
Variational Multiscale Modeling and Memory

Effects in Turbulent Flow Simulations

by

Eric J. Parish

A dissertation submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy
(Aerospace Engineering)

in The University of Michigan
2018

Doctoral Committee:

Associate Professor Karthik Duraisamy, Chair
Associate Professor Krzysztof Fidkowski
Associate Professor Eric Johnsen
Professor Venkat Raman
Professor Philip Roe



Eric J. Parish
parish@umich.edu

ORCID iD: 0000-0002-5478-2998

c© Eric J. Parish 2018



For my Grandma. She would not understand any of this, but would love it anyway.

ii



ACKNOWLEDGEMENTS

First and foremost, I wish to thank my advisor, Professor Karthik Duraisamy.

I have learned so much throughout my Ph.D. and you have been an integral part

of that. I am grateful to you for giving me the flexibility to pursue research that

interests me as well as for providing intellectual support and insight along the way.

This dissertation would not have been possible without you. I also wish to thank

you for your guidance outside of research. You have been incredibly supportive and

helpful over this past year as I have started to make the transition to life after

graduate school.

In addition, I wish to thank the many other people who have helped me along the

way:

• To my friends at Michigan. You have helped me to reach this point in many

ways. From you I have not only learned what it means to be a good researcher,

but also what it means to be a good friend.

• To my lab mates at Michigan for many insightful discussions as well as for all

the fun times we have had outside of the lab.

• To my undergraduate advisor, Professor Dellenback. Your dedication to teach-

ing and interest in your students changed my career path. Taking your Ther-

modynamics course led to me changing majors, helped me find my research

interests, and was one of the paradigm shifts in my life that led me to this

iii



point.

• To another mentor in my undergraduate degree, Professor Michael Stoellinger.

You introduced me to research and were a major reason I became interested in

CFD. I thank you for taking the time to teach me and for helping me to find

my path.

• To the members of my dissertation committee: Professor’s Krzysztof Fidkowski,

Eric Johnsen, Venkat Raman, and Phil Roe. Thank you for your time, advice,

and guidance along the way.

• To Panos Stinis for his work on Mori-Zwanzig. Without this foundation, this

dissertation would not be possible.

• To Rachel. You have given me the support to make it through this final stretch

of the Ph.D. I could write so many things about you here, but more than

anything I want to thank you for making me smile every day.

• To the many, many other friends, family, and mentors who have helped me

along the way.

Lastly I want to thank my family. You have been there for me along every step of

the way. From watching me play golf in my undergraduate degree to proofreading my

journal papers, your support has been unwavering. Matt - you give me perspective

everyday about what it means to be a good brother and person. Mom and Dad -

you are always there for me when I need someone to talk to. Our conversations on

Sunday mornings were one of the highlights of every week at Michigan. I love you

all and am blessed to have you.

iv



TABLE OF CONTENTS

DEDICATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii

ACKNOWLEDGEMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

LIST OF APPENDICES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xii

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii

CHAPTER

I. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Computational Physics for Multiscale Problems . . . . . . . . . . . . . . . . 1
1.2 Turbulence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Governing Equations of Motion and Closure . . . . . . . . . . . . . . . . . . 3
1.4 Reynolds-Averaged Navier-Stokes . . . . . . . . . . . . . . . . . . . . . . . . 4
1.5 Large Eddy Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.6 The Variational Multiscale Method . . . . . . . . . . . . . . . . . . . . . . . 6
1.7 The Mori-Zwanzig Formalism . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.8 Dissertation Setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.9 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.10 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

II. Galerkin Methods and Multiscale Formulations . . . . . . . . . . . . . . . . . 13

2.1 Multiscale Partial Differential Equations . . . . . . . . . . . . . . . . . . . . 13
2.2 Large Eddy Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2.1 Filtered Equations of Motion . . . . . . . . . . . . . . . . . . . . . 14
2.3 Implicit and Explicit LES Methodologies . . . . . . . . . . . . . . . . . . . . 16

2.3.1 Implicitly Filtered Explicitly Modeled Large Eddy Simulation . . . 17
2.3.2 Explicitly Filtered Explicitly Modeled Large Eddy Simulation . . . 19
2.3.3 Explicitly Filtered Implicitly Modeled Large Eddy Simulation . . . 19
2.3.4 Implicitly Filtered Implicitly Modeled Large Eddy Simulation . . . 21
2.3.5 Temporal Filtering . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.3.6 Community Consensus . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.4 Numerical Methods in LES . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.5 The Weighted Residual and Galerkin Method . . . . . . . . . . . . . . . . . 23

2.5.1 Smooth Case (Spectral Methods) . . . . . . . . . . . . . . . . . . . 23
2.5.2 Rough Case (Finite Element Methods) . . . . . . . . . . . . . . . . 26

2.6 The Variational Multiscale Method . . . . . . . . . . . . . . . . . . . . . . . 27

v



2.6.1 Globally Smooth Case (Spectral Methods) . . . . . . . . . . . . . . 28
2.6.2 Rough Case (Finite Element Methods) . . . . . . . . . . . . . . . . 30

2.7 Subgrid-Scale Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.7.1 Classic Subgrid-Scale Models . . . . . . . . . . . . . . . . . . . . . 31
2.7.2 VMS-Based Subgrid-Scale Models . . . . . . . . . . . . . . . . . . . 36

2.8 Outstanding Issues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
2.9 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

III. Development of the MZ-VMS Framework . . . . . . . . . . . . . . . . . . . . 42

3.1 Linear Initial Value Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.2 Nonlinear Problems: The MZ-VMS Framework . . . . . . . . . . . . . . . . 46

3.2.1 Transformation to Phase Space and the Liouville Equation . . . . . 47
3.2.2 Projection Operators and the Generalized Langevin Equation . . . 49

3.3 The Memory Term . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
3.3.1 The Kernel Surface . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
3.3.2 The Orthogonal Dynamics . . . . . . . . . . . . . . . . . . . . . . . 57
3.3.3 The Orthogonal ODE . . . . . . . . . . . . . . . . . . . . . . . . . 58
3.3.4 The Orthogonal ODE and its Procedure . . . . . . . . . . . . . . . 59

3.4 Finite Memory of the Kernel . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
3.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

IV. Modeling the Memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.1 The t-model and renormalized variants . . . . . . . . . . . . . . . . . . . . . 65
4.1.1 Energy Stability for Conservative Systems . . . . . . . . . . . . . . 65
4.1.2 Energy Stability for Dissipative Systems . . . . . . . . . . . . . . . 67

4.2 The τ -model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
4.2.1 Relationship to Adjoint-Stabilization and the VMS(ε) Model . . . 69

4.3 The Dynamic-τ model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
4.3.1 Scaling Laws for the Memory Length . . . . . . . . . . . . . . . . . 73
4.3.2 Energy Transfer Constraint . . . . . . . . . . . . . . . . . . . . . . 74

4.4 Finite Memory Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
4.4.1 Alternative Setting for the Finite Memory Models . . . . . . . . . 78

4.5 Additional Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
4.6 Numerical Evaluation of etLPLQLa0j . . . . . . . . . . . . . . . . . . . . . . 80
4.7 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

V. MZ-VMS for Spectral Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

5.1 The Viscous Burgers’ Equation . . . . . . . . . . . . . . . . . . . . . . . . . . 84
5.1.1 Kinetic Energy Properties of the Fourier-Galerkin Spectral Method 85
5.1.2 Analytic evaluation of PLQLa0j for Burgers’ Equation . . . . . . . 87
5.1.3 Case 1: Standing Shockwave . . . . . . . . . . . . . . . . . . . . . . 89
5.1.4 Case 2: Burgers’ Turbulence . . . . . . . . . . . . . . . . . . . . . . 94

5.2 Navier-Stokes Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
5.2.1 Kinetic Energy Properties of the Fourier-Galerkin Spectral Method

for the Incompressible Navier-Stokes Equations . . . . . . . . . . . 107
5.2.2 MZ-VMS Model Forms . . . . . . . . . . . . . . . . . . . . . . . . . 107
5.2.3 VMS(ε) model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
5.2.4 Numerical Implementation . . . . . . . . . . . . . . . . . . . . . . . 108
5.2.5 Taylor Green Vortex . . . . . . . . . . . . . . . . . . . . . . . . . . 109
5.2.6 Analysis of MZ-VMS Models for the Taylor Green Vortex . . . . . 115
5.2.7 Decaying Homogeneous Isotropic Turbulence . . . . . . . . . . . . 116

vi



5.2.8 Two-Dimensional Homogeneous Turbulence . . . . . . . . . . . . . 129
5.2.9 Turbulent Channel flow . . . . . . . . . . . . . . . . . . . . . . . . 132

5.3 Application to Magnetohydrodynamics . . . . . . . . . . . . . . . . . . . . . 135
5.3.1 Numerical Method . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
5.3.2 MZ-VMS Dynamic-τ Model . . . . . . . . . . . . . . . . . . . . . . 137
5.3.3 Taylor Green Vortex . . . . . . . . . . . . . . . . . . . . . . . . . . 137
5.3.4 Forced Homogeneous Turbulence . . . . . . . . . . . . . . . . . . . 139

5.4 Spectral Method Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

VI. MZ-VMS for Finite Elements . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

6.1 MZ-VMS Formulation for the Finite Element Method . . . . . . . . . . . . . 144
6.2 The Discontinuous Galerkin Approach . . . . . . . . . . . . . . . . . . . . . 147

6.2.1 Legendre Basis Functions . . . . . . . . . . . . . . . . . . . . . . . 148
6.3 Numerical Properties of MZ-VMS models for DG . . . . . . . . . . . . . . . 150

6.3.1 Residual-Based Artificial Viscosity . . . . . . . . . . . . . . . . . . 151
6.3.2 Conservation Properties . . . . . . . . . . . . . . . . . . . . . . . . 152
6.3.3 Energy Dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

6.4 The MZ-VMS DG Flux Function . . . . . . . . . . . . . . . . . . . . . . . . 157
6.4.1 One Dimensional Case . . . . . . . . . . . . . . . . . . . . . . . . . 157

6.5 Application to Linear Hyperbolic Systems . . . . . . . . . . . . . . . . . . . 161
6.5.1 Fine-scale Eigenvalues and Finite Memory . . . . . . . . . . . . . . 162

6.6 Application to Burgers’ Equation . . . . . . . . . . . . . . . . . . . . . . . . 164
6.6.1 Kinetic Energy and Entropy . . . . . . . . . . . . . . . . . . . . . . 164
6.6.2 Flux Functions for Burgers’ Equation . . . . . . . . . . . . . . . . . 166
6.6.3 MZ-VMS Flux Functions for the Burgers’ Equation . . . . . . . . . 167
6.6.4 Numerical Applications . . . . . . . . . . . . . . . . . . . . . . . . 168
6.6.5 Burgers’ Equation Summary . . . . . . . . . . . . . . . . . . . . . . 171

6.7 The Compressible Navier-Stokes Equations . . . . . . . . . . . . . . . . . . . 174
6.7.1 Numerical Discretization Strategies . . . . . . . . . . . . . . . . . . 175
6.7.2 Numerical Fluxes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176
6.7.3 MZ-VMS Flux Functions . . . . . . . . . . . . . . . . . . . . . . . . 178
6.7.4 Entropy Stability . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179
6.7.5 Numerical Applications . . . . . . . . . . . . . . . . . . . . . . . . 181
6.7.6 Conservative Formulation . . . . . . . . . . . . . . . . . . . . . . . 182
6.7.7 Entropy Conservative Formulation . . . . . . . . . . . . . . . . . . 191

6.8 MZ-VMS Inspired Filtering . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195
6.8.1 Hierarchical Filtering . . . . . . . . . . . . . . . . . . . . . . . . . . 198
6.8.2 Application to the Isentropic Vortex . . . . . . . . . . . . . . . . . 199
6.8.3 Application to the Sod Shocktube . . . . . . . . . . . . . . . . . . . 201
6.8.4 Shu-Osher Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . 202
6.8.5 Viscous Sod shocktube in two dimensions . . . . . . . . . . . . . . 203

6.9 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205

VII. Perspectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207

7.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207
7.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208
7.3 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211

APPENDICES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213

BIBLIOGRAPHY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224

vii



LIST OF FIGURES

Figure

1.1 Turbulent flows, which display a wide range of length and time scales, are prominent
examples of multiscale systems. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Graphical illustration of the energy spectrum in a turbulent flow. The wavenumber
is given by k, while E(k) denotes the energy. RANS methods model all turbulence
and only resolve the large-scale mean flow structures. LES methods resolve into
the inertial subrange of the turbulence spectrum and model only the fine-scales.
DNS methods resolve all scales. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1 Decomposition of a velocity signal into the low-frequency resolved coarse scales and
high-frequency unresolved fine scales. Figure concept adapted from [48]. . . . . . . 15

2.2 Graphical illustration of the decomposition of the test/trial space V into subspaces
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consider a decomposition that obeys V = Ṽ ⊕ V ′, with V ′ being L2 orthogonal to Ṽ. 29

2.3 Contours of q-criterion colored by the velocity magnitude for the Taylor Green
vortex problem. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.4 Temporal evolution of total kinetic energy and dissipation of kinetic energy for the
Taylor Green vortex problem. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.1 Graphical depiction of various projection operators acting on a function f(u). Π̃
projects (in an L2 sense) the signal onto the subspace Ṽ, which in this case is
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ABSTRACT

Effective computational models of multiscale problems have to account for the im-

pact of unresolved physics on the resolved scales. This dissertation advances our

fundamental understanding of multiscale models and develops a mathematically rig-

orous closure modeling framework by combining the Mori-Zwanzig (MZ) formalism of

statistical mechanics with the variational multiscale (VMS) method. This approach

leverages scale-separation projectors as well as phase-space projectors to provide a

systematic modeling approach that is applicable to complex non-linear partial dif-

ferential equations.

The MZ-VMS framework leads to a closure term that is non-local in time and

appears as a convolution or memory integral. The resulting non-Markovian system is

used as a starting point for model development. Several new insights are uncovered:

It is shown that unresolved scales lead to memory effects that are driven by an

orthogonal projection of the coarse-scale residual and, in the case of finite elements,

inter-element jumps. Connections between MZ-based methods, artificial viscosity,

and VMS models are explored.

The MZ-VMS framework is investigated in the context of turbulent flows. Large

eddy simulations of Burgers’ equation, turbulent flows, and magnetohydrodynamic

turbulence using spectral and discontinuous Galerkin methods are explored. In the

spectral method case, we show that MZ-VMS models lead to substantial improve-

ments in the prediction of coarse-grained quantities of interest. Applications to

xiii



discontinuous Galerkin methods show that modern flux schemes can inherently cap-

ture memory effects, and that it is possible to guarantee non-linear stability and

conservation via the MZ-VMS approach. We conclude by demonstrating how ideas

from MZ-VMS can be adapted for shock-capturing and filtering methods.
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CHAPTER I

Introduction

1.1 Computational Physics for Multiscale Problems

Computational physics refers to the field of study where one uses numerical meth-

ods and algorithms to solve physical problems. The emergence of computational

physics over the past half century has led to significant advancements in technology,

engineering products, and our fundamental understanding of physical processes. The

field has provided scientists with the tools to predict and analyze complex systems

via numerical approximations.

The simulation of multiscale problems remains a challenging topic in the compu-

tational physics community. Multiscale systems, which are characterized by a wide

range of length and time scales, are omnipresent in science and engineering. Mul-

tiscale problems are prevalent in turbulent flows, magnetohydrodynamics, quantum

mechanics, fracture dynamics, and many other fields. Though the governing equa-

tions of multiscale systems are often known, pursuing numerical solutions is made

challenging by the large number of degrees of freedom (often on the order of billions)

which are required to accurately characterize the system. A large number of degrees

of freedom directly translates to a large computational and financial cost. For many

multiscale problems of interest, this cost is so high that numerical solutions are in-

1
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Figure 1.1: Turbulent flows, which display a wide range of length and time scales, are prominent
examples of multiscale systems.

feasible; even on the most powerful supercomputers in the world. This issue has

led to the development of multiscale modeling techniques. These techniques seek to

approximately solve multiscale systems to a desired level of accuracy at a much lower

computational cost.

1.2 Turbulence

This dissertation presents a general multiscale modeling strategy and evaluates

it in the context of high Reynolds number turbulent flows. Turbulence refers to the

state of a fluid (i.e. a gas or liquid) in a regime that is characterized by highly non-

linear and chaotic behavior. Turbulence is present in many practical applications,

such as flight aerodynamics and weather forecasting, and is a pacing research area in

fluid mechanics. While turbulence is governed by a set of partial differential equations

that have been known for centuries (the Navier-Stokes equations), to this date no

theory exists which allows for a compact parameterization of turbulence. Richard

Feynman has referred to turbulence as “the most important unsolved problem of

classical physics” [37].
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The simulation of turbulent flows is a prototypical multiscale problem. Turbulence

is understood to have a continuous cascade of scales and energy [55]. This cascade

begins with the large energetic flow structures and continues until the turbulent fluc-

tuations are dissipated into heat at the finest scales. The range of scales present

in this cascade is driven by the balance of inertial and viscous forces, the ratio of

which is referred to as the Reynolds number. As the Reynolds number increases (i.e.

inertial forces dominate), so does the range of scales. Most problems of engineering

and scientific interest exist in high Reynolds number regimes. Due to this disparity

in scales at high Reynolds numbers, numerical simulations that resolve all relevant

scales are prohibitively expensive. This fact and other challenges in computational

physics have spurred successful research efforts in areas such as computational hard-

ware, distributed memory computing, linear and non-linear solver technologies, and

algorithmic development. Despite these algorithmic and technological advances, di-

rect numerical simulation (DNS) methodologies remain computationally infeasible

for the high Reynolds number turbulent flows commonly encountered in real world

applications [65].

1.3 Governing Equations of Motion and Closure

The aforementioned challenges associated with the solution of high Reynolds num-

ber turbulent flows has not prohibited scientists and engineers from using numerical

tools to tackle real world problems. Generally, the solution of high Reynolds number

turbulent flows is made tractable by developing a set of surrogate equations which

contain a reduced range of scales. This reduction in scales is typically obtained by

applying a filtering operation to the equations of motion. To describe this, consider
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the set of partial differential equations,

(1.1)
∂u

∂t
+R(u) = 0 x ∈ Ω, t ∈ (0, t),

subject to appropriate boundary and initial conditions and where R is a potentially

non-linear differential operator. Typically, Eq. 1.1 contains a wide range of scales.

This range of scales can be reduced by applying a filter to Eq. 1.1,

(1.2) G ∂u
∂t

+ GR(u) = 0.

Defining the filtered variable as Gu = ũ, adding and subtracting R(ũ), and assuming

time-invariance of the filter leads to the filtered equations of motion,

(1.3)
∂ũ

∂t
+R(ũ) +

[
GR(u)−R(ũ)

]
= 0.

Equation 1.3 describes the evolution of the filtered variable. The idea is that the

range of scales present in Eq. 1.3 is significantly less than what is present in Eq. 1.1.

The reader will note, however, that the bracketed term in Eq. 1.3 contains the full

state, u. This is an unknown variable in the filtered problem and results in the so-

called closure problem. This unclosed term is typically replaced by a subgrid-scale

model that only depends on the filtered state,

(1.4)
∂ũ

∂t
+R(ũ) +M(ũ) = 0.

The type of filtering operation applied to the equations of motion and type of subgrid-

scale model defines the modeled approach. The Reynolds-averaged Navier-Stokes

(RANS) approach, large eddy simulation (LES) approach, and variational multiscale

method constitute the most common modeling strategies in fluid mechanics.

1.4 Reynolds-Averaged Navier-Stokes

The RANS approach is the most widely used method for the practical simulation

of turbulent flows. RANS methods, which are derived from applying an averaging op-
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E(k)

RANS

k

LES DNS

Figure 1.2: Graphical illustration of the energy spectrum in a turbulent flow. The wavenumber is
given by k, while E(k) denotes the energy. RANS methods model all turbulence and only resolve the
large-scale mean flow structures. LES methods resolve into the inertial subrange of the turbulence
spectrum and model only the fine-scales. DNS methods resolve all scales.

erator (such as ensemble or temporal averaging) to the equations of motion, model

all scales of turbulence (see Figure 1.2). RANS methods require what is referred

to as a turbulence/subgrid/closure model. These models augment the equations of

motion with additional algebraic relations and/or transport equations and attempt

to model the impact of the turbulent fluctuations on the mean flow. RANS mod-

els, which are typically developed from theory and experimental data, are generally

“tuned” such that they accurately reproduce mean statistics of canonical turbulent

flows. RANS-based methods have been shown to be successful for computing first

order statistics for a variety of problems, including external aerodynamics [13, 65],

internal flows [101], and reacting flows [35]. These methods, however, are known

to be inaccurate for flows that deviate from conditions for which the models were

developed and tuned [65, 33]. The limitations of RANS methods are a current topic

of debate in the community [34]. RANS methods will not be considered in this

dissertation.
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1.5 Large Eddy Simulation

Advances in computational hardware and the lack of accuracy of RANS methods

has led to great interest in large eddy simulation. Large eddy simulation approaches

provide an intermediary level of accuracy between RANS-based methods and direct

numerical simulation. Large eddy simulation approaches, which are derived by apply-

ing a low-pass filter to the equations of motion [88], attempt to resolve the coherent,

energetic scales of a turbulent flow while modeling the unresolved, “subgrid” turbu-

lent structures (see again Figure 1.2). In contrast, RANS-based approaches directly

model all scales of turbulence. This dissertation will focus on the LES approach.

A variety of LES methodologies exist in the literature [66]. These methods are

typically devised through the use of both filtering operations and subgrid-scale mod-

els. They can be broadly classified as either explicit methods or implicit methods.

Explicit methods rely on the inclusion of additional subgrid-scale models and/or fil-

tering operations to control numerical error and accuracy. Implicit methods do not

include additional subgrid-scale models. Instead they rely on the inherent properties

of a numerical scheme to control error and maintain stability.

1.6 The Variational Multiscale Method

In the late 1990’s, Tom Hughes established a modeling paradigm known as the

variational multiscale method. The variational multiscale method (VMS) [48, 49] is

analogous to large eddy simulation and provides a general starting point to derive

closure/subgrid/stabilization models. The VMS procedure, which starts from the

weighted residual form of the governing equations, is centered around a sum decom-

position of the solution u in terms of the resolved coarse scales ũ and unresolved

or fine scales u′. The key challenge in VMS is to obtain a representation for u′ in
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terms of ũ. This is typically done by virtue of approximated Green’s functions [24] or

physics-based subgrid-scale models [50]. Given the approximation to the fine scales,

the impact of the fine scales on the coarse scales can then be numerically computed.

In Hughes’ pioneering work, it was demonstrated that classic stabilization techniques,

such as adjoint stabilization and streamline upwind Petrov-Galerkin, can be derived

via specific approximations to the Green’s function and manipulations of the mul-

tiscale equations. The variational multiscale method has since gained significant

attention, and reviews may be found in Refs [48, 49, 51, 24].

The VMS procedure - by itself - does not eliminate the closure problem. Rep-

resentation of the fine-scale state in terms of the coarse-scale state, by virtue of a

Green’s function or otherwise, is required. For the non-linear unsteady problems

commonly encountered in science and engineering, the development of such relations

has proved challenging. The vast majority of methods used today are still based

on Hughes’ pioneering work where the VMS procedure was presented for a linear

Dirichlet problem. There is a significant need to further investigate the development

of VMS models.

1.7 The Mori-Zwanzig Formalism

A less publicized, but conceptually similar approach to VMS is the optimal pre-

diction framework developed by Chorin and co-workers [20, 22, 42, 21]. Chorin’s

optimal prediction framework, which is a reformulation of the Mori-Zwanzig (MZ)

formalism of statistical mechanics [69, 106], can be viewed as a model order reduc-

tion strategy for ordinary differential equations. The framework centers around the

use of projection operators that separate the phase space of an ordinary differential

equation into resolved and unresolved subspaces. Using this decomposition, a high-
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dimensional non-linear Markovian dynamical system can be recast into an equivalent,

lower-dimensional non-Markovian system. This formulation is mathematically exact.

In the lower-dimensional system, which is commonly referred to as the generalized

Langevin equation (GLE), the effect of the fine scales on the coarse scales is non-

local in time and appears as a convolution integral. This term is typically referred

to as memory. The memory term emerging from the MZ formalism is analogous to

the Green’s function emerging from the VMS procedure. While the memory integral

is intractable in general non-linear problems, it serves as a mathematically rigorous

starting point for the construction of closure models. The MZ formalism is an ap-

pealing approach for LES as – in theory – it allows for the construction of exact

closure models. In a more practical sense, it provides a systematic framework for

developing models.

In addition to the pioneering work of Chorin and collaborators, a significant body

of research on Mori-Zwanzig approaches exists in the literature. The MZ formal-

ism has been examined extensively in fields such as molecular dynamics [58] and

uncertainty quantification [61]. In the context of the solution of partial differential

equations, the main body of work has examined approximations to the memory term

and their application to the semi-discrete systems emerging from Fourier-Galerkin

spatial discretizations. Stinis and coworkers [46, 92, 94, 93, 82] have developed sev-

eral models for approximating the memory and have examined their performance

on Burgers’ equation and the Euler equations. In the same spirit, the work of Zhu,

Dominy, and Venturi [105, 104] examines additional approximations to the memory

as well as error estimates for various MZ models.

The Mori-Zwanzig procedure, however, has received minimal attention as a prac-

tical tool for closure modeling in the context of the numerical solution of partial
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differential equations. The vast majority of the work has been undertaken on either

idealized systems or problems that pertain to the statistical mechanics community.

Prior to this dissertation work, only one paper in the literature has examined the

application of an MZ-based model to the Navier-Stokes equations [15]. This work

was performed in the context of spectral methods and its extension to any practical

technique was unclear. In fluid dynamics, MZ-related modeling has been pursued

exclusively on the semi-discrete systems emerging from Fourier-Galerkin spectral

methods. In addition to the aforementioned work on the Navier-Stokes equations,

MZ-based models have been investigated in the context of Fourier-Galerkin simula-

tions of Burgers’ equation [7, 95] and the Euler equations [92, 46]. This body of work

has demonstrated the potential of using the MZ procedure for model development.

The Fourier-Galerkin spectral method, however, is limited to canonical problems and

periodic domains.

The extension of the Mori-Zwanzig procedure to more general numerical methods

has remained unclear. This is largely due to the challenges in formulating the MZ

framework in a systematic manner for the ordinary differential equations that emerge

from the numerical discretization of partial differential equations. These challenges

stem from the fact that the key concept in MZ is a tractable decomposition of

the discrete unknowns into a coarse-scale resolved set and a fine-scale unresolved

set. While this separation is clear in the context of Fourier-Galerkin methods, it is

less straightforward for more general numerical schemes. Another road-block to the

further development of MZ methods is a lack of robust models to the memory and

insight into such models.
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1.8 Dissertation Setting

This dissertation work seeks to advance the state of the art in our understand-

ing and modeling of under-resolved simulations of turbulent flow. This is achieved

through addressing the following questions:

1. How can ideas from Mori-Zwanzig be used to develop a formal modeling ap-

proach?

2. Can commonalities be drawn between MZ-based models and more established

methods (such as residual-based methods)?

3. How do MZ-based methods compare to more established subgrid-scale models?

4. What are the shortcomings in existing MZ-methods and how can they be im-

proved?

This work presents a unique and unifying perspective on under-resolution in numer-

ical methods, closure, and memory effects.

1.9 Contributions

They key contributions and publications stemming from this dissertation are:

1. A formulation of of Chorin’s optimal prediction framework for variational multiscale-

type discretizations of partial differential equations [76].

2. A rigorous investigation of the performance of existing MZ models for Fourier-

Galerkin simulations of turbulent flows [75, 73].

3. An establishment of connections between MZ-based methods and residual-based

closures [76].

4. Application of MZ-based methods to the discontinuous Galerkin method and

an establishment of connections between MZ-based methods, upwinding, and
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artificial viscosity. This work marks the first time that MZ-based approaches

have been applied to finite element methods [76].

5. A demonstration that, in discontinuous Galerkin simulations, unclosed effects

lead to a memory term that is driven by the coarse-scale residual and inter-

element jumps [76].

6. The development of an autonomous dynamic MZ-VMS model that combines

ideas from the MZ and fluid mechanics communities [74, 72].

7. A formulation of an auxiliary ODE system that can be used to approximate the

orthogonal dynamics [43].

8. An investigation of MZ-VMS methods as resolution indicators and limiters.

The MZ-VMS memory term is used as an indicator to determine if a solution

is under-resolved and if limiting is needed.

9. The development of an open-source spectral method solver for the triply periodic

Navier-Stokes equations and an open-source discontinuous Galerkin solver for

the compressible Navier-Stokes equations.

These contributions are additionally presented in the following publications:

1. Parish E.J. and Duraisamy K., “A Unified Framework for Multiscale Modeling

using Mori-Zwanzig and the Variational Multiscale Method,” arXiv 1712.09669v1,

2017.

2. Parish, E. J. and Duraisamy K., “A Dynamic Subgrid Scale Model for Large

Eddy Simulations Based on the Mori-Zwanzig Formalism”, Journal of Compu-

tational Physics, 2017.

3. Gouasmi, A., Parish, E.J., and Duraisamy, K., “Characterizing Memory Effects
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in Coarse-Grained Nonlinear Systems Using the Mori-Zwanzig formalism,” Proc.

Royal Society A, 2017

4. Parish E.J. and Duraisamy K. “Non-Markovian closure models for large eddy

simulations using the Mori-Zwanzig formalism,” Phys. Rev. Fluids, 2017.

1.10 Outline

The structure of this dissertation is as follows: Chapter II will discuss the math-

ematical foundations of large eddy simulation, the Galerkin method, and the vari-

ational multiscale method. Chapter III will outline the Mori-Zwanzig formalism

and variational multiscale framework (MZ-VMS). This framework will integrate the

variational multiscale method with the Mori-Zwanzig formalism. The memory and

orthogonal dynamics will be discussed. Chapter IV will outline subgrid-scale models

based on the Mori-Zwanzig formalism. Chapter V will investigate the performance of

MZ-VMS models applied to spectral methods. The Burgers’ equation, incompress-

ible Navier-Stokes equations, and equations of ideal magnetohydrodynamics will be

considered. Chapter VI will investigate MZ-VMS models applied to finite element

methods. The focus will be on the discontinuous Galerkin approach. Burgers’ equa-

tion and the Navier-Stokes equations will again be considered. Conclusions and

perspectives will be provided in Chapter VII



CHAPTER II

Galerkin Methods and Multiscale Formulations

2.1 Multiscale Partial Differential Equations

This dissertation focuses on the numerical solution of the set of multiscale partial

differential equations,

(2.1)
∂u

∂t
+R(u) = f ; x ∈ Ω, t ∈ (0, t); Ω ⊂ Rd,

subject to appropriate boundary and initial conditions. Note that R is a potentially

non-linear differential operator. A variety of numerical methods have been developed

with the goal of solving Eq. 2.1. Finite difference, finite volume, finite element,

and spectral methods are several such examples. Each numerical method has its

own inherent advantages and disadvantages which may include speed, accuracy, and

robustness. All these numerical methods consist of transforming the continuous set

of partial differential equations into a semi-discrete system of ordinary differential

equations.

This dissertation focuses on the case where the physics described by Eq. 2.1 are

multiscale. In these cases, the dimensionality of the algebraic system resulting from

spatial discretization becomes prohibitively large. A practical example of this is the

simulation of turbulent flows at high Reynolds numbers. To circumvent this issue,

we consider the large eddy simulation approach.

13
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2.2 Large Eddy Simulation

Large eddy simulation (LES) originates from the field of fluid mechanics and refers

to the general technique where the largest scales of a partial differential equation are

directly resolved on a numerical grid while the smaller “subgrid” eddies are modeled.

The LES approach has its origins in Smagorinsky’s pioneering work on atmospheric

flows [88] in the mid 1960’s. Further work by Deardoff [31] and Schumann [87] in

the 1970’s extended LES to the engineering community. The explosion in computing

power since Smagorinsky’s initial work has led to great interest in LES. Topical

areas such as numerical methods, subgrid-scale modeling, and mesh generation have

all seen substantial advances.

The LES technique attempts to alleviate the cumbersome numerical cost of solv-

ing Eq. 2.1 by attempting to solve Eq. 2.1 only for the large scale features. The

basis of LES is the decomposition of the flow field into a resolved coarse-scale and

unresolved fine-scale component (see Figure 2.1). The methodology through which

this decomposition is obtained distinguishes different LES methods. Traditionally,

the separation is obtained through the use of a filter. Gaussian and sharp-spectral

cutoff filters are two such examples.

2.2.1 Filtered Equations of Motion

The governing equations for LES are typically obtained by applying a filter

G(x,∆), where ∆ is the filter width, to Eq. 2.1,

(2.2) G ∂u
∂t

+ GR(u) = Gf.
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Figure 2.1: Decomposition of a velocity signal into the low-frequency resolved coarse scales and
high-frequency unresolved fine scales. Figure concept adapted from [48].

Defining the filtered variable as Gu = ũ, adding and subtracting R(ũ), and assuming

time-invariance of the filter leads to the filtered equations of motion,

(2.3)
∂ũ

∂t
+R(ũ) +

[
GR(u)−R(ũ)

]
= Gf.

Equation 2.3 describes the dynamics of the filtered state, ũ. The reader will note

that the bracketed term in Eq. 2.3 depends on both the filtered state ũ and the full

state, u. This is problematic as Eq. 2.3 only evolves the filtered state. The complete

state u is unknown. This is referred to as the closure problem. Typically, some model

is devised to approximate the impact of the fine scales on the coarse scales to obtain

a closed system,

(2.4)
∂ũ

∂t
+R(ũ) +M(ũ) = Gf.

The model termM(ũ) is referred to as a subgrid-scale model and trys to approximate

(2.5) M(ũ) ≈
[
GR(u)−R(ũ)

]
.

The construction of this model M will be a primary focus of this dissertation. It is

noted that a common alternative to Eq. 2.3 is obtained by adding and subtracting
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GR(ũ) to Eq. 2.2 (opposed to R(ũ)) to obtain,

(2.6)
∂ũ

∂t
+ GR(ũ) +

[
GR(u)− GR(ũ)

]
= Gf.

In this case, the subgrid-scale model is responsible for approximating GM(ũ) ≈

GR(u)− GR(ũ).

2.3 Implicit and Explicit LES Methodologies

A variety of LES methodologies exist. These methods differ in how filtering

operations and subgrid-scale models are applied. Almost all LES methods are in one

of four categories:

• Implicitly filtered explicitly modeled LES

• Explicitly filtered explicitly modeled LES

• Explicitly filtered implicitly modeled LES

• Implicitly filtered implicitly modeled LES

The first implicit/explicit refers to the application of filtering operators, while the

second refers to the use of subgrid-scale models. This terminology is non-standard.

In the literature LES methods are typically referred to as either explicit or implicit

methods. In general, explicit methods refer to the case where a subgrid-scale model

is used, while implicit methods refer to the case where no subgrid-scale model is

used (see, for instance, [80, 30]). Implicit and explicit LES should not be confused

with implicitly filtered and explicitly filtered LES. Implicitly filtered LES refers to

the case where the grid and numerics are understood to filter the LES solution,

while explicitly filtered LES refers to the case where an explicit filtering operation is

applied [9, 64]. It is noted that explicitly filtered LES with no subgrid-scale model

is sometimes referred to as implicit LES (as in [80]).
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To illustrate each method, we introduce Burgers’ equation. Burgers’ equation is

given by,

(2.7)
∂u

∂t
+

1

2

∂u2

∂x
= 0 x ∈ Ω.

Burgers’ equation is a one-dimensional analogue to the Euler equations of gas dy-

namics and displays similarities in the nonlinear convective term. Application of a

time-invariant commuting spatial filter (such as a sharp-spectral cutoff filter), adding

and subtracting 1
2
∂xũ

2, and rearranging leads to the filtered Burgers equation,

(2.8)
∂ũ

∂t
+

1

2

∂ũ2

∂x
=

1

2

∂

∂x

(
ũ2 − Gu2

)
.

An alternative formulation is obtained by applying a time-invariant commuting spa-

tial filter, adding and subtracting 1
2
G∂xũ2, and rearranging,

(2.9)
∂ũ

∂t
+ G 1

2

∂ũ2

∂x
=

1

2
G ∂
∂x

(
ũ2 − u2

)
.

