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Abstract

Mesh-based methods for the numerical solution of partial differential equations (PDEs) require the di-

vision of the problem domain into non-overlapping, contiguous subdomains that conform to the problem

geometry. The mesh constrains the placement and connectivity of the solution nodes over which the PDE

is solved. In meshless methods, the solution nodes are independent of the problem geometry and do not

require a mesh to determine connectivity. This allows the solution of PDEs on geometries that would be

difficult to represent using even unstructured meshes.

The ability to represent difficult geometries and place solution nodes independent of a mesh motivates

the use of meshless methods for the neutron transport equation, which often includes spatially-dependent

PDE coefficients and strong localized gradients. The meshless local Petrov-Galerkin (MLPG) method is

applied to the steady-state and k-eigenvalue neutron transport equations, which are discretized in energy

using the multigroup approximation and in angle using the discrete ordinates approximation. The MLPG

method uses weighted residuals of the transport equation to solve for basis function expansion coefficients

of the neutron angular flux. Connectivity of the solution nodes is determined by the shared support domain

of overlapping meshless functions, such as radial basis functions (RBFs) and moving least squares (MLS)

functions.

To prevent oscillations in the neutron flux, the MLPG transport equation is stabilized by the streamline

upwind Petrov-Galerkin (SUPG) method, which adds numerical diffusion to the streaming term. Global

neutron conservation is enforced by using MLS basis and weight functions and appropriate SUPG param-

eters. The cross sections in the transport equation are approximated in accordance with global particle

balance and without constraint on their spatial dependence or the location of the basis and weight functions.

The equations for the strong-form meshless collocation approach are derived for comparison to the MLPG

equations. Two integration schemes for the basis and weight functions in the MLPG method are presented,

including a background mesh integration and a fully meshless integration approach.

The method of manufactured solutions (MMS) is used to verify the resulting MLPG method in one, two

and three dimensions. Results for realistic problems, including two-dimensional pincells, a reflected ellipsoid

and a three-dimensional problem with voids, are verified by comparison to Monte Carlo simulations. Finally,

meshless heat transfer equations are derived using a similar MLPG approach and verified using the MMS.

xiii



These heat equation are coupled to the MLPG neutron transport equations, and results for a pincell are

compared to values from a commercial pressurized water reactor.
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Chapter 1

Introduction

Commonly-used methods for solving the Boltzmann transport equation, such as the discontinuous finite

element method (DFEM) and the finite difference method, require separating the domain into discrete

spatial cells or elements, each of which often has constant material properties and localized solution nodes.

The meshing process can be computationally expensive and labor-intensive, particularly for unstructured

meshes. Meshless methods, such as the meshless local Petrov-Galerkin (MLPG) method considered here,

do not require a mesh, which facilitates more flexibility in the placement of solution nodes in the problem

and specification of the problem-dependent coefficients, such as the cross sections for the neutron transport

equation.

The application of the MLPG discretization to the neutron transport equation involves approximations

to the cross sections, calculation of meshless functions, representation of the geometry, stabilization of the

equations to prevent oscillations, and optimizations to improve computational cost. Section 1.1 presents

a general history of meshless methods. Section 1.2 discusses past applications of meshless methods to the

transport equation and challenges to consider when solving the neutron transport equation. Section 1.3

discusses the novel work in this dissertation, including the differences from past work on meshless transport

and on mesh-based methods for neutron transport. Section 1.4 presents an overview of the remainder of this

dissertation.

1.1 History of meshless methods

Smoothed particle hydrodynamics (SPH), the first modern meshless method, was developed in 1977 for

use in astrophysics problems [1, 2]. In the SPH method, fluid motion is represented using moving particles

smoothed by kernel functions, which contrasts with mesh-based methods in which the fluid moves through

stationary mesh elements (Eulerian), the mesh moves with the fluid (Lagrangian), or the two are combined

(Arbitrary Lagrangian-Eulerian [3]). The SPH method has been applied to astrophysics, fluid dynamics,

explosion mechanics, solid mechanics, heat conduction and magnetohydrodynamics [4]. Boundary conditions

are difficult to enforce using the SPH method, and as such many of the applications include unbounded
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problems. The reproducing kernel particle method developed in 1995 includes corrections to SPH [5] and

has been applied to similar problems. Other meshless methods for fluid flow and solid dynamics include the

finite point method developed in 1996 [6] and the point interpolation method developed in 2001 [7].

The collocation approach, in which the PDE is enforced at collocation points to find the coefficients of

a basis function expansion, was developed in 1990 [8] and has been applied to a diverse set of PDEs [9],

including fluid dynamics, heat conduction, convection-diffusion, transport, and diffusion problems [10]. With

the original global basis functions, the PDE solution matrix is dense and difficult to solve. The accuracy of

the method increases as the basis functions become essentially flat, but this makes the linear system severely

ill-conditioned [11]. For advection problems, the streaming operator cannot be easily stabilized. Despite

these drawbacks, the collocation method is simple to apply and accurate for many problems.

The diffuse element method (DEM) developed in 1992 [12] applies the Galerkin method of weak-form

residuals using moving least squares (MLS) functions. The element-free Galerkin (EFG) approach developed

in 1994 extends the DEMmethod with more accurate derivatives, a background integration mesh independent

of the solution nodes, and accurate enforcement of essential boundary conditions [13]. The EFG method has

been successfully applied to a variety of problems, including fracture, fluid flow, and heat transfer.

The meshless local Petrov-Galerkin (MLPG) method, first described in 1998 [14], adds additional prop-

erties to the weak-form solution that are useful for the solution of PDEs. In the original approach, local

compact Gaussian and spline functions are used to create the MLS basis. In the MLPG method, the basis

and weight functions have limited spatial support, and connectivity is determined by the overlapping support

regions of the basis and weight functions. Unlike the DEM and EFG methods, the MLPG approach uses the

local weak form, which permits integration without a background mesh and creates sparse solution matrices.

While the MLPG solution can still exhibit oscillations, as in the collocation approach, the additional freedom

to specify the weight functions independent of the basis functions allows for the use of common stabilization

techniques used in other weighted residual methods, such as the streamline upwind Petrov-Galerkin (SUPG)

method [15, 16].

There exist a variety of other meshless methods not covered here. For an overview of meshless methods

and their mathematical properties, see Ref. [17].

1.2 Application of meshless methods to transport

Transport codes have several features that require special attention when applying meshless methods:

• The advective streaming term may necessitate stabilization.

• Boundary conditions should be accurately represented.
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• The material properties can be variable in space.

• Due to the dependence on space, energy and direction, the number of unknowns is much higher than

in many other applications.

• Particle balance should be preserved if possible.

The methods such as SPH that are commonly applied to fluid flow and solid dynamics usually represent the

interactions of a medium with itself, whereas in the neutron transport equation the neutrons do not interact

with each other but instead with the background material. In addition, these methods can struggle with

boundary representation, which makes their application to transport problematic. The radiative transfer

equations have been coupled to SPH hydrodynamics simulations in astrophysics where the boundary con-

ditions are neglected, but the transport is either between individual particles or with simplified transport

physics [18].

Section 1.2.1 presents a history of applications of meshless methods to the transport equation. The

methods that have been successful in solving the transport equation are those designed for interpolation

and the solution of general PDEs, such as the collocation and MLPG approaches. Section 1.2.2 discusses

difficulties in solving the neutron transport equation, including the differences between neutron and radiative

transfer and challenges for other discretization methods for the neutron transport equations.

1.2.1 History of meshless methods for transport

Early work applying meshless methods to transport utilized common methods such as the fast Fourier

transform [19] and Chebyshev spectral methods [20] for time-dependent radiative transfer. The first few

studies using more flexible meshless methods appeared thereafter, in which least squares collocation methods

were used for radiative heat transfer. The even-parity transport equation was shown to be stable and accurate

for radiative transfer problems, while the primitive variables approach was shown to be unstable in regions

with low absorption [21, 22]. Various meshless methods were successfully applied to solve the coupled

radiative transport and conductive heat transfer equations [23, 24], including the use of MLPG with moving

least squares (MLS) basis functions and weight functions skewed along the upwind direction for stabilization

[25], which is similar to the spatial discretization used here.

The neutron transport equation has not been extensively studied using meshless methods. In 2017, Kashi

et. al used meshless basis functions to solve the weak transport equation inside each homogeneous element

in a two-dimensional Cartesian finite element mesh, producing a method very similar to the discontinuous

finite element method (DFEM) but with basis functions commonly used in meshless methods [26]. Despite
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Table 1.1: Representative review of transport work on meshless methods
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Sadat [21] 2006 X X X X X 2 400 24

Liu [25] 2007 X X X X X X 2 441 24

Liu [22] 2007 X X X X 2 961 24

Tan [29] 2009 X X X X X 2 1700 40

Kindelan [23] 2010 X X X X 2 961 64

Wang [30] 2010 X X X X 3 92500 48

Sadat [24] 2012 X X X X X 3 3375 48

Zhao [31] 2013 X X X X X 2 1899 1296

Wang [32] 2016 X X X 2 1144 800

Kashi [26] 2017 X X † X X 2 6† 144

Current study 2018 X X X X X X X X X X X‡ 3 74088 8192
?Refers to energy dependence of the transport equation, not the energy equation used in coupled radiative and conductive
heat transfer.
†Uses a mesh with up to 6 nodes in each element. Inside of each element, the material is homogeneous.
‡Particle balance preserved for weak form.

the differences in the source term and energy dependence, many of the meshless techniques used in other

transport problems are applicable to neutron transport.

The neutron diffusion equation is stable and simple to solve using meshless methods. The element-free

Galerkin method with moving least squares basis and weight functions has been applied to one group diffusion

with spatially-varying cross sections in one and two dimensions [27]. The multigroup diffusion problem has

been solved using the collocation method with global basis functions [28].

Table 1.1 includes a summary of the methods that have been used to solve the transport equation.

Most past studies have been on the radiative transfer equation, sometimes with coupled heat conduction.

Most cases use the strong form of the transport equation, which prevents application of stabilization to the

advection operator. Heterogeneous material properties have only been briefly considered in two cases and

only for strong-form approaches. None of the historical methods reviewed preserve particle balance. The only

case of stabilization reviewed includes skewed or shifted weight functions, which prevents particle balance

and creates directionally-dependent weak-form integrals. Neutron transport presents additional difficulties

discussed in Sec. 1.2.2 that require consideration.
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1.2.2 Challenges specific to neutron transport

There are a few important distinctions between the radiative transfer and neutron transport equation.

Some common approximations made in radiative transfer meshless methods, such as energy independence,

homogeneous materials and directionally-dependent weak-form integrals, would be unsuitable for neutron

transfer. While the radiative transfer equation does include frequency (or energy) dependence that can

be converted into a multigroup form [33], the gray approximation is often used, which neglects energy

dependence. Neutron transport is heavily dependent on energy due to the different behavior of neutrons in

fast, resonance and thermal energies.

A primary use for neutron transport is in nuclear reactors, which have heterogeneous, discontinuous cross

sections that make accurate integration expensive. For some of the problems considered here, directionally-

dependent integrals would take several CPU years to complete without additional optimizations. For this

dissertation, the energy dependence is discretized using the multigroup approximation, the materials are

assumed to be spatially-dependent, and the weak-form integration is performed independent of discrete

direction dependence. This allows for reasonably efficient solution of the transport equation for realistic

problems with energy dependence and a large number of angular directions.

In standard deterministic neutron transport methods, material properties are often assumed to be con-

stant within each cell. Monte Carlo methods with delta tracking [34] or functional expansion tallies [35] more

accurately account for spatially varying cross sections, but at a high computational cost. One treatment for

spatially varying cross sections in a deterministic multiphysics code is an averaging of the cross section in

each cell using a numerical quadrature [36], which does not explicitly guarantee global particle conservation.

For meshless methods, spatially-dependent PDE coefficients (such as the cross sections in the neutron

transport equation) present unresolved issues for strong-form solutions. Evaluation of the coefficients at

the collocation points [30, 31, 37] makes an implicit assumption that the coefficients are continuous and

have small gradients, as the coefficients between these evaluation points are not considered. Localization of

the basis functions [38], such as through domain decomposition [39], makes the opposite assumption that

coefficients are piecewise constant and requires that the basis functions be tailored to the discontinuities.

For a discretization with arbitrary basis functions and coefficients with discontinuities, neither method is as

generally applicable as an appropriate approximation using the weak form of the transport equation. In the

MLPG discretization, spatially variable PDE coefficients can be accounted for in the integration step, which

allows for proof of convergence to the correct weak-form limit (see Sec. 2.7).

Another area where many deterministic radiation transport codes struggle is curved surface represen-

tation. Method of characteristics codes can exactly represent curved surfaces but become computationally
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expensive for three-dimensional simulations. During the sweep process of a DFEM transport code, an ele-

ment with a curved surface may have a reentrant condition on the boundary, which leads to an indeterminate

sweep order. A few methods to accurately account for higher-order surfaces include choosing a single outward

normal for each surface [40], temporarily splitting the high-order cells in a direction-dependent fashion [41],

solving for a second-order source on a first-order mesh [36] and assembling and directly solving the full FEM

matrix [42]. In the MLPG method with the cross sections in Sec. 2.8, curved surfaces inside the domain are

accounted for in the integration step, not the meshing or transport steps.

The MLPG method used here is very similar mathematically to solving the radiation transport equation

using a continuous finite element method (CFEM). The self adjoint angular flux (SAAF) form of the transport

equation has been discretized using CFEM and implemented with SUPG stabilization [43]. The inverse of the

total cross section is used as the SUPG stabilization parameter (see Sec. 2.4) except in voids, which require

special treatment in the SAAF equations. Near void regions, a characteristic distance for each element is

used, which is similar to the treatment of the SUPG parameter in Sec. 3.2.

1.3 Comparison to past approaches

The approach in this dissertation to the solution of the neutron transport equation differs significantly

from past meshless approaches. None of the reviewed meshless approaches for the transport equation ensure

particle balance. In the current approach, global particle balance is preserved by using an MLPG discretiza-

tion with MLS basis and weight functions and SUPG stabilization (Sec. 2.7). For radiation transport, this

ensures that the conservation properties of particle balance based on which the transport equation is derived

are carried through to the discretized equations [44].

Multigroup continuous and discontinuous cross sections are accurately represented without subdivision of

the problem. The past approaches for consideration of heterogeneous cross sections in strong-form methods

consist of evaluating the cross sections at the solution nodes and do not accurately solve the problems

considered in this dissertation. Heterogeneous cross sections have not previously been considered for weak-

form meshless solution of the transport equation. The approach to heterogeneous cross sections considered

in this dissertation, including a spatial approximation to the cross sections, preserves particle balance for

the weak-form equations (Sec. 2.8). A new cross section approach based on the approximate cross sections

from the weak form is derived that more accurately accounts for discontinuous cross sections in the strong

form (Sec. 2.9).

Optimizations are presented in Chapter 3 for efficient solution of the meshless discretization of the

transport equation. Other authors have described possibilities for parallelization of meshless methods for the

transport equation, but parallelization has not been explicitly described and implemented as it is here (Sec.
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3.5). The numerical integration of the transport equation is optimized (Chapter 4) to allow for integration

of more difficult geometries. The stabilization of the weak-form equations is accomplished without adding

directionally-dependent integration (Sec. 2.8), which has not been done previously. The integration can

be performed using either a fully meshless approach or a background mesh. Neither integration scheme is

completely novel for meshless methods, although some of the meshless integration techniques extend past

approaches to more general cases (Sec. 4.1). This is the first comparison of the integration methods for

transport applications (Sec. 4.4). Past approaches to meshless transport do not describe optimizations or

preconditioners for the inversion of the streaming and collision operator. The current approach includes

stabilization that allows for iterative methods with preconditioning (Sec. 3.3). In addition, modern iterative

methods are applied to the solution of the full meshless transport system (Sec. 3.4), which extends methods

used in mesh-based neutron transport codes to the meshless case, with operators acting directly on expansion

coefficients. Combined, the optimizations allow consideration of problems with between two and five orders

of magnitude more unknowns than previous applications of meshless methods to the transport equation.

This dissertation combines many of the techniques used previously in meshless transport methods, and

adds additional techniques (Table 1.1). Stabilization of the weak form, dependence on energy, consideration

of heterogeneous materials and localized basis functions have each been done separately but only once have

two of these been done at the same time (for the localized basis and heterogeneous materials). Here, the

transport equation is discretized using a localized basis over a heterogeneous, energy-dependent material

using both the strong form and the stabilized weak form. This is the first application of the weak-form

transport equation to problems in three dimensions (Secs. 5.2, 6.3, and 7.4) and the first application of

SUPG to the meshless transport equation.

Within neutron transport, including mesh-based methods, the use of particle balance to derive an ap-

proximate cross section technique (Sec. 2.8.2) is novel and could be applied to FEM discretizations. The

use of a constructive solid geometry (CSG) as commonly seen in Monte Carlo neutron transport codes is

extended here for use in integration of the material properties in the system. The numerical integration

of the cross sections with dependence on the basis and optionally the weight functions contrasts with the

homogenization techniques used in many FEM neutron transport codes.

Even with optimizations, the MLPG simulations for the transport equation carry a high computational

cost compared to many mesh-based methods. The two largest factors affecting the performance of the method

are the initialization of the basis and weight function integrals, and the solution of the streaming term of the

transport equation. Unlike many mesh-based methods, such as the DFEM, the MLPG discretization does

not solve the transport equation separately on small spatial subdomains. Instead, for each direction and

energy, the transport equation is solved over the entire spatial domain using a single linear problem. The
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storage of the matrices representing these linear problems and preconditioners for these matrices contributes

to the high memory cost of the method (see Sec. 3.6).

1.4 Overview

This dissertation is structured as follows. Chapter 2 contains a derivation of the MLPG transport equation

with SUPG stabilization from the strong-form equations, including approximations to the neutron cross

sections that maintain particle balance over the problem domain. Chapter 3 discusses the implementation

of these equations, including the linear solvers and preconditioners used for the solution of the transport

equation, choices of parameters for the basis and weight functions, and parallelization of the MLPG code.

Results for the performance of the code are included in this chapter, including a discussion of parallel

performance and the preconditioners used for the streaming term of the transport equation. In Chapter 4,

two integration techniques for the MLPG basis and weight functions are presented, including integration

using a background mesh and meshless integration without a background mesh. Convergence results for the

integration indicate good agreement for the two integration methods.

The code is verified in Chapter 5 using the method of manufactured solutions. For the problems consid-

ered, MLPG equations are stable and accurate for a wide range of parameters, including for discontinuous

cross sections. Strong-form results presented for comparison show a strong dependence of the solution on

the choice of parameters and inaccurate results for problems with discontinuous cross sections. Chapters 6

and 7 present results for steady-state and eigenvalue problems, respectively, with benchmarks from Monte

Carlo simulations. The spatial and angular convergence of the results and the effect of SUPG stabilization

are considered. In Chapter 8, the heat conduction equation is discretized using MLPG and coupled to the

neutron transport equation. In Chapter 9, the results are summarized and recommendations are made for

future research.

Appendix A defines the Legendre polynomials and spherical harmonics used in the transport equation.

Appendix B presents equations for the CSG used to represent the material properties in the simulations.

The implementation is similar to a CSG in a Monte Carlo code. Appendix C includes an alternate derivation

of the strong form of the transport equations with results for simple problems.
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Chapter 2

Meshless discretization of the neutron transport equation

The neutron angular flux ψ (x,Ω, E, t) is defined in terms of the neutron density N (x,Ω, E, t) and the

neutron velocity v (E) as

ψ (x,Ω, E, t) ≡ v (E)N (x,Ω, E, t) ,

and depends on position x, direction Ω, energy E and time t. The neutron transport equation simulates

streaming, scattering, absorption and fission of neutrons to calculate the neutron angular flux. The full form

of the neutron transport without delayed neutrons is

1

v (E)

∂

∂t
ψ (x,Ω, E, t) + Ω ·∇ψ (x,Ω, E, t) + Σt (x, E)ψ (x,Ω, E, t)

=

∫ ∞
0

∫
4π

Σs (x,Ω′ ·Ω, E′ → E)ψ (x,Ω′, E′, t) dΩ′dE′

+
χ (x, E)

4π

∫ ∞
0

∫
4π

ν (x, E′) Σf (x, E′)ψ (x,Ω′, E′, t) dΩ′dE′ + q (x,Ω, E, t) ,

x ∈ V, Ω ∈ 4π, 0 < E <∞, 0 < t, (2.1a)

with the accompanying boundary and initial conditions,

ψ (x,Ω, E, t) = ψinc (x,Ω, E, t) + ρψ (x,Ωr, E, t) , x ∈ ∂V, Ω · n < 0, 0 < E <∞, 0 < t, (2.1b)

ψ (x,Ω, E, t = 0) = ψinit (x,Ω, E) , x ∈ ∂V, Ω ∈ 4π, 0 < E <∞, (2.1c)

and the variables

ψ (x,Ω, E, t) Angular flux at time t in direction Ω with energy E,

ψinc (x,Ω, E, t) Incoming angular flux at the problem boundary,

Σt (x, E) Total cross section at energy E,

Σs (x,Ω′ ·Ω, E′ → E) Cross section for scattering from direction Ω′ and energy E′ to direction Ω and

energy E,

9



χ (x, E) Fission spectrum at energy E,

ν (x, E) Average number of neutrons created in a fission event with incoming neutron energy

E,

Σf (x, E) Fission cross section at energy E, and

q (x,Ω, E, t) Internal source at time t in direction Ω with energy E.

The notation x ∈ V refers to positions inside the problem domain, while x ∈ ∂V refers to positions on the

problem boundary. The parameter ρ allows for the albedo boundary condition with ρ = 1 for a reflective

boundary condition and ρ = 0 for a vacuum boundary condition. The reflection angle is

Ωr ≡ Ω− 2 (Ω · n)n. (2.2)

Defining the spherical harmonics moments of the equation in terms of the real spherical harmonics functions

Y m` (Ω) as

φm` (x, E, t) ≡
∫

4π

Y m` (Ω)ψ (x,Ω, E, t) dΩ, (2.3)

and using a similar expression for the representation of the scattering source in terms of the Legendre

polynomials P` (µ0) (with the scattering cosine µ0 = Ω′ ·Ω),

Σs;` (x, E′ → E) ≡ 2π

∫ 1

−1

P` (µ0) Σs (x, µ0, E
′ → E) dµ0, (2.4)

the angular flux and scattering cross section can be expressed as an expansion involving spherical harmonics

moments,

ψ (x,Ω, E, t) =

∞∑
`=0

2`+ 1

4π

∑̀
m=−`

Y m` (Ω)φm` (x, E, t) , (2.5a)

Σs (x,Ω′ ·Ω, E′ → E) =

∞∑
`=0

2`+ 1

4π

∑̀
m=−`

Σs;` (x, E′ → E)Y m` (Ω)Y m` (Ω′) . (2.5b)
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See Appendix A for definitions of the Legendre polynomials and spherical harmonics as well as their appli-

cation to the scattering term in the transport equation. Applying these expansions to the scattering and

fission terms, the transport equation becomes

1

v (E)

∂

∂t
ψ (x,Ω, E, t) + Ω ·∇ψ (x,Ω, E, t) + Σt (x, E)ψ (x,Ω, E, t)

=

∞∑
`=0

2`+ 1

4π

∑̀
m=−`

Y m` (Ω)

∫ ∞
0

Σs;` (x, E′ → E)φm` (x, E′, t) dE′

+
χ (x, E)

4π

∫ ∞
0

ν (x, E′) Σf (x, E′)φ0
0 (x, E′, t) dE′ + q (x,Ω, E, t) ,

x ∈ V, Ω ∈ 4π, 0 < E <∞, 0 < t. (2.6)

The simplification of the scattering cross section is physically accurate, as the scattering angle for a neutron

incident on a nucleus is a probability function for the scattering angle between the incoming and outgoing

directions.

To numerically solve Eq. (2.6), the spatial, angular, time and energy domains are discretized individ-

ually. For the energy and angular discretizations, the multigroup method (Sec. 2.1.1) and the discrete

ordinates method (Sec. 2.1.2), respectively, are common approximations [44] that are used here. The time

discretization is either neglected in favor of the steady-state approximation (Sec. 2.1.3) or converted to the

k-eigenvalue approximation (2.1.4). The spatial discretization is performed using the MLPG method (Secs.

2.2 to 2.9).

2.1 Angular and energy discretization of the transport equation

2.1.1 Multigroup transport equation

The multigroup approximation begins with an approximation of the neutron spectrum, Ψ (x, E), over

which each of the energy-dependent material properties is weighted over the energy range E ∈ [Eg, Eg−1) for

chosen energy groups with index g to get multigroup cross sections, neutron velocities and fission sources,

Σt;g (x) ≡

∫ Eg−1

Eg
Σt (x, E) Ψ (x, E) dE∫ Eg−1

Eg
Ψ (x, E) dE

, (2.7a)

Σs;`,g′→g (x) ≡

∫ Eg−1

Eg

∫ Eg′−1

Eg′
Σs;` (x, E′ → E) Ψ (x, E′) dE′dE∫ Eg′−1

Eg′
Ψ (x, E′) dE′

, (2.7b)

1

vg (x)
≡

∫ Eg−1

Eg
1

v(E)Ψ (x, E) dE∫ Eg−1

Eg
Ψ (x, E) dE

, (2.7c)
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νΣf ;g (x) ≡

∫ Eg−1

Eg
ν (x, E) Σf (x, E) Ψ (x, E) dE∫ Eg−1

Eg
Ψ (x, E) dE

. (2.7d)

The multigroup fission spectrum, angular flux and source are integrated without neutron spectrum weighting,

χg (x) ≡
∫ Eg−1

Eg

χ (x, E) dE, (2.7e)

ψg (x,Ω, t) ≡
∫ Eg−1

Eg

ψ (x,Ω, E, t) dE, (2.7f)

qg (x,Ω, t) ≡
∫ Eg−1

Eg

q (x,Ω, E, t) dE. (2.7g)

Applying this energy integration to the continuous-energy angular flux expansion in Eq. (2.5a) results in

the multigroup angular flux expansion

ψg (x,Ω, t) =

∞∑
`=0

2`+ 1

4π

∑̀
m=−`

Y m` (Ω)φm`,g (x, t) dΩ, (2.8a)

where the spherical harmonics moments are defined as

φm`,g (x, t) ≡
∫

4π

Y m` (Ω)ψg (x,Ω, t) dΩ, (2.8b)

With these variables defined, the transport equation is converted to multigroup form by integrating the

transport equation [Eq. (2.6)] over E ∈ [Eg, Eg−1],

∂

∂t

∫ Eg−1

Eg

1

v (E)
ψ (x,Ω, E, t) dE + Ω ·∇

∫ Eg−1

Eg

ψ (x,Ω, E, t) dE +

∫ Eg−1

Eg

Σt (x, E)ψ (x,Ω, E, t) dE

=

∞∑
`=0

2`+ 1

4π

∑̀
m=−`

Y m` (Ω)

∫ Eg−1

Eg

∫ ∞
0

Σs;` (x, E′ → E)φm` (x, E′, t) dE′dE

+

∫ Eg−1

Eg

χ (x, E)

4π

∫ ∞
0

ν (x, E′) Σf (x, E′)φ0
0 (x, E′, t) dE′dE +

∫ Eg−1

Eg

q (x,Ω, E, t) dE,

x ∈ V, Ω ∈ 4π, g = 1, . . . , G, 0 < t. (2.9)

If weighted integrals of the physical data over ψ (x, E) are approximately equal to weighted integrals over

ψ (x,Ω, E, t) (e.g. for Σt,

∫ Eg−1

Eg
Σt (x, E) Ψ (x, E) dE∫ Eg−1

Eg
Ψ (x, E) dE

≈

∫ Eg−1

Eg
Σt (x, E)ψ (x,Ω, E, t) dE∫ Eg−1

Eg
ψ (x,Ω, E, t) dE

(2.10)
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should hold), the transport equation can be simplified to

1

vg (x)

∂

∂t
ψg (x,Ω, t) + Ω ·∇ψg (x,Ω, t) + Σt;g (x)ψg (x,Ω, t)

=

∞∑
`=0

2`+ 1

4π

∑̀
m=−`

Y m` (Ω)

G∑
g′=1

Σs;`,g′→g (x)φm`,g′ (x, t)

+
χg (x)

4π

G∑
g′=1

νΣf ;g′ (x)φ0
0,g′ (x, t) + qg (x,Ω, t) ,

x ∈ V, Ω ∈ 4π, g = 1, . . . , G, 0 < t. (2.11a)

Integrating the initial and boundary conditions [Eqs. (2.1b) and (2.1c), respectively] over the energy group

ranges produces the multigroup initial and boundary equations,

ψg (x,Ω, t) = ψincg (x,Ω, t) + ρψg (x,Ωr, t) , x ∈ ∂V, Ω · n < 0, g = 1, . . . , G, 0 < t, (2.11b)

ψg (x,Ω, t = 0) = ψinitg (x,Ω) , x ∈ ∂V, Ω ∈ 4π, g = 1, . . . , G. (2.11c)

2.1.2 Discrete ordinates transport equation

The discrete-ordinates (or SN ) approximation discretizes the angular variable of the transport equation

by transporting the neutrons in discrete directions, which are used as ordinates for the integration of the

angular flux to calculate its spherical harmonics moments. The multigroup transport equation [Eq. (2.11a)]

is evaluated at the discrete directions Ωn, which results in the multigroup SN transport equation,

1

vg (x)

∂

∂t
ψn,g (x, t) + Ωn ·∇ψn,g (x, t) + Σt;g (x)ψn,g (x, t)

=

L∑
`=0

2`+ 1

4π

∑̀
m=−`

Y m` (Ωn)

G∑
g′=1

Σs;`,g′→g (x)φm`,g′ (x, t)

+
χg (x)

4π

G∑
g′=1

νΣf ;g′ (x)φ0
0,g′ (x, t) + qn,g (x, t) ,

x ∈ V, n = 1, . . . N, g = 1, . . . , G, 0 < t, (2.12a)

with the boundary and initial conditions,

ψn,g (x, t) = ψincn,g (x, t) + ρψnr,g (x, t) , x ∈ V, Ωn · n < 0, g = 1, . . . , G, 0 < t, (2.12b)

ψn,g (x, t = 0) = ψinitn,g (x) , x ∈ V, n = 1, . . . N, g = 1, . . . , G. (2.12c)
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The discrete direction of reflection for the boundary equation is

Ωnr = Ωn − 2 (Ω · n)n, (2.13)

which is assumed to also belong to the set of discrete directions. The discrete angular flux and source are

defined as

ψn,g (x, t) ≡ ψg (x,Ωn, t) , (2.14a)

qn,g (x, t) ≡ qg (x,Ωn, t) . (2.14b)

The angular flux expansion [Eq. (2.8a)] is integrated over energy and the angular integration in the definition

of the spherical harmonics moments [Eq. (2.8b)] is converted to a discrete sum using the angular quadrature

points Ωn and weights cn,

φm`,g (x) =

N∑
n=1

cnY
m
` (Ωn)ψn,g (x) , (2.15a)

ψn,g (x) =

L∑
`=0

2`+ 1

4π

∑̀
m=−`

Y m` (Ωn)φm`,g (x) . (2.15b)

These expansions allow conversion between the discrete form of the angular flux, which is used for the

streaming operator, and the moment form, which is used for the scattering and fission terms. The spherical

harmonics expansion is truncated to a finite degree L, with the requirement that the quadrature set should

accurately integrate the spherical harmonics up to the specified degree.
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2.1.3 Steady-state transport equation

The steady-state assumption simplifies the transport equation by removing the time dependence, which

also removes the time derivative,

Ωn ·∇ψn,g (x) + Σt;g (x)ψn,g (x)

=

L∑
`=0

2`+ 1

4π

∑̀
m=−`

Y m` (Ωn)

G∑
g′=1

Σs;`,g′→g (x)φm`,g′ (x)

+
χg (x)

4π

G∑
g′=1

νΣf ;g′ (x)φ0
0,g′ (x) + qn,g (x) ,

x ∈ V, n = 1, . . . N, g = 1, . . . , G. (2.16a)

The boundary condition similarly neglects time dependence,

ψn,g (x) = ψincn,g (x) + ρψnr,g (x) , x ∈ V, Ωn · n < 0, g = 1, . . . , G, (2.16b)

and the initial condition is no longer needed. This form of the transport equation is applicable to subcritical

problems with a given inhomogeneous source of inside the problem or on its boundary.

