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ABSTRACT

How teachers’ eye movements can be used to understand and improve education

is the central focus of the present paper. Three empirical studies were carried out to

understand the nature of teachers’ eye movements in natural settings and how they

might be used to promote learning. The studies explored 1) the relationship between

teacher expertise and eye movement in the course of teaching, 2) how individual dif-

ferences and the demands of different subjects affect teachers’ eye movement during

literacy and mathematics instruction, 3) whether including an expert’s eye movement

and hand information in instructional videos can promote learning. Each study looked

at the nature and use of teacher eye movements from a different angle but collectively

converge on contributions to answering the question: what can we learn from teach-

ers’ eye movements? The paper also contains an independent methodology chapter

dedicated to reviewing and comparing methods of representing eye movements in

order to determine a suitable statistical procedure for representing the richness of

current and similar eye tracking data.

Results show that there are considerable differences between expert and novice

teachers’ eye movement in a real teaching situation, replicating similar patterns re-

vealed by past studies on expertise and gaze behavior in athletics and other fields.

This paper also identified the mix of person-specific and subject-specific eye movement

patterns that occur when the same teacher teaches different topics to the same chil-

dren. The final study reports evidence that eye movement can be useful in teaching;

by showing increased learning when learners saw an expert model’s eye movement

ix



in a video modeling example. The implications of these studies regarding teacher

education and instruction are discussed.
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CHAPTER I

Introduction

Vision is arguably our principal perceptual modality. Human vision serves the

critical function of building a bridge between the world and our mind. The incessant

movement of our eyes not only gathers information from our surroundings, but it can

also reveal something about our own knowledge and internal states. Knowing where

and how we look at the world can open a unique gateway into otherwise hidden mental

activities. Thus eye tracking technology that captures human eye movement affords

us a great opportunity for studying the human mind.

Teachers, students and educational material form an instructional triangle that

enables the transmission of knowledge from generation to generation (Ball , 2000;

Lampert and Ball , 1998). For as long as human beings have existed, we have passed

on knowledge and skill through these intimate interactions between teachers and

students. Although teaching and learning are observable and assessable as overt

phenomena, what we really care about are inherently covert cognitive processes that

are difficult to access. Tracking people’s eye movements during teaching and learning

has great potential for revealing hidden mental activity in a non-intrusive and non-

disruptive manner.

Most existing eye tracking research on learning has focused on students’ looking

during very constrained circumstances (typically sitting in front of a computer). We
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know relatively little about teacher looking during teaching, or about student looking

in realistic natural situations. For example, from studies in high-level cognition, we

already know that learners’ eye movements serve as an embodied sensorimotor part of

the cognitive process that are invoked by linguistic transmission or spatio-temporal

arrangement during problem solving (Spivey and Dale, 2011, p. 552). Compared

to our relatively extensive knowledge about learners’ eye movements, the teacher’s

perspective is often hidden from view.

Is the invisibility of the teacher’s viewpoint an indicator that teaching is less

relevant in studying human cognition? Quite the contrary; teaching is one of the

most cognitively demanding tasks. Teachers have to navigate through the classroom,

operate classroom equipment, monitor students’ behavior and attention, manage stu-

dent comprehension and engagement, all at the same time they endeavor to deliver

a coherent, even interactive, lesson. The irreducible complexity of teaching requires

enormous attentional resources and skillful attention allocation. Given the complex-

ity and interactive nature of teaching, measures that are unintrusive, dynamic, and

capable of capturing human attention —such as eye movement—are an attractive

choice for learning about teaching.

Objectives The primary motivation of the current paper is to learn what we can

uncover from studying teachers’ eye movements. The current endeavor is initiated

with the belief that capturing teachers’ eye movements can deepen our understanding

about teaching by addressing the following questions: 1) how do teachers distribute

attention in the course of instruction, 2) how can we represent the regularities in

how teachers move their eyes, 3) what is the influence of expertise on teacher eye

movements, 4) to what extent do eye movement patterns vary when the same teacher

is teaching different subject areas. and 5) can we apply expert’s eye movement in

instructional videos?
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The secondary motivation of this paper is to identify the unique challenges of

analyzing eye movement data. These data comprise a set that is inherently rich

and complex, containing both spatial and temporal information. We will attempt to

describe a statistical work flow that fully utilizes the richness and complexity of eye

movement data, particularly for purposes of statistical inference.

Structure of the Dissertation To support the stated objectives, this paper will

present three empirical studies. Each study looks at the nature and use of teacher

eye movements from a different angle but collectively converge on contributions to

answering the question: what can we learn from teachers’ eye movements? The

paper also contains an independent methodology chapter dedicated to reviewing,

contrasting and determine a suitable statistical procedure for the representing the

richness of current and similar eye tracking data.

The paper begins with a review of the types of eye movement and the current the-

oretical landscape of factors affecting eye movement. Then the Methodology chapter

concentrates on finding a suitable statistical analysis method by comparing existing

approaches to eye movement data. The unique challenges of free-moving, free-viewing

mobile eye tracking data will also be discussed.

These methods will then be applied to two mobile eye tracking studies of teacher

looking in the course of instruction. Study 1 compares novice and experienced teachers

teaching the same topics to the same children, asking how experienced teachers’ eye

movements differ from those of novices. Study 2 explores the effects of topic of

instruction, taking advantage of the fact that American elementary school teachers

teach multiple subjects to the same students. We will compare the same teachers

teaching literacy and mathematics to see the extent to which teachers show consistent

patterns of looking across topics, or the extent to which different subjects lead to

different looking patterns. And finally, the benefit of showing expert eye movement
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in instructional videos will be explored in Study 3.

Finally the implications of these studies regarding teacher education and instruc-

tion will be covered in the Discussion chapter.

1.1 A Brief Review of Eye Movement Research

Overview of Literature Review The literature review section starts with a short

introduction about the basic mechanisms and typical types of eye movements. Models

of looking can be distinguished based on the emphasis they place on bottom-up

versus top-down processes. Several of the most influential models for explaining

and predicting fixation allocation and eye movement sequences will be described and

compared. The strengths and limitations of those models will also be discussed in

preparation for the Methodology chapter.

Typical Eye Movement Events Human vision is a peculiar system. Contrary to

many people’s intuition and subjective experience that eyes take in visual information

smoothly and continuously, the eyes literally move in fits and starts—fixations and

then jumps to new locations (Findlay and Gilchrist , 2008; Richardson and Spivey ,

2004). This saccade-fixate-saccade mechanism evolved as a solution to the problem

that, despite the abundance of information our visual system takes in at any given

time, there is only a limited region at the rear surface of the eye called the fovea that

has the sensitivity and capability to process that information in detail. Information

quality decreases substantially away from the center of the gaze. Bouma (1970)

showed that for a letter presented at different eccentricities from the fovea, the rate of

accurately identifying the letter dropped from 100% to 50% at 3◦ and 10◦ respectively

(Gilchrist , 2011, p. 85). To exploit this narrow optimal spot and ensure high acuity

visual information, human eyes have to rapidly scan the scene and focus on new

informative areas. Eye movement is thus crucial to direct fixations in the service of
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the ongoing perceptual, cognitive and behavioral activity (Henderson, 2011, p. 593).

When scanning and sampling visual scenes, the eyes never completely rest on a

single spot. Instead, fixations always contain involuntary miniature eye movements

such as tremor, drift and microsacaades (see 1.1) (Duchowski , 2007b; Holmqvist et al.,

2011a; Gilchrist , 2011). But fixations can still be defined by the relative stillness of

the eyeball for a short period of time. The fact that the eyes stabilize over a spot

is generally accepted as a sign of attention, with the assumption that useful visual

information is being gathered when the eye is relatively stationary (Wade and Tatler ,

2011, p. 29), though other possible explanation also exist (Holmqvist et al., 2011a,

p. 22). Fixation is also claimed to be tightly tied into deeper cognitive processes such

as detail perception, pattern recognition, memory encoding and language processing

(Henderson and Hollingworth, 1999; Hollingworth et al., 2001; Ballard et al., 1995;

Nelson and Loftus , 1980; Meyer and Lethaus , 2004; Tanenhaus et al., 2004; Hender-

son, 2011). Thus fixation provides us with an observable, unobtrusive and real-time

behavioral index of the underlying cognitive processing (Rayner , 1998).

As noted already, the eyes are constantly moving even during fixations. Unlike

many other physiological and behavioral measures, oculomotor events consist of both

voluntary and involuntary movements. There are five basic types of normal eye move-

ments: saccadic, smooth pursuit, vergence, vestibular, and physiological nystagmus

(tremor) (Duchowski , 2007b; Carpenter , 1988; Robinson, 1968). Psychologists in-

terested in cognition and perception have focused on only two of these kinds of eye

movements: saccades and smooth pursuits, because they are the most closely con-

nected to voluntary activity. Other forms of eye movements are generally studied

in the context of human neurology and may not provide useful information about

cognitive processes; thus they are outside the scope of this paper.

Saccades are fast, stereotyped and ballistic eye movements that precede as well

as follow fixations (Gilchrist , 2011; Duchowski , 2007b). It is believed that the main
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function of saccades is to rapidly reposition the fovea and concentrate visual attention

on a new region of interest (Walls , 1962).

Saccades are characterized by short time duration, high velocity and wide range of

amplitudes. Saccadic movements are combinations of target-elicited reflexive move-

ments and goal-oriented voluntary movements. When making saccades, the eyes start

from an initial stable state (fixation) and then quickly accelerate and reach a peak

velocity that’s immediately followed by a rapid deceleration back to a stable state

(Gilchrist , 2011, p. 86). Saccades are said to be stereotyped and ballistic. Stereo-

typed in the sense that a) particular movement patterns appear repeatedly; and b)

different individuals tend to have different temporal profiles. Ballistic refers to the

assumption that the destination of saccades is predetermined and once a saccade is

initiated, the ocular-motor system will enter a period called dead-time, during which

the saccade cannot be altered even if the target changes (Gilchrist , 2011; Duchowski ,

2007b).

When both the head and scene are still, eye movements are mainly saccadic. But in

a more naturalistic environment such as a classroom with both the subject and objects

constantly moving, it is the combination of different kinds of eye movements acting

together that delivers visual information and stability. Smooth pursuit movements

are an indispensable element in this mixture. The principal objective of smooth

pursuit is to match the eye velocity with the object velocity, in order to reduce

distortion and maintain resolution acuity (Barnes , 2011, p. 115). In mobile eye

tracking situations, where both the target and the observer may be moving, smooth

pursuit movements are difficult to identify. They also seem likely to be a small part

of classroom information processing, and so they were not used as an eye movement

measure in the current paper.
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Table 1.1: Summary of Typical Eye Movement Events

Event Attributes Duration
(ms)

Amplitude Velocity

Fixation Eyes rest still on a target for a short period of time 100–600 Not
applicable

Not
applicable

Microsaccade Quick eye movements that bring the eye back to target 10–30 10–40’ 15–50◦ / s

Tremor (physiological
nystagmus)

High frequency involuntary and eye movement Not
applicable

1’ 20’ / s
(peak)

Drift Slow eye movement that take the eye away from the
center of fixation

200–1000 1–60’ 6–25’ / s

Saccade Fast, stereotyped and ballistic eye movement between
two targets

10–100 4–20◦ 30–500◦ /
s

Smooth pursuit Slower smooth eye movement that track target
continuously

Not
applicable

Not
applicable

10–30◦ / s

2

Where Do We Look? Real-world scenes are rich in visual stimuli, yet both our

attention and visual processing capability are limited resources. Within a complex

visual environment, the scanning process is neither uniform nor complete—only a

small portion of elements have the privilege of receiving fixations (Tatler et al., 2005).

How we solve the puzzle of how and where to distribute visual focus greatly shapes

our perception and understanding of the world.

Two broad frameworks have been proposed to determine where fixations will be

directed. One is the bottom-up process driven by physical features of the visual

stimulus (e.g., Itti and Koch, 2000), the other one is the top-down process generated

by knowledge structure and experience (e.g., Yarbus , 1967b; DeAngelus and Pelz ,

2009; Borji et al., 2015; Boisvert and Bruce, 2016).

In the context of scene perception, the bottom-up mechanism refers to exogenous

attention driven by low-level features of visual stimuli such as movement, luminance,

color, contrast and edges (Boisvert and Bruce, 2016). The bottom-up process is

almost instantaneous, independent of task and often obligatory (Kowler , 2011). Top-

down mechanisms, on the other hand, are slower and goal-directed, controlled by

endogenous aspects of attention, and influenced by experiences, expectations, inten-

tions and task directives, etc. (Parkhurst et al., 2002).

The extent to which each mechanism determines and influences eye movement
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has been under debate for several decades, but we have seen a trend of integration in

recent years. Next I’ll summarize the major research findings from each perspective.

Bottom-up Eye Movement Control Based on the assumption that fixation

allocation is primarily controlled by visual features, the obvious first question for

researchers is what distinguishes the areas that attract fixation from those that do

not. Generally speaking, researchers have approached this question with two meth-

ods: either they a) directly manipulate visual features and examine the outcome, or

b) observe eye movement behavior without manipulation and establish correlational

relationships between visual features and eye movements, then further compare the

prediction of a predetermined model with observed data.

Direct manipulation and comparison of visual features had been the default exper-

imental method in the early days of bottom-up research. These studies had focused

on the properties of visual stimuli in determining object detection, localization and

recognition. Treisman and Gelade (1980) conducted a series of experiments (Treis-

man, 1982, 1983) using simple visual search tasks and discovered that targets with

only one feature different from the background were processed in parallel across the

entire search field (pop-out effect). For example, no matter where a green line is, it

can be spotted against red lines with the same speed. Additionally, this process will

change from parallel to a serial, self-terminating scan if the search target is defined by

multiple features (such as color plus angle). Julesz (1984) identified a set of elemen-

tary visual features that can be processed in parallel. These features, termed textons,

include: color, orientation of line segments, and certain shape parameters such as cur-

vature (Bergen and Julesz , 1983; Julesz , 1984). Koch and Ullman (1985) expanded

the list to include edges, direction of movement and disparity. Other features that

are believed to automatically attract attention include abrupt onsets (Yantis and

Jonides , 1984, 1996), the occurrence of a new stimulus (Hillstrom and Yantis , 1994)
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and unique features (Treisman and Gelade, 1980).

The early researchers also proposed a two-stage theory of human visual percep-

tion, divided into a pre-attentive mode and an attentive mode. First, all simple

features are processed rapidly and in parallel over the entire visual field, and second,

specialized focus is placed on particular locations, leading to recognition of objects

(Koch and Ullman, 1985; Treisman, 1983; Bergen and Julesz , 1983). This theoretical

construct built the basis for the dominant methodological model in the field—the

saliency model.

This model started with Koch and Ullman (1985) proposing the concept of a

saliency map to describe the conspicuity of low-level, elementary features of a location

in the visual scene. The saliency map was defined as a “measure of conspicuity”

derived from the local contrast of features such as luminance, color, and motion.

According to the saliency model, the attention process starts with separating the

visual input into multiple feature channels (color, luminance, orientation etc.). These

simple feature representations are then optimized to detect local feature differences.

Finally, a saliency map is calculated by aggregating the local feature differences across

spatial scale and feature types. Thus a saliency map is a computational representation

of the visual importance of stimuli at each location, and is based purely on stimulus

features in the scene (Koch and Ullman, 1985). This map was believed to be computed

at a very early visual processing stage, prior to the identification of objects. Koch

and Ullman (1985) and subsequent researchers have linked the saliency map to the

generation and distribution of attention reflected in fixations when perceiving a scene:

the higher the computed salience values are, the more likely a given location would

be fixated (e.g., Peters et al., 2005; Itti et al., 1998; Itti and Koch, 2001; Itti , 2005).

Although extensive research has been conducted in well-controlled experimental

paradigms with simple stimuli and arbitrary tasks, how bottom-up mechanisms deter-

mine fixation allocation in complicated natural scenes has been examined much less

9



extensively (Derrick J. Parkhurst , 2004). More recent work in this line of research

has employed free-viewing rather than artificial tasks (e.g., visual search) to study the

impact of different visual features. Many of these studies are built on large samples

of fixations and have utilized computational modeling methods to study the relation-

ship between the observed fixation locations and the saliency of those locations. For

example, Parkhurst et al. (2002) recorded participants’ eye movements while they

free-viewed 300 natural and artificial scenes and examined the relationship between

the fixation locations and saliency of the locations using the saliency model proposed

by Itti et al. (1998). Their results were similar to those of early studies using simplified

stimuli in indicating that attention can be guided by bottom-up mechanisms.

As prominent as it is, the saliency model has left out the influence of higher level

cognitive factors including the viewer’s knowledge, experience and identity, as well as

the properties of the given visual task and strategies for completing it (Bacon and

Egeth, 1994; Ballard and Hayhoe, 2009). This neglect is particularly problematic

when visual perception is carried out in natural settings; studies utilizing natural

viewing tasks have shown that the magnitude of bottom-up mechanisms’ influence is

largest for early fixations but gradually declines for subsequent fixations (Parkhurst

et al., 2002; Derrick J. Parkhurst , 2004). Multiple studies have also shown that

when viewing static natural images, the predictive power of the saliency model only

barely exceeds chance (Schutz et al., 2011; Tatler and Vincent , 2009a; Betz , 2010).

It appears that bottom-up mechanisms will operate automatically during a task only

if attention is not deliberately allocated to a stimulus prior to new stimulus onset

(Theeuwes , 1994; Yantis and Jonides , 1996; Yantis and Egeth, 1999). The lack of

power of the saliency model in predicting task-dependent eye movements has led to

the rise of top-down approaches.
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Top-down Eye-movement Control The very first research in top-down eye move-

ment control is also one of the pioneering studies in the whole field. Yarbus (1967a)

showed with compelling examples that different tasks can induce different viewing

patterns. In his study, viewers’ eye movements were recorded while viewing a famous

painting They did not expect him (by Ilya Repin) under different task instructions, for

example, estimating the wealth of the family or the age of characters, guessing what

the family had been doing, or memorizing the clothes worn by the characters, etc.

Different gaze behavior was discovered for these different tasks, revealing both indi-

vidual and task-specific eye movement patterns. Yarbus (1967a)’s results showed that

the eyes are not necessarily drawn to overall salient areas, but instead, the areas that

attract people’s fixations are those that provide the most information for the given

task (DeAngelus and Pelz , 2009). This was the first attempt to draw connections

between eye movement patterns and high-level cognitive factors.

Following the work of Yarbus, studies that incorporate the role of task properties

have shown that eye movements are deployed to extract very specific information

needed by the ongoing task (Jovancevic et al., 2006; Ballard and Hayhoe, 2009). For

example, in a classic study about cricket batsmen, Land and McLeod (2000) found

that batsmen would first fixate on the pitch release to get information on the ball’s

upcoming trajectory and then make a predictive saccade to the expected bouncing

position. This gaze behavior can not be explained by visual salience since the landing

point of a ball is essentially featureless.

On the other hand, subjects’ personal characteristics such as gender (Coutrot

et al., 2016), age group (French et al., 2017), expertise level (Kübler et al., 2015;

Boccignone et al., 2014) and state of health (Tseng et al., 2013), are also related

to specific eye movement patterns. A more recent trend in this line of work is to

reverse engineer the influence of top-down factors and task properties, proving that

eye movements contain a wealth of information that reveals hidden patterns about
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both the viewer and the task (e.g., Greene et al., 2012; Kit and Sullivan, 2016; Tseng

et al., 2013; Kanan et al., 2014; Haji-Abolhassani and Clark , 2013, 2014).

Integration of Two Models Since scene features, viewer characteristics or task

properties alone are insufficient to explain gaze behavior, an integration of approaches

that acknowledges the joint influence of different factors has been proposed.

The early integrations can be categorized as incorporating either a weak or strong

top-down hypothesis (Betz , 2010). The weak top-down hypothesis proclaims that

top-down factors only influence eye movement through the modulation of the bottom-

up system as feature weights are affected by top-down processes (Itti and Koch,

2001). In contrast, a strong top-down hypothesis proposes that top-down and bottom-

up processes behave in independent fashion, and both processes directly affect the

allocation of visual attention (Ahissar and Hochstein, 1997; Betz , 2010).

More recent integrations are less concerned about the relative importance of each

process but rather consider visual processing as a unified process using both kinds

of information. For example, Ballard and Hayhoe (2009) argues that in the visual

perception of a scene during free-viewing, low-level features and the kind of vision in-

volved in specific tasks are not necessarily distinguishable. They reasoned that “all vi-

sion can be conceptualized as a task of some kind.” Similarly, Schutz et al. (2011) pro-

posed an integrative model that constitutes several interacting control loops: salience,

object recognition, value and plans (Fuster , 2004). These elements work on different

levels of processing, and jointly determines saccadic target selection.

With the development of more affordable and portable eye trackers, the discus-

sion of bottom-up and top-down process will extend to more naturalistic viewing

conditions involving complicated daily viewing tasks, where each factor can be better

understood in natural settings. Under this framework, the task of teaching appears

to be an excellent candidate for understanding human cognition.
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Despite the theoretical debate, both approaches have outlined useful research

methodologies for the field. In the next section, I will review some of the major

methods of analyzing eye movement.
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CHAPTER II

Methodology

The aim of this chapter is to survey multiple existing methodologies that de-

scribe, compare and model eye movement sequences. The chapter starts with a short

review of the common methodologies used in the field and proceeds to the concept

of scanpath—the ordered sequences of eye movement that consists of both temporal

and spatial features of eye movement. Four current scanpath comparison methods are

introduced and compared with the goal of finding a method that provides the best

fit for the current eye movement data. Finally, a method that integrates multiple

scanpath comparison approaches is proposed.

2.1 Issues of Traditional Eye Movement Methodology

Eye tracking is a dynamic methodology that produces large amounts of data

that incorporate both spatial and temporal information. But the standard tools and

methods in the field have rather limited capabilities that fail to take advantage of the

wealth of information contained in eye movements (Andrienko et al., 2012; Mathôt

et al., 2012).

Due to the complexity of eye movement data, the most common analysis methods

often break the natural bond between spatial and temporal information and create

a small set of separate unitary measures such as fixation duration (temporal) and
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areas of interest (spatial). As Le Meur and Baccino (2013) rightly put it, the field

has primarily focused on synchronic indicators including fixation and saccade, rather

than diachronic indicators such as scanpaths.

