. (5.85)

Remark 5.14. Note that the set Γ(τi(k−1)), as defined in (5.85) using the modulo function,

is always a subset of the TSG parameter set, i.e., Γ(τi(k − 1)) ⊂ PTSG. Also, because of

the periodic nature of the reference trajectories considered, the three integer values in the

set Γ(τi(k − 1)) always correspond to controller reference points that are three successive

state vectors along the reference trajectory.

The parameter update strategy for the TSG is given by the Procedure 5.3 below. Note
that Procedure 5.3 is a TSG-specific procedure, and is equivalent to Procedure 5.1 for the
general framework.
Procedure 5.2 [TSG Parameter Update Procedure]

Inputs: Initial state: X(0),
Initial states for reference trajectories: X̄0

di, i ∈ S,
Constant time-shifts specifying desired relative phasing: θi, i ∈ S,
TSG Parameter set: PTSG,

Initialization at time instant k = 0:

1. Obtain any feasible solution, τ 0 to (5.83) and set τ(0) = τ 0,

2. Send τ(0) to all spacecraft,

3. For all i ∈ S, apply τi(0).

Repeat at each time instant k > 0:

4. If i = mod(k, q),

(a) Obtain Xj(k), τj(k) for all spacecraft in formation, i.e., all j ∈ S

(b) Solve (5.84) to obtain τi(k).

(c) Send Xi(k) and τi(k) to all spacecraft in formation.

5. If i 6= mod(k, q),

(a) Set τi(k) = τi(k − 1)

6. Apply τi(k).

End Procedure.
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Remark 5.15. In the implementation for the TSG, because of the coupling between space-

craft in the separation distance constraints and in the parameter cost W (τ(k)), only a

single spacecraft updates its parameter at each time-step (step 4). The updated parameter

value, i.e., the solution to (5.84), is obtained quickly by running 3 simulations and selecting

the parameter value τi(k) ∈ Γ(τi(k− 1)) that yields the lowest cost, subject to constraints.

Note that, in step 4c, it is assumed that the communication graph for the entire formation

is connected at every time-instant. This strong assumption can be weakened, and con-

vergence properties are maintained. For example, it is sufficient for each spacecraft, after

updating its parameter value, to send this updated value and the current values for all other

spacecraft in formation (which are unchanged) only to the spacecraft that will update it’s

parameter at the next time-instant. Further investigation into requirements for formation

communication architectures is left to future work.

5.3.4.2 Simulations

In this section, two simulations are presented to illustrate the implementation of the TSG to
generate and maintain a formation of 3 spacecraft. Parameters used in the simulations are
the same as those used in SSG simulations, and are shown in Table 5.1. Given the nominal
circular orbit and discrete-time update period in Table 5.1, the parameter set for the TSG
contains 50 elements and is given by

PTSG = {0, 1, · · · , 49}. (5.86)

The first simulation shows an example in which the objective of the TSG is to place the
spacecraft onto the same elliptical NMT, separated in phase by roughly 120o. The reference
trajectory for each spacecraft is given by

X̄di(k + 1) = AX̄di(k + θi), X̄di(0) = X̄0
di, (5.87)

where X̄0
di = [1, 0, 0, 0,−2ω, 0]T , for i = 1, 2, 3, and the parameters specifying the

desired spacecraft phasing along this reference trajectory are given by

θ1 = 16, θ2 = 0, θ3 = 33. (5.88)

The desired formation is shown in Figure 5.5.
The spacecraft are initially located at unforced equilibria along the in-track (y) axis,
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with initial state vectors given by

X1(0) = [0, −8, 0, 0, 0, 0]T ,

X2(0) = [0, −10, 0, 0, 0, 0]T ,

X3(0) = [0, −12, 0, 0, 0, 0]T ,

(5.89)

where units for position are km and units for velocity are km/s. Figure 5.10 demonstrates
the effectiveness of the TSG. Figure 5.10a shows that, with no TSG, the control constraint
for spacecraft 3 and one of the separation distance constraints are violated, while Figure
5.10b shows that, after adding the TSG, all constraints are strictly enforced. Figure 5.10c
illustrates how the TSG adjusts the parameter for each spacecraft with time, and Figure
5.10d shows the total cost, J(k). Note that Wτ (τ(k)) = 0 for large k, and that J(k)

approaches 0 as k increases, hence, the desired formation is attained. Figure 5.10e shows
spacecraft trajectories, also illustrating that the desired formation is attained.

Next, a second simulation is shown in which the TSG objective is to place the spacecraft
onto three concentric elliptical NMTs, again separated in phase by roughly 120o. The
reference trajectory for each spacecraft is given by (5.87), where

X̄0
d1 = 0.5[1, 0, 0, 0, − 2ω, 0]T ,

X̄0
d2 = [1, 0, 0, 0, − 2ω, 0]T ,

X̄0
d3 = 1.5[1, 0, 0, 0, − 2ω, 0]T ,

(5.90)

and the parameters, θi, specifying the spacecraft phasing along these reference trajectories
are given by (5.88). The desired spacecraft formation is shown in Figure 5.7.

The spacecraft are initially located along a different elliptical NMT, with initial state
vectors given by

X1(0) = [−2.6791, 8.4433, 0.000, 0.0048, 0.0061, 0.0000]T ,

X2(0) = [−2.1289, −9.0483, 0.0000, −0.0052, 0.0049, 0.0000]T ,

X3(0) = [ 5.0000, 0.0000, 0.0000, 0.0000, −0.0114, 0.0000]T ,

(5.91)

where units for position are km and units for velocity are km/s. Figure 5.11a shows that,
with the TSG inactive, the control constraint for spacecraft 3 and one of the separation dis-
tance constraints are violated, while Figure 5.11b shows that with the TSG, constraints are
strictly enforced. Figure 5.11c shows parameter updates, the parameter cost,Wτ (τ(k)), and
Figure 5.11d shows the total cost, J(k), illustrating that the desired formation is attained.
Finally, spacecraft trajectories are shown in Figure 5.11e.
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Figure 5.10: Data for TSG simulation 1
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(a) Constraints with TSG inactive
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(b) Constraints with TSG active
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Figure 5.11: Data for TSG simulation 2
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5.3.5 Applicability of Convergence Analysis

In this section, the applicability of the convergence analysis for the general framework,
i.e., Theorem 5.1 and Corollaries 5.1-5.3, to the specific cases of the SSG and TSG is
analyzed. As noted above in Sections 5.3.1-5.3.4, the system dynamics, controller and cost
function considered for the SSG and TSG satisfy the properties (P1)-(P7), discussed in
Section 5.2 for the general framework. For the convergence results of Theorem 5.1 to hold,
Assumptions (A1)-(A5) must also be satisfied.

Assumption (A1) states that the initial state is feasible. In the current implementation,
this assumption is verified in Step 1 of Procedures 5.2 and 5.3 for the SSG and TSG, respec-
tively. In future implementations, it may be possible to pre-compute (offline) sets of states
for which certain parameter values (g0 or τ 0) are known to be feasible, and preposition
the spacecraft at these locations before activating the PG to generate the desired formation.
Procedures to generate such sets of feasible states are left to future work.

Assumptions (A2), which guarantees the incremental cost is strictly decreasing with
time, and (A5), which ensures adjustments made to the parameter near the reference tra-
jectories result in a decreased cost, are satisfied by an appropriately selected prediction
horizon, T . Simulation results suggest that selecting T to be equivalent to 1.5 times the
period of the nominal circular orbit, i.e., T = 1.5 2π

ω∆T
, is sufficient for this purpose. Sim-

ulation results also suggest that this choice of prediction horizon is sufficient to satisfy
Proposition 5.1 as well.

Assumption (A3) ensures that, if the spacecraft states are sufficiently close to the ref-
erence trajectories, then the parameter values can be adjusted by at least one step without
causing constraint violation. This assumption is satisfied for both the TSG and SSG if only
control constraints are considered. If separation distance constraints coupling the space-
craft in formation are also considered, then Assumption (A3) can still be satisfied if the
desired spacecraft formation and set of admissible parameter values are such that a) the
desired formation has sufficient spacing between spacecraft, and b) the spacecraft remain
sufficiently far apart when near their respective controller reference points, Xdi(k, pi(k)),
for any admissible parameter value. Item b) (and therefore Assumption (A3)) is less restric-
tive for the SSG compared to the TSG. For example, for a formation with each spacecraft
travelling along the same reference trajectory, e.g., the formation shown in Figure 5.5, As-
sumption (A3) is not satisfied for the TSG with the parameter set defined as in (5.86), which
allows the controller reference point to be any state vector along the reference trajectory at
any time instant. This limitation can be seen in simulations. For many initial conditions
with a feasible initial solution, the TSG is able to guide the spacecraft to the specified ref-
erence trajectory, but is unable to converge, i.e., obtain the correct phasing, and therefore is
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unable to generate the desired formation. In contrast, simulations for the SSG suggest that
the SSG is able to generate the desired formation from any initial condition with a feasible
initial solution.

