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ABSTRACT

Our smartphones, homes, hospitals, and automobiles are being enhanced with software

that provide an unprecedentedly rich set of functionalities, which has created an enormous

market for the development of software that run on almost every personal computing de-

vices in a person’s daily life, including security- and safety-critical ones. However, the

software development support provided by the emerging platforms also raises security risks

by allowing untrusted third-party code, which can potentially be buggy, vulnerable or even

malicious to control user’s device. Moreover, as the Internet-of-Things (IoT) technology

is gaining vast adoptions by a wide range of industries, and is penetrating every aspects of

people’s life, safety risks brought by the open software development support of the emerg-

ing IoT platform (e.g., smart home) could bring more severe threat to the well-being of

customers than what security vulnerabilities in mobile apps have done to a cell phone user.

To address this challenge posed on the software security in emerging domains, my dis-

sertation focuses on the flaws, vulnerabilities and malice in the software developed for

platforms in these domains. Specifically, we demonstrate that systematic program analyses

of software (1) Lead to an understanding of design and implementation flaws across differ-

ent platforms that can be leveraged in miscellaneous attacks or causing safety problems; (2)

Lead to the development of security mechanisms that limit the potential for these threats.We

contribute static and dynamic program analysis techniques for three modern platforms in

emerging domains – smartphone, smart home, and autonomous vehicle. Our app analy-

sis reveals various different vulnerabilities and design flaws on these platforms, and we

propose (1) static analysis tool (OPAnalyzer) to automates the discovery of problems by

xi



searching for vulnerable code patterns; (2) dynamic testing tool (AutoFuzzer) to efficiently

produce and capture domain specific issues that are previously undefined; and (3) propose

new access control mechanism (ContexIoT) to strengthen the platform’s immunity to the

vulnerability and malice in third-party software.

Concretely, we first study a vulnerability family caused by the open ports on mobile

devices, which allows remote exploitation due to insufficient protection. We devise a tool

called OPAnalyzer to perform the first systematic study of open port usage and their secu-

rity implications on mobile platform, which effectively identify and characterize vulnerable

open port usage at scale in popular Android apps. The analysis reveals that nearly half of

the open ports are unprotected and can be directly exploited remotely, and reports vulnera-

bilities in over 50 popular apps to the corresponding parties for security patch. We further

identify the lack of context-based access control as a main enabler for such attacks, and

begin to seek for defense solution to strengthen the system security. We study the popular

smart home platform, and find the existing access control mechanisms to be coarse-grand,

insufficient, and undemanding. Taking lessons from previous permission systems, we pro-

pose the ContexIoT approach, a context-based permission system for IoT platform that

supports third-party app development, which protects the user from vulnerability and mal-

ice in these apps through fine-grained identification of context. Finally, we design dynamic

fuzzing tool, AutoFuzzer for the testing of self-driving functionalities, which demand very

high code quality using improved testing practice combining the state-of-the-art fuzzing

techniques with vehicular domain knowledge, and discover problems that lead to crashes

in safety-critical software on emerging autonomous vehicle platform.

xii



CHAPTER I

Introduction

Our smartphones, homes, hospitals, and automobiles are being enhanced with software

that provide an unprecedentedly rich set of functionalities, which has created an enormous

market for the development of software that run on almost every personal computing de-

vices in a person’s daily life, including security- and safety-critical ones. Taking the smart-

phone industry as an example, we can see that it took only four years for the iOS and

Android, which open their software development to third party developers to dominate the

market [81]. Recently, this open development fashion has quickly spread to many other

emerging domains. For example, the Internet-of-Things (IoT) has quickly evolved from its

initial stage, where sensors and actuators each provide hard-coded and disjoint function-

ality, to an application centric era, where programming frameworks are provided for third

party developers to build apps to manage a single or even a number of smart devices at the

same time to realize more advanced and smarter control. Many such open IoT platforms,

for example Samsung SmartThings [41], Apple HomeKit [8], Google Weave/Brillo [23],

and Android Things [5] have already gained great popularity among home users today.

1.1 Problems

Despite the benefit of providing an enriched set of functionalities, the open software

development support of platforms also comes with security and safety risks by allowing
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untrusted third party code to control user’s device. In the mobile ecosystem, as of the end

of 2016, there are more than 2 million apps available for download in Apple’s App Store

and Google Play, respectively. Anyone can become a developer of these apps, with a de-

ployment fee of as low as $25, and deploy their code at a global scale. These developers can

be inexperienced, careless or even malicious, posing great threats to the end users’ privacy,

property, and even their well-beings, if the code runs on safety-critical devices. For exam-

ple, recent work [92] has shown that a malicious smart home app claiming to only monitors

the battery of devices can stealthily control the user’s door lock to allow break-in and theft.

Moreover, we have envisioned similar threats on the emerging Autonomous Vehicle (AV),

which is the next much-anticipated platform, and has unprecedented its high demand for

code reliability, and strong requirement for security. As an example, inheriting from the

Control Area Network (CAN) bus [17] system from traditional automotive design, self-

driving functionalities are developed as individual components that plugged into the CAN

bus. As the automakers usually outsource the development of some peripheral functional-

ities to third party suppliers, any bugs or vulnerabilities in the code could introduce great

safety risks. For example, the massive recall of Jeep Cherokee in 2015 was caused by the

vulnerability embedded in its 4G/LTE modem, whose compromise would put the vehicle

in a situation where collisions become inevitable [24].

To limit the potential security and safety risks of running third party code, these emerg-

ing platforms usually will need to deploy a two-stage security mechanism. An vetting

process to prevent vulnerable or malicious code from getting into the market; 2) A runtime

access control model to restrict the software behavior, in case vulnerabilities or malice con-

tained in the software evade the offline detection in the first stage. As a main enabler for

an automated software quality assurance, the program analysis techniques including both

static analysis and dynamic testing are widely adopted by the emerging platforms to build

their vetting processes. Meanwhile, to ensure the runtime security and safety, a permis-

sion model is usually in place to define a software’s access to sensitive resources [57]. The

2



program analysis technique and the permission model are the main focuses of this proposal.

However,in reality, the threats from the potentially buggy, vulnerable or even mali-

cious software have never been thoroughly mitigated even on the most mature platform,

the smartphone, not to mention the smart home and autonomous vehicle platforms, where

these security mechanisms are still in the primary stage or even not in place. The reasons for

these emerging platforms to remain insecure in practice are multifold, and we detail three

of them from the perspectives of different parties in the software development ecosystem,

which fall into the scope of this thesis.

1.1.1 Flaws being inevitable in software development and are non-trivial to detect

The security of computer systems fundamentally depends on the quality of its underly-

ing code. Despite a long series of research in academia and industry, security vulnerabilities

and flaws regularly manifest in program code, for example as failures to account for buffer

boundaries [118] or as insufficient validation of input data [102]. From the app developer’s

perspective, it is never easy to always produce code without vulnerabilities and flaws.

The discovery of flaws and vulnerabilities is a classic yet challenging problem. Due to

the inability of a program to identify non-trivial properties of another program, the generic

problem of finding software vulnerabilities is undecidable [142]. As a consequence, the

state-of-the-art approaches for spotting security flaws are either limited to specific types

of vulnerabilities or build on tedious and manual auditing. Although some classes of

vulnerabilities recurring throughout the software landscape exist for a long time, such

as buffer overflows and format string vulnerabilities, automatically detecting their incar-

nations in specific software projects is often still not possible without significant expert

knowledge [104].Thus it requires continuous efforts to extend the scope of vulnerability

patterns that can be automatically detected.
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1.1.2 Insufficient and coarse-grained permission system.

The permission system is concerned with limiting the access to sensitive resources on

the host, and it is enforced by a reference monitor, which mediates every attempted ac-

cess by a user-space program to the resources owned by the platform. From the platform’s

perspective, designing and implementing a permission system that balances usability and

security is non-trivial. For example, web site isolation makes it difficult to share photos be-

tween two sides without manually downloading and re-uploading them. While applications

can pre-negotiate data exchanges through IPC channels or other APIs, requiring every pair

of applications to pre-negotiate is inefficient or impossible. From a security standpoint, ex-

isting access control mechanisms including both installation time and runtime permission

systems have long been criticized to be coarse-grained, insufficient, and undemanding. For

instance, they require users to make out-of-context, uninformed decisions at install time via

manifests [3, 66], or they unintelligently prompt users to determine their intent [28, 53].

From numerous studies on Android and iOS permission systems [57, 146, 157, 161], a key

design flaw is that the users are usually out of context.

1.1.3 Security always being an afterthought.

From the market’s perspective, security have always been an afterthought in cyberspace.

Many security issues, such as the ActiveX exploitation [1], the recent Spectre and Melt-

down vulnerabilities [30] are all side effects of one illness: The software industry and the

customers that develops the software rarely think about security first. From the software

developer’s perspective, functionality always has the highest priority, and in the state of

affairs, little things like security is bolted on once these software are widely adopted. For

example, on the emerging autonomous vehicle platforms we investigated so far, neither the

security vetting nor the access control have been proposed despite its high code quality and

reliability demands. It’s critical to understand the unique challenges of supporting these

security mechanisms on such safety-critical platforms and make them happen.
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Scope Problem Program Analyses Applied

Smartphone Insecure open pors leads to
remote large-scale attack

Static program analysis to identify vulnerability
that has predefined code patterns

Autonomous
vehicle

A lack of software quality
assurance measures against

flaw and vulnerability

Dynamic program analysis combining guided
fuzzing with domain knowledge to detect

runtime problems that lead to crash
Smart home Insufficient and

coarse-grained access
control

Context-based access control to mitigate the
threats from vulnerable and malicious code at

runtime that have evaded vetting

Table 1.1: Overview of emerging platforms covered in this proposal

1.2 Contributions

The dissertation proposes practical solutions towards addressing the aforementioned

problems. More specifically, my research try to advance the security of the platforms in

three emerging domains – smartphone, smart home, and self-driving car by identifying de-

sign and implementation flaws in code that lead to attacks or safety problems and build

platform-level defense to mitigate the threats. Utilizing static and dynamic program analy-

sis, I 1) systematically examined the vulnerabilities exposed by open port usage on mobile

devices which lead to remote large-scale attacks; 2) designed and implemented a new ac-

cess control model for appified IoT platform that enforces contextual integrity; 3) Devised

enhanced fuzzing practice to test self-driving functionalities on emerging autonomous ve-

hicle platform.

Table 1.1 shows an overview of the emerging platforms covered in this proposal and

the program analyses we applied. The three proposed techniques – static program analysis,

dynamic testing, and context-based access control each focus on one critical aspect of the

security and safety of different platform, and are complementary to each other by limiting

the threats from certain types of problems that cannot be effectively detected by the other

approaches. As shown in Table 1.1, static program analysis is efficient in detecting prob-

lems at scale with code coverage guarantee, but are limited to problems whose patterns have

been recognized as code properties. Dynamic testing, though does not ensure full code cov-
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Figure 1.1: The three program analysis approaches we take in this thesis to ensure platform
safety and security

erage, can be used to discover problems that are not well-defined or not distinguishable at

code level, and is especially effective in detecting reliability problems in critical use cases

that have real-time requirements. Shown in Figure 1.1, these two approaches can be used

together to improve the vetting practice of emerging software platforms. The proposed

context-based fine-grained access control, on the other hand, is responsible for restricting

the suspicious program’s behavior at runtime, and is complementary to the vetting process

by mitigating the threats caused by the inevitable inaccuracy during the vetting.

In summary, my dissertation demonstrates that: Systematic program analyses of soft-

ware (1) Lead to an understanding of design and implementation flaws across different

platforms that can be leveraged in miscellaneous attacks or causing safety problems; (2)

Lead to the development of security mechanisms that limit the potential for these threats.

1.2.1 Understanding and Detecting Open Port Vulnerability on Mobile Device

Open ports are typically used by server software to serve remote clients, and this usage

historically leads to remote exploitation due to insufficient protection [86, 47]. Smart-

6



phone inherits the open port support, but since they are significantly different from tradi-

tional server machines in performance and availability guarantees, little is known about

how smartphone apps use open ports and what the security implications are. We perform

the first systematic study of open port usage on mobile platform and their security impli-

cations. To achieve this goal, we design and implement OPAnalyzer, a static analysis tool

which can effectively identify and characterize vulnerable open port usage in Android apps.

Using OPAnalyzer, we perform extensive usage and vulnerability analysis on a dataset

with over 100K Android apps. OPAnalyzer successfully classified 99 of the mobile usage

of open ports into 5 distinct families, and from the output, we are able to identify several

mobile-specific usage scenarios such as data sharing in physical proximity. In our subse-

quent vulnerability analysis, we find that nearly half of the usage is unprotected and can be

directly exploited remotely. From the identified vulnerable usage, we discover 410 vulner-

able apps with 956 potential exploits in total. We manually confirmed the vulnerabilities

for 57 applications, including popular ones with 10 to 50 million downloads on the official

market, and also an app that is pre-installed on some device models. These vulnerabilities

can be exploited to cause highly-severe damage such as remotely stealing contacts, pho-

tos, and even security credentials, and also performing sensitive actions such as malware

installation and malicious code execution. We have reported these vulnerabilities and also

propose countermeasures and improved practices for each usage scenario.

1.2.2 Enforcing Contextual Integrity on Appified IoT Platform

The IoT has quickly evolved to the new appified stage where third party developers

can write apps. Like other appified platforms, e.g., the smartphone, the permission sys-

tem plays an important role in the platform security. However, design flaws in the current

IoT platform permission models have been reported to expose users to significant harm

such as break-ins and theft [92]. To solve these problems, a new access control model is

needed for both current and future IoT platforms. We propose ContexIoT, a context-based
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permission system for appified IoT platforms that provides contextual integrity by support-

ing fine-grained context identification for sensitive actions, and runtime prompts with rich

context information to help users perform effective access control. Context definition in

ContexIoT is at the inter-procedure control and data flow levels, that we show to be more

comprehensive than previous context-based permission systems for the smartphone plat-

form. ContexIoT is designed to be backward compatible and thus can be directly adopted

by current IoT platforms.

We prototype ContexIoT on the Samsung SmartThings platform [41], with an automatic

app patching mechanism developed to support unmodified commodity SmartThings apps.

To evaluate the system’s effectiveness, we perform the first extensive study of possible

attacks on appified IoT platforms by reproducing reported IoT attacks and constructing new

IoT attacks based on smartphone malware classes. We categorize these attacks based on

lifecycle and adversary techniques, and build the first taxonomized IoT attack app dataset.

Evaluating ContexIoT on this dataset, we find that it can effectively distinguish the attack

context for all the tested apps. The performance evaluation on 283 commodity IoT apps

shows that the app patching adds nearly negligible delay to the event triggering latency, and

the permission request frequency is far below the threshold that is considered to risk user

habituation or annoyance.

1.2.3 Providing Efficient Dynamic Testing Support to Self-driving Functionalities

Autonomous Vehicle (AV), which monitors the driving environment and conduct some

or all of the driving tasks, has the potential to significantly change the future of ground

mobility, while they must be evaluated thoroughly before the release and deployment.

The recent advancement in AV has created an enormous market for the development of

software-based self-driving functionalities, and ensuring the security and reliability of the

code running on the AV becomes a pressing demand for the AV makers, especially when

the huge code base contains third party code coming from the use of libraries, packages,
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and out-sourced functionalities, such as the Mobileye vision technology [33] and Velodyne

lidar technology [52]. However, after the a measurement study of several self-driving func-

tionalities, we find that static program analysis is no longer sufficient in detecting potential

risks in the code base. Some problems may not be revealed, however, until the vehicle

encounters certain physical roadside conditions. Taking lessons from the fuzzing, which is

one of the most effective dynamic testing approaches that are widely adopted in software

testing, we propose AutoFuzzer approach, an efficient fuzz testing framework for detecting

exceptions, such as crashes, failing built-in code assertions, and potential vulnerabilities

specifically in self-driving scenarios.

We prototype AutoFuzzer on the Baidu Apollo [12], which is yet the most mature

AV platform that are publicly available, containing complete solutions in positioning, per-

ception, planning, control, etc. Specifically AutoFuzzer introduces an enhanced mutation

engine that includes realistic atomic perturbations to improve the efficiency of fuzzing, and

addresses the challenge of testing the distributed in-vehicle system by interfacing the fuzzer

with the internal Inter Procedure Communication (IPC) mechanism. AutoFuzzer provides

a portable solution without requiring any change to the target code bases, and is generally

applicable to AV platforms with the similar Robot Operating System (ROS) [40] based

architecture. The evaluation shows that it detects unique crashes and hangs much more

efficient than the state-of-the-art fuzzing tool in the self-driving scenarios.
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CHAPTER II

Understanding and Detecting Open Port Vulnerability on

Mobile Device

2.1 Introduction

An open port (or a listening port) is a communication endpoint for accepting incoming

connections in computer networking model, typically used by server applications to handle

requests from remote clients. However, these ports can also be connected by malicious

clients if not carefully protected, exposing potential vulnerability in the server software to

remote exploitation. Such inherent weakness has always accompanied the usage of open

ports throughout the history of network services, opening doors for large numbers of severe

Internet attacks such as TCP SYN flooding attacks [86], the Conficker worm [47], and

more recently the Heartbleed bug [25]. To mitigate the problem in these traditional usage

scenarios, firewalls and user authentication mechanisms are usually adopted.

In the recent evolution to the mobile era, smartphone operating systems inherit the sup-

port for open port. But for smartphone apps, traditional open port use cases such as hosting

network services no longer apply. One major reason is that compared to stationary server

machines with wired network connectivity, the mobility nature of smartphones makes it

difficult to maintain a stable IP address. Moreover, the IPs assigned to mobile devices are

often behind a NAT (network address translation) preventing incoming network connec-

10



tions. Also, continuously receiving network traffic can easily drain the battery of a mobile

device, leading to a form of denial-of-service (DoS) attack [164]. Due to these inherent

differences, our current understanding about smartphone usage of open ports are rather

limited.

With the immense popularity of smartphones, any potential smartphone open port usage

may directly expose end users to severe damage. Several such examples have already

been reported recently, called “Wormhole” apps [35], where open ports in popular Android

apps allow an attacker to remotely collect location data, insert contacts, and even install

app without authorization, and over 100M devices are affected. While these exploits are

alarming, it is still unclear whether these vulnerabilities are exposed by popular use cases

of open ports in the smartphone ecosystem, or just by poor implementation practices.

In this work, we perform the first systematic study of open port usage and the security

implications on mobile platform. To achieve this goal, we design and implement a tool

called OPAnalyzer, which can effectively identify and characterize vulnerable open port

usage in Android apps. To use OPAnalyzer, we first formalize open port app design pattern

in the language of program analysis, which in high level specifies what sensitive functions

are triggered from open ports, and how they are triggered. With these definitions, OPAna-

lyzer first uses static taint analysis to track the information flow from the remote input entry

point, and identifies the sensitive functionalities that can potentially be triggered. After this

step, a set of usage paths of the open port are generated, which will lead to remote exploits

if not well protected. To help prioritize human inspection, OPAnalyzer examines the se-

curity checks along the usage paths guarding the sensitive functionality. If the execution

of a given path is found to have no constraints or contains only weak checks, a potential

remote exploit is directly revealed (§2.4.4). OPAnalyzer also dynamically tests whether the

vulnerable port is open by default, and labels the weak paths as highly insecure if the cor-

responding port opens automatically at app launching time. For high precision, our design

leverages the Amandroid approach [156], which supports flow-, context-sensitive data-flow
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analysis.