The synchronic approach treats an event as an occurrence at a specific point of

time without taking history into account, while the diachronic approach considers the

event as part of a process that develops over time (Ramat et al., 2013). Because the

movement sequences of eyes projected on to the environment they are looking can be

seen as the trajectory of a moving journey, they can be represented by a continuous

function of both time and space. Therefore it is reasonable to consider eye move-

ments from a diachronic approach. By putting together both temporal and spatial

information, the field can benefit from work in other research areas that provide more

advanced methods capable of handling multiple dimensions simultaneously.

A second issue is that the common measures used in the field are highly ag-

gregated across different spatial regions, time frames and individuals (Coco, 2009;

Ylitalo, 2017). Often the abundance of information embedded in eye movement data

is flattened to just a few single scores. The primary issues with such aggregated mea-

sures is that they oversimplify the variations between and within subjects. Because

of the aggregation, such a measure will inevitably fail to capture the large variability

and uncertainty that exist in any comparisons of eye movement. In sum, more com-

prehensive methods are needed to better represent the complexity of eye movement

data.

2.2 Scanpath Comparison

Interest in eye movement sequences dates back to the early studies of Noton and

Stark (1971b) and Noton and Stark (1971a), who recorded eye movements during

pattern perception and found significant similarities between the sequence of fixations

produced during initial inspection and subsequent presentation of the same visual
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stimuli. An ordered sequence of eye movement has been thereafter referred to as a

scanpath, which is formally defined as the route of oculomotor events through space

within a certain timespan (Holmqvist et al., 2011c, p. 254).

Because eye movements are not single, independent events but rather reflect com-

plex processes that unfold over time and space, we need measures that represent that

complexity. Compared to synchronic indicators, scanpaths can better capture the

spatial and temporal dimensions of eye movements during a task and are capable

of revealing how visual processing plays out over time and space (Noton and Stark ,

1971b,a). Unlike unitary eye movement events such as fixations and saccades, scan-

paths incorporate multiple oculomotor events into one construct (Dewhurst et al.,

2012). Comparing different scanpaths can answer fundamental research questions

such as whether an individual’s eye movement has a relatively consistent pattern

across different subjects and stimuli, whether an experimental manipulation is effec-

tive as reflected in systematic variation in eye movement sequences under different

conditions, etc.

Raw scanpath data typically contain a set of fixations, the saccades connecting

each of them, and the onset time and duration of these events. The data format

has been similar across studies, but there exist various approaches to interpreting

and representing scanpaths. For instance, scanpaths can be described as fixation

maps, strings, geometric vectors or stochastic processes. Different representations

have in turn motivated various methods for comparing scanpaths. They generally

fall into four categories: 1) comparison of attention maps, 2) string edit methods,

3) geometric methods and 4) probabilistic approaches. The first three methods are

more traditional and have mostly used similarity measure scores as the main way of

comparing scanpaths. The motivation is to compare multiple scanpaths and return

a single value that reflects the degree of similarity between eye movement sequences

(Mathôt et al., 2012). The last method, the probabilistic approach, is a more recent
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development. A cross-comparison of different scanpath comparison approaches can be

found in Table 2.1. Next, I will discuss the strengths and weakness of each approach.

Table 2.1: Common Scanpath Comparison Methods

Method Input Output Temporal
Information

Prede-
fined
AOI

Attention map
comparison

fixation location, fixation duration correlation coefficient No Maybe

String edit semantic label of fixation, fixation duration similarity score Yes Yes

Geometric
method

fixation location, fixation duration, saccade
direction, saccade amplitude, etc.

similarity score Yes No

Probabilistic
approach

fixation location, fixation duration, saccade
direction, saccade amplitude, etc.

varies, most often
classification model

Yes No

2.2.1 Attention Map

An attention map is a heat map with hot spots representing either high fixation

duration or frequently fixated areas. Other than the visualization form, an attention

map also has mathematical representations that enable the calculation of correlation

between different attention maps: stronger correlation indicates higher similarity.

There are two common ways of generating an attention map from scanpaths: the

AOI (Area of Interest) approach and the topographic approach.

The AOI approach segments the whole scene into a gridded area corresponding

to areas of interest and then fills the grid with colors that represent total fixation

durations or number of fixations of the particular cell (see Fig. 2.1 for example).

There is no requirement that the areas of interest be of the same size.

Another approach to constructing an attention map is to use smoother, landscape-

like representations with hills and valleys. This topographic approach requires cre-

ation of a one-to-one mapping of each point Si = (xi, yi) in the scanpath and the

point on the attention map G = f(x, y), where the most common mapping function

f(·) is the Gaussian (see (2.1), σx and σy denote the horizontal and vertical standard

deviation) (Holmqvist et al., 2011c, p. 273), .
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Figure 2.1: Example of Attention Map. Figure from Caldara and Miellet (2011).

f(x, y) = e
−(

(x−xi)
2

2σx2 +
(y−yi)

2

2σy2 )
(2.1)

Different types of comparisons have been implemented based on these representa-

tions, including directly comparing individual fixation maps without considering the

time dimension (Caldara and Miellet , 2011; Leonards et al., 2007), or constructing a

sequence of attention maps that partially retain order information (e.g., Lao et al.,

2015).

Attention maps produce visually attractive representations that have very high

interpretability. This makes them a useful method for exploratory analyses as well as

a widely used method for data-driven identification of AOIs. But an attention map is

also an aggregated measure of similarity that is subject to oversimplification. A key

shortcoming is that attention maps have been focused on the spatial dispersion of fix-

ations at the expense of order or temporal information in the scanpath, making them

sub-optimal for any research interested in the temporal properties of eye movement

(Mathôt et al., 2012; Holmqvist et al., 2011b).
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2.2.2 String Edit Method

The string edit method gets its name from 1) the recoding of raw eye movement

sequences into AOI–based strings and 2) the similarity metric calculated from editing

these strings. To be more specific, the entire scene is first divided into smaller areas

(gridded AOIs or semantic AOIs); each of which is labeled with a character or group

of characters. The eye movement sequence is thus transformed into an ordered list

of characters. For example, for a classroom scene we could label students as S,

instructional materials as I, a white board as B, the teacher as T etc. Then the

original scanpath can be recoded as SSBISTI, with each letter denoting a fixation.

Hence, these strings essentially represent an aggregated, simplified version of the

actual scanpaths.

After recoding, the second step is to calculate the minimum number of character

operations needed to match different strings. The unit cost of different character

operations can be defined by various optimization algorithms. The most popular

string edit algorithm in eye movement studies—Levenshtein distance—allows three

single-character operations: insertion, deletion and substitution, each with a unit cost

of 1 (Levenshtein, 1966; Duchowski , 2007a).

According to Levenshtein (1966), the distance between two strings is the minimum

(optimum) number of single-character edits to transform one string into another.

Arithmetically, Levenshtein distance is defined by Eq. (2.2).

EDR,S(i, j) =



n if m = 0

m if n = 0

min


EDR,S(i− 1, j) + 1

EDR,S(i, j − 1) + 1 otherwise.

EDR,S(i− 1, j − 1) + IA

(2.2)
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Ia =


1 if Ri 6= Sj

0 if Ri = Sj

(2.3)

For example, consider two sequences R: SSBISTI and S: SIBST. In order to

convert S into R, two matrices need to be constructed. The first is a substitution

matrix that contains the edit cost between all the possible pairings of elements in

R and S. According to Levenshtein distance, the edit costs are all 1s except for the

diagonal where the row and column indicates identical letters (see Table 2.2). Then

one can construct a comparison matrix with the two strings being compared forming

the row and column divisions and each element being the unit cost of transformation

(see Table 2.3). The comparison matrix uses the substitution matrix as a reference

for finding the edit costs for each pair of letters. The emphasized value in the matrix

is the minimal cost of partial transformation, while the cost to completely transform

S to R can be found at the bottom right of the matrix. Thus the Levenshtein distance

between R and S is 4.

Table 2.2: Substitution matrix for R and S according to Levenshtein distance

B I S T
B 0 1 1 1
I 1 0 1 1
S 1 1 0 1
T 1 1 1 0

Table 2.3: Comparison matrix for R and S. The optimal path is emphasized.

S I B S T
S 0 1 2 3 4
S 1 1 2 2 3
B 2 2 1 2 3
I 3 2 2 2 3
S 4 3 3 3 3
T 5 4 4 4 3
I 6 5 5 5 4
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The last step of the string edit method is to calculate the similarity measure. The

similarity measure is often defined by the sum of costs along the optimal path, which

is a simple value between 0 and 1 with 1 denoting complete match. For instance, the

approach of Privitera and Stark (2000) first normalizes the total cost to the length

of the longer string, yielding a sequence similarity index between two sequences of

Ss = (1 − 4/7) = 0.429. The positional similarity index is calculated by comparing

the characters from two strings; since all the characters in S are present in R, the

above example yields a loci similarity index of Sp = 1.

Although Levenshtein distance is widely implemented in sequence comparisons

due to its simplicity, there are some major issues that prevent its application in the

current study. The most relevant one is that Levenshtein distance regards the distance

between every character as equal, something not true in most cases. For example,

comparing two string sequences: S1-S2 indicates when the teacher’s fixation jumps

from one student (S1) to another student (S2) who is physically adjacent to S1; and

S1-B indicates when the teacher first fixates on a student (S1) then to the blackboard

(B). It seems clear that the distance between S1 and S2 should be smaller than S1

and B, leading to a smaller edit cost. In addition to spatial proximity, the semantic

content of the scene also introduces variations into the distance between different

AOIs. For instance, saccades between students that are seated far apart and saccades

between student and instructional material should have different distances. But the

uniformally constructed Levenshtein distance substitution matrix will not reflect this

difference; the editing cost of replacing S1 with S2, and replacing S1 with B is the

same according to Levenshtein distance. Thus Levenshtein distance is not the optimal

distance algorithm when the AOIs are not uniformally distributed in the scene. Also,

given that eye movements are essentially time series data, the Levenshtein distance

approach has converted the time sequence to ordinal data by discarding all the fixation

duration information.
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To solve these two issues, Cristino et al. (2010)’s ScanMatch provides a more

advanced adaptation of Levenshtein distance using the Needleman-Wunsch algorithm

and temporal binning. Another practical improvement of ScanMatch is to implement

double-string coding instead of single string to increase the number of possible AOIs.

The first change ScanMatch implements is to incorporate fixation time by using

temporal binning—repeating the letter corresponding to an AOI in a way that is

proportional to the fixation duration within that AOI. For instance, the sequence

STB might turn into SSSSTTBBB with 50 millisecond bins. In this way, the coded

string will incorporate spatial location, sequential information, and temporal duration

of fixations.

The second change is that ScanMatch takes into account the relationship between

AOIs and specifies the alignment score accordingly by using a sequence alignment

algorithm borrowed from the field of bioinformatics: the Needleman-Wunsch algo-

rithm. It does so in the following way. Similar to the classic string edit approach, a

substitution matrix needs to be constructed. But instead of weighting every change

equally, the score for editing between two letters can be defined according to some

measure of the relationship between AOIs. This can be weighted so that a higher

score indicates better alignment. The alignment score can be defined according to

the Euclidean distance between bins, physical properties (color, size, shape, etc.)

or semantic relationships (human, non-human objects, child, adult, etc.). Another

parameter that determines scoring is called the gap penalty. The value of the gap

penalty indicates the score for alignment of a letter with a gap instead of another

letter. It essentially serves as a threshold for making the choice of either performing

alignment or inserting a gap that hurts local alignment but may benefit the global

alignment. Different gap penalty values will influence the behavior of algorithm in

finding the optimum route, for example, if we have two sequences sAsB and sAsC

with substitution matrix 2.4. If the gap penalty equals 0, the score of aligning sA and
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sB is higher than the gap penalty and therefore a gap is inserted. If the gap penalty

is higher than the cost of aligning two letters, then string alignment is favored over

insertion of gap (see Fig. II.1). Cristino et al. (2010) argued that if the alignment

score in the substitution matrix is well chosen then the gap penalty can be set to

zero. Providing the information of substitution matrix and gap penalty, the optimal

route with highest alignment score is sought within the comparison matrix. The final

score is normalized over the product of the max alignment score and the length of

the longer sequence and gives a single similarity measure between 0 and 1, with 1

representing perfect match.

Table 2.4: Substitution Matrix

sA sB sC
sA 10 3 -2
sB 3 10 -5
sC -2 -5 10

If gap penalty = 0: sA>>sA = 10, gap>>sC = 0, sB>>gap = 0

then overall score = 10 + 0 + 0 = 10

If gap penalty = -6: sA>>sA = 10, sB>>sC = -5>-6

then overall score = 10 + (-5) = 5

Listing II.1: Compare String Alignment and Gap Insertion

Although it is the best string edit method so far, ScanMatch still suffers from the

limitation of only producing aggregated results. The single similarity score prevents

further exploration and interpretation of the result: it provides answers to “how

different these scanpaths are” but not “where do the differences reside” or, moving

one step further, “how important is this difference to the overall results”. These

questions are better addressed with other scanpath comparison methods.
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2.2.3 Geometric Method

In contrast to the string edit method’s approach of defining a priori AOIs and

recoding spatial-temporal data as ordered strings, geometric methods avoid recod-

ing by representing eye movements according to their geometric properties such as

location coordinates, fixation duration, saccade direction, saccade velocity, saccade

amplitude, etc.

Compared to AOI-based methods, geometric representation has the merits of re-

taining the vector properties of eye movements, such as saccade direction and scan-

path shape, despite scaling and shifting. Also, geometric methods use raw, continuous

data instead of partitioned, coarser data, thus avoiding the quantization error AOI

segmentation introduces to the analysis. These properties make them superior to

AOI based methods when geometric properties are of interest.

Mannan et al. (1995) were among the first to represent eye movements by location

coordinates without defining AOIs. They proposed a linear distance method that

calculates the Euclidean distances between every pair of nearest neighbours in two

scanpaths (Mannan et al., 1995, 1996; Mathôt et al., 2012; Dewhurst et al., 2012).

Firstly, each fixation in one set is mapped onto another fixation from the other set that

is closest in terms of location coordinates. Then a point-mapping distance (Euclidean

distance) dM(r, s) between a point (fixation location) r in an eye movement sequence

R and its nearest neighbour s in another eye movement sequence S will be calculated

(see Eq. (2.4)). In this case, r and s are two points in a two-dimensional Euclidean

space with coordinates (r1, r2) and (s1, s2).

dM(r, s) =
√

(r1 − s1)2 + (r2 − s2)2 (2.4)

The mapping and point-mapping distance calculation is repeated in the other di-

rection as well, namely mapping each s from S onto the nearest neighbor s from R.
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This technique is called double-mapping ; Mathôt et al. (2012) argues that double-

mapping is computationally cheap and at the same time not inferior to more so-

phisticated heuristics. Also, by performing the same mapping process twice, double-

mapping is capable of comparing sequences that are discrepant in length. The final

similarity measure of this process is called sequence-mapping distance; this is the

collection of all the point-mapping distances normalized by the total length (number

of points) of both sequences, this sequence-mapping distance DM(R, S) is defined

by Eq. (2.5). Here, nR and nS is the length of R and S respectively, dM(ri, ) is the

distance between the ith point in R and its nearest neighbour in S, likewise dM(sj, ) is

the distance between the jth point in S and its nearest neighbor in R. The work-flow

of this method can be summarized in pseudo-code form (see Listing II.2).

DM(R, S) =

∑nR
i=1 dM(ri, )

2 +
∑nS

j=1 dM(sj, )
2

sum(nR, nS)
(2.5)

BEGIN

D = 0

FOR all points r in sequence R:

FIND nearest neighbour s in sequence S

D = D + Euclidean distance(r,s)

FOR all points s in sequence S:

FIND nearest neighbour r in sequence R

D = D + Euclidean distance(r,s)

D = D / sum(size(R), size(S))

END;

Listing II.2: Pseudocode for Mannan’s algorithm

As Eq. (2.4) and Eq. (2.5) show, the Mannan linear distance approach can only

handle two-dimensional coordinates and doesn’t take any other eye movement in-
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formation into account (such as fixation duration, fixation order etc.). To address

this concern, Mathôt et al. (2012) extends Mannan’s method to multiple dimensions.

Their Eyenalysis method employs multidimensional Euclidean distance and the fix-

ation can be defined by any number and combination of dimensions. For example,

instead of only including location coordinates, fixations can now be defined in terms

of onset time and duration as well: (x, y, t, d). The algorithm is similar to Mannan

et al. (1995)’s method but incorporates multiple dimensions. The point-mapping dis-

tance dE(r, s) is defined by Eq. (2.6), with r and s representing a point in sequence

R and S that resides in an n-dimensional Euclidean space. In this representation, n

denotes the number of dimensions while si and ri indicate the value on the ith di-

mension of points r and s respectively. Following the same method as Mannan et al.

(1995), the final similarity measure—sequence-mapping distance is defined by (2.7),

with a slight difference of normalizing the sum of point-mapping distances by the

number of points in the longer sequence instead of normalizing by the total number

of points from both sequences. Likewise, the Eyenalysis method can also be intuitively

expressed in a pseudo-code form (see Listing II.3).

The differences between Mannan’s and Eyenalysis’s approach lies in a) Number of

dimensions that were taken into account. This can be seen by comparing Eq. (2.4)

and Eq. (2.6). In Eq. (2.4), r, s are two points in a two-dimensional Euclidean space,

while in Eq. (2.6) r, s represents a point in sequence R and S that both resides in

an n-dimensional space. b) Ways of normalization. Mannan’s distance is normalized

over the total length and Eyenalysis is normalized over the longest length among two

sequences.

dE(r, s) =

√√√√ n∑
i=1

(ri − si)2 (2.6)
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DE(R, S) =

∑nR
i=1 dE(ri, ) +

∑nS
j=1 dE(sj, )

max(nR, nS)
(2.7)

BEGIN

D = 0

FOR all points r in sequence R:

FIND nearest neighbour s in sequence S

D = D + Euclidean distance(r,s)

FOR all points s in sequence S:

FIND nearest neighbour r in sequence R

D = D + Euclidean distance(r,s)

D = D / max(size(R), size(S))

END;

Listing II.3: Pseudocode for Eyenalysis’s algorithm, adapted from Mathot et al.,

(2012)

The basis of these two methods is finding the nearest neighbor based on loca-

tion coordinates, thus yielding reliable performance in quantifying location similari-

ties/dissimilarities. But on the other hand, they lack sensitivity in identifying other

geometric properties such as scanpath shape and direction.

Dewhurst et al. (2012) proposed a more flexible geometric method called Multi-

Match. It is designed to compare multiple scanpath dimensions including order, posi-

tion, shape, saccade length, direction and fixation duration by representing scanpaths

in a vector form (Jarodzka et al., 2010b,a; Dewhurst et al., 2012). Dewhurst et al.

(2012) argued that “ideal saccades” (saccades that take the shortest route between

two fixations) can be expressed as a Euclidean vector r = x, y, a mathematical entity

with magnitude x and direction y. The scanpath being compared can be denoted as

R = r1, r2, · · · , ri, · · · , rm and S = s1, s2, · · · , sj, · · · , sn.
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MultiMatch is conducted in three steps (see Table 2.5 for summary). First, unim-

portant local eye movements are merged and replaced with a new vector defined as

the sum of these local vectors. More specifically, both the amplitudes and directions

of consecutive vectors are compared against arbitrary thresholds Tamp and Tangle (usu-

ally defined as 10 percent of the screen diagonal and 45 respectively). If the group

of vectors is smaller than the threshold along these two dimensions they will then be

replaced with a new grouping vector r = r1 + r2 + + rm.

Table 2.5: MultiMatch Procedure

Step Data Dimensions Used Method Used

Simplifica-
tion

saccade amplitude and saccade direction amplitude-based clustering and
direction-based clustering

Alignment usually shape finding the shortest path based on graph
theory

Compari-
son

shape, fixation location, fixation duration, saccade amplitude
(length), saccade direction

significance test

Similar to the string edit approach, MultiMatch also requires aligning two se-

quences first before comparing their differences. As with string editing, a comparison

matrix that represents the cost accompanying the pairwise comparison of all the el-

ements in two sequences needs to be constructed. While the string edit approach

defines the cost by Levenshtein distance, MultiMatch uses vector differences instead.

Specifically, the difference between two vectors ri and sj from two vector sequences R

and S is represented by the magnitude of the differential vector ri− sj, i.e., ||ri− sj||.

Table 2.6 is the example comparison matrix used by Dewhurst et al. (2012), with

each cell containing the length of the differential vector between any two saccadic

vectors, expressed in degrees of visual angle. The cost gets smaller when two vectors

are similar in magnitude and direction, signaling a good alignment between segments

of two scanpaths.

In order to implement Dijkstra’s algorithm (Dijkstra, 1959), a comparison matrix

is then used to construct an adjacency matrix and subsequently a directed graph.

The graph is a mathematical abstraction of situations, consisting of a set of points
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Table 2.6: MultiMatch Comparison Matrix

r1 r2 r3 r4 r5
s1 8 9 6 7 5
s2 8 1 10 12 11
s3 4 12 0.5 7 3
s4 7 12 7 1 4
s5 4 11 1 7 4

together with lines joining certain pairs of them (Bondy et al., 1976, p. 1). Graphs

are used to model pairwise relations between objects; the point is called a vertex

and the connecting line an edge in this context. These vertices can represent people

in a social network, locations in navigation systems, steps in project management,

or in our case, elements of a comparison matrix etc. The graph can be directed

or undirected depending on whether the edge has a specific direction. Because the

question of aligning two scanpaths is essentially one of finding an optimum path, with

a start and end point, through a comparison matrix, the comparison matrix should be

modeled as a directed graph, or digraph. Also, each edge is associated with a weight in

a graph, also referred to as cost or distance, defined as the vector differences between

two saccadic vectors in the current case (see Table 2.7 for a summary of terms).