2.1.4 k-eigenvalue transport equation

The k-eigenvalue problem simplifies the time-dependent transport problem with multiplication to an

eigenvalue problem for multiplication factor of the problem. The source term of the transport equation

qn,g [Eq. (2.16a)] is removed and the average number of neutrons in a fission event ν is divided by the

multiplication factor (or k-eigenvalue), ν → ν/k,

Ωn ·∇ψn,g (x) + Σt;g (x)ψn,g (x)

=

L∑
`=0

2`+ 1

4π

∑̀
m=−`

Y m` (Ωn)

G∑
g′=1

Σs;`,g′→g (x)φm`,g′ (x)

+
χg (x)

4πk

G∑
g′=1

νΣf ;g′ (x)φ0
0,g′ (x) ,

x ∈ V, n = 1, . . . N, g = 1, . . . , G. (2.17a)

The values k < 1, k = 1 and k > 1 correspond to a subcritical, critical and supercritical system, respec-

tively. The k-eigenvalue boundary equation is homogeneous and therefore excludes the incoming flux on the

15



boundary,

ψn,g (x) = ρψnr,g (x) , x ∈ V, Ωn · n < 0, g = 1, . . . , G. (2.17b)

This form of the equation is applicable to systems in which fission is a primary source of neutrons.

2.2 Operator form of the transport equation

To simplify the following sections, the transport equation is written in operator notation, in which the

operators are implicit matrices that modify a vector of values. An example of a simple operator is the

identity operator, I, which when applied to a vector x returns that same vector, i.e. Ix = x. The neutron

transport equation can be written in operator notation [45] as

Lsψ =M (Ss + Fs)φ+ qs, (2.18a)

where L is the streaming and collision operator, M is the moment-to-discrete operator, S and F are the

scattering and fission operators, ψ and φ are the angular flux and its moments, respectively, and q is the

inhomogeneous source term. The s superscript denotes that some of the operators are specific to the strong-

form equations. The k-eigenvalue equation can be similarly written [46] as

Lsψ =M
(
Ss +

1

k
Fs
)
φ. (2.18b)

Manipulated forms of this equation also require the discrete-to-moment operator D. For the multigroup,

discrete-ordinates transport equation [Eq. (2.16a)], these operators are defined as

(Lsψ)n,g = Ωn ·∇ψn,g + Σt;gψn,g, (2.19a)

(Mφ)n,g =

L∑
`=0

2`+ 1

4π

∑̀
m=−`

Y m` (Ωn)φm`,g, (2.19b)

(Dψ)
m
`,g =

N∑
n=1

Y m` (Ωn) cnψn,g, (2.19c)

(Ssφ)
m
`,g =

G∑
g′=1

Σs;`,g′→gφ
m
`,g′ , (2.19d)

(Fsφ)
m
`,g = δ`,0χg

G∑
g′=1

νg′Σf ;g′φ
0
0,g′ , (2.19e)

with the internal source vector

(qs)n,g = qn,g, (2.19f)
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and the Kronecker delta function

δa,b =


1, a = b,

0, otherwise.
(2.20)

The boundary equation is included in the operator equations in Sec. 2.3. For further details on various op-

erator forms of the transport equation and descriptions of iteration methods to solve the operator equations,

see Secs. 2.6 and 3.4.

2.3 Weak form of the transport equation

The weak form of the transport equation is derived by multiplying the strong-form equations [Eqs. (2.19)]

by a series of weight functions wj and integrating over the volume of support for these weight functions, Vj ,

(Lwψ)
∗
j,n,g =

∫
Vj

wjΩn ·∇ψn,gdV +

∫
Vj

wjΣt;gψn,gdV, (2.21a)

(Swφ)
m
j,`,g =

G∑
g′=1

∫
Vj

wjΣs;`,g′→gφ
m
`,g′dV, (2.21b)

(Fwφ)
m
j,`,g = δ`,0

∫
Vj

wjχg

G∑
g′=1

νg′Σf ;g′φ
0
0,g′dV. (2.21c)

The streaming term is integrated by parts to produce surface integrals for the outgoing flux and the incoming

flux,

(Lwψ)j,n,g =

∫
Ωn·n>0

(Ωn · n)ψn,gwjdS −
∫
Vj

ψn,gΩn ·∇wjdV +

∫
Vj

wjΣt;gψn,gdV, (2.21d)

(q)j,n,g =

∫
Ωn·n<0

|Ωn · n|ψincn,gwjdS +

∫
Vj

wjqn,gdV. (2.21e)

Reflection is separated from the known incoming angular flux to get a reflective boundary operator R that

is a applied to the unknown angular flux on the boundary,

(
Rwψb

)
j,n,g

= ρ

∫
Ωn·n<0

|Ωn · n|ψnr,gwjdS. (2.21f)

The superscript w denotes the operators specific to the weak form of the transport equation. The operator

forms of the weak steady-state and k-eigenvalue transport equations that include the reflection term are

Lwψ = Mw (Sw + Fw)φ+ q, (2.22a)

Lwψ = Mw

(
Sw +

1

k
Fw

)
φ, (2.22b)
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where the augmented solution is

φ =


φ

ψb

 (2.23)

and the augmented operators are

Mw =

[
M Rw

]
, (2.24a)

Sw =


Sw 0

0 Ib

 , (2.24b)

Fw =


Fw 0

0 0

 . (2.24c)

ψb is the values of the angular flux on the boundary and Ib is the identity operator for this quantity,

Ibψb = ψb.

Equations (2.21) represent an independent set of linear equations that can be spatially discretized by

inserting a basis function expansion of the angular flux and its moments. For the MLPG method, such a

discretization produces oscillations caused by advection in the streaming operator [Eq. (2.21a)]. Stabilization

added to the streaming operator helps prevent these non-physical oscillations.

2.4 SUPG stabilization of the transport equation

While advection in a continuous Petrov-Galerkin method creates oscillations, diffusion dampens them.

This property motivates the SUPG method, which adds numerical diffusion in the streamline direction by

modifying the advection term, using this modification to change to the weight functions appropriately and

applying the altered weight functions to the entire transport equation [15].

To derive an appropriate diffusion term to add to the advection operator, a diffusion operator is applied

to the angular flux,

−∇ · (D ·∇)ψn,g = 0 (2.25)

with the diffusion tensor D = ΩnΩn. This is converted to weak form by multiplying by the weight function
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wj and integrating by parts,

−
∫
Sj

[n · (D ·∇)ψn,g]wjdS

+

∫
Vj

(Ωn ·∇ψn,g) (Ωn ·∇wj) dV = 0. (2.26)

The process of adding the volume integral in this diffusion equation [Eq. (2.26)] to the streaming operator

in the weak transport equation [Eq. (2.21a)],

∫
Vj

(Ωn ·∇ψn,g) (wj + Ωn ·∇wj) dV, (2.27)

can be replicated by augmenting the weight functions in Eqs. (2.21a) to (2.21c) by the streaming operator,

w̃j,n = wj + τΩn ·∇wj . (2.28)

Here τ is a proportionality constant with units of length that is discussed in more detail in Sec. 3.2.2. The

augmented weight functions in Eq. (2.28) are used everywhere, not only for the streaming term. Because of

this, the equations retain the properties of a Petrov-Galerkin method, specifically that the exact solution to

the transport equation fulfills the discretized equations.

The full SUPG transport equations are derived by replacing wj with w̃j,n in Eq. (2.21) and integrating

the streaming operator by parts for only the wj term from the augmented weight function [Eq. (2.28)],

which leaves the surface integrals unchanged. The equations become

(Luψ)j,n,g =

∫
Ωn·n>0

(Ωn · n)ψn,gwjdS +

∫
Vj

[−ψn,g + τΩn ·∇ψn,g] (Ωn ·∇wj) dV

+

∫
Vj

w̃j,nΣt;gψn,gdV, (2.29a)

(MSuφ)j,n,g =

L∑
`=0

2`+ 1

4π

∑̀
m=−`

Y m` (Ωn)

G∑
g′=1

∫
Vj

w̃j,nΣs;`,g′→gφ
m
`,g′dV, (2.29b)

(MFuφ)j,n,g =
1

4π

∫
Vj

w̃j,nχg

G∑
g′=1

νg′Σf ;g′φ
0
0,g′dV, (2.29c)

(qu)j,n,g =

∫
Ωn·n<0

|Ωn · n|ψextn,gwjdS +

∫
Vj

w̃j,nqn,gdV, (2.29d)

where the u superscript denotes operators specific to the SUPG equations. The resulting addition to the

streaming term in Eq. (2.29a) applies numerical diffusion preferentially to neutrons whose direction of flight

Ωn is codirectional with the gradient of the angular flux ∇ψn,g. Due to the directional dependence of the
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weight functions, the scattering and fission operators are combined with the moment-to-discrete operator.

The decoupling of these operators is discussed in Sec. 3.2.2. The reflection operator does not change from

the unstabilized form of the equations [Eq. (2.21f)].

2.5 Petrov-Galerkin form of the transport equation

To complete the discretization of the SUPG-stabilized transport equations [Eqs. (2.29)], free variables

are added to match the number of constraints. The Petrov-Galerkin method uses functional expansions for

the angular flux and its moments as the unknown variables for the weak form of the transport equation,

ψn,g (x) =

J∑
i=1

αi,n,gbi (x) , (2.30a)

φm`,g (x) =

J∑
i=1

βmi,`,gbi (x) , (2.30b)

with the basis functions bi (x), the angular flux expansion coefficients αi,n,g and the moment expansion

coefficients βmi,`,g. Using the definition of the spherical harmonics moments in Eq. (2.15a), βmi,`,g can be

defined in terms of αi,n,g,

βmi,`,g ≡
N∑
n=1

wnY
m
` (Ωn)αi,n,g. (2.31)

This allows direct conversion between the two types of coefficients. Substituting the basis expansions into

Eqs. (2.29), the operators of the transport equation become

(Lpα)j,n,g =

J∑
i=1

[∫
Ωn·n>0

(Ωn · n) biwjdS +

∫
Vi,j

(−bi + τΩn ·∇bi) (Ωn ·∇wj) dV

+

∫
Vi,j

w̃j,nΣt;gbidV

]
αi,n,g, (2.32a)

(MSpβ)j,n,g =

L∑
`=0

2`+ 1

4π

∑̀
m=−`

Y m` (Ωn)

J∑
i=1

G∑
g′=1

(∫
Vi,j

w̃j,nΣs;`,g′→gbidV

)
βmi,`,g′ , (2.32b)

(MFpβ)j,n,g =
1

4π

J∑
i=1

∫
Vi,j

w̃j,nχg

G∑
g′=1

νg′Σf ;g′bidV

βmi,`,g′ , (2.32c)

(
Rpαb

)
j,n,g

= ρ

J∑
i=1

(∫
Ωn·n<0

|Ωn · n| biwjdS
)
αbi,nr,g, (2.32d)

(qp)j,n,g =

∫
Ωn·n<0

|Ωn · n|ψextn,gwjdS +

∫
Vj

w̃j,nqn,gdV, (2.32e)

where Vi,j is the intersection of the support region for the basis function bi and weight function wj (see

Sec. 4.1 for details). The p superscript denotes the operators specific to the Petrov-Galerkin form of the
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equations.

The operators for the Petrov-Galerkin equations are applied directly to the expansion coefficients instead

of to physical flux values, which changes Eqs. (2.22) to

Lpα = Mp (Sp + Fp)β + qp, (2.33a)

Lpα = Mp

(
Sp +

1

k
Fp

)
β, (2.33b)

with the same augments an in Eqs. (2.24) and the augmented coefficients

β =


β

αb

 . (2.34)

Equations (2.32) and (2.33) represent a fully-determined linear system of equations, meaning a standard

linear or eigenvalue solver could solve these directly. However, iterative schemes such as those in Sec. 2.6

can significantly reduce the cost of solving the transport equation.

2.6 Iterative schemes for the neutron transport equation

To reduce the number of unknowns, the coefficients for the moments of the angular flux, β, are chosen as

the solution variable for the transport equation. This assumes that the directional dependence of the exact

angular flux can be accurately represented in terms of a spherical harmonics expansion, which is the case

for a solution with limited anisotropy. The reflective boundary adds additional solution variables for the

angular flux expansion coefficients at the boundary, αb.

A few additional operators are needed to remove the angular flux coefficients α from the the operator

form of the transport equation. Using the operator Aα = αb that removes non-boundary terms from α,

augmented forms of the discrete-to-moment operator are defined as

D =


D

A

 , (2.35a)

Dq =


D

0

 . (2.35b)
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To isolate the α values, the inverse of the streaming operator, (Lp)−1, is applied to Eqs. (2.33),

α = (Lp)−1 Mp (Sp + Fp)β + (Lp)−1
qp, (2.36)

α = (Lp)−1 Mp

(
Sp +

1

k
Fp

)
β. (2.37)

The Lp operators for each group and direction are independent and the inversion can be done independently

(see Sec. 3.3). Applying the discrete-to-moment operators to both sides of these equations and rearranging

the terms results in a form of each of the equations that is suitable for Krylov iterative methods,

[
I −D (Lp)−1 Mp (Sp + Fp)

]
β = Dq (Lp)−1

qp, (2.38a)

D (Lp)−1 MpFpβ = k
(
I −D (Lp)−1 MpSp

)
β, (2.38b)

with the identity operator Iβ = β. The αb boundary terms in β are only used to calculate the reflective

boundary angular flux. Calculating the value of (Lp)−1
qp (which is physically the first-flight source) includes

iteration in problems with reflection, as qp is the uncollided flux which may reflect several times through

the problem before interacting with the materials. The boundary terms are zeroed out by the operator Dq

as the reflection contribution from the source term qp has already been included by this iteration process.

Solution methods using these operator forms of the transport equation are discussed further in Sec. 3.4.

2.7 Particle balance

For the steady-state neutron transport equation [Eq. (2.18a)], the number of neutrons entering any

chosen control volume in each energy group and direction through streaming, fission, scattering and any

external sources is exactly balanced by the number of neutrons leaving through streaming or collision. The

neutron conservation equation is a weaker statement that neutrons are conserved in a specific control volume.

For finite volume and finite element discretizations, the control volumes are the elements. For the MLPG

method, the control volume is the entire problem domain. The global statement of conservation can be

derived by integrating the steady state equations [Eqs. (2.18a)] over the problem domain V ,

(Lcψ)j,n,g =

∫
Ωn·n>0

(Ωn · n)ψn,gdS +

∫
V

Σt;gψn,gdV, (2.39a)

(Scφ)
m
j,`,g =

G∑
g′=1

∫
V

Σs;`,g′→gφ
m
`,g′dV, (2.39b)

(Fcφ)
m
j,`,g = δ`,0

∫
V

χg

G∑
g′=1

νg′Σf ;g′φ
0
0,g′dV. (2.39c)
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(qc)j,n,g =

∫
Ωn·n<0

|Ωn · n|ψincn,gdS +

∫
V

qn,gdV. (2.39d)

The c superscript denotes the conservation operators. As in the weak form derivation, the moment-to-discrete

and discrete-to-moment operators do not change.

A sufficient condition to show that the SUPG-stabilized weak-form equations derived in Sec. 2.4 satisfy

the conservation equations [Eqs. (2.39)] is that

J∑
j=1

wj = 1 (2.40)

for the weight functions chosen to create the augmented weight functions in Eq. (2.28). If this holds, it also

follows that
J∑
j=1

w̃j,n =

J∑
j=1

wj = 1 (2.41)

for every n as the sum annihilates the derivative. With this property, summation of the SUPG-stabilized

transport equation [Eqs. (2.29)] over all weight function indices j directly results in the conservation equa-

tions [Eqs. (2.39)]. This indicates that the weighted SUPG equations preserve global particle balance. This

condition does not hold for arbitrary weight functions or many directionally-dependent stabilization tech-

niques, such as skewing or offsetting weight functions, for which the sum in Eq. (2.41) may be directionally

dependent.

The Petrov-Galerkin equations from Sec. 2.5 can likewise be shown to reduce to the conservation equation.

Assuming that the basis function expansion in Eq. (2.30a) can accurately model the angular flux solution

and that the weight functions sum to unity [Eq. (2.40)], the sum of the MLPG equations [Eqs. (2.32)] over

all weight functions j is

(Lpα)n,g =

J∑
i=1

[∫
Ωn·n>0

(Ωn · n) bidS +

∫
Vi

Σt;gbidV

]
αi,n,g, (2.42a)

(MSpβ)n,g =

L∑
`=0

2`+ 1

4π

∑̀
m=−`

Y m` (Ωn)

J∑
i=1

G∑
g′=1

(∫
Vi

Σs;`,g′→gbidV

)
βmi,`,g′ , (2.42b)

(MFpβ)n,g =
1

4π

 J∑
i=1

∫
Vi

χg

G∑
g′=1

νg′Σf ;g′bidV

βmi,`,g′ , (2.42c)

(
Rpαb

)
n,g

= ρ

J∑
i=1

(∫
Ωn·n<0

|Ωn · n| bidS
)
αbi,nr,g. (2.42d)

(qp)n,g =

∫
Ωn·n<0

|Ωn · n|ψextn,gdS +

∫
V

qn,gdV, (2.42e)
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where Vi is the support region of the basis function bi. This is the conservation equation for the angular flux

expansion.

Methods that preserve particle balance are much more likely to to converge to the correct solution. In

Sec. 2.8, the balance equations are also used in deriving an approximation to the material properties of

the transport equation. The restriction placed on the weight functions in Eq. (2.40) guides the selection of

appropriate weight functions in Sec. 2.10.

2.8 Integral and cross section discretization

To simplify the transport equations further, the integrals of the basis and weight functions and the cross

sections can be explicitly defined. The required integrals from Eqs. (2.32) that are independent of the

material properties include

i
S
bw;i,j,u ≡

∫
Si,j,u

biwjdS, (2.43a)

i
V
bw;i,j ≡

∫
Vi,j

biwjdV, (2.43b)

i
V

b∇w;i,j ≡
∫
Vi,j

bi∇wjdV, (2.43c)

I∇b∇w;i,j ≡
∫
Vi,j

∇bi∇wjdV (2.43d)

where Si,j,u is the intersection of the surface with index u and the support regions of the weight and basis

functions wj and bi. The external source can be simplified by assuming a spherical harmonic expansion for

the internal source moments Qm`,g,

qn,g =
L∑
`=0

2`+ 1

4π

∑̀
m=−`

Y m` (Ωn)Qm`,g, (2.44)

and separating the two terms of the SUPG weight function into two integrals using Eq. (2.28),

∫
Vj

w̃j,nQ
m
`,gdV = Q

m,0

j,`,g + τΩn ·Q
m,1

j,`,g, (2.45)

where the source integrals are defined as

Q
m,0

j,`,g ≡
∫
Vj

wjQ
m
`,gdV, (2.46a)

Q
m,1

j,`,g ≡
∫
Vj

∇wjQ
m
`,gdV. (2.46b)
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The integral over the boundary source can be defined similarly to the other boundary surface integrals as

ψ
ext

j,n,g,u ≡
∫
Sj,s

ψextn,gwjdS,

where Sj,u is the intersection surface of u and the support region for weight function wj .

2.8.1 Full cross section method

In a realistic simulation, the cross sections inside some of the integrals are spatially dependent because

the weight functions are not constrained to regions of homogeneous material. Due to the SUPG weighting,

the integrals involving the cross sections depend on the basis function i, the weight function j, the group

g and the direction n. The directional dependence is removed in the same way as for the nonhomogeneous

source in Eqs. (2.46). The cross sections are split into two separate sets of integrals, one for the weight

function and one for its gradient,

∫
Vi,j

w̃j,nΣt;gbidV = Σ
0

t;i,j,g + τΩn ·Σ
1

t;i,j,g, (2.47)

with the explicit cross section integrals

Σ
0

t;i,j,g ≡
∫
Vi,j

wjΣt;gbidV, (2.48a)

Σ
1

t;i,j,g ≡
∫
Vi,j

∇wjΣt;gbidV. (2.48b)

The fission cross section Σf ;g, fission spectrum χg and the average number of neutrons produced in a fission

νg are combined into group-to-group cross sections,

∫
Vi,j

w̃j,nχg

G∑
g′=1

νg′Σf ;g′bidV =

G∑
g′=1

(
Σ

0

f ;i,j,g′→g + τΩn ·Σ
1

f ;i,j,g′→g

)
, (2.49)

with the integrals

Σ
0

f ;i,j,g′→g ≡
∫
Vi,j

wjχgνg′Σf ;g′bidV, (2.50a)

Σ
1

f ;i,j,g′→g ≡
∫
Vi,j

∇wjχgνg′Σf ;g′bidV. (2.50b)
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The scattering cross section is similarly discretized,

Σ
0

s;i,j,`,g′→g ≡
∫
Vi,j

wjΣs;`,g′→gbidV, (2.51a)

Σ
1

s;i,j,`,g′→g ≡
∫
Vi,j

∇wjΣs;`,g′→gbidV. (2.51b)

This is referred to in this dissertation as the full cross section discretization, for which no approximation of

the cross section integrals is made.

The transport equation operators with these known integrals become

(Lpα)j,n,g =

J∑
i=1

[ ∑
u:Ωn·nk>0

(Ωn · nu) i
S
bw;i,j,u −Ωn · i

V

b∇w;i,j + τΩn ·
(
Ωn · I∇b∇w;i,j

)
(2.52a)

+Σ
0

t;i,j,g + τΩn ·Σ
1

t;i,j,g

]
αi,n,g, (2.52b)

(MSpβ)j,n,g =

L∑
`=0

2`+ 1

4π

∑̀
m=−`

Y m` (Ωn)

J∑
i=1

G∑
g′=1

(
Σ

0

s;i,j,`,g′→g + τΩn ·Σ
1

s;i,j,`,g′→g

)
βmi,`,g′ , (2.52c)

(MFpβ)j,n,g =
1

4π

J∑
i=1

G∑
g′=1

(
Σ

0

f ;i,j,g′→g + τΩn ·Σ
1

f ;i,j,g′→g

)
βmi,`,g′ , (2.52d)

(
Rpαb

)
j,n,g

= ρ

J∑
i=1

( ∑
u:Ωn·nk<0

|Ωn · nu| i
S
bw;i,j,u

)
αbi,nr,g. (2.52e)

(qp)j,n,g =
∑

u:Ωn·nk<0

|Ωn · nu|ψ
ext

j,n,g,u (2.52f)

+

L∑
`=0

2`+ 1

4π

∑̀
m=−`

Y m` (Ωn)
(
Q
m,0

j,`,g + τΩn ·Q
m,1

j,`,g

)
. (2.52g)

As no further approximations have been made to the discretized equations, the results for particle balance

from Sec. 2.7 directly follow. The boundary surfaces are assumed to have a constant normal direction, nu,

which allows the surface integrals iSbw;i,j,u to be performed independent of direction. The surface integrals

become the sum of the contributions from all the boundary surfaces downwind (u : Ωn · nu < 0) or upwind

(u : Ωn · nu > 0) of the problem in the direction Ωn.

2.8.2 Basis cross section approximation

The cross sections from the full cross section discretization have a high number of dependencies. The

scattering cross section, for instance, depends on the basis function, weight function and its gradient, scat-

tering moment, incoming group and outgoing group. To simplify these cross sections and reduce the number

of cross sections to store, a second cross section discretization, referred to in this dissertation as the basis
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cross section discretization, begins with the postulate that a cross section representation of the form

∫
Vi,j

w̃j,nΣt;gbidV ≈ Σt;i,g

∫
Vi,j

w̃j,nbidV (2.53)

can conserve global particle balance. To derive a cross section such that this global balance is preserved, the

equation is summed over the weight functions j [with the assumption that Eq. (2.40) holds] to get

∫
Vi

Σt;gbidV = Σt;i,g

∫
Vi

bidV. (2.54)

Note that the region of integration is no longer over dependent on the weight function region of support Vj

but instead on the basis function region of support Vi. The left side of this equation is the collision term in

the particle balance equation. The approximate cross section is solved for in this equation to get

Σt;i,g ≡
∫
Vi

Σt;gbidV∫
Vi
bidV

. (2.55)

With this approximate cross section, the transport equations reduce to the balance equation as before. The

balance conditions are applied to the scattering and fission cross sections as well, which produces the same

normalized weighting by the basis function,

Σf ;i,g′→g ≡
∫
Vi
χgνg′Σf ;g′bidV∫

Vi
bidV

, (2.56)

Σs;i,`,g′→g ≡
∫
Vi

Σs;`,g′→gbidV∫
Vi
bidV

. (2.57)

This approximation significantly reduces the number of cross section integrals to compute and store, as

the cross section integrals are no longer dependent on the weight function or its gradient. With these

approximations, the transport equation becomes

(
Lbα

)
j,n,g

=

J∑
i=1

[ ∑
u:Ωn·nu>0

(Ωn · nu) i
S
bw;i,j,u −Ωn · i

V

b∇w;i,j + τΩn ·
(
Ωn · I∇b∇w;i,j

)
+Σt;i,g

(
i
V
bw;i,j + τΩn · i

V

b∇w;i,j

)]
αi,n,g, (2.58a)

(
MSbβ

)
j,n,g

=

L∑
`=0

2`+ 1

4π

∑̀
m=−`

Y m` (Ωn)

J∑
i=1

G∑
g′=1

Σs;i,`,g′→g

(
i
V
bw;i,j + τΩn · i

V

b∇w;i,j

)
βmi,`,g′ , (2.58b)

(
MFbβ

)
j,n,g

=
1

4π

J∑
i=1

G∑
g′=1

Σf ;i,g′→g

(
i
V
bw;i,j + τΩn · i

V

b∇w;i,j

)
βmi,`,g′ . (2.58c)
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The basis-weighted operators have the superscript b. The source and reflection operators are unchanged

from Eq. (2.52).

In addition to preserving particle balance as discussed in Sec. 2.7, the SUPG stabilization also allows the

cross sections to be integrated without directional dependence. If the weight functions were instead skewed or

offset in the upwind direction, these integrals cross sections would additionally be dependent on the direction

Ωn, which would increase the number of integration variables by one to several orders of magnitude.

2.9 Discretization of the strong form of the transport equation

The weak form of the transport equation is converted back into the strong form by replacing each weight

function in the weak transport equation [Eq. (2.21)] with a Dirac delta function,

wj (x) = δ (x− xj) , (2.59)

which has the property ∫
V

δ (x− xj) f (x) dV = f (xj) . (2.60)

This results in the equations

(
Ltψ

)
n,g

= Ωn ·∇ψn,g (xj) + Σt;g (xj)ψn,g (xj) , (2.61a)(
Stφ

)m
`,g

=
∑
g′

Σs;`,g′→g (xj)φ
m
`,g′ (xj) , (2.61b)

(
F tφ

)m
`,g

= δ`,0χg (xj)

G∑
g′=1

νg′ (xj) Σf ;g′ (xj)φ
0
0,g′ (xj) , (2.61c)

(
qt
)
n,g

= qn,g (xj) . (2.61d)

The discrete-to-moment and moment-to-discrete operators remain the same as for the weak case. The

boundary condition [Eq. (2.16b)] is weighted by the same Dirac delta function,

ψn,g (xj) = ψincn,g (xj) + ρψnr,g (xj) . (2.61e)

To complete the discretization, basis function expansions [Eqs. (2.30)] are inserted into the operators,

(
Ltψ

)
n,g

=

J∑
i=1

[Ωn ·∇bi (xj) + Σt;g (xj) bi (xj)]αi,n,g, (2.62a)
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(
Stφ

)m
`,g

=
∑
g′

Σs;`,g′→g (xj)

J∑
i=1

bi (xj)β
m
i,`,g′ , (2.62b)

(
F tφ

)m
`,g

= δ`,0χg (xj)

G∑
g′=1

νg′ (xj) Σf ;g′ (xj)

J∑
i=1

bi (xj)β
m
i,`,g′ , (2.62c)

and the boundary condition,

J∑
i=1

bi (xj)αi,n,g = ψincn,g (xj) + ρ

J∑
i=1

bi (xj)αi,nr,g, (2.62d)

which completes the discretization of the transport equations. The superscript t denotes the operators

specific to the strong form. This is the standard strong form of the transport equations. Since the Dirac

delta functions chosen as weight functions do not satisfy Eq. (2.40), there is no guarantee of conservation.

Unlike for the weak form of the transport equation, the cross sections in Eqs. (2.62) are not volume-

weighted. They are equivalent to the full cross section discretization from Sec. 2.8 with a Dirac delta weight

function. If, however, the strong-form equations are derived directly from the fully-discretized transport

equations with basis function cross section weighting [Eqs. (2.58)], they retain volume weighting of the cross

sections,

(
Ltbα

)
j,n,g

∑
i

[
Ωn ·∇bi (xj) + Σt;i,gbi (xj)

]
αi,n,g, (2.63a)

(
MStbβ

)
j,n,g

=

L∑
`=0

2`+ 1

4π

∑̀
m=−`

Y m` (Ωn)

J∑
i=1

G∑
g′=1

Σs;i,`,g′→gbi (xj)β
m
i,`,g′ , (2.63b)

(
MF tbβ

)
j,n,g

=
1

4π

J∑
i=1

G∑
g′=1

Σf ;i,g′→gbi (xj)β
m
i,`,g′ . (2.63c)

The superscript th denotes operators specific to the basis-weighted collocation operators. The boundary

conditions from Eq. (2.62d) still apply. Equations (2.63) also carry no guarantee of particle conservation

but do include integral weighting of the cross sections. In Sec. 7.3.3, this is shown to improve the result of

the strong-form equation for a problem with heterogeneous materials.

For the strong-form equations, the boundary condition is not incorporated directly into the transport

equation. Instead, the points xj are separated into those on the problem boundary and those inside the

problem domain. The boundary condition is applied to every boundary point on upwind boundaries, Ωn ·n <

0, while the transport equation is applied to every point inside the domain and every boundary point not

on upwind boundaries, Ωn · n > 0. The iterative methods for the weak form [Eqs. (2.38)] apply for

these equations with the strong-form operators as well, with the distinction that the L operator applies the
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boundary condition for the upwind boundary points [Eq. (2.62d)].

2.10 Functions for meshless methods

The basis functions and weight functions that provide the functional expansions and test functions in

the transport equations [Eqs. (2.32) and (2.62)] have not been defined. The two requirements discussed in

Sec. 2.7 for the weak form to satisfy the conservation equation are that the weight functions sum to one [Eq.

(2.40)] and that the basis functions can accurately represent the exact solution. A third property that makes

computation much more efficient is if the radius of support for the basis and weight functions is compact. A

compact function has a value of zero outside of its support region. This limits the number of basis functions

that overlap with each weight function and the number of functions with a nonzero value at any given point,

which makes the integrals in the MLPG equations tractable and leads to sparse matrices for the streaming

operator (see Sec. 2.6).

2.10.1 Radial basis functions

A common class of functions used in meshless methods is the radial basis function (RBF). The value of

an RBF depends only on the distance traversed by the input vector, regardless of the number of dimensions.

An example of a RBF with the dimensionless distance r is the Gaussian function

Γgauss (r) = e−r
2

. (2.64)

To make this RBF compact, the value of the Gaussian function can be decreased by a constant to have a

zero value at and after a finite value R of the dimensionless radial value r,

Γcomp gauss (r) =


e−r

2
−eR

2

1−e−R2 , r < R,

0, otherwise.
(2.65)

A good choice for R may be around R = 5.0, which limits the discontinuity in the derivative at r = R to

around 10−10. When integrating the basis and weight functions, this discontinuity can decrease the accuracy

of the integration. Other popular RBFs include the multiquadric and inverse multiquadric functions,

Γmult (r) =
√

1 + r2, (2.66)

Γinv mult =
1√

1 + r2
. (2.67)
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These functions are shown in Fig. 2.1b.

There also exist compact RBF functions with no derivative at the edge of the support radius, such as

the Wendland functions [47],

Γx,y (r) =


γx,y (r) r ≤ 1,

0, otherwise,
(2.68)

where a few of the functions are defined as

γ1,1 (r) = (1− r)3
(1 + 3r) , (2.69a)

γ1,2 (r) = (1− r)5 (
1 + 5r + 8r2

)
, (2.69b)

γ1,3 (r) = (1− r)7 (
1 + 7r + 19r2 + 21r3

)
, (2.69c)

γ3,1 (r) = (1− r)4
(4r + 1) , (2.69d)

γ3,2 (r) = (1− r)6 (
3 + 18r + 35r2

)
, (2.69e)

γ3,3 (r) = (1− r)8 (
1 + 8r + 25r2 + 32r3

)
. (2.69f)

These functions are computationally inexpensive to evaluate, but unlike the Gaussian, multiquadric, and in-

verse multiquadric functions, they have limited smoothness (i.e. a limited number of continuous derivatives).