Equation 2.8 can be loosely viewed as an implicitly filtered formulation, while 2.9

can be viewed as an explicitly filtered formulation. Note that Equations 2.8 and 2.9

are manipulations of the same equation, and are thus equivalent. As is seen in the

following discussion, however, their practical implementation differs.

2.3.1 Implicitly Filtered Explicitly Modeled Large Eddy Simulation

The implicitly filtered explicitly modeled LES approach consists of solving the

equations of motion on an under-resolved grid and adding additional terms that are

responsible for parameterizing how the unresolved turbulence effects the large scale

grid-resolved flow. Implicitly filtered explicitly modeled LES is often referred to as

explicit LES. This is in reference to the fact that an explicit subgrid-scale turbulence

model is used.



18

To illustrate the concept, consider a forward in time Euler update to Eq. 2.8 using

an implicitly filtered explicitly modeled LES approach with a central in space finite

difference method,

(2.10) ũn+1
j = ũnj −∆t

[
1

2

ũn
2

j+1 − ũn
2

j−1

2∆x
+M(ũ)

]
.

The reader will note the presence of the subgrid-scale model M(ũ). They will ad-

ditionally see that an explicit filtering process does not appear in the update. This

is somewhat unsettling as the governing equations of LES are defined by a filter-

ing operation. In the implicitly filtered explicitly modeled LES approach, the finite

support of the numerical grid and discrete operators are viewed as an implicit filter.

Implicit Filters in Finite Difference Methods

The notional argument of an implicit filter is often presented by showing the

equivalence between a finite difference derivative and an exact derivative of a filtered

quantity,

(2.11)
∂u

∂x
≈ u(x+ ∆x)− u(x−∆x)

2∆x
=

∂

∂x

[
1

2∆x

ˆ x+∆x

x−∆x

udx

]
=
∂ũ

∂x
.

While the above shows how a discrete derivative may act as an implicit filter, the

argument is only notional [64]. For instance, Eq. 2.11 shows an equivalence between

the finite difference of an unfiltered variable and the exact derivative of a filtered

variable. An additional issue with the above argument is its extension to multidi-

mensional problems. The filtered Navier-Stokes equations in three dimensions, for

instance, require a three-dimensional filter. The filters associated with a finite dif-

ference operator, in contrast, are all one-dimensional functions. As a result, the

“implicitly filtered” Navier-Stokes equations that are obtained by virtue of finite

difference operators cannot be formally derived from the Navier-Stokes equations

themselves.
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2.3.2 Explicitly Filtered Explicitly Modeled Large Eddy Simulation

With the theoretical issues raised above regarding implicitly filtered LES, particu-

larly regarding implicit filtering in the context of finite difference methods, explicitly

filtered explicitly modeled LES has received considerable attention from the research

community. In explicitly filtered explicitly modeled LES, an explicit filtering oper-

ation is used in addition to an explicit subgrid-scale model. This explicit filtering

operation is applied in a variety of flavors, with the most common being the appli-

cation of an explicit filter to the non-linear convective terms or the application of an

explicit filter to the entire solution after each time-step [80]. To illustrate this first

approach, we consider the update to Eq. 2.9 using a forward Euler method (note

that the approach can be used with any time-marching method) and the explicitly

filtered explicitly modeled LES approach,

(2.12) ũn+1
j = ũnj − G∆t

[
1

2

ũn
2

j+1 − ũn
2

j−1

2∆x
+M(ũ)

]
.

In contrast to Eq. 2.10, Eq. 2.12 explicitly contains a filtering operation. The explicit

filtering operation provides more control over numerical errors and allows for the

filtering operation to be decoupled from the mesh. Explicit filtering, however, can

reduce the effective resolution of a numerical method. This in turn can degrade the

accuracy of the numerical method.

2.3.3 Explicitly Filtered Implicitly Modeled Large Eddy Simulation

Explicitly filtered implicitly modeled LES is again based on the application of an

explicit filter to the solution. The explicitly filtered implicitly modeled LES method

does not make use of an explicit subgrid-scale model. Instead, it relies on the explicit

filtering procedure and numerics to act as an implicit subgrid-scale model [8]. To

demonstrate this, we again consider the discrete update to Eq. 2.9 with an explicitly
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filtered implicitly modeled LES approach,

(2.13) ũn+1
j = ũnj − G∆t

[
1

2

ũn
2

j − ũn
2

j−1

∆x

]
.

The reader will observe that Eq. 2.13 does not contain a model term M(ũ). The

reader will additionally observe that the central difference method used in Eqns. 2.10

and 2.12 has been replaced with a first order “upwind” difference method1. This nu-

merical method acts as an implicit subgrid-scale model. The notion of how numerics

can act as an implicit subgrid-scale model (note that Eq. 2.11 shows how numerics

can act as an implicit filter, opposed to an implicit subgrid-scale model) is apparent

by examining the leading order truncation term in a first order finite difference via

a Taylor series expansion,

(2.14)
u(x+ ∆x)− u(x)

∆x
=
∂u

∂x
+ ∆x

∂u2

∂x2
+O(∆x2).

In Eq. 2.14, it is seen that the first order finite difference approximation is equivalent

to an exact derivative augmented with a first order diffusive term (plus higher order

terms). The diffusive term is the leading order error term and acts as a type of

implicit subgrid-scale model through the addition of artificial viscosity. The explicit

filter, in addition to the implicit subgrid-scale model defined by the numerics, allows

for control over numerical errors. Similar to the explicitly filtered explicitly modeled

LES approach, however, the use of an explicit filtering operation can reduce the

effective resolution of a numerical method. This can in turn degrade the accuracy.

Explicitly filtered implicitly modeled LES is sometimes referred to as implicit LES.

This is in reference to the fact that no subgrid-scale model is being used. As is

discussed in the next section, however, many implicit LES approaches do not make

use of an explicit filtering operation.

1The differencing in Eq 2.13 is upwind if u > 0.
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2.3.4 Implicitly Filtered Implicitly Modeled Large Eddy Simulation

The implicitly filtered implicitly modeled LES approach, which is generally re-

ferred to as implicit LES (ILES), contains no explicit filtering operations or models.

The method relies directly on the discretization to act as an implicit filter and an

implicit subgrid-scale model. For a forward in time update, the method is described

by,

(2.15) ũn+1
j = ũnj −∆t

[
1

2

ũn
2

j − ũn
2

j−1

∆x

]
.

Implicit LES consists of solving the governing equations with a dissipative/stabi-

lized numerical method on a coarse-discretization that does not resolve all scales.

The approach has enjoyed success due to its simplicity and computational efficiency.

Implicit LES, however, is not equipped with a notion of grid convergence (except

to a direct numerical simulation result) and is highly dependent on the proper-

ties of the numerical method. Nonetheless, implicit LES methodologies have found

significant traction in many communities. The high-order discontinuous Galerkin

community [36, 32, 30] is one such example. As will be seen in later sections, high-

order discontinuous Galerkin methods have a well-defined implicit filter and effective

implicit subgrid-scale models.

2.3.5 Temporal Filtering

To this point the discussion has revolved primarily around spatial filtering. Most

multiscale systems, however, display a wide range of both spatial and temporal

scales. This advocates for the development of temporal and spatio-temporal filtering

schemes [83, 12]. While such formulations are perhaps more rigorous, they have yet

to gain significant traction in the community. The impact of temporal filtering will
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not be considered in this dissertation.2

2.3.6 Community Consensus

The preceding discussion highlights the many flavors of LES methodologies. At

this time, there is no agreement in the community upon which approach is best [81]

and the implicit/explicit discussion is a point of contention3. As a result of these

open questions and challenges, the development of LES methods and models remains

an active research area.

2.4 Numerical Methods in LES

The LES methodologies described to this point have been discussed primarily at

the continuous level. Numerical methods are required to discretize and solve the

filtered Navier-Stokes equations. As was alluded to in the previous sections, the

numerical method used in LES plays a significant role on the end calculation4. This

is due to numerical methods having varying implicit filters and implicit subgrid-scale

models.

The most prominent numerical methods in large eddy simulation are finite differ-

ence methods and weighted residual methods. Weighted residual methods encompass

spectral, finite element, and finite volume methods. Both methods have been suc-

cessfully used in a variety of contexts. As was apparent in the previous section,

however, finite difference methods suffer from the lack of concise definition of a filter.

As will be seen, weighted residual methods provide a cleaner setting for LES.

2The author believes that this should be an area of future work.
3The author spent the 2016 summer at the Center for Turbulence Research (CTR). At CTR, a heated debate

between high-order and low-order methods, in conjunction with implicit vs explicit LES, occurred at least weekly!
4In the author’s opinion, much of the disagreement regarding different LES methods stems from the fact that

LES is too often discussed at the continuous level, rather than in association with a numerical method
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2.5 The Weighted Residual and Galerkin Method

The weighted residual method is a procedure to solve ordinary and partial dif-

ferential equations. The thesis of the weighted residual method is to approximate

the solution with a finite-dimensional set of basis functions. All weighted residual

methods have the advantage of being equipped with a vector space that allows for

a formal definition of resolved and unresolved scales. A variety of weighted resid-

ual methods exist, including the Galerkin method, the Petrov-Galerkin method, the

psuedo-spectral method, and the least-squares method. This work focuses on the

Galerkin method.

The following sections outline the Galerkin method and discuss the modeling

challenges that emerge from Galerkin discretizations. The majority of the discussion

regarding the Galerkin method is standard and may be found in a variety of texts,

such as [10, 11]. To the authors knowledge, however, the discussion of implicit filters

inherent to the Galerkin method cannot be found outside of this dissertation. The

notation for the “rough” finite element case is adopted from Ref [50].

2.5.1 Smooth Case (Spectral Methods)

The Galerkin discretization of Eq. 2.1 is formulated by casting Eq. 2.1 in its weak

form. To derive the weak form, the test and trial functions have to be defined. Let

V represent the trial space and W the test function space. In the Galerkin method,

the test and trial space are set to be equivalent, i.e. V ≡ W . Let V ≡ L2(Ω) be

the space of both the test and trial functions. The variational (weighted residual)

problem is defined as follows: find u ∈ V such that ∀w ∈ V ,

(2.16) (w, ut +R(u)) = (w, f),
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where (·, ·) is the L2 inner product,

(2.17) (a, b) =

ˆ
Ω

a(x)b(x)dΩ.

In practice, we must approximate V with a finite dimensional space

(2.18) V ≈ Ṽ , u ≈ ũ.

Under this approximation, the variational problem becomes: find ũ ∈ Ṽ such that

∀w̃ ∈ Ṽ ,

(2.19) (w̃, ũt +R(ũ)) = (w̃, f).

Equation 2.19 is the classic Galerkin method. Galerkin methods have been used

successfully in a variety of settings, ranging from classic finite element methods

to reduced order modeling using reduction techniques such as proper orthogonal

decomposition.

Semi-Discrete Problem

The Galerkin method leads to a set of ordinary differential equations which can

be solved via time marching (or space-time) techniques. Consider the expression of

the state variable in the trial space,

(2.20) ũ(x, t) =
N∑

j=0

wj(x)aj(t),

where wj(x) form a complete basis of Ṽ and where aj are the modal coefficients to

be solved for. Compactly,

(2.21) ũ(x, t) = w̃T (x)ã(t).

In this discrete setting, Equation 2.19 can be written equivalently as,

(2.22)

ˆ
Ω

w̃w̃T dã

dt
dΩ +

ˆ
Ω

w̃
(
R(ũ)− f)dΩ = 0.
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As the modal coefficients ã are independent of space, the continuous problem becomes

a coupled system of ordinary differential equations governed by

(2.23)
dã

dt
+ M̃−1

ˆ
Ω

w̃
(
R(ũ)− f)dΩ = 0,

where M is the mass matrix,

(2.24) M̃ =

ˆ
Ω

w̃w̃TdΩ.

L2 Projection and Implicit Filtering

Galerkin methods (and all weighted residual methods) contain an implicit filter

via projection. Consider the square error between the coarse-scale solution and the

continuous state,

(2.25) e2 =

ˆ
Ω

(
u− ũ

)2
dΩ.

The coarse-scale solution (ũ) that minimizes the square error can be found by differ-

entiating Eq. 2.25 with respect to each modal coefficient and setting equal to zero,

(2.26)
de2

da
=

ˆ
Ω

2w̃
(
u− ũ

)
dΩ = 0.

Rearrangement results in,

(2.27)

ˆ
Ω

w̃ũdΩ =

ˆ
Ω

w̃udΩ.

As ũ = w̃T ã,

(2.28)

ˆ
Ω

w̃w̃T ãdΩ =

ˆ
Ω

w̃udΩ.

The first term in Equation 2.28 is the mass matrix. Left multiplying by w̃TM̃−1

yields,

(2.29) ũ = w̃TM̃−1

ˆ
Ω

w̃udΩ.
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This can be written compactly in projection form,

(2.30) ũ = Π̃u,

where Π̃ is the L2 projection5 onto Ṽ . Note that Π̃ is formally a projector, i.e.

Π̃2 = Π̃. The L2 projection acts as an implicit filter in the Galerkin method. This is

seen by left multiplying Eq. 2.23 by w̃T ,

(2.31)
∂ũ

∂t
+ w̃TM̃−1

ˆ
Ω

w̃
(
R(ũ)− f)dΩ = 0.

The reader should recognize that the second term is simply the L2 projection of the

residual. Equation 2.31 can be written equivalently as,

(2.32) Π̃
∂ũ

∂t
+ Π̃

(
R(ũ)− f) = 0.

The L2 projector acts in a similar fashion to filters in traditional large eddy simula-

tion. The standard Galerkin method can be viewed as an implicitly filtered implicitly

modeled LES approach.

2.5.2 Rough Case (Finite Element Methods)

Section 2.5.1 is only applicable to the case where the basis functions and states are

globally smooth. This is appropriate for spectral methods (such as Fourier-Galerkin),

but is not general enough for the complex geometries and multiscale problems com-

monly encountered in science and engineering. The finite element method (FEM)

can be viewed as an extension of the spectral method and allows for more versatile

numerical methods. The key difference between FEM and the globally smooth case

is that the variational form must include boundary operators at element interfaces.

We now detail this.
5For the error defined in Eq. 2.25, the L2 projector is additionally the least squares projector, i.e. it minimizes

the square error.
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Define Th to be the decomposition of the domain Ω into a set of non-overlapping

elements, T , over Ωk with boundaries Γk. We seek solutions in the finite element

space,

(2.33) V = {w ∈ L2(Ω) : v|T ∈ P k(T ),∀T ∈ Th},

where P k is the space of polynomials up to degree k. The above definition allows for

discontinuities between elements. The continuous Galerkin formulation makes use of

a subspace of Eq. 2.33 that enforces continuity between elements. Some notation is

beneficial before proceeding. Define,

(2.34) (·, ·)Ω =
∑

k∈T

(·, ·)Ωk , (·, ·)Γ =
∑

k∈T

(·, ·)Γk .

The inner product (·, ·)Ω denotes a summation of volumetric inner products over the

entire domain, while (·, ·)Γ denotes a summation of surface inner products over the

entire domain. The FEM weak formulation of Eq. 2.1 becomes

(2.35) (w, ut)Ω + (w,R(u))Ω + (w, b(u))Γ = (w, f)Ω ∀w ∈ V ,

where b(u) is a boundary operator that arises via integration-by-parts. In the context

of discontinuous Galerkin, one may consider Eq. 2.35 to be the “DG strong form”.

Similar to the globally smooth case, in practice one must approximate V with a finite

dimensional space,

(2.36) V ≈ Ṽ , u ≈ ũ.

As in the globally smooth case, the finite element method is equipped with an implicit

filter.

2.6 The Variational Multiscale Method

It is well known that the standard continuous Galerkin method suffers from sta-

bility issues for a range of problems. This stems from the fact that the implicit
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subgrid-scale model inherent to the Galerkin method is typically not dissipative.

The variational multiscale method (VMS) of Hughes [48, 49, 50] is a slight modifi-

cation of the classic Galerkin method and provides a convenient starting point for

handling numerically unresolved phenomena. We proceed by outlining the varia-

tional multiscale method for the globally smooth case.

2.6.1 Globally Smooth Case (Spectral Methods)

The variational multiscale method utilizes a decomposition of the test/trial space

into a coarse-scale resolved space Ṽ ⊂ V and a fine-scale unresolved space V ′ ⊂ V .

In VMS, the test/trial space is expressed as a sum decomposition,

(2.37) V = Ṽ ⊕ V ′.

Let Π̃ be the linear projector onto the coarse-scale space, Π̃ : V → Ṽ . Various

choices exist for the projector Π̃ [52], and here we exclusively consider Π̃ to be the

L2 projector described previously,

(2.38) (w̃, Π̃u) = (w̃, u) ∀w̃ ∈ Ṽ , u ∈ V .

The fine-scale space, V ′, becomes the orthogonal complement of Ṽ in V such that,

(2.39) (w̃,Π′u) = 0 ∀w̃ ∈ Ṽ , u ∈ V ,

where Π′ = I− Π̃. With this decomposition, the solution can be represented as

(2.40) u = (Π̃ + Π′)u = ũ+ u′,

and the same for w.

Decomposing the test/trial space allows for Eq. 2.16 to be broken into two sub-

problems,

(2.41) (w̃, ũt) + (w̃,R(ũ)) + (w̃,R(u)−R(ũ)) = (w̃, f), ∀w̃ ∈ Ṽ
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Ṽ

V ′

k

Figure 2.2: Graphical illustration of the decomposition of the test/trial space V into subspaces
Ṽ and V ′ in the frequency domain (Figure concept adapted from [27]). The wavenumber is k.
The subspace Ṽ corresponds to the low frequency, “coarse-scale” subspace and is resolved in a
numerical method. The subspace V ′ is the high frequency “fine-scale” subspace and is not resolved
in a numerical method. We consider a decomposition that obeys V = Ṽ ⊕ V ′, with V ′ being L2

orthogonal to Ṽ.
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(2.42) (w′, u′t) + (w′,R(ũ)) + (w′, R(u)−R(ũ)) = (w′, f), ∀w′ ∈ V ′.

Equation 2.41 is viewed as the large scale (resolved) equation, while Eq. 2.42 is

the small scale (unresolved) equation. In the VMS approach, one generally tries to

approximate the small scale equation to obtain an expression for u′ and inject it into

the large scale equation. The modeled equation can be written as,

(2.43) (w̃, ũt) + (w̃,R(ũ)) + (w̃,M(ũ)) = (w̃, f), ∀w̃ ∈ Ṽ .

The construction of the closure model M(ũ) is the main challenge in the VMS

approach.

Implicit Filtering in VMS

Equation 2.43 contains an implicit filter and is analogous to implicitly filtered

explicitly modeled LES. Similar to Section 2.5.1, Eq. 2.43 can be written as

(2.44) Π̃
∂u

∂t
+ Π̃R(ũ) + Π̃

[
R(u)−R(ũ)

]
= Π̃f, ∀w̃ ∈ Ṽ

Equation 2.44 is in the same form as Eq. 2.6. The variational multiscale method is

seen to be equivalent to large eddy simulation where the filter is the L2 projection.

The variational multiscale method is best viewed as an implicitly filtered explicitly

modeled LES approach.

2.6.2 Rough Case (Finite Element Methods)

Similar to the Galerkin method, extension of the variational multiscale method

to the rough FEM case requires the addition of boundary operators at the element

interfaces. The VMS derivation for the rough case directly follows the VMS deriva-

tion of the smooth case and the Galerkin derivation for the rough case. The VMS
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equations for the rough case are as follows,

(2.45) (w̃, ũt)Ω + (w̃,R(ũ))Ω + (w̃,R(u)−R(ũ))Ω+

(w̃, b(ũ))Γ + (w̃, b(u)− b(ũ))Γ = (w̃, f)Ω ∀w̃ ∈ Ṽ ,

(2.46) (w′, u′t)Ω + (w′,R(ũ))Ω + (w′,R(u)−R(ũ))Ω+

(w′, b(ũ))Γ + (w′, b(u)− b(ũ))Γ = (w′, f)Ω ∀w′ ∈ V ′.

Similar to the smooth case, the rough case contains an implicit filtering operation.

2.7 Subgrid-Scale Modeling

Subgrid-scale models are required in both explicitly modeled LES approaches

and the variational multiscale method. While VMS and LES are analogous ap-

proaches (and, as was shown in Section 2.6, are equivalent in certain settings), the

two methodologies were developed in different contexts and have led to different

types of subgrid-scale models. The following sections outline classic subgrid-scale

models and VMS-based subgrid-scale models.

2.7.1 Classic Subgrid-Scale Models

Classical subgrid-scale models used in LES have been developed within the fluid

mechanics community specifically for the simulation of turbulent flows. These meth-

ods are typically introduced in the context of the incompressible Navier-Stokes equa-

tions,

(2.47)
∂ui
∂xi

= 0,

(2.48)
∂ui
∂t

+
∂

∂xj
(uiuj) = −1

ρ

∂p

∂xi
+ ν

∂2ui
∂xk∂xk

,
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where ui is the velocity component in the ith direction, ρ is the fluid density, and ν

the viscosity.

Application of a filter G(x,∆) to the governing equations of motion yields,

(2.49) G ∂ui
∂xi

= 0,

(2.50) G ∂ui
∂t

+ G ∂

∂xj
(uiuj) = G

[
− 1

ρ

∂p

∂xi
+ ν

∂2ui
∂xk∂xk

]
.

Defining Gu = ũ and the same for pressure, the filtered Navier-Stokes equations are

given as [101],

(2.51)
∂ũi
∂xi

= 0,

(2.52)
∂ũi
∂t

+
∂

∂xj
(ũiũj) = −1

ρ

∂p̃

∂xi
+

∂

∂xj

[
ν
∂ũi
∂xj

+ τij

]
,

where

τij = Lij + Cij +Rij.

The term Lij refers to the Leonard stress, Cij refers to the cross stresses, and Rij

refers to the Reynolds stress. The above equations assume that the filters commute

with the derivatives, which is - in general - not true. The term τij is referred to as

the subgrid-stress and requires modeling. The most prominent subgrid-scale models

invoke a gradient-diffusion hypothesis analogous to molecular theory, where it is

assumed that the subgrid-stresses are proportional to the strain rate,

(2.53) τij = νt

(
∂ũi
∂xj

+
∂ũj
∂xi

)
.

This is often referred to as the eddy viscosity approach.
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The Smagorinsky Model

The Smagorinsky model [88] is the first subgrid-scale model developed and is still

one of the most popular models in use. The Smagorinsky model was developed in

the context of geostrophic flows. The Smagorinsky model invokes the eddy viscosity

concept to model the unresolved fluctuations with an approximate 3D Kolmogorov

k−5/3 cascade [55, 59]. In the Smagorinsky model, the eddy viscosity is taken to be

(2.54) νt =
(
Cs∆

)2√
SijSij,

where Cs is the Smagorinsky constant and ∆ is the effective filter size of the dis-

cretization. Lilly [62] showed that, by assuming the cutoff wavenumber is in the

inertial sub-range of the Kolmogorov cascade, and kc = π/∆x, the constant assumes

a value,

(2.55) Cs ≈
1

π

(3Ck
2

)−3/4
,

where Ck is the Kolmogorov constant. Early measurements of the Kolmogorov con-

stant in atmospheric turbulence suggested Ck ≈ 1.4 [14], which leads to Cs ≈ 0.18.

More recent measurements in homogeneous turbulence measure the Kolmogorov con-

stant to be closer to Ck ≈ 0.5 [91], which leads to Cs ≈ 0.4. In practice, however,

most simulations use Cs = 0.1 [59], which leads to an eddy viscosity that is 16 times

smaller in magnitude than theoretical predictions. The reason for this range in values

of Cs is possibly due to the fact that, in practice, an LES rarely resolves the flow

into the inertial subrange. Further, it is expected that Cs will depend on the flow

regime, local resolution, and numerical method.

The Dynamic Smagorinsky Model

The variations in Cs motivated the development of the dynamic Smagorinsky

model [41]. The dynamic Smagorinsky model utilizes the Germano identity [40] to
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dynamically determine the constant, Cs. We leverage a similar idea later in this

work, and as such present the derivation of the dynamic Smagorinsky model. The

dynamic model determines Cs by applying a test filter to the subgrid-stress,

(2.56) τ ij = ũiuj − ũiũj.

Defining the Leonard stress to be,

(2.57) Lij = ũiũj − ũi ũj,

one can express the Germano identity as,

(2.58) Tij = Lij + τ ij,

where Tij = ũiuj − ũi ũj. The Leonard stress, often referred to as the resolved

stress, can be computed from the instantaneous filtered flow field. The tensor Tij

corresponds to the subgrid-stresses that arise due to both the test filter and the true

filter. The Smagorinsky model is used to model both Tij and τ ij, allowing one to

express Eq. 2.58 as,

(2.59) − 2
(
Cs∆kL)2

∣∣S̃
∣∣S̃ij = Lij − 2

(
Cs∆kc)

2
∣∣S̃
∣∣S̃ij,

or more simply,

(2.60) − 2
(
Cs∆kc)

2

(
α2
∣∣S̃
∣∣S̃ij −

∣∣S̃
∣∣S̃ij
)

= Lij,

with αkc = kL. Define,

(2.61) Mij = −2
(
∆kc)

2

(
α2
∣∣S̃
∣∣S̃ij −

∣∣S̃
∣∣S̃ij
)
.

The above is an over-constrained equation for kc (there are six equations and only

one unknown). The procedure developed by Lilly [63] minimizes the mean squared

error, (Lij − CsMij)2, over some domain Ωk. Mathematically,

(2.62) C2
s =

LijMij

MijMij

.
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Additional Models

A large body of work regarding the development of subgrid-scale models exists

outside of the static and dynamic Smagorinsky models. Several such models are

Kraichnan’s spectral eddy viscosity model [56], Vreman’s model [99], the structure-

function model of Métais and Lesiuer [67], and mixed models [103]. While many of

these models are derived from an elegant treatment of turbulent structure and energy

transfer, no model has been shown to significantly out-perform the Smagorinsky

models in a general setting. As such, we will primarily consider the Smagorinsky

models to be the baseline classic LES subgrid-scale closure in this work.

Breakdown of the Smagorinsky Models

The static and dynamic Smagorinsky models were developed in the context of

homogeneous turbulent flows. The models, however, are known to perform poorly

in many scenarios. To illustrate this, simulation results using 323 modes for the

Taylor Green vortex at a Reynolds number of 1600 are presented. The Taylor Green

vortex problem, which is further discussed in Chapter V, is a transitional flow prob-

lem that is characterized by a breakdown of initial coherent structures into turbulent

flow. The evolution of this breakdown is depicted in Figure 2.3. Figure 2.4 shows the

evolution of the total kinetic energy and dissipation in kinetic energy for LES simula-

tions ran with no explicit subgrid-scale model as well as with the static and dynamic

Smagorinsky models. All simulations were performed with the Galerkin spectral

method and hence are implicitly filtered methods. In Figure 2.4, it is seen that ex-

plicit subgrid-scale models perform worse than the case with no explicit subgrid-scale

model. This lack of accuracy is due to the fact that the Taylor Green vortex does not

display canonical homogeneous turbulence, especially at early times. It instead is
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(a) t = 0 (b) t = 5 (c) t = 10

Figure 2.3: Contours of q-criterion colored by the velocity magnitude for the Taylor Green vortex
problem.

(a) Evolution of kinetic energy. (b) Dissipation of kinetic energy.

Figure 2.4: Temporal evolution of total kinetic energy and dissipation of kinetic energy for the
Taylor Green vortex problem.

characterized by a complex transition from laminar to turbulent flow. The static and

dynamic Smagorinsky models were not tuned for these types of flows. In practical

scientific and engineering problems, this deviation from canonical conditions is com-

monplace. These limitations are further exposed when multiphysics problems, such

as magnetohydrodynamics, are considered. The lack of accuracy of the Smagorinsky

models for such problems motivates the development of new methods.

2.7.2 VMS-Based Subgrid-Scale Models

A variety of subgrid-scale models have emerged from the VMS community. The

construction of subgrid-scale models in VMS originates from the work of Hughes [48].



37

In [48], Hughes considers the boundary-value problem,

Lu = f in Ω,

u = 0 on Γ,

(2.63)

where L is a linear differential operator and Ω ⊂ Rd. Application of the VMS

framework allows Eq. 2.63 to be separated into two sub-problems,

(2.64) (w̃, Lũ) + (w̃, Lu′) = (w̃, f), ∀w̃ ∈ Ṽ ,

(2.65) (w′, Lũ) + (w′, Lu′) = (w′, f) ∀w′ ∈ V ′.

Equations 2.64 and 2.65 may be equivalently written as,

(2.66) (w̃, Lũ) + (L∗w̃, u′) = (w̃, f), ∀w̃ ∈ Ṽ ,

(2.67) (w′, Lũ) + (w′, Lu′) = (w′, f) ∀w′ ∈ V ′,

where we have used the integration-by-parts formula,

(2.68)
(
w̃, Lu′

)
=
(
L∗w̃, u′

)
, ∀w̃ ∈ Ṽ , u′ ∈ V ′.

The operator L∗ is the adjoint of L. Note that the coarse-scale equation, Eq. 2.66, is

unclosed. Closing the coarse-scale equation requires an expression for the fine scales.

In the linear case, Hughes formulated an exact expression for the fine scales by solving

the Green’s function problem corresponding to the Euler-Lagrange equations of the

fine-scale equation. The final expression for the fine-scale state is,

(2.69) u′(y) = −
ˆ

Ω

g′(x, y)
(
Lũ− f

)
(x)dΩx,

where g′ is the fine-scale Green’s function satisfying,

(2.70) Π′L∗g′(x, y) = Π′δ(x− y) ∀x ∈ Ω,
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(2.71) g′(x, y) = 0 on Γ.

The equation for the resolved, “coarse” scales can be obtained as,

(2.72) (w̃, Lũ) +
(
L∗w̃,M ′(Lũ− f)

)
= (w̃, f),

where,

(2.73)
(
L∗w̃,M ′(Lũ− f)

)
= −
ˆ

Ω

(L∗w̃)(y)

ˆ
Ω

g′(x, y)(Lũ− f)(x)dΩxdΩy.

Residual-based Closures

For practical non-linear problems, the fine-scale Green’s function is approximated.

A common model assumes the fine-scale Green’s function to be,

(2.74) g′(x, y) ≈ τ(x)δ(x− y),

where τ is a stabilization parameter. This approximation leads to the following

expression for the fine-scale state,

(2.75) u′(y) ≈ −τ
(
Lũ− f

)
.

Equation 2.75 is referred to as a residual-based method. This name is derived from

the fact that the fine scales are approximated by the coarse-scale residual, Lũ − f .

The VMS coarse-scale equation with the model Eq. 2.75 appears as follows,

(2.76) (w̃, Lũ
)
−
(
L∗w̃, τ(Lũ− f)

)
= (w̃, f).

The approximation given by Eq. 2.76 is an adjoint-type stabilization technique and

was proposed [39] before the VMS procedure. One of the significant accomplish-

ments of the VMS framework is that it sheds light on the mathematical origins of

such stabilization techniques.
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Orthogonal Subscales

The concept of orthogonal subscales, developed by Codina [25, 26, 45, 5], lever-

ages the fact that, with the L2 projector, the fine-scale variable u′ is orthogonal to

the coarse scales, ũ. The orthogonal subscale approach approximates the fine-scale

variable by

u′ = −τ Π̂(Lũ− f),

where Π′ = I − Π̃. With this selection, Codina enforces the approximation u′ to be

orthogonal to the resolved scales.

Series Perturbations

The VMS formulation provided in Hughes’ pioneering work is not directly appli-

cable to non-linear systems. In the case of non-linearity, a proposed methodology

that is of relevance to this work is the perturbation series developed by Hughes [6].

The main idea is to express the fine scales, u′, in a series expansion,

(2.77) u′ =
∞∑

i=1

εiu′i,

where ε is the norm of the coarse-scale residual and is assumed to be small. This

allows Eqns 2.41 and 2.42 to be linearized with respect to ε. The first order case is

referred to as the VMS(ε) model [100],

(2.78) u′ = ε1u′1,

which allows for the linearization,

(2.79) R(ũ+ u′) = R(ũ) +
∂R
∂u′

u′.

Note that the linearization is taken about u = ũ. The linearization leads to the VMS

equations being expressed as,

(2.80) (w̃, ũt) + (w̃,R(ũ)) + (w̃,
∂R
∂u′

u′) = (w̃, f), ∀w̃ ∈ Ṽ
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(2.81) (w′, u′t) + (w′,R(ũ)) + (w′,
∂R

∂u′
u′) = (w′, f), ∀w′ ∈ V ′.

As the fine-scale equation is now linear, the classic fine-scale Green’s function pro-

cedure is now more robust. Approximating the fine-scale Green’s function with the

algebraic operator, τ , defined on the fine scales leads to the approximation,

u′ ≈ −Π′τ(R(ũ)− f).

The coarse-scale equation then becomes,

(2.82) (w̃, ũt) + (w̃,R(ũ))− (w̃,Π′
∂R
∂u′

τ(R(ũ)− f)) = (w̃, f), ∀w̃ ∈ Ṽ .

Equation 2.82 will be demonstrated to be equivalent to a class of Mori-Zwanzig-based

models.

Scale-dependent Classic LES-Based Models

An additional modeling approach that has been introduced in the VMS commu-

nity is based on a three-scale decomposition. In the three-scale decomposition, the

resolved scales are decomposed into coarse-scale resolved scales and fine-scale re-

solved scales. Classic LES models, such as the Smagorinsky model, are then applied

to the fine-scale resolved scales. These methods have been investigated in several

contexts [27].

2.8 Outstanding Issues

Variational multiscale methods have been used successfully in a variety of con-

texts. The simulation of incompressible and compressible turbulent flows, magneto-

hydrodynamic flows, and solid mechanics are several such examples. A number of

outstanding issues regarding variational multiscale models, however, remain. Several

such issues are:
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1. How can VMS methods be applied to non-linear problems? For non-linear

problems, the Green’s function procedure developed by Hughes’ no longer holds.

Typically, linearization arguments are used to extend VMS methods to non-

linear equations.

2. How is the VMS procedure applied to unsteady problems, particularly at the

semi-discrete level?

These issues motivate the use of the Mori-Zwanzig formalism and the development

of a framework that combines Mori-Zwanzig with the variational multiscale method.

2.9 Chapter Summary

This chapter outlined the large eddy simulation technique. Important aspects of

this chapter are:

• The discussion of implicitly/explicitly filtered and implicitly/explicitly modeled

LES.

• Formulation of the Galerkin method and the variational multiscale method.

• Demonstration that Galerkin and variational multiscale methods contain im-

plicit filters.

• Outline of classic LES and VMS-based subgrid-scale models.

• Discussion of the advantages and disadvantages of existing methods.

The next several chapters seek to address the deficiencies of existing methods by

introducing the Mori-Zwanzig formalism as a modeling framework.



CHAPTER III

Development of the MZ-VMS Framework

As seen in the previous chapter, the variational multiscale method provides a

formal decomposition of a solution into fine and coarse scales and is an attractive

starting point for large eddy simulation. VMS-based subgrid-scale models are based

on the notion of a fine-scale Green’s function corresponding to the Euler-Lagrange

equations of the fine-scale equation. This process is formulated at the continuous

level. An alternative formulation can be developed by considering the solution to

the fine-scale equation at the semi-discrete level and by making use of Duhamel’s

principle. The semi-discrete setting has the advantage that the governing equations

have been reduced to a set of ordinary differential equations. Duhamel’s principle

can be conceptualized to be the “Green’s function in time” and allows for a formal

removal of the fine scales.

This chapter outlines how the Mori-Zwanzig formalism can be used to develop

models for the variational multiscale method. The philosophy of Mori-Zwanzig

will be demonstrated by first considering a linear initial value problem. After this,

Chorin’s formulation of Mori-Zwanzig will be outlined within the setting of the vari-

ational multiscale method. The memory term and orthogonal dynamics will be

discussed.

42
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3.1 Linear Initial Value Problem

Consider the linear initial value problem,

(3.1)
∂u

∂t
+ Lu = f x ∈ Ω, t ∈ (0, T ),

subject to the boundary and initial conditions,

u(x, t) = 0 x ∈ Γ, t ∈ (0, T ),(3.2)

u(x, 0) = u0 x ∈ Ω.(3.3)

Note that L is again a differential operator. Letting V ≡ H1
0 (Ω) denote the test and

trial space, the Galerkin formulation at the semi-discrete level leads to the weighted

residual problem,

(3.4) (w, ut) + (w,Lu− f) = 0 ∀w ∈ V .