Table 2.7: Summary of Graph Theory Terms

Graph Theory
Term

Definition Application in MultiMatch

Vertex A finite set of points Elements in a comparison matrix

Edge Links connecting pairs of vertices Adjacency indicators

Weight Numeric values assigned to edges Vector differences (can be other similarity
matrices as well)

Shortest path
problem

Finding a path between two vertices that minimizes the
sum of weights

Finding the best alignment between scanpaths

Path An alternating sequence of vertices and edges Directional calculations of the optimum cost

In preparation for transforming the comparison matrix into a graph, the allowed

transitions among comparison matrix elements need to be specified. They will serve

as the links between matrix elements. Under the requirement that this matrix can be

recreated as a digraph with the first element as the start vertex and last element the
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end vertex, the represented direction of path thus travels from top-left to bottom-right

with no retracing of steps. Then all the possible transitions during this travel can

be identified. Following the travel metaphor, allowed transitions can be thought as

neighborship (adjacency) indicators, illustrating whether two vertices are connected

along the directed path. Traditionally, an adjacency matrix is a square matrix that

summarizes the relationship between vertices, with elements indicating the number

of edges connecting two vertices. For instance, 0 means the pair of vertices have no

connecting edges or are not adjacent. MultiMatch has used a weighted adjacency

matrix that stores edge weights directly in the elements to demonstrate the rules

for how comparison matrix elements are connected; the weight is the same as the

similarity metric (vector difference) used in the comparison matrix. For example, a

comparison matrix (2.8) and the corresponding adjacency matrix (2.9) are presented

here:

Mm,n =



s1 · · · sj · · · sn

r1 w1 · · · wj · · · wn
...

...
. . .

...
. . .

...

ri w(i−1)m+1 · · · w(i−1)m+j · · · w(i−1)m+n

...
...

. . .
...

. . .
...

rm w(m−1)m+1 · · · w(m−1)m+j · · · w(m−1)m+n


(2.8)

Amn,mn =



1 · · · l · · · mn

1 0 · · · w1,l · · · w1,mn

...
...

. . .
...

. . .
...

k 0 · · · wk,l · · · wk,mn
...

...
. . .

...
. . .

...

mn 0 · · · wmn,l · · · wmn,mn


(2.9)
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When the kth element in one scanpath and lth element in another scanpath are

adjacent, then the value of adjacency matrix wk,l equals the lth element in the com-

parison matrix, other wise is 0. The adjacency relationship between any two elements

in the comparison matrix can be found using the pseudo-code II.4.

BEGIN

FOR each row i(i ∈ 1,m) in the comparison matrix Mm,n

FOR each column j(j ∈ 1, n) in the comparison matrix Mm,n

IF j ≤ i THEN

w(i−1)m+j = 0

ELSE

IF i 6= m THEN

IF j 6= n THEN

w(i−1)m+j is adjacent to three elements: w(i−1)m+j+1,

w(i−1)m+m+j, w(i−1)m+n+j+1

ELSE

w(i−1)m+n is adjacent to one element: w(i−1)m+2n

END IF

ELSE

IF j 6= n THEN

w(m−1)m+j is adjacent to one element: w(m−1)m+j+1

ELSE

w(m−1)m+n = 0

END IF

END IF

END IF

END FOR

END FOR
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END;

Listing II.4: Pseudocode for finding adjacency relationship

A graph representation of the shortest path problem (aligning two scanpaths) can

then be created based on the adjacency matrix. MultiMatch then applies Dijkstra’s

algorithm to find the optimal path that minimizes the cost, or in graph theory terms,

finds the shortest path between the first and last vertex. This path defines how the

vectors in two scanpaths can be aligned, namely ensuring that each vector in one

scanpath is matched with a vector in the other scanpath. For example if the shortest

path is vertex 1-4-5, indicating r1 is matched with s1, r2 with s2, and then s3 with

r2.

Finally similarity is calculated on the aligned scanpaths with respect to five dif-

ferent aspects of the scanpaths: shape, amplitude, direction, position and duration

(see Table 2.8). Each category yields an averaged value over all the matching pairs.

This value is normalized with its largest possible value and then inverted to obtain

an interval of 0, 1 with 1 represents perfect match and 0 represents no similarity.

Table 2.8: MultiMatch Similarity Measure

Measurement Normalization Method

Shape Screen diagonal Compute vector difference between the aligned saccade pairs
ui − vj

Amplitude
(length)

Screen diagonal Compute distance between the endpoints of saccade vectors

Direction π Compute angular difference between saccade vectors

Position Screen diagonal Compute Euclidean distance between aligned fixations

Duration The maximum duration among the
two

Compute difference in fixation durations between aligned fixations

MultiMatch succeeds in preserving all the geometric properties of scanpath, and

provides more elaborated information on the type of (dis)similarities given a particular

dimensionality (Le Meur and Baccino, 2013). It is superior to the string edit method

in the sense that possible dimensions extend beyond Euclidean distance between

fixations to include overall shape, saccade direction, saccade length, and fixation
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duration. But it inevitably falls short of ScanMatch in that the alignment procedure

is blind to the semantic meaning of the fixations. The raw location coordinates are

not labeled and thus it may be difficult to interpret the (dis)similarities.

2.2.4 Probabilistic Approach

The essential characteristic of probabilistic approaches is the assumption that

eye movement events are random variables manifested as the observable outcomes

of underlying stochastic processes (Boccignone, 2017; Coutrot et al., 2017). With

this assumption a wider variety of advanced methods become available, especially

techniques borrowed from the field of statistical machine learning.

A stochastic process can be formally defined as a collection {Xt; t ∈ T} of ran-

dom variables Xt (also, X(t)) defined in the same probability space with and taking

values from state space S. Xt are indexed by parameter set T which customarily

represents time (either discrete or continuous). Then Xt can be thought as the state

of the process at time t (Cinlar , 2013; Boccignone, 2017). Applying this definition

to eye movements we get Xti = xi with xi being the observed eye movements and

realizations of the stochastic process. xi may contain multiple dimensions such as

fixation location, saccade amplitude and direction. Then the mapping from visual

input I to a sequence of eye movements under a certain task T can be simply written

as I →
T

{
x(1), x(2), x(3), · · ·

}
. Here I represents the features of raw visual input such

as colors and shapes, and T can be any tasks that requires cognitive effort such as

visual exploration, signal search, face recognition, navigation, etc.

2.2.4.1 Bayesian vs. Frequentist Framework

A large body of human eye movement studies have been concerned with the ques-

tion, where do people look? A wide array of computational models such as the feature

integration theory of Treisman and Gelade (1980), the selective routing model of Koch
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and Ullman (1987), the shifter circuit model of Olshausen et al. (1993), the temporal

tagging model of Niebur et al. (1993), and the selective tuning model of Tsotsos et al.

(1995), just to name a few, have been designed to untangle this question with no

completely satisfactory results (Heinke and Humphreys , 2005). Most of these models

were built upon the saliency representations of visual inputs, namely the low-level

visual features (Koch and Ullman, 1985; Itti et al., 1998), while seldom incorporating

the influence of task.

Up to now, no models have really succeeded in predicting natural eye movement

sequences when looking at arbitrary scenes (Frintrop et al., 2010; Boccignone, 2017).

Using Receiver Operating Characteristic analysis, Tatler and Vincent (2009a) demon-

strated that models with terms learned from actual eye movement outperform the

traditional saliency models built solely upon features of visual input: .648 as opposed

to .565 (area under the receiver operator curve; larger area indicates better classifi-

cation performance). The natural follow-up question is where does the difference in

model performance come from? Aside from the apparent complication of modeling

a delicate process that is shaped by both voluntary and involuntary forces, a major

limitation of the current modeling approaches can be exposed by simply examining

their mathematical specifications.

Tatler and Vincent (2009a) showed that the fundamental research question—

where do people look?—provided certain visual input can be rephrased as the problem

of finding the conditional probability of an eye movement sequence given information

about visual input: P (x | I). Given the definition of conditional probability (2.10)

and the Multiplication Law (2.11), the probability P (x | I) can be written as (2.12),

which is essentially Bayes’ theorem (Tatler and Vincent , 2009a; Boccignone, 2017).

Thus we know the question can be interpreted under the Bayesian framework, as

the prior distribution of eye movements P (x) being updated by the sampled data

about visual features at a given fixation location P (I | x) normalized by the overall
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likelihood of these features occurring in the environment P (I) (Boccignone, 2017).

P (E | F ) =
P (E ∩ F )

P (F )
(2.10)

P (E ∩ F ) = P (E | F )P (F ) = P (F | E)P (E) (2.11)

posterior prob. of saccades︷ ︸︸ ︷
P (x | I) =

P (x ∩ I)

P (I)
=

prob. of feature given certain saccades︷ ︸︸ ︷
P (I | x)

P (I)︸︷︷︸
prob. of features occurring in the environment

prior prob. of saccades︷ ︸︸ ︷
P (x)

(2.12)

Now that we have the Bayesian representation of the research question where

do people look, let’s go back to the traditional visual attention model—the saliency

model. Boccignone (2017) has pointed out, despite the abundance of versions of these

models, most saliency models were built on a core representation Eq. (2.13), a form

that is similar with Eq. (2.12), but discarded information about transitions between

consecutive fixations xf (t)→ xf (t + 1) , essentially modeling on prior probability of

fixations instead of saccades (e.g., Borji and Itti , 2013). Most often, Eq. (2.13) is

further simplified as Eq. (2.14) by setting P (I | xf ) and P (xf ) to constant. Eq. (2.14)

can be interpreted as: the probability of fixation at certain location is proportional

to the salience of visual features at that location; smaller P (I) indicates the feature

is less likely to appear in the environment, and is thus more salient due to its being

unexpected. Tatler and Vincent (2009a) criticized the choice of dropping P (xf ) in

(2.14), arguing that it shows a neglect of inherent biases/systematic tendencies of

real eye movements irrespective of the visual input (Tatler et al., 2011; Tatler and

Vincent , 2009a). They argued that human eye movements evince natural systematic

tendencies that are independent of the external environment including conspicuities
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of visual stimulus. The tendencies they discovered include more horizontal saccades

than vertical ones, a larger probability of fixating on central areas, among others.

Tatler and Vincent (2009a)’s analysis provides an alternative approach to modeling

eye movements that should be explored in the future, starting with stationary eye

tracking paradigms.

posterior prob. of fixations︷ ︸︸ ︷
P (xf | I) =

prob. of feature given certain fixations︷ ︸︸ ︷
P (I | xf )
P (I)︸︷︷︸

prob. of features occurring in the environment

prior prob. of fixations︷ ︸︸ ︷
P (xf ) (2.13)

posterior prob. of fixations︷ ︸︸ ︷
P (xf | I) ∝

salience at given locations︷︸︸︷
1

P (I)︸︷︷︸
prob. of features occurring in the environment

(2.14)

By comparing Eq. (2.12) and Eq. (2.14) we can see that they are derived from

two different interpretations of the distribution of eye movements. Eq. (2.14) treats

fixation location as a fixed value rather than a distribution that has dependency on

past events. This corresponds to the frequentist view of observed data, while Eq.

(2.12) follows the Bayesian framework and considers eye movements as a dynamic

process.

Based on this comparison of two frameworks, the current paper will adopt the

Bayesian interpretation of probability given the dynamic nature of eye movements.

Specifically, the current paper considers the eye movement sequence {x(t = 1), x(t = 2), · · · }

as a sample from a stochastic process with probability density function P (x).

2.2.4.2 Examples of Probabilistic Approach: Hidden Markov Models

As discussed before, the dynamic nature of eye movement is of central focus in

the current paper. To more formally define the dynamics of the stochastic process

in order to fully describe the statistical properties of the scanpath we have the tran-
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sition probabilities representing the probability of state transitions. Thus an n-step

transition probability P n
ij is the probability that a process in state i will be in state j

after n transitions as in Eq. (2.15) (Ross , 2014, p. 187). Thus the probability of the

process at time k + l can be written as a joint probability (2.16) given information

from all past time points and the current time.

P n
ij = P{Xn+k = j | Xk = i}, n ≥ 0, i, j ≥ 0 (2.15)

P (x1, t1; · · · ;xk+l, tk+l) = P (xk+1, tk+1; · · · ;xk+l, tk+l | x1, t1; · · · ;xk, tk)·P (x1, t1; · · · ;xk, tk)

(2.16)

A Purely Random Process is the simplest stochastic process in the sense that

X(t) is completely independent of past or future values; thus the joint probability

P (x1, t1; · · · ;xk+l, tk+l) is simply the product of all P (xi, ti). But in reality, a stochas-

tic process is often not as simple as this. Going one step further to describe a more

realistic situation yields a Markov process in which each state is memoryless beyond

the most recent transition, namely Eq. (2.17)

P (xn, tn | xn−1, tn−1; · · · ;x1, t1) = P (xn, tn | xn−1, tn−1) (2.17)

The Markov process is the most widely-used probabilistic description of eye move-

ment sequences (e.g., Liechty et al., 2003; Feng , 2006; Simola et al., 2008; Kit and

Sullivan, 2016; Coutrot et al., 2017), and Hidden Markov models are representatives

of this approach. A Hidden Markov model (HMM) is a stochastic model in which

the process (time series data) being modeled is assumed to be a Markov process with

discrete, hidden states. HMM is designed to represent how qualitatively different,

unobserved states unfold over time (Visser , 2011; Baum and Petrie, 1966).
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Before explaining HMM, some notations need to be clarified. Consider obser-

vations collected over time length t and denote the data observed at time t by the

variable Yt; thus the time series data are denoted by Y1:T := (Y1, Y2, · · · , YT ). Also

consider the state variable St that represents the hidden process generating the ob-

servations, S1:T := (S1, S2, · · · , ST ).

HMM has three defining characteristics:

a) States are discrete: the marginal distribution of the time series data is a mixture

distribution. In other words, the data do not follow any single uni-modal distribution

but instead are sampled from multiple distributions with different parameters. In a

more rigorous definition, HMM is said to be generated by multiple discrete states or

components; this can be represented as Eq. (2.18).

f(Yt) =
n∑
i=1

pifi(Yt) (2.18)

Here pi are the component proportions, and the marginal density function of data is

the sum of all the conditional distribution fi(·) of the data. Also, since the states are

discrete, St can take on values from a set of integers denoted by K = {1, · · · , n}. K

is called the state-space of HMM and n is the number of discrete states.

b) States are hidden: HMM is different from observable Markov models in that

the states generating observations are hidden from the observer. That is to say, the

mapping between St and Yt is probabilistic rather than deterministic.

c) States follow a Markov process: HMM assumes that the state variable St sat-

isfies the Markov property, that is, stating that the conditional distribution of any

current state St, given the previous state St−1, is independent of the all past states

prior to t− 1 and depends only on the previous state St−1, expressed as (2.19).

P (St | S1, S2, · · · , St−1) = P (St | St−1) (2.19)
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In sum, HMM is characterized as a model with discrete, hidden states, each with a

different distribution function, and the evolution of states over time follows a Markov

process (Ghahramani , 2001; Visser , 2011).

HMM has been used in psychology to represent situations where the states de-

scribed above are assumed to be mental states that characterize typical human be-

havior. This list includes sleep stages, problem solving strategies, grammatical rules,

covert visual attention modes, the kind of task one is doing, an observer’s expertise,

emotional state, etc. (Flexer et al., 2000, 2005; Schmittmann et al., 2005; Visser

et al., 2002; Liechty et al., 2003).

The application of HMM in eye movement research is still at an early stage.

The few existing studies have presumed that scanpaths are better described by a

stochastic process rather than a deterministic sequence, essentially proposing that

scanpaths exhibit a Markov process in which the position of a fixation depends (and

only depends) on the position of the previous fixation (Viviani , 1990; Ellis and Smith,

1985; Liechty et al., 2003).

In related eye movement research, there are two approaches using HMMs. The

first approach clearly defines the hidden states as modes of visual attention. For

instance, Liechty et al. (2003) postulated that people switch between two distinct

covert visual attention states, namely local and global visual attention during visual

scanning. Local visual attention enables better extraction of details from specific and

adjacent locations. Global visual attention facilitates integration of information from

multiple locations and is used for identifying next locations to fixate. Liechty et al.

(2003) thus presumed that local and global attention are associated with different

length of saccades: local attention is characterized by shorter saccades while longer

saccades represent global attention. This is not the most suitable approach for the

current data set for two reasons. First, the presumed association between visual

attention states and saccade length has little empirical support. More importantly,
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making inferences about attention states is not the primary goal of the current paper.

Another approach regards HMM as a generative model and has only begun to

appear in recent years. This approach has explicitly or implicitly modeled the dis-

tribution of eye movement (input) around the hidden state as well as the transition

matrix of hidden states (output) and it is also capable of generating synthetic data in

the same input space, hence the name generative model (Boccignone, 2017; Coutrot

et al., 2017). For this approach, an area of interest (AOI) is not a collection of fix-

ations that falls in that area (or in other words, fixations were not equated to the

exact points of interest), but rather a distribution sampled from some states that

are not directly observable. And HMM is used to model both the distribution of

actual observations and the hidden states. For example, Coutrot et al. (2017) and

Chuk et al. (2014) have assumed a hidden state to be the region of interest (ROI)

in the image and observed data to be fixation locations. They modeled the emission

densities (the distribution of fixations in each ROI) as a 2D Gaussian distribution,

that is, given a hidden state the actual observation is assumed to be sampled from a

Gaussian distribution centered around the true point of interest. The transition ma-

trix of hidden states can be inferred from the input data and the parameters defining

HMM is chosen based on the magnitude of likelihood for a new input observation. I

will further discuss this approach under the frame work of Bayes’ Theorem in a later

section.

2.3 Challenges of the Current Data

The current eye movement data are complicated due to factors inherent in the

nature of teaching. Teaching is a cognitively complex, goal-oriented task involving

simultaneous processes that occur in a complex environment with multiple interacting

actors and a variety of instruction-related stimuli, not to mention distractions. As

already mentioned, goal-oriented and free-viewing tasks are used to examine the rel-
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ative impact of bottom-up and top-down processes, but they are rarely combined in

non-lab settings. The variables that characterize a complex system, such as real-life

natural eye movements, are difficult to control and isolate (Keane et al., 2014). Thus

the complexity of natural eye movements requires more advanced statistical methods.

The largest challenge is probably how to represent quantitatively where the teacher

is looking. Since the teachers who participated in the current study were wearing a

mobile eye tracker that does not track head position or physical movement with

respect to the external environment, we have no way of knowing the exact loca-

tion coordinates as we would in traditional static scene perception studies. As we

have reviewed in past sections, most scanpath comparison methods utilize the two-

dimensional coordinates on screen to define gaze location, but the lack of a consistent

coordinate system precludes a straightforward application of this method. The next

section will describe how we can overcome this obstacle by transforming the original

eye movement data.

2.4 General Analysis Framework

Our core research question involves what we can learn from teacher’s eye move-

ments that will tell us something about the cognitive processes involved in teaching

as they relate to teacher attention. Our goal is to analyze scanpath patterns and

further make inferences about the scanpath based on eye movement sequences. We

collected data comparing novice and experienced teachers teaching the same students

and elementary school teachers teaching different subjects (reading and mathematics)

to the same students. We are interested in how expertise and subject matter affect

patterns of looking.

Both of these questions can be rephrased as an inverse problem under Bayes’

framework: based on eye movement data, can we identify whether the participant is

a novice or experienced teacher? Similarly, can we identify whether a given teacher
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is teaching mathematics or literacy?

How to solve the inverse problem is the key step in analyzing our data. Next, I

will examine my research questions under the framework of statistical learning.

2.4.1 Problem of Classification

As we covered in the previous section 2.2.4, the basic assumption of the proba-

bilistic approach is that some hidden mental states Y have shaped the eye movement

X we observe, represented by the generative process Y → X. In practice, we can

not observe this process directly but we can make inferences about the target states

based on the relationship between Y and X, namely, finding the probability of the

target state given the observed eye movement data. This inference problem X → Y

can be written as Eq. (2.20) by applying Bayes’ Theorem and the multiplication law

of conditional probability P (Y,X) = P (X | Y )P (Y ). P (Y,X) is the posterior prob-

ability we can use to determine the output Y = y for each new input X = x. The

parameters specifying the probability density functions in Eq. (2.20) can be learned

from the actual observations, and to this end many statistical learning techniques can

be utilized.

P (Y | X) =
P (X | Y )P (Y )

P (X)
(2.20)

This inferential process is of central focus in the area of statistical learning, which

deals with the problem of finding the relationship captured by predictive functions

between input data and output variables (James et al., 2013; Friedman et al., 2001).

Depending on the relationship between input and output, as well as the data type

of output, statistical learning problems can be roughly categorized into four kinds

(Table 2.9). In supervised learning, observations xi are associated with target values

yi (also called labels, response measurements, or dependent variables), or in other

words, the input data is labeled with target values. On the other hand, unsupervised
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learning deals with unlabeled input data with no “supervision” from the target values.

Table 2.9: Types of Statistical Learning Problems

Supervised Learning (Labeled
Data)

Unsupervised Learning
(Unlabeled Data)

Y is Discrete Classification Clustering

Y is
Continuous

Regression Dimensionality Reduction

The goal of supervised learning is to understand the relationship between X and

Y in order to predict the target value of a new input. Depending on the data type

of output, supervised learning can be further broken down to a classification problem

or regression problem. When the output values belong to a discrete set of labels, it

is a classification problem; when the output takes a continuous range of values, the

problem is known as regression (Boccignone, 2017; Friedman et al., 2001).

With no labels attached, the main goal of unsupervised learning then becomes

mining for interesting patterns that are yet unknown. Similarly, when Y is discrete

the problem is called clustering and if Y is continuous the problem is known as

dimensionality reduction (James et al., 2013; Boccignone, 2017).

Now consider the current data set. We have a collection of eye movement data

discretely labeled by the teacher’s expertise level or subject matter and the goal is to

make inferences about the label using eye movement information. Thus the problem

at hand is a binary classification task.

2.4.2 Discriminative vs. Generative Approach

There are two general means of solving the classification problem described in

(2.20): discriminative and generative approach. The discriminative approach directly

represents the conditional distribution P (Y | X) using a parametric model (see (2.21))

of which the parameters θ can be learned from a training set that contains pairings
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of xn, yn (Bishop and Lasserre, 2007). The point estimate of θ can be given by

maximizing the distribution P (θ | X, Y ), then the predictive distribution can be

estimated using Eq. (2.23).