Assumption (A4), which is a local-Lipschitz type requirement on the penalty functions
Ei and Ui in the incremental cost, Ω, is satisfied due to the form of Ω used by the SSG
and TSG, given in (5.65) and (5.81), respectively, and the periodic nature of the reference
trajectories.

Finally, note that for both the SSG and TSG, if Assumptions (A1)-(A5) are satisfied, the
parameter is guaranteed to converge to a limit, and, therefore, the SSG and TSG become
inactive for large k. Specifically Corollary 5.1 applies for the SSG, and Corollary 5.3
applies for both the SSG and the TSG.

5.3.6 Robustness to Disturbances

To demonstrate that the SSG and TSG are robust to sufficiently small disturbances, a new
simulation is run for the SSG using the same set-up as SSG simulation 2, i.e., the desired
formations and spacecraft initial conditions are the same, and for the TSG, a simulation is
run using the same set-up as TSG simulation 1. In these new simulations, disturbances are
added at each time-step, i.e., the state of each spacecraft evolves according to

Xi(k + 1) = AXi(k) +Bui(k) +Bwi(k), (5.92)

where wi(k) ∈ R3 is the disturbance vector randomly sampled from a uniform distribution
over an infinity-norm ball centered at the origin with a radius of 0.025 m/sec.

Data for the SSG simulation with disturbances is shown in Figure 5.12. Constraints with
and without the SSG are shown in Figures 5.12a and 5.12b, respectively, demonstrating that
the SSG enforces all constraints. The parameter for each spacecraft and the parameter cost
Wg(g(t)) are shown in Figure 5.12c, demonstrating that Wg(g(t)) goes to zero, and Figure
5.12d shows that the 2-norm of the state error, ei(k) = Xi(k) − Xdi(k, gi(k))), decays to
a small value for each spacecraft, illustrating that the desired formation is attained. Space-
craft trajectories are shown in Figure 5.12e. Note that with disturbances, the spacecraft do
not asymptotically converge to their specified reference trajectories. Rather, they converge
to and then stay within a small tube centered on the reference trajectories.

Similar data for the TSG simulation with disturbances are shown in Figure 5.13.
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Figure 5.12: Data for SSG simulation with disturbances
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(b) Constraints with TSG active
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Figure 5.13: Data for TSG simulation with disturbances
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5.3.7 Combined SSG/TSG

The preceding sections have demonstrated that the SSG and TSG, individually, are capable
of generating and maintaining formations of spacecraft. However, both the SSG and TSG
have limitations when used alone, for example, as discussed in Section 5.3.5, the TSG can
become “stuck”, i.e., unable to make modifications to the parameter when all spacecraft
are travelling along the same reference trajectory. Motivated by these limitations, in this
section, a simulation is presented to demonstrate that it is possible, and in certain cases
beneficial, to combine the SSG and TSG into a single PG.

Consider three spacecraft with initial conditions given by

X1(0) = [0, −12, 0, 0, 0, 0]T ,

X2(0) = [0, −10, 0, 0, 0, 0]T ,

X3(0) = [0, −8, 0, 0, 0, 0]T ,

(5.93)

and a desired formation with all three spacecraft evenly spaced along a single elliptical
NMT, i.e., the formation shown in Figure 5.5. Figure 5.14 shows constraints with no PG
active, illustrating that two control constraints and one separation distance constraint are
violated.
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Figure 5.14: Constraints with no PG

From the initial conditions given in (5.93), there is no feasible initial solution for the
SSG, i.e., there does not exist a g(0) ∈ P3

SSG such that the optimization problem (5.67)
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is feasible. For the TSG, there is a feasible initial solution,1 however, from this initial
solution, the TSG is unable to converge, i.e., Wτ (τ(k)) does not go to 0.

The preceding paragraph has demonstrated that neither the SSG or TSG alone, as cur-
rently designed, are capable of obtaining the desired formation. However, the desired for-
mation is obtainable if the SSG and TSG are combined into a single PG, capable of adjust-
ing both scale and time-shifts applied to the reference trajectory. An initial implementation
of such a combined SSG/TSG is as follows:

1. Initial scale factors are selected such that the corresponding reference trajectories are
sufficiently far apart to satisfy the separation distance constraints. For the simulation
currently being considered, these values are chosen as g1 = 1.5, g2 = 2.5, g3 = 3.5.

2. Using these scale factors and corresponding reference trajectories, the TSG is en-
gaged, using Procedure 5.3, and the simulation is continued until Wτ (τ(k)) = 0 and
Ω(k) ≤ α, where α is some small positive value. Note that these conditions imply
that the spacecraft have obtained the desired phasing along their respective reference
trajectories, and have converged close to their current controller reference points. For
the simulation currently being considered, α = 2.5× 10−7.

3. With time-shifts τi held fixed, the SSG is then engaged, using Procedure 5.2, to
generate the desired formation.

Figure 5.15 shows an example simulation using this implementation. Figure 5.15a
shows that all constraints are strictly enforced by the combined PG. Figure 5.15b shows
how the combined PG makes adjustments first to the time-shifts τi, and then to the scale-
shifts gi, such that Wτ and Wg both converge to 0, and Figure 5.15c shows that the total
cost, calculated as J = Wτ + Wg + Ω, also goes to 0 for large k, and hence the desired
formation is obtained. Figure 5.15d shows spacecraft trajectories.

1The feasible initial solution referred to here is the first τ obtained that is feasible for (5.83), when a grid
search is performed over all τ1, τ2, τ3 ∈ PTSG.

158



0 50 100 150 200 250 300

Discrete-time instant

-1

-0.8

-0.6

-0.4

-0.2

0

C
o

n
s
tr

a
in

t 
V

a
lu

e

y
c1

u
 × 10

6

y
c2

u
 × 10

6

y
c3

u
 × 10

6

y
c1

x
 × 10

-2

y
c2

x
 × 10

-2

y
c3

x
 × 10

-2

(a) Constraints with combined PG active
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Figure 5.15: Data for combined SSG/TSG simulation
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CHAPTER 6

Conclusions and Future Work

6.1 Conclusions

This dissertation focused on the problem of constrained SRMP. Two specific cases of
SRMP were considered: bSRMP in which a single spacecraft executes maneuvers in close
proximity to obstacles or other non-maneuvering spacecraft, and FF in which multiple
spacecraft execute maneuvers simultaneously to generate and maintain a specified forma-
tion. The SRMP methods proposed in this dissertation provide several advantages com-
pared to many existing optimization or path planning techniques. Specifically, they accom-
modate non-linear and non-convex constraints, are robust to sufficiently small disturbances,
and are implemented using fast and straightforward calculations. The contributions of the
specific SRMP methods developed in this dissertation are summarized below.

Invariance-based Satellite Relative Motion Planning

A bSRMP method was developed to plan maneuvers to transition a spacecraft between
specified NMTs. This method was based on a graph search applied to a “virtual net” com-
posed of periodic (closed) and non-periodic (open) NMTs. Adjacency between NMTs in
the virtual net was determined by conditions based on SPI tubes built around each NMT.
The method was shown to enforce constraints on both control and state variables, includ-
ing maximum control limits and non-convex constraints formulated to ensure avoidance
of exclusion zones. Robustness to set-bounded disturbances was guaranteed through con-
struction of the virtual net. These disturbances were used to accommodate a minimum
control limit, similar to the minimum impulse bit constraints common to spacecraft.

Maneuvers developed using this methodology were fuel efficient by nature, i.e., they
consisted only of NMTs and transfers between them. Fuel efficiency was also promoted
through use of an adjacency matrix weighted with the control (fuel) cost of transfer be-
tween adjacent NMTs. Simulations showed that the computations required to generate
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trajectories after the virtual net was formed were minimal. These computations may be
implementable on-board a spacecraft. A method to speed up the calculations required to
form the virtual net was proposed, and shown to reduce the time required for the calcula-
tions by approximately 97%, with minor tradeoffs related to maneuver planning flexibility.

Relative Motion Planning for Satellite Inspection

A bSRMP method was developed for satellite inspection applications. In this setting, an
inspector spacecraft maneuvers to obtain information about a prescribed point on a target
spacecraft, while avoiding collisions between spacecraft. An information collection model
was developed to express the rate of information collection as a function of both distance
and angle to target. The information collection model was used to formulate a rapidly
computable LG-based analytical control law. This control law was shown to drive the
inspector spacecraft on a path along which the rate of information collection was strictly
increasing.

Based on an analysis of closed-loop trajectories using the LG control law, a state feed-
back control law was developed, and rules were proposed to determine when to switch from
the LG control law to the state feedback control law. Simulations demonstrated that the use
of this switched control scheme was effective in generating trajectories useful for informa-
tion collection, while satisfying constraints. A comparison study showed that modifications
to parameters in the LG control law or in the control switching rules can be made to pro-
mote mission priorities such as fuel efficiency or fast information collection. Robustness to
disturbances was demonstrated through simulation.