Separating the test/trial space via the VMS sum decomposition leads to two sub-

problems,

(3.5) (w̃, ũt) + (w̃, u′t) + (w̃, Lũ) + (w̃, Lu′) = (w̃, f) ∀w̃ ∈ Ṽ ,

(3.6) (w′, ũt) + (w′, u′t) + (w′, Lũ) + (w′, Lu′) = (w′, f) ∀w′ ∈ V ′.

For the L2 projector considered in this work, the fine and coarse scales are orthogonal.

Equations 3.5 and 3.6 simplify to,

(3.7) (w̃, ũt) + (w̃, Lũ) + (w̃, Lu′) = (w̃, f) ∀w̃ ∈ Ṽ ,

(3.8) (w′, u′t) + (w′, Lũ) + (w′, Lu′) = (w′, f) ∀w′ ∈ V ′.

We assume u0 ∈ Ṽ such that,

(3.9) ũ(x, 0) = u0,
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(3.10) u′(x, 0) = 0.

The objective of the multiscale formulation is to now obtain a parameterization for

the fine scales u′ in terms of the coarse scales. Hughes’ achieves this through the use

of Green’s functions. A different approach is motivated by the following observations:

1. Equations 3.7 and 3.8 are unsteady.

2. Equations 3.7 and 3.8 can be equivalently written as ordinary differential equa-

tions.

To make use of these observations, we consider the set of discrete equations arising

from Eqns. 3.5 and 3.6. Let the vector of trial/test functions be denoted by w. The

expression of the state variable in the trial space is,

(3.11) u(x, t) =
∞∑

j=0

wj(x)aj(t),

where aj are the modal coefficients to be solved for. Compactly,

(3.12) u(x, t) = wT (x)a(t).

Equations 3.13 and 3.14 can be written equivalently as,

(3.13) (w̃, ũt) + (w̃, Lũ) + (w̃, Lu′) = (w̃, f),

(3.14) (w′, u′t) + (w′, Lũ) + (w′, Lu′) = (w′, f).

The parameterization of the fine-scale state in terms of the coarse-scale state

can be achieved through the use of integrating factors1. For simplicity, we restrict

ourselves to the case of orthonormal basis functions, although no such simplification

is necessary. The solution to the fine-scale equation can be written as,

u′(t) = −
ˆ t

0

w′
T
e−s(w

′,Lw′)(w′, Lũ(t− s)− f)ds,

1For the reader who is unfamiliar with integrating factors, a standard google search should prove sufficient.
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where es(w
′,Lw′T ) is the matrix exponential. Injecting the fine-scale solution into the

coarse-scale equation yields,

(3.15) (w̃, ũt)+
(
w̃, Lũ

)
−
(
w′,

ˆ t

0

Lw′
T
e−s(w

′,Lw′T )(w′, Lũ(t−s)−f)ds
)

=
(
w̃, f

)
.

The convolution integral is referred to as memory. Equation 3.15 can be written

in a more transparent form by recognizing that the memory contains terms similar

to a projection. Define,

Π′
Q

(t)g = w′
T
e−t(w

′,Lw′)(w′, g).

With this notation,

(3.16)

(
w̃, ũt

)
+

(
w̃, Lũ

)
−
(

w̃,

ˆ t

0

LΠ′
Q

(s)
[
Lũ(t− s)− f

]
ds

)
=

(
w̃, f

)
.

Remarks:

• Equation 3.16 is an exact, closed equation for the coarse scales.

• The formal removal of the fine scales leads to a coarse-scale problem that

is non-local in time.

• Similar to the Green’s function approach, the memory is driven by the

residual of the coarse-scale equation. Additionally, the projection associated

with Eq. 3.16 constrains the residual to be in the space of the fine scales.

This is similar to the VMS approach, where the Green’s function problem

is defined on the fine scales.

• Even though Equation 3.16 is written for the coarse scales, no reduction in

computational cost has been achieved as we have simply transformed the

system into an integro-differential equation.

• Integrating factors are an instance of Duhamel’s principle for ordinary dif-
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ferential equations. Duhamel’s principle will be used extensively in what

follows.

• Equation 3.16 should be viewed as a starting point for model development

in complex problems.

3.2 Nonlinear Problems: The MZ-VMS Framework

In the linear case, we showed that it is possible to obtain an analytic expression for

the fine-scale state through the use of integrating factors. The method of integrating

factors is, unfortunately, not generalizable to non-linear problems. These challenges

can be addressed by using Chorin’s formulation of the Mori-Zwanzig formalism.

Chorin’s MZ procedure, which is often referred to as the optimal prediction frame-

work, was developed by Chorin and co-workers in [20, 22, 42, 21]. The framework

can be viewed as a model order reduction strategy for general ordinary differential

equations. The framework centers around the use of projection operators that sepa-

rate the phase space of an ordinary differential equation into resolved and unresolved

subspaces. Using this decomposition, a high-dimensional non-linear Markovian dy-

namical system can be recast into an equivalent, lower-dimensional non-Markovian

system. This formulation is mathematically exact. In the lower-dimensional system,

which is commonly referred to as the generalized Langevin equation (GLE), the effect

of the fine scales scales on the coarse scales scales is non-local in time and appears

as a convolution integral. This term is typically referred to as memory. The memory

term emerging from the MZ formalism is analogous to the Green’s function emerg-

ing from the VMS procedure. While the memory integral is intractable in general

non-linear problems, it serves as a convenient starting point for the construction of

closure models.
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The remainder of this section outlines Chorin’s formulation of Mori-Zwanzig

within the context of the variational multiscale method. Similar to the linear case,

this leads to a formally closed coarse-scale equation that is non-local in time. This

coarse-scale equation is viewed as a starting point for model development.

We consider the initial-value problem,

(3.17)
∂u

∂t
+R(u) = f x ∈ Ω, t ∈ (0, T ),

where R is a non-linear differential operator. The governing equations are subject

to boundary and initial conditions,

u(x, t) = 0 x ∈ Γ, t ∈ (0, T ),(3.18)

u(x, 0) = u0 x ∈ Ω.(3.19)

With the trial and test space V ≡ H1
0 (Ω), the discrete multiscale equations for the

Galerkin method can be written as,

(3.20) (w̃, ũt) + (w̃,R(ũ)) + (w̃,R(u)−R(ũ)) = (w̃, f),

(3.21) (w′, u′t) + (w′,R(ũ)) + (w′, R(u)−R(ũ)) = (w′, f),

with a(t = 0) = a0. We again consider orthonormal basis functions for simplicity,

although this is not required (eg. see Section 6.1). We denote the Hilbert space in

which a0 resides as H. The objective is again to analytically solve for the fine-scale

state.

3.2.1 Transformation to Phase Space and the Liouville Equation

The Green’s function used in the traditional VMS approach as well as the inte-

grating factor approach described in the previous section relies on the principle of
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superposition and is limited to linear systems. It was recognized by Chorin and co-

workers, however, that any non-linear ordinary differential equation can be written

as a linear partial differential equation that exists in phase space. This transforma-

tion is exact and allows for the use of superposition. Here, Eqns. 3.20 and 3.21 can

be cast as the following linear partial differential equation [21],

(3.22)
∂v

∂t
= Lv,

subject to initial conditions,

(3.23) v(a0, 0) = g(a0).

The operator L is the Liouville operator and is given by,

(3.24) L =
∞∑

j=0

(wj, f −R(u0))
∂

∂a0j

.

Equation 3.22 is referred to as the Liouville equation and is an exact statement of

the original dynamics. Chorin showed that the solution to Eq. 3.22 is given by [21],

(3.25) v(a0, t) = g(a(a0, t)).

Semi-group notation is now used, in which the solution to the Liouville equation may

be expressed as,

(3.26) v(a0, t) = etLg(a(a0, 0)).

The proper interpretation of Eq. 3.26 is that v(a0, t), is given by the solution of

the partial differential equation defined by the evolution operator etL (in this case

Eq. 3.22), with initial conditions v(a0, 0) = g(a(a0, 0)). The evolution operator etL

has several interesting properties. Most notably, the operator can be moved inside

of a function [107]. With this property, the solution to Eq. 3.22 may be written as,

(3.27) v(a0, t) = etLg(a(a0, 0)) = g(etLa(a0, 0)).
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The implications of etL are significant. It demonstrates that, given the trajectories

a(a0, t), the solution v is known for any observable g. Noting that L and etL commute,

Eq. 3.22 may be written in the semi-group notation as,

(3.28)
∂v

∂t
= etLLv(a0, 0).

A set of equations for the resolved modes can be obtained by taking g(a0) = ã0,

(3.29)
∂

∂t
etLã0 = etLLã0.

3.2.2 Projection Operators and the Generalized Langevin Equation

We proceed by decomposing the space of initial conditions, H, into a resolved and

unresolved subspace,

(3.30) H = H̃ ⊕ H′.

The associated projection operators are defined as P : H → H̃ and Q = I − P .

We consider a projection operator that is appropriate for the deterministic initial

conditions considered here (Eqns. 3.9 and 3.10),

(3.31) Pf(ã0, a
′
0) =

ˆ
H
f(ã0, a

′
0)δ(a′0)da′0,

which leads to

(3.32) Pf(ã0, a
′
0) = f(ã0, 0).

Other projections, such as conditional expectations, are possible [20], but will not

be pursued in the present work. It is important to emphasize that the projectors P

and Q operate on H and are fundamentally different from the L2 projectors Π̃ and

Π′ (see Figure 3.1). With the projection operators, the Liouville equation can be

split as,

(3.33)
∂

∂t
etLã0 = etLPLã0 + etLQLã0.
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Figure 3.1: Graphical depiction of various projection operators acting on a function f(u). Π̃ projects
(in an L2 sense) the signal onto the subspace Ṽ, which in this case is denoted as the plane in which
u′ = 0. The projector P used in the Mori-Zwanzig formalism projects the initial conditions onto
the subspace H̃, which here is a vertical line at t = 0 and u′ = 0. Note that terms projected by P
do not necessarily evolve on the manifold defined by Ṽ.
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The objective now is to remove the dependence of the right hand side of Eq. 3.33

on the unresolved scales, a′ (i.e. QLã). To demonstrate how this may be achieved,

consider the partial differential operator governed by the semi-group etL written as,

(3.34)
∂

∂t
− L = 0.

We will refer to Eq. 3.34 as the homogeneous problem. Consider now the inhomoge-

neous problem with forcing PL,

(3.35)
∂

∂t
− L = −PL.

Making use of the identity I = P +Q, the inhomogeneous problem can be written

as

(3.36)
∂

∂t
−QL = 0.

Eq. 3.36 is referred to in the literature as the orthogonal dynamics operator, and

can be conceptualized as a Liouville operator with forcing. The evolution operator

given by the orthogonal dynamics is etQL. Here, we can leverage the linearity of

the partial differential operators and make use of superposition. The solution to

the orthogonal dynamics equation can be expressed in terms of solutions to the

homogeneous Liouville equation through Duhamel’s principle,

(3.37) etL = etQL +

ˆ t

0

e(t−s)LPLesQLds.

Inserting Eq. 3.37 into Eq. 3.33, the generalized Langevin equation is obtained,

(3.38)
∂

∂t
etLã0 = etLPLã0︸ ︷︷ ︸

Markovian

+ etQLQLã0︸ ︷︷ ︸
Noise

+

ˆ t

0

e(t−s)LPLesQLQLã0ds

︸ ︷︷ ︸
Memory

.

The system described in Eq. 3.38 is precise and not an approximation to the original

ODE system. For notational purposes, define

(3.39) Fj(a0, t) = etQLQLa0j, Kj(a0, t) = PLFj(a0, t).
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We refer to K(a0, t) as the memory kernel. It can be shown that solutions to the

orthogonal dynamics equation are in the null space of P , meaning PFj(a0, t) = 0.

By the definition of the initial conditions (Eq. 3.10), the noise-term is zero and we

obtain,

(3.40)
∂

∂t
etLã0 = etLPLã0 +

ˆ t

0

e(t−s)LPLesQLQLã0ds.

Equation 3.40 can be written in a more transparent form,

(3.41) (w̃, ũt) + (w̃,R(ũ))−
ˆ t

0

K(ã(t− s), s)ds = (w̃, f),

where Kj(a0, t) = PLetQLQLa0. Note that the time derivative is represented as a

partial derivative due to the Liouville operators embedded in the memory.

Remarks

• Equation 3.41 is precisely a Galerkin discretization of Eq. 3.17 with the

addition of a memory term originating from the removal of the fine scales.

• Equation 3.41 is a non-local closed equation for the coarse scales.

• Evaluation of the memory term is not tractable as it involves the solution of

the evolution operator, etQL. This is referred to as the orthogonal dynamics

and is discussed in the following section. Instead, Eq. 3.41 is viewed as a

starting point for the construction of closure models.

• The formulation for the smooth case is limited to spectral methods on canon-

ical domains. In Section 6.1, we extend the discussion to the case of finite

elements.
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3.3 The Memory Term

The MZ procedure itself does not provide a reduction in computational complexity

as it has replaced the fine-scale state with a memory term. This memory term is

given by,

(3.42)

ˆ t

0

K(ã(t− s), s)ds =

ˆ t

0

e(t−s)LPLesQLQLã0ds.

The memory term can be equivalently written as a two-dimensional path integral

(instead of a convolution),

(3.43)

˛
K(ã(t), s)dτ =

1√
2

˛
etLPLesQLQLa0jdτ,

with τ being the line of constant t− s.

The memory term relies on solutions to the orthogonal dynamics equation, de-

noted by the evolution operator etQL. The orthogonal dynamics equation is a high

dimensional forced partial differential equation. While the evolution operator etL is

a Koopman operator, no such result exists for etQL in the general non-linear case.

As a consequence, evaluating terms evolved by etQL requires one to directly solve the

orthogonal dynamics equation. Solutions of the orthogonal dynamics are intractable

in the general case. Instead of reducing the computational complexity, the MZ pro-

cedure provides an exact representation of the fine-scale state in terms of the coarse

scales. This is used as a starting point for model development. In this section, we ex-

pand our discussion of the orthogonal dynamics equation and explore the mechanics

of the memory term.

3.3.1 The Kernel Surface

In the variational multiscale method, the fine-scale state is parameterized in terms

of the coarse-scale state by virtue of a fine-scale Green’s function. The Mori-Zwanzig
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procedure instead uses Duhamel’s principle to relate the solution of the orthogonal

dynamics equation to the Liouville equation. This allows for the elimination of fine

scales. The evolution operator of the orthogonal dynamics is given by etQL. To help

clarify the interaction of the memory term and the orthogonal dynamics, Figure 3.2

depicts the memory kernel in s−t space. In Figure 3.2a, the evolution of the solution

in time is denoted by the solid blue line at s = 0. To evaluate the memory, solutions

to the orthogonal dynamics equation, F (ã(t), s), must be evolved in pseudo-time s

using initial conditions that depend on the solution at time t. This is depicted by

the dashed red lines in Figure 3.2a. This leads to a three-dimensional surface in s− t

space, as seen in Figure 3.2b. Evaluation of the memory integral then requires a

path integration backwards in time along the dashed-lines in Figure 3.2a, yielding

the shaded yellow region in Figure 3.2b.

There are several important quantities of interest in the memory term. The most

important quantity is the memory kernel evaluated at s = 0. This term, K(ã(t), 0),

drives the memory. In semi-group notation, the kernel at s = 0 is written as,

(3.44) K(ã(t), 0) = etLPLQLa0j.

It is immediately observed that Eq. 3.44 has no dependence on the orthogonal dy-

namics. The temporal evolution of Eq. 3.44 is depicted by the blue line in Figure 3.2

at s = 0. It is next noted that the PLQL operators can be evaluated analytically.

Evaluating the operators for the smooth case non-linear case presented in Section 3.2

yields (the step by step details are given in Appendix A),

K(ã(t), 0) =

ˆ
Ω

ˆ
Ω

(w̃R′)(x)Π′(x, y)(R(ũ)− f)(y)dΩydΩx,(3.45)

where R′ = ∂R
∂ũ
.
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s

t

K(ã(t), 0)

Line of integration

K(ã(t), s)

(a) Two-dimensional illustration in the s− t plane.

(b) Three-dimensional memory surface. This illustrative surface has a decaying profile
that is representative of finite memory effects.

Figure 3.2: Graphical depiction of the mechanics of the memory term.
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Remarks

1. Equation 3.45 shows that the memory is driven by an orthogonal projection

of the coarse-scale residual. If this residual is zero, no information is added

to the memory. Further, if the coarse-scale equation is fully resolved, no

information is added to the memory.

2. The finding that the memory term is based on the coarse-scale residual is

significant. It demonstrates that MZ-based methods are, in fact, residual-

based methods. This provides insight into the performance of MZ methods

as it links them to a larger class of models. Subgrid-scale models derived

from physical theory, such as the Smagorinsky model, are not residual-based

methods.

3. The form of the memory at s = 0 displays many similarities to Eq. 2.73.

4. In Figure 3.2b, the memory surface is always at a maximum at s = 0. This is

not neccesarily the case. For linear systems, the decay of the memory term

can be linked to the eigenvalues of the fine-scale operator. For problems

with positive fine-scale eigenvalues, the memory surface may grow with s.

This will be discussed in the coming sections.

The second value of the kernel worth discussing is the derivative of the kernel

with respect to s,

(3.46)
d

ds
etLPLesQLQLa0j = etLPLesQLQLQLa0j.

For a general s, Eq. 3.46 depends on the solution of the orthogonal dynamics. How-

ever, at s = 0, Eq. 3.46 has no dependence on the orthogonal dynamics,

(3.47)
∂

∂s
K(ã(t), s)

∣∣∣∣
s=0

= etLPLQLQLa0j.
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Any order derivative of the kernel with respect to s at s = 0 can be expressed

independently of the orthogonal dynamics. In general,

(3.48)
∂n

∂sn
K(ã(t), s)

∣∣∣∣
s=0

= etLPLQL
(
QL
)n
a0j.

3.3.2 The Orthogonal Dynamics

The previous subsection showed how the memory term can be viewed as a geo-

metrical surface in the s − t plane. Evaluating this surface requires solution to the

orthogonal dynamics equation,

(3.49)
∂

∂t
Fj(a0, t) = QLFj.

The orthogonal dynamics is a high dimensional partial differential equation. As

previously mentioned, while the evolution operator etL is a Koopman operator, no

such result exists for etQL in the general non-linear case. As a consequence, evalu-

ating terms evolved by etQL requires one to directly solve the orthogonal dynamics

equation. This is extremely difficult for non-linear problems. To the authors knowl-

edge, no direct attempt has been made to solve the orthogonal dynamics equation.

Extracting the memory kernel, even in an a priori manner, is intractable at this

time.

The most general attempt to extract the memory term and orthogonal dynamics

is presented in [20], where Hermite polynomials and Volterra integral equations are

used to approximate the memory (and hence orthogonal dynamics). This procedure

was shown to provide a reasonably accurate representation of the memory for a

low-dimensional dynamical system. The procedure, however, is intractable for high-

dimensional problems. This fact is exemplified in the work of Bernstein [7], where the

methodology is applied to Burgers’ equation and deemed intractable. Other attempts
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to solve the orthogonal dynamics have been proposed in various contexts [58, 61].

To the authors understanding, none of these methods are tractable for the problems

of interest to this dissertation.

3.3.3 The Orthogonal ODE

While solutions to the orthogonal dynamics are intractable for non-linear sys-

tems, progress can be made for linear systems. To demonstrate this, re-examine the

multiscale equations for the linear initial value problem (Eqns. 3.13 and 3.14),

(3.50) (w̃, ũt) + (w̃, Lũ) + (w̃, Lu′) = (w̃, f),

(3.51) (w′, u′t) + (w′, Lũ) + (w′, Lu′) = (w′, f).

As previously described, integrating factors can be used to analytically solve the fine

scales to obtain,

(3.52) (w̃, ũt)+
(
w̃, Lũ

)
−
(
w′,

ˆ t

0

Lw′
T
e−s(w

′,Lw′T )(w′, Lũ(t−s)−f)ds
)

=
(
w̃, f

)
.

Compare this to the Mori-Zwanzig identity,

(3.53)
∂

∂t
etLa0j = etLPLa0j︸ ︷︷ ︸

Markovian

+

ˆ t

0

e(t−s)LPLesQLQLa0jds

︸ ︷︷ ︸
Memory

+ etQLQLa0j︸ ︷︷ ︸
Noise

.

Notice that the evolution operator generated by the orthogonal dynamics is simply,

etQL = e−t(w
′,Lw′T ),

and as such solutions to the orthogonal dynamics can be obtained by solving the

ordinary differential equation

(3.54) (w′,
∂

∂t
u′
Q

) + (w′, Lu′
Q

) = 0.
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Equation 3.54 will be referred to as the orthogonal ODE. For linear systems, the

orthogonal dynamics can be solved through a set of auxiliary ordinary differential

equations.

The orthogonal ODE can be applied to non-linear systems through a linearization

of the fine-scale equation. The multiscale non-linear equations were written as

(3.55) (w̃, ũt) + (w̃,R(u)) = (w̃, f),

(3.56) (w′, u′t) + (w′,R(u)) = (w′, f).

The fine-scale equation can be linearized about u′ = 0 to obtain,

(3.57) (w′, u′t) + (w′,R(ũ)) + (w′,R′u′ +O(u′
2
)) = (w′, f),

where again R′ = ∂R
∂u

. Dropping the higher order terms, the fine-scale equation

becomes linear with respect to the fine scales and has the analytic solution,

u′(t) = −
ˆ t

0

w′
T
e−s(w

′,R′w′)(w′,R(ũ(t− s))− f)ds.

The linearization is accurate for small u′. The corresponding “orthogonal ODE” is,

(3.58) (w′,
∂

∂t
u′
Q

) + (w′,R′u′Q) = 0.

3.3.4 The Orthogonal ODE and its Procedure

In [43], Gouasmi et al. developed an orthogonal ODE in the context of compo-

sition operators and developed a numerical procedure to evaluate the memory term

using the orthogonal ODE. The results using the orthogonal ODE presented in [43]

can be shown to be equivalent for those obtained with Eq. 3.58 for systems with sta-

ble fixed points. Gouasmi recognized that the orthogonal ODE arises from assuming

that etQL is a Koopman operator. Gouasmi’s procedure uses the orthogonal ODE
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to numerically evaluate the kernel using the trajectories of the resolved simulation.

Despite the approximation in the orthogonal ODE, the reconstructed kernel has been

shown to provide accurate representations of the memory for Burgers’ equation and

the Kuramoto-Sivashinsky equation [43].

3.4 Finite Memory of the Kernel

The ability to relate solutions of the orthogonal dynamics to a set of ordinary

differential equations allows for great insight into the mechanics of the memory term.

In particular, this provides insight into the idea of finite memory. The idea of finite

memory has been suggested by various authors [93, 19] and poses the idea that the

memory kernel has a finite temporal support,

(3.59)

ˆ t

0

e(t−s)LPLesQLQLa0jds ≈
ˆ t

t−τ
e(t−s)LPLesQLQLa0jds.

This idea can be made concrete through the orthogonal ODE. By virtue of the

orthogonal ODE, the fine scales were shown to have the solution,

(3.60) u′(t) = −
ˆ t

0

w′
T
e−s(w

′,Lw′T )(w′, Lũ(t− s)− f)ds.

Equation 3.60 is exact in the linear case and is an approximation in the non-linear

case. The linear case is considered for simplicity. Consider the eigen-decomposition

of the fine-scale operator

(3.61) (w′, Lw′
T

) = SΛS−1,

where S and Λ are the eigenvectors and eigenvalues of the matrix (w′, Lw′T ). With

the eigen-decomposition, Eq. 3.60 can be written as

(3.62) u′(t) = −
ˆ t

0

w′
T
Se−sΛS−1(w′,R(ũ(t− s))− f)ds.
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Equation 3.62 shows that, when the eigenvalues of the fine-scale operator are neg-

ative, the memory kernel has a finite support. The timescale of this support is

proportional to the inverse of the eigenvalues. To explain this, a pictorial represen-

tation of the evaluation of a simple convolution integral is given in Figure 3.3. The

figures show the graphical evaluation of the convolution integral
´ t

0
f(s)eλ(t−s)ds with

f(t) = H(t)2 and λ = −1. It is seen that the exponential operator limits the support

of the integrand. The time-scale of this support is related to the argument of the

exponential operator, which is related to the eigenvalues of the fine-scale operator.

It is worth noting that, while negative eigenvalues lead to a decaying memory term,

positive eigenvalues lead to a growth in the memory term. Modeling the memory for

this case is expected to be more challenging.

3.5 Summary

This chapter outlined Chorin’s formulation of the Mori-Zwanzig formalism in

the context of the variational multiscale method as an alternative to Hughes’ fine-

scale Green’s function. This chapter demonstrated how model reduction leads to

memory effects that are driven by a projection of the coarse-scale residual. For

linear problems, this was achieved through the use of integrating factors. The non-

linear case achieved this through Chorin’s formulation of Mori-Zwanzig. Important

results of this chapter are:

• Formulation of Chorin’s Mori-Zwanzig formulation for the variational multiscale

method.

• Discovery that the memory is driven by an orthogonal projection of the coarse-

scale residual. This displays similarities to many classic variational multiscale

models. The fact that the memory is related to the coarse-scale residual is an as
2H(t) is the Heaviside function: H(t) = 0 ∀t < 0, H(t) = 1 ∀t ≥ 0.
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(a) t = 0.

(b) t = 2.

(c) t = 6.

Figure 3.3: Evolution of the convolution integral
´ t

0
f(s)e−(t−s)ds. To evaluate the convolution

integral graphically, first reflect et, add a time offset, and then slide it along the t-axis. Then f(t)
is plotted as a function of t. The integral is the area under the curve of e(t−s)f(t).
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of yet unappreciated fact. It demonstrates that MZ-based methods are, in fact,

residual-based methods. It further provides great insight into the performance

of MZ-based methods.

• Formulation of the orthogonal ODE. The orthogonal ODE allows for exact so-

lutions to the orthogonal dynamics for linear problems and provides an approx-

imation for non-linear problems.

• Discussion of the link between the memory length and the eigenvalues of the

fine-scale operator.

A number of researchers have examined the application of Mori-Zwanzig-based

models to the Navier-Stokes equation in a spectral Fourier-Galerkin setting [92, 15,

93, 95, 46]. The discussion to this point presents the general basis for these methods

in the context of the variational multiscale method. The demonstration that the

memory is driven by an orthogonal projection of the residual is a hitherto unappre-

ciated fact that provides new insight into the mechanics of MZ-based models.

To this point, we have discussed how unresolved effects can be cast as a memory

term that is a function of only the resolved scales. Directly evaluating this entire

term, however, is intractable. The following chapter will discuss various strategies

to model the memory.



CHAPTER IV

Modeling the Memory

The previous chapter outlined how the Mori-Zwanzig procedure can be used as

an alternative to Hughes’ fine-scale Green’s function. The MZ-VMS procedure led

to a coarse-scale equation that is non-local in time. The effect of the fine scales on

the coarse scales was encoded in a memory term. Directly evaluating this memory

term, however, is not practical. In the optimal scenario, solving the non-Markovian

coarse-scale equation will have a similar cost to solving the original high-dimensional

system. In a more realistic scenario, it is not clear if the memory term can even be

evaluated. Similar to the Green’s function, however, the memory term provides a

starting point for the development of closure models.

The development of general Mori-Zwanzig closure models has been an area of

interest in the research community1. Despite the complexity and minimal under-

standing of the orthogonal dynamics, various surrogate models for the memory exist.

The t-model [19] is the first such MZ-based method. Since the introduction of the

t-model, a number of researchers have examined more sophisticated models. Most

notably, Stinis and coworkers [46, 92, 94, 93, 82] have developed several models for

approximating the memory and have examined their performance on Burgers’ equa-

tion and the Euler equations. More recently, Zhu, Dominy, and Venturi [105, 104]

1It is noted that none of these efforts have been performed within the scope of the variational multiscale method.

64
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have examined additional approximations to the memory as well as error estimates

for various MZ models.

This chapter outlines several prominent MZ-based methods. The energy stability

of several models will be discussed.

4.1 The t-model and renormalized variants

The t-model devised by Chorin [20] approximates the memory using a zeroth order

Taylor expansion of the memory about s = 0,

(4.1)

ˆ t

0

K(ã(t− s), s)ds ≈ tK(ã(t), 0),

where K(ã(t), 0) = etLPLQLã0. The t-model may be alternatively derived via a

rectangular quadrature rule starting from s = 0, or by approximating the orthogonal

dynamics evolution operator with etQL ≈ etL. The t-model has traditionally been

viewed as a long memory model [18], and has been applied with varying degrees of

success to Fourier-Galerkin solutions of Burgers’ equation, the Euler equations, and

incompressible Navier-Stokes equations.

More recently, it has been argued that the t-model requires an additional scaling

to maintain accuracy. A class of renormalized models derived by Stinis [95] approx-

imates the memory with a series expansion of the form,

(4.2)

ˆ t

0

K(ã(t− s), s)ds ≈
N∑

j=1

Cj(−1)j+1 t
j

j!
PetL(PL)jQLa0k.

Stinis [95] also presents a methodology to determine the coefficients Cj using certain

norms of the full solution.

4.1.1 Energy Stability for Conservative Systems

In [46], a proof regarding the energy stability of the t-model was given. This proof

is provided and elaborated on here for completeness.
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Theorem IV.1. Suppose the full order model satisfies

(4.3)
dE

dt
= 0,

where E is the energy as defined by,

(4.4) E = (ã, ã) + (a′, a′).

Then the total energy evolved by the t-model is given by,

(4.5)
dEt

dt
≤ 0.

Thus, if the t-model is constructed for an energy conserving system, the t-model will

be dissipate energy. The same results extend to the τ and VMS(ε) models for τ > 0.

Proof. The evolution equation for total energy is given by,

(4.6)
dE

dt
= (ã, f(ã, a′)) + (a′, g(ã, a′)).

Setting a′ = 0 in Eq 4.6 gives

(4.7)
(
ã, f(ã, 0)

)
= 0.

Next, let a′ = εh,

(4.8)
(
ã, f(ã, εh)

)
+
(
εh, g(ã, εh)

)
= 0.

Expanding Eq. 4.8 in a Taylor series,

(4.9)
(
ã, f(ã, 0)

)
+ ε
(
ã,
∂f

∂a′
∣∣
a′=0

h
)

+ ε
(
h, g(ã, 0)

)
+O(ε2) = 0.

Dividing by ε, letting ε→ 0, inserting in Eq. 4.7, and letting h = g(ã, 0) yields,

(4.10)

(
ã,
∂f

∂a′

∣∣∣∣
a′=0

g(ã, 0)

)
= −

(
g(ã, 0), g(ã, 0)

)
.
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The t-model for this system can be written as

dã

dt
= f(ã, 0) + t

∂f

∂a′

∣∣∣∣
a′=0

g(ã, 0).

From Eq. 4.7 and Eq. 4.10,

(4.11)
dE

dt
= −t

(
g(ã, 0), g(ã, 0)

)
≤ 0.

This completes the proof.

4.1.2 Energy Stability for Dissipative Systems

Many numerical methods are not energy conserving. A relevant case is when vis-

cosity is present. In this case, no proof exists showing that the t-model is dissipative.

To illustrate this, assume the ODE system may be written as,

(4.12)
dã

dt
= f i(ã, a′) + f v(ã, a′),

(4.13)
da′

dt
= gi(ã, a′) + gv(ã, a′),

where f i and gi are energy preserving functions while f v and gv dissipate energy.

For example, f v and gv could be the viscous term. The equation for global energy is

found by taking the inner product against a,

(4.14)
dE

dt
=
(
ã, f i(ã, a′)

)
+
(
a′, gi(ã, a′)

)
+
(
ã, f v(ã, a′)

)
+
(
a′, gv(ã, a′)

)
.

The assumption that f i and gi are kinetic energy preserving implies,

(4.15)
(
ã, f i(ã, 0)

)
= 0,

(4.16)

(
ã,
∂f i

∂a′

∣∣∣∣
a′=0

gi(ã, 0)

)
= −

(
gi(ã, 0),gi(ã, 0)

)
,
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(4.17)

(
ã,
∂f i

∂a′

∣∣∣∣
a′=0

gv(ã, 0)

)
= −

(
gv(ã, 0),gi(ã, 0)

)
.

To determine if the t-model and τ -model are energy dissipative, consider first the

energy budget for the truncated ODE system,

(4.18)
dEnm

dt
=
(
ã, f i(ã, 0)

)
+
(
ã, f v(ã, 0)

)
.

Similarly, the energy budget for the truncated system with the t-model is given by

(4.19)
dEt

dt
=
(
ã, f i(ã, 0)

)
+
(
ã, f v(ã, 0)

)
+ t

(
ã,
∂f

∂a′

∣∣∣∣
a′=0

g(ã, 0)

)
,

where f = f i + fv and the same for g. Subtracting Eq. 4.18 from Eq. 4.19 gives,

(4.20)
dEt

dt
− dEnm

dt
= t

(
ã,
∂f

∂a′

∣∣∣∣
a′=0

g(ã, 0)

)
.

We can expand the right hand side,

(4.21)
dEt

dt
− dEnm

dt
= t

(
ã,
∂f i

∂a′

∣∣∣∣
a′=0

gi(ã, 0)

)
+ t

(
ã,
∂f i

∂a′

∣∣∣∣
a′=0

gv(ã, 0)

)
+

t

(
ã,
∂fv

∂a′

∣∣∣∣
a′=0

gi(ã, 0)

)
+ t

(
ã,
∂fv

∂a′

∣∣∣∣
a′=0

gv(ã, 0)

)
.

Using Eqns 4.16 and 4.17, we have,

(4.22)
dEt

dt
− dEnm

dt
= −t

(
gi(ã, 0),gi(ã, 0)

)
− t
(

gv(ã, 0),gi(ã, 0)

)
+

t

(
ã,
∂fv

∂a′

∣∣∣∣
a′=0

gi(ã, 0)

)
+ t

(
ã,
∂fv

∂a′

∣∣∣∣
a′=0

gv(ã, 0)

)
.

There is no guarantee that Eq. 4.22 has a negative right hand side, and hence it is

not possible to claim that the t and τ -models are purely dissipative. A special case

worth considering is when f v and gv are only functions of ã and a′, respectively.

Under these circumstances, the last three terms in Eq. 4.22 drop and we obtain

(4.23)
dEt

dt
− dEnm

dt
= −t

(
gi(ã, 0),gi(ã, 0)

)
.

This special case is encountered in Fourier-Galerkin spectral methods.
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Remark

• The above proof considers conservation of “modal energy” at the discrete

level. In later chapters, we will extend this proof to consider energy defined

at the continuous level.

4.2 The τ-model

The τ -model [2] is motivated by the idea that memory has a finite support in time

and makes the approximation,

(4.24)

ˆ t

0

K(ã(t− s), s)ds ≈ τK(ã(t), 0),

where τ is the memory length. Approximating the memory with the τ -model gives

rise to the following closed equations for the coarse scales.

(4.25) (w̃, ũt) + (w̃,R(ũ))− τM̃K(ã(t), 0) = (w̃, f).

As the structure of the τ -model is equivalent to the structure of the t-model, the

same proof regarding energy stability presented above applies to the τ -model.

4.2.1 Relationship to Adjoint-Stabilization and the VMS(ε) Model

Insight into the τ -model can be obtained by examining the linear case. Let R be

a linear operator, R = L. The steady-state solution achieved by the τ -model is

(4.26) (w̃, Lũ)− τM̃K(ã(t), 0) = (w̃, f).

Integrating by parts, the memory at s = 0 may be expressed as

M̃K(ã(t), 0) =

ˆ
Ω

ˆ
Ω

(L∗w̃)(x)Π′(x, y)(Lũ− f)(y)dΩydΩx.(4.27)

The memory term has the same form as that obtained by Hughes’ in Ref. [48]. In

the steady case, the orthogonal projection can be viewed as an approximation to the



70

fine-scale Green’s function,

(4.28) g′(x, y) ≈ τ(x, y)Π′(x, y).

The τ -model can be further viewed as a variant of the adjoint stabilization method,

where the only difference is the inclusion of the orthogonal projector. Further, the

τ -model has the same model form the VMS(ε) model in the case where the fine scales

are defined to be orthogonal to the coarse scales.