To ensure high effectiveness, we overcome several engineering challenges in the

tool implementation. First, our analysis needs accurate identification of the permission-

protected APIs, but the API to permission mappings provided by the most recent work,

PScout [61], are incomplete for our purpose since it does not consider the prerequisites of

the API usage. To address this limitation, we improve PScout to automatically fix some

common missing cases (§2.4.3). Second, we find that Java reflection is commonly used to

handle remote input from open ports, which is not resolved by many static taint analysis

tools such as Amandroid. To ensure the call graph completeness, we add an extra analysis

to locate the target class or method, which successfully resolves over 86% Java reflection

use cases in our app dataset (§2.4.4). Third, we find that many apps actually implement

open port usage in native code, which cannot be captured by Java-layer static analysis

alone. Therefore, our tool also includes native code support based on binary analysis tech-

niques, which is commonly excluded in nearly all existing static analysis tools on Android

apps due to high engineering efforts [60, 97, 100, 156](§2.4.2).

Using OPAnalyzer, we perform an open port usage analysis on 24K popular Android

apps from Google Play, and successfully classify 99% of the usage paths into 5 categories:

data sharing, proxy, remote execution, VoIP call, and PhoneGap (§2.5.2). We also find that

significantly different from traditional usage, ports in some categories were mostly intended

only for clients in physical proximity of the smartphone, or even on the same device.

Among these open port usage families, many are found to directly enable a number

of serious remote exploits if not well protected. More specifically, we use OPAnalyzer

to examine the security checks along the identified usage paths, and find that they gener-

ally lack sufficient protection: for the most popular usage, data sharing, over half of the

paths can be easily triggered by any remote attacker, and in some usage categories such

as proxy, over 80% of the paths are not protected. From OPAnalyzer output, we uncover

410 vulnerable applications with 956 potential exploits in total, and manually confirm 57
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vulnerable apps that have not been previously reported, including popular ones on the mar-

ket and even a pre-installed app on some device models. These newly-discovered exploits

can lead to a large number of severe security and privacy breaches. for example remotely

stealing sensitive data such contacts, photos, and even security credentials and performing

malicious actions such as executing arbitrary code and installing malware remotely (§2.6).

To get an initial estimate on the impact of these vulnerabilities in the wild, we performed

a port scanning in our campus network, and immediately found a number of mobile de-

vices in 2 minutes which were potentially using these vulnerable apps. we have reported

these vulnerabilities to the relevant parties through vulnerability tracking systems including

CVE [15] and CERT [51], and some of them have been acknowledged (e.g., CVE-2016-

5227, VR-176). We encourage readers to view several short attack video demos at our

project website [32].

Leveraging the insights from these analysis, we further categorize the vulnerable apps

based on their intentions of open port, and discuss defense strategies depending on the

unique characteristics in each category (§2.7). Specifically, for the physical proximity us-

age, which does not have any effective and usable protection yet, we propose a transparent

socket-level solution that allows users to conveniently verify a connection from a device

nearby and can be easily adopted by app developers.

We summarize the key contributions of this work:

• We formalize open port app design pattern, and develop OPAnalyzer to systemat-

ically characterize open port usage in Android apps and detect exposed vulnerability. To

ensure high accuracy, we tackle several challenges, e.g., improving the API to permission

mapping completeness, resolving Java reflection, and enabling native code analysis.

• Using our tool, we perform the first systematic study of open port usage and their

security implications on mobile platform. We are able to classify 99% of the identified

usage into 5 distinct usage families, and discover some mobile-specific scenarios. We find

that nearly half of these usage paths have no protection implemented, which can directly
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be triggered by remote attackers to leak sensitive information and perform high-privileged

actions.

• We perform an in-depth analysis on the vulnerable open port usage, and construct

real exploits to validate the threats. From the results, we manually confirmed 57 new

vulnerable apps containing popular ones on the market and also a pre-installed app on some

device models, which can be used to remotely steal sensitive user data such as photos,

security credentials, and perform malicious actions such as executing arbitrary code and

installing malware. We also suggest countermeasures and improved practices to mitigate

these problems in each intended open port usage scenario.

2.2 Background and Threat Model

In this work, we broadly define mobile apps with open TCP or UDP ports as open port

apps. And two types of open port apps are covered by our study. (1) Mobile service app

provides useful functionality such as sharing files on the handset by opening a file server to

be connected by user’s desktop. (2) Malicious open-port apps intentionally open ports to

carry out malicious activities such as receiving commands from remote attackers for data

theft or device control. Our study does not focus on malware detection, since it’s very hard

to distinguish malicious and legitimate open port usage without having a comprehensive

understanding of the designed functionality of each app. Instead, we focus on identifying

problematic usage (including both malicious and legitimate) that exposes vulnerabilities to

attacker and affects the well-being of the user.

Threat model. The threat to an app with open ports comes from the attackers with the

ability to reach these ports. In the design of popular smartphone operating systems such as

Android, ports are reachable from both the same device, e.g., another app or a script on the

web page, and another host in the same network with the victim device. Thus, compared

to the majority of previously-reported smartphone app vulnerabilities that only consider

the threat from on-device malware [169, 87, 90, 170, 60], open port apps additionally face
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threats from network attackers, e.g., local network attacks, and web attackers, e.g., mali-

cious scripts, which is much more diverse and also of wider range. More specifically, in

this work we consider the following three adversary types:

(1) Malware on the same device. A malicious app, or malware, installed by the smart-

phone user can use netstat command or proc file /proc/<pid>/net/tcp to find the

listening ports on the same device and send exploitation traffic.

(2) Local network attacker. For victims behind NAT or using private WiFi networks,

attackers sharing the same local network can use ARP scanning [10] to find reachable

smartphone IP addresses at first, and then launch targeted port scanning to discover vulner-

able open ports.

(3) Malicious scripts on the web. When a victim user visits an attacker-controlled

website using their mobile device, malicious scripts running in the handset’s browser can

exploit the vulnerable open ports on the device by sending network requests, which doesn’t

require any permission.

For each of these three threat models, we have prepared short attack video demos on

our website [32] to help readers more concretely understand their practicality.

Scope and assumptions. Our study focuses on TCP ports, which are most commonly

used. We did not study UDP ports, but we argue that our methodology can be easily

adapted for it. Our tool is expected to handle obfuscated Android apps as long as they can

be disassembled. In the current implementation, our tool only fails to analyze very few

samples (0.6% of apps in our dataset); for them, even the disassembling process cannot

succeed.

2.3 Design Pattern of Open Port Apps

Figure 2.1 shows a simple example Android app that opens a port for accepting remote

command to push notifications on the user’s device. The app first creates a ServerSocket

to listen on a TCP port. Once a client connects to the port, the app reads the remote input
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ServerSocket ss = 

     new ServerSocket(port)

//Bind to a TCP port

Socket s = ss.accept()

//Accept an incoming socket

input = s.getInputStream()

//read remote input 

if (input[0] == “PUSH”)

//Check remote input

{

  Push_Notification(input[1])

//API being triggered

}

Remote Input

Sensitive 
Functionality

Constraints

Entity Dependency

Data
dependency

Control
dependency
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Figure 2.1: Design pattern of open port Android app

from the socket and serves the request. In this example, the app checks whether the remote

input contains the “PUSH” command, and if so, it starts pushing the messages contained

in the remote input to device’s notification bar.

We generalize the logic of Android apps with open ports as the design pattern shown

on the right side of Figure 2.1, consisting of three different entities and the dependency

relationship among them.

Remote entry point is defined as the content passed to the open port app from the

incoming sockets. And it serves as the entry point in our analysis framework (§2.4.1).

Security mechanisms such as authentication token can be used to authorize the remote

access to the app.

Sensitive functionality refers to the sensitive API set that can be triggered by remote

input. The sensitive API set defined in this work contains (1) APIs protected by the Android

permission system e.g., sendTextMessage() protected by SEND SMS permission, and (2)

APIs not protected by permissions but considered sensitive in the open port context. For

example, an app does not require any permission to read its own data cache. However, if the

data is written back to the incoming socket and transmitted to the remote client, a potential

information leakage is caused, since the app cache may contain sensitive user data. We
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describe our approach to construct sensitive API set in §2.4.3.

Constraints refer to the conditional statements along the path between the remote in-

put and the sensitive APIs. It is usually introduced by the protocols that the app uses to

communicate with the remote clients. If the constraints on a path are easy to bypass, the

sensitive functionality on the path may be exploitable by remote attacker to launch privilege

escalation attack. We discuss more on the strength of the constraints in §2.4.4.

Dependency. We identify the dependency between remote input and sensitive API

as the Program Dependency, consisting of control dependency and data dependency. We

use it to describe the “trigger” relationship between the source and the sink, which is

shown to be efficient for us to characterize open port usage and understand their security

implications.

In practice, the dependency between the remote entry point and sensitive API set of

an app is not easy to characterize. The analysis must handle various program flow jumps

in the Android lifecycle, including inter-component communications, Java reflection, and

even jumps from native code, to accurately model the open port functionality. Moreover,

to identify those vulnerable paths that can be leveraged by remote attacker, the analyzer is

required to evaluate whether a given usage path is practically exploitable in terms of the

timing window for attacker, and the strengths of the checks performed on the path. We

design OPAnalyzer to analyze the usage and security implications of these apps to address

these technical challenges.

2.4 OPAnalyzer Approach

The goal of OPAnalyzer is bi-fold (1) to characterize the open port usage on mobile de-

vices, and (2) to identify vulnerability exposed by the usage. To achieve the goal, we design

OPAnalyzer to automatically discover all the sensitive functionalities that can be triggered

by remote input and examine the constraints that guard them. We define a usage path as

a program path from the remote entry point to a single sensitive functionality with all the
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Figure 2.2: OPAnalyzer approach overview

conditional statements along the path annotated. OPAnalyzer performs the analysis on us-

age path level, so that various functionality of a given open port can be comprehensively

examined.

Figure 2.2 shows the overview of OPAnalyzer’s approach. (1) OPAnalyzer takes apk

files as input, extracts both Dalvik bytecode and native shared objects to build the environ-

ment for the app; (2) It calculates the entry points from both the native code and Dalvik

bytecode for subsequent static analysis(§2.4.1). (3) It constructs the Inter-component Data

Flow Graph (IDFG) and Data Dependency Graph (DDG) from the entry points based on

Amandroid, which are both flow- and context-sensitive; (4) It performs taint analysis to

study the dependency between remote input and a precomputed sensitive API set(§2.4.3),

and outputs the paths.(5) Constraints analyzer examines all the checks along the paths that

are control dependent on the remote input, and annotates the strength of each constraint.

(6) Reachability analyzer filters those paths unreachable from the program entry set, and

annotates the run-time reachability for each path(§2.4.4). Usage categorization and vulner-

ability discovery are then performed on the annotated usage paths.

In the remainder of this section, we provide an overview of the main analysis steps and

how we overcome several challenges.

2.4.1 Entry Point Analysis

Entry point analysis collects the remote entry points from both Dalvik and native code.

It integrates apktool as its front-end to decompress the apk file. Dalvik bytecodes are de-
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v0 = accept( sock,&addr,&addr_len)

//accept a remote incoming socket

if (v0 == “action”){

   system(“am broadcast com.example.action”)

   //broadcast an intent in Java layer

}

else {

   system(“am startservice com.example.UploadService”)

   //start an application service in Java layer

}

<receiver android:name=“com.example.ActionReceiver”>

   <intent-filter>

      <action android:name=“com.example.action” />

   //specify that action will be handled by receiver

   </intent-filter>

</receiver>

<service android:name=“com.example.UploadService”

         android:process=“.uploadService” />

   //an upload service that runs in separate process 

1

2

3

4

5

6

7

8

9

10

Figure 2.3: Snippet from real app showing control-flow jump from the native code layer
(Left) to the application layer (Right).

coded to smali format and further converted to an IR called Pilar. The application layer

analyzer extracted those Java classes that accept connections from either ServerSocket

or ServerSocketChannel, which are the only Android framework APIs for apps to open

TCP port in Java, as entry points. However, apps can also embed the open port function-

ality into the native code either for the purpose of disguising their stealth behavior or for

performance reasons. Thus we implement a native code analyzer to collect those entry

points embedded in native code and capture the control-flow jumps from native code to the

Java layer.

2.4.2 Native Code Analyzer

Figure 2.3 is a code snippet from a real app showing the open port functionality em-

bedded in native code. The app accepts the incoming socket in native C code, and passes

the control-flow to application layer to serve the request. Shown on line 4, native code

broadcasts an intent using the system function, and the intent is captured by the Java

layer receiver and triggers the ActionReceiver logic. Another type of control-flow jump

in this example is shown on line 8. The app starts a service defined in the Android man-

ifest from native code, and the UploadService starts running in the background. Such

cross-layer interactions cannot be captured by existing static analysis approaches, leading

to inaccuracy in the security analysis. We design and implement a native code analyzer that

captures such control-flow jumps based on inter-procedure taint analysis.
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The native code analyzer takes the shared object files extracted from the apk as in-

put, and performs taint analysis on the decompiled assembly code. The taint source is the

socket accepted from the open port, while the sinks are those function calls that can ini-

tiate control-flow jump to application layer, such as system(). After locating the source

and sink in the assembly code, it analyzes whether there is a path that propagates the taint

value to the sink either explicitly or implicitly. The system() function calls in Figure 2.3

are not directly tainted by the source, but are control-dependent on the tainted conditional

statement, as an example of implicit taint. The taint analysis handles inter-procedure calls,

as well as asynchronous I/O. To handle many clients simultaneously in native code, app

can perform non-blocking I/O using Linux’s epoll facility [21], which provides readi-

ness notification to simulate I/O multiplexing. To serve multiple requests, the thread uses

epoll wait to get tasks from event queue, and epoll ctl to add new connections waiting

to be handled into the event queue. The taint analysis propagates taint values accurately

through such asynchronous function calls by keeping track of each event queue. We show

how the native code analyzer improves the effectiveness of our tool in §2.4.5

The native code analyzer is implemented as a plug-in for IDAPro written in Python.

It uses IDAPro [26] as the front-end, and performs the inter-procedural data-flow analysis

on the CFG of the assembly code. The time it takes for analyzing an app depends on

the number of shared object files contained in the app. The mean analyzing time is 80.0

seconds with the interquartile range of 74.9 seconds.

2.4.3 Sensitive API Selection

OPAnalyzer aims at characterizing all the sensitive functionality triggered by remote

input. To define the sensitive API set and categorize their functionality, we need an accurate

mapping from Android APIs to the permissions they require. However, constructing such

mapping for our use case is non-trivial because our analysis is performed on the component

level. We detail the challenges and our solutions below.
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PScout [61] provides a static analysis approach to find the mappings between API calls

and permissions. However, we find that it suffers from some completeness problems. Tak-

ing the ServerSocket as an example, which requires Android Internet permission. In

the mappings generated by PScout, we only find the constructor of the ServerSocket

mapped to the Internet permission, while other sensitive APIs such as accept() and

getOutputStream() are missing. We suspect that it is because Android enforces some

permission checks at the class level instead of API level. Although enforcing the permis-

sion check at the constructor implies that all the member functions of this class are also

protected, the incompleteness of the < API, permission > mappings restricts its usabil-

ity for program analysis, especially when the analysis is performed on the component level.

To address this problem, we design a static analysis tool to automatically add such missing

APIs to the mappings. For every class constructor presented in the original PScout output,

the tool takes the AOSP source code as input and extracts all the member functions of the

class to complete the mappings.

In addition, we find that some APIs are not protected by Android permissions, how-

ever, when used together, are also considered sensitive in the mobile service context. For

example, an app retrieves the device location and stores it in the application data cache.

Once a remote connection comes in, it reads the location data from the cache and sends

it to the remote attacker. In this scenario, the incoming socket does not trigger any per-

mission check except INTERNET, which we think is granted by default, but the sensitive

location data is stolen and leaked asynchronously. To capture such sensitive functionality

in the mobile service context, we manually collect all the sources that an app can retrieve

data asynchronously that do not require permission, including app cache, database, shared

preference, etc. We define a pseudo permission called DATA LEAK. If the data written to the

incoming socket is dependent on the data retrieved from these asynchronous sources, we

consider it as invoking the DATA LEAK permission check. The pseudo permission together

with the associated API pairs are added to the sensitive API set.

21



socket = ServerSocket.accept()

// socket = Source#1()

remote_input = socket.getInputStream()

flag = remote_input[0]

if (flag == “True”) {

      password = getSharedPreferences(“password”,0)

      // password = Source#2()

      outStream = socket.getOutputStream()

      outStream.write(password)

      // Sink()

}
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Figure 2.4: An example for implicit and explicit taint logic.

2.4.4 Usage Path Analysis

To identify program dependency, OPAnalyzer performs taint analysis on the DDG

rooted from remote entry points, taking the remote input as source, and sensitive API

set as sink. It outputs all the usage paths that the remote input can trigger, together with all

the constraints that guard the sinks, which are useful for open port usage categorization

and vulnerability discovery.

IDFG and DDG. are built for each remote entry point using Amandroid, which include

all those Inter-Component Communication (ICC) edges, and are both flow- and context-

sensitive. However, the control-flow jumps introduced by Java reflection cannot be cap-

tured by this approach. Since we find that reflections are heavily used in our dataset, and

also are found in those well-known Wormhole apps, we add reflection support to the taint

analysis engine.

Java reflection is used by programs to examine or modify the runtime behavior of apps

running in Java virtual machine. We have seen reflections used in apps for both legitimate

purpose (e.g., bypass some API-level restrictions) and malicious purpose (e.g., disguise the

entry to malicious code). Handling reflection accurately is impossible for static analysis,

and remains challenging even combining runtime analysis [141]. To capture the control-

flow jumps of reflection to our best effort, we implement a handler in the IDFG builder
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Socket socket = ServerSocket.accept();

InputStream in = socket.getInputStream();

String input = in.readLine();

String command = input.split(“=“)[0];

String value = input.split(“=“)[1];

Map map = new HashMap<String,String>();

map.put (command,value);

if (map.size() > 0){                  //C1

      if (command == “SEND_SMS”) {    //C2

            SendSMS(value);           //Sink()

      }

}

1

2

3

4

5

6

7

8

9

10

11

12

Figure 2.5: Sample app code showing that sensitive API is protected by constraints

similar to the one used in FlowDroid [60], which can link the target class or method invoked

by reflection to the calling function, and add the missing edges to the IDFG. Currently, it

only handles reflection calls with targets explicitly provided in the same procedure, and

will miss those whose targets are not deterministic statically. However, we find that over

86% of reflections in our dataset can be handled by applying this heuristic, and it also helps

identify significantly more vulnerable paths as shown in §2.4.5.

Java layer taint analysis is used to examine the dependency among remote input and

sensitive APIs. We define a notion to describe the explicit and implicit dependency rela-

tionships among statements. The notion is further used to categorize usage.

Notion 1 The dependency relationship between two statements along the same usage path

is either implicit or explicit, and transitivity applies.

stmt1
E−→ stmt2 : if stmt2 is explicitly tainted by the return value of stmt1.

stmt1
I−→ stmt2 : if stmt2 is implicitly tainted by the return value of stmt1.

stmt1
I−→ {stmt2

E−→ stmt3} : if stmt3 is explicitly tainted by the return value of

stmt2, and both stmt2 and stmt3 are implicitly tainted by the return value of stmt1.

Explicit taint describes the data dependency relationship propagated by assignment ex-
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pressions, while implicit taint reflects the “triggering” relationship, in which the source

is presented in the conditional statements. Shown in Figure 2.4, the first taint source comes

from the remote input, and flag is explicitly tainted by the remote input, since it is

derived from it. All the statements in the if block are implicitly tainted by the flag,

since they are control-dependent on the if statement. Specifically, another taint source is

identified as the getSharedPreferences, which reads data from an asynchronous source.

The password read from the shared preferences is written to the socket, identified as an

explicit taint relationship between statements in line 5 and line 6. Thus, the dependency

relationship along this usage path is expressed as:

accept()
I−→ {getSharedPreferences() E−→ write()}

To further narrow down the potential vulnerable path list, and provide insights to identify

the vulnerability, OPAnalyzer integrates both constraints analysis and reachability analysis

to help analyst prioritize paths output by OPAnalyzer to reduce human efforts.