For the weak transport equation, which only contains first derivatives, this is not a practical limitation.

RBFs can be used directly as basis or weight functions in the Petrov-Galerkin method from Sec. 2.5,

gi (x) = Γ (εid (x,xi)) , (2.70)

where d is some distance measure such as the Euclidean distance,

dL2
(x,y) = ‖x− y‖ . (2.71)

This L2 distance creates functions that are radially symmetric about the center of the function at xi. The

L1 distance would create a square region of support. For the following chapters, the L2 distance is used in

all cases. These functions have the shape parameter εi, which controls the support radius of the function. If

the support radius of an RBF is rsup [e.g. rsup = 1 for the example in Eq. (2.68)] and the desired support

radius of the basis or weight function is ri, the shape parameter is defined as

εi =
rsup
ri

. (2.72)
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The gradient of the RBF is taken using the chain rule,

∇gi (x) = εi [∇d (x,xi)] ◦ [∇Γ (εid (x,xi))] , (2.73)

where the ◦ denotes the Hadamard (or entrywise) product. Sets of radial basis functions do not generally

form a partition of unity, i.e.

there exists x such that
I∑
i=1

gi (x) 6= 1, (2.74)

which means that they do not meet the desired requirements for particle conservation.

2.10.2 Moving least squares functions

The moving least squares (MLS) method transforms a meshless basis into a new basis that can represent

a certain order of polynomials exactly. When used for interpolation, the method minimizes the error of the

function with respect to given values in a least-squares sense. The MLS functions are defined as [48]

hi (x) = p> (x)A−1 (x)Bi (x) , (2.75a)

where

p> (x) =

[
1 x y z xy xz yz x2 y2 z2 . . .

]
, (2.75b)

A (x) =

n∑
i=1

gi (x)p (xi)p
> (xi) , (2.75c)

Bi (x) = gi (x)p (xi) . (2.75d)

The gi (x) functions are the RBF weighting functions from the other meshless basis. The action of A−1 (x)

is to normalize the value of the basis functions at the point x so the new basis can represent functions in

the set of polynomials p (x) exactly. When multiplied by Bi (x), the function represents the value for the

new, normalized basis hi (x). Derivatives of the MLS functions can be taken using the product rule,

∂hi (x)

∂xj
=
∂p> (x)

∂xj
A−1 (x)Bi (x) + p> (x)

∂A−1 (x)

∂xj
Bi (x) + p> (x)A−1 (x)

∂Bi (x)

∂xj
, (2.76a)
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Algorithm 2.1 Calculation of the values and derivatives of MLS functions
1: function mls values(x)
2: find all functions with a nonzero value at x
3: for each local function i do
4: calculate the value of the RBF function gi(x) and its derivative ∂xjgi(x) for each dimension j
5: calculate the value of the polynomial function p(xi)
6: end for
7: calculate the value of the polynomial function p(x) and its derivative ∂xjp(x) for each dimension j
8: calculate the matrices A(x) and ∂xjA(x) for each dimension j
9: invert or decompose the matrix A(x)

10: calculate the matrix ∂xjA−1(x)
11: for each local function i do
12: calculate the vectors Bi(x) and ∂xjBi(x) for each dimension j
13: calculate the value of the MLS function hi(x) and its derivatives ∂xjhi(x) for each dimension j
14: end for
15: return values and derivatives of MLS functions
16: end function

with the values

∂Bi (x)

∂xj
=
∂gi (x)

∂xj
p (xi) , (2.76b)

∂A−1 (x)

∂xj
= −A−1 (x)

∂A (x)

∂xj
A−1 (x) , (2.76c)

∂A (x)

∂xj
=

n∑
i=1

∂gi (x)

∂xj
p (xi)p

> (xi) . (2.76d)

In order for the inverse of the A matrix to be well-defined, there should be at least as many parent RBF

functions at every point in the domain as there are polynomials in the set p. Ideally, the values of every

MLS function desired at a given point are calculated simultaneously, as in Alg. 2.1.

The MLS functions meet all three of the conditions mentioned at the start of this section. Unlike the

RBF basis functions, MLS functions do form a partition of unity,

∑
i

hi (x) = 1 for every x, (2.77)

which allows for proof of convergence in a Petrov-Galerkin method. In addition, the ability to represent

polynomials locally gives some indication that the functions can accurately represent a continuous function,

because in the limit of many functions the solution in the support region of any one function appears constant

or linear. Finally, by using compact RBF functions to create the MLS basis, the MLS functions themselves

are compact.

Figure 2.1 shows various meshless functions for a simple set of equally-spaced centers in 1D. The standard

RBF functions are global. The multiquadric functions in particular do not converge to a finite limit as
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Figure 2.1: Meshless functions in 1D for 10 equally-spaced center positions and 8 neighbors in radius calcu-
lation

r → ∞. Unlike the global RBFs, the Wendland RBFs have a finite support radius. Note, however, that

like the standard RBFs, the sum of these functions is not equal to one at every point. This prevents proof

of neutron conservation (Sec. 2.7). Finally, note the MLS functions in Fig. 2.1d that are created using the

initial basis of the Wendland 11 RBFs in Fig. 2.1c. The sum of all the MLS functions at every point in the

domain is equal to one. The linear MLS functions are mostly positive except near the boundaries, where

they can go negative. The quadratic MLS functions, on the other hand, have negative values for much larger

sections of the domain. Because of this, the results in Chapters 5, 6 and 7 use the linear MLS functions.

Empirical tests showed no improvement using the quadratic functions instead of the linear functions in

transport calculations.

34



Chapter 3

Implementation of meshless neutron transport

The process of numerically solving the MLPG form of the neutron transport equations from Chapter 2

involves:

1. Creating the energy and angular discretizations (Sec. 3.1);

2. Creating the spatial discretization (Sec. 3.2), including

(a) Defining the physical parameters of the system, such as the material properties, boundary sources

and problem dimensions;

(b) Creating the weight functions; and

(c) Performing integration of the basis and weight functions, the boundary and internal sources and

the cross sections (Chapter 4); and

3. Defining the operators representing the individual terms of the transport equation and solving the

resulting linear system of equations using an appropriate solution technique (Sec. 3.4).

This section discusses how these steps are optimized to keep the total simulation cost reasonably low,

including through parallelization (Sec. 3.5). Performance figures for the MLPG method are included in Sec.

3.6.

3.1 Energy and angular discretization

The independent variables for the energy discretization in the multigroup equations include the number

of energy groups and the upper and lower energy bounds of each group. These parameters define which

energies each group represents in the integration of the the multigroup cross sections, the source and the

neutron flux (Sec. 2.1.1). If cross sections are generated through a Monte Carlo simulation, these energies

are used as the energy bounds for the energy tally. For all of the problems in Chapters 5, 6 and 7, the

cross sections are generated or chosen ahead of the meshless simulation and the benchmark solutions (where

applicable) are generated in multigroup space. This is done to isolate the spatial discretization error, which
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may be overshadowed by the error in converting the continuous-energy cross sections to multigroup cross

sections.

The independent variables for the angular discretization are the number of scattering moments for the

scattering cross section and the number of directions for the discrete form of the solution. The number

of scattering moments defines the angular size of the scattering cross section and the number of spherical

harmonic moments. The directions of flight Ωn are a set of integration ordinates on the sphere. In one-

dimensional Cartesian geometry, the angular dependence is axially symmetric about the x axis. Gauss-

Legendre ordinates and weights are used for the one-dimensional angular ordinates and weights. In two-

dimensional Cartesian geometry, the angular dependence is symmetric about the x − y plane. For the

two- and three-dimensional problems in this dissertation, the ordinates and weights for integration over the

unit sphere are from the LDFE quadrature [49]. The discrete-ordinates assumption made for the angular

discretization in Sec. 2.1.2 does not preclude convergence to a continuous-in-angle solution. As the number

of directions increases, the error due to the angular discretization should decrease.

3.2 Spatial discretization

In the discretized transport equations [Eq. (2.52)], there are no constraints on the spatial dependence of

the cross sections, internal source and boundary sources. These values can be provided directly as functions

or, as in a Monte Carlo code, by a constructive solid geometry (CSG). The CSG uses analytic surfaces to

define regions of (usually constant) material. For more information the implementation of the CSG, see

Appendix B. The manufactured solutions in Chapter 5 use functional forms for the cross sections, while the

results for more realistic problems in Chapters 6 and 7 use a CSG. The full initialization process for the

spatial discretization is shown in Alg. 3.2.

Algorithm 3.2 Initialization of the spatial discretization
1: initialize spatial discretization options
2: read in positions of the basis and weight function centers
3: create a k-d tree for distance calculations
4: calculate the radii of the meshless functions
5: initialize RBF functions
6: for each basis or weight function i do
7: find all other basis and weight functions that intersect with function i
8: check that no other centers are too close to the center of function i
9: end for

10: create MLS functions using RBF functions
11: create the basis and weight functions using the MLS functions
12: find the basis and weight functions that intersect with the boundaries of the problem
13: read in cross sections and sources
14: perform basis and weight function integration
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3.2.1 Basis and weight functions

The centers of the basis and weight functions can be placed independently of one another and of the

problem geometry, with a few caveats. For accurate representation of the solution, a higher concentration

of centers should be placed in areas where high gradients are expected. If the weight function centers are

placed too close together, the equations are no longer be independent and the system is underdetermined,

while if the basis centers are placed too close together, the unknown variables are no longer be independent

and the system is overdetermined. To prevent these issues, the code checks each basis and weight function

center for other centers that are too close. This is quantified for each center by comparing the radius of the

meshless function ri and the distance to the nearest other center dnearest
i . This is quantified in the code by

a ratio of these two quantities, which should be larger than a predefined tolerance ε,

ε <
dnearest
i

ri
,

which for these calculations is defined to be ε = 10−3. For randomized points, this tolerance may need to be

increased to properly protect against an ill-conditioned set of points.

The algorithm to calculate the radii of the basis and weight functions is listed in Alg. 3.3. The purpose of

the algorithm is to ensure that at the center of each basis or weight function, at least N nearest points have

a nonzero value. If the point spacing is not too irregular (e.g. sets of isolated points that don’t “see” other

any other sets), this also ensures basis and weight function coverage throughout the problem domain. The

connectivity of the chosen points and radii is calculated using a k-d tree [50] from nanoflann [51]. To find

which basis functions overlap with each weight function, the weight function radius is added to the maximum

basis function radius in the problem and a radius search is performed to find candidates for intersection,

which are then individually checked for actual intersection.

Algorithm 3.3 Calculation of the support radii for the basis and weight functions
1: initialize all radii to zero
2: for each point i do
3: find the nearest N neighboring points
4: for each neighboring point j do
5: calculate the distance from point j to point i
6: if current radius of point j < distance to point i then
7: set current radius of point j = distance to point i
8: end if
9: end for

10: end for
11: for each point i do
12: multiply the radius of point i by a chosen scalar
13: end for
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Figure 3.1: Process of creating a set of MLS functions

A one-dimensional plot of MLS functions with a Wendland function basis in 1D is shown in Fig. 2.1.

The process of creating a set of MLS functions is illustrated for a 2D example in Fig. 3.1. The centers of

the basis and weight functions are chosen to be a set of 32 Cartesian points. The radii are calculated such

that for each function, eight total centers, including the center of the original function, are included in or on

the edge of the support radius. The standard RBF function basis is created with these support radii. As in
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Fig. 2.1c, these functions do not sum to one at every point in the domain. Note that each RBF function is

symmetric about its center. Using the original RBF basis, the values of the MLS functions can be calculated

anywhere in the domain. The values of these functions in Fig. 3.1d do sum to one at every point in the

domain but are no longer symmetric about the centers.

Once a set of basis and weight functions is created, the integration can be performed as described in

Chapter 4. For the strong-form equations, the integration is only performed for the basis function weighting

[Eqs. (2.63)], as the point weighting uses cross sections evaluated at the collocation points. The center points

of the basis functions are also used as the evaluation (or collocation) positions for the equations. Because

of this, a few additional constraints are placed on the placement of the basis function centers for the strong

form. First, there must be points on the problem boundaries to satisfy the boundary conditions, which

unlike the weak form are not included in the transport equation. Second, no boundary point should be on

more than one boundary surface, such as at a corner, as this would create a contradiction in the value of

the surface normal and definition of which points are upwind for a chosen direction. The final constraint is

the same as for the weak form, namely that to avoid ill-conditioning, the basis function centers should be

placed as evenly as is practical for the problem geometry.

3.2.2 SUPG stabilization

The parameter that controls the addition of SUPG stabilization into the problem, τ from Eq. (2.28), is

chosen to be weight-function dependent (i.e. τ → τj) according to the radius of the weight function rj ,

τj = crj , (3.1)

where c is user-defined constant. With the shape parameter from Eq. (2.72), the RBF value and derivative

from Eqs. (2.70) and (2.73) and the τj value from Eq. (3.1) with a dimensionless support radius of rsup = 1,

the SUPG-augmented weight function [Eq. (2.28)] becomes

w̃j,n = Γ (εjd (x,xi)) + cΩn · ([∇d (x,xi)] ◦ [∇Γ (εjd (x,xi))]) . (3.2)

Equation (3.2) shows that for the of τj in Eq. (3.1), the function-to-derivative ratio in the stabilized weight

function becomes independent of the weight function radius rj . A constant τ would add comparatively

more numerical diffusion for weight functions with smaller radii. This does mean that the condition for
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conservation [Eq. (2.41)] is not preserved, as

J∑
j=1

τjΩn ·∇wj 6= 0 (3.3)

in general, even where Eq. (2.40) holds. However, in empirical tests, the weight function-dependent τj shows

better performance and convergence for problems with varying radii rj than a constant τ .

In both the full [Eqs. (2.52)] and basis [Eqs. (2.58)] fully-discretized equations, the moment-to-discrete

operator attached to the scattering, fission and implicitly the source can be separated by separating the

terms including τ from the terms included in the transport equation without SUPG. The summation of

the SUPG terms is then performed using a modified moment-to-discrete operator. This adds an additional

index for the gradient terms, which is d in the following equations. For example, for the “full” cross section

equations, the scattering term becomes

(
Sdβ

)
j,n,g,d

=


∑J
i=1

∑G
g′=1 Σ

0

s;i,j,`,g′→gβ
m
i,`,g′ , d = 0,∑J

i=1

∑G
g′=1

(
Σ

1

s;i,j,`,g′→g

)
d
βmi,`,g′ , d = 1, 2, 3.

(3.4)

and the moment-to-discrete operator becomes

(
Mdβ

)
j,n,g

=

L∑
`=0

2`+ 1

4π

∑̀
m=−`

Y m` (Ωn)

3∑
d=0

fdβ̃
m
j,`,g,d, (3.5)

where β̃mj,`,g,d is the result of the Sd scattering operator and

fd =


1, d = 0,

τ (Ωn)d , d = 1, 2, 3.

(3.6)

With these definitions,MdSdβ = (MSp)β. The results for the fission cross term directly follow. This same

method can be applied to the volume part of the source term,

(
qdV
)m
j,`,g,d

=


Q
m,0

j,`,g, d = 0,(
Q
m,1

j,`,g

)
d
, d = 1, 2, 3.

(3.7)

with the same moment-to-discrete operator. These optimizations cut down on unnecessary computational

cost in the scattering, fission and internal source operators.
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3.3 Streaming and collision operator

The L operator in both the weak and strong forms [Eqs. (2.32a) and (2.62a), respectively] represents the

application of a set of independent, sparse matrices for each direction n and energy group g, with weighted

equations corresponding to the rows. The number of nonzero elements in each row j is the number of basis

functions that intersect with the applicable weight function wj . The L−1 operator, or the inverse of the L

operator, is equivalent to the solution of the system

Lα = q (3.8)

for the coefficients α given the vector q. The sparse L matrix reduces storage cost and permits the use of

sparse linear algebra packages to solve Eq. (3.8).

3.3.1 Linear solver packages

Several solvers from Trilinos [52] are implemented to solve the L−1 linear problem in Eq. (3.8). The KLU

solver from Amesos uses the LU decomposition to directly solve the L−1 problem. The direct solver is much

more expensive in memory and computational cost than iterative solvers and is not generally needed for

the weak-form equations with SUPG stabilization. The strong-form equations and the weak-form equations

without SUPG stabilization have far worse conditioning without this diffusive stabilization and generally do

not work with iterative solvers.

The Pseudo-Block generalized minimal residual (GMRES) solver from the Belos package is used for

iterative solution of the linear problem. GMRES is a Krylov subspace method that relies on repeated

applications of the L operator [Eq. (3.8)] to solve the linear problem. Because only the matrix and not its

inverse is used, the cost of the decomposition in a direct solve is allayed and only the application of the L

matrix is needed, not the explicit matrix. This solver can be used without a preconditioner for problems

that are well-conditioned. For most problems, a preconditioner improves the performance significantly.

3.3.2 Preconditioners

To improve the conditioning of the GMRES solution, a preconditioner can be added to the problem.

A preconditioner is an approximation to the inverse of the original linear system, L−1. Applying this

preconditioner P−1 to both sides of the original linear equation [Eq. (3.8)] results in a left-preconditioned

system,

P−1Lα = P−1q. (3.9)
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For a good choice of preconditioner, the combined matrix P−1L (which need not be explicitly formed)

has a lower condition number than the matrix L. The simplest preconditioner is the matrix L−1, which

solves the system exactly in one iteration but provides no speedup compared to using a direct solver. A

right-preconditioned system has a similar form,

LP−1Pα = q. (3.10)

These preconditioners are applied here using the ILUT (incomplete LU decomposition with threshold)

preconditioner from the Ifpack package of Trilinos. Instead of storing the entire LU decomposition of the

preconditioner P, which is much less sparse than the original matrix, the ILUT decomposition instead stores

an approximate form of the LU decomposition. The ILUT preconditioner allows specification of the level

of fill and the drop tolerance of this approximate decomposition. The level of fill controls to the number of

elements kept in the decomposition with respect to the original matrix. For a level of fill of 1.0, for instance,

the P−1 matrix has approximately the same number of elements as the original P matrix. The dropping

technique of the ILUT preconditioner ensures that the remaining elements of the approximate P−1 matrix

are larger than the drop tolerance. For most of the calculations in Chapters 5, 6 and 7, the level of fill is 1.0

and the drop tolerance is 10−12.

To precondition the streaming operator, a suitable preconditioner P must be defined. The most obvious

option for a preconditioner is to use the streaming operator matrix itself, L = P, and then let the ILUT

preconditioner form an approximate inverse. The L operation for the MLPG transport equations actually

represents the application of linearly independent matrices for each group and direction, which can be denoted

as Ln,g. The ILUT preconditioner stores a separate ILUT approximation for these preconditioners P−1
n,g for

each direction n and group g. This is the preconditioner used for most of the results in the following chapters,

but this method does have major drawbacks in memory cost. These preconditioners can be formed anew for

each L−1 application, but this requires an excessive amount of computation that overshadows the benefits

of the preconditioner.

The second preconditioner implemented in the code relies on the assumption that a solution for the

angular flux values at the centers of the weight functions, ψn,g (xj), would be better-conditioned than a

solution for the coefficients of the basis function expansion αi,n,g. The angular flux at the weight function

centers xj is calculated from the basis function expansion as

Bα = ψ, (3.11)
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where

Bi,j,n,g = bi (xj) . (3.12)

Solving Eq. (3.11) for α and inserting this expansion into the L linear system from Eq. (3.8),

LB−1ψ = q, (3.13)

results in an equation that solves for the angular flux at the weight function centers. To convert back to a

solution for the angular flux expansion coefficients, the definition from Eq. (3.11) is again applied to get

LB−1Bα = q, (3.14)

which is a right-preconditioned system for the L operator with the preconditioner B. Unlike the first pre-

conditioner, the matrix B is independent of both energy group and direction. The storage cost is therefore

negligible, which reduces the memory requirements of solving the MLPG transport equations compared to

the first preconditioner by one to two orders of magnitude. However, because this preconditioner is not as

good of an approximation to the original L matrices, the number of GMRES iterations required to converge

the solution can increase significantly. If the problem is solvable using GMRES without preconditioning,

this second preconditioner often takes as many iterations as the unpreconditioned system, which indicates

as expected that the preconditioner is not a good approximation to the matrix. However, the preconditioner

also allows solution of problems that are too ill-conditioned for unpreconditioned GMRES, which for these

problems validates the assumption that the solution for ψ instead of α would improve the conditioning of

the solve.

3.4 Iteration on the scattering and fission sources

The streaming problem in Sec. 3.3 represents the solution for the angular flux for a given fixed neutron

source. To solve the full transport equation, an additional solution step is required in iterating over the scat-

tering and fission sources. The steady-state and k-eigenvalue cases are considered separately. For simplicity

in notation, the Petrov-Galerkin superscripts from Eqs. (2.38) are dropped.

3.4.1 Steady-state outer iterations

For a problem with no scattering or fission, the steady-state transport equation [Eq. (2.38a)] becomes

β = DL−1q (3.15)
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and a single application of the L−1 operator produces the solution. Equation (3.15) represents the first-

flight source, or the source neutrons that have not interacted with the material. If there are reflective

boundaries in the problem, a simple source iteration scheme is used to converge on the first-flight source,

which includes neutrons that have been reflected but have not interacted with the material. After the

neutrons have interacted with the material, they may scatter or produce fission neutrons. The neutrons

from these subsequent generations are added to the first-flight source to calculate the full solution to the

neutron transport equation. The iterations over the scattering and fission sources, referred to as the outer

iterations, can be done directly through source (or Richardson) iteration,

β`+1 = DL−1M (S + F)β` +DL−1q, (3.16)

where the index ` refers to the iteration. This iteration process is continued until the solution β converges

to a chosen tolerance. The source iteration equation updates the scattering and fission sources for each

subsequent generation of neutrons. If the initial guess for the solution is β1 = DL−1q, then β` represents

the `th flight neutrons. For problems with high scattering ratios where the neutrons may scatter hundreds

of times before leaving the problem through absorption or leakage, source iteration is not ideal as it requires

an iteration to simulate each generation of neutrons.

The Krylov solvers discussed in Sec. 3.3 provide a simple way to speed up the calculations. Eq. (3.16)

can be rewritten into the form used throughout Chapter 2,

[
I − DL−1M (S + F)

]
β = DL−1q, (3.17)

and solved by applying a GMRES solver to invert the combined operator on the lefthand side of the equation.

The combined operator does not need to be formed explicitly, as GMRES only requires the action of the

operator. For the solution of this system, the code uses AztecOO, which is another Trilinos package, without

preconditioning. Preconditioners such as diffusion synthetic acceleration [53] have been successfully applied

to speed up convergence of the scattering and fission sources for various other transport discretizations, but

are not investigated here for the MLPG equations.

3.4.2 Eigenvalue outer iterations

The standard operator form of the k-eigenvalue equation [Eq. (2.18b)] for the coefficients β is written

Lβ =M
(
S +

1

k
F
)
Dβ, (3.18)
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where again the operators convert from the coefficients to the physical neutron flux where appropriate. One

method of solving this equation is fixed point iteration, which updates the coefficients using a similar process

to source iteration,

β`+1 = DL−1M
(
S +

1

k`
F
)
β`. (3.19a)

After each iteration, the eigenvalue is updated as

k`+1 =

∥∥Fβ`+1
∥∥∥∥ 1

kFφ` − S (β`+1 − β`)
∥∥ , (3.19b)

where the norm ‖(·)‖ represents a volume summation or integral [54]. Power iteration, which is more costly

per iteration than fixed point iteration but also more stable, is written as

β`+1 =
(
I − DL−1MS

)−1DL−1M1

k
Fβ`, (3.20a)

while the update of the eigenvalue takes the form

k`+1 =

∥∥Fβ`+1
∥∥∥∥ 1

k`
Fβ`

∥∥ . (3.20b)

The
(
I − DL−1MS

)−1 term in the power iteration represents the solution of a steady-state transport prob-

lem (
I − DL−1MS

)
β = s, (3.21)

where s is the given source. Thus, each power iteration requires a full steady-state solution when using power

iteration.

Similar to the steady-state equation, the k-eigenvalue problem can be solved more efficiently by using

Krylov iterative methods. For a Krylov solver that requires isolation of the eigenvalue (such as Block

Krylov-Schur), the Krylov iteration can be written as

(
I − DL−1MS

)−1DL−1MFβ = kβ, (3.22)

where again a full steady-state problem must be solved for each eigenvalue iteration. Generalized eigensolvers

reduce the cost further by supporting an operator on the eigenvalue side of the equation,

DL−1MFβ = k
(
I − DL−1MS

)
β. (3.23)
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This form of the eigenvalue equation is solved here with unpreconditioned Generalized Davidson using

Anasazi, another Trilinos package. This significantly reduces computational cost compared to the other

eigensolvers [55].

3.5 Parallelization

The code for the MLPG equations uses OpenMP [56] to implement thread-level parallelization. For the

meshless integration technique (Sec. 4.1) the independence of the integrals for each weight function allows for

parallel integration. For the background integration technique (Sec. 4.2), the integration is parallelized for

the background cells and surfaces. As the basis and weight functions are not exclusive to a single background

cell, each thread receives its own copy of the integrals. After the integration is complete for all threads, these

integrals are summed together, which produces the full integral of each basis and weight function over the

entire problem domain. Due to the adaptive integration technique introduced in Sec. 4.2, the time required

to integrate the basis and weight functions over each cell is not constant. As such, the scheduling of the

parallel integration is dynamic.

The operators such as D,M, S and F are parallelized for the spatial index. For instance, the weighted

fission sources for the weight functions wj are calculated in parallel. Because of the shared-memory model,

the overlap of the basis function coefficients between the various weighted fission sources is not an issue.

If directionally-dependent preconditioners (Sec. 3.3.2) are used, their ILUT decomposition is computed

in parallel. If the preconditioners are independent of direction, each thread computes and uses a separate

copy of the preconditioner. The streaming and collision operator is independent for each group and direction

and is parallelized in direction. The GMRES operator that performs the outer iterations does not occupy a

large percentage of the computational time and is not parallelized.

For extension to a higher number of processors than one node, the Trilinos linear algebra packages used

for the outer and inner transport iterations support fully parallel computations using MPI. The weighting of

the solution coefficients to calculate the scattering and fission sources and the L−1 operator are the two places

where the code requires communication between different spatial points, and these could be parallelized using

MPI for the communication and Trilinos for the parallel linear solution of the equations.

3.6 Performance figures from results

The meshless method trades flexibility in geometric specification for computational cost. The main

contributors to higher computational cost are the integration step and the initialization and application

of the matrices representing the L−1 operation for each direction and energy group. Unlike mesh-based
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methods, which usually have constant material parameters in each cell and use simple polynomial basis

functions, the presented method must query the CSG for material properties and uses functions that require

many quadrature points to integrate accurately. The number of basis functions at each integration point

ranges from 10–30 in 2D to 20–90 in 3D. Each of these basis functions is expensive to calculate in comparison

to a polynomial, particularly when using an MLS basis [see Eqs. (2.75) and (2.76)]. The integrals must

simultaneously converge over the cross sections and the basis and weight functions, making problems such

as the IFBA pincell problem (Sec. 7.1) with discontinuous cross sections and radii that vary over more than

an order of magnitude difficult to integrate accurately (Sec. 4.5).

The performance of the code is measured for several of the problems as specified in Chapters 6 and

7. While the base cost of the MLPG method is high, the time and memory required scales approximately

linearly with the number of points for any given problem. Table 3.1 shows the results of an empirical fit

of the timing and memory data to the number of points. The solve scales near-linearly for the problems

considered. The exception to the linear scaling is the initialization time of the native ILUT preconditioners

for the L−1 matrices in three dimensions, which scales approximately as N1.5 for the number of points N .

Values for the timing and memory requirements for sample problems that have around 5000 points are

shown in Table 3.2. Most of the timing values are highly problem-dependent. The VERA pincell cases have

similar integration times to the 3D problems due to the geometric complexity and small basis and weight

function radii near the fuel boundary. The pincell problems have no leakage and low absorption outside of

the IFBA region in the thermal group, which means the boundary source takes many iterations to converge.

Adjusting for the number of points, each iteration for the VERA and ICSBEP problems takes approximately

the same time.

Storage of the native ILUT preconditioners for each direction and group represents most of the high

memory cost. The computational cost of initializing the ILUT preconditioners makes recomputation at each

application of the L−1 operator impractical. For details on the memory usage and computational cost of the

two preconditioners, see Sec. 3.6.2.

Table 3.1: Empirical scaling of memory and timing with number of points N with native ILUT preconditioner

Scaling parameter 1D 2D 3D

Memory

Timing

Integration ∼ N

L−1 initialization ∼ N1.5

Solve ∼ N1.15 ∼ N1.2

47



Table 3.2: Example performance figures using four processors with standard ILUT preconditioner

Parameter Slab 1D VERA 1B VERA 1E Kobayashi ICSBEP

Problem type Fixed Eigenvalue Eigenvalue Fixed Eigenvalue

Spatial dimensions 1 2 2 3 3

Num. points 5120 5556 5439 4913 4998

Num. directions 256 256 256 512 512

Num. groups 2 2 2 1 1

Num. integration cells 5000 16384 16384 8000 4160

Num. quadrature points per cell 16 256–1024 256–12544 512 1728

Memory (GB) 1.48 2.79 3.24 4.99 5.01

Number of iterations 16 52 46 19 20

Timing (sec)

Total 37 330 751 427 767

Integration 1 59 480 232 568

L−1 initialization 11 29 59 123 116

Solve 24 241 211 71 83

3.6.1 Parallel performance

Due to the shared-memory model of the MLPG code, the number of processors for which the code can be

tested is limited. The parallelism does not involve heavy communication between processes for the parallel

portions of the code, so good efficiency is expected for these portions of the code. However, there are some

sections of the code, including the initialization of the spatial geometry and the outer GMRES solver, are run

in serial and could have an impact on parallel performance. The code is not heavily optimized for parallel

performance, and so while these results do show good speedup for some cases, near-optimal speedup is not

expected.

To test the parallel performance, the Kobayashi problem from Sec. 6.3 with scattering is run in parallel

for 1, 2, 4 and 8 processors for between 1000 and 64000 points with the same problem parameters as in

Table 6.1, except with 128 directions to decrease the total runtime of the parallel tests. The efficiency of the

parallelism is calculated as

Ep =
T1

pTp
, (3.24)

where Tp is the execution time of the problem on p processors. The efficiency is calculated for each of the

spatial initialization step (which is dominated by the integration of the basis and weight functions), the

initialization of the preconditioners and solution of the operator equations, and the total time.
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Figure 3.2: Parallel efficiency for the Kobayashi problem with scattering, linear MLS functions
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Figure 3.3: Parallel efficiency for the Kobayashi problem with scattering, RBF functions

Figure 3.2 shows the parallel efficiency for the simulation using linear MLS functions created from a

Wendland 11 basis. The preconditioner initialization has near-optimal efficiency as no communication be-

tween the processes is needed. The solution of the problem falls off in efficiency as the number of processors

increases, from around 80 percent for 4 processors to 50 percent for 8 processors. This is possibly due to the

serial sections of code in the solution step. The integration step of the spatial initialization does not involve

heavy communication between processors or long serial sections, so the drop in efficiency signals that the

integration step is likely slowed by either shared data access between processors due to the interdependent

MLS functions or by the disparity in calculation times for MLS functions with few or many Wendland basis

functions.

The same study with the same problem and parameters is done for the Wendland 11 functions without

linear MLS normalization. In Fig. 3.3, the preconditioner initialization and solution show similar results,

but the spatial initialization efficiency becomes near-optimal, at over 90 percent efficiency for all choices of

number of processors and points. The only difference between these two studies is the normalization of the

linear MLS functions, which significantly slows parallel performance. It is likely that with optimization the

linear MLS functions could be calculated in parallel with similar efficiency. Because the integration step is

more efficient, the total parallel efficiency is near-optimal for this problem. For a problem with a scattering
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source that is more difficult to converge, the suboptimal solution efficiency would reduce the total efficiency.

3.6.2 Preconditioner performance

The native ILUT preconditioner works well for most problems as long as the radii of the basis and weight

functions are not too large. The fill level of the L−1 matrices can be increased to compensate for larger

radii, but at the cost of computational performance. From empirical tests, if the problem does not converge

for a fill level of 1.0, then it is likely that the point setup itself is too irregular (see Sec. 3.2.1), the SUPG

parameter for numerical diffusion is too low (Sec. 3.2.2) or the chosen radii of the basis and weight functions

is too large. Generally, the native preconditioner reduces the required number of inner iterations from several

hundred to around 4 to 10.