4.3 The Dynamic-τ model

The dynamic-τ model, which is developed by the author in Ref. [74], is a parameter-

free model that leverages the idea of finite memory, the Germano identity, and the

value of the memory at s = 0. An advantage of the dynamic-τ model is that it only

depends on the value of the kernel at K(ã(t), 0) and does not require the computation

of any high-order terms (i.e. PLQLQLa0j).

The derivation of the dynamic-τ model begins with the assumption that the mem-

ory has a finite support,

(4.29)

ˆ t

0

e(t−s)LPLesQLQLã0ds ≈
ˆ t

t−τ
e(t−s)LPLesQLQLã0.

The numerical evidence for finite memory was presented in the previous chapter.

There is also a theoretical argument for the presence of a finite memory. For problems

that reach a statistically steady state (such as a turbulent channel flow), the memory

should also reach a statistically steady state.

The derivation of the dynamic-τ model proceeds by using a single point quadrature

rule starting from s = 0 to approximate the memory. The memory length is taken to

be of an unknown length, τP . The finite memory assumption implies that K(ã(t −
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(a) Qualitative energy spectrum for a full order sim-
ulation.
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(b) Decomposition into resolved and unresolved sub-
spaces.
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(c) The Germano identity performs an additional de-
composition onto a “test” subspace.

Resolved in	
  ROM
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  in	
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(d) Information from the overlapped subspace is used
to determine τP .

Figure 4.1: Graphical depiction of the Germano identity.

τP , τP)) = 0. Under these assumptions the memory simplifies to,

(4.30)

ˆ t

0

e(t−s)LPLesQLQLã0ds ≈ CqτP(t)etLPLQLã0,

where Cq is the constant associated with the quadrature rule. For example, a trape-

zoidal quadrature would take Cq = 0.5. One could alternatively assume the memory

decays in an exponential fashion, sinusoidal fashion, etc. As in the t-model, the key

simplification thus far is that we have eliminated the dependence on the orthogo-

nal dynamics. Additionally, note that the above model can recover the t-model if

CqτP = t.

The model described in Eq. 4.30 requires the specification of the memory length

τP . Here, a dynamic procedure using the Germano identity [40] is employed. A

graphical depiction of the Germano procedure is provided in Figure 4.1.
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To proceed, decompose the resolved variable ã into two sets such that,

(4.31) ã = {a, â}, a = {a, â, a′}.

Further, define the sharp cutoff filters G̃ and G that satisfy

G̃a = ã Ga = a.

Note that the filters do not commute with non-linear functions, G̃f(a) 6= f̃(ã);

instead they act as a traditional sharp spectral cutoff filter. To derive an expression

for τP , note the following identity for the zero-variance projection,

(4.32) P
ˆ t

0

Kj(ã(s), t− s)ds = G̃Rj(a)−Rj(G̃a).

Applying the “test” filter G to Eq. 4.32 and adding and subtracting Rj(Ga) yields,

(4.33) GP
ˆ t

0

Kj(ã(s), t− s)ds =
[
GRj(a)−Rj(a)

]
+
[
Rj(a)− GRj(ã)

]
,

where we have used used the identities GG̃f(a) = Gf(a) and Ga = a. The first

term on the RHS is simply the unclosed term that arises from filtering at a level G.

Equation 4.33 is a statement of the Germano identity. The second bracketed term on

the RHS can be computed from the under-resolved simulation. The memory length

τP can be approximated by using the τ -model to model the LHS and the first term

on the RHS,

(4.34) CqGetLτPPLQLa0j = Cqe
tLτPPLQLa0j +

[
Rj(a)− GRj(ã)

]
,

where P and Q are the corresponding MZ projection operators at the level G (i.e.

Pf(a) = f(a)), τP is the time-scale for coarse-graining at the level P , and τP is the

time-scale for coarse-graining at the level P .
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Figure 4.2: Ratio of the memory kernel integral (as extracted from the DNS) to the value of the
kernel at s = 0 for Burgers equation, homogeneous turbulence, and channel flow. All terms are
normalized. The x-axis is the ratio of the number of degrees of freedom in the LES to the number
of degrees of freedom in the full-order simulation. Note that the integrated kernel can be computed
from the full-order simulation as etLQLu0j .

4.3.1 Scaling Laws for the Memory Length

To close Eq. 4.34, a constitutive relation between the time-scales τP and τP needs

to be established. To establish this relationship, the ratio between the integrated

memory and memory at s = 0 is examined a priori for a variety of flows. Figure 4.2

shows the ratio of the integrated memory to that of the memory kernel at s = 0

for Burgers’ equation, homogeneous turbulence at several Reynolds numbers, and

channel flow. The memory-length is seen to approximately obey a 1/N1.5 scaling.

As such, the relationship between τP and τP is straightforward,

(4.35) τP =

(
∆P
∆P

)1.5

τP ,
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where ∆ is the corresponding filter scale. The resulting equation for the memory

length, τP , is

(4.36) τP =
1

Cq

Rj(Ga)− GRj(Ĝa)

GetLPLQLa0j −
(

∆P
∆P

)1.5
etLPLQLa0j

.

It is noted that Eq. 4.36 still contains the unknown quadrature constant, Cq. This

term, however, vanishes when Eq. 4.36 is injected into Eq. 4.30.

Figure 4.2 provides insight into the effect of resolution on memory effects. As the

resolution level of a reduced-order model decreases, the time-scale of the memory

term increases. This demonstrates how coarsening a numerical simulation leads to

increased memory effects. It is noted, however, that these time-scales are a function

of both the underlying numerics and physics.

4.3.2 Energy Transfer Constraint

Equation 4.34 is an over-determined system for τP . It is unlikely that one scalar

τP will exist that can satisfy Eq. 4.34 for each mode. As in the dynamic Smagorinsky

model, Eq. 4.34 is understood to be valid in an average sense only. To constrain the

equation for a single scalar τP , the coarse-graining time scale is estimated by equating

the energy transferred by the subgrid model out of the modes a. To see how this is

done, consider the system written discretely as,

(4.37)
daj
dt

= Rj(a).

The evolution of the total energy is then given by,

(4.38)
dE

dt
=

(
a,
da

dt

)
=

(
a,R(a)

)
,

where (a,b) denotes an aptly defined inner product. For a Fourier Galerkin method,

the inner product is simply (a,b) =
∑

j a
∗
jbj. The energy transfered out of the
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resolved modes a is then given by,

(4.39)
dE

dt
=

(
a,R(a)

)
.

Equating the energy transfer out of the modes in a leads to the following equation

for τP ,

(4.40) τP =
1

Cq

R
(

aj, Rj(a)− GRj(â)

)

(
a0, etLPLQLa0 −

(
∆P
∆P

)1.5
etLPLQLa0

) .

With Eqns. 4.30 and 4.40, the dynamic model for the memory integral is closed. The

final expression for the closure model is

(4.41)

P
ˆ t

0

esLPLe(t−s)QLQLa0jds

R
(

aj, Rj(a)− GRj(â)

)

(
a0, etLPLQLa0 −

(
∆P
∆P

)1.5
etLPLQLa0

)etLPLQLa0j.

Note that Cq is canceled out in the dynamic procedure. The key assumptions in

the dynamic-τ model are that the memory integral is well correlated to its value at

s = 0 (Eq. 4.30) and that the scaling law (Eq. 4.35) holds. The stronger of these

two assumptions is that the memory integral is well correlated to its value at s = 0.

For decreasing resolution levels, the orthogonal dynamics are expected to grow in

complexity and the Markovian approximation to the integral may not be sufficient.

4.4 Finite Memory Models

A hierarchy of models that again leverage the idea of finite memory was con-

structed by Stinis [46, 93]. The idea is to repeatedly differentiate the memory with

respect to time to obtain a set of hierarchical equations, which are then truncated.

As these models will be used later in this work, a thorough description is given.
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Define,

(4.42) w
(m)
j (a0, t) = P

ˆ t

am(t)

esLPLe(t−s)QL(QL
)m+1

a0jds,

where am(t) = t − τm(t). For clarity of presentation, the dependence of a′ on the

initial conditions a0 and time t will be implicitly assumed throughout the rest of

this section. Setting m = 0 (in which case Eq. 4.42 is simply the memory term) and

differentiating Eq. 4.42 with respect to time yields,

(4.43)
d

dt
w

(0)
j (a0, t) = etLPLQLa0j−

e(t−τ0)LPLeτ0QLQLa0ja
′
0(t) + P

ˆ t

a0(t)

esLPLe(t−s)QLQLQLa0jds.

Note that the first term on the right hand side does not require the solution of the

orthogonal dynamics equation. The second term on the right hand side is dependent

on the orthogonal dynamics. This dependence can be eliminated by using a discrete

integration scheme to express the memory integral. In the case of the trapezoidal

rule,

(4.44) w
(0)
j (t) =

[
etLPLQLa0j + e(t−τ0)LPLeτ0QLQLa0j

]
τ0(t)

2
+O(τ 2

0 ).

In order to handle the case where the memory length τ0 is not necessarily small, the

memory integral in Eq. 4.42 is partitioned into N sub-intervals,

(4.45) P
ˆ t

t−τ0
esLPLe(t−s)QLQLa0jds = P

ˆ t

t−∆τ0

esLPLe(t−s)QLQLa0jds+

P
ˆ t−∆τ0

t−2∆τ0

esLPLe(t−s)QLQLa0jds+ . . . + P
ˆ t−(N−1)∆τ0

t−N∆τ0

esLPLe(t−s)QLQLa0jds,

where ∆τ0 = τ0/N . Define,

w
(m,n)
j = P

ˆ t−(n−1)∆τ0

t−n∆τ0

esLPLe(t−s)QL(QL
)m+1

a0jds,
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for n = 1, 2, ..., N . Applying the trapezoidal integration scheme to each sub-interval

yields the general form

(4.46)
d

dt
w

(0,n)
j (a0, t) =

[ n−1∑

i=1

(−1)n+i+1w
(0,i)
j

]
2

∆τ0

(
2− (2n− 1)∆τ ′0

)
−

2

∆τ0

w
(0,n)
j

(
1− n∆τ ′0

)
+
(
2− (2n− 1)∆τ ′0

)
etLPLQLa0j+

P
ˆ t−(n−1)∆τ0

t−n∆τ0

esLPLe(t−s)QLQLQLa0jds+O(∆τ 2
0 ).

The right hand side of Eq. 4.46 is now closed with the exception of the memory

term. Assume that the new memory term has a finite support from t− τ1(t) to t. A

differential equation for w(1,n) can be developed by again differentiating the convo-

lution integral in Eq. 4.46 with respect to time and using the trapezoidal rule. The

differentiation process can be continued to build an infinite hierarchy of Markovian

equations. The general form obtained is

(4.47)
d

dt
w

(m,n)
j (a0, t) =

[ n−1∑

i=1

(−1)n+i+1w
(m,i)
j

]
2

∆τm

(
2− (2n− 1)∆τ ′m

)
−

2

∆τm
w

(m,n)
j

(
1− n∆τ ′m

)
+
(
2− (2n− 1)∆τ ′m

)
etLPL

(
QL
)m+1

a0j

+ P
ˆ t−(n−1)∆τm

t−n∆τm

esLPLe(t−s)QL(QL)m+2a0jds+O(∆τ 2
m).

The infinite hierarchy of equations must be truncated at some point. This can be

accomplished by modeling the effects of w
(m+1,n)
j or, more simply, by neglecting it.

Neglecting w
(m+1,n)
j can be justified if the support or magnitude of the integrand

decreases with the repeated application of QL. The derivation above can be carried

out using higher order quadrature [93]. In this work, models with a constant memory

length and one sub-interval are considered. In this case, the models simplify to,

(4.48)
d

dt
w

(m)
j (a0, t) = − 2

τm
w

(m)
j (t) + 2etLPL

(
QL
)m+1

a0j + w
(m+1)
j .
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4.4.1 Alternative Setting for the Finite Memory Models

The first order class of finite memory models derived by Stinis can be obtained

through an approximation to the orthogonal dynamics. A first order approximation

to the orthogonal dynamics operator is,

(4.49) etQL ≈ e
− t
τ0 ,

where τ0 is some positive constant. Inserting this simplification into the memory

kernel, we obtain,

(4.50)

ˆ t

0

esLPLe(t−s)QLQLa0jds ≈
ˆ t

0

esLPLe−
t−s
τ0 QLa0jds.

Differentiating the above with respect to time,

(4.51)
dwj
dt

= etLPLQLa0j −
1

τ0

ˆ t

0

esLPLe−
t−s
τ0 QLa0jds.

Noting that the last term on the right hand side is 1/τ0wj,

(4.52)
dwj
dt

= − 1

τ0

wj + etLPLQLa0j.

Equation 4.52 is almost equivalent to Stinis’ first order finite memory model when

one sub-integration is used. The first order finite memory model of Stinis’ can be

recovered with the approximation etQL ≈ 2e
− t
τ0 , which yields,

(4.53)
dwj
dt

= − 2

τ0

wj + 2etLPLQLa0j.

Equation 4.53 is equivalent to the first order finite memory models of Stinis. It is

also important to note that the time-scale in the finite memory model is different

than the timescale in the dynamic-τ model. The timescale in the dynamic-τ model

is the timescale for which the integrand of the memory kernel decays to zero. The
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timescale in Eq. 4.52 is the timescale at which the orthogonal dynamics decays. To

illustrate the difference in these timescales, consider some toy memory term,

(4.54)

ˆ t

0

eA22(t−s)ds.

In this case, the orthogonal dynamics operator is etQL = eA22t. The timescale in the

dynamic-τ model is the timescale at which the integral decays. For example, the

timescale could be defined as what memory length is necessary to recover 95% of the

integral,

(4.55)

ˆ t

t−τ
eA22(t−s)ds = 0.95

ˆ t

0

eA22(t−s)ds.

The above can be solved for τ ,

(4.56) τ =
1

A22

log

(
0.95eA22t + 0.05

)
.

The timescale for the finite memory model, however, is simply the timescale at which

the orthogonal dynamics decays,

(4.57) τ0 =
1

−A22

.

It is seen that, since the dynamic-τ model is an approximation of the integrand, it

must predict the growing timescale of the integrand. The finite memory models,

however, are an approximation to the orthogonal dynamics. A constant timescale in

the finite memory models leads to an increasing timescale of the integrand.

4.5 Additional Models

A variety of additional MZ-based methods exist. For instance, a class of models

has recently been developed by Price and Stinis [82] that assumes an almost com-

mutativity of of PL and QL to obtain an expansion of the memory term that is
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demonstrated to be accurate for long time intervals. The second order expansion is

given by

(4.58)

ˆ t

0

K(ã(t−s), s)ds ≈ tPetLPLQLã0−
t2

2
PetL

[
PLPLQLã0−PLQLQLã0

]
.

Another class of models has been developed by Zhu and Venturi [105], who consider

approximations to the memory that are based on a Faber series expansion of the

orthogonal dynamics,

(4.59) etQL =
∞∑

j=0

aj(t)Fj(QL),

where Fj is the jth order Faber polynomial and aj are the basis coefficients. In

addition, [105] provides a cogent summary of several additional expansion techniques

used to approximate the memory.

These additional models will not be examined in this work.

4.6 Numerical Evaluation of etLPLQLa0j

As evidenced in this chapter, most MZ-based models require the evaluation of

etLPLQLa0j. This term can be computed by analytically evaluating the Liouville

and projection operators (note that PLQL is applied to the initial conditions and

hence the evaluation is simply an exercise in algebra; examples can be found in [21]).

The naive analytic evaluation of such terms, however, is extremely tedious for general,

complex systems of equations. The complexity of the derivations can be greatly

simplified by recognizing that application of the Liouville operator to a vector v(a0)

can be written as a matrix vector product 2,

(4.60) Lv =
∂v

∂a0

R(a0).

2The author thanks Ayoub Gouasmi for his work on MZ, which helped lead to this revelation.
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Evaluating the Jacobian of v and matrix vector product in Eq. 4.60 can be costly and

tedious. Fortunately, the only quantity of interest is the final matrix vector product,

which is simply the Fréchet derivative of v in the direction of R,

(4.61) Lv = ∇R(a0)v = lim
ε→0

v
(
a0 + εR(a0)

)
− v(a0)

ε
.

Two techniques are considered to compute the Fréchet derivative for general

ODE systems. The most straightforward approach is to approximate the derivative

with a first order finite difference,

(4.62) Lv(a0) ≈ v
(
a0 + εR(a0)

)
− v(a0)

ε
.

To evaluate PLQLa0j using the first order finite difference approximation for the

zero variance projection operators, define the vector field v to be

(4.63) v(a0) = QLa0 = R(a0)−R(G̃a0).

Applying the projection operator and the finite difference approximation of the Li-

ouville operator to Eq. 4.63 yields

(4.64)

PLQLa0j =

[
Rj

(
G̃a0 + R(G̃a0)

)
−Rj

(
G̃
[
G̃a0 + εR(G̃a0)

])

ε
−Rj

(
G̃a0

)
−Rj

(
G̃a0

)

ε

]
.

Noting that the last term on the right hand side is zero, one obtains

(4.65) etLPLQLa0j =
Rj

(
G̃a + εR(G̃a)

)
−Rj

(
G̃
[
G̃a + εR(G̃a)

])

ε
.

We can further recognize that Eq. 4.65 is a perturbation about G̃a + εR(G̃a), which

itself is a perturbation about G̃a. In the limit of ε → 0, Eq. 4.65 is the same as an

expansion about ã,

(4.66) etLPLQLa0j =
Rj

(
ã + ε(I− G̃)R(G̃a)

)
−Rj

(
ã
)

ε
.
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The finite difference approximation to PLQLa0j is attractive due to its simplicity.

Further, the procedure can be used to evaluate higher order terms (i.e. PL(QL)na0j)

through recursive differentiation of functions. This provides a potential pathway to

the generation of automated MZ-based closures. Several issues, however, arise. First,

the selection of the finite difference step size ε can be problematic since the magnitude

of the direction imposed by R(ã) may vary significantly. This can lead to both

cancelation and truncation errors. While the present author has not found the finite

difference approximation to be overly sensitive to ε for the problems considered,

it is still a point of concern (especially for the evaluation of higher order terms).

The second issue with the above approach is the computational cost. Evaluation

of etLPLQLa0j requires an additional residual evaluation and must be computed in

an enriched space. We do note that this cost can be reduced for certain problems

due to symmetries (this will be seen later). Nonetheless, this approach increases the

computational cost of a reduced model significantly.

The second approach considered to evaluate PLQLa0j is to compute the exact

Fréchet derivative. For notational purposes, consider the ODE system written as

dã

dt
= f(ã, a′),

da′

dt
= g(ã, a′).

(4.67)

The exact Fréchet derivative (and continuous counterpart of Eq. 4.66) is given by

etLPLQLã0 =
∂f

∂a′

∣∣∣∣
a′=0

g(ã, 0).

The exact derivative can be computed by linearizing the functional form produced

by QLa0, and then evaluating the resulting function at R(G̃a). While more tedious,

this approach is attractive in that the exact functional form of the model is obtained

and it is computationally more affordable.
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4.7 Chapter Summary

This chapter outlined compact approximations to the memory. The t, τ , dynamic-

τ , and finite memory models were presented. Several important developments in the

chapter are:

• Development of the dynamic-τ model. The dynamic-τ model leverages finite

memory effects and the Germano identity to dynamically compute a timescale

which conserves the energy transfer across two levels of coarse-graining. The

dynamic-τ model is the first parameter-free MZ model that does not explicitly

contain a time term.

• The proof showing that, for systems that are kinetic energy conserving, the t

and τ -models are globally dissipative.

• Demonstration that the τ and VMS(ε) models are equivalent in structure.

• The demonstration that the first order finite memory model derived by Stinis

can alternatively be derived by the approximation etQL ≈ 2e−
t
τ .

At this stage in the work, we have laid out the majority of the foundations of how

Mori-Zwanzig and the variational multiscale method can be used to develop closure

models for Galerkin discretizations. The remainder of this work will examine the

performance of the models in practice. We will first examine spectral methods and

then extend our scope to finite element methods.



CHAPTER V

MZ-VMS for Spectral Methods

This chapter will consider the application of MZ-VMS models to numerical sim-

ulations based on the Galerkin spectral method. In the spectral method, the state

variables are expressed in a global basis that has support over the entire domain,

u(x, t) =
N∑

j=1

aj(t)wj(x).

A key difference between spectral methods and finite element methods that is relevant

to this work is that spectral methods are globally smooth, i.e. the functions are CN

continuous.

5.1 The Viscous Burgers’ Equation

We first consider the viscous Burgers’ equation (VBE). The VBE is a one-dimensional

partial differential equation which displays (somewhat) similar characteristics to the

equations of gas dynamics. The VBE is given by

(5.1)
∂u

∂t
+

1

2

∂u2

∂x
= ν

∂2u

∂x2
.

We consider solutions to the VBE using a Fourier-Galerkin spectral method. In the

Fourier-Galerkin spectral method, the test and trial functions are taken to be,

(5.2) wk(x) = eıkx.

84
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The viscous Burgers’ equation in the frequency domain (k) is obtained through the

weighted residual formulation previously described and is given by,

(5.3)
∂ak
∂t

+
ık

2

∑

p+q=k
p,q∈F∪G

apaq = −νk2ak, k ∈ F ∪G,

with ak(0) = a0k. The Fourier modes a = {ã, a′} are contained within the union of

two sets, F and G. We consider large eddy simulations of Burgers’ equation in which

we seek to solve for the resolved modes, ã ∈ F . The unresolved fine-scale modes are

a′ ∈ G. Partitioning Eq. 5.3 into the resolved and unresolved sets, the evolution

equation for the resolved variables is written as,

(5.4)

∂ak
∂t

+
ık

2

∑

p+q=k
p∈F,q∈F

apaq = −νk2ak−
ık

2

( ∑

p+q=k
p∈G,q∈G

apaq+
∑

p+q=k
p∈F,q∈G

apaq+
∑

p+q=k
p∈G,q∈F

apaq

)
k ∈ F.

The last three terms on the RHS of Eq. 5.4 contain the effect of the unresolved scales

on the resolved scales and must be modeled. These unclosed terms show up in the

form of cross stresses (terms that have wavenumbers in both F and G) and Reynolds

stresses (terms that have wavenumbers only in G). In the forthcoming sections,

large eddy simulations of the VBE will be performed using various models. The

VBE is solved numerically using the spectral method. The convolution summations

are evaluated via the fast Fourier transform (FFT). The FFT calculations are padded

by the 3/2 rule. Jameson’s explicit low storage 4th order Runge-Kutta method is

used for time integration [79].

5.1.1 Kinetic Energy Properties of the Fourier-Galerkin Spectral Method

To assess the energy transfer properties of the MZ-VMS models, first consider the

energy budget of Burgers’ equation. First, consider the inviscid case (ν = 0). The

spectral approximation to the viscous Burgers’ equation (Eq. 5.3) obeys the physical
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space PDE [3],

(5.5)
∂

∂t
ũ+

1

2

∂

∂x

(
Pnũ2

)
= 0 x ∈ [x, 2π),

where Pnf(x) is the projection of f(x) onto the Fourier basis. To derive an equation

for kinetic energy [3], rewrite the above as,

(5.6)
∂

∂t
ũ+

1

2

∂

∂x
ũ2 =

1

2

∂

∂x

(
(I − Pn)ũ2

)
.

Next, multiply Eq. 5.6 by ũ and integrate over the domain,

(5.7)

ˆ
1

2

∂

∂t
ũ2 +

1

6

∂

∂x
ũ3dx =

ˆ
ũ

2

∂

∂x

(
(I − Pn)ũ2

)
dx

The last term on the right hand side drops due to the orthogonality of the Fourier

basis. One obtains,

(5.8)
1

2

ˆ
∂

∂t
ũ2 = 0.

Equation 5.8 shows that the Fourier-Galerkin spectral method is L2 conservative (i.e.

kinetic energy preserving) for the inviscid Burgers’ equation. From the analysis in

Section 4.1.1, it directly follows that the t and τ -model will dissipate kinetic energy

at the rate,

(5.9)
1

2

ˆ
∂

∂t
ũ2 ∝ −

ˆ (
∂

∂x

(
(I − Pn)ũ2

))2

dx.

In the case that viscosity is present, one will note that the viscous term shows up

in Fourier space as

Fuxx = −k2ak.

The viscous term for the resolved modes is only a function of the resolved modes,

and same for the unresolved modes. This falls into the special case discussed in

Section 4.1.2 and it follows that the τ and t-model will again dissipate energy at the

rate given in Eq. 5.9.
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5.1.2 Analytic evaluation of PLQLa0j for Burgers’ Equation

The analytic form of PLQLa0j can be computed by evaluating the exact Fréchet

derivative of QLa0j and then projecting it. This corresponds to a linearization. The

right hand side of Burgers’ equation at t = 0 in Fourier space is

(5.10) La0k = Rk(a0) = − ık
2

∑

p+q=k
p,q∈F∪G

ap0aq0 − νk2ak0, k ∈ F ∪G.

Split the convolution in Eq. 5.10 into resolved and unresolved terms,

(5.11) La0k = − ık
2

∑

p+q=k
p,q∈F

ap0aq0 −
ık

2

∑

p+q=k
p∈F,q∈G

ap0aq0

− ık

2

∑

p+q=k
p∈G,q∈F

ap0aq0 −
ık

2

∑

p+q=k
p,q∈G

ap0aq0 − νk2ak0, k ∈ F ∪G,

where modes in F are resolved and in G are unresolved. Application of the compli-

mentary projector eliminates the first term on the RHS,

(5.12)

QLa0k = − ık
2

∑

p+q=k
p∈F,q∈G

ap0aq0−
ık

2

∑

p+q=k
p∈G,q∈F

ap0aq0−
ık

2

∑

p+q=k
p,q∈G

ap0aq0−νk2ak0︸ ︷︷ ︸
k∈G

, k ∈ F∪G.

Now linearize Eq. 5.12 about a0,

(5.13) QLlina0k = − ık
2

∑

p+q=k
p∈F,q∈G

(
ap0a

′
q0 + a′p0aq0

)
− ık

2

∑

p+q=k
p∈G,q∈F

(
ap0a

′
q0 + a′p0aq0

)
−

ık

2

∑

p+q=k
p,q∈G

(
ap0a

′
q0 + a′p0aq0

)
− νk2a′k0︸ ︷︷ ︸

k∈G

, k ∈ F ∪G.
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Application of the Liouville operator to Eq. 5.12 is simply Eq. 5.13 evaluated at

a0
′ = R(a0),

(5.14) LQLa0k = − ık
2

∑

p+q=k
p∈F,q∈G

(
ap0Rq(a0) +Rp(a0)aq0

)
−

ık

2

∑

p+q=k
p∈G,q∈F

(
ap0Rq(a0) +Rp(a0)aq0

)
− ık

2

∑

p+q=k
p,q∈G

(
ap0Rq(a0) +Rp(a0)aq0

)
−

νk2Rk0(a0)︸ ︷︷ ︸
k∈G

, k ∈ F ∪G.

Finally, project Eq. 5.14,

(5.15) PLQLa0k = − ık
2

∑

p+q=k
p∈F,q∈G

ap0Rq(â0)−

ık

2

∑

p+q=k
p∈G,q∈F

Rp(â0)aq0 − νk2Rk0(â0)︸ ︷︷ ︸
k∈G

, k ∈ F ∪G.

Noting that the two separate terms on the RHS are identical and inserting in Rq,

one obtains,

(5.16) PLQLa0k = −ık
∑

p+q=k
p∈F,q∈G

ap0

[
− ıq

2

∑

r+s=q
r,s∈F

ar0as0

]
−νk2Rk0(â0)︸ ︷︷ ︸

k∈G

, k ∈ F ∪G.

The reader will note that the model form for the viscous Burgers’ equation is the

same for modes in F .

Remarks

• Due to the linearization present in the derivation of PLQLa0k, contributions

from the Reynolds stress term are not present. MZ-VMS models that only

include the term PLQLa0k are incapable of modeling the Reynolds stresses.

• This limitation of the first order MZ-VMS models will manifest itself in the

following sections when we apply the MZ-VMS models to turbulent flows
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at a high Reynolds number.

5.1.3 Case 1: Standing Shockwave

The first case that will be considered uses the initial condition u(x, 0) = sin(x)

with a viscosity of ν = 0.005. This leads to a standing shock after t = 1. The low

viscosity allows for the solution to be mostly inviscid, but stops the PDE from be-

coming singular. The reduced model is taken to be of size N = 16 (corresponding to

a cutoff frequency at k = 8), while the full order model takes N = 1024. The closure

model must be capable of removing the energy transferred to the high frequency

modes resulting from the shock. The simulation is evolved until t = 15.

Structure of the Memory and Shortcomings of the t-model

We first investigate the structure of the memory and demonstrate how the well-

studied t-model will break down for this problem. As discussed in Chapter IV, the

t-model [20] can be derived under the guise of various mathematical assumptions.

For example, the t-model can be derived by expanding the memory integral in a

Taylor series expansion about s = 0, or by approximating the orthogonal dynamics

evolution operator (etQL) with the evolution operator of the full dynamics (etL). The

most straightforward and physically intuitive derivation is to use a left hand side

quadrature rule to approximate the memory integral using its value at s = 0,

(5.17) P
ˆ t

0

e(t−s)LPLesQLQLa0jds ≈ tetLPLQLa0j.

With this approximation, one does not need to solve the troublesome orthogonal

dynamics equation as the dependence on etQL is eliminated. The t-model has been

applied with varying degrees of success to a number of problems, including Burgers’

equation and the incompressible Navier-Stokes equations. Work by Stinis [94] has
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argued that the t-model requires an additional scaling constant to maintain accuracy,

(5.18) P
ˆ t

0

e(t−s)LPLesQLQLa0jds ≈ Ctte
tLPLQLa0j.

Stinis motivates the need for these renormalization constants with the hypothesis

that the full-order model that the t-model is approximating is, itself, under-resolved.

Assessing the validity of the underlying assumptions of the t-model (as well as a

renormalized t-model) is challenging as it requires one to directly evaluate the mem-

ory kernel. This involves solving the N -dimensional orthogonal dynamics equation,

which is thus far intractable. Here, we use the orthogonal ODE and its procedure [43]

presented in Section 3.3.3 to approximate solutions to the orthogonal dynamics in

an attempt to directly assess the underlying assumptions of the t-model and Stinis’

renormalized models. The purpose of the following discussion is to use the orthogo-

nal ODE to approximate the memory kernel so as to understand how the fine-scale

unresolved modes impact the coarse-scale resolved modes. Numerical details for the

simulation considered are given in Table 5.1. The reconstruction of the memory

kernel through the orthogonal ODE and its procedure is performed as follows [43]:

1. Run the full order simulation to obtain a(tj), where j are the number of de-

sired quadrature points for the eventual discrete reconstruction of the memory

integral.

2. From the full order simulation data, compute K(a(tj), 0) = etjLPLQLã0.

3. For each tj, evolve the orthogonal ODE using the initial condition K(a(tj), 0)

to obtain K(ã(tj), si).

4. For each tj discretely reconstruct the memory integrand, M(t) =
´ t

0
K(ã(t −

s), s)ds, using any numerical quadrature rule.

Figure 5.1 shows the reconstructed memory integrand at t = 5, as well as the total
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L ν N ∆t Quadrature ∆t
2π 0.005 1028 0.001 0.005

Table 5.1: Physical and numerical details for reconstruction of the kernel via the orthogonal ODE.
N is the size of the full-order model.

subgrid energy transfer. The reconstructed terms are compared to those extracted

from DNS data. The integrand assumed by the t-model is also shown for reference.

The subgrid term given by MZ is the area of the shaded regions. The yellow shaded

region is that predicted by the orthogonal ODE procedure, while the gray shaded

region is that assumed by the t-model. It is seen that the comparison of the memory

term approximated through the orthogonal ODE to the DNS is reasonable, although

some error is notably present for the total subgrid energy transfer. Nonetheless, the

important observation to make from Figure 5.1 is the presence of a decaying memory

kernel. It is quite clear that the t-model will grossly overestimate the value of the

integrand and that an additional scaling is required. The required scaling is the

ratio of the true integral (area of the shaded yellow region) to the assumed t-model

integral (area of the shaded gray region). Figure 5.2 shows these ratios computed for

various reduced order model sizes (i.e. varying the cutoff wavenumber kc) at t = 1.

The size of the reduced order models are denoted by Nc. The ratios are compared

to the renormalized t-model coefficients as computed by Stinis. The agreement is

excellent.

This numerical evidence shows that, as suggested by Stinis, the t-model requires an

additional scaling coefficient. The simple left hand side quadrature rule assumed by

the t-model is inappropriate and unjustified. The decaying kernel must be accounted

for to accurately model the memory.
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Figure 5.1: Reconstruction of the memory kernel via the orthogonal ODE.
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Figure 5.2: Comparison of the ratio of the true memory integral to the t-model memory integral
(i.e. the ratio of the area in the shaded yellow region in Fig. 5.1a to the area in the shaded gray
region) versus the renormalization coefficients obtained by Stinis.
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Predictive Results

Predictive results using the dynamic-τ model, the t-model, and VMS(ε) model

are now examined. Per the previous discussion, we expect the τ and VMS(ε) models

to outperform the t-model as they can account for a decaying kernel (if τ < t). Note

that all three of these models have the same form, but differ in the definition of the

timescale. In the VMS(ε) model, the timescale is defined as [100],

(5.19) τ =

[
4

h2
u2 + 3πν2

( 4

h2

)2
]−1/2

.

The numerical results for total resolved kinetic energy and the mean magnitude

of the subgrid-content are shown in Figure 5.3. In Figure 5.3 it is seen that all of the

models accurately predict the decay of kinetic energy and the subgrid-content. Sim-

ulations run with no subgrid-scale model lead to inaccurate results. As expected, the

t-model performs worse than the other models. The model slightly under-predicts the

decay of kinetic energy and over predicts the subgrid-content. Figure 5.4 compares

the memory timescale τ of the different models and compares it to the ratio of the

memory at s = 0 over the total memory integral. The timescales of the dynamic-τ

model and VMS(ε) model are seen to evolve similarly and compare well with the

DNS data (i.e. the ratio of the true memory term to its value at s = 0). Figure 5.5

shows the x− t diagrams of the numerical solutions for select cases in physical space.

The trajectories of the simulation using the dynamic-τ model are seen to give the

best comparison with the DNS data.

As previously discussed, both the t-model, dynamic-τ -model (and the VMS(ε)

model) do not include contributions from the Reynolds stress. To demonstrate this,

the subgrid-content at t = 2.0 is examined. Figure 5.6 shows the decomposition

of the subgrid energy transfer into the cross stresses and the Reynolds stresses.
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The stresses are compared to the total subgrid-stress as predicted by the dynamic-τ

model. In Figure 5.6 it is seen that the cross stress is the dominant component of

the subgrid-content for high wavenumbers. The dynamic-τ model is seen to offer an

excellent qualitative depiction of the cross stress. The magnitude of the cross stresses

are predicted reasonably well and, more importantly, its wavenumber dependence is

well-characterized. The same, however, can not be said about the Reynolds stress.

There is no qualitative resemblance between the subgrid-content as predicted by the

MZ-VMS model and the DNS data. This is not surprising as the Reynolds stress

makes no appearance in the MZ-VMS model.

5.1.4 Case 2: Burgers’ Turbulence

Numerical simulations of the VBE are now performed with the initial condi-

tion [60],

(5.20) u(x) = U∗0

kc∑

i=1

√
2E(ki) sin(kix+ βi),

where E(k) = 5−5/3 if 1 ≤ k ≤ 5 and E(k) = k−5/3 for k > 5. Eq. 5.20 initializes an

energy spectrum with a -5/3 slope for k > 5. The phase angle β is a random number

in the domain [−π, π]. A constant seed value is used in all of the simulations. No

energy is added to the flow after a cutoff frequency kc, such that all simulations are

initially fully resolved. We consider simulations with the t-model, dynamic-τ model,

VMS(ε) model, and Stinis’ finite memory models. All of Stinis’ higher order models

use one quadrature point.

Selection of the Memory Length

While the dynamic-τ and t-model are autonomous, the finite memory models

require a specification of the memory length. In Section 3.4 it was demonstrated

that the memory length could be related to the eigenvalues of the fine-scale operator.
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Figure 5.3: Evolution of integral quantities for Burgers’ equation.
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Figure 5.4: Evolution of the memory timescale, τ , for different models. Note that for the t-model
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Since Burgers’ equation does not exhibit scale separation, a logical hypothesis is that

a mean timescale can be related to the spectral radius of the Jacobian of the resolved

variables

τ ∝ 1/ρ

(
∂R

∂u

)
.