Constraints analyzer examines all the conditional statements along the usage path to

which the sensitive API is control dependent on. Shown in Figure 2.5, the remote input

is separated into two substrings and put into a Map. The sensitive API SendSMS is control

dependent on two constraints. Constraint C1 defined in line 8 checks whether the Map is

empty, while the constraintC2 in line 9 checks whether the command passed in from remote

input is “SEND SMS”. Both checks are easy to bypass, an arbitrary remote attacker can

construct the input string to bypass the checks and trigger the malicious payload to be

sent via SMS, which results in a remote privilege redelegation attack [90]. OPAnalyzer

annotates a constraint as weak if it is either (1) comparison with constants or (2) comparison

with a predefined set of trivial API (e.g., Map.size(), Set.isEmpty()). The heuristic

reduces human efforts by prioritizing usage paths that are obviously easy to be controlled,

but could introduce false negatives(§ 2.4.5).

Reachability analyzer characterizes the reachability of a path using both static and

dynamic approaches. First, the static analysis models the app Activity lifecycle, and
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Figure 2.6: Usage categorization methodology

filters those usage paths unreachable from the program entry set. The dynamic approach

identifies those usage paths that start with a port that is open by default at app launching

time. These paths are annotated as highly insecure since remote attacker has a large timing

window to exploit them. Note that ports that are not open by default are still vulnerable to

the on-device malware in our threat model, since the malware can monitor the proc file and

exploit the vulnerable paths as long as it detects the port is open. The dynamic analysis is

implemented using function hooking based on Xposed framework [54], and combined with

device automation, the analyzer automatically annotates reachability results on the usage

paths.

Usage categorization methodology. Shown in Figure 2.6, OPAnalyzer aggregates

usage paths with similar open port usage into one family based on the sensitive APIs they

contain and the notion. It extracts usage paths and converts them to Notion 1. The cate-

gorization approach matches the notion of new paths with those already identified patterns.

If an incoming path cannot be categorized into any of the existing families, we manually

generalize its usage to a pattern and add a new family to the existing usage family set. Fol-
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Wormhole
family Sample app

Entry
points

Usage
paths

Weak path Not weak path
total exploitable total exploitable

Baidu BaiduMap 1 15 8 8 7 0
Tencent QQ Downloader 4 16 1 1 15 1
AMap Minimap 1 4 0 0 4 3

Table 2.1: OPAnalyzer output for three popular “Wormhole” apps that are reported vulner-
able

lowing this approach, OPAnalyzer categorizes most of the usage paths except a few that

cannot be converted to Notion 1(§2.5.2).

Vulnerability discovery methodology. Considering an attacker in our threat model, to

exploit a usage path and trigger the sensitive functionality, he needs to (1) find the right tim-

ing when the port is open, (2) bypass all the checks along the path to execute the sensitive

API. The usage paths output from OPAnalyzer come with the reachability information, sen-

sitive functionality, and strengths of predicates all annotated, help human analyst efficiently

examine these two prerequisites for an attack, and identify vulnerability. Specifically, OP-

Analyzer prioritize “weak paths” and “highly insecure” paths for manual inspection. And

note that we also selectively examined the other usages paths in the OPAnalyzer output

since they may also be vulnerable to remote exploits. Some of the interesting vulnerabili-

ties (e.g., AirDroid exploit) in our case study(§2.6) are actually identified in those non-weak

usage paths.

2.4.5 Evaluation

We obtain 24,000 apps from the PlayDrone dataset [152] to evaluate our tool, which

contains top 1000 popular apps from each of the 24 categories in the Google Play including

entertainment, tools, etc. Our evaluation focuses on the vulnerability discovery of OPAna-

lyzer, which is the most security critical functionality.

Discovery accuracy. To evaluate the false positives (FPs) of the weak path detection,

we first define the FPs as “weak” paths that are verified to be not exploitable through man-

ual inspection. We examined the weak usage paths output by OPAnalyzer, and constructed
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remote input to see if the sensitive functionality could be triggered. We call these weak

paths that are verified to be exploitable vulnerable paths, and the rest of them are consid-

ered as FPs. Among the 24,000 apps, 6.8% of them (1632) have open-port functionality,

and 133 weak paths are identified to be reachable at app launching time by OPAnalyzer.

We manually identified 113 vulnerable paths that can be easily exploited by constructing

remote input (FP rate 15.1%). The FPs mainly come from paths that contain checks on

the runtime property of the app. As an example, a usage path is guarded by the constraint

if (debugMode == True) will not be triggered when the app is in release mode, but will

be output falsely as weak path.

Due to the lack of any publicly accessible study of open port vulnerabilities on mobile

platform, we run OPAnalyzer on the recently-reported Wormhole apps from the Chinese

app market to evaluate the false negatives (FNs) of OPAnalyzer. To the best of our knowl-

edge, they are the only reported instances that contain confirmed open port exploits, which

are usable as ground truth in the FN evaluation. The FNs of the weak path detection are

those paths that are not annotated as “weak”, but are verified to be exploitable with our

manual inspection. Wormhole apps are vulnerable due to their integrations of vulnerable

SDKs including Baidu, Qihoo360, AMap, and Tencent [35], and thus we choose the most

popular apps in each SDK category. We do not test on Qihoo360 library since the prob-

lem only affects an old beta version which can no longer be found in apps on major app

markets.

As shown in Table 2.1, OPAnalyzer discovers usage paths that contain sensitive func-

tionality in all of the three apps, with some of them reported as weak paths. Unfortunately,

the report has no detailed path information that can be used as ground truth for evaluation,

we do our best to manually analyze the decompiled app to find exploitable paths. For Baidu

SDK, OPAnalyzer detects all the exploitable paths that we manually discovered, and even

discovers new exploits that have not been reported in the report, such as stealing the WiFi

BSSID. For AMap, OPAnalyzer reports four usage paths, while none of them are recognized
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Feature
# of usage

Improv. Featured app/lib
paths captured

none 636 N/A WiFi file transfer
+ reflection 804 +26% OpenVPN
+ API 1472 +131% AMap
+ native 845 +33% Tencent XG
+ all 1934 +204% Baidu wormhole

Table 2.2: Evaluation of accumulative improvement brought by (1) handling explicit Java
reflection and (2) adding open-port specific sensitive API (3) capturing native code jump.

as weak paths. However, three exploits (FNs) from those non-weak paths are identified. We

find that one of the conditional statement shared by all 4 usage paths depends on value that

is defined beyond the IDFG of the remote entry point. OPAnalyzer thus does not consider

the check as “weak” since its value cannot be determined, while it turns out to be constant

in the run time. It is due to the limitation of lacking of backward analysis support, so that

OPAnalyzer doesn’t have enough visibility into how a variable encountered on the usage

path is propagated to this procedure, if it is defined beyond the IDFG of the entry point.

This affects the accuracy of the information leakage tracking and constraints analysis, and

can be solved by integrating backward slicing technique [60, 163]. We plan to add that to

the OPAnalyzer in the future.

False negatives may also be introduced by the native code analyzer due to a limitation

inherited from the IDA-PRO front end. ARM processor supports multiple interaction sets

mixed in one segment in the runtime, while the disassembler can interpret one type at the

same time in the static analysis [9]. And when the 16-bit “Thumb” and 32-bit “ARM” in-

structions coexist within one segment due to optimization, the disassembling result may be

incorrect. Additionally, the native code analysis of OPAnalyzer does not cover all possible

types of interactions between native code and Java code. Combining native code and Java

code analysis is a fundamental challenge of Android app analysis [117], and we leave it as

future work to accurately model all the control- and data-flow transitions between native

and Java layers.
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We also evaluate the improvement on the effectiveness of OPAnalyzer’s path discovery

brought by three of our engineering efforts; namely (1) adding open-port specific APIs

to the sensitive API set, (2) handling explicit Java reflections, and (3) capturing native

code jump. Shown in Table 2.2, integrating these features greatly improves the coverage

of OPAnalyzer by 204%, while completing the sensitive API set turns out to be the most

effective engineering effort we spent. These improvements reduce false negatives, which

is crucial to our system.

Performance. The most compute-intensive step in OPAnalyzer is the taint analysis,

which includes building the IDFG and DDG, and running the Dijkstra’s algorithm on the

DDG to find all the usage paths. We measure the time to perform the taint analysis for

the top 1000 popular apps from our dataset. The experiment runs on a machine with Intel

Core i5-3470 CPU and 8GB of RAM. For apps with at least one entry point, the median

processing time for OPAnalyzer to finish the taint analysis is 61.5 seconds with standard

deviation of 127.2.

2.5 Usage and Vulnerability

With the usage paths output from OPAnalyzer, we systematically study open port usage

and their security implications in the top 1000 popular apps from each of the 24 different

categories on Google play.

2.5.1 Popularity and Permission Usage

Among the 24,000 apps, we identified open port functionality in 6.8% (1632), while

50% of these open port apps have more than 500K downloads.

Sensitive permission usage. To understand the most common functionality triggered

by remote input, we use the API to permission mappings constructed in §2.4.3 to get the set

of sensitive permissions. Figure 2.7 shows the top security-sensitive permissions involved

in open port usage. Surprisingly, we find that in open port apps, a rich set of highly-sensitive
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Figure 2.7: Permission protected APIs triggered by remote input.

Usage
category Pattern

Usage
paths Perc. Apps Weak

paths Vuln.

Data sharing
accept()

I−→ {APIdata read
E−→ write()}

1340 69.3% 425 775 V1

Proxy accept()
E−→ APIout connection 122 6.3% 59 101 V1,V3

Remote
execution

accept()
I or E−−−−→ APIexecution 127 6.5% 41 69 V2,V3

VoIP call accept()
I−→ APIaudio setting 45 2.3% 27 11 V3

PhoneGap
Categorized using

code signature
282 14.6% 141 0 N/A

Uncategorized N/A 18 0.9% 10 0 N/A

Table 2.3: Open port usage and potential vulnerability. V1:sensitive data leakage, V2: privi-
leged remote execution, V3: DoS.

OS-level functions in Android can be invoked remotely, ranging from accessing private

data such as contacts and location to performing sensitive actions such as using camera

and sending SMS. If not protected sufficiently, this usage can be remotely exploited to

cause severe damages such as privacy leakage and privileged code executions, just like the

recently reported Wormhole exploits [35]. In addition, we find that the pseudo permission

DATA LEAK (defined in §2.4.3), which indicates that data is read from asynchronous sources

such as internal storage or content providers and sent to the remote end, has top popularity

in open-port apps. This shows that open port usage commonly has potential risk of exposing

internal application data to the remote attacker, which typically involves plenty of sensitive

data such as credentials and conversation history [170].
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2.5.2 Usage Family Categorization

Using OPAnalyzer, we categorize usage paths into different usage families defined by

code patterns. Table 2.3 shows the 5 major usage families we identified in our dataset,

together with the path categorization results and the types of potentially-exposed vulnera-

bilities. As shown, 99% of reachable usage paths of open port apps are categorized into

one of the five families, which are described in detail as follows.

Data sharing path a usage path through which data read from the device is sent to the

remote host. In this category, the most commonly used protocol for data sharing is HTTP,

while HTTPS, FTP, UPnP [50] and some customized protocols are also observed. As

shown, nearly 60% of the paths in this category are found to be weakly protected without

any client authentication, leaving them easily exploitable (examples in §2.6). By examining

the apps in this category, we also identified a mobile-specific open port usage scenario, data

sharing in physical proximity, e.g., allowing a user to transfer photo to her PC nearby. This

usage turns to bring most exploits in this family: as shown later in §2.6, 24 out of 26 exploits

in data sharing are associated with this particular usage. Also worth noting is that in this

usage family, sensitive data can be leaked without invoking any permission-protected APIs

along the tainted path. Due to our improvement in sensitive API selection (§2.4.3), our tool

can successfully capture these cases.

Proxy path is defined as forwarding requests in remote input to other destinations.

We find that all the paths in these apps are used as local proxy, e.g., for advertising and

content filtering. For example, to overcome the content modification restrictions in Android

WebView, a web browsing app starts as background service a local web proxy so that it can

insert its own ads into the fetched web pages. If exposed to remote attackers, such local

proxy can be used as a reflector in targeted DDoS attacks. Also, if it is configured to cache

pages or store cookies, attackers can access personalized pages to harvest user privacy, or

even hijack victim’s email or social network accounts for spear phishing attacks.

Remote execution path refers to usage paths that can trigger certain actions on the
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Open port
intention Vulnerability description Featured attacks App #1

Usage of
the app user

Lack of authentication to verify
connections come from the app user

Data theft 24
Privilege escalation 10

Communication
with backend

Lack of authentication to verify requests
from authentic app backend server

Data theft 15
Privileged escalation 5

Local
communication

Port used for on-device communication
falsely opened to the network

DoS 12
Data theft 1

1 Number of vulnerable apps in the same category. An app may be vulnerable to both attacks
in each category.

Table 2.4: Case study of verified exploitable app categorized by the intended usage of open
port.

device such as sending SMS and writing to storage. Besides common use cases such as

push notification, we also observe interesting usage in physical proximity, which allows the

same user to use mobile device functionality through PC interface, e.g., texting SMS using

keyboard. However, there are also sensitive functionality that can be executed remotely

and are beyond the declared functionality of the app, which we suspect to be “backdoors”

left by app developers.

VoIP call paths are used in apps to listen on incoming call requests based on the Session

Initiation Protocol (SIP). After accepting a SIP invite message from the port, the app

extracts information such as caller ID and starts the ring tone to notify the user. Remote

attackers in theory can send spoofed packet to ring the phone and spoof the caller ID.

However, due to the IPSec support in SIP, such off-path attack is unlikely to be practical.

PhoneGap paths belong to apps developed by PhoneGap/Cordova, a hybrid app de-

velopment framework allowing developers to quickly build apps using JavaScript and

HTML5. It uses open ports to serve requests from the JavaScript client and handle the

API calls. The result written to the incoming socket is not defined in the IDFG of the re-

mote entry point, making it difficult for OPAnalyzer to capture sensitive APIs. To address

this, we use the presence of several PhoneGap-specific classes such as CallbackServer

as the code signatures to identify these usage paths. The port intended for IPC is falsely

opened to the Internet. However, we find that the usage paths of PhoneGap are protected by
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strong security checks, which verifies whether the request contains a 128-bit token derived

from the device’s Universally Unique Identifier (UUID) [6]. Thus, we consider the open

service of PhoneGap as well-protected.

2.5.3 Security Implications

Usage paths in different families, if not well protected, can lead to different security

breaches. As shown in table 2.3, OPAnalyzer outputs 956 weak paths. We find that nearly

half of the total usage paths are considered “weak”. In the proxy category, over 80% of the

paths are not protected. From these weak paths, we identify three vulnerability categories:

sensitive data leakage (V1), privileged remote execution (V2), and DoS (V3). Besides, we

also discover a new problem that any open port on smartphones can be exploited to har-

vest cellular IPv6 addresses which allows attacker to collect victim IPs without scanning

the huge IPv6 address space and further launch attack to exploit vulnerable ports. The

vulnerability is detailed in the Appendix A.

V1: Sensitive data leakage. Sensitive data of a mobile device can be retrieved from

many sources such as SD Card, sensor, etc. If these paths are not well protected, remote at-

tacker can exploit them to steal sensitive data that are even protected by Android permission

or UNIX uid/gid check. More importantly, if the victim IP is public, such vulnerabilities

can be easily revealed using fast Internet-wide scanning tools such as ZMap [85], causing

large scale data theft.

V2: Privileged remote execution. Vulnerable paths that trigger native actions can

be leveraged by remote attackers to execute privileged functionality such as sending SMS

and modifying contacts. Moreover, by exploiting the broadcasting Intent mechanism

provided by Android, attackers can even execute functionality beyond the vulnerable app.

For example, an unprotected usage path that sends Intent based on remote input can be

leveraged to launch YouTube app to play the video from the URL passed by the remote

attacker. By uploading a maliciously crafted MP4 file to the URL, attacker can gain full
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control of the device exploiting the Stagefright vulnerability [18].

V3: Denial of service. Most remote execution paths are vulnerable to DoS attack

against the device user. For the local proxy usage paths, they can also be used by attack-

ers as reflectors in targeted DDoS attack against victims in the Internet to hidden their IP

addresses. Other security problems of open proxies, such as leaking internal network data

and IP spoofing based attack also apply.

2.6 Exploits Case Studies

To broaden the scope of our vulnerable study, and discover more exploitable open port

usage, we extended our data set to include all the 78K apps from the Tools category of

the PlayDrone dataset to our vulnerability analysis, based on the observation that the per-

centage of open-port apps in the Tools (10.9%) is significantly higher than the average

(6.8%). Furthermore, we also crawled the top 3,000 most popular apps from a Chinese app

market [7], where the Wormhole problem was reported from.

By analyzing the annotated usage paths from the OPAnalyzer output, we successfully

discover several new exploits of sensitive data leakage and privileged remote execution

in both apps and third party libraries, including some high-profile ones with millions of

downloads and even pre-installed apps. Moreover, we classify these vulnerable apps into

3 categories based on the intended usage scenario of the open port inferred from the man-

ual analysis: (1) intended for use by app users; (2) intended for communication with the

backend; and (3) intended for local communication. Such categorization helps better un-

derstand the challenges in securing the port opened for different purposes. Table 2.4 shows

an overview of the 57 exploitable apps that are manually verified from the OPAnalyzer

output. A case study of interesting vulnerability in each category is presented below. The

video demos for some of the implemented attacks are shown on our website [32].
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2.6.1 Intended for Use by App Users

Such apps open ports for different purposes intended for the app users, such as trans-

ferring file from the phone to another device of the same user. However, essential checks

are found missing in many apps in this category, thus exposing the sensitive data and also

privileged functionality of the device to attackers.

Virtual data cable is a popular app on China market that helps user transfer their photos

to PC by opening a web server on the phone. The server port opens by default at app launch

time and silently runs in the background. It does not authenticate clients nor notify incom-

ing connections, thus can be easily scanned and exploited by remote attackers. Moreover,

it does not check the requested file path, so that attacker can access files beyond the photo

folder on SD card by adding “../” to the path and steal sensitive data from app cache and

system directory. Similarly, a popular file sharing app WiFi file transfer with 10 million

installs does not authenticate clients, while it opens the server port only when user presses

a toggle button. However, an on-device malware that only has Internet permission in our

threat model can listen on the status of the port by monitoring the /proc file system and

steal data from the port as long as it is open.

PhonePal allows a user to remotely control his/her device with a web-browser, which

contains highly sensitive usage paths such as open URLs in the Android browser, and open

videos in the YouTube app. All these usage paths are found unprotected, which puts the

device at the risk of phishing attack and even compromise [18]. Moreover, vulnerabili-

ties such as allowing attacker to remotely install apps on the victim device, are identified

in the high-profile app AirDroid, pre-installed on Samsung Chromebook and Smartisan

phone [43]. We present a case study of this app in the mitigation strategy section (§2.7).

2.6.2 Intended for Communication with Backend

Open ports in these apps are intended to communicate with the app developer’s backend

server for various purposes. If the open port service does not authenticate the identity of the
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remote server, attackers can spoof the app server. Interestingly, by manually examining the

apps, we find that open port usage of some apps are beyond the apps’ declared functionality,

implying potentially covert malicious behavior.

KindeExpress is the most popular mail/package tracking app on a China market with

1 million downloads, whose functionality is to provide tracking information from many

delivery service providers. One of its usage path is able to start an Activity of the app

and display the data from remote input on the app’s UI, which also brings the app to the

front even when it is running in the background. We verified that none of the declared

functionality of the app depends on this usage path, and we suspect it to be used for ad-

vertising. Unfortunately, this path is not protected by any authentication mechanism, and

remote attacker can send command to the app pretending as it comes from the app server

to display deceptive content on the app UI.