Parameter Governors for Constrained Control of Multi-agent Formations

A general PG-based control scheme was developed to generate and maintain formations
containing an arbitrary number of agents (vehicles) or subsystems. The PG was added to
a nominal inner-loop system, composed from the set of subsystems, and used to enforce
constraints and improve performance by modifying parameters applied to each subsystem.
These parameters either changed the reference points given to the inner-loop controllers,
or modified the inner-loop system dynamics. Parameter values were calculated based on a
solution to a receding horizon constrained optimization problem at each time instant.

By utilizing a turn-based parameter update strategy based on graph colorability theory,
parameter updates were distributed over time and between subsystems. This approach
yielded fast computations. Furthermore, by limiting the possible parameter values to a
discrete set of small cardinality, updated parameter values were obtained quickly, even if

161



non-linear and non-convex constraints were included. A convergence analysis proved that,
under reasonable assumptions, the PG is guaranteed to generate and maintain the desired
formation.

Two specific PGs, referred to as the SSG and TSG, were proposed and applied to the
specific problem of FF. The SSG and TSG were used to enforce non-linear and non-convex
constraints by modifying either a scale- or time-shift applied to the target trajectory pro-
vided to each spacecraft in formation. Desired performance related to convergence time
and control (fuel) use were promoted through selection of weighting matrices in the SSG
and TSG cost functions. Simulation showed that both the SSG and TSG were capable
of generating formations composed of three spacecraft, and that both methodologies can
accommodate sufficiently small disturbances.

6.2 Future Work

There are many possibilities to continue and expand the work presented in this dissertation.
Some of these are summarized in what follows.

Invariance-based Satellite Relative Motion Planning

The SRMP method presented in Chapter 3 is able to accommodate set-bounded distur-
bances through the construction of SPI tubes. Further investigation of the handling of spe-
cific disturbances, such as J2 or slightly elliptical reference orbits, would be useful. Simu-
lation case studies could be carried out to verify that by choosing an appropriate bound for
the disturbance set, the method can handle these common disturbances. Expected orbital
perturbations, such as J2, could also be explicitly calculated along predicted transfer tra-
jectories used to weight the virtual net. This may improve the accuracy of predicted control
(fuel) use. Furthermore, to explicitly accommodate elliptical reference orbits, it may be
possible to design a virtual net based on the linear time-periodic TH equations, rather than
the LTI CW equations. This may require the use of a time-periodic shape matrix used to
define safe ellipsoidal sets and SPI tubes.

Further investigation into methods to select NMTs for the virtual net is also warranted.
The current method of choosing NMTs to be “evenly spaced” throughout a prescribed
region does not account for the locations of known obstacles. This method also does not
consider how far apart NMTs in the virtual net should be spaced to ensure a high degree of
adjacency, while also keeping the computational load related to the total number of NMTs
in the virtual net manageable.
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Another direction for future research is to expand the method to incorporate forced
trajectories, in addition to NMTs. This change would increase the flexibility of the method,
but would also increase calculations by, e.g., requiring a separate calculation for the safe
scale factor ρu for each state vector along forced trajectories. Finally, ways to incorporate
moving obstacles into the framework could be investigated, based on the work in [48] for
a virtual net composed of forced equilibria.

Relative Motion Planning for Satellite Inspection

In Chapter 4, several possibilities for rules to govern switching between the LG control law
and the state feedback control law were discussed, and the ability of the proposed method to
handle disturbances was briefly investigated through simulation. Additional investigation
in both of these directions is warranted. Further development to incorporate the LG/state
feedback control law into more realistic mission settings would also be useful. For example,
missions in which information about multiple target points is desired could be considered.
This extension could involve development of rules to determine the optimal ordering of
points for information collection, i.e., which points should be visited first, second, etc.
Additionally, rules could be developed to govern multiple switches between LG and state-
feedback controllers based on each target point. Finally, investigating ways to provide
stronger assurances of exclusion zone avoidance, and to incorporate additional exclusion
zones not co-located with the target spacecraft would be useful. One possibility in this
direction is to consider combining the LG control law developed here with existing methods
for obstacle avoidance such as the use of artificial potential functions, see, e.g., [122].

Parameter Governors for Constrained Control of Multi-agent Formations

To illustrate the flexibility of the general PG framework developed in Section 5.2, appli-
cations to other types of formations, such as UAVs or self-driving vehicles, could be de-
veloped. Additionally, the proposed PG could be compared to related control schemes for
distributed systems, e.g., distributed command governors [68], to better understand relative
strengths and weaknesses. Useful research directions related to theoretical developments
include developing methods to calculate or estimate the required prediction horizon, T ∗,
investigating ways to weaken the assumptions required for the convergence analysis, and
incorporating disturbances into this analysis.

For applications specific to SRMP, investigations could be carried out to further ex-
plore combining the SSG and TSG into a single PG. This could involve developing rules
to govern when adjustments to scale- and time-shifts are made to provide desired perfor-
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mance. Finally, adding additional adjustable parameters to the combined PG may improve
the PG’s ability to satisfy constraints. For example, combining the SSG/TSG with a PG
similar to the gain governor proposed in [73] would directly provide additional capability
to accommodate control saturation limits, and may also assist in accommodating separa-
tion distance constraints. Specifically, by setting the controller gain to zero (or nearly zero)
initially, a gain governor may allow certain spacecraft to “wait” at their initial states for a
certain time period, thereby allowing separation distances with other spacecraft to increase,
before beginning their maneuvers.
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APPENDIX A

Initial Conditions for NMTs

Consider the following formulation of the solution to the continuous-time CW equations,
known as the “traveling ellipse” formulation [84, 85]:

x(t) = X̄ + b sin(ωt+ φ), ẋ(t) = bω cos(ωt+ φ),

y(t) = Ȳ − 3
2
ωtX̄ + 2b cos(ωt+ φ), ẏ(t) = −3

2
ωX̄ − 2bω sin(ωt+ φ),

z(t) = c sin(ωt+ ψ), ż(t) = cω cos(ωt+ ψ).

(A.1)

From this formulation, it is apparent that motion in the z direction will be oscillatory, and
motion in the x-y plane will trace out a 2× 1 ellipse, with semi-minor axis b. Furthermore,
this ellipse will translate horizontally (along the y-axis) if the parameter X̄ 6= 0. In (A.1),
the parameters X̄ and Ȳ , and time t, define the instantaneous center of the elliptical x-y
plane motion, the parameter c defines the magnitude of oscillation in the z direction, and φ
and ψ are the phase angles for the motion in the x-y plane, and in the z direction, respec-
tively. These parameters are related to the initial conditionX0 = [x0, y0, z0, ẋ0, ẏ0, ż0]T

by the following expressions:

X̄ = 4x0 + 2
ω
ẏ0, Ȳ = y0 − 2

ω
ẋ0,

b cos(φ) = ẋ0

ω
, b sin(φ) = −3x0 − 2

ω
ẏ0,

c sin(ψ) = z0, c cos(ψ) = ż0
ω
.

(A.2)

From (A.1) and (A.2), initial conditions for specific types of NMTs can be obtained.

Closed NMTs

If the initial condition is chosen to satisfy X̄ = 0, or equivalently

ẏ0 = −2ωx0, (A.3)

then the resulting NMT will be periodic (closed).

165



A “stationary point” closed NMT along the y-axis may be generated by setting X̄ =

b = c = 0. These conditions correspond to an initial condition X0 satisfying

y0 = y0,

x0 = z0 = ẋ0 = ẏ0 = ż0 = 0.
(A.4)

Note that these “stationary point” NMTs correspond to unforced equilibria, located at point
y0 along the y-axis.

A “periodic line segment” closed NMT in the y-z plane may be generated by setting
X̄ = b = 0, and choosing a non-zero value for c. These conditions correspond to an initial
condition X0 satisfying

y0 = y0, z0 = c sin(ψ), ż0 = ωc cos(ψ),

x0 = ẋ0 = ẏ0 = 0,
(A.5)

where c > 0 defines the magnitude of oscillation, i.e., one-half the length of the line seg-
ment, y0 gives the location of intersection with the y-axis, and the phase angle ψ is arbi-
trarily chosen.

A closed elliptical NMT centered at the point x = X̄ = 0, y = Ȳ and z = 0 may be
generated by setting X̄ = 0, and choosing values for b > 0 and c ≥ 0. These conditions
correspond to an initial condition X0 satisfying

x0 = b sin(φ), ẋ0 = bω cos(φ),

y0 = Ȳ + 2b cos(φ), ẏ0 = −2bω sin(φ),

z0 = c sin(ψ), ż0 = cω cos(ψ).

(A.6)

These elliptical NMTs correspond to sections of a 2b× b cylinder with the central axis par-
allel to the z-axis passing through the y-axis at y = Ȳ . Figure A.1 provides an illustration
of such a cylinder, and shows a few examples of elliptical NMTs as sections of the cylinder.
Obtaining an initial condition for an elliptical NMT with a desired orientation within this
cylinder is not straightforward using (A.6) alone. This task is simplified by introducing two
angles, θ1 and θ2, to represent the orientation of the ellipse [84].