The basis function value preconditioner does not work as reliably well as the native preconditioner and

requires many more iterations to converge as it is not a good approximation to the original L matrix, as

discussed in Sec. 3.3.2. For instance, for an IFBA pincell (Sec. 7.1) with 3522 points and 256 directions on

4 processors, the native preconditioner requires 57 seconds to initialize the preconditioner matrices and 349

seconds to solve the full operator equations, while the basis function preconditioner requires 7 seconds to

initialize the preconditioner matrices and 3164 seconds to solve the equations (Table 3.3). This appears to

be almost entirely due to a larger number of GMRES iterations to solve the L−1 system. However, the basis

function preconditioner requires much less memory, at 0.55 GB instead of 3.02 GB. For problems with more

directions and energy groups, the difference in memory usage is correspondingly larger, as the basis function

preconditioner scales only with the number of points, whereas the native preconditioner scales linearly with

the product of the number of points, directions and groups. For this problem, the GMRES solver without a

preconditioner does not converge.

There also exist problems for which the basis function preconditioner does not work well. For instance,

for the partially-scattering Kobayashi problem (Sec. 6.3) with 64000 points and 512 directions, the L−1

operation with the basis function preconditioner does not converge within 8000 GMRES iterations for some

directions. However, for this problem the GMRES method without preconditioning does converge (see Table

Table 3.3: Preconditioner performance for VERA 1E problem with 4 processors, 3522 points and 256 direc-
tions

Preconditioner Num. precs. Memory Prec. init. Solve Outer Inner

Basis function 1 0.549 GB 6.6 sec 3164.3 sec 45 475–668

Native 512 3.017 GB 56.7 sec 348.9 sec 45 7–8

None 0 does not converge
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Table 3.4: Preconditioner performance for Kobayashi problem with 8 processors, 64000 points and 512
directions

Preconditioner Num. precs. Memory, (basis / full) Prec. init. Solve Outer Inner

Basis function 1 does not converge

Native 512 72 / 75 GB 1037.3 sec 251.9 sec 20 6–10

None 0 4 / 7 GB 0.0 sec 2826.7 sec 20 93–154

3.4). On 8 processors, the ILUT method requires 1037 seconds to initialize the preconditioner matrices

and 251 seconds to solve the problem. The GMRES method without a preconditioner requires no time to

initialize the preconditioner matrices and 2826 seconds to solve the problem. For this problem, then, the total

cost of the initialization and solution steps is around twice as high for the solver without preconditioning.

This problem requires around 20 applications of the L−1 operator. For a problem that requires many more

applications of this operator, such as a problem with high scattering ratios, the fixed cost of initialization

of the ILUT matrices and low cost of the solution step for the preconditioned system would be much more

efficient.

For the Kobayashi problem, the memory required to perform the simulation with preconditioning is

around 75 GB, most of which is the storage of the ILUT preconditioners. This memory cost scales approx-

imately linearly with the product of the number of angles, groups and points. The memory cost of the

simulation without preconditioning is around 7 GB, much of which is the storage of the integrated cross

sections. For the basis function cross section weighting, the memory usage decreases to around 4 GB. The

memory cost scales linearly with the product of the number of groups and points. An empirical equation for

the memory in GB for the two solution techniques applied to the Kobayashi problem is

Mno prec ≈


6.3× 10−5J, basis weighting,

1.1× 10−4J, full weighting,
(3.25)

Mprec ≈Mno prec + 2.1× 10−6JN, (3.26)

where J is the number of spatial points and N is the number of directions. The scaling of the preconditioned

method with the number of directions makes simultaneous angular and spatial convergence difficult to

achieve, but the solution without preconditioning does not converge for many problems, including the VERA

problem mentioned earlier in this section.

Section 9.3 discusses the need for more efficient solution methods for the L−1 operation. Better precondi-

tioners would significantly reduce the computational cost and memory requirements for the MLPG method
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as presented here.
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Chapter 4

Integration methods for meshless transport

Once the connectivity of the basis and weight functions is determined as described in Sec. 3.2, the

integration [e.g. in Eqs. (2.32), (2.48), (2.50) and (2.55)] is performed using one of two methods, a meshless

integration technique (Sec. 4.1) or a background mesh (Sec. 4.2). The domain of integration for the

MLPG discretization is defined by the region of support of the basis and weight functions. For the functions

described in Sec. 2.10, the support region of each basis or weight function is a circle in 2D or a sphere in

3D. The region of support for the intersection of a basis and weight function is often a 2D or 3D lens. These

geometries are complicated somewhat by the addition of boundaries, which limit the region of support to

the physical problem domain.

An integral over the region R can be performed numerically as

∫
R

f (x) dV =
∑
i

cif (xi) , (4.1)

where ci are the integration weights and xi are the integration ordinates. One method of calculating the

integration ordinates and weights is by using a tensor product quadrature. Starting with two integration

quadratures for the integrals over x and y (with the ordinates and weights xi, yj , cxi , c
y
j ), the tensor-product

quadrature over a 2D Cartesian region with the limits x ∈ Rx and y ∈ Ry can be written as

∫
Ry

∫
Rx

f (x) dxdy =
∑
i,j

ci,jf (xi,j) , (4.2a)

where

xi,j = (xi, yj) , (4.2b)

ci,j = cxi c
y
j . (4.2c)

Integrals for the geometries described in Secs. 4.1 and 4.2 can be done in the same way.
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4.1 Meshless integration

The first integration method performs the integrals numerically over the region of support of the basis

and weight functions. Similar methods are used in Refs. [57, 58, 59]. Other meshless integration methods

that involve conversion to boundary integrals [14, 60] would not be directly applicable here, as the use of

Green’s theorem or other volume-to-boundary conversion techniques requires that the partial derivatives of

the integrands be continuous, which is not the case for the discontinuous material properties in many neutron

transport applications.

This section focuses specifically on two-dimensional integrals of basis and weight functions with a cylindri-

cal region of support. The integrals of the two-dimensional intersection between a basis and weight function

can be simplified to three cases: a standard lens, a non-standard lens and a full cylinder (see Fig. 4.1). For

integrals near the boundaries, each of these regions could be intercepted by up to two boundary surfaces at

the corners of the problem, which could be in an arbitrary orientation with respect to the basis and weight

functions. If the weights for the quadrature points past the boundary were simply set to zero, the quadra-

ture would no longer be as accurate as the function would effectively have a discontinuity in the integrand.

Specific integration methods for intersection of lenses with different combinations of boundaries could be

derived, but the integrals would quickly become unnecessarily complicated. Instead, for integration near

boundary surfaces, the integration region is overlaid by a Cartesian tensor quadrature over the integration

region, as shown in Fig. 4.2b. The following sections derive the Cartesian tensor quadrature, cylindrical

quadrature and the two cases of lens quadratures.
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(a) Cylindrical integration region
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(b) Standard lens integration region

1 0 1 2 3 4

2

1

0

1

2

(c) Non-standard lens integration region

Figure 4.1: Meshless integration regions in transformed coordinates
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4.1.1 Cartesian regions

Integration quadratures such as the Gauss-Legendre quadrature used here are often given over the range

[−1, 1]. To calculate the integration ordinates, the geometry is mapped onto simple Cartesian regions. In

one dimension, to convert from x ∈ [x1, x2] to ξ ∈ [−1, 1], the mapping

x (ξ) =
1− ξ

2
x1 +

1 + ξ

2
x2 (4.3a)

is applied. The differential length for the mapping is then

dx =
x2 − x1

2
dξ. (4.3b)

After the change of variables, a one-dimensional integral over the Cartesian region x ∈ [x1, x2] has the form

∫ x2

x1

f (x) dx =
x2 − x1

2

∫ 1

−1

f (x (ξ)) dξ

=
x2 − x1

2

∑
i

cif (x (ξi))

=
∑
i

Cif (Xi) , (4.4a)

where ξi are the original integration ordinates in ξ ∈ [−1, 1] and ci are the original integration weights. The

modified integration ordinates and weights are then

Xi = x (ξi) , (4.4b)

Ci =
x2 − x1

2
ci. (4.4c)

For a Cartesian region in 2D, the conversion from x ∈ [x1, x2] and y ∈ [y1, y2] to ξ ∈ [−1, 1] and η ∈ [−1, 1]

follows the same process, using the mappings

x (ξ) =
1− ξ

2
x1 +

1 + ξ

2
x2, (4.5a)

y (η) =
1− η

2
y1 +

1− η
2

y2. (4.5b)

The differentials are independent due to the orthogonality of the coordinate system,

dx =
x2 − x1

2
dξ, (4.5c)
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dy =
y2 − y1

2
dη, (4.5d)

and a two-dimensional integral over this region becomes

∫ x2

x1

∫ y2

y1

f (x, y) dxdy =
x2 − x1

2

y2 − y1

2

∫ 1

−1

∫ 1

−1

f (x (ξ) , y (η)) dξdη

=
x2 − x1

2

y2 − y1

2

∑
i,j

cxi c
x
j f (x (ξi) , y (ηj)) . (4.6)

The modified integration ordinates and weights can be calculated similarly to those in Eq. (4.4).

4.1.2 Cylinder

In cylindrical coordinates, the integrals are first mapped from cylindrical to Cartesian coordinates, and

then finally to a local coordinate system. The mapping from radial coordinates with r ∈ [r1, r2] and θ ∈

[θ1, θ2] to Cartesian coordinates is

x (r, θ) = x0 + r cos θ, (4.7a)

y (r, θ) = y0 + r sin θ, (4.7b)

where x0 = (x0, y0) is the location of the center of the cylinder. The integral is then converted to local

coordinates by the transformations

r =
1− ξ

2
r1 +

1 + ξ

2
r2,

θ =
1− η

2
θ1 +

1 + η

2
θ2,

for ξ ∈ [−1, 1] and η ∈ [−1, 1]. As the coordinate system is orthogonal as for the Cartesian case, the

differentials are independent,

dr =
r2 − r1

2
dξ,

dθ =
θ2 − θ1

2
dη.

The integrals after being converted to local coordinates are

∫ θ2

θ1

∫ r2

r1

f (x (r, θ) , y (r, θ)) rdrdθ =
r2 − r1

2

θ2 − θ1

2

∫ 1

−1

∫ 1

−1

f (x (r (ξ) , θ (η)) , y (r (ξ) , θ (η))) r (ξ) dξdη
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=
r2 − r1

2

θ2 − θ1

2

∑
i,j

f (x (r (ξi) , θ (ηj)) , y (r (ξi) , θ (ηj))) r (ξi) . (4.9)

This quadrature region and integration points are shown in Figs. 4.1a and 4.2d, respectively.

4.1.3 Standard lens

For the simple lens pictured in Figs. 4.1b and 4.2a the two intercepts of the circles are not past the center

of either circle. The coordinate system is rotated so both radii are located at the same point on the y axis

and then translated so that one of the circles is located at the origin. In this coordinate system, all integrals

appear similar to the one pictured in Fig. 4.1b.
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(a) Standard lens integration quadrature
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(b) Quadrature near a boundary
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Figure 4.2: Quadratures for meshless integration
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This transformation from the Cartesian coordinates x, y to simplified coordinates x̄, ȳ has the form


x̄

ȳ

 =


x1

y1

+
1

d


∆x −∆y

∆y ∆x



x

y

 , (4.10a)

with the distances

∆x = x2 − x1, (4.10b)

∆y = y2 − y1, (4.10c)

d =
√

∆x2 + ∆y2. (4.10d)

In this coordinate system, the equations for each circular support region can be written

x̄2 + ȳ2 = r2
1, (4.11a)

(x̄− d)
2

+ ȳ2 = r2
2, (4.11b)

where the radii of the circles (which remain unchanged in this coordinate system) are r1 and r2. The two

intercepts of these circles are located at the points (x̄int, ȳint) and (x̄int, −ȳint), with

x̄int =
d2 + r2

1 − r2
2

2d
, (4.12a)

ȳint =

√
2d2 (r2

1 + r2
2)− (r2

1 − r2
2)

2 − d4

2d
. (4.12b)

The integration limits in the x̄ dimension are variable with respect to ȳ,

x̄min (ȳ) = d−
√
r2
2 − ȳ2, (4.13a)

x̄max (ȳ) =
√
r2
1 − ȳ2, (4.13b)

while the integration limits in the ȳ dimension go from −ȳint to ȳint.

The conversion of the integral from Cartesian to simplified coordinates has a Jacobian determinant of

one,

J(x,y)→(x̄,ȳ) =

∣∣∣∣∣∣∣∣∣∣
dx

dx̄

dx

dx̄

dy

dx̄

dy

dȳ

∣∣∣∣∣∣∣∣∣∣
= 1, (4.14)
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which means the integral can be transformed to the simplified coordinates as

∫
V

f (x, y) dV =

∫ ȳint

−ȳint

∫ x̄max(ȳ)

x̄min(ȳ)

f (x (x̄, ȳ) , y (x̄, ȳ)) dx̄dȳ. (4.15)

This integral is transformed a second time from the simplified coordinate system into a standard coordi-

nate system ξ ∈ [−1, 1] and η ∈ [−1, 1] using

x̄ =
x̄max (ȳ (η))− x̄min (ȳ (η))

2
ξ +

x̄max (ȳ (η)) + x̄min (ȳ (η))

2
, (4.16a)

ȳ = ȳintη. (4.16b)

Unlike the first transformation, the Jacobian determinant for this transformation is not equal to a constant,

J(x̄,ȳ)→(ξ,η) =

∣∣∣∣∣∣∣∣∣∣
dx̄

dξ

dx̄

dη

dȳ

dξ

dȳ

dη

∣∣∣∣∣∣∣∣∣∣
=

(
x̄max (ȳ)− x̄min (ȳ)

2

)
ȳint. (4.17)

This Jacobian is used to map the integral to the local coordinates,

∫
V

f (x, y) dV =

∫ 1

−1

∫ 1

−1

f (x (x̄, ȳ) , y (x̄, ȳ))

(
x̄max (ȳ)− x̄min (ȳ)

2

)
ȳintdξdη. (4.18)

For simplicity, the dependencies of x̄ and ȳ on ξ and η have been suppressed. The conversion of this

continuous integral to a numerical quadrature follows the same procedure as in past sections.

4.1.4 Non-standard lens

The second type of lens uses the same coordinate system and intercepts as in Sec. 4.1.3. The difference

is that the x̄ intercept is past the center of one of the circles, as shown in Fig. 4.1c. Assuming that the first

circle with r1 has the smaller radius (r1 < r2) and that the intercept is past the center of the first circle, the

integration is of the same form as for the standard lens but with x̄ limits of

x̄min (ȳ) =


d−

√
r2
2 − ȳ2, |ȳ| ≤ ȳint,

−
√
r2
1 − ȳ2, otherwise,

x̄max (ȳ) =
√
r2
1 − ȳ2.
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If r2 > r1, then the definitions reverse,

x̄min (ȳ) = d−
√
r2
2 − ȳ2

x̄max (ȳ) =


√
r2
1 − ȳ2, |ȳ| ≤ ȳint,

d+
√
r2
2 − ȳ2, otherwise,

.

The integral can be calculated using Eq. (4.18) with these x̄ limits and the same ȳ ∈ (−ȳint, ȳint) limits as

before.

4.1.5 Methodology

For the integrals only involving weight functions and not basis functions, as in Eq. (2.46), the region

of integration is cylindrical except near boundaries, where the Cartesian quadrature is used instead. For

integrals involving both basis and weight functions, one of the lens quadratures or the cylindrical quadrature

are used away from boundaries and the Cartesian quadrature is used for lens regions that intersect boundaries.

One benefit of the meshless integration approach is that unlike the background mesh integration in Sec. 4.2,

the meshless integration is independent for each weight function. This means that the integration of weight

functions can be done in parallel with no special considerations for shared data.

Due to the simpler parallelization and independent nature of the meshless integration, the implementation

is in some ways simpler than the background mesh integration. The issue with the meshless integration is

that much of the computational cost of the integration is evaluation of the weight and basis functions, which

is particularly expensive for the MLS functions (Sec. 2.10.2). The basis functions each intersect with many

weight functions, some of which have support regions that overlap. This means that the quadrature sets for

the basis and weight functions overlap many times over. In addition, the weight function values must be

calculated for each individual basis function integral separately as the quadrature points differ. Some of this

cost could be defrayed by doing the integrals of the basis functions over the entire weight function region,

but this would reduce the accuracy of the quadrature.

4.2 Background mesh integration

In contrast to the meshless integration method, the background integration mesh method uses non-

overlapping quadratures to increase integration efficiency. The integration regions no longer conform to

the exact integration domains as in the meshless method, but as the cost of the method is lower per area

integrated, more quadrature points can be used to compensate. Because the basis and weight functions chosen

in Sec. 2.10 go to zero at the edge of their support region, there are no discontinuities in the functions that
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Algorithm 4.4 Procedure for integration using a background mesh
1: initialize all integrals to zero
2: for each background cell or face (region i) do
3: create a quadrature that integrates region i
4: find the basis and weight functions that intersect with region i
5: for each quadrature point j do
6: evaluate each basis and weight function and their derivatives at point j
7: find the values of the cross sections and sources at point j
8: for each required integral do
9: add the contribution of this quadrature point to the global integral

10: end for
11: end for
12: end for

need special treatment when using a background integration mesh. The cross sections, however, do add

discontinuities that require consideration.

To perform the integration using a background mesh, the problem is overlaid with a Cartesian mesh

to create cells for the volume integration and faces along the boundaries for the surface integration. This

background mesh is agnostic to the problem geometry and is only used for the integration step, not for

the solution of the transport equations. Algorithm 4.4 describes the background integration procedure. In

summary, the integration is performed by choosing a quadrature for each integration cell, evaluating all

needed data at each quadrature point and then adding the contribution of each quadrature point to the

global integral. The quadrature inside of each Cartesian cell is an outer product Gaussian quadrature, e.g.

for a function f (x, y, z), ∫
cell

f (x, y, z) dV =
∑
i,j,k

cxi c
y
j c
z
kf (xi, yj , zk) , (4.19)

where the one-dimensional quadrature integration ordinates are xi, yi and zk with corresponding weights of

cxi , c
y
j and czk. This integral is done using the same transformations as the Cartesian quadrature in Eq. (4.4)

applied to the 1D, 2D or 3D volume integral.

The integration quadrature for each cell can be adaptively chosen for problems in which radii of the

intersecting functions differ significantly. For the adaptive quadrature, a minimum number of integration

ordinates across the basis or weight function Nrad is specified. The number of integration ordinates for the

cell along each dimension is chosen using the basis or weight function with the smallest radius r inside the

cell as

Nd =
`d
r
Nrad, (4.20)

where `d is the length of the cell in that dimension, for instance the side length of a Cartesian cell, which

defines an outer product quadrature with
∏
dNd total ordinates.

The integration is done independently for each cell and face, which allows for parallelization of the
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integration step (see Sec. 3.5). Each processor needs access to the basis and weight function data for

each integration cell assigned to it. Once the integration has been performed for the cells assigned to each

processor, the integrals are reduced to sum the contributions of each integration cell to the overall integrals

of the basis and weight functions.

4.3 Integration verification against benchmark problem

To verify the integration methods, three configurations of basis and weight function intersections (includ-

ing those described in Sec. 4.1) are considered and the integrals are performed individually to high precision

using Mathematica [61]. The positions of the basis and weight functions for each case are shown in Fig.

4.3. The basis and weight functions use the Wendland 11 RBF. The integrals iVbw;i,j and I∇b∇w;i,j from Eq.

(2.43) are compared to the benchmark values by calculating the total L2 error,

εL2
=

1

Nweight

∑
j

√√√√√√
∑
i

(
ībw;i,j − ībenchmark

bw;i,j

)2

∑
i

(
ībenchmark
bw;i,j

)2 . (4.21)

For the derivative integrals, the values summed inside the square root term include the derivatives.

For the meshless integration method, between 42 and 20482 quadrature points are used to integrate each

basis and weight function pair. For the background integration method, quadratures with the same range

of values are used in each of the 102 background cells. This results in a higher number of points inside each

integration region for the background mesh, which is balanced by the increased accuracy of a specialized

quadrature for the meshless integration method. Due to the small number of weight and basis functions, the

two quadratures aren’t directly compared in terms of computational cost in this section.
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Figure 4.3: Basis and weight function configurations for verification of numerical integration against bench-
mark
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Figure 4.4: Convergence for the benchmark integration problem for meshless and background mesh integra-
tion

The convergence results for the two integration methods are shown in Fig. 4.4. Both integration methods

show approximately fourth-order convergence as the number of integration points in one of the dimensions

increases. Once the number of integration ordinates reaches about 10242 for either method, the relative L2

error for the ībw integrals is below 10−12. For problems with more integration ordinates, the error increases

again, likely because of numerical roundoff. The derivative integrals ī∇b∇w converge at around the same rate

and by 20482 ordinates, the results from both methods have a relative error below 10−12.

4.4 Comparison of integration methods

For comparison of the basis and weight function integration methods, a set of 100 compact Gaussian

functions [Eq. (2.65)] with a dimensionless cutoff distance of R = 5 are created in 1D, 2D and 3D. The

centers of these functions are placed at random in the problem domain, x ∈ [−2, 2]. Figure 4.5 shows the

point configurations for the 2D and 3D problems. The randomized points result in some clusters of points

and some points without close neighbors. This means that the calculated radii vary over more than an order

of magnitude, similar to a realistic problem with small features that need to be resolved.

For the results with a background mesh, 100 (1D and 2D) or 125 (3D) background cells are placed with

even spacing. The number of integration ordinates in a cell for the adaptive method is initially set to 8d

(for the dimension d) before potentially being modified according to Eq. (4.20). The number of ordinates

for the background mesh without adaptive integration refers to the number in each integration cell, which

multiplied by the number of cells is the total number of integration ordinates. For the meshless integration,

the number of integration ordinates is fixed for each integral.

A benchmark solution is calculated using the adaptive integration method with a high number of inte-

gration ordinates (4096 in 1D, 10242 in 2D and 1283 in 3D) and the result for the other methods is compared
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Figure 4.5: Randomized positions of centers for comparison of integration methods

to this solution. The same L2 error as in Eq. (4.21) is used to find the errors in the integrals of the basis

and weight functions and their derivatives with respect to the benchmark solution. To compare the relative

performance of the methods, the error is presented as a function of the local number of integration ordinates

and separately as a function of the total number of basis and weight function evaluations, which represents

a large part of the integration cost.

The results for the L2 error in 1D, 2D and 3D are shown in Fig. 4.6. All three methods show at least

eighth-order convergence with the integration ordinate spacing. The convergence rate is highest for the

adaptive case. Both the adaptive and the meshless integration methods scale the quadrature to the size of

the radii, which improves the convergence rate. In 1D, the relative error converges to 10−13 for both the

integrals and the derivatives. In 2D and 3D, the relative error converges to 10−11 and 10−10, respectively.

The adaptive integration method achieves the best results for a given number of function evaluations. The

meshless integration requires around an order of magnitude more function evaluations to achieve the same

error as the background mesh methods. Due to the simple Wendland 11 functions used and the additional

complexity of the background integration, the computational time is similar in this problem for a given error

for the meshless and background integration methods.

While the performance of the meshless integration in this problem is not significantly worse than the

background integration, that is not the case for a problem with MLS functions. The compact Gaussian

functions are inexpensive to evaluate, whereas the MLS functions are not. As all the basis and weight

functions are evaluated at the same quadrature points, all the values at a single quadrature point as described

in Sec. 2.10.2 can be calculated simultaneously. For the meshless method, the weight and basis function
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Figure 4.6: Comparison of integration methods, convergence to benchmark solution
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do not share a common quadrature, which multiplies the cost of integration for MLS functions by 20 to 70

times, depending on the dimension of the problem and the radii of the basis and weight functions. As such,

applying the meshless integration method to MLS functions for a large number of integration ordinates is not

practical and the meshless integration is not used for the results in the following chapters. In addition, the

benefits of a quadrature that exactly conforms to the integration domain are not as important in problems

with large discontinuities, which are best integrated by a quadrature with a large number of evaluation points

as opposed to a quadrature that very accurately integrates a certain class of smooth equations.

4.5 VERA pincell integration problem

This final integration test investigates the use of MLS functions functions in a heterogeneous medium.

For reasons explained at the end of Sec. 4.4, only the background integration mesh methods are applied

here. The geometry for the heterogeneous test is a small section of the VERA 1E geometry from Sec. 7.1. As

shown in Fig. 4.7, the section under consideration (0.282 ≤ x ≤ 0.354) is near the fuel boundary and includes

all five materials from the original VERA problem. The cross sections vary over several orders of magnitude,

which makes the material integration particularly difficult. The points are preferentially placed near the

IFBA region where the discontinuities in the cross sections are largest and the gradient in the transport

solution is largest. For reference, this is a subset of the 34085-point set used for the VERA 1E problem (Sec.

7.1) with additional points added around the boundaries. Additional points are added along the boundaries

to ensure coverage of the functions throughout the problem. This is essential for the calculation of the MLS

functions, which requires that several functions have nonzero values at every point in the domain (see Sec.
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Figure 4.7: VERA pincell integration geometry
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2.10.2).

The radii of the basis and weight functions are calculated using Alg. 3.3 with eight neighbors. The radii

range between 0.0015 near the IFBA region to 0.015 near the clad-moderator boundary. These disparate radii

make the integration difficult, as a Cartesian background mesh with a constant number of integration points

includes more integration points for basis and weight functions with larger radii. When using a background

mesh without an adaptive number of integration ordinates, the same number of ordinates per unit area are

used for both the functions with large radii and the functions with small radii. When the enough integration

points have been added to resolve the integrals of the smallest functions, the integrals of the largest functions

may have more points than is required for accurate integration.

The subdomain of the VERA 1E problem considered here has a length 17.5 times smaller than the length

of the full problem, and an area of 306.25 times smaller. The goal of this integration study is not to simply

get a good integration result, but to get a good integration result in a timely manner. The number of

background cells chosen is 202, which would be equivalent to a background mesh with 3502 cells for the

full pincell problem. This results in 4N total ordinates across the radii of the largest functions and 0.4N

ordinates across the radii of the smallest functions, where N2 is the number of integration ordinates in

the Cartesian product quadrature. The number of ordinates is varied from 42 to 2562 for the background

integration without an adaptive quadrature. For the adaptive quadrature, the number of ordinates required

across each weight function radius [Eq. (4.20)] is varied between 4 and 256, with a baseline number of

integration ordinates in a cell of 42. The benchmark calculation is performed using 5122 as the baseline

number of integration ordinates and 512 as the minimum number of integration ordinates across each radius.

Figure 4.8 shows the error of the integrals with an increasing number of integration ordinates. For the

number of integration points considered, the basis and weight function integrals converge to 10−7 relative

error and the basis and weight derivative integrals converge to 10−6 relative error. To achieve a similar error,

the adaptive integration technique requires between 2 and 10 times fewer global integration points than the

method without adaptive integration.

The integrals of the basis and weight functions over the total and scattering cross sections [Eqs. (2.48)

and (2.51)] converge less quickly than the MLS function integrals due to the discontinuities in the integration

domain. The chosen discretization has a higher density of basis and weight functions near the largest of the

discontinuities. The adaptive integration puts more integration points near these functions due to their small

radii, which also increases the accuracy of integration for the discontinuities. Compared to the background

mesh integration without adaptivity, the adaptive method again requires far fewer global integration ordinates

(an order of magnitude for the cases with the most ordinates) to achieve similar errors for the cross section

integrals and has a higher rate of convergence to the benchmark result. For the highest number of integration
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Figure 4.8: Convergence of VERA pincell integration to benchmark solution
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Figure 4.9: VERA pincell integration error for adaptive problem with 2562 local integration ordinates
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ordinates considered, the relative L2 error of the adaptive integration is around 10−4 for both the total and

cross section integrals.

Figure 4.9 shows the relative L2 error for the adaptive integration with 256 ordinates as a function of

position for the basis and weight function integrals and the cross section integrals. The basis and weight

functions with the highest relative integration error are those with the smallest radii. The cross section

integrals error is effectively identical to the basis and weight function integral error in regions with constant

cross section values. The integration is least accurate near the fuel boundary, where there are three materials

within 10 μm. The error also increases near the material discontinuity at the clad-moderator boundary.

One large difference between the Gaussian functions integrated in Sec. 4.4 and the linear MLS functions

integrated here is that the former have a simple polynomial series expansion, whereas the latter do not. The

Gauss-Legendre tensor product quadrature is designed to integrate polynomials with high accuracy and as

such works well for functions such as the Gaussian and the Wendland functions that can be represented as

polynomials. The integrals of linear MLS functions require more integration points than either of these to

be accurate.

The MLS functions have good properties for solving the transport equation, including partition of unity

and the ability to turn a relatively sparse set of RBFs into a basis that can accurately represent polynomials,

but they are costly to evaluate and difficult to integrate accurately. The background mesh with an adaptive

quadrature provides predictable results for the integration of MLS functions of disparate sizes at a reasonable

level of computational cost.
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Chapter 5

Verification by the method of manufactured solutions

In this section, the method of manufactured solutions (MMS) is used to verify that the MLPG equations

are accurately solved using the discretizations in Chapter 2. This includes derivation of the method of

manufactured solutions for the transport equations (Sec. 5.1); presentation of the two test problems (Sec.

5.2); and optimization of the solution for the radii of the basis and weight functions and the SUPG parameters

(Sec. 5.3).

5.1 The method of manufactured solutions

The process of verification by the MMS begins with a manufactured solution to the equation, which for

the MLPG equations derived in Chapter 2 is the moments of the angular flux, φm`,g (x). The manufactured

solution, which is denoted here by Φm`,g (x), is inserted into the original equation to analytically calculate

the moments of the internal source, Qm`,g (x), and the boundary source, ψincn,g (x). A simulation is performed

using these sources to calculate a numerical solution to the problem. If the code is working correctly, the

numerical solution matches the manufactured solution.

To calculate the expected internal source for the transport equation, the internal source is expanded using

spherical harmonics [as in Eq. (2.44)]. The spherical harmonics moments are orthogonal, meaning that

∫
4π

Y m` (Ω)Y m
′

`′ (Ω) dΩ =
4π

2`+ 1
δ`,`′δm,m′ , (5.1)

where δa,b is the Kronecker delta function from Eq. (2.20). For example, multiplying the internal source

term in the transport equation by Y m
′

`′ and integrating over the unit sphere results in the equation

∫
4π

Y m
′

`′

[
L∑
`=0

2`+ 1

4π

∑̀
m=−`

Y m` Qm`,g

]
dΩ =


Q`,g, `′ = `′ and m′ = m′,

0, otherwise,
(5.2)

which isolates the moments of the internal source. To calculate the manufactured internal source, the

manufactured flux is inserted into the multigroup transport equation [Eq. (2.11a)] with the steady-state ap-
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proximation. This equation with the known manufactured solution Φm`,g is multiplied by Y m
′

`′ and integrated

over all directions. Using the orthogonality property, the resulting transport equation can be solved for Q`,g,

Qm`,g =

∫
4π

Y m`

[
Ω ·∇Ψg + Σt;gΨg

−
∞∑
`′=0

2`′ + 1

4π

∑̀
m′=−`

Y m
′

`′

G∑
g′=1

Σs;`′,g′→gΦ
m′

`′,g′ −
χg
4π

G∑
g′=1

νg′Σf ;g′Φ
0
0,g′dΩ

 . (5.3)

Replacing the manufactured angular flux Ψg by a spherical harmonics expansion in terms of Φm`,g and using

orthogonality to perform the integration for the scattering and fission terms, the equation simplifies to

Q`,g =

∞∑
`′=0

∑̀
m′=−`

(
2`′ + 1

4π

∫
4π

ΩY m` Y m
′

`′ dΩ

)
·∇Φm

′

`′,g + Σt;gΦ
m
`,g

−
G∑

g′=1

Σs;`,g′→gΦ
m
`,g′ − δ`,0χg

G∑
g′=1

νg′Σf ;g′→gΦ
m
`,g′ . (5.4)

Due to the Ω term inside the remaining angular integral, if the manufactured solution has spherical harmonics

moments of maximum degree L, the calculated source Qm`,g has nonzero values of one spherical harmonic

degree higher, or L+ 1. This integral, which is of the form

2`′ + 1

4π

∫
4π

Y m
′′

1 Y m
′

`′ Y
m
` dΩ (5.5)

for m′′ = −1, 0, 1, can be performed analytically using Clebsch-Gordon coefficients. For simplicity, this

integral is performed numerically for the problems in Sec. 5.2 using a Gauss-Legendre quadrature with 256

ordinates in 1D or an LDFE quadrature with 16384 or 32768 ordinates in 2D or 3D, respectively.

