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ABSTRACT 

 

Strategies for reducing exposure to ambient air pollution in urban areas may be less effective as 

pollutants and their sources have shifted from being dominated by large point sources to more 

complex mixtures that include a sizeable fraction of traffic-related air pollutants (TRAP). In past 

decades, urban air pollution management strategies were designed to control pollutant emissions 

from point sources, while traffic-related emissions primarily were controlled by federal 

regulations.  This approach now may not address the exposures experienced by vulnerable 

individuals that can result in adverse health impacts and inequities in the distribution of health 

impacts.  New tools and methods are needed to characterize exposures from emission sources 

including traffic. This dissertation aims to address this need by applying and evaluating several 

methods to estimate exposures, focusing on TRAP.  The specific aims of this dissertation are to 

describe recent trends of TRAP exposure in two large urban areas (Detroit, MI and Chicago, IL), 

understand the performance and sensitivity of a recently developed dispersion model used to 

estimate TRAP exposures through an evaluation using Detroit area data, and describe and apply a 

novel method for characterizing the contribution from specific sources (e.g., on-road vehicles) to 

population exposure.  

The first aim examines trends in emissions, concentrations and source apportionments of fine 

particulate matter (PM2.5, particles with a diameter less than 2.5 µm) in two large Midwest U.S. 

cities, Detroit, Michigan, and Chicago, Illinois. Annual and seasonal trends are assessed for 

emissions data from the National Emission Inventory (NEI) for 2002 to 2011, speciated ambient 

PM2.5 data from 2001 to 2014, and source apportionments generated using positive matrix 

factorization (PMF) receptor modeling. Trends in 50th and 90th percentile concentrations and 

apportionments are evaluated using quantile regression (QR), a technique which distinguishes 

trends at specific percentiles. The analysis reveals that the fraction of PM2.5 due to mobile sources 

and other local emissions have increased (Detroit) or stayed constant (Chicago), even as total PM2.5 
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concentrations have decreased in both cities. The methodology demonstrated in this aim could be 

used to compare trends in the share of PM2.5 contributed by vehicles across major cities; many 

cities have different local regulations and fleet mixes that may affect trends in vehicle-related 

PM2.5, and the methods in this aim could be used to identify potentially preferred pollution 

reduction strategies. 

The second aim provides an operational evaluation of RLINE, a research-level line-source 

dispersion model developed by the United States Environmental Protection Agency (EPA) for the 

near-road environment. Operational evaluations obtain results pertinent to model application, e.g., 

in regulatory settings. This evaluation compares predictions of oxides of nitrogen (NOx), carbon 

monoxide (CO) and PM2.5 to observations at air quality monitoring stations located near high 

traffic roads in Detroit, MI. For CO and NOx, model performance was best at sites close to major 

roads, during downwind conditions, during weekdays, and during certain seasons; PM2.5 

comparisons were uninformative given high background levels and other uncertainties. 

Implications for regulatory, health impact and epidemiologic applications include the importance 

of selecting appropriate pollutants, using appropriate monitoring approaches, considering 

prevailing wind directions during study design, and accounting for uncertainty.  

The third aim examines the sensitivity of exposure estimates produced by the RLINE model to the 

model’s meteorological, emission and traffic allocation data. The application focuses on health 

studies examining near-road exposures to TRAP. Overall, results highlight the need for appropriate 

model inputs, especially meteorological inputs, in dispersion model applications designed to 

estimate near-road concentrations and exposures to TRAPs. Systematic biases are identified that 

might affect analyses using dispersion model predictions as exposure measures, e.g., in air 

pollution epidemiology and health impact assessment studies.  

The fourth aim quantifies source contributions to individual exposures and provides an 

apportionment of exposures. Using the modeling framework developed in the second aim, point 

and mobile source contributions and background levels of NOx are estimated, and a probabilistic 

human exposure model is used that predicts exposure using simulated population time-activity and 

estimated pollutant concentrations in various urban micro-environments. Results show that most 

of the exposure was derived from background levels, although contributions from non-commercial 

traffic sources provided important contributions during the evening and early morning periods in 



xvi 

 

the “indoor-at-home” micro-environment. This exposure apportionment complements results from 

the previous aims pertaining to emissions and concentrations, and it shows the significance of on-

road mobile sources to cumulative exposures in Detroit. Using the presented methodology for 

exposure apportionment, interventions incorporating the temporal and spatial nature of exposure 

could be applied to potentially lower the exposure of individuals in vulnerable groups.  

This dissertation identified results that emphasize the need to target mobile sources of air pollutants 

in policies and regulations intended to decrease pollutant concentrations in urban areas, and it 

provides methods to estimate exposures. The modeling evaluations show the importance of using 

local emission, meteorological, and pollution data when possible, and the importance of 

characterizing variability and uncertainty in predicting exposure. Predicting exposures of 

vulnerable and susceptible populations, including low-income and minority individuals living near 

major roads, may be particularly challenging, but these populations also are likely to suffer a 

disproportionate share of vehicle-related health impacts.  The modeling approaches examined in 

this dissertation can help to characterize exposures and evaluate strategies that can reduce these 

adverse impacts. 
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Chapter I – Introduction 

 

I.1 Motivation to study traffic-related air pollution 

Air pollution emissions from on-road motor vehicles, called “traffic-related air pollution” (TRAP), 

cause serious acute and chronic adverse health impacts and thus represent a major public health 

issue. TRAP includes a number of components: aerodynamic entrainment of road surface particles, 

brake and tire wear, which contribute particulate matter (PM) in various size ranges; volatilization 

of fuels and lubricants, which increases concentrations of volatile organic compounds (VOCs); 

and incomplete combustion of hydrocarbon fuels, which includes noxious exhaust gases, e.g., 

carbon monoxide (CO), oxides of nitrogen (NOx), composed of NO and NO2), and fine particulate 

matter (PM2.5). As early as 2002, TRAP was emerging as the dominant source of pollution in many 

urban areas [1]. Its significance is magnified given that 4% of the US population (11.3 million 

persons) live within 150 m of a major highway, and this fraction can increase up to 40% in cities 

[2, 3], where the highest concentrations of TRAP are expected.  

Exposure to TRAP has been associated with mortalities in a range of environments. In the US in 

2005, the total number of premature deaths related to exposure to vehicle emissions was estimated 

at 53,000 [4] (compared to an estimated 43,500 vehicle accident-related fatalities among adults 

below 44 [5]). Outside the US, given the number of megacities with high pollution levels and large 

populations of at-risk individuals, the number of annual deaths due to vehicle pollution may be an 

order of magnitude higher, commensurate with the estimate that air pollution as a whole causes 1 

in 9 deaths globally [6]. 

TRAP exposure can cause a wide range of adverse health effects. A comprehensive review 

completed in 2005 found that the TRAP component of PM2.5 is associated with both morbidities 

and mortalities [7], including worsening existing respiratory and other pre-existing health 
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conditions and causing disease, particularly among susceptible and vulnerable individuals1. A 

2010 critical review found that exposure to TRAP was causally associated with exacerbation of 

symptoms of asthma among children with the disease [2]. Exhaust from vehicles using diesel fuel 

has been causally linked to lung-cancer [8], and truck traffic, the primary emitter of diesel exhaust, 

has been associated with decreased lung function in children living within 300 m of select 

roadways in the Netherlands [9]. TRAP exposure has been linked to adverse pregnancy outcomes, 

e.g., low birth weight and small for gestational age births in Canada from 1998 to 2008 [10]. These 

conclusions are supported by findings of suggestive but (as of now) insufficient associations 

between long-term traffic exposure and onset of asthma among children [2], among other 

conclusions.  

Health impacts associated with TRAP exposure disproportionately affect socially and 

economically disadvantaged populations, including children, the elderly, low socio-economic 

status, those living in close proximity to high-traffic roads, and individuals with asthma or other 

respiratory conditions [2]. TRAP exposure has also been associated with differing amounts of 

sleep disturbance among race/ethnicity and socio-economic status groups in the Boston Area 

Community Health Survey [11]. Numerous studies have investigated associations between traffic 

pollution exposure and health effects in the elderly, and associations have been shown with 

increased heart-rate variability [12], faster progression in disability [13], and degree of coronary 

arthrosclerosis [14]. 

To mitigate the health effects associated with exposure to TRAP, many countries have enacted 

policies to reduce emissions and exposures. Several policies have not been successful: a policy 

restricting car use in Mexico City based on license plate number was found to increase the volume 

of older, “dirtier” cars on the road [15]. Fortunately, catalytic converters have drastically reduced 

the amount of NOx emitted from tail-pipes [16]; and the use of sulfur-free fuel and low-emission 

zones (e.g., in London and several German cities) lowered concentrations of ultrafine particulate 

matter (PM0.1), coarse particulate matter (PM10), and NOx [17–19]. However, these policies may 

not continue to be as successful, given increasing urbanization in many urban areas. Increases in 

city population is accompanied by increases in the volume of on-road vehicles, traffic congestion, 

                                                 
1 Kottow [200] succinctly describes the distinction between susceptible and vulnerable as “… the difference between 

being intact but fragile – vulnerable – and being injured and predisposed to compound additional harm – susceptible.” 
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and commuting distances. Concurrently, large roadways become adjacent to residences, schools, 

and workplaces, micro-environments where a large portion of exposure occurs. These trends in 

exposure and urbanization, and the large and potentially growing TRAP fraction in many urban 

areas, motivates the need to better characterize TRAP exposure with the ultimate aim of using this 

information to inform policies aimed at reducing health impacts. 

I.2 Methods used to estimate exposure to TRAP 

This section provides an overview of methods used to estimate exposure to TRAP. Exposure 

estimation is a foundational element of policies that aim to reduce exposures.  

There are numerous methods for estimating exposure to TRAP [20]. The most accurate approach 

for determining exposures, personal measurements, is rarely feasible or cost-effective given the 

number of subjects required and the cost, burden and other limitations of the sampling equipment. 

In deference to this method, a number of surrogate methods can be employed. One such method 

uses concentrations of TRAP measured at an ambient air quality monitoring station nearest to the 

population of interest. In the U.S., the State and Local Air Monitoring Stations network (SLAMS), 

the Interagency Monitoring of Protected Visual Environments (IMPROVE) network [21], and the 

Chemical Speciation Network (CSN) [22] have collected ambient data since the mid-1980s that 

can facilitate these analyses, as well as ensure compliance with National Ambient Air Quality 

Standards (NAAQS). As an example, a recent study used fixed site data to show that elemental 

and organic carbon, which originate primarily from vehicle emissions, were associated with the 

largest risk for emergency hospitalization of any of the major species of fine particulate matter 

[23]. Ambient air quality monitoring data can permit a wide range of trend analyses, which can 

help evaluate the effectiveness of mitigation and control measures, e.g., low emission zones [17], 

and help to evaluate dispersion and exposure models [24]. Monitoring data also have been widely 

used to estimate exposures for epidemiology and risk studies investigating and predicting the 

health consequences of pollutant exposure [25]. Despite these applications, most conventional air 

quality monitoring networks are spatially too sparse to capture small-scale variation or spatial 

gradients of TRAP, e.g., the elevated concentrations found near large roadways [26].  

Concentrations at fixed sites can also be used to make inferences about relative levels of emissions 

from contributing sources (e.g., on-road vehicles), analyses known as receptor modeling. Such 

applications are especially important in areas with susceptible populations and where 
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concentrations exceed ambient standards, and for those emission sources that are difficult to 

characterize or that have changed rapidly, e.g., on-road emissions, due to shifts in fuels, emission 

controls, and fleet mix. In Detroit, for example, receptor model apportionments using positive 

matrix factorization [27] have identified key PM2.5 sources, e.g., secondary sulfate aerosol (SO4
=, 

especially in the summer), secondary nitrate (NO3
-), metal processing, biomass burning, other 

manufacturing and industrial operations, vehicle-related emissions (including primary and 

secondary aerosols from tire and brake wear, and entrained dust), and crustal-derived emissions 

[28–36]. A few recent receptor model apportionments examined long-term trends in vehicle-

related contributions – a recent analysis of 2002 to 2013 CSN data in Southern California showed 

that median PM2.5 concentrations attributed to vehicles fell 21 to 24% between the first and last 4 

year blocks of the study period (2002 to 2006 and 2008 to 2014, respectively) [37] – although 

given differences in local emissions and ordinances, these trends are not widely generalizable. 

Updated analyses in various urban areas are needed to account for changes in city-specific 

emissions and industrial activity that have occurred over recent decades. 

Pollutant concentrations and exposure estimates that vary spatially and temporally, reflecting near-

road gradients, are needed for a number of applications, e.g., urban-scale cohort and panel studies 

[38]. These can be generated by a variety of techniques. Measures that do not directly model the 

dispersion of pollution through urban areas, such as the proximity to roads and traffic intensity, 

have been used, but these only indirectly indicate concentrations and have other limitations [39]. 

Dispersion models use meteorological parameters, e.g., wind speed, wind direction, and measures 

of atmospheric turbulence, to simulate the concentration of emitted pollutants at pre-defined 

locations (called “receptors”). Concentrations at receptors placed at relevant locations, e.g., an 

individual’s residence or workplace, can be predicted to estimate the potential for ambient 

exposure of that individual. Hourly exposures can also be modeled using probabilistic human 

exposure models that simulate population-level time-activity in various urban micro-

environments. Estimation of hourly exposures to modeled pollutant levels allows for 

apportionment of exposures and identification of source-activity pairs that contribute the air 

pollution burden; these pairs could potentially be targeted in interventions aimed at reducing 

exposures. Dispersion models, exposure models, and exposure apportionment are featured in this 

dissertation, and are discussed in the following sections.  
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I.2.1 Dispersion models 

Dispersion models have long been used to predict concentrations of emitted pollutants in both rural 

and urban areas at high spatial and temporal resolutions. Several dispersion models are available 

and appropriate for TRAP. The current US regulatory dispersion model is the American 

Meteorological Society (AMS) and U.S. Environmental Protection Agency (EPA) Regulatory 

Model (AERMOD) [40]. AERMOD uses a complex suite of meteorological parameters to predict 

pollutant concentrations. While designed to model emissions from stationary industrial point 

sources, AERMOD incorporates modules to model emissions from line sources (e.g., highways, 

railroads). The California LINE-source model (CALINE) [41] contains a specifically-tuned 

interface for processing line-source inputs using a limited set of basic meteorological parameters 

(e.g., wind speed, wind direction, temperature and atmospheric stability class). Recent literature 

has suggested replacing CALINE with AERMOD owing to this simplification [42]. The recently 

developed Research LINE-source dispersion model, RLINE [43], is specifically designed to model 

near-roadway concentrations, contains updated dispersion algorithms, numerical as well as than 

analytical solving mechanisms, several beta-tested near-roadway environment specific modules 

(e.g., barriers and roadway depression) and a novel near-road pollution meander algorithm [43, 

44]. A recent model inter-comparisons suggested that RLINE may have some expanded utility 

compared to CALINE [45]. Performance evaluations of the RLINE model [43–46] show generally 

comparable results to other line source models that simulate dispersion from on-road traffic 

emissions [47–50]. 

Prior performance evaluations of RLINE appropriate to predicting health-relevant exposures (e.g., 

daily and annual average exposure to TRAP) have limitations. For example, they often lack 

evaluations of daily (and sometimes annual) average concentrations of TRAP, a commonly used 

health metric, and they rarely are performed at the urban scale needed for population-level 

observations of health outcomes. Instead, most evaluations have examined hourly average 

concentrations, used experimental tracer gases that do not undergo chemical and physical 

transformations, and examined small (<1 km2) and simplified domains that contain few sources 

[45, 46, 51]. (See Table 1 for datasets used in previous RLINE evaluations.) While providing 

valuable diagnostic information that can help improve models, these evaluations do not represent 

the complexity and scale of urban settings, which can span large and diverse areas with many 

emission sources. The studies that have compared RLINE predictions to observations of TRAP 
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have other limitations, e.g., the use of short monitoring periods, single pollutants [43, 52], sole 

examination of annual average concentrations [53], and limited discussions of model performance 

and study methodology [54]. Further, performance has not been evaluated with respect to 

exposure-relevant factors (e.g., metrological and emission variability seen by day-of-week and 

season) that could alter results and lead to exposure measurement errors and misclassification. 

Guidance on specific metrics to be used in performance evaluations of air quality models has been 

published recently, [55, 56] (discussed further in Chapter II). 

An additional area requiring evaluation is the sensitivity of RLINE to various input parameters. 

RLINE, like all dispersion models, requires meteorological data, which fundamentally influence 

dispersion calculations [57–60]. Ideally, these data use on-site or local observations [60]. 

However, local meteorological datasets are typically limited, e.g., of the 72 near-road monitoring 

sites in the USA, only 6 have a National Weather Service (NWS) meteorological station within 5 

km, and the average distance to the nearest station is 18.5 km [61]. Previous sensitivity studies 

using industrial emissions, e.g., mercury and hexavalent chromium, attributed 16 – 25% variability 

in results to changes in meteorological inputs [62, 63]. However, with regards to TRAPs in urban 

areas, such sensitivity studies are limited. As a second example, emission data used in dispersion 

models depend on traffic activity (e.g., number of vehicles, vehicle mix, vehicle speed and 

acceleration), which in turn depends on commuting and work schedules, construction activity, 

weather and many other factors [64]. Typically, emission rates are derived using simplified and 

default allocations to obtain hourly and daily estimates from annual average data. Again, local data 

regarding traffic volume, mix, and diurnal patterns are recommended, but such inputs are rarely 

available. While not providing a full measure of model uncertainty, sensitivity analyses reveal the 

relative amount of uncertainty associated with each model input, the robustness of the model with 

respect to changes in inputs and parameters, and critical model inputs, i.e., those that are uncertain 

and that cause large changes in model predictions [57, 65]. Such sensitivity analyses have not been 

completed for RLINE. Given that RLINE may be incorporated into AERMOD and used in 

regulatory and health-based applications, it is important to understand the conditions that affect 

performance and the critical inputs. 
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I.2.2 Human exposure models 

Human exposure models estimate distributions of air pollution exposure in various micro-

environments by estimating hourly presence of simulated individuals in various micro-

environments (e.g., in residence, in vehicle), and predicting average concentrations in those micro-

environments using local or national building penetration rates and other generic transfer 

coefficients (ambient pollution concentrations are used as inputs in human exposure models). The 

above described micro-environment approach was introduced in the US in the early 1980s [66–

68], and largely remains unchanged in the current EPA model used to estimate human exposures 

to air pollutants, the Air Pollution EXposures Model (APEX) [69]. This model can simulate 

populations that match the demographics of the user’s study area. Simulated individuals in APEX 

are sampled based on Census-block demographic characteristics of the desired study domain from 

the Consolidated Human Activity Database (CHAD), a national database of time-activity diaries 

collected from various studies [70].  

One limitation of APEX is that CHAD may not accurately characterize activity of individuals in 

vulnerable groups, e.g., commuters, the elderly, individuals in minority populations and with low 

socio-economic status (SES). Several studies have compared exposure estimates derived using 

CHAD with measured exposures in urban populations, and found that intra-person variability in 

exposures among urban residents may differ by key demographics and contact with various 

pollutant zones [71]. As examples, urban commuters moved through polluted microenvironments 

(MEs) more rapidly than did suburban commuters [72], and in-vehicle exposures accounted for up 

to half of total PM2.5 exposure for some commuters [73]. A discrepancy in work travel times 

recorded in CHAD and those in the American Time Use Study (ATUS) may cause increased errors 

in exposure estimates among commuters [74]. Among the elderly, exposures modified by changes 

in behavior related to aging are largely not considered [75], and these modified exposures, 

especially if they result in increased time indoors or in vehicles, could cause large exposure 

estimate errors [76]. CHAD also may not reflect time-activity data of minority populations living 

in urban areas with high pollution levels, so called “hotspots” [77]; recent studies have 

demonstrated limitations regarding CHAD's representativeness for various sub-populations, 

including minority or low income [78]. To address these issues, recent work has called for the use 

of global positioning system (GPS) time-activity data to investigate time-activity patterns among 

in low SES populations [79] and other populations (e.g., children) with the above noted 
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discrepancies between actual and diary-recorded time activity patterns [80], and further 

examination of time-activity among “sentinel” populations (e.g., pregnant women) [81]. 

I.2.3 Exposure apportionment  

Exposure apportionment quantifies contributions from various emission sources or exposure 

compartments (microenvironments) to an individual’s total exposure. Recent work in personal 

exposure modeling indicated apportionment of exposures as a tool for the next generation of 

exposure assessment. Specifically, in 2009, “… if the performance of the emission-based 

dispersion modeling for a hot spot is improved, a more precise characterization of contributions of 

different source emission categories (such as point, area, mobile on-road, and mobile non-road) on 

personal exposure levels to air toxics can be achieved” [82] This approach requires estimates of 

both total or cumulative exposure, and exposure attributable to the source or compartment of 

interest. Possibly the only practical approach for obtaining the high spatial and temporal resolution 

information needed is via modeling, for example, by combining APEX’s capabilities of 

probabilistic time-activity sampling and compartment modeling with dispersion models of point 

and mobile sources in an urban area, as can be done with RLINE and AERMOD. 

Previous literature has performed exposure apportionment on traffic-related air pollutants, but 

mostly at lower temporal or spatial-resolutions or over shorter durations. Volatile organic 

compounds (VOCs) have been subject to numerous studies of “source apportionment of human 

exposure” [83, 84]. PM2.5 exposures were apportioned using combined receptor modeling for a 

small (n = 30) cohort of hypertensive adults in North Carolina [85], however this analysis took 

place over the period of a few weeks, and used stationary monitoring to calculate exposures in 

varying micro-environments: personal, residential indoor, residential outdoor and ambient; 

notably not near-road or in-vehicle, exposures that might be more relevant in Detroit than other 

study locations. Previous “source-to-dose” studies of TRAP have also characterized the relative 

levels of various source groups: outdoor sources of PM2.5 were shown to contribute more to 

exposures than indoor sources during a 2-week pollution episode in Philadelphia, PA [86]. One 

recent study combined modeled CO, NOx, and PM10 with activity data in Paris, showing that 

pollutant-specific health effects may be teased apart [87]; however these modeled pollution 

concentrations were derived from coarse grid-cell (3km x 3km) chemical model, and all time 

activity data were collapsed into 3 categories.  
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Exposure apportionment can provide insights and support actions that existing exposure 

assessment tools applied to environmental settings generally do not provide. As examples, the 

approach can identify the source-activity pairs that contribute the majority of the air pollution 

burden among susceptible populations, the contribution of commuting by personal car or bus, or 

the sources that contribute significantly to exposures of children. Such analyses can inform state 

and federal environmental agencies, provide with motivation or justification for validation studies, 

e.g., projects investigating exposures on certain bus-routes or on certain highways, and lead to 

targeted for interventions to reduce exposure and improve public health. Models of environmental 

exposure, like other environmental models, cannot be validated [88]. Specific to TRAP 

apportionment, few sources can be uniquely identified in measured exposures, i.e., they do not 

have specific and unique source tracers. This fact is pollutant-specific: VOCs can be more easily 

speciated from single measurements in a way that cannot be done easily for PM2.5 (PM2.5 speciation 

requires many instruments and fine-tuning, where-as VOCs can be speciated using mass 

spectrometry) or NOx (there are not sufficient tracers to uniquely identify NOx sources directly 

from measurements). More generally, dispersion and other models that predict ambient pollution 

levels contain inherent biases, and often the signal of specific sources does not differentiate from 

background levels. Still, given the spatial nature of exposure, and common pathways of 

commuting and working, especially in Detroit which has a large commuting population, exposure 

apportionment may provide insights into relative contributions that are not observable with only 

measurements at a few fixed sites, and thus provide output that is useful to policy makers [89].  

I.3 Specific Aims 

The overall objective of this dissertation is to provide insight into modeling tools used to estimate 

ambient air pollution exposures, and to develop a method for attributing the total exposures to 

contributing sources, thus providing an “exposure apportionment”. The research has four specific 

aims. 

Aim 1 examines trends in emissions, concentrations and source apportionments of fine particulate 

matter (PM2.5, particles with a diameter less than 2.5 microns) in two large Midwest U.S. cities, 

Detroit, Michigan, and Chicago, Illinois. Annual and seasonal trends in emissions are investigated 

using data from the National Emission Inventory (NEI) for 2002 to 2011, in concentrations using 

speciated ambient PM2.5 data from 2001 to 2014, and in apportionments using outputs from 
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positive matrix factorization (PMF) receptor modeling [27]. Trends in 50th and 90th percentile 

concentrations and apportionments are assessed using quantile regression (QR) [90], a technique 

which distinguishes trends at specific percentiles, and this aim presents an application of PMF and 

QR that is novel and relevant to public health. 

Aim 2 provides an operational evaluation of a dispersion model designed for near-road 

environments. Operational evaluations provide context for evaluating model performance under 

specific conditions. Using a detailed modeling system featuring the Research Line source model 

(RLINE) and a spatially and temporally resolved mobile source emissions inventory, predictions 

of NOx, CO and PM2.5 are compared using standard metrics [55, 56] to observations at air quality 

monitoring stations located near high traffic roads in Detroit, MI. This evaluation differs from 

previous performance evaluations of RLINE [43–45], which have verified the algorithms of the 

model using limited test cases. The present application highlights considerations relevant to health 

impact and epidemiologic applications, including the importance of selecting appropriate 

pollutants, using appropriate monitoring approaches, considering prevailing wind directions 

during study design, and accounting for uncertainty.  

Aim 3 examines the sensitivity of the exposure predictions to meteorological, emission and traffic 

allocation inputs. This analysis uses the RLINE model and the Detroit application, and again 

focuses on applications relevant to health studies examining near-road exposures to TRAP. Daily 

average modeled and monitored concentrations of NOx and CO are used to assess the potential for 

exposure estimate error in cohort and population-based studies. Sensitivity is evaluated using 

statistical performance metrics [55, 56], nominal and alternative model inputs, and NOx-

attributable health impacts for two sets of meteorology three sets of receptors reflecting different 

study populations or scenarios. This aim is intended to inform study designs and the use of 

dispersion modeling in health studies. In particular, as models like RLINE become more widely 

used, it is critical to understand the potential for biases and other exposure measurement errors.  

Aim 4 develops a framework for apportioning exposures, specifically, quantifying contributions 

from various sources to individual exposures. This work requires high spatial and temporal 

resolution modeling of TRAP, which in turn requires detailed emission inventories and 

meteorological datasets. Exposure apportionment is demonstrated through a case study of 

individuals for a selection of vulnerable groups in Detroit, Michigan. If exposures can be 
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apportioned, then the source-activity pairs that contribute the majority of the air pollution burden 

can be targeted for interventions that reduce exposure. This aim also evaluates the 

representativeness of national time-activity databases for individuals in selected vulnerable 

subpopulations. 

I.4 Dissertation overview 

This dissertation is organized into seven chapters. Chapter II provides methods used in subsequent 

chapters. Chapters III to VI pertain to aims 1 to 4, respectively. Each begins with a brief summary 

of motivation and methods, continues with results and discussion of each aim, and concludes with 

limitations of the analysis. Chapter III addresses Aim 1, providing an analysis of trends in 

apportionments in two large Midwest US cities, emphasizing the vehicle fraction. Chapter IV 

pertains to Aim 2, providing an operational evaluation of the RLINE dispersion model as it might 

be used in epidemiological studies. Chapter V covers Aim 3, describing a sensitivity analysis of 

RLINE in an application pertinent to health-related studies. Chapter VI addresses Aim 4, 

presenting and evaluating an approach to apportion air pollution exposures using an application in 

Detroit and focusing on roadway pollution and vulnerable populations. Chapter VII provides a 

conclusion to the research, summarizes and integrating results in each of the aims and suggesting 

areas for future research. 

Much of this work has been published in the peer reviewed literature. Chapter III was published 

in 2016 as Milando Chad, Huang Lei, Batterman Stuart (2016) Trends in PM2.5 emissions, 

concentrations and apportionments in Detroit and Chicago. Atmospheric Environment 129:197–

209 [91]. Chapter IV was published in 2018 as Milando Chad, Batterman Stuart (2018) 

Operational evaluation of the RLINE dispersion model for studies of traffic-related air pollutants. 

Atmospheric Environment 182:213–224 [92]. Chapter V was published in 2018 as Milando Chad, 

Batterman Stuart (2018) Sensitivity analysis of the near-road dispersion model RLINE – An 

evaluation at Detroit, Michigan. Atmospheric Environment 181:135–144 [93].  
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I.5 Tables 

Table 1. Summary of datasets used in previous RLINE evaluations. 

Evaluation 

dataset 

Pollutant Sampling 

location 

Sampling 

period 

Sampling 

resolution 

Receptor network 

Idaho Falls [94]  SF6 Rural 5 days of 3h 

blocks 

15 min A grid of 58 

receptors ranging 

from 18 to 180m 

downwind, 2 

upwind. Z = 1m 

Caltrans [41] SF6 Rural Several days 

of 3h blocks  

½ hour  9 receptors in a 

transect 

Raleigh near-

road [95] 

NO Urban July and 

August 2006 

20 sec 2 downwind 

receptors at 7 and 

17m 

Prairie Grass 

[96]  

SO2 Rural 70 releases 10 min 545 samplers placed 

along arcs of 50, 

100, 200, 400, and 

800 m from release.  

Detroit near-

road [97]  

CO, NOx Urban Sept 2010 to 

June 2011 

5min 10, 100, 300 m 

downwind; 1000 m 

upwind 
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Chapter II – Methods 

II.1 Aim 1 

Aim 1 examines trends in emissions, concentrations and source apportionments of PM2.5 in Detroit, 

Michigan, and Chicago, Illinois. Annual and seasonal trends were investigated using National 

Emission Inventory (NEI) data for 2002 to 2011, speciated ambient PM2.5 data from 2001 to 2014, 

apportionments from positive matrix factorization (PMF) receptor modeling [27], and quantile 

regression [90]. 

II.1.1 Emissions data  

To inform the source apportionments and to corroborate trends in measured concentrations, 

emission data were extracted from the 2002, 2005, 2008 and 2011 National Emission Inventories 

(NEIs) [98] for Wayne and Cook Counties, which include the cities of Detroit and Chicago, 

respectively. (The NEIs are revised every three years.) This trend analysis considered primary 

PM2.5 (i.e., the sum of filterable and condensable PM2.5) emissions from point, non-point, on-road 

mobile, and off-road mobile sources. On-road sources, which include exhaust, brake, and tire wear 

emissions from light and heavy duty diesel and gasoline vehicles, were separated in the analyses. 

The NEI technical support documents are consulted to explain methodological changes between 

NEIs.  

II.1.2 Ambient air quality data and treatment 

To examine trends in concentrations of speciated fine particulate matter (PM2.5, particle diameter 

< 2.5 µm), monitoring sites in the two cities were chosen based on the PM2.5 components measured, 

the duration and completeness of the monitoring record, and the diversity of nearby sources. The 

selected sites have speciation records that extend to the early to mid-2000s, and both are part of 

the Speciation Trends Network (STN), a subset of Chemical Speciation Network (CSN) [22] 

monitoring sites at which measurements are taken every 3 days [99]. Figure 1 shows the location 

of these sites and nearby major point sources of PM2.5.  
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The Allen Park ("Detroit") site in south Detroit (AQS ID: 261630001; lat/long: 42.228611/-

83.20833) is a non-source-specific and population-oriented monitoring site that has been used to 

detect impacts from mobile sources [100]. It has recorded the highest PM10 (particle diameter < 

10 µm) levels in the area [101]. The site is located within 200 m of a major interstate highway (I-

75). The immediate vicinity is grassy and wooded; a few covered storage tanks are within 100 m; 

some light industry, trucking firms, suburban areas, etc., are within 1 km; and heavy industry, 

including refineries, steel production, coke and coal-fired electricity generation are within 15 km. 

The speciation record began in 2001. Detroit comprises much of Wayne County, which has a 

population of 1,820,584 (2010) and an area of 1,585 km2 [102]. Summary statistics for speciated 

PM2.5 in Detroit are listed in Table 2.  

The Com Edison ("Chicago") site is located in an urban neighborhood in south Chicago, IL (AQS 

ID: 170310063; lat/long: 41.7514/-87.713488) on the grounds of a small facility of the local 

electrical utility. Nearby emissions sources include rail lines 1 km to the north, and two 6-lane 

arterials (Routes 50 and 12) located 2 km to the west and south, respectively. Chicago Midway 

International Airport is 5 km to the northwest. Heavy industry in Calumet and South Chicago, 

within 20 km, include coal-fired electricity generation, steel mills, and wet corn milling (which 

emits PM, SO2 and volatile organic compounds). The speciation record began in 2001, however, 

instruments were changed in 2005, and so only data after 2005 are considered. Chicago is located 

within Cook County, which has a population of 5,194,675 (2010) and area of 2,448 km2 [102]. 

Summary statistics for speciated PM2.5 in Chicago are listed in Table 3. 

The pollutants monitored, as well as monitoring techniques and procedures, have changed over the 

years, and thus some data screening and treatment were required prior to trend analyses. Both sites 

measured PM2.5 using both federal reference methods (FRMs) and non-FRMs. The CSN has 

measured PM2.5 using MetOne SASS and URG samplers (non-FRMs), which collect PM2.5 on 

Teflon filters that are analyzed gravimetrically. Elements are measured by X-ray fluorescence on 

Teflon filters, ions by ion chromatography on nylon filters, and elemental (EC) and organic carbon 

(OC) by thermal optical transmittance (TOT) on quartz filters. Most pollutants are measured every 

third day [103, 104]. In 2007, to reconcile differences in OC measurements between CSN and 

IMPROVE samplers (positive artifacts resulted from the absorption of organic vapors to PM 

[105]), URG 3000N samplers were placed at CSN sites to measure EC and OC. The higher flow 
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and face velocity of the URG 3000N decreases VOC adsorption and increases OC volatilization, 

thus lowering OC concentrations [106]. Along with the instrument switch, the preferred analysis 

method also changed from TOT to thermal optical reflectance (TOR), allowing more direct 

comparisons between CSN measurements of EC and OC to those in the IMPROVE network 

(which historically used TOR). To assess long-term trends, EC and OC measured using TOT were 

used in the present work. 

Adjustments made prior to trend analyses included blank correction, censoring of values below 

detection limits, and artifact correction. CSN speciation data are not blank corrected, and for most 

CSN species, the median trip and field blank concentration is zero [107]. (Solomon et al. [107] 

noted that CSN trip and field blanks can be aggregated as was done in this work.) Each 

measurement was corrected by the median of blanks taken within ±1 month, as done elsewhere 

[105, 108, 109]. Any negative blanks were replaced by the median blank for the entire record. 

Corrected measurements that fell below method detection limits (DLs) or that became negative 

were replaced with 1/2 DL and its measurement uncertainty was replaced with the maximum of the 

reported uncertainty and 5/6 DL [31]. (Although these are conventional methods, Brown et al. [110] 

gives guidance and reasoning for not censoring those values.) 

The EC/OC instruments and analytical techniques changed midway through the study period. To 

address the positive sampling artifact in OC measurements using TOT and the MetOne samplers 

[111], a 2012 EPA memo [105] suggested using monthly median network blanks from passive 

sampling (i.e., sampling that occurs without pumping of air through the sampling device). 

However, Solomon et al. [107] noted that passive field blanks may miss artifacts arising during 

active sampling (i.e., air is pumped through the sampler). Fortunately, both Detroit and Chicago 

sites include one year of collocated MetOne SASS and URG 3000N measurements. These 

collocated data were regressed as 𝑂𝐶𝑀𝐸𝑇 = 𝑘 𝑂𝐶𝑈𝑅𝐺 + 𝑎𝑟𝑡𝑖𝑓𝑎𝑐𝑡, where 𝑘 is an estimated 

regression coefficient used to correct OC MetOne measurements prior to the phase-in of URG 

samplers (April 2009 in both cities). At Detroit, the regression used the period from 4/1/2009 to 

3/30/2010 and gave an OC artifact of 0.126 µg/m3 and R2 = 0.77; for EC, R2 = 0.59. At Chicago, 

the regression used the period from 5/1/2009 to 4/29/2010 and the estimated OC artifact was 0.303 

µg/m3 and R2 = 0.85; for EC, R2 = 0.69. (See Table 4 for additional artifact correction details, 

including the outliers removed in this analysis.) The estimated OC artifacts are similar to those 
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reported earlier [105, 111]. Future EPA guidance may indicate other methods to harmonize EC 

and OC data measured using the TOT and TOR methods. 

Ambient data used in the PMF apportionments required additional treatment and quality checks. 

Missing observations for key metal species (e.g., Ni, Cr) were replaced with the median, and the 

associated measurement uncertainty was set to four times the median [110]. While sometimes the 

geometric mean is used in place of the median [37], Brown et al. [110] recommends investigating 

scaled residuals when this imputation is performed. For missing uncertainties, formula 5.1 and 5.2 

from the User Manual of EPA PMF 5.0 were used for observations above and below DL values, 

respectively, with an error fraction of 10% [112]. (Only the URG 3000N sampler did not have 

recorded uncertainties.) CSN data for Detroit and Chicago did not have missing DLs. To increase 

the reliability and representativeness of PMF results, a minimum of 50 observations per species 

per year was required. Species selected for PMF were informed by previous studies: Na+ and K+ 

were used preferentially over Na and K given the higher detection frequencies and relevance for 

air pollution studies [113], and SO4
= rather than S was used as the primary tracer of secondary 

SO4
= (both have been used) [35, 113].  

To improve reliability and increase fit, PMF apportionments used observations from the cleaned 

datasets for which 'reconstructed' and observed PM2.5 concentrations agreed within ±4 µg/m3. 

Reconstructed mass was calculated using a simplified stoichiometry and the dominant oxidized 

forms of measured species (shown in square brackets below) [114]:  

 PM2.5,CM = 1.375[𝑆𝑂4
=] + 1.29 [𝑁𝑂3

−] + 3.73 [Si] + 1.63 [𝐶𝑎] + 2.42 [𝐹𝑒] + 1.6 [𝑂𝐶] + [𝐸𝐶]  

While agreement might be determined using a multiplicative factor, e.g., within 25%, a 

concentration band may be more appropriate if errors are primarily additive (rather than 

multiplicative). The ±4 µg/m3 band is reasonably narrow, and fewer than 10% of samples exceeded 

this criterion. In addition, the holiday periods of 31 December through 2 January and the weekends 

closest to 4 July were excluded due to the use of fireworks that contain large amounts of potassium 

nitrate and that can cause deviations from the stoichiometric relationship in eq. (1) [31, 110, 115].  

Additional quality checks included comparisons of elemental and ion concentrations (e.g., S to 

SO4
=, K to K+), and comparison of FRM and non-FRM PM2.5 concentrations. After treatment, the 
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final Detroit dataset had 1422 observations spanning 14 years (2001 to 2014), and the Chicago 

dataset had 763 observations spanning 9 years (2006 to 2014). 