To provide evidence for this argument, a parametric study was performed involving

60 cases. The simulations were initialized with Eq. 5.20 and operated over a range

of Reynolds numbers and resolutions. The cases considered were permutations of

the following parameters: ν = [0.05, 0.01, 0.005, 0.001, 0.0005], kc = [8, 16, 32], U∗0 =

[1, 2, 5, 10]. The DNS simulations were carried out using 4096 resolved modes. For

each case, the time constant τ0 in the first order finite memory model is found by

solving an inverse problem. For simplicity, τ0 is taken to be constant in time. The

optimal time constant in the least squares sense was found by minimizing the differ-
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Figure 5.5: x− t diagrams for the filtered velocity field in physical space.
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ence of the total kinetic energy dissipation rate between the large eddy simulation

and a high resolution direct numerical simulation. The solution was minimized for

t ∈ [0, 2] using data at discrete time-steps spaced by intervals of ∆t = 0.01. The

discrete penalty function is given by,

J =
N∑

n=1

([
dKn

dt

]

MZ

−
[
dKn

dt

]

DNS

)2

where N = 2/0.01 = 200. The penalty function was minimized using SciPy’s opti-

mization suite. A downhill simplex algorithm was used. It is noted that the inferred

results were similar to a penalty function that minimized the total kinetic energy.

Figure 5.7 shows the inferred time constants plotted against the temporal mean of

the spectral radius of the Jacobian of the resolved variables. The kc = 16 and kc = 32

cases are seen to collapse to the same line. The kc = 8 cases also collapse to a linear

line, but with a slightly greater slope. Given the wide range of cases considered, the

collapse of the data is good. This result suggests that the properties of the Jacobian
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Figure 5.7: Inverse solution for the first order model time constant τ0 plotted against the inverse
of the spectral radius of the Jacobian of the resolved variables.

of the resolved variables can be used as a good indicator of the memory length. A fit

of the above data yields τ0 ≈ 0.2/ρ
(
∂R
∂u0

)
. In the following section, this heuristic will

be used to select the memory length. For simplicity, a constant value of τ0 based on

the spectral radius at t = 0 is used.

Predictive Results

Predictive simulations are now considered. Direct numerical simulations of the

VBE were performed with 2048 resolved modes (−1024 ≤ k ≤ 1023) on a spatially

periodic domain of length 2π for t ∈ [0, 2]. The initial condition given in Eq. 5.20

is used with U∗0 = 1 and ν = 0.01. Large eddy simulations are performed with

the closure models described in Chapter IV. The first, second, and third order fi-

nite memory models are considered. The large eddy simulations are initialized with

the DNS solution for k ≤ kc such that all simulations are fully resolved at t = 0.
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DNS Smagorinsky t-model FM1 FM2 FM3
N 2048 32 32 32 32 32
∆t 1e-4 1e-3 1e-3 1e-3 1e-3 1e-3
Constants NA Cs = 0.2 τ0 = t τ0 = 0.135 τ0,1 = 0.135, 0.07 τ0,1,2 = 0.135, 0.07, 0.07

Table 5.2: Summary of computational details for the numerical experiments of Burgers’ equation.

The simulations were performed with 32 resolved modes, corresponding to a cutoff

frequency at kc = 16. The memory length τ0 was selected by the procedure de-

scribed in the previous section. A formal estimation procedure was not used for

the memory lengths of Stinis’ higher order models, which were simply chosen to be

τ1 = τ2 = 0.5τ0. A summary of the relevant computational details is given in Ta-

ble 5.2. Figures 5.8 and 5.9 compare the MZ-VMS based models to the filtered

DNS data, the Smagorinsky model, and a simulation run on a 32 point mesh with-

out any closure model. Figure 5.8a shows the temporal evolution of the total kinetic

energy and rate of kinetic energy decay. Figure 5.8b shows the temporal evolution of

the mean magnitude of w(0) (note w(0) = ikτ sgs) and the energy spectrum at t = 2.0.

Figure 5.9 shows the trajectories of the 8th (Fig. 5.9a) and 15th (Fig. 5.9b) modes of

a and the memory term (denoted by w(0)) in the complex plane. A brief discussion

of the results of each simulation will now be provided.

The simulation performed without a closure model under-predicts the rate of

energy decay at early time, leading to an over-prediction in total kinetic energy.

As expected, the simulation under-predicts the dissipation rate. With no subgrid-

mechanism present to remove energy from high wavenumbers, a pile-up of energy is

seen for high k. This is evidenced in Figure 5.8b. This phenomena indicates that the

simulation is under-resolved and a closure model is indeed required. The evolution

of the individual modes of ã contain significant error, particularly around the cutoff

frequency. The evolution of the 15th mode, as shown in Figure 5.9a, is an excellent
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example of the error present in high wavenumbers.

The Smagorinsky model offers improvements. The simulation utilizing the basic

closure model provides decent predictions for both the total kinetic energy and the

dissipation of kinetic energy. The energy spectrum at t = 2.0 and trajectories of

the individual modes are additionally much improved. However, the Smagorinsky

model is unable to differentiate the resolved scales from the unresolved scales. De-

spite being completely resolved at t = 0, the Smagorinsky model predicts that the

subgrid-content is maximum at t = 0. The resulting predictions for w(0) are both

quantitatively and qualitatively incorrect. In particular, the individual trajectories

of w(0) show no similarity to that of the DNS. It is recognized that the Smagorinsky

model was developed for homogeneous turbulent flows in the physical domain, so a

critical evaluation of the model on Burgers’ equation is not completely appropriate.

Simulations performed using the t−model provide improved predictions. The

largest error is present in the prediction for w(0), where it is seen that the t−model

slightly over predicts subgrid-content (especially for t > 0.5). The predictions, how-

ever, are still qualitatively correct. The model correctly predicts the initial peak in

dE/dt and w(0) around t = 0.15 and qualitatively shows the presence of the second

peak around t = 0.6. The trajectories of the individual modes in u and w(0) are

improved, but become less accurate for late time. The prediction for the energy

spectrum at t = 2.0 is not noticeably better than that of the Smagorinsky model.

The explicit presence of t in the model leads to substantial error at large times.

The performance of the t-model for the VBE shows the merit in the MZ-VMS-based

models. To reiterate, the t-model contains no heuristics or coefficients. Work by

Stinis [95] and the authors own numerical experiments show that renormalization

of the t-model can lead to more accurate results.
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The dynamic-τ model does not perform as well as the t-model for early times,

but outperforms it later in the simulation. It outperforms the Smagorinsky model

as well as the no-model simulation. Due to the complex initial conditions and lack

of scale similarity at initial time, the dynamic procedure to determine τ slightly

suffers. Further, the initial conditions are such that the closure contribution is ini-

tially zero at t = 0. The dynamic-τ model is unable to predict this as it assumes

scale similarity. As time increases and an energy cascade is established, the assump-

tions of the dynamic model improve and the model is able to accurately capture the

impact of the unresolved scales. The VMS(ε) model performs qualitatively similar

to the dynamic-τ model, although there is slightly more error in the phase space

trajectories.

The finite memory models provide relatively accurate predictions for all quantities.

The evolution of total kinetic energy, dissipation of kinetic energy, and mean subgrid-

predictions are in good agreement with the DNS. The first order finite memory

model accurately predicts the instantaneous energy spectrum at t = 2.0 for low

wavenumbers, while the second and third order models provide accurate predictions

for all wavenumbers. The trajectories of the individual modes are close to that of the

DNS, as are the trajectories for the subgrid-terms. It does need to be noted, however,

that the finite memory models were optimized via the selection of the memory length,

while the t-model and dynamic-τ model have no such tuning parameters.

Results of the first order finite memory model, t-model, and dynamic-τ model

are shown in Figure 5.10 for two additional cases. The first is run at a resolution of

kc = 8, a viscosity of ν = 0.01, and a scaling of U∗0 = 5. The second case is run at

a resolution of kc = 32, a viscosity of ν = 5 × 10−4, and a scaling of U∗0 = 10. The

time constants for the finite memory model were again selected by the scaling of the
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(a) Temporal evolution of total kinetic energy (left) and rate of decay of kinetic energy (right).

(b) Temporal evolution of the mean magnitude of w(0) (left) and energy spectrum at t = 2.0. Note that
w(0) = ikτsgs.

Figure 5.8: A comparison of Large Eddy Simulations performed with 32 resolved modes to filtered
DNS data obtained from a simulation performed with 2048 resolved modes.
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(a) Evolution of the eighth mode of u (left) and w (right).

(b) Evolution of the 15th mode of u (left) and w (right).

Figure 5.9: Evolution of select modes of u and w in phase space. In phase space the DNS data
(denoted by �) is sparse around t = 0 and becomes clustered as t→ 2.
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spectral radius of the Jacobian. Both of these cases are significantly under-resolved.

The low viscosity case in particular has numerous shocks and required 4096 resolved

modes for the DNS calculation.

5.2 Navier-Stokes Equations

Large eddy simulations of the incompressible Navier-Stokes equations using a

Fourier-Galerkin spectral method are now considered. The incompressible Navier-

Stokes equations are given by,

(5.21)
∂ui
∂xi

= 0,

(5.22)
∂ui
∂t

+
∂uiuj
∂xj

= −1

ρ

∂p

∂xi
+

∂

∂xj

(
ν
∂ui
∂xj

)
.

For triply periodic problems, Eqns. 5.21 and 5.22 can be Fourier-transformed in all

directions. The pressure Poisson equation can be directly solved in Fourier space,

allowing the governing equations to be written compactly as,

(5.23)(
∂

∂t
+ νk2

)
ai(k, t) +

(
δim −

kikm
k2

)
ıkj

∑

p+q=k
p,q∈F∪G

aj(p, t)am(q, t) = 0 k ∈ F ∪G,

where the Fourier modes have been written to belong to the union of two sets (with

F being the resolved set and G being the unresolved set). Separating the modes into

resolved and unresolved sets yields the reduced system,

(5.24)

(
∂

∂t
+ νk2

)
ai(k, t) +

(
δim −

kikm
k2

)
ıkj

∑

p+q=k
p,q∈F

aj(p, t)am(q, t) =

−
(
δim −

kikm
k2

)
ıkj τ̂jm(k, t) k ∈ F,

where

τ̂jm(k, t) =
∑

p+q=k
p,q∈G

aj(p, t)am(q, t) +
∑

p+q=k
p∈G,q∈F

aj(p, t)am(q, t) +
∑

p+q=k
p∈F,q∈G

aj(p, t)am(q, t).
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Figure 5.10: Evolution of select quantities of the additional simulations of the VBE. The conditions
are kc = 8, ν = 0.01, U∗0 = 5 (left) and kc = 32, ν = 5× 10−4, U∗0 = 10.



107

Note that, in Fourier space, the pressure term appears as a projection. This projec-

tion leads to additional non-linear interactions between the resolved and unresolved

scales. As in Burgers’ equation, the unclosed terms can be separated into the cross

stresses and the Reynolds stresses. As previously seen, the first-order MZ-VMS

models are incapable of modeling the Reynolds stresses. Through the use of the

Mori-Zwanzig formalism, the RHS of Eq. 5.24 can be alternatively written as a con-

volution integral,

(5.25)

(
∂

∂t
+ νk2

)
ai(k, t) +

(
δim −

kikm
k2

)
ikj

∑

p+q=k
p,q∈F

aj(p, t)am(q, t) =

P
ˆ t

0

Ki(ã(t− s), s)ds k ∈ F.

5.2.1 Kinetic Energy Properties of the Fourier-Galerkin Spectral Method for the
Incompressible Navier-Stokes Equations

The Fourier-Galerkin spectral approximation to the Euler equations can be shown

to be kinetic energy conserving. The proof follows that which was previously per-

formed for Burgers’ equation, and we refer to the work of Bardos and Tadmor [3].

As in Burgers’ equation, in the Navier-Stokes equations the impact of viscosity again

shows up as a self interaction and hence we can still guarantee that the t-model and

τ -model will dissipate energy. The guarantee of kinetic energy stability for the Euler

equations demonstrates that the τ , t, and VMS(ε) models will be globally dissipative

and stable for all Reynolds numbers and all resolutions.

5.2.2 MZ-VMS Model Forms

The MZ-VMS-based models described in Chapter 4 require computing terms of

the form PL(QL)na0j. The analytic derivation of these terms is somewhat tedious,
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but they do follow a general pattern. After much algebra it can be shown

(5.26) PLQLai(k, 0) =

(
− δim +

kikm
k2

)
ikj

∑

p+q=k
p∈F,q∈G

aj(p, 0)PLam(q, 0)−

(
δim +

kikm
k2

)
ikj

∑

p+q=k
p∈F,q∈G

am(p, 0)PLaj(q, 0).

This is consistent with the results obtained by Stinis [92]. We note that viscosity

does not change the above term for the modes in F . It will, however, change the

result for the modes in G and must be considered for higher order models. We

refer to Stinis [92] as a reference for the derivations for higher order models for

the Euler equations, which are tedious and challenging but follow certain patterns.

The addition of the viscous term adds little difficulty to the derivations. Symbolic

MATLAB scripts are available to aid in the model derivations/validation.

5.2.3 VMS(ε) model

The VMS(ε) model has the same structural form as the t and τ -models but has a

different definition of τ . The timescale is taken to be [100],

(5.27) τ =
( 4

h2
u · u + 3πν2

( 4

h2

)2
)−1/2

.

5.2.4 Numerical Implementation

A code named PySpectral was developed in this dissertation to assess the per-

formance of the MZ-VMS models. PySpectral is a Python-based code that solves

the three-dimensional incompressible Navier-Stokes equations with triply periodic

boundary conditions in their primitive form. In addition to the standard Navier-

Stokes equations, the code has been used to solve the Navier-Stokes equations with

rotation as well as the equations of ideal magnetohydrodynamics. The code is par-

allelized through mpi4py and has been used to solve systems with over one billion
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unknowns. The code implementation uses ideas developed in [70]. Details on the

solver are presented in Appendix B

5.2.5 Taylor Green Vortex

The Taylor Green vortex [98] is a common model problem to study the accuracy

of computational methods and subgrid models. The flow is characterized by a break

down of initial coherent structures into turbulent flow. The flow is initialized on a

periodic domain with x1, x2, x3 ∈ [−π, π] and,

u1(x1, x2, x3) = cos(x1) sin(x2) cos(x3)

u2(x1, x2, x3) = − sin(x1) cos(x2) cos(x3)

u3(x1, x2, x3) = 0.

(5.28)

Direct numerical simulations were performed for Re = [400, 800, 1600]. The simu-

lations were considered to be resolved when the energy, dissipation, and spectra of

the modes up to a cutoff frequency kc remained constant after doubling the number

of resolved modes in each direction and halving the time step. A breakdown of the

computational details is provided in Table 5.3. Large eddy simulations were per-

formed using various MZ-VMS and VMS models for each of these cases. In addition,

simulations considering the static Smagorinsky models are considered. It is noted

that, for the Taylor Green vortex, the static Smagorinsky model outperforms the

dynamic Smagorinsky model. For the finite memory models, all cases were run with

constants of τ0 = 0.1. The Smagorinsky model uses the default setup of Cs = 0.16.

A detailed discussion for each case is now provided.

Case 1: Re = 400 on 32 modes

Large eddy simulations were run with 32 resolved modes in each direction using

various closure models as well as with no closure model. At this resolution the sys-
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Case Re kc Grid Time Step (s)
1 400 16 643 0.02
2 800 16 1283 0.02
3 1600 16 2563 0.005

Table 5.3: Computational details for DNS simulations of the Taylor Green Vortex.

tem is only slightly under-resolved. The results are summarized in Figure 5.11. For

physical insight, Figure 5.11a first shows the break down of the vortex via contours

of q-criterion. Figure 5.11b shows the temporal evolution of the kinetic energy inte-

grated over the whole domain as well as the temporal evolution of the kinetic energy

dissipation rate (computed by −dE
dt

). The finite memory, dynamic-τ , VMS(ε), and

no model simulations all perform well. The performance of the t-model is signifi-

cantly worse than the other methods. The model removes too much energy from the

simulation, which leads to poor predictions for the dissipation and energy spectra.

This error demonstrates the need for finite memory considerations. The Smagorin-

sky model is far too dissipative. Only the finite memory, dynamic-τ , and VMS(ε)

models are able to accurately characterize the double peaked structure of the kinetic

energy dissipation rate around t = 8. The energy spectra of the simulations at t = 5

and t = 10 are shown in Figure 5.11c. The Smagorinsky model again performs the

worst, being too dissipative at low wavenumbers. In the case of the under-resolved

simulation, the lack of a closure model leads to a slight buildup of energy at high

wavenumbers. As time increases, this buildup of energy is felt by the lower wavenum-

bers and leads to small errors across the spectrum. The finite memory, dynamic-τ ,

and VMS(ε) models provide the best prediction. These models are able to mimic the

cascade of energy from the resolved scales to the unresolved scales with a degree of

accuracy.
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(a) Contours of q-criterion from DNS simulation at t = 5 (left) and t = 10 (right).

(b) Evolution of integral quantities.

(c) Energy spectra at t = 5, 10, and 15..

Figure 5.11: Results for numerical simulations of the Taylor Green Vortex at Re = 400. DNS
quantities are obtained from filtered data obtained on a 643 grid. All other models are run on 323

grids.
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Case 2: Re = 800 on 32 modes

Simulations are again run with 32 resolved modes in each direction. At this

resolution the system is under-resolved. The results are summarized in Figure 5.12.

The conclusions are much the same as in the Re = 400 case. The finite memory,

dynamic-τ , and VMS(ε) models provide better predictions than the Smagorinsky

model and the no model simulation. The t-model removes too much energy and

needs renormalization to maintain accuracy. The finite memory, dynamic-τ , and

VMS(ε) models capture the qualitative structure of the peak in kinetic energy and

the dissipation is well characterized (although more error is present than in the

Re = 400 case). The under-resolved and Smagorinsky model show no indication

of the complex peaked structure around t = 10. The energy spectra reveals an

early buildup of energy for the under-resolved model, while the Smagorinsky model

eliminates energy content from the low frequencies early on.

Case 3: Re = 1600 on 32 modes

Simulations are again run with 32 resolved modes in each direction. The results

are shown in Figure 5.13. Due to the increased Reynolds number the simulation is

significantly under-resolved. The simulation run without a subgrid-scale model can

not predict the initial peak in dissipation around t = 8 and has a buildup of energy

at high wavenumbers. The Smagorinsky model is again too dissipative at early time,

leading to incorrect predictions in total kinetic energy, dissipation, and spectra. The

dynamic-τ , finite memory, and VMS(ε) models provide the best predictions. The

predictions for kinetic energy and the dissipation of kinetic energy are excellent up

to t = 8. For time t > 10, the MZ-VMS models are less accurate, but qualitative

similarities are still present between the predictions and DNS quantities.
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(a) Contours of q-criterion from DNS simulation at t = 5 (left) and t = 10 (right).

(b) Evolution of integral quantities.

(c) Energy spectra at t = 5, 10, and 15..

Figure 5.12: Results for numerical simulations of the Taylor Green Vortex at Re = 800. DNS
quantities are obtained from filtered data obtained on a 1283 grid. All other models are run on 323

grids.
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(a) Contours of q-criterion from DNS simulation at t = 5 (left) and t = 10 (right).

(b) Evolution of integral quantities.

(c) Energy spectra at t = 5 (left) and t = 10 (right).

Figure 5.13: Results for numerical simulations of the Taylor Green Vortex at Re = 1600. DNS
quantities are obtained from filtered data obtained on a 2563 grid. All other models are run on 323

grids.
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5.2.6 Analysis of MZ-VMS Models for the Taylor Green Vortex

To understand the mechanics of the MZ memory kernel, we consider approxima-

tions to the orthogonal dynamics via the orthogonal ODE. For Burgers’ equation,

the reader will recall that this procedure was used to extract the complete memory

kernel. This involved performing an ensemble of orthogonal ODE simulations, each

of which are the cost of a full order simulation. For the Navier-Stokes equations this

is prohibitively expensive. Instead, we analyze the kernel profiles for a single time

instance t in s − t space. This is much more tractable and still provides valuable

insight. With the orthogonal ODE approximation, the quantity we examine is

etLPLesQLQLu0j ≈ etLPLesLQQLa0j.

The profiles of this quantity are an excellent indicator of the memory length and the

shape of the memory integrand. Figure 5.14 shows the evolution of etLPLesLQQLa0j

for t = 10 for various Reynolds numbers. The norm of this quantity is seen to display

an exponential decay. The timescale of the decay increases with Reynolds number

(or alternatively the ratio of the full order model to the large eddy simulation).

However, this timescale is much greater than the memory lengths that were used

in the simulations using the finite memory models as well as the memory length

predicted by the dynamic procedure. This discrepancy becomes clear when one

examines the trajectories of individual modes. In Figure 5.14 it is seen that the

temporal trajectories of individual modes are complex, especially for higher Reynolds

numbers. It is clear from Figure 5.14 that it is not adequate to model the trajectories

of the orthogonal dynamics with a simple generator such as eτ
−1s or with a basic

quadrature.

Despite the complexity of the orthogonal dynamics trajectories, the quantity
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Figure 5.14: Temporal evolution of (normalized) quantities of PLF (ã0(t = 10), s) for the TGV at
various Reynolds numbers. On the left we show a global measure of PLF , while on the right we
show individual trajectories for the 16, 16, 16 a1 mode.

PLQLã0 (i.e. PLF (ã0, 0) ) can still be used to obtain a first order approximation

to the memory. Table 5.4 shows the correlation coefficient between
´
PLF (ã0, s)ds

and PLF (ã0, 0) for various Reynolds numbers with 323 DOFs, the scaling ratio be-

tween the two, as well as the timescale τ as predicted by the dynamic-τ and VMS(ε)

models at t = 10. It is seen that the correlation coefficient is reasonable for lower

Reynolds numbers and degrades as the Reynolds number increases (with the resolu-

tion being held constant). This degradation occurs because, as the Reynolds number

grows, the orthogonal dynamics become more complex and the integrand at s = 0 is

less representative of the total integrated quantity. It is also seen that the scalings

between the two quantities are similar to the timescale predicted by the dynamic-τ

and VMS(ε) models. The timescale (or scaling ratio) τ is predicted very well for low

Reynolds numbers. The accuracy of the prediction degrades somewhat for higher

Reynolds numbers for similar reasons.

5.2.7 Decaying Homogeneous Isotropic Turbulence

Simulations of decaying Homogeneous Isotropic Turbulence are now considered.

The Rogallo procedure is used to initialize the spectrum [85]. The initial field satisfies
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Re = 100 Re = 400 Re = 800 Re = 1600
Correlation 0.93 0.59 0.40 0.25
||
´
PLF (a0,s)ds||2
||PLF (a0,0)||2 0.29 0.26 0.27 0.45

τ (Dynamic-τ model) 0.22 0.26 0.22 0.17
τ (VMS(ε) model) 0.25 0.30 0.28 0.20

Table 5.4: Correlation between
´
PLF (ã0, s)ds and PLF (ã0, 0) for various Reynolds numbers. The

timescale τ as predicted by the dynamic-τ and VMS(ε) models at t = 10 is also shown for reference.
The resolved set of modes is 323.

continuity and a prescribed energy spectrum. The initial condition in the frequency

domain is given by,

(5.29) ai(k) = αe1
i + βe2

i ,

where e1
i and e2

i are mutually orthogonal unit vectors in the plane orthogonal to the

wave vector and,

α =

(
E(k)

4πk2

)1/2

eiθ1 cos(φ), β =

(
E(k)

4πk2

)1/2

eiθ2 sin(φ),

where θ1, θ2, and φ are uniformly distributed random numbers on the interval (0, 2π).

The initial spectrum is taken to be,

E(k, 0) =
q2

2A

1

kσ+1
p

kσ exp

(
− σ

2

( k
kp

)2
)
,

where kp is the wavenumber at which the energy spectra is maximum, σ is a parame-

ter the slope of the energy spectra at low wavenumbers, andA =
´∞

0
kσ exp(−σk2/2)dk.

The velocity field is initialized by,

a =

(
αkk2 + βk1k3

k(k2
1 + k2

2)1/2

)
î+

(
βk2k3 − αkk1

k(k2
1 + k2

2)1/2

)
ĵ −

(
β(k2

1 + k2
2)1/2

k

)
k̂,

where k = |k|. Note that this is the initialization used by Rogallo, but a sign error

is present in his 1981 paper [85] for the velocity field in the k̂ direction.
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Decaying Homogeneous Turbulence at a Low Reynolds Number

Homogeneous isotropic turbulence with an initial Reynolds number of Reλ ≈ 65

is now considered. The Taylor microscale-based Reynolds number is defined by

Reλ = E
√

20
3νε

, where ε is the dissipation rate. The parameters used are σ = 4, kp = 5,

and q2 = 3. A direct computation is evolved on a 5123 mesh until the Kolmogorov

microscale starts to grow with time, indicating that realistic homogeneous turbulence

is present. The truncated velocity field is then used for initial conditions for the large

eddy simulations. For reference the initial spectrum is compared to the experiment of

Comte Bellot and Corrsin (CB-C) [28]. Figure 5.15 shows the resulting spectrum and

q-criterion. The initial Reynolds number of the simulations is Reλ ≈ 65. The DNS

simulation using 5123 degrees of freedom resolves up to kλk ≈ 1, where λk =
(
ν3

ε

) 1
4

is the Kolmogorov lengthscale.

Figure 5.16 shows the evolution of the resolved kinetic energy and the energy

spectra at various time instances. The dynamic-τ model, VMS(ε), and FM1 models

are compared to the dynamic Smagorinsky model as well as a simulation with no

subgrid model. The simulation with no subgrid model predicts the decay of energy

reasonably, but the energy spectra are seen to exhibit significant error. The dynamic

Smagorinsky model slightly over predicts the decay of energy, but offers improved

predictions for the energy spectra. The dynamic-τ model, VMS(ε), and FM1 models

are seen to provide excellent predictions for both the energy decay and spectra.

Figure 5.17 shows the evolution of the energy transferred by the subgrid model.

The dynamic Smagorinsky model is seen to remove too much energy from the low

wavenumbers and too little from the high wavenumbers. The MZ-VMS models are

seen to compare well to the subgrid energy transfer extracted from the DNS data.

An interesting feature to note about the MZ-VMS models is that they deposit a
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Figure 5.15: Energy spectra (left) and q-criterion (right) of the unfiltered DNS field used for the
initialization of the low Reynolds number Large Eddy Simulations. The initial Reynolds number is
Reλ ≈ 65.

small amount of energy into the low wavenumbers (0 ≤ k ≤ 16). This phenomena

indicates that the MZ-VMS-based models are capable of predicting local backscatter.

Indeed, at t = 4.0 (Figure 5.17c) it is clear that a small amount of backscatter is

present in the DNS simulation at low wavenumbers. The MZ-VMS models are able

to capture this phenomena. Note, however, that the model predicts backscatter at

t = 2.0 (Figure 5.17b) while none is present in the DNS.

Decaying Homogeneous Turbulence at a Moderate Reynolds Number

The simulation of homogeneous turbulence at a moderate Reynolds number (Reλ ≈

75) is now considered. The procedure described in the previous section is again used

to initialize the flow field. Figure 5.18 shows the resulting initial spectrum and q-

criterion. The initial condition is seen to contain more small-scale vortical structures

than in the previous case. At this Reynolds number, the DNS simulation using 5123

degrees of freedom resolves up to kλk ≈ 0.5.

The MZ-VMS models do not perform as well at the increased Reynolds number.

Figure 5.19 shows the evolution of the resolved kinetic energy and the energy spectra

for multiple time instances. The dynamic-τ , VMS(ε), and FM1 models are seen to
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(a) Evolution of the resolved kinetic energy.
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(c) Energy spectrum at t = 4.0.

Figure 5.16: Evolution of the resolved kinetic energy and resolved spectra for the low Reynolds
number case.
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(c) S-G energy transfer at t = 4.0.

Figure 5.17: Evolution of the subgrid (S-G) energy transfer for the low Reynolds number case. The
subgrid energy transfer is computed by Tsgsk = wkuk

∗.
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Figure 5.18: Energy spectra (left) and q-criterion (right) of the unfiltered DNS field used for the
initialization of the moderate Reynolds number Large Eddy Simulations. The q-criterion is set at
the same magnitude as in Fig. 5.15. The initial Reynolds numbers is Reλ ≈ 75.

under predict the initial dissipation of energy. A slight build up of energy is seen for

the mid wavenumbers at early times. As the simulation evolves, the spectra predicted

by the MZ-VMS models improve and approach the DNS simulation. Figure 5.20

shows the evolution of the subgrid energy transfer and the subgrid energy transfer

spectra at various time instances. The dynamic-τ , FM1, and VMS(ε) models are

seen to under-predict the energy transfer for low to mid wavenumbers, while they

over predict the energy transfer for higher wavenumbers. This leads to an under-

prediction of the dissipation rate.

Decaying Homogeneous Turbulence at a High Reynolds Number

Homogeneous turbulence simulations at a high Reynolds number (Reλ ≈ 164) are

now considered. At this Reynolds number, the DNS simulation requires 10243 de-

grees of freedom to resolve up to kλk = 0.5. We consider large eddy simulations with

643 and 1283 degrees of freedom. These resolutions are 16 and 8 times coarser than

the DNS, respectively. Figure 5.21 shows the evolution of resolved kinetic energy

as well as the energy and subgrid transfer spectra at t = 4.0 for the 643 case. The

same trends that were observed in the moderate Reynolds number case are again
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(c) Energy spectrum at t = 4.0.

Figure 5.19: Evolution of the resolved kinetic energy for the moderate Reynolds number case.
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(c) S-G energy transfer at t = 4.0.

Figure 5.20: Evolution of the subgrid (S-G) energy transfer for the moderate Reynolds number
case.
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seen. The MZ-VMS models are slightly under dissipative. Not enough energy is

removed from the low wavenumbers, while too much energy is removed from the

high wavenumbers (as observed in Figure 5.21c). The dynamic Smagorinsky model

outperforms the MZ-VMS models in this case. The MZ-VMS models still outper-

form the no model case. The degradation of the MZ-VMS model performance can

be partially attributed to the increasing dominance of the Reynolds stress term. As

seen in the subgrid energy transfer figures, the Reynolds stresses plays an increasing

role as the Reynolds number grows. As discussed previously, the MZ-VMS models

considered do not contain any terms that arise from the Reynolds stresses. Con-

currently, the dynamic Smagorinsky model is seen to provide excellent qualitative

(and quantitative) agreements between the modeled subgrid energy transfer and the

Reynolds stress energy transfer. From this we can draw the conclusion that the

Smagorinsky-type models perform well when the Reynolds stress dominates, while

the MZ-VMS models perform well when cross stresses dominate.

Figure 5.22 shows the same results for the 1283 case. At this increased resolution,

the performance of the MZ-VMS models improve while the performance of the dy-

namic Smagorinsky model is slightly worse than what it was in the 643 case. This

is attributed to the fact that cross stresses are more dominant than the Reynolds

stresses at this higher resolution.

Evolution of the memory timescale

We now examine the evolution of the memory timescale predicted by the dynamic

procedure and the VMS(ε) models. Figure 5.23 shows the evolution of τ as predicted

by the dynamic procedure and VMS(ε) models for both the low Reynolds number

case and the moderate Reynolds number case. As a reference, the predicted constant

τ is additionally compared to the Kolmogorov timescale of the LES, τk =
√

ν
ε
. The
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(a) Evolution of the resolved kinetic energy.

(b) Energy spectrum at t = 4.0.

(c) S-G energy transfer at t = 4.0.

Figure 5.21: Summary of simulations of the high Reynolds number case using 643 DOFs.
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(a) Evolution of the resolved kinetic energy.

(b) Energy spectrum at t = 4.0.

(c) S-G energy transfer at t = 4.0.

Figure 5.22: Summary of simulations of the high Reynolds number case using 1283 DOFs.
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Figure 5.23: Evolution of the memory timescale as predicted by the dynamic procedure.

Kolmogorov timescale is the relevant physical quantity as it reflects the small-scale

dynamics. The predicted timescales are seen to grow approximately linearly with

respect to time. The linear growth of τ demonstrates that the dynamic-τ model and

VMS(ε) models behave similarly to a renormalized t-model. Both models, however,

predict the linear growth with respect to time while the renormalized t-model assumes

it. It is further observed that τ compares well with the Kolmogorov timescale,

demonstrating that there is a qualitative similarity between the timescales of the

memory kernel and that of the small-scale dynamics.

Validity of model assumptions

In the previous sections, it was seen that the performance of the dynamic-τ model

degrades slightly as the LES becomes increasingly coarse. This degradation is due

to the breakdown of the assumption that the memory integral is well correlated

to its value at s = 0. To demonstrate this, we compute the a priori correlation

coefficient between the exact memory integral and its value at s = 0 as a function

of the Reynolds number for several resolutions. The correlation coefficient between

the memory integral and the term predicted by the Smagorinsky closure model is
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Figure 5.24: Correlation coefficient between the point-wise field of the approximated memory inte-
gral and the true memory integral. The solid lines are the dynamic-τ model, while the dashed lines
are the dynamic Smagorinsky model.

additionally computed for reference. Figure 5.24 shows the resulting correlations. It

is seen that, as the Reynolds number increases, the correlation coefficient drops. It is

further seen that the correlation coefficient drops as the model becomes increasingly

coarse. This drop in the correlation coefficient is due to the fact that the orthogonal

dynamics becomes increasingly complex. It is noted, however, that the point-wise

correlation between the field predicted by the dynamic-τ model is better than that

predicted by the dynamic Smagorinsky model for all resolutions.

5.2.8 Two-Dimensional Homogeneous Turbulence

The case of two-dimensional turbulence is of interest from a modeling viewpoint

due to the fact that the physical phenomena present in such systems are drastically

different than their three dimensional counterparts. The notion of Richardson’s

energy cascade, for instance, does not exist in two-dimensions. We briefly consider

the simulation of two-dimensional turbulence to demonstrate the robustness of MZ-
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VMS models as compared to physics-based models.

Simulations are considered for initial conditions that assume an energy spectrum

of the form [16],

(5.30) E(k, 0) =
1

2
asu

2
0k
−1
p

( k
kp

)2s+1
exp

[
−
(
s+

1

2

)(
k

kp

)2]
,

with s = 3, u0 = 5, and kp = 25. Simulations are first considered at ν = 1/1600. A

DNS simulation is carried out using 5122 DOFs, while the LES are carried out with

1282 DOFs. Simulations are performed using the dynamic-τ model and dynamic

Smagorinsky model, as well as the case with no closure model present. All the

models considered are autonomous and require no tuning. Figure 5.25 shows the

numerical results. All simulations are seen to under predict the energy content for

t > 0.2. The dynamic-τ model and dynamic Smagorinsky models over-predict the

dissipation rate at all times, while the simulation run with no model initially under-

predicts the dissipation rate and then over-predicts it for later time. Of the models

considered, the dynamic-τ model performs the best. The energy dissipation rate is

reasonably characterized and the predicted energy spectra at t = 1.0 is excellent.

We next consider simulations with ν = 1/16000. At this higher Reynolds number,

viscosity drains minimal energy from the resolved system and the transfer of energy

is largely due to the non-linear triadic interactions. The DNS simulation is run on

a 10242 mesh, while the LES use a 1282 mesh. Figure 5.26 shows the numerical

results. At the increased viscosity, the simulation run with no closure model under-

predicts the decay of kinetic energy, while both simulations run with closure models

over-predict the kinetic energy decay. The energy spectra of both the simulation run

with dynamic Smagorinsky and that run with no model show a buildup in energy for

high wavenumbers. The dynamic-τ model again outperforms the Smagorinsky model

as well as the LES run with no model. The decay in kinetic energy is reasonably
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(a) Evolution of total kinetic energy (b) Evolution of the kinetic energy dissipation

(c) Energy spectra at t = 1.0 (d) Dissipation contributed from the subgrid-scale
model

Figure 5.25: Results for two-dimensional homogeneous turbulence simulations at ν = 1/1600.
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(a) Evolution of total kinetic energy (b) Evolution of the kinetic energy dissipation

(c) Energy spectra at t = 1.0 (d) Dissipation contributed from the subgrid-scale
model

Figure 5.26: Results for two-dimensional homogeneous turbulence simulations at ν = 1/16000.

captured, as is the energy spectrum at t = 1.0.