Huang CheatMaker is a game modifier app that helps users cheat when playing mobile

games. We identified a usage path that accepts data pushed from the app server, stores the

data as a shared object (.so) file and loads it at run-time. The authentication along the path

is weak, and the app dynamically loads the code without verifying where it comes from nor

its integrity, which enables remote attackers to inject malicious payload to the app to that

will be executed, thus compromising the device.

2.6.3 Intended for Local Communication

Usage paths in Proxy and PhoneGap families are intended for on-device communica-

tion, which can be either IPC among different components of an app, or proxy for different

apps on the device to use. However, open ports in some apps that are intended for local

usage are falsely exposed to the network, and thus lead to security breaches.

OpenVPN is an open-source VPN implementation that is integrated by several popular

VPN apps on Google Play. Multiple interfaces are provided by OpenVPN for the app to

configure the local VPN settings, while the open TCP port interface is identified to be the
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least secure one. A remote attacker can DoS the victim user by changing proxy settings

such as port number on the device. Fortunately, some app developers paid extra attention

when integrating OpenVPN, and closed the insecure configuration interface from the open

TCP port, but VPN apps vulnerable to this problem still remain (e.g., Fast secure VPN).

CacheProxy is an app that opens local proxy with the capability of caching the web

page content. Upon receiving a request, the proxy first checks whether the request can be

served using cached content before fetching the page, with no authentication performed

on the source of the incoming request. Remote attackers can thus easily access sensitive

information of the victim, such as e-mails by requesting the e-mail page, since the page is

retrieved from the cache for the attacker.

To get an initial estimate on the severity of open port vulnerabilities in the wild, we

performed a small scale port scan in a subnet of a campus network. The ports scanned are

those opened by the most popular vulnerable apps in our dataset, whose port number needs

to be static and unique. Note that we only scanned for the existence of the open ports but did

not send any data to the ports to verify the vulnerability for ethical concerns. We performed

only one scan using a scanning tool [85], which finished in two minutes. Surprisingly,

40 hosts identified to be mobile devices open such ports. Although different apps that

use the same port number may introduce false positives, the scanning result indicates that

immediately exploitable open ports exist in the wild.

2.7 Mitigation Strategy

Traditional solutions to protect an open port from Internet attackers are through fire-

wall, which monitors and controls incoming and outgoing traffic based on predetermined

security policies. However, the firewall solution suffers from usability in the mobile con-

text, since it is hard for individual users to configure suitable firewall rules for each app

installed on the device, and coordinate both app functionality and security assurance. More-

over, in the physical proximity use scenario, since users can initiate connections from arbi-
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trary hosts, it is hard to configure rules in advance.

Despite a variety of open port usage described, the fundamental problem is the lack of

proper client authentications. However, we find that it is non-trivial to provide a general

solution to patch the security problems for all usage cases, while preserving usability. We

discuss the major challenges in different scenarios and propose countermeasures.

Intended for communication with backend. For the open port mobile app to verify

that the incoming connection is from the authentic server, we suggest using secure tokens to

perform authentication. Although tokens are already used in some open port apps, imple-

mentation flaws are commonly seen. For example, a third-party push notification service

that distributes token to app developers for them to embed in the app is vulnerable, because

the token can be extracted from the released app binary by attacker to exploit the vulnera-

ble app installed on other victim devices. We suggest the app and server negotiate a shared

token using mechanisms such as Diffie-Hellman [20] at app launching time. And open port

app uses the token to authenticate further incoming connections.

Intended for use by app users. Compared to the previous usage scenario, open port

apps in this case do not know in advance the legitimate remote hosts that should connect

to them. Depending on the usage of the app user, the trusted remote hosts can be user’s

desktop or even his friend’s laptop. A general solution is to use password or pin code to

authenticate incoming connections; however, some security issues are raised in practice.

As an example, all the apps we examined that use password, provide hard-code default

password that does not require users to change before using the app, leading to the potential

use of the default password and degrading app security. Randomly generated pin codes in

the open port apps we examined are usually no longer than 4 characters, which is trivial to

enumerate. Experiment in our local WiFi network indicates that it takes less than 5 minutes

to send probing requests that enumerate all the 4-character strings.

Another authentication solution adopted by the top trending apps for this usage sce-

nario is the incoming connection notification, which pops up a window when a new host
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Figure 2.8: SecureServerSocket design

connects to the open port and displays the IP address of the host. And the request is

not served until user explicitly accepts the client by clicking the “allow” button. For or-

dinary users, the timing of the pop-up window is also an important indicator for them

to make the decision of whether to allow or deny the request. However, on-device mal-

ware can infer the timing when there is an incoming connection to the port by monitoring

/proc/net/[tcp][tcp6], and send request immediately to trick user into also allowing

its connection by overlaying the pop-up window. We further find that even the most pop-

ular apps in this category has implementation flaws that can be practically exploited by

attackers in our threat model.

AirDroid1 is a top-ranked app on the market that allows users to access and manage

their Android device wirelessly from desktop by opening a server on the phone. It provides

a rich set of functionality to users such as access camera and install apps remotely, and

uses the incoming connection notification schema to authenticate client. However, if the

timing of user initiated connection is inferred by the attacker with the help of an on-device

malware, and attacker sends request to the open port before the user accepts the previous

1AirDroid: https://www.airdroid.com/
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connection, the app won’t pop up another window. Instead, the attacker connection silently

replaces the previous legitimate connection in the waiting queue, without changing the

IP address displayed on the pop-up window. And when a user clicks the button to allow

the legitimate connection, the attacker client is allowed instead, and numerous sensitive

capabilities of AirDroid are granted to the attacker.

Usage in this category is usually for the cable-less communication with nearby hosts of

the user. We confirmed that 24 out of the 26 vulnerable apps in this category are intended

for the use in physical proximity. We demonstrate a transparent socket-level solution that

addresses the security and usability challenges in this usage scenario. Shown in Figure 2.8,

we provide SecureServerSocket, which encapsulates the Android ServerSocket API

to accept incoming sockets. When a remote client, the user’s desktop for example, tries to

connect to the port, the SecureServerSocket first puts the connection on hold, and then

encodes the IP address of the client into a QR code and returns to the remote client. The

remote client is required to display the QR code and let the user scan it using the mobile

device in order to get access.

Once the QR code is scanned, the decoded IP address is returned to the

SecureServerSocket and the connection from this IP is allowed. It then returns the

incoming socket to the upper application layer to be handled. This approach authenti-

cates clients on the IP layer, and ensures that the open port only serves clients in physi-

cal proximity of the device user, and it achieves both security and usability. We provide

SecureServerSocket as a library that app developers can simply use as a replacement of

ServerSocket. No changes on the client side are required if the client is a web browser,

which is the common case in our app dataset. For other client types that cannot display QR

code, we suggest using one-time pin code to do the authentication instead. Demo of the

SecureServerSocket implementation can also be found on our website [32]. And for future

work, we plan to conduct a user study to evaluate the effectiveness of this approach.

Intended for local communication. For the local usage of on-device proxy, the best
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practice is to bind the proxy to the loopback address of the device, which makes the service

unreachable from the network. For another local usage scenario where different compo-

nents of an app communicate using open port, we suggest using other IPC mechanisms,

such as Intent, Binder, and LocalSocket instead. And application layer authentications

are required when using them. For example, uid/gid check should be enabled when using

LocalSocket to ensure that the connections are from the same app.

2.8 Related Work

Security implications of open port usage. The security implications of using open

ports on the network services have been studied using Internet-wide scanning tools such

as ZMap [85], revealing various vulnerabilities [86, 125, 47, 25]. However, the open port

usage and security concerns on mobile platform remain under-explored. Understanding this

problem in the mobile context is non-trivial, since both the current usage and the existing

defense solutions are not applicable to the mobile scenario. We design and implement

OPAnalyzer to bridge this gap.

Static analysis on Android. Static analysis has been used extensively in vulnerability

discoveries. Specifically, on Android platform, many tools have been built to identify sys-

tem vulnerability [146, 56, 119, 133, 75] and malicious apps [122, 96, 88, 73, 156, 60, 87].

Among these work, TriggerScope [96] is most closely related to our work, which focuses on

detecting malicious activities embedded in narrow conditions using static analysis. OPAna-

lyzer serves a different goal, which is detecting open port related vulnerabilities. However,

the trigger analysis proposed by TriggerScope can be potentially integrated by OPAna-

lyzer to improve its accuracy of weak constraints analysis. FlowDroid [60] and Aman-

droid [156] are two static analysis tools similar to OPAnalyzer, both of which model the

Android Activity lifecycle [60], and capture inter-component communications. Com-

pared to these generic app analysis tools that evaluate the app as a whole, our tool focuses

on examining the part that contains open port functionality. Another difference is that we
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integrate native code analysis for high accuracy and coverage of our analysis, which is

commonly excluded in these tools due to high engineering effort.

Android app security. Mobile app security issues have gained much attention recently,

and research efforts were made on detecting repackaged apps [109, 73, 57, 169], apps with

malicious behavior [101, 171, 96, 161, 77, 91], or apps with vulnerability [111, 90, 79].

Different from these prior studies, we investigate the vulnerability in open port apps, which

is not covered by related work, and has a new threat model not previously explored. Our

analysis results shed important light on the common design and implementation flaws in

these apps, and we also propose solutions to some mobile-specific usage scenarios.

2.9 Conclusion

In this work, we develop a tool called OPAnalyzer, which can systematically charac-

terize open port usage in Android apps and effectively detect exploitable vulnerabilities.

Using this tool on 24K popular Android apps, we are able to classify 99% of the mobile

usage into 5 families, and identify some unique usage scenarios on mobile platform. From

the vulnerability analysis performed, we find that such usage is generally unprotected. We

are able to discover a bunch of new exploits causing vulnerabilities such as information

leakage, denial of service, and privileged execution.

We also propose countermeasures and improved practices to mitigate these problems

in different usage scenarios. As a potential future work, we want to apply OPAnalyzer to

analyze Android system applications to discover more critical vulnerabilities.
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CHAPTER III

Enforcing Contextual Integrity on Appified IoT Platform

3.1 Introduction

The Internet-of-Things (IoT) has quickly evolved from its initial stage where sensors

and actuators each provide hard-coded and disjoint functionality, to a new appified era,

where programming frameworks are provided for third-party developers to build applica-

tions (apps) to manage a single or even a number of smart devices at the same time to

realize more advanced and smarter control. Many such appified IoT platforms, for exam-

ple Samsung SmartThings [41], Apple HomeKit [8], and Google Weave/Brillo [23], have

already gained great popularity among home users today.

Like other appified platforms such as the smartphone platform, the permission model

plays an important role in the security of these appified IoT platforms, defining an app’s ac-

cess to sensitive resources [57]. However, security-critical design flaws in the permission1

model of these platforms, for example overprivilege problems due to the current coarse-

grained permission definitions, have already been reported recently, exposing smart home

users to significant harm such as break-ins and theft [92]. To solve these problems, a new

access control model is needed in these appified IoT platforms in order to provide home

users with more fine-grained control of app behavior.

Existing access control mechanisms employed by the most recent appified platform
1SmartThings uses the term capability instead of permission [92]
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with huge popularity—the smartphone platform—have long been criticized to be coarse-

grained, insufficient, and undemanding [57, 143, 157, 160], which are quite similar to the

aforementioned problems in current IoT platforms. From numerous studies on Android

and iOS permission systems, a key design flaw is that they either require users to make

uninformed decision at install time [3] or prompt users at runtime when an app requests

any of a handful of resources, without providing essential contextual information [4, 28].

These studies conclude that it is highly desirable to put the user in context when making

permission granting decisions at runtime. This helps ensure a property known as “contex-

tual integrity” defined by Nissenbaum [132] with which “information flows according to

contextual norms,” and it is advocated as the desired norm for future permission system

design of the smartphone platform [157, 161, 57].

Taking lessons from previous permission systems, this work aims to provide contextual

integrity in appified IoT platforms in order to solve the security problems arising in current

IoT platform permission systems. However, as discussed in previous attempts to support it

in the smartphone platform [157, 57], providing contextual integrity in appified systems is

challenging due to two reasons:

• Availability of context is not guaranteed in the lifecycle of the app: majority of

sensitive permission requests occur when the user is not interacting with the request-

ing app [157]. This situation only gets worse in the IoT scenario, since unlike the

UI-oriented smartphone apps, the whole point of developing IoT apps is to provide

automated device control with minimum user involvement. Except sending notifica-

tions, usually no user interaction is required after the app setup procedure, making it

more difficult to involve user in the context at runtime.

• Frequency of prompts is another important factor for a permission system to be

effective [157]. On the smartphone platform, since the request frequencies for some

permissions are too high to prompt the user each time a request occurs without risking

user habituation or annoyance, current designs shift toward a model of only prompt-
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ing the user the first time a request occurs to increase usability [157]. However, this

harms contextual integrity since the subsequent sensitive actions may be performed

in a completely different context than that of the initial request.

In view of these challenges, we design and implement ContexIoT (means putting IoT

into context), a context-based permission system for appified IoT platforms which supports

fine-grained identification of context for a sensitive action and runtime prompts with rich

context information to help provide contextual integrity. In our design, the context is de-

fined at inter-procedure control and data flow levels, and can be flexibly tuned to support

different context granularity in order to best balance security and usability. ContexIoT

is designed to be backward compatible, and thus can be directly adopted by current IoT

platforms to provide more effective access control.

At a high level, ContexIoT design is based on the observation that a permission granted

by the user is expected to allow the triggered app functionality only under that particular

usage context. We abstract the usage context of an app functionality as a program path,

and thus define the context as the execution flow of the code at runtime, including how the

functionality is triggered and what data is flowing along the execution path. This definition

falls into the trigger-action based programming model of IoT apps [151], so that when the

user is prompted, the context can be naturally represented as the triggering sequence of

real-world physical events. To help the user make a more informed decision, we use taint

analysis to track the runtime data on the execution path and label the data source when

presenting the context information to the user, e.g., showing whether the data to be sent out

is the user password or just the battery level. We compare ContexIoT context definition

with existing context-based security approaches for smartphone platforms, and find that

our fine-grained definition at inter-procedural control and data flow levels can successfully

identify stealthy attack paths that can evade other systems, showing better visibility than

previous design.

We built a prototype of ContexIoT on the Samsung SmartThings platform, which at
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the time of writing has the largest number of supported device types and IoT apps (called

SmartApps) among all the IoT platforms [92]. To support existing SmartApps without

changing the closed-source SmartThings cloud backend, we developed an app patching

mechanism that can convert unmodified commodity SmartApps to ContexIoT-compatible

SmartApps. The patching process separates the execution flow of a sensitive action in the

original SmartApp into two steps: (1) Collect the context information before the action is

executed, and (2) Allow or deny the action based on the in-context user decision. Contex-

IoT uses a cloud backend to remember the previous decisions by maintaining a mapping

between an in-context sensitive action for an app and the granting decision. If no mapping

is found, the system prompts the user with the context and the requested action, and stores

the user decision to the ContexIoT cloud backend.

To evaluate the effectiveness of our approach, we extensively collect the reported IoT

attacks from multiple sources. For exploits on non-appified platforms, we explore the

possibility of migrating them to appified IoT platforms. In total, we have constructed 10

SmartApps that are either malware or vulnerable apps based on the reported IoT attacks.

Considering that appified IoT platforms are still in a primitive stage and not many attacks

are reported, we further survey malware classes from appified smartphone platforms. We

taxonomize them into 4 categories based on the malware lifecycle, with 3–6 species in each

category. Out of the 17 species in total, we find that 15 of them can be naturally migrated

to IoT platforms due to the similarity of appified platforms. Overall, we build an IoT

attack app dataset with 25 SmartApps, each representing a unique attack class. Evaluating

ContexIoT on this dataset, we find that all 25 different attack execution paths have been

successfully distinguished with the context information correctness manually confirmed.

For performance evaluation, we build a dynamic testing framework based on the device

simulator provided by the SmartThings IDE. Using this framework, we dynamically inject

virtual device events and are able to trigger all the 916 event handling logic in 283 Smar-

tApps. From the performance measurement results, we find that the SmartApp patching
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logic only introduces 67.1 ms additional delay on average, which is negligible in practice

since the end-to-end latency is dominated by the network latency between the SmartThings

cloud backend and the physical device. We also evaluate the frequency of prompts, and

find that the average possible life-time of permission request prompts is only 3.5 times for

each SmartApp on average, which is far below the threshold that is considered to risk user

habituation or annoyance [160, 157].

To summarize, our contributions in this work are three-fold:

• To understand the design requirements for a context-based permission system on

IoT platforms, we perform the first extensive study of possible attacks on appified

IoT platforms by reproducing reported IoT attacks and constructing new IoT attacks

based on smartphone malware classes. We categorize these attacks based on the

lifecycle and adversary techniques, and build the first taxonomized IoT attack app

dataset with 25 SmartApps, each representing a unique attack class.

• We design and implement ContexIoT, a context-based permission system for appi-

fied IoT platforms that supports fine-grained context identification and rich context

information prompting at runtime to help provide contextual integrity. To distinguish

fine-grained context, ContexIoT defines context as execution paths at inter-procedure

control and data flow levels, which is shown to be more comprehensive than previ-

ous designs for smartphone platforms. To help users make more informed decisions,

ContexIoT also labels the data source of the runtime data using taint analysis. To

provide backward compatibility, ContexIoT contributes an app-patching mechanism

that converts existing IoT apps to ContexIoT-compatible apps.

• We prototype ContexIoT on the Samsung SmartThings platform, and evaluate it on

our IoT attack app dataset for system effectiveness with over 283 existing SmartApps

for system performance. For the attack app dataset, we find that all attack execution

paths have been successfully distinguished with correct context information anno-
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tated. The performance evaluation results indicate that ContexIoT app patching adds

nearly negligible delay, and the permission request frequency is far below the thresh-

old that is considered to risk user habituation or annoyance.

3.2 Related Work and Background

In this section, we cover previous work on permission-based access access control and

IoT security and necessary background for Samsung SmartThings platform, and we clarify

the goal and the problem scope of this work.

3.2.0.1 Permission-based Access Control

The permission-based access control plays an important role in the security of ap-

pified platforms, and has received a lot of attention by the security research commu-

nity [87, 61, 128, 160]. Acar et al. pointed out that the current concept of permission

granting mechanism has failed in practice, and proposed a clean break to seek for permis-

sion revolutions [57]. Backes et al. advocates contextual integrity as the desired norm for

future permission systems design based on a rigorous user study on Android platform [157].

Roesner et al. introduced User-Driven Access Control where the user is kept involved with

access control decisions in case-by-case basis by using access control gadgers [143]. Rah-

mati et al. introduced the concept of context-specific access control [139] in Android where

app Activities are used to distinguish different user contexts. Compared to these previous

systems for the smartphone platforms, this paper aims to provide contextual integrity to

the IoT platforms, which faces several IoT specific challenges, e.g., it is more difficult to

involve users in the context. Also, the context in ContexIoT is defined at both control and

data flow levels, which is more fine-grained. We compare our context definition with those

in these previous work later in §3.5, and it shows that our definition is more comprehensive

and can defeat attacks that can evade these previous design.

Another line of research focuses on improving the usability of the permission system.
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Felt et al. introduced a set of guidelines on when and how to request permissions [89],

which can instruct the design of default security policies. Wijesekera et al. suggested the

systems to learn about their users’ privacy preferences and only confront users with consent

dialogs when a permission request is unexpected for the user [157]. Keley et al. proposed

to enrich permission dialogs with more detailed privacy-related information to help users

make more effective decision [114]. In comparison, ContexIoT targets an orthogonal goal,

i.e., enabling effective identification of fine-grained context for security sensitive actions.