II.1.3 Receptor modeling 

Sources were apportioned using Positive Matrix Factorization (PMF 5.0) [112] with PM2.5 as the 

‘total' variable (with a designation as 'weak'). Introduced in 1994 [27], PMF apportions sources 

using the following equation: 𝑿 = 𝒁 𝑪 + 𝑬, where 𝑿 = 𝑛 𝑥 𝑚 matrix of observed concentrations 

(µg/m3) values; 𝑛 = number of observations; 𝑚 = number of chemical species), 𝒁 = 𝑛 𝑥 𝑝 matrix 

of apparent source strengths; 𝑝 = user-assigned number of factors or source categories; 𝑪 = 𝑝 𝑥 𝑚 

matrix of derived source compositions; and 𝑬 = 𝑛 𝑥 𝑚 matrix of random errors [27, 116]. Error 

terms are scaled by estimates of observation-level uncertainty, and 𝒁 and 𝑪 are constrained to be 

non-negative. 𝑿 is solved to minimize the sum of squares of weighted residuals, 𝑄 =

 ∑ ∑  𝑬𝑖𝑗
2 /𝜎𝑖𝑗

2𝑚
𝑗=1

𝑛
𝑖=1 , where 𝜎𝑖𝑗 = standard deviation of the random errors, which are assumed 

known. From the solution, the strength and composition of each of 𝑝 factors can be viewed. Some 

PMF factor mass values are allowed to go slightly negative [112], so to maintain the property of 

each row-normalized PMF sample summing to 1 (critical for assessing factor fractional 

contribution trends); these slightly negative values were not censored in trend analyses. (At both 

cities, fewer than 15% of final factors were negative.) PMF 5.0 calculates a signal-to-noise (S/N) 

ratio for each species, and S/N < 0.5 is considered ‘bad’, 0.5 ≤ S/N < 1 ‘weak’, and S/N ≥ 1 

‘strong’. Weak species are down-weighted in factorization, and bad species are omitted. 

A range of “additional modeling uncertainties” (e.g., 0, 5, and 10%) were tested using features in 

PMF 5.0. Selection of the number of factors and uncertainty additions depends on prior knowledge 

of potential sources, source-receptor relationships, and the stability of results [116]. The initial 

models included 6 to 10 factors. A framework for choosing the ‘final’ model used a series of 

checks examining the distribution of species within each factor: separation of K+ and OC; the 

vehicle factor should contain large fractions of total OC and EC mass and minimal amounts of 

other species; a crustal factor (Si, Ti, Ca, Al) should emerge; and metals (Ni, Cr, Fe, Mn) should 

be grouped together. Finally, using PMF 5.0's bootstrapping capability to estimate uncertainties, 

realized factors should be robust and handle additional model uncertainty. 



18 

 

II.1.4 Quantifying trends in concentrations and apportionments 

Trends in species concentrations from 2001 to 2014 at Detroit and from 2006 to 2014 at Chicago 

were evaluated initially using the non-parametric Kruskal-Wallis (KW) and Mann-Whitney (MW) 

tests, and subsequently using quantile regression [90]. (These analyses used the quantreg [117] 

and other packages in R.) Trends in the 'major' PM2.5 constituents, defined as species constituting 

an average of at least 1% by mass of PM2.5 (including OC, EC, S, NO3
-, NH4

+, and SO4
= ) are of 

primary interest. Trends in PMF factor mass concentrations and percent contributions were 

evaluated by QR, as described below. 

Initially, the study period was broken into year-blocks (2001-2002, 2002-2005, 2006-2009, 2010-

2013, 2013-2015) and seasons (Winter = Dec, Jan, Feb; Spring = Mar, Apr, May; Summer = Jun, 

Jul, Aug; Autumn = Sept, Oct, Nov). Winter trends were analyzed using data from consecutive 

months (e.g., winter 2002 data included measurements or apportionments from December 2001 

through February 2002). As an initial screen, KW (for 3 or more groups) and MW (for 2 groups) 

tests attaining a p-value of 0.05 or less were used to identify differences in the distributions 

between valid groups of measurements, where a valid group was defined as having 10 or more 

observations with fewer than 50% of observations below DLs. (The direction or magnitude of the 

differences can be investigated using the Dunn and other tests [118]). 

Quantile regression (QR) analyses were used to quantify trends of annual median and 90th 

percentile concentrations, which are exposure measures relevant to chronic and acute health 

effects, respectively. Trends of peak values may be susceptible to outliers; trends at lower 

percentiles may be influenced by data censoring. QR also was used to assess trends in relative 

factor contributions (factor mass divided by total modeled PM2.5 mass, also called “abundance”) 

to reveal the changing sources of PM2.5. Similar to how linear regression coefficients 𝛽𝑖 are found 

by minimizing the sum of squared residuals calculated as ∑(𝑦𝑖 − (𝛽0 + 𝛽1𝑥𝑖 + ⋯ ))2, quantile 

regression coefficients Γ𝑖 are found by minimizing the sum of absolute residuals applied to the 

function 𝜌𝜏, ∑ 𝜌𝜏(𝜏, 𝑦𝑖, 𝜉(𝑥𝑖, Γ)), where 𝜌𝜏 is the “pinball” function at the desired quantile 𝜏, 

and 𝜉(𝑥𝑖, Γ) is a linear function of the predictors with Γ𝑖 as coefficients [90]. The function 𝜌𝜏 is 

equal to 𝜏 ∗ (𝑦𝑖 − 𝜉(𝑥𝑖, Γ)) if 𝑦𝑖 >  𝜉(𝑥𝑖, Γ) and (1 − 𝜏) ∗ (𝑦𝑖 − 𝜉(𝑥𝑖, Γ)) otherwise. Relative 

(percentage) changes in median and 90th percentile concentrations for calendar years and seasons 

were quantified by dividing the estimated QR slope by the associated median and 90th percentile 
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concentrations, respectively. Percent per year changes were deemed significant if the QR slope 

exceeded twice the bootstrapped QR standard error.  

II.2 Aim 2 

Aim 2 provides an operational evaluation of RLINE [43] in which predictions of NOx, CO and 

PM2.5 are compared to observations at air quality monitoring stations located near high traffic roads 

in Detroit, MI. Daily average concentrations of CO and NOx predicted using RLINE and a spatially 

and temporally resolved mobile source emissions inventory are compared to ambient 

measurements at 5 near-road monitoring sites in Detroit, MI, using standard evaluation metrics. 

II.2.1 Near-road ambient air quality monitoring data 

The operational evaluation used monitoring data from five Air Quality System (AQS) monitoring 

stations located near high traffic roads (Figure 2; Table 5). As mentioned in the trend analysis, the 

“suburban” or Allen Park site (AQS ID 261630001) is 190 m southeast of Interstate 75 (I-75), 

which has an annual average daily traffic (AADT) volume of 89,800 [119]. This site is shielded 

on one side by a row of trees, and a power substation and a truck park border the site. The 

surrounding area is mostly residential with single family homes. The “industrial” or Dearborn site 

(AQS ID 261631008) is northeast of the Marathon Petroleum refinery in southwest Detroit and 

150 m northwest of I-75 (AADT = 105,800). The “schools” or East 7 Mile site (AQS ID 

261630019) is in a small park shared by three schools, 390 m east of MI-97 (AADT = 9,500) and 

2,000 m south of MI-102 (West 8 Mile Road). Lastly, the “near-road” and “urban” Eliza Howell 

sites (AQS IDs 261630093 and 261630094, respectively) are 10 and 100 m north of I-96 (AADT 

= 152,000) with minimal obstructions.  

Air quality data for these monitoring stations for 2011 to 2014 were obtained from the US EPA 

AQS Datamart [120]. Over the study period, several types of monitoring methods/instruments 

were used that differed in sensitivity and possibly other characteristics although all used federal 

reference methods (FRM) or equivalent [121]. Hourly concentrations of NOx were measured at 

three sites, CO at four, and PM2.5 at three. NOx at the near-road and urban sites was monitored 

using gas-phase chemiluminescence and Ecotech 9814B monitors (“IGpCHEM”) from October 

2011 through December 2013, and using Thermo Environmental Instruments Model 42C 

instrumental chemiluminescence (“ICHEM”) in 2014. NOx at the schools site was measured using 

a Thermo Environmental Instruments Model 42C and by ICHEM. CO was monitored at the near-
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road site by instrumental gas filter correlation using an Ecotech 9830 monitor (“EC9830T”) from 

October through December of 2011, and an Thermo Model 48C monitor using instrumental non-

dispersive infrared (“INDiI”) through 2014. CO at the urban site was measured using Thermo 

Environmental Instruments Model 48C and by INDiI, and at the suburban site using an 

instrumental gas filter correlation analyzer (“IGFC”). CO at the industrial site was measured using 

a Teledyne API T300 using IGFC. PM2.5 at the schools and suburban sites was monitored as 24-h 

averages using the FRM and as 1-hr averages at the suburban site using a tapered element 

oscillating microbalance (TEOM). PM2.5 sites and methods are shown in Table 6.  

Data processing and quality checks included the following: NO and NO2 measurements in ppb 

were converted to NOx concentrations using the average conversion rate (1 µg m-3 NOx = 0.5495 

ppb NOx). Only the suburban and schools sites reported PM2.5 blanks, thus blank corrections were 

not used. Negative observations were set to zero. Treatment of measurements below method 

detection limits (DLs) varied slightly by application. In the operational evaluation and sensitivity 

analyses, measurements below DL were omitted in most analyses, or set to ½ DL in a sensitivity 

analysis. Daily averages were calculated from hourly NOx, CO, and PM2.5 measurements. In the 

exposure apportionment application, measurements below DL were set to ½ DL, and missing 

sampling hours were approximated using linear interpolation.  

II.2.2 Meteorological data 

Meteorological data were obtained at the five AQS sites, a local National Weather Service (NWS) 

(Detroit City Airport or KDET; see Figure 3 for wind rose) [122] and the Pontiac, MI radiosonde 

site (approximately 45 km north of Detroit) [123]. AQS sites collect only basic parameters, e.g., 

surface wind speed and direction, temperature, and pressure. In contrast, the NWS data include a 

range of parameters needed by the AERMET meteorological data preprocessor [40] – sensible 

heat flux, surface friction velocity, convective velocity, convective stable planetary boundary layer 

heights, Monin-Obukhov length, surface roughness (back-calculated from AERMET files 

provided by MDEQ), wind speed, and wind direction – and these parameters are used in AERMET 

to develop the “surface” (SFC) meteorology files used by the dispersion models in this work 

(RLINE and AERMOD, described in detail later). Hours missing any required parameter were 

excluded, and the resulting SFC files were mostly complete, e.g., only 6 to 15% of all hours were 

missing, with most of the missing hours occurring at night-time (see Table 7). 
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Each application in this dissertation required slightly different compositions of available 

meteorological data. For the operational evaluation, KDET data was used due to its central location 

and presumed representativeness [51].  

II.2.3 Point-source modeling 

For the operational evaluation, sensitivity analysis, and exposure apportionment work, a point 

source inventory of CO, NOx and PM emissions in southeast Michigan (including Lenawee, 

Livingston, Macomb, Monroe, Oakland, Washtenaw and Wayne counties) was created for the 

years 2011 to 2014. We consolidated stack-level data in the National Emission Inventory (NEI) 

[124] with facility and stack-level data in the Michigan Air Emission Reporting System (MAERS) 

[125]; emission data were available for 564 facilities. Stacks were aggregated to the facility level 

by assigning emissions to the main stack. A subset of 179 facilities were selected based on the 100 

highest emitting facilities for each pollutant). Of these, 58 mostly smaller sources had incomplete 

information and were excluded. Extensive quality checks, including comparisons between 

MAERS and the 2011 NEI data, showed good agreement for facility-level emissions for CO and 

NOx (e.g., inventories agreed mostly within 5%). PM2.5 data showed larger discrepancies, e.g., 

there were differences in emissions at the same facility between MAERS and NEI at 99 of 121 

sources, and MAERS filterable emissions exceeded primary emissions (sum of filterable and 

condensable PM2.5) at 23 facilities. These discrepancies were resolved following a 3-step 

procedure [126]: quality checking available data; “trivial” gap filling using available data; and then 

ranked “best-guess” estimates using, in sequence, data in an NEI year, primary emissions data 

converted directly using facility-specific SCC conversion factors, the median PM2.5 emission 

estimate generated indirectly, and lastly, the PM2.5 estimate created by trivial gap-filling of 

converted values. The final point source inventory contained 121 sources and represented over 

90% of regional point source emissions (Table 8).  

Pollutant concentrations from point sources were predicted using the inventory, the AERMOD 

dispersion model (View v8.1.0; AERMOD.exe v12345) [40], and the preprocessed meteorological 

data described earlier. Sources in Detroit were classified as “urban” (Figure 4) with a reference 

population of 106 and the default surface roughness [127].  
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II.2.4 Dispersion modeling of mobile sources 

Concentrations from on-road mobile sources were predicted using a spatially- and temporally-

resolved link-based emission inventory and the RLINE model. A road network consisting of 9,701 

links and AADT volumes for 2010 [128] was updated using current AADT and commercial AADT 

(CAADT) volumes reported in the Michigan Trunkline Highway System (which includes 

interstates, US and state highways) [129] and a custom mapping/linking algorithm that spatially 

matched Trunkline segments to previously modeled line segments. (A graphical depiction of this 

algorithm is shown in Figure 5.) Minor manual adjustments were needed to correct 9 misclassified 

road segments, including the road segment around Allen Park. 

Percentage changes in AADT and the CAADT fraction were applied to matched links’ 2010 

AADT, and the estimated CAADT volumes were subtracted from AADT to derive updated non-

commercial volumes by link and year. For unmatched links, 2010 volumes were used, which 

should not significantly affect results since vehicle miles traveled (VMT) on these roads was 

modest (below half of the Trunkline roads). The fleet mix on each link was derived using AADT 

and CAADT estimates, short-term counts (usually 2-3 days of data, excluding ramps and loop 

measurements), and permanent traffic recorders (PTRs) in the Traffic Monitoring Information 

System (TMIS; Table 9) [130]. Because count data were sparse, especially on minor roads, fleet 

mix was estimated by the road’s National Function Class (NFC). NFC 12 and 19 links (without 

traffic count data) were assigned to NFC 14 and 17, respectively [128]. Hourly data using the 13 

Federal Highway Administration (FHWA) classes were averaged across days, road direction and 

stations, and mapped to the 8 Highway Performance Monitoring System (HMPS) classes [131]. 

The average HMPS-by-NFC volume fractions were allocated to commercial and non-commercial 

traffic (Table 10), normalized and weighted by average commercial traffic fractions by NFC from 

the final dataset (Table 11). Hourly commercial and non-commercial volumes for each link were 

estimated using hour-of-day, day-of-week and monthly temporal allocation factors (TAFs) derived 

for Detroit area roads [132]. Hourly commercial and non-commercial emission factors for each 

NFC and speed bin (speeds were assigned to morning and evening rush hours, afternoon and 

evening periods) were calculated for each pollutant. Finally, link emissions were calculated as the 

product of link-specific volume with the speed-, month-, temperature- and vehicle type-specific 

emission factor (described next). 
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Hourly vehicle volume estimates were derived for each link of the emissions inventory from 

annual average daily traffic (AADT) estimates by several sets of temporal allocation factors 

(TAFs) that provide month-of-year, day-of-week and hour-of-day adjustments [128]. Detroit-

specific TAFs separate commercial and non-commercial vehicles and are based on 2009 to 2012 

data monitored at 13 permanent counting stations in southeast Michigan [132]. Importantly, these 

“local” TAFs distinguish the morning and afternoon commuting (“rush hour”) volume peaks for 

passenger vehicles from the mid-day peak for commercial vehicles. Previous work also generated 

a profile of default US TAFs for a combined commercial and non-commercial fleet [64]. For the 

sensitivity analysis, the nominal case used the US combined profile, and alternative cases were the 

commercial and non-commercial Detroit profile, and a profile that merged commercial and non-

commercial fleets in Detroit.  

Emission factors (g vehicle-1 mile-1) for the link-based inventory were generated using the Motor 

Vehicle Emission Simulator (MOVES) version 2014a [133] and 2015 inputs for the Wayne, 

Macomb and Oakland Counties (the most populated local areas) provided by the Southeast 

Michigan Council of Governments (SEMCOG). Other MOVES inputs included monthly average 

local temperatures in 11 bins (0 to 100 °F in 10 degree increments) [128]) and the default 

barometric pressure, which was similar to local conditions [134]. Following previous work [128], 

emission factors for running exhaust and running evaporative modes were calculated for CO, NOx, 

PM2.5 and PM2.5 precursors (evaporative hydrocarbon emissions), and for PM2.5 tire-wear and 

brake-wear emissions. Crankcase and other emissions were omitted to reduce computational time; 

these emissions are small compared to exhaust emissions. Again following previous work [128], 

emission factors were consolidated within a pollutant type (e.g., tire and brake wear for PM2.5), 

vehicle types (MOVES sourceTypeIDs) were mapped to the HPMS vehicle classes (Table 12), 

and averages were calculated weighted by vehicle type counts and VMT fraction on major roads 

(AADT > 10,000, called “urban restricted” in MOVES) and NFC 11 and 12 in the link network 

and minor roads (called “urban unrestricted” and NFCs 14, 16, 17 and 19), and the number of 

weekday and weekend days (5 and 2, respectively). CO, NOx and PM2.5 emission factors were 

calculated by vehicle type, speed and ambient temperature. The sum of the link-based emissions 

inventory for Detroit represented 66 and 71% of the CO and NOx emissions, respectively, of 2011 

National Emission Inventory (NEI) on-road emissions for Wayne County (Table 13). Emission 

factors (g vehicle-1 mile-1) for 2010 were derived using the Motor Vehicle Emission Simulator 
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(MOVES) version 2010 [135] and Detroit-specific data. For the operational evaluation and 

exposure apportionment, 2015 emission factors were used. For the sensitivity analysis, the nominal 

emission factors were for 2010, and alternative was 2015. 

A modified version of RLINE v1.2 was employed in this dissertation. Recent updates to this model 

include minor changes to the horizontal and vertical dispersion formulae, and major changes to the 

numerical integration algorithm. We used RLINE’s numerical integration method, an iteration 

limit of 1000, and an error limit of 0.001. The beta modules for roadside barrier and depressed 

roadway algorithms were not used. Modifications taken to reduce run times and facilitate the large 

number of hours, links and receptors simulated included omitting calculations for receptor-link 

distances exceeding 4000 m (these concentrations were very small), using internal loops for multi-

hour runs, precomputing emission rates, and a more flexible and efficient input and output scheme. 

II.2.5 Estimation of background concentrations 

The performance evaluation requires “background” concentrations, defined in this dissertation the 

sum of local background and contributions from both regional sources (outside the modeled area) 

and local but unmodeled area and mobile sources. The background sources are not explicitly 

modeled because they are distant, too numerous or too difficult to simulate [136], or because data 

are incomplete. Therefore, background at each AQS monitor was estimated using a conditional 

selection method that subtracted the geometric mean of monthly upwind modeled concentrations 

due to point and on-road sources from the observed geometric monthly mean concentrations [137]. 

Missing months were imputed by linear interpolation, and then leave-one-out nearest neighbor 

linear regressions were performed to obtain a smoothed sequence of monthly background 

estimates at each monitor.  

This method of estimating backing was chosen to reduce potential drawbacks of available methods 

for calculating urban background. For example, using a large-scale photochemical model (e.g., 

CMAQ) was not feasible, would produce background estimates also based on measured values 

(ratios between modeled values with and without local sources are typically used to calculate 

background from observed values), and normally is not run at high spatial or temporal resolution. 

Monitored data used to estimate background levels depends on the method detection limit, thus, 

using a MLE estimator of sub-threshold values [138] would not be appropriate in our study 

because, for CO, a much (> 80%) of the data were below the MDLs. Our background approach 
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was adapted from previous work in which upwind PM2.5 concentrations represent background 

amounts [137]. We undertook a number of analyses, some of which are summarized below, that 

indicate that any potential biases in the method do not significantly affect our results. We highlight 

five factors.  

1. Upwind measurements were removed from the database used to generate daily and sub-daily 

modeled averages. 

2. Second, for all pollutants, the percentage of observations occurring when the monitor is 

upwind was small (< 20%, Figure 6, Figure 7, Figure 8), thus, removing these values has 

little effect on the overall representativeness of the observed dataset.  

3. Third, the temporal association between background and observations is reduced using the 

monthly geometric mean of differences between upwind concentrations and modeled values 

(Figure 9, Figure 10, Figure 11), and further by taking the “leave-one-out” cross-validated 

time-series value of the geometric means (Figure 12, Figure 13, Figure 14).  

4. Finally, calculated background and observed values show only weak correlation (highest R2 

= 0.33; Figure 15, Figure 16, Figure 17).  

5. A variety of different methods were explored to model the PM2.5 background, and all gave 

similar results (average B / O + B ~ >80%). 

II.2.6 Operational evaluation metrics 

The operational evaluation, which was guided by previous RLINE evaluations [43–45] and the 

literature [55, 56], compared observed and predicted concentrations at each monitoring station 

(n=5) using 24-h averages, an averaging period frequently used in epidemiologic and health impact 

studies. This period also is supported by previous evaluations suggesting that meteorological 

variability makes comparisons at the hourly level “almost fruitless” [55]. Comparisons were made 

between observed values and the sum of background and predicted values. (We performed several 

diagnostic tests to ensure that our results were similar to those obtained when comparing the sum 

of predicted values to observed minus background values.) Analyses were conducted by pollutant, 

wind direction, monitoring site, season and day-of-week. Wind directions were defined for wind 

speeds exceeding 1 m s-1, and monitoring sites were considered to be “downwind” for directions 

within ±30° of perpendicular of the largest nearby road, and “parallel” for directions within ±15° 
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of parallel [44]. Daily average downwind or parallel concentrations were calculated for those hours 

of each (calendar) day that met these conditions if at least 6 h of valid model-observation pairs 

were available. Periods with fewer than 5 valid days were not considered. Seasons were defined 

as “winter” (Dec., Jan., Feb.), “spring” (March, April, May), “summer” (June, July, Aug.), and 

“fall” (Sept., Oct., Nov.).  

The statistical evaluation emphasized four metrics recommended in air quality model evaluation 

guidelines [55, 56]. (Formulas for the metrics are listed in Table 14.) The F2 statistic, the 

percentage of modeled values within a factor of 2 of observed values, shows over- and under-

predictions and provides a measure of overall model performance. The Spearman correlation 

coefficient (RSP) assesses the similarity between ranked observations and predictions, and may be 

particularly appropriate for epidemiologic studies since it can indicate whether exposures are 

correctly ordered. The fractional bias (FB) shows the tendency to over- or under-predict, i.e., the 

likelihood of false positives (FBFP) or false negatives (FBFN). (Equal weight is given to each.) 

Lastly, the geometric variance VG indicates the irreducible (“systematic”) and reducible 

(“random”) errors. This metric can help identify conditions where performance potentially could 

be improved, i.e., the percentage of errors that are reducible (% reducible) is the ratio between the 

natural logarithm of the reducible component of VG and the total VG (the product of the systematic 

and random components). Suggested minimum performance criteria for air quality modeling are 

F2 ≥ 50%, mean bias ≤ 30%, and VG ≤ 1.6 [55, 56].  

II.3 Aim 3 

Aim 3 examined the sensitivity of exposure estimates produced by dispersion models, i.e., RLINE 

and AERMOD, to meteorological, emission and traffic allocation inputs, focusing on applications 

to health studies examining near-road exposures to TRAP. Daily average modeled and monitored 

concentrations of NOx and CO were used to assess the potential for exposure estimate error in 

cohort and population-based studies. Sensitivity of exposure estimates was assessed by using 

statistical performance evaluation metrics and three sets of receptors to compare model outputs 

that used nominal or alternative model inputs. 

The sensitivity analysis employed much of the same methodology as Aim 2. The same set of near-

road hourly CO and NOx were used. PM2.5 was not considered given the high background and 
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inability to determine a signal from local roads. The same modeling setup was identical as in Aim 

2 (i.e., the link-based inventory was used for RLINE, the point-source inventory for AERMOD). 

II.3.1 Meteorological data 

In the sensitivity analysis, KDET data is designated as the nominal input. Three sets of alternative 

meteorological inputs are employed: SFC files using NWS data at the Detroit Metro Airport 

(KDTW); AQS-site-specific meteorology supplemented with KDET data (on-site/KDET); and 

site-specific meteorology supplemented with KDTW data (on-site/KDTW). SFC files generated 

using AERMET and the NWS data are similar to those distributed by the Michigan Department of 

Environmental Quality (MDEQ) for air quality modeling purposes. Differences between nominal 

and alternative wind-speed and direction were evaluated using the circular correlation coefficient 

[128]. 

II.3.2 Receptor sets  

Three sets of receptors are used in the sensitivity analysis. The first placed receptors at the near-

road monitoring sites in the study domain (n=5). The second and third sets respectively represent 

location of a vulnerable school-age population and the general population (Figure 18). The second 

set used 206 receptors that represented residences of children with asthma participating in the 

NEXUS study (called “NEXUS” receptors; 6 receptors outside the modeled domain were 

excluded) [139]. Approximately two-thirds of these children lived within 200 m of roads with 

AADT > 75,000 (e.g., interstate highways) at the time of enrollment into NEXUS, thus, this set 

oversamples near-road locations. The third set was designed to be representative of residences in 

Detroit. This set, called “Detroit,” was created by randomly selecting (with replacement) 1000 of 

the 2010 Census blocks in Detroit, which resulted in 543 unique blocks. Receptors were placed at 

the building footprint-centroid of the highest occupancy parcel in each selected block [140, 141]. 

For the exposure apportionment work, a random sample (n=25) of these 543 receptors were used. 

II.3.3 Sensitivity analysis 

The sensitivity analyses used metrics from operational evaluation to contrast performance of 

nominal and alternative nominal model inputs: percent of modeled values within a factor of 2 of 

observed values (F2); Spearman ranked correlation coefficient (RSP); fractional bias (FB); and 

geometric variance (VG). The ratio between the natural logarithm of the reducible component of 
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VG and total VG (the product of the systematic and random components) was used to estimate the 

percentage of reducible model errors (% Red).  

Given the number of comparisons in the analysis (by site, pollutant, input, and metric), several 

rules were used to identify potentially meaningful differences and produce a summary measure. 

Each metric was compared to its “best” value (i.e., 1.00 for RSP and VG, 0.00 for FB and % Red), 

and symbols were used to show whether an alternative model input improved model performance 

(●), gave results that were among those that improved results (‘~’), did not conclusively improve 

model performance (‘ ’), or diminished performance from nominal (○). Only comparisons with at 

least one RSP ≥ 0.1 were considered. Only potentially meaningful changes were distinguished; 

changes in RSP and other metrics had to exceed a chosen threshold of 0.05; this threshold was 

selected to balance sensitivity and avoid false indications. Comparisons of 2010 (nominal) and 

2015 emission factors, and comparisons of the US default TAF (nominal) to the two alternative 

TAFs (Detroit-specific with commercial and non-commercial traffic separated, and combined) 

used the above comparison scheme. Comparisons of the four sets meteorological inputs were more 

complex. We checked whether on-site/KDET meteorology provided the best results (denoted as 

“on-site/KDET highest?”); whether KDET data provided better results than KDTW data when 

using NWS data alone or in conjunction with on-site data (“KDET > KDTW?”), and if on-site data 

generally improved results over NWS data alone (“on-site > NWS?”).  

II.3.4 Application 

To demonstrate the possible effect of model inputs on health outcomes in an epidemiological 

study, we estimated NOx-attributable health impacts for two sets of meteorology and receptor sets 

2 (NEXUS) and 3 (Detroit). Daily NOx concentrations at the NEXUS and residential receptor sets 

were calculated using KDET and KDTW meteorology for 2011, commercial and non-commercial 

traffic allocation factors and 2015 emission factors. Every 12th day of the year was analyzed due 

to the large computation burden of modeling hourly data using 9,701 sources and 543 receptors. 

Outcomes considered included childhood asthma exacerbations (defined as one or more asthma-

related symptoms for children ages 6-14), emergency department (ED) visits for asthma (children 

ages 0 – 17), and hospitalizations for asthma (ages 0 – 64). Baseline data used in these estimates 

included current asthma hospitalizations and ED visits in Detroit [142], an incidence rate of 0.412 

cases per person-day for asthma exacerbations (6 – 14 years) [143], the prevalence of asthma in 
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Wayne County [144], and 2010 Census population data [145]. Concentration-response coefficients 

used log-linear and logistic models [146–149]. Predicted health outcomes for the two sets of 

meteorological inputs and two sets of receptors were compared using the non-parametric paired 

Wilcoxon signed rank test and descriptive statistics. 

II.4 Aim 4 

The exposure apportionment used several previously created and cleaned datasets, including: 

hourly near-road NOx data at 3 sites (II.2.1), temperature recorded at KDET (II.2.2), and a random 

sample (n=25) of the NEXUS receptors (II.3.2). Below detection limit (DL) monitoring data were 

replaced with ½ DL, and for monitoring data and temperature, hours missing data were filled in 

using linear interpolations. 

II.4.1 Exposure apportionment 

To estimate and apportion exposure to TRAP, the Air Pollution Exposures model (APEX) [150] 

was used. Briefly, APEX, estimates hourly exposures (ppb-hr) in 5 micro-environments (ME) – 

“indoor-at-home,” “other indoor,” “outdoors,” “near-road,” and “vehicle cabin” – as the product 

of the ME concentration and the fraction of the hour spent in that micro-environment. The method 

of calculating ME concentration differs by micro-environment. For each hour in indoor MEs, a 

mass balance approach is used; the previous hour’s concentration is adjusted by removal rates 

(e.g., penetration rates), additional source contributions, and estimated room volume. Spatial 

differences in concentration, e.g., proximity to a large roadway, are accounted for by proximity 

factors specific to each simulated individual. For this work, default proximity and penetration 

factors are used. For outdoor MEs, ambient concentrations are used. For near-road, and vehicle 

cabin MEs, ambient concentrations are modified by roadway-specific concentrations (which the 

user provides). Census data is used to generate spatial “sectors” for residences and workplaces, 

and approximates commuting routes and times by the distance between a simulated individual’s 

residence and workplace. 

In this application, APEX was run using modeled NOx at 25 receptors representing ambient 

exposure across Detroit (there receptors were randomly selected from the Detroit receptors in Aim 

3) and using modeled NOx at the near-road monitoring side to represent roadway concentrations. 

Each modeled component – point source contributions, commercial traffic, non-commercial 

traffic, and background – was labeled as a separate pollutant in APEX, so their effects could be 
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disaggregated. Each APEX configuration was run for 100 randomly selected simulated persons 

using national-level databases for health conditions and commuting. The simulated population 

contained 19 persons with age < 20 (“children”), 68 persons with ages between 20 and 65 

(“adults”) and 13 persons with age > 65 (“elderly).  

APEX outputs were presented graphically using plots of the cumulative distribution function and 

boxplots. Statistical analyses included the use of the Kruskal-Wallis test (for 3 or more groups), as 

before attaining a p-value of 0.05 or less to identify differences in the distributions between 

exposures in different time periods between different groups. Sensitivity analysis included 

comparing APEX outputs with modeled data to outputs using observed NOx at the three AQS 

stations that measured NOx in Detroit (i.e., schools, urban, and near-road). 
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II.5 Tables 

Table 2. Summary statistics for all Detroit species of speciated PM 

  Coverage  Blank & Detection Limit Correction   Summary Statistics 

Species   Start End   # ADL # BDL % BDL 

Blank 

Mean 

Blank 

SD 

DL 

Mean 

DL 

SD   10th 50th Mean 90th 

PM2.5,FRM 1 1/1/00 3/31/15  4455 688 13% 3.28 1.23 2.00 0.00  1.00 7.80 9.62 20.20 

PM2.5 2 12/20/00 9/29/14  1580 6 0% 0.87 0.58 0.75 0.06  4.53 10.80 12.56 23.68 

Ag 3 12/20/00 4/6/15   38 1612 98% 0.0010 0.0024 0.0136 0.0076   0.0042 0.0065 0.0070 0.0101 

Al 3 12/20/00 4/6/15  643 1007 61% 0.0014 0.0043 0.0170 0.0058  0.0065 0.0115 0.0233 0.0517 

As 3 12/20/00 4/6/15   470 1180 72% 0.0002 0.0004 0.0018 0.0008   0.0005 0.0013 0.0016 0.0031 

Au 3 12/20/00 2/18/09  41 882 96% 0.0006 0.0009 0.0052 0.0029  0.0009 0.0028 0.0027 0.0041 

Ba 3 12/20/00 4/6/15   134 1522 92% 0.0052 0.0126 0.0224 0.0234   0.0039 0.0055 0.0136 0.0295 

Br 3 12/20/00 4/6/15  1126 524 32% 0.0002 0.0003 0.0017 0.0006  0.0007 0.0027 0.0031 0.0062 

Ca 3 12/20/00 4/6/15   1597 53 3% 0.0009 0.0020 0.0060 0.0015   0.0145 0.0396 0.0504 0.0952 

Cd 3 12/20/00 4/6/15  52 1598 97% 0.0015 0.0031 0.0144 0.0042  0.0050 0.0080 0.0075 0.0110 

Ce 3 12/20/00 4/6/15   41 1609 98% 0.0017 0.0056 0.0293 0.0394   0.0028 0.0041 0.0150 0.0500 

Cl 3 12/20/00 4/6/15  760 890 54% 0.0008 0.0033 0.0081 0.0025  0.0039 0.0061 0.0268 0.0540 

Co 3 12/20/00 4/6/15   73 1577 96% 0.0002 0.0003 0.0014 0.0003   0.0006 0.0007 0.0008 0.0010 

Cr 3 12/20/00 4/6/15  412 1244 75% 0.0006 0.0012 0.0022 0.0003  0.0010 0.0012 0.0027 0.0050 

Cs 3 12/20/00 4/6/15   34 1622 98% 0.0010 0.0032 0.0220 0.0162   0.0041 0.0055 0.0113 0.0230 

Cu 3 12/20/00 4/6/15  1202 454 27% 0.0006 0.0013 0.0019 0.0004  0.0010 0.0042 0.0074 0.0184 

ECMETSASS 5 12/20/00 3/30/10   976 79 7% 0.0139 0.0381 0.2402 0.0036   0.2800 0.6485 0.7107 1.2500 

ECURG3k 6 4/1/09 4/9/15   712 1 0% 0.0002 0.0012 0.0020 0.0000   0.1740 0.3660 0.4187 0.7326 

Eu 3 12/20/00 2/18/09  84 839 91% 0.0002 0.0005 0.0067 0.0039  0.0019 0.0025 0.0041 0.0085 

Fe 3 12/20/00 4/6/15   1641 9 1% 0.0028 0.0052 0.0020 0.0006   0.0371 0.0866 0.1033 0.1848 

Ga 3 12/20/00 2/18/09  12 911 99% 0.0002 0.0007 0.0032 0.0017  0.0005 0.0014 0.0016 0.0027 

Hf 3 12/20/00 2/18/09   22 901 98% 0.0014 0.0035 0.0148 0.0112   0.0020 0.0042 0.0077 0.0135 

Hg 3 12/20/00 2/18/09  61 862 93% 0.0005 0.0010 0.0052 0.0023  0.0017 0.0023 0.0028 0.0047 

In 3 12/20/00 4/6/15   63 1587 96% 0.0011 0.0029 0.0170 0.0057   0.0070 0.0080 0.0090 0.0165 

Ir 3 12/20/00 2/18/09  34 889 96% 0.0006 0.0014 0.0060 0.0033  0.0012 0.0036 0.0031 0.0044 

K 3 12/20/00 4/6/15   1628 22 1% 0.0005 0.0017 0.0069 0.0029   0.0209 0.0472 0.0691 0.0960 

K+ 4 1/7/01 4/6/15  971 688 41% 0.0019 0.0080 0.0160 0.0059  0.0070 0.0310 0.0586 0.1040 

La 3 12/20/00 2/18/09   45 878 95% 0.0025 0.0065 0.0334 0.0344   0.0039 0.0043 0.0174 0.0410 

Mg 3 12/20/00 4/6/15   187 1463 89% 0.0009 0.0045 0.0177 0.0112   0.0055 0.0090 0.0129 0.0250 

Mn 3 12/20/00 4/6/15  845 805 49% 0.0003 0.0006 0.0020 0.0005  0.0008 0.0019 0.0026 0.0057 
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Mo 3 12/20/00 2/18/09  13 910 99% 0.0003 0.0007 0.0067 0.0022  0.0015 0.0036 0.0034 0.0045 

Na 3 12/20/00 4/6/15   462 1188 72% 0.0073 0.0232 0.0531 0.0400   0.0155 0.0270 0.0486 0.1100 

Na+ 4 1/7/01 4/6/15  1425 227 14% - - 0.0243 0.0093  0.0150 0.0600 0.1022 0.2000 

Nb 3 12/20/00 2/18/09   18 905 98% 0.0003 0.0007 0.0043 0.0013   0.0014 0.0024 0.0022 0.0031 

NH4
+ 4 1/7/01 4/6/15  1636 23 1% 0.0041 0.0288 0.0175 0.0068  0.2588 1.1400 1.5872 3.5920 

Ni 3 12/20/00 4/6/15   349 1307 79% 0.0004 0.0007 0.0015 0.0003   0.0006 0.0009 0.0013 0.0024 

NO3
- 4 1/7/01 4/6/15  1645 14 1% 0.0340 0.0376 0.0120 0.0065  0.2965 1.4468 2.3874 5.8763 

OCMETSASS 5 12/20/00 3/30/10   1003 52 5% 1.2664 1.1670 0.2402 0.0036   0.7438 2.4900 2.8370 5.2600 

OCURG3k 6 4/1/09 4/9/15   707 0 0% 0.1568 0.0665 0.0020 0.0000   0.8878 1.8230 2.0560 3.5092 

P 3 12/20/00 4/6/15  46 1610 97% 0.0032 0.0192 0.0104 0.0035  0.0029 0.0050 0.0055 0.0080 

Pb 3 12/20/00 4/6/15   551 1099 67% 0.0004 0.0007 0.0041 0.0018   0.0013 0.0029 0.0038 0.0076 

Rb 3 12/20/00 4/6/15  43 1613 97% 0.0002 0.0003 0.0020 0.0005  0.0007 0.0010 0.0010 0.0013 

S 3 12/20/00 4/6/15   1641 9 1% 0.0019 0.0057 0.0080 0.0030   0.2766 0.7228 0.9865 1.9400 

Sb 3 12/20/00 4/6/15  62 1594 96% 0.0025 0.0051 0.0318 0.0105  0.0095 0.0140 0.0170 0.0260 

Sc 3 12/20/00 2/18/09   2 921 100% 0.0001 0.0003 0.0113 0.0106   0.0015 0.0050 0.0057 0.0185 

Se 3 12/20/00 4/6/15  269 1381 84% 0.0002 0.0003 0.0022 0.0006  0.0007 0.0013 0.0015 0.0030 

Si 3 12/20/00 4/6/15   1462 188 11% 0.0026 0.0057 0.0123 0.0039   0.0090 0.0459 0.0625 0.1261 

Sm 3 12/20/00 2/18/09  42 881 95% 0.0002 0.0004 0.0061 0.0022  0.0022 0.0025 0.0033 0.0050 

Sn 3 12/20/00 4/6/15   64 1586 96% 0.0029 0.0055 0.0222 0.0067   0.0080 0.0100 0.0118 0.0180 