The boundary source for the manufactured equations is set to the value of the desired source, or

ψincn,g =

L∑
`=0

2`+ 1

4π

∑̀
m=−`

Y m` (Ωn) Φm`,g, (5.6)

and reflection is disabled. If the boundary integration is done correctly, the value at the boundary is equal

the desired solution.

The process of testing the manufactured solution includes:

1. Defining the problem geometry, including cross sections;

2. Initializing the internal source as defined by Eq. (5.4) and the boundary source defined by Eq. (5.6);

3. Performing the integration (for the weak form) or evaluation (for the strong form) of the internal source
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and the boundary source using these cross sections and sources;

4. Solving the steady-state transport equation; and

5. Calculating the error of the numerical solution with respect to the initial manufactured solution.

The MMS allows benchmarking of problems that would be difficult to solve using established codes. For

instance, in Sec. 5.2, the transport equation is solved with continuously-variable cross sections, which as

discussed in Sec. 1.2.2 is not a common capability for a neutron transport code. Another benefit of the

MMS is that it removes errors (in deterministic calculations) or uncertainties (in Monte Carlo calculations)

from the benchmark solution.

5.2 Introduction to continuous and discontinuous manufactured problems

The two manufactured problems considered here are a problem with piecewise constant cross sections

and a problem with continuous, sinusoidal cross sections. The manufactured solutions and cross sections are

defined in three dimensions. For two dimensions, the solutions and cross sections are evaluated at z = 0. For

both problems, the basis and weight function centers are placed on the nodes of an equally-spaced Cartesian

grid with an equal number of points in each dimension, Nx = Ny = Nz. The problems use 256 and 512

angular quadrature ordinates in 2D and 3D, respectively. The number of points, the number of neighbors in

the radius calculation, the Wendland function [Eqs. (2.69)] and the value of the SUPG parameter τ are all

varied to find optimal values that converge appropriately and retain good conditioning for the L−1 operation.

For each permutation of parameters, the flux φm`,g is calculated and compared to the initial manufactured

flux, Φm`,g. The relative L1 integral error over the entire problem domain V ,

(L1 integral error)g =

∫
V

∣∣φ0
0,g − Φ0

0,g

∣∣ dV∫
V

Φ0
0,gdV

, (5.7)

is then calculated numerically using a Gauss-Legendre outer product quadrature to measure convergence

and compare between parameters.

The first problem, which has two energy groups and a domain of −0.01 ≤ x, y, z ≤ 0.01, uses the cross

sections in Table 7.6 from the VERA 1E problem as described in Sec. 7.1. The cross sections are piecewise

constant and depend only on the distance from the origin, r = ‖x‖, making the cross sections cylindrically

symmetric in two dimensions and spherically symmetric in three dimensions. The three cross sections used

include the fuel cross sections from 0.0 ≤ r ≤ 0.0045, the IFBA (integral fuel burnable absorber) cross

sections from 0.0045 < x ≤ 0.0055 and the gap cross sections for 0.0055 < r. These cross sections represent

a fissionable isotope, a strong thermal absorber and a near-vacuum. The solution to this problem is also
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Table 5.1: Manufactured solution coefficients for radially symmetric problem [see Eq. (5.8)]

Group f0
0,g f−1

1,g f0
1,g f1

1,g ag bg cg dg

1 1.0 0.0 0.1 -0.05 -10.0 -0.1 -105 -0.0075

2 2.0 0.0 -0.2 0.1 10.0 -0.2 107 -0.005
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(b) Thermal energy group

Figure 5.1: Solution to 2D manufactured radial problem

chosen to have cylindrical or spherical symmetry,

Φm`,g (x) = fm`,g exp (ag ‖x‖)
[
1 + bg exp

(
cg [‖x‖+ dg]

2
)]
, (5.8)

with the constants from Table 5.1. Figure 5.1 shows the solution in two dimensions for the fast and thermal

groups. The thermal group solution has a sharp valley in the IFBA region, which tests the effect of sharp

gradients on the number of neighbors and choice of Wendland function.

The second problem tests the ability of the code to reproduce a monoenergetic sinusoidal function given

continuous cross sections. The domain is x ∈ [−2, 2] and the solution is of the form

Φm` (x) = fm`

(
1 +

1

5
cos (πx) cos

(π
5
y
)

cos

(
2π

5
z

))
, (5.9)

with the fm` constants from Table 5.2a. This results in a single period for the sinusoidal function in the x

dimension and less than half a period in the y and z dimensions (Fig. 5.2). The cross sections are

Σ (x) = Σ0

(
1 +

1

2
cos
(π

5
x
)

cos

(
6π

5
y

)
cos

(
2π

5
z

))
, (5.10)

where Σ0 is represents the base value of each cross section from Table 5.2b and Σ represents the spatially-
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Table 5.2: Manufactured solution and cross section data for sinusoidal problem

(a) Solution coefficients [see Eq. (5.9)]

f0
0 f−1

1 f0
1 f1

1

1.0 0.01 0.1 -0.05

(b) Cross sections [see Eq. (5.10)]
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Figure 5.2: Solution to 2D manufactured sinusoidal problem

dependent value of this cross section (e.g. to calculate Σs;1 (x), Σ0 is set to the corresponding value of 0.07

from the table).

Both problems include linearly anisotropic scattering. As described in Sec. 5, the manufactured internal

source requires that the solution be performed with an additional scattering moment above the scattering

order, which raises the total number of spherical harmonic moments in the solution from three to six in 2D

and from four to nine in 3D. These additional moments are expected to have a numerical solution near zero

for the converged transport solution. The following results use the scalar flux for the error calculation, as

shown in Eq. (5.7). For all cases, the first spherical harmonics moments of the equation have similar errors

to the scalar flux and the additional moments have values near zero.

5.3 Results for manufactured problems

These results include optimization for the radii of the basis and weight functions, optimization for the

SUPG parameters, convergence results and summary of parameters for use in more realistic problems.

The radial and sinusoidal results are presented together for comparison of the effect of continuous and

discontinuous cross sections on the weak and strong discretization methods.
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5.3.1 Optimization for the number of neighbors

To find an accurate value for the number of neighbors in the radius calculation (Alg. 3.3) for the weak

form, the value is varied between 8 to 20 neighbors in 2D and 12 to 26 neighbors in 3D. For the MLPG

solution, the SUPG stabilization parameter is fixed at τ = rj , or c = 1 in Eq. (3.1), and the number of

points is fixed at 4096 for the 2D problems and for the 3D radial problem and 32768 for the 3D sinusoidal

problem. The full cross section weighting technique is used for all problems.

For the 2D radial problem (Fig. 5.3a) solution by the MLPG equations, the Wendland 11 function shows

the best agreement with the manufactured solution at 8 neighbors, with just about 10−4 relative error in the

solution. For 10 to 14 neighbors, the Wendland 31 function is the optimal choice at around 2× 10−5 relative

error. For the 2D sinusoidal problem (Fig. 5.3b), the Wendland 11 function shows the best agreement for 8
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(c) Radial problem, 3D, 4096 points
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(d) Sinusoidal problem, 3D, 32768 points

Figure 5.3: Dependence of the error of the manufactured problems on number of neighbors in the radius
calculation, weak form
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to 10 neighbors and Wendland 31 function is again better for more neighbors. For the radial and sinusoidal

problems, the Wendland 11 function does not converge for more than 10 or 12 neighbors, respectively. For

the 3D radial problem (Fig. 5.3c), the Wendland11 and Wendland 31 functions perform similarly well, but

the results are relatively agnostic to the basis function and have around 3× 10−3 error for most Wendland

function and radius choices. Finally, for the 3D sinusoidal problem the results between basis and weight

functions differ more significantly, likely due to the higher number of points. The Wendland 11 function

performs best by almost an order of magnitude, at around 5× 10−4 relative error for 12 to 18 neighbors and

then decreasing to less than 10−4 for 24 neighbors.

Compared to the weak discretization, the strong discretization depends much more on an optimal choice

for the number of neighbors to get an accurate solution for problems with large gradients and material

discontinuities. The point weighting is used for the strong-form neighbor calculations. In 2D, the sinusoidal
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Figure 5.4: Dependence of the error of the manufactured problems on number of neighbors in the radius
calculation, strong form
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problem (Fig. 5.4b) has a large range of acceptable neighbor parameters from 10 to 20 for which the relative

error of the solution is below 10−3. In comparison, for the radial problem (Fig. 5.4a) the error of the solution

depends strongly on the number of neighbors. Only for 12 neighbors do all the basis functions produce results

below 10−2 relative error for more than one basis function choice. By changing the number of neighbors

from this value by only two in the radius calculation, the error increases for some basis functions to around

10 times larger than the solution itself.

This chaotic behavior of the solution with respect to the shape parameter is shown more clearly in the

3D results. The sinusoidal problem behaves normally (Fig. 5.4d) and achieves error of below 10−3 for any

number of neighbors with the Wendland 11 function. The other functions converge to similar values by 20

to 24 neighbors. For the radial problem (Fig. 5.4c), the scattering source did not converge any number

of neighbors less than 18. For the solutions that did converge, only one is below 10−1 in relative error,

which may be due to cancellation of error. This chaotic nature of the solution is likely not instability in the

linear solve of the L−1 operator, which is performed by a direct solve for the strong problems (see Sec. 3.3).

Instead, this is an incorrect result given by the L−1 operator for a majority of parameters. This may be

due to the lack of integration to account for the materials accurately or due to instabilities that propagate

through the problem caused by localized gradients. In either case, the results indicate poor performance

for the strong form discretization as presented in Sec. 2.9 for problems with discontinuities and localized

gradients. The strong method may still be applicable to problems with continuous cross sections and smooth

solutions, such as the sinusoidal problem presented here.

5.3.2 Optimization for the stabilization parameter

The relative error with respect to the SUPG parameter [Eq. (3.1)] for the weak form is shown for the

radial and sinusoidal problems in Figs. 5.5a and 5.5b, respectively. These results use the Wendland 31

function with 12 neighbors and full cross section weighting. In both cases, the result of the calculation is

largely unchanged by the value of τ from about c = 1.0 to c = 2.0. However, the iterative L−1 solve did not

converge for many of the c = 0.0 to c = 0.75 problems due to ill-conditioning. For a low number of points,

the weak form without SUPG stabilization (c = 0.0) produces acceptable results. As the number of points

increases, the results without stabilization do not converge. When a direct solver is applied to the problems

without stabilization, oscillations appear throughout the problems, again signifying ill-conditioning issues

inherent to the numerical solution of advection problems without stabilization.

These results suggest that while the SUPG stabilization is important in achieving good conditioning and

low errors, the selection of the parameter governing how much stabilization is added is not of paramount

importance. These same results hold for other choices of Wendland function and number of neighbors.
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(b) Sinusoidal problem

Figure 5.5: Dependence of the error of the 2D manufactured problems on the SUPG constant τ

5.3.3 Convergence results

Using functions and neighbor choices based on the parametric studies from this section, convergence

results are calculated for each problem and discretization in two and three dimensions . The weak discretiza-

tion uses the Wendland 31 function with an SUPG parameter of c = 1.0. The strong discretization uses

the Wendland 33 function for the 2D results and the Wendland 31 function for the 3D results. For the

2D problems, 12 neighbors are used for each of the strong and weak discretizations. For 3D problems, the

weak form uses 14 neighbors for the radial problem and 24 for the sinusoidal, while the strong form uses 20

neighbors for the radial problem and 24 for the sinusoidal. The strong-form results are limited to a relatively

low number of points due to the high computational cost of the direct solve used in the L−1 operator.

In two dimensions, both the strong and weak discretizations converge with approximately second-order

accuracy for the radial problem (Fig. 5.6a). The weak form converges for other functions and neighbors,

while the strong form for other functions and neighbors often diverges. The problems with basis weighting of

the cross sections converge more slowly than those with the full and point weighting for the weak and strong

forms, respectively. The strong form with either cross section weighting performs over an order of magnitude

worse than the weak form with full cross section weighting. The results for the sinusoidal problem in 2D

(Fig. 5.6b) also indicate second-order convergence. As before, the strong discretization for the sinusoidal

problem with either weighting has more than an order of magnitude higher error than the weak form with

full cross section weighting.

For the 3D results, the weak form uses the full cross section weighting while the strong form uses the

point cross section weighting. The results for the radial problem in 3D (Fig. 5.6c) do not show convergence
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Figure 5.6: Convergence of the manufactured problems for the strong and weak discretizations

to the manufactured solution. The weak-form solution converges to 10−3 relative error at 32768 points. For

the sinusoidal problem in 3D (Fig. 5.6d), the strong-form solution converges to around 3 × 10−3 relative

error at 4096 points. The weak form converges more quickly to 7× 10−4 error at 4096 points and less than

2× 10−4 error at 32768 points.

5.3.4 Parameters for realistic problems

The manufactured solution parameter studies inform the choice of parameters for the problems in Chap-

ters 6 and 7. For the MLPG equations, the Wendland 11 function is used as the weighting function for

the MLS basis and weight functions for many of the problems, as it performs well even at a low number of

neighbors. The number of neighbors is chosen as 8 for the 1D and 2D problems in Secs. 6.2 and 7.1 and 12

to 14 for the 3D problems in Secs. 6.3 and 7.4. The SUPG multiplication factor c [Eq. (3.1)] is set at 1.0 for

most problems, or the lowest value for which both the manufactured problems are stable for a high number
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of points. For some difficult problems, a multiplication factor of c = 1.5 helps the L−1 iterative solution

converge more quickly.
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Chapter 6

Results for steady-state problems

The steady-state problems included in this section include:

• A one-dimensional, homogeneous, purely-absorbing slab (Sec. 6.1);

• A one-dimensional, heterogeneous slab (Sec. 6.2); and

• A three-dimensional Kobayashi problem with a void region (Sec. 6.3).

The homogeneous slab is compared against an analytic solution . The heterogeneous slab is compared against

a DFEM solution and a Monte Carlo solution. The three-dimensional Kobayashi problem is compared to

analytic results for a purely-absorbing case and Monte Carlo results for a partially-scattering case.

The boundaries for the problems in this chapter and for the eigenvalue results in Chapter 7 are exclusively

Cartesian planes. This is a simplification that reduces the complexity of reflection and integration. The 2D

and 3D LDFE quadratures have quadrant and octant symmetry, respectively. For the reflection angle from

Eq. (2.13), Cartesian boundaries guarantee that for any Ωn, the reflection direction Ωnr is also a member of

the quadrature. The Cartesian boundaries also allow simple integration of the domain and boundaries using

a Cartesian mesh. In addition, surfaces with a constant normal direction allow for direction-independent

surface integration for the basis and weight functions. For arbitrary boundary surfaces, a more specialized

integration mesh and interpolation between angular directions would be required.

The general parameters for the slab and void problems are shown in Table 6.1. As discussed in Chapter

5, to maintain a large enough radius for the basis and weight functions the number of neighbors for the

radius calculation should be larger for a higher-dimensional problem.

6.1 One-dimensional, homogeneous, purely-absorbing slab

This slab-geometry problem is designed to test the ability of the MLPG discretization to calculate so-

lutions in optically thick and optically thin problems. The problem consists of a homogeneous, one-group,

purely-absorbing slab with a length of L = 1.0, an isotropic source of ψ0 on the left side of the problem and

no internal source. The transport equation for this problem with the appropriate boundary conditions can
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Table 6.1: Solution parameters for steady-state problems

Parameter Reference Homogeneous Heterogeneous Kobayashi

Num. neighbors for radius calculation
Alg. 3.3

8 12–14

Multiplication factor for radius 1.0

SUPG multiplication factor c Eq. (3.1) 1.0

L−1 convergence tolerance Sec. 3.3 10−12 10−10

Solution convergence tolerance Sec. 3.4 - 10−10 10−8

Number of angular directions Sec. 3.1 8192 256 512

Wendland RBF used to create MLS Sec. 2.10 31 11

be written as

µ
∂

∂x
ψ (x, µ) + Σtψ (x, µ) = 0, 0 ≤ x ≤ L, −1 ≤ µ ≤ 1, (6.1a)

ψ (x, µ)

∣∣∣∣
x=0

= ψ0, µ > 0, (6.1b)

ψ (x, µ)

∣∣∣∣
x=L

= 0, µ < 0, (6.1c)

where µ is the angle cosine. The solution to this problem is

ψexact (x, µ) =


ψ0 exp

(
−Σtx

µ

)
, µ > 0,

0, µ < 0,

(6.2)

from which the scalar flux at any point in the problem can be calculated by integrating over the angular

cosine,

φexact (x) =

∫ 1

−1

ψ (x, µ) dµ

=

∫ 1

0

ψ0 exp

(
−Σtx

µ

)
dµ. (6.3)

This solution provides results to compare against for the numerical simulations.

The angular distribution of neutrons that reach the right edge of the slab at x = L is forward peaked for

an optically thick problem (Σt � 1), whereas for an optically thin problem (Σt � 1), the angular distribution

of neutrons is relatively flat except near µ� 1, for which the probability of a neutron reaching the far side

of the slab is very low. These distributions are shown in Fig. 6.1 for various total cross section values. The

angular integration of the Σt = 1.0 case is straightforward and does not require a large number of ordinates
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Figure 6.1: Normalized angular distribution of neutrons exiting purely absorbing slab for various cross
sections

due to the approximately linear shape of the function. The cases of Σt = 0.01 and Σt = 100, however, have

large gradients that require many ordinates to accurately integrate. Because of this, 8192 angular ordinates

are used for this problem, as shown in Table 6.1, to limit the effect of the angular discretization on the

accuracy of the MLPG solution.

The problem is tested for the cross section cases of Σt = 0.01, 0.1, 1.0, 10.0, 100.0 and between 8 and

512 points. Because the problem is purely absorbing, the solution converges after a single outer iteration.

The solution for the scalar flux at the right boundary of the problem, φ (L), is compared to the analytic

solution from Eq. (6.3) using the relative error

ε =
|φexact (L)− φ (L)|

φexact (L)
. (6.4)

The values for the exact scalar flux at the right edge of the problem range from 3.64782×10−46 for Σt = 100

to 0.999037 for Σt = 0.01.

Figure 6.2 includes the error for MLPG, strong-form collocation and DFEM simulations. All three use

the same angular discretization. The relative errors for the MLPG method are below 10−4 by 64 points for

all cross section cases except Σt = 100, which has a flux value at the boundary that is 46 orders of magnitude

lower than the initial boundary source and requires 512 points to reach a relative error of 1.7×10−4. Relative

errors are less than 10−8 by 512 points for cases with Σt ≤ 1. The convergence rate of the MLPG solution

appears to be around third-order. The solution converges much faster than this for a low number of points.

For the optically thin cases, the conditioning of the problem appears to become worse for 256 to 512 points,

causing the error to increase slightly.

The relative error for the collocation method is around two to three orders of magnitude larger than the
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(b) Strong-form collocation
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(c) Linear DFEM, for comparison

Figure 6.2: Relative error in scalar flux for neutrons exiting purely absorbing slab for various cross sections

error for the MLPG method for a similar number of points. For a large number of points, the collocation

method seems to not converge past 10−6 relative error, possibly due to numerical conditioning issues. For

the optically-thick Σt = 100 case, the collocation method requires almost ten times as many points as the

MLPG method to converge to 10−2 error. There is not a clear enough pattern in the results to calculate a

convergence rate of the solution with any confidence.

The DFEM solution shows exactly second-order convergence for the Σt ≤ 10 cases. For Σt = 100, the

numerical solution is zero regardless of the number of points, which may be due to the mass matrix lumping

technique employed to prevent negative solutions (See Ref. [40] for details). For a similar number of spatial

unknown values (two per element for the DFEM solution), the MLPG solution has between two and four

orders of magnitude lower error than the DFEM solution. The smallest two numbers of elements shown for

the DFEM solution have the same number of unknowns as the largest two for the MLPG solution. For this

problem, the errors are similar for 64 spatial points in the MLPG method and 2048 elements in the linear
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DFEM method.

6.2 One-dimensional, heterogeneous slab reactor

The second problem is a one-dimensional, two-group, steady-state slab, with geometry shown in Fig.

6.3 and and cross sections listed in Table 6.2. The boundary conditions on the left and right are reflective

and vacuum, respectively. The source region represents a multiplicative medium whose fast neutrons are

moderated to thermal energies in the moderator region. The thermalized neutrons are then captured by the

absorber. The solution for the problem in Fig. 6.4 is consistent with the expected birth of fast neutrons in

the source region, the transfer to the thermal group in the moderator region and the preferential absorption

of thermal neutrons in the absorber region.

The benchmark solution for the one-dimensional problem is generated using a DFEM code with 500000

elements and linear basis and weight functions within each element. The average solution φ̄bench
i,g over 1000

overlaid cells with index i for each energy group g is then calculated. After completion of the MLPG solution,

the average scalar flux φ̄i,g across each of the same regions is calculated by integration with a 64-point Gauss-

Legendre quadrature. Finally, the L2 error of the meshless solution with respect to the benchmark solution

Table 6.2: Heterogeneous slab cross sections

Mat. g Σt;g Σs;0,g→1 Σs;0,g→2 Σs;1,g→1 Σs;1,g→2 χνΣf ;g→1 χνΣf ;g→2 Qg

Sou.
1 1.0 0.9 0.05 0.1 0.0 0.0 0.0 1.0

2 2.0 0.05 0.8 0.0 0.0 1.0 0.0 0.0

Mod.
1 0.5 0.05 0.45 0.0 0.1 0.0 0.0 0.0

2 1.0 0.0 1.0 0.0 0.01 0.0 0.0 0.0

Abs.
1 0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0

2 10.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.5 1.0 3.0 4.0
x

source
moderator
absorber

Figure 6.3: Heterogeneous slab geometry
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Figure 6.5: Heterogeneous slab convergence

is calculated as

(L2 error)g =

(∑
i

(
φ̄i,g − φ̄bench

i,g

)2∑
i

(
φ̄bench
i,g

)2
)1/2

. (6.5)

With the solution parameters in Table 6.1, a convergence study for the number of points is performed

for each of the basis and full cross section weightings as described in Sec. 2.8. The points are placed evenly

throughout the problem. The convergence results in Fig. 6.5 show second-order convergence with the point

spacing for both types of cross section weighting. Similarly to the MMS problems, the full cross section

weighting has lower error than the basis weighting, in this case by more than and order of magnitude. The

cellwise relative error is around an order of magnitude larger than the L2 error near large gradients, for

the fast group at the source/moderator boundary and for the thermal group at the moderator/absorber

boundary.

For 5120 points and full cross section weighting, the L2 error is 8.71 × 10−7 and 1.93 × 10−6 for the

fast and thermal groups, respectively. For comparison, the L2 errors of a 5000-element DFEM solution,

which has almost twice as many degrees of freedom as the 5120-point meshless solution, are 1.45× 10−6 and

2.71× 10−6. However, the DFEM solution requires about 12 seconds, compared to 32 or 50 for the MLPG

solution, depending on whether a direct or iterative solver is used for the L−1 operator.

To quantify the expected error for the two and three dimensional problems in the following section that

use Monte Carlo benchmarks, the convergence for this one-dimensional problem to the DFEM method is

compared to the convergence to a Monte Carlo solution. The results of the MLPG method converge more

quickly to a similar deterministic solution for a fixed angular quadrature rule than to a Monte Carlo solution.

For this one-dimensional problem, a Monte Carlo calculation using the multigroup mode of OpenMC [62] is

performed and tallies over the same 1000 cells as before with 100 generations and 107 particles per generation
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are compared to the DFEM (500000 elements) and MLPG results (10240 points). The L2 error from the

Monte Carlo solution is the same for both to the fifth decimal place, at 4.9×10−4 for the fast and 2.1×10−4

for the thermal group. The standard deviation of the Monte Carlo flux tally does not exceed 1.6 × 10−4

for any tally cell or group and is, on average, 3.2 × 10−5 for the fast group and 6.2 × 10−5 for the thermal

group. This indicates that the difference between the deterministic and Monte Carlo calculations is likely

not random noise, but instead angular error introduced by the discrete ordinates approximation. For the

two and three dimensional problems, good but not complete convergence of the MLPG method to the Monte

Carlo solution is similarly expected.

6.3 Three-dimensional Kobayashi problem with void region

The three-dimensional Kobayashi benchmark problems [63] are designed to test deterministic codes in

the presence of void regions. Problem 1 of the Kobayashi set, which is considered here, includes a cubic

source at the center, a surrounding void region and a shield (Fig. 6.6 and Table 6.3). The cross sections are

either purely absorbing or partially scattering. The boundary conditions for the planes at x, y, z = 0 cm are

reflective, while the boundary conditions for the planes at x, y, z = 100 cm are vacuum.

Table 6.3: Kobayashi cross sections

Mat. Σt Σs (abs) Σs (sca) Q

Source 0.1 0.0 0.05 1.0

Void 0.0001 0.0 0.00005 0.0

Shield 0.1 0.0 0.05 0.0

x
0
20
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60
80
100

y 020406080100

z

0

20

40

60

80

100

source
void
shield
eval points

Figure 6.6: Kobayashi geometry and evaluation points
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The centers for the Kobayashi problem are a simple Cartesian grid of points. The number of neighbors

for the radius calculation is increased to between 12 and 14 for this 3D case to maintain the same general

radius for a evenly-spaced points (Table 6.1), as discussed in Sec. 5.3.4. The scalar flux is calculated at

specific points in the problem (which contrasts with the integral approach from Secs. 6.2 and 7.4) for

comparison against the benchmark results at these same points from Kobayashi and Sugimura [63]. The

given benchmarks are analytic for the purely absorbing case and are calculated by the Monte Carlo code

GMVP for the scattering case. The overall L2 error is calculated according to Eq. (6.5) with integrated

values replaced by discrete values.

6.3.1 Convergence with spatial refinement

The convergence of these L2 values for the absorbing and the scattering cases is shown in Fig. 6.7. The

dependence on only a few pointwise quantities makes the L2 error more volatile than previous problems,

which use global or integrated quantities. The convergence plot shows several dips in the error at certain point

values with full weighting, with minima at 163, 223 and 403 points. These irregularities in the convergence

make determination of convergence rates difficult. An exponential function fit over the last ten data points

(from 323 to 423 points) predicts at least second-order convergence with point spacing for all cases.

For the case with the most points, the largest relative error of around 100 percent occurs at the evaluation

point (95 , 95, 95), which is at the furthest corner of the problem from the source and has a benchmark value

of 3.01032× 10−6 for the absorbing problem and 1.12892× 10−5 for the scattering problem. This is also the

point with the lowest absolute error. The evaluation point at (5, 5, 5), inside the source, has benchmark

values of 5.95659 for the absorbing problem and 8.29260 for the scattering problem. This is the point with

the highest absolute error but the lowest relative error, at around 0.15 percent and 0.10 percent for the
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Figure 6.7: Kobayashi convergence with spatial refinement, 512 directions
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absorbing and scattering problems, respectively.

6.3.2 Convergence with angular refinement

In problems with low scattering ratios, the flux is mostly uncollided. For a problem in which a small

detector (such as the point detectors in this problem) is far from the neutron source, the detector may only

“see” the angular flux coming from a few directions. Rays coming from other directions do not lead back to

the source, and so have values of zero. In Fig. 6.8, which is the Kobayashi geometry simplified to flatland

geometry, only one of the rays that carries angular information to the point detector has a nonzero value for

the analytic case. Using the CSG described in Appendix B and a given quadrature, the angular directions

can be traced back to the original source region to see how many of these directions contribute to the value

of the scalar flux in a purely absorbing medium.

Figure 6.9 shows the total number of directions with a nonzero value for a point detector at at various

positions. To have even 10 nonzero quadrature points at the detector requires 8192 directions. As discussed

in Chapter 4, integration quadratures do not perform optimally in the presence of discontinuities. Problems

with ray effects have discontinuities in the angular flux values, which degrades the performance of the discrete

ordinates solution. For the quadrature with 2048 points, even though the point at (95 , 95, 95) has only a

single quadrature point that is nonzero for the purely absorbing case, the error should still decrease compared

to the lower-order quadratures as the angular size of the source is known more accurately.

The L2 error applied for the spatial convergence study in Sec. 6.3.1 is biased toward the regions of highest
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Figure 6.8: Ray effect diagram for the Kobayashi
problem in a simplified flatland geometry
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Figure 6.10: Kobayashi convergence with angular refinement, full cross section weighting

flux, which includes the points nearest to the source that are easiest to converge. Using the the worst-case

relative error,

L∞ error = max
i

(∣∣∣∣φi − φbench
i

φbench
i

∣∣∣∣) , (6.6)

however, the solution does not converge for an increasing number of points with a fixed angular quadrature

rule. To show the effect of the angular error on the problem, the same scattering and absorbing problems

are tested with between 103 and 323 points and 128 to 2048 directions (Fig. 6.10)

For 2048 directions the L∞ error decreases as more points are added to the problem. For a 128 directions,

however, the L∞ error is lowest for the cases with the fewest spatial points. This is because the larger number

of points causes accurate angular flux values to reach the furthest detectors for only one or two quadrature

points, which the integration then incorrectly extrapolates to all nearby angular directions. The basis and

weight functions for the smallest number of points (1000 points) have radii between 15 and 28 cm. This

means the information from spatially integrating the basis and weight functions over the source region (which

is 10 cm by 10 cm for the reflected problem) is included in basis and weight functions that have centers far

from the source region. This blurring of the source may add a few more nonzero quadrature points to the

integration, but also decreases the apparent source strength in the source region, which is part of why the

cases with few spatial points perform poorly approximations of the closest points to the source region (see

Sec. 6.3.1).
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Chapter 7

Results for eigenvalue problems

The eigenvalue problems considered in these results include:

• A two-dimensional pressurized water reactor (PWR) pincell in two geometries (Secs. 7.1–7.3) and

• A three-dimensional reflected ellipsoid (Sec. 7.4).

Table 7.1 summarizes the solution parameters for each of the problems in this section, including the number of

neighbors for the radius calculation, the SUPG multiplication factor, and the solution convergence tolerance.

Table 7.4 shows the eigenvalue and eigenvector errors for the problems with the most spatial points. Table

7.3 and 7.2 show the multigroup and continuous-energy Monte Carlo eigenvalue results, which are used as

benchmarks for the eigenvalue problems. As described for the steady-state problems in Chapter 6, these

problems use Cartesian boundaries to simplify reflection at the boundaries and integration of the basis and

weight functions.

Both problems use the same methodology to generate multigroup cross sections. The cross sections for use

in the calculations are generated in OpenMC using ENDF/B-VII.1 cross sections [64] using the parameters

from Table 7.2. The generated cross sections are used in the multigroup mode of OpenMC to calculate a

benchmark k-eigenvalue solution (shown in Table 7.3). The associated eigenvector over a Cartesian tally

is calculated in the same OpenMC simulation for comparison to the MLPG solution. During the MLPG

Table 7.1: Solution parameters for k-eigenvalue problems

Parameter Reference VERA 1B VERA 1E Ellipsoid

Num. neighbors for radius calculation
Alg. 3.3

8 12 / 14

Multiplication factor for radius 1.0

SUPG multiplication factor c Eq. (3.1) 1.0 / 1.5 1.5 1.0

L−1 convergence tolerance Sec. 3.3 10−10

Solution convergence tolerance Sec. 3.4 10−8

Number of angular directions Sec. 3.1 16–4096 512

Wendland RBF used to create MLS Sec. 2.10 11 11 / 31

91



Table 7.2: Continuous-energy Monte Carlo benchmark values for k-eigenvalue problems

VERA 1B VERA 1E
Ellipsoid

Value 600 K 1200 K 600 K 1200 K

Generations 200 total: 150 active, 50 inactive

Particles per generation 107

k-eigenvalue 1.181827 1.163730 0.771338 0.761258 0.988033

k-eigenvalue std. dev. (pcm) 2.3 2.5 1.9 1.9 1.8

Difference from multigroup (pcm) 125.5 98.6 143.0 180.8 1172.2

Table 7.3: Multigroup Monte Carlo benchmark values for k-eigenvalue problems

VERA 1B VERA 1E
Ellipsoid

Value 600 K 1200 K 600 K 1200 K

Generations 200 total: 150 active, 50 inactive

Particles per generation 106 107

k-eigenvalue 1.180572 1.162744 0.772768 0.763066 0.999755

k-eigenvalue std. dev. (pcm) 4.0 4.0 4.2 3.9 2.0

Eigenvector Fast 0.000304 0.000307 0.000330 0.000333
0.000603

std. dev., mean Thermal 0.000177 0.000176 0.000174 0.000175

Eigenvector Fast 0.000440 0.000426 0.000489 0.000476
0.002116

std. dev., max. Thermal 0.000267 0.000263 0.000280 0.000246

Table 7.4: Best-case k-eigenvalue and normalized eigenvector error, full weighting

VERA 1B VERA 1E
Ellipsoid

Value 600 K 1200 K 600 K 1200 K

Number of points 9825 11765 34086 34086 40078

Number of directions 4096 512 1024 1024 512

k-eigenvalue 1.180561 1.162572 0.772838 0.763150 0.998870

k-eigenvalue error (pcm) 1.0 17.2 7.0 8.5 88.5

Eigenvector Fast 0.000288 0.000983 0.000335 0.000327
0.001981

L2 error Thermal 0.000374 0.000648 0.000748 0.000716
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solution, the average solution over these same elements is calculated using a Gauss-Legendre outer product

quadrature [Eq. (4.19)]. The error for each group is then calculated using Eq. (6.5).