The angles θ1 and θ2 are measured from the center of the ellipse, with respect to the
ellipse’s “normal vector”, ĥ; i.e., the vector ĥ is perpendicular to plane defined by the
ellipse, as shown in Figure A.2.
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𝐲 = 𝐘$		 𝐱 = 𝟎

Figure A.1: Illustration showing example NMTs as sections of a cylinder

x

y

z

θ1
θ2

𝒉"

Figure A.2: Depiction of the angles θ1 and θ2 used to parametrize elliptical NMTs
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Given desired values for θ1, θ2, b, and Ȳ , an initial condition for an elliptical NMT with
the desired orientation can be obtained through the following steps:

Procedure A.1 [Initial Condition Calculation for Elliptical NMT]
Inputs: Desired NMT parameters: θ1, θ2, b, Ȳ .
Output: NMT Initial Condition: X0 = [x0, y0, z0, ẋ0, ẏ0, ż0]T .

1. Arbitrarily choose a value for φ > 0,

2. Calculate ψ using
tan(φ− ψ) = 2 cos(θ1)

tan(θ2)
, (A.7)

3. Calculate c using

c = b
sin(θ1)

√
tan2(θ2) + 4 cos2(θ1), (A.8)

4. Calculate the initial condition using (A.6), i.e.,

x0 = b sin(φ), ẋ0 = bω cos(φ),

y0 = Ȳ + 2b cos(φ), ẏ0 = −2bω sin(φ),

z0 = c sin(ψ), ż0 = cω cos(ψ).

(A.9)

End Procedure.
Figure A.3 shows three example elliptical NMTs centered at the origin along with the

corresponding values for the parameters Ȳ , b, θ1 and θ2.
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Figure A.3: Examples of elliptical NMTs

Open NMTs

If the initial condition is chosen such that X̄ 6= 0, and therefore (A.3) is not satisfied, the
resulting NMT will be non-periodic (open). Two specific types of open NMTs useful for
SRMP applications are straight line segment NMTs, and helical (or spiral) NMTs.

Straight line segment NMTs parallel to the y-axis in the x-y plane, can be generated by
setting b = c = 0, and choosing a non-zero value for X̄ . These conditions correspond to
an initial condition X0 satisfying

x0 = X̄, ẋ0 = 0,

y0 = Ȳ , ẏ0 = −3
2
ωX̄,

z0 = 0, ż0 = 0.

(A.10)

where Ȳ can take any desired value. Note that if X̄ > 0, the spacecraft is “above” the
target, and will drift in the −y direction in the x-y plane along the line defined by x = X̄ .
Conversely, if X̄ < 0, the spacecraft is “below” the target, and will drift in the +y direction
in the x-y plane along the line defined by x = X̄ . These straight line NMTs are useful in
a SRMP setting as they allow the maneuvering satellite to drift along a line either directly
above or below the target.
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Helical NMTs are trajectories with motion in the x-y plane corresponding to an ellipse,
with the center of the ellipse translating along the y direction. These types of NMTs,
with the desired orientation, can be generated based on a nominal periodic elliptical NMT.
Specifically, a nominal initial condition can be obtained using Procedure A.1. Then, the x
and ẏ components of this initial condition are modified using

x0 = x̄nom0 + X̄, ẏ0 = ẏnom0 − 3
2
ωX̄, (A.11)

where the superscript nom denotes the nominal value. The resulting NMT will be a “travel-
ling ellipse”, with the center of motion beginning at the point (X̄, Ȳ ) in the x-y plane, and
translating along the line defined by x = X̄ . If X̄ > 0, the ellipse translates in the −y di-
rection, whereas if X̄ < 0, the ellipse translates in the +y direction. Note that larger values
of X̄ (in terms of absolute value) correspond to faster rates of translation. These ”traveling
ellipse” NMTs resemble helices or spirals when plotted in Hill’s frame, as illustrated in
Figure A.4.
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Figure A.4: Examples of helical NMTs
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APPENDIX B

Safe Ellipsoidal Set Scale Factor Calculations

B.1 Maximum Scale Factor based on Control Constraint

To calculate the control limit on the scale factor ρsk, denoted by ρu, note that the control
constraint (3.12) can be equivalently expressed as

ηTi K(X −Xn(k)) ≤ umax, i = 1, 2, · · · , 6, (B.1)

where
η1 = [1, 0, 0]T , η2 = [0, 1, 0]T , η3 = [0, 0, 1]T ,

η4 = [−1, 0, 0]T , η5 = [0, −1, 0]T , η6 = [0, 0, −1]T .
(B.2)

The value for ρu, is found by considering the following convex optimization problem for
i = 1, 2, · · · , 6:

max
Xi

ηTi K(Xi −Xn(k)),

subject to 1
2
(Xi −Xn(k))TP (Xi −Xn(k)) ≤ α.

(B.3)

If a value for α is found such that the solutions X∗i of problem (B.3) satisfy

max
i
{ηTi K(X∗i −Xn(k))} = umax, (B.4)

then
ρu = 2α. (B.5)

To obtain the solution to problem (B.3), the matrix P is diagonalized as

P = V TΛV, (B.6)

where V is an orthogonal matrix and Λ is a diagonal matrix with eigenvalues of P on the
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diagonal. Then, by defining parameters ζi and hi from

Xi −Xn(k) = V TΛ−
1
2 ζi, (B.7)

and
hTi = ηTi KV

TΛ−
1
2 , (B.8)

the optimization problem is reformulated by substituting (B.6)-(B.8) into (B.3), yielding

max
ζi

hTi ζi,

subject to 1
2
ζTi ζi ≤ α.

(B.9)

The constrained optimization problem (B.9) corresponds to maximizing the inner product
of two vectors over a two-norm ball, and has a solution given by

ζ∗i =
hi
‖hi‖2

√
2α, (B.10)

see [123]. Therefore, the maximum value for the objective function in (B.9) is given by

‖hi‖2

√
2α, (B.11)

and, setting (B.11) equal to umax and solving for α yields

α =
1

2

u2
max

‖hi‖2
2

. (B.12)

Therefore, by the logic discussed in (B.4) and (B.5), the safe ellipsoidal set scale factor
limit based on the control constraint is given by

ρu = min
i

u2
max

‖hi‖2
2

. (B.13)

Note that the scale factor ρu corresponds to the largest ellipsoidal set for which the
control constraint (3.12) is satisfied pointwise within the set. However, the constraint (3.12)
will also be satisfied pointwise in any ellipsoidal set with ρsk ≤ ρu.

Remark B.1. From the derivation above, it is clear that the scale factor limit ρu is inde-

pendent of the state vector Xn(k), i.e., the state vector along an NMT corresponding to

the center of the ellipsoidal set. Hence, ρu is constant for all Xn(k), and for all NMTs N ,

and must only be calculated once. This differs from the case considered in [48], in which

the centers of ellipsoidal sets were forced equilibria and the value of ρu depended on the
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chosen forced equilibria.

B.2 Maximum Scale Factor based on Exclusion Zones

The maximum safe value for the ellipsoidal set scale factor considering the ith exclusion
zone constraint (3.14), denoted by ρOi

k , is determined by solving a convex optimization
problem in which the minimum-sized ellipsoidal set, centered at Xn(k), is sought, that
shares a common point with exclusion zone Oi(si, Si). Defining

X̄ = X −Xn(k), (B.14)

this optimization problem is given by

min
X̄, ρ

Oi
k

ρOi
k ,

subject to X̄TPX̄ ≤ ρOi
k ,

(Φ(X̄ +Xn(k))− si)TSi(Φ(X̄ +Xn(k))− si) ≤ 1.

(B.15)

The solution to problem (B.15) is obtained via Karush-Kuhn-Tucker (KKT) conditions
[116].

The Lagrangian for problem (B.15) is given by

L = ρOi
k +λ1(X̄TPX̄ − ρOi

k ) +λ2

[
(Φ(X̄ +Xn(k))− si)TSi(Φ(X̄ +Xn(k))− si)− 1

]
,

(B.16)
where λ1 and λ2 are scalar Lagrange multipliers, and the KKT conditions are:

∂L

∂ρOi
k

= 0, (B.17a)

∂L

∂X̄
= 0, (B.17b)

λi ≥ 0, i = 1, 2, (B.17c)

λ1(X̄TPX̄ − ρOi
k ) = 0, (B.17d)

λ2

[
(Φ(X̄ +Xn(k))− si)TSi(Φ(X̄ +Xn(k))− si)− 1

]
= 0. (B.17e)

X̄TPX̄ − ρOi
k ≤ 0, (B.17f)

(Φ(X̄ +Xn(k))− si)TSi(Φ(X̄ +Xn(k))− si)− 1 ≤ 0. (B.17g)
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The condition (B.17a) yields the value for λ1,

∂L

∂ρOi
k

= 0 = 1− λ1 =⇒ λ1 = 1, (B.18)

and the condition (B.17b), evaluated at λ1 = 1, yields the following expression for X̄:

X̄ = −(P + λ2ΦTSiΦ)−1ΦTSi(ΦXn(k)− si)λ2. (B.19)

Note that since P = P T � 0 and ΦTSiΦ � 0, and λ2 ≥ 0, the matrix (P + λ2ΦTSiΦ) is
invertible.