SO4
= 4 1/7/01 4/6/15  1646 7 0% 0.0411 0.0575 0.0099 0.0040  0.7909 2.1488 2.9321 5.8293 

Sr 3 12/20/00 4/6/15   176 1474 89% 0.0003 0.0006 0.0024 0.0007   0.0009 0.0012 0.0017 0.0019 

Ta 3 12/20/00 2/18/09  59 864 94% 0.0038 0.0078 0.0102 0.0073  0.0019 0.0041 0.0060 0.0145 

Tb 3 12/20/00 2/18/09   87 836 91% 0.0001 0.0003 0.0060 0.0027  0.0018 0.0022 0.0037 0.0055 

Ti 3 12/20/00 4/6/15  404 1246 76% 0.0005 0.0012 0.0044 0.0008  0.0019 0.0025 0.0037 0.0068 

V 3 12/20/00 4/6/15   185 1471 89% 0.0002 0.0003 0.0029 0.0007   0.0010 0.0016 0.0019 0.0025 

W 3 12/20/00 2/18/09  28 895 97% 0.0014 0.0030 0.0079 0.0053  0.0012 0.0034 0.0042 0.0105 

Y 3 12/20/00 2/18/09   29 894 97% 0.0003 0.0005 0.0029 0.0008   0.0011 0.0014 0.0015 0.0023 

Zn 3 12/20/00 4/6/15  1566 84 5% 0.0002 0.0004 0.0023 0.0006  0.0039 0.0126 0.0175 0.0340 

Zr 3 12/20/00 4/6/15   106 1550 94% 0.0004 0.0010 0.0052 0.0053   0.0014 0.0021 0.0029 0.0072 

1 R & P Model 2025 PM2.5 Sequential w/WINS-GRAVIMETRIC (Detroit), Andersen RAAS2.5-300 PM2.5 SEQ w/WINS-GRAVIMETRIC (Chicago); 2 Met One SASS Teflon-Gravimetric; 3 Met 

One SASS Teflon-Energy Dispersive XRF; 4 Met One SASS Nylon-Ion Chromatography; 5 Met One SASS Quartz-STN TOT; 6 URG 3000N w/Pall Quartz filter and Cyclone Inlet 
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Table 3. Summary statistics for all Chicago species  

  Coverage  Blank & Detection Limit Correction   Summary Statistics 

Species   Start End   # ADL # BDL % BDL 

Blank 

Mean 

Blank 

SD 

DL 

Mean 

DL 

SD   10th 50th Mean 90th 

PM2.5,FRM 1 1/4/06 5/27/15  199 437 69% 14.07 6.01 2.00 0.00  1.00 1.00 3.44 10.10 

PM2.5 2 1/2/06 9/29/14  834 5 1% 0.63 0.57 0.75 0.07  4.40 10.00 11.52 20.30 

Ag 3 1/2/06 4/6/15   14 883 98% 0.0006 0.0022 0.0148 0.0083   0.0042 0.0065 0.0075 0.0185 

Al 3 1/2/06 4/6/15  419 483 54% 0.0010 0.0029 0.0170 0.0055  0.0065 0.0125 0.0255 0.0550 

As 3 1/2/06 4/6/15   185 717 79% 0.0001 0.0004 0.0016 0.0006   0.0005 0.0009 0.0011 0.0020 

Au 3 1/2/06 2/18/09  7 287 98% 0.0001 0.0002 0.0041 0.0022  0.0009 0.0019 0.0021 0.0040 

Ba 3 1/2/06 4/6/15   17 885 98% 0.0004 0.0013 0.0153 0.0152   0.0039 0.0050 0.0084 0.0295 

Br 3 1/2/06 4/6/15  702 200 22% 0.0002 0.0003 0.0016 0.0005  0.0007 0.0031 0.0038 0.0070 

Ca 3 1/2/06 4/6/15   873 24 3% 0.0001 0.0005 0.0062 0.0014   0.0146 0.0401 0.0480 0.0912 

Cd 3 1/2/06 4/6/15  21 876 98% 0.0009 0.0028 0.0155 0.0042  0.0050 0.0085 0.0080 0.0110 

Ce 3 1/2/06 4/6/15   1 901 100% 0.0000 0.0001 0.0167 0.0249   0.0028 0.0041 0.0084 0.0430 

Cl 3 1/2/06 4/6/15  461 436 49% 0.0003 0.0009 0.0074 0.0020  0.0039 0.0069 0.0342 0.0716 

Co 3 1/2/06 4/6/15   45 857 95% 0.0001 0.0002 0.0014 0.0002   0.0006 0.0007 0.0007 0.0010 

Cr 3 1/2/06 4/6/15  163 739 82% 0.0003 0.0008 0.0023 0.0002  0.0010 0.0012 0.0027 0.0040 

Cs 3 1/2/06 4/6/15   4 893 100% 0.0005 0.0015 0.0188 0.0133   0.0041 0.0055 0.0095 0.0205 

Cu 3 1/2/06 4/6/15  457 445 49% 0.0001 0.0003 0.0019 0.0004  0.0008 0.0015 0.0030 0.0053 

ECMETSASS 5 1/2/06 4/29/10   229 19 8% 0.0093 0.0263 0.2400 0.0000   0.2911 0.6500 0.7202 1.2549 

ECURG3k 6 5/3/07 4/6/15   752 5 1% 0.0004 0.0016 0.0020 0.0000   0.1770 0.3720 0.4329 0.7732 

Eu 3 1/2/06 2/18/09  8 286 97% 0.0000 0.0003 0.0054 0.0021  0.0019 0.0025 0.0028 0.0055 

Fe 3 1/2/06 4/6/15   900 2 0% 0.0012 0.0035 0.0019 0.0005   0.0237 0.0611 0.0800 0.1569 

Ga 3 1/2/06 2/18/09  1 293 100% 0.0002 0.0003 0.0024 0.0013  0.0005 0.0013 0.0012 0.0024 

Hf 3 1/2/06 2/18/09   1 293 100% 0.0001 0.0004 0.0103 0.0088   0.0020 0.0030 0.0052 0.0135 

Hg 3 1/2/06 2/18/09  11 283 96% 0.0001 0.0003 0.0056 0.0027  0.0017 0.0018 0.0029 0.0047 

In 3 1/2/06 4/6/15   28 869 97% 0.0013 0.0036 0.0183 0.0060   0.0070 0.0080 0.0096 0.0165 

Ir 3 1/2/06 2/18/09  8 286 97% 0.0000 0.0000 0.0049 0.0022  0.0012 0.0021 0.0025 0.0039 

K 3 1/2/06 4/6/15   885 17 2% 0.0001 0.0002 0.0069 0.0029   0.0180 0.0446 0.0729 0.0949 

K+ 4 1/2/06 4/6/15  564 340 38% 0.0003 0.0025 0.0149 0.0058  0.0070 0.0340 0.0626 0.1030 

La 3 1/2/06 2/18/09   3 291 99% 0.0001 0.0002 0.0176 0.0223   0.0039 0.0042 0.0089 0.0350 

Mg 3 1/2/06 4/6/15   160 742 82% 0.0005 0.0014 0.0144 0.0063   0.0055 0.0090 0.0122 0.0235 

Mn 3 1/2/06 4/6/15  389 513 57% 0.0001 0.0002 0.0019 0.0004  0.0008 0.0011 0.0022 0.0046 

Mo 3 1/2/06 2/18/09  6 288 98% 0.0001 0.0004 0.0064 0.0027  0.0015 0.0042 0.0033 0.0045 

Na 3 1/2/06 4/6/15   339 563 62% 0.0033 0.0158 0.0415 0.0214   0.0155 0.0270 0.0466 0.1061 

Na+ 4 1/2/06 4/6/15  789 115 13% - - 0.0215 0.0102  0.0150 0.0545 0.0768 0.1500 

Nb 3 1/2/06 2/18/09   5 289 98% 0.0001 0.0004 0.0039 0.0010   0.0014 0.0017 0.0020 0.0028 

NH4
+ 4 1/2/06 4/6/15  893 6 1% 0.0043 0.0173 0.0162 0.0071  0.2710 1.0200 1.4049 3.1100 

Ni 3 1/2/06 4/6/15   160 742 82% 0.0002 0.0005 0.0014 0.0003   0.0006 0.0009 0.0012 0.0020 

NO3
- 4 1/2/06 4/6/15  897 2 0% 0.0186 0.0287 0.0107 0.0060  0.4015 1.4700 2.4260 6.2220 

OCMETSASS 5 1/2/06 4/29/10   248 0 0% 1.0083 0.2014 0.2400 0.0000   1.1928 2.5850 2.8347 4.6621 

OCURG3k 6 5/3/07 4/6/15   754 3 0% 0.2204 0.1075 0.0020 0.0000   0.9959 2.0255 2.1923 3.6627 

P 3 1/2/06 4/6/15  3 894 100% 0.0001 0.0004 0.0114 0.0033  0.0045 0.0050 0.0058 0.0080 

Pb 3 1/2/06 4/6/15   272 630 70% 0.0002 0.0005 0.0037 0.0013   0.0013 0.0024 0.0036 0.0073 
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Rb 3 1/2/06 4/6/15  17 885 98% 0.0001 0.0002 0.0019 0.0004  0.0007 0.0010 0.0010 0.0013 

S 3 1/2/06 4/6/15   892 5 1% 0.0002 0.0005 0.0080 0.0018   0.2640 0.6180 0.7985 1.5538 

Sb 3 1/2/06 4/6/15  42 860 95% 0.0014 0.0037 0.0358 0.0094  0.0095 0.0195 0.0192 0.0260 

Sc 3 1/2/06 2/18/09   1 293 100% 0.0002 0.0004 0.0179 0.0124   0.0015 0.0060 0.0090 0.0185 

Se 3 1/2/06 4/6/15  60 842 93% 0.0001 0.0003 0.0021 0.0005  0.0007 0.0013 0.0012 0.0013 

Si 3 1/2/06 4/6/15   819 83 9% 0.0004 0.0013 0.0124 0.0036   0.0113 0.0470 0.0601 0.1180 

Sm 3 1/2/06 2/18/09  3 291 99% 0.0001 0.0006 0.0054 0.0017  0.0022 0.0025 0.0027 0.0050 

Sn 3 1/2/06 4/6/15   30 872 97% 0.0011 0.0039 0.0238 0.0068   0.0080 0.0100 0.0125 0.0180 

SO4
= 4 1/2/06 4/6/15  896 3 0% 0.0185 0.0183 0.0091 0.0045  0.7190 1.7300 2.2987 4.4941 

Sr 3 1/2/06 4/6/15   70 827 92% 0.0001 0.0003 0.0024 0.0006   0.0009 0.0012 0.0018 0.0018 

Ta 3 1/2/06 2/18/09  5 289 98% 0.0001 0.0006 0.0073 0.0033  0.0019 0.0039 0.0038 0.0049 

Tb 3 1/2/06 2/18/09   8 286 97% 0.0000 0.0001 0.0049 0.0019  0.0018 0.0022 0.0026 0.0050 

Ti 3 1/2/06 4/6/15  88 814 90% 0.0002 0.0005 0.0047 0.0005  0.0021 0.0025 0.0029 0.0027 

V 3 1/2/06 4/6/15   46 856 95% 0.0001 0.0004 0.0032 0.0005   0.0012 0.0016 0.0018 0.0019 

W 3 1/2/06 2/18/09  6 288 98% 0.0001 0.0002 0.0056 0.0026  0.0012 0.0031 0.0029 0.0041 

Y 3 1/2/06 2/18/09   5 289 98% 0.0001 0.0003 0.0026 0.0005   0.0011 0.0011 0.0013 0.0019 

Zn 3 1/2/06 4/6/15  827 75 8% 0.0001 0.0003 0.0024 0.0006  0.0030 0.0108 0.0170 0.0340 

Zr 3 1/2/06 4/6/15   40 862 96% 0.0005 0.0015 0.0058 0.0062   0.0014 0.0017 0.0032 0.0115 

1 R & P Model 2025 PM2.5 Sequential w/WINS-GRAVIMETRIC (Detroit), Andersen RAAS2.5-300 PM2.5 SEQ w/WINS-GRAVIMETRIC (Chicago); 2 Met One SASS Teflon-Gravimetric; 3 Met 

One SASS Teflon-Energy Dispersive XRF; 4 Met One SASS Nylon-Ion Chromatography; 5 Met One SASS Quartz-STN TOT; 6 URG 3000N w/Pall Quartz filter and Cyclone Inlet  

 

Table 4. Parameters for EC and OC artifact correction regression 

 Detroit  Chicago 

  EC OC  EC OC 

Outliers 

Deleted 
none 

2009/7/24: OCMET = 

8.230, OCURG = 2.146  

 

2009/11/9: OCMET = 

1.369, OCURG = 6.107 

 

2009/05/1, 7, 10, 13, 25 and 

2009/6/6: ECMET = 0.11115 

(after blank correction) and 

ECURG varied by ±0.1.  

 

2010/2/1,19: ECMET > 1.7 

and ECURG < 0.9 

2009/7/24: OCMET = 

10.311, OCURG = 2.04 

Y 0.77 1.0333  0.8668 0.8645 

artifact 0.13737 0.12625  0.2338877 0.303 

R2 0.578 0.7729   0.6949 0.8518 
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Table 5. Starting date (month and year) and percent above detection limit (%>DL) of hourly CO, NO, NO2 and NOx data at Detroit 

area monitoring sites.  

AQS ID Site name Poll Method* Start End N DL 

(ppb) 

%>DL 

(%) 

261630001 suburban CO IGFC 1/11 12/14 32,841 500 7 

  NO TECO-42S 1/11 12/14 27,962 0.05 98 

261630019 school NO ICHEM 1/11 12/14 33,820 10 9 

  NO2 ICHEM 1/11 12/11 8,633 5 77 

  NO2 ICHEM 1/12 12/14 25,187 1 100 

  NOx ICHEM 1/11 12/14 33,820 10 51 

261630093 near-road CO EC9830T 10/11 12/11 2,076 20 100 

  CO INDiI 1/12 12/14 24,838 500 51 

  NO IGpCHEM 10/11 12/13 18,186 10 68 

  NO ICHEM 1/14 12/14 8,584 10 51 

  NO2 IGpCHEM 10/11 12/13 18,186 5 93 

  NO2 ICHEM 1/14 12/14 8,584 1 100 

  NOx IGpCHEM 10/11 12/13 18,186 10 90 

  NOx ICHEM 1/14 12/14 8,584 10 87 

261630094 urban CO INDiI 10/11 12/14 27,288 500 26 

  NO IGpCHEM 10/11 12/13 19,304 10 19 

  NO ICHEM 1/14 12/14 8,583 10 16 

  NO2 IGpCHEM 10/11 12/13 19,304 5 80 

  NO2 ICHEM 1/14 12/14 8,583 1 100 

  NOx IGpCHEM 10/11 12/13 19,304 10 63 

  NOx ICHEM 1/14 12/14 8,583 10 61 

261631008 industrial CO IGFC 1/12 12/14 25,876 500 10 

 

* Methods: ICHEM = Instrumental Chemiluminescence; IGpCHEM = Instrumental Gas-Phase Chemiluminescence; TECO-42S = Low 

Level NOx Instrumental-Teco 42s Chemiluminescence; IGFC = Instrumental Gas Filter Correlation Analyzer; INDiI = Instrumental 

Non-dispersive Infrared. EC980T = Instrumental Gas Filter Correlation Ecotech EC9830T 
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Table 6. PM2.5 measured at sites in Wayne County, MI 

Site# Parameter 

Code 

POC Method.Description FRM Detection 

Limit 

Sample 

Duration 

Sample. 

Frequency 

N AMDL Start End 

1 88101 1 R & P X 2 24 HOUR   262 99.6 4/1/2013 12/31/2013 

1 88101 1 R & P X 2 24 HOUR EVERY DAY 797 98.9 1/1/2011 3/31/2013 

1 88101 1 R & P X 2 24 HOUR NA 341 99.7 1/2/2014 12/30/2014 
1 88502 3 TEOM30 deg C  0 1 HOUR NA 15751 100.0 1/1/2011 12/31/2014 

1 88502 3 TEOM50 deg C  0 1 HOUR NA 17622 100.0 4/1/2011 10/29/2014 

1 88502 5 Met One SASS Teflon-Gravimetric  0.57 24 HOUR NA 9 100.0 8/18/2014 9/29/2014 

1 88502 5 Met One SASS Teflon-Gravimetric  0.74 24 HOUR NA 240 99.2 1/3/2011 9/20/2014 

1 88502 5 Met One SASS Teflon-Gravimetric  0.75 24 HOUR NA 7 100.0 4/6/2011 12/14/2012 

1 88502 5 Met One SASS Teflon-Gravimetric  0.77 24 HOUR NA 120 99.2 1/10/2011 8/6/2014 
1 88502 5 Met One SASS Teflon-Gravimetric  0.78 24 HOUR NA 31 100.0 3/13/2011 7/13/2014 

1 88502 5 Met One SASS Teflon-Gravimetric  1.1 24 HOUR NA 40 100.0 4/13/2013 9/26/2014 

15 88101 1 R & P X 2 24 HOUR   91 98.9 4/1/2013 12/30/2013 
15 88101 1 R & P X 2 24 HOUR EVERY 3RD DAY 270 99.3 1/3/2011 3/29/2013 

15 88101 1 R & P X 2 24 HOUR NA 115 100.0 1/2/2014 12/31/2014 

15 88502 5 Met One SASS Teflon-Gravimetric  0.57 24 HOUR NA 3 100.0 8/21/2014 9/26/2014 
15 88502 5 Met One SASS Teflon-Gravimetric  0.74 24 HOUR NA 94 98.9 1/15/2011 9/20/2014 

15 88502 5 Met One SASS Teflon-Gravimetric  0.75 24 HOUR NA 15 93.3 1/9/2011 7/22/2014 

15 88502 5 Met One SASS Teflon-Gravimetric  0.77 24 HOUR NA 60 100.0 1/27/2011 9/2/2014 
15 88502 5 Met One SASS Teflon-Gravimetric  0.78 24 HOUR NA 26 100.0 1/3/2011 8/3/2014 

15 88502 5 Met One SASS Teflon-Gravimetric  1.1 24 HOUR NA 22 100.0 4/28/2013 8/9/2014 

15 88502 5 Met One SASS Teflon-Gravimetric  1.2 24 HOUR NA 1 100.0 5/4/2013 5/4/2013 

16 88101 1 R & P X 2 24 HOUR   84 97.6 4/1/2013 12/30/2013 

16 88101 1 R & P X 2 24 HOUR EVERY 3RD DAY 208 97.1 7/8/2011 3/29/2013 

16 88101 1 R & P X 2 24 HOUR EVERY DAY 60 100.0 1/3/2011 6/29/2011 
16 88101 1 R & P X 2 24 HOUR NA 121 99.2 1/2/2014 12/31/2014 

19 88101 1 R & P X 2 24 HOUR   85 97.6 4/1/2013 12/30/2013 

19 88101 1 R & P X 2 24 HOUR EVERY 3RD DAY 267 98.5 1/3/2011 3/29/2013 
19 88101 1 R & P X 2 24 HOUR NA 117 100.0 1/2/2014 12/31/2014 

25 88101 1 R & P X 2 24 HOUR   87 97.7 4/1/2013 12/30/2013 

25 88101 1 R & P X 2 24 HOUR EVERY 3RD DAY 268 97.4 1/3/2011 3/29/2013 
25 88101 1 R & P X 2 24 HOUR NA 120 99.2 1/2/2014 12/31/2014 

33 88101 1 R & P X 2 24 HOUR   90 98.9 4/1/2013 12/30/2013 

33 88101 1 R & P X 2 24 HOUR EVERY 3RD DAY 293 99.3 1/3/2011 3/29/2013 
33 88101 1 R & P X 2 24 HOUR NA 120 100.0 1/2/2014 12/31/2014 

33 88101 2 R & P X 2 24 HOUR   77 98.7 1/3/2011 12/30/2013 

33 88101 2 R & P X 2 24 HOUR EVERY 3RD DAY 106 99.1 7/2/2011 3/29/2013 
33 88101 2 R & P X 2 24 HOUR NA 60 100.0 1/5/2014 12/25/2014 

33 88502 3 TEOM30 deg C  0 1 HOUR NA 3447 100.0 1/1/2014 12/31/2014 
33 88502 3 TEOM50 deg C  0 1 HOUR NA 4862 100.0 4/3/2014 10/29/2014 

33 88502 5 Met One SASS Teflon-Gravimetric  0.57 24 HOUR NA 6 100.0 8/3/2014 9/26/2014 

33 88502 5 Met One SASS Teflon-Gravimetric  0.74 24 HOUR NA 118 99.2 1/9/2011 9/8/2014 
33 88502 5 Met One SASS Teflon-Gravimetric  0.75 24 HOUR NA 1 100.0 8/13/2011 8/13/2011 

33 88502 5 Met One SASS Teflon-Gravimetric  0.77 24 HOUR NA 67 100.0 1/3/2011 9/2/2014 

33 88502 5 Met One SASS Teflon-Gravimetric  0.78 24 HOUR NA 9 100.0 2/3/2012 5/11/2014 
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33 88502 5 Met One SASS Teflon-Gravimetric  1.1 24 HOUR NA 23 100.0 6/9/2013 8/9/2014 

36 88101 1 R & P X 2 24 HOUR   86 96.5 4/1/2013 12/30/2013 
36 88101 1 R & P X 2 24 HOUR EVERY 3RD DAY 255 97.3 1/3/2011 3/29/2013 

36 88101 1 R & P X 2 24 HOUR NA 120 100.0 1/2/2014 12/31/2014 

38 88101 1 R & P X 2 24 HOUR   57 100.0 1/3/2011 6/29/2011 
38 88101 1 R & P X 2 24 HOUR EVERY 3RD DAY 191 96.9 7/2/2011 1/31/2013 

39 88101 1 R & P X 2 24 HOUR   411 99.5 1/1/2011 12/31/2013 

39 88101 1 R & P X 2 24 HOUR EVERY DAY 603 98.5 7/1/2011 3/31/2013 
39 88101 1 R & P X 2 24 HOUR NA 346 99.4 1/1/2014 12/31/2014 

39 88101 3 Met One BAM-1020 Mass Monitor 

w/VSCC-Beta Attenuation 

X 5 1 HOUR   24594 55.1 1/1/2011 12/31/2013 

39 88101 3 Met One BAM-1020 Mass Monitor 

w/VSCC-Beta Attenuation 

X 5 1 HOUR NA 7351 83.2 1/1/2014 12/31/2014 

39 88502 3 TEOM30 deg C  0 1 HOUR NA 3689 100.0 1/1/2014 12/31/2014 
39 88502 3 TEOM50 deg C  0 1 HOUR NA 4755 100.0 4/3/2014 10/29/2014 

 

Methods: R&P = R & P Model 2025 PM2.5 Sequential w/WINS-GRAVIMETRIC; TEOM = PM2.5 SCC w/No Correction Factor-TEOM Gravimetric; METONE 

S = Met One SASS Teflon-Gravimetric 

* R&P and Met One BAM are FRM (https://www3.epa.gov/ttnamti1/files/ambient/criteria/reference-equivalent-methods-list.pdf) 

 

 

Table 7. Number of missing met-hours for each NWS data set and hour of the day. There were 1461 hours of data in each hour of the 

day. 

NWS 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 

DET 329 340 345 362 357 350 292 228 193 166 188 177 156 136 107 97 62 67 100 114 184 204 252 301 

DTW 283 310 294 297 292 261 230 188 186 177 170 163 163 153 134 93 71 53 66 115 176 223 244 272 

 

  

https://www3.epa.gov/ttnamti1/files/ambient/criteria/reference-equivalent-methods-list.pdf
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Table 8. Annual emissions (tons, rounded to the nearest integer) of modeled and not-modeled point sources of CO, NOx and PM2.5 in 

Wayne County and the remaining 6 counties.  

Pollutant Wayne County  Remaining 6 counties 

Year Modeled Not modeled  Modeled Not modeled 

CO      

2011  31,459   5,037    5,552   1,793  

2012  37,884   299    5,061   856  

2013  32,970   353    5,127   979  

2014  30,992   411    5,299   1,034  

NOx      

2011  17,128   3,099    23,655   929  

2012  14,386   275    20,322   705  

2013  14,027   335    23,109   748  

2014  13,697   348    15,717   823  

PM2.5      

2011  1,396   212    1,009   166  

2012  1,085   98    886   199  

2013  1,337   107    971   233  

2014  721   118    2,723   334  

 

Table 9. Hours of traffic count data in each month from 2010 to 2014 separated by NFC class and traffic recorder type (PTR = 

Permanent Traffic Recorder; SHORT = Short counts). 

NFC TYPE # of 

stations 

Jan Feb Mar Apr May Jun July Aug Sept Oct Nov Dec 

11 PTR 1 6,768 6,502 6,734 6,912 7,246 7,104 7,200 7,104 7,048 7,344 7,150 7,200 

14 PTR 1 2,784 2,672 2,780 2,784 2,712 3,384 2,846 2,784 2,688 2,928 3,575 3,600 

14 SHORT 21     246   192 340 397 563  

16 SHORT 14     96    253 392 561  

17 SHORT 19        96 344 638 454  
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Table 10. Allocation of commercial and non-commercial traffic 

Traffic type MC LDGV LDGT1 LDGT2 HDGV LDDV LDDT HDDV 

Commercial    1 1 0.5 1 1 

Non-Commercial 1 1 1   0.5   

 

Table 11. Aggregated Fleet-mix “reality-check” – vehicle fraction by NFC class. 

Vehicle 

class 

11 12 14 16 17 19 

LDGV 0.784 0.839 0.840 0.857 0.788 0.809 

LDGT1 0.120 0.109 0.109 0.083 0.147 0.151 

LDGT2 0.025 0.021 0.020 0.019 0.027 0.014 

HDGV 0.003 0.003 0.003 0.005 0.003 0.002 

MC 0.005 0.006 0.006 0.007 0.009 0.009 

LDDV 0.008 0.008 0.008 0.009 0.007 0.007 

LDDT 0.002 0.002 0.002 0.002 0.002 0.001 

HDDV 0.053 0.012 0.012 0.019 0.016 0.008 
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Table 12. Matrix for of percentages used in post-processing MOVES emission rate outputs into aggregated HMPS vehicle classes. 

Generated using Table 2-4 of Decker 1996 [131], MOVES2014 on-road source types table [151], and SEMCOG Fuel type data. 

  Fuel Type = Gasoline  Fuel Type = Diesel 

Source 

TypeID sourceTypeName M
C

 

L
D

G
V

 

L
D

G
T

1
 

L
D

G
T

2
 

H
D

G
V

 

 L
D

D
V

 

L
D

D
T

 

H
D

D
V

 

11 Motorcycle 100         

21 Passenger Car  100     100   

31 Passenger Truck   66 33    100  

32 Light Commercial Truck   66 33    100  

41 Intercity Bus     100    100 

42 Transit Bus     100    100 

43 School Bus     100    100 

51 Refuse Truck     100    100 

52 Single Unit Short-haul Truck     100    100 

53 Single Unit Long-haul Truck         100 

54 Motor Home     100    100 

61 Combination Short-haul Truck         100 

62 Combination Long-haul Truck         100 

 

Table 13. Annual modeled emissions (nearest ton) of each pollutant in each year. Major roads have AADT > 10,000. 

Emission per road type and year CO NOx 

NEI 2011 129,647 29,767 

Minor Roads (all years)  48,994   11,695  

2010 Major + Minor  86,119   21,280  

2011 Major + Minor  85,827   21,205  

2012 Major + Minor  86,998   21,507  

2013 Major + Minor  87,171   21,552  

2014 Major + Minor  87,697   21,688  
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Table 14. Formulas for various performance metrics [55]. 

Metric Symbol Formula Eq. #  

Mean predicted concentrations Cp  1/N ∑ 𝐶𝑝,𝑖  

Mean observed concentrations Co   1/N ∑ 𝐶𝑜,𝑖  

Fractional Bias FB ( Cp  – Co  )/[( Cp  + Co  )/2] (1) 

Fractional Bias – False positives FBFP 
[ |𝐶𝑜 − 𝐶𝑝

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ | + ( Cp  –  Co  )]/( Cp  + Co  ) 
(21) 

Fractional Bias – False negatives FBFN 
[ |𝐶𝑜 − 𝐶𝑝

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ | + ( Co  –  Cp )]/( Cp  + Co  ) 
(22) 

Geometric variance VG exp[ (ln Co - ln Cp)
2  ] (4) 

Geometric variance – systematic Irr. exp( ln 𝐶𝑜
̅̅ ̅̅ ̅̅ − ln 𝐶𝑝

̅̅ ̅̅ ̅̅  )2 (8) 

Geometric variance – random  Red. VG = Irr × Red → Red = VG / Irr  
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II.6 Figures 

 

Figure 1. Maps showing Allen Park, Detroit (A) and Com Edison, Chicago (B) monitoring sites and nearby point sources emitting 

more than 25 tons of PM2.5 in 2011 

 



43 

 

 

 

 

Figure 2. The modeling domain, including Michigan Department of Environmental Quality (MDEQ) monitoring stations, National 

Weather Service (NWS) meteorological stations, a subset of Michigan State Trunkline Highway System (i.e., ‘major’) and non-

Trunkline (‘minor’) roads, all modeled roads, and large point sources of NOx in 2012 in Wayne County. Areas around the Urban, 

Near-road, Industrial, and Schools sites are shown (the Suburban site is below the modeled domain).  
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Figure 3. Wind rose for Detroit City Airport (DET) and Detroit Metro Airport (DTW) stations, for 2012. 
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Figure 4. Designation of Urban Sources. Sources in Detroit were classified as “urban” with a reference population of 106 and the 

default surface roughness [127]. Michigan Department of Environmental Quality (MDEQ) Source IDs are: A6902, A7809, A8638, 

A8640, A8648, A9831, B1798, B2103, B2132, B2169, B2767, B2810, B2814, B3195, B6230, B6569, K1271, M4008, M4148, 

M4199, M4456, M4547, M4764, M4803, N1014, N2155, N2999, N6631, N7081, N7238, P0408.  
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Figure 5. Custom mapping algorithm for aligning state roads with existing link-based inventory. Clockwise from top-left these images 

depict: 1) the previously modeled road network in black, and the Trunkline system in color; 2) one particular intersection, with 

modeled segments show in red and Trunkline shown in green; 3) buffers are drawn around previously modeled segments and 

intersecting MDOT roads (X’s) and only roads mostly parallel to previously modeled segments are selected; 4) the final mapping of 

Trunkline roads (in red) among modeled segments 

 



47 

 

 

Figure 6. For CO, the % of observations below, within a factor of 1, or greater than the detection limit of each monitoring station and 

analytical method. For most CO monitors, the % above DL was < 20%, which limited our ability to perform certain analyses and 

estimate background concentrations using a method to fill in below detection limit values.  
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Figure 7. For NOx, the % of observations below, within a factor of 1, or greater than the detection limit of each monitoring station and 

analytical method. Censoring of data was not a major consideration in processing of NOx data.  
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Figure 8. For PM2.5, the % of observations below, within a factor of 1, or greater than the detection limit of each monitoring station 

and analytical method. Censoring of data was not a major consideration in processing of PM2.5 data. 
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Figure 9. Boxplots of monthly upwind hourly CO measurements at each monitoring stations method for 2012. The x-axis labels are 

the AQS station ids (see Table 1). The blue circles show the geometric mean at each month, and the numbers below each box are the 

number of observations in each subset. As seen here, some stations and months have only a few hours of upwind data. 

 

 

Figure 10. Boxplots of monthly upwind hourly NOx measurements at each monitoring stations method for 2012. The x-axis labels are 

the AQS station ids (see Table 1). The blue circles show the geometric mean at each month, and the numbers below each box are the 

number of observations in each subset. As seen here, some stations and months have only a few hours of upwind data. 
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Figure 11. Boxplots of monthly upwind hourly PM2.5 measurements at each monitoring stations method for 2012. The x-axis labels 

are the AQS station ids (see Table 1). The blue circles show the geometric mean at each month, and the numbers below each box are 

the number of observations in each subset. As seen here, some stations and months have only a few hours of upwind data. 
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Figure 12. For CO, time-series plots of “leave-one-out” cross validated background values. Each plot is labeled on the top by the AQS 

Site ID and sampling method (See Table 1). The black points in each plot represent the geometric means shown in blue in Figure R2. 

As seen in this plot, the upwind values at various monitors vary, but within a relatively tight band (0.5 to 1.0 ppm). 
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Figure 13. For NOx, time-series plots of “leave-one-out” cross validated background values. Each plot is labeled on the top by the 

AQS Site ID and sampling method (See Table 1). The black points in each plot represent the geometric means shown in blue in Figure 

R2. As seen in this plot, the upwind values at various monitors vary, but within a relatively tight band (12 to 27 µg/m3). 
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Figure 14. For PM2.5, time-series plots of “leave-one-out” cross validated background values. Each plot is labeled on the top by the 

AQS Site ID and sampling method (See Table 1). The black points in each plot represent the geometric means shown in blue in Figure 

R2. As seen in this plot, the upwind values at various monitors vary, but within a normal range (5 to 11 µg/m3) 
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Figure 15. Boxplots of background vs monitored CO levels; across monitoring stations, little correlation is seen. Each plot is labeled 

on the top by the AQS Site ID and sampling method (See Table 1) 
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Figure 16. Boxplots of background vs monitored NOx levels; across monitoring stations, the highest correlation is R2 = 0.33. Each plot 

is labeled on the top by the AQS Site ID and sampling method (See Table 1) 
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Figure 17. Boxplots of background vs monitored PM2.5 levels; across monitoring stations, very little correlation is seen. Each plot is 

labeled on the top by the AQS Site ID and sampling method (See Table 1) 
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Figure 18. The modeling domain, including National Weather Service (NWS) meteorological stations, Michigan Department of 

Environmental Quality (MDEQ) air pollution monitors, a subset of Michigan State Trunkline Highway System, locations of NEXUS 

receptors (representing 206 residences in the NEXUS cohort), location of Detroit receptors (representing a population-weighted 

sample of residences in Detroit, n = 543).  
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Chapter III – Trends in PM2.5 emissions, concentrations and apportionments in Detroit 

and Chicago 

 

III.1 Summary 

This chapter examines Detroit, MI and Chicago, IL, two U.S. Midwestern cities that have high 

concentrations of industry, extensive vehicle traffic, historical exceedances of air quality 

standards, and large low income and minority populations that are susceptible to pollutants. These 

cities were selected due to the length of the data record available, and to contrast trends in the two 

cities (in adjacent states) potentially differentially affected by the 2008 recession. This chapter’s 

goal is to understand the trends in the sources contributing to PM2.5 concentrations in Detroit and 

Chicago. In each city, we examine emission inventories, ambient pollutant concentrations, and 

derive source apportionments using receptor models. Quantile regression is used to analyze trends 

in concentrations and receptor model apportionments, a novel application of this work. Over the 

study period, county-wide data suggest emissions from point sources decreased (Detroit) or held 

constant (Chicago), while emissions from on-road mobile sources were constant (Detroit) or 

increased (Chicago), however changes in methodology limit the interpretation of inventory trends. 

Ambient concentration data also suggest source and apportionment trends, e.g., annual median 

concentrations of PM2.5 in the two cities declined by 3.2 to 3.6 %/yr (faster than national trends), 

and sulfate concentrations (due to coal-fired facilities and other point source emissions) declined 

even faster; in contrast, organic and elemental carbon (tracers of gasoline and diesel vehicle 

exhaust) declined more slowly or held constant. The PMF models identified nine sources in Detroit 

and eight in Chicago, the most important being secondary sulfate, secondary nitrate and vehicle 

emissions. A minor crustal dust source, metals sources, and a biomass source also were present in 

both cities. These apportionments showed that the median relative contributions from secondary 

sulfate sources decreased by 4.2 to 5.5% per year in Detroit and Chicago, while contributions from 

metals sources, biomass sources, and vehicles increased from 1.3 to 9.2% per year.  
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III.2 Results and Discussion 

III.2.1 Emission inventory trends 

Table 15 summarizes PM2.5 emissions reported in the 2002 through 2011 NEI data. The NEI source 

categories, data and emission factors have shifted over the years, resulting in large changes and 

some difficulty in evaluating trends. The methodological changes can greatly affect results and 

limit its usefulness for trend analyses, at least for certain source types. For example, fugitive 

emissions of PM2.5 from paved roads, unpaved roads, and construction sources are calculated by 

applying a factor to modeled PM10 emissions [152], which itself is estimated using emission 

factors, activity estimates, and other data. These factors have been updated several times since 

2002 [153], which partially explains the large changes in construction dust emissions. 

Uncertainties in the multiplicative factor used to generate PM2.5 emissions from PM10 emissions 

have been discussed at length by Pace [152]. As a second example, on-road emissions were 

calculated over the study period using several models, i.e., the National Mobile Inventory Model 

(NMIM) running MOBILE6 in 2002, 2005, and version 1 of the 2008 NEI; and then the Motor 

Vehicle Emission Simulator (MOVES) in versions 2 and 3 of NEI 2008 and 2011. (For non-road 

mobile emissions, NMIM is still used [98]) For mobile sources, important uncertainties include 

the availability and accuracy of the data providing on-road and off-road gasoline and diesel fuel 

consumption, the age and composition of the fleet, and the emission factors [154]. In addition, not 

all data in the inventory is updated each period, e.g., the 2005 non-point emissions mostly used the 

2002 NEI estimates [155]. Uncertainties in the NEI data also limit many comparisons. With these 

caveats, we discuss emission trends in the two cities. 

Over the study period in Wayne County (encompassing Detroit), NEI point source emissions 

decreased from 5,364 to 1,610 tons/year, non-road mobile sources decreased from 855 to 493 

tons/year, and on-road mobile emissions (mostly diesel exhaust) fluctuated from a low of 916 

(2005) to a high of 2,110 tons/year (2008). On-road mobile PM2.5 exhaust emissions increased 

slightly over the study period: both gasoline and diesel vehicle exhaust emissions dropped in 2005, 

but then nearly doubled in 2008. Non-point source emissions (excluding mobile sources) also 

fluctuated, from 1,682 tons/year (2002) to 5,782 tons/year (2008), and of the sources in this 

category, construction dust had the greatest changes, increasing 25-fold from 2005 to 2008 (to 350 

tons/year), then decreasing by the same amount in 2011. Other non-point sources, primarily 

residential wood combustion, commercial cooking and various industrial processes (550, 450 and 
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586 tons/year in 2011, respectively), collectively represent the largest fraction of PM2.5 emissions 

in the inventory (45% in 2011). These non-point emissions had large changes from 2005 to 2011, 

e.g., residential wood combustion increased from 69 (2005) to 1,649 tons/year (2008). The large 

(over 3-fold) increase in non-point source emissions between 2005 and 2008 was due mostly to 

updated estimates of fugitive dust.  

Emission trends for Cook County (including Chicago) reflect those in Wayne County with several 

exceptions. First, point source emissions stayed fairly constant (2,390 to 2,510 tons/year, excluding 

much higher emissions in 2005), compared to the large decreases in Wayne County. Second, Cook 

County had very high emissions of construction dust (up to 6,351 tons/year, 31% of total PM2.5 in 

2011), possibly resulting from construction activities (including a number of high-rise buildings), 

high wind speeds that increase entrainment [156], and changes in the calculation methods (noted 

above). As in Wayne County, non-point sources exhibited an over 3-fold increase from 2005 to 

2008, and on-road mobile gasoline and diesel exhaust emissions dropped in 2005 but then 

approximately doubled in 2008. Non-road mobile sources steadily decreased to 7% of total PM2.5 

emissions in 2011. 