5.2.9 Turbulent Channel flow

Thus far only decaying homogeneous problems have been considered. These prob-

lems are characterized by the decay of kinetic energy and the growth in memory

length. The simulation of fully developed turbulent channel flow with a Fourier-

Chebyshev pseudo-spectral method is now considered. There are several significant

differences between the channel and the triply periodic Navier-Stokes equations that

are worth pointing out. First, the channel is only streamwise and spanwise peri-

odic. The flow is inhomogeneous in the wall-normal direction with no-slip boundary
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conditions at the wall. Due to the inhomogeneity in the wall normal direction, no

simple solution to the Poisson pressure equation exists for the channel (in contrast

to Eq. 5.23, where pressure simply appears as a projection). This complicates the

derivation of MZ-based models as pressure is determined by the solution of an el-

liptic equation. Pressure in incompressible flows is not a thermodynamic variable

determined by an equation of state. In some sense, it can be viewed as a Lagrange

multiplier that enforces the velocity field to be solenoidal at all times [44]. This

viewpoint is adopted in this work. We choose to neglect the effects of pressure in

the subgrid-scale model, and instead ensure that the continuity equation is satisfied

in the solution space of the resolved variables.

For the channel flow, the Navier-Stokes equations are solved in skew-symmetric

form. This form has been shown to minimize aliasing errors [11]. The skew-

symmetric form is, however, significantly more complicated than the primitive form

of the Navier-Stokes equations and the analytic derivation of the MZ models is con-

siderably more challenging. As such, the MZ-based models are computed by numer-

ically evaluating the Fréchet derivative, as discussed in Section 4.6. The dynamic

model is constructed by coarse-graining in the periodic directions. A no-slip bound-

ary condition is used at the wall. Note that, since we only coarse-grain in the periodic

directions, the effect of coarse-graining on the boundary conditions is not addressed

in this work. The Navier-Stokes equations are solved using a coupled semi-implicit

Adams-Bashforth scheme for time integration, as in [68]. The continuity equation

is directly enforced at each time-step, bypassing the need for pressure boundary

conditions. The solver is a slight modification of the PySpectral solver. All FFT cal-

culations (including the Chebyshev transforms) are de-aliased by the 3/2 rule. The

solutions are compared to the dynamic Smagorinsky model. Simulations at Reynolds
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Reτ Lx Ly Lz Nx Ny Nz ∆t+ ∆t
180 4π 2 4/3π 32 64 32 0.24 0.02
395 2π 2 π 32 128 32 0.28 0.005
590 2π 2 π 32 192 32 0.31 0.0025

Table 5.5: Physical and numerical details for large eddy simulations of the channel flow.

numbers of Reτ = {180, 395, 590} are considered. The relevant computational details

are given in Table 5.5. The domain sizes were selected to match those in Ref. [71] and

are designed to be long enough such that the periodicity constraint imposed by the

Fourier ansatz is appropriate. Here we only consider simulations using the dynamic-

τ model. Simulations utilizing the finite memory models, however, are presented by

the author in [75].

Large eddy simulation solutions at Reτ = 180 are shown in Figure 5.27 and are

compared to unfiltered DNS data from [71]. The filtering process will not affect the

mean velocity profiles, but the filtered Reynolds stress profiles are expected to be

slightly different. The mean velocity profile predicted by the dynamic-τ model is

slightly larger in magnitude than that of the DNS, but it is much improved from the

simulation run with no subgrid model. The model correctly damps the R22, R33, and

R12 Reynolds stresses. A slight amplification of the R11 Reynolds stress is seen near

the wall. The reason for this is not quite clear in the context of the dynamic-τ model.

The mean non-dimensional memory timescale as predicted by the dynamic model is

τ+
P ≈ 2.35, where τ+

P = τPu
2
τ/ν. It is important to note that the dynamic procedure

predicted a timescale that did not increase with time. A growing timescale, as was

the case for the decaying problems, would be incorrect in this context.

Figure 5.28 shows the velocity profiles for LES solutions at Reτ = 395 and Reτ =

590. As was seen in the case of homogeneous turbulence, increasing the Reynolds

number (while holding the resolution constant) leads to a slight decrease in model

performance. The mean velocity profiles for both cases are slightly over-predicted.
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Figure 5.27: Statistical properties for fully-developed channel flow at Reτ = 180.

The mean memory timescales as predicted by the dynamic model are τ+
P ≈ {2.2, 2.5}

for the 395 and 590 case, respectively. These non-dimensional timescales are similar

to those observed in the Reτ = 180 case. It is also worth noting that the predicted

timescale is roughly ten times the time step for all cases. This is due to the fact

that the memory length scales with the spectral radius of the Jacobian [73], as does

the largest stable time step. This indicates that the time-step can be used as an

alternative indicator to the memory length.

5.3 Application to Magnetohydrodynamics

One of the appeals of the MZ-VMS framework is that it is a general mathemat-

ical formulation. This allows the framework to be applied to various multiphysics

problems. To conclude this chapter, the MZ-VMS framework applied to ideal in-
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Figure 5.28: Velocity profiles for fully-developed channel flow at Reτ = 395 (left) and Reτ = 590
(right).

compressible magnetohydrodynamics (MHD) is considered. MHD describes the be-

havior of an electrically conducting fluid under the presence of a magnetic field, and

is prevalent in areas such as fusion energy and astrophysics. The dynamics of ideal

incompressible MHD are governed by a coupling of the Navier-Stokes equations and

Maxwell equations. The equations of ideal MHD can be written to be,

(5.31)
∂u

∂t
+∇ · (u⊗ u−B⊗B) = −∇p + ν∇2u,

(5.32)
∂B

∂t
−∇× (u×B) = λ∇2B,

subject to the divergence free constraints ∇ ·B = 0, ∇ · u = 0.

5.3.1 Numerical Method

The ideal MHD equations are solved using the same Fourier-Galerkin spectral

method solver previously described. The addition of the MHD equations leads to

a slight modification of the Poisson pressure equation. Note that, in the Fourier-

Galerkin method, a Lagrange multiplier is not required to enforce the divergence

free condition in the magnetic field as the solenoidal constraints are automatically

satisfied [89].
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5.3.2 MZ-VMS Dynamic-τ Model

For the ideal MHD equations, we consider both the VMS(ε) model and the

dynamic-τ model. The selection of the energy transfer constraint in the dynamic-τ

model is of interest for MHD as energy naturally is transferred between the magnetic

field and velocity field. As such, in the dynamic-τ model we allow for two timescales:

one for the closure term arising in the magnetic equations and the other for the

closure arising in the momentum equations. The timescales are determined through

two constraints: the energy transferred out of the kinetic energy field and the energy

transferred out of the magnetic field. Mathematically,

(5.33) τuP =
1

Cq

R
(

auj , R
u
j (a)− GRu

j (â)

)

(
au0 , e

tLPLQLau0 −
(

∆P
∆P

)1.5
etLPLQLau0

) ,

(5.34) τBP =
1

Cq

R
(

aBj , R
b
j(a)− GRB

j (â)

)

(
aB0 , e

tLPLQLaB0 −
(

∆P
∆P

)1.5
etLPLQLaB0

) ,

where ãu corresponds to the velocity modes and ãB to the magnetic modes (and the

same for R).

5.3.3 Taylor Green Vortex

The Taylor Green vortex at a mild Reynolds number is first considered. The

viscosity is taken to be ν = λ = 2.5 × 10−4, which corresponds to a Reynolds

number of Re = Rm = 5.1 × 103. Note that the magnetic Reynolds number and

hydrodynamic Reynolds number are the same. The DNS simulation requires 5123
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Figure 5.29: Contours of the current field, ∇×B.

modes. The initial conditions are [90],

u(x, y, z) =





sin(x) cos(y) cos(z)

− cos(x) sin(y) cos(z)

0





, B(x) = B0





cos(x) sin(y) sin(z)

sin(x) cos(y) sin(z)

−2 sin(x) sin(y) cos(z)





.

The simulations are initialized such that the initial energy in the magnetic field is

equal to the kinetic energy. This corresponds to B0 = 1/
√

3. The energy is broken

into kinetic and magnetic energy,

Eke =

ˆ
1

2
(u2

1 + u2
2 + u2

3)dΩ, EI =

ˆ
1

2
(B2

1 +B2
2 +B2

3)dΩ.

Figure 5.29 shows the current field for the problem at t = 8.

Large eddy simulations are performed on 323 grids. Figure 5.30 shows the per-

formance of the dynamic-τ and VMS(ε) models. The models are compared to a

simulation not utilizing any subgrid model. The timescales used in the VMS(ε)

model are given by [90],

(5.35) τuP =

[
4

h2
(u · u + B ·B) + 3πν2

( 4

h2

)2
]−1/2

,
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(5.36) τBP =

[
4

h2
B ·B + 3πν2

( 4

h2

)2
]−1/2

.

Note that in [90], VMS-based models were shown to perform significantly better

than physically inspired eddy viscosity models, thus eddy viscosity models are not

considered here. In Figure 5.30 the dynamic-τ model is seen to lead to significant

improvements over the simulation run with no subgrid model. This demonstrates

the importance of accounting for unresolved physics. The dynamic-τ model is shown

to slightly outperform the VMS(ε) model. The energy spectra of both models is seen

to compare well with the DNS simulation, although some buildup of energy is seen

for the kinetic energy spectra.

Figure 5.31 shows the same results but for a 643 simulation. At this resolution,

the simulation is moderately resolved. The dynamic-τ and VMS(ε) models are seen

to behave similarly and both offer improvements over the no model case.

5.3.4 Forced Homogeneous Turbulence

The next case considered is that of homogeneous turbulence using a Taylor Green

stirring forcing [1]. The forcing is imposed only on the momentum equations and is

given by,

(5.37) F = f0

[
sin(kfx) cos(kfy) cos(kfz)̂i− cos(kfx) sin(kfy) cos(kfz)̂j

]
,

where kf = 2 and f0 = 0.25. Direct numerical simulation data for this case at a

resolution of 10243 is available from the Johns Hopkins Turbulence Database [1].

Large eddy simulations are considered at a resolution of 643.

Figure 5.32 shows the steady state energy spectra for kinetic and magnetic energy.

Simulations run with no subgrid-scale model are seen to display a significant buildup
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Figure 5.30: Numerical results for MHD Taylor Green vortex problem at 323. Note that the DNS
is filtered.
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Figure 5.31: Numerical results for MHD Taylor Green vortex problem at 643. Note that the DNS
is filtered.
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Figure 5.32: Steady-state energy spectra for isotropic magnetohydrodynamic turbulence.

of kinetic and magnetic energy at high frequencies. This leads to poor predictions

across all wavenumbers. Simulations run with the dynamic-τ model lead to signif-

icant improvements over the baseline simulations. Both the kinetic and magnetic

energy spectrum are well captured.

5.4 Spectral Method Summary

In this chapter we have explored the use of MZ-VMS methods as closure models

for a variety of systems in the spectral setting. We demonstrated that the MZ-

VMS-based methods lead to improved answers for Burgers’ equation, two and three-

dimensional Navier-Stokes equations, and for the equations of magnetohydrodynam-

ics. Important aspects of this chapter are:

1. The demonstration that finite memory effects lead to errors in the well studied

t-model.

2. Numerical results for the viscous Burgers’ equation show that the dynamic-τ

model, “tuned” finite memory models, and VMS(ε) model all outperform classic

LES models.

3. When applied to the Navier-Stokes equations, the dynamic-τ , “tuned” finite
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memory model, and VMS(ε) model outperform the static and dynamic Smagorin-

sky models at low to mild Reynolds numbers. At higher Reynolds numbers the

Smagorinsky models outperform the MZ and VMS models.

4. The degradation of the MZ and VMS models at high Reynolds numbers was

shown to be partially attributed to their inability to model the Reynolds stress

terms. It was shown, however, that the methods are able to accurately model

the cross stress terms.

5. The robustness of MZ and VMS methods was demonstrated through applica-

tions to two dimensional turbulence and magnetohydrodynamics.

The results presented here are specific to the spectral method. The following

chapter will examine the application of MZ-VMS to the more robust finite element

method.



CHAPTER VI

MZ-VMS for Finite Elements

In the previous chapters we demonstrated that the Mori-Zwanzig formalism is a

powerful tool to be used for the construction of subgrid-scale closure models. The

discussion to this point, however, has been limited by the assumption of global

smoothness. These assumptions limit the application of the developed techniques to

methods such as Fourier-Galerkin spectral methods. These methods are limited to

canonical domains and are not sufficiently robust for the complex flows and domains

commonly encountered in science and engineering. In this chapter, we relax the

assumption of global smoothness and develop the Mori-Zwanzig formalism for finite

element methods. The discontinuous Galerkin method will be primarily considered.

6.1 MZ-VMS Formulation for the Finite Element Method

In this section, we develop the formulation of the MZ-VMS framework for finite

element methods. The following discussion will encompass both continuous and

discontinuous Galerkin methods. As before, denote the test and trial space as V =

Ṽ ⊕ V ′, where V ≡ L2(Ω). Define Th to be the decomposition of the domain Ω into a

set of non-overlapping elements, T , over Ωk with boundaries Γk. We seek solutions

for the coarse scales in the finite element space

(6.1) Ṽ = {w ∈ L2(Ω) : v|T ∈ P k(T ),∀T ∈ Th},

144
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where P k is the space of polynomials up to degree k. The above definition allows for

discontinuities between elements. The continuous Galerkin formulation makes use of

a subspace of Eq. 6.1 that enforces continuity between elements. Some notation is

beneficial before proceeding. Define,

(6.2) (·, ·)Ω =
∑

k∈T

(·, ·)Ωk , (·, ·)Γ =
∑

k∈T

(·, ·)Γk .

The FEM weak formulation of Eq. 3.17 becomes,

(6.3) (w, ut)Ω + (w,R(u))Ω + (w, b(u))Γ = (w, f)Ω ∀w ∈ V ,

where b(u) is a boundary operator that arises via integration-by-parts. In the context

of discontinuous Galerkin, one may consider Eq. 6.3 to be the “DG strong form”. The

finite element method proceeds to approximate the solution u in a finite dimensional

subspace, Ṽ ⊂ V . With V ′⊥Ṽ , we obtain the multiscale weak formulation,

(6.4) (w̃, ũt)Ω + (w̃,R(ũ))Ω + (w̃,R(u)−R(ũ))Ω+

(w̃, b(ũ))Γ + (w̃, b(u)− b(ũ))Γ = (w̃, f)Ω ∀w̃ ∈ Ṽ ,

(6.5) (w′, ũt)Ω + (w′,R(ũ))Ω + (w′,R(u)−R(ũ))Ω+

(w′, b(ũ))Γ + (w′, b(u)− b(ũ))Γ = (w′, f)Ω ∀w′ ∈ V ′.

To illustrate the Mori-Zwanzig procedure, consider the discrete system resulting from

Eqns. 6.4 and 6.5. As the basis functions in FEM are typically not orthonormal, we

retain the mass matrices in what follows. Equations 6.4 and 6.5 become,

(6.6)

dã

dt
= M̃−1

[
−(w̃,R(ũ))Ω−(w̃,R(u)−R(ũ))Ω+(w̃, f)Ω−(w̃, b(ũ))Γ−(w̃, b(u)−b(ũ))Γ

]
,

(6.7)

da′

dt
= M′−1[−(w′,R(ũ))Ω−(w′,R(u)−R(ũ))Ω+(w′, f)Ω−(w′, b(ũ))Γ−(w′, b(u)−b(ũ))Γ

]
,
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where the mass matrices are,

(6.8) M̃ = (w̃, w̃T )Ω, M′ = (w′,w′
T

)Ω.

Note that there is no coupling between the mass matrices as a result of L2 orthog-

onality of the coarse and fine scales. Compactly, we can express the entire system

as,

(6.9)
da

dt
= M−1

[
− (w,R(u))Ω − (w, b(u))Γ + (w, f)Ω

]
,

with M = (w,wT )Ω. Through the Mori-Zwanzig procedure, we can integrate out the

fine-scale variable and express Eq. 6.6 as,

(6.10) (w̃, ũt)Ω + (w̃,R(ũ))Ω + (w̃, b(ũ))Γ = (w̃, f)Ω + M̃

ˆ t

0

K(ã(t− s), s)ds.

The memory kernel is given by,

(6.11) Kj(a0, t) = PLetQLQLa0j,

where,

(6.12) L ≡
∑

Mij
−1
[
− (wj,R(u0))Ω − (wj, b(u0))Γ + (wj, f)Ω

] ∂

∂a0i

.

The summation is over all global unknowns. The memory kernel at s = 0 is again

of interest. The derivation closely follows that of the smooth case and one finds,

M̃K(ã(t), 0) =

ˆ
Ω

ˆ
Ω

(w̃R′)(x)Π′(x, y)(R(ũ)− f)(y)dΩydΩx

+

ˆ
Ω

ˆ
Γ

(w̃R′)(x)Π′(x, y)b(ũ(y))dΓydΩx

+

ˆ
Γ

ˆ
Ω

(w̃b′)(x)Π′(x, y)(R(ũ)− f)(y)dΓydΩx

+

ˆ
Γ

ˆ
Γ

(w̃b′)(x)Π′(x, y)b(ũ(y))dΓydΓx,

(6.13)

where again,

(6.14) R′ = ∂R
∂ũ

, b′ =
∂b

∂ũ
.

Remarks
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• Compared to the smooth case, the finite element method gives rise to ad-

ditional interactions between the coarse and fine scales.

• The coarse-scale equation, Eq. 6.10, is again non-local in time.

• The memory kernel at s = 0 contains both volumetric and surface integrals.

The form of this term is again similar to that obtained by Hughes [48] for

the “rough” FEM case.

6.2 The Discontinuous Galerkin Approach

In the remainder of this chapter, we apply MZ-VMS models to numerical meth-

ods that utilize the discontinuous Galerkin (DG) method. Consider the system of

conservation laws,

(6.15)
∂u

∂t
+∇ · F = 0

with x ∈ Ω. In the discontinuous Galerkin approach, the domain Ω is subdivided

into individual elements, Ωk. The state variable u is then approximated by basis

functions over Ω,

u(x, t) =
N−1∑

k=0

p∑

j=0

aj,k(t)wk,j(x),

where a are the basis coefficients and w are the basis functions. Note that in the

DG approach, the basis functions have local support and are hence discontinuous

between the elements.

The DG approach proceeds by multiplying Eq. 6.15 by the basis functions and

integrating over the support of each basis function,

(6.16)

ˆ
Ωk

wk,j

[
∂u

∂t
+∇ · F

]
dΩ = 0.

The flux term is then integrated by parts. This integration by parts couples all the
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elements and establishes the finite-volume aspect of the DG approach. One has [38],

(6.17)

ˆ
Ωk

wk,j
∂u

∂t
dΩ−

ˆ
Ωk

∇wk,j · FdΩ +

ˆ
dΩk

w+
k,jF̂(u+,u−, n̂)dl = 0,

where + and − refers to the element interior and exterior, respectively. The term F̂

is the numerical flux between the faces.

Equation 6.17 is the fundamental equation that we will solve.

6.2.1 Legendre Basis Functions

Any finite element approach requires the selection of basis functions. The La-

grange basis functions are convenient as the basis coefficients (which are the un-

knowns) are simply the nodal values of the Lagrange interpolating polynomial. In

the context of MZ-VMS, however, Lagrange basis functions introduce additional

complications. To illustrate this, consider a second order Lagrange interpolating

polynomial for u(ζ, t = 0) for ζ ∈ (−1, 1),

(6.18) u(ζ, 0) = a0
ζ

2
(ζ − 1)− a1(ζ + 1)(ζ − 1) + a2

ζ

2
(ζ + 1).

The representation of u in Eq. 6.18 was constructed by interpolating u(−1), u(0),

and u(1). The modal coefficients ai in this case are the nodal values of u,

(6.19) u(ζ, 0) = u(−1)
ζ

2
(ζ − 1)− u(0)(ζ + 1)(ζ − 1) + u(1)

ζ

2
(ζ + 1).

A simple truncation projector that eliminates the highest mode would give,

(6.20) Pu(ζ, 0) = u(−1)
ζ

2
(ζ − 1)− u(0)(ζ + 1)(ζ − 1).

Equation 6.20 is no longer a consistent representation of u, as seen in Figure 6.1. As

previously mentioned, we require a formulation in which the fine scales are orthogonal

to the coarse scales. The Legendre polynomials offer one such route.
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The Legendre polynomials are a set of orthogonal polynomials in ζ = [−1, 1]. The

first few polynomials are given by,

(6.21) w0 = 1, w1 = ζ, w2 =
1

2

(
3ζ2 − 1

)
, w3 =

1

2

(
5ζ3 − 3ζ

)
,

and the solution is represented by,

(6.22) u(ζ, 0) =
∑

i

aiwi.

Due to orthogonality, the Legendre polynomials can be shown to obey the following

relation,

(6.23)

ˆ 1

−1

wi(ζ)wj(ζ)dζ =
2

2j + 1
δij.

As such, the coefficients aj are found by multiplying by wi and integrating,

(6.24)

ˆ 1

−1

wi(ζ)
N∑

j=0

ajwj(ζ)dζ =

ˆ 1

−1

u(ζ)wi(ζ)dζ,

(6.25) aj =
2j + 1

2

ˆ 1

−1

u(ζ)wj(ζ)dζ.

The Legendre polynomials can serve as a hierarchical basis. To demonstrate this,

consider again a second order Legendre polynomial approximating u(ζ, t = 0),

(6.26) u(ζ, 0) = a0 + a1ζ + a2
1

2

(
3ζ2 − 1

)
.

Application of an MZ truncation projector that eliminates the highest mode gives,

(6.27) Pu(ζ, 0) = a0 + a1ζ.

The projected representation of u in Eq 6.27 is still a first order approximation to u

(see again Figure 6.1), and hence it is seen that the basis is hierarchical. As such, we

can safely truncate high-order modes and still expect a consistent numerical method.

The MZ-VMS closure model will then account for the eliminated high-order modes.

In the rest of this work, we will be working exclusively with the Legendre basis.
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Figure 6.1: Illustration of the hierarchical property of the Legendre polynomials. Shown are
quadratic approximations to u = (ζ + 1)3/8 using a Lagrange basis and a Legendre basis. Pro-
jecting out the a2 coefficient in the Lagrange basis (Eq. 6.18) destroys the solution approximation.
Projecting out the a2 coefficient in the Legendre basis leads to a linear approximation of u.

Remarks

• Note that it is possible to formulate MZ-VMS for the Lagrange basis. The

methodology, however, will have to contain a linear transformation to a

hierarchical orthogonal basis to eliminate high frequency modes, as well

as the corresponding transformation back to the Lagrange basis. Using

a Legendre basis simplifies the formulation and provides a more intuitive

framework.

6.3 Numerical Properties of MZ-VMS models for DG

Here we outline some important properties of the t, τ , and VMS(ε) models applied

to the DG method.
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6.3.1 Residual-Based Artificial Viscosity

Consider the DG discretization of 6.15,

(6.28)

ˆ
Ω

wutdΩ +

ˆ
Ω

w∇ · F(u)dΩ +

ˆ
Γ

wb(u,n)dΓ = 0,

where again b is a boundary operator, and n is the normal vector at element inter-

faces. Application of the MZ-VMS procedure leads to,

(6.29)

ˆ
Ω

w̃utdΩ +

ˆ
Ω

w̃∇ · F(ũ)dΩ +

ˆ
Γ

w̃b(ũ,n)dΓ = M̃

ˆ t

0

K(ã(t− s), s)ds.

The value of the memory at s = 0 can be expressed as,

(6.30) M̃K(ã(t), 0) =

ˆ
Ω

w̃∇ · F′(q)dΩ +

ˆ
Γ

w̃b′(q,n)dΓ,

where q is given by,

(6.31)

ˆ
Ω

w′qdΩ =

ˆ
Ω

w′∇ · F(ũ)dΩ +

ˆ
Γ

w′b(ũ,n)dΓ.

The term F′ = ∂F
∂ũ

is the flux Jacobian and b′ is the numerical flux function linearized

about ũ. The resulting coarse-scale equation for the τ -model is

(6.32)

ˆ
Ω

w̃utdΩ +

ˆ
Ω

w̃∇·
(
F(ũ)− τF′(q)

)
dΩ +

ˆ
Γ

w̃
(
b(ũ,n)− τb′(q,n)

)
dΓ = 0.

Consider now Eq. 6.15 augmented with an artificial viscosity term that is proportional

to the orthogonal projection of the divergence of the flux,

(6.33)
∂u

∂t
+∇ · F = τ∇ · F′(Π′∇ · F).

A standard discretization technique for this second order equation is to split it into

two first order equations [4],

(6.34)
∂u

∂t
+∇ ·

(
F(u)− F′(q)

)
= 0,
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with,

(6.35) q = Π′∇ · F(u).

Assuming that the boundary operators are handled analogously, the discretization

of Eq. 6.34 and Eq. 6.35 through finite elements leads to precisely Eqns. 6.31 and 6.32.

Remarks

1. For a hyperbolic conservation law, the memory is driven by a non-linear

term that acts as a type of non-linear artificial viscosity.

2. The magnitude of the artificial dissipation is proportional to the projec-

tion of the flux onto the fine scales. If the flux term is fully resolved, no

information is added to the memory.

3. Due to the appearance of the orthogonal projector, it is difficult to comment

on the sign of the artificial viscosity. While proofs exist showing that the

term etLPLQLã0 is globally dissipative in certain settings [46], no such

result is readily apparent in the general case.

6.3.2 Conservation Properties

Consider the spatially discretized set of conservation laws, Eq. 6.17, written in

terms of the modal basis coefficients a,

(6.36)
dãi

dt
= f i(ã, a′),

(6.37)
da′i

dt
= gi(ã, a′),

for i = {0, 1, ..., L} where a = {ã, a′} = {ã0, ã1, ..., a
′
0, a
′
1, ...}. The ith component

refers to the ith conservation equation. For example, in the Euler equations a1
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would consist of the modal coefficients for ρU . In Section 4.1.1 we presented a

proof originating from Stinis showing that for systems that conserve discrete energy,

defined by E =
∑
aia
∗
i , the t-model, τ -model, and VMS(ε) models dissipate energy.

Here we extend Stinis’ proof to make it applicable to DG and consider mass and

energy conservation properties of the MZ-VMS models.

Theorem VI.1. Suppose the full order model satisfies

(6.38)
dMi

dt
= 0,

where Mi is the mass of the ith conserved variable,

(6.39) Mi =
∑

k

ˆ
Ωk

uidΩ = 0.

Then the mass of the ith conserved variable evolved by the τ -model is given by,

(6.40)
dMi,τ

dt
= 0.

Thus, if the τ -model is constructed from a method that is conservative, the τ -model

will be conservative. The same results extend to the t and VMS(ε) models.

Proof. The total mass of the ith variable is defined by,

(6.41) Mi =
∑

k

ˆ
Ωk

uidΩ =
∑

k

ˆ
Ωk

∑

j

aijkwjk(x)dΩ.

By definition of the Legendre polynomials,

a0 =
1

2

ˆ 1

−1

u(ζ)w0(ζ)dζ,

where w0(ζ) = 1. We can use this property to write Eq. 6.41 as

(6.42) Mi =
∑

k

ˆ
Ωk

uidΩ = 2
∑

k

|Jk|ai0k,
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where |Jk| is the determinant of the Jacobian that provides the map between the

global coordinates x and local coordinates η. The evolution of the rate of change of

total mass is obtained by multiplying the equations for ãi0k by |Jk| and summing,

(6.43)
d

dt
Mi = 2

∑

k

|Jk|f i0k(ã, a′) = 0.

As Eq. 6.43 holds for any a, set a′ = 0,

(6.44)
∑

k

|Jk|f i0k(ã, 0) = 0.

Next, set a′ = εh,

(6.45)
∑

k

|Jk|f i0k(ã, εh) = 0.

Proceed by expanding in a Taylor series,

(6.46)
∑

k

|Jk|f iok(ã, 0) + ε
∑

k

|Jk|
∂f i0k
∂a′

h +O(ε2) = 0.

Noting that the first term on the left hand side is zero by Eq. 6.44,

(6.47) ε
∑

k

|Jk|
∂f i

∂a′
h +O(ε2) = 0.

Proceed by setting h = g(ã, 0), dividing by ε, and letting ε→ 0 to obtain

(6.48)
∑

k

|Jk|
∂f i0k
∂a′

g(ã, 0) = 0.

The τ -model for the ith variable in ODE system given by Eqns. 6.36 and 6.37 is

written as

(6.49)
dãi

∂t
= f i(ã, 0) + τ

∂f i

∂a′
g(ã, 0).

The evolution of the total mass evolved by the τ -model is given by,

(6.50)
dMi,τ

dt
= 2

∑

k

|Jk|f i0k(ã, 0) + 2τ
∑

k

|Jk|
∂f i0k
∂a′

g(ã, 0).
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By Eqns. 6.44 and 6.48 the terms on the right hand side drop and we have

(6.51)
dMi,τ

dt
= 0.

This result shows that for a discretization that is conservative for the ith variable,

the τ -model, t-model, and VMS(ε) models will be conservative as well.

6.3.3 Energy Dissipation

The same style of proof can be used to examine the dissipative nature of the t, τ ,

and VMS(ε) models.

Theorem VI.2. Suppose the full order model satisfies,

(6.52)
dJ i

dt
= 0,

where J i is the energy in the ith variable as defined by the L2 norm,

J i =
1

2

∑

k

ˆ
Ωk

(ui)2dΩ.

For L2 orthogonal polynomials, the energy of the ith conserved variable evolved by the

τ -model is then given by,

(6.53)
dJ i,τ

dt
≤ 0.

Thus, if the τ -model is constructed from a method that is energy conservative, the

τ -model will be dissipative. The same results extend to the t and VMS(ε) models.

Proof. The energy in the ith variable is,

J =
1

2

∑

k

ˆ
Ωk

(ui)2dΩ =
1

2

∑

k

ˆ
Ωk

(∑

j

ajkwjk(x)
)2
dΩ.

Define the inner product,

(6.54) (a,b) =
∑

k

ˆ
Ωk

(∑

j

ajwjk(x)
)(∑

j

bjwjk(x)
)
dΩ.
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For L2 orthogonal polynomials,

(6.55)

ˆ
wjk(x)wik(x)dx = cjkδij.

Making use of Eq. 6.55, Eq. 6.54 can be written as

(6.56) (a,b) =
∑

k

ˆ
Ωk

(∑

j

ajwjk(x)
)(∑

j

bjwjk(x)
)
dΩ =

∑

k

∑

j

cjkajkbjk.

This shows,

(6.57) (a + b, c + d) = (a, c) + (b,d).

Using Eq. 6.57, the evolution of the total energy in the ith variables is given by,

(6.58)
dJ
dt

=
(
ai,

dai

dt

)
=
(
ãi, f i(ã, a′)

)
+
(
a′
i
,gi(ã, a′)

)
= 0.

Setting the unresolved variables to zero shows,

(6.59)
(
ãi, f i(ã, 0)

)
= 0.

Now taking a′ = εh,

(6.60)
(
ãi, f i(ã, εh)

)
+
(
εhi,gi(ã, εh)

)
= 0.

Expanding in a Taylor series gives,

(6.61)
(
ãi, f i(ã, 0)

)
+ ε
(
ãi,

∂f i

∂a′
h
)

+ ε
(
hi,gi(ã, 0)

)
+O(ε2) = 0.

Dividing by ε, letting ε→ 0, and setting h = g(ã, 0) gives,

(6.62)
(
ãi,

∂f i

∂a′
g(ã, 0)

)
= −

(
gi(ã, 0),gi(ã, 0)

)

The τ for the ith semi-discrete equation is written as,

(6.63)
dãi

∂t
= f i(ã, 0) + τ

∂f i

∂a′
g(ã, 0).
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Taking the inner product of Eq. 6.63 with ãi and inserting Eq. 6.62,

(6.64)
dJ̃
∂t

= −τ
(
gi(ã, 0),gi(ã, 0)

)
≤ 0.

Equation 6.64 demonstrates that, for a numerical method conserving energy for the

ith variable, the MZ-VMS model will dissipate energy for that variable.

6.4 The MZ-VMS DG Flux Function

Recall that in the FEM case the memory is driven by,

M̃K(ã(t), 0) =

ˆ
Ω

ˆ
Ω

(w̃R′)(x)Π′(x, y)(R(ũ)− f)(y)dΩydΩx

+

ˆ
Ω

ˆ
Γ

(w̃R′)(x)Π′(x, y)b(ũ(y))dΓydΩx

+

ˆ
Γ

ˆ
Ω

(w̃b′)(x)Π′(x, y)(R(ũ)− f)(y)dΓydΩx

+

ˆ
Γ

ˆ
Γ

(w̃b′)(x)Π′(x, y)b(ũ(y))dΓydΓx,

(6.65)

where again

(6.66) R′ = ∂R
∂ũ

, b′ =
∂b

∂ũ
.

The final term in the above expression is in the form of a flux function. Models such

as the t and τ -model will naturally include a flux function. Here we investigate the

form of this function.

6.4.1 One Dimensional Case

The flux contribution of the memory term for the discontinuous Galerkin dis-

cretization of a hyperbolic conservation equation in one-dimension is considered.

The derivation is pursued using Legendre polynomials for the reasons previously

discussed. The hyperbolic conservation equation we consider is given by,

(6.67)
∂u

∂t
+
∂f

∂x
= 0,
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The discontinuous Galerkin discretization of Eq. 6.67 leads to the following weak

formulation,

(6.68)

ˆ
Ωk

w
∂u

∂t
dΩ−

ˆ
Ωk

∂w

∂x
f(u)dΩ = −

ˆ
Γk

wf∗(u,n)dΓ,

where f∗ is a numerical flux function that provides coupling between the elements.

Separating scales, we can express Eq. 6.68 by,

(6.69)

ˆ
Ωk

w̃
∂ũ

∂t
dΩ−

ˆ
Ωk

∂w̃

∂x
f(ũ)dΩ−

ˆ
Ωk

∂w̃

∂x

(
f(u)− f(ũ)

)
dΩ =

−
ˆ

Γk

w̃f ∗(ũ,n)dΓ−
ˆ

Γk

w̃
(
f ∗(u,n)− f ∗(ũ,n)

)
dΓ.

(6.70)

ˆ
Ωk

w′
∂ũ

∂t
dΩ−

ˆ
Ωk

∂w′

∂x
f(ũ)dΩ−

ˆ
Ωk

∂w′

∂x

(
f(u)− f(ũ)

)
dΩ =

−
ˆ

Γk

w′f ∗(ũ,n)dΓ−
ˆ

Γk

w′
(
f ∗(u,n)− f ∗(ũ,n)

)
dΓ.

Note that we have expressed the fine-scale equation, Eq. 6.70, in the DG strong form.

Through the MZ-VMS framework, we can express the coarse-scale equation as,

(6.71)

ˆ
Ωk

w̃
∂ũ

∂t
dΩ−

ˆ
Ωk

∂w̃

∂x
f(ũ)dΩ = −

ˆ
Γk

w̃f ∗(ũ, n)dΓ + M̃K(ã(t), 0),

where M̃ is the coarse-scale mass matrix. We are interested in the flux portion of

the memory term, which is given by,

(6.72) M̃Kf (ã(t), 0) =

ˆ
Γ

ˆ
Γ

(
∂b∗

∂ũ
w̃)(x)Π′(x, y)b(ũ(y))dΓydΓx,

where b is the boundary operator. The boundary operators on element k correspond

to the flux functions,

(6.73)

ˆ
Γk

bk(u)dΓ = −
[
f(uRk )− f ∗(uRk , uLk+1)

]
+
[
f(uLk )− f ∗(uRk−1, u

L
k )
]
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Figure 6.2: Diagram of linear discontinuous solution to demonstrate notation associated with the
boundary operators.

where f ∗ is a numerical flux function and uLk and uRk correspond to the value of u on

the left and right boundary of the kth element (see Figure 6.2). Similarly we have,

(6.74)

ˆ
Γk

b∗k(u)dΓ = f ∗(uRk , u
L
k+1)− f ∗(uRk−1, u

L
k ).

For notational purposes we denote,

(6.75) ∆fRk = f(uRk )− f ∗(uRk , uLk+1), ∆fLk = f(uLk )− f ∗(uRk−1, u
L
k ).