P (Y | X) =

∫
P (θ)L(θ)dθ (2.21)

L(θ) = P (Y | X, θ) =
N∏
n=1

P (yn | xn, θ) (2.22)

P (ŷ | x̂, X, Y ) ' P (ŷ | x̂, θMAP ) (2.23)

The discriminative approach provides decent predictive performance when the la-

beled data are abundant, but it may fall short when there are not enough labeled

training sets. In this case, an alternative approach that represents both inputs and

outputs in parametric model forms may be more useful. This is known as a genera-

tive approach since it is capable of generating synthetic data input. The generative

approach requires modeling the joint distribution P (X, Y ) by modeling P (X | Y )

and P (Y ) first and subsequently calculate P (Y | X) using Bayes’ Theorem (see Eq.

(2.24)) (Ng and Jordan, 2002; Bishop and Lasserre, 2007).

P (Y | X) =
P (X | Y )P (Y )

P (X)
(2.24)

The discriminative approach includes methods such as logistic regression and Sup-

port Vector Machine (SVM), while the generative category contains Naive Bayes,

Gaussian Discriminant Analysis (GDA), Hidden Markov Models (HMMs) etc. To

put these two approaches in context, consider a simple situation of training a ma-

chine to distinguish between cats (Y = 1) and dogs (Y = 0) based on some physical
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features such as ear shape, mouth length, etc. Provided with a training set, discrim-

inative algorithms will try to find a decision boundary (a hyperplane) that separates

the cats and dogs in terms of the feature space. Then given a new animal, the algo-

rithm will examine on which side of the boundary it falls and make a classification

decision accordingly. In the case of the generative approach, the algorithm first builds

a model of what cats/dogs look like, and then compares the new animal with each of

the models to reach a decision.

Making choices about which approach to adopt requires a series of considerations.

First, whether the modeling assumption is satisfied will influence the method choice

greatly. For instance, under the circumstance that the input features x are contin-

uous random variables with n dimensions, and output variable y takes values from

0, 1. Ng (2000) has compared two classic methods that model continuous data in two

approaches. Logistic regression is a discriminative method that models P (T | X) di-

rectly as a logistic function of x with parameter(s) θ: hθ(x) (2.25). On the other side,

Gaussian Discriminant Analysis (GDA) models the data by P (X,T ) = P (T )P (X | T )

in which P (X | T ) follows a multivariate normal distribution with mean vector µ ∈ Rn

and covariance matrix Σ ∈ Rn×n (2.26); the density functions are written as (2.29).

Logistic regression and GDA will most often yield different decision boundaries given

the same training set, but they are inherently related. Ng (2000) showed that this rela-

tionship can be shown by rewriting the density function p(x | y = 1) as a function of x.

The new function can be expressed in the form p(y = 1 | x;φ;µ0, µ1,Σ) = 1
1+exp(−θT x)

,

where θ is a function of parameters φ,Σ, µ0, µ1. Compare this function with Eq.

(2.25b), Ng (2000) pointed out this is the exact form that logistic regression used to

model p(y = 1 | x), and if p(x | y) is a multivariate Gaussian function, then p(y | x)

necessarily follows a logistic function. But the converse statement is not true, namely,

p(y | x) being a logistic function does not imply p(x | y) follows multivariate Gaussian

distribution, thus “this shows that GDA makes a stronger modeling assumption than
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logistic regression” (Ng , 2000; Ng and Jordan, 2002). When the input data indeed

satisfy Gaussian assumption then GDA is much faster in approaching its asymptotic

error and is therefore more efficient and accurate than its discriminative counterparts

(Ng and Jordan, 2002). On the other hand, logistic regression is more relaxed in

terms of modeling assumptions and is robust in most situations.

hθ(x) =
1

1 + exp(−θTx)
(2.25a)

P (y = 1 | x; θ) = hθ(x) (2.25b)

P (y = 0 | x; θ) = 1− hθ(x) (2.25c)

y ∼ Bernoulli(φ) (2.26)

x | y = 0 ∼ N (µ0,Σ) (2.27)

x | y = 1 ∼ N (µ1,Σ) (2.28)

p(y) = φy(1− φ)1−y (2.29)

p(x | y = 0) =
1√

(2π)n|Σ|
exp(−1

2
(x− µ0)TΣ−1(x− µ0)) (2.30)

p(x | y = 1) =
1√

(2π)n|Σ|
exp(−1

2
(x− µ1)TΣ−1(x− µ1)) (2.31)

|Σ|: the determinant of Σ, n: number of input features (2.32)

In addition to the consideration of modeling assumptions, the kind of input data

also influences method choice. The generative approach typically handles missing
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data better and is capable of augmenting a small set of labeled data with large quan-

tities of easy-to-acquire unlabeled data. But it is also less direct and slower at making

decisions since they are trained to model the joint distribution rather than the direct

relationships between class labels and data (Ulusoy and Bishop, 2005). In contrast,

discriminative approaches are widely used because of their excellent generalization

performance when labeled data are plentiful. Another consideration regards the pos-

sible incongruence between training and test set. Standard discriminative methods

require the training set to contain all possible combinations of feature-label pair, while

generative models can handle certain variations (Bishop and Lasserre, 2007).

In summary, there is no fixed rule for choosing one approach over another; rather,

the decision should be made based on the particular dataset and task. In the next

section, I will discuss the process that led to my choice for the current project.

2.4.3 Classification in Eye Movement Research

Both discriminative and generative approaches have been applied in learning from

eye movements. In each category, HMM and SVM generally have better performance

over other learning algorithms. For example, a growing number of studies have used

HMM to model the generative process between certain processing/attentional state

and the actual eye movement (Coutrot et al., 2017; Chuk et al., 2017b,a; Feng , 2003,

2006; Simola et al., 2008; Chuk et al., 2014), as well as classifying the task a subject

is engaged in based on his or her gaze features (Haji-Abolhassani and Clark , 2014,

2013; Kit and Sullivan, 2016; Kanan et al., 2014; Borji et al., 2015; Boisvert and

Bruce, 2016). On the other hand, SVM is more widely used to infer a subject’s

characteristics and identity, such as mental disorders (Tseng et al., 2013; Lagun, D.,

Manzanares, C., Zola, S. M., Buffalo, E. A., & Agichtein et al., 2011; Alberdi et al.,

2016), viewer’s gender (Coutrot et al., 2016), age group (French et al., 2017), and

level of expertise (Boccignone et al., 2014).
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Based on the research question at hand (infer expertise and subject matter), the

current paper will adopt SVM for classification purpose.

2.5 Analysis Plan for Mobile Eye Movement Data

2.5.1 Data Transformation

Study 1 and Study 2 will record teacher’s eye movements using mobile eye tracking

technology. Two types of representations will be used to describe the eye movements:

string-based and vector-based representations; each has its unique benefits and limi-

tations.

String-based representation consists of a sequence of characters representing each

fixation with a single character. First and foremost, this representation captures the

semantic meaning of eye movements, namely what kind of objects were fixated on,

thus providing us with highly interpretable data and holding out the possibility of

conducting comparisons across classrooms with different layout, student grouping and

class content. Second, the string-based representation is also capable of capturing the

duration and order information in eye movement sequences. The specific approach of

coding fixation duration into string sequences will be discussed in the next section.

But at the same time, string-based representation also fails to incorporate important

vector properties such as saccade amplitude and direction. Vector representation, on

the other hand, preserves the vector properties of scanpath, but is more difficult to

interpret. Thus both string and vector representation of eye movement sequences will

be used to complement each other.

2.5.1.1 String-based Representation

Semantic Coding Based on our definition of a fixation, a 45 minutes class pe-

riod contains approximately 4000 fixations. Using the eye tracking video footage,
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time stamp for each fixation, and room maps with all the students labeled with a

numbered ID, trained assistants coded what the teacher was focusing on at the time

of fixation. Besides student codes, seven other codes were also used to capture vari-

ous objects in the classroom (see Table 2.10 for examples). When comparing different

classrooms, some labels were combined: different student codes were grouped as S and

all task-irrelevant objects were combined as O. This approach makes the classrooms

with different events/students comparable, but unavoidably reduced the information

concerning individual students.

Duration Encoding Adapted from the procedure proposed by ScanMatch and

SubsMatch 2.0 (Cristino et al., 2010; Kübler et al., 2017), the fixation duration at

each fixation location is encoded at a temporal sampling rate of 40 millisecond, thus

fixation duration is represented as a repeated sequence of the same label with 40 ms

per label (0.75 frame at 30 Hz), for example, a fixation on student for 200 ms can

be represented as SSSSS. In this way, temporal information can be preserved in a

sequence of letters.

Table 2.10: Coding Examples

Semantic
Content

Exam-
ple

Label

Explanation

Students S1∼Snn Teacher fixating on a particular student

Board B For chalkboard/white board used in whole class/large group instruction

Other
person

OP This code is assigned to any student without an ID and any adults (including other teachers, researchers,
etc)

Instruc-
tional

material

IM Instructional materials (other than the board) that are used as a tool for instruction. This can include
any object - and related components - that is intended to help students learn or assist in managing the
lesson.

Other
objects

OO Any objects in the classroom that is not used as an instructional material, such as a clock or box of
tissue.

Teacher T Indicating the teacher is looking at him/herself (for example, look at their hands)

Missing
data

M When the fixation is not captured by eye tracker

Cannot
Interpret

X Unable to judge what the teacher is focusing on
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2.5.1.2 Vector-based Representation

The complication of mobile eye movement recording in real life is that the move-

ment is recorded as a point traveling on a two-dimensional (2D) plane, while in

actuality the movement unfolds in a three-dimensional (3D) space. The fixations

do not fall on a common 2D coordinate system since the teacher’s head and body

are constantly moving. As discussed in the Methodology chapter, our data bear a

limitation of not containing information about head and physical movements, thus

the most commonly used eye movement measure—coordinates of fixation locations,

is not readily available. In order to adopt the techniques developed under the lab

situation in which both subject and display device are static, we need to establish

and standardize a common coordinate system first.

Construction of Coordinate System While the exact location of fixation can

not be determined uniquely with actual 3D coordinates, there are other plausible

ways to represent a scanpath. One way is to reconstruct 3D coordinates from video

recordings. Another way is to consider the scanpath not in terms of its position and

vector properties in the actual 3D space but rather construct a new space in which

the essential properties of the scanpath can be preserved.

The first approach requires algorithms that are designed for automatically extract-

ing a three-dimensional coordinate system directly from the two-dimensional video

image. This often requires automatic detection of foreground against background. It

is an extremely difficult computational problem that is still at a very primitive stage

in related areas such as computer vision and video surveillance. It is beyond this

paper’s scope to design and implement such algorithms.

The second approach is much more promising given that most fixations in the

teaching situation are horizontally distributed because most teaching-related stimuli

(e.g., student seats, black boards, teaching equipment, etc.) are positioned so that
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they are not on top of each other (i.e., we don’t have double-decker classrooms). Thus

we do not lose important information about identities of fixated objects if we project

the three-dimensional space onto a two-dimensional plan viewed from above.

This space-projection idea is inspired by architectural diagrams, especially floor

plans, which demonstrate a view from above showing the arrangement of spaces inside

the architecture in the same way as a map. Geometrically, the floor plan view is

defined as a vertical orthographic projection of an object on to a horizontal plane,

with the horizontal plane cutting through the building. In depicting width and length

but not height, plans emphasize horizontal arrangements and patterns of function,

form, or space (Ching , 2015, p. 37). Technically, a floor plan is a horizontal section

cut through a building at four feet (one meter and twenty centimeters) above floor

level, showing walls, windows and door openings and other features at that level.

Utilizing an actual floor plan based on sketches by observers in the classroom,

we constructed a 2D coordinate system with all the objects of interest positioned

according to their actual arrangement.

Standardization of the Coordinate System The comparability of different

classrooms is the premise of scanpath comparison. Thus before comparing groups

of scanpaths, we also need to ensure the data belong to the same coordinate system.

In mobile eye tracking studies, standardization is usually accomplished by pin-

pointing the location of a relatively static object. For instance, in a speed-stacking

task using cups, Foerster and Schneider (2013) utilized the position of the bottom cup

that was not moved during the task to standardize their coordinate system. Similarly,

the anchor could be the location of the shoe during a shoe-tying task, the position of

goal location in a navigation task, or the position of a hand during a sandwich-making

task.

In the current paper we used the position of the teacher as the origin of the coordi-
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nate system. This choice is built on two reasons: teachers were relatively stationary

during lecturing; and we are interested in the teacher’s perspective. The unit of

measure is defined by the closest seating distance between students in a particular

classroom, specifically, setting the distance to 1. This arbitrary definition is based

on the fact that the seating distance between two students is most often consistent

within one classroom. Then the distance between the origin (teacher’s position) and

other objects can be defined in relation to the shortest distance among students.

The distance on the room map was measured using a vector graphic editor (Adobe

Illustrator) with a computer-aided design plug-in (CADtools).

Mapping Scheme With the new representation of the classroom, the labeled fix-

ation location can be substituted with (x, y) in the new 2D coordinate system. This

results in essentially transforming the eye movement sequences into vectors with di-

mensions including fixation location (coordinates), saccade direction (vector direc-

tion) and amplitude (vector length) etc. Bear in mind that these reconstructed fea-

tures are not the same as the original oculomotor measures, but since the main goal

of this study is not documenting the exact eye movement during teaching (which

would not be generalizable to other classrooms), but rather to uncover the variations

in teachers’ scanpaths as they relate to expertise level and subject area as well as

making inferences based on these eye movement sequences, we prefer a transformed

sequence of features that retains information about original eye movement patterns.

Yet, there are some complications regarding the mapping of actual eye movements

onto points in the newly defined coordinate system that need to be addressed. In

the current data set, all the objects relating to instruction are coded with a single

label IM ; similarly, all the objects that are irrelevant are labeled with OO. If we are

using a single point to represent all the possible fixations, it will greatly decrease

the variability of the original scanpath. Thus, in line with the assumption of HMM
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that the dispersion of fixations follows a two-dimensional Gaussian distribution, we

plotted fixations labeled as other objects/person according to a Gaussian distribution

(miu=0, theta=5) within the range of the whole diagram except for positions occupied

by students, board etc. Similarly, fixations labeled as instructional materials were

plotted as random points following a uniform distribution within a circle centering

around the teacher and with a radius of 1.

Selection of Instructional Units For the sake of comparing different classrooms

and teachers, the whole lesson had been segmented into multiple instructional units

based on teacher’s movement, instructional mode and room arrangement. For the

ease of data transformation and group comparison, we used the eye movement when

the teacher was relatively stationary and teaching the class as a whole while students

remained in their original seats and these instructional units constitutes 53% of the

whole class time on average.

2.5.2 Aggregated Similarity Measure

For the vector representation of eye movement, we used MultiMatch (Dewhurst

et al., 2012) to get an overall similarity score for scanpath comparison. MultiMatch is

a vector-based method that is capable of comparing scanpaths over five dimensions:

shape (vector difference), fixation location (position) difference, saccade amplitude

(length) difference, saccade direction (angular) difference and fixation duration.

Following a procedure adapted from MultiMatch, the current paper need to first

align two scanpaths in order to compare them. The alignment of compared scanpaths

is conducted in four steps (also see 2.2.3). First, an eye movement sequence is rep-

resented in vector form: start and end point of a vector represents two consecutive

fixations, length of the vector denotes the saccade amplitude, and vector direction

is essentially saccade direction. The next step is to construct a comparison matrix
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with elements indicating the pairwise similarity between saccade vectors in two scan-

paths. The similarity is represented by vector difference (length of the differential

vector), which means each cell in the comparison matrix contains the vector differ-

ences between any two saccade vectors, and the vector difference gets smaller when

two vectors are similar in magnitude and direction. For the third step, we need to

reinterpret this alignment task as a path-finding task. The task of finding a best

way to align the two eye movement sequences is essentially to find an optimum path,

with a start and end point, through the comparison matrix. Thus the alignment task

can be reinterpreted as a path-finding task, which is a classic problem of finding the

shortest (minimum cost) path in a graph. Under the framework of graph theory,

path-finding is the task of finding the shortest path based on the weights associated

with all the edges between two vertices (for definition of terms see Table 2.7). In the

case of scanpath comparison, vertices are the elements in a comparison matrix; edges

are possible links between comparison matrix elements that are defined by adjacency

matrix; and weights are costs associated with each pair-wise comparison (vector dif-

ference). In the fourth step, Dijkstra’s algorithm (Dijkstra, 1959) is used to find the

shortest path through the comparison matrix. In a broad term, Dijkstra’s algorithm

is conducted by repeating two steps: first, visit the unvisited vertex with the smallest

known distance from the start vertex; second, for the current vertex, calculate the

distance of each unvisited neighbors (vertices that share edges) from the start vertex,

if the calculated distance of a vertex is less than the known distance, then update

the shortest distance (Dijkstra, 1959; Mehlhorn and Sanders , 2008). The path found

by Dijkstra’s algorithm will define how the vectors in two scanpaths can be aligned,

namely ensuring that each vector in one scanpath is matched with a vector in the

other scanpath (Jarodzka et al., 2010a; Dewhurst et al., 2012).

After alignment, we can then calculate a similarity score for five dimensions: vector

shape, saccade amplitude, saccade direction, fixation location and fixation duration
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(Jarodzka et al., 2010a; Dewhurst et al., 2012). Each category yields an averaged

value over all the aligned pairs of vectors. This value is normalized and then inverted

to obtain an interval of 0, 1 with 1 represents perfect match and 0 represents no

similarity (see Table 2.8).

2.5.3 Pattern and Classification

2.5.3.1 Point Pattern Analysis

After projecting fixated objects to a set of points on the 2D room map, we not only

preserved the vector property of eye movement but also introduced the possibility of

conducting point pattern analysis.

In spatial research, point pattern analysis is the evaluation of the pattern, or

distribution, of a set of points on a surface. Points are defined as the location of an

event of interest (Fotheringham et al., 2000). In the current paper, the labeled fixated

objects can be considered as points on an isotropic plane with Euclidean distance.

For the purpose of the current paper, I used two point pattern analysis methods to

examine the spatial distribution of fixated objects. First, Gaussian kernel estimates

of point process intensity were used to evaluate the density of spatial distribution

(Berman and Diggle, 1989). The bandwidth was determined using Silverman’s “rule

of thumb” (0.9 times the minimum of the standard deviation and the interquartile

range divided by 1.34 times the sample size to the negative one-fifth power) (Silver-

man, 2018, p. 48). This method computes the intensity continuously across the area.

I used the kernel smoothed intensity of point pattern to draw a heat map of labeled

fixated objects in every classroom.

Another point pattern measure called standard distance deviation was used to

quantify the extent of spread. Standard distance deviation measures how dispersed a

set of points are. It is defined as the standard deviation of the distance of each point

from the mean center (x, y) (2.33) (2.34). It is the spatial equivalent of standard
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deviation and likewise provides a description of the variance of a point set.

C = (x, y) = (

∑i=1
n xi
n

,

∑i=1
n yi
n

) (2.33)

d =

√∑n
i=1[(xi − x)2 + (yi − y)2]

n
(2.34)

2.5.3.2 String-based Classification

Finally, for inferring expertise status and subject area from eye movement se-

quences, I adapted a string-based classification work flow proposed by SubsMatch

2.0 (Kübler et al., 2017). It starts with a string kernel method that segments the

eye movement sequence into shorter subsequences and used the frequencies of these

subsequences as a feature of similarity. Subsequences are then used to train SVM

with a linear kernel.

For the first step, a tool for embedding strings in vector spaces called Sally was

used to prepare dataset for classification task (Rieck et al., 2012). Sally implements

a generalized bag-of-words model in which a text is represented as the set of its

words, disregarding the relationship between words but keeping information about

their frequency (Salton et al., 1975). In Sally’s approach, a string sequence can be

characterized by a set of features, such as words or n-grams of bytes, and then each

feature is mapped to a high-dimensional vector space whose dimensions are associated

with the frequencies of the string features. This association is created using a hash

function, where the hash value of each feature defines its dimension. Sally then

normalizes the sparse vector that stores the feature frequencies and outputs it in

a specified format for further use. Given the characteristics of the current string

sequence—50 strings with size of 500–2000 and alphabet size of 5 (S, I, T, O, B)—the

length of n-gram is selected at n = 20 to account for the repeated pattern in the

string.
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The second step concerns a binary classification. I used LIBLINEAR, a tool

for solving large-scale regularized linear classification (Fan et al., 2008). The L2-

regularized L2-loss support vector classification solver for the dual problem was used,

and the cost parameter was set to default (1). I have adopted a 10-fold cross-validation

approach for the train and test procedure. That is, the training set was equally divided

into 10 subsets. At each step one subset is tested using the classifier trained on the

remaining 9 subsets. Thus, each instance of the whole training set is predicted once so

the cross-validation accuracy is the percentage of data which are correctly classified.

The cross-validation procedure has been shown to prevent the over fitting problem

(Hsu et al., 2003).
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CHAPTER III

Study 1: Teacher Expertise and Eye Movement

3.1 Expertise and Eye Movements

Experts are people who show consistently superior performance on representative

tasks specific for each domain (Ericsson and Lehmann, 1996). What makes them

stand out in terms of performance has always been a central research question in

learning science. Eye tracking research is one important pathway to understanding

the cognitive process of experts.

Interest in how expertise guides eye movement dates back to one of the very first

systematic eye movement studies: Buswell (1935) compared art students with average

viewers when looking at unfamiliar paintings and reported that the experts were more

likely to focus on areas that were not centers of interest for other viewers, see also

(Noton and Stark , 1971b; Nodine et al., 1993; Zangemeister et al., 1995; Vogt and

Magnussen, 2007; Humphrey and Underwood , 2009).