Comparing the two cities, mobile on-road PM2.5 emissions were constant in Detroit (1,126 to 1,188 

tons/year) and increased in Chicago (1,782 to 2,163 tons/year in Cook County) over the study 

period. On-road mobile sources represented 10 to 17% of total PM2.5 emissions (depending on year 

and city). On an area basis, however, mobile emissions in the two cities were similar, i.e., 0.75 and 

0.88 tons/year/km2 in Wayne and Cook Counties, respectively (2011 data). On-road emissions 

were dominated by heavy-duty diesel vehicle exhaust (comprising 61% of emissions in this 

category in 2011), followed by light-duty gasoline vehicle exhaust (28%). Non-road mobile source 

emission rates were also 1.5 to 2 times higher in Cook County, but similar on an areal basis, and 

the largest source in both cities was exhaust from off-road diesel construction vehicles. Diesel 

railroad emissions in Wayne Country were small (29 tons/year in 2002-5, dropping to 0.5 tons/year 

in 2008-11), compared to initially much higher levels in Cook County (555 tons/year in 2002-5, 

but these emissions also plummeted to only 2.8 tons/year in 2008-11). These differences may 

reflect the higher rail activity in Chicago, effects of controls imposed by the 2004 rules for heavy 

duty diesel vehicles [157], the 2008 rules for locomotives [158], and other fleet and emission factor 

changes.  



62 

 

The large uncertainties in nonpoint emissions, the changing methodology in mobile source 

emissions, and potentially other issues in the emissions inventory data can severely limit trend 

analyses of the emissions data. Still, several broad trends are apparent. In 2011, on-road emissions 

exceeded non-road mobile emissions in both cities, and the total mobile emissions matched 

(Detroit) or exceeded (Chicago) point source emissions. These data suggest several factors that 

may have affected emissions. In Detroit, the steady decline in point source emissions can be 

attributed to cleaner fuels (natural gas has replaced considerable coal), updated emission controls 

on some facilities, and reduced activity in automobile manufacturing and other industries, 

witnessed by the shuttering of businesses and the continued exodus of a large fraction of the 

population [102], particularly during the 2008-9 recession. In Chicago, industrial and commercial 

activity is more diversified (e.g., manufacturing, publishing, finance/insurance, food processing, 

transport/distribution), the population has been more stable, and the recession’s impact on local 

emitters was likely smaller (e.g., the largest local PM2.5 source, a wet corn mill at Corn Products 

International, likely responds less to economic fluctuations than vehicle manufacturing). Estimates 

of traffic activity in both cities showed only small changes, e.g., vehicle miles traveled (VMT) in 

Detroit decreased by 2% since 2004 [159], and Chicago did not have a consistent trend [160]. In 

both cities, the switch to low-sulfur diesel fuel in combination with introduction of particle traps 

have reduced diesel exhaust emissions, although this may be offset by the growth in the number 

of trucks, based on state-level data.  

For comparison, we investigated recent regional or national apportionment studies that analyzed 

NEI data. Using NEI data from 2002 through 2011 and predefined source profiles in a chemical 

mass balance (CMB) model in the southeast US, point source emissions showed large decreases, 

while mobile source emissions showed comparable or smaller decreases [161]. The largest sources 

identified by a Bayesian source apportionment model, which used CSN data in Boston and Phoenix 

from 2000 onwards, NEI 2002 data, and profiles from the SPECIATE database, were coal and oil 

combustion, vegetative burning, road dust, and vehicles [162]. A hybrid receptor-chemical 

transport model (CTM) using projected NEI 2002 data in six major US cities indicated that coal 

combustion and on-road gasoline emissions were the largest sources of primary and secondary 

PM2.5 [163]. Using fuel-based estimates from on- and non-road mobile sources in California, a 

range of vehicle types showed decreases in emissions and the growing contribution of non-road 

mobile sources relative to on-road sources [164]. Although these earlier studies have some 
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similarities to the present work, they neither compared NEI data with CSN data and PMF results 

over the same period nor investigated long-term trends from mobile sources in the Midwest, the 

focus of this work. Lastly, we note that year-to-year emissions of other criteria pollutants (SO2, 

CO, NOx) tend to be more stable than PM2.5, probably because the underlying data (e.g., emission 

and activity factors) are more robust and less subject to large methodological changes.  

III.2.2 Concentration trends 

Table 16 summarizes annual and seasonal ambient concentrations in the two cities, including test 

results showing differences between year-blocks. Several PM2.5 constituents show considerable 

seasonal variation, e.g., NO3
- levels tended to be highest in winter and fall, and S and SO4

= were 

highest in summer, thus, seasonal analyses are needed to understand trends.  

In Detroit, concentrations of PM2.5, NH4, NO3
-, SO4

= and many other species changed significantly 

between year-blocks (p <0.05 for KW and MW tests); in contrast, changes in EC and usually OC 

concentrations were not statistically significant. Comparing the 2006-2009 and 2013-2015 periods, 

for example, median SO4
= concentrations fell 33% (from 2.36 to 1.57 µg/m3), while median EC 

(URG sampler) levels were unchanged (0.32 and 0.33 µg/m3). Most species decreased less rapidly 

than SO4
=, e.g., median PM2.5 concentrations decreased only slightly (10.9 to 10.6 µg/m3), 

although 90th percentile PM2.5 levels fell from 23.4 to 17.5 µg/m3. Seasonal statistics are similar. 

In Chicago, concentrations were more stable, e.g., only NH+ and SO4
= changed annually and in 

each season, and PM2.5, NO3
- and S concentrations varied annually and in winter and fall seasons. 

Concentrations tended to decrease from 2006-2009 to 2010-2013, however, levels after 2013 

sometimes increased. Again, EC and OC showed smaller and fewer significant differences 

compared to the other species. The instrument switch in spring 2010 likely dampened EC and OC 

trends. 

Across the two cities, QR results showed that 50th and 90th percentile concentrations of PM2.5 and 

many of the major species significantly decreased over the study period (Figure 19 and Figure 20). 

In Detroit, median concentrations of PM2.5 fell by 3.6 %/yr, and seasonal decreases from 2.7 

(winter) to 4.9 (spring) %/yr. At the 90th percentile, PM2.5 concentrations declined slightly faster 

with annual levels falling by 4.9 %/yr and seasonal decreases from 3.5 (winter) to 5.6 (summer) 

%/yr. Annual and seasonal trends of NH4
+ and NO3

- (at both percentiles) were nearly identical, 

e.g., median levels decreased by 7.0 and 5.5 %/yr overall, and declines were fastest in spring (8.6 
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and 8.2 %/yr) and slowest in winter (5.4 and 3.6 %/yr); 90th percentile concentrations decreased 

fastest in summer (9.5 and 8.8 %/yr) and slowest in winter (3.4 and 2.1 %/yr). Unsurprisingly, 

SO4
= and S trends were nearly identical, e.g., median concentrations decreased by 5.8 and 4.9 %/yr 

overall, and changes were the smallest in winter (4.0 and 2.9 %/yr) and similar in other seasons 

(4.8 to 5.9 %/yr); 90th percentile levels fell fastest in fall (9.2 and 8.9 %/yr) and slowest in winter 

(3.6 and 2.8 %/yr). QR results for the two types of EC measurements differed, e.g., ECMET levels 

did not change at annual and seasonal levels other than a 2.7 %/yr decrease seen in the median 

summer levels, while ECURG decreased by 5.0 and 5.8 %/yr at median and 90th percentile levels, 

respectively, largely due to decreases in fall and spring, respectively. OCMET and OCURG also 

showed differences, e.g., median OCMET levels decreased by 6.5 %/yr on an annual level and from 

4.6 (summer) to 8.5 (fall) %/yr on a seasonal basis; OCURG did not show significant changes in 

any season or percentile. Overall, the seasonal patterns of PM2.5, NH4
+ and NO3

- were similar. The 

shorter time series of EC and OC available for each instrument may have obscured trends. In the 

following PMF application, a complete record of adjusted EC and OC concentrations is used to 

derive long-term trends.  

Chicago showed fewer trends that were statistically significant, as well as less consistency across 

related species (Figure 20). Median and 90th percentile levels of PM2.5 dropped by 3.2 and 4.1 

%/yr, respectively, and summer and fall changes at the 90th percentile were significant (7.6 and 

5.3 %/yr). Decreases in median levels of NH4
+ (8.6 %/yr) were slightly larger than changes in 

Detroit, and decreases in summer and fall were particularly rapid (13.5 and 14.2 %/yr). For NO3
-, 

statistically significant decreases were only seen in fall (median and 90th percentile) and winter 

(90th percentile), and NO3
- and NH4

+ changes were not correlated, unlike in Detroit. SO4
= and S 

trends in Chicago also differed from those in Detroit: the largest decreases occur in summer (10.0 

and 7.3 %/yr for medians), and the smallest in both winter and spring. (Detroit's largest changes 

for SO4
= and S were in fall and the smallest in winter.) EC and OC trends in Chicago were less 

pronounced and few attained statistical significance, however, there were some similarities in EC 

trends with patterns observed in Detroit. Median levels of ECMET decreased greatly in summer 

(15.2 %/yr); and both median and 90th percentile levels of ECURG fell significantly (3.6 and 5.1 

%/yr). Seasonal concentrations of OCMET fluctuated (both increased and decreased) across the 

study period, but changes were not statistically significant. Since only three years of data (2006 to 

early 2010) were available for the Chicago ECMET and OCMET measurements, trends for these 
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variables are not reliable. Median and 90th percentile concentrations of OCURG decreased (1.9 and 

3.9 %/yr). Overall, PM2.5 concentrations in Chicago and Detroit decreased at similar rates, but few 

of the major constituents in Chicago showed seasonal trends that were significant or consistent 

with Detroit's.  

Many of the major species (e.g., NH4
+, NO3

-, SO4
= and S) had greater changes across the study 

period in summer and fall when concentrations were higher, as compared to winter when 

concentrations were often lower. In Detroit, trends in annual median NO3
- and NH4

+ concentrations 

were driven more by changes in spring and less by changes in winter; peak concentrations were 

driven more by changes in summer peaks and less (again) by changes in winter peaks. Similarly, 

changes in annual median SO4
= and S concentrations were driven less by changes in winter; 

changes in peak SO4
= and S were also highest in summer and fall. Trends in median and peak 

PM2.5 concentrations most resembled patterns for the nitrogen components, which suggests that in 

Detroit changes in NO3
- exerted a greater influence on PM2.5 levels than SO4

=. This result is 

unexpected since NO3
- and NH4

+ comprise a smaller PM2.5 fraction than OC and SO4
=, however, 

this analysis does not consider a mass balance (e.g., reconstructed mass) or account for correlated 

species and source contributions (as described in the PMF modeling following). Trends in Chicago 

have some similarities, but also notable differences: trends in peak PM2.5 concentrations resembled 

patterns for SO4
= rather than NO3

-; reductions in SO4
= and S in summer and fall were the highest 

among seasons, and only peak PM2.5 trends in summer and fall were statistically significant. This 

pattern also conforms to the KW and MW test results, and suggests that PM2.5 levels in Chicago 

aligned more with changes in SO4
= than NO3

-. 

Both regional and local sources influence concentration trends. Secondary regional pollutants are 

important constituents of PM2.5 in the Midwest, and much of the SO4
= in the region results from 

long range transport from large coal-fired boilers and power plants. Many of these facilities have 

reduced emissions of precursor SO2 in recent decades by the addition of scrubbers and fuel 

switching. In cases, such changes have not occurred for the generally smaller and often older coal-

fired facilities located in cities, a result of space constraints, costs and other issues. NO3
-, another 

secondary pollutant from precursor NO and NO2 emissions (largely from mobile sources and 

power plants), often has the highest levels in winter and spring when O3 concentrations are low 

[165]. Both SO4
= and NO3

- are present in the Midwest atmosphere as ammonium sulfate and 
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ammonium nitrate due to ammonia emissions from fertilizers and animal feed [166]. OC is derived 

from primarily vehicle emissions and biomass burning [35]. The largest contributor to EC is diesel 

exhaust emissions [167]. Road dust contributions (i.e., Si, Ti, Ca, Al) are normally low in winter 

due to lower siltation levels [168]. Concentrations of major species in both cities followed expected 

seasonal trends [169], e.g., NH4
+ and NO3

- were highest in the winter, SO4
= was highest in the 

summer, and EC and OC were higher in summer than winter.  

Overall, median PM2.5 concentrations in the two cities declined by 4.3 to 4.5 %/yr: comparable 

rates have been shown in several national and regional assessments. Nationally, a 27% drop in 

average PM2.5 from 2000 to 2010 (2.7 %/yr) has been reported [170, 171]. The Lake Michigan Air 

Directors Consortium (LADCO) estimate a 0.51 µg/m3 per year decrease in 90th percentile PM2.5 

concentrations from 1999 to 2007 across the region [172], which (when converted) is in the range 

of %/yr decreases in the present work. The monitoring data also reveal the changing composition 

of PM2.5: the share is growing for EC and OC, but declining for SO4
= and NO3

-. While many 

sources emit EC and OC, local vehicle emissions are one of the larger contributors [168, 173, 174]. 

In contrast, SO4
= largely arises from local and regional point sources [28]. The less pronounced 

trends at Chicago may reflect the shorter study period, as well as smaller changes in the local and 

regional sources.  

Trends in the ambient monitoring data have some consistencies with the emissions inventory data 

discussed earlier, particularly for the combustion sources (point and mobile exhaust). For example, 

ambient levels of SO4
=, NO3

-, and NH4
+ in Detroit fell by 5 to 10 %/yr over the 2002 and 2011 

study period, while point source emissions decreased by roughly 11 %/yr. In contrast, ambient 

levels of EC showed few significant changes, consistent with fluctuating trends of on-road diesel 

exhaust emissions. In Chicago, SO4
= and NH4

+ also decreased significantly from 2006 to 2014, 

and the emissions inventory showed a concurrent drop in point source emissions. As noted earlier, 

a number of issues in the emissions inventories limits the comparability of trends. 

Concentration trends also can be framed in the context of species abundance (i.e., species 

concentration / PM2.5 concentration on a per-sample basis). However, given issues with EC and 

OC measurements (key tracers for vehicle emissions), uncertainties in the stoichiometric balance, 

and the correlation among both major and minor species, trend analyses of PMF factor 

contributions should be more meaningful; in addition, PMF contributions (by definition) sum to 
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unity on a per-sample basis. We next extend the trend analyses to examine source contributions 

apportioned using receptor modeling. 

III.2.3 Long term source apportionments 

The final PMF model for Detroit had nine factors with 5% additional model uncertainty, and the 

final model for Chicago had eight factors with 0% additional model uncertainty (Figure 21). This 

number of factors and the (small) uncertainty additions (in Detroit) yielded factors that were 

interpretable and comparable to those in the literature, and both models closely matched PM2.5 

observations (Detroit: R2 = 0.96; Chicago: R2 = 0.90). Sources associated with each factor, which 

have been identified in previous apportionments [34, 115], included secondary SO4
= (characterized 

by SO4
= and NH4

+), secondary NO3
- (NO3

- and NH4
+), vehicle emissions (EC for diesel vehicles 

and OC for gasoline vehicles), biomass burning (K+), industrial metal working (Ni, Cr, Mn, Fe), 

crustal sources (e.g., entrained soil as noted by Al, Si, Ca, Ti), and a zinc factor (which also can 

represent industrial emissions) [34]. While not unique tracers, OC and EC have been used to 

separate vehicle emissions into gasoline and diesel categories, respectively [35]; a factor 

containing both OC and EC can represent emissions from a mixed fleet. In the final models, a 

single factor contained moderate to high levels of both EC and OC, and thus the vehicle factor 

represents contributions from a mixed fleet.  

The final PMF models using the full dataset gave nearly identical apportionments in Detroit and 

Chicago for the largest sources: sulfate formed 32 - 33% of PM2.5; vehicles contributed 21 - 22%; 

nitrate constituted 21%; and biomass was 7 - 9%. These four sources represent over 80% of PM2.5. 

Minor sources, e.g., crustal (4 - 8% of PM2.5), several metals (4 - 11%) and Cl/NaCl (2 - 5%) 

showed greater variation, but accounted for relatively little PM2.5 mass. The similarity of the 

apportionments for the major local sources (e.g., vehicles and biomass) is supported by the 

emissions inventory, e.g., the similarity of traffic emissions when expressed on an area basis; and 

the similarity of the secondary contributions (e.g., sulfate and nitrate) may reflect the same regional 

sources in these nearby cities (e.g., a large number of coal-fired power plants). 

III.2.4 Source apportionment trends 

The QR analysis of trends for the PM2.5 PMF factors in Detroit is displayed in Figure 22. These 

trends only roughly followed results seen for the major species in each factor (shown earlier in 

Figure 19). Median concentrations of the secondary sulfate factor declined by 8.3 %/yr, and 
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seasonal changes were largest in fall and smallest in winter and summer. At the 90th percentile, 

sulfate factor concentrations declined slightly faster, 9.2 %/yr overall, and declines were greatest 

in summer and smallest in winter. Changes in SO4
= or NH4

+ concentrations (dominant 

contributions to this factor) did not match the secondary sulfate pattern with the exception of the 

90th percentile concentration change of NH4
+. For the secondary nitrate factor, overall 

concentrations declined 7.0 %/yr, and statistically significant decreases of 9.2 to 11.7 %/yr 

occurred in spring, summer and fall (but not winter). This pattern (as well as the 90th percentile 

pattern) was not matched by NO3
- and NH4

+, this factor's major contributors. For the vehicle factor, 

decreases in median and 90th percentile factor concentrations were fairly consistent (2.8 to 5.2 

%/yr, depending on season) but dissimilar to trends in measured EC and OC. The biomass factor 

did significantly change over the study period. Trends of factors representing the smaller PM2.5 

fractions may be less reliable for several reasons, e.g., PMF uncertainties (smaller factors are 

dominated by species with higher %BDL and thus higher associated uncertainties) and factor 

splitting (where changing the number of factors causes minor species to group in ways that may 

affect trends in minor factors). Still, several of the smaller components had statistically significant 

changes: the metals factor increased by 3.9 and 2.4 %/yr for the median and 90th percentile, 

respectively; and the crustal factor declined by 5.8 % and 3.3 %/yr for the median and 90th 

percentile, respectively (the large decrease in winter was particularly notable). 

The QR trend analysis for the Chicago PMF factors is depicted in Figure 23. Median 

concentrations of the secondary sulfate factor decreased by 9.3 and 9.2 %/yr for the median and 

90th percentile, respectively; decreases were largest in summer. As in Detroit, these patterns 

differed from the trends of SO4
= and NH4

+ concentrations (Figure 20). For the secondary nitrate 

factor, the only significant trends were decreases in the median concentrations in overall and in 

fall. Concentrations attributed to the vehicle factor did not change significantly. Few of the smaller 

factors at Chicago had statistically significant trends other than the median biomass contribution, 

which grew by 8.9%/yr due to large increases in spring and fall seasons.  

III.2.5 Fractional apportionment trends 

A key result of this analysis is to show that PM2.5 contributions from different sources have been 

evolving at different rates. In both cities, secondary sulfate decreased faster than both the total 

PM2.5 concentration and contributions of other factors identified by PMF, thus the relative 
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significance of non-sulfate source factors increased over time. This is shown for Detroit in Figure 

24, which ranks the PMF source factors from left to right by the magnitude of their annual and 

seasonal trends measured as the annual change (%/yr) over the study period in the fraction (%) of 

total PM2.5 contributed by the factor, i.e., the relative contribution of that factor. (This differs from 

Figure 22, which shows trends measured as the annual change (%/yr) over the study period in the 

concentration (µg/m3) contributed by the source factor, i.e., the absolute contribution.) Figure 24 

reveals the changing nature of apportionments in Detroit over the 2001 to 2014 period: secondary 

sulfate contributions decreased in all seasons and at most percentiles (except winter 90th 

percentile); secondary nitrate decreased except in winter (the 90th percentile summer change was 

not significant); crustal sources were largely unchanged; vehicle contributions increased 

significantly in spring and fall; and both biomass and metals factors increased, by over 10 %/yr in 

several cases. In summary, over the 2001 to 2014 period, the major PM2.5 contributors in Detroit 

have been shifting away from coal-fired facilities producing secondary sulfate and nitrate, while 

contributions from biomass sources have been increasing in both relative (fraction of PM2.5) and 

absolute (concentration) terms. In addition, given that vehicle and biomass sources have been 

constant or just slightly declining while PM2.5 levels have been declining faster, these sources also 

are becoming an increasing fraction of PM2.5. Detroit contains two large steel mills and numerous 

metals processing facilities, and an examination of PM2.5 emissions from the steel facilities shows 

large decreases over the study period. Trends in biomass sources are difficult to assess given 

changes in classification (SCC codes are used in 2002 and 2005, while EI sectors are used in 2008 

and 2011) and underlying methodology (e.g., residential wood combustion dropped from 1649 

tons in 2008 to 551 tons in 2011, while PM2.5 from industrial biomass combustion is not listed in 

2008 but is 191 tons in 2011).  

Changes in the relative contributions of the ranked PMF source factors to the total PM2.5 in Chicago 

are shown in Figure 25. As was the general trend in Detroit, secondary sulfate declined in every 

season and both percentiles. Few other factors in the PMF model had significant changes: the 

secondary nitrate factor declined in fall at the median; the vehicle factor slightly increased (median 

and 90th percentile overall, and 90th percentile in winter and summer); and upward trends for metals 

and biomass sources occurred overall or in a few seasons (as in Detroit). In summary, over the 

period from 2006 to 2014, Chicago experienced large decreases in secondary sulfate, while 

contributions from vehicles, biomass and metal sources increased their share of PM2.5. Biomass-
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related PM2.5 increased in both absolute (µg/m3) and relative (fraction of PM2.5) terms. (In Detroit, 

biomass increased in only relative terms.) This key result of the present work, that impacts of some 

sources decrease – and in some cases, increase – faster than other sources, is important in targeting 

sources for further investigation and regulation.  

III.2.6 Vehicle apportionments and comparison to previous work 

Many of the apportionment results described previously follow trends suggested by the emissions 

inventory and concentration data, and they also resemble previous apportionments in both cities 

conducted over the past 35 years. Here we examine those previous studies, focusing on vehicle 

apportionments given their significance as local emission sources in both cities. 

In Detroit, using data from June through August of 1981 and a six source principal components 

model, vehicles accounted for 20% of the variability of PM2.5 [28]. Vehicles accounted for 10 to 

25% of PM2.5 in a six factor PMF model using summer and early autumn data from 2000 to 2003 

[29]. Using 2000 to 2005 data and a nine factor model, 21% of PM2.5 in Detroit was attributed to 

vehicles [175]. Using the same data in an eight factor PMF model, gasoline and diesel vehicle 

contributions were separated with 15% and 4% apportioned, respectively [34]. That analysis did 

not include Ni or Cr, which may have affected the EC distribution between factors and changed 

results for diesel, and a lack of seasonality in the gasoline and vehicle factors was noted, contrary 

to the present findings (which used some of the same data). A recent analysis of 1999 to 2002 data 

attributed 22% of PM2.5 to OC combustion sources and 15% to EC combustion sources in 

southwest Detroit, however, NO3
- was not measured, potentially increasing the mass assigned to 

these factors [36]. Using August 2004 and July and August 2005 data, 29% and 8% of PM2.5 was 

assigned to gasoline and diesel sources, and 31% to a combined gasoline and diesel fleet [30]. A 

recent Detroit area study, using 2004 to 2006 Allen Park data in a seven factor PMF model, 

attributed 22% of PM2.5 to gasoline and diesel sources [33]. Using 2007 data from nearby 

Dearborn, Michigan, in an analysis incorporating wind direction, approximately 10% of PM2.5 was 

apportioned to vehicles (diesel plus gasoline) [176]. Other apportionments cited in Michigan’s 

PM2.5 2008 State Implementation Plan [177] showed vehicle apportionments comparable to the 

present work. Differences in samplers, species selected, length and seasons of the monitoring data 

used, and choices made in PMF modeling can diminish the comparability of these studies. Still, 
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vehicle contributions in these earlier studies mostly ranged from 15 to 30% of PM2.5, 

commensurate with the apportionments in the present analysis.  

Several source apportionments have been performed in Chicago. Again, we focus on the vehicle 

component. In Northbrook IL (close to Chicago), using data from January, 2003 to March, 2005, 

14% of PM2.5 was apportioned to gasoline sources and 13% to diesel [31]. The diesel profile 

included Al and Pb, elements assigned to other factors in the present study. Using 2001 to 2003 

data at two CSN sites (Lawndale and Springfield, IL), 23% of PM2.5 was apportioned to a 

combined vehicle profile [115]. That apportionment included both SO4
= and SO2 (26), as well as 

both ionic and molecular forms of Na, Na+, K and K+. Despite these and other differences, the 

fraction of PM2.5 attributed to gasoline and diesel vehicles in Chicago studies compare favorably 

to our estimates. 

Vehicle apportionment trends have been studied elsewhere in the U.S. In Los Angles and 

Rubidoux, CA, a recent analysis using 2002 to 2013 STN data apportioned 20% of PM2.5 to 

vehicles, and median PM2.5 concentrations attributed to vehicles fell 21 to 24% between the first 

and last 4 year blocks of the study period [37]. Vehicle-related PM2.5 decreased while traffic 

volume was stable, suggesting the success of recent vehicle emissions controls. Like the present 

work, that study shows the relevance of receptor modeling apportionments for air quality 

management, as well as the evolution of source contributions to total PM2.5. In contrast, we show 

that the share of PM2.5 contributed by vehicles, biomass and other local emissions is stable or 

growing, and that trends depend on the city, percentile, and sometimes season.  

III.2.7 Limitations  

Limitations of the analysis are recognized. Emission inventory data at the county level may not 

reflect the impact at monitoring sites, which can be affected by small but nearby sources, as well 

as large but distant sources (including sources outside county and country borders). A number of 

issues with the accuracy and consistency of the emissions inventory data were highlighted, e.g., 

fugitive dust emissions estimates are highly uncertain. The monitoring record is limited in both 

the duration and the number of sites available. Only two cities, and a single site in each, were 

examined. (Previous work has shown spatial trends in several PM2.5 species [101]). However, the 

selected non-source and population-oriented monitoring sites should be reasonably representative. 

As noted, monitoring data near strong sources would be expected to show different trends for some 
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PM2.5 constituents as well as different apportionments, however, secondary sulfate, secondary 

nitrate, and potentially the vehicle contribution might not change greatly since these pollutants are 

widely distributed. The EC and OC instrument switch complicated the investigation of trends, 

particularly for mobile sources given the importance of these tracers. Still, most results follow 

national trends, and thus results appear broadly applicable to many U.S. cities.  

The PMF analyses have additional limitations. First, results can be sensitive to the number of 

factors, species selected, and the data subset used. In sensitivity analyses, separate PMF models 

for individual four year blocks obtained average apportionments that were similar to those using 

the final model (across all years), but some trends were difficult to compare because factors varied 

across models. (Still, separate PMF models used for periods before and after the EC/OC instrument 

switch returned similar vehicle apportionments in models using different number of factors.) For 

these reasons, the current analysis used a single dataset that encompassing the entire study period. 

Second, trend analyses of PMF results can be sensitive to the model selected. The stability of PMF 

results was investigated using 200 bootstrapped runs for each factor. In over 180 of 200 bootstrap 

runs at each city, the same factors emerged that are presented in these results. (Additional bootstrap 

results are presented in Table 17 and Table 18) Third, PMF apportionments may not uniquely 

identify or completely characterize source classes, e.g., many factors might contribute to secondary 

sulfate trends. Similarly, unspecified minor sources and secondary pollutants can contribute to 

factors. Fourth, data screening can affect results, particularly for species near the DL. Fifth, PMF 

trend analyses may incorporate some biases because observations were removed by the 

reconstructed mass criterion. However, only 7% of sampling days at Detroit, and 6% at Chicago, 

were removed. Sixth, we did not apply conditional probability functions (CPF), which might 

provide additional qualitative information regarding the strength of local sources that complements 

the PMF results [178]. Finally, the QR results do not account for the uncertainty of the PMF results, 

and thus determinations of statistical significance are approximate. 

The chapter’s key finding that, in both cities, the mobile source, biomass, and metal source 

contributions to PM2.5 have increased even as overall PM2.5 concentrations have declined, has 

significant implications for air quality management. It emphasizes the need to investigate these 

sources in policies and regulations aimed at maintaining or decreasing PM2.5 concentrations. 
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III.3 Tables 

Table 15. Summary of emissions inventory data in Detroit and Chicago. Expressed as short tons/yr of PM2.5 primary (filterable + 

condensable) and % of total PM2.5. Derived from NEI. 

 

  Point  On-Road Mobile  Non-Road Mobile  Non-Point Sources   

Year 

 

Sources 

 

Diesel Ex.1 Gas Ex.2 Other 

 

Diesel Ex.1 Other 

 

Construction3 

Paved 

Road4 Other5 

 

Total 

                         

Detroit                      

2002  5364 (59%)  724  (8%) 245  (3%) 156  (2%)  567 (6%) 288 (3%)  14 (0%) 136 (2%) 1532 (17%)  9026  

2005  4402 (57%)  589  (8%) 164  (2%) 163  (2%)  547 (7%) 155 (2%)  14 (0%) 136 (2%) 1550 (20%)  7720  

2008  2345 (22%)  1380  (13%) 521  (5%) 209  (2%)  378 (4%) 140 (1%)  350 (3%) 627 (6%) 4805 (45%)  10754  

2011  1610 (23%)  725  (10%) 335  (5%) 128  (2%)  350 (5%) 143 (2%)  18 (0%) 573 (8%) 3194 (45%)  7076  

Chicago                      

2002  2394 (21%)  1191  (10%) 305  (3%) 285  (3%)  2277 (20%) 503 (4%)  72 (1%) 176 (2%) 4154 (37%)  11357  

2005  3591 (30%)  965  (8%) 254  (2%) 299  (2%)  2125 (17%) 497 (4%)  72 (1%) 176 (1%) 4169 (34%)  12147  

2008  2510 (11%)  2025  (9%) 795  (4%) 383  (2%)  1085 (5%) 494 (2%)  5743 (26%) 917 (4%) 8496 (38%)  22448  

2011  2451 (12%)  1297  (6%) 565  (3%) 301  (1%)  1006 (5%) 492 (2%)  6351 (31%) 1181 (6%) 6595 (33%)  20239  
 

1 Diesel Ex. = diesel exhaust; 2 Gas Ex. = gasoline exhaust; 3 Construction = construction dust for the county; 4 Paved Road = paved 

road dust for the county 5 In NEI 2002 and 2005, mobile emissions are not included in non-point emissions, while in NEI 2008 and 

2011, mobile emissions are included in non-point emissions. In this table, “Other” non-point sources do not include mobile emissions. 
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Table 16. Median and 90th percentile concentrations by year-block and statistical differences between year-block concentrations. 

Differences based on Kruskal-Wallis (comparing 3+ groups) or Mann-Whitney (comparing 2 groups) tests, and α = 0.05, with at least 

10 valid observations per group. 

  All  Winter  Spring  Summer  Fall  

  2001 2002 2006 2010 2013  2001 2002 2006 2010 2013  2001 2002 2006 2010 2013  2001 2002 2006 2010 2013  2001 2002 2006 2010 2013  

Species   2002 2005 2009 2013 2015   2002 2005 2009 2013 2015   2002 2005 2009 2013 2015   2002 2005 2009 2013 2015   2002 2005 2009 2013 2015   

Detroit                              

PM2.5 
50th 13.0 12.7 10.9 8.9 10.6 

† 
20.8 12.9 13.2 9.8 13.1 

† 
14.2 11.9 8.5 7.8 8.3 

† 
13.2 14.7 11.2 11.2 10.9 

† 
10.5 11.1 9.8 7.8 11.4 

† 
90th 32.4 26.8 23.4 18.2 17.5 38.0 26.8 24.7 19.9 21.6 27.0 24.2 21.1 15.7 13.6 35.4 30.2 22.7 19.3 15.5 25.1 28.2 23.8 16.8 17.4 

                                

NH4
+ 

50th 1.42 1.66 1.29 0.76 0.94 
† 

2.22 1.78 2.05 1.15 1.05 
† 

1.56 1.76 1.13 0.76 0.98 
† 

1.43 1.53 1.08 0.67 0.65 
† 

0.74 1.36 1.09 0.54 0.49 
† 

90th 5.16 4.35 3.70 2.31 2.57 5.84 4.14 3.93 3.12 3.02 3.94 4.33 3.49 1.88 2.19 5.98 4.26 3.06 1.79 1.78 3.81 4.79 3.80 1.77 1.86 
                                

NO3
- 

50th 1.59 2.01 1.44 1.07 1.69 
† 

4.40 3.57 3.65 2.59 3.08 
† 

2.29 2.71 1.49 1.09 1.98 
† 

1.31 0.91 0.65 0.55 0.59 
† 

1.15 1.86 1.27 0.97 0.95 
† 

90th 8.17 6.67 5.98 4.12 6.35 13.7 9.32 8.08 6.69 7.17 8.40 6.86 5.65 3.32 4.36 3.97 3.19 1.96 1.48 1.53 4.48 5.75 4.49 3.20 3.73 
                                

SO4
= 

50th 3.02 2.73 2.36 1.56 1.57 
† 

3.09 2.16 2.55 1.47 1.52 
† 

2.68 2.94 2.19 1.64 1.53 
† 

3.33 4.13 2.84 2.22 2.40 
† 

2.28 2.43 1.93 1.28 1.42 
† 

90th 9.82 8.27 5.59 4.02 3.13 8.10 4.44 4.06 3.28 3.07 7.49 6.22 5.24 3.27 3.02 15.6 11.0 7.46 5.52 4.36 7.94 9.87 5.89 3.37 3.02 
                                

S 
50th 0.99 0.91 0.78 0.56 0.56 

† 
1.04 0.71 0.81 0.50 0.56 

† 
0.85 0.95 0.73 0.56 0.54 

† 
1.03 1.39 0.96 0.85 0.83 

† 
0.85 0.78 0.68 0.45 0.49 

† 
90th 3.20 2.64 1.83 1.42 1.16 2.49 1.52 1.34 1.19 1.06 2.27 2.11 1.68 1.12 1.14 4.83 3.67 2.47 2.01 1.61 2.69 3.25 2.05 1.24 1.16 

                                

ECMetOne 

50th 0.59 0.66 0.65 0.63 ― 
◦ 

0.54 0.58 0.56 0.62 ― 
◦ 

0.43 0.54 0.48 0.91 ― 
† 

0.76 0.80 0.72 ― ― 
◦ 

0.67 0.77 0.79 0.40 ― 
◦ 

90th 1.05 1.25 1.26 1.49 ― 1.02 1.02 0.90 1.43 ― 0.82 0.96 0.99 1.70 ― 1.06 1.37 1.24 ― ― 1.03 1.46 1.59 0.40 ― 
                                

ECURG3k 

50th ― ― 0.32 0.38 0.33 
◦ 

― ― ― 0.30 0.32 
◦ 

― ― 0.25 0.33 0.29 
◦ 

― ― 0.37 0.45 0.43 
◦ 

― ― 0.42 0.45 0.38 
◦ 

90th ― ― 0.84 0.73 0.67 ― ― ― 0.55 0.58 ― ― 0.56 0.63 0.51 ― ― 0.68 0.81 0.73 ― ― 0.94 0.85 0.94 
                                

OCMetOne 

50th 2.87 2.81 2.11 1.19 ― 
† 

3.63 2.48 1.84 1.17 ― 
† 

2.62 2.55 1.82 2.24 ― 
† 

3.69 3.76 3.13 ― ― 
† 

2.63 2.58 1.77 1.17 ― 
† 

90th 5.93 5.63 4.86 3.18 ― 7.63 5.19 4.82 2.82 ― 4.76 4.30 3.98 4.61 ― 6.13 6.71 5.15 ― ― 5.73 4.98 4.77 1.17 ― 
                                

OCURG3k 

50th ― ― 1.76 1.85 1.83 
◦ 

― ― ― 1.62 1.73 
◦ 

― ― 1.41 1.49 1.62 
◦ 

― ― 1.95 2.34 2.23 
† 

― ― 1.99 1.79 1.87 
◦ 

90th ― ― 3.76 3.42 3.53 ― ― ― 3.06 3.48 ― ― 2.34 2.89 2.98 ― ― 3.21 4.04 3.50 ― ― 4.58 3.40 4.52 

Chicago                              

PM2.5 
50th ― ― 10.9 9.4 9.7 

† 
― ― 12.7 9.8 10.7 

† 
― ― 10.2 9.5 8.55 

◦ 
― ― 10.7 10.6 9.85 

◦ 
― ― 10 7.7 9.45 

† 
90th ― ― 22.3 18 19.3 ― ― 21.9 19.9 23.3 ― ― 21.3 18.2 18.9 ― ― 24.4 16.7 16 ― ― 21.9 17.2 14.4 

                                

NH4
+ 

50th ― ― 1.40 0.79 0.95 
† 

― ― 2.02 1.11 1.36 
† 

― ― 1.27 0.94 1.04 

† 
― ― 1.11 0.62 0.57 

† 
― ― 1.19 0.55 0.66 

† 
90th ― ― 3.70 2.39 2.79 ― ― 4.15 3.28 3.15 ― ― 3.44 2.48 2.86 ― ― 3.08 1.59 1.69 ― ― 3.53 1.92 1.74 

                                

NO3
- 

50th ― ― 1.62 1.14 2.00 
† 

― ― 4.19 2.75 3.60 
† 

― ― 1.82 1.58 2.47 

◦ 
― ― 0.69 0.60 0.68 

◦ 
― ― 1.43 0.81 1.18 

† 
90th ― ― 6.46 5.14 7.14 ― ― 8.60 8.11 8.47 ― ― 5.68 4.15 7.33 ― ― 2.35 1.37 3.24 ― ― 6.18 3.50 3.94 

                                

SO4
= 

50th ― ― 2.12 1.60 1.48 
† 

― ― 2.38 1.44 1.38 
† 

― ― 2.02 1.69 1.56 

† 
― ― 2.51 1.77 1.76 

† 
― ― 1.92 1.25 1.25 

† 
90th ― ― 5.51 3.72 3.30 ― ― 3.85 3.42 2.75 ― ― 4.56 3.78 3.30 ― ― 7.73 4.82 3.73 ― ― 5.97 3.22 3.02 

                                

S 
50th ― ― 0.72 0.57 0.51 

† 
― ― 0.80 0.50 0.51 

† 
― ― 0.67 0.58 0.57 

◦ 
― ― 0.86 0.72 0.67 

◦ 
― ― 0.66 0.47 0.45 

† 
90th ― ― 1.83 1.35 1.16 ― ― 1.33 1.12 0.97 ― ― 1.55 1.25 1.16 ― ― 2.62 1.64 1.37 ― ― 1.96 1.19 1.04 

                                