Evaluating the integral over Γy,

M̃Kk(ã(t), 0) = −
ˆ

Γk

(
∂b∗k
∂ũ

w̃k)(x)w′k(x)TM′−1[
w′

R
k ∆fRk −w′

L
k∆fLk

]
dΓx.(6.76)
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Evaluation of the integral of Γx then yields the expression,

M̃Kk(ã(t), 0) = −w̃R
k

∂f ∗

∂ũ

(
w′

RT

k M′−1[
w′

R
k ∆fRk −w′

L
k∆fLk

]
,

w′
LT

k+1M
′−1[

w′
R
k+1∆fRk+1 −w′

L
k+1∆fLk+1

)

+w̃L
k

∂f ∗

∂ũ

(
w′

RT

k−1M
′−1[

w′
R
k−1∆fRk−1 −w′

L
k−1∆fLk−1

]
,

w′
LT

k M′−1[
w′

R
k ∆fRk −w′

L
k∆fLk

])
.

(6.77)

This can be expressed compactly as,

M̃Kk(ã(t), 0) = −w̃R
k

∂f ∗

∂ũ

(
S1∆fRk − S2∆fLk , S2∆fRk+1 − S1∆fLk+1

)

+w̃L
k

∂f ∗

∂ũ

(
S1∆fRk−1 − S2∆fLk−1, S2∆fRk − S1∆fLk

)
,

(6.78)

where S1 and S2 are scalars given by,

(6.79) S1 = w′
RT

M′−1
w′

R
, S2 = w′

RT
M′−1

w′
L
.

Note that for the Legendre polynomials we have,

(6.80) w′
LT

M′−1
w′

L
= w′

RT
M′−1

w′
R

= S1.

Further, for Legendre polynomials one will note that the ratio S2

S1
≈ 1

N
, where N is

the number of basis functions. In the limit that the fine scales have infinite support

(N →∞), we may drop the terms involving S2 to have,

(6.81)

M̃Kk(ã(t), 0) = −w̃R
k

∂f ∗

∂ũ

(
S1∆fRk ,−S1∆fLk+1

)
+ w̃L

k

∂f ∗

∂ũ

(
S1∆fRk−1,−S1∆fLk

)
.

It is seen that the memory is dependent on the numerical flux function. The choice

of numerical flux functions will hence impact the final form of the MZ model. As

flux functions are often specific to certain physical problems and are themselves often
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implicit subgrid models, only the symmetric central flux is examined here. Problem

specific fluxes will be examined in more detail later in this chapter.

The central flux is given by an arithmetic average of the left and right states,

(6.82) f ∗(uRk , u
L
k+1) =

1

2
(fRk + fLk+1).

Note that for the central flux we have

(6.83) ∆fRk =
1

2
(fRk − fLk+1), ∆fLk =

1

2
(fLk − fRk−1).

Further,

(6.84)
∂f ∗

∂ũ
(∆fRk ,−∆fLk+1) =

AR
k + AL

k+1

4
(fRk − fLk+1),

(6.85)
∂f ∗

∂ũ
(∆fRk−1,−∆fLk ) =

AR
k−1 + AL

k

4
(fRk−1 − fLk ).

We see that Eq. 6.81 reduces to

(6.86)

M̃Kk(ã(t), 0) = −S1w̃
R
k

AR
k + AL

k+1

4
(fRk − fLk+1) + S1w̃

L
k

AR
k−1 + AL

k

4
(fRk−1 − fLk ).

In models such as the t-model and τ model, this term leads to adding a numerical

flux correction at an interface of the form

(6.87) fMZ(uRk ,u
L
k+1) = τ ∗

AR
k + AL

k+1

4
(fRk − fLk+1),

with τ ∗ = τS1. Throughout the remainder of this chapter flux functions for a variety

of systems will be considered.

6.5 Application to Linear Hyperbolic Systems

We first consider the case where Eq. 6.67 is a linear hyperbolic equation that can

be written as

(6.88)
∂u

∂t
+ A

∂u

∂x
= 0,
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where A is the flux Jacobian, fu, and is constant in space. In the linear case, the first

three terms of Eq. 6.65 will drop and the only the MZ-VMS flux function remains.

In this case the numerical flux function that emerges is,

(6.89) fMZ(uRk ,u
L
k+1) = τ ∗

A2

2
(uRk − uLk+1).

Note we have used the identity f = Au to obtain Eq. 6.89. A natural selection for

the timescale is,

τ ∗ = S|Λ−1|S−1,

where S and Λ are the eigenvectors and eigenvalues arising from an eigendecompo-

sition of A. This choice leads to the numerical flux function,

(6.90) fMZ(uRk ,u
L
k+1) =

|A|
2

(uRk − uLk+1),

which is precisely flux correction present for an upwind solver. A large body of work

exists on upwind flux schemes for linear hyperbolic equations, and we conclude our

discussion for such systems here.

6.5.1 Fine-scale Eigenvalues and Finite Memory

In Section 3.3.3, it was discussed how the eigenvalues of the fine-scale operator can

be related to the memory length. The eigendecomposition of the fine-scale operator

of the advection diffusion equation is performed to demonstrate this. The advection

diffusion equation is given by,

(6.91)
∂u

∂t
+
∂u

∂x
=

1

Re

∂2u

∂x2
,

on a periodic domain of x ∈ [0, 2π). Figure 6.3 shows the minimum negative eigen-

value for the fine-scale operator of the advection diffusion equation for a variety

of Reynolds numbers. The inverse of the eigenvalue will correspond to the longest
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Figure 6.3: Impact of Reynolds number on the fine-scale eigenvalues.

timescale. The eigenvalues are computed for a coarse-scale discretization using N = 8

elements and p = 1 polynomials. The fine scales use a discretization with N = 8

elements and p = 32 polynomials. In Figure 6.3, the minimum eigenvalue is seen

to obey a power law with respect to the Reynolds number. As the Reynolds num-

ber increases, the minimum eigenvalue of the fine-scale operator decreases. This

corresponds to an increase in memory length.

The impact of Reynolds number on the memory length can be further demon-

strated by directly extracting the memory kernel. Note that the advection diffusion

equation is linear, and hence the fine scales can be exactly removed by virtue of inte-

grating factors (eg. see Chapter III). We consider an initial condition u(x, 0) = sin(x)

on a domain with N = 8 elements at polynomial order p = 1. The fine scales were

computed using an eighth order discretization. Figure 6.4 shows the memory in-

tegrand for the a0 mode on the first element in the domain at t = 2 for various
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Reynolds numbers. The integrand, denoted by the shaded yellow region, is seen

to have a longer support in pseudo-time as the Reynolds number increases. This

increase in memory length approximately follows the scaling seen in Figure 6.3.

6.6 Application to Burgers’ Equation

Burgers’ equation is now considered. Burgers’ equation is significantly different

from linear advection in that a smooth solution can develop discontinuities. This can

lead to challenges in the construction of a stable reduced model. Burgers’ equation

displays many of the fundamental issues that will be encountered in the Navier-

Stokes. In particular, this section will pay attention to stability for non-linear prob-

lems.

6.6.1 Kinetic Energy and Entropy

To construct a stable, accurate MZ-VMS model for Burgers’ equation, first con-

sider the relationship between kinetic energy and entropy for Burgers’ equation.

Recall that the Burgers’ equation is given by

(6.92)
∂u

∂t
+

1

2

∂u2

∂x
= 0.

For Burgers’ equation, we can guarantee that the t, τ , and VMS(ε) models will be

dissipative if the original discretization is kinetic energy conserving. The kinetic

energy can further be shown to be an entropy variable for Burgers’ equation. A

numerical entropy variable can be defined by a scalar convex function [96, 97] U

such that a system of hyperbolic conservation equations can be mapped into a single

scalar conservation equation for entropy. For Burgers’ equation, the function U = u2

meets these requirements. For smooth solutions, the entropy throughout the domain
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Figure 6.4: Plot of the memory integrand vs the pseudo-time in the convolution, s for various
Reynolds numbers.
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remains constant, i.e.

d

dt

ˆ
Ω

u2dΩ = 0.

For square entropy functions, such as in the case of Burgers’ equation, discontinuous

Galerkin methods satisfy cell entropy inequalities for scalar and symmetric hyperbolic

systems [17]. Provided an entropy conservative flux scheme is used, DG methods will

be entropy conservative for these types of systems. With the numerical entropy being

twice the kinetic energy for Burgers’ equation, it directly follows that for an entropy

conservative scheme the t, τ , and VMS(ε) models will be entropy stable. For a

scheme that dissipates entropy (and is hence entropy stable), no such conclusion can

be drawn. It is important to note that, while for Burgers’ equation the kinetic energy

is an entropy function, this will not be the case for the Navier-Stokes equations.

6.6.2 Flux Functions for Burgers’ Equation

Three flux functions are considered for Burgers’ equation. The first is a simple

central flux,

(6.93) F̂ (u+, u−, n̂) =
1

4

(
u+2

+ u−
2)
.

The central flux can be shown to be an entropy stable flux for Burgers’ equation. In

addition to the central flux, an entropy conservative flux is considered [53],

(6.94) F̂ (u+, u−, n̂) =
1

6

(
u+2

+ u+u− + u−
2)
.

We can guarantee stability of the t, τ , and VMS(ε) models for the entropy conserva-

tive flux due to the analysis in Section 4.1.1. The last flux considered is the standard

upwind flux, which is given by

(6.95) F̂ (u+, u−, n̂) =
1

4

(
u+2

+ u−
2)− 1

2
|u∗|
(
u+ − u−

)
,
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where u∗ is the average state. Of the fluxes considered, only the entropy conservative

flux is guaranteed to produce stable MZ-VMS models.

6.6.3 MZ-VMS Flux Functions for the Burgers’ Equation

Each numerical flux scheme will have a corresponding MZ-VMS flux correction.

For simple fluxes in one dimension, these MZ-VMS flux functions can be derived.

This is shown for a central flux and for the entropy stable flux.

Central Flux

For the central flux, we can directly use the form derived in Eq. 6.87. For Burgers’

equation, the flux Jacobian (which in this case is given by u) is non-constant in space,

and the general form of the MZ-VMS flux is,

(6.96) fMZ(fRk , f
L
k+1) = τ ∗

uRk + uLk+1

4
(fRk − fLk+1).

A natural selection for the timescale in the τ model is the arithmetic average of the

wave speed,

τ =
1

S1λRoe

=
2

S1|uRk + uLk+1|
.

This selection leads to the Roe flux correction,

(6.97) fMZ(fRk , f
L
k+1) =

|uRk + uLk+1|
2

(uRk − uLk+1).

Entropy Stable Flux

For Burgers’ equation, another interesting case to examine is where the original

flux is the entropy conserving flux (Eq. 6.94). In this case, the MZ-VMS flux function

becomes,

(6.98) fMZ(uRk , u
L
k+1) =

τ ∗

18
(5u2

L + 8uLuR + 5u2
R).
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The corresponding flux function is

(6.99) f(uRk , u
L
k+1) =

1

6
(u2

L + uLuR + u2
R)− τ ∗

18
(5u2

L + 8uLuR + 5u2
R).

For all τ > 0, Eq. 6.99 is an entropy stable flux function. The choice of τ controls

the amount of dissipation added to the system.

6.6.4 Numerical Applications

We consider the solution of the inviscid Burgers’ equation with MZ-VMS models

constructed on the above fluxes. Burgers’ equation is solved on a periodic domain

with x ∈ [0, 2π).

Effect of the numerical flux function

We first examine the impact of the numerical flux function on the resulting MZ-

VMS model. Here only the t-model is considered, as the functional form of the model

is simple and it has no constants. We first examine the initial condition

u(x, 0) = sin(x),

which leads to a standing shock at t = 1.

Figure 6.5 shows results of simulations using one element and a third order poly-

nomial (four total DOFs) for t ≤ 1. The results are compared to a projected solution

that was obtained using p = 127. Note that the p = 127 solution starts to display

oscillations close to t = 1. Before the shock occurs, the total entropy remains con-

stant. The entropy in the resolved variables, however, does not remain constant. In

Figure 6.5, one can see that simulations run using an entropy conservative flux and

central flux under-predict the dissipation in resolved entropy. The entropy conserva-

tive flux leads to no net decrease in entropy, while the central flux leads to a slight
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Figure 6.5: Numeric solutions to the Burgers’ equation using 1 element with p = 3.

decrease in entropy. The results of the Roe scheme are not shown in Figure 6.5 as

they are comparable to the central flux.

Figure 6.5 shows the importance of the flux function for the MZ-VMS models.

It is seen that the t-model constructed from the central flux rapidly goes unstable.

This instability is not surprising since the central flux does not guarantee entropy

conservation and hence it is possible for the MZ-VMS model to add entropy to the

system. The t-model constructed from an entropy conservative flux provides a stable

and accurate solution.

Next, we consider the simulations integrated through the shock wave. The shock

wave can not be fully resolved and leads to a decay in entropy. Figure 6.6 shows

the results of the simulations for N = 16 elements with p = 1 polynomials. The

solutions are compared to a high-order solution using N = 16 elements and p = 7

polynomials. In this case we compare t-models constructed from the Roe flux and the

entropy stable flux. It is again seen that the t-model constructed from the entropy

stable flux provides a stable and accurate result. The t-model constructed from the

Roe flux performs poorly. Although the t-model constructed from the Roe flux does
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Figure 6.6: Numeric solutions to the Burgers’ equation using 16 elements with p = 1.

remain stable in this case, this can not be guaranteed for the general case.

Model Results

Having established the importance of constructing MZ-VMS models using the

entropy stable flux formulation, we now further investigate the performance of the

t-model as well as the dynamic-τ model. All MZ results use the entropy conservative

flux. As formulated in Section 4.3, the dynamic-τ model determines a scaling of

the MZ term by relating energy transfer across two scales. The dynamic model can

be directly extended to the discontinuous-Galerkin formulation by using the inner

product defined in Eq. 6.54, which corresponds to a physical space volume integral

of the two vectors.

We examine the performance of the MZ models for the standing shockwave case

in two different regimes. First, we examine the performance of the model in the

case that we have N = 7 elements with a linear p = 1 polynomial representation in

each element. This case is intended to be representative of under-resolved effects in

the case of a low order discretization. Figure 6.7 shows the simulation results for

this setting. It is seen that in this regime, the t-model performs poorly. Both the
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evolution of total entropy and the physical space profiles are poor. The dynamic-τ

model offers significant improvements. The evolution of entropy is well characterized.

The physical space solution, however, still displays some unphysical features. The

simulation run with the Roe flux provides the best results in this setting. With

multiple inter-element fluxes, the numerical flux function is able to dissipate an

appropriate amount of entropy.

Next we examine the performance of the models in the case where we have N = 1

element with a high-order p = 15 polynomial representation in the element. This

case is representative of under-resolved features in a high-order discretization, where

degrees of freedom have been packed into p instead of h. Figure 6.8 shows the results

of the numerical simulations. The results in this regime are drastically different than

they were in the lower order counter-part. We first observe that the Roe flux performs

poorly. This is not surprising as traditional numerical flux functions were designed in

the context of low order finite volume schemes. The simulation performed using the

t-model produces much improved results, allowing for a reasonable characterization

of evolution of entropy as well as the physical space solution. The dynamic-τ model

further improves upon the t-model.

6.6.5 Burgers’ Equation Summary

In the application to Burgers’ equation, the importance of the numerical flux

functions and kinetic energy stability (which is an entropy function for the Burgers’

equation) was established. Numerical simulations showed that formulations of the t-

model based on non-entropy stable fluxes lead to both poor performance and stability

issues. The use of a kinetic energy conservative formulation, however, led to accurate

MZ-VMS models. For more complex systems, such as the Navier-Stokes equations,

guarantees of entropy stability will be critical. This will be shown in the next section.
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Figure 6.7: Numeric solutions to the Burgers’ equation using 7 elements with p = 1.
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Figure 6.8: Numeric solutions to the Burgers’ equation using 1 element at p = 16.
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6.7 The Compressible Navier-Stokes Equations

We now consider the Navier-Stokes equations of gas dynamics. The Navier-Stokes

equations consist of a non-linear system of differential equations that govern the

conservation of mass, momentum, and energy, and are given by,

(6.100)
∂u

∂t
+∇ ·

(
F(u)− Fv(u,∇u)

)
= 0,

where F and Fv are the inviscid and viscous fluxes, respectively. For a three dimen-

sional flow the vectors are,

(6.101)

u =





ρ

ρu1

ρu2

ρu3

ρE





, F1 =





ρu1

ρu2
1 + p

ρu1u2

ρu1u3

u1(E + p)





, F2 =





ρu2

ρu1u2

ρu2
2 + p

ρu2u3

u2(E + p)





, F3 =





ρu3

ρu1u3

ρu2u3 + p

ρu2
3

u3(E + p)





,

Fv1 =





0

τ11

τ12

τ13

ujτj1 + cp
µ
Pr

∂T
∂x1





, Fv2 =





0

τ21

τ22

τ23

ujτj2 + cp
µ
Pr

∂T
∂x2





, Fv3 =





0

τ31

τ32

τ33

ujτj3 + cp
µ
Pr

∂T
∂x3





.

For a Newtonian fluid, the viscous stress tensor is of the form,

(6.102) τij = 2µSij,

where

(6.103) Sij =
1

2

(∂ui
∂xj

+
∂uj
∂xi

)
− 1

3

∂uk
∂xi

δij.
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The Navier-Stokes equations are closed with constitutive relationships for a calori-

cally perfect gas,

p = ρRT ; E = e+
1

2
ρ(u2

1 + u2
2 + u2

3).

6.7.1 Numerical Discretization Strategies

There are various ways in which Eq. 6.100 may be discretized within the discon-

tinuous Galerkin framework. The first choice lies in what variables to discretize. The

most straightforward process is to discretize the conservative variables,

(6.104) u(x, t) =
N−1∑

k=0

p∑

j=0

ajk(t)wjk(x).

The conservative variable approach is widely used. However, such an approach suffers

from non-linear stability issues [32]. An alternative formulation which has been

shown to be more robust is to discretize in entropy variables. While a full discussion

on entropy variables and entropy stability is outside the scope of this work, we briefly

discuss it here.

For inviscid flows, the Navier-Stokes equations simplify to the Euler equations,

(6.105)
∂u

∂t
+∇ · F(u) = 0.

The Euler equations are known to obey an auxiliary conservation law for a quantity

referred to as entropy,

(6.106)
∂U

∂t
+∇ · f(U) = 0.

What are referred to as entropy variables are defined as,

(6.107) v =

(
∂U

∂u

)T
.

For the scope of this work, it suffices to say that Eq. 6.106 is obtained by,

(6.108) vT
∂u

∂t
+ vT∇ · F(u) = 0.
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At the continuous level, any solution to Eq. 6.105 will satisfy the entropy conservation

law. At the discrete level, however, no such guarantee exists. This has resulted in

a wide body of research into what are known as entropy conservative and entropy

stable numerical methods. For discontinuous Galerkin methods, entropy conservative

schemes can be obtained through the use of entropy conservative fluxes and by

discretizing in the entropy variables, i.e.

(6.109)
∂

∂t
u(v) +∇ · F

(
u(v)

)
= 0.

where

v(x, t) =
N−1∑

k=0

p∑

j=0

aj,k(t)wk,j(x).

Entropy conservative and entropy stable formulations have been shown to greatly

improve nonlinear stability properties of numerical methods [32]. For the Navier-

Stokes equations, the entropy variables are,

(6.110) v =




− s
γ−1

+ γ+1
γ−1

+ ρE
p

ρu
p

ρv
p

ρw
p

−ρ
p




,

where s = ln(p/ργ). In the following sections, both the conservative and entropy

formulations will be considered

6.7.2 Numerical Fluxes

The discontinuous Galerkin approach requires the selection of a numerical flux

scheme. The majority of flux functions add numerical dissipation to a system and

act as implicit subgrid-scale models. Various flux functions are considered in this
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work. We examine the Roe flux [84], Rusanov flux [86], Roe’s entropy conservative

flux [54], and a central flux. These are briefly outlined.

The Roe flux is given by

(6.111) F̂(uL,uR) =
1

2
(FL + FR)
︸ ︷︷ ︸

central

− 1

2

∣∣A(u∗)
∣∣(uR − uL)

︸ ︷︷ ︸
implicit SGS-model

,

where u∗ is the Roe averaged state. In writing Eqn. 6.111, we have expressed the

flux as a non-dissipative symmetric central flux with the addition of a asymmetric

dissipative flux. In the context of under-resolved LES, the asymmetric component

of the flux can be viewed as an implicit subgrid-scale model [32].

The Rusanov flux (or local Lax Friedrichs) is a simpler version of the Roe flux

and is given by

(6.112) F̂(uL,uR) =
1

2
(FL + FR)
︸ ︷︷ ︸

central

− 1

2
ρ

(
A(u∗)

)
(uR − uL)

︸ ︷︷ ︸
implicit SGS-model

,

with ρ() being the spectral radius. Using the maximum eigenvalue upwinds all waves

in the system, but leads to the scheme being overly dissipative for systems with

multiple wave speeds [38].

Roe’s entropy conservative flux was designed to conserve entropy for finite volume-

type discretizations. The flux scheme is given by,

(6.113) F̂(uL,uR) = F(û),

where û is an averaged state consisting of arithmetic and logarithmic averages [54].

The entropy conservative flux is a non-dissipative flux and is strong candidate for

MZ modeling. Note that, in the context of discontinuous Galerkin methods, entropy

conservative schemes require that one discretizes with entropy variables and uses an

entropy conservative flux.
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Lastly, the central flux is considered,

(6.114) F̂(uL,uR) =
1

2
(FL + FR).

Like Roe’s entropy conservative flux, the central flux is a non-dissipative flux. It,

however, does not guarantee entropy stability.

6.7.3 MZ-VMS Flux Functions

As has been previously discussed, each numerical flux scheme has a correspond-

ing MZ-VMS flux function. For the Navier-Stokes equations in three dimensions,

however, the algebra required to derive the flux schemes becomes overly complex.

Further, even in the one-dimensional case, the MZ-VMS flux functions for sophisti-

cated fluxes become overly complex. As a result, only the flux scheme derived for

the central flux in one dimension is presented.

Central Flux

For the central flux, the MZ-VMS flux function can not be simplified in any

coherent way and is written as

(6.115) fMZ(uRk ,u
L
k+1) = τ ∗

AR
k + AL

k+1

4
(fRk − fLk+1).

Some insight into the flux function can be drawn, however, with the identity f = Au.

This allows for the manipulation,

(6.116) fMZ(uRk ,u
L
k+1) = τ ∗

AR
k + AL

k+1

4
(AR

k uRk −AL
k+1u

L
k+1).

We make several important remarks:
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1. It is seen that the multiplication of the flux Jacobians will lead to a type of

upwinding scheme.

2. The flux function given in Eq. 6.115 does not satisfy the conditions estab-

lished in [84] that were deemed necessary for a flux to satisfy the Rankine

Hugoniot conditions. As such, the MZ-VMS flux function constructed on a

central flux does not satisfy the Rankine Hugoniot conditions.

Entropy Conserving Flux

Another interesting flux function to consider is Roe’s entropy conservative flux.

Due to the logarithmic averages and non-linear expressions, however, the flux scheme

becomes incoherent and we do not pursue an analytic expression here.

6.7.4 Entropy Stability

The entropy stability of the t, τ , and VMS(ε) models is now considered. For

simplicity, the following derivation will neglect boundary operators. In the derivation,

the first step is to assume that the original numerical method conserves entropy. As

such, the results are applicable only to entropy conservative formulations.

Consider the governing equations in weighted residual form,

(6.117) (w,ut) + (w,R(u)) = 0.

We consider numerical methods that conserve entropy. To derive an evolution equa-

tion for entropy, first set w = vT ,

(6.118) (vT ,ut) = −(vT ,R(u)) = 0.

Note that it is only possible to set w = vT for formulations where v is in the

subspace spanned by the basis functions. This is the case when one discretizes in
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entropy variables, but not when one discretizes in conservative variables. Proceed

by splitting v into coarse and fine scales,

(6.119) (ṽT ,R
(
u(ṽ + v′))) + (v′

T
,R
(
u(ṽ + v′))) = 0.

Setting v′ = 0, it is seen that,

(6.120) (ṽT ,R
(
u(ṽ))) = 0.

Now set v′ = εh,

(6.121) (ṽT ,R
(
u(ṽ + εh))) + (εhT ,R

(
u(ṽ + εh)) = 0.

Expanding in a Taylor series and using the chain rule,

(6.122) (ṽT ,R
(
u(ṽ)) + ε(hT ,R

(
u(ṽ)) + (ṽT ,

∂R
∂u

∂u

∂v
εh)) + ε2(hT ,

∂R
∂u

∂u

∂v
εh) = 0.

Dividing by ε, letting ε→ 0, and noting the first term drops,

(6.123) (hT ,R
(
u(ṽ)) + (ṽT ,

∂R
∂u

∂u

∂v
h)) = 0.

Setting,

h = Π′vR(u(ṽ)),

where Π′v is the projection onto the fine scales (i.e. the fine-scale mass matrix) as

defined by the entropy variables,

(6.124) Π′vf = w′
T

[ˆ
w′
∂u

∂v
w′

T
dΩ

]−1

(w′, f).

gives

(6.125) (R(u(ṽ))TΠ′
T
v ,R

(
u(ṽ)) + (ṽT ,

∂R
∂u

∂u

∂v
Π′vR(u(ṽ)))) = 0.

For entropy variables the projection matrix is positive definite which implies,

(6.126) (R(u(ṽ))TΠ′
T
v ,R

(
u(ṽ)) > 0.
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The following result emerges,

(6.127) (ṽT ,
∂R
∂u

∂u

∂v
Π′vR(u(ṽ)))) ≤ 0.

The entropy evolution for the τ and VMS(ε) models is given by,

(6.128)(
ṽT ,

∂

∂t
u(ṽ)

)
+

(
ṽT ,R

(
u(ṽ)

))
+

(
ṽT , τ

∂R
∂u

∂u

∂v
Π′vR(u(ṽ))

)
<= 0 ∀τ > 0.

It is seen that, in an entropy conservative formulation, the t, τ , and VMS(ε) models

dissipate entropy. Hence, the schemes are entropy stable.

6.7.5 Numerical Applications

We now consider the application of the MZ-VMS models to the compressible

Navier-Stokes equations. Note that only the Euler fluxes are considered in the con-

struction of the MZ-VMS models. A high-order DG code utilizing Legendre basis

functions, termed PyDG, was developed for this purpose. The viscous fluxes are

handled through the interior penalty formulation [47]. All numerical integration is

performed using 2p+1 quadrature points. The code is a structured code utilizing Leg-

endre basis functions to have arbitrary order of accuracy. The code has matrix-free

implicit time marching and spacetime capabilities. Appendix C provides additional

details about the code.

Numerical Strategy for MZ-VMS Models

The following sections will consider the first order MZ-VMS models, which require

the evaluation of etLPLQLa. While obtaining the analytic form of the volumetric

term is straightforward, obtaining the analytic form of the multi-dimensional flux

functions is not. Two strategies are pursued to evaluate the terms:

1. Finite difference-enriched space method: For cases where a conservative formu-

lation is used on an orthogonal grid, the first order models can be computed
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through a call to an enriched space. This technique, which is discussed in Chap-

ter 3, is straightforward to implement but costly. In the following examples, the

enriched space is taken to be twice the order of the solution space. To acceler-

ate the evaluation of the term, a collocated quadrature is used for the enriched

space. It is important to emphasize that this formulation should only be used

with a numerical method that has a non-dissipative flux scheme (such as central

flux) as the MZ-VMS model will implicitly contain a dissipative flux term.

2. Volumetric method: For non-orthogonal grids and entropy stable formulations,

the computation of the first order models through the finite difference-enriched

space method is made challenging due to requirements on the orthogonality be-

tween spaces. Computation of the volumetric term, however, remains straight-

forward. In the volumetric method, only the volumetric term is added to the

discontinuous Galerkin scheme. The volumetric term requires the computation

of the strong form residual, which here is achieved by differentiating the discrete

unknowns and using chain rule. In addition to tractability, this technique is ad-

vantageous as it is independent of the numerical flux function and allows the

MZ-VMS models to be augmented to existing flux schemes that have numeri-

cal dissipation. Philosophically, the approach is using existing flux functions to

model the “flux” portion of the memory and is adding in an extra volumetric

term.

6.7.6 Conservative Formulation

The Taylor Green Vortex problem using a conservative variable formulation is

first considered. In this example, simulations are performed using a central flux with

the τ model. Note that simulations using this setup with no subgrid-scale model are

unstable. The MZ-VMS model form is computed using the finite difference-enriched
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space method described above. As we can not provide any theoretical guarantees

about stability, this is first addressed. In particular, the sensitivity of the first order

MZ-VMS models to τ is examined.

Taylor Green at Infinite Reynolds Number

We first examine the Taylor Green vortex at an infinite Reynolds number. No

viscous dissipation is present in this case and the numerical method must be capable

of providing adequate numerical dissipation. Numerical simulations are performed

using the τ model at 4th order with eight elements. Crank Nicolson time integration

at CFL < 1 is used. A simulation using the Roe flux with no MZ-VMS model is

additionally presented. Figure 6.9 shows the evolution of the time rate of change for

total entropy. Simulations run with the Roe flux are seen to dissipate entropy for

all time, indicating that the simulation is stable (which does not necessarily mean

accurate). The stability of simulations run using the τ -model and a central flux are

seen to depend on the selection of τ . In Figure 6.9 it is seen that if τ grows too large,

the rate of change of entropy becomes positive and the simulation diverges. It is also

observed that, if τ grows too small, the simulation again diverges.

The fact that the stability of the MZ-VMS central-flux τ -model formulation hinges

on τ taking on an appropriate intermediate value is unattractive and not robust.

This issue pushes the idea of pursuing MZ-VMS methods within an entropy stable

formulation. Before doing this, however, the simulation of several canonical flows

using the MZ-VMS central-flux τ -model is considered, using an appropriate value

of τ . Note that the τ emerging from the VMS(ε) formulation leads to stability

issues. Based on numerical experiments and CFL considerations, the remainder of
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Figure 6.9: Evolution of the rate of change of entropy

this section will examine solutions where the value of τ is chosen to be,

(6.129) τ = τ ∗ a∞∆x

p2
,

where τ ∗ = 1, p is the maximum polynomial order of the enriched space, and a∞ the

speed of sound.

Taylor Green Vortex at Re = 1600

The Taylor Green vortex at a finite Reynolds number of Re = 1600 is now consid-

ered. Simulations are performed at M = 0.2 using the central flux τ -model (with τ

as defined in Eq. 6.129) and the Roe flux with no subgrid model. Figure 6.10 shows

results for various orders of accuracy at 323 DOFs, while Figure 6.11 shows the same

results for 643 DOFs. For both cases, the central flux τ -model (with the appropriate

selection of τ) leads to a result that is remarkably similar to the simulation with the

Roe flux. These similarities demonstrate how flux schemes, such as the Roe flux,

act as implicit subgrid-scale models. It is quite surprising to the author that, in this

complex three dimensional case, the two methods produce such similar results.
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Figure 6.10: Quantities of interest for the Taylor Green Vortex using the τ models at 323 DOFs.
Note that the DNS shown is unfiltered, so comparison of the total kinetic energy and dissipation is
qualitative.
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Figure 6.11: Quantities of interest for the Taylor Green Vortex using the τ models at 643 DOFs.
Note that the DNS shown is unfiltered, so comparison of the total kinetic energy and dissipation is
qualitative.
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Homogeneous Turbulence

Homogeneous turbulence at Reλ ≈ 80 is next examined. Both the static-τ model

and the finite memory models are considered. The results are shown in Figure 6.12

for simulations at 64 DOFs using both a 4th order and an 8th order discretization.

Unfiltered DNS from a spectral code is additionally shown. It is again seen that

adding the MZ-VMS model to the central flux leads to a scheme that performs

comparably to a Roe scheme. Additionally, it is seen that the finite memory models

and static-τ model produce essentially identical results. To further investigate and

understand the similarities between the MZ-VMS models and existing flux schemes,

the implicit SGS-model inherent to the Roe scheme (i.e. the upwinding mechanism)

is compared to the τ -model. The Roe scheme can be written as,

(6.130) F∗(uL,uL) =
1

2
(FL + FR)
︸ ︷︷ ︸

central

− 1

2

∣∣A(u∗)
∣∣(uR − uL)

︸ ︷︷ ︸
implicit SGS-model

.

The implicit SGS-model inherent to the Roe scheme is the second term on the right

hand side of Eq. 6.130. To compare the methods, the sub-grid transfer spectra of the

SGS-models are examined. Figure 6.13 shows the computed sub-grid transfer spectra

for the HIT simulation at t = 2.0. The Roe scheme, τ -model, and Rusanov scheme

are shown. The transfer spectra of the τ -model are seen to behave in a qualitatively

similar fashion as the Roe (and Rusanov) scheme, but the magnitudes are slightly

different. This discrepancy is attributed to the selection of τ , which was determined

heuristically. Figure 6.14 compares the spectra for the “optimal” τ ∗ (i.e. the τ ∗ that

most closely matches the Roe scheme). The τ -model compares almost perfectly to

the Roe scheme, provided the correct τ is selected.
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Figure 6.12: Quantities of interest for the homogeneous turbulence using MZ models at 643 DOFs.
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Figure 6.13: Transfer spectra for the sub-grid energy spectra at t = 2.0 for various combinations of
p and h.
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Figure 6.14: Transfer spectra for the sub-grid energy spectra at t = 2.0 for various combinations of
p and h with an “optimal” τ∗.
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Stability

A significant issue that arrises in the examples presented above is that of stabil-

ity. For the MZ-VMS models constructed using a conservative variable formulation,

there are no theoretical guarantees of stability. Further, as the MZ-VMS models are

constructed from a non-dissipative flux function, the models must add the dissipation

required for stability. In the context of the τ -model, the selection of a τ that is too

low leads to numerical blowup due to insufficient numerical dissipation. Selection

of a τ that is too high additionally leads to numerical blowup. It was due to this

sensitivity that τ was selected in an a priori fashion via Eq. 6.129. Due to these

stability issues, the utility of the MZ-VMS models outlined in this dissertation for

conservative formulations is challenging. In practice, using MZ-VMS closures as a

method to stabilize an otherwise unstable calculation (without having any theoretical

stability guarantees), is not a robust or desirable technique.

We now turn our attention to the application of MZ-VMS models within an en-

tropy conservative formulation. As discussed earlier, the entropy conservative for-

mulation allows for theoretical guarantees in entropy stability for both the baseline

discontinuous Galerkin simulations as well as for simulations using the first order

MZ-VMS models.

6.7.7 Entropy Conservative Formulation

Simulations using an entropy conservative formulation are now considered. The

MZ-VMS models are evaluated using the volumetric method described above, which

does not require any calls to an enriched space. Simulations using Roe’s entropy

conservative flux (Roe EC), the local Lax Friedrichs (Rusanov) flux, the Roe EC

flux with the VMS(ε) model, and the local Lax Friedrichs flux with the VMS(ε)
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model. The standard Roe flux is not entropy stable and as such is not used in this

section. It is noted that, while not pursued here, the Roe flux can be modified to

maintain entropy stability[54]. For the VMS(ε) model, which the reader will recall

is equivalent to the τ -model, the timescale requires a modification to account for the

polynomial order. In this work we take,

(6.131) τ =

[
4

h2
p

u2 + 3πν2
( 4

h2
p

)2
]−1/2

,

where hp = h/p. Note that in the previous section, simulations using the VMS(ε)

model could not be performed as the value of τ predicted through the method led

to numerical blowup.

Taylor Green Vortex at Re = 1600

The Taylor Green vortex problem using an entropy stable formulation is now con-

sidered. Simulations are first performed at Re = 1600 using 643 degrees of freedom.

Simulations are considered using four methods:

1. Entropy conservative formulation with Roe’s entropy conserving flux (Roe EC).

This case can be considered the “no model” case as it does not add any numerical

dissipation to the system.

2. Entropy conservative formulation with Roe EC and the volumetric VMS(ε)

model. This setup is entropy stable and will dissipate entropy in time. In this

case dissipation is implicitly introduced through a volumetric term, the form of

which is derived from the MZ-VMS framework.

3. Entropy conservative formulation with the Rusanov (local Lax-Friedrichs) flux.

This setup is entropy stable and will dissipate entropy in time. In this case,

dissipation is being introduced through the Rusanov flux.
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4. Entropy conservative formulation with the Rusanov flux and volumetric VMS(ε)

model. This setup is entropy stable and will dissipate entropy in time. Dissipa-

tion is introduced through a volumetric term derived from MZ-VMS as well as

the Rusanov flux.