Leveraging the rich context information collected in ContexIoT, these approaches can be

combined with ContexIoT to improve usability.

3.2.1 IoT Security

The IoT security research is centered around three themes: Devices, Protocols and

Platforms. In the IoT device scope, many Telnet-capable IoT devices are reported to be

vulnerable due to weak/default password or unprotected debugging interfaces [162]. Ur

et al. identified problems in the access control of the Philips Hue lighting system and the

Kwikset door lock that fails to enable essential use cases [150]. Ronen et al. demon-

strated extended functionality attacks on smart lights that can leak information and causing

seizures using strobed light [144].

On the protocol level, researchers demonstrated flaws in the ZigBee and ZWave proto-

col implementations of IoT devices [94]. More recently, the misusing of some protocols in

some IoT specific scenarios has been reported to cause security and safety problems [105].

For example, using the BLE (Bluetooth Low Energy) range as the proof to verify physical

proximity is considered insecure in the auto-unlock usage scenario. In our work, we exten-

sively survey these IoT attacks, and explore the feasibility of migrating them to the appified

IoT platform.

On the IoT platform level, recent work discovered a series of security-critical design

flaws such as the coarse-grained permission definition on the SmartThings platform [92].
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Figure 3.1: SmartThings architecture overview

To limit the usage of sensitive data, Fernandes et al. proposed the FlowFence frame-

work [93] that supports flow policy rules for IoT apps. Our work is similarly motivated

by the security problems in the appified IoT platforms. However, unlike FlowFence, our

approach does not require additional developer effort and is backward compatible. More-

over, ContexIoT allows user control in cases where a particular data flow might be allowed

in one scenario, but should be blocked in another.

3.2.2 Background

In this work, we focus on the Samsung SmartThings platform, which uses a popular

cloud-backed architecture design as shown in Figure 3.1. Other popular IoT platforms such

as Apple’s HomeKit and Google’s Weave/Brillo also use such design, and the differences

only lie in the communication protocols used in the wireless hop. As shown later in §3.5,

ContexIoT also leverages such cloud-backed architecture, and thus is generally applicable

to these popular IoT platforms today.

As shown in Figure 3.1, the SmartThings ecosystem consists of three major compo-

nents: a hub, a SmartThings cloud backend, and a smartphone Companion App. The IoT

apps in the SmartThings platform are called SmartApps, which are written in Groovy using

the Web based IDE provided by SmartThings. These SmartApps are not running on the IoT

devices. Instead, they are executed by the SmartThings cloud platform within a sandboxed
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environment. The sandbox is an implementation of a Groovy source code transformation

that only allows whitelisted method calls to succeed in the SmartApp, and thus disables

some object-oriented language features in Groovy such as creating classes. The SmartApp

can choose to expose web service endpoints to respond to HTTP requests from external ap-

plication, which is protected by OAuth-based authentication. Note that SmartApps support

dynamic method invocation (using the GString feature), and thus similar to the reflection

feature in some programming languages such as Java, a method can be invoked by provid-

ing its name as a string parameter. In later sections, we detail the security problems caused

by this dynamic feature and how ContexIoT addresses it.

The cloud backend also runs the SmartDevices, which are software wrappers for physi-

cal devices in the user’s home. A SmartApp and a SmartDevice communicate in two ways

(1) The SmartApp invokes operations on the SmartDevices via method call (e.g., to lock the

door), (2) The SmartApp subscribes to events that the SmartDevices generates (e.g., smoke

detected). The communication between a SmartApp and the functionality of a SmartDe-

vice are controlled by the permission model, which is called the capability system of the

SmartThings platform.

The current capability model of the SmartThings platform only provides coarse-grained

binding between SmartApps and SmartDevices. Capability defines a set of commands

and attributes that devices can support, and SmartApps state the capabilities they need.

Based on that, users bind SmartDevices to SmartApps at the app installation time. Recent

work has uncovered several security problems with the permission/capability system of the

SmartThings platform such as overprivilege [92]. In this work, we design and implement

ContexIoT, a context-based permission system for appified IoT platforms to address these

problems.
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3.3 Threat Model and Problem Scope

Threat model. In this work, we consider app-level IoT attacks on the appified IoT plat-

forms which attempt to access IoT users’ sensitive data or execute privileged functionality.

The attacker can launch the attack through either (1) malware, in which the malicious logic

is embedded at the IoT app install time, or (2) vulnerable apps, which contain design or

implementation flaws that can be exploited by a co-located malicious IoT app or a remote

network attacker to escalate its privilege and cause damages such as unauthorized device

control and sensitive data theft. In this work, we assume the platform itself to be trustwor-

thy and uncompromised, thus some recent IoT attacks exploting the unprocted management

interfaces of IoT devices to compromise the hardware (e.g., Mirai attack[31]) are not in our

scope; Securing the platform by reducing its attack surface is orthogonal to our research

(e.g., [63]).

Goal and problem scope. The goal of ContexIoT is to raise the bar for the aforemen-

tioned app-level attacks by providing context integrity support. To achieve the goal, Con-

texIoT aims to enable a user to validate two important properties when a sensitive action is

triggered at runtime: (1) When: whether the sensitive action is triggered at the user-desired

conditions, and (2) What: whether the sensitive action matches the user-intended action.

Runtime data content validation and protection are also in our scope, since to perform ef-

fective access control, the user needs to understand what the data is being accessed or about

to be sent.

Since we target app-level attacks, attacks not exploiting app-level vulnerabilities are

out of our scope. For example, attacks using stolen external service security tokens due to

the weak protection of these external services [92] are considered as a separate problem,

and should be taken care of by the provider of each service integrated with SmartThings.

Also, the denial-of-service (DoS) behavior of “ignoring the functionality” [144] is not in

our scope. For instance, a malicious break-in alert app that claims to notify the user when

it detects a break-in may ignore the event instead of sending alerts. In this work, we target
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attacks with explicit code-level malicious logic, which can cause more severe damage such

as privilege escalation and sensitive data theft compared to DoS.

3.4 Attack Taxonomy

To better understand the security and privacy issues associated with the current ap-

pified IoT platforms, we performed an extensive survey of attacks reported on both IoT

devices and the smartphone platforms, and studied the feasibility of their migration to the

SmartThings platform. For all attacks that are applicable, we constructed misbehaving

SmartApps that achieve similar malicious functionality to guide our design and evaluate

the effectiveness of our system.

3.4.1 Reported IoT Attacks

Similar to the early stages of any emerging technology, the priority of most vendors are

functionalities and faster time-to-market of their products, while security and privacy have

not received much attention. The security of IoT platforms are not hypothetical concerns

as a number of real attacks have already been reported. For example, IoT devices being

compromised to use as bots to launch DDoS attack [162], the misusing of BLE range to

confirm physical proximity are leveraged by attacker to unlock your vehicle and door [105,

95]. Table 3.1 lists the reported attack instances we collected from sources including both

academic papers and news articles. We categorize them into three classes based on the

problem area.

3.4.1.1 Vulnerable Authentication

Authentication plays an important role in the whole lifecycle of IoT devices, and vul-

nerable authentication is spotted in many critical procedures of IoT devices. For example, a

vulnerable device-pairing mechanism may allow attacker to take full control of the device.

Due to the lack of displaying functionality in many IoT devices, a management console is
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Problem
area

Attack
description Platform Attack vectors Ref.

Vulnerable
authentication

Backdoor pin
code injection

SmartThings Stealing OAuth tokens; Inject
command into Web Service

SmartApp

[92]

Get remote
shell of device

Telnet-
capable IoT

devices

Weak/default password;
Credential included in the

image; Unprotected
debugging interface

[136,
162,
39]

Leaking
informa-

tion,creating
seizures

Smart
connected

LEDs

Unsecured device pairing
procedure

[144]

Impersonate
device to steal

data

Bonjour-
supported

IoT devices

Unable to handle name
collision in the local network

[65]

Malicious
app/firmware

Door lock pin
code snooping

SmartThings Overprivilege due to the
SmartApp-SmartDevice

coarse-binding

[92]

Disabling
vacation mode

SmartThings Misusing logic of a benign
SmartApp to do event

spoofing

[92]

Fake alarm SmartThings Controlling device without
gaining appropriate

capability

[92]

Surreptitious
surveillance

Sony
camera

Installed with malware in the
device retailing process

[46]

Spyware Barcode
scanner

Preloaded with malicious
firmware

[14]

Problematic
usage
scenario

Undesired
unlocking

BLE Smart
locks

Misusing BLE range to
confirm the physical

proximity of user

[105]

BLE relay
unlocking

BLE Smart
locks

Misusing BLE range to
confirm physical proximity
of user; BLE Replay attack

[105,
95]

Lock access
revocation /

logging
evasion

DGC lock Failing to ensure state
consistency between device

and server

[105]

Table 3.1: A taxonomy of reported IoT attacks and their applicability to the SmartThings
platform
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typically provided using protocols such as Telnet, HTTP and SSH, which can suffer from

problems such as weak or default password. We find that beside gaining a remote shell

on the devices, many attacks can be easily implemented as malicious SmartApps and dis-

tributed in the platform. For example, a malicious smart light control app can perform

similar malicious activities as described in [144] to use luminance as side channel to in-

form thieves near the house that the owner is not at home, or creating seizures using strobed

lights.

3.4.1.2 Malicious App/Firmware

Even before the emerging of appified IoT platforms, malicious preloaded application

or firmware have already been reported [46, 14]. Functionalities of these malicious ap-

p/firmware can be easily migrated to SmartThings platform, as it opens a broad range of

device capabilities to 3rd party developers. For example, one of our constructed malicious

SmartApp show how an attacker can surreptitiously spy on the daily life of house owner

if the user installed the malware disguised as normal surveillance camera app. In addition,

some attacks that has already been reported as feasible on SmartThings platform [92], such

as snooping the door lock pin code, are also included, and used to guide our system design.

3.4.1.3 Problematic Usage Scenario

Another category of IoT attacks exploits the misusing of technology in some IoT spe-

cific usage scenarios. For example, using the presence of user’s device in the BLE range

as indicator of user’s presence at the door is considered problematic, since it may unde-

sirably unlock all the doors of the house due to the long range of BLE. We found that

such problems can also be reproduced in SmartThings using the capability granted to the

SmartApps.
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3.4.2 Migrated from The Smartphone Platforms

Security requirements of appified IoT platforms and the smartphone platforms share

many similarities, including the definition of access to resources, and privilege separation.

We surveyed the mobile malware ecosystem, and categorized them based on the different

techniques they used in 4 aspects of their lifecycle below. We discussed the possibility of

each malware classes to be appified on SmartThings platforms, and construct real malicious

SmartApps for demonstration and evaluation purposes if applicable.

3.4.2.1 Installation.

The most common technique seen in mobile malware samples to distribute themselves

is to repackage their malicious app logic into commodity apps that claim normal function-

ality. This attack venue is clearly applicable to IoT malware. Moreover, we find that the

app update procedure, which is reported to have been leveraged by mobile malware to carry

out their malicious payload is also vulnerable in the SmartThings platform. SmartThings

makes it very convenient for SmartApp developers to deploy their updates, by automatically

updating the cloud instances of the SmartApp for all the user. In this mode, the attacker can

disguise the malicious logic of their apps by not piggybacking the entire malicious payload

into the original app, but slowly introducing it through future updates. In addition, drive-by

download can also be easily adopted by attacker to entice users to download the malware

app.

3.4.2.2 Activation

Malicious logic can potentially be triggered by various events. We categorize these

events into three categories: (1) Remote command (e.g., incoming SMS), (2) User events

(e.g., user click), and (3) System events. The trigger-action programming model of IoT

provides similar flexibility for attacker to embed their malicious app logic into any of the

three types of events. Specifically, some IoT events are very informative and may leak
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Stage Category and descriptions Ref. ST?

Installation
Repackaging: Malicious logic are enclosed into
high-profile apps to trick user to download

[74, 169,
73, 107]

X

App update: Malicious payloads are downloaded
during the app update process for disguising purpose

[159, 169] X

Drive-by Download: Enticing user to download the
“interesting” or “feature-rich” apps

[169] X

Activation
Remote command: Attacker controlled remote in-
put, e.g., incoming SMS

[169, 96] X

User events: Event triggered by the user, e.g., button
click

[96] X

System events: Event generated by the system, e.g.,
boot complete event

[169, 120] X

Adversary
technique

Abusing permission: malicious app logic abuses the
privilege granted to the app

[96, 82,
129]

X

Exploiting weakness of general system design:
generic system mechanisms such as IPC

[153, 64] X

Exploiting weakness of platform specific features:
techniques specific to platform, e.g., native code

[57, 58,
127, 121]

X

Exploiting system vulnerability: security flaws and
bugs in the system e.g., root exploits

[146, 166,
108, 158,

56]

N/A

Shadow payload: disguise malicious payload using
obfuscation or encryption techniques

[169, 140] X

Side channel: carry out malicious payload using
covert channel

[83, 165,
167, 78]

X

Malicious
payload

Remote control: Taking control of user’s device with
C&C servers

[169, 120] X

Spyware: Aiming to gather information from the
victims without their knowledge

[96, 82,
129, 167,

123]

X

Adware: Downloading and displaying unwanted ads
on the user’s device

[145, 120,
107]

X

Ransomware: Installed covertly to DoS the device
and demands a ransom payment to restore it

[115, 108] X

Privilege escalation: Exploiting a bug or design flaw
of the system to gain elevated access

[146, 158,
168, 121]

N/A

Table 3.2: A taxonomy of smartphone malware classes and their applicability to the Smart-
Things platform
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Figure 3.2: Code snippet of surveillance disabling attack

sensitive data to untrusted apps that don’t have essential capability. For instance, the mode

change (home/away/night) events are broadcasted system-wide and an malicious app that

doesn’t have the access to any sensing devices can know when the house owner is leaving

by receiving the broadcast, and facilitating potential break-in.

3.4.2.3 Adversary Technique

Two basic principles that guide the design of malware are to (1) carry out the malicious

payload as fully as possible under the system constraints to achieve maximum benefit; (2)

evade detection to prolong their life-time. Guided by these principles various adversary

techniques are used that we categorize into 6 classes shown in Table 3.2. Except exploiting

system vulnerability, such as root exploits which is orthogonal to our research, techniques

in all other 5 categories can be applied to the appified IoT platforms. For example, the per-

mission mechanism of commodity platforms offers “all or nothing”, meaning that once the

permission is granted, the privilege can be used for any purpose. This allows malicious app

logic to abuse the trusted granted to the declared benign functionality of the same app. Such

overprivilege are common in SmartThings platform where a AutoLock SmartApp also has

the capability to unlock the door anytime [92]. Another interesting evasion technique is to
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use IPC between malicious apps to carry out malicious payload. and we demonstrate on

SmartThings that even IPC is not supported by the platform, malicious SmartApps with

least privilege can collaborate to leak sensitive data such as door lock pin code through the

device status as side-channel [92]. In addition, weaknesses in platform specific features

can also be leveraged by IoT malware. For example, the GString support of the Groovy

language enables attacker to modify the control flow of the app at runtime, which can be

used to evade all static analysis based malware detection systems.

3.4.2.4 Malicious Payload.

Existing smartphone malware can be largely characterized by their carried pay-

loads. We partition these payloads into five different categories:remote con-

trol,spyware,adware,ransomware, and privilege escalation. Among them, privilege escala-

tion leverages the vulnerabilities of the system, and is out of the scope of our work. Remote

control and spyware are two common types of payload on the smartphone platforms and

can be easily adopted by IoT malware. Adware is a type of app that downloads and display

unwanted ads to the user. There are many channels including push notification and SMS in

IoT platforms that can be leveraged by adware to spread ads. Ransomware is an emerging

threat to modern systems, and we demonstrate examples showing that IoT malware can also

demand ransom payment in situations where the effect caused by the ransomware cannot

be easily reverted (e.g., when the user is on vacation).

Among all the 29 categories of attacks shown in Table 3.1 and 3.2, 25 of them are in the

scope of our research and are the attacks that our proposed system is designed to defeat.

Using these 25 categories, we implemented 25 malicious apps corresponding to each of

the category on SmartThings platform, and evaluated our system against them in §3.7. We

provide all of malware samples developed in this project on our website [37] to benefit

future research. Below, we will provide more detail about three instances of the proof-of-

concept attacks we have implemented. We will refer to these three attacks in later sections
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Figure 3.3: Code snippet of pin code snooping attack

to show how our design and implementation choices defeat these attacks.

Surveillance disabling attack (Figure 3.2) repackages its malicious payload in an

home monitoring app, and abuse the switch control capability granted to this app to turn off

the surveillance camera when it detects that the owner has left to facilitate potential break-

in. It also leverages the vulnerability in the event system of SmartThings to subscribe on

the mode change events without explicitly requiring any capability.

Pin code snooping attack (Figure 3.3) uses a battery monitor SmartApp to disguise its

malicious intent at the source code level, and is first proposed in the recent work [92]. The

app subscribes on the battery report of the lock, and sends the battery data to remote client

for visualization purpose. However, it won’t reveal its malicious payload until the victim

sets up a new pin code. Due to the overprivilege issue of the SmartThings platform, the

app subscribing on the battery report can also receive the codeReport event when pin code

is updated, and user can distinguish the benign and malicious behaviors only based on the

runtime value.

Remote control attack (Figure 3.4) leverages the Groovy dynamic method invocation

and the asynchronous execution flow to disguise its malicious payload. It pulls the attack

server everyday for new malicious command and stores them in the global variables shared

by all event handlers. A separated process that is scheduled to run every 5 minutes invokes
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Figure 3.4: Code snippet of remote control attack
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Name Description
Definition of context Decision

in context?Uid/Gid UI
activity

Control
flow

Runtime
value

Data
flow

ACG [143] User-driven access control X X X
AppContext* [161] Static context-based analysis for

malware detection
X X X -

AppFence [106] Protecting private data from
being exfiltrated

X X

Aurasium [160] Repackaging app to attach
policy enforcement code

X X X X

CRePE [80] Enforcing context-based
fine-grained policy

X X

FlaskDroid [70] Fine-grained MAC on
middleware and kernel layer

X X

SEAndroid [147] Flexible MAC for Android apps X
SEACAT [82] Integrating both MAC and DAC

in the policy checks
X X X X

TaintDroid [87] Dynamic taint tracking and
analysis system

X X X X X

TriggerScope* [96] Static trigger-based analysis for
malware detection

X X X -

ContexIoT Providing contextual integrity to
permission granting

X - X X X X

* These work focus on detecting malicious behavior with static analysis, but not enforcing access control at runtime. However,
their methodologies of distinguishing benign and malicious behavior are based on their definitions of context.

Table 3.3: Comparison of the context definitions among related work

the malicious command stored in the global variables using GString, which allows attacker

to potentially control all of the devices associated with this app.

3.5 ContexIoT Design

Guided by the attack survey and taxonomy, we present the context definition in Contex-

IoT by identifying a set of information that is essential to distinguish the attack and benign

logic in an app at runtime. To better clarify our context definition, we perform a comparison

between ContexIoT and previous context-based approaches that aim at detecting malicious

app logic or enforcing policies.

3.5.1 Context Definition

We use the term sink to refer to all the security sensitive actions of the app in later sec-

tions. As shown in Table 3.3, we extract the context definitions from a list of representative

related work and categorize them into 5 classes:
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UID/GID. For app-level access control mechanisms, the context used to make per-

mission granting decision is the identify of the app, i.e., the UID/GID from the system

perspective. Mandatory Access Control (MAC) and Discretionary Access Control (DAC)

systems on the smartphone platforms are several examples that use this context defini-

tion [70, 147, 82], but they are not able to distinguish attack and benign app logic within

the same app.