ECMetOne 

50th ― ― 0.62 0.82 ― 
◦ 

― ― 0.54 0.71 ― 
◦ 

― ― 0.61 0.88 ― 

◦ 
― ― 0.66 ― ― 

 
― ― 0.66 ― ― 

 
90th ― ― 1.25 1.36 ― ― ― 0.95 1.15 ― ― ― 1.30 1.44 ― ― ― 1.40 ― ― ― ― 1.16 ― ― 
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ECURG3k 

50th ― ― 0.42 0.36 0.34 
† 

― ― 0.33 0.29 0.33 
◦ 

― ― 0.35 0.36 0.31 

◦ 
― ― 0.45 0.43 0.46 

◦ 
― ― 0.46 0.38 0.36 

† 
90th ― ― 0.84 0.76 0.66 ― ― 0.61 0.55 0.53 ― ― 0.70 0.77 0.61 ― ― 0.88 0.83 0.69 ― ― 1.02 0.76 0.80 

                                

OCMetOne 

50th ― ― 2.65 2.21 ― 
† 

― ― 1.94 1.70 ― 
◦ 

― ― 2.59 2.31 ― 
◦ 

― ― 3.60 ― ― 
 

― ― 2.40 ― ― 
 

90th ― ― 4.71 4.21 ― ― ― 3.74 4.10 ― ― ― 4.06 4.40 ― ― ― 6.09 ― ― ― ― 3.98 ― ― 
                                

OCURG3k 

50th ― ― 2.15 1.93 1.94 
† 

― ― 2.17 1.69 1.70 
† 

― ― 1.70 1.82 1.73 
◦ 

― ― 2.33 2.40 2.33 
◦ 

― ― 2.19 1.87 2.04 
◦ 

90th ― ― 3.89 3.59 3.17 ― ― 3.26 2.87 2.98 ― ― 3.64 3.44 2.89 ― ― 4.02 3.94 3.89 ― ― 4.41 3.64 3.23 
                                                               

 
† Reject the null hypothesis 

◦ Do not reject the null hypothesis 
a The Met One SASS sampler was used until 3/30/10 at Detroit and 4/29/10 at Chicago 
b The URG 3000N sampler was used starting 4/1/09 at Detroit and 5/3/07 at Chicago 
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Table 17. Bootstrapped % of species mass at Detroit (200 bootstrapped runs, block size = 220, total samples = 1433) 

   Bootstrap Range 

Factor Species Base% 5th 25th 50th 75th 95th 

Sulfate PM2.5 33.4 29.9 32.3 34.1 36.8 36.8 

 NH4
+ 50.4 46.4 49.5 50.8 54.8 54.8 

 SO4
= 76.5 69.6 73.6 76.1 80.9 80.9 

Cl PM2.5 2.1 1.3 1.6 1.9 3.6 3.6 

 Cl 86.7 65.8 82.1 85.1 92.2 92.2 

Cu PM2.5 3.5 2.1 2.7 3.3 5.6 5.6 

 Cu 81.6 78.4 81.3 83.0 93.3 93.3 

Vehicles PM2.5 20.8 8.3 13.2 16.6 24.7 24.7 

 EC 79.3 18.0 59.0 68.0 86.4 86.4 

 OC 53.2 18.6 31.9 41.1 72.6 72.6 

Nitrate PM2.5 20.8 19.1 20.4 21.2 23.7 23.7 

 NH4
+ 37.9 35.7 37.2 38.5 43.8 43.8 

 NO3
- 84.2 77.8 80.5 82.1 85.3 85.3 

Biomass PM2.5 7.1 3.8 6.5 10.5 16.1 16.1 

 K+ 79.3 59.8 79.6 86.9 96.3 96.3 

 Na+ 59.5 0.0 0.0 34.6 65.3 65.3 

Metals PM2.5 5.4 3.5 4.5 5.6 11.1 11.1 

 Cr 86.9 60.8 79.9 87.3 100.0 100.0 

 Fe 36.9 25.5 33.3 39.0 52.7 52.7 

 Mn 24.6 16.0 20.4 25.5 42.5 42.5 

 Ni 67.0 44.6 58.8 66.7 76.7 76.7 

Crustal PM2.5 3.9 2.8 3.6 4.2 7.2 7.2 

 Al 53.9 47.3 53.4 56.4 61.6 61.6 

 Ca 61.0 36.8 53.2 63.2 70.1 70.1 

 Si 71.9 63.9 67.1 70.5 78.4 78.4 

 Ti 34.3 27.4 31.2 33.4 44.2 44.2 

Zn PM2.5 2.9 0.7 1.3 2.8 5.0 5.0 

  Zn 72.4 66.0 69.9 72.4 76.6 76.6 
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Table 18. Bootstrapped % of species mass at Chicago (200 bootstrapped runs, block size = 50, total samples = 763) 

   Bootstrap Range 

Factor Species Base% 5th 25th 50th 75th 95th 
        

Sulfate PM2.5 31.9 28.7 30.5 32.1 35.2 35.2 

 NH4
+ 47.3 41.5 44.7 46.8 51.4 51.4 

 SO4
= 77.3 68.5 72.7 75.6 83.0 83.0 

        

NaCl PM2.5 5.0 2.3 3.2 5.1 9.6 9.6 

 Cl 65.1 36.2 65.6 86.1 100.0 100.0 

 Na+ 76.1 0.0 6.6 17.8 89.0 89.0 
        

Vehicles PM2.5 22.2 16.7 19.0 21.2 26.0 26.0 

 EC 75.7 60.2 68.1 71.3 76.3 76.3 

 OC 61.2 47.4 55.7 58.0 62.3 62.3 
        

Nitrate PM2.5 21.0 16.2 18.6 20.2 24.3 24.3 

 NH4
+ 45.8 35.9 41.6 44.0 52.3 52.3 

 NO3
- 77.5 73.7 76.1 78.1 84.3 84.3 

        

Biomass PM2.5 8.9 5.4 7.1 8.6 12.1 12.1 

 K+ 95.3 61.4 71.1 78.4 99.6 99.6 
        

Metals PM2.5 2.8 1.4 2.5 3.2 6.2 6.2 

 Cr 29.7 10.2 18.5 25.2 50.8 50.8 

 Fe 63.8 50.7 54.6 58.4 69.9 69.9 

 Mn 48.8 37.7 42.6 45.1 55.1 55.1 

 Ni 26.9 5.0 14.3 22.5 50.1 50.1 
        

Crustal PM2.5 7.5 4.2 5.7 6.8 9.4 9.4 

 Al 62.5 18.6 54.9 60.4 71.8 71.8 

 Ca 83.6 18.4 72.0 79.2 86.4 86.4 

 Si 74.4 18.0 65.9 71.4 79.9 79.9 
        

Zn PM2.5 0.7 0.2 0.9 1.6 3.9 3.9 

  Zn 76.5 65.2 72.3 75.5 82.4 82.4 
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III.4 Figures 

. 

 

 

Figure 19. Annual and seasonal concentration trends in Detroit from 2001 to 2015. Shows annual changes in median concentrations as 

blue circles (●, o) and in 90th percentile concentrations as red triangles (▲, Δ) for selected major species, expressed as %/yr for all 

seasons (A), winter (W), spring (Sp), summer (Su) and fall (F). Based on quantile regressions of ambient measurements. Filled 

symbols (e.g., ●) are statistically significant, i.e., trend exceeded 2-times its bootstrapped standard error. 
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Figure 20. Annual and seasonal concentration trends in Chicago for median and 90th percentile concentrations from 2006 to 2014. 

Shows annual changes in median concentrations as blue circles (●, o) and in 90th percentile concentrations as red triangles (▲, Δ) for 

selected major species, expressed as %/yr for all seasons (A), winter (W), spring (Sp), summer (Su) and fall (F). Based on quantile 

regressions of ambient measurements. Filled symbols (e.g., ●) are statistically significant, i.e., trend exceeded 2-times its bootstrapped 

standard error. 
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Figure 21. Distribution of species by factor in PMF models for Detroit (A) and Chicago (B). Overall percentage contribution to 

modeled PM2.5 is listed for each factor. 
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Figure 22. Annual and seasonal trends of PMF apportionments by source category in Detroit from 2001 to 2014. Shows changes in 

median concentrations as blue circles (●, o) and 90th percentile concentrations as red triangles (▲, Δ), expressed as %/yr for all 

seasons (A), winter (W), spring (Sp), summer (Su), and fall (F). Based on quantile regressions of estimated concentration 

apportionments from nine factor PMF model. Filled symbols (e.g., ●) are statistically significant, i.e., trend exceeded 2-times its 

bootstrapped standard error. Values below 0 not censored.  
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Figure 23. Annual and seasonal trends of PMF apportionments by source category in Chicago from 2006 to 2014 using an 8-factor 

model. Shows changes in median concentrations as blue circles (●, o) and 90th percentile concentrations as red triangles (▲, Δ), 

expressed as %/yr for all seasons (A), winter (W), spring (Sp), summer (Su), and fall (F). Based on quantile regressions of estimated 

concentration apportionments from nine factor PMF model. Filled symbols (e.g., ●) are statistically significant, i.e., trend exceeded 2-

times its bootstrapped standard error. Values below 0 not censored.  
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Figure 24. Annual and seasonal trends of fractional PMF apportionments by source category in Detroit from 2001 to 2014. Shows 

changes in median fractional apportionments as blue circles (●, o) and 90th percentile fractional apportionments as red triangles (▲, 

Δ), expressed as %/yr for all seasons (A), winter (W), spring (Sp), summer (Su), and fall (F). Based quantile regressions of fractional 

apportionments (% of total PM2.5 mass) from a nine factor PMF model. Filled symbols (e.g., ●) are statistically significant, i.e., trend 

exceeded 2-times its bootstrapped standard error. Values below 0 not censored.  
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Figure 25. Annual and seasonal trends of fractional PMF apportionments by source category in Chicago from 2006 to 2014 using an 

8-factor model. Shows changes in median fractional apportionments as blue circles (●, o) and 90th percentile fractional apportionments 

as red triangles (▲, Δ), expressed as %/yr for all seasons (A), winter (W), spring (Sp), summer (Su), and fall (F). Based quantile 

regressions of fractional apportionments (% of total PM2.5 mass) from a nine factor PMF model. Filled symbols (e.g., ●) are 

statistically significant, i.e., trend exceeded 2-times its bootstrapped standard error. Values below 0 not censored.  
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Chapter IV – Operational evaluation of the RLINE dispersion model for studies of traffic-

related air pollutants 

 

IV.1 Summary 

This chapter describes an operational evaluation of a combined modeling system using RLINE 

and AERMOD [40] dispersion models and point source emissions models. The evaluation focuses 

on daily exposure measures and the traffic-related portion modeled by RLINE, in an application 

relevant to many epidemiologic and health impact studies. We utilize routine observations of 

pollutant concentrations, emissions, meteorology and other variables with the goal of 

characterizing prediction uncertainties and limitations of models for particular applications, and 

include statistical and graphical analyses to determine whether model estimates agree with 

observations in an overall sense [179]. Here, daily average concentrations of nitrogen oxides 

(NOx), carbon monoxide (CO), and fine particulate matter (PM2.5) measured at sites across Detroit, 

MI for the 2011 to 2014 period are compared to predictions from RLINE and AERMOD dispersion 

models, for line and point sources respectively. Performance is evaluated by pollutant, site, wind 

speed, meteorological condition, averaging time and other factors. We discuss implications 

regarding the use of RLINE in epidemiologic studies. For CO and NOx, model performance was 

best at sites close to major roads, during downwind conditions, during weekdays, and during 

certain seasons. For PM2.5, the ability to discern local and particularly the traffic-related portion 

was limited, a result of high background levels, the sparseness of the monitoring network, and 

large uncertainties for certain processes (e.g., formation of secondary aerosols) and non-mobile 

sources (e.g., area, fugitive). Overall, RLINE’s performance in near-road environments suggests 

its usefulness for estimating spatially- and temporally-resolved exposures.  

IV.2 Results 

IV.2.1 Background and un-modeled contribution 

For NOx, most hourly measurements exceeded DLs (51 to 100%, depending on site), and 

background estimates generated fell into a narrow range (15 to 18 ppb; Table 20). For CO, 
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observations frequently fell below the DL for the less sensitive instruments (IGFC and INDiI), 

which yielded relatively high background estimates (averaging 519 to 671 ppb); background levels 

were lower (128 ppb) for the more sensitive instrument (EC9830T). Because the background 

estimates reflected the instrument’s DL, datasets were not pooled across sites or instruments. For 

PM2.5, background estimates averaged 8.8 µg m-3 at the schools and suburban sites, equal to 88 to 

92% of observed levels (9.5 and 10 µg m-3, respectively; Table 21), and day-to-day variability was 

significant. Predicted contributions from point and on-road mobile sources were small (averaging 

from 0.1 to 0.8 µg m-3), and including these sources in daily background estimates did not increase 

the correlation between observed and estimated background levels. Thus, the performance 

evaluation for PM2.5 was not considered informative, a function of the dominance of regional 

sources and the small signal remaining from local sources, the gaps and uncertainties of the PM2.5 

emission inventory, the absence of chemical transformations in RLINE, and the paucity of near-

road PM2.5 monitoring data. 

IV.2.2 Performance by site 

For NOx, daily mean predictions (20 to 38 ppb) were similar to observations (23 to 48 ppb; Table 

20). Performance tended to decrease with distance from the roadway, e.g., RSP was from 0.58 to 

0.74 at the near-road site (10 m from I-96), 0.57 to 0.58 at the urban site (100 m from I-96), and 

0.32 at the schools site (350 m from MI-97). The near-road site using the IGpCHEM monitor had 

the highest RSP, the lowest % reducible VG, and the highest mean model-to-background ratio. 

(Figure 26 shows correlations for various subsets of NOx and CO at the near-road site.) However, 

this case had the highest FB, mainly because the IGpCHEM measurements (average of 48 ppb) 

exceeded the ICHEM measurements (37 ppb), while predictions during these periods were similar 

(38 and 37 ppb, respectively). Performance at other sites varied: the schools site was under-

predicted; the suburban, urban and industrial sites were over-predicted; and reducible errors at all 

four sites exceeded systematic errors, suggesting that improvements in model inputs or 

parameterization could improve model performance. (Additional results are shown in Appendix 

A: Table A. 1 and Table A. 2, and graphically in Figure A. 1, Figure A. 2, Figure A. 3, and Figure 

A. 4.)  

For CO, daily predictions (180 to 320 ppb) generally fell below observed levels (479 to 673 ppb). 

As seen for NOx, performance tended to decrease with distance from the roadway, e.g., RSP was 
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0.45 to 0.89 at the near-road site, 0.17 at the urban site, and 0.21 at the suburban site. Despite its 

proximity to I-75 (150 m), the industrial site had RSP near zero, possibly a result of that monitor’s 

high DL that falsely elevated the background estimates. (The estimated background averaged 91% 

of measurements.) This site was also adjacent to active rail lines and large industrial emission 

sources. Ranks of mean predictions followed observations except for the suburban and near-road 

EC9830T samplers; at the suburban site, predictions fell below observations, probably because 

this site was far from known CO sources, and lower observations were recorded at the near-road 

EC9830T sampler (reflecting the lower DL of the EC9830T instrument), which influenced 

background estimates at this site. As for NOx, the near-road site (with the EC9830T instrument) 

had the highest RSP and again, this case had the lowest ratio of reducible to overall VG, the highest 

mean model-to-background ratio, but the highest FB. Patterns at the other sites were similar to 

those seen for NOx: daily averages at the schools site were under-predicted; suburban, urban and 

industrial sites were over-predicted; and reducible errors exceeded systematic errors. 

IV.2.3 Performance by wind direction 

For NOx, downwind conditions gave higher F2 (except for one case) and higher RSP (0.30 to 0.64) 

than parallel conditions (Table 22). The exception was the near-road site using the ICHEM 

monitor, but both downwind and parallel winds had high F2 (≥ 90%) and large and reducible errors 

(VG ≥ 1.16, % reducible ≥ 99%), indicating the potential to improve model parameterization. Other 

performance metrics gave mixed results, e.g., at the urban site during downwind periods, FB was 

slightly lower, VG was unchanged, and the % reducible error was lower (mainly with the ICHEM 

monitor). Despite some inconsistencies, the F2 and RSP metrics results indicated better 

performance during downwind as compared to parallel wind conditions. 

Performance for CO also was generally better during downwind periods, albeit less conclusively 

than for NOx. F2 exceeded 92% at all sites. The near-road and urban sites had higher RSP (0.29 to 

0.83) during downwind periods compared to parallel winds (-0.07 to 0.60). (Other sites had 

insufficient data for robust evaluations.) At the near-road site with the EC9830T monitor, which 

had the highest RSP, downwind conditions increased FB and decreased F2, but the fraction of 

reducible to overall errors was higher. Similar results were seen at the urban site with the INDiI 

monitor. While limited by high DLs, the CO dataset again indicates better performance during 

downwind conditions. 
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IV.2.4 Performance by day-of-week 

For NOx, performance on weekdays generally was better than on Saturdays and Sundays (Table 

23): weekdays gave higher F2 in all but one case (near-road site with the IGpCHEM monitor), 

although F2 exceeded 95%, and weekdays also had higher RSP (although the urban site with the 

ICHEM monitor had comparable RSP = 0.59 on both weekends and Saturdays, though still higher 

than on Sunday when RSP = 0.46). At the near-road site with the IGpCHEM monitor, RSP was high 

and comparable on weekdays, Saturdays and Sundays (0.75, 0.73 and 0.72, respectively), and 

weekdays had more under-predictions. Given that the reducible VG on weekdays was low at this 

site, however, the overall conclusion of better performance on weekdays is unchanged.  

For CO, the evaluation by day-type was hampered by data limitations, but weekday performance 

appeared better. F2 exceeded 92% at all sites. The near-road site had the highest RSP on weekends 

(0.47 and 0.91 for INDiI and EC9830T samplers, respectively. The suburban site had higher RSP 

for Saturdays than weekdays, but the sample size was small (weekend n = 7). At the urban site, 

weekdays and Saturdays had higher RSP (0.17 and 0.23) than Sundays (0.01), but all correlations 

were low. The other performance metrics gave mixed results. 

IV.2.5 Performance by season 

For NOx, seasonal performance trends varied by site and method, however, slightly better 

performance was suggested during winter (Table 24). For example, the near-road site in winter 

had the highest RSP (both instruments), the highest F2 (ICHEM instrument, and nearly so with the 

IGpCHEM instrument), and the lowest relative reducible error. The urban site had the highest RSP 

(IGpCHEM) in winter. However, trends differed at other sites, e.g., RSP was highest in summer at 

the schools site and highest in spring at the urban site (ICHEM monitor), and VG was not lowest 

in winter at any site.  

Seasonal trends for CO were inconsistent, although some measures showed better performance in 

winter. RSP was highest during winter at the near-road (both monitors) and industrial sites, 

however, RSP was highest in spring at the urban site and negative during winter. F2 was uniformly 

high (≥ 91% and most values approached 100%). Data limitations restrict the reliability of the CO 

trends. 
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IV.3 Discussion 

The operational evaluation characterized dispersion modeling performance for daily average 

concentrations of NOx and CO at multiple sites in Detroit over a four-year period. The performance 

metrics often, but not always, gave consistent information, and generally met criteria laid out in 

evaluation guidelines [55, 56]. Some interpretations can be complex, e.g., if RSP is low, then 

comparisons of FB and VG across sites may provide little information. Most downwind NOx and 

CO predictions were within a factor of two of observations (F2 > 90%), and correlation coefficients 

were moderate to high for NOx (0.32 to 0.74), but variable for CO (0 to 0.89). Agreement between 

observed and predicted concentrations improved when monitors were downwind of major roads, 

as shown by high RSP, low FB (-0.19 to 0.34 for NOx; -0.17 to 0.50 for CO), and somewhat 

consistent and positive FB at the best-performing sites. We found over-prediction and increased 

scatter with low NOx observations and parallel winds, high contributions from on-road sources to 

CO levels at the near-road monitors, and uniform background levels of NOx (15 – 18 ppb) across 

Detroit.  

Dispersion models like RLINE are expected to perform best at unobstructed sites that are close to 

roads since the modeled on-road sources will contribute a larger fraction of observed 

concentrations and since flows around buildings and other features are not explicitly modeled by 

Gaussian plume models. (RLINE simulates near-source dispersion using a general surface 

roughness parameter and dispersion parameters.) For NOx and CO, two pollutants emitted 

primarily from traffic-related sources in urban areas, performance improved with proximity to 

major roads, and the best performance in Detroit was attained at the Eliza Howell near-road site 

located very close to the busy I-96 freeway.  

Performance was generally better during downwind as compared to parallel wind conditions. Both 

observed and predicted concentrations tended to be higher under downwind conditions, thus, the 

increased agreement may reflect the greater signal from local (on-road) emission sources. (Plume 

models can produce the highest concentrations at near-road receptors with winds that are parallel 

or near-parallel to the road, although this was never observed in the daily averages in Detroit.)  

Performance was better on weekdays as compared to weekends, possibly because the more regular 

traffic volume and fleet mix patterns on weekdays are better represented by temporal allocation 

factors [132]. In contrast, traffic patterns on weekends, especially on Sundays, are more variable. 
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The higher traffic volumes and stop-and-go congestion on weekdays might increase emissions, 

and the lower speeds and greater vehicle density might affect near-road turbulence and dispersion, 

thus increasing concentrations. The under-prediction on weekdays might result from these factors, 

and possibly due to a higher diesel fraction in the fleet mix than predicted. Such speculations might 

be examined using diagnostic (rather than operational) evaluations that focus on rush hour periods.  

Model performance appeared slightly better in winter although results varied by site and method. 

Potentially important seasonal changes in Detroit include: shifts in prevailing wind directions, 

which alter the likelihood that a monitoring site will be downwind; changes in the frequency of 

stability regimes; large temperature swings, which alter MOVES emission factors (impacts on NOx 

are complex) [180]; changes in temperature and the atmospheric composition (especially OH-) that 

can alter pollutant lifetime and fate; and changes in regional pollutants (particularly for PM2.5). 

Only some of these processes are captured in dispersion models. 

While of significant interest, no evaluation for PM2.5 is presented as results were not informative. 

This largely results from the limited ability to discern PM2.5 from local sources given the strength 

of background and regional sources of PM2.5, and the lack of spatially- and temporally- resolved 

emissions data for area and non-road mobile emissions. Area and non-road emissions of PM2.5 can 

be substantial, e.g., modeled on-road mobile sources constituted 48% of NOx and 54% of CO 

emissions, but only 21% of PM2.5 emissions (Table 19). Other studies have noted very high 

background concentrations of PM2.5 (>70%) in Sacramento and London [181]. Diagnostic 

evaluations at near-road sites measuring PM-related pollutants that are more specific to TRAPs, 

e.g., black carbon and ultrafine PM for combustion products, and other markers for tire, road, and 

brake wear, might help indicate some of the factors affecting model performance.  

IV.3.1 Comparison to literature 

Many of our findings are consistent with prior applications of RLINE (e.g., in Detroit), and 

diagnostic evaluations using tracer gases (e.g., SF6). For Detroit (all-direction) hourly NOx at the 

schools site, an earlier study found a mean bias of 30% and F2 was 62% [51]; and for Detroit 

downwind near-road NOx and CO, F2 was 100% [46]. For downwind hourly near-road NO data, 

F2 was 93% and the geometric mean (MG) was 1.12 [43]. Also similar to previous work, we found 

positive FB at the near road site, and over-prediction and increased scatter at low NOx 

concentrations [43–45]. Our estimate of the ratio of the average on-road to background CO levels 
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at the near-road site (1.46 at the more sensitive monitor) is similar to an earlier value for Detroit 

[51]. Finally, similarly uniform background concentrations of NOx across Detroit have been 

reported [51]. Compared to studies using tracer gases, results are also comparable. For example, 

downwind 3-hour averages of SF6 at near-road sites in Sacramento, California showed F2 > 80% 

and MG was 1.18 [43]; using this same dataset, another study obtained F2 > 78% [45]. For 

downwind and hourly SF6 gas data collected in rural Idaho, F2 was 75 to 100% [44, 45]. Using 

near-road and downwind SF6 measurements, FB was 0.05 and NMSE was 0.34 [45].  

In contrast to earlier work, we did not show significant over-prediction with parallel winds [43] or 

downwind peaks [44], and our normalized mean square error estimates were smaller than those in 

a recent RLINE evaluation [45]. We estimated that background sources were responsible for 70 to 

90% of NOx at the schools site, compared to approximately 50% estimated using hourly data [51]. 

These differences likely arose from our inclusion of background and point sources (also in [51]), 

the use of daily averages, and differences in the estimated background. 

Operational evaluations should be distinguished from diagnostic, dynamic and probabilistic 

evaluations. Comparisons to the previous RLINE evaluations, which were mostly diagnostic in 

nature, are limited by several factors. First, we examined daily concentrations, which are relevant 

to many health-related applications. Second, we did not evaluate performance as a function of 

meteorological conditions. Lower performance and over-prediction has been reported during 

stable periods [43–45]. Third, performance during upwind periods was not evaluated 

(measurements during these periods were used to estimate background); prior work shows over-

prediction and increased scatter at upwind receptors [43, 45]. Fourth, our large scale and multiyear 

urban application used data from a sparse (though typical) air quality monitoring network, and the 

ability to assess spatial performance was limited. In comparison, most other studies used tracer 

gases, a higher density of monitoring sites, few sources, a small study domain (<1 km2), and short 

study periods.  

IV.3.2 Implications of varying performance 

Dispersion models can be useful in developing exposure estimates of TRAP in health-related 

studies owing to their ability (given requisite data) to provide estimates with high spatial and 

temporal resolution. However, it is important to account for model performance and exposure 

measurement errors, that is, differences between the measured (or predicted) exposure compared 
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to the underlying true exposure, or exposure misclassification, the analogous term for a categorical 

exposure variable. These errors may vary spatially or temporally, and they may differentially affect 

different groups of study participants. Exposure measurement error can lead to incorrect inferences 

in health impact and epidemiologic studies, specifically, biased and/or imprecisely estimated effect 

coefficients that may be serious enough to invalidate inferences regarding the effect of pollution 

on health [182].  

The operational evaluation suggested that model performance is best at near-road sites (e.g., within 

10 to 100 m from the road) and that uncertainty increases with distance from roadways. RLINE 

represented much of the day-to-day variation observed in daily average concentrations, suggesting 

that dispersion modeling can provide near-road (and potentially on-road exposures) predictions 

with good fidelity: this is important since many people live or work near roads where TRAP 

concentrations are highest [2]. While these results may be driven by the ability to discern 

contributions from local emission sources, dispersion model performance is likely to degrade with 

distances in urban settings for several reasons [20], e.g., shifts in wind fields, the presence of 

unknown or unmodeled sources (including other local roads), and atmospheric transformation and 

other unmodeled processes. Thus, at farther distances, daily fluctuations in concentrations may be 

less accurately estimated. This may increase the likelihood of errors from dispersion model-based 

exposure estimates if study participants are exposed over a range of distances from major roads. 

Such studies might benefit from weighting exposure estimates by their uncertainties.  

A second concern is the effect of wind direction relative to the orientation of (major) roads and 

locations of study participants. Dispersion models perform best at downwind receptors, i.e., when 

winds are approximately perpendicular to the road’s orientation. Correlation between the 

prevailing wind direction(s), road alignment(s) and study participant locations might yield 

differential errors. For example, in Detroit, prevailing winds come from the west and southwest. 

(Figure 3 shows wind roses at two local airports.) Thus, model performance will be best for roads 

with north-south and northwest-southeast alignments with study participants on the downwind 

side, and poorer for roads that are aligned with the prevailing wind directions or with participants 

in upwind locations. These errors were investigated in Detroit by identifying the nearest (within 

150 m) major road (AADT > 10,000) for a random sample of residences (n = 4,000). Most roads 

are aligned on a north-south or east-west axis, thus directions from a residence to the nearest major 
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road are mainly north and south (Figure 27). Based on prevailing winds and the largest roads, 

individuals living downwind are east of north-south roads (e.g., M-10, M-39, I-75), “upwind” 

individuals live on west of the same roads, and individuals living south or north of east-west roads 

(e.g., I-96, I-94) will often experience parallel winds. Even if all individuals in a study lived at 

similar distances and/or had similar TRAP exposure, upwind and parallel groups have an increased 

likelihood of exposure measurement errors. In general, population patterns and the importance of 

directional effects will depend on many factors, e.g., demographic clustering (e.g., of residences, 

schools, workplaces) [183, 184], geographic boundaries (mountains, coastlines), economic (real 

estate) and administrative (municipal boundaries) factors. Some concerns might be addressed by 

selecting appropriate areas or, again, by using weights to account for prediction uncertainty.  

Other implications for health or epidemiologic studies arise from the day-of-week variation in 

model performance and the reliability of time-activity data needed to assign exposures. Consider 

a statistical model associating health outcomes with the prior day’s exposure, e.g., outcomes on 

Sundays and Mondays require exposure estimates for Saturdays and Sundays. Many models use 

3- to 5-day lags. With a 3-day lag, Sunday’s through Wednesday’s outcomes require weekend 

exposure data. Given lower performance of the dispersion model and greater uncertainty (as well 

as variability) of weekend time-activity information, exposure measurement errors may increase 

from Saturday through Wednesday. Thus, a study incorporating 3-day exposure lags might 

emphasize, weight or separately test the health data for Thursdays, Fridays and possibly Saturdays 

when exposure uncertainty is smaller to control for these effects. A related concern is RLINE’s 

tendency to under-predict on weekdays, which could bias concentration-outcome relationships if 

the (estimated) exposure variability is compressed, increase uncertainty since health models 

typically include both weekday and weekend periods, and falsely attribute variation to day-of-

week or weekend/weekend covariates, if used. Such effects are hypothetical. Calibrating the 

dispersion model (i.e., mobile source inventory, TAFs) and the exposure assumptions might help 

to resolve this issue.  

Lastly, seasonal variation in dispersion model performance, while less consistent than the day-of-

week effects, raises additional concerns in epidemiologic applications. This variation can be 

coupled to seasonal time-activity information that affects exposure, e.g., the summer school 

holiday period for children, which can increase uncertainty since the home-school-home pattern is 
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absent or less consistent and because of increased time spent outdoors. In addition, July, August 

and sometimes early September traffic patterns can have greater variability, a result of summer 

vacation, holiday travel and decreased commuting.  

IV.3.3 Uncertainty and limitations 

Comparisons between observed and predicted pollutant concentrations are affected by many 

factors. Our results show the importance of selecting pollutants, sites and instrumentation that 

together produce concentration trends that are markedly influenced by local traffic-related 

emissions. The ability to discern traffic-related contributions of PM2.5 was limited, a result of high 

background concentrations, the lack of spatial and temporal detail for area, non-road and fugitive 

emissions, the omission of pollutant transformations in RLINE, and the sparseness of the 

monitoring network. The use of monitoring parameters more specific to TRAP, e.g., black carbon 

or ultrafine PM, would be valuable.  

Modeling results can be affected by many factors. While detailed, the mobile source inventory 

used estimates of traffic volumes, time allocation factors derived from mostly larger roads, and 

MOVES emission factors for the greater Detroit area that may not have fully reflected local traffic 

volume, vehicle mix and emissions. Point sources were aggregated to the facility level, used 

average emission rates, and temporal variability was not modeled. Background estimates only 

partly accounted for regional sources and may not have fully represented short-term fluctuations 

and gradients. (Other studies have used complex regional chemical models to estimate background 

[136].) The classification of downwind and parallel periods refers to only the nearest major road. 

We assumed that the meteorological datasets driving the model were representative and 

appropriate. Hours when measured concentrations were low (< DL) were omitted from the 

evaluation, which may artificially increase correlations by limiting analyses to those observations 

when local source impacts are seen. This was tested by setting values below the DL to ½ DL and 

repeating all analyses. This dampened some trends, e.g., the wind direction analysis of NOx, and 

RSP and other metrics changed noticeably. However, removing low values has the advantage of 

largely eliminating (meaningless) comparisons between modeled and measured background, 

which can be important if roadway impacts are small or if monitoring methods have low detection 

frequencies. Finally, the relatively few observations available on weekends may have influenced 

results.  
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Overall, results highlight the sensitivity of evaluation results to monitor placement, instrument 

sensitivity (e.g., DL), and the ability to observe contributions from local sources. Results for NOx 

appear most meaningful given the NOx instrumentation’s greater sensitivity and ability to detect 

traffic-related emissions. In contrast, the CO evaluation was limited by low detection frequencies 

at some sites, which resulted in a small number of valid observations, especially when analyses 

were stratified by wind direction, day-of-week and season.  
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IV.4 Tables 

Table 19. Summary of 2011 Wayne County CO, NOx and PM2.5 emissions from the National Emission Inventory [124] in short tons 

(rounded to the nearest ton), percent of total emissions (bolded), and of each category (not bolded).  

Emission category  CO %   NOx  %   PM2.5 % 

Non-point   7,316   3    6,307   10    1,930   38  

 Industrial processes   194   3    4   0    489   25  

 Miscellaneous area sources   < 1  0    7   0    27   1  

 Mobile sources†   107   1    872   14    689   36  

 Natural sources   642   9    167   3   - - 

 Stationary source fuel combustion   6,347   87    5,087   81    725   38  

 Waste disposal, treatment and recovery   27   0   170   3   - - 

Non-road mobile sources   65,491   27    6,847   11    493   10  

On-road mobile sources   129,647   54    29,767   48    1,098   21  

 Highway - Compressed Natural Gas   54   0    42   0    0   0  

 Highway - Diesel   6,260   5    15,740   53    748   68  

 Highway - Gasoline  123,332  95    13,985   47    349   32  

Point   36,335   15    19,489   31    1,610   31  

 External combustion   67   0    211   1    18   1  

 External combustion boilers   7,422   20    10,516   54    246   15  

 Industrial processes   20,230   56    3,082   16    904   56  

 Internal combustion engines   3,193   9    1,363   7    260   16  

 Mobile sources*   4,702   13    2,326   12    85   5  

 Petroleum and solvent evaporation   13   0    20   0   52   3  

 Waste disposal   708   2     1,972   10     46   3  

Grand Total   238,788       62,411       5,131    

† Railroad equipment and marine vessels; * Aircraft and airport support vehicles 
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Table 20. Model performance for daily average NOx and CO. 

    Means (ppb)   FB  VG 

Poll Site Method Days Obs Back Model Ncom Com Point F2 RSP FP FN  Irr Red 

NOx                 

 school ICHEM 918 23 17 3 1.2 0 1 95 0.32 0.07 0.22   1.01 1.12 

 near-road  ICHEM 334 37 16 21 18.6 2 1 92 0.58 0.17 0.17   1.01 1.18 

  IGpCHEM 705 48 15 23 18.5 4 1 95 0.74 0.05 0.28   1.03 1.11 

 urban ICHEM 238 25 18 11 8.5 1 1 93 0.57 0.22 0.09   1.03 1.12 

  IGpCHEM 565 26 16 12 8.5 2 1 97 0.58 0.15 0.09   1.01 1.09 

CO                 

 suburban IGFC 40 673 671 27 19 3 5 100 0.21 0.11 0.07   1.00 1.04 

 near-road EC9830T 82 479 128 192 180 9 4 94 0.89 0.00 0.40   1.14 1.05 

  INDiI 655 667 519 291 277 9 5 99 0.45 0.21 0.01   1.04 1.03 

 urban INDiI 284 639 545 126 115 5 6 99 0.17 0.12 0.07   1.00 1.05 

 industrial IGFC 63 585 535 115 100 10 5 100 0.00 0.14 0.03   1.01 1.03 

                  

Abbreviations: Back = Modeled background contribution; Com. = Modeled contribution from commercial traffic; F2 = % of model + 

background within a factor of 2 of observed; FB = Fractional bias; fp = false positive; fn = false negative; ICHEM = Instrumental 

Chemiluminescence; IGpCHEM = Instrumental Gas-Phase Chemiluminescence; Irr = Irreducible or systematic component of VG; 

Model = Modeled contribution from commercial, non-commercial and point sources; Ncom. = Modeled contribution from non-

commercial traffic; NMSE = Normalized mean squared error; Obs. = Observed concentrations; Point = Modeled contribution from point 

sources; RSP = Spearman’s correlation coefficient; Red = reducible or random component of VG; VG = geometric variance.  
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Table 21. Daily average observed and modeled PM2.5 concentrations at the suburban and schools sites (µg/m3). 

Site Subset Days Hours Obs. Back Model 

Suburban 1,379 27,504 10.0 8.8 0.6 

 Weekday 984 19,684 9.9 8.8 0.6 

 Saturday 197 3,907 10.8 8.8 0.5 

 Sunday 198 3,913 10.2 8.8 0.4 

 Winter 330 7,113 11.4 9.7 0.7 

 Spring 357 7,316 8.6 7.9 0.5 

 Summer 356 6,593 11.1 9.2 0.5 

 Fall 336 6,482 9.1 8.4 0.6 

Schools 462 9,686 9.5 8.8 0.3 

 Weekday 330 6,958 9.4 8.8 0.3 

 Saturday 67 1,408 10.0 8.7 0.3 

 Sunday 65 1,320 9.6 8.8 0.3 

 Winter 120 2,640 10.9 9.7 0.4 

 Spring 119 2,517 7.5 7.9 0.3 

 Summer 116 2,342 10.7 9.2 0.3 

 Fall 107 2,187 9.0 8.4 0.4 

 

Acronyms: Back = Modeled background contribution; Model = Modeled contribution from commercial, non-commercial and point 

sources; Obs. = Observed concentrations 
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Table 22. Model performance for daily average NOx and CO by wind direction type. 

 

Abbreviations: Back = Modeled background contribution; Com. = Modeled contribution from commercial traffic; F2 = % of model + 

background within a factor of 2 of observed; FB = Fractional bias; fp = false positive; fn = false negative; ICHEM = Instrumental 

Chemiluminescence; IGpCHEM = Instrumental Gas-Phase Chemiluminescence; Irr = Irreducible or systematic component of VG; 

Model = Modeled contribution from commercial, non-commercial and point sources; Ncom. = Modeled contribution from non-

commercial traffic; NMSE = Normalized mean squared error; Obs. = Observed concentrations; Point = Modeled contribution from point 

sources; RSP = Spearman’s correlation coefficient; Red = reducible or random component of VG; VG = geometric variance.  