7.1 Introduction to two-dimensional VERA pincell problems

The two-dimensional pincell problems under consideration have materials and geometry as specified in

Problem 1 of the VERA Core Physics Benchmark Problems [65] (see also Fig. 7.1) from the Watts Bar

Unit 1 startup core. Problem 1B represents a pincell composed of UO2 fuel with a hydrogen gap, Zircaloy-4

cladding and a light water moderator. The outer radii of the fuel, hydrogen gap and cladding are concentric

circles centered at the origin with radii of 0.4096 cm, 0.418 cm and 0.475 cm, respectively. The moderator

extends from the outer boundary of the cladding to the square defined by −0.63 ≤ x, y ≤ 0.63. Problem 1E

has identical material properties except for a 10 µm ZrB2 integral fuel burnable absorber (IFBA) between

the fuel and the gap with an outer radius of 0.4106 cm. Both problems are considered for materials at two

temperatures, 600 K and 1200 K.

The two-group cross sections at 600 K and 1200 K for use in the calculations are generated with isotopics

from the VERA specifications. The 1200 K problem with the VERA 1B geometry corresponds to the VERA

1D problem from the VERA benchmark specifications. The generated cross sections (Tables 7.5 and 7.6) are

used in the multigroup mode of OpenMC to calculate a benchmark k-eigenvalue solution (shown in Table

7.3). The associated eigenvector over a 10000-cell Cartesian tally with mesh spacing of ∆x = ∆y = 0.0126

is calculated in the same OpenMC simulation. After the MLPG solution, the average solution over these
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Figure 7.1: VERA pincell geometry
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Figure 7.2: VERA 1E meshless discretization for scaled point placement with 7644 points

10000 elements is calculated using a 1024-point Gauss-Legendre outer product quadrature.

Two separate layouts of points are tested for each problem, (1) a Cartesian grid of points and (2) a set

of concentric cylindrical points with high density near the fuel boundary. The Cartesian sets have between

144 and 65536 evenly-spaced points, which corresponds to a spacing between points of 0.105 to 0.005 cm.

The smallest point spacing of 0.005 cm is five times larger than the width of the IFBA region. The second

set, which is referred to as the scaled set, begins near the fuel boundary (which has radius rb) with two

rings of points at r1,± = rb ±∆rmin/2, where ∆rmin is the desired minimum spacing between points in the

problem. Further rings of points are added at rn,± = rn−1,± ± tn−1∆rmin, where t is a scaling factor. This

continues until some maximum distance between points, ∆rmax is reached, at which point the scaling stops

but the concentric rings of points continue. Points outside the problem boundaries are discarded and the

boundaries are lined with points approximately ∆rmax apart. For the problem without IFBA (Problem 1B),

the generation parameters are t ≈ 1.2 and ∆rmax = 2∆rmin with ∆rmin varied between 0.1 and 0.00625 cm,

which results in 126 to 11765 points. For the problem with IFBA (Problem 1E), the parameters are t ≈ 1.3

and ∆rmax = 10∆rmin with ∆rmin varied between 0.006 and 0.001 cm, which corresponds to 3522 to 34086

points. The smallest ∆rmin is equal to the length of the IFBA region, or five times smaller than the point

spacing of the largest Cartesian set of points. The starting azimuth for the cylindrical points is randomized

to prevent a set of radii along the starting axis that are closer together than at other azimuthal points. The

other constants used in the simulation are shown in Table 7.1.

Figure 7.2 shows a set of basis and weight functions created for the VERA 1E problem using this algorithm
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for ∆rmin = 0.003 and ∆rmax = 10∆rmin. The centers are concentrated at the boundary of the fuel, where

the gradients due to the IFBA layer are highest. The radii are calculated using 8 neighbors and correspond

to the distances to the nearest points. The radii are largest at the corners, where the points are far apart

and there are fewer surrounding points due to the boundaries. The radii for the basis and weight functions

for this example vary from around 0.004 cm near the fuel edge to 0.06 cm at the corners of the problem.

7.2 VERA 1B, standard pincell

The cross sections for VERA 1B at 600 K and 1200 K are shown in Table 7.5. For the VERA 1B problem,

the eigenvectors for the fast and thermal groups (Figs. 7.3a and 7.3b) are consistent with the expected birth

of the neutrons in the fuel, moderation in the water and reabsorption and fission in the fuel. The cladding

area is not axially symmetric in these plots because of ray effects. For four times as many directions (1024

total), these visible ray effects go away but the error in the eigenvalue does not significantly decrease (see Sec.

7.2.2). Figure 7.4 shows the error in the eigenvector at 600 K for 256 and 4096 directions and a 3273 points.

Table 7.5: VERA 1B cross sections

(a) 600 K

Mat. g Σt;g Σs;0,g→1 Σs;0,g→2 Σs;1,g→1 Σs;1,g→2 χνΣf ;g→1 χνΣf ;g→2

Fuel
1 0.399697649 0.383829618 0.000830382 0.049482651 -0.000261476 0.013687612 0.000000015

2 0.581826884 0.0 0.405420306 0.0 0.006013128 0.255838918 0.000000189

Gap
1 0.000060070 0.000059744 0.000000396 0.000011213 -0.000000063 0.0 0.0

2 0.000021458 0.0 0.000021460 0.0 -0.000000063 0.0 0.0

Clad
1 0.319205599 0.317083075 0.000287583 0.052759371 -0.000078648 0.0 0.0

2 0.297115812 0.0 0.294003048 0.0 0.002146731 0.0 0.0

Mod.
1 0.528320878 0.486251066 0.041923677 0.290403747 0.018069833 0.0 0.0

2 1.316352822 0.000000031 1.301429236 0.000000031 0.523147177 0.0 0.0

(b) 1200 K

Mat. g Σt;g Σs;0,g→1 Σs;0,g→2 Σs;1,g→1 Σs;1,g→2 χνΣf ;g→1 χνΣf ;g→2

Fuel
1 0.402896222 0.386358031 0.000813523 0.049553511 -0.000260073 0.013671378 0.000000014

2 0.577168400 0.0 0.399441817 0.0 0.005555131 0.255515184 0.000000183

Gap
1 0.000060118 0.000059701 0.000000377 0.000011605 -0.000000078 0.0 0.0

2 0.000022236 0.0 0.000022244 0.0 0.000003476 0.0 0.0

Clad
1 0.319199316 0.317088281 0.000285277 0.052818998 -0.000074498 0.0 0.0

2 0.297107336 0.0 0.294001433 0.0 0.002160237 0.0 0.0

Mod.
1 0.527812983 0.486091382 0.041571306 0.290244792 0.017895899 0.0 0.0

2 1.315303607 0.000000028 1.300403328 0.000000028 0.523131159 0.0 0.0

95



0.6 0.4 0.2 0.0 0.2 0.4 0.6
x

0.6

0.4

0.2

0.0

0.2

0.4

0.6

y

1.45

1.46

1.47

1.48

1.49

1.50

1.51

sc
al

ar
 fl

ux

(a) Fast energy group
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(b) Thermal energy group

Figure 7.3: VERA 1B eigenvector, 11765 points, 256 directions
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(a) Fast energy group, 256 directions
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(b) Thermal energy group, 256 directions
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(c) Fast energy group, 4096 directions
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(d) Thermal energy group, 4096 directions

Figure 7.4: VERA 1B normalized eigenvector error, 600 K, 3273 points
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For the 256-direction problem, much of the error is in the ray effects around the edges of the pincell. For

4096 directions, the error from the angular discretization has subsided, which allows the error in the spatial

discretization to be seen more clearly. The error in the spatial shape of the eigenvector is concentrated at the

fuel edge, where the discontinuities are largest and the radii of the basis and weight functions are smallest.

This is in line with the integration results from Sec. 4.5, which show that the integration is least accurate

near the edge of the fuel boundary.

As shown in Table 7.2, difference between the continuous-energy and multigroup benchmark solutions is

around 125.5 pcm for the 600 K solution and 98.6 pcm for the 1200 K solution. The energy discretization

error for these problems is around ten times larger than the spatial discretization error. As the MLPG

solutions are compared to multigroup results from OpenMC, this energy discretization error is not a factor

in the convergence studies.

7.2.1 Convergence with spatial refinement

The convergence plot in Fig. 7.5 for 256 directions shows quick convergence to under 10 pcm with under

1000 points for both point geometries and both cross section weighting methods for the 600 K problem. For

some point configurations the error drops below 1 pcm, but this is likely due to cancellation of error as all

cases eventually converge to the same value of about 7 pcm error by 11765 points. For comparison, the

standard deviation of the Monte Carlo benchmark solution is of approximately the same size at 4.0 pcm

(Table 7.3). The convergence rate for the first four data points is at least second-order.

The 1200 K solution shows the same general trends as the 600 K solution but only converges to around

17 pcm error. Comparing the two convergence plots, the scaled discretizations both have the lowest error
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(a) 600 K
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Figure 7.5: VERA 1B convergence of k-eigenvalue with spatial refinement, 256 directions
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around 1000–2000 points, at under 1 pcm for the 600 K case and around 10 pcm for the 1200 K case. It is

possible that the solution is actually best for these values and that then roundoff or other numerical errors

cause the error to increase. However, it is more likely that the discrete solution at these values is simply

not converged to the values a discrete benchmark with this angular discretization would provide. Based on

the results from Sec. 6.2, the Monte Carlo and fully-converged discrete solutions are not expected to agree

perfectly. If both the 600 K and 1200 K fully-converged discrete eigenvalues differ similarly from the Monte

Carlo solutions, then it may be that the error around 1000–2000 points is passing through the Monte Carlo

converged results on its way to the fully-converged discrete results.

The L2 errors are low for the 1B case because the eigenvectors are normalized and relatively flat. For the

solutions with the most points for 600 K, the L2 error of around 0.0003 for both the fast and thermal groups

(Table 7.4) is on the same order as the mean standard deviation in the Monte Carlo mesh tally of 0.0003

for the fast group and 0.0002 for the thermal group (Table 7.3). The 1200 K case, which is not converged in

angle, has two to three times this error at 0.0009 for the fast group and 0.0006 for the thermal group.

7.2.2 Convergence with angular refinement

As previously discussed, ray effects make up a large part of the eigenvector error for the 256-ordinate

calculations. To see what effect this eigenvector error has on the eigenvalue, an angular convergence study is

performed for between 16 and 4096 directions and 230 to 9825 points for the 600 K case. Figure 7.6 shows

that the effect of the angular discretization on this problem is significant at around 10–20 pcm. The problem

with the most points and directions converges to around 1.0 pcm, which based on the trend of the lines

for 4300 and 9825 points may be actual convergence and not numerical roundoff. As shown in Sec. 7.2.1,

the discrete solution does not converge to the Monte Carlo solution when the number of points is increased
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Figure 7.6: VERA 1B convergence of k-eigenvalue with angular refinement, 600 K, full weighting, scaled
geometry
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without also increasing the angular quadrature order. The error in the solution is below 20 pcm for this

problem for any reasonable number of points and directions, but this is not the case the more difficult VERA

1E problem in Sec. 7.3.

7.3 VERA 1E, pincell with IFBA

The cross sections for VERA 1E at 600 K and 1200 K are shown in Table 7.6. The IFBA layer makes

the VERA 1E problem difficult to solve for deterministic methods. The thermal absorption cross section

elsewhere in the problem varies from Σa ≈ 0.0 in the hydrogen gap to Σa ≈ 0.15 in the fuel. In comparison,

the IFBA thermal absorption cross section is around Σa ≈ 18.8. This strong absorption means the addition

of the IFBA, which only represents 0.16 percent of the problem volume, depresses the eigenvalue by over

Table 7.6: VERA 1E cross sections

(a) 600 K

Mat. g Σt;g Σs;0,g→1 Σs;0,g→2 Σs;1,g→1 Σs;1,g→2 χνΣf ;g→1 χνΣf ;g→2

Fuel
1 0.398430149 0.382535056 0.000821017 0.049926556 -0.000258533 0.013877940 0.000000015

2 0.566537670 0.0 0.408203703 0.0 0.006196203 0.208179836 0.000000160

IFBA
1 0.400687673 0.272518929 0.001179693 0.038021479 -0.000343355 0.0 0.0

2 18.807866148 0.0 0.284174375 0.0 0.009850593 0.0 0.0

Gap
1 0.000060712 0.000060487 0.000000400 0.000011767 -0.000000079 0.0 0.0

2 0.000021233 0.0 0.000021243 0.0 0.000003495 0.0 0.0

Clad
1 0.318128762 0.316009612 0.000284867 0.052994156 -0.000078583 0.0 0.0

2 0.296467308 0.0 0.293736124 0.0 0.002164244 0.0 0.0

Mod.
1 0.589533143 0.542576514 0.046780637 0.323899243 0.020173486 0.0 0.0

2 1.404056519 0.000000034 1.389920798 0.000000034 0.598442391 0.0 0.0

(b) 1200 K

Mat. g Σt;g Σs;0,g→1 Σs;0,g→2 Σs;1,g→1 Σs;1,g→2 χνΣf ;g→1 χνΣf ;g→2

Fuel
1 0.401619210 0.385045400 0.000805057 0.049995743 -0.000257614 0.013865154 0.000000015

2 0.563859308 0.0 0.403512783 0.0 0.005676677 0.208251042 0.000000155

IFBA
1 0.400068065 0.272554529 0.001166271 0.038063324 -0.000339365 0.0 0.0

2 18.782435513 0.0 0.285776128 0.000000000 0.009928280 0.0 0.0

Gap
1 0.000060758 0.000059793 0.000000401 0.000011277 -0.000000075 0.0 0.0

2 0.000021811 0.0 0.000021778 0.000000000 0.000003630 0.0 0.0

Clad
1 0.318118514 0.316006772 0.000282946 0.053046979 -0.000074858 0.0 0.0

2 0.296462951 0.0 0.293734642 0.0 0.002157170 0.0 0.0

Mod.
1 0.589009186 0.542417092 0.046425726 0.323740085 0.019997399 0.0 0.0

2 1.403414263 0.000000039 1.389298953 0.000000039 0.598440853 0.0 0.0
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40000 pcm. As such, special attention must be paid to the IFBA region, both in integration and in selecting

the locations for the basis and weight function centers. An adaptive quadrature is used for the integration as

described in Eq. (4.20), with Nrad = 32. This guarantees that each basis and weight function is integrated

at minimum by around 3000 quadrature points. For the second, scaled set of points described earlier, this

also helps ensure that the strong cross section discontinuities at the edges of the IFBA region are accurately

integrated. For more information on the integration of this problem, see Sec. 4.5.

The eigenvectors for the fast and thermal groups of VERA 1E show more defined ray effects (Figs. 7.7a

and 7.7b) than VERA 1B, particularly in the thermal group. These ray effects, which are discussed in

more detail in Sec. 6.3.2, cast shadows along the discrete directions in the locations where rays along these

directions travel the furthest through the IFBA region. The ray effects shown for 256 directions are even

clearer with 16 or 64 directions (not pictured) but improve with 1024 directions and disappear for 4096
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(a) Fast group, 34086 points, 256 directions
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(b) Thermal energy group, 34086 points, 256 directions
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(c) Fast group, 12978 points, 4096 directions
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(d) Thermal group, 12978 points, 4096 directions

Figure 7.7: VERA 1E eigenvector
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(a) Fast group, 34086 points, 256 directions
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(b) Thermal group, 34086 points, 256 directions
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(c) Fast group, 8511 points, 4096 directions
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(d) Thermal group, 8511 points, 4096 directions
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(e) Fast group, 34086 points, 1024 directions
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(f) Thermal group, 34086 points, 1024 directions

Figure 7.8: VERA 1E normalized eigenvector error
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directions (Figs. 7.7c and 7.7d). For 4096 directions, the cladding area is axially symmetric for both groups

and the ray effects due to the IFBA layer are no longer visible. For 34086 points, the magnitude of the

worst-case relative error decreases from around 0.0034 for the fast group and 0.0062 for the thermal group

for 256 directions to around 0.0012 for the fast group and 0.0021 for the thermal group.

For a problem that is converged in space but not in angle (34086 points, 256 directions), the largest error

in the problem is due to these ray effects (Figs. 7.8a and 7.8b). For the fast group, the rays appear in the

cladding region where the neutrons scatter from the fast group into the thermal group, making the cladding

region appear to be absorptive in the fast group. The error due to the IFBA region is eclipsed by the error of

the ray effects. For a problem that is converged in angle but not in space (8511 points, 4096 directions), error

is concentrated at the edge of the fuel cell, where many points are required to converge the solution (Figs.

7.8c and 7.8d). Finally, for a problem with a large number of points and moderate number of directions

(34086 points, 1024 directions), minimal ray effects appear but the solution appears to be converged below

the background error of the Monte Carlo solution, even in the IFBA region (Figs. 7.8e and 7.8f).

The stated purpose of the SUPG stabilization for the MLPG transport equations is to reduce the oscil-

lations that would otherwise appear in the solution and to improve the conditioning of the problem. Figure

7.9a shows the eigenvector for the thermal group for 3518 points and 256 directions. Clear oscillations appear

at the edges of the fuel that propagate into the fuel and cladding. Figure 7.9b shows the error for the thermal

group for the same problem. The oscillations around the fuel edge are larger than the ray effects described

previously. In order to generate this solution, the L−1 calculation (Sec. 3.3) has to be performed using a

direct LU decomposition, as the system is too ill-conditioned to solve using either of the preconditioners.

This dramatically increases the memory and computational cost of the solution, and the results are not

physically accurate.

7.3.1 Convergence with spatial refinement

Due to the large ray effects in the VERA 1E solution, the spatial convergence study here uses 1024

directions instead of the 256 directions used for VERA 1B. Due to the large number of directions and

points used in this problem, the SUPG stabilization parameter is set at 1.5 for this problem to ensure stable

convergence. For a value of 1.0, the largest problems do not converge. This may be expected by extrapolating

the results of the manufactured radial problem [Fig. 5.5a] to a problem with more directions and a wider

range of radii for the basis and weight functions.

The results for both 600 K and 1200 K (Fig. 7.10) show incomplete convergence for the Cartesian points.

This discretization is unable to resolve the localized error in the IFBA region for the tested number of points.

A set of Cartesian points with spacing of the same size as the IFBA region would have approximately 1.6
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million points. For comparison, the scaled set of points with spacing of the same size as the IFBA region

(shown in part in Fig. 4.7) has only 34086 points. The solution for both the 600 K and 1200 K cases

doesn’t converge below 90 pcm except for the scaled geometry with full cross section weighting, for which

the solution converges to 7.0 pcm for 600 K and 8.5 pcm for 1200 K by 34086 points (Table 7.4). The rate

of convergence for the last few points is second-order with point spacing for the full cross section method

with the scaled geometry and around first-order for the other cases, which reflects the localized nature of the

error. The relative L2 error for 34086 points and 1024 directions for both the 600 K and 1200 K results is

around 0.0003 for the fast group and 0.0007 for the thermal group, compared to the mean standard deviation

of the Monte Carlo multigroup benchmark values of 0.0004 for the fast and 0.0003 for the thermal group.
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(a) Eigenvector for thermal group
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(b) Error in eigenvector for thermal group

Figure 7.9: VERA 1E eigenvector without SUPG stabilization, 3518 points, 256 directions
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(a) 600 K
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Figure 7.10: VERA 1E convergence of k-eigenvalue with spatial refinement, 1024 directions
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Figure 7.11: VERA 1E convergence of k-eigenvalue with angular refinement, 600 K

7.3.2 Convergence with angular refinement

To show the effect of the number of angles on the solution, an angular convergence for between 16 and

4096 directions and fixed values of points between 3518 and 34086 points is performed (Fig. 7.11). While

a larger number of points reduces the error near the fuel boundary, a larger number of angles reduces the

ray effects discussed previously. For 34086 points, the error decreases from 83 to 10 pcm from 64 to 256

directions and then to 7 pcm at 1024 directions.

The convergence with the number of angular directions strongly depends on the number of points. For

3518 points, there is little benefit in using more than 256 directions. There is, however, a large benefit in

increasing the number of directions at and over 12978 points. The angular error represents a much larger

percentage of the total error compared to the spatial discretization error for a large number of points. The

error decreases by about 70 pcm from 64 to 256 directions and by 10-20 pcm from 256 to 1024 directions

for all numbers of points. For the cases with the most points, memory constraints (see Sec. 3.6) prevented

testing 4096 directions.

7.3.3 Strong-form discussion

As mentioned in Sec. 5.3, the strong-form equations do not perform well for problems with discontinuous

cross sections. For the VERA 1E problem with 4096 points and 256 directions, the point and basis cross

section weighting (see Sec. 2.9) have 2953.5 and 16068.6 pcm error, respectively. For the same set of points,

the basis and full cross section weighting for the weak form with SUPG stabilization have 376.1 and 302.6

pcm error, respectively. The requirement to use an LU decomposition instead of a preconditioned iterative

solve for the L−1 operator means that the strong-form solution for a problem of this size requires a similar

amount of computational time to the weak-form solution, at around 250 seconds on four processors. For
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(a) Fast group, point cross section weighting
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(b) Thermal energy group, point cross section weighting
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(c) Fast group, basis cross section weighting

0.6 0.4 0.2 0.0 0.2 0.4 0.6
x

0.6

0.4

0.2

0.0

0.2

0.4

0.6

y

0.51

0.52

0.53

0.54

0.55

sc
al

ar
 fl

ux

(d) Thermal group, basis cross section weighting

Figure 7.12: VERA 1E eigenvector for strong-form solution, 4096 points, 256 directions
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(a) Fast group
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(b) Thermal energy group

Figure 7.13: VERA 1E normalized eigenvector error for strong-form solution, 4096 points, 256 directions,
basis cross section weighting
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larger problems, the strong-form solution is much more expensive than the weak-form solution due to the

poor scaling of the LU decomposition.

Figure 7.12 shows what happens when the strong-form collocation equations with each weighting type

are applied to the IFBA pincell problem. As might be expected, the point-evaluated cross sections do not

accurately represent the problem geometry. For the point cross section weighting, the basis functions that

happen to be centered inside of the IFBA region simulate a disproportionate amount of absorption, while

the basis functions with centers that are near the IFBA region but not inside of it do not simulate any of the

expected absorption. For both the fast and thermal groups, the solution oscillates throughout the domain.

The basis function cross section weighting performs much better than the point cross sections and actually

removes the visible oscillations in the solution. The IFBA layer in the solution is far wider and less prominent

than for the weak-form solution (Fig. 7.7). Figure 7.13 shows the error in the normalized eigenvector for basis

function weighting. The solution accurately models the axial symmetry of the pincell but does not resolve

the IFBA layer. As a result, the IFBA absorption is broadened spatially and results in more absorption at

the fuel edge and a lower flux inside the pincell for the thermal group than is physically accurate. While

the basis function weighting does not resolve small details of the solution accurately, it is possible that

for problems with simpler geometry the strong-form equations with basis function weighting could be used

successfully.

7.4 Three-dimensional reflected ellipsoid

The final eigenvalue problem is a three-dimensional reflected ellipsoid centered at the origin. The ellipsoid

has semi-axes of length ax = 4.3652 cm, ay = 5.2382 cm and az = 6.5478 cm, while the rectangular cuboid

containing the ellipsoid has side lengths of `x = 20.2284 cm, `y = 24.2741 cm and `z = 30.3426 cm (Fig. 7.14).

The material isotopics are based off a critical thorium-reflected plutonium sphere at Los Alamos National

Laboratory [66], which has the International Criticality Safety Benchmark Evaluation Project (ICSBEP)

[67] evaluation identifier PU-MET-FAST-008. The thorium reflects some of the fission neutrons back to the

plutonium, creating a near-critical system. The boundaries for the problem are vacuum. The multigroup

cross sections and benchmarks are generated using the same procedure as in Sec. 7.1, but using 107 particles

Table 7.7: Ellipsoid cross sections

Mat. Σt Σs;0 Σs;1 νΣf

Pu 0.322644801 0.255040685 0.094644991 0.201891561

Th 0.290248656 0.284558789 0.060957181 0.000973016
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Figure 7.14: Ellipsoid geometry

per generation and an eigenvector tally of 20× 24× 30 Cartesian cells. Due to the lack of thermal neutrons

in the problem, a single group is used for the cross sections (Table 7.7). The L2 error is calculated using the

same procedure as in Sec. 7.1 over the same 20 × 24 × 30 Cartesian mesh used for the Monte Carlo tally.

The problem parameters are shown in Table 7.1. The multigroup and continuous-energy solutions do not

agree as well for this problem as for the other eigenvalue problems, at 1172.2 pcm difference (Table 7.2).

This may be because of the one-group assumption. For a solution that is closer to the continuous-energy

solution, more energy groups would be required.

One set of centers for this problem is a Cartesian grid with constant spacing, similar to the Kobayashi

problem (Sec. 6.3). Due to the ratios of the side lengths of the bounding cuboid, this results in approximately

Nx = 5
6Ny = 2

3Nz points in each dimension. The second set of centers is similar to the scaled set from the

VERA problems (Sec. 7.1), with the same methodology to determine the radii at which rings of points are

placed. Instead of concentric circles at each radius as for the 2D VERA problem, the ellipsoid problem uses

concentric ellipsoids. Unlike for a circle, there does not exist a general method for placing points on a sphere

or ellipsoid with exactly even spacing . One near-optimal method to produce evenly-spaced points on the

sphere is the method of Fibonacci grids [68]. To apply the spherical method to the ellipsoidal problem, points

are generated for the unit sphere with appropriate angular density and then mapped onto the ellipsoid. The

starting point on the sphere for the point generation is randomized. The result is a set of concentric ellipsoids

with high point density near the plutonium-thorium boundary. As in the VERA problems, a set of Cartesian

points is placed on the surface of the cuboid boundary.
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Figure 7.15: Ellipsoid eigenvector averaged over a 20x24x30 mesh, 58368 Cartesian points

The normalized eigenvector over the 20× 24× 30 integration mesh in Fig. 7.15 shows a strong gradient

in the neutron flux near the boundaries of the plutonium sphere. As might be expected from the results

of the pincell problems, the error of the eigenvector compared to the Monte Carlo solution is largest at the

edges of the plutonium sphere near the gradient in the solution and the material discontinuity (Fig. 7.16).

The convergence results in Fig. 7.17 show the k-eigenvalue and L2 errors for both the basis and full cross

section methods with the Cartesian and scaled meshes. The relative L2 error is expected to be approximately

105 higher than the k-eigenvalue due to the units of pcm in the latter. The results for each cross section

weighting type show that, adjusting for units, the k-eigenvalue and L2 error agree well for this problem. The

convergence rate is second-order with point spacing for all cases considered. The error of the k-eigenvalue is

much larger, even for the largest problems (88.5 pcm at 40078 points for the scaled point geometry), than

the standard deviation of the Monte Carlo solution of 2.1 pcm (Tabs. 7.4 and 7.3). The L2 error for 58368
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Figure 7.16: Ellipsoid relative error over a 20x24x30 mesh, 58368 Cartesian points
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Figure 7.17: Ellipsoid convergence with spatial refinement
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Cartesian points of 0.0015 is 2.4 times higher than the mean standard deviation and 1.5 times lower than the

maximum standard deviation for the Monte Carlo tallies. Further convergence of the solution is expected,

but further refinement of the spatial solution is not performed here due to the high memory cost of running

large simulations in three dimensions (see Sec. 3.6). The results for the largest number of points considered

would have similar point density to a 1000-point solution in two dimensions, which for the IFBA pincell

has more than 100 pcm error. The inherent scaling issues in three dimensions highlight the need for further

performance improvements of the MLPG transport method, as is discussed in Sec. 9.3.
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Chapter 8

Coupling of meshless heat transfer to meshless neutron transport

The heat conduction equation is a statement of energy conservation, specifically that the rate of change

in the kinetic energy is proportional to the rate at which the energy is added into the system minus the rate

at which the energy is removed from the system. The main mechanism of energy transfer in this equation is

conduction, which is the transfer of energy by collisions between adjacent particles. The boundary conditions

for the heat conduction equation can include convection, which is the transfer of heat by bulk motion of

a fluid. At a convective boundary surface, heat is transferred to or from the fluid (depending on whether

the fluid is cooler or warmer than the boundary surface, respectively) by conduction. The motion of the

fluid moves these fluid particles in contact with the convective boundary continuously, which increases the

efficiency of the heat transfer.

The heat equation has been successfully solved before using meshless methods, including by collocation

[69] and using MLPG [70], which is the discretization used here for the heat transfer equations. For an

overview of the application of meshless methods to heat transfer, see Ref. [71]. Due to the design requirements

of nuclear reactors, the coupling of heat transfer and neutron transport is common. In environments such

as CASL [72] and MOOSE [73, 74], the neutron transport is coupled to full thermal hydraulics codes, which

adds important physics that the heat conduction code only approximates.

This section presents a loose coupling of the heat transfer equations and the neutron transport equations.

The main difference between the methods presented in this section and previous approaches is the use of

meshless functions to both solve the equations and transfer data between the heat transfer and neutron

transport codes. The MLPG discretization of the heat transfer code is derived in Sec. 8.2. In Sec. 8.3 the

code is verified by comparison to an analytic solution and by the method of manufactured solutions (MMS),

similar to the MMS verification of neutron transport in Chapter 5. Finally, the coupling to neutron transport

is described in Sec. 8.4 and implemented for a pincell problem in Sec. 8.5.
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8.1 Heat conduction equation

The heat conduction equation is defined as

− ρcp
∂T

∂t
−∇ · (k∇T ) = q̇, (8.1)

where cp is the specific heat at constant pressure, ρ is the mass density, k is the thermal conductivity and q̇

is the volumetric heat generation rate [75]. Each of the three terms in the equation has units of energy per

time (e.g. watts per second). The time derivative term implies that the change in the temperature due to a

change in energy is proportional to the density and specific heat of the material. The diffusion term states

that the energy change due to convection for a certain region of the problem depends on the energy flow into

and out of that region.

The convective boundary condition depends on the difference in the material temperature at the surface,

T , and the fluid temperature T∞,

kn ·∇T = h [T∞ − T ] , (8.2)

where n is the surface normal for the boundary surface. This equation describes the net direction of energy

transfer for a convective boundary, from the hotter to the colder material. The convective boundary condition

can be either an energy source to the system when T > T∞ or a sink when T < T∞. For a reflective boundary

condition (i.e. no heat transfer in or out of a surface), the convection coefficient h can be set to zero.

The steady-state equation assumes that the temperature does not depend on time, which simplifies Eq.

(8.1) to

−∇ · (k∇T ) = q̇. (8.3)

Taken together with the boundary condition in Eq. (8.2), this steady-state equation states that the energy

sources and sinks are balanced. Specifically, the energy flow out of any region in the problem equals the

energy flow into and the generation rate inside of that region.

8.2 Heat equation discretization

The heat equation is discretized using the MLPG method, similarly to the neutron transport equation

in Secs. 2.3 to 2.5 but with identical basis and weight functions. As the convection equation is a diffusion

instead of an advection equation, no stabilization is required to prevent oscillations in the solution.