UI Activity. Runtime access control systems on mobile platforms put user in the con-

text of an app’s UI activity to make permission granting decisions [143, 160, 87, 82]. The

problem of using UI indicators alone is that it cannot restrict how the app uses the sensitive

data. In addition, since the UI is generally not available in the IoT apps due to the design

goal of minimum user involvement, it cannot be integrated into the context definition of

permission systems on the IoT platforms.

Control flow. The events that trigger the execution of the payload, and the conditional

statements (e.g., environmental attributes controlling the execution of payloads) consist

of the control flow data in the definition of context. The control flow context of a sink

is useful to distinguish attack and benign execution paths. For example, a door unlock()

action triggered by a remote command is more suspicious than that triggered by entering the

correct pin code. However, not all malicious behaviors can be distinguished using control

flow context alone, the data floating on the execution paths at runtime is also necessary for

making proper permission granting decisions in certain scenarios.

Runtime value. In our attack survey, we find that the same control-flow path can be

used either for benign purpose or carrying out attack payload depending on the runtime

value of the variables that are related to the security sensitive behavior of the app. As

shown in the pin code snooping attack (Figure 3.3), the control flow paths of receiving the

battery report and pin code update report are the same, and it depends on the runtime value

to distinguish them. However, using runtime value to check contextual integrity causes

usability problems since even a tiny change in the data results in different context, and user
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Original IoT App Logic
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Figure 3.5: ContexIoT overview with a concrete example showing our context-based access
control

can be overwhelmed with the large number of decisions to make. Moreover, presenting raw

runtime data may not necessarily inform the user about the whether the data is sensitive or

not, especially when the malware uses shadow payload technique shown in Table 3.2 to

conceal the content.

Data flow. The data dependency information in the data flow context is critical to

communicate the context to the user. Integrating it into the context definition mitigates the

problems mentioned above by (1) reducing the number of different context by merging the

runtime data that come from the same data origin, and (2) tagging the data dependency

information to the runtime values to help user make more informed permission granting

decision based on the property of data being sent out.

As shown, besides the UI activity that is generally not available for IoT apps, Con-

texIoT integrates all the other context components and thus has the most comprehensive

definition of context among related work. Later in §3.5.3, we further use evasion attack

discussion to show how this comprehensive definition can help improve the permission

system effectiveness.

3.5.2 ContexIoT Approach

We next present ContexIoT, our approach that provide contextual integrity to the per-

mission granting process of IoT apps using the context definition defined in §3.5.1. As

shown in Figure 3.5, the general design of ContexIoT consists of two major steps: (1)
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At the app installation time, ContexIoT patches the app with security-focused logic to

collect essential context and separate the execution flow of the security sensitive behav-

iors into asynchronous procedures: first request the permission in the current context, and

then perform the action when receiving permission granting response. (2) At runtime, the

cloud-backed permission management service handles the request from the patched apps

and prompts to the user with the context if necessary. Figure 3.5 shows an example in

which a malicious home temperature control app is granted with the capability to control

the window based on the temperature. However, the attack logic embedded in the app code

covertly opens the window when it detects the mode of the home is changed to Sleep,

which allows the attacker to break in. The ContexIoT patched app puts the open window

execution on hold and sends the collected context information to the backend. If previ-

ous decision for this context is not found in the backend, the permission service prompts

user and takes the permission granting decision that is made in context. The permission

service learns the security preference under this context of the user to prevent unnecessary

prompts in the future. We introduce how ContexIoT approach collects and uses the context

as follows.

Context collection. To overcome the black-box nature of the cloud-backed IoT plat-

form, ContexIoT patches the context collection logic to the app code, allowing the patched

apps to gather essential information of their own running context without requiring sys-

tem access. However, precisely tracking all the control and data flow attributes of the app

requires adding the logging logic to almost every instruction in the app code, which may

at least double the computation overhead. To address this challenge, ContexIoT takes an

hybrid approach combining static analysis and runtime logging to collect essential context

efficiently – using static analysis results to reduce the overhead of runtime logging.

The static analysis first identifies all the potential sinks, which are those secure sensitive

behaviors in the app code, and constructs an Inter-procedural Control Flow Graph (ICFG)

from the program entry points to the sinks. App code that is not on any control-flow path
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from the entry points to the sinks does not need to be patched with the runtime logging logic

since it won’t affect the behavior of the sensitive action. However, some exceptions need

to be made for the app logic that may implicitly affect the sinks, which are detailed in §3.6.

In addition, some context information that are deterministic statically that doesn’t depend

on runtime values are precomputed by the static analysis and annotated on the statements

of the app code to further reduce runtime computation overhead.

ContexIoT then efficiently patches the app with the context collection logic. The gen-

eral approach is to maintain an environment variable to store the context information for

each application variable that are labeled as related to the program sink by the static anal-

ysis. The environment variables are automatically updated during the execution of the app

based on the logic implemented by ContexIoT. And when the sensitive execution is trig-

gered at runtime, a context collection function gathers the essential information from the

environment of all the variables along the execution path. And the context information is

sent to the backend to request permission for executing the sensitive action.

Context usage. Among the different types of information in our context definition,

the control flow information, which describes the triggering action of the sensitive action,

together with the runtime data should be able to distinguish the context of attack execution

path and benign execution path. And the data flow information is used to communicate the

context to user to better inform the user the security implications.

As shown in Figure 3.5, the backend permission service maintains an authorized

permission-context mapping table for each user. Every time when a ContexIoT patched

app attempts to perform a security sensitive action, a permission request containing the

context information is sent to the backend. The cloud-based permission service checks

whether the context has been previously allowed or denied. If not, it prompts user with a

dialog presenting the permission request and the associated context and adds an additional

entry to the mapping table to store the user’s decision as security preferences. The con-

text structure contains the 4 out of 5 context components described earlier in §3.5.1. Our
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Name
Evasion attacks

Asynchronous
leakage

Control flow
abuse

Dynamic code
loading

Policy
abuse

ACG ×
AppContext* ×

AppFence ×
Aurasium ×
CRePE ×

FlaskDroid ×
SEAndroid ×
SEACAT ×

TaintDroid ×
TriggerScope * ×

* These work focus on detecting malicious behavior with static analysis using
context, and are thus vulnerable to dynamic code loading.

Table 3.4: Evasion attacks on context-based security approaches

definition cannot include the UI Activity class since it is not available in IoT apps. In the

implementation, some optimization can be applied to reduce the frequency of prompts by

merging some components, which is detailed later in §3.6.

3.5.3 Comparison with Other Context-based Security Approaches

Since our context definition contains the complete inter-procedure control and data flow

information, it can distinguish any attack logic in the app code level. To show the effec-

tiveness of this design, we compare our context definition with other context-based security

approaches proposed by previous work for smartphone platforms. In Table 3.4, we list a set

of evasion attacks that can bypass those systems but can be defeated by ContexIoT. These

evasion attacks fall into 4 categories as follows.

Asynchronous leakage. Sensitive data can be leaked to remote attacker stealthily,

where the accessing and the transferring of the data are executed asynchronously, using

global variables or other sources to share the data between the two procedures. The remote

control attack shown in Figure 3.4 is one such example. Access control mechanisms with-

out information flow tracking support [143, 106, 80] can be evaded by malware that abuses
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the granted access to resources and covertly leak them to the attacker. ContexIoT defeats

such attack by integrating data dependency into the context definition. For the remote con-

trol attack, when the malicious payload is executed, ContexIoT presents users with the data

dependency information for the sensitive action, which explicitly tells user that the method

about to be executed comes from the response received in a separate procedure.

Control flow abuse. Access control systems that enforce policies only at the granular-

ity of sinks without tracking how the sink is triggered [160, 87] is vulnerable to malware

that abuses control flow to carry out malicious payload. For instance, a malicious lock

manager app is granted with the unlock() capability by such sink-based access control

systems the first time it attempts to unlock the door when it detects the house owner is

back. However it can reuse the same code snippet that has already been permitted to un-

lock the door upon the remote attacker’s request. In the context design of ContexIoT, the

inconsistency of the control flows in these two scenarios are then detected, and the user’s

permission are required separately.

Dynamic code loading. Static analysis based malware detection approaches [96, 161]

can be evaded by dynamic code loading. The GString support of SmartApps allows ma-

licious payload to be revealed only at runtime. ContexIoT statically detects potential sinks

for dynamic code loading, thus prevents malicious logic from evading the access control.

Policy abuse. MAC and DAC based approaches [70, 147, 82] grant the access at the

application level based on user or system defined policies. And they are intrinsically vul-

nerable to malicious app logic that abuses the trust granted to the app itself, which is usually

seen in repackaged apps. ContexIoT performs access control on the program path level and

can enforce finer-grained policy to distinguish benign and attack logic in the same app.

As shown, our fine-grained context definition at inter-procedure control and data flow

levels can successfully defeat these evasion attacks that can bypass other context-based

security approach, showing that such a comprehensive definition can greatly improve the

access control effectiveness in permission systems.
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3.6 Implementation

We build the ContexIoT mechanism on the SmartThings platform, which supports yet

the largest number of device types (204) among all the appified IoT platforms [44]. Smar-

tApps are executed in the proprietary Samsung backend and our prototype of ContexIoT

automatically patches the app before they are submitted for execution. The patched se-

curity logic communicates the context information collected at app runtime to our own

backend permission management server when security-sensitive behavior is triggered. We

detail the key components of the app patching mechanism of ContexIoT and the end-to-end

implementation.

3.6.1 SmartApp Patching Implementation

Recall that our context definition in §3.5, which contains control and data flow attributes

and also runtime values. ContexIoT enables the patched SmartApp to collect these context

information at runtime by adding the logging logic to the instruction set of the original

app. To reduce the runtime computation overhead of maintaining the context for the whole

program, ContexIoT also employs a static analysis approach to (1) Identify a subset of the

app code that require runtime logging to track the sensitive execution, and (2) Precompute

some context information that is deterministic statically. Based on the annotations done by

the static analysis, ContexIoT efficiently adds instructions to log the context attributes only

for the subset of app code that is related to the sensitive behaviors of the untrusted app.

We define the sinks of SmartApps as the security-sensitive behaviors of the app, which

contain both capability-protected APIs that are used to control or actuate the device, and

other security-critical APIs such as sendSMS() and setLocationMode(). As of July 2016,

83 device-control APIs protected by 67 capabilities are supported by SmartThings, and will

be recognized as sinks in our analysis. In addition, we also consider a set of SmartApp

APIs that can be potentially used by attacker to carry out malicious payload. For example,

malware can use the setLocationMode() to disarm the house by changing the mode to
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Figure 3.6: Code snippet showing how the surveillance disabling attack app is patched with
the ContexIoT secure logic
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“Home”, use httpPost to leak sensitive data, and use sendNotificationToContacts()

to send phishing messages to the victim’s contacts. We therefore collected 36 such APIs

and added them to the sink API set.

3.6.1.1 Static Analysis

To model the lifecycle of the SmartApp and computes the minimum set of app code that

can potentially affect the behavior of the sink, ContexIoT builds an ICFG for the SmartApp.

The ICFG is constructed using the AST transformation support of Groovy language [16],

which allows the static analysis to be performed directly on the Abstract Syntax Tree (AST)

generated during the compiling process. Specifically, In the programming model of Smar-

tApp, the app is not continuously running, app logic is embedded in different event handlers

that are triggered by the events they have subscribed on. We adapt our design to the trigger-

action based programming model of SmartApps, and models all the program entry points

that can potentially be triggered by runtime events. In general, ContexIoT doesn’t patch

the app code that are not in the ICFG from the program entry points to the sinks. However,

one exception is that it will patch all the statements that modify the value of global vari-

ables, which are shared among executions, since they will also determine the behavior of

the sinks. The remote control attack shown in Figure 3.4 is one example.

The static analysis of ContexIoT further reduces the runtime overhead by precomputing

the intra-procedural control-flow context for program statements, which doesn’t contain

dynamic method invocation (GString) in their control-flow paths. Similar to reflection, the

dynamic method invocation support of Groovy can modify the control-flow at runtime. The

dynamic features will be handled using runtime logging, however, except that, the intra-

procedure control-flow information for all the other statements are deterministic statically,

and ContexIoT annotates these statements with the precomputed context. Based on the call

trace collected at runtime, the complete control-flow context for a certain sink is obtained

by composing the annotated intra-procedural context of all the statements along the method
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invocation chain.

3.6.1.2 Runtime Logging

Excluding the intra-procedure control-flow context that is already been computed and

annotated statically, there remain four major types of information that are required to be

collected at runtime, in order to complete the context definition. (1) Method invocation

trace is logged by adding a variable for each method in the app to keep track of its calling

function. Every method call expression will set the variable of the callee function with the

calling function’s signature. Once a sink is triggered, the call trace can be extracted by

tracing back the method signatures stored in these variables. (2) Dynamic method invoca-

tion is captured by using a variable to track the value of each GString, which can only be

determined at runtime. For example in the remote control attack shown in Figure 3.4, when

the sensitive execution in the handler is triggered through dynamic method invocation,

the patched SmartApp will gather the device and the method name and put them into the

context. (3) Runtime data can be directly obtained from the variables without adding new

instructions to track them. When a sink is reached at runtime, the context collection logic

gathers the current value of all the variables that the sink statement is control-dependent

on, and use them as the runtime data in our context definition. (4) Data dependency is

critical to communicate the context with the user as described in §3.5, and we design and

implement a dynamic taint analysis framework to track the data dependency information

of sink-related variables.

The dynamic taint analysis of ContexIoT maintains a taint environment for each vari-

able in the subset of app code output by the static analysis. Each program variable v is asso-

ciated with a taint environment γ : v → T , where T is a set of taint values {ti|i = 1, ..., k}.

Each taint value ti is associated with a variable vi, meaning that v is data dependent on

variable vi. In our design, variables in the taint environment gamma include local, global,

and function return variables, and are maintained as JSON objects in our implementation.
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Specifically, in the SmartThings programming language, the only global variable is the

state object, which allows developer to store data into different fields of the object and

shares the data across executions. And our taint logic is designed to be field-sensitive to

precisely track the data dependency relationship of all the global variables in different fields

of state.

The taint propagation of ContexIoT follows the generic approach [76] and handles some

Groovy-specific operations such as the array insertion operation (<<), closure, and also

the library functions of SmartThings. We manually summarized all the 85 SmartThings

APIs available as of June 2016 in a file, which specifies how the taint values are propagated

through the function variables to the return value. We also considered the side effect when

modeling these library functions, which is the potential impact the functions have on the

global variables. For example, once the changeLocationMode() function sets the global

variable Mode, it will affect all the variables that depends on it. Our analysis handles such

case by updating the taint environments for the corresponding variables when such function

calls are executed.

In addition, ContexIoT also considers implicit flows, where the taint value is in the

conditional statement that the sink is control dependent on. The implicit flow helps capture

data dependency that is not directly propagated by assignments, and enables the detection

of information leakage through side-channel. For instance, a malicious app we have con-

structed uses the light luminance as side-channel to send sensitive information such as the

home occupancy and the lock status to attacker nearby, which will not be detected by ex-

plicit data flow analysis, but can be captured by implicit flow. We label each taint value

with 2 boolean values E and I in its taint environment, for taint value coming from ex-

plicit flows (E = true) or implicit flows (I = true). When merging two taint values with

different labels E1,I1 and E2,I2, the merged taint value’s label is (E1||E2) and (I1||I2).
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3.6.1.3 Secure logic patching

ContexIoT separates the execution flow of the sink into two asynchronous procedures:

first requests the permission with the collected context, and then resumes the execution

upon permission granting response. Figure 3.6 shows the code snippet of the surveillance

disabling attack logic being patched by the ContexIoT. The original sink (switch.off())

is modified to the secure logic of enqueuing the action for future reference, and sending the

collected context to permission server. ContexIoT patches the app with a Web API interface

to receive the permission response in an separate process to overcome the restrictions of

SmartThings on the execution time of each code block. On receiving the response from the

server, the onResponse handler retrieves the information of the sink from the queue and

execute it, if the server allows the execution in this context. The performance overhead of

adding such secure logic is evaluated in §3.7.

3.6.2 End-to-End Implementation.

We set up the ContexIoT cloud backend service on a cloud instance in Google App

Engine, which stores the previous user permission granting decisions. If no previous deci-

sion is found, it prompts the user using Google Cloud Messaging through the ContexIoT

companion app to display the context and learn the user’s decision. The basic approach

for the permission service to distinguish two context is to compare the values of all the

context attributes. However in our implementation, differences in the runtime value may

be ignored under certain circumstances. The data floating in between SmartDevices and

SmartApps are usually in the format of key-value pair (KVP), and in our threat model, we

trust the SmartDevices to provide the authentic KVP, where the key reflects the real prop-

erty of the data. Thus the runtime value are compared by their keys in our implementation,

and we use the pin code snooping attack (Figure 3.3) to show that this design choice re-

duces the prompt frequency, while maintains the effectiveness. The malicious battery app

subscribes on the device reports, and if the KVP of two battery reports are presented in

74



the context as [”battery level” : 99] and [battery level” : 95], they will be considered as

the same; However, if a pin code update report is sent out, the KVP in the context, which

looks like [”code” : 9998], will be distinguished from previous paths, and prompted to user

separately.

Figure 3.7 shows screenshots of the presented context information for a malware

adapted from a real SmartApp called AutoLockDoor [11]. The legitimate functionality

of this app is to automatically lock the door after a certain period of time, which is set by

the user. In addition it checks the contact sensor of the door before issuing the lock()

command to ensure that the door can be properly closed. Figure 3.7a shows the permission

dialog for this legitimate execution path, which is consistent with the app description. How-

ever, this malware also includes a backdoor, which allows the attacker to unlock the door

remotely via network commands when the user is away. As shown in Figure 3.7b, since

this malicious logic is distinguishable in the control and data flow level, this backdoor logic

is revealed clearly in the displayed context information.

It is important to note that this is only a proof-of-concept context presentation which

dumps everything in the context structure to the dialog. Since our context definition con-

tains the complete inter-procedure control and data flow information, future IoT platforms

which adopt the ContexIoT approach can flexibly tune the context granularity, e.g., by

shortening the length of recorded control flow or merging current context components, and

also design better context presentation to meet their usability requirements.

3.7 Evaluation

In this section, we evaluate our prototype implementation of ContexIoT in (1) Effective-

ness of secure logic patching; (2) Permission request frequency, which is important for the

effectiveness of runtime permission system in practice [157, 57]; (3) Runtime performance

overhead of the additional patching logic.
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(a) Legitimate logic: Automatically lock the door
after a specified period of time

(b) Backdoor logic: Unlock the door when a re-
mote command is received from the network

Figure 3.7: Screenshots showing the benign and attack context in the malicious AutoLock-
Door app
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3.7.1 Effectiveness of Secure Logic Patching

To evaluate the secure logic patching mechanism, we use ContexIoT to patch the 25

SmartApps we constructed, each representing a unique class of malware or an vulnerable

app based on our IoT attack taxonomy in §3.4. The SmartThings IDE provides a simulator

that can model the behavior of native SmartThings devices without requiring a physical

device [45]. Unfortunately, 3 of the attacks in our taxonomy involve 3rd party devices, for

example a camera with advanced features used in the surreptitious surveillance attack [34],

and thus cannot be dynamically tested. Thus, we test our system against 22 attacks in the

runtime, and only manually examine the patched SmartApp code for the remaining 3 apps.

For effectiveness evaluation, we first check whether all the potential sinks in these

SmartApps are patched with the secure logic, and find that ContexIoT accurately identi-

fies and patches all 72 potential sinks including dangerous usage of GString. Next, we

evaluate whether the attack execution paths in these SmartApps can be distinguished from

the remaining benign paths in the runtime. By triggering all the program paths of the 22

attack execution paths, we confirm that all of them can be successfully recognized with-

out any ambiguity, and the other 3 attacks can also be identified based on the statically

computed intra-procedural context information. Overall, these results show that our secure

logic patching can accurately identify sinks and logging essential context to distinguish

attacks execution paths.