Figure 6.15 shows results for fourth order DG simulations using 163 elements. The

baseline simulation using Roe’s entropy conservative flux is observed to not be suf-

ficiently dissipative. This is analogous to the results obtained in Chapter V. The

addition of the VMS(ε) model is seen to introduce extra diffusion to the system

and leads to an improved prediction, although the model is seen to add slightly too

much diffusion. Simulations utilizing the Lax Friedrichs flux are seen to offer more

dissipation than Roe’s EC flux, but not as much diffusion as the VMS(ε) model.

Simulations that use the Lax Friedrichs flux and the VMS(ε) model are seen to per-

form comparably to the Roe EC VMS(ε) simulations. Figure 6.16 shows results for

the same case, but at eighth order and 83 elements. For the higher order simulation,

the solution space is seen to be richer than the lower order counterpart. The base-

line simulations using Roe’s entropy conservative flux are improved from lower order

case. Simulations that utilize the VMS(ε) model are again seen to add diffusion to

the system and are again slightly over dissipative.

Taylor Green Vortex at Infinite Reynolds Number

To further distinguish between simulations with and without numerical dissipa-

tion, the Taylor Green vortex at an infinite Reynolds number is now considered. In

this case, explicit numerical dissipation is required to remove energy from the system.

Figure 6.17 shows the evolution of total kinetic energy and the rate of dissipation

of kinetic energy for all methods. The simulation run with the Roe EC flux, which

has no numerical dissipation, is seen to have minimal to no change in total kinetic
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Figure 6.15: Numerical results for the Taylor Green vortex problem at Re = 1600 at fourth order
with 163 elements.
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Figure 6.16: Numerical results for the Taylor Green vortex problem at Re = 1600 at eighth order
with 83 elements.
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energy. This lack of dissipation leads to a build up in kinetic energy at the fine

scales, as seen in the energy spectra. It is worth noting that, although the simula-

tion is inviscid, the total kinetic energy in the resolved scales should still decrease in

time due to the turbulent cascade. The addition of the VMS(ε) model to the Roe

EC flux is seen to lead to a monotonic decay in energy and predicts a qualitatively

accurate energy spectra. Simulations that are evolved using the local Lax Friedrichs

flux behave qualitatively similar to the Roe EC VMS(ε) simulation. This is espe-

cially surprising considering the fundamental differences between the two methods

and their disparity with the Roe EC simulation. The energy spectrum from the Lax

Friedrichs simulation, however, is seen to display a slight buildup of kinetic energy

at high wave-numbers. The addition of the VMS(ε) model to the Lax Friedrichs

flux removes kinetic energy at high wave numbers and leads to predictions that are

comparable to the Roe EC VMS(ε) method.

6.8 MZ-VMS Inspired Filtering

Thus far, we have analyzed MZ-VMS as a closure modeling strategy. We demon-

strated that the MZ-VMS formulation gives rise to both volumetric and flux terms.

For conservative formulations, we showed that the net contribution of these terms

provides dissipation in a form very similar to stabilization methods such as a Roe

scheme. In predictive simulations, these closure terms were shown to provide an effect

similar to the Roe flux. The stability of the formulation for conservative methods,

however, was seen to be dependent on the selection of the timescale τ . We pro-

ceeded to show how MZ-VMS methods can lead to improvements in entropy stable

formulations. This offers a promising path forward for MZ-VMS models.

The majority of discontinuous Galerkin codes, unfortunately, are not formulated
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using entropy variables. The ability to improve the solution accuracy of discontin-

uous Galerkin methods using conservative variables by virtue of existing MZ-VMS

methods is thus made challenging. While advancements in accuracy and stability are

perhaps possible by closely examining the balance of volumetric and surface terms,

such a path is not clear at this time. Fortunately, the concepts developed in this

chapter can still be used to improve the predictive capabilities of standard high-order

discontinuous Galerkin methods. To provide this context, we conclude this chapter

by demonstrating how MZ-VMS methods can be used as resolution indicators. This

information can, in turn, be used to improve the predictive capabilities of a numerical

method.

High-order methods are advantageous for the simulation of under-resolved flows

due to their low amounts of numerical dissipation and dispersion. Further, they are

a strong candidate for future computing architectures to to their high flop count per

degree of freedom and limited communication/compute ratio. High-order methods,

however, may struggle in the presence of shocks and/or strong gradients. Under-

resolution in theses regimes often leads to unphysical oscillations and, at times,

failure of a numerical method. The most common remedy for these issues is to employ

shock capturing methods. Traditionally, shock capturing methods have focused on

the addition of artificial viscosity [77, 78] and limiting [23, 57]. In the latter case,

troubled cells are typically identified and then limited (eg. as in [57]).

The MZ-VMS formulation is an excellent candidate as an under-resolution in-

dicator. Examining the memory at s = 0 provides information about the level of

resolution of a numerical method and can be used to indicate when a simulation is

under-resolved. We demonstrate now how the memory at s = 0 can be utilized for

limiting.
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6.8.1 Hierarchical Filtering

We consider again the application of the MZ-VMS framework to the conservation

equation given in Eq. 6.15. Through the MZ-VMS framework, the evolution equation

for the coarse scales can be exactly written as,

(6.132)

ˆ
Ω

w̃utdΩ +

ˆ
Ω

w̃∇ · F(ũ)dΩ +

ˆ
Γ

w̃b(ũ,n)dΓ = M̃

ˆ t

0

K(ã(t− s), s)ds.

As should be evident by now, computing the entire memory term is intractable. The

value at s = 0, however, is computable and shows up in the form of Eq. 6.65. As

we have discussed, Eq. 6.65 contains terms that correspond to volumetric terms and

surface terms. Here, we use the volumetric term as an indicator for under-resolution,

(6.133) rpk(ã) =

ˆ
Ω

ˆ
Ω

(w̃pkR′)(x)Π′(x, y)(R(ũ)− f)(y)dΩydΩx.

The volumetric term alone is utilized as it is local to an element and its computation

is straightforward. We use this indicator to assess the resolution level and then, if

required, filter the solution. Various filtering procedures are possible, and here a

simple hierarchical projection-based filter is used. Recall that in one-dimension, the

representation of our polynomial on the kth element is given by

(6.134) ũk =

p∑

j=0

wjk(x)ajk(t).

In our hierarchical limiting procedure, we set ajk = 0 if the resolution indicator

exceeds a certain threshold. We take this threshold to be a percentage of the right

hand side budget. The selection of this threshold determines the sensitivity of the

filtering procedure. The algorithm is shown below.
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for k ∈ T do

for j = 0, p do

compute rpk =
´

Ω

´
Ω

(w̃pkR′)(x)Π′(x, y)(R(ũ)− f)(y)dΩydΩx ;

if rjk(ã) > ε
( ´

Ω
w̃jk∇ · F(ũ)dΩ +

´
Γ
w̃jkb(ũ,n)dΓ

)
then

aqk = 0 for all q ≥ j;

end

end

end

Algorithm 1: Memory-based hierarchical limiting algorithm.

Remarks

• Note that rpk = 0 for p = 0. As such the filtering procedure will, at most,

reduce the scheme to first order.

• It is observed that, in general, r(p+1),k > rp,k.

6.8.2 Application to the Isentropic Vortex

Before assessing the performance of the filtering algorithm on problems with

strong gradients where filtering is required for stability, the performance of the algo-

rithm is assessed in smooth regimes. In such regimes, the filtering algorithm should

have a minimal impact on the solution and not effect the asymptotic order of con-

vergence. Here the isentropic vortex problem is examined [102], which is initialized
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by,

(6.135)





ρ

u

v

T





=





T
1

γ−1

u∞ − β
2π
e

1
2

(1−r2)(y − y0)

v∞ + β
2π
e

1
2

(1−r2)(x− x0)

1− (γ − 1) β2

8γπ2 e
1−r2





,

where,

r =
√

(x− x0)2 + (y − y0)2.

The parameters selected are x0, y0, β = 5 and u∞, v∞ = 1. The periodic domain has

dimensions L ∈ [0, 10] × [0, 10]. The exact solution corresponds to advection of the

vortex at the free-stream velocity.

Figure 6.18 shows the convergence in the L2 state error after the vortex propagates

once through the domain for various polynomial errors and mesh sizes. The L2 state

error is defined as,

EL2 =
1

Ω

ˆ
(u− uexact)

2dΩ.

In Figure 6.18, it is seen that the filtering process only modifies the convergence

properties of the DG scheme when the solution is under-resolved. For all cases

considered, simulations utilizing the filtering algorithm retain the asymptotic rate

of convergence. Figure 6.18 also shows the sensitivity of the filtering procedure to

the parameter, ε. For simulations run with a higher value of ε, the filtering scheme

is more active. Figure 6.19 shows contours of density after the vortex has advected

once through the domain for the case with p = 2 and 8 elements in each direction.

This is the coarsest case considered. It is seen that the solution run with no filtering

process does a reasonable job capturing the advection of the vortex. Due to the low

resolution, however, jumps at the element interfaces can be seen. For more complex

problems, these jumps can lead to stability issues. Solutions run with the filtering
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Figure 6.18: Convergence profiles for the isentropic vortex case at various polynomial orders.
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Figure 6.19: Physical space density profiles for p = 2, N = 8 case.

algorithm are seen to diffuse the vortex. This leads to a decrease in accuracy but an

increase in stability.

6.8.3 Application to the Sod Shocktube

The Sod shocktube is a classic shock-capturing problem that presents many chal-

lenges for high-order methods. The problem setup is given by,

(6.136) ρ =





1 x ≤ 0.5

0.125 x > 0.5

, p =





1 x ≤ 0.5

0.1 x > 0.5

, u =





0 x ≤ 0.5

0 x > 0.5

.

Figure 6.20 shows numerical results for simulations at 400 DOFs. The filtering pa-

rameter is taken to be ε = 1. To illustrate the effectiveness of higher-order methods,
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Figure 6.20: Numerical results for the Sod shocktube problem.

the p = 0 solution is run using 800 DOFs. The filtering procedure is seen to effec-

tively remove spurious oscillations and allows for high-order methods to be effectively

applied to shock-dominated problems.

6.8.4 Shu-Osher Problem

We next consider the Shu-Osher problem. The Shu-Osher problem consists of a

Mach 3 shock wave impacting a fluctuating density wave and is a canonical prob-

lem for shock-turbulence interactions. The numerical method must be able to both

capture the fine-scale density fluctuations and the strong shock wave. The problem

setup is given by,

(6.137) ρ =





3.8571 x ≤ −4

1 + 0.2 sin(5x) x > −4

, p =





10.3333 x ≤ −4

1 x > −4

,

u =





2.6293 x ≤ −4

0 x > 4

.

Figure 6.21 shows numerical results for the Shu-Osher problem for polynomial orders

p = 1 and p = 3 on grid sizes corresponding to a total of 400 and 800 DOFs. As be-
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fore, the solutions are compared to a p = 0 solution run using twice the total degrees

of freedom. For the Shu-Osher problem, all DG simulations with p >= 1 using the

Roe flux went unstable. The inclusion of the MZ-VMS filtering procedure stabilizes

the simulations and allows for the use of high-order methods. In Figure 6.21, the

high-order methods (with filtering) are seen to out-perform the lower order methods

for capturing the fluctuating density wave behind the shock. This is particularly

relevant in the 400 DOF simulations. The high-order methods, however, do have

oscillations around the shock fronts.

6.8.5 Viscous Sod shocktube in two dimensions

As a final example, we consider the application of the filtering procedure to a mul-

tidimensional calculation. Note that the algorithm is directly applicable to multidi-

mensional calculations (this is often not the case for limiting procedures). The prob-

lem considered is the sod shocktube on the unit square with a viscosity of µ = 1e−5.

Simulations are performed on a uniform mesh at a resolution of Nel = 400×400 with

p = 3 polynomials in each direction. Isothermal boundary conditions are used on the

top and bottom walls, while reflecting boundary conditions are used on the left and

right walls. The simulation results at t = 1.0 and t = 2.0 are shown in Figure 6.22.

It is noted that the baseline DG simulation went unstable at this resolution. The

inclusion of the MZ-VMS filtering procedure is seen to stabilize the simulation, while

still allowing for complex features of the flow to be captured. In particular, the sim-

ulation is able to capture the lambda shock pattern arising from the shock-boundary

layer interactions as well as the corner vortices caused by the shock reflections.
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(a) Solution at t = 1.0 (b) Solution at t = 2.0

Figure 6.22: Contours of the density gradient for the two-dimensional Sod shocktube problem.

6.9 Chapter Summary

In this chapter we outlined the application of the MZ-VMS framework for finite

elements and considered the application of MZ-VMS methods within the context of

discontinuous Galerkin. The important findings from this chapter are:

1. The finding that the MZ-VMS memory appears in the form of volumetric and

flux terms. The flux terms display many commonalities with classic upwinding

flux functions. For Burgers’ equation and linear advection in one dimension,

the τ -model (with an appropriate selection for τ) constructed on a central flux

was shown to be formally equivalent to the upwind flux correction.

2. The demonstration that the MZ-VMS framework can lead to closure terms that

improve the solution predictions for high-order simulations of Burgers’ equation.

For lower-order methods, however, the flux schemes dominate the memory term

and significant improvements over baseline calculations using the Roe flux were

not observed.
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3. The construction of MZ-VMS methods for discontinuous Galerkin methods us-

ing a conservative variable formulation led to stability issues. The simulations

were observed to diverge if the timescale τ was chosen to be either too high or

too low. For an appropriately chosen τ , the MZ-VMS methods were able to sta-

bilize a central flux and led to results similar to those obtained with traditional

flux schemes.

4. The development of MZ-VMS methods within an entropy conservative formu-

lation led to entropy stable closure models. These closure models were shown

to improve the predictive capabilities of the numerical simulations.

5. The MZ-VMS framework was shown to be useful as an error indicator. We

demonstrated how the memory can be used as an indicator for troubled cells

and outlined a filtering algorithm that filters high-order polynomials when a sim-

ulation is under-resolved. The applicability of this algorithm was demonstrated

for shock-dominated calculations in one and two-dimensions. It was shown that

the filtering algorithm was shown to stabilize high-order calculations without

compromising the accuracy of the method in smooth regimes.

This chapter concludes this dissertations investigation of MZ-VMS methods. The

following chapter will provide conclusions and perspectives.



CHAPTER VII

Perspectives

7.1 Conclusions

The simulation of multiscale systems continues to be a prominent challenge in

computational physics. Various strategies exist for handling multiscale physics. The

variational multiscale method is one such promising approach. The VMS method,

which was developed in the context of linear steady-state problems, provides a formal

strategy for the numerical simulation of multiscale systems. The extension of classic

VMS approaches to non-linear and unsteady problems has, however, proved chal-

lenging. This work advances the state-of-the-art in VMS modeling by unifying the

variational multiscale method with the Mori-Zwanzig formalism. The MZ-formalism,

a tool from statistical mechanics, has long been viewed as a powerful model reduction

strategy. The promise of the method, however, has yet to be realized. In develop-

ing the MZ-formalism within the VMS framework, this work demonstrates that the

MZ-formalism can be used as a practical modeling tool. The MZ-VMS formulation

shows, for the first time, that memory effects are closely linked to classic stabilization

methods that have existed in the community for some time. The MZ-VMS frame-

work further shows that several existing subgrid-scale/stabilization methods can be

viewed as a subset of a much broader class of models, thus offering the promise of

207
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improved predictive capabilities for multiscale systems.

The remainder of this chapter will outline the specific contributions of this dis-

sertation as well as recommended future work.

7.2 Contributions

The major contributions of this work are:

1. A formulation of of Chorin’s optimal prediction framework for varia-

tional multiscale-type discretizations of partial differential equations.

This formulation was pursued for a specific projection operator. Prior to this

work, the formulation of MZ-based methods for practical discretization tech-

niques has remained unclear.

2. A rigorous investigation of the performance of existing MZ models

for Fourier-Galerkin simulations of turbulent flows. Prior to this work,

the t-model had only been briefly considered as a closure model for LES in the

work of Chandy and Frankel [15]. This work provided a much deeper inves-

tigation into the performance of the models for canonical turbulent flows at a

variety of resolutions. We showed that for simulations where the cross-stresses

dominate, which is the case when a simulation is mildly under-resolved, MZ

models outperform the dynamic Smagorinsky model. MZ models were shown

to be capable of predicting backscatter at several wavenumbers, while still be-

ing globally dissipative. It was then shown that when the Reynolds stresses

dominate, which is the case when a simulation is severely under-resolved, the

MZ models considered do not perform as well as the Smagorinsky model. This

shortcoming is attributed to the fact that the MZ methods examined in this

work are unable to model the Reynolds stresses.
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3. An establishment of connections between MZ-based methods and

residual-based closures. By using MZ-based methods within the VMS frame-

work, these connections emerged from the analytic derivation of the model

forms. In particular, it was shown that the t and τ -model have a structural

form that is equivalent to a class of VMS models. This provides a great deal

of insight into the mechanics of MZ-based methods and helps bridge a gap that

has existed between two communities.

4. Application of MZ-based methods to the discontinuous Galerkin method

and an establishment of connections between MZ-based methods, up-

winding, and artificial viscosity. This work marks the first time that

MZ-based approaches have been applied to finite element methods.

To the authors knowledge, this is additionally the first application of residual-

based VMS models to discontinuous Galerkin simulations of turbulent flows.

5. A demonstration that, in discontinuous Galerkin simulations, un-

closed effects lead to a memory term that is driven by the coarse-

scale residual and inter-element jumps. The inter-element jumps lead to

memory terms that resemble upwind fluxes and approximate Riemann solvers.

This dissertation work further showed how VMS and MZ-VMS methods ap-

plied to discretizations of the Euler equations using conservative variables lead

to stability issues. This was demonstrated through both theoretical and nu-

merical analyses. It was shown that, when applied to discretizations of the

Euler equations using entropy variables, entropy stability can be guaranteed.

This was again demonstrated through both theoretical and numerical analyses.

When applied to entropy stable formulations, the MZ-VMS models were seen

to provide improved solutions at high Reynolds numbers.



210

6. The development of an autonomous dynamic MZ-VMS model, coined

the dynamic-τ model. The dynamic-τ model is constructed by assuming

similarities between two levels of coarse-graining via the Germano identity. The

model was shown to perform well for several flows. For spectral methods it

led to improved predictions over the existing VMS(ε) model and, in general,

performed comparable to tuned versions of Stinis’ finite memory models. The

developed model offers a significant advancement in MZ-based models in that

it does not explicitly contain a time term (unlike the t-model) and requires

minimal to no tuning.

7. A formulation of an auxiliary ODE system that can be used to ap-

proximate the orthogonal dynamics. This “orthogonal ODE” provides the

first tractable approximation to the orthogonal dynamics for high dimensional

system that the author is aware of. The author wishes to take this point to

acknowledge Ayoub Gouasmi for his contributions to the development of the

orthogonal ODE and its procedure [43]. Without these contributions, some of

the theoretical origins of the orthogonal ODE and how it could be actually be

used to compute the memory would be unclear.

8. Investigation of MZ-VMS methods for limiting. It was shown how MZ-

VMS methods can be used as resolution indicators. These resolution indicators

can be used to drive limiting and/or adaptation. An MZ-VMS-based filter-

ing algorithm was devised to stabilize high-order methods. The algorithm was

shown to maintain asymptotic convergence for smooth problems and stabilize

otherwise unsteady calculations for shock-dominated problems.

9. The development of an open-source spectral method solver for the

triply periodic Navier-Stokes equations and an open-source discon-
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tinuous Galerkin solver for the compressible Navier-Stokes equations.

These codes are both distributed-memory Python-based codes and have dis-

played strong scaling to over 500 cores. The codes are freely available on GitHub.

7.3 Future Work

This dissertation work highlighted several important areas where research is re-

quired to further advance MZ-VMS-based methods. Several areas for future work

are:

1. The development of MZ-models that allow for increasingly accurate approx-

imations to the memory kernel. These models should maintain a low cost.

We showed in this work that several existing MZ models (Stinis’ finite memory

models and the dynamic-τ model) are incapable of dissipating enough energy for

significantly under-resolved, high Reynolds number simulations using a Fourier-

Galerkin method. The same shortcomings were observed with VMS methods.

With Fourier-Galerkin methods being the simplest numerical method on which

to test MZ-VMS models, future efforts in model development should address

this issue.

2. When applied to discontinuous Galerkin simulations of the compressible Navier-

Stokes equations using conservative variables, MZ-VMS models offered no im-

provements over the implicit subgrid-scale models inherent to physics-based flux

schemes and led to stability challenges. In this work, we showed that formulat-

ing the MZ-VMS models within an entropy conservative method remedied this

issue. In practice, however, the majority of numerical codes make use of the

conservative variable formulation. The question of whether MZ-VMS methods

can be used as a practical tool for such numerical methods remains unclear at
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this time and should be a topic of future work.

3. Application of the dynamic-τ model to discontinuous Galerkin simulations of

the compressible Navier-Stokes equations. In this work, only the VMS(ε) model

was considered. In general, it was observed that the VMS(ε) model was slightly

over dissipative. The dynamic model offers the promise to remedy this issue,

allowing for more accurate numerical simulations of under-resolved problems.

4. Application of MZ-VMS methods to multiphysics problems. A primary advan-

tage of the MZ-VMS formulation is its mathematical foundations. This allows it

to be applied to complex flows in a straightforward manner. This was demon-

strated in this dissertation in the context of magnetohydrodynamics. Future

work should continue to explore multiphysics applications.

As a whole, this work offers a significant advancement in the development of MZ

models and their application to the equations of fluid dynamics. We have provided

a unique perspective into under-resolution in the context of multiscale problems and

have helped to advance the understanding of the construction of closure models

through a unifying mathematical framework.
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APPENDIX A

Derivation of the memory at s = 0 (Spectral Method Case)

A variety of Mori-Zwanzig-based models require evaluating the memory term at

s = 0,

K(ã(t), 0) = etLPLQLã0.

Evaluation of PLQLã0 is an exercise in algebra, and we provide the step-by-step pro-

cess for the smooth case where jump terms between the elements are not considered.

We consider the non-linear equation,

∂u

∂t
+R(u) = f.

The evaluation of PLQLã0 is as follows:

1. First compute etLLã0. This is simply the right hand side of the coarse-scale

equation,

(A.1) etLLã0 = (w̃, f −R(ũ))− (w̃,R(u)−R(ũ)).

2. Next compute etLQLã0. By definition of how the right hand side is written,

(A.2) etLQLã0 = −(w̃,R(u)−R(ũ)),

or in terms of the basis coefficients

(A.3) etLQLã0 = −
(

w̃,R(wTa)−R(w̃T ã)

)
.
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3. Compute etLLQLã0. This is simplified by recognizing that the Liouville operator

is the Fréchet derivative in the direction of the right hand side. For some

function scalar function g,

(A.4) Lg(u(a0)) =
∂g

∂a0

Lã0.

The linearization in the Fréchet derivative is with respect to the modal variables,

a0. For the mapping from u = wTa, the chain rule gives

(A.5)
∂g

∂a0

Lã0 =
∂g

∂u0

wTLã0.

The Liouville operator can be applied to QLã0 by linearizing R with respect to

u, and evaluating the resulting model at R(u),

(A.6) etLLQLã0 = −
(

w̃,R′
(
wT
[
(w̃, f −R(ũ))− (w̃,R(u)−R(ũ))

])

−R′
(
w̃T
[
(w̃, f −R(ũ))− (w̃,R(u)−R(ũ))

])
.

4. Compute etLPLQLã0. This sets all terms involving a′ to zero and we obtain

(A.7) etLPLQLã0 = −
(

w̃,R′
(
wT (w, f −R′(ũ))

)
−R′

(
w̃T (w̃, f −R(ũ))

))
.

5. Equation A.7 may be simplified by recognizing that terms appear as projections,

(A.8) etLPLQLã0 = −
(

w̃,R′
(
Π(f −R(ũ))

)
−R′

(
Π̃(f −R(ũ))

)))
.

6. With Π′ = Π− Π̃ and noting that R′ is linear,

(A.9) etLPLQLã0 = −
(

w̃,R′
(
Π′(f −R(ũ))

))
.
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APPENDIX B

Spectral Method Solver: PySpectral

PySpectral solves the triply periodic spectral Navier-Stokes equations in their primi-

tive form using a Galerkin pseudo-spectral method. The code is parallelized through

mpi4py and has been used to solve systems with over one billion unknowns. The code

implementation uses ideas developed in [70]. Several of the important highlights of

the code are detailed in the following section.

B.1 The Psuedo-Spectral Method

The incompressible Navier-Stokes equations are given by

(B.1)
∂ui
∂xi

= 0

(B.2)
∂ui
∂t

+
∂uiuj
∂xj

= −1

ρ

∂p

∂xi
+

∂

∂xj

(
ν
∂ui
∂xj

)
.

For incompressible flows, application of the divergence free condition allows one to

express the pressure as a Poisson equation,

(B.3)
−1

ρ

∂2p

∂x2
i

=
∂uj
∂xi

∂ui
∂xj

.

The Galerkin spectral method using Fourier basis functions can be obtained either

through a weighted residual formulation, which is equivalently the Fourier transform
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of the governing equations. The pressure Poisson equation can be directly solved in

Fourier space, allowing the governing equations to be written compactly as

(B.4)

(
∂

∂t
+ νk2

)
ai(k, t) +

(
δim −

kikm
k2

)
ıkj

∑

p+q=k

aj(p, t)am(q, t) = 0 k ∈ F,

where ai is the Fourier transform of ui. Equation B.4 makes up a set of ordinary

differential equations for the modes in F . The challenge with directly solving Eq. B.4

is the expensive convolution term. Instead of directly evaluating the convolution,

the psuedo-spectral method evaluates the convolution by first performing the inverse

Fourier transform of the velocities (i.e. we compute the inverse Fourier transform

for each ai), computing the non-linear multiplication in physical space, and then

taking the Fourier transform of the resulting non-linear term. Listing B.1 shows the

implementation of the psuedo-spectral method on PySpectral.
1 # perform i n v e r s e f o u r i e r trans form o f s t a t e v a r i a b l e s
2 myFFT. myifft3D ( main . uhat , main . u)
3 myFFT. myifft3D ( main . vhat , main . v )
4 myFFT. myifft3D ( main . what , main .w)
5 # compute non l i n e a r terms and then take the Four i e r trans form
6 myFFT. myfft3D ( main . u∗main . u , main .NL [ 0 ] )
7 myFFT. myfft3D ( main . v∗main . v , main .NL [ 1 ] )
8 myFFT. myfft3D ( main .w∗main .w, main .NL [ 2 ] )
9 myFFT. myfft3D ( main . u∗main . v , main .NL [ 3 ] )

10 myFFT. myfft3D ( main . u∗main .w, main .NL [ 4 ] )
11 myFFT. myfft3D ( main . v∗main .w, main .NL [ 5 ] )

Listing B.1: Python implementation of psuedo-spectral right hand side computation.

B.2 Parallelization and distributed memory Fourier transforms

PySpectral is parallelized through mpi4py [29]. The mpi4py package is a robust

module and is a wrapper for the majority of MPI routines. The primary challenge

associated with the parallelization of a pseudo-spectral solver is performing the three

dimensional fast Fourier transforms in parallel. Several packages exist in Python

which allow for the calculation of a three-dimensional Fourier-Transform, including

numpy and scipy. Neither of these modules, however, directly have a parallel FFT

implementation. To circumvent this issue, PySpectral utilizes the slab decomposition
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discussed in [70]. The slab decomposition distributes the mesh along a single index,

and can be viewed as parallelizing the code in one-dimension. A three-dimensional

parallel FFT is performed by performing local two-dimensional FFTs on each CPU,

a global communication, and then a final one-dimensional local FFT on each CPU.

Listing B.2 shows the Python code associated with this process.

1 ## Code f o r the i n v e r s e f o u r i e r trans form
2 de f myifft3D ( uhat , u) :
3 s e l f . Uc hat [ : , : , : ] = np . f f t . i f f t ( uhat , a x i s =1)
4 s e l f . U mpi [ : ] = np . r o l l a x i s ( s e l f . Uc hat . reshape (Npx , num processes , Npy , N3

/2+1) ,1 )
5 comm. A l l t o a l l ( s e l f . U mpi , s e l f . Uc hatT )
6 u [ : ] = np . f f t . i r f f t 2 ( s e l f . Uc hatT , axes =(0 ,2) )
7 r e turn u
8 ## Code f o r the f o u r i e r trans form
9 de f myfft3D (u , uhat ) :

10 s e l f . Uc hatT [ : , : , : ] = np . f f t . r f f t 2 (u , axes =(0 ,2) )
11 comm. A l l t o a l l ( s e l f . Uc hatT , s e l f . U mpi )
12 s e l f . Uc hat [ : , : , : ] = np . r o l l a x i s ( s e l f . U mpi , 1 ) . reshape ( s e l f . Uc hat . shape )
13 uhat [ : ] = np . f f t . f f t ( s e l f . Uc hat , a x i s =1)
14 r e turn uhat

Listing B.2: Python implementation of parallel FFTs.

B.3 Vectorization and broadcasting in Python

One of the primary costs in the pseudo-spectral solver is the element-wise mul-

tiplication, addition, and division of arrays. For efficient evaluation of these terms

in a high-level language such as Python, array vectorization is critical. A further

important consideration relevant to vectorized multiplication in Python is broad-

casting. Broadcasting refers to how numpy deals with operations on multiple arrays

of different shapes. To illustrate these concepts, we consider the algorithm for the

x-derivative of a three-dimensional field û in the frequency domain, which is com-

pactly defined as ûx = ık1û. Listing B.3 shows the implementation of this calculation

in python. The reader will note that computation is performed with no loops, thus

allowing numpy to efficiently interface with C routines to compute the element-wise

multiplications. The reader will further note that k1 is a one-dimensional vector,

which is then broadcast into a three-dimensional vector to perform the element-wise
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multiplication. This broadcasting allows for memory savings in storing the k1 array

(i.e. we do not need to store a 3D field).

1 de f compute grad x ( uhat x , k1 , uhat ) :
2 uhat x [ : , : , : ] = k1 [ : , None , None ]∗ uhat [ : , : , : ]

Listing B.3: Python implementation of the x-derivative.

B.4 De-aliasing

Psuedo-spectral methods require some type of de-aliasing to maintain accuracy.

De-aliasing is required due to quadratic non-linearities present in the Navier-Stokes

equations and there is in fact a close relationship between de-aliasing and closure

modeling. PySpectral uses standard 2/3 dealiasing, where the energy content in

the highest 2/3 wave-numbers is removed. For the LES calculations, most of which

are performed in a slightly older version of PySpectral, 2x padding is used for the

FFTs. This allows for minimal bookkeeping in the MZ-VMS models, but is not a

requirement.

B.5 Miscellaneous Details

All results presented in the following sections leverage Jameson’s low storage RK4

time integration techniques. For visualization, PySpectral utilizes a VTK package,

PyEVTK, to write data into a format readable by ParaView. PySpectral is accessible

on GitHub.

https://bitbucket.org/pauloh/pyevtk
https://github.com/eparish1/PySpectral
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APPENDIX C

Discontinuous Galerkin Solver: PyDG

PyDG is a high-order discontinuous Galerkin solver developed in this dissertation.

The code is developed in a pure Python environment and interfaces with mpi4py

and numpy to provide a scalable code that can be used for high fidelity simulations.

This appendix outlines several important aspects of the code.

C.1 Tensor Product Legendre Basis Functions and Order of Accuracy

PyDG is built on tensor products using Legendre basis functions defined at the

Gauss quadrature points. PyDG interfaces with numpy’s polynomial class to con-

struct these polynomials to an arbitrary order of accuracy. Using this functionality,

PyDG has been run for up to p = 63 order polynomials.

C.2 Parallelization

Similar to PySpectral, PyDG is parallelized through mpi4py. The solver utilizes

a pencil decomposition, where the computational domain is decomposed in the x1

and x2 directions. PyDG has been run in a cluster environment on up to 512 CPUs.

C.3 Efficient Implementation of Volumetric Integrations

One of the primary costs in a high order discontinuous Galerkin solver is the

evaluation of the volumetric integrals. In a spacetime formulation, these integrals are
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four dimensional. To develop an efficient Python code, these volumetric integrations

must be performed in a loop free manner. To illustrate how this is performed in

PyDG, consider the volumetric integration of a source termed f tested against the

weighting functions w,

R =

ˆ
w(x, y, z, t)f(x, y, z, t)dΩ.

For a tensor product basis, the weighting functions can be described as

w(x, y, z, t) = w0(x)⊗ w1(y)⊗ w2(z)⊗ w3(t).

The tensor product decomposition allows the volumetric integration to be performed

as a series of four one dimensional integrations. Listing C.1 shows an efficient Python

implementation of this integration using numpy’s tensordot function. It is noted

that the function f is a nine-dimensional array (# conserved variables × number of

quadrature points in (x, y, z, t)× number of elements in (x, y, z, t)). The code shown

in Listing C.1 provides a concise and efficient four-dimensional volumetric integration

of f tested against the weighting function w in five lines of Python code.

1 de f vo l In t eg ra t eG lob t en so rdo t ( main , f , w0 , w1 , w2 , w3) :
2 tmp = np . r o l l a x i s (np . t ensordot (w0∗main . weights0 [ None , : ] , f , axes = ( [ 1 ] , [ 1 ] ) ) , 0 , 9 )
3 tmp = np . r o l l a x i s (np . t ensordot (w1∗main . weights1 [ None , : ] , tmp , axes = ( [ 1 ] , [ 1 ] ) ) , 0 ,

9)
4 tmp = np . r o l l a x i s (np . t ensordot (w2∗main . weights2 [ None , : ] , tmp , axes = ( [ 1 ] , [ 1 ] ) ) , 0 ,

9)
5 tmp = np . r o l l a x i s (np . t ensordot (w3∗main . weights3 [ None , : ] , tmp , axes = ( [ 1 ] , [ 1 ] ) ) , 0 ,

9)
6 r e turn np . r o l l a x i s ( np . r o l l a x i s ( np . r o l l a x i s ( np . r o l l a x i s ( tmp , −4 , 1) , −3 , 2)

, −2, 3) , −1, 4)

Listing C.1: Python implementation of the volumetric right hand side integral.

C.4 Matrix-Free Newton Krylov Solver

Spacetime and implicit discretization techniques lead to a nonlinear set of equa-

tions to be solved at each time-step,

R∗(uN) = 0.
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Solving this non-linear set of equations is made challenging by the high-dimensionality

of the spacetime system and the memory requirements of the associated Jacobians.

PyDG solves the non-linear set of equations using a matrix-free Newton Krylov

method. Matrix-free methods leverage the fact that Krylov subspace methods only

require the action of a Jacobian on a vector. This action can be performed by

computing the Fréchet derivative of the residual in the direction of the vector v,

Jv = lim
ε→0

R∗(uN + εv)−R∗(uN)

ε
,

where the Jacobian J = R∗uN . This Fréchet derivative can be either be approximated

via finite difference, or it can be computed exactly by computing the linearization

of R∗. PyDG primarily makes use of the finite difference approximation, although

several exact linearizations are present. The simulation results presented in this

work use the generalized minimum residual method (GMRES) as the preferred linear

solver.

C.4.1 Preconditioning

Converge of the implicit solvers is accelerated by using the mass-matrix as a

preconditioner. Note that, while for cuboid grids the mass-matrix resulting from the

Legendre polynomials is diagonal, it is still an efficient preconditioner. The standard

mass matrix is computed by,

M =

ˆ
wwTdΩ.

Solution of the non-linear system is accelerated by left multiplying by the inverse

mass matrix,

M−1R∗(uN) = 0.



223

For formulations using entropy variables, the solver is accelerated by using the ”en-

tropy” mass matrix,

Ms =

ˆ
w
∂u

∂v
wTdΩ.

The nonlinear solvers are then accelerated by

M−1
s R∗(uN) = 0.

It must be noted that the entropy mass matrix changes in time and must be recom-

puted as u and v change. In the context of preconditioning, however, the exact mass

matrix is not required. In PyDG, the entropy mass matrix is instead computed at

set intervals throughout the calculation.

C.5 Miscellaneous Details

PyDG utilizes the same VTK package as PySpectral, PyEVTK, to write data into

a format readable by ParaView. PyDG is available on GitHub.

https://bitbucket.org/pauloh/pyevtk
https://github.com/eparish1/PyDG
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