Next, the value for the Lagrange multiplier λ2 ≥ 0 must be determined. There are two
cases to consider, λ2 = 0 and λ2 > 0:
Case 1 λ2 = 0: In this case, condition (B.17e) is trivially satisfied, and condition (B.19)
implies that X̄ = 0. If condition (B.17g) is satisfied with X̄ = 0, it is concluded that
λ2 = 0 and, from condition (B.17d), it follows that ρOi

k = 0.

Remark B.2. Note that the case of λ2 = 0 yielding ρOi
k = 0 corresponds to the situation

where the point Xn(k) lies within an exclusion zone, i.e., Xn(k) ∈ Oi(Si, si).

Case 2 λ2 > 0: In this case, the term [·] in condition (B.17e) must be equal to zero.
Therefore, the problem reduces to determining the value for λ2 > 0 that is the root of

F (λ2) = (Φ(X̄ +Xn(k))− si)TSi(Φ(X̄ +Xn(k))− si)− 1 = 0, (B.20)

where X̄ is given by (B.19). This scalar root-finding problem can be solved via a Newton-
Rhapson iteration. Given an initial guess for λ2, denoted λ0

2 (see Remark B.3), this guess
is updated as

λc+1
2 = λc2 −

F (λ2)

∂F
∂λc2

∣∣∣
λc2

, c = 0, 1, 2, · · · (B.21)

where
∂F (λ2)

∂λ2

=
∂F (λ2)

∂X̄

∂X̄

∂λ2

, (B.22)

∂F (λ2)

∂X̄
= 2(Φ(X̄ +Xn(k))− si)TSiΦ, (B.23)

and
∂X̄

∂λ2

= (P + λ2ΦTSiΦ)−1(−ΦTSi(ΦXn(k)− si)− ΦTSiΦX̄). (B.24)

This iteration is continued until the successive values for λ2 stop changing to within some
small tolerance.
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Having obtained the value for λ2, this value is plugged into (B.19) to obtain X̄ , and by
condition (B.17d), ρOi

k is given by

X̄TPX̄ = ρOi
k > 0. (B.25)

Figure B.1 shows a projection of a safe set ellipsoidal set, with scale factor ρOi
k and

centered at a state vector Xn(k) along an example closed NMT. The scale factor ρOi
k was

calculated using the method described above. Notice that the safe ellipsoidal set (in blue)
has exactly one point of intersection with the exclusion zone (in black).

Figure B.1: A safe set with scale factor ρOi
k projected onto the position space, R3

Remark B.3. A separate value for ρOi
k must be calculated for each state vector Xn(k)

along an NMT. This process can be sped up by re-using the solution to the Newton-iteration

described above found for Xn(k) as an initial guess to determine the value for Xn(k + 1).

Specifically, for the first state vector Xn(0) considered along an NMT, an initial guess for

λ2 is selected (simulations show that choosing λ0
2 = 1000 yields good performance). Then,

after the iteration has converged and the true value for λ2 is found, this value is used as the

initial guess in the Newton iteration to determine the value for λ2 for state vector Xn(1),

etc.
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APPENDIX C

QCQPs

C.1 Calculation of di(ρk+1)

The value of each di(ρk+1), given by

di(ρk+1) = min
e+

eTPe− e+TPe+ i = 1, 2, · · · , nw,

subject to e+TPe+ = ρk+1,

e = Ā−1(e+ −Bwi),

(C.1)

is obtained by reducing the problem to a scalar root finding problem via the method de-
scribed in [97]. The objective function in (C.1) is re-written by replacing e with the expres-
sion in line 2 of the constraints, yielding

di(ρk+1) = min
e+

e+TQe+ + 2piT e+ + vi

subject to e+TPe+ − ρk+1 = 0,
(C.2)

where
Q = Ā−1TPĀ−1 − P � 0,

piT = −wiTBT Ā−1TPĀ−1,

vi = wiTBT Ā−1TPĀ−1Bwi.

(C.3)

Problem (C.2) is reformulated by simultaneously diagonalizing the matrices Q and P
with an invertible matrix L such that LQLT = I6×6 and LPLT = PD, where PD is a
diagonal matrix [124]. The matrix L is calculated as follows:

L = (TU)−1, (C.4)

where

• T = V D,
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• The matrix V has columns corresponding to the normalized eigenvectors of the ma-
trix Q,

• D is a diagonal matrix with diagonal entries consisting of the square roots of the
eigenvalues of the matrix Q,

• The matrixU has columns corresponding to the normalized eigenvectors of T−1PT−T .

Defining two vectors y and bi from

e+ = LTy, and
biT = piTLT ,

(C.5)

Problem (C.2) becomes

di(ρk+1) = min
y

yTy + 2biTy + vi

subject to yTPDy − ρk+1 = 0.
(C.6)

Next, define a vector zi as
zi = y + bi. (C.7)

With this substitution, (C.6) becomes

di(ρk+1) = min
zi

ziT zi + ri

subject to ziTPDz
i + 2ciT zi + si = 0,

(C.8)

where
ri = −biT bi + vi,

ci = −PDbi,
si = −ρk+1 + biTPDb

i.

(C.9)

Note that the minimizer to (C.8) is equivalent to the minimizer to

min
zi

ziT zi

subject to ziTPDz
i + 2ciT zi + si = 0,

(C.10)

since ri does not depend on zi. Therefore, the minimizer to (C.10) is sought using standard
conditions for optimality.

The Lagrangian for (C.10) is

L = ziT zi − λ(ziTPDz
i + 2ciT zi + si). (C.11)

177



The first-order necessary conditions for optimality give the following:

∂L
∂zi

= 0 =⇒ (I6×6 − λPD)zi − λci = 0, (C.12)

∂L
∂λ

= 0 =⇒ ziTPDz
i + 2ciT zi + si = 0, (C.13)

and the second-order condition to ensure a minimizer is

∂2L
∂zi2

= I6×6 − λPD � 0. (C.14)

From (C.14), it follows that the optimal Lagrange multiplier, λ∗ satisfies

λ∗ ≤ 1
PDmax

, (C.15)

where PDmax is the maximum diagonal value of PD. Further, if the sub-vector of ci cor-
responding to PDmax is non-zero (note that simulations show this condition holds for the
calculations being considered), then it is guaranteed that

λ∗ < 1
PDmax

, (C.16)

and therefore, the matrix
Dλ∗ = I6×6 − λ∗PD (C.17)

is invertible.
From (C.12), the minimizer zi∗ is given as a function of λ∗,

zi∗ = λ∗D−1
λ∗ c

i. (C.18)

Substituting (C.18) into (C.13) yields

f(λ) = λ2ciTD−1T
λ PDD

−1
λ ci + 2λciTD−1

λ ci + si = 0. (C.19)

In [97], it is shown that there exists a unique, finite root for (C.19) on the open interval
(− inf, 1

PDmax
). This root, corresponding to λ∗, can be found numerically using standard

algorithms, such as bisection.
After λ∗ is determined, the value for di(ρk+1) is obtained through the following steps:

• The minimizer to (C.10) (and to C.8) is calculated from (C.18) as zi∗ = λ∗D−1
λ∗ c

i.

• The solution to (C.8) is given by di(ρk+1) = zi∗T zi∗ + ri.
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C.2 Calculation of Transfer Trajectory Adjacency Require-
ments

In this appendix, a method is presented to obtain solutions to the optimization problem
(3.104), repeated here for clarity:

F l(k̄, ki, k̂j) = max
Y

[
Āk̄e(0, k̂j) + g + f l

]T
P
[
Āk̄e(0, k̂j) + g + f l

]
,

subject to (Y −Xni(ki))
TP (Y −Xni(ki)) = ρmin + α,

(C.20)

l = 1, 2, · · · , nw, where

e(0, k̂j) = Y −Xnj(k̂j),

g = g(k̄, k̂j, kj) = Xnj(k̄ + k̂j)−Xnj(kj),

f l = (Āk̄−1 + Āk̄−2 + · · ·+ Ā0)Bwl.

To obtain solutions to (C.20), simultaneous diagonalization is used to reformulate the
problem. Then, using the Lagrangian for the reformulated problem and necessary condi-
tions for optimality, a solution is obtained by solving a scalar root-finding problem. This
method, described below, is adapted from the developments in [97].