To derive the weak form of the heat equations, the steady-state conduction equation [Eq. (8.3)] is
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multiplied by a series of test functions wj and integrated over the support region for the test function, Vj ,

−
∫
Vj

wj∇ · (k∇T ) dV =

∫
Vj

wj q̇dV, j = 1, . . . , J. (8.4)

The conduction term is integrated by parts to separate the integral into surface and volume-integrated terms,

−
∫
Sj

wjn · (k∇T ) dS +

∫
Vj

(∇wj) · (k∇T ) dV =

∫
Vj

wj q̇dV, j = 1, . . . , J. (8.5)

The integrand of the surface integral in Eq. (8.5) contains the gradient term in the convective boundary

condition [(8.2)]. This term inside the surface integral is replaced by the boundary condition,

−
∫
Sj

wjh [T∞ − T (x)] dS +

∫
Vj

(∇wj) · (k∇T ) dV =

∫
Vj

wj q̇dV, j = 1, . . . , J. (8.6)

Separating the surface integral into the known and unknown portions gives the final weak form of the heat

equation,

∫
Sj

wjhTdS +

∫
Vj

(∇wj) · (k∇T ) dV =

∫
Vj

wj q̇dV +

∫
Sj

wjhT∞dS, j = 1, . . . , J. (8.7)

All of the terms containing the unknown temperature distribution T are on the right side of the equation.

To solve for the temperature, a basis function expansion

T (x) =

J∑
i=1

ζibi (x) (8.8)

with the expansion coefficients ζi and basis functions bi is inserted into Eq. (8.7) to get

∑
i

[∫
Sj

wjhbidS +

∫
Vj

(∇wj) · (k∇bi) dV

]
ζi =

∫
Vj

wj q̇dV +

∫
Sj

wjhT∞dS, j = 1, . . . , J. (8.9)

Equation (8.9) represents a linear system of equations

Aζ = s (8.10)

with the matrix and source vector of

Ai,j =

∫
Sj

hwjbidS +

∫
Vj

(∇wj) · (k∇bi) dV, (8.11a)
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sj =

∫
Vj

wj q̇dV +

∫
Sj

wjhT∞dS. (8.11b)

Unlike the transport equation, this equation contains no unknowns in the source term. Because of this, only

a single linear solve is required to solve the system.

For cylindrical geometry without axial or longitudinal dependence, the boundary condition at r = 0 is

reflective,
∂T

∂r
= 0

∣∣∣∣
r=0

, (8.12)

and the heat transfer equation simplifies to

[rwjhT ]r=R +

∫
Vj

(
∂wj
∂r

)(
k
∂T

∂r

)
rdr =

∫
Vj

rwj q̇dr + [rwjhT∞]r=R , (8.13)

where R is the outer radius of the cylinder. The linear system from Eqs. (8.11) becomes

Ai,j = [rwjhbi]r=R +

∫
Vj

(
∂wj
∂r

)(
k
∂bi
∂r

)
rdr, (8.14a)

sj =

∫
Vj

rwj q̇dr + [rwjhT∞]r=R . (8.14b)

To solve the heat transfer equations, the basis and weight functions are defined as in Sec. 2.10 to be

compact. The volume and surface integrals in Eqs. (8.11) or Eqs. (8.14) are performed using a background

mesh as described in Sec. 3.2. The convection and conduction coefficients, convective fluid temperature

and heat source are assumed to be spatially-dependent. The linear system is then solved using a direct or

iterative sparse linear algebra solver as described for the transport equation in Sec. 3.3.

8.3 Heat transfer verification

To verify that the heat transfer discretization appropriately solves the equations, two separate methods

are employed:

1. An analytic solution to a slab-geometry problem (Sec. 8.3.1) and

2. A manufactured solution with dimensional dependence (Sec. 8.3.2).

For each case, the discretized system is solved using the Wendland 11 and Wendland 33 functions (Sec. 2.10)

with a variable number of neighbors (Alg. 3.3) and linear MLS functions. The convergence of each method
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is measured using the relative L2 integral error,

εL2
=

√∫
V

(T − Tana)
2
dV∫

V
T 2
anadV

. (8.15)

As in Sec. 8.2, the integrals are performed using a background mesh.

8.3.1 Analytic solution

Analytic solutions of the heat equation can be derived for some simple problems. This slab-geometry prob-

lem over a rectangular cuboid has symmetry in the y and z axes. The limits of the cuboid are −0.4 ≤ x ≤ 0.2

and −0.15 ≤ y, z ≤ 0.15 . The problem is tested in one, two and three dimensions with a Cartesian grid of

points. For two and three dimensions, the number of points in the y and z directions is chosen to be half the

number in the x direction due to the smaller length of the cuboid in these dimensions. The solution along

the x axis does not change based on the dimensionality of the problem. For the discretized heat transfer

equations, this corresponds to reflective boundaries (h = 0) on the boundaries with normal directions parallel

to the y and z axes.

The source for the problem is

q (x) = 100 + 200 sin2 (4x) . (8.16)

The material coefficients shown in Table 8.1 are piecewise constant from −0.4 ≤ x < 0 and 0 ≤ x ≤ 0.2 and

dependent on only x. The slab-geometry problem with the given source and coefficients is solved analytically

in Mathematica [61] for comparison against the numerical solution. The solution for two dimensions is shown

in Fig. 8.1.

Figure 8.2 shows the spatial dependence of the error for one and two dimensions with 192 points along

the x axis in the Cartesian grid of points. The figure shows that the error is approximately the same in

one and two dimensions for a similar point spacing. The error is concentrated near the discontinuity in the

conduction coefficient at x = 0.0. The convergence results for one, two and three dimensions in Figs. 8.3a,

8.3b and 8.3c, respectively, show only first-order convergence with the basis and weight center spacing ∆x.

Table 8.1: Analytic heat transfer material properties

Region k h Tinf

−0.4 ≤ x < 0 0.02 0.2 700

0 ≤ x ≤ 0.2 0.2 1.5 400
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Figure 8.1: Solution of slab-geometry heat transfer
problem
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Figure 8.2: L2 error at points along the x axis for
the slab-geometry heat transfer solution in 1D and
2D using 192 points along x axis
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Figure 8.3: Convergence to analytic solution with spatial refinement for slab-geometry heat transfer problem
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While the method with linear MLS functions should have second-order convergence for smooth coefficients

and results (as for the manufactured results in Sec. 8.3.2), the discontinuity in the material coefficients

causes a drop in the order of convergence. The smallest errors are around 3× 10−5 in 1D for the Wendland

11 function with 8 neighbors and 4196 points, 6×10−4 in 2D for the Wendland 31 function with 12 neighbors

and 18432 points, and 3×10−3 in 3D for the Wendland 11 function with any number of neighbors and 27648

points.

8.3.2 Manufactured solution

The method of manufactured solutions can be applied to the heat equation similarly to the transport

equation (see Chapter 5). The solution for the temperature is assumed to be a known quantity, Tm (x).

With this solution fixed, the source from Eq. (8.3) becomes

q̇ = −∇ · (k∇Tm)

= − (∇k) · (∇Tm)− k∇2Tm. (8.17)

For the boundary condition to satisfy the manufactured solution, the convective fluid temperature at the

boundary is assumed to be variable spatially. The boundary condition is solved for the convective temperature

given the manufactured solution,

T∞ =
kn · ∇Tm

h
+ Tm. (8.18)

In order to calculate the internal source and boundary temperature in Eqs. (8.17) and (8.18), the temperature

should be function with at least a nonzero first derivative. If the conduction coefficient k is spatially-

dependent, the derivative of k is also required. The conduction coefficient h may also be spatially dependent.

See Ref. [76] for more details on appropriate choices for the temperature and coefficients for verification of

the heat transfer code by the MMS. After the numerical solution is calculated using the calculated source

and boundary temperature, the L2 error from the manufactured solution is calculated using Eq. (8.15).

The manufactured solution and conduction and convection coefficients are chosen to be

T (x) = 1.2 + sin
(
x2 + y2 + z2

)
, (8.19a)

k (x) = 12.1−
(
x2 + y2 + z2

)
, (8.19b)

h (x) = 1.1 + sin (0.5xyz) , (8.19c)

with a domain of −2 ≤ x ≤ 2. The temperature, conduction coefficient and heat transfer coefficient do not
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Figure 8.4: Solution of manufactured heat transfer problem
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Figure 8.5: Convergence to analytic solution with spatial refinement for manufactured heat transfer problem
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go negative anywhere in the domain. The manufactured solution for the temperature is shown in Fig. 8.4.

The same convergence study as in Sec. 8.3.1 is done for the linear MLS functions created using Wendland

11 and Wendland 31 functions.

The convergence for 1D (Fig. 8.5a), 2D (Fig. 8.5b) and 3D (Fig 8.5c) is second-order with point spacing

for all cases considered. Unlike for the slab solution, the convergence is monotonic for all cases. For the 3D

problems, he cases with 12 and 14 neighbors and more than 32768 points experienced ill-conditioning issues

that prevented the solver from completing the simulation. The cases with 16 neighbors worked up to the

maximum number of points tested, 110592. The smallest errors are around 7×10−7 in 1D for the Wendland

31 function with 8 neighbors and 1024 points, 4×10−5 in 2D for the Wendland 11 function with 12 neighbors

and 36864 points, and 2× 10−3 in 3D for the Wendland 11 function with 16 neighbors and 110592 points.

8.4 Coupling of heat conduction and neutron transport equations

Heat conduction and neutron transport are strongly linked in nuclear reactors. The fission of the nuclear

fuel acts as an energy source that affects the temperature of the fuel. The heat from the fuel is transferred

through through the gap and cladding of the fuel pin, after which convection by the water moves the heat

away from the fuel pin. In the reverse direction, the temperature of the fuel, gap and cladding affects the

cross sections for neutron transport as a result of Doppler broadening. In Sec. 8.5, the two-way coupling

presented in this section is applied to a realistic pincell problem.

8.4.1 Temperature dependence of the cross section

The macroscopic cross section Σ is related to the microscopic cross section σ as

Σ ≡ σN, (8.20)

where N is the number density of the nuclei in the material. The dependence of the number density on

temperature as result of thermal expansion is neglected in this section, which instead concerns the microscopic

cross section changes in the laboratory frame as a result of Doppler broadening.

The microscopic cross sections depend on the relative velocity between the neutrons and the target nuclei.

Doppler broadening of the cross sections is necessary because the neutron transport equation is solved in the

laboratory frame of reference, not in the frame of reference of the nuclei. The nuclei move with respect to

the laboratory frame due to the kinetic energy of the atoms [77]. The exact treatment of Doppler broadening

by Cullen [78] calculates a microscopic cross section σ (v, T ) for a given temperature T and laboratory-frame

neutron velocity v from base cross section data σ (vr, T0) for a different temperature T0 and the relative
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neutron velocity vr.

This exact treatment does not apply directly to the energy-integrated multigroup cross sections, given

that the neutron velocity has already been integrated out of the cross section dependencies and the cross

sections are assumed to already be in the laboratory frame. To approximate Doppler broadening, the

“Combined Doppler broadening model” in Ref. [79] assumes an expansion of the microscopic cross sections

in terms of temperature,

σ (T ) =

∞∑
i=0

[
aiT
−i/2 + biT

i/2 + ciT
i
]
, (8.21)

where ai, bi and c are expansion coefficients. The ci term represents cross section physics that are positively

correlated with material temperature, while the ai term represents the opposite correlation. The bi term

represents physics that are not monotonic with respect to temperature. To truncate the expansion, the ai

and bi coefficients are assumed to be nonzero for i = 1, . . . , 6 and y the ci coefficients are assumed to have

only a single term for i = 0.

For the problems in this section, two cross sections σ (T0) = σ0 and σ (T1) = σ1 are assumed to be

known at temperatures below (T0) and above (T1) those expected in the physical system. The temperature

is calculated as an interpolation between these two cross sections with a functional dependence based on

Eq. (8.21). As the cross section interpolation for two points requires only two unknowns and should be

monotonic, the bi terms are neglected and the expansion is further truncated to include only the c0 term

and the a1 term,

σ (T ) = c0 + a1

√
1

T
. (8.22)

To solve for the expansion coefficients, the constraints from the known cross sections are applied to get

σ (T ) =

(√
1

T0
−
√

1

T1

)−1
[(√

1

T
−
√

1

T1

)
σ0 +

(√
1

T0
−
√

1

T

)
σ1

]
. (8.23)

This is the function used to interpolate between two known values of the cross section.

8.4.2 Calculating heat generation from the neutron flux

For a nuclear reactor, the volumetric heat generation rate in the heat conduction equation is fission. The

three components of prompt fission energy release are the kinetic energy of the fission products, neutrons

and photons. The fission products and photons, which unlike neutrons do not travel far from the fission

site, make up over 97 percent of the prompt fission energy release for the isotopes of uranium and plutonium

used in nuclear reactors [80]. The remainder of the fission energy (around 10 percent total) is emitted by the

decay of fission products, as anti-neutrinos or by the capture of fission neutrons [81]. The following equations
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Algorithm 8.5 Coupling of heat conduction and neutron transport
1: initialize the temperature to a constant value
2: initialize the scalar flux
3: while scalar flux has not converged do
4: perform the transport equation integration
5: use the temperature from previous iteration to calculate cross sections
6: run transport calculation
7: if problem is k-eigenvalue then
8: normalize the total power to a given value
9: end if

10: perform heat transfer integration
11: use the current scalar flux to calculate heat generation rate
12: use temperature from previous iteration to calculate conduction coefficients
13: run heat conduction calculation
14: end while

assume that all of the energy created in a fission event is deposited at the site of fission.

The rate at which fission events occur in each energy group is calculated by multiplying the scalar flux

φ0
0,g [Eq. (2.11a)] by the fission cross section Σf ;g. To calculate the total energy source from fission, this

rate is multiplied by κg, the mean energy released in a fission event for energy group g, and summed over

all energy groups,

q̇ =

G∑
g′=1

κg′Σf ;g′φ
0
0,g′ , (8.24)

In the discretized heat conduction equation [Eq. (8.7)], this energy generation rate is integrated over volume

for each weighted equation. This requires spatially-dependent values of the cross sections and scalar flux,

which can be calculated using an interpolation for the cross sections [Eq. (8.23)] and a basis expansion for

the moments of the angular flux [Eq. (2.30b)].

A time-dependent coupling of the heat transfer and neutron transport equations would couple the time-

dependent neutron transport equation [Eq. (2.6)] and the time-dependent heat transfer equation [Eq. (8.1)]

directly through, for example, operator splitting. For the steady-state and k-eigenvalue equations [Eqs.

(2.16a) and (2.17a)], this form of coupling can no longer be applied. Instead, an iterative procedure is

applied to calculate the scalar flux and temperature profile, as shown in Alg. 8.5. The temperature and

scalar flux are alternately calculated assuming the other is constant until the solution converges. If the

thermal conductivity is chosen to be temperature-dependent, the temperature from the previous iteration is

used to evaluate the conductivity.

For the k-eigenvalue equation [Eq. (2.17a)], the scalar flux is an eigenvector and therefore should be

normalized to a physical value. Given the total volumetric heat generation Q for a given region V , the
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spatially-dependent heat generation is normalized according to

q̇norm =

(
Q∫

V
q̇dV

)
q̇. (8.25)

This normalized source is used in place of Eq. (8.24) for an eigenvalue transport problem to calculate the

temperature distribution in Eq. (8.9).

8.5 Coupled VERA pincell problem

One of the challenges in writing multiphysics codes is verification of the results. The coupling of neutron

transport and material temperature in a nuclear reactor, for instance, changes the cross sections of the

transport equation, which makes methods such as the MMS difficult to apply. As such, the results for

this coupled problem are presented without direct verification. The neutron transport and heat transfer

codes are separately verified to accurately solve problems with spatially-dependent sources and material

properties in Secs. 5.2 and 8.3.2, respectively. As neither of the codes is altered to calculate these results,

only additional sources of error in the equations are in the assumptions made for the temperature dependence

of the cross sections [Eq. (8.23)] and the fission energy source [Eq. (8.24)]. Neither these results nor the

results for the separate codes attempt to validate the code against physical results, which may require more

complicated two-phase flow for the convective channels around the pincells and more energy groups for the

neutron transport calculation. Instead, these results can be considered to be for an altered problem with

simplified physics and the prescribed constants and coefficients. As this altered problem shares many physical

characteristics with the original problem, some conclusions for the original problem can be inferred.

8.5.1 Physical data

The coupled problems under consideration are the VERA pincells without (1B) and with (1E) IFBA from

Sec. 7.1. The cross sections for interpolation in Eq. (8.23) are the those with T0 = 600 Kand T1 = 1200 K

for each problem from Table 7.5 for 1B and Table 7.6 for 1E. The interpolated temperature dependence of

these cross sections is shown in Fig. 8.6.

The temperature for a pincell is highest at the center of the fuel region and as such, changes in reactor

power affect the cross sections of the fuel more than cross sections of the IFBA, gap or cladding. In the fuel

region, an increase in temperature results in fewer neutrons in the thermal group as Doppler broadening

increases the relative speed of the neutrons to the nuclei. In the fast group, with the increased temperature,

neutrons have a higher probability of scattering into the fast group and a lower probability of scattering into

the thermal group. This hardening of the spectrum effectively decreases the probability of fission, which is
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Figure 8.6: Interpolated values for the VERA 1E temperature-dependent cross sections
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Table 8.2: Additional material properties for coupled VERA pincell problem

g κg νg

1 196.155 MeV 2.65063

2 193.083 MeV 2.43223

more likely to occur at thermal energies. The faster spectrum also results in a lower total cross section and

an increase in the thermal scattering cross section for the IFBA, which absorbs neutrons preferentially in

the thermal region. This has the reverse effect of the fuel cross section changes by increasing the probability

that a neutron reaches the fuel region. Perhaps because of this, the eigenvalue change for the IFBA problem

is smaller than the eigenvalue change for the problem without IFBA.

The data for the energy release by fission κg and the average number of neutrons released per fission

event νg (Table 8.2) is generated using the same procedure as in Sec. 7.1 using the VERA 1B geometry.

The data applies to only the fuel region and is assumed to be the same for the 1B and 1E problems, which

have the same fuel isotopics, and to be independent of temperature. The calculation of the energy release

data in Eq. (8.24) is performed using the tabulated χνΣf ;g′→g values for each problem,

(κΣf )g =
κg
νg

∑
g′

χνΣf ;g→g′ . (8.26)

From the VERA benchmark specifications [65], the rated core power for the benchmark problem is 3411

MW, with 193 assemblies and 264 fuel pins per assembly. As the problems are solved in two dimensions, the

core volumetric heat generation is divided by the length of the fuel rod, 385 cm. Using these parameters,

the total volumetric heat generation per centimeter at rated core power is

Qpin =
3411 MW per core

(193 assemblies per core) (264 fuel pins per assembly) (385 cm)
= 173.884 W/cm per fuel pin.

(8.27)

This value is used to normalize the fission energy source in Eq. (8.25).

The dependence of the thermal conductivity on the temperature is usually calculated using empirical

equations from experimental results [82]. For this problem, three empirical formulas are used for each of the

fuel, gas and cladding. The formulas depend on temperature and return the thermal conductivity in units

of W/m ·K. The IFBA thermal conductivity is neglected due to its small volume. The thermal conductivity

of the fuel is evaluated using an equation from IAEA combined measurements [83],

kfuel =
100

7.5408 + 17.692t+ 3.6142t2
+

6400

t5/2
exp

(
−16.35

t

)
, (8.28)

124



600 700 800 900 1000 1100 1200
temperature (K)

0.00

0.05

0.10

0.15

0.20

0.25

th
er

m
al

 c
on

du
ct

iv
ity

 (W
/c

m
 K

)

fuel
gap
clad

Figure 8.7: Temperature dependence of the thermal conductivity for the fuel, gap and clad for the coupled
VERA pincell problem

with t = T/1000 K. The gap conductance is calculated using the URGAP model for helium from Lassmann

and Hohlefeld [84],

kgap = aλT
bλ , (8.29)

with aλ = 0.17632× 10−2 and bλ = 0.77163. Finally, the cladding thermal conductivity is a correlation from

the MATPRO library [77],

kclad = 7.51 + 2.09× 10−2T − 1.45× 10−5T 2 + 7.69× 10−9T 3. (8.30)

These functions are evaluated for each quadrature point when performing the numerical integration of Eq.

(8.11) or (8.14). The temperature dependence of these conductivities in units of W/cm ·K is shown in Fig.

8.7. The conductivity of the helium gap increases from 0.00245 to 0.00419 between 600 K and 1200 K. The

cladding increases in conductivity as the temperature increases (0.16491 at 600 K and 0.24998 at 1200 K),

while the fuel decreases in conductivity (0.05140 at 600 K and 0.02948 at 1200 K).

At the boundary, the temperature of the moderator is assumed to stay at a constant T∞ = 600 K. The

convective heat transfer coefficient is chosen to be a constant of

h = 3.0 W/cm2 ·K, (8.31)

as recommended by Ref. [85] for single-phase forced convection.
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8.5.2 Results

Given the physical data from Sec. 8.5.1, the only remaining problem specifications needed to solve the

coupled problem are the spatial and angular discretization options. For the transport equation, the spatial

discretization for these results uses the 11765-point set for VERA 1B (from Sec. 7.2) and the 12974-point

set for VERA 1E (Sec. 7.3), while the angular discretization uses 256 directions. Cylindrical-geometry heat

equations [Eqs. (8.14)] are used chosen for this problem for simplicity in specification of the cylindrical

convective boundaries. For the heat transfer calculation, 1001 evenly-spaced points are used in cylindrical

geometry.

The coupling of the heat transfer and transport calculations works as follows. After the two-dimensional

neutron transport calculation, the energy source is converted to radial form by averaging the source angularly,

q̇rad (r) =
1

2π

∫ 2π

0

q̇ (x (r, θ) , y (r, θ)) dθ,

and normalized [Eq. (8.25)] according to

q̇norm (r) =

(
Q

2π
∫ R

0
q̇rad (r) rdr

)
q̇rad (r) . (8.32)

At the end of the heat transfer calculation, the temperature dependence for the transport integrals is calcu-

lated by converting the cylindrically-dependent temperature back to Cartesian coordinates.

To generate results for different power levels of the reactor, the power is varied linearly from zero-

power conditions up to 140 percent of the rated core power. The eigenvalue and spatial dependence of the

temperature and eigenvector are recorded for each case. For both VERA 1B and VERA 1E and for all power

levels, the eigenvalue converges to less than 0.1 pcm within five coupled transport/heat iterations.

The radial temperature profiles for each of the two cases are shown in Fig. 8.8. The temperature

dependence of the pincell shows the effect of varying heat conduction coefficients on the solution. In the

cladding, the high conduction coefficient leads to good heat transfer and a relatively flat solution. The

hydrogen gap, on the other hand, acts to insulate the fuel from the cladding due to poor heat transfer. The

fuel conduction falls in between these two extremes. The 1200–1300 K temperatures at the centerline of the

fuel at 100 percent rated operating power are consistent with the centerline temperatures at startup reported

in a VERA simulation for Watts Bar Unit 1 [86]. Because the eigenvectors are normalized to the same pin

power Qpin for VERA 1B and 1E, the temperature profiles are very similar. Due to the IFBA on the fuel

edge for the 1E problem, the power would be lower for that particular pincell than the average pincell. It

would be anticipated that the temperature would accordingly be lower.
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Figure 8.8: Radial temperature profile for coupled VERA pincell problems at various power levels

The dependence of the eigenvalue and the fuel centerline temperature on the percent rated power is shown

in Fig. 8.9. As expected, the fuel centerline temperature increases as the power increases. The eigenvalue

decreases as the temperature increases. In a continuous-energy simulation, the decrease in the eigenvalue

would be an effect of the Doppler broadening of the absorption resonances as the temperature increases,

resulting in fewer neutrons reaching thermal energies. For this multigroup simulation, as discussed in Sec.

8.5.1, these physics are manifested in the lower scattering scattering cross section from the fast group to

the thermal group and a corresponding higher absorption cross section representing the higher probability

of resonance absorption. The eigenvalue decreases by 1376.3 pcm for the pincell without IFBA and by

791.2 pcm for the pincell with IFBA from zero-power conditions to full rated power. The smaller change

in the eigenvalue for the IFBA problem may be due to a lower IFBA absorption cross section at higher

temperatures, which has a positive effect on the reactivity.

The spatially-dependent relative difference between the flat-temperature 600 K solution and the solution

at full rated power is shown in Fig. 8.10. As expected, the normalized eigenvector increases in the fast energy

group and decreases in the thermal energy group. Relative to the center of the fuel, where the Doppler

broadening is most pronounced, the edge of the fuel produces a higher fraction of the fission neutrons as the

power of the reactor increases. In the thermal group, the eigenvector decreases least in the moderator, which

is assumed to have a constant temperature of 600 K, and decreases most where the temperature is highest

at the center of the pincell (see Fig. 8.8 for the temperature distribution).

Reactivity is a measure of the deviance of the k-eigenvalue from criticality,

ρ ≡ k − 1

k
. (8.33)
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Figure 8.9: Dependence of k-eigenvalue and pincell centerline temperature on reactor power level for VERA
pincell problems
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Figure 8.10: Relative difference in normalized eigenvector between zero and full power conditions for VERA
pincell problems
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Figure 8.11: Dependence of reactivity and power coefficient of reactivity on reactor power level for VERA
pincell problems

The power coefficient of reactivity, or differential of reactivity with respect to the power, is defined as [87]

αP ≡
∂ρ

∂P
, (8.34)

where P is the power level of the reactor. The power coefficient of reactivity is commonly used for the

evaluation of the safety of a nuclear reactor. If the power coefficient of reactivity is positive, an increase in

reactivity (e.g. by removing a control rod), may trigger a feedback loop that further increases power and

the reactivity further.

To calculate the power coefficient of reactivity for the coupled VERA problem, the reactivity is calcu-

lated at each power level and the derivative is calculated using second-order finite differences. Figure 8.11

shows the reactivity in pcm (10−5ρ) and the power coefficient of reactivity in pcm per percent power. The

reactivity decreases similarly to the eigenvalue. The power coefficient of reactivity increases as the power

(and temperature) increases from -14 (at 0% power) to -7 (at 100% power) pcm per percent power for VERA

1B and from -19 to -10 pcm per percent power for VERA 1E. These values are consistent with the full-core

power coefficients reported for Watts Bar Unit 2 of -15 to -10 pcm per percent power at beginning of life [88].

The shape of the power coefficient of reactivity is also consistent with the Watts Bar Unit 2 solution due to

the 1/
√
T dependence of the cross sections in Eq. (8.23). The difference between these pincell simulations

and the full-core Watts Bar result is at most 4 pcm per percent power.
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Chapter 9

Summary and future work

Meshless methods can simplify the process of discretizing the problem domain for PDEs. Meshless meth-

ods have been applied to the radiative transport equation previously, but simplifications such as homogeneous

materials, directionally-dependent test functions and energy independence makes the direct application of

these methods to neutron transport difficult. Work on meshless methods for the neutron transport equation

in the past has been limited to simple geometries with homogeneous materials and little spatial variation

in the solution. Here, the neutron transport equation is discretized with no constraints on the location or

number of points or the geometry inside the domain. The implementation of this discretization is verified

for geometrically-challenging problems with strong spatial dependence.

9.1 Weak-form meshless transport

To solve the neutron transport equation accurately and efficiently using the MLPG method, several

conditions are enforced. The integration of the basis and weight functions should be independent of direction

due to the high number of directions required for many problems. The equations should include stabilization,

which prevents oscillations in the solution. Finally, the discretization should enforce global particle balance.

The presented discretization of the neutron transport equation with SUPG stabilization and MLS basis

and weight functions permits efficient, directionally-independent integration, satisfies the neutron balance

and dampens oscillations. To account for the spatial variation of neutron cross sections, two cross section

methods are presented, both of which are informed by and satisfy neutron conservation.

The efficient implementation of the neutron transport equation involves use of Krylov iterative methods

to invert the streaming term and converge on the scattering source. The application of preconditioners to

the streaming term permits the solution using GMRES. This, in turn, allows for application of the MLPG

method to problems with tens to hundreds of millions of unknowns. The main drawback of the MLPG

method as presented here is the high memory and computational cost associated with the simulations.

Integration of the MLPG system of equations is performed using either a fully-meshless approach or

a background mesh, which is agnostic to the geometry of the problem and the location of the basis and
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weight functions. For large problems with geometric complexity, the background mesh integration is more

efficient as all the interdependent MLS functions at a point can be calculated simultaneously. The cost

savings permits use of more quadrature points per unit volume to more accurately integrate heterogeneous

domains. For integration of standard RBF functions on problems with smooth cross sections, the meshless

integration technique converges to the analytic integrals with similar speed to the background mesh, while

better accounting for variability in the basis and weight function radii.

The MLPG transport equations are verified using the method of manufactured solutions for problems

with continuously-variable and discontinuous cross sections. The equations are stable for a wide range

of basis and weight function radii and SUPG parameters. The unmodified cross sections (with basis and

weight function dependence) are more accurate than the approximate cross sections (with only basis function

dependence) but are also more expensive to compute and store. The results for the manufactured problems

in two and three dimensions show second-order convergence to the manufactured solutions.

For a homogeneous, purely-absorbing slab, the MLPG equations show third-order convergence the ana-

lytic solution for optically thick and optically thin problems. For a heterogeneous slab, the MLPG equations

converge to 10−6 relative L2 error for the full cross sections by 5000 points and 256 directions. The three-

dimensional Problem 1 from the Kobayashi set, which is designed to simulate void regions, converged to

under 10−2 L2 error by 64000 points and 512 directions for both the absorbing and scattering case and both

cross section representations when compared to the values for a Monte Carlo point estimator. The worst-case

error is much higher due to ray effects but improves with additional directions to around 0.3 L∞ error for

32768 points and 2048 directions.

The eigenvalue problems have multigroup cross sections generated from continuous-energy Monte Carlo

simulations and benchmark results generated from multigroup Monte Carlo simulations. For a simple pincell,

the k-eigenvalue converges to approximately 10 pcm at around 1000 points and 256 directions. As more

directions are added, the solution converges further. For 9825 points and 4096 directions, the problem has

around 1 pcm error. The IFBA pincell problem is much more challenging due to the strong discontinuities

in the cross sections and solution near the fuel boundary. The solution requires a large number of both

points and directions to converge due to ray effects and the small relative volume of the IFBA region. For

34086 points and 1024 directions, the solution has 7 pcm error. The largest error in the solution occurs

at the pincell boundary near the IFBA layer. When applied to the IFBA pincell problem, the weak-form

discretization without SUPG stabilization requires a direct LU decomposition for the streaming operator

due to ill-conditioning and exhibits oscillations in the final solution.

A three-dimensional plutonium ellipsoid reflected by thorium converges to 89 pcm error for 40078 points

and 512 directions. Similar to the pincell problem, the error in the solution is concentrated at material
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discontinuity near the edge of the ellipsoid. A set of points with higher density near this gradient achieves

better convergence. The three-dimensional pincell is not converged to a similar error to the pincell problems

due to the high cost of three-dimensional simulations, which inherently require many more spatial points to

converge than similar two-dimensional results.

Finally, a MLPG discretization of the heat equations is derived. The implementation of this discretization

is verified by the method of manufactured solutions and by comparison to an analytic solution. A coupling

scheme for the temperature from the heat transfer equations and the flux from the neutron transport equation

is applied to a realistic pincell problem with temperature-dependent cross sections and material conductivi-

ties. The results for the power coefficient of reactivity show a maximum of 4 pcm difference from published

values for the full reactor core.

9.2 Strong-form meshless transport

The strong-form collocation neutron transport equation is derived from the weak-form MLPG equation,

which allows the application of the basis function cross section weighting method from the MLPG equations.

Unlike the weak-form equations, the strong-form equations do not allow stabilization (which results in

oscillations and poorly-conditioned streaming matrices), do not enforce particle balance (which produces

unpredictable results), and do not as accurately model the spatial dependence of cross sections. However, the

implementation of strong-form neutron transport is less complicated. For problems with simple geometries,

the strong-form discretization can work well with an informed choice of basis function parameters.

The same manufactured problems as in the weak case are applied to the collocation equations. For a

problem with a sinusoidal solution shape and sinusoidal cross sections, the strong-form equations are not

highly parameter-dependent. To achieve good error properties, the basis functions need to have larger radii

than the functions for the MLPG equations, which contributes to the ill-conditioning issues of the streaming

operator. For the problem with discontinuous cross sections, the strong-form equations behave much more

erratically. The results are highly dependent on the radii of the basis and weight functions and do not

converge for the three-dimensional problem.