Since then, special gaze behaviors have been found to reflect expert and novice

differences: experts notice more than novices do, they hone in on what matters most,

and they do so remarkably fast. For example, proficient radiologists can detect an

abnormality and recognize it as cancer in a mammogram in under a second (Kundel

et al., 2007); and chess masters can report positions of checking pieces while barely

moving their eyes (Reingold et al., 2001).
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Evidence across a variety of knowledge domains has revealed that experts’ and

novices’ gaze behavior are distinctively different. For example, during the observation

of a tumor removal, expert neurosurgeons were found to exhibit larger saccade am-

plitude and less repetitive fixations after the initial exploration stage (Eivazi et al.,

2012; Kübler et al., 2015). Other domains that demonstrated the influence of exper-

tise on eye movement include aviation (Kasarskis et al., 2001; Schriver et al., 2008;

Kennedy et al., 2010), sports (Mann et al., 2007; Memmert et al., 2009; Savelsbergh

et al., 2002), chess (Chase and Simon, 1973; Reingold et al., 2001), examining med-

ical visualizations (Law et al., 2004; Nodine and Kundel , 1987; Pietrzyk et al., 2014;

Kübler et al., 2015), driving (Crundall et al., 1999; Crundall and Underwood , 1998)

and reading music (Kinsler and Carpenter , 1995; Waters et al., 1997).

A metanalysis by Gegenfurtner et al. (2011) that surveyed findings from 296 stud-

ies in different expertise domains found that when compared with non-experts (novices

and intermediates), experts have shorter fixation durations, more task-relevant fixa-

tions as well as fewer task-irrelevant fixations, larger saccade amplitudes and use less

time to first fixate relevant information. This effect is moderated by characteristics of

visualization (dynamic/static, natural/artificial, with/without text annotation etc.),

task properties and expertise domain (Gegenfurtner et al., 2011).

Three theories have been applied to explain the characteristics of expert eye move-

ments. First, the theory of long-term working memory proposed that experts store

retrieval cues that connect to long-term memory in their working memory, allowing

them to retrieve past cognitive processing results in a direct and rapid fashion (Eric-

sson and Kintsch, 1995). This theory proclaims that in order to account for expert

performance in domain-specific skilled activities, the limited-capacity assumption of

working memory needs to be extended to include working memory based on storage

in long-term memory (Miller , 1956; Cowan, 2010). Given the premise that eye move-

ments reflect cognitive processes underlying task performance and experts acquire
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shortcuts to retrieve information from long-term memory faster than non-experts,

then we can attribute experts’ shorter fixation durations to their rapid information

retrieval capability (Gegenfurtner et al., 2011).

The second theory to explain experts’ eye movement is the information-reduction

hypothesis (Haider and Frensch, 1996, 1999). This theory holds that the speed and

quality of expert performance is due to the learned ability to distinguish between

relevant and redundant information in order to reduce the amount of task information

that needs cognitive processing. If we assume experts are more selective in their use of

task information, we can then expect to see experts exhibit shorter fixation duration

times, more fixations assigned to task-relevant objects and fewer fixations on irrelevant

ones.

Finally, the perceptual encoding theory attributes experts’ fast and accurate task

performance to their encoding of more holistic chunks rather than individual features

(Chase and Simon, 1973; Reingold et al., 2001). This theory notes that experts’

encodings are specific to the task, such that when examining structured, but not

random, chess configurations that match their former encodings, experts would make

better use of parafoveal processing to extract information from larger and more distant

areas, resulting in a greater visual span (Charness et al., 2001). The larger perceptual

coverage can explain why experts have fewer fixations and show saccade jumps that

span greater areas.

In other words, our working model holds that experts can retrieve information from

long-term memory faster, allocate attention more selectively and encode features in

larger chunks, all reflected in their eye movement patterns. Compared to steering

aircraft, swinging bats, playing chess or performing surgeries, I would argue teaching

is no less cognitively challenging. Maneuvering around teaching technologies, guiding

students’ attention, monitoring their interest and evaluating their response (or lack

thereof) and, of course, delivering an effective and interesting lesson all at the same
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time is indeed a formidable challenge.

Novice teachers who have little experience navigating these elements often fail to

notice significant classroom events or miss important “teachable moments” (König

et al., 2014; Seidel and Sturmer , 2014; Stockero et al., 2017), which might be explained

by a phenomenon termed cognitive tunneling (Dirkin, 1983). Cognitive tunneling

describes how the attentional field is narrowed as one engages in an overwhelmingly

complex task. A teacher who focuses on only a few students, or a pilot who attends to

only a subset of instruments while ignoring or discounting other information would be

examples of cognitive tunneling (Jarmasz et al., 2005; Thomas and Wickens , 2001).

To combat this attention failure, it’s essential to understand the movement of the

expert’s eye during teaching, and the first step will be examining the differences

between expert and novice teachers’ gaze behavior.

Despite all the revelations about how different expert and novice looking looks,

the relationship between expertise and eye movements during teaching remains a

relatively unexplored territory (Stürmer et al., 2017; Cortina et al., 2015). The num-

ber of studies dedicated to studying teacher’s eye movement, especially in natural

teaching situations, is quite small. Existing evidence that points in a useful direction

includes Van den Bogert et al. (2014)’s study that investigated teacher’s perception of

a video-taped classroom scene. They found that experienced teachers not only process

information faster but have more evenly distributed attention across the classroom,

leading to better classroom monitoring. Similarly, Stürmer et al. (2017) used a mobile

eye tracker to record preservice teachers’ eye movements while teaching in standard-

ized instructional situations and found a skewed distribution of attention. These

studies contribute to framing the potential differences between expert and novice

teachers’ gaze in the current study, which extends past studies with larger sample

size, a naturalistic setting and direct comparison between expert and novice teachers

teaching the same students.
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The Current Study With the current study, I want to identify the differences

between expert and novice teachers’ gaze, and also examine the possibility of inferring

the expert or novice status of a teacher from the objects they focus on. The current

study used records of teachers’ eye movement in real classrooms while teachers taught

actual lessons, then explored expert and novice teachers’ gaze behavior by utilizing

statistical methods that match the dynamic property of eye movement.

Since theories of expertise have been generalized to a variety of tasks and domains,

it’s plausible that expert teachers’ eye movement would present similar patterns.

Namely, expert teachers might have shorter fixation durations and more fixations,

are better at dividing attention among different tasks, and this may be reflected in

distinctive scanpath patterns that can be used to infer expertise level.

3.2 Method

3.2.1 Sample

Teachers who participated in the current study were part of the field training

element in a teacher preparation program. The existing structure of supervising vs.

student teacher naturally constitutes expert-novice pairs. Thus half of the partici-

pants were experienced teachers and half of them were their mentees in their final

semesters of supervised teaching as part of their certification program. The expert-

novice pair therefore taught similar lessons to the identical group of students in the

same physical setting.

The current study includes 50 classroom teachers (25 expert-novice pairs) from

25 schools. The schools were located in southeast Michigan covering both affluent

and economically challenged neighborhoods. Classes varied in grade level (K–12) and

school subject (Math, Science, Literacy, History and Social Studies). Thirty-three of

all participating teachers are female and 17 are male.

62



3.2.2 Apparatus

The main apparatus we used is a Mobile Eye system provided by ASL (Applied

Science Laboratories–www.a-s-l.com). This system consists of two parts: a) a head

set with an infrared recording camera that keeps track of the wearer’s right pupil as

well as a small digital camera that takes in the wearer’s visual field, and b) a small

digital video recorder worn in a fanny pack around the hips. The ASL Mobile Eye

records data at 60Hz by interleaving images taken from two camera. Both image

streams are recorded on the same digital videotape medium by alternating frames.

Therefore, the actual functional sampling of this eye tracker is 30Hz. Data were

recorded in a 640 x 480 pixel sensor with a fixed focus video camera.

Based on piloting, we defined eye movement samples as belonging to a fixation

if they were moving less than a defined distance (square root of 14 pixels) in either

horizontal or vertical dimensions for a minimum of three samples (90 ms).

3.2.3 Procedure

The recording took place during a regular class period selected so as to minimize

interference with the regular teaching plan. The running time of a class was generally

around 45 minutes. For each teacher in the expert-novice pair, classroom recordings

were made on different days with only one of them teaching. Experimenters and

observing teachers were also present during class time. The eye tracker can record up

to 75 minutes using a battery pack as teachers move freely about their activities. A

5-point system calibration at 5–10-m distance was performed prior to and following

the lesson. Two stationary cameras positioned at different angles were also used to

provide additional classroom footage, and a third camera tracked the teacher as she

taught.
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3.3 Analysis Method

The planned analysis work flow will apply to both mobile eye tracking studies

(see 2.5 for details). It starts with transforming raw eye movement events into two

representations: vector and string representations. First, unlabeled fixations are

coded as semantic-based strings, then the strings are transformed to vectors in a newly

defined 2-dimensional representation of the classroom. With the string representation,

I will be able to apply the method proposed by SubsMatch 2.0, a string kernel method

for classifying eye movements based on the frequencies of subsequences in the string

(Kübler et al., 2017). SubsMatch 2.0 is built on two tools: Sally (Rieck et al., 2012)

for string kernel construction and LIBLINEAR (Fan et al., 2008) for classification,

both can be implemented in Unix environment. And with the vector representation,

the vector-based MultiMatch algorithm (implemented in MATLAB) that calculates

scanpath distances in various dimensions and point pattern analysis method can be

utilized to help us understand the overall (dis)similarity between groups (Dewhurst

et al., 2012).

3.4 Results

Comparison of Vector Properties The transformed vector representation of raw

scan path was used as the input for calculating five dimensions of eye movement

properties: vector shape, fixation position, saccade amplitude, saccade direction and

fixation duration. By using the MultiMatch algorithm for scan path comparison,

each pair of expert-novice teachers received one difference score for each of these five

dimensions.

Since every classroom had its own arrangement, student group and subject mat-

ter, the difference score between different expert-novice pairs are not comparable,

but within-pair comparison is valid since the expert and novice teacher were teaching

64



−
0.

2
0.

2
0.

4
0.

6 Vector Shape

D
iff

er
en

ce
 S

co
re

Position

−
0.

2
0.

2
0.

4
0.

6 Saccade Amplitude

D
iff

er
en

ce
 S

co
re

5 10 15 20 25

Saccade Direction

Classroom ID

5 10 15 20 25

−
0.

2
0.

2
0.

4
0.

6 Fixation Duration

Classroom ID

D
iff

er
en

ce
 S

co
re

Figure 3.1: Scanpath Comparison Difference Score Compared to Random Baseline.
Each classroom ID represents a pair of expert–novice teacher. Dotted line denotes
random baseline.

similar content to the same group of students. To evaluate the discrepancies between

each expert-novice pair’s eye movement properties, expert–novice’s scanpath com-

parison scores was contrasted with expert–random scanpath comparison scores (see

Fig. 3.1). The random baseline was computed by sampling with replacement from the

original unique coordinates of each expert teacher. In Fig. 3.1, the difference score

of twenty-five expert-novice pairs was compared against a random baseline y = 0.

The differences within a particular expert-novice pair are higher than chance if they

are above the random baseline. From Fig. 3.1 we can see that the overall shape of

the transformed scanpath is essentially tied with the baseline, saccade amplitude is

slightly above baseline for most classrooms, while the other three properties are all

above baseline for every expert-novice pair, signaling that the differences between ex-

pert and novice teachers’ scanpath shapes are not distinguishable from each other, but

fixation location, saccade direction and especially fixation duration has a dissimilarity

that is above the chance level. Next, I’ll explore this dissimilarity in depth.
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Distribution of Fixations Firstly, I want to check the distribution of fixated

objects within a classroom, and whether experienced and novice teacher demonstrate

differences in the density of their visual interests.

As discussed in the analysis method section, the fixated objects can be seen as a

set of points on a surface that is represented by the room map. Based on this idea,

a standard distance deviation can be calculated to represent the degree of spread of

experts’/novices’ fixations.

Table 3.1 lists the standard distance deviations of all teachers. A numbered ID is

assigned to each expert-novice pair, for example, E01N01 is a pair of expert-novice

teachers, with E01 denoting the expert teacher and N01 as novice teacher in this pair.

Table. 3.1 shows that expert teachers have larger standard distance deviations in 20

out of 25 expert-novice pairs, indicating more variation in the objects they fixated

on, more dispersion in visual focus. See Fig. 3.2 for a more visual representation of

this trend.

In Fig. 3.2, expert and novice teachers’ fixations distributed differently in the

same classroom. The fist and third column illustrates the density of expert teacher’s

fixations, while the second and fourth column presents the fixation locations of the

corresponding novice teacher. Brighter color in a particular area indicates denser

distribution, and thus showing more visual attention has been directed to this area.

We can see that expert teachers’ fixations generally cover wider range of the classroom,

indicating a more dispersed, more even distribution of visual attention on different

objects in the classroom. On the other hand, novice teachers teaching the same

classroom seem to have a more skewed distribution, with denser fixations around

themselves and on smaller set of objects.

Event-based Comparison As reviewed in first part of this study, past research

results have shown experts exhibit different patterns in fixation duration and saccade
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Table 3.1: Standard Distance Deviation by Expert–Novice Pair

Expert Novice
E01N01 3.841 3.687
E02N02 3.687 1.853
E03N03 1.853 2.740
E04N04 2.740 3.081
E05N05 3.081 2.648
E06N06 2.648 2.536
E07N07 2.536 2.480
E08N08 2.480 2.614
E09N09 2.614 2.402
E10N10 3.494 2.402
E11N11 3.589 3.494
E12N12 3.982 3.589
E13N13 3.982 3.025
E14N14 3.025 1.296
E15N15 1.365 1.296
E16N16 2.437 1.365
E17N17 2.861 2.437
E18N18 2.861 4.416
E19N19 4.579 4.416
E20N20 4.579 2.932
E21N21 3.124 2.932
E22N22 3.124 2.361
E23N23 4.379 2.361
E24N24 4.379 5.756
E25N25 5.756 5.377

Avg. 3.320 2.940
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Expert Novice Expert Novice

Figure 3.2: Fixated Objects Superimposed on Gaussian Density Plot. Bandwidth
selected based on Silverman’s rule of thumb. White dots represent the location of
fixations.
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amplitude. Also, the comparison between expert-novice difference score and random

baseline has shown above-chance differences in terms of fixation duration, saccade am-

plitude and saccade direction within each pair of teachers. Table 3.2 summarizes the

value of these three dimensions for all teachers. A two-sample Kolmogorov-Smirnov

Table 3.2: Eye Movement Measures

Fixation Duration Saccade Amplitude Saccade Direction
Expert Novice Expert Novice Expert Novice

E01N01 0.677 0.562 4.962** 3.983** 0.131 0.125
E02N02 0.804** 1.863** 2.093** 2.736** 0.327 0.326
E03N03 0.843 0.705 3.479 3.716 -0.227 -0.318
E04N04 0.910** 1.053** 3.589** 3.530** 0.211** -0.111**
E05N05 0.713** 1.773** 3.146** 2.722** -0.207** 0.045**
E06N06 1.007** 0.929** 3.588 3.479 0.143 0.059
E07N07 0.422** 0.557** 5.167 4.880 0.440 0.398
E08N08 0.769** 0.608** 2.368 1.966 0.493 0.509
E09N09 0.763** 0.859** 3.712** 4.019** 0.163 0.296
E10N10 0.733 0.777 5.449** 4.578** 0.129** 0.048**
E11N11 1.091 1.338 3.423** 2.887** 0.049 0.188
E12N12 0.623** 1.333** 4.353** 4.067** 0.149 0.154
E13N13 0.830** 1.549** 4.726 4.746 0.095 0.257
E14N14 1.285** 1.016** 2.962 2.801 0.027 0.105
E15N15 0.940* 1.289* 2.883 2.976 0.105 0.025
E16N16 1.467 1.691 2.840* 3.351* 0.143 0.138
E17N17 0.992** 0.787** 5.017 5.320 0.336 0.344
E18N18 0.908** 0.570** 4.015 3.752 0.039** 0.374**
E19N19 1.416* 0.900* 2.825 3.242 0.372 0.399
E20N20 0.807* 0.859* 3.513** 2.742** 0.253 0.407
E21N21 1.370 0.692 2.895 2.478 0.128 0.212
E22N22 1.063 0.768 4.290 3.868 0.110 0.126
E23N23 0.779 0.653 2.227** 2.682** -0.129 -0.082
E24N24 1.783 1.150 2.847** 3.353** 0.217 0.132
E25N25 0.745** 0.627** 3.811** 3.532** 0.173 0.206
Avg. 0.950 0.996 3.607 3.496 0.147 0.174

test was performed within each pair of teachers; the pairs of values that are signif-

icantly different at p < .01 level have been marked by ** and p < .05 marked *.

Reading Table 3.2, we can see the general trend is that expert teachers have shorter

fixation duration and larger saccade amplitude. But the difference between saccade
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Figure 3.3: Experts’ and Novices’ Mean Fixation Durations on Task-irrelevant Ob-
jects. Each point represents one teacher, class ID is the specific expert-novice pair.

direction is hard to interpret, especially across classrooms. Since the differences be-

tween the overall shape of expert and novice’s scanpath is not far from chance level,

an aggregated measure of direction seems less relevant to the current study. Also the

trend with fixation duration is not conclusive since only 12 out of 25 pairs of teacher

present this difference, but we need to note that this value counts the overall fixation

duration, not the task-relevant duration.

If we break down the fixation duration by task-relevant (students, teacher, board

and instructional material) and task-irrelevant (other person or objects) objects, we

will have a better insight about the differences between expert and novices’ fixation

duration (see Figure 3.3 and Figure 3.4). As shown in Figure 3.4, expert teachers have

shorter fixation duration time than novice teachers on students, board, instructional

material and other objects. By comparing the distribution of two groups of fixation

durations, this difference is significant for task-relevant objects (D = 0.018, p < .001)

and task-irrelevant objects (D = 0.074, p < .001).

Similarly, the number of fixations on each category of events present differences

between expert and novice teachers’ attention distribution. In Figure 3.5 we can see
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Figure 3.5: Expert and Novice’s Number of Fixations on Different Objects. Presented
as percentage of the overall number of fixations.

that although both groups would look at students most often, expert teachers have a

higher percentage of fixations directed to students, not irrelevant objects, compared

to novices.

Classification Finally, the question of whether we can infer teachers’ expertise

level based purely on their fixated objects is addressed by using a Support Vector

Machine (SVM) with a linear kernel. A two-class SVM was trained using a 10-fold

cross-validation approach. With a feature length of 20 we reached a classification

accuracy of 74%.

This shows with the string representation of scanpath, the model can correctly
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predict the expertise level of a teacher 74% of the time. The result exceeds the current

chance level of 50%. A binomial test showed that this accuracy rate is significantly

above chance level 50% at p < .05 level.

Breaking down the overall classification accuracy by actual vs. predicted expertise

status yields the confusion matrix in Table 3.3. The diagonal of confusion matrix

shows the percentage of correct classification (expert as expert, novice as novice),

and the off-diagonal represents misclassification rate. The confusion matrix reveals

that the model is more likely to correctly label novices compared to expert teachers.

Table 3.3: Confusion Matrix

n = 50 Predicted Expert Predicted Novice

Actual Expert 64% 36%

Actual Novice 16% 84%

After training the model, features with corresponding weights can also be ex-

tracted as an indicator of the discriminative power of certain subsequences. Most

of these features are difficult to interpret, since the string transformation had long

strings of repeated event labels to represent fixation duration. But some of the fea-

tures did replicate the pattern we found in vector representations, such as the two

features show in Listing A.4. Feature 1 has been found to occur in expert teachers’

scanpath and feature 2 more often belongs novice teacher. It seems that expert teach-

ers would quickly switch focus between teaching material and students, while novice

teachers were likely to fixate on one thing for longer time.

Feature 1 : SIIIIISSSSSSSSSSBBBS

Feature 2 : IIIIIIIIIIIIIIIIIISS

Listing III.1: Feature Examples
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3.5 Discussion

The current study has uncovered differences between expert and novice teachers’

eye movement in a real teaching situation. The results showed a similar pattern

revealed by past studies on expertise and gaze behavior in other domains.

First, expert teachers exhibit more task-relevant fixations with shorter durations,

while novice teachers have more task-irrelevant fixations and longer fixation durations

in comparison. The shorter durations can be explained by long-term memory theory,

showing that expert teachers might also have convenient retrieval cues connecting

working memory and long-term memory, similar with experts from other knowledge

domains. And they may have learned to effectively distinguish task-relevant and

task-irrelevant events and objects, thus reducing the amount of task information that

needs cognitive processing, contributing to a tendency to fixate more on areas related

to the current teaching task and avoiding redundant distractions.

Second, the distance between expert teachers’ consecutive fixations has larger

range, indicating the possible existence of task-specific, holistic encodings that make

parafoveal processing more effective.

Finally, both the distribution of fixations and the important classification features

demonstrated that experts can attend to a broader array of information, making

identifying what’s important in classroom situations easier and faster. The wider

distribution of fixations may indicate a selective attention allocation.

This pattern of expert viewing can explain why expert teachers often have better

situation awareness (Endsley , 1995; Endsley and Garland , 2000). Situation awareness

describes the ability to know what is going on around you during a task. It has been

defined as “the perception of the elements in the environment within a volume of time

and space, the comprehension of their meaning and the projection of their status in the

near future” (Endsley , 1988, p. 97). By distributing visual attention more widely and

by changing focus swiftly, expert teachers may archive better perception of meaningful
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elements in the classroom, understand the message these elements convey and also

be more capable of planning corresponding actions.

The differences between the misclassification rate of expert and novice teachers

presented an interesting phenomenon: expert teachers may switch between differ-

ent gaze pattern, while novice s only know how to look like a novice–focusing on a

limited set of objects for long periods of time. This tendency may cause cognitive

tunneling that prevents novice teachers from noticing important teaching events in

the classroom.
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CHAPTER IV

Study 2: Subject Matter and Eye Movement

4.1 Task and Eye Movement

Advocates of knowledge-driven, top-down processes of eye movement generation

often start their arguments with Yarbus (1967b)’s celebrated study. Yarbus (1967b)

recorded the drastic discrepancies in people’s eye movement pattern when observing

the same painting but with different task instructions, such as “estimate the material

circumstances of the family in the picture” and “memorize the objects in the picture”.

Viewers’ eyes were directed to the parts of the picture that were informative for the

task at hand. For instance, in the age estimation task, viewers were more likely to

focus on character’s faces, but they tended to fixate on the inanimate objects in the

room when the instruction changed to wealth estimation.