The objective and constraint functions in (C.20) are expanded, and the notation is sim-
plified, resulting in

F l = max
Y

Y TQY + 2qTY + d

subject to Y TPY + 2pTY + h = 0,
(C.21)

where

Q = (Āk̄)TP (Āk̄), qT = (f l + g)TPĀk̄ − X̂TQ,

d = X̂TQX̂ − 2X̂T (Āk̄)TP (f l + g) + (f l + g)TP (f l + g), X̂ = Xnj(k̂j),

pT = −XTP, h = XTPX − (ρmin + α),

X = Xni(ki).
(C.22)

The matrices Q and P are simultaneously diagonalized with an invertible matrix, L, such
that LQLT = I6×6 and LPLT = PD, where PD is a diagonal, positive-definite matrix. The
matrix L is obtained as follows:

L = (TU)−1, (C.23)

where
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• T = V D,

• The matrix V has columns corresponding to the normalized eigenvectors of the ma-
trix Q,

• D is a diagonal matrix with diagonal entries consisting of the square roots of the
eigenvalues of the matrix Q,

• The matrixU has columns corresponding to the normalized eigenvectors of T−1PT−1T .

Using the matrix L, (C.21) is equivalently expressed as

F l = max
Ȳ

Ȳ T Ȳ + 2bTY + d

subject to Ȳ TPDȲ + 2mT Ȳ + h = 0,
(C.24)

where

Y = LT Ȳ , b = Lq, m = Lp. (C.25)

Next, let Z = Ȳ + b. With this substitution, (C.24) becomes

F l = max
Z

ZTZ + r

subject to ZTPDZ + 2cTZ + s = 0,
(C.26)

where

r = d− bT b, c = m− PDb, s = h+ bTPDb− 2mT b. (C.27)

Now, note that the maximizer of (C.26) is not affected by r, therefore, to find the maximizer
to (C.26), it is sufficient to find the maximizer of

F l = max
Z

ZTZ

subject to ZTPDZ + 2cTZ + s = 0.
(C.28)

The Lagrangian for (C.28) is given by

L = ZTZ − λ(ZTPDZ − 2cTZ + s). (C.29)

First-order necessary conditions for optimality yield the following expressions,

∂L
∂Z

= 0 =⇒ (I6×6 − λPD)Z − λc = 0, (C.30)
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and
∂L
∂λ

= 0 =⇒ ZTPDZ − 2cTZ + s = 0. (C.31)

The second order condition to ensure a maximizer yields the following expression:

∂2L
∂Z2

≤ 0 =⇒ Dλ = I6×6 − λPD � 0. (C.32)

From (C.32), because PD is positive definite, it can be concluded that the optimal value
for λ, denoted by λ∗, satisfies

λ∗ ≥ 1

PDmin
, (C.33)

where PDmin is the minimum diagonal value of PD. Furthermore, simulations show that

λ∗ >
1

PDmin
, (C.34)

and therefore the matrix Dλ∗ = I6×6 − λ∗PD is invertible.
Next, condition (C.30) yields,

DλZ = λc, (C.35)

which is solved for Z:
Z = λD−1

λ c. (C.36)

The value for Z in (C.36) is substituted for Z in (C.31), yielding the following scalar
function of λ:

f(λ) = λ2cTD−1T
λ PDD

−1
λ c+ 2λcTD−1

λ c+ s = 0. (C.37)

Hence, the solution to (C.28) is reduced to a scalar root finding problem. Considering
(C.34), the root finding problem is posed as follows: Determine λ∗, the root of f(λ) given
by (C.37), over the open interval ( 1

PDmin
, +∞). This root can be determined via bisections.

After λ∗ is determined, the value for F l is obtained through the following steps:

• The maximizer to (C.28) (and to C.26) is calculated from (C.36) as Z∗ = λ∗D−1
λ∗ c.

• The solution to C.26 is given by F l = Z∗TZ + r.
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APPENDIX D

Newton-Like Iteration for Fast Adjacency
Calculations

This appendix describes a method to obtain local minima of the objective function in
(3.120), repeated here for clarity,

Gc = min
ti,t̂j

(X∗(ti, t̂j)−Xnj(t̂j))
TP (X∗(ti, t̂j)−Xnj(tj))− ρt̂j . (D.1)

These local minima are obtained using a Newton-like iteration, based on work in [125].
Define the objective function in (D.1) as F = F (ti, t̂j), i.e.,

F = F (ti, t̂j) = (X∗(ti, t̂j)−Xnj(t̂j))
TP (X∗(ti, t̂j)−Xnj(tj))− ρt̂j . (D.2)

In (D.2),
Xnj(t̂j) = exp(Act̂j)X0j, (D.3)

Xni(ti) = exp(Acti)X0i, (D.4)

where X0(·) is the initial condition for NMT N(·), and

X∗(ti, t̂j) = Xnj(t̂j) + λ∗r(ti, t̂j), (D.5)

where
r(ti, t̂j) = Xni(ti)−Xnj(t̂j), (D.6)

and

λ∗ = 1 +

√
ρmin + α

r(ti, t̂j)TPr(ti, t̂j)
. (D.7)
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Plugging (D.7) and (D.5) into (D.2), the function F is re-written as

F = r(ti, t̂j)
TPr(ti, t̂j) + (ρmin + α) + 2

√
ρmin + α

√
r(ti, t̂j)TPr(ti, t̂j)− ρt̂j . (D.8)

Therefore, a local minima of (D.8) is sought, starting from an initial guess (ti, t̂j), via a
Newton iteration. This iteration requires the first and second partial derivatives of F with
respect to both ti and t̂j . The derivatives for the first three terms on the RHS of (D.8) can
be easily obtained using (D.3), (D.4) and (D.6). Recall that the fourth term on the RHS of
(D.8), i.e., ρt̂j , corresponds to the SPI scale factor for state vector Xnj(t̂j). A continuously
differentiable expression for ρt̂j is not available. However, we do have discrete values ρk̂j
for k̂j = [0, kmax(or k

N̄j
max)]. Therefore, to approximate ρt̂j at any given t̂j , and therefore

obtain the required derivatives, a quadratic function is fit to the three discrete ρk̂j values
closest to ρ(t̂j). This process is described in Section (D.1). Given the approximations

of ρt̂j ,
dρt̂j
dt̂j

and
d2ρt̂j
dt̂2j

, the Newton-like iterative method to obtain the minimum of (D.8)
proceeds as follows.

Using (D.8), and the shortened notationX(ti) = Xni(ti),X(tj) = Xnj(tj) andX(t̂j) =

Xnj(t̂j), the required partial derivatives of F are given by

∂F

∂ti
=

1 +

√
ρmin + α√

r(ti, t̂j)TPr(ti, t̂j)

 2r(ti, t̂j)
TPAcX(ti), (D.9)

∂F

∂t̂j
= −

1 +

√
ρmin + α√

r(ti, t̂j)TPr(ti, t̂j)

 2r(ti, t̂j)
TPAcX(t̂j)−

∂ρt̂j

∂t̂j
, (D.10)

∂2F
∂t2i

= 2X(ti)
TATc PAcX(ti) + 2r(ti, t̂j)

TPAcAcX(ti)

+2
√
ρmin+α√

r(ti,t̂j)TPr(ti,t̂j)

[
X(ti)

TATc PAcX(ti) + r(ti, t̂j)
TPAcAcX(ti)

]
−2

√
ρmin+α

[r(ti,t̂j)TPr(ti,t̂j)]3/2

[
r(ti, t̂j)

TPAcX(ti)
]2
,

(D.11)

∂2F
∂t̂2j

= 2X(t̂j)
TATc PAcX(t̂j)− 2r(ti, t̂j)

TPAcAcX(t̂j)

+2
√
ρmin+α√

r(ti,t̂j)TPr(ti,t̂j)

[
X(t̂j)

TATc PAcX(t̂j)− r(ti, t̂j)TPAcAcX(t̂j)
]

−2
√
ρmin+α

[r(ti,t̂j)TPr(ti,t̂j)]3/2

[
r(ti, t̂j)

TPAcX(t̂j)
]2 − ∂2ρt̂j

∂t̂2j
,

(D.12)

∂2F
∂ti∂t̂j

= ∂
∂ti

∂F
∂t̂j

= −2X(t̂j)
TATc PAcX(ti)− 2

√
ρmin+α√

r(ti,t̂j)TPr(ti,t̂j)

[
X(t̂j)

TATc PAcX(ti)
]

+2
√
ρmin+α

[r(ti,t̂j)TPr(ti,t̂j)]3/2

[
r(ti, t̂j)

TPAcX(ti)
] [
r(ti, t̂j)

TPAcX(t̂j)
]
,

(D.13)
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and

∂2F
∂t̂j∂ti

= ∂
∂t̂j

∂F
∂ti

= −2X(ti)
TATc PAcX(t̂j)− 2

√
ρmin+α√

r(ti,t̂j)TPr(ti,t̂j)

[
X(ti)

TATc PAcX(t̂j)
]

+2
√
ρmin+α

[r(ti,t̂j)TPr(ti,t̂j)]3/2

[
r(ti, t̂j)

TPAcX(t̂j)
] [
r(ti, t̂j)

TPAcX(ti)
]
.