 

 

     Means (ppb)   FB  VG 

Poll Site Method Wind Dir Days Obs Back Model Ncom Com Point F2 RSP FP FN  Irr Red 

NOx                  

 schools ICHEM Downwind 134 22 17 3 1 1 1 96 0.30 0.09 0.21  1.00 1.13 

   Parallel 138 28 17 2 1 0 0 80 0.16 0.04 0.44  1.08 1.25 

 near-road  ICHEM Downwind 76 44 16 25 21 2 2 91 0.37 0.16 0.23  1.00 1.22 

   Parallel 71 35 16 18 16 2 1 90 0.52 0.16 0.17  1.00 1.19 

  IGpCHEM Downwind 186 61 15 28 22 4 2 90 0.60 0.02 0.36  1.10 1.09 

   Parallel 150 40 15 19 15 3 0 95 0.51 0.08 0.25  1.02 1.14 

 urban ICHEM Downwind 51 25 19 12 9 1 3 96 0.64 0.23 0.04  1.05 1.08 

   Parallel 39 25 22 8 6 1 1 92 0.23 0.26 0.10  1.05 1.15 

  IGpCHEM Downwind 170 29 16 14 10 2 3 97 0.57 0.15 0.09  1.01 1.10 

   Parallel 74 23 17 9 7 2 1 92 0.31 0.20 0.07  1.02 1.11 

CO                  

 suburban IGFC Downwind 1 - - - - - - - - - -  - - 

   Parallel 4 - - - - - - - - - -  - - 

 near-road EC9830T Downwind 26 557 128 205 192 9 5 92 0.83 0.00 0.50  1.28 1.04 

   Parallel 11 326 128 146 136 7 2 100 0.60 0.04 0.21  1.02 1.05 

  INDiI Downwind 182 685 519 297 280 9 7 100 0.44 0.18 0.01  1.03 1.03 

   Parallel 53 623 518 271 260 9 2 96 0.15 0.24 0.01  1.06 1.04 

 urban INDiI Downwind 62 651 552 138 125 5 8 98 0.29 0.13 0.07  1.01 1.05 

   Parallel 19 615 561 61 56 3 2 100 -0.07 0.08 0.07  1.00 1.03 

 industrial IGFC Downwind 1 - - - - - - - - - -  - - 

   Parallel 2 - - - - - - - - - -  - - 
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Table 23. Model performance for daily average NOx and CO by day type. 

     Means (ppb)   FB  VG 

Poll Site Method Wind Dir Days Obs Back Model Ncom Com Point F2 RSP FP FN  Irr Red 

NOx                  

 schools ICHEM Weekday 701 23 17 3 1 0 1 96 0.38 0.07 0.22  1.01 1.11 

   Saturday 120 23 17 3 1 0 1 94 0.17 0.07 0.22  1.01 1.12 

   Sunday 97 22 17 3 1 0 2 91 0.02 0.12 0.22  1.00 1.17 

                  

 near-road  ICHEM Weekday 247 40 16 22 19 2 1 96 0.65 0.13 0.19  1.00 1.16 

   Saturday 43 30 16 19 17 1 1 81 0.30 0.25 0.12  1.02 1.20 

   Sunday 44 25 16 19 17 1 1 82 0.33 0.37 0.04  1.14 1.14 

                  

  IGpCHEM Weekday 506 54 15 25 19 4 1 95 0.75 0.03 0.33  1.07 1.09 

   Saturday 99 39 15 22 19 2 1 99 0.73 0.09 0.14  1.00 1.09 

   Sunday 100 31 15 17 15 2 1 95 0.72 0.14 0.10  1.00 1.09 

                  

 urban ICHEM Weekday 183 26 18 11 8 1 1 96 0.65 0.18 0.10  1.02 1.10 

   Saturday 32 22 17 10 8 1 1 91 0.59 0.31 0.08  1.06 1.13 

   Sunday 23 21 19 12 10 1 2 74 -0.15 0.42 0.01  1.21 1.12 

                  

  IGpCHEM Weekday 422 28 16 12 9 2 1 98 0.59 0.12 0.10  1.00 1.08 

   Saturday 77 24 16 11 9 1 2 91 0.59 0.23 0.07  1.05 1.09 

   Sunday 66 21 17 9 7 1 2 97 0.46 0.27 0.06  1.06 1.10 

CO                  

 suburban IGFC Weekday 27 675 671 30 21 3 5 100 0.26 0.12 0.08  1.00 1.05 

   Saturday 7 668 672 22 16 2 5 100 0.57 0.09 0.06  1.00 1.03 

   Sunday 6 669 672 16 14 1 1 100 -0.32 0.08 0.05  1.00 1.02 

                  

 near-road EC9830T Weekday 58 495 128 199 185 10 4 93 0.91 0.00 0.41  1.16 1.04 

   Saturday 12 492 128 225 211 7 7 100 0.85 0.00 0.33  1.11 1.03 

   Sunday 12 386 128 129 122 4 3 92 0.90 0.02 0.42  1.09 1.13 

                  

  INDiI Weekday 496 680 519 299 283 11 5 99 0.47 0.20 0.01  1.04 1.03 
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Abbreviations: Back = Modeled background contribution; Com. = Modeled contribution from commercial traffic; F2 = % of model + 

background within a factor of 2 of observed; FB = Fractional bias; fp = false positive; fn = false negative; ICHEM = Instrumental 

Chemiluminescence; IGpCHEM = Instrumental Gas-Phase Chemiluminescence; Irr = Irreducible or systematic component of VG; 

Model = Modeled contribution from commercial, non-commercial and point sources; Ncom. = Modeled contribution from non-

commercial traffic; NMSE = Normalized mean squared error; Obs. = Observed concentrations; Point = Modeled contribution from point 

sources; RSP = Spearman’s correlation coefficient; Red = reducible or random component of VG; VG = geometric variance.  

 

  

   Saturday 88 646 516 278 267 6 5 100 0.36 0.23 0.02  1.04 1.04 

   Sunday 71 602 515 254 244 6 4 99 0.33 0.25 0.00  1.06 1.03 

                  

 urban INDiI Weekday 223 639 543 132 120 5 6 99 0.17 0.12 0.06  1.00 1.04 

   Saturday 36 625 551 109 98 3 8 100 0.23 0.13 0.07  1.01 1.05 

   Sunday 25 665 549 106 97 3 6 96 0.01 0.09 0.11  1.00 1.07 

                  

 industrial IGFC Weekday 51 582 536 113 98 10 5 100 -0.06 0.14 0.03  1.01 1.03 

   Saturday 4 - - - - - - - - - -  - - 

   Sunday 8 596 540 141 128 8 5 100 -0.47 0.17 0.04  1.02 1.04 
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Table 24. Model performance for daily average NOx and CO by season. 

     Means (ppb)   FB  VG 
Poll Site Method Wind Dir Days Obs Back Model Ncom Com Point F2 RSP FP FN  Irr Red 
NOx                  
 schools ICHEM Winter 311 25 17 3 1 0 1 94 0.29 0.05 0.28  1.03 1.13 
   Spring 195 23 16 2 1 0 1 91 0.21 0.06 0.25  1.02 1.13 
   Summer 165 19 16 3 1 0 2 99 0.44 0.10 0.08  1.00 1.05 
   Fall 247 23 17 3 1 0 2 98 0.33 0.09 0.20  1.00 1.12 
                  
 near-road  ICHEM Winter 84 51 20 21 19 2 1 99 0.79 0.05 0.27  1.03 1.12 
   Spring 85 34 15 17 15 1 1 88 0.52 0.17 0.20  1.00 1.19 
   Summer 87 22 12 22 19 2 1 85 0.59 0.43 0.00  1.21 1.06 
   Fall 78 41 15 25 22 2 1 96 0.58 0.13 0.14  1.00 1.12 
                  
  IGpCHEM Winter 184 55 16 21 16 3 1 91 0.84 0.01 0.41  1.14 1.08 
   Spring 168 42 15 19 15 3 1 98 0.79 0.03 0.25  1.04 1.07 
   Summer 142 39 14 25 20 4 1 97 0.69 0.11 0.12  1.00 1.10 
   Fall 211 53 16 28 22 4 1 96 0.71 0.06 0.27  1.03 1.12 
                  
 urban ICHEM Winter 69 32 27 10 8 1 1 84 0.47 0.29 0.13  1.08 1.19 
   Spring 59 25 17 9 7 1 1 98 0.60 0.12 0.08  1.01 1.07 
   Summer 49 17 10 11 9 1 2 94 -0.02 0.24 0.05  1.03 1.09 
   Fall 61 25 16 13 10 1 2 97 0.51 0.19 0.05  1.03 1.07 
                  
  IGpCHEM Winter 168 31 19 11 8 2 1 97 0.63 0.10 0.14  1.00 1.09 
   Spring 130 24 16 10 7 1 1 100 0.56 0.13 0.07  1.01 1.06 
   Summer 97 19 13 12 9 2 2 93 0.40 0.29 0.01  1.08 1.05 
   Fall 170 28 16 14 10 2 2 97 0.59 0.15 0.09  1.01 1.09 
CO                  
 suburban IGFC Winter 24 651 666 31 24 3 3 100 0.51 0.12 0.05  1.01 1.04 
   Spring 2 - - - - - - - - - -  - - 
   Summer 3 - - - - - - - - - -  - - 
   Fall 11 738 684 19 10 1 7 100 -0.18 0.07 0.12  1.00 1.04 
                  
 near-road EC9830T Winter 25 484 128 196 183 9 4 100 0.91 0.00 0.40  1.15 1.02 
   Spring - - - - - - - - - - -  - - 
   Summer - - - - - - - - - - -  - - 
   Fall 57 476 128 191 178 8 4 91 0.88 0.00 0.40  1.14 1.07 
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Abbreviations: Back = Modeled background contribution; Com. = Modeled contribution from commercial traffic; F2 = % of model + 

background within a factor of 2 of observed; FB = Fractional bias; fp = false positive; fn = false negative; ICHEM = Instrumental 

Chemiluminescence; IGpCHEM = Instrumental Gas-Phase Chemiluminescence; Irr = Irreducible or systematic component of VG; 

Model = Modeled contribution from commercial, non-commercial and point sources; Ncom. = Modeled contribution from non-

commercial traffic; NMSE = Normalized mean squared error; Obs. = Observed concentrations; Point = Modeled contribution from point 

sources; RSP = Spearman’s correlation coefficient; Red = reducible or random component of VG; VG = geometric variance.  

 

  INDiI Winter 133 677 540 262 247 10 5 100 0.57 0.19 0.02  1.03 1.02 
   Spring 152 651 523 229 216 8 5 99 0.34 0.17 0.02  1.02 1.03 
   Summer 188 650 502 338 324 10 5 100 0.39 0.26 0.00  1.07 1.03 
   Fall 182 690 517 315 300 10 5 100 0.54 0.20 0.01  1.04 1.03 
                  
 urban INDiI Winter 97 665 564 101 92 4 5 98 -0.05 0.09 0.09  1.00 1.05 
   Spring 61 677 570 98 87 4 7 100 0.45 0.07 0.08  1.00 1.03 
   Summer 55 549 506 155 143 5 7 100 0.20 0.19 0.01  1.03 1.02 
   Fall 71 643 526 164 150 5 8 99 0.21 0.14 0.07  1.01 1.06 
                  
 industrial IGFC Winter 13 565 514 114 97 12 5 100 0.15 0.14 0.03  1.01 1.03 
   Spring 15 602 536 77 64 7 6 100 -0.57 0.07 0.06  1.00 1.02 
   Summer 24 583 544 121 106 9 6 100 0.26 0.15 0.02  1.02 1.02 
   Fall 11 587 541 157 142 12 3 100 0.01 0.20 0.02  1.03 1.04 
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IV.5 Figures 

 

Figure 26. Observed versus modeled NOx and CO at the near-road site using the EC9830T and IGpCHEM monitors. Figures show 1:1 

and factor of 2 lines. For NOx and CO respectively, day-of-week and prevailing wind-direction comparisons are differentiated by point 

color and shape. 
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Figure 27. Population rose for Detroit. This shows the % of near-road residents (people within 150m of a road with AADT > 10,000) 

with a road to any sector (in 5 deg bins). This plot shows that roads are predominantly East-West.
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Appendix A - Expanded tables of Model Performance 

Table A. 1. Model performance metrics for daily average NOx and various daily subsets. 

      Mean (µg/m3)  RSP  FAC2   FB  MG  NMSE  VG 

Site  Subset Days Hours  Obs. Back Model Ncom. Com. Point    (%)   fp fn Δ    Irr Red ∑  Irr Red ∏ 

School ICHEM 918 11,541  41.8 30.7 5.2 2.1 0.7 2.4  0.32  95   0.07 0.22 0.15  1.09  0.02 0.20 0.23  1.01 1.12 1.13 

  Downwind 134 1,159  40.7 31.2 5.1 2.6 1.0 1.4  0.30  96   0.09 0.21 0.12  1.05  0.01 0.20 0.21  1.00 1.13 1.13 

  Parallel 138 1,211  50.7 30.8 3.1 1.7 0.5 0.9  0.16  80   0.04 0.44 0.40  1.32  0.17 0.55 0.72  1.08 1.25 1.35 

  Other 577 5,821  42.5 30.8 5.7 2.0 0.7 3.1  0.37  96   0.06 0.21 0.15  1.10  0.02 0.18 0.20  1.01 1.10 1.11 

  Weekday 701 8,920  42.1 30.7 5.4 2.2 0.9 2.3  0.38  96   0.07 0.22 0.15  1.10  0.02 0.19 0.21  1.01 1.11 1.12 

  Saturday 120 1,485  41.3 30.8 4.7 2.0 0.4 2.4  0.17  94   0.07 0.22 0.15  1.09  0.02 0.22 0.24  1.01 1.12 1.13 

  Sunday 97 1,136  39.6 31.0 4.9 1.7 0.3 2.9  0.02  91   0.12 0.22 0.10  1.02  0.01 0.28 0.29  1.00 1.17 1.17 

  Winter 311 4,827  45.8 31.4 5.0 2.1 0.7 2.2  0.29  94   0.05 0.28 0.23  1.17  0.05 0.23 0.28  1.03 1.13 1.16 

  Spring 195 2,091  41.2 29.9 4.0 1.7 0.6 1.7  0.21  91   0.06 0.25 0.19  1.13  0.04 0.21 0.25  1.02 1.13 1.15 

  Summer 165 1,477  34.7 29.6 5.8 2.3 0.8 2.7  0.44  99   0.10 0.08 -0.02  0.95  0.00 0.05 0.05  1.00 1.05 1.05 

  Fall 247 3,146  41.9 31.3 6.1 2.5 0.9 2.8  0.33  98   0.09 0.20 0.11  1.05  0.01 0.21 0.22  1.00 1.12 1.12 
Near-road ICHEM 334 5,524  66.6 28.4 38.7 33.9 2.9 1.8  0.58  92   0.17 0.17 -0.01  0.92  0.00 0.20 0.20  1.01 1.18 1.19 

  Downwind 76 765  80.1 28.8 45.3 38.6 3.2 3.6  0.37  91   0.16 0.23 0.08  0.98  0.01 0.23 0.24  1.00 1.22 1.22 

  Parallel 71 627  63.4 29.7 32.8 29.1 2.8 0.9  0.52  90   0.16 0.17 0.01  0.95  0.00 0.22 0.22  1.00 1.19 1.19 

  Other 288 3,192  66.7 28.6 36.8 32.3 2.8 1.7  0.60  93   0.15 0.17 0.02  0.95  0.00 0.19 0.19  1.00 1.17 1.17 

  Weekday 247 4,095  72.4 28.4 40.1 34.9 3.4 1.8  0.65  96   0.13 0.19 0.06  0.97  0.00 0.19 0.19  1.00 1.16 1.16 

  Saturday 43 733  54.5 28.4 33.7 30.7 1.6 1.4  0.30  81   0.25 0.12 -0.13  0.86  0.02 0.26 0.28  1.02 1.20 1.22 

  Sunday 44 696  45.7 28.3 35.4 31.8 1.4 2.2  0.33  82   0.37 0.04 -0.33  0.69  0.11 0.13 0.25  1.14 1.14 1.31 

  Winter 84 1,511  92.3 35.5 38.5 33.7 2.9 1.9  0.79  99   0.05 0.27 0.22  1.19  0.05 0.14 0.19  1.03 1.12 1.15 

  Spring 85 1,367  61.4 28.1 31.5 27.4 2.4 1.7  0.52  88   0.17 0.20 0.03  0.95  0.00 0.26 0.26  1.00 1.19 1.19 

  Summer 87 1,284  40.4 22.7 39.7 35.1 2.9 1.8  0.59  85   0.43 0.00 -0.43  0.65  0.19 0.08 0.27  1.21 1.06 1.28 

  Fall 78 1,362  73.7 27.3 45.4 40.0 3.4 2.0  0.58  96   0.13 0.14 0.01  0.98  0.00 0.12 0.12  1.00 1.12 1.12 

 IGpCHEM 705 11,845  87.9 27.7 42.2 33.6 6.5 2.1  0.74  95   0.05 0.28 0.23  1.20  0.05 0.14 0.19  1.03 1.11 1.15 

  Downwind 186 2,014  110.9 27.9 51.2 39.5 7.3 4.4  0.60  90   0.02 0.36 0.34  1.36  0.12 0.12 0.24  1.10 1.09 1.20 

  Parallel 150 1,293  73.4 27.6 34.4 27.8 5.8 0.9  0.51  95   0.08 0.25 0.17  1.15  0.03 0.17 0.20  1.02 1.14 1.16 
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  Other 594 6,566  85.9 27.6 37.9 30.1 6.0 1.8  0.76  94   0.04 0.31 0.27  1.24  0.07 0.15 0.22  1.05 1.11 1.16 

  Weekday 506 8,551  97.4 27.7 44.8 34.9 7.8 2.1  0.75  95   0.03 0.33 0.29  1.30  0.09 0.12 0.21  1.07 1.09 1.17 

  Saturday 99 1,670  70.4 27.6 39.8 33.8 3.7 2.3  0.73  99   0.09 0.14 0.04  1.01  0.00 0.10 0.10  1.00 1.09 1.09 

  Sunday 100 1,624  56.9 27.6 31.7 26.8 2.9 2.1  0.72  95   0.14 0.10 -0.04  0.94  0.00 0.12 0.12  1.00 1.09 1.09 

  Winter 184 3,290  100.7 29.4 37.4 29.4 6.1 1.9  0.84  91   0.01 0.41 0.40  1.43  0.17 0.13 0.30  1.14 1.08 1.22 

  Spring 168 2,759  77.0 27.0 34.4 27.1 5.4 1.9  0.79  98   0.03 0.25 0.23  1.21  0.05 0.09 0.14  1.04 1.07 1.11 

  Summer 142 2,213  70.3 25.0 44.7 36.1 6.6 2.0  0.69  97   0.11 0.12 0.01  0.97  0.00 0.09 0.09  1.00 1.10 1.10 

  Fall 211 3,583  97.2 28.4 50.9 40.7 7.6 2.6  0.71  96   0.06 0.27 0.20  1.18  0.04 0.14 0.18  1.03 1.12 1.15 

Urban ICHEM 238 3,404  46.0 32.9 19.6 15.4 1.6 2.5  0.57  93   0.22 0.09 -0.13  0.84  0.02 0.21 0.23  1.03 1.12 1.15 

  Downwind 51 488  45.9 33.7 21.6 15.6 1.4 4.6  0.64  96   0.23 0.04 -0.19  0.81  0.04 0.09 0.13  1.05 1.08 1.13 

  Parallel 39 329  45.5 39.5 13.8 10.8 2.0 1.0  0.23  92   0.26 0.10 -0.16  0.80  0.03 0.19 0.21  1.05 1.15 1.20 

  Other 167 1,789  47.0 34.4 18.5 14.7 1.5 2.2  0.56  93   0.21 0.09 -0.12  0.86  0.01 0.24 0.25  1.02 1.11 1.14 

  Weekday 183 2,712  48.2 32.9 19.4 15.1 1.8 2.5  0.65  96   0.18 0.10 -0.08  0.88  0.01 0.21 0.22  1.02 1.10 1.12 

  Saturday 32 409  39.7 31.3 18.3 15.0 1.0 2.2  0.59  91   0.31 0.08 -0.22  0.79  0.05 0.18 0.24  1.06 1.13 1.20 

  Sunday 23 283  37.6 34.6 22.7 18.3 1.1 3.3  -0.15  74   0.42 0.01 -0.41  0.65  0.18 0.12 0.30  1.21 1.12 1.36 

  Winter 69 1,153  57.8 49.6 18.3 14.4 1.6 2.3  0.47  84   0.29 0.13 -0.16  0.76  0.03 0.33 0.36  1.08 1.19 1.29 

  Spring 59 802  45.3 30.6 16.5 13.0 1.3 2.1  0.60  98   0.12 0.08 -0.04  0.93  0.00 0.08 0.08  1.01 1.07 1.07 

  Summer 49 557  31.4 17.5 20.4 16.0 1.6 2.8  -0.02  94   0.24 0.05 -0.19  0.84  0.04 0.11 0.14  1.03 1.09 1.13 

  Fall 61 892  45.1 28.5 23.4 18.4 2.0 3.0  0.51  97   0.19 0.05 -0.14  0.85  0.02 0.08 0.10  1.03 1.07 1.10 

 IGpCHEM 565 8,433  48.1 29.8 21.2 15.5 3.1 2.6  0.58  97   0.15 0.09 -0.06  0.90  0.00 0.11 0.11  1.01 1.09 1.10 

  Downwind 170 1,771  51.9 29.4 25.6 17.5 3.3 4.8  0.57  97   0.15 0.09 -0.06  0.90  0.00 0.10 0.10  1.01 1.10 1.11 

  Parallel 74 591  41.5 30.5 16.9 13.0 2.9 1.1  0.31  92   0.20 0.07 -0.13  0.86  0.02 0.14 0.16  1.02 1.11 1.13 

  Other 387 4,129  49.9 30.3 20.1 14.9 3.1 2.2  0.60  97   0.13 0.12 -0.01  0.94  0.00 0.13 0.13  1.00 1.09 1.10 

  Weekday 422 6,435  50.5 29.7 21.9 15.8 3.6 2.5  0.59  98   0.12 0.10 -0.02  0.95  0.00 0.10 0.10  1.00 1.08 1.08 

  Saturday 77 1,100  43.1 30.0 20.8 15.9 1.9 2.9  0.59  91   0.23 0.07 -0.16  0.80  0.03 0.13 0.16  1.05 1.09 1.14 

  Sunday 66 898  38.6 30.3 17.2 12.9 1.5 2.8  0.46  97   0.27 0.06 -0.21  0.78  0.04 0.13 0.17  1.06 1.10 1.17 

  Winter 168 2,809  55.7 33.9 19.5 14.4 3.0 2.1  0.63  97   0.10 0.14 0.04  0.99  0.00 0.13 0.13  1.00 1.09 1.10 

  Spring 130 1,823  44.3 29.6 17.4 12.4 2.6 2.4  0.56  100   0.13 0.07 -0.06  0.92  0.00 0.06 0.06  1.01 1.06 1.07 

  Summer 97 1,215  34.9 24.2 22.2 15.9 3.1 3.1  0.40  93   0.29 0.01 -0.28  0.75  0.08 0.06 0.14  1.08 1.05 1.14 

  Fall 170 2,586  51.0 29.0 25.2 18.6 3.6 3.1  0.59  97   0.15 0.09 -0.06  0.91  0.00 0.11 0.12  1.01 1.09 1.10 

Acronyms: Back = Modeled background contribution; Com. = Modeled contribution from commercial traffic; F2 = % of model + background within a factor of 2 

of observed; FB = Fractional bias; fp = false positive; fn = false negative; ICHEM = Instrumental Chemiluminescence; IGpCHEM = Instrumental Gas-Phase 

Chemiluminescence; Irr = Irreducible or systematic component of VG; Model = Modeled contribution from commercial, non-commercial and point sources; Ncom. 

= Modeled contribution from non-commercial traffic; NMSE = Normalized mean squared error; Obs. = Observed concentrations; Point = Modeled contribution 

from point sources; RSP = Spearman’s correlation coefficient; Red = reducible or random component of VG; VG = geometric variance. Δ = Total FB; ∑ = Sum of 

Irr. and Red. NMSE; ∏ = Product of Irr. and Red. VG. 
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Table A. 2. Model performance metrics for daily average CO and various daily subsets. 

      Mean (ppm)  RSP  FAC2   FB  MG  NMSE  VG 

Site  Subset Days Hours  Obs. Back Model Ncom. Com. Point    (%)   fp fn Δ    Irr Red ∑  Irr Red ∏ 

Suburban IGFC 40 346  0.67 0.67 0.03 0.02 0.00 0.00  0.21  100   0.11 0.07 -0.04  0.94  0.00 0.05 0.05  1.00 1.04 1.05 

  Downwind 1 12  - - - - - -  -  -   - - -  -  - - -  - - - 

  Parallel 4 26  - - - - - -  -  -   - - -  -  - - -  - - - 

  Other 19 164  0.74 0.67 0.02 0.01 0.00 0.00  0.27  100   0.06 0.13 0.07  1.04  0.00 0.06 0.07  1.00 1.05 1.06 

  Weekday 27 250  0.67 0.67 0.03 0.02 0.00 0.01  0.26  100   0.12 0.08 -0.04  0.94  0.00 0.06 0.06  1.00 1.05 1.05 

  Saturday 7 59  0.67 0.67 0.02 0.02 0.00 0.01  0.57  100   0.09 0.06 -0.04  0.95  0.00 0.03 0.03  1.00 1.03 1.03 

  Sunday 6 37  0.67 0.67 0.02 0.01 0.00 0.00  -0.32  100   0.08 0.05 -0.03  0.97  0.00 0.02 0.03  1.00 1.02 1.03 

  Winter 24 236  0.65 0.67 0.03 0.02 0.00 0.00  0.51  100   0.12 0.05 -0.07  0.91  0.00 0.05 0.06  1.01 1.04 1.05 

  Spring 2 12  0.70 0.64 0.01 0.01 0.00 0.00  1.00  100   0.04 0.10 0.07  1.06  0.00 0.02 0.02  1.00 1.02 1.02 

  Summer 3 18  0.59 0.68 0.03 0.02 0.00 0.01  0.50  100   0.19 0.00 -0.19  0.82  0.04 0.00 0.04  1.04 1.00 1.04 

  Fall 11 80  0.74 0.68 0.02 0.01 0.00 0.01  -0.18  100   0.07 0.12 0.05  1.03  0.00 0.04 0.05  1.00 1.04 1.04 

Near-road EC9830T 82 1,526  0.48 0.13 0.19 0.18 0.01 0.00  0.89  94   0.00 0.40 0.40  1.44  0.16 0.11 0.27  1.14 1.05 1.20 

  Downwind 26 328  0.56 0.13 0.21 0.19 0.01 0.00  0.83  92   0.00 0.50 0.50  1.64  0.27 0.07 0.34  1.28 1.04 1.33 

  Parallel 11 108  0.33 0.13 0.15 0.14 0.01 0.00  0.60  100   0.04 0.21 0.17  1.17  0.03 0.06 0.09  1.02 1.05 1.08 

  Other 66 842  0.47 0.13 0.18 0.17 0.01 0.00  0.90  94   0.00 0.40 0.39  1.43  0.16 0.14 0.30  1.14 1.06 1.21 

  Weekday 58 1,071  0.50 0.13 0.20 0.19 0.01 0.00  0.91  93   0.00 0.41 0.41  1.47  0.17 0.11 0.28  1.16 1.04 1.21 

  Saturday 12 239  0.49 0.13 0.23 0.21 0.01 0.01  0.85  100   0.00 0.33 0.33  1.38  0.11 0.04 0.15  1.11 1.03 1.14 

  Sunday 12 216  0.39 0.13 0.13 0.12 0.00 0.00  0.90  92   0.02 0.42 0.40  1.35  0.17 0.20 0.37  1.09 1.13 1.23 

  Winter 25 504  0.48 0.13 0.20 0.18 0.01 0.00  0.91  100   0.00 0.40 0.40  1.46  0.16 0.07 0.23  1.15 1.02 1.18 

  Spring - -  - - - - - -  -  -   - - -  -  - - -  - - - 

  Summer - -  - - - - - -  -  -   - - -  -  - - -  - - - 

  Fall 57 1,022  0.48 0.13 0.19 0.18 0.01 0.00  0.88  91   0.00 0.40 0.40  1.43  0.16 0.13 0.29  1.14 1.07 1.21 

 INDiI 655 8,552  0.67 0.52 0.29 0.28 0.01 0.00  0.45  99   0.21 0.01 -0.19  0.82  0.04 0.03 0.07  1.04 1.03 1.07 

  Downwind 182 1,789  0.69 0.52 0.30 0.28 0.01 0.01  0.44  100   0.18 0.01 -0.17  0.84  0.03 0.03 0.06  1.03 1.03 1.06 

  Parallel 53 373  0.62 0.52 0.27 0.26 0.01 0.00  0.15  96   0.24 0.01 -0.24  0.79  0.06 0.05 0.11  1.06 1.04 1.10 

  Other 426 3,988  0.68 0.52 0.29 0.27 0.01 0.00  0.52  100   0.18 0.02 -0.16  0.85  0.03 0.03 0.06  1.03 1.03 1.06 

  Weekday 496 6,518  0.68 0.52 0.30 0.28 0.01 0.00  0.47  99   0.20 0.01 -0.18  0.83  0.03 0.03 0.07  1.04 1.03 1.06 

  Saturday 88 1,184  0.65 0.52 0.28 0.27 0.01 0.01  0.36  100   0.23 0.02 -0.21  0.81  0.04 0.05 0.10  1.04 1.04 1.09 

  Sunday 71 850  0.60 0.52 0.25 0.24 0.01 0.00  0.33  99   0.25 0.00 -0.25  0.78  0.06 0.03 0.10  1.06 1.03 1.09 

  Winter 133 1,651  0.68 0.54 0.26 0.25 0.01 0.00  0.57  100   0.19 0.02 -0.17  0.84  0.03 0.03 0.06  1.03 1.02 1.06 

  Spring 152 1,874  0.65 0.52 0.23 0.22 0.01 0.01  0.34  99   0.17 0.02 -0.14  0.86  0.02 0.04 0.06  1.02 1.03 1.06 

  Summer 188 2,611  0.65 0.50 0.34 0.32 0.01 0.00  0.39  100   0.26 0.00 -0.26  0.77  0.07 0.03 0.10  1.07 1.03 1.10 

  Fall 182 2,416  0.69 0.52 0.32 0.30 0.01 0.01  0.54  100   0.20 0.01 -0.19  0.83  0.03 0.03 0.07  1.04 1.03 1.07 
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Urban INDiI 284 3,519  0.64 0.54 0.13 0.12 0.00 0.01  0.17  99   0.12 0.07 -0.05  0.94  0.00 0.06 0.06  1.00 1.05 1.05 

  Downwind 62 610  0.65 0.55 0.14 0.12 0.01 0.01  0.29  98   0.13 0.07 -0.06  0.93  0.00 0.06 0.07  1.01 1.05 1.05 

  Parallel 19 153  0.62 0.56 0.06 0.06 0.00 0.00  -0.07  100   0.08 0.07 -0.01  0.98  0.00 0.03 0.03  1.00 1.03 1.03 

  Other 160 1,630  0.66 0.55 0.11 0.10 0.00 0.01  0.18  99   0.09 0.08 -0.01  0.98  0.00 0.05 0.05  1.00 1.04 1.04 

  Weekday 223 2,811  0.64 0.54 0.13 0.12 0.01 0.01  0.17  99   0.12 0.06 -0.06  0.93  0.00 0.06 0.06  1.00 1.04 1.05 

  Saturday 36 412  0.63 0.55 0.11 0.10 0.00 0.01  0.23  100   0.13 0.07 -0.05  0.93  0.00 0.07 0.07  1.01 1.05 1.05 

  Sunday 25 296  0.67 0.55 0.11 0.10 0.00 0.01  0.01  96   0.09 0.11 0.02  0.99  0.00 0.10 0.10  1.00 1.07 1.07 

  Winter 97 1,440  0.66 0.56 0.10 0.09 0.00 0.01  -0.05  98   0.09 0.09 0.00  0.98  0.00 0.07 0.07  1.00 1.05 1.05 

  Spring 61 826  0.68 0.57 0.10 0.09 0.00 0.01  0.45  100   0.07 0.08 0.01  1.00  0.00 0.03 0.03  1.00 1.03 1.03 

  Summer 55 539  0.55 0.51 0.15 0.14 0.00 0.01  0.20  100   0.19 0.01 -0.19  0.83  0.03 0.02 0.05  1.03 1.02 1.05 

  Fall 71 714  0.64 0.53 0.16 0.15 0.01 0.01  0.21  99   0.14 0.07 -0.07  0.92  0.00 0.08 0.09  1.01 1.06 1.06 

Industrial IGFC 63 533  0.58 0.54 0.12 0.10 0.01 0.01  0.00  100   0.14 0.03 -0.11  0.90  0.01 0.03 0.05  1.01 1.03 1.04 

  Downwind 1 9  - - - - - -  -  -   - - -  -  - - -  - - - 

  Parallel 2 13  - - - - - -  -  -   - - -  -  - - -  - - - 

  Other 29 224  0.61 0.53 0.13 0.11 0.01 0.01  0.00  100   0.13 0.05 -0.09  0.92  0.01 0.05 0.06  1.01 1.04 1.05 

  Weekday 51 448  0.58 0.54 0.11 0.10 0.01 0.01  -0.06  100   0.14 0.03 -0.11  0.90  0.01 0.03 0.05  1.01 1.03 1.04 

  Saturday 4 28  - - - - - -  -  -   - - -  -  - - -  - - - 

  Sunday 8 57  0.60 0.54 0.14 0.13 0.01 0.00  -0.47  100   0.17 0.04 -0.13  0.87  0.02 0.04 0.06  1.02 1.04 1.06 

  Winter 13 138  0.56 0.51 0.11 0.10 0.01 0.01  0.15  100   0.14 0.03 -0.11  0.90  0.01 0.03 0.04  1.01 1.03 1.04 

  Spring 15 119  0.60 0.54 0.08 0.06 0.01 0.01  -0.57  100   0.07 0.06 -0.02  0.98  0.00 0.03 0.03  1.00 1.02 1.03 

  Summer 24 191  0.58 0.54 0.12 0.11 0.01 0.01  0.26  100   0.15 0.02 -0.13  0.88  0.02 0.03 0.05  1.02 1.02 1.04 

  Fall 11 85  0.59 0.54 0.16 0.14 0.01 0.00  0.01  100   0.20 0.02 -0.17  0.85  0.03 0.04 0.07  1.03 1.04 1.07 

Acronyms: Back = Modeled background contribution; Com. = Modeled contribution from commercial traffic; F2 = % of model + background within a factor of 2 

of observed; FB = Fractional bias; fp = false positive; fn = false negative; ICHEM = Instrumental Chemiluminescence; IGpCHEM = Instrumental Gas-Phase 

Chemiluminescence; Irr = Irreducible or systematic component of VG; Model = Modeled contribution from commercial, non-commercial and point sources; Ncom. 

= Modeled contribution from non-commercial traffic; NMSE = Normalized mean squared error; Obs. = Observed concentrations; Point = Modeled contribution 

from point sources; RSP = Spearman’s correlation coefficient; Red = reducible or random component of VG; VG = geometric variance. Δ = Total FB; ∑ = Sum of 

Irr. and Red. NMSE; ∏ = Product of Irr. and Red. VG. 
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Figure A. 1. Comparison of the ratio between predicted and observed concentrations of CO and NOx at each monitoring site. The x-

axis labels describe the AQS Site and the sampling device used. 
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Figure A. 2. Comparison of the ratio between predicted and observed concentrations of CO and NOx at each monitoring site, 

differentiated by prevailing wind direction (either downwind or parallel winds). The x-axis labels describe the AQS Site and the 

sampling device used. 
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Figure A. 3. Comparison of the ratio between predicted and observed concentrations of CO and NOx at each monitoring site, 

differentiated by day-of-week. The x-axis labels describe the AQS Site and the sampling device used. 
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Figure A. 4. Comparison of the ratio between predicted and observed concentrations of CO and NOx at each monitoring site, 

differentiated by season. The x-axis labels describe the AQS Site and the sampling device used. 
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Chapter V – Sensitivity analysis of the near-road dispersion model RLINE - an evaluation 

at Detroit, Michigan 

 

V.1 Summary 

This chapter examines the sensitivity of exposure estimates for health applications produced by 

dispersion models to meteorological, emission and traffic allocation inputs. The analysis used the 

Research Line source model (RLINE), a research-grade dispersion model specifically designed for 

near-road applications [43], to predict daily average concentrations of two common TRAP, oxides 

of nitrogen (NOx) and carbon monoxide (CO). These concentrations were compared to 

measurements at near-road monitoring sites in Detroit, MI, and were used to assess the potential 

for exposure measurement error in cohort and population-based studies. PM2.5 was also measured 

at near-road monitoring stations in Detroit; however, previous analyses [92] showed that 

background levels of PM2.5 were high (> 85% of total), thus the sensitivity to changes in mobile 

source modeling were not examined. The analysis shows considerable sensitivity to 

meteorological inputs; generally, the best performance was obtained using data specific to each 

monitoring site. An updated emission factor database provided some improvement, particularly at 

near-road sites, while the use of site-specific diurnal traffic allocations did not improve 

performance compared to simpler default profiles. 

V.2 Results 

At four of the monitoring sites (all but the industrial site), both NOx and CO predictions met 

recommended performance criteria [55, 56], specifically, F2 ≥ 50%, VG ≤ 1.6, and mean bias ≤ 

30% (not considered in this work). These criteria were not met at the industrial site, where 

performance was poor (e.g., RSP < 0.1). While close to I-75 (150 m), CO levels at this site may be 

affected by many factors that are incompletely known and/or modeled, including emissions from 

three adjacent and active rail lines and nearby industry (e.g., refining, cement, salt, steel, coke, 

sludge incineration). In addition, both I-75 and a major arterial (Fort St.) at the site become 
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elevated to cross the rail lines and the River Rouge. For these reasons, this site was excluded from 

further analysis.  

V.2.1 Sensitivity to meteorological inputs 

Comparisons of RLINE predictions were sensitive to the selection of the meteorological inputs 

(metrics shown in Table 25, indicators shown in Table 26). Generally, the best match to monitored 

data was obtained using on-site/KDET meteorology. For example, for NOx at the near-road and 

urban sites, on-site/KDET meteorology gave the highest RSP (0.57 to 0.74), among the lowest bias, 

and the lowest VG. The best performing case (NOx monitored at the near-road site using the 

IGpCHEM instrument) also had the lowest % Red with the on-site/KDET data. While the schools 

site performed better with the NWS data, RSP was low (0.40 to 0.43 with KDTW data, compared 

to 0.32 for KDET data). Comparing the NWS data both with and without the on-site data, KDET 

obtained better performance in most cases. CO results were similar, e.g., on-site/KDET data 

attained among the highest RSP at near-road and urban sites, the best performing case (near-road 

site, EC9830T method) had the only improvement seen in % Red (although higher bias), and VG 

was generally lowered. At sites more distant from roads, performance trends for CO were less 

clear and often comparable for the four meteorological datasets due to the variation and overlap of 

RSP and FB across the sites, while VG and % Red were very similar at most sites.  

Analyses by wind direction, weekday and season, while not definitive, again suggested that best 

performance was attained using on-site/KDET meteorology (Appendix B Tables B. 1 to B. 6). For 

NOx, weekday results largely mirrored results discussed earlier, but Saturday and Sunday results 

were improved (e.g., higher RSP) at only the near-road site (IGpCHEM instrument). By season, 

only the near-road site followed the overall trend. Interestingly, results by wind direction show 

better performance using KDTW rather than KDET meteorology at the near-road site. This site is 

at the western part of the study area and, unlike the other monitoring sites, is about the same 

distance to KDTW (20 km) and to KDET (22 km). Nevertheless, both NWS datasets gave 

relatively high RSP at this site (0.57 – 0.70; IGpCHEM monitor). For CO, missing data hampered 

analyses, but on-site/KDET sometimes improved performance, e.g., this dataset obtained the 

highest RSP at the near-road (EC9308T method) and urban sites during weekdays and during 

downwind conditions, and during winter at the near-road site (EC9830T) other site had lower bias 

and VG using on-site/KDET. However, the other CO results were inconsistent, e.g., on-site/KDET 
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meteorology increased bias and VG during downwind conditions at the near-road and urban sites, 

and parallel winds lowered RSP at the urban site. Changes at the suburban mostly fell below the 

significance threshold (e.g., 0.05 for RSP).  