3.7.2 Permission Request Frequency

Experimental setup. To measure permission request frequency, we dynamically trig-

ger the execution paths in a set of SmartApps using the SmartThings IDE simulator. In

the experiment, we use 283 SmartApps out of the 502 commodity SmartApps we col-

lected since the rest of them can not be simulated due to limited physical device support

in the current simulator. To automate the test, we leverage the trigger-action programming

model of SmartApp, i.e., app logics are all triggered by external events, to generate inputs.
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Figure 3.8: CDF of the estimated life-time permission request prompts for 283 commodity
SmartApps patched by ContexIoT

Leveraging the events generation support in the SmartThings IDE, we build an automatic

SmartApp dynamic testing framework using web automation technique that can generate

input to SmartApps and efficiently trigger different event handling logic.

Using our dynamic testing framework, we measure the life-time permission request

number for each SmartApp by triggering all possible execution paths in the app. This is an

upper bound estimation for a home user in practice, since typically a user only use a subset

of all features in an app. For each SmartApp, we use the fuzz testing approach to randomly

generate all types of external events in different triggering order to ensure good code cov-

erage. Once a sink is triggered, we log the permission requests, and automatically grants

permission to avoid double counting. The test stops only if no prompts are generated after

50 consecutive random events. As shown in Figure 3.8, the average life-time permission

request number among the 283 SmartApps are only 3.5, which is far below the threshold

that is considered to risk user habituation or annoyance [160, 157].
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3.7.3 Runtime Performance

In this section, we measure the performance overhead on the event handling latency

introduced by the secure logic patching in ContexIoT. The end-to-end latency for an event

execution can be broken down into 2 parts: (1) computation latency, which is the time taken

in executing the app code, (2) sink execution latency, which is the time taken in communi-

cation between the SmartThings cloud backend and the physical device. In ContexIoT, the

secure logic patching adds latency to the computation part since additional instructions are

added to the SmartApp used for tracking the control and data flows. At the same time, it

also adds permission request latency, which is taken in communicating with the ContexIoT

cloud backend for permission granting. In this evaluation, we only measure the latency

added by the ContexIoT system itself, and thus the decision making time taken for a user

is not considered.

Using our dynamic testing framework, we inject events to trigger all the 916 event

handling logic in the 283 SmartApps, and the measurement results are shown in Figure 3.9.

Overall, we observe 67.1 ms (26.7%) additional latency on average when running those

patched SmartApps on virtual devices. In addition, we find that the end-to-end latency

is dominated by the sink execution latency, which is at least one magnitude higher than

the additional latency from ContexIoT secure logic patching. Thus, we believe that the

performance overhead from ContexIoT is negligible in real world scenarios.

Besides testing on virtual devices, we also evaluate the performance overhead for two

events using physical devices: (1) Locking a Schlage Z-Wave lock [42] using a commod-

ity lock manager SmartApp, and (2) Sending SMS to the user’s phone from a SMS alert

SmartApp once it detects motion sensor event. We trigger both events 50 times, and as

also shown in Figure 3.9, the patched logic added only 9.6% and 4.5% delay on average.

The breakdown of the end-to-end latency shows that compared with running on the vir-

tual device, the time it takes to execute the command on physical device is significantly

longer, which is likely due to the latency introduced by the wireless communication be-
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tween hub and the device. Thus, the overhead of ContexIoT introduced in the computation

and permission request procedures becomes negligible in the physical device settings.

3.8 Usage Discussion

Acar et al. suggests to take both users and developers out of the loop as a poten-

tial solution to the permission comprehension problem [57]. Their proposed approach for

achieving this is to enable the automatic generation of security policies. We believe that the

rich context definition and flexible design of ContexIoT benefits innovations in this direc-

tion. For example, one potential approach can be to provide recommended context-based

security settings to users for different apps, and the recommended settings come from the

security preferences that are learned by ContexIoT from a group of expert users using the
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ContexIoT-patched apps.

Another possible approach that takes human out of the loop is automatic generation of

policy based on the app logic and its interactions with user. For example, the SmartApp

has a setup procedure during the app installation, which requires user to set some param-

eters that will guide the automation of the SmartApp (e.g., automatically locks the door

when it has been opened for 2 minutes). Using the data-dependency tracking support of

ContexIoT, the security logic can monitor how the app uses the user input. If it detects that

the events corresponding to the unmodified user input triggers the user’s desired action at

the runtime, the execution can be automatically allowed since it conforms with the user

specified routine. Natural Language Processing (NLP) technique may be required to infer

the user desired action. We leave it as future work to explore these extended usages of the

ContexIoT.

3.9 Conclusion

We design and prototype ContexIoT, a context-based permission system for appified

IoT platforms, which can support identification of fine-grained context defined at inter-

procedure control and data flow levels, and runtime prompts with rich context information

to help users perform effective access control. By comparing our context definition with

those in previous context-based permission systems, we shows that our definition is more

comprehensive and can defeat attacks that can evade these previous designs. Based on

the extensive survey of existing and potential attacks on the appified IoT platform, we

demonstrate that ContexIoT can effectively distinguish all attack context in the tested apps.

Dynamic testing on 283 commodity SmartApps shows that ContexIoT introduces negligi-

ble performance overhead and has a low prompt frequency which is far below the threshold

that is considered to risk user habituation or annoyance.
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CHAPTER IV

Providing Efficient Dynamic Testing Support to

Self-driving Functionalities

4.1 Introduction

The transportation ecosystem is on the verge of its most significant transformation in

more than a century. For the first time since Karl Benz took his first drive in 1886, connec-

tivity, automation, and services are being added to the automotive, which have the potential

to virtually eliminate automobile crashes, fatalities, and injuries. However, before that goal

can be achieved, Autonomous Vehicle (AV) manufacturers must ensure that the possibility

of malicious actors interfering the vehicle system be minimized, and the chances and im-

pact for any interruptions of the system or self-driving functionalities be mitigated. This

actually poses several new challenges in the quality assurance of AV code base.

First, microprocessors, software, and sensors have been the key technologies enabling

the automotive industry to meet increasingly stringent economy and safety requirements.

Today’s most common vehicles have nearly 100 discrete electronic control units (ECUs)

and in some cases more than 100 million lines of code, a significant portion of which

makes up the advanced driver assist system (ADAS). Moving towards the AV era, these

self-driving related functionalities are becoming increasingly sophisticated and eventually

morph into full-blown level 4 or even level 5 autonomous driving system as shown in Fig-
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Figure 4.1: SAE 6 levels of Autonomous Vehicles

ure 4.1. To ensure all these functions’ execute as expected in the complex in-vehicle system

under numerous roadside conditions, requires huge efforts for software quality assurance,

which has been considered challenging especially in large systems such as the automo-

tive [69]. Moreover, to reduce the development cost, automakers of traditional vehicle usu-

ally outsource the development of peripheral functionalities, such as the lock system, GPS

modules, etc., and they adopted the Controller Area Network (CAN) bus design shown in

Figure 4.2 to connect different subsystems. The modern AV platforms, which are usually

built based on traditional vehicles [38, 12, 36, 55], inherit this CAN bus design, and provide

software abstraction for the physical CAN bus (Figure 4.3).Self-driving functionalities and

peripheral subsystems are all connected through this virtual CAN bus, which makes it an

hybrid in-vehicle system where third party code such as libraries, firmwares, outsourced

components are all connected and communicated using the IPC provided by the platform.

It is still a challenging problem how to ensure the security and safety of the AV platform.

The discovery of software vulnerabilities and bugs is a classic yet challenging problem.

Due to the inability of program to identify non-trivial properties of another program, the

generic problem of finding software problems is undecidable [142]. In particular, securing
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Figure 4.2: Traditional physical CAN bus vehicle platform

large software system, such as an operating system kernel, a self-driving platform, resem-

bles a daunting task, as a single flaw may undermine the security or safety of the entire

system. As a result of this situation, security research has initially focused on statically

finding specific types of vulnerabilities, such as flaws induced by insecure library func-

tions [19], buffer overflow [118], integer overflows [155], or insufficient validation of input

data [112]. However, these static program analysis approaches requires a precise definition

of the problem, and they are only as good as the rules they are using to scan with, so that

dynamic analysis becomes a necessary approach to uncover unknown programming errors

that can potentially cause security and safety problems at the AV’s runtime. “Fuzzing”

is a practical dynamic analysis approach that works well especially on large code bases

where concolic analysis are not applicable due to path explosions [68]. A “fuzzer” mon-

itors the native execution of an application to identify flaws. When flaws are detected,

these systems can provide the actionable inputs to trigger them. Although the automakers

may adopt general results and existing fuzzing tools from the software engineering body

of knowledge gained in traditional software testing domain, the specific constraints and

domain specific requirements in the automotive industry ask for specialized solution.

For example, considering a controller module on the AV platform that processes the

planned trajectory messages from the path planning module as shown in Figure 4.4. The

controller parses the message field by field and calculate the control command to be pub-

lished onto the CAN bus based on the planned trajectory. However, in this case, the checks

performed on various message fields are quite different from the fuzzing perspective. For
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Figure 4.3: Virtual CAN bus design of emerging autonomous vehicle

Figure 4.4: Example message received by controller module of Apollo AV platform

the comparison of the module name field, a fuzzer randomly mutating input would have

a very small chance of sending correct input. In addition, to explore deeper logic of the

controller module, the sequence num filed needs to be constructed carefully to bypass the

checks, while the coordinates of trajectory points are also subject to certain real world

constraints, which also makes random mutations impractical. A domain specific muta-

tion strategy that are aware of all these constraints would be well-suited for recovering the

correct field name and valid trajectory coordinates in order to explore deeper logic.

Guided by this intuition, we propose a dynamic testing approach for self-driving func-

tionalities, called AutoFuzzer, that is an enhanced fuzzing tool combining a mutation en-

gine that is specific to the AV domain to identify deep bugs or logical errors in the self-
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driving code bases. Combining the domain specific input-mutation fuzzer and a bridge

app that connects the fuzzer to the distributed in-vehicle system, AutoFuzzer is able to test

complex self-driving functionalities that incorporate multiple modules, to discover sys-

temic issues lying in the autonomous driving logic beyond shallow bugs. We will describe

the design and implementation of AutoFuzzer, and evaluate its performance on the Baidu

Apollo [12] platform, which is yet the most mature AV platform that are publicly available.

AutoFuzzer is not the first work to improve the fuzzing practice by combining different

types of analysis or domain knowledge [103, 131, 148]. However, we show that guided with

domain specific knowledge, the performance of the input-mutation fuzzer can be greatly

improved to discover bugs such as crashes and hangs more efficiently. Furthermore, we

design our mutation engine to be extensible, allowing more vehicular expertise to be trans-

lated to new domain-specific atomic mutations to further improve the fuzzing practice for

self-driving functionalities. In summary, this work makes the following contributions:

• We propose an improved fuzzing approach to improve the effectiveness of testing

self-driving code bases by leveraging domain specific atomic mutations.

• We build the tool, AutoFuzzer on Baidu Apollo autonomous vehicle platform to

demonstrate our approach

• We demonstrate the improvement of AutoFuzzer by comparing the number of unique

crashs and hangs produced by AutoFuzzer on the Apollo code base with existing

fuzzing approaches.

4.2 Background

This chapter provides sufficient background of autonomous vehicle architecture and

how the self-driving functionalities are developed.
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Figure 4.5: The open-access automated vehicle of at the University of Michigan

4.2.1 Autonomous Vehicle Platform Design

To identify key challenges and issues for the AV platform, we compare aspects of the

traditional vehicle platform with the modern AV platform design. As can be seen in Fig. 4.2,

from the adoption of the Controller Area Network (CAN) bus in the 1980s, modern vehi-

cles now have over 100 electronic control units (ECUs) for various subsystems [59], in-

cluding critical control systems and also peripheral infotainment systems all communicate

using the CAN bus. As automakers usually outsource the development of these peripheral

functionalities to reduce development costs, security and safety problems arise,as software

developed by a third party with access to CAN bus, can potentially be exploited to tamper

the safety of the vehicle. For example, the Jeep hack in 2016 that resulted in a massive

recall was due to the vulnerability in the 4G/LTE module [24].

The emerging AV platform shown in Fig. 4.3 provides software abstraction for the

physical CAN bus. Self-driving functionalities are developed as apps, and their inter-

actions with the hardware actuators are proxied by a vehicle operating system that also

acts as the middleware. The software based AV platform has created an ecosystem where

multiple functionalities can work together to provide greater intelligence and convenience.

Some organizations have already begun to roll out the autonomous vehicle with open de-

velopment support. For example, in the industry, vehicle middleware platforms that open
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massive vehicle functionalities, including steering wheel and brake to the developers have

been built (e.g., Ford OpenXC [36], PolySync [38]). While in the academia, University

of Michigan (U-M) starts to offer open-access to their testing AV equipped with sensors,

including lidar, radar, and cameras, so that researchers can rapidly test their self-driving or

connected-vehicle technologies [49] (Fig. 4.5). Since these emerging AV platform opens

full-fledged self-driving functionalities to the third party developers, it could potentially

introduce greater safety risk. For example, flaws in the proportional control algorithms of a

cruise control app may put the vehicle in a situation where a collision becomes inevitable.

Recent accident records [27] of self-driving cars suggest that deficiencies in the AV soft-

ware are inevitable due to the complexity of the physical environment, thus rendering the

vulnerable apps a persistent threat to the AV industry. Apps may also be developed for

malicious purposes to tamper with the user’s safety with embedded malicious logic [13].

4.2.2 A Motivating Example

Figure 4.6 is the code snippet of a working self-driving app developed by U-M re-

searcher that implements the path following functionality for the AV and enables the vehi-

cle to drive following a given set of coordinates. We use it as a running example to show

that although static app vetting is effective for checking the logic with invariant principles,

some potential risks may not be revealed, however, until the vehicle encounters certain

physical roadside conditions.

The vehicle status of running the app on the U-M autonomous vehicle in the MCity

testbed [29] is plotted in Figure 4.7. The automated vehicle successfully followed the

trajectory when the acceleration and curvature were small (point 2), but lost control when

the desired yaw rate was high (point 3). The vehicle completely lost stability at point 4

where the driver needed to take over to avoid a collision. Dynamic analysis such as fuzz

testing bridges the gap by testing the program ideally in all the scenarios for which it is

designed to detect any potential violation of security and safety principles that need to be
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Figure 4.6: Code snippet of a working path following app
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(a) Desired and measured trajec-
tories

(b) vehicles states (longitudinal speed, yaw rate, steering angle)

Figure 4.7: Example of improper dynamic controller that led to out-of-control failure

upheld under any circumstances.

4.3 Related Work

AutoFuzzer is a guided whitebox fuzzer, which builds on top of state-of-the-art fuzzing

techniques, adding domain specific mutations to achieve effective bug excavation. As some

other fuzzing tools also combine multiple techniques, we use this section to distinguish

AutoFuzzer from other solution which draw on related techniques.

4.3.1 Guided Fuzzing

Fuzzing was originally introduced as one of several tools to test UNIX utilities [124].

Since then it has been extensively used for black-box security testing of applications. How-

ever, fuzzing suffers from a lack of guidance – new inputs are generated based on random

mutations of prior inputs, with no control over which paths in the applications should be

targeted.

The concept of guided fuzzing arose to better direct fuzzers toward specific classes of
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vulnerabilities. For example, many studies have attempted to improve fuzzing by selec-

tively choosing optimal test cases, honing in on interesting regions of code contained in the

target program [103, 131]. Specifically Dowser uses static analysis to first identify regions

of code that are likely to lead to a vulnerability involving a buffer overflow. To analyze this

code, Dowser [103] applies taint-tracking to available test cases to determine which input

bytes are processed by these code regions and symbolically explores the region of code

with only these bytes being symbolic. Unlike Dower that targets on buffer overflow vulner-

abilities, AutoFuzzer targets on any crashes or hangs, which are considered safety-critical

on the AV platform, and can potentially lead to attacks.

In another attempt to improve the state of fuzzing, Flayer [84] allows an auditor to skip

complex checks in the target application at-will. This allows the auditor to fuzzy logic

deeper within the application without crafting inputs which conform to the format required

by the target, at the cost of time spent investigating the validity of crashing inputs found.

Similarly, Taintscope uses a checksum detection algorithm to remove checksum code from

applications, effectively “patching out” branch predicates which are difficult to satisfy with

a mutational approach [154]. This enables the fuzzer to handle specific classes of difficult

constraints. Both these approaches, however, either require a substantial amount of hu-

man guidance in Flayer’s case, or manual efforts to determine false positives during crash

triaging. AutoFuzzer address the challenge of bypassing non numerical checks by adding

vehicle specific atomic operations to the mutation approaches, so that inputs generated by

the mutation engine has a very high chance of passing the check. Compared with Flayer’s

approach, AutoFuzzer theoretically produces less false positives by constructing realistic

input to satisfy first few levels of constraints.

Another approach is hybrid fuzz testing, in which limited symbolic exploration is uti-

lized to find “frontier nodes” [137]. Fuzzing is then employed to execute the program with

random inputs, which are pre-constrained to follow the paths leading to a frontier node.

Along this direction, several implementation-agnostic fuzzers have been proposed recently
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that leverage either model-guided approach [110, 126] or the dependency among the bit

positions of an input [72] to improve the efficiency of fuzzing. Specifically, the model

based attack generation in TCPWN [110] leverage the domain knowldge about the TCP

state machine to inject the attack at the right time during execution, while SemFuzz [72]

augments guided fuzzing by tunning the mutation ratio from a given program-seed pair to

an optimal value based on the probability of finding crashes. These methods are proved to

be very useful for ensuring that the fuzzed inputs explore paths faster in the execution of the

binary, but they are generally limit to certain problem scope since the models in TCPWN

and the seeds generation in SemFuzz all require domain knowledge. These approaches

are very similar to AutoFuzzer in terms of combing domain-specific mutaions, except that

AutoFuzzer leverages vehicular domain knowledge to guide the mutation, and is thus more

effective specifically in the testing of AV functionalities.

4.3.2 Whitebox Fuzzing

Other systems attempt to blend fuzzing with symbolic execution to gain maximal code

coverage [71, 98, 99]. These approaches tend to augment fuzzing by symbolically execut-

ing input produced by a fuzzing engine, collecting symbolic constraints placed on that in-

put, and negating these constraints to generate inputs that will take other paths. While these

systems are powerful, they suffer from a fundamental problem: if a conditional branch

depends on symbolic values, it is often possible to satisfy both the taken and non-taken

condition. Thus the state has to fork and both paths must be explored. This quickly leads to

the well known path explosion problems, which is the primary inhibitor of these white-box

fuzzing when used on large code bases.

AutoFuzzer on the other hand, builds itself on a popular off-the-shelf fuzzer, American

Fuzzy Lop(AFL) [2], and the improvement mostly deal with integrating the fuzzer with

the domain specific mutation engine. It relies on compile time instrumentation to make

informed decision on which paths are interesting, and obtain the feedback in linear time,
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and are thus applicable to large code base such as the AV platforms. However, it’s also a

promissing direction of future work to combine the domain specific mutation with selective

symbolic or concolic executions to further improve the fuzzing practice.

4.4 The AutoFuzzer Approach

In this section, we first describe the scope of the problem , and discuss the limitations

of the existing fuzzing tool when applied to these problems. We then introduce the major

components of the AutoFuzzer approach, and present a roadmap for the detailed imple-

mentation of each component.