(D.14)
Note from (D.13) and (D.14) that ∂2F

∂ti∂t̂j
= ∂2F

∂t̂j∂ti
.

Remark D.1. Because ρt̂j is approximated by a quadratic function for each value of t̂j , the

derivatives
∂ρt̂j
∂t̂j

and
∂2ρt̂j
∂t̂2j

, in (D.10) and (D.12), respectively, are always defined.

To determine t∗i and t̂∗j that correspond to a local minima of F , the following iterative
method is used. Let χ = [ti t̂j]

T , and choose an initial guess χ0 = [ti0 t̂j0]T . This guess is
updated as follows, for c ≥ 0:

χc+1 = χc + νcpc, (D.15)

where pc is the “Newton step” and νc > 0 is the step length. Calculations to obtain pc and
νc are now described in detail.

The Newton step pc is calculated such that the iteration will converge to local minima,
i.e.,

pc = −H̄−1
c gc, (D.16)

where

gc =

[
∂F
∂ti
∂F
∂t̂j

]∣∣∣∣∣
χc

, (D.17)

and the matrix H̄c is calculated as follows. The Hessian matrix of F is given by

Hc =

 ∂2F
∂t2i

∂2F
∂t̂j∂ti

∂2F
∂ti∂t̂j

∂2F
∂t̂2j

∣∣∣∣∣∣
χc

, (D.18)

and the spectral decomposition of Hc is given by Hc = V ΛV −1 where the columns of V
correspond to eigenvectors of Hc and Λ = diag(λ) where λ is a vector containing eigen-
values ofHc.

To ensure the step pc is in a descent direction, the matrix H̄c is given by

H̄c = V Λ̄V −1, (D.19)

where Λ̄ = diag(λ̄) and

λ̄i =

{
|λi| if |λi| ≥ δ > 0,

δ > 0 otherwise.
(D.20)
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In (D.20), the parameter δ > 0 can be tuned as desired. Simulations show that setting
δ = 1× 10−16 yields good performance. Note that the matrix H̄c is always invertible.

The step size νc in (D.15) is calculated based Wolfe’s condition for sufficient descent
[126], using a backtracking line-search. Starting at νc = 1, the largest possible νc is sought
that satisfies

F (χc+1) ≤ F (χc)− µνcgTc pc, (D.21)

where χ(·) = [ti(·) t̂j(·)]
T , the notation F (χ(·)) is equivalent to F (ti(·), t̂j(·)), and µ > 0 is a

tunable parameter (simulations show that µ = 1/10 provides good results). The value for
νc is updated as νc = 0.75νc as needed until the first value satisfying (D.21) is found.

Iteration termination conditions

The iteration (D.15) is performed until a desired tolerance is reached, that is, until

| ‖χk‖2 − ‖χk−1‖2 | ≤ ε, (D.22)

where ε > 0. In simulations, the value ε = 1× 10−6 is used.

Simplified cases of (D.8)

In general, local minima of (D.8) must be found with respect to both ti and t̂j , where both
ti and t̂j may vary. Therefore, the Newton iteration must be carried out as described above.
However, for certain adjacency types, and depending on the nodes involved, one or both of
ti and t̂j is fixed, and this simplifies the calculations. These special cases are as follows:

1. For adjacency types (A2) and (A4), the origin node is a single state vector, Xni(ki).
Therefore, the variable ti in (D.8) has the fixed value ti = ki∆T . In this case, the
Newton iteration to solve (D.8) is carried over only the single variable t̂j . This makes
calculations simpler and faster. Specifically, choose an initial guess t̂j0 and update
the guess as

t̂j(c+1) = t̂j(c) − νc
∂F
∂t̂j∣∣∣∂2F
∂t̂2j

∣∣∣
∣∣∣∣∣∣∣
t̂j(c)

, (D.23)

where νk ∈ (0, 1] is chosen via backtracking line search to be the largest possible
value which leads to a decrease in the function value. The iteration is terminated
when |t̂j(k) − t̂j(k−1)| ≤ ε.

2. For adjacency types (A1) and (A3), if the origin node is a stationary point “periodic
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NMT,” then the variable ti in (D.8) can be arbitrarily fixed at any ti ∈ [0, kmax∆T ].
Hence, the Newton iteration for this case is the same as that described in number (1)
above.

3. For adjacency type (A1), if the destination node is a stationary point “periodic NMT,”
then the variable t̂j in (D.8) can be arbitrarily fixed at any t̂j ∈ [0, kmax∆T ]. In this
case, the Newton iteration to solve (D.8) is carried over only the single variable ti.
Specifically, choose an initial guess ti0 and update the guess as

ti(c+1) = ti(c) − νc
∂F
∂ti∣∣∣∂2F
∂t2i

∣∣∣
∣∣∣∣∣∣
ti(c)

, (D.24)

where νc ∈ (0, 1] is chosen via backtracking line search to be the largest possible
value which leads to a decrease in the function value. The iteration is terminated
when when |ti(c) − ti(c−1)| ≤ ε.

4. For adjacency type (A2), if the destination node is a stationary point “periodic NMT,”
then the variable and t̂j can be arbitrarily fixed at any t̂j ∈ [0, kmax∆T ]. In this
case, the function F (ti, t̂j) is constant and (D.8) can be solved by a single function
evaluation at ti = ki∆T , where ki corresponds to the origin node (state vector), and
a chosen value of t̂j .

5. For adjacency type (A1), if both the origin and destination nodes are stationary point
“periodic NMTs”, then the variables ti and t̂j can be arbitrarily fixed at any ti ∈
[0, kmax∆T ] and any t̂j ∈ [0, kmax∆T ]. In this case the function F (ti, t̂j) is constant
and (D.8) can be solved by a single function evaluation at the chosen ti and t̂j .

D.1 Approximation of ρt̂j
Consider an arbitrary value for t̂j . The discrete-time instant closest to this value is given by

k2 = round(
t̂j

∆T
). (D.25)

Then, the three discrete-time instant values closest to t̂j are simply

k1 = k2 − 1, k2, and k3 = k2 + 1. (D.26)

Remark D.2. If the destination NMT is closed and k1, k2, or k3 are outside of the interval
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[0, kmax], they can be moved into the interval due to the periodicity. If the destination

NMT is open and k1, k2, or k3 are outside of the interval [0, k
N̄j
max], then they are set to the

appropriate extreme values at either end of this interval.

The continuous-time values that correspond to these discrete-time instances are

t̂j1 = ∆Tk1,

t̂j2 = ∆Tk2,

t̂j3 = ∆Tk3.

(D.27)

Hence, we seek to fit a quadratic function through the three points given by

(t̂j1, ρk1), (t̂j2, ρk2), (t̂j3, ρk3). (D.28)

Let the quadratic function be given by

ρt̂j = at̂j t̂
2
j + bt̂j t̂j + ct̂j . (D.29)

The coefficients at̂j , bt̂j , and ct̂j may vary with t̂j and are determined as

 at̂j
bt̂j
ct̂j

 =

 t̂2j1 t̂j1 1

t̂2j2 t̂j2 1

t̂2j3 t̂j3 1


−1  ρk1

ρk2

ρk3

 . (D.30)

Then, the first and second derivatives of ρt̂j are given by

dρt̂j

dt̂j
= 2at̂j t̂j + bt̂j , (D.31)

and
d2ρt̂j

dt̂2j
= 2at̂j . (D.32)
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APPENDIX E

Proofs

E.1 Proof of Proposition 3.1

Proposition 3.1. The following holds:

max
e+1 ∈D

+
1

wTBTPe+
1 =
√
ρk+1

√
wTBTPBw (E.1)

Proof. The result follows from “standard” conditions for optimality [87]. The Lagrangian
for (E.1) is

L = wTBTPe+
1 + µ(e+T

1 Pe+
1 − ρk+1), (E.2)

where µ is a Lagrange multiplier. First-order necessary conditions for optimality yield the
following:

∂L
∂e+

1

= 0 =⇒ PBw + 2µPe+
1 = 0, (E.3)

∂L
∂µ

= 0 =⇒ e+T
1 Pe+

1 − ρk+1 = 0. (E.4)

Equation (E.3) is solved for e+
1 ,

e+
1 = − 1

2µ
Bw, (E.5)

and this value is plugged into (E.4) yielding

1

4µ2
wTBTPBw − ρk+1 = 0. (E.6)

Equation (E.6) is solved for µ,

µ = ±1

2

√
wTBTPBw

ρk+1

. (E.7)
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Because we are searching for the maximum value of (E.1), we select the negative value for
µ. This value for µ is plugged into (E.5) yielding

e+
1 =

√
ρk+1

wTBTPBw
Bw, (E.8)

which is then plugged back into the objective function of (E.1) which yields

wTBTPe+
1 = wTBTP

√
ρk+1

wTBTPBw
Bw

=
√

ρk+1

wTBTPBw
wTBTPBw,

=
√
ρk+1

√
wTBTPBw.