V.2.2 Emission factors 

The updated (2015) emission factors mostly did not change RSP for NOx, though FB and VG were 

lowered (i.e., improved) in three cases (at the near-road/ICHEM and urban sites; Table 27). CO 

showed similar but less consistent effects. Results for downwind and parallel winds suggested 

improvements for NOx using the updated emission factors, e.g., RSP increased and bias decreased 

at the near-road/ICHEM and urban sites, VG increased at the same sites, and % Red decreased at 

the near-road/IGpCHEM site. For CO, the updated dataset did not change RSP for downwind and 

parallel winds, but % Red was lowered at the near-road/EC9830T site, and bias and VG were 

lowered at the other sites.  

Day-of-week analyses for NOx showed that the updated emission factors improved RSP, bias and 

VG on weekdays (all sites) and Saturdays and Sundays (most sites) (Appendix B Tables B.7 to 

B.12). Day-of-week analysis for CO gave similar trends, e.g., the updated emission factors lowered 

bias and VG at the near-road/INDiI site across all day types. Seasonal trends were less consistent. 

For NOx, the updated emission factors improved RSP at the near-road and urban/IGpCHEM sites, 

and lowered bias and VG at the urban site in winter; effects in other seasons were less consistent. 

For CO, investigations were hampered by missing data, but results with the updated inventory 

showed some improvements, e.g., in winter and fall, % Red decreased at the near-road site, and 

bias and VG were lowered in most cases, and in spring and summer, bias and VG were lowered at 

the near-road/INDiI and industrial sites. 

V.2.3 Temporal Allocation Factors 

The three sets of TAFs yielded few differences above significance thresholds in either NOx and 

CO predictions. Thus, the Detroit-specific TAFs that separated commercial and non-commercial 

traffic did not perform better than the simpler and default TAFs. Given the large changes in the 

hourly profiles, this lack of sensitivity to the TAFs is surprising. It might result from the use of 

daily averages in the evaluation, which could mask hourly changes, or other compensating errors.  
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V.2.4 Exposure estimates 

Predictions of daily average NOx concentrations using the KDET and KDTW meteorology 

respectively at the NEXUS receptors averaged 12.5 and 15.6 µg m-3, higher than those at the 

Detroit receptors (8.3 and 11.1 µg m-3), reflecting locational differences between the receptor sets, 

and in particular, the proximity of many NEXUS participants to major roads (Table 29).  

Scatterplots of daily NOx predictions comparing predictions using KDET and KDTW meteorology 

for receptor sets 2 (NEXUS) and 3 (Detroit receptors) show high correlation (RSP > 0.85) on most 

days (Figure 28). Somewhat lower correlations on a few days (e.g., for 8/28/2011, NEXUS RSP = 

0.81 and Detroit RSP = 0.79) were due to relatively large changes at a subset of receptors located 

across the area; otherwise no systematic spatial or other pattern was observed on these days. The 

most striking observation, however, of this comparison are the large day-to-day shifts in the bias 

between predictions using KDET and KDTW meteorology. Of the 30 days modeled, predictions 

using KDTW meteorology were biased upwards on 16 days, downwards on 3 days (4/6/2011, 

5/12/2011, 9/21/2011), and similar on the remaining 11 days. These results, which include 

weekdays and weekends, are attributable solely to the meteorological inputs. (Stratification by 

season, day type and other factors was not attempted due to the limited sample size.) These changes 

appear to be driven by wind speed and stability effects, and receptors clustered within about 100m 

of M-10 and I-94 were especially affected (Figure 29). These large changes were unexpected since 

daily averages and meteorological parameters at the two NWS sites were highly correlated (Table 

28).  

The positive prediction bias at the NEXUS and Detroit receptors was reflected in predicted health 

outcomes. The average attributable health impact differed significantly between KDET and 

KDTW on all but one of the 30 days modeled, and KDTW meteorology increased the frequency 

of adverse outcomes on most days, especially for the NEXUS cohort (Table 30). Similarly, when 

outcomes were pooled across receptors and days, differences in average attributable cases at 

NEXUS receptors exceeded those for the Detroit receptors (Table 31). 

V.3 Discussion 

V.3.1 Meteorology 

The sensitivity of RLINE results to meteorological inputs highlights the importance of appropriate 

input data. Some results tended to differ by site. For the sites nearest roads, on-site/KDET followed 
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by KDET performed best, e.g., attaining the highest RSP. At the suburban and urban sites, 

performance with KDET data also was better than with KDTW, but NWS data performed better 

than on-site. These sites are farther from major roads, and monitored concentrations likely result 

from multiple emission sources and not just traffic on the nearby road. In these cases, on-site 

meteorological measurements may be less representative for dispersion modeling than airport data, 

at least under some source and meteorological conditions, e.g., ground level emissions during 

calms, and NWS data may better represent the conditions affecting dispersion from roadways. 

Prior dispersion modeling in Detroit has judged both NWS sites to be representative, e.g., 

modeling of SO2 emitted from mostly elevated point sources used KDTW [127], while TRAP 

modeling used KDET [185]. As noted, individual meteorological parameters, e.g., wind speed or 

direction, typically are highly correlated between the nominal and alternative inputs, although 

some differences were identified, especially at the suburban site (Table 28). However, the 

combined effect of different meteorological datasets is best determined by sensitivity analyses 

examining pollutant predictions.  

Application to the NEXUS and Detroit receptors receptor sets showed that meteorological datasets 

obtained at NWS stations 18 km or more apart can make large differences in daily concentration 

predictions on some days, which supports findings from comparisons at the monitoring sites. Both 

NWS are at airports, and the surrounding terrain is flat and mostly urban, commercial, wooded, or 

agricultural. The differences in predicted concentrations likely result from changes in atmospheric 

stability that alters near-road concentration gradients, possibly due to very stable conditions which 

can cause the highest concentrations [43]. This suggests the possibility of significant exposure 

measurement error if the meteorological data are not representative, e.g., measured at a distant site. 

Moreover, errors may be higher for more vulnerable populations, as portrayed by the NEXUS 

receptors for children who lived close to major roads. 

Due to siting and instrumentation limitations, relatively few air quality monitoring sites, including 

the near-road sites, measure all of the meteorological parameters required for research or 

regulatory-grade dispersion modeling. Thus, local measurements were blended together with NWS 

(or other) observations. While this approach is workable, incorporated in the AERMET processor, 

and generally obtained the best performance in the Detroit application, a full set of local 

measurements may be preferable for obtaining wind fields that are the most representative of near-
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road environments. This option, which could not be fully tested in Detroit, leads to a 

recommendation to collect a full set of local meteorological measurements for dispersion modeling 

when practicable (including factors such as ground cover, surface roughness, and other factors that 

affect the spatial variation in wind fields). This reinforces long standing model guidance that 

recognizes the increased heat flux and surface roughness in urban areas and the general need for 

multiple monitoring sites in large urban areas [60, 186]. However, no specific guidance is yet 

provided for near-road modeling. For larger roads in urban settings, such modeling involves winds, 

emissions and pollutant dispersion transitioning from the road “microenvironment,” defined by 

large paved areas (e.g., portions of the right-of-way for I-96 in Detroit exceeds 150 m in width as 

each traffic direction includes three local and three express lanes, a two lane service road, multiple 

shoulders, and some vegetated buffers), to the adjacent populated “microenvironment,” which can 

be mostly suburban in nature, dominated by buildings and trees and with relatively fewer flat paved 

surfaces. Guidance defining the most representative meteorological data for traffic-related 

emissions in such settings, which differs from the general urban environment, would improve near-

road predictions. 

V.3.2 Emission factors 

The performance analysis suggested that RLINE performed slightly better using the alternative 

emission factors as compared to nominal ones. The alternative inputs substantially changed 

emission factors for several vehicle classes, e.g., overall emissions from light duty gas vehicle 

(LDGV) and heavy duty diesel vehicle (HDDV) classes decreased by 48 and 30% for NOx , and 

by 30 and 23% respectively for CO (Table 32 and Table 33); changes at certain speeds and 

temperatures could be larger. To help interpret these changes as well as traffic activity estimates, 

which are frequently reduced to vehicle counts (see next section), emission factor differences 

among vehicle classes can be expressed as passenger car equivalents (PCEs) [132, 187]. As 

examples, using LDGV emissions as a base: NOx emissions from a single HDDV represent 12 to 

63 PCEs; CO emissions represent only 0.2 to 1.3 PCEs; and both NOx and CO PCEs increase at 

lower speeds and colder temperatures (Table 34). The large changes in NOx emission factors 

suggest that emission estimates can be very sensitive to the estimated traffic activity (e.g., 

commercial traffic counts), especially during cold weather and congestion when speeds are lower 

and the PCEs are high. The temperature and pressure dependence of MOVES-generated emission 

factors might partially mask modeled differences in predicted concentrations obtained using 
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different emission factor sets, although the post-processing steps taken (e.g., creating temperature-

specific emission factors) may mitigate this effect. Alternatively, changes in fleet mix could also 

have a large impact on emission. factor changes also depend on the fleet mix. Our fleet mix 

estimates for commercial vehicles (which are mostly diesel) in Detroit range from 3 to 5% on most 

roads to 9% on portions of major roads, e.g., I-75 and I-94 (Table 35). Considering a NOx PCE of 

20 and 5% HDDVs, emissions from HDDVs and LDVs are equivalent, which shows the need to 

obtain accurate traffic activity data.  

Uncertainty in mobile source emission inventories can arise from many sources, e.g., the 

representation of the road network geometry, uncertainty in traffic activity (e.g., vehicle-

kilometers traveled or VKT, volume, vehicle type and age, speed, acceleration, and the number of 

cold starts), uncertainty in emission factors estimates for engine exhaust noted above [188–190]. 

These factors can vary temporally and spatially. Other notable factors include a lack of traffic 

counts and on-road emission measurements, and discrepancies between fleet classifications and 

VKT needed by models and the available statistical summaries [128, 191]. Because fleet mix and 

VKT data usually are collected and aggregated at the county level, data may not be representative 

of the city or the roads of interest. As noted above, even modest changes in the commercial fraction 

of traffic may significantly affect emissions since, for NOx, one HDDV can emit the equivalent of 

many passenger cars. This may be especially important in Detroit given the considerable through-

traffic of commercial vehicles (mostly HDDVs) crossing the Ambassador Bridge to or from 

Canada via along I-75 and I-94, which may have the effect of increasing the HDDV fraction among 

these roads and boosting NOx emissions. NOx also may have been underestimated since the 

simplified emission factors averaged out higher emissions from cold starts. While these issues may 

be less important for mobile source inventories when aggregated to the annual average and city-

wide level, these issues may be important for estimating spatially- and temporally resolved 

exposures.  

V.3.3 Temporal allocation factors 

The three sets of TAFs yielded few differences above significance thresholds in either NOx and 

CO predictions. Thus, the alternative Detroit-specific TAFs that separated commercial and non-

commercial traffic did not perform better than the nominal TAFs. This result was unanticipated, 

especially for NOx, given the differences between commercial and non-commercial vehicles, and 
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the differences seen in the simplified analyses (discussed previously). The fairly large hour-to-

hour differences in TAFs at the hourly level may be “washed out” at the daily level or just not 

observable given other errors and uncertainties. In addition, the local TAFs were based on only 

the larger Detroit area roads equipped with permanent traffic monitoring recorders. Smaller roads 

can account for a sizable fraction of TRAP emissions, e.g., based on the Detroit link-based 

inventory [128],, the smaller (non-trunkline) roads accounted for 60% of total VKT in 2010. Our 

calculations show VKT for all vehicles and commercial vehicles increasing by 1 and 2 % per year, 

similar to a recent SEMCOG report [192]. The use of local TAFs might improve modeling at the 

hourly level, which was beyond the present scope, as has been suggested elsewhere [193]. 

V.3.4 Application 

The large differences in predictions that occurred on a few days (see Figure 28 and Figure 29), 

while uncommon, can result from changes in atmospheric stability that alters the near-road 

concentration gradient. Thus, while KDTW and KDET obtain mostly similar measurements, the 

hours or days that differ can cause potentially large impacts on the estimated health impacts. This 

possibility may increase when meteorological data are obtained at a distant site or is not 

representative of local conditions. For this simple application, predicted exposures differed 

significantly using the two NWS datasets, and the effect was magnified for the vulnerable 

population. Thus, effects due to exposure measurement errors may be magnified among sensitive 

populations, as seen by the greater difference in the NEXUS sample.  

The spatial nature of NEXUS homes likely places a role in the above effect. Distances to the 

nearest “major” road, i.e., AADT > 10,000 (a conservative cut-point for distinguishing high 

trafficked roads), were calculated for receptors in sets 2 and 3 (Figure 30). For the NEXUS 

receptors, 61% were within 200 m, 20% within 200 – 400 m, and 19% beyond 400 m; for the 

Detroit receptors, these three groups contained 57, 29 and 13% of the population-weighted 

receptors, respectively. The differences between receptor sets 2 and 3 reflect the design of the 

NEXUS study which selected households that were near major roads (<200 m) as well as 

comparison households that were further away (>350 m), however, differences are somewhat 

diminished since many NEXUS children moved during the study period. We also calculated the 

number of major roads within 500 m of each receptor. For the NEXUS receptors, 10% of receptors 

had no major roads within 500 m, 66% had between 1 and 10 major roads within 500 m, and 23% 
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had more than 10 major roads within 500 m; for Detroit receptors, the corresponding percentages 

are 7, 74 and 17%, respectively. Thus, not only are NEXUS receptors closer to major roads, they 

are also closer to more major roads than the general Detroit population. 

V.3.5 Comparison to Literature 

The sensitivity of dispersion model results and model-based exposure estimates to input data has 

been explored, however in scenarios with limited generalizability. A city-scale study (189 km2) 

that used the Atmospheric Dispersion Modelling System (ADMS) to simulate industrial mercury 

emissions in northwestern England showed that varying meteorological inputs (e.g., 

meteorological station, release point temperature) changed population-weighted exposures by up 

to 16% [62]. Meteorological inputs also produced the largest variability (compared to other inputs) 

in exposures in a study using ADMS to simulate traffic-related emissions of PM10 [194]. A local-

scale study (8 km2) that used AERMOD and the Industrial Source Complex Short Term model 

(ISCT3) to simulate hexavalent chromium emissions from a shipbuilding facility in California 

showed similar dependence (25% variation) on meteorological inputs [63]. The variations owing 

to meteorological data in these studies on non-TRAP pollutants were similar to results found in 

this work. As well, an assessment of airport and local meteorological data used in urban canyon 

models found that use of local data improved results [57]. However, with reference to the present 

application, these applications have not studied traffic-related pollutants, which are of concern in 

urban areas, used recent roadway dispersion models, or commented on the potential influence on 

sensitive near-road communities.  

V.3.6 Limitations and Uncertainty 

Several limitations and uncertainties are noted. Predictions did not include chemical 

transformations and cold start emissions. The summary comparisons of modeled and monitored 

concentrations used a chosen threshold (0.05) to denote differences in the performance measures, 

which does not imply statistical significance. The computational burden limited the number of 

days that could be simulated, and thus seasonal and day-of-week analyses were not attempted. 

Exposures and health outcomes were based on point estimates of the concentration-response 

coefficient, and consideration of the confidence intervals may dampen observed results. We did 

not consider statistical power, or how results might vary given different samples of Detroit 

receptors (e.g., a population-weighted sample). There was an issue with identifying the sampling 
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instrument at certain sites, which was not resolved – however, the sampling method and detection 

limit for all were identified. Some sources of potential errors pertaining to near-road modeling may 

be important, but were not examined, e.g., geospatial errors in the road network linearization. The 

exposure results did not account for indoor/outdoor relationships or time-activity information, e.g., 

the time children spent at school. We had insufficient data to distinguish results by season.  



  

124 

 

V.4 Tables 

Table 25. Data for Summary of sensitivity analysis for meteorology inputs, showing results of performance evaluation for NOx and 

CO for three comparisons.  
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RSP DET x 0.32 0.58 0.74 0.57 0.58 0.21 0.89 0.45 0.17 0.00 

   0.43 0.56 0.67 0.57 0.54 0.41 0.86 0.44 0.18 -0.04 

 DTW x 0.32 0.41 0.65 0.50 0.54 0.13 0.76 0.41 0.07 0.02 

   0.40 0.36 0.57 0.48 0.52 0.22 0.75 0.39 0.10 -0.10 

FB_total DET x 0.15 -0.01 0.23 -0.13 -0.06 -0.04 0.40 -0.19 -0.05 -0.11 

   -0.01 -0.29 -0.05 -0.35 -0.29 -0.23 0.12 -0.35 -0.20 -0.14 

 DTW x 0.20 -0.13 0.09 -0.21 -0.12 -0.03 0.21 -0.25 -0.11 -0.10 

   0.04 -0.40 -0.14 -0.43 -0.32 -0.20 0.01 -0.39 -0.24 -0.18 

FB_fn DET x 0.22 0.17 0.28 0.09 0.09 0.07 0.40 0.01 0.07 0.03 

   0.12 0.06 0.12 0.02 0.03 0.00 0.17 0.00 0.03 0.02 

 DTW x 0.26 0.13 0.20 0.07 0.07 0.09 0.26 0.01 0.05 0.04 

   0.16 0.06 0.09 0.02 0.03 0.02 0.14 0.00 0.02 0.03 

VG DET x 1.13 1.19 1.15 1.15 1.10 1.05 1.20 1.07 1.05 1.04 

   1.09 1.35 1.15 1.27 1.21 1.07 1.09 1.17 1.10 1.05 

 DTW x 1.15 1.28 1.15 1.20 1.12 1.06 1.14 1.10 1.06 1.05 

   1.11 1.56 1.22 1.39 1.25 1.08 1.11 1.22 1.12 1.08 

VG_red DET x 1.12 1.18 1.11 1.12 1.09 1.04 1.05 1.03 1.05 1.03 

   1.09 1.19 1.15 1.12 1.11 1.01 1.07 1.04 1.06 1.03 

 DTW x 1.13 1.23 1.15 1.12 1.09 1.05 1.10 1.04 1.04 1.04 

   1.11 1.27 1.18 1.14 1.11 1.04 1.11 1.05 1.06 1.05 
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Table 26. Summary of sensitivity analysis for meteorology inputs, showing results of performance evaluation for NOx and CO for 

three comparisons. Symbols: ● = improved/supporting, ○ = diminished/contrary, ~ = comparable, ‘ ’ indeterminate (sets overlap by 

more than the minimum of 0.05 and 50% of the smaller within-set range). (See Table 25 for underlying data.) 
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RSP On-site/KDET highest? ○ ~ ● ~ ~  ○ ~ ~ ~ 

 KDET > KDTW?  ● ● ● ●  ● ● ● ● 

  On-site > NWS? ○  ●  ●  ○    

FB |On-site/KDET| lowest? ○ ● ○ ● ●  ~ ○ ● ● 

 |KDET| < |KDTW|?           

 |On-site| < |NWS|? ○  ○     ○   

VG On-site/KDET lowest? ~ ● ~ ~ ~  ~ ○ ~ ~ 

 KDET < KDTW?       ●    

 On-site < NWS? ○ ● ● ● ●  ● ○ ● ● 

% Red On-site/KDET lowest? ○ ○ ● ○ ○  ○ ● ○ ○ 

 KDET < KDTW?        ●   

  On-site < NWS? ● ○  ○ ○  ○ ● ○ ○ 
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Table 27. Summary of sensitivity analysis for emission factor inputs, comparing results of performance evaluation for nominal (2010) 

and alternative (2015) emission inventory. Symbols: ● = improved/supporting, ○ = diminished/contrary, ~ = comparable). 

  NOx  CO 

Metric Supporting argument 
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U
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RSP 2015 inventory highest? ~ ~ ~ ~ ~  ~ ~ ~ ○ 

FB 2015 inventory lowest? ~ ● ○ ● ●  ~ ○ ● ~ 

VG 2015 inventory lowest? ~ ● ~ ● ●  ~ ○ ● ~ 

% Red 2015 inventory lowest? ~ ○ ● ○ ○  ~ ● ○ ○ 
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Table 28. Matrix of circulation correlation coefficient for wind direction (upper right values) and Pearson correlation coefficients of 

wind speeds (lower left values) across sites. Heat map shows sites that have different (red) to similar (green) wind speeds and wind 

directions.  

   Circular correlation of wind directions 

   KDET KDTW 

  

 N
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S
 o
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ea
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o

n
 c

o
rr
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a
ti

o
n
 o

f 
w

in
d
 s

p
ee

d
s 

K
D

E
T

 

NWS only  0.76 1.00 0.94 0.97 0.90 0.88 0.73 0.88 0.85 0.87 0.84 

Suburban 0.58  0.76 0.81 0.76 0.68 0.72 0.95 0.72 0.74 0.74 0.71 

Industrial 1.00 0.58  0.94 0.97 0.90 0.88 0.73 0.88 0.85 0.87 0.84 

Schools 0.87 0.63 0.87  0.90 0.81 0.86 0.77 0.86 0.89 0.83 0.80 

Near-road 0.89 0.52 0.89 0.75  0.91 0.84 0.73 0.84 0.81 0.90 0.84 

Urban 0.89 0.50 0.89 0.76 0.86  0.76 0.67 0.76 0.74 0.80 0.88 

K
D

T
W

 

NWS only 0.79 0.51 0.79 0.71 0.70 0.74  0.75 1.00 0.95 0.95 0.91 

Suburban 0.51 0.93 0.51 0.57 0.46 0.45 0.57  0.75 0.77 0.77 0.74 

Industrial 0.79 0.51 0.79 0.71 0.70 0.74 1.00 0.57  0.95 0.95 0.91 

Schools 0.70 0.56 0.70 0.84 0.60 0.64 0.88 0.62 0.88  0.90 0.87 

Near-road 0.71 0.46 0.71 0.61 0.83 0.73 0.89 0.51 0.89 0.76  0.92 

Urban 0.73 0.46 0.73 0.64 0.71 0.85 0.92 0.49 0.92 0.79 0.88  

 

Table 29. Annual (2011) average NOx concentrations (µg m-3) predicted at NEXUS and Detroit receptors using KDET and KDTW 

meteorology. 

NWS station NEXUS Detroit 

KDET 12.5 8.3 

KDTW 15.6 11.1 
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Table 30. Difference in average attributable cases (per 10-4) of various health outcomes predicted using KDET and KDTW 

meteorology; difference < 0 indicates outcomes predicted using KDTW were greater than those for KDET. Only 1 day (3/25/2011) 

did not show significant (α = 0.05) differences. 

 Asthma ED visit 
 Asthma  

exacerbation 

 Hospitalization  

due to asthma 

 Hospitalization  

due to COPD 

 NEXUS Detroit  NEXUS Detroit  NEXUS Detroit  NEXUS Detroit 

1/12/2011 -0.055 -0.045  -89.8 -77.9  -1.39E-03 -1.10E-03  -0.046 -0.044 

1/24/2011 -0.108 -0.081  -210.4 -156.5  -2.87E-03 -2.15E-03  -0.072 -0.066 

2/5/2011 -0.054 -0.043  -90.7 -75.4  -1.30E-03 -1.06E-03  -0.047 -0.042 

2/17/2011 -0.011 -0.008  -19.2 -13.9  -2.62E-04 -1.88E-04  -0.010 -0.008 

3/1/2011 -0.070 -0.051  -116.5 -89.4  -1.84E-03 -1.30E-03  -0.053 -0.047 

3/13/2011 -0.010 -0.009  -16.5 -14.3  -2.50E-04 -1.99E-04  -0.010 -0.009 

3/25/2011            

4/6/2011 0.062 0.040  113.2 74.5  1.55E-03 1.01E-03  0.050 0.038 

4/18/2011 -0.007 -0.009  -13.4 -17.7  -1.87E-04 -2.26E-04  -0.007 -0.010 

4/30/2011 -0.019 -0.013  -32.7 -22.9  -4.65E-04 -3.22E-04  -0.018 -0.014 

5/12/2011 0.070 0.048  125.9 87.7  1.76E-03 1.21E-03  0.060 0.049 

5/24/2011 -0.007 -0.005  -11.6 -9.5  -1.61E-04 -1.27E-04  -0.007 -0.006 

6/5/2011 -0.042 -0.033  -77.5 -58.9  -1.12E-03 -8.13E-04  -0.039 -0.034 

6/17/2011 -0.045 -0.032  -77.1 -55.5  -1.11E-03 -7.52E-04  -0.039 -0.032 

6/29/2011 -0.058 -0.043  -98.7 -74.5  -1.39E-03 -1.03E-03  -0.053 -0.045 

7/11/2011 -0.004 -0.004  -5.9 -7.5  -6.62E-05 -1.09E-04  -0.004 -0.005 

7/23/2011 -0.041 -0.026  -70.6 -47.2  -9.68E-04 -6.47E-04  -0.034 -0.027 

8/4/2011 -0.033 -0.024  -53.2 -41.9  -8.09E-04 -5.91E-04  -0.031 -0.026 

8/16/2011 -0.119 -0.087  -214.4 -160.0  -3.03E-03 -2.19E-03  -0.091 -0.082 

8/28/2011 -0.030 -0.023  -46.8 -39.5  -7.19E-04 -5.44E-04  -0.026 -0.023 

9/9/2011 -0.041 -0.033  -66.3 -55.1  -1.04E-03 -7.72E-04  -0.032 -0.030 

9/21/2011 0.051 0.033  94.4 62.6  1.25E-03 8.32E-04  0.040 0.032 

10/3/2011 -0.032 -0.026  -52.8 -45.6  -7.73E-04 -6.30E-04  -0.027 -0.026 

10/15/2011 -0.004 -0.003  -7.9 -5.9  -9.87E-05 -7.43E-05  -0.005 -0.004 

10/27/2011 0.056 0.038  107.0 68.3  1.53E-03 9.94E-04  0.044 0.036 

11/8/2011 -0.037 -0.031  -72.4 -60.4  -1.03E-03 -8.13E-04  -0.030 -0.030 

11/20/2011 -0.006 -0.005  -7.9 -8.4  -1.32E-04 -1.20E-04  -0.005 -0.005 

12/2/2011 0.038 0.030  71.8 57.0  1.03E-03 7.90E-04  0.029 0.027 

12/14/2011 -0.019 -0.018  -35.3 -32.9  -5.47E-04 -4.70E-04  -0.017 -0.018 

12/26/2011 -0.028 -0.019  -47.5 -34.7  -6.55E-04 -4.77E-04  -0.025 -0.020 
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Table 31. Average attributable cases made using KDET and KDTW meteorology at NEXUS and Detroit receptors for various NOx 

related health outcomes. All differences were significant (Wilcoxon signed rank test CI of 95%). 

   NEXUS  Detroit  

Health outcome Units 
Age 

group 

KDET mean 

cases 

KDTW 

mean cases 

KDET 

mean cases 

KDTW 

mean cases 

Asthma ED visit per 10,000 0-17 0.81 × 10-1 1.01 × 10-1 4.96 × 10-2 6.56 × 10-2 

Hospitalization due to asthma per 10,000 0-64 2.00 × 10-3 2.50 × 10-3 1.21 × 10-3 1.61 × 10-3 

Asthma exacerbation per 10,000 6-14 1.40 × 102 1.73 × 102 0.87 × 102 1.15 × 102 

 

Table 32. Percent difference in emission factors between average 2010 and 2015 EF for the 8 Highway Performance Monitoring 

System (HMPS) classes. Blue-filled cells indicate 2015 emission factors which are greater than 2010 emission factors. 

 

 HMPS Vehicle Class 

Pollutant LDGV LDGT1 LDGT2 HDGV MC LDDV LDDT HDDV 

CO 30 52 75 67 11 832 13 23 

NOx 48 62 80 49 15 73 57 30 
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Table 33. Checking the impact of the large change in LDDV EF indicated above. 

Vehicle 

class 

NFC 11 

Fleet 

Mix 

2010 EF 

(g/VMT) 

2010 EF 

(g /1000VMT) 

2015 EF 

(g/VMT) 

2015g / 

1000VMT 

LDGV 0.784 6.29 4929 4.23 3320 

LDGT1 0.12 8.90 1068 4.17 500 

LDGT2 0.025 8.90 222 2.15 54 

HDGV 0.003 21.26 64 33.99 102 

MC 0.005 18.36 92 19.47 97 

LDDV 0.008 0.70 6 4.93 39 

LDDT 0.002 4.27 9 3.88 8 

HDDV 0.053 4.35 231 3.35 177 

 

So in 2010, LDDV contributed 0.1% of the total mass, so even though this increases to 1% in 2015, the significance in a 7-factor increase 

in LDDV EF is diminished because of the low volume of LDDV in Detroit and because of the overall trend of decreasing mass from 

vehicles. 
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Table 34. Ratio between MOVES 2015 emission factors for HDDV to LDGV averaged across months by speed and temperature. 

  Temperature (°F) Temperature (°F) 

  0 10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70 80 90 100 

  CO                     NOx                     

S
p
ee

d
 (

m
p
h
) 

2.5 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.0 0.8 0.7 63 63 63 63 63 64 64 58 42 34 30 

5 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 0.9 0.8 0.7 41 41 41 41 41 42 42 39 31 26 24 

10 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.0 0.8 0.6 0.6 29 29 29 29 29 29 30 29 24 22 20 

15 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.9 0.7 0.6 0.5 26 26 26 26 26 26 26 26 23 21 20 

20 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.7 0.5 0.5 24 24 24 24 24 24 24 24 22 20 19 

25 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.9 0.7 0.6 0.5 22 22 22 22 22 22 22 22 20 19 18 

30 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.8 0.6 0.5 0.5 22 22 22 22 22 22 22 22 20 19 18 

35 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.6 0.5 0.4 19 19 19 19 19 19 19 19 18 17 16 

40 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.7 0.5 0.4 0.4 18 18 18 18 18 18 18 18 17 16 15 

45 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.5 0.4 0.4 17 17 17 17 17 17 17 17 16 15 14 

50 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.5 0.4 0.4 16 16 16 16 16 16 16 16 15 14 13 

55 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.6 0.5 0.4 0.3 15 15 15 15 15 15 15 15 14 13 13 

60 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.6 0.5 0.4 0.3 14 14 14 14 14 15 15 15 13 13 12 

65 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.4 0.4 0.3 15 15 15 15 15 15 15 15 14 13 13 

70 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.4 0.3 0.3 15 15 15 15 15 15 15 15 14 13 12 

75 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.3 0.2 0.2 14 14 14 14 14 14 15 14 13 13 12 
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Table 35. Aggregated vehicle class fraction by NFC class (i.e., “fleet-mix”). 

Vehicle 

Classifier 

Commercial/ 

Non-commercial 

11 12 14 16 17 19 

LDGV Non-commercial 0.784 0.839 0.840 0.857 0.788 0.809 

LDGT1 Non-commercial 0.120 0.109 0.109 0.083 0.147 0.151 

LDGT2 Commercial 0.025 0.021 0.020 0.019 0.027 0.014 

HDGV Commercial 0.003 0.003 0.003 0.005 0.003 0.002 

MC Non-commercial 0.005 0.006 0.006 0.007 0.009 0.009 

LDDV Both (50-50) 0.008 0.008 0.008 0.009 0.007 0.007 

LDDT Commercial 0.002 0.002 0.002 0.002 0.002 0.001 

HDDV Commercial 0.053 0.012 0.012 0.019 0.016 0.008 
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V.5 Figures 

 

Figure 28. Scatterplots of NOx predicted using KDET or KDTW meteorology at NEXUS (n=206) and Detroit receptors (n=543) by 

days. Each plot shows the 1:1 line and is truncated at 100 µg m-3.  
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Figure 29. Investigation of spatial relationship of points on 12/2/11 with large discrepancies in the relationship between KDET and KDTW (i.e., 

ratio of KDTW / KDET > 1.2, depicted as ‘mark = T’). 
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Figure 30. Histograms of distance between receptors to the nearest major (AADT > 10,000) roads, and the number of nearby large roads. Results 

for both NEXUS and Detroit receptors are shown. 
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Appendix B – Expanded tables of Model Sensitivity 

Table B. 1. Summary of sensitivity analysis for meteorology inputs, showing results of performance evaluation for NOx, separated by 

prevailing wind direction (downwind or parallel). Symbols: ● = improved/supporting, ○ = diminished/contrary, ~ = comparable, ‘ ’ 

indeterminate (sets overlap by more than the minimum of 0.05 and 50% of the smaller within-set range). 

 

  19 - ICHEM 93 - ICHEM 93 - IGpCHEM 94 - ICHEM 94 - IGpCHEM  19 - CHEM 93 - ICHEM 93 - IGpCHEM 94 - ICHEM 94 - IGpCHEM 

    Downwind Downwind Downwind Downwind Downwind  Parallel Parallel Parallel Parallel Parallel 

RSP DET ONSITE highest? ○ ○ ○ ● ○  ○ ○ ~ ○ ○ 

 DET > DTW? ○ ○ ○  ○   ● ● ● ● 

  ONSITE > BASE?  ●  ● ●  ○     

BIAS |DET ONSITE| lowest? ○ ~ ○ ~ ~  ○ ● ~ ~ ~ 

 |DET| < |DTW|? ○           

 |ONSITE| < |BASE|?   ○    ○     

VG DET ONSITE lowest? ~ ~ ○ ~ ~  ○ ● ~ ● ● 

 DET < DTW? ○       ● ● ● ● 

 ONSITE < BASE? ● ● ○ ● ●  ○   ●  

% RED DET ONSITE lowest? ~ ○ ~ ○ ○  ○ ○ ○ ○ ○ 

 DET < DTW?       ○  ○ ● ● 

  ONSITE < BASE?  ○ ● ○ ○   ○  ○  
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Table B. 2. Summary of sensitivity analysis for meteorology inputs, showing results of performance evaluation for NOx, separated by 

day of week. Symbols: ● = improved/supporting, ○ = diminished/contrary, ~ = comparable, ‘ ’ indeterminate (sets overlap by more 

than the minimum of 0.05 and 50% of the smaller within-set range), LOW RSP = the spearman R was too low to evaluate trends. 

  19 - CHEM 93 - ICHEM 93 - IGpCHEM 94 - ICHEM 94 - IGpCHEM  19 - CHEM 93 - ICHEM 93 - IGpCHEM 94 - ICHEM 94 - IGpCHEM  19 - CHEM 93 - ICHEM 93 - IGpCHEM 94 - ICHEM 94 - IGpCHEM 

    Weekday Weekday Weekday Weekday Weekday  Saturday Saturday Saturday Saturday Saturday  Sunday Sunday Sunday Sunday Sunday 

RSP DET ONSITE highest? ○ ~ ● ~ ●  ○ ○ ● ○ ~  ○ ~ ● ○ ○ 

 DET > DTW?  ● ● ● ●   ● ● ●    ● ●   

  ONSITE > BASE? ○  ●  ●  ○ ○ ●  ●  ○  ● ○ ○ 

BIAS |DET ONSITE| lowest? ○ ~ ○ ● ●  ○ ● ● ● ●  ○ ● ● ● ~ 

 |DET| < |DTW|?                  

 |ONSITE| < |BASE|? ○  ○    ○      ○     

VG DET ONSITE lowest? ~ ● ~ ~ ~  ~ ● ● ~ ~  ○ ● ● ● ~ 

 DET < DTW?  ●       ●         

 ONSITE < BASE? ○ ●  ● ●  ○ ● ● ● ●  ○ ● ● ● ● 

% RED DET ONSITE lowest? ○ ○ ● ○ ○  ○ ○ ○ ○ ○  ○ ○ ○ ○ ○ 

 DET < DTW?                  

  ONSITE < BASE? ● ○ ● ○ ○  ● ○ ○ ○ ○  ○ ○ ○ ○ ○ 
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Table B. 3. Summary of sensitivity analysis for meteorology inputs, showing results of performance evaluation for NOx, separated by 

season. Symbols: ● = improved/supporting, ○ = diminished/contrary, ~ = comparable, ‘ ’ indeterminate (sets overlap by more than the 

minimum of 0.05 and 50% of the smaller within-set range), LOW RSP = the spearman R was too low to evaluate trends. 

  
19 - 

CHEM 

93 - 

ICHEM 

93 - 

IGpCHEM 

94 - 

ICHEM 

94 - 

IGpCHEM 
 

19 - 

CHEM 

93 - 

ICHEM 

93 - 

IGpCHEM 

94 - 

ICHEM 

94 - 

IGpCHEM 
 

19 - 

CHEM 

93 - 

ICHEM 

93 - 

IGpCHEM 

94 – 

ICHEM 

94 - 

IGpCHEM 
 

19 - 

CHEM 

93 - 

ICHEM 

93 - 

IGpCHEM 

94 - 

ICHEM 

94 - 

IGpCHEM 

  Winter Winter Winter Winter Winter  Spring Spring Spring Spring Spring  Summer Summer Summer Summer Summer  Fall Fall Fall Fall Fall 

RSP 
DET ONSITE 

highest? 
○ ~ ~ ○ ○  ○ ~ ● ~ ~  ~ ● ● 

LOW 

RSP 
●  ○ ● ~ ~ ~ 

 DET > DTW? ● ● ● ● ●   ● ● ● ●  ● ●  
LOW 

RSP 
   ● ● ● ○ 

 ONSITE > BASE? ○   ○   ○   ●    ● ● 
LOW 

RSP 
●  ○  ●  ● 

BIAS 
|DET ONSITE| 

lowest? 
○ ○ ○ ● ~  ○ ~ ○ ● ~  ~ ● ● 

LOW 

RSP 
~  ○ ● ○ ● ● 

 |DET| < |DTW|?                
LOW 

RSP 
       

 
|ONSITE| < 

|BASE|? 
○ ○ ○    ○  ○       

LOW 

RSP 
  ○     

VG 
DET ONSITE 

lowest? 
○ ~ ○ ~ ~  ○ ● ~ ~ ~  ~ ● ~ 

LOW 

RSP 
~  ~ ● ~ ~ ~ 

 DET < DTW?    ● ●    ●       
LOW 

RSP 
       

 ONSITE < BASE? ○ ● ○ ● ●  ○ ●  ● ●  ● ● ● 
LOW 

RSP 
●  ○ ● ● ● ● 

% 

RED 

DET ONSITE 

lowest? 
~ ~ ● ○ ○  ○ ○ ● ○ ○  ○ ○ ○ 

LOW 

RSP 
○  ○ ○ ● ○ ○ 

 DET < DTW?                
LOW 

RSP 
       

 ONSITE < BASE? ●  ● ○ ○  ● ○ ● ○ ○  ○ ○ ○ 
LOW 

RSP 
○   ○  ○ ○ 
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Table B. 4. Summary of sensitivity analysis for meteorology inputs, showing results of performance evaluation for CO, separated by 

prevailing wind direction (downwind or parallel). Symbols: ● = improved/supporting, ○ = diminished/contrary, ~ = comparable, ‘ ’ 

indeterminate (sets overlap by more than the minimum of 0.05 and 50% of the smaller within-set range), LOW RSP = the spearman R 

was too low to evaluate trends. 