Many recent studies have confirmed this result with similar static picture viewing

s and more advanced methodology (Tatler et al., 2010; Ballard and Hayhoe, 2009;

Kübler et al., 2017). For example, Boisvert and Bruce (2016) have shown that based

on the spatial density of raw fixation positions one can infer the specific task type

including object search, saliency viewing and free viewing task.

Evidence from gaze behavior when performing natural tasks also supports the

proposition that different eye trajectories emerge as the task requirements vary (Land

et al., 1999; Hayhoe et al., 2003; Land and McLeod , 2000; Ballard and Hayhoe, 2009).
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For example, using a sandwich-making task, Hayhoe et al. (2003) found that the

eye movement pattern during the peanut butter spreading step and jelly spreading

step were significantly different. When placing peanut butter on the bread, subjects

make anticipatory fixations on the part of the bread where the tip of the knife is

going to begin spreading, based on their knowledge that peanut butter often sticks

to the knife. In contrast, jelly is less sticky and easier to spread and thus is guided

to the bread with a smooth pursuit eye movement. Similarly, Rothkopf et al. (2007)

demonstrated how fixation location can be driven by task requirements when using

an immersive virtual reality environment. Subjects carried out tasks requiring them

to either “approach and pick up” or “avoid” certain objects while navigating along a

walkway in the virtual environment. They showed considerably different patterns of

looking during these two tasks. Subjects’ fixations would center on the object when

they were instructed to approach the target, while when the task requirement changed

to avoiding, their fixations hugged the edge of the object. The visual features of the

object remained constant, but as its associated uses change, the fixation distribution

also changes. These results provide strong evidence for refuting the notion that eye

movements are purely guided by low-level feature conspicuity in the scene. Instead,

cognitive control of eye movements is more prevalent in goal-oriented natural tasks.

The common consensus of the top-down approach of eye movement guidance is

that human gaze is highly affected by behavioral relevance and learning (Tatler et al.,

2011). In Study 1, I examined the relationship between teaching expertise and gaze

behavior in the classroom. As a natural extension, I am also interested in how the

teaching task can alter teachers’ gaze behavior.

Teaching involves a series of smaller tasks, some common across subject matter,

but teaching different subjects can be regarded as very different tasks. Field inter-

views suggest that teachers consider teaching mathematics and literacy to require

very different approaches (Leshem and Markovits , 2013). Many American teachers
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hold the view that mathematics is a static body of knowledge, involving a set of ax-

ioms and procedures that lead to one correct solution (Thompson, 1992; Nisbet and

Warren, 2000). For example, Zakaria and Musiran (2010) investigated beliefs about

mathematics among 100 teacher trainees. Most of these preservice teachers believe

that mathematics is a formal way of representing reality and that teachers should

ensure students acquire a collection of skills and algorithms.

In comparison, teachers often believe that the creativity in language literacy is

expressed by the variety of interpretations and the inclusion of students’ personal

experience. Another interview with elementary school teachers reflected this differ-

ence in teacher’s belief about math and language literacy: “Mathematics to me is

the language of all languages. It is the language of reality. However, while English

is a language with an element of emotion—a means by which reality is reflected by

words of sentiment—mathematics describes reality in an objective way.” (Leshem

and Markovits , 2013). A teacher also gave the example that “a rose is a rose is a

rose” is open to various interpretations, but in mathematics there is only truth: “3 is

3 and 3+4 will always be 7”.

The discrepancies in teacher’s beliefs about math and literacy very likely lead to

adoptions of different teaching strategies and class practices. And these in turn pose

different task requirements even when teaching the exact same group of students.

Whether teacher’s eye movements reflect this variation is the main concern of the

current study.

4.2 The Current Study

Teaching a particular subject matter has not yet been considered as a dynamic

natural task that poses special task requirements on eye movements. Math and lit-

eracy are two subject areas that share great significance in student’s development

but have often been approached in different ways. If we regard these subjects as
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two tasks with different properties and requirements, we may expect to see discrep-

ancies reflected in teachers’ eye movements. When teacher, students, and classroom

environment are all held constant, variations that persist in teachers’ eye movements

can be interpreted as the influence of task property and demands. This will help us

capture real-life teaching practice in a new light and also increase our understanding

of top-down process driven gaze behavior.

4.3 Method

4.3.1 Sample

The teachers recruited in this study were from the same area as in Study 1. This

study included ten teachers teaching two different subjects, Literacy and Math, with

ten classrooms. Students were in grade K–5 and the class size is 15 students on

average. Among 10 teachers only one of them is male.

4.3.2 Apparatus

The ASL Mobile Eye system was used for recording teacher’s eye movement during

teaching. Three external cameras positioned at different angles in the corner of the

classroom were also used, one of which followed the teacher as she moved.

The frame rate of the current eye tracking system is 30Hz and the fixation is

defined as eye movements that were moving less than a square root of 14 pixels in

either horizontal or vertical dimensions for a minimum of three samples (90 ms).

4.3.3 Procedure

Similar to Study 1, the recording took place during a regular class period; the

length of a class was about 45 minutes. Each teacher taught both Literacy and Math

to the same group of students in the same classroom, but on different days.
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4.3.4 Analysis Method

Following the same procedure proposed in Study 1, the raw eye movement se-

quences were first transformed to string representation denoting the semantic meaning

of each fixation. The string coding was carried out by experienced research assistants

using frame-by-frame approach. String codes were then mapped on to the room map

of the classroom and produced a new vector representation of eye movements with

two-dimensional coordinates. With vector representation, teachers’ scanpaths were

compared using the MultiMatch (Dewhurst et al., 2012) algorithm for alignment and

comparison. String representation was recoded with duration information and then

used for linear-kernel classification. For details of implementation see 2.5.

4.4 Results

Comparison of Vector Properties The current study includes the same elemen-

tary school teachers teaching different subjects (literacy and mathematics) in the

same classroom to the same students. For convenience I will will use “classroom” to

refer to the unique combination of teacher and subject area, despite the fact the class

took part in the same physical environment with unchanging students. For exam-

ple, teacher T01 was teaching one literacy class T01LT and one math class T01MA;

T01LT /T01MA are two different “classrooms”.

The scanpaths of the same teacher teaching different subjects were compared along

five dimensions: vector shape, fixation position, saccade amplitude, saccade direction

and fixation duration. The differences in scanpath of each pair of classrooms were

represented as a single (dis)similarity score for each dimension.

To demonstrate the extent of discrepancies between two scanpaths, the (dis)similarity

score was compared against a random baseline which is also a score calculated by com-

paring one scanpath with a randomly generated scanpath. The random scanpath was
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Figure 4.1: Scanpath Comparison Difference Score Compared to Random Baseline.
Each teacher ID represents a pair of literacy-math classrooms. Dotted line denotes
random baseline.

sampled from all the possible locations and durations of the compared classroom.

Fig. 4.1 demonstrates that compared to a random baseline, the distance between

each pair of literacy-math classrooms along five dimensions shows different pattern.

The overall shape of two scanpaths among all ten teachers was consistently high in

similarity; the same pattern also exists in saccade amplitude. These two measures

indicate that consistent patterns persist in individual teachers’ eye movements across

different classrooms.

At the same time, the differences in fixation locations were slightly above chance

for almost all teachers. This could imply variation in what objects the teacher visually

attended to when teaching different subjects. Similar with what Study 1 found, among

five dimensions, fixation duration was the most sensitive measure as to the change of

situation: all the teachers exhibit large differences in duration time between the two

subjects. Saccade direction, on the other hand, didn’t present a consistent pattern.
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Figure 4.2: Fixated Objects Superimposed on Gaussian Density Plot. White dots
represent the location of fixations.

Distribution of Fixations Next, the intensity of fixations on different parts of the

classroom was mapped using a Gaussian density plot. In Fig. 4.2, the first and third

columns presents the distribution of fixation locations when the teacher was teaching

Literacy, and the second and fourth columns are the same teacher teaching Math. As

Fig. 4.2 shows, the pattern of fixation distributions were rather consistent for most

teachers. Given that the dissimilarity score on fixation locations between math and

literacy class was only slightly above chance, this again shows idiosyncratic features

of teachers’ scanpaths across subject areas when all the fixated objects were taken

into account. The similarity across subject matter may also be attributed to the

consistent spatial arrangement of the classroom. But since the density plot can not

represent the pattern of looking regarding spatially approximate objects, the visual

attention directed at teaching-related objects that were clustered around the teacher

would not be represented in a distinguishable way in this density plot. For a closer

look at the gaze behavior we need to also break down the eye movement measures by

object category.
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Event-based Comparison As indicated in 4.1, only fixation location and fixation

duration presented above-chance variations between math and literacy classrooms.

To examine this difference, Table 4.1 summarized the average fixation durations in

every classroom with regard to five different categories of objects: students, board,

instructional material, teacher and other objects. Tested with a Kolmogorov-Smirnov

test, the literacy-math pairs that were significantly different in duration time (sec-

onds) were marked with double asterisk at p < .01 level. As shown in the table,

Table 4.1: Fixation Duration by Events

Students Board Instructional Material Teacher Other Objects
Literacy Math Literacy Math Literacy Math Literacy Math Literacy Math

T01 0.361** 0.215** 0.215** 0.368** 0.327** 0.218** 0.350 0.217 0.304** 0.166**
T02 0.326* 0.287* 0.288 0.421 0.320 0.379 0.310 0.386 0.327 0.309
T03 0.284** 0.142** 0.249 0.221 0.220** 0.153** 0.168 0.221 0.184 0.273
T04 0.248* 0.196* 0.244 0.285 0.158** 0.268** 0.161 0.276 0.208 0.195
T05 0.221 0.222 0.280 0.312 0.254 0.233 0.256 0.247 0.173 0.209
T06 0.304** 0.259** 0.293 0.310 0.251 0.156 0.334 0.282 0.229 0.246
T07 0.240 0.219 0.351 0.314 0.249 0.237 0.300 0.306 0.208 0.270
T08 0.299 0.271 0.236 0.274 0.310 0.287 0.522** 0.279** 0.263 0.277
T09 0.478 0.473 0.312 0.367 0.523** 0.302** 0.299 0.304 0.422** 0.253**
T10 0.228** 0.145** 0.192** 0.289** 0.249** 0.151** 0.252 0.316 0.273 0.179
Avg. 0.310 0.296 0.282 0.313 0.277 0.258 0.270 0.284 0.233 0.245

there were apparent trends in the length of duration time when students, board and

instructional material were considered. The mean fixation durations on students were

longer when teaching literacy as compared to math. Teachers also fixated on instruc-

tional material longer in literacy classes; these material often included picture books,

sample homework and word cards, etc.. On the other hand, fixations were longer

toward the board in math classes, possibly because the teacher was demonstrating

calculation on the board. There are no consistent pattern as to fixations on teacher

themselves and other objects. It is reasonable that duration time on task-irrelevant

objects was consistent across math and literacy classes since teachers were teaching in

the same environment and were rather familiar with the particular classroom. Num-

ber of fixations also a demonstrated a similar pattern (see Table 4.2). Among ten

teachers, almost all of them had more fixations on students and instructional material,

and less fixations on the board in literacy classroom, while when teaching math they

had more fixations on board but less fixations on students and instructional material.
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Table 4.2: Number of Fixations (Percentage of Total)

Students Board Instructional Material
Literacy Math Literacy Math Literacy Math

T01 80.82% 62.50% 5.28% 9.89% 24.71% 3.96%
T02 74.20% 76.01% 3.69% 1.89% 8.07% 9.20%
T03 76.01% 64.54% 2.92% 29.75% 16.58% 4.39%
T04 93.39% 87.21% 0.06% 3.41% 4.37% 1.34%
T05 92.35% 92.15% 3.86% 4.57% 2.75% 0.52%
T06 89.28% 85.09% 0.84% 9.02% 6.34% 2.01%
T07 85.82% 66.19% 6.05% 14.00% 1.19% 1.67%
T08 72.83% 69.23% 2.63% 15.66% 18.26% 8.49%
T09 79.19% 43.38% 0.07% 2.04% 26.99% 15.05%
T10 69.10% 68.53% 2.34% 29.14% 22.36% 0.66%
Avg. 81.30% 71.48% 2.77% 11.94% 13.16% 4.73%

This trend could have associations with teacher’s different beliefs and practice about

math and literacy.

Classification In Kübler et al. (2017)’s implementation of SubsMatch 2.0, they

have reached accuracy of 53% and 59% (25% chance level) when classifying free-

viewing and the age-estimation task presented in Yarbus (1967b)’s original experi-

ment. They also found that long viewing times influence classification the most. Using

a similar string kernel method (same as the one used in Study 1), the L2-regularized

L2-loss support vector classification solver for the dual problem was used, the cost

parameter was set to the default c = 1. The string representations were mapped onto

a high-dimension vector space using Sally (Rieck et al., 2012) and then LIBLINEAR

(Fan et al., 2008) was used for training and testing the model.

A two-class SVM was trained using a 10-fold cross-validation approach. With a

feature length of 20 we reached an average classification accuracy of 75%. Binomial

test showed that this accuracy rate is significantly above chance level 50% at p < .05

level.

The confusion matrix 4.3 demonstrated that scanpaths of the literacy classroom

can be correctly classified 7 out of 10 times, and the prediction for math classroom
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Table 4.3: Confusion Matrix

n = 20 Predicted Literacy Predicted Math

Actual Literacy 70% 30%

Actual Math 20% 80%

is even more accurate: 8 out of 10 times. The clear discrepancies in both fixation

durations and number of fixations contribute to the discriminability power of this

model.

4.5 Discussion

The current study discovered two seemingly contradictory aspects of the eye move-

ment pattern generated by the same teacher teaching different subject matters. One

side is that scanpath is a idiosyncratic process; the spatial distribution of fixations

of a teacher teaching literacy and math are quite similar despite the different con-

tent, format and teaching approach. This result supports the notion that visual

exploration is highly idiosyncratic, demonstrated by past findings of the significant

similarity of same person’s scanpath upon multiple viewings of the same picture (No-

ton and Stark , 1971a; Andrews and Coppola, 1999; Privitera, 2006; Rayner et al.,

2007; Coutrot et al., 2017). This idiosyncratic nature is also demonstrated by com-

paring the average fixation duration distance in the current study (M = 0.481) and

the result in Study 1 (M = 0.402). Essentially showing that the similarity in fixation

duration is higher when the same teacher teaches different contents, as compared to

when different teachers teach same content. This replicates past research evidence

in the static picture viewing task that duration similarity is higher when comparing

the scanpaths of the same person looking at different pictures than when comparing

different people on the same picture (Dewhurst et al., 2012). The idiosyncratic nature

of scanpaths has been explained by the existence of an internal representation during
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the initial viewing and the finding that this representation can later serves to guide

attention (Parkhurst and Niebur , 2003).

The other side of the story presented a considerable difference in how teachers

distribute fixations when teaching different subject matters. The current study found

that teachers direct their gaze more often at students and instructional material in

the literacy class; these fixations were also longer compared to math classes. Check-

ing back with the original footage, we can see that in literacy classes, teachers were

telling stories, appraising students’ writing and spelling, actively guiding students to

generate coherent speech and constantly encouraging students’ opinions. In math

classrooms, on the other hand, the same teachers were more often using the white

board to demonstrate math calculation and concepts; although they were also repeat-

edly checking student’s understanding and connecting the concept with everyday life

applications, they were more likely to concentrate on conveying the correct idea as

compared to seeking for student’s interpretations. This tendency showed up in teach-

ers’ longer and more frequent fixations on the board, and fewer fixations on students

or instructional material in the math class.

The preferences in fixating on either board or instructional material shows that

fixation allocation is often driven by the information-gathering requirements of a

particular task, highlighting the role of eye movement as a mechanism of gathering

necessary information to accomplish tasks at hand.

The discrepancies in eye movement pattern by subject matter may reflect teach-

ers’ different beliefs and practices when approaching these two subject areas. Many

teachers believe teaching literacy should be more communicative and conversational,

while teaching math is more self-generative in a way that requires long paragraph of

explanation.

Regarding teachers’ beliefs about mathematics, Ernest (1989) has identified three

conceptualizations about math: “a dynamic problem-driven view where mathematics
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is a continually expanding field of human creation; a static, unified body of knowledge

where mathematics is viewed as interconnecting structures bound together by logic

and meaning; and a bag of tools where mathematics is made up of an accumulation

of facts, rules and skills” (also see Perry et al., 1999; Kuhs and Ball , 1986).

In relation to these beliefs, two possible teaching approaches may be employed:

transmission and constructivist approach. The transmission approach describes the

importance of teacher transmitting facts and rules to the students who are expected

to memorize and reproduce it. Teachers who take a constructivist approach may

consider themselves as facilitators of learning that helps students to construct their

own knowledge framework (Boaler , 1993; Nisbet and Warren, 2000). The results in

the current study may reveal that many teachers were acting consistent with the

transmission approach for teaching mathematics.

The finding of discrepancies across subject matter does not contradict the first

discovery about the idiosyncratic nature of the same individual’s scanpath. Teacher’s

position, and the location of board and instructional material is clustered within

a close range compared to the whole classroom space, so the variations in these

fixated objects can not be captured by spatial distribution. But this variance can be

demonstrated by breaking down the eye movement measures by semantic meaning

(what objects are teachers looking at) and temporal attributes (how long do teachers

look at the object).

Overall, this study demonstrated both the similarities and differences in the teach-

ing situation where the same teacher approaches two different subject areas.
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CHAPTER V

Study 3: Showing the Expert’s Eye: Eye

Movement Modeling Examples

5.1 Looking from the Expert’s Perspective

Study 1 addressed the research question: how does the expert teacher’s gaze differ

from that of the novice? With an understanding that experts’ eye movements can be

distinguished from those of novices, a natural follow-up question is whether we can

make use of expert’s looking to promote learning.

Presenting beginners with videos of an experienced model performing some task

is a widely adopted instructional practice in many areas (Renkl , 2014; Van Gog and

Rummel , 2010). As a perfect exemplar of the desired task performance, this kind

of instructional video often includes an expert demonstrating the task while verbally

explaining each step (van Gog and Rummel , 2010). There is growing interest in these

video modeling examples in both formal and informal educational settings, particu-

larly in online educational settings where their flexibility, accessibility, convenience

and individualized learning may have advantages over traditional face-to-face instruc-

tions (Hackbarth, 1996; Massy and Zemsky , 1995; Fiorella et al., 2017). For instance,

students may refer to online courses on how to solve derivatives or watch a video for

learning how to play the ukulele.
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To increase the effectiveness of such video modeling examples, it may be beneficial

to consider not only demonstrating the expert’s external modeling behavior but also

their inner processes as reflected in eye movements.

In a comprehensive review of eye tracking research on visual expertise in chess

and medicine, Reingold et al. (2001) has concluded that the expert’s way of encoding

domain-specific patterns can be reflected in their eye movements. And experts’ eye

movements often reflect their tacit knowledge about a particular task that even they

themselves are unaware of, or unable to verbalize.

van Gog et al. (2009) pioneered the concept of eye movement modeling examples

(EMME), which includes not only the recording of a model’s demonstration but also

the overlay of the model’s eye movement as he performs the task in order to guide

learner’s attention in information-dense, dynamic and complex situations. Litchfield

et al. (2010) found that by using eye movements as cues for guiding the viewer’s at-

tention, the performance of pulmonary node detection in X-rays improved. Jarodzka

et al. (2013) further showed that the inclusion of eye movement in video modeling

examples can facilitate learning. Using a task of classifying the swimming modes

of reef fish, a task common in the domain of marine zoology, Jarodzka et al. (2013)

showed that EMME improved students’ performance through refining their visual

search strategies and interpretation of relevant information. They argued that the

benefit of EMME stems from the externalization of the otherwise inaccessible atten-

tion allocation process that may “synchronize” students’ attention with the model.

This benefit is particularly relevant when the modeled task requires highly strate-

gized visual attention allocation in dynamic and realistic situations, such as reading

a dashboard when flying a plane, interpreting medical visualizations during surgery,

or reading music score (Jarodzka et al., 2009, 2010b, 2017).

Besides the tacit knowledge and attention guidance possibly embedded in expert

gaze, eye movement video may also be beneficial because it is a unique way of showing
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the expert’s point of view. As Fiorella et al. (2017) correctly points out, most of

the research on video modeling examples concern the characteristics of the model,

including gender, age and expertise level (Hoogerheide et al., 2016), but much less

about an important design feature of instructional video, namely, the perspective of

the video. Showing the eye movement of the model also provides the viewer with the

egocentric perspective of this expert model, since seeing another’s eye movements is

inherently a first-person perspective experience.

Perspective, also called centricity, frame of reference, or point of view, is used

to refer to the extent to which a human observer’s viewpoint is removed from the

nominal viewpoint with respect to the agent in the media (McCormick et al., 1998;

Salzman et al., 1999). Defined by the perceived view point, perspective is often

specified as either first-person perspective (1PP or egocentric perspective) or third-

person perspective (3PP or exocentric perspective). 1PP is an immersed perspective,

presenting the observer the viewpoint of being inside the video. This view is thus also

referred to as an “inside-out” view. In contrast, 3PP is an “outside-in” or bird’s-eye

perspective that gives the observer the vantage point of overlooking all or a large

portion of the environment in the video. Within this view, viewers are able to see

movements of the agent, as if they are looking at the agent from above, or from the

side, or from some other external viewpoints (Milgram and Colquhoun Jr , 1999).

First-person perspective contributes greatly to the sense of immersion. Immersion

is the subjective impression that one is participating in a comprehensive, realistic

experience (Sadowski and Stanney , 2002; Lessiter et al., 2001). Immersion in a digital

context involves the willing suspension of disbelief, to voluntarily believe the virtual

world to be true and real. The design of immersive experiences that induce this

suspension of disbelief usually draws on sensory, actional, and symbolic factors (Dede,

2009).