When applied to the IFBA pincell problem, the collocation equations with the standard point evaluation

of the cross sections do not calculate the correct solution due to the low amount of geometric information

in the equations. The k-eigenvalue has 16069 pcm error, the solution has unphysical oscillations and the

eigenvector does not agree with the Monte Carlo solution. The basis function cross section weighting performs

much better. The solution exhibits the correct symmetries and does not oscillate. The eigenvalue error of

2956 pcm is still large compared to the weak-form solution for the same set of points (303 pcm).

For a problem without discontinuities in the material properties, the strong-form equations provide
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accurate solutions. However, the solutions are less accurate than the weak-form equations for every case

tested here. The only additional computational cost of the MLPG equations compared to the collocation

equations is in the integration step. For problems with a large number of spatial points, the ill-conditioning

of the streaming operator in the collocation method adds more computational cost than is saved by the lack

of integration, and for geometrically difficult problems, integral weighting of the cross sections may still be

needed.

9.3 Future work

9.3.1 Choice of methods and parameters for the MLPG discretization

The parameter space of the meshless discretizations presented here is simultaneously a feature and a

complication. There are many choices of RBFs not explored here, including RBFs developed specifically

for the PDE being solved [10]. The choices of which RBFs to use, how to weight the cross sections, what

kind of stabilization to use and with what parameters, how to calculate the radii of the basis and weight

functions, and how to integrate the basis and weight functions are explored here, but there are likely other

choices that work equally well or better. The optimization of meshless methods remains an open problem,

particularly for equations such as the neutron transport equation that have not been extensively studied for

these methods.

The main drawback of the MLPG technique is its high computational cost. As such, many of the

recommendations for future work included here involve methods to reduce the memory and time requirements

to complete simulations. One of the simplest ways to improve the cost of the MLPG method presented here

would be through better preconditioners for the streaming operator of the transport equation. It is possible

that other preconditioners, such as multigrid preconditioners [89] that have been successfully applied to

CFEM problems [90], would be more efficient than than the two presented here. The direction and energy-

dependent ILUT preconditioners for the MLPG method require a large amount of memory and restrict

refinement in space, angle and energy. A preconditioner without the memory or computational limitations

of those presented here would significantly expand the range of problems to which this method can be applied.

The integration approach used here could be described as brute-force: if enough integration points are

applied to the integral of a discontinuous function, the integral should eventually converge. However, the

integration could be significantly reduced in cost with the implementation of integration methods designed

specifically for discontinuous functions [91] near material discontinuities and for efficient integration of MLS

functions away from discontinuities [92].
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9.3.2 Application to problems with irregular geometries

The motivation for this research is to solve the neutron transport equation for realistic problems using

meshless methods without subdivision of the problem. Much of this dissertation is focused on verifying that

the meshless discretization as derived in Sec. 2 accurately solves the transport equation for problems of

various dimensions and geometries. This should allow future application of this method to problems that

include irregular geometry features, such as cracks in fuel and buildup of CRUD (Chalk River Unidentified

Deposits) on the outer perimeter of the cladding, for which the meshless approach may perform better than

current mesh-based methods.

The independence of the solution nodes and the material properties introduces flexibility that is uncom-

mon in mesh-based methods. For problems in which the material is stochastic in nature, the discretization

could account for a realization of the geometry without changing the location of the solution nodes. Instead,

inclusions in a material would be accounted for in the integration step. This approach could likewise be used

to solve the problem on geometries with small or irregular features with known positions.

9.3.3 Time-dependent transport

Much of the cost of the MLPG transport method is in the integration of the basis and weight functions

and material parameters and in the initialization of the preconditioner matrices. For problems in which

the cross sections are not temporally dependent but the neutron flux is, the integrals and preconditioners

would be reusable at each time step of the transport equation. For steady-state problems of moderate

size (10000 to 20000 points) in three dimensions, the solution of the transport equation once the integrals

and preconditioners are initialized represents between a tenth and a fourth of the total computational cost,

depending on the number of outer iterations required to converge the scattering source. A time-dependent

problem is approximately equivalent in cost to a steady-state problem at each time step. For around 100

time steps, the total cost of the code would increase by between 10 and 40 times compared to a steady-state

simulation. For smaller problems or problems within a DFEM mesh (see Sec. 9.3.5), the cost of the solution

is much smaller in comparison to the initialization steps and the time required for a time-dependent solution

would accordingly be lower.

9.3.4 Coupling to Monte Carlo

While the MLPG method is difficult to implement, it is not difficult to use. The ability to represent the

spatial shape of a solution with a geometric representation that does not conform to the materials in the

problem makes the MLPG method attractive for use in calculating weight windows using the adjoint flux
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[93]. As discussed in Sec. 6.1, the MLPG equations appears to be able to resolve the solution in problems

that are very optically thick and benefit from the application of weight windows in a Monte Carlo simulation.

The CSG used to represent materials for the MLPG results (see Appendix B) in Chapters 6 and 7 is

very similar to the CSG that would be found in a Monte Carlo code. Informed by the general choices of

parameters from these results, the only additional parameter a MLPG simulation would need to calculate

the adjoint flux would be the centers of the basis and weight function centers, which only have to conform

to the problem boundaries, not the material discontinuities inside the problem. For these calculations, high

accuracy may not be needed, in which case the number of points to needed solve the transport equation

and the number of integration ordinates for the integration of the basis and weight functions could be much

lower than the number needed to fully resolve the solution.

9.3.5 Applications to the DFEM

The MLPG method is mathematically identical to the DFEM inside a single element with a specialized

class of basis and weight functions. The method of using these functions in a finite element method [26] could

be extended to the use of the more general MLPG equations derived in Chapter 2 with a few modifications.

The MLPG neutron transport equations [Eqs. (2.32)] include only one term that couples the equation to

physics outside of the problem boundary, specifically the boundary source term,

∫
Ωn·n<0

|Ωn · n|ψextn,gwjdS. (9.1)

For an interior element in a DFEM, this source represents the integral over the incoming flux from the

upwind elements. Letting the known angular flux for each upwind element with index e have the expansion

ψupe,n,g =
∑
i

bupe,iα
up
e,i,n,g, (9.2)

it follows that the integral for the incoming source on the boundary for the current element e0 is

∑
e:Ωn·ne<0

∑
i

αupe,i,n,g |Ωn · n|
∫
Se0,e

bupe,iwe0,jdS. (9.3)

The connectivity of the two elements would be determined by the basis and weight functions that intersect

on the shared element face. This approach of applying the MLPG equations to each element of a DFEM

mesh would allow for heterogeneous elements that do not conform as tightly to the problem geometry. By

splitting the problem in this way, the cost of the MLPG method would decrease, although there would likely

be a drop in accuracy across the discontinuous solutions at the element faces. This would also lessen the
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need to parallelize the MLPG discretization using a general MPI method, as each element would presumably

be small enough to be calculated on a single node and the elements would only be connected on the element

faces.

As mentioned in the introduction (Chapter 1), spatially-dependent cross sections can present problems for

mesh-based methods implemented with the assumption that cross sections are constant inside each cell. The

cross section approximation methods from Sec. 2.8 are directly applicable to a DFEM without modification.

The full weighting of the cross sections in an element would multiply the cross section storage cost by the

number of basis functions times the number of weight functions, while the basis function weighting of the cross

sections would only multiply the cross section storage cost by the number of basis functions. For instance,

for a finite element mesh composed of linear rectangular prisms, there are 8 basis and weight functions, and

so the full and basis weighting options would, respectively, multiply the storage cost of cross sections by 64

and 8 times. For a mesh with linear tetrahedral elements, the storage cost would be, respectively, 16 and

4 times the original. For problems for which the full cross section method would be prohibitive in terms of

memory cost, the basis-weighted cross sections may be a good compromise between cost and accuracy.
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Appendix A

Legendre polynomials and spherical harmonics

A.1 Legendre polynomials

The definition of the scattering moments in Eq. (2.4) and the scattering expansion in Eq. (2.5b) depend

on the Legendre polynomials. The first few Legendre polynomials are

P0 (µ) = 1, (A.1a)

P1 (µ) = µ, (A.1b)

P2 (µ) =
1

2

(
3µ2 − 1

)
. (A.1c)

A recursion relationship allows the calculation of higher-order Legendre polynomials,

P` (µ) =
(2`− 1)µP`−1 (µ)− (`− 1)P`−2 (µ)

`
. (A.2)

The Legendre polynomials are orthogonal,

∫ 1

−1

P` (µ)Pm (µ) dx =
2

2`+ 1
δ`,m, (A.3)

where δ`,m is the Kronecker delta function defined in Eq. (2.20).

A.2 Spherical harmonics

The standard spherical harmonics are complex. To avoid complex algebra, the spherical harmonics

functions used to define the spherical harmonics moments in Eq. (2.3) are chosen to be the real (or tesseral)

spherical harmonic functions. In terms of the direction unit vector with polar angle cosine µ = cos θ and

azimuthal angle γ,

Ω =
(
µ,
√

1− µ2 cos γ,
√

1− µ2 sin γ
)
, (A.4)
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the real spherical harmonics functions have the definition [77]

Y m` (Ω) = Nm
` P

|m|
` (µ)Tm (γ) , (A.5a)

where

Nm
` =

√
(2− δm,0)

(`− |m|)!
(`+ |m|)!

, (A.5b)

Tm (γ) =


cosmγ, m ≥ 0,

sin |m| γ, otherwise.
(A.5c)

The Pm` are the associated Legendre polynomials. The associated Legendre polynomials can be calculated

recursively as

Pm` (µ) =



(2`− 1)!!
(
1− µ2

)`/2
, ` = m,

µ (2`− 1)P `−1
`−1 (µ) , ` = m+ 1,

µ (2`− 1)Pm`−1 − (`+m− 1)Pm`−2 (µ)

(`−m)
, ` ≥ m+ 2.

(A.5d)

The first few associated Legendre functions are

P 0
0 (µ) = 1, (A.6a)

P 0
1 (µ) = µ, (A.6b)

P 1
1 (µ) = −

(
1− µ2

)1/2
, (A.6c)

P 0
2 (µ) =

1

2

(
3µ2 − 1

)
, (A.6d)

P 1
2 (µ) = −3µ

(
1− µ2

)1/2
, (A.6e)

P 2
2 (µ) = 3

(
1− µ2

)
. (A.6f)

Associated Legendre functions with m < 0 also exist, but are not needed to calculate the spherical harmonics

in Eq. (A.5a). In terms of the components of the direction vector Ω, the first few real spherical harmonics

are

Y 0
0 (Ω) = 1, (A.7a)

Y −1
1 (Ω) = Ωz, (A.7b)

Y 0
1 (Ω) = Ωx, (A.7c)
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Y 1
1 (Ω) = Ωy, (A.7d)

Y −2
2 (Ω) =

√
3ΩyΩz, (A.7e)

Y −1
2 (Ω) =

√
3ΩxΩz, (A.7f)

Y 0
2 (Ω) =

1

2

(
3Ω2

x − 1
)
, (A.7g)

Y 1
2 (Ω) =

√
3ΩxΩy, (A.7h)

Y 2
2 (Ω) =

√
3

2

(
Ω2
y − Ω2

z

)
. (A.7i)

The separate components of the spherical harmonics are orthogonal,

∫ 2π

0

Tm (γ)Tm′ (γ) dγ = π (1 + δm,0) δm,m′ , (A.8a)∫ 1

−1

Pm` (µ)Pm`′ (µ) dµ =
2

2`+ 1

(`+m)!

(`−m)!
δ`,`′ . (A.8b)

These equations can be used to calculate the original normalization constant Nm
` that allows for the simple

orthogonality relation of the spherical harmonics,

∫
4π

Y m` (Ω)Y m
′

`′ =
4π

2`+ 1
δ`,`′δm,m′ . (A.8c)

The addition theorem for the real spherical harmonics relates the spherical harmonics functions to the

Legendre polynomials,

P` (Ω ·Ω′) =
∑̀
m=−`

Y m` (Ω)Y m` (Ω′) . (A.9)

Using the addition theorem, the Legendre expansion of the scattering cross section (Eq. (2.5b)) can be

written as

Σs (x, µ0 = Ω′ ·Ω, E′ → E) =

∞∑
`=0

2`+ 1

4π
Σs;` (x, E′ → E)P` (µ0)

=

∞∑
`=0

2`+ 1

4π

∑̀
m=−`

Σs;` (x, E′ → E)Y m` (Ω)Y m` (Ω′) . (A.10)
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This approximation and is inserted into the original scattering term in Eq. (2.1a),

∞∑
`=0

2`+ 1

4π

∑̀
m=−`

∫ ∞
0

∫
4π

Σs;` (x, E)Y m` (Ω)Y m` (Ω′)ψ (x,Ω′, E′, t) dΩ′dE′

=

∞∑
`=0

2`+ 1

4π

∑̀
m=−`

∫ ∞
0

Σs;` (x, E)Y m` (Ω)

(∫
4π

Y m` (Ω′)ψ (x,Ω′, E′, t) dΩ′
)
dE′

=

∞∑
`=0

2`+ 1

4π

∑̀
m=−`

∫ ∞
0

Σs;` (x, E)Y m` (Ω)φm` (x, E′, t) dE′, (A.11)

to get the scattering expansion for the transport equation.

In the MLPG code, the spherical harmonics up to ` = 3 are calculated directly using Eqs. (A.7). For

higher moments, Eqs. (A.5) are used to calculate the spherical harmonics. For the neutron transport

applications considered in this dissertation, the maximum degree of the spherical harmonics is L = 2.
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Appendix B

Constructive solid geometry equations

In a constructive solid geometry (CSG), regions of (usually constant) material are defined by analytic

surfaces, such as planes, spheres and cylinders. The CSG can be used in Monte Carlo simulations for tracking

particles through the problem domain by calculating which region a particle is located in, the distance in a

given direction to the next surface, and the reflection angle off of a surface where applicable. For the MLPG

transport equations, a CSG can provide similar data, such as the material at integration points and the

reflection angle off of a reflective boundary surface for a given discrete direction.

To find the region in the problem given a position, the CSG calculates the aspect of the particle with

respect to the surfaces in the problem. Each region is formed from one or more of these surfaces with a

defined aspect for each surface. For instance, for a simple spherical problem, one region, which is outside

the problem boundaries, would have a positive aspect with respect to the spherical surface. The second

region would have a negative aspect with respect to the spherical surface, and would be inside the problem

boundaries. For a point inside the problem, the code would calculate a negative aspect to the sphere and

then identify that the aspect matches the second region.

For problems with more complicated geometries, the code checks through the surfaces to find the appro-

priate region. To find the distance to intersection of the particle, the distance to collision with each surface

in the current region is calculated and the lowest distance to collision is the one used. If a ray has multiple

collisions for a given surface (e.g. for a particle approaching a sphere), the lowest nonnegative collision is

used. The algorithms to find a region given a position and to find an intersection given a position, region

and direction are given in Alg. B.6.

In the following sections, the following equations are provided for surfaces represented by a plane, cylinder,

sphere and ellipsoid:

• The normal vector of the surface at each point on the surface,

• The distance to intersection and point of intersection of a particle incident on the surface, and

• The aspect of a particle with respect to the surface.
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Algorithm B.6 Constructive solid geometry functions
1: function find region(position x)
2: initialize surface aspects
3: for each region i do
4: for each surface j in region i do
5: if aspect is not stored then
6: calculate and store surface aspect with respect to x
7: end if
8: if aspect is incorrect for this region then
9: continue to next region

10: end if
11: end for
12: return region i
13: end for
14: end function
15:
16: function find intersection(region i, position x, direction Ω)
17: initialize current best distance dbest to high value
18: initialize current best surface sbest to none
19: for each surface j in region i do
20: calculate distance d to intersection given x and Ω
21: if 0 ≤ d < dbest then
22: set best distance dbest = d
23: set best surface sbest = j
24: end if
25: end for
26: return best distance dbest and surface sbest
27: end function

The aspect for each surface can be positive, negative or coincident. If the aspect is coincident, the particle

is located on the surface. The equations are derived using vector notation for simplicity.

B.1 Plane

The general equation for a plane which includes point x0 and has the normal vector n is

(x− x0) · n = 0. (B.1)

A particle located at point g0 moving in direction g1 has the trajectory

xp (s) = g0 + g1s, (B.2)
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where s is the distance traveled from the initial point g0. This equation is inserted into Eq. (B.1) and solved

for s to get the distance to intersection for the particle,

sint =
(x0 − g0) · n

g1 · n
. (B.3)

The point of intersection can be found by advancing the particle by distance sint in Eq. (B.2).

The geometric relationship between a particle at point x and a plane is defined as

n · (x− x0)


> 0, positive,

< 0, negative,

= 0, coincident.

(B.4)

Similar equations are derived for each of the other shapes, with the addition of a calculation for the normal

vector, which is a given in the plane equation.

B.2 Cylinder

The equation for a cylinder with a centerline axis in direction Ω that runs through the point x0 can be

written

‖x− x0 −Ω · (x− x0) Ω‖2 = r2, (B.5)

where r is the radius of the cylinder and ‖(·)‖ calculates the length of the vector. The particle position is

defined the same as before according to Eq. (B.2). Inserting this equation into Eq. (B.5), the cylindrical

equation becomes (after some simplification)

‖k0 + k1s‖2 = r2, (B.6)

with the two constant vectors

k0 = [g0 − x0 −Ω · (g0 − x0) Ω] , (B.7a)

k1 = [g1 − (Ω · g1) Ω] . (B.7b)

Here k0 represents the vector rejection of g0 −x0 onto Ω, or the part of the vector connecting the midpoint

of the cylinder to the position of the particle that is perpendicular to the cylinder axis. k1 has a similar
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geometric meaning for g1, the direction of the particle. The equation can further simplify to

r2 = (k0 + k1s) · (k0 + k1s)

= k0 · k0 + 2k0 · k1s+ k1 · k1s
2. (B.8)

Defining the constants

`0 = k0 · k0 − r2, (B.9a)

`1 = k0 · k1, (B.9b)

`2 = k1 · k1, (B.9c)

the solution to this equation for s is

sint =
−`1 ±

√
`21 − `0`2
`2

, (B.10)

which is the distance to collision of the particle with the cylinder. If l2 = 0, the particle continues along the

axis of the cylinder without intersection. If `21− `0`2 < 0, there are no intersections between the particle and

the surface.

The aspect of a particle with respect to a cylinder can be found by setting k1 = 0 in Eq. (B.6),

k0 · k0 = r2, (B.11)

and evaluating the sign of the equation for position g0 in terms of the constant `0 [Eq. (B.9a)],

`0


> 0, outside,

< 0, inside,

= 0, coincident.

(B.12)

Finally, the normal direction of a particle on a cylinder at a point g0 can be found by normalizing the k0

vector,

n =
k0

‖k0‖
. (B.13)

B.3 Sphere

The equation of a sphere is

‖x− x0‖2 = r2. (B.14)
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Inserting the particle position from Eq. (B.2) gives

‖g0 + g1s− x0‖2 = r2,

which can be simplified by defining

k0 = g0 − x0, (B.15a)

k1 = g1, (B.15b)

to get

‖k0 + k1s‖2 = r2. (B.16)

This form of the equation is identical to the cylindrical equations and the results from the cylindrical

equations follow, but the spherical equations can be simplified by noting that g1 · g1 = 1, which results in a

distance to intersection of

sint = −`1 ±
√
`21 − `0, (B.17)

with

`0 = k0 · k0 − r2, (B.18a)

`1 = k0 · k1. (B.18b)

If `21 − `0 < 0, there are no intersections.

To check if a particle is inside of the sphere, the `0 constant is used to get

`0


> 0, outside,

< 0, inside,

= 0, coincident,

(B.19)

as for the cylindrical case. The normal direction of a point on the sphere at point g0 is

n =
k0

‖k0‖
. (B.20)
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B.4 Ellipsoid

The equations for the ellipsoid are similar to the spherical and cylindrical equations. Defining

q =

{
1

a
,

1

b
,

1

c

}
, (B.21)

the equation for an ellipsoid with semiaxes a, b, c along the Cartesian axes is

‖(x− x0) ◦ q‖ = 1, (B.22)

where ◦ represents the entrywise product. The equation for a traveling particle is inserted into this equation,

which results in

‖(g0 + g1s− x0) ◦ q‖ = 1. (B.23)

Letting

k0 = (g0 − x0) ◦ q, (B.24a)

k1 = g1 ◦ q, (B.24b)

the equations become

‖k0 + k1s‖ = 1. (B.25)

The results from the equations for a cylinder with the same equation follow. The constants

`0 = k0 · k0 − 1, (B.26a)

`1 = k0 · k1, (B.26b)

`2 = k1 · k1, (B.26c)

simplify solution of the equation for s,

s =
−`1 ±

√
`21 − `0`2
`2

, (B.27)
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as before. This is the distance to collision with the ellipsoid. As for the cylinder, if `21 − `0`2 < 0 there are

no intersections. The aspect of the particle with respect to the surface is also the same,

`0


> 0, outside,

< 0, inside,

= 0, coincident.

(B.28)

To find the normal direction for a point g0 on the surface of the ellipsoid, the property that the gradient

vector of surface is perpendicular to the surface is employed. The gradient has the magnitude

N = ∇ [‖(x− x0) ◦ q‖ − 1]

=
(g0 − x0) ◦ q ◦ q
‖(g0 − x0) ◦ q‖

=
k0 ◦ q
‖k0‖

, (B.29)

which when normalized is the normal direction of the surface,

n =
N

‖N‖
. (B.30)
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Appendix C

Alternate discretization of the strong form of the transport

equation

The basis and weight functions for the strong-form transport equation in Sec. 2.9 are either compact,

which produces a sparse transport operator (L−1), or global, which produces a dense transport operator.

For problems with a large number of spatial points, the use of global basis functions makes the method very

computationally expensive. For instance, the multiquadric function [Eq. (2.66)] actually grows larger as the

distance from its center increases. The following is a method based on Ref. [10] for restricting the range of

these global RBF functions by changing the solution variable of the L−1 calculation from the coefficients of

angular flux expansion to the angular flux itself at the basis and weight function centers.

C.1 Derivation

The same strong-form equations with point cross section weighting [Eqs. (2.62)] are used for this dis-

cretization. This linear system can be localized by restricting the basis for each equation to a certain number

of nearest neighbors, which creates a sparse matrix and a better-conditioned system. This would ordinarily

create discontinuities in the solution where the basis functions end. However, if only the values at the basis

function centers are needed, then the discontinuities do not present an issue. Letting Gj be the set of the

chosen nearest basis functions to the point xj , the basis function expansion [Eq. (2.30a)] becomes

ψn,g (xj) =
∑
i∈Gj

αi,n,gbi (x) . (C.1)

Letting An,g be the sparse L matrix (or streaming operator) for each ordinate n and group g, the linear

system can be described by the equations

An,gαn,g = qn,g. (C.2)
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The values of the rows aj,n,g of the matrix An,g,

An,g =



a>1,n,g

a>2,n,g

...

a>I,n,g


, (C.3)

can be written as

(aj,n,g)i =


Ln,gbi (xj) , xj ∈ V,

Bn,gbi (xj) , xj ∈ ∂V,
(C.4)

where Bn,g is the boundary operator representing Eq. (2.62d) and ∂V and V are the boundary and interior

of the spatial domain, respectively.

The system in Eq. (C.2) could be solved directly, but the matrix would be ill-conditioned due to the

use of RBF functions that may be very flat (see Chapter 1). Alternately, each row of this equation can be

converted separately to produce a solution for the vector of angular flux values at the center points of the

basis functions, ψn,g. The basis function expansion [Eq. (C.1)] can be written as a linear system,

ψn,g = Γjαn,g, (C.5)

where Γj is the basis function distance matrix for the N local points for basis function j with indices jn,

Γj =



bj1 (xj1) · · · bjN (xj1)

bj1 (xj2) · · · bjN (xj2)

...
. . .

...

bj1 (xjN ) · · · bjN (xjN )


,

and where the αn,g vector is appropriately indexed to be of the same size as the number of local points.

Applying the inverse of this matrix to Eq. (C.5), the equation for a single row of the matrix becomes

a>j,n,gαn,g = a>j,n,gΓ
−1
j ψn,g. (C.6)
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From these equations, the matrix describing the L operator Bn,g for ψn,g can be written as

bj,n,g =
(
a>j,n,gΓ

−1
j

)>
=
(
Γ>j
)−1

aj,n,g, (C.7)

which converts the linear system of equations to

Bn,gψn,g = qn,g. (C.8)

The Γ matrix is the same for every group and direction, and so the LU decomposition of the Γj matrix can

be stored and reused, making the cost of inversion of Γj onto aj,n,g comparable in time to the calculation

of the values of the angular flux from the basis function expansion. The switch to a solution for ψn,g can

produce a matrix Bn,g with a lower condition number than An,g, while the switch to a local basis makes

the condition number for Γj lower than that of either An,g or Bn,g.

As global RBFs are used in this section, the RBF shape parameter is altered from Eq. (2.72) to be

εi =
k

∆r
, (C.9)

where ∆r is the average distance to the nearest points (two in 1D, four in 2D, six in 3D) and k is a chosen

constant.

Compared to the weak-form equations or even for the strong-form equations presented in Chapter 2,

this discretization depends much more on the “correct” choice of parameters to get a good solution. This

discretization does successfully solve the slab geometry problem in Sec. C.2, but struggles with problems in

two and three dimensions, as shown in Sec. C.3.

C.2 Results for a slab-geometry problem

The slab-geometry results in this section are reproduced from Ref. [94]. The problem under consideration

is a one-dimensional, isotropically-scattering slab with a reflective boundary on the left side of the problem,

a fuel cell from 0 to Xfuel, a moderator cell from Xfuel to Xfuel+Xmod and a vacuum boundary on the right

side of the problem. The lengths of the fuel and moderator are Xfuel = 1.0 and Xmod = 2.0. The two-group

cross section values for the problem are listed in Table C.1. The internal, isotropic source is given in moment

form, so the discrete value of the internal source is q = Q/2 for the slab-geometry (azimuthally-integrated)

problem. For all cases, the SN approximation is used in angle with 16 Gauss-Legendre discrete ordinates.

In the fuel area, the dominant process is within-group scattering for both of the groups, with a compara-

tively higher fission and absorption cross section in group 2. In the moderator area, group 1 has a very high
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Table C.1: Cross sections and internal source for strong-form slab results

Material Group Σt,g Σs,g→1 Σs,g→2 χg vg Σf,g Q

Fuel
1 1.0 0.84 0.09 1.0 2.4 0.003 1.0

2 2.0 0.0 0.4 0.0 2.4 1.1 0.0

Moderator
1 1.0 0.2 0.8 0.0 0.0 0.0 0.0

2 2.0 0.0 1.9 0.0 0.0 0.0 0.0

0.0 0.5 1.0 1.5 2.0 2.5 3.0
x
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Figure C.1: Benchmark solution for strong-form slab results

probability of scattering into group 2, while group 2 has a very high probability of within-group scattering.

This was chosen to represent the effects of fast neutrons being moderated into thermal energies.

The benchmark solution is calculated using a 1D discontinuous finite element (DFEM) code with linear

basis and weight functions. The fuel and moderator regions have, respectively, 4000 and 8000 cells with two

nodes per cell for the first set of tests. For the second set of tests, these numbers are 12000 and 24000 cells

to accommodate the varying number of points in the RBF input. The benchmark solution can be seen in

Fig. C.1. The DFEM and RBF solution routines use the same code except for the spatial discretization and

L−1 calculation.

For the first set of tests, the number of spatial points for the RBF method is 1202, including the two

boundary points. The number of neighbors is 50, including the current point. The shape multiplier k is

altered logarithmically between k = 0.05 and k = 3.0 for each of the three global basis functions described in

Sec. 2.10.1, including the multiquadric (MQ), Gaussian (GA) and inverse multiquadric (IMQ). The L2 error

in the scalar flux is then calculated using coincident points from the DFEM solution. The results can be

seen in Fig. C.2. The MQ basis function produces the best and most reliable results. For the range between

k = 0.2 and k = 3.0, the error in the solution is at below 1.69 × 10−4. Between k = 0.35 and k = 0.5,
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the maximum error found is 2.53 × 10−5, with the minimum of k = 2.38 × 10−5 occurring at k = 0.391.

The MQ basis with localized basis functions provides a wide range of good choices for the shape parameter.

Comparatively, the GA and IMQ basis functions are not nearly so well-behaved. The minimum error of

8.41× 10−4 for the GA basis occurs at k = 0.428 and the error is at or below 2.02× 10−3 for the region from

k = 0.35 to k = 0.67.

Particularly for the GA and IMQ basis functions, using a shape parameter higher or lower than the

bounds of certain stability regions makes the error jump up relatively quickly. The errors for too high or

low of shape parameters are two separate phenomena. In the limit of k → 0, for a homogeneous problem

the series expansion for the RBF solution should agree to spectral accuracy with the analytic solution to the

problem. However, as the shape parameter decreases, the system becomes extremely ill-conditioned, causing

more and more roundoff error. As the shape parameter gets large, even the first-order terms in the series

expansion disagree with the analytic solution, creating a different type of error in the solution. The MQ

basis functions cannot escape the ill-conditioning as k → 0 but aren’t nearly as affected by high values of k

because they limit to a linear function as r → 0, whereas the GA and IMQ functions limit to zero.

The number of iterations required to converge the first-flight flux L−1q is three for all the cases. The

number of iterations required to converge the full transport problem for source iteration and Krylov iteration

for the DFEM method is 421 and 15, respectively. This number is identical to the number of iterations taken

by an RBF solution with an appropriately-chosen shape parameter. As the error of the RBF method

increases, the number of iterations required also increases. For the GA basis, problems with errors above

3.4× 10−3 take between 16 and 110 Krylov iterations to converge. For the MQ basis, problems with errors

of 7.3×10−5 and above take between 16 and 24 iterations, with the worst offenders being the problems with

very small shape parameters. The IMQ produce similar numbers for problems with errors above 5.2× 10−4,

for which the number of iterations varies between 16 and 25.

For the second set of tests, the shape parameter is held constant at 0.5 and the number of neighbors

is held at 50 while the number of internal points is varied. Using fewer than about 50 neighbors tends

to degrade the solution, while using more adds significant computational cost. Figure C.3 shows the error

decreasing as the number of points increases. Applying a fit of the form axb to the MQ data, with x the

number of points, the coefficients equal a = 1.56 and b = −1.56. Empirically, the order of the method as

the distance between points increases lies somewhere between first and second-order globally. Performing

the same fit on data for the MQ method with global basis functions, the coefficients become a = 1.19 and

b = −1.49, which means that the order of the method is approximately the same. However, the time to

perform the calculation is much higher.

The timing for the 600-point problem can be seen in Table C.2. Krylov iteration speeds up the solution
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Figure C.2: L2 relative error in the scalar flux with
varying shape parameter for strong-form slab
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Figure C.3: L2 relative error in the scalar flux with
spatial refinement for strong-form slab

Table C.2: Total runtime for alternate strong-form results

DFEM RBF Global RBF Local

SI 1.53 sec 664.56 sec 72.60 sec

KI 0.08 sec 63.15 sec 6.91 sec

procedure by more than an order of magnitude, while switching to localized basis functions speeds up the

calculation by almost another order of magnitude. In the limit of many points, the localized method is

second-order in time, while the global method is third-order in time, meaning the timing discrepancy only

increases as more points are added. The global method does not have significantly better error properties

for these test cases.

C.3 Qualitative results for a simple pincell

This problem is similar to the one-dimensional problem presented in Sec. C.2 and has the same materials

from Table C.1, but uses the pincell geometry as shown in Fig. C.4. The fuel region has a radius of 1.0 cm,

while the pincell length is 4.0 cm. The points are placed randomly within the problem, ensuring that no

two points are too close. This is done to show the irregularities in the solution that emerge from solving the

strong transport equations. The shape function parameter is set to k = 2.0 for these problems.

Figure C.5 shows the fast and thermal-group solutions for 4039 spatial points and 16 directions. The

solution is asymmetric about the pincell center and and oscillates near the fuel/moderator boundary, which

indicates poor conditioning of the solution due to the advection in the streaming operator. The oscillations

near the pincell boundary have a wavelength approximately equal to two times the point spacing in the
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Figure C.5: Scalar flux for strong-form pincell problem

problem.

For one dimension, the strong-form equations can perform well if the “correct” shape parameter is chosen

and enough points are used. In two dimensions, the additional geometric complexities and solution cost

make the collocation method difficult to apply accurately.
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