  1 - IGFC 93 - EC9830T 93 - INDiI 94 - INDiI 1008 - IGFC  1 - IGFC 93 - EC9830T 93 - INDiI 94 - INDiI 1008 - IGFC 

    Downwind Downwind Downwind Downwind Downwind  Parallel Parallel Parallel Parallel Parallel 

RSP DET ONSITE highest?  ~ ○ ●    ~ ○ LOW RSP  

 DET > DTW?   ○ ●    ● ● LOW RSP  

  ONSITE > BASE?   ●         ○ LOW RSP   

BIAS |DET ONSITE| lowest?  ○ ~ ~    ○ ~ LOW RSP  

 |DET| < |DTW|?  ○        LOW RSP  

 |ONSITE| < |BASE|?  ○        LOW RSP  

VG DET ONSITE lowest?  ○ ~ ~    ~ ● LOW RSP  

 DET < DTW?  ○      ●  LOW RSP  

 ONSITE < BASE?  ○ ● ●     ● LOW RSP  

% RED DET ONSITE lowest?  ● ○ ○    ○ ○ LOW RSP  

 DET < DTW?   ○ ○    ○ ● LOW RSP  

  ONSITE < BASE?   ● ○ ○       ○ LOW RSP   
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Table B. 5. Summary of sensitivity analysis for meteorology inputs, showing results of performance evaluation for CO, separated day 

of week. Symbols: ● = improved/supporting, ○ = diminished/contrary, ~ = comparable, ‘ ’ indeterminate (sets overlap by more than 

the minimum of 0.05 and 50% of the smaller within-set range), LOW RSP = the spearman R was too low to evaluate trends. 

  1 - IGFC 93 - EC9830T 93 - INDiI 94 - INDiI 1008 - IGFC  1 - IGFC 93 - EC9830T 93 - INDiI 94 - INDiI 1008 - IGFC  1 - IGFC 93 - EC9830T 93 - INDiI 94 - INDiI 1008 - IGFC 

    Weekday Weekday Weekday Weekday Weekday  Saturday Saturday Saturday Saturday Saturday  Sunday Sunday Sunday Sunday Sunday 

RSP DET ONSITE highest? ○ ~ ~ ~ LOW RSP   ~ ○ ○    ~ ○ ○ LOW RSP 

 DET > DTW? ● ● ● ● LOW RSP   ○ ● ●    ○  ○ LOW RSP 

  ONSITE > BASE?     LOW RSP      ○       ○ ● LOW RSP 

BIAS |DET ONSITE| lowest? ~ ○ ● ● LOW RSP   ○ ● ●    ○ ~ ~ LOW RSP 

 |DET| < |DTW|?     LOW RSP         ○   LOW RSP 

 |ONSITE| < |BASE|?  ○   LOW RSP   ○      ○   LOW RSP 

VG DET ONSITE lowest? ~ ○ ~ ~ LOW RSP   ○ ~ ~    ○ ~ ~ LOW RSP 

 DET < DTW? ●    LOW RSP         ○   LOW RSP 

 ONSITE < BASE? ● ○ ● ● LOW RSP   ○ ● ●    ○ ● ● LOW RSP 

% RED DET ONSITE lowest? ○ ● ○ ○ LOW RSP   ● ○ ○    ● ○ ○ LOW RSP 

 DET < DTW?  ●   LOW RSP     ○     ○  LOW RSP 

  ONSITE < BASE? ○ ● ○ ○ LOW RSP    ● ○ ○      ● ○ ○ LOW RSP 
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Table B. 6. Summary of sensitivity analysis for meteorology inputs, showing results of performance evaluation for NOx, separated by 

season. Symbols: ● = improved/supporting, ○ = diminished/contrary, ~ = comparable, ‘ ’ indeterminate (sets overlap by more than the 

minimum of 0.05 and 50% of the smaller within-set range), LOW RSP = the spearman R was too low to evaluate trends. 

  
1 - 

IGFC 

93 - 

EC9830T 

93 - 

INDiI 

94 - 

INDiI 

1008 - 

IGFC 
 

1 - 

IGFC 

93 - 

EC9830T 
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  Winter Winter Winter Winter Winter  Spring Spring Spring Spring Spring  
Summ

er 
Summer 

Summ

er 

Summ

er 
Summer  Fall Fall Fall Fall Fall 

RSP 
DET ONSITE 

highest? 
○ ~ ○ ○ ○    ~ ● 

LOW 

RSP 
   ● ● ○  

LOW 

RSP 
~ ~ ○ ○ 

 DET > DTW? ● ●       ● ● 
LOW 

RSP 
   ● ● ●  

LOW 

RSP 
●  ● ○ 

 ONSITE > BASE?   ○ ○ ●     ● 
LOW 

RSP 
   ● ●   
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 ●   

BIAS 
|DET ONSITE| 

lowest? 
~ ○ ● ● ~    ~ ~ 
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RSP 
   ● ● ~  

LOW 

RSP 
○ ● ● ~ 

 |DET| < |DTW|?  ○         
LOW 

RSP 
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RSP 
    

 
|ONSITE| < 

|BASE|? 
 ○         
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RSP 
       

LOW 

RSP 
○    

VG 
DET ONSITE 

lowest? 
~ ○ ~ ~ ~    ~ ~ 

LOW 

RSP 
   ~ ~ ~  
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RSP 
○ ~ ~ ~ 

 DET < DTW?     ●      
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RSP 
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   ● 

 ONSITE < BASE? ● ○ ● ●     ● ● 
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   ● ● ●  
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○ ● ●  

% 
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lowest? 
○ ● ○ ○ ○    ○ ○ 
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   ○ ○ ○  
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RSP 
● ○ ○ ○ 

 DET < DTW?  ●   ○      
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   ○ ○   

LOW 

RSP 
   ● 

 ONSITE < BASE? ○  ○ ○ ○    ○ ○ 
LOW 

RSP 
   ○  ○  

LOW 

RSP 
● ○ ○ ○ 
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Table B. 7. Summary of sensitivity analysis for emission factor inputs, showing results of performance evaluation for NOx, separated 

by prevailing wind direction (downwind or parallel). Symbols: ● = improved/supporting, ○ = diminished/contrary, ~ = comparable, 

LOW RSP = the spearman R was too low to evaluate trends. 
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  Downwind Downwind Downwind Downwind Downwind  Parallel Parallel Parallel Parallel Parallel 

RSP 2015 highest ? ○ ● ~ ~ ~  ~ ● ~ ~ ● 

FB 2015 lowest ? ~ ● ○ ● ●  ~ ● ○ ● ● 

VG 2015 lowest ? ~ ● ○ ● ●  ~ ● ● ● ● 

% Red 2015 lowest ? ~ ○ ● ○ ○  ~ ○ ● ○ ~ 

 

Table B. 8. Summary of sensitivity analysis for emission factor inputs, showing results of performance evaluation for NOx, separated 

by weekday. Symbols: ● = improved/supporting, ○ = diminished/contrary, ~ = comparable, LOW RSP = the spearman R was too low 

to evaluate trends. 
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● 

FB 2015 lowest ? ~ ● ○ ● ●  ~ ● ● ● ●  ~ ● ● 
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● 

VG 2015 lowest ? ~ ● ○ ● ●  ~ ● ● ● ●  ~ ● ● 
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● 

% Red 2015 lowest ? ~ ○ ● ○ ○  ~ ○ ○ ~ ○  ~ ○ ○ 
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RSP 
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Table B. 9. Summary of sensitivity analysis for emission factor inputs, showing results of performance evaluation for NOx, separated 

by season. Symbols: ● = improved/supporting, ○ = diminished/contrary, ~ = comparable, LOW RSP = the spearman R was too low to 

evaluate trends. 
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  Winter Winter Winter Winter Winter  Spring Spring Spring Spring Spring  
Summe

r 

Summe

r 
Summer 

Summe

r 
Summer  Fall Fall Fall Fall Fall 

RSP 2015 highest ? ○ ~ ~ ○ ~  ~ ~ ~ ~ ~  ~ ~ ~ 
LOW 

RSP 
~  ~ ~ ~ ~ ~ 

FB 2015 lowest ? ~ ○ ○ ● ~  ~ ● ○ ● ●  ~ ● ● 
LOW 

RSP 
●  ~ ● ○ ● ● 

VG 2015 lowest ? ~ ~ ○ ● ●  ~ ● ~ ~ ●  ~ ● ● 
LOW 

RSP 
●  ~ ● ~ ● ● 

% Red 2015 lowest ? ~ ● ● ○ ○  ~ ○ ● ○ ○  ○ ○ ○ 
LOW 

RSP 
~  ~ ○ ● ○ ○ 

 

Table B. 10. Summary of sensitivity analysis for emission factor inputs, showing results of performance evaluation for CO, separated 

by weekday. Symbols: ● = improved/supporting, ○ = diminished/contrary, ~ = comparable, LOW RSP = the spearman R was too low 

to evaluate trends. 

 

  1 - IGFC 93 - EC9830T 93 - INDiI 94 - INDiI 1008 - IGFC  1 - IGFC 93 - EC9830T 93 - INDiI 94 - INDiI 1008 - IGFC 

  Downwind Downwind Downwind Downwind Downwind  Parallel Parallel Parallel Parallel Parallel 

RSP 2015 highest ?  ~ ~ ○    ~ ~ LOW RSP  

FB 2015 lowest ?  ○ ● ●    ○ ● LOW RSP  

VG 2015 lowest ?  ○ ~ ~    ~ ● LOW RSP  

% Red 2015 lowest ?  ● ○ ○    ● ~ LOW RSP  
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Table B. 11. Summary of sensitivity analysis for emission factor inputs, showing results of performance evaluation for CO, separated 

by weekday. Symbols: ● = improved/supporting, ○ = diminished/contrary, ~ = comparable, LOW RSP = the spearman R was too low 

to evaluate trends. 

  1 - IGFC 93 - EC9830T 93 - INDiI 94 - INDiI 1008 - IGFC  1 - IGFC 93 - EC9830T 93 - INDiI 94 - INDiI 1008 - IGFC  1 - IGFC 93 - EC9830T 93 - INDiI 94 - INDiI 1008 - IGFC 

  Weekday Weekday Weekday Weekday Weekday  Saturday Saturday Saturday Saturday Saturday  Sunday Sunday Sunday Sunday Sunday 

RSP 2015 highest ? ~ ~ ~ ○ LOW RSP  ● ~ ~ ○   LOW RSP ~ ● ○ LOW RSP 

FB 2015 lowest ? ~ ○ ● ~ LOW RSP  ~ ○ ● ~   LOW RSP ○ ● ~ LOW RSP 

VG 2015 lowest ? ~ ○ ● ~ LOW RSP  ~ ○ ● ~   LOW RSP ○ ● ~ LOW RSP 

% Red 2015 lowest ? ~ ● ○ ○ LOW RSP  ~ ● ○ ○   LOW RSP ● ~ ~ LOW RSP 

 

Table B. 12. Summary of sensitivity analysis for emission factor inputs, showing results of performance evaluation for CO, separated 

by weekday. Symbols: ● = improved/supporting, ○ = diminished/contrary, ~ = comparable, LOW RSP = the spearman R was too low 

to evaluate trends. 
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Chapter VI – Air pollution exposure apportionment among vulnerable residents of Detroit, 

MI 

 

VI.1 Summary 

This chapter presents a framework to apportion exposures of ambient air pollutants. In this chapter, 

“exposure apportionment” refers to the quantification of contributions from various emissions 

sources to the exposure received by individuals in specific micro-environments, specifically, 

“indoor-at-home,” “other indoor,” “outdoors,” “vehicle cabin,” and “near-road” compartments. 

Exposure apportionment identifies the source-compartment pairs that provide important 

contributions to the total air pollution dose for individuals and groups of interest, allowing targeted 

interventions that reduce exposure. Using the modeling framework developed in the second aim, 

point and mobile source contributions and background levels of NOx are estimated, and a 

probabilistic human exposure model (the Air Pollution EXposures model, APEX) is used to 

estimate concentrations of pollutants in various urban micro-environments (ME) and population 

time-activity in each ME for children, adults, and the elderly. Estimated exposures were derived 

from “background” levels and during the evening and morning commute in the indoor-at-home 

compartment, largely due to non-commercial traffic. This examination complements results of 

Aims 2 (Chapter III) and 3 (Chapter IV) pertaining to emissions and concentrations. The focus of 

this chapter, however, focuses on understanding the contribution of on-road mobile sources, 

specifically the non-commercial fleet, to cumulative exposures in Detroit. 

VI.2 Results 

Overall, exposures mostly occurred in the indoor MEs (i.e., indoor-at-home and other indoor), and 

exposures were dominated by background sources and non-commercial traffic (Figure 31). For 

adults, background sources contributed an average of 8.28 ppb (standard deviation or sd = 5.96 

ppb), representing 52% of the total NOx exposures derived from modeled NOx (Figure 32). 

Exposure to background sources primarily occurred in the other indoor micro-environment (i.e., 

workplace, school) during day time hours (9 am to 6 pm) (Table 36), and exposures were highest 

during the winter (Table 37) and on weekdays ( 
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Table 38). Non-commercial traffic contributed the second most to overall exposure, contributing 

an average of 4.60 ppb (sd = 9.34 ppb), representing 30% of total exposure among adults. The 

influence from non-commercial traffic sources occurred mostly during evening and early morning 

hours (7 pm to 8 am) in the indoor-at-home micro-environments. Contributions from commercial 

traffic and point sources were less than those for non-commercial traffic, and exposures occurred 

during the evening and early morning (i.e., in the indoor-at-home ME). Exposure to commercial 

traffic among adults was similar across seasons, but almost twice as high during the week as on 

the weekends.  

Exposures of children (age < 20 years) were similar to those of adults, and exposures among 

elderly (age > 65) were mostly lower than both adults or children. Exposures of children were 

similar to those of adults from all source groups for all seasons and by day of week type. 

Interestingly, exposure to non-commercial and commercial traffic was similar for children and 

adults, despite adults spending more time in vehicle cabins (Table 39); however, both adults and 

children spent more time (an order of magnitude) in indoor MEs than in vehicle cabins or near-

road. Elderly populations experienced lower exposures to background levels, non-commercial 

traffic, and commercial traffic in each season and day of week, and the differences between the 

three groups were significant (KW p < 0.01) for these sources. The only non-significant difference 

in exposure came for exposures to point sources: exposures for adults, children, and elderly were 

similar in all seasons and by day-type. 

VI.3 Discussion 

Exposure apportionment identifies the sources and micro-environments that contribute large 

fractions of cumulative exposure or have high concentrations. In this work, exposures from on-

road mobile sources amounted to an average of 37 to 40% of an individual’s cumulative exposure 

to NOx, with most of the exposure happening while indoors. This is a surprising finding given the 

relative portions of each day time that adults spent indoors (an average of 88% on weekdays) 

versus in vehicle cabins or the near-road environments (a combined total of 8% for the same 

period), as well as the higher concentrations predicted in the near-road environment (Table 20). 

This finding highlights the importance of accounting for time-activity when predicting exposures 

to air pollutants, and underscores the utility of this methodology for exposure apportionment; the 
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insights above are made available through the detailed inventory and modeling framework 

generated in earlier work. 

No significant differences in exposure between children and adults were found, however, elderly 

individuals had lower exposure, especially from background and non-commercial traffic. This 

highlights how potential differences in exposures could inform policies and actions aimed at 

reducing exposures; legislation could specifically aim to reduce exposures to children from non-

commercial traffic. Exposure apportionment can provide a link between modeling of the impact 

of sources on pollutant levels (“source apportionment” as was accomplished in Chapter III) and 

estimating health effects associated with specific sources (“effects apportionment”). Effects 

apportionment might provide additional insight into the impact of local sources, but also may miss 

or under-estimate health effects among community members. Such exposure apportionment 

efforts should consider sources of uncertainty and potential sources of exposure estimate error.  

Another interesting result are the differences between “apportionments” based on emissions 

(Chapter III), concentrations (Chapter IV) and exposures. Considering the NOx emissions data in 

the National Emission Inventory (NEI) in 2011 (Table 19), emissions from diesel and gasoline 

vehicles in Wayne county (roughly corresponding to commercial and non-commercial traffic, 

respectively) are similar: each contributes approximately half of the total on-road mobile 

emissions, which in turn composes around half of the total NOx emissions in 2011. By volume, 

commercial traffic comprised only 9% of total on-road vehicles on major surface roads, and much 

less on smaller roads (Table 35). Dispersion modeling showed that background levels dominated, 

with non-commercial traffic playing a secondary role, especially within 10 m of a major roadway 

(Table 20). Trends in exposures largely follow those of the concentration data. This comparison 

could be extended by considering health impacts (e.g., Disability-Adjusted Life-Years, or DALYs) 

using non-linear health impact functions [146–149], which would add consideration of population 

demographics and health status, and apportioning the sources of attributable environmental 

disease. Profiles based on emissions, concentrations, exposures and impacts place increasingly 

heavy demands on data and modeling. To some extent, these concepts have been implemented in 

the life-cycle literature, using intake fraction and characterization factors [195, 196], although the 

this approach allows neither spatial resolution nor characterization of vulnerable groups.  
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VI.3.1 Comparison to literature 

A number of studies have estimated the fraction of cumulative exposure to derive from mobile and 

other sources, and several studies have obtained similar results. A study of PM2.5 exposures in Los 

Angeles, CA, showed that intake fractions attributed to light duty traffic (i.e., gasoline vehicles, 

called “non-commercial” in this aim) were 1.1 to 1.4 times higher than those for heavy duty traffic 

(i.e., diesel or “commercial” vehicles) [197]. During a 2-week pollution episode in Philadelphia, 

PA, outdoor sources of PM2.5 were shown to contribute slightly more than indoor sources to the 

24-hr average dose (a metric that adjusts exposures estimates by an individual’s inhalation rate 

and other physiological parameters) [86]. An exposure apportionment of coarsely modeled NO2 

and time-activity in Paris, France, stated that the highest of the 4-yr exposures occurred in the 

“downtown” area with the highest traffic volumes and congestion [87]. An apportionment of traffic 

related emissions in Hillsborough County, Florida [198] showed similar indoor-at-home 

concentrations (12.1 ppb as compared to 12.6 in this work) as well as similar percent contributions 

to total exposure from exposures in-cabin (6% as compared to 8% in this work). However, as stated 

previously, results from different urban areas may not be comparable to the Detroit findings given 

differences in emission levels, meteorology, topography, time-activity patterns, and possibly other 

factors. 

VI.3.2 Limitations and uncertainty  

We considered only NOx for the exposure apportionment given the availability of monitoring data 

and output from previous modeling efforts. Apportionments using PM2.5 would be more health-

relevant as this pollutant is believed to drive most health impacts. Unfortunately, modeling PM2.5 

is very complex, involving both primary and secondary pollutants, very high background levels, 

modeling is largely not validated, and the need for many parameters to account for outdoor-to-

indoor penetration and fate of PM2.5. In addition, recent analyses using data from the near-road 

monitoring stations in the U.S. showed little relationship between (annual average) PM2.5 levels 

and traffic volumes [199]. 

This work used largely national databases for commuting and time-activity, and the results may 

not be representative. In Detroit, several factors might act to increase travel times for commuters, 

especially for certain groups, e.g., the poor regional transit, a declining population, and commuting 

patterns from suburbs to the certain portions of the city. As a result, in-vehicle and near-road 
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exposures may be under-estimated. CHAD contains data from several time-activity studies in 

Wayne County, however, only the Detroit Exposure and Aerosol Research Study (DEARS) [32] 

contains personal dairy data of Detroit residents (the other studies – the Population Study of 

Income Dynamics and the National Human Activity Pattern Study – were performed via phone 

interviews). There are large differences in population demographic makeup between these studies 

(Figure 33 (a)), thus the majority of CHAD data for Wayne County may not adequately represent 

actual time-activity patterns in Detroit. The age distribution of Detroit participants (Figure 33 (b)) 

shows little data from some key age-groups, namely young adults who might be more likely to 

hold several (part-time) jobs, thus increasing commuting time and in-cabin exposures. Further 

investigation of the underlying time-activity of the simulated population showed an average of less 

than 10 min/day is spent on childcare among adults, thus pregnant or new mothers (i.e., a “sentinel” 

population) are likely not well represented in the CHAD data (Table 40). These limitations have 

been recognized in the literature. For example, time-activity databases can miss key exposure times 

for vulnerable populations, including travel time, in-vehicle exposure for urban commuters, [72–

74] and behavior related to aging, e.g., increased time indoors or in-vehicle cabins. These 

omissions can cause large errors [75, 76]. In addition, available time-activity data for minority or 

low income populations living in urban areas with pollution “hotspots” can be limited [77] or not 

representative [78]. 

Dispersion and exposure modeling involves a number of uncertainties. Emission inventory 

uncertainties have been explained in previous work [128]. For NOx, NEI data indicates that 

emissions from commercial traffic are similar to that from non-commercial traffic, but dispersion 

model results show larger impacts from non-commercial traffic. This discrepancy may result from 

several factors: highways that were outside the domain and were not modeled; the traffic demand 

model used to generate link-based emissions was run for 2010, not 2014; traffic patterns or relative 

levels may have changed; and the concentration of commercial traffic along a relatively small 

number of highways compared to the much more dispersed pattern of non-commercial traffic. 

Under-prediction of on-road NOx levels, a trend of the dispersion model used, may have 

contributed to lower-than-expected in-cabin exposures. In the exposure modeling effort, the spatial 

resolution of modeling efforts is somewhat simplified, which could limit identification of 

individual sources as key contributors. However, the source-group method employed was 
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computationally efficient, and roadway contributions were estimated using validated modeled data 

at a near-road monitor. 

An important limitation of exposure apportionment is its general inability to be validated. Even 

when personal exposures are measured, direct associations between exposures and specific sources 

are difficult or impossible to identify without source-specific chemical tracers, a result of the many 

sources of pollutants like PM2.5 and NOx in urban areas. In part, validation can be addressed by 

characterizing the quality of the input data for each model component, and by establishing and 

confirming the performance of each modeling component in simplified settings. This will help 

evaluate key drivers, and perhaps could be called “credibility analysis.” 
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VI.4 Tables 

Table 36. Mean hourly exposures (ppb) contributed by source groups in each micro-environment (ME). Exposures < 0.05 ppb have 

been removed from this table. Higher mean exposures are shaded darker. 

 

  Hour of day              

Source ME 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 

Background Indoor-at-home 4.2 4.3 4.3 4.3 4.3 4.3 4.3 4.1 3.3 2.6 2.2 1.9 1.7 1.8 1.7 1.8 2.0 2.3 2.8 3.1 3.2 3.5 3.8 4.0 

 Other indoor 0.5 0.5 0.4 0.3 0.2 0.2 0.3 0.5 2.0 4.7 6.1 6.9 7.0 6.4 6.8 6.3 5.2 4.0 2.6 2.0 2.1 1.8 1.2 0.8 

 Outdoors 0.2 0.1 0.1 0.1 0.1 0.1 0.1 0.3 0.5 0.7 0.9 1.1 1.3 1.4 1.4 1.7 1.5 1.5 1.3 1.0 0.8 0.6 0.4 0.3 

 Near-road 0.1       0.1 0.3 0.4 0.5 0.6 0.7 0.7 0.6 0.6 0.7 0.7 0.7 0.5 0.5 0.3 0.2 0.1 

 Vehicle cabin 0.3 0.2 0.1 0.1 0.1 0.1 0.2 0.6 1.4 1.2 1.1 1.1 1.3 1.6 1.5 1.6 1.9 2.0 1.9 1.4 1.1 0.9 0.7 0.5 

Non-commercial  Indoor-at-home 7.2 7.0 6.4 5.6 4.8 4.4 4.4 4.8 4.4 3.2 2.0 1.3 0.9 0.8 0.7 0.7 0.9 1.3 2.1 3.0 3.5 4.4 5.9 6.9 

traffic Other indoor 0.3 0.3 0.2 0.1 0.1 0.1 0.1 0.2 0.7 1.6 1.4 1.1 0.9 0.7 0.7 0.6 0.6 0.6 0.5 0.4 0.5 0.6 0.5 0.4 

 Outdoors 0.1 0.1 0.1     0.1 0.2 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.2 0.2 0.3 0.3 0.3 0.3 0.2 

 Near-road         0.1 0.1 0.1       0.1 0.1 0.1 0.1 0.1 0.1 0.1 

 Vehicle cabin 0.2 0.1 0.1     0.2 0.4 0.3 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.2 0.3 0.3 0.3 0.3 0.3 0.2 

Commercial  Indoor-at-home 1.8 1.8 1.7 1.5 1.3 1.3 1.5 1.7 1.5 1.1 0.7 0.4 0.3 0.2 0.2 0.2 0.2 0.4 0.5 0.7 0.9 1.2 1.6 1.8 

traffic Other indoor 0.1 0.1      0.1 0.3 0.6 0.5 0.4 0.3 0.2 0.2 0.2 0.2 0.2 0.1 0.1 0.1 0.2 0.1 0.1 

 Outdoors         0.1         0.1 0.1 0.1 0.1 0.1 0.1  

 Near-road                         

 Vehicle cabin        0.1 0.2 0.1        0.1 0.1 0.1 0.1 0.1 0.1  

Point sources Indoor-at-home 1.3 1.4 1.5 1.5 1.5 1.5 1.5 1.4 1.1 0.9 0.7 0.6 0.5 0.5 0.4 0.4 0.4 0.5 0.6 0.6 0.7 0.9 1.1 1.2 

 Other indoor 0.1 0.1      0.1 0.2 0.4 0.5 0.5 0.5 0.4 0.4 0.4 0.3 0.2 0.1 0.1 0.1 0.1 0.1 0.1 

 Outdoors          0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1   

 Near-road                         

 Vehicle cabin        0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1  
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Table 37. Mean exposure by source and during different seasons; differences between exposures for adults, children and the elderly 

compared by the KW test.  

  Mean exposure (ppb)  

Source season Adult Child Elderly p 

Background Winter 10.4 10.9 9.0 < 0.01 

 Spring 8.2 8.2 6.7 < 0.01 

 Summer 6.7 5.9 5.0 < 0.01 

 Fall 7.8 7.6 6.2 < 0.01 

Non-commercial Winter 5.1 5.3 4.1 < 0.01 

traffic Spring 4.0 4.1 3.2 < 0.01 

 Summer 4.3 4.4 3.4 < 0.01 

 Fall 5.1 5.3 4.1 < 0.01 

Commercial Winter 1.5 1.5 1.1 < 0.01 

traffic Spring 1.1 1.1 0.8 < 0.01 

 Summer 1.2 1.3 0.9 < 0.01 

 Fall 1.5 1.5 1.2 < 0.01 

Point sources Winter 1.3 1.3 1.2 >0.50 

 Spring 1.2 1.2 1.2 >0.50 

 Summer 1.3 1.3 1.3 >0.50 

 Fall 1.4 1.4 1.4 >0.50 

 

Table 38. Mean exposure by source and during weekday vs weekend; differences between exposures for adults, children and the 

elderly compared by the KW test.  

  Mean exposure (ppb)  

Source Day of week Adult Child Elderly p 

Background Weekday 8.7 8.5 6.7 < 0.01 

 Weekend 7.4 7.1 6.5 < 0.01 

Commercial traffic Weekday 1.5 1.5 1.2 < 0.01 

 Weekend 0.8 0.9 0.7 < 0.01 

Non-commercial traffic Weekday 4.5 4.6 3.5 < 0.01 

 Weekend 4.9 5.2 4.2 < 0.01 

Point sources Weekday 1.3 1.2 1.3 >0.50 

 Weekend 1.3 1.3 1.3 >0.50 
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Table 39. Average min/day spent in various micro-environments (ME) for simulated persons in Detroit in 2014. 

 Adult (n = 68) Child (n = 19) Elderly (n = 13) 

ME Weekday Weekend Weekday Weekend Weekday Weekend 

Indoor-at-home 958 1,100 923 1,061 1,180 1,219 

Other indoor 307 152 310 136 135 80 

Outdoors 55 75 99 126 45 45 

Near-road 29 24 53 34 21 34 

Vehicle cabin 91 88 56 83 57 62 

 

 

Table 40. Average min/day spent doing various activities for simulated persons in Detroit in 2014. 

 Adult (n = 68) Child (n = 19) Elderly (n = 13) 

Activity Weekday Weekend Weekday Weekend Weekday Weekend 

Work 256 74 67 28 38 9 

Household 122 139 30 59 124 123 

Childcare 7 6 2 1 3 11 

Obtain goods 26 33 14 32 47 19 

Personal needs 628 675 724 730 691 693 

Education / training 5 1 211 9 2 0 

Entertainment / social 50 119 36 98 186 198 

Leisure 341 391 356 482 344 383 

Travel 4 3 1 1 3 4 
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VI.5 Figures 

 

 

Figure 31. Hour-of-day average exposures, separated by a) micro-environment and b) source, for 

100 simulated individuals in Detroit for 2014, calculated using monitored NOx 

a) 

b) 
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Figure 32. Average exposure contributions from background, point sources, non-commercial 

traffic, and commercial traffic to populations of A) adults (n = 68), B) children (n=19), and C) 

the elderly (n=13). 
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Figure 33. Bar plots showing the demographic breakdown of participants in time-activity studies 

in Consolidated Human Activity Database data from Wayne County, MI (which contains Detroit) 

by a) study and b) age. Study abbreviations: DEA = DEARS; ISR = Population Study of Income 

Dynamics PSID III; NHA = National Human Activity Pattern Study: Air; NHW = National Human 

Activity Pattern Study: Water  

a) 

b) 



  

157 

 

Chapter VII – Conclusions and Recommendations 

 

This dissertation examined current methods used to estimate exposure to traffic-related air 

pollutants (TRAP) at high spatial or temporal resolutions. Each dissertation aim explored and 

applied different methods of modeling TRAP: Aim 1 analyzed long-term trends in PM2.5 

emissions, concentrations and apportionments created using positive matrix factorization, and 

focused on the mobile source component; Aim 2 performed an operational evaluation of RLINE, 

a research-level line-source dispersion model developed by EPA for the near-road environment, 

and obtained results pertinent to model application in health studies; Aim 3 provided a sensitivity 

analysis of RLINE, and highlighted the impact of the model’s meteorological, emission and traffic 

allocation inputs on exposure predictions; Aim 4 demonstrated a method for apportioning 

exposures to various contributing source-groups, and examined the contribution of on-road mobile 

sources to cumulative exposures of a sample population in Detroit, MI.  

The analyses emphasized techniques for mobile source models which can inform policies and 

regulations intended to decrease pollutant concentrations in urban areas.  Models for mobile 

emission sources, which are growing in their contribution to air pollution in some cities, require 

different input data than models for large industrial point sources, which dominated exposures in 

the past; evaluation of mobile source pollution at high temporal and spatial resolution, as was done 

in this dissertation, reflects one of these differences. In addition, researchers and practitioners 

should endeavor to collect regulatory-quality meteorological data near the study domain. Modeling 

mobile sources at high spatial and temporal resolutions can be complemented with the collection 

of time-activity data for individuals in vulnerable groups, compared to the use of national-level 

databases, especially if exposure reduction interventions are being evaluated. The increases in 

traffic and human proximity to large roadways suggest that exposure to traffic-related emissions 

will be a continuing source of human health impacts. Thus far, efforts to control traffic-related air 

pollutants have occurred mostly in developed countries, while the highest exposures are mostly 



158 

 

experienced in megacities in developing countries. The approaches and considerations described 

in this dissertation can help address this need and provide guidance for characterizing exposures 

to mobile sources and helping to evaluate the efficacy of proposed exposure control scenarios. 

The remainder of this chapter summarizes and synthesizes results from the four aims, and presents 

recommendations for future research.  

VII.1 Aim 1 

Work on this aim analyzed trends and apportionments over a long record of emissions and ambient 

monitoring data obtained for Chicago and Detroit. Analyses were constructed that provided 

consistent results, combined emissions and ambient data, and focused on contributions from both 

regional and local sources. While several differences between the two cities were noted, many or 

most trends were consistent and supported by both emissions and ambient data, as well as the 

source apportionments generated used positive matrix factorization. In both cities, PM2.5 levels 

have been declining, primarily due to reductions in secondary sulfate and, to a more limited extent, 

in nitrate sources, while the importance of emissions due to vehicles, biomass, and metals sources 

is increasing. This is supported by examining three data sources: county emission data, which show 

constant or declining emissions from point sources and slightly increasing or constant emissions 

from on-road mobile sources; ambient monitoring data, which show rapid declines in SO4
= and 

NO3
- concentrations, but steady or increasing abundances of OC and EC, tracers for gasoline and 

diesel vehicle exhaust; and receptor model results, which show increasing relative (percentage) 

contributions from these sources.  

An understanding of long term trends can inform air quality regulation and policy, including the 

formulation and implementation of emission and ambient standards, which in turn can lead to 

emission controls, new technologies, and promotion of cleaner fuels, among other options. These 

responses are most effective when emission sources can be clearly defined and apportioned. 

However, this approach may not adequately protect vulnerable populations given recent trends, 

including decreasing concentrations of regional and national pollutants [170], increasingly 

indistinct profiles and identifications of local emission sources, the significance of secondary 

pollutants, and the still nascent understanding of health impacts associated with low concentration 

exposures and pollutant mixtures. A better understanding of emissions, ambient concentrations 

and source apportionments is required to reduce pollutant exposure and health impacts. The 
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integration of source- and receptor-oriented apportionments, utilized in the present analysis, can 

enhance the ability to tease out contributions of sources for targeted interventions.  

Future analyses may be strengthened in several ways. First, analyses might be stratified by climatic 

or meteorological variables to better account for seasonal factors than calendar-based periods, and 

to better separate trends in primary and secondary components [178]. Second, weekday/weekend 

groupings may reveal additional trends and better discriminate sources, particularly since truck 

traffic decreases significantly on Sundays [132]. Similarly, there may be opportunities to stratify 

by wind direction and other meteorological factors, although the duration (24 hr) and frequency 

(every third day) of the CSN measurements may prove limiting. Third, hourly speciation 

measurements and stratification of PMF results by wind direction may improve the ability to 

identify sources [175]. Fourth, comparisons of factor contribution on high and low pollution days 

might help distinguish contributions of local sources, e.g., traffic-related air pollutants [172]. Fifth, 

while emissions trends can be tracked for some sources, greater consistency in methods and source 

grouping across years would improve long-term studies. In particular, emissions data for crustal, 

fugitive, metals and biomass sources are highly uncertain. Sixth, regional emission inventories 

might be examined to help confirm changes in regional contributors of secondary sulfate and 

nitrate. Finally, applications of long term trend analyses to other cities would be help confirm 

trends.  

VII.2 Aim 2 

Aim 2, an operation evaluation of dispersion model performance, characterized the agreement 

between daily average predictions and observations of traffic-related air pollutants (TRAP) in an 

urban scale application in Detroit, Michigan that used a detailed link-based mobile source 

inventory and the RLINE model. Model performance was best for locations downwind of major 

roads, for winds perpendicular to roads, for sites near major roads, on weekdays, and during winter 

and spring seasons. On a pollutant-specific basis, model performance was best for NOx and CO; 

the evaluation was not informative for PM2.5 mainly due to the scarcity of monitors near major 

roads and the presence of high background levels. These findings were consistent across most sites 

and for the two pollutants. Performance evaluations should test a wide range of environments, 

utilize sampling methods that are sufficiently sensitive and ideally selective for TRAP, and use an 

ensemble of evaluations to provide robust and representative results. The results are consistent 
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with the literature, and they demonstrate factors that affect model performance for the 24-hour 

averages commonly used in epidemiologic studies.  

RLINE’s performance in near-road environments suggests its usefulness for estimating spatially- 

and temporally-resolved exposure estimates. However, the use of dispersion models in 

epidemiologic studies should address factors that can influence model performance and result in 

exposure measurement errors, including distance and direction from the road, day-of-week and 

seasonal effects. Appropriate study designs and analytical techniques can help avoid exposure 

measurement errors and improve the exposure estimates used in health and epidemiologic studies. 

VII.3 Aim 3 

The goal of Aim 3 was to examine the sensitivity of dispersion model predictions of TRAP 

exposure to key model inputs. While data and computationally intensive, dispersion models and 

especially high fidelity models can provide great flexibility and theoretical strength, and can 

represent the spatial variability of TRAP concentrations at locations not measured by conventional 

and spatially sparse air quality monitoring networks. However, model estimates were sensitive to 

input data, and our applications highlighted the need for representative meteorological data to 

predict near-road exposures. In particular, several systematic biases can cause exposure 

measurement errors that could affect results and subsequent calculations, e.g., estimated health 

impacts.  

Several recommendations follow from the work completed for this aim. These include: the need 

to develop guidance that defines appropriate meteorological data for dispersion modeling of the 

complex near-road environment (e.g., robust wind fields created by computational fluid dynamics 

models); the use of on-site (local) meteorological inputs in near-road dispersion modeling; and 

that air quality monitoring sites be equipped with meteorological instrumentation sufficient to 

obtain parameters needed by the AERMET meteorological pre-processer for generating the input 

files necessary to run RLINE and other dispersion models. Finally, to confirm and extend our 

results, other operational performance evaluations and sensitivity analysis should be conducted 

across a range of urban settings.  

VII.4 Aim 4 

The goal of Aim 4 was to demonstrate a method to apportion exposures using an application in 

Detroit, MI. The method used modeled concentrations at receptors in Detroit as inputs to a 
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probabilistic human exposure model (the Air Pollution EXposures model, APEX) that estimated 

exposures of a simulated population of children, adults, and the elderly in various urban micro-

environments. The majority of exposure derived from background levels and non-commercial 

traffic, especially during evening and early morning in the “indoor-at-home” micro-environment. 

The apportioned exposures were sensitive to the pollutant selected (NOx rather than PM2.5), and 

the time-activity and other databases used (e.g., national rather than local). While the method did 

not account for uncertainty in modeling pollutant data, the probabilistic sampling of time-activity 

data may account for some variation in exposures among individuals in various groups. The 

method may be especially useful in determining the relative (rather than absolute) magnitude of 

exposures attributed to various sources and pollutants.  

Recommendations for future research on exposure apportionment are warranted. First, a small case 

studying using personal exposure measurements in a less complex environment could provide a 

way to “field test” the exposure apportionment methodology and compare measured and modeled 

source contributions in various micro-environments. Location (GPS) data with corroborating 

personal time-lapse photography could be used to develop time-activity data. This may be 

especially relevant for individuals in vulnerable groups whose time-activity may not be covered in 

traditional or national databases. As a second example, a multi-model comparison between APEX 

and an epidemiological regression model could allow some verification (“reality checking”) of 

exposure apportionment results. Model-to-model comparisons might be especially fruitful across 

major cities in the US with known differences in their emission, concentration and exposure 

profiles. Such comparisons could identify similarities and differences in estimated exposures, 

especially for vulnerable groups. One output might demonstrate the impact of additional 

commuting or the effect of different transport modes on a person’s daily roadway-related exposure. 

Other studies might examine how missing or alternative time-activity data might affect exposure 

estimates, and how exposures vary for different pollutants and populations, and the impact of 

exposure measurement errors on epidemiological and health impact study results.  
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