Salzman et al. (1999) found that the exocentric and the egocentric perspectives
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may have different strengths for learning. They claimed that a major advantage of

egocentric perspectives is that they enable the viewer’s actional immersion and mo-

tivation through embodied, concrete learning, whereas exocentric perspectives foster

more abstract, symbolic insights gained from distancing oneself from the context. In

a similar light, studies have shown that video perspective affects instruction in which

objects are being manipulated (Castro-Alonso et al., 2015; Carbonneau and Marley ,

2015; Fiorella et al., 2017). For example, using a circuit assembly task, Fiorella et al.

(2017) showed that students watching first-person perspective modeling videos per-

form significantly better compared to the control group that watched the third-person

perspective version.

In sum, eye movement modeling examples may provide tacit expert knowledge that

is otherwise unavailable, visual cues for attention guidance, a feeling of immersiveness

and an embodied learning experience. Based on these properties, the current study

would expect to see a performance improvement in learner’s speed and accuracy of

completing a perceptual task after watching an eye movement modeling example

video.

5.2 The Current Study

This study concerns whether showing an expert’s visual perspective in a video

modeling example can improve learners’ performance in a spatial puzzle task.

In addition to the presence or absence of eye movement information, another

relevant variable often seen in first-perspective modeling videos is the inclusion of

the model’s hand. The effect of showing/not showing the model’s hand in a motor

task has been shown in past studies using object manipulative tasks, including LEGO

constructions (Castro-Alonso et al., 2015) and knot tying (Marcus et al., 2013).

The influence of showing the model’s hand is associated with the concept of peri-

hand space, which describes the space near our and other people’s hands. The hand
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is the theater of most of our interactions with the external world, reflecting not only

spatial perception and action but also their integration. Many active learning ac-

tivities happen in this space: reading, writing and manipulating objects, to name a

few.

Substantial neurological and behavioral evidence exists in favor of the existence of

a special hand-centered representation of space, i.e., perihand space (Brozzoli et al.,

2014). The neurophysiological findings define a set of at least four distinctive areas

that relate to perihand space perception: premotor area 6, parietal areas 7b and

ventral section of the intraparietal sulcus, and the putamen (Hyvärinen and Poranen,

1974; Avillac et al., 2005; Duhamel et al., 1998). This means the human brain takes

the hand as the reference point for coding the space “immediately outward the hand

and follows it, staying anchored to this reference when the hand changes location”

(Brozzoli et al., 2014, p. 125).

Following this line of reasoning, showing the hand of the model might elicit a

stronger sense of immersiveness, providing a more embodied learning experience.

Thus showing a model’s hand or not is introduced as another factor that might

influence the efficacy of the current modeling video.

In the present study, I examined the effect of perspective information embedded

in an example modeling video which might promote problem solving performance in

a perceptual task. The instructional video varied along two dimensions: perihand

space information and eye movement information. These two aspects of video will be

compared in terms of their influence on learning outcomes.
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5.3 Method

5.3.1 Participants

Two hundred college students were recruited from an undergraduate subject pool.

Participants were roughly gender balanced and had no past experience with the per-

ceptual task used.

5.3.2 Study Design

The participants were randomly divided into 4 groups of equal size. The example

modeling video varied on two between-subject factors: the presence of eye movement

information (with/without eye movement information), and the presence of hand

information (with/without model’s hand).

The learning performance was evaluated using number of errors and completion

time before and after watching the modeling video. The time factor serves as a

within-subject factor. Participants also took a short survey about the effectiveness

of the modeling video after completing the task.

5.3.3 Material

The current study used a perceptual task that includes direct manipulation of

objects. Perceptual tasks rely heavily on visual search strategies and interpretations of

perceptual information, an example could be reading X-ray scans (Chi , 2006; Jarodzka

et al., 2013). The task used in this study was a maze game displayed on a mobile

device. This task was chosen based on several considerations: a) it requires specific

order of inspection, namely a visual scan strategy is necessary for fast and accurate

completion; b) it involves manually controlling an avatar walking through a maze; c)

the difficulty level can be easily controlled.

The objective of this maze task is to find a path out of the maze without doubling
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back, while avoiding certain obstacles at the same time. A necessary strategy for

this game is to narrow the set of possible paths by identifying the exit of the maze.

Because only one exit exists in the maze, the anticipated path will be incorrect if it

results in a new endpoint (no exit). This strategy was reflected in the eye movement

information in the form of prolonged fixation on corners of the maze, and moving the

eye backwards from the exit to the start point.

The model’s eye movement during the task was collected using the Tobii model

T60 eye tracker. For the hand factor, the modeling videos that present hand informa-

tion were shot using the SMI Eye tracking glasses mobile eye tracker without actually

recording eye movement, essentially using it as a head-mounted camera. The videos

without hand information were simply the screen recordings of the mobile device.

5.3.4 Measurement

Participants’ task performance was evaluated by their completion time in seconds

and number of errors. An error was defined as a backward motion along the path, so

each time the participants change their routes and went backward would be counted

as one error.

A short survey including four evaluative questions was also used. Participants

were instructed to rate the following questions V.1 from 1 (Completely Disagree) to

5 (Completely Agree) based on their experience.

1. How helpful was the instructional video in helping you to solve the

maze?

2. I felt that I was seeing things from the model’s point of view when

I was watching the video.

3. I could tell what the model’s strategy for solving the maze was

when I was watching the video.

4. How engaging did you find the video to be?
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Listing V.1: Evaluative Questions

5.3.5 Procedure

After a short introduction about the study and the task, participants were asked to

solve the easiest level as a practice to familiarize themselves with the task. Then they

would solve two levels independently as a pretest. After that, participants watched

one of the four instructional videos that ran about 2 minutes during which they were

instructed to put themselves in the mental shoes of the model and pay attention to

the eye movement information/hand information.

After the modeling video, the participants were provided with another two prob-

lems that were similar in difficulty with the pretests. Participants’ performances

were recorded and compared with the pretest. Their subjective feeling of whether the

gaze information and hand information helped their learning and whether watching

the video made them feel like looking through the model’s point of view were also

recorded.

5.4 Results

Changes in Completion Time and Number of Errors Ten participants were

removed from the current analysis because of incomplete pretest and six more were

excluded as they did not finish the post-test. Participants’ task performances were

rated by two scores: completion time and number of errors. The changes in comple-

tion time and number of errors before and after watching the modeling video were

calculated by averaging between two pretest and two post-test levels and then deduct-

ing the pretest score from the post-test. A negative change score indicates a decrease

in completion time or number of errors.
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Table 5.1 summarizes the average change score in four conditions. We can see that

across all conditions, participants performed better in terms of a shorter completion

time and fewer errors after watching the video modeling examples. Also it is clear

that the best combination is the no hand-with eye movement condition, in which both

change scores are larger than other three video conditions.

Table 5.1: Summary Statistics of Four Conditions

Hand Information Eye Movement Information n Changes in Completion Time (sec) Changes in Number of Errors
M SD M SD

Yes Yes 47 -6.085 13.156 -3.723 1.930
No Yes 46 -11.413 30.222 -4.435 3.557
Yes No 50 -6.660 11.849 -3.180 0.962
No No 53 -6.868 13.776 -3.792 2.222

Table 5.2: Analysis of Variance: Completion Time

Df Sum Sq Mean Sq F p
Time 1 9.100 9.140 2.043 0.155

Hand:Time 1 0.003 0.003 0.022 0.883
Eye:Time 1 0.030 0.030 0.238 0.627

Hand:Eye:Time 1 0.001 0.001 0.010 0.919
Residuals 180 22.507 0.125

Error term: subject by time

Table 5.3: Analysis of Variance: Number of Errors

Df Sum Sq Mean Sq F p
Time 1 27.200 27.174 7.709 0.006 **

Hand:Time 1 3.100 3.141 0.891 0.346
Eye:Time 1 19.600 19.612 5.564 0.019 *

Hand:Eye:Time 1 0.600 0.611 0.173 0.678
Residuals 180 634.500 3.525

Error term: subject by time

Performing MANOVA on task performance scores yields different results for hand

and eye movement information, and for two performance measures. Table 5.2 and 5.3

shows that the main effect of eye information was only significant when the perfor-

mance was measured by changes in number of errors, and hand information didn’t

have a significant effect on both changes in completion time and changes in number

of errors. This result indicates that immediately after watching the video modeling
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examples, learners didn’t present sizable speed improvement when solving new mazes,

but their rate of error dropped significantly when the video included the model’s eye

movement. This may suggest that task speed is more resistant to changes and re-

quires deliberate practice to improve, but knowledge about strategy may be grasped

quite quickly from a model’s demonstration and eye movement and induce a decrease

in errors.

Survey Response The short survey provided us with more insights about the

effect of eye movement information. Firstly, learners didn’t think differently about

the general helpfulness of the video modeling example with or without the inclusion

of model’s eye movement, they consistently agreed the video was helpful. But the

information of eye movement did make them felt like “seeing things from the model’s

point of view” (t(198) = 2.038, p < .05) and noticed “the model’s strategy for solving

the maze” (t(198) = 2.2964, p < .05). And finally, learners consistently rated it as

engaging with or without eye movement information.

There were also interesting gender differences in how learners felt about the eye

movement information (see Table 5.4). Across all questions and eye movement con-

ditions, female learners rated higher on the experience of watching modeling videos.

Compared to their male counterparts, female learners found the video to be more

helpful and engaging, as well as easier to extract perspective and strategy informa-

tion. This result could be reflect a more positive attitude on the part of the female

participants, or it might indicate that they were more attuned to the idea of learning

from modeling videos.

5.5 Discussion

This study suggested that learners can benefit from observing not only an expert’s

demonstration but also their eye movements. The guidance provided by the model’s
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Table 5.4: Mean Survey Response Score

With Eye Movement Without Eye Movement

Female Male Avg. Female Male Avg.

Q Helpful 3.023* 2.431* 2.727 2.854 2.604 2.729

Q FPV 2.409 2.232 2.321* 2.220* 1.904* 2.062*

Q Strategy 2.422 2.224 2.323* 2.118 1.887 2.002*

Q Engaging 3.222* 2.724* 2.973 2.924 2.921 2.922

eye movements is effective likely because the task requires special strategies for visual

inspection that are difficult to convey verbally. The benefits of showing the expert’s

eye were not only reflected in learner’s performance improvement as measured by a

decrease of errors, but also their subjective feeling of being able to see from expert’s

perspective, as well as being able to grasp the essential strategy just from watching

expert’s eye movement.

Eye movement modeling examples have been shown to be effective in learning to

classify dynamic motion pattern (Jarodzka et al., 2013) and text-picture processing

strategy (Mason et al., 2015). The result of the current study also indicate that ex-

pert’s eye movement information is useful when visual inspection strategy is involved.

Compared to eye movement information, the inclusion of expert’s hands didn’t

have a significant effect in changing learner’s performance. This might be due to

the fact that the information and strategy provided by eye movement and hand

movement partially overlapped, causing a redundancy effect. The current perceptual

task includes a planning step and an action step. During planning, the expert looked

at the maze and explored possible solutions without moving the hands, while in the

action step the expert would carry out the solution and move the hand around the

maze. At this stage, the eye movement obviously followed that movement, thus the

information provided by hand and eye is indistinguishable. This redundancy effect is
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also suggested by van Gog et al. (2009), with a procedural problem-solving task where

they found that model’s eye movement accompanied with verbal explanation actually

had a negative effect on subsequent transfer task performance. They reasoned that

verbal explanation or eye movement alone might have been sufficient for guiding

learner’s attention, presenting both had caused the redundancy effect that hinder

learning (van Gog et al., 2009; van Marlen et al., 2016; Mayer and Johnson, 2008).

Similarly, when hand movement and eye movement are presenting the same guidance,

the combination of two may be detrimental, not beneficial for learning (van Marlen

et al., 2016; Mayer and Johnson, 2008).

This study also revealed differences in how different genders feel about the eye

movement modeling examples. Female learners consistently rate the learning experi-

ence more positive compared to their male counterparts, and they agreed that expert’s

point of view and strategy were clear. The results about hand information and gender

differences are reminders that there are nuanced considerations about applying eye

movement modeling examples for instructional purposes.

Eye movement information opens another way of presenting the expert’s per-

spective, revealing experts’ thinking and reasoning processes and increasing learners’

embodied learning experience. This study has demonstrated the unique potential

of making the expert’s eye movements explicit. And with the fast development of

visual and interactive technology such as head-mounted virtual reality devices and

eye-capture functionality in mobile device, it’s expected that eye movement infor-

mation will play an even more important role in shaping modern instruction and

learning.
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CHAPTER VI

Discussion

6.1 Main Findings

Learning what we can discover from teachers’ eye movements is the primary mo-

tivation of the current paper. The current endeavor is initiated with the belief that

capturing teachers’ eye movements can deepen our understanding about teaching by

addressing the following questions: 1) how do teachers distribute attention in the

course of instruction; 2) what is the influence of expertise level on teachers’ eye move-

ments; 3) are there patterns in how experienced/novice teacher move their eyes; 4)

are teacher’s eye movement patterns consistent across different subject areas; and 5)

how can we apply expert’s vision in implementing instruction?

Study 1: Teacher Expertise and Eye Movement Findings from Study 1 re-

veal that expert and novice teachers’ eye movements are considerably different: expert

teachers have more task relevant fixations with shorter durations, larger visual span

and wider fixation allocations. Expert teachers, just like experts from other areas

such as chess and medicine, have distinctive eye movement patterns that may indi-

cate their special domain-specific knowledge organizations. The efficient organization

of large amount of information such as chunking in chess is one basis for experts’

superior performance (Chase and Simon, 1973; Jarodzka et al., 2017). And this per-
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ceptual encoding has been found in the way the eye moves. Reingold et al. (2001)

demonstrated that experts do not fix their eyes on one single chess figure, but look

rather in between figures (Charness et al., 2001; Reingold et al., 2001; Reingold, E.

M., & Sheridan, 2011). The result in Study 1 presented a similar pattern, indicating

possible chunking in teacher’s perceptual processes.

This idea of expert teachers possessing a distinctive structure of knowledge or-

ganization is also proposed by researchers in educational science. Expert teacher’s

content, pedagogical and pedagogical content knowledge can not only be characterized

by the sizable amount of knowledge, but especially by having a superior organization

of that knowledge (Livingston and Borko, 1989; Krauss et al., 2008; Leinhardt and

Greeno, 1986; Lachner et al., 2016). As teachers gain experience in teaching, they

tend to organize their knowledge around encountered cases and experiences, which

may result in more elaborated and coherently organized knowledge structures (Krauss

et al., 2008; Putnam, 1987).

In sum, Study 1 has shown distinctive eye movement patterns of expert teachers in

real teaching situations that support the idea that expertise in teaching is associated

with a distinctive pattern of looking.

Study 2: Subject Matter and Eye Movement Study 2 examined the relation-

ship between subject matter and teachers’ eye movements using the same method-

ological procedures used in Study 1. Both similarities and discrepancies were found in

the same teacher’s eye movements when teaching different subjects. The overall scan-

path shape and spatial distribution of fixations for a particular teacher were consistent

across math and literacy classrooms, but teachers’ fixation allocation on certain ob-

jects changes according to the subject area, indicating a difference in teachers’ belief

and practice regarding math and literacy class.

Past studies suggested that mathematics is often regarded as a rigorous subject
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that requires knowledge transfer to be precise and meticulous. During this process,

teachers serve as transmitters of facts and rules, and students are expected to follow

certain steps to reach conclusion. On the other hand, literacy is seen as a more

inclusive subject in which learning occurs when students are actively involved in

constructing meaning for themselves through activities and discussions. In this view,

teachers are seen as facilitators of learning rather than transmitters of facts (Nisbet

and Warren, 2000).

This study found that teachers direct their gaze more at students and instruction

material during literacy class while more visual attention is put upon the board when

teaching math. This discrepancy may reflect differences in teachers’ beliefs and the

resulting teaching approach for math and literacy.

Study 3: Showing Expert’s Eye: Eye Movement Modeling Examples The

application of using expert’s eye movement in instruction was explored in Study 3.

Using a perceptual task that requires special visual inspection strategy, Study 3 re-

vealed the benefit of showing an expert’s eye movements alongside the traditional

demonstration in video modeling examples: the number of errors significantly de-

creased after watching an eye movement modeling example video. Displaying the

model’s hands also decreased learners’ errors by enhancing the embodied learning

experience. Learners reported positively about the feeling of immersion and ease

of extracting visual inspection strategies. Female learners showed higher ratings on

these scales compared to male learners.

Findings from Study 3 favor the application of expert eye movements when teach-

ing perceptual tasks that require specific but implicit visual inspection strategies.
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6.2 Considerations and Future Directions

Bottom-up Influences in the Classroom The classroom is a great testbed for

understanding visual cognition in the context of complicated natural behavior. The

current paper adopts solely the perspective of top-down approach about eye movement

generation and guidance; in other words I focused on how personal characteristics

(expertise) and task requirements (subject matter) shape teachers’ eye movements,

but ignored the alternative view of the bottom-up approach: how visually salient

objects and events can affect teachers’ eye movements. Eye movement is the product

of the combination of all the motor and perceptual activities involved during a task.

Therefore in principle, all such factors should be taken into account when modeling

human eye movements.

Saliency-based approaches are often regarded as unsuitable for understanding eye

movements in natural settings (Renninger et al., 2007; Tatler et al., 2011), based

on the reasoning that most daily tasks have clear means-end relationship that call

upon the viewer’s past experience to guide eye movement. But teaching is a differ-

ent situation in which the means-end relations are usually more abstract and less

structured. Visual attention during teaching is motivated by multiple co-occurring

processes: biomechanical factors, conspicuities of objects in the environment, task

parameters and personal characteristics (Tatler and Vincent , 2009b). Thus it might

be important to consider the importance of visual conspicuities in the classroom. The

saliency of visual features in the classroom may be more relevant for novice teach-

ers as they haven’t acquired the right way to navigate in the complex environment

with demanding cognitive tasks. Students’ sudden movements (standing up, raising

a hand, misbehaving) and salient task-irrelevant objects may catch novice’s attention

more easily and hold their fixations for a longer time.

If we assume experienced teachers are knowledge-driven, then novices may be

more stimulus-driven. To test this hypothesis, a future study that models visual
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conspicuity in a three-dimensional environment is necessary. A possible next step for

the current paper might be creating a saliency map of certain classrooms, and if this

map can readily predict novice teachers’ eye movements but does less well for expert

teacher, then we can establish connections between expertise level and bottom-up

processes.

Three-dimensional Eye Movement Representation The analysis of eye track-

ing data in the current paper is based on a transformed 2D graphic representation

of the environment. This representation is not an exact replica of the classroom, but

rather a simplified representation in proportional to the true arrangement. Although

this transformation has enabled us to compare the vector properties of eye movement

sequences, it certainly requires improvement as the raw location information were

never recorded. Note especially that the transformation was unable to provide infor-

mation about the vertical dimensions of forms and spaces, while the information in

the third dimension is certainly also relevant for our research purposes.

Therefore, the next step will require both a 3D coordinate system and tracking of

teachers’ physical movement to map fixation locations in the environment accurately.

Another limitation concerns the selection of scenes. In order to use a consistent

room map for constructing a new 2D coordinating system, the current paper had

separated the whole class into different segments according to teacher’s position and

class activity. Only the segments when the teacher was relatively stationary and

delivering a lecture were used in the analysis, the more dynamic group activities

were unavoidably excluded from the current paper. This approach does not indicate

the insignificance of group activities in understanding teacher’s eye movement, quite

the contrary, the interactions between teacher and students and the resulting gaze

behavior could be very interesting. Equipped with 3D coordinates and movement

tracking data, the eye movement when teacher and students are both moving will be
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available for analysis and in general do a better job for capturing the dynamics of

classroom.

Cultural Variations of Expert Teacher’s Eye Movement The classroom is

a microcosm of society, and culture shapes teaching practice. Hofstede (1986) has

examined classroom dynamics in 50 countries based on the 4-D model of cultural

differences. This model describes societies along four dimensions: Individualism ver-

sus Collectivism, large versus small Power Distance, strong versus weak Uncertainty

Avoidance, and Masculinity versus Femininity (Hofstede, 1986).

In the first dimension, Individualist cultures assume that people primarily look

after their own or their immediate family’s interest. Collectivist cultures assume

everyone belongs to certain groups, the group affiliation status not only protects the

individual’s interest but also demands the individual’s loyalty. When reflected in

teacher-student interaction, individualist classrooms encourage individual students

to speak up in larger groups, accepting open confrontation and conflicts. Because a

collectivist classroom strives to maintain harmony at all times, individual students

will only speak up in class when called upon personally or in small groups.

The second dimension, Power Distance defines the extent to which the less pow-

erful minorities accept inequality in power and consider it as normal. In a society

that is large in power distance, teacher-centered education prevails: students expect

teachers to initiate communication, lead the path of learning, and never criticize what

the teacher says. By comparison, small power distance gives students permission to

speak spontaneously in class, contradict teachers, and construct their own personal

learning experience.

The third dimension, Uncertainty Avoidance is a cultural characteristic that de-

fines the extent to which people strive to avoid unstructured or unpredictable sit-

uations by maintaining strict codes of behavior accompanied by belief in absolute
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truths. In strong uncertainty avoidance classrooms, students prefer structured learn-

ing situations with clear objectives, teachers are expected to know all the answers,

and only reward students with correct solutions. In contrast, weak uncertainty avoid-

ance classrooms have a loose structure, teachers are approachable as they use plain

language and need not know every answer. Students are praised for unconventional,

creative answers.

Finally, Masculinity and Femininity describes the social roles attributed to men

and women in each society. “Feminine” classrooms are designed for average students,

students are allowed to learning according to their intrinsic interest and their social

skills are highly rated. On the other side, “masculine” classrooms use the best stu-

dents as the norm, reward students’ academic performance and students’ motivation

is more related to practical goals and incentives.

With the stated differences in classroom dynamics in relation to the particular

societal values it stem from, it is expected that teacher’s gaze may look very different

in various cultures. For example, Yamamoto and Imai-Matsumura (2013) attempted

to replicate results from Van Gog et al. (2005) but found that when watching a class-

room video, Japanese expert teachers were not more aware of student’s misbehaviors

than novice teachers. There were also no significant differences in fixation duration

or the time to the first fixation on a target student. In another comparison study,

McIntyre et al. (2017) found that teachers from UK had shown greater efficiency in

attentional gaze (gaze used for information-seeking) than their East Asian counter-

parts, whereas teachers in Hong Kong displayed greater efficiency in communicative

gaze (gaze used for information-giving).

Given the fact that most eye tracking and expertise studies were conducted among

US or European samples (including the current paper), the issue of generalization has

to be addressed with more varied cultural samples in future studies.
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6.3 Implications

Implications for Teacher Education. Teaching is not an easy task. Berliner

(2001) has poignantly compared classrooms with high-pressure “nuclear power plants,

medical emergency rooms and air traffic controls” due to the fact that teaching is a

process operating at parallel levels that require fast decision-making (Haider et al.,

2005), complex maneuvers (Chassy and Gobet , 2011) and superior memory capacities

(Saariluoma, 1991; McIntyre et al., 2017). Expert teachers show various advantages

in terms of conveying the subject matter, managing the classroom (Kunter et al.,

2013; Wolff et al., 2017), assessing students’ performance (Ruiz-Primo and Furtak ,

2007) and applying core-practice of teaching (Forzani , 2014). All these advantages

of expertise have to build on how teachers look at the classroom.

Lachner et al. (2016) prosed a model of teachers’ cognition in relation to teaching

practices and aspects of the situational context in which teacher’s professional vision

is the building block of the rest of processes. Teachers’ professional vision is the

ability to notice and interpret relevant features of classroom situations (Goodwin,

1994; Van Es and Sherin, 2002; Seidel and Sturmer , 2014). This ability constitutes

an important part of teaching expertise.

Novice teachers have been found to struggle with the complexity of the classroom

environment and to apply what they have learned to the context of the real teaching

situation (Stokking et al., 2003). They are often not able to direct their attention to

relevant objects, events and situations that impact student learning (Star and Strick-

land , 2008). Novice teachers don’t naturally know what to look at and where to find

it in the classroom, they must learn not only the locations at which relevant informa-

tion can be found, but how to distribute fixations and when to do so. And current

teacher training practice does not include preparing novice teachers with such knowl-

edge and skill. Therefore, one of the key aims of teacher training should be fostering

the acquisition of professional vision (Seidel and Sturmer , 2014). Most past research
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on teachers’ professional vision used qualitative approaches or indirect assessment of

teachers’ ability to notice and reason about classroom situations depicted on video;

thus understanding how expert and novice teachers actually look in real teaching

situations has tremendous importance, both in increasing our understanding about

instruction and in facilitating teacher training.

With the findings in Study 1, the next question will be whether this kind of expert

vision can be trained, and what kinds of practices are likely to promote its develop-

ment. Here again, research in the acquisition of perceptual skills in other domains

provides clues to the kind of viewing experiences that are likely to be effective. In

the domain of sports, several studies have looked at the extent to which perceptual

training can lead to increases in performance. Harle and Vickers (2001) showed that

training basketball players in where and how to look prior to the shooting action led

to increases in free throw performance. Another example used video-based perceptual

training based on model’s perspective and found improvements in tennis playing by

intermediate level players (Farrow et al., 1998; Williams et al., 2002). Similar results

were also found in other athletic domains, including cricket (Müller et al., 2006).

Building on the findings of this paper, it is likely that we can design better teacher

education materials that incorporate teacher-perspective videos. For example, this

might involve using expert teacher’s eye movement modeling videos to teach novices

how to notice and manage misbehaviors in the classroom, overcome their limited

situation awareness, avoid the so called “cognitive tunneling”, and in general fostering

the acquisition of professional vision and teaching expertise.

Implications for Modern Instruction The practical significance of these studies

lies in the fact that eye tracking technology has became increasingly accessible and

economic friendly for the general public. Low-cost, open-source eye trackers aiming at

a mass market are starting to appear. The possibility of making traditional instruc-
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tional videos more appealing and effective by adding another layer of eye movement

information is also promising. In an era of fast technology development, understand-

ing both the process and application of learning from eye movements will be even

more relevant for educators and learners alike.
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APPENDIX A

Configurations

A.1 Configurations of Sally

# Configuration of input

input = {

input_format = "lines";

lines_regex = "^(\\+|-)?[0-9]+";

};

# Configuration of feature extraction

features = {

# Length of n-grams.

ngram_len = 20;

# Granularity of n-grams.

granularity = "bytes";

# Delimiters for tokens.

token_delim = "";
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# Embedding mode for vectors. Supported types "cnt", "bin", "

tfidf"

vect_embed = "cnt";

# Normalization mode for vectors. Supported types "l1", "l2", "

none".

vect_norm = "l2";

};

# Configuration of output

output = {

# Format of output. Supported types: "libsvm", "text", "matlab"

output_format = "libsvm";

};

Listing A.1: Configurtion File

# R produced one .txt file for each classroom, concatenate all .txt

files

awk ’FNR==1{print ""}1’ *.txt > all.txt

# Commandlines to run Sally: use configuration file testbyte.cfg, read

all.txt and output all.libsvm

sally -c testbyte.cfg all.txt all.libsvm

Listing A.2: Terminal Commands

A.2 Configurations of LIBLINEAR

train -v 10 -c 1 all.libsvm # 10-fold cross validation with default

solver, yields overall classrification accuracy

112



Listing A.3: Terminal Commands

[test_label, test_inst] = libsvmread(’all.libsvm’)

model = train(test_label, test_inst, ’-c 1’)

[predict_label, accuracy, dec_values] = predict(test_label, test_inst,

model)

Listing A.4: MATLAB Syntax
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Kübler, T. C., C. Rothe, U. Schiefer, W. Rosenstiel, and E. Kasneci (2017),
SubsMatch 2.0: Scanpath comparison and classification based on subse-
quence frequencies, Behavior Research Methods, 49 (3), 1048–1064, doi:10.3758/
s13428-016-0765-6.

Kuhs, T. M., and D. L. Ball (1986), Approaches to teaching mathematics: Mapping
the domains of knowledge, skills, and dispositions, East Lansing: Michigan State
University, Center on Teacher Education.

124



Kundel, H. L., C. F. Nodine, E. F. Conant, and S. P. Weinstein (2007), Holistic com-
ponent of image perception in mammogram interpretation: gaze-tracking study,
Radiology, 242 (2), 396–402.

Kunter, M., U. Klusmann, J. Baumert, D. Richter, T. Voss, and A. Hachfeld (2013),
Professional competence of teachers: effects on instructional quality and student
development., Journal of Educational Psychology, 105 (3), 805.

Lachner, A., H. Jarodzka, and M. Nückles (2016), What makes an expert teacher?
Investigating teachers’ professional vision and discourse abilities, Instructional Sci-
ence, 44 (3), 197–203, doi:10.1007/s11251-016-9376-y.

Lagun, D., Manzanares, C., Zola, S. M., Buffalo, E. A., & Agichtein, E., D. La-
gun, C. Manzanares, S. M. Zola, E. A. Buffalo, and E. Agichtein (2011), De-
tecting cognitive impairment by eye movement analysis using automatic clas-
sification algorithms, Journal of neuroscience methods, 201 (1), 196–203, doi:
10.1016/j.jneumeth.2011.06.027.

Lampert, M., and D. L. Ball (1998), Teaching, Multimedia, and Mathematics: Inves-
tigations of Real Practice. The Practitioner Inquiry Series., ERIC.

Land, M., N. Mennie, and J. Rusted (1999), The roles of vision and eye movements
in the control of activities of daily living, Perception, 28 (11), 1311–1328.

Land, M. F., and P. McLeod (2000), From eye movements to actions: how batsmen
hit the ball, Nature neuroscience, 3 (12), 1340.

Lao, J., S. Miellet, C. Pernet, N. Sokhn, and R. Caldara (2015), imap 4: An open
source toolbox for the statistical fixation mapping of eye movement data with linear
mixed modeling., Journal of vision, 15 (12), 793.

Law, B., M. S. Atkins, A. E. Kirkpatrick, and A. J. Lomax (2004), Eye gaze pat-
terns differentiate novice and experts in a virtual laparoscopic surgery training
environment, in Proceedings of the 2004 symposium on Eye tracking research &
applications, pp. 41–48, ACM.

Le Meur, O., and T. Baccino (2013), Methods for comparing scanpaths and saliency
maps: Strengths and weaknesses, Behavior Research Methods, 45 (1), 251–266, doi:
10.3758/s13428-012-0226-9.

Leinhardt, G., and J. G. Greeno (1986), The cognitive skill of teaching., Journal of
educational psychology, 78 (2), 75.

Leonards, U., R. Baddeley, I. D. Gilchrist, T. Troscianko, P. Ledda, and B. Williamson
(2007), Mediaeval artists: Masters in directing the observers’ gaze, Current Biology,
17 (1), R8–R9.

Leshem, S., and Z. Markovits (2013), Mathematics and english, two languages: Teach-
ers’ views, Journal of Education and Learning, 2 (1), 211.

125



Lessiter, J., J. Freeman, E. Keogh, and J. Davidoff (2001), A cross-media presence
questionnaire: The itc-sense of presence inventory, Presence: Teleoperators & Vir-
tual Environments, 10 (3), 282–297.

Levenshtein, V. I. (1966), Binary codes capable of correcting deletions, insertions,
and reversals, doi:citeulike-article-id:311174.

Liechty, J., R. Pieters, and M. Wedel (2003), Global and local covert visual attention:
Evidence from a Bayesian hidden Markov model, Psychometrika, 68 (4), 519–541,
doi:10.1007/BF02295608.

Litchfield, D., L. J. Ball, T. Donovan, D. J. Manning, and T. Crawford (2010), View-
ing another person’s eye movements improves identification of pulmonary nodules
in chest x-ray inspection., Journal of Experimental Psychology: Applied, 16 (3),
251.

Livingston, C., and H. Borko (1989), Expert-novice differences in teaching: A cogni-
tive analysis and implications for teacher education, Journal of teacher education,
40 (4), 36–42.

Mann, D. T., A. M. Williams, P. Ward, and C. M. Janelle (2007), Perceptual-
Cognitive Expertise in Sport: A Meta-Analysis, Journal of Sport and Exercise
Psychology, 29 (4), 457–478, doi:10.1123/jsep.29.4.457.

Mannan, S., K. Ruddock, and D. Wooding (1995), Automatic control of saccadic eye
movements made in visual inspection of briefly presented 2-d images, Spatial vision,
9 (3), 363–386.

Mannan, S. K., K. H. Ruddock, and D. S. Wooding (1996), The relationship be-
tween the locations of spatial features and those of fixations made during visual
examination of briefly presented images, Spatial vision, 10 (3), 165–188.

Marcus, N., B. Cleary, A. Wong, and P. Ayres (2013), Should hand actions be ob-
served when learning hand motor skills from instructional animations?, Computers
in Human Behavior, 29 (6), 2172–2178.

Martinez-Conde, S., S. L. Macknik, and D. H. Hubel (2004), The role of fixational
eye movements in visual perception, Nature Reviews Neuroscience, 5 (3), 229–240.

Mason, L., P. Pluchino, and M. C. Tornatora (2015), Eye-movement modeling of
integrative reading of an illustrated text: Effects on processing and learning, Con-
temporary Educational Psychology, 41, 172–187.

Massy, W. F., and R. Zemsky (1995), Using information technology to enhance aca-
demic productivity, Educom Washington, DC.

Mathôt, S., F. Cristino, I. D. Gilchrist, and J. Theeuwes (2012), A simple way to
estimate similarity between pairs of eye movement sequences, Jemr, 5 (1), 1–15,
doi:10.16910/jemr.5.1.4.

126



Mayer, R. E., and C. I. Johnson (2008), Revising the redundancy principle in multi-
media learning., Journal of Educational Psychology, 100 (2), 380.

McCormick, E. P., C. D. Wickens, R. Banks, and M. Yeh (1998), Frame of reference
effects on scientific visualization subtasks, Human Factors, 40 (3), 443–451.

McIntyre, N. A., M. T. Mainhard, and R. M. Klassen (2017), Are you looking to
teach? Cultural, temporal and dynamic insights into expert teacher gaze, Learning
and Instruction, 49, 41–53, doi:10.1016/j.learninstruc.2016.12.005.

Mehlhorn, K., and P. Sanders (2008), Algorithms and data structures: The basic
toolbox, Springer Science & Business Media.

Memmert, D., D. J. Simons, and T. Grimme (2009), The relationship between visual
attention and expertise in sports, Psychology of Sport and Exercise, 10 (1), 146–151.

Meyer, A. S., and F. Lethaus (2004), The use of eye tracking in studies of sentence
generation, The interface of language, vision, and action: Eye movements and the
visual world, pp. 191–211.

Milgram, P., and H. W. Colquhoun Jr (1999), A framework for relating head-mounted
displays to mixed reality displays, in Proceedings of the Human Factors and Er-
gonomics Society Annual Meeting, vol. 43, pp. 1177–1181, SAGE Publications Sage
CA: Los Angeles, CA.

Miller, G. A. (1956), The magical number seven, plus or minus two: Some limits on
our capacity for processing information., Psychological review, 63 (2), 81.

Müller, S., B. Abernethy, and D. Farrow (2006), How do world-class cricket bats-
men anticipate a bowler’s intention?, Quarterly journal of experimental psychology,
59 (12), 2162–2186.

Nelson, W. W., and G. R. Loftus (1980), The functional visual field during picture
viewing., Journal of Experimental Psychology: Human Learning and Memory, 6 (4),
391.

Ng, A. Y. (2000), Cs229 lecture notes, CS229 Lecture notes, 1 (1), 1–3.

Ng, A. Y., and M. I. Jordan (2002), On Discriminative vs. Generative classifiers: A
comparison of logistic regression and naive Bayes., Advances in neural information
processing systems, pp. 841–848, doi:10.1017/CBO9781107415324.004.

Niebur, E., C. Koch, and C. Rosin (1993), An oscillation-based model for the neuronal
basis of attention, Vision research, 33 (18), 2789–2802.

Nisbet, S., and E. Warren (2000), Primary school teachers beliefs relating to mathe-
matics, teaching and assessing mathematics and factors that influence these beliefs,
Mathematics Teacher Education and Development, 2 (34-47).

127



Nodine, C. F., and H. L. Kundel (1987), Using eye movements to study visual search
and to improve tumor detection., Radiographics, 7 (6), 1241–1250.

Nodine, C. F., P. J. Locher, and E. A. Krupinski (1993), The role of formal art
training on perception and aesthetic judgment of art compositions, Leonardo, pp.
219–227.

Noton, D., and L. Stark (1971a), Scanpaths in saccadic eye movements while view-
ing and recognizing patterns, Vision Research, 11 (9), doi:10.1016/0042-6989(71)
90213-6.

Noton, D., and L. Stark (1971b), Scanpaths in Eye Movements during Pattern Per-
ception, Science, 171 (3968), 308–311, doi:10.1126/science.171.3968.308.

Olshausen, B. A., C. H. Anderson, and D. C. Van Essen (1993), A neurobiologi-
cal model of visual attention and invariant pattern recognition based on dynamic
routing of information, Journal of Neuroscience, 13 (11), 4700–4719.

Parkhurst, D., K. Law, and E. Niebur (2002), Modeling the role of salience in the
allocation of overt visual attention, Vision Research, 42 (1), 107–123, doi:10.1016/
S0042-6989(01)00250-4.

Parkhurst, D. J., and E. Niebur (2003), Scene content selected by active vision, Spatial
Vision, 16 (2), 125–154, doi:10.1163/15685680360511645.

Perry, B., D. Tracey, and P. Howard (1999), Head mathematics teachers beliefs about
the learning and teaching of mathematics, Mathematics Education Research Jour-
nal, 11 (1), 39–53.

Peters, R. J., A. Iyer, L. Itti, and C. Koch (2005), Components of bottom-up gaze
allocation in natural images, Vision Research, 45 (18), 2397–2416, doi:10.1016/j.
visres.2005.03.019.

Pietrzyk, M. W., M. F. McEntee, M. E. Evanoff, P. C. Brennan, and C. R. Mello-
Thoms (2014), Direction of an initial saccade depends on radiological expertise, in
Medical Imaging 2014: Image Perception, Observer Performance, and Technology
Assessment, vol. 9037, p. 90371A, International Society for Optics and Photonics.

Privitera, C. M. (2006), The Scanpath Theory : its definition and later developments,
Human Vision and Electronic Imaging XI, 6057 (February 2006), 1–5, doi:10.1117/
12.674146.

Privitera, C. M., and L. W. Stark (2000), Algorithms for defining visual regions-of-
lnterest: comparison with eye fixations, IEEE Transactions on Pattern Analysis
and Machine Intelligence, 22 (9), 970–982, doi:10.1109/34.877520.

Putnam, R. T. (1987), Structuring and adjusting content for students: A study of live
and simulated tutoring of addition, American educational research journal, 24 (1),
13–48.

128



Ramat, A. G., C. Mauri, and P. Molinelli (2013), Synchrony and diachrony: A dy-
namic interface, vol. 133, John Benjamins Publishing.

Rayner, K. (1998), Eye movements in reading and information processing: 20 years
of research., Psychological bulletin, 124 (3), 372.

Rayner, K., X. Li, C. C. Williams, K. R. Cave, and A. D. Well (2007), Eye movements
during information processing tasks: Individual differences and cultural effects,
Vision research, 47 (21), 2714–2726.

Reingold, E., N. Charness, M. Pomplun, and D. Stampe (2001), Visual Span in
Expert chess player: Evidence From Eye Movements, Psychological Science, 12 (1),
48, doi:10.1111/1467-9280.00309.

Reingold, E. M., & Sheridan, H. (2011), Eye movements and visual expertise in
chess and medicine, in Oxford handbook on eye movements, pp. 528–550, Oxford
University Press.

Renkl, A. (2014), Toward an instructionally oriented theory of example-based learn-
ing, Cognitive science, 38 (1), 1–37.

Renninger, L. W., P. Verghese, and J. Coughlan (2007), Where to look next? eye
movements reduce local uncertainty, Journal of Vision, 7 (3), 6–6.

Richardson, D. C., and M. J. Spivey (2004), Eye-Tracking : Characteristics and
Methods Eye-Tracking : Research Areas and Applications Eye-Tracking : Charac-
teristics and Methods, Biomedical Engineering, 2 (932839148), 1–32, doi:10.1081/
E-EBBE-120013920.

Rieck, K., C. Wressnegger, and A. Bikadorov (2012), Sally: a tool for embedding
strings in vector spaces, Journal of Machine Learning Research, 13, 3247–3251.

Robinson, D. A. (1968), The oculomotor control system: A review, Proceedings of the
IEEE, 56 (6), 1032–1049.

Ross, S. M. (2014), Introduction to probability models, Academic press.

Rothkopf, C. A., D. H. Ballard, and M. M. Hayhoe (2007), Task and context deter-
mine where you look, Journal of vision, 7 (14), 16–16.

Ruiz-Primo, M. A., and E. M. Furtak (2007), Exploring teachers’ informal formative
assessment practices and students’ understanding in the context of scientific inquiry,
Journal of research in science teaching, 44 (1), 57–84.

Saariluoma, P. (1991), Aspects of skilled imagery in blindfold chess, Acta psychologica,
77 (1), 65–89.

Sadowski, W., and K. Stanney (2002), Presence in virtual environments., in Human
factors and ergonomics. Handbook of virtual environments: Design, implementa-
tion, and applications, pp. 791–806, Lawrence Erlbaum Associates Publishers.

129



Salton, G., A. Wong, and C.-S. Yang (1975), A vector space model for automatic
indexing, Communications of the ACM, 18 (11), 613–620.

Salzman, M. C., C. Dede, R. B. Loftin, and J. Chen (1999), A model for understanding
how virtual reality aids complex conceptual learning, Presence: Teleoperators &
Virtual Environments, 8 (3), 293–316.

Savelsbergh, G. J., A. M. Williams, J. V. D. Kamp, and P. Ward (2002), Visual
search, anticipation and expertise in soccer goalkeepers, Journal of sports sciences,
20 (3), 279–287.

Schmittmann, V. D., C. V. Dolan, H. L. van der Maas, and M. C. Neale (2005),
Discrete latent markov models for normally distributed response data, Multivariate
Behavioral Research, 40 (4), 461–488.

Schriver, A. T., D. G. Morrow, C. D. Wickens, and D. A. Talleur (2008), Exper-
tise differences in attentional strategies related to pilot decision making, Human
Factors, 50 (6), 864–878.

Schutz, A. C., D. I. Braun, and K. R. Gegenfurtner (2011), Eye movements and
perception: A selective review, Journal of Vision, 11 (5), 9–9, doi:10.1167/11.5.9.

Seidel, T., and K. Sturmer (2014), Modeling and Measuring the Structure of Pro-
fessional Vision in Preservice Teachers, American Educational Research Journal,
51 (4), 739–771, doi:10.3102/0002831214531321.

Silverman, B. W. (2018), Density estimation for statistics and data analysis, Rout-
ledge.

Simola, J., J. Salojärvi, and I. Kojo (2008), Using hidden Markov model to uncover
processing states from eye movements in information search tasks, Cognitive Sys-
tems Research, 9 (4), 237–251, doi:10.1016/j.cogsys.2008.01.002.

Spivey, M. J., and R. Dale (2011), Eye movements both reveal and influence problem
solving, in The Oxford Handbook of Eye Movements, edited by S. P. Liversedge,
I. D. Gilchrist, and S. Everling, chap. 30, pp. 551–562, Oxford University Press.

Star, J. R., and S. K. Strickland (2008), Learning to observe: Using video to improve
preservice mathematics teachers ability to notice, Journal of mathematics teacher
education, 11 (2), 107–125.

Stockero, S. L., R. L. Rupnow, and A. E. Pascoe (2017), Learning to notice important
student mathematical thinking in complex classroom interactions, Teaching and
Teacher Education, 63, 384–395, doi:10.1016/j.tate.2017.01.006.

Stokking, K., F. Leenders, J. De Jong, and J. Van Tartwijk (2003), From student
to teacher: Reducing practice shock and early dropout in the teaching profession,
European journal of teacher education, 26 (3), 329–350.

130
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Van Gog, T., F. Paas, J. J. Van Merriënboer, and P. Witte (2005), Uncovering
the problem-solving process: Cued retrospective reporting versus concurrent and