4.4.1 Problem Scope

As mentioned earlier, the major safety issue with appified AV comes from the large

code base of the self-driving functionalities, and third party components. In this paper, we

focus mainly on two types of issues – performance issues that breaks the real-time assump-

tion of the AV runtime, such as the crashes or hangs of the program, and vulnerabilities,

which have been consistently presented difficulties for other platforms. The design goal

of AutoFuzzer is to efficiently detect as much unique crashes and hangs in the targeted

AV platform, as they will bring safety risks, and some crashes that can be controlled by

attacker input may also enable targeted attacks, such as remote control or denial of service.

We consider two attack surfaces in this work: (1) Manipulation of sensor input and (2)

Compromised in-vehicle modules.

We use the Baidu Apollo platform as shown in Figure 4.8 to illustrate the attack sur-

face and our design. The essential hardware components including the GPS/IMU, camera,

lidar, radar are installed on the drive-by-wire vehicle hardware platform, and communicate

through the physical CAN bus. A real time operating system (RTOS) runs on the comput-

ing unit and acts as a middleware to provide the sensor data to the software modules that

work together to accomplish self-driving tasks. In the Apollo platform, the GPS data from
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Figure 4.8: Apollo self-driving platform architecture

the IMU and the point cloud data from lidar are processed by the localization module and

perception module respectively before sending to the prediction module. The prediction

module receives the obstacles information including positions, velocities, accelerations,

ect., and generates the predicted trajectories with the probabilities of the obstacles. Given

the localization, vehicle status, map, predicted obstacles’ status, the planning module will

compute a trajectory that is safe and comfortable for controller to execute. At last. using

different control algorithms, the control module generates the commands to be published

to the steering wheel, throttle and brake to accomplish the self-driving task. In this work,

we assume that the attacker could influence the decisions made by the AV or DoS certain

critical functionalities either by perturbing the sensor input (e.g., lidar, camera) or by com-

promising certain module to manipulate the data sent to other modules. Each module itself

is fault tolerant to some common problems, such as messages in bad format, or out-of-

order messages. However, attackers can still targets on the embedded flaws to cause crash

or hang of certain module to raise safety threats, or even compromise the whole system

leveraging memory leaks.
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4.4.2 Fuzzing

Fuzzing is a technique that executes an application with a wide set of inputs, checking

if these inputs cause the application to crash. To retain speed of execution, fuzzers are

minimally invasive, they perform minimal instrumentation on the underlying application

and monitor it either from outside or inside. We will detail how AutoFuzzer improves the

performance of existing fuzzing practice.

To implement AutoFuzzer, we leverage a popular off-the-shelf fuzzer, AFL [2]. AFL

relies on instrumentation to make informed decisions on which paths are interesting. This

instrumentation can be either introduced at compilation time or via a modified QEMU [67].

We opted for the Clang++ based instrumentation, since our targeted modules in Apollo are

open sourced. We list and describe the most important AFL features, mentioning how they

are used by AutoFuzzer to overcome certain challenges.

• Target instrumentation. The instrumentation injected into compiled target pro-

gram captures branch (edge) coverage, along with coarse branch-taken hit counts.

These instructions injected into each basic block reveal the current status exploring

the whole program.

• Genetic fuzzing. AFL carries out input generation through a genetic algorithm, mu-

tating inputs according to genetics-inspired rules (transcription, insertion, etc.) and

ranking them by a fitness function. For AFL, the fitness function is based on unique

code coverage, i.e., triggering an execution path that is different than the paths trig-

gered by other inputs.

• State transition tracking. AFL tracks the union of control flow transitions that it has

seen from its input, as tuples of the source and destination basic blocks. Inputs are

prioritized for “breeding” in the genetic algorithm based on their discovery of new

control flow transitions, meaning that inputs which cause the application to execute

in a different way get priority in the generation of future inputs.
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Figure 4.9: The workflow of AFL

• Input mutation. AFL supports a set of atomic mutations including bitwise flop,

random subtraction/addition, insert bytes, clone bytes, overwrite bytes with a ran-

domly selected chunk, etc. The feedback provided by the instrumentation makes it

easy to understand the value of each fuzzing strategy and optimize their parameters

to improve the efficiency.

However, AFL has certain limitations applying to the Apollo code base. First, AFL

is designed to test target program that takes parameterized input either from the command

line or from file, while on the AV platform, different modules work together in a distributed

fashion, and communicate through their own IPC standard, we need to interface the fuzzer

with the virtual CAN bus that connects these modules. Second, AFL can only target on

single binary, which limits it to test only one AV module in the distributed system at a time.

Systemic issues lying in the interactions between modules cannot be discovered, while false

positives may occur, since erroneous input that crashes the target module may be filtered

by previous modules. Third, differing from program that takes only parameterized input,

the reliability of the stateful self-driving logic are also prone to the timing and sequence of

messages arrivals. Simply fuzzing the target module by calling the message handler with

parameterized input lose the timing and sequence information, and may result in high false

negatives. At last, as mentioned before, the bytewise mutations is no longer effective in

exploring deeper self-driving logic, and we are motivated to build AutoFuzzer to enhance

the fuzzing practice of AFL.
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4.4.3 AutoFuzzer Overview

AutoFuzzer is designed to discover crashes and hangs in the entire set of self-driving

functionalities, including issues caused by the inter procedure communications among dif-

ferent processes. The bridge app connects AutoFuzzer to the virtual CAN bus, so that the

mutated message can be published onto the bus, and consumed by target modules. To target

critical AV functionalities as a whole instead of one at a time, AutoFuzzer mutate on the

sequence of messages, which can be used to replay the road side condition during a period

of time, and the the logic across all modules including planning, control will all be tested.

The mutation engine of AutoFuzzer integrates domain specific atomic operations such as

the insertion/removal/shift of obstacles. Compared with bytewise mutations, the domain

specific mutations detects unique crashes and hangs in the autonomous driving functional-

ities more efficiently. We detail the implementation of the key components of AutoFuzzer

in §4.4.4, and evaluate it effectiveness and efficiency in §4.5.

4.4.4 Design and Implementation

We prototype AutoFuzzer as a extensible fuzzing tool on the Apollo AV platform, which

builds its self-driving modules as individual node on top of the Robots Operating System

(ROS). ROS is not a Real Time Operating System (RTOS) by default since it uses Linux as

its kernel, and it is inherently best-efforts in many cases, thus does not provide guarantee

about the timing of operations. Apollo enables the real time support of the Linux kernel

and relies on ROS to provide the best-efforts real time guarantee for critical tasks. The

communication among Apollo modules goes through the ROS IPC , which uses socket I/O

and shared memory as its underlying data transportation mechanism.

Bridge app is developed as a ROS node that implements the replay functionality of a

sequence of messages. It publishs the mutated message sequence including a number of

perception, localization and chassis messages that represent the roadside conditions during

a period of time to the target Apollo modules. The replay mechanism also maintains the
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Figure 4.10: AutoFuzzer design

timing, sequence information, and inter-arrival delay of the message sequence to further

broaden the scope of the tested logic. In addition, the bridger app captures the feedback

from the instrumented target modules by monitoring their pids, and thus provides richer

information to the front-end mutation engine than from single binary.

Message syntax dictionary is used to improve the efficiency of mutation, so that the

generated test cases almost always make sense to the message handler, and thus explore

deeper logic. By default, The mutation engine of AFL is optimized for compact data

formats such as images, multimedia, compressed data. It is less suited for languages

with particularly verbose and redundant syntax or human-readable language (e.g., RTF,

HTML, JSON). For example, it’s never easy to get from trajectory point{x:586.1}

to header{module name:"planning"} by randomly flipping bits. AutoFuzzer provides

a message syntax dictionary to the mutation engine, which gives certain atomic mutations

such as inserting bytes, cloning bytes, and replacing bytes limited options, so that most

messages generated by the mutation engine will not be captured by the bad format excep-

tion handlers in target modules.

Trace-driven mutation enables AutoFuzzer to fuzz all safety critical modules together

rather than targets on one at a time. It performs mutations on a sequence of messages, which

are all in the Apollo message format. However due to the real-world constraints in the

self-driving scenario, such as the shape of the obstacles should be valid, the position of the

obstacle should be within the lane, randomly mutating on the messages text can barely pass
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even shallow input validation checks. To address this issue, we propose adding domain-

specific mutations to the fuzzing engine as shown in Figure 4.11. The basic idea is to

translate realistic events that can happen in self-driving scenarios into atomic mutations that

can be used by fuzzing. A unique transition stands for a unique tuple containing a source

basic block and a destination basic block. Based on this feedback from the instrumented

program, AFL chooses the most promising bytewise automic mutations to put in the action

queue based on a fitness function. AutoFuzzer introduces a domain-specific mutations

queue which uses the same value function to rank the mutations on obstacle level, so that

mutated input can be easily interpreted to realistic events, and are highly likely to bypass

shallow sanity checks. Meanwhile, the AutoFuzzer maintains a field-specific mutation

queue for each domain-specific mutations to mutate the detail of obstacles with per field

mutations under constraints.

Figure 4.12 shows how the targeted modules react to the obstacle inserted by the mu-

tations in the simulator. Since Apollo 2.0 currently only tackles scenarios in simple urban

road conditions [12], such as collision avoidance, we currently only implement three dif-

ferent types of domain-specific mutations – add, remove, and shift of obstacles. Our im-

plementation can be easily extended to include more user-defined atomic mutations such

as lane changes, traffic light changes, or even adversarial mutations in the future.
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Figure 4.12: Running the mutated trace with inserted obstacles in our simulation

4.5 Evaluation

We evaluate the efficiency of AutoFuzzer on a Ubuntu 16.04 server machine with 8-

core Intel Xeon 3.50GHz CPUs and 16 GB memory. Since the existing AFL cannot be

directly compared with AutoFuzzer due to the lack of communication interface with the

Apollo modules, and can only test one target binary at a time. To evaluate the improve-

ment on fuzzing efficiency brought by the mutation engine, we built a baseline version of

AFL that integrates the bridge app and the mutations on raw text of message sequences

for fair comparison. We use the unique hangs and crashes produced by different fuzzing

approaches over time as the performance metrics. The uniqueness are defined by AFL as

hangs and crashes whose associated execution paths involve any state transitions not seen

in previously-recorded faults. If a single bug can be reached in multiple ways, there will be

some count inflation early in the process.

Shown in Figure 4.13 and Figure 4.14, AutoFuzzer produces unique hangs and crashes

much more efficient than the baseline AFL approach given the same seeding test cases,

which is a tailored message sequence provided by Apollo for demo purpose. As shown in

the graph, when AFL fuzzes these the message handlers in targeted modules, the format

checks cause the fuzzer to get stuck at the beginning and it takes about 6 hours to pro-
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Figure 4.13: Produced unique crashes over time
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Figure 4.14: Produced unique hangs over time
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duce the first hang, while AutoFuzzer almost immediately produces the hang after starting

fuzzing leveraging the domain-specific atomic mutations.

4.6 Discussion and Future Work

In this section, we discuss the current limitation with our approach, and propose imme-

diate and potential future work following this research direction.

4.6.1 Providing Root Cause Analysis Support

The major limitation of AutoFuzzer approach is the lack of support to efficiently per-

form root cause analysis on the unique crashes and hangs produced, due to the very limited

information provided by the instrumentation. The common practice for the diagnosis is to

start with the input that causes failures and use debugging tools such as gdb to attach to

the targets and proceed step by step while monitoring the runtime behaviors. However, the

diagnosis of some issues may require domain knowledge deep into the control algorithms

being used, and we leave it as future work about how to integrates more domain knowledge

and external exploitable verification techniques [22] into the diagnosis process.

4.6.2 Extending domain-specific mutations

Another direction of further improving the AutoFuzzer approach is to add more

domain-specific atomic operations into the mutation engine, thus producing more events

in realistic driving scenarios. Recent work [138, 149] on the testing of the robustness of

deep neural network has proposed the self-driving as one scenario that their neuron cover-

age aware fuzzing could apply. Although they have provided different mutation approaches

such as blurring the camera image, flipping pixels of the image, their approach only works

on testing certain self-driving tasks, such as the lane detection. We can explore the space

of domain-specific constraints in the other sensors such as lidar and radar, and extend our

atomic mutation set.
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4.6.3 Naturalistic trace driven testing

In our domain-specific mutations, we assume the adversary has arbitrary control over

the road side conditions, such as position and shape of obstacles, while another interesting

problem is to evaluate how well the self-driving functionalities perform under normal natu-

ralistic driving scenarios. A Naturalistic-Field Operational Test (N-FOT), data is collected

from a number of on-board vehicles driven in naturalistic conditions over an extended pe-

riod of time [62]. Many large-scale N-FOT projects have been conducted across U.S. For

example the 100-Car Naturalistic Driving study [130] conducted by the Virginia Polytech-

nic Institute and State University studies the main factors causing vehicle crashes. While

more recently, the Safety Pilot Model Deployment (SPMD) [134] launched by the Uni-

versity of Michigan Transportation Research Institute (UMTRI) was a comprehensive data

collection effort under real-world conditions, with multimodal traffic and vehicles equipped

with vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2I) communication devices.

The deployment included approximately 2,800 equipped vehicles and 30 roadside equip-

ment. The data was logged and available in text format. These data will greatly help the

fuzzing and other dynamic analysis approaches to test AV under naturalistic scenarios.

However, all the traffic data are logged and organized in the chronological order, and

requires extensive post-processing to extract useful information such as the different sce-

narios where certain self-driving functionality would take control. Moreover, these datasets

contain the raw sensor data, collected from on-board equipment such as radar, Mobileye,

which usually results in extremely large file size, and thus raises the bar for vehicle en-

gineer and researchers without the big data analytics background, or sufficient computing

resources to utilize them.We believe that a well-organized and maintained scenarios library

will address the usability issue, and significantly increase the AV development efficiency.

We have taken some initial efforts towards this goal by building a library for self-driving

scenarios, called TrafficNet[48] to reduce efforts for to use the open datasets, and thus

bridge the gap between research datasets and practically usable information for vehicle en-
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Figure 4.15: Scenarios in TrafficNet

gineers and researchers. It labels the data collected from many open dataset and categorize

and label the data with statistical analysis into six key driving scenarios shown in Fig-

ure 4.15. Both the extracted events, raw data, and source code are provided online for free

access. TrafficNet provides scenario-based structure rather than chronological raw data,

which helps the researchers to test AV functionalities more efficiently. We also supports

the crowdsourcing development of the algorithms to label more critical driving scenarios

for finer-grained testing.

4.7 Conclusion

We design AutoFuzzer as a specialized fuzzing solution for the emerging AV platform,

and prototype it on the Baidu Apollo [12], which is yet the most mature AV platform that

is publicly available. Specifically AutoFuzzer introduces an enhanced mutation engine

that includes realistic atomic perturbations to improve the efficiency of fuzzing, and ad-

dresses the challenge of testing the distributed in-vehicle system by interfacing the fuzzer

with the internal Inter Procedure Communication (IPC) mechanism. AutoFuzzer provides

a portable solution without requiring any change to the target code bases, and is gener-
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ally applicable to AV platforms with the similar ROS based architecture. The evaluation

shows that it detects unique crashes and hangs much more efficient than the state-of-the-art

fuzzing tool in the self-driving scenarios.
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CHAPTER V

Future Work & Conclusion

In this chapter, we look at future research directions based on this research and conclude

by highlighting the contributions presented in this dissertation.

5.1 Future Work

5.1.1 Usability Research on Context-based Access Control

In our ContexIoT work, we prototyped a novel context-based access control system for

appified IoT platform, while our focus is mainly on the completeness and soundness of

context collection when sensitive actions are triggered, the usability evaluation, regarding

how well user can make the permission granting decision based on the presented context

description. We think it’s equally important to ensure that the rich context collected by

ContexIoT is presented in a way that can be well perceived by the IoT users. The current

text based presentation of context can be improved in many ways. For example, leveraging

the trigger-action based programming model of IoT apps, the context can be presented in

a graphic event chain to make it clear how the sensitive actions is triggered by a series of

events, or under a set of conditions.

Another direction for improving usability is to take human out of the loop through au-

tomatic generation of policy based on the app logic and its interactions with user. For

example, the SmartApp has a setup procedure during the app installation, which requires
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user to set some parameters that will guide the automation of the SmartApp (e.g., automat-

ically locks the door when it has been opened for 2 minutes). Using the data-dependency

tracking support of ContexIoT, the security logic can monitor how the app uses the user

input. If it detects that the events corresponding to the unmodified user input triggers the

user’s desired action at the runtime, the execution can be automatically allowed since it

conforms with the user specified routine. Natural Language Processing (NLP) technique

may be required to infer the user desired action. We leave it as future work to explore these

extended usages of the ContexIoT.

5.1.2 Fuzz Testing for Self-driving Functionality with Deep Learning Components

The self-driving functionalities targeted by AutoFuzzer don’t have the deep learning

based components yet. Since recent advances in Deep Neural Network (DNN) have led to

the development of DNN-driven autonomous cars that combines classic perception, plan-

ning, and control algorithms with DNN based obstacle detection and classification, it’s also

critical to adapt the fuzz testing approach to these modules. Although the approaches for

testing the reliability of DNN have been propose [138, 149], their targeted use cases are

pretty simple, and is more like a toy application compared with the AV platform such as

Apollo. Moreover, it’s still a open question how to test a compound program that com-

bines DNN and traditional algorithms with guided fuzzing. The fuzzing of traditional soft-

ware can be guided with code coverage, while the testing of DNN models can be guided

with neuron coverage, and we propose a uniformed approach as future work, which uses a

global fitness function to find the most valuable mutation. To find the optimal solution for

the fitness function, we will use the gradient descent on both DNN modules and traditional

algorithms, which requires the regression for these algorithms, and we leave it as the future

work.
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5.1.3 Verification Support for Self-driving Functionality

Formal verification can be helpful in proving the correctness of system such as crypto-

graphic protocols, combinational circuits, etc. The verification is down by providing a for-

mal proof on an abstract mathematical model of the system, and previous work [116, 135],

has shown that it is feasible to check that whether certain property can be satisfied through-

out the lifecycle of a program. However, as DNN is now being deployed as controllers for

safety-critical system such as the autonomous vehicles, it’s a promising direction to also

provide formal guarantees about the behavior of DNN-involved self-driving functionalities.

Verifying DNNs is a difficult problem, since they are large, non-linear, and non-convex, and

verifying even simple properties about them is an NP-complete problem. Fortunately, re-

cent efforts has demonstrated that it is feasible to verify certain properties of specific types

of DNNs using specialized SMT solvers [113], such as that small perturbations do not

change the advisories produced for certain inputs. However, these approaches only work

with DNNs with ReLU activation functions, and a promising direction for future work

would be to further extend the simplex algorithm to support other non-linear non-convex

activation functions to better support the verification of self-driving functionalities.

5.2 Concluding Remarks

Despite the benefit of providing an enriched set of functionalities, the appification of

platforms also comes with security and safety risks by allowing untrusted third party code

to control user’s device. However,in reality, the threats from the vulnerable and malicious

apps have never been thoroughly mitigated even on the most mature personal computing

device – the smartphone, not to mention the emerging smart home and autonomous vehicle

platforms.

The dissertation proposes practical solutions towards addressing the aforementioned

problems. More specifically, my research try to advance the security of the platforms in
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three emerging domains by identifying design and implementation flaws in programs that

lead to attacks and safety threats, and build platform-level defense to mitigate the threats.

Utilizing static and dynamic program analysis, I 1) systematically examined the vulner-

abilities exposed by open port usage on mobile devices which lead to remote large-scale

attacks; 2) designed and implemented a new access control model for appified IoT platform

that enforces contextual integrity; 3) proposed a holistic approach to enhance the security

and safety open autonomous vehicle platform. In summary, my dissertation demonstrates

that: Systematic program analyses of software (1) Lead to an understanding of design and

implementation flaws across different platforms that can be leveraged in miscellaneous at-

tacks or causing safety problems; (2) Lead to the development of security mechanisms that

limit the potential for these attacks.
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