(E.9)

To verify that this value is a maximum, the second order condition for optimality,
∂2L/∂e+2

1 ≺ 0 is checked:

∂2L

∂e+2
1

= 2µP = −

√
wTBTPBw

ρk+1

P ≺ 0. (E.10)

Note that (E.10) holds since P � 0.

E.2 Proofs of Propositions 5.3 and 5.4

Recall the following definitions:

Definition E.1 (Continuous Function). A function φ : V → W is continuous at x̄ ∈ V if

for all ε > 0 there exists δ(ε, x̄) such that

‖x− x̄‖ < δ =⇒ ‖φ(x)− φ(x̄)‖ < ε.

Definition E.2 (Global Lipschitz Continuity). A function φ : V→W is globally Lipschitz

continuous on V if there exists L <∞ such that

for all x, y ∈ V, ‖φ(x)− φ(y)‖ ≤ L‖x− y‖.

For a sequence, x(k), k ∈ Z≥0,

Definition E.3 (Limit of a sequence).

lim
k→∞

x(k) = x̄ =⇒ for all ε > 0, ∃ N(ε) <∞ such that for all k ≥ N, ‖x(k)− x̄‖ < ε.
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Note that the limit limk→∞ x(k) = x̄ can also be written as x(k)→ x̄ as k →∞.
Consider a function f(x(k)) : V→W. Note that Proposition 5.3 provides a sufficient

condition for the property

y(k)→ x(k) as k →∞ =⇒ f(y(k))→ f(x(k)) as k →∞, (E.11)

while Proposition 5.4 provides a sufficient condition to the inverse to (E.11), i.e.,

f(y(k))→ f(x(k)) as k →∞ =⇒ y(k)→ x(k) as k →∞. (E.12)

The proofs to Propositions 5.3 and 5.4 are obtained by first considering Proposition E.1
below. Note that Propositions E.1 and 5.3 and are based on results found in [127].

Proposition E.1. Suppose the following properties hold:

1. y(k)→ x(k) as k →∞,

2. There exists a function φ : R → R, continuous at 0 and satisfying φ(0) = 0, such

that ‖f(y(k))− f(x(k))‖ ≤ φ(‖y(k)− x(k)‖).

Then, f(y(k))→ f(x(k)) as k →∞.

Proof. From item (2) above, and the definition of a continuous function, for all ε > 0, there
exists a δ > 0 such that

‖y(k)− x(k)‖ < δ =⇒ ‖f(y(k))− f(x(k))‖ ≤ φ(‖y(k)− x(k)‖ < ε. (E.13)

Suppose for a given ε, the corresponding δ is obtained. Next, from item (1), it follows that

[y(k)− x(k)]→ 0 as k →∞. (E.14)

From (E.14) and the definition of the limit of a sequence, there exists N <∞ such that for
all k ≥ N ,

‖y(k)− x(k)‖ < δ. (E.15)

Combining (E.13) and (E.15), it follows that for all ε > 0 there exists N < ∞ such that,
for all k ≥ N ,

‖f(y(k))− f(x(k))‖ ≤ φ(‖y(k)− x(k)‖) < ε, (E.16)

therefore limk→∞ f(y(k))− f(x(k)) = 0, i.e., f(y(k))→ f(x(k)) as k →∞.
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The proof for Proposition 5.3 now follows from Proposition E.1. Recall Proposition 5.3:
Proposition 5.3. Suppose the following properties hold:

1. y(k)→ x(k) as k →∞,

2. f is globally Lipschitz on V.

Then, f(y(k))→ f(x(k)) as k →∞.

Proof. From item (2), there exists L <∞ such that, for all y(k), x(k) ∈ V,

‖f(y(k))− f(x(k))‖ ≤ L‖y(k)− x(k)‖. (E.17)

Define a function φ as

φ(‖y(k)− x(k)‖) = L‖y(k)− x(k)‖. (E.18)

Therefore,
‖f(y(k))− f(x(k))‖ ≤ φ(‖y(k)− x(k)‖). (E.19)

Note that φ(0) = 0, and φ is continuous at 0 (since for all ε > 0, ‖y(k) − x(k)‖ <
ε
L

=⇒ ‖φ(‖y(k) − x(k)‖)‖ = L‖y(k) − x(k)‖ < L ε
L

= ε). Therefore, by Proposition
E.1, f(y(k))→ f(x(k)) as k →∞.

The proof for Proposition 5.4 now follows from Propositions E.1 and 5.3. Recall Proposi-
tion 5.4:
Proposition 5.4. Suppose the following properties hold:

1. f(x(k))→ f(y(k)) as k →∞,

2. the inverse of f(x(k)) exists for all x(k) ∈ V, and this inverse is unique and globally

Lipschitz, i.e., for all x(k) ∈ V, there exists a function f−1 : W → V such that, for

all x(k) ∈ V, f(x(k)) = w(k) ⇐⇒ f−1(w(k)) = x(k).

Then, x(k)→ y(k) as k →∞.

Proof. Suppose item (1) holds, i.e., f(x(k))→ f(y(k)) as k →∞, where x(k), y(k) ∈ V
are arbitrary. Let

f(x(k)) = wx(k) ∈W and f(y(k)) = wy(k) ∈W. (E.20)
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From Proposition 5.3, and because f−1 is globally Lipschitz (item (2) above), it follows
that

wx(k)→ wy(k) =⇒ f−1(wx(k))→ f−1(wy(k)) as k →∞, (E.21)

and, because the inverse f−1 is unique, it follows that

f−1(wx(k)) = x(k), and f−1(wy(k)) = y(k). (E.22)

Substituting (E.20) and (E.22) into (E.21) yields

f(x(k))→ f(y(k)) =⇒ x(k)→ y(k) as k →∞. (E.23)

Because x(k) and y(k) are arbitrary, the proof is complete.
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APPENDIX F

Solution Methods for the Vertex Coloring
Problem

For an undirected graph G(S,E) where S is the vertex (node) set and E is the edge set, the
VCP and mVCP are defined as follows:

Vertex coloring problem (VCP): Find an assignment of colors to each node (vertex) of
G(S,E) such that, for all i, j ∈ S, if (i, j) ∈ E, then i and j have different colors.

Minimal Vertex coloring problem (mVCP): Find the minimal number of colors that can
be assigned to nodes (vertices) of G(S,E), such that, for all i, j ∈ S× S, if (i, j) ∈ E, then
i and j have different colors.

Recall from Section 5.2.4.2 that any solution to the VCP can be used to generate the re-
quired sequence of turns for the parameter update procedure (Procedure 5.1), however, the
sequence of turns obtained from the solution to the mVCP is desirable because this may
provide faster convergence times.

The solution to the mVCP is commonly referred to as the chromatic number of G(S,E),
denoted by cG . While solving the mVCP problem is NP-Hard, for graphs with a small
number of vertices or graphs with a simple structure, e.g., complete graphs, the solution to
the mVCP can be obtained by inspection. For example, Figure F.1 shows three graphs for
which the chromatic number, and corresponding vertex coloring, is easily obtained.

For more complex graphs, several exact algorithms to solve the mVCP exist based on
integer programming and branch-and-bound techniques, see, e.g., [118, 128]. However,
the time required to run these algorithms can become untenable for graphs with a large
number of nodes. To overcome this limitation, many heuristics have been developed based
on greedy algorithms, and local search techniques, among others. Some of these heuristic
methods, and associated required computation times, are summarized in [118, 129].
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Figure F.1: Simple graphs showing solution to mVCP obtained by inspection

If convergence time for the parameter governor is unimportant, it may be acceptable to
determine the sequence of turns based on any feasible solution to the VCP (as opposed to
using the exact solution to the mVCP). The advantage of this approach is that such feasible
solutions can be obtained quickly. For example, the trivial solution of using a different
color for each node in a graph is always a feasible solution to the VCP.

Additionally, it is possible to determine an upper-bound on the chromatic number of a
graph (and therefore on the number of colors needed for a feasible solution to the VCP), and
then, in certain cases, use this upper bound to obtain such a feasible solution. Specifically,
due to Brook’s Theorem [117, 130], the chromatic number of any graph is upper-bound by

cG ≤ ∆G + 1, (F.1)

where ∆G is the maximum degree of the graph, defined as the maximum number of edges
incident to any vertex in the graph. Furthermore, cG = ∆G + 1 if and only if a) ∆G 6= 2 and
G has a complete graph with ∆G + 1 nodes as a connected component, or b) ∆G = 2 and
G has an odd cycle as a connected component. For a graph that does not satisfy items (a)
or (b), it is possible to obtain a feasible solution to VCP with ∆G colors using a linear-time
algorithm, as described in [131]. Finally, note that MATLAB toolboxes exist to exactly
solve the mVCP and to obtain feasible solutions to the VCP, e.g., the Matgraph toolbox
[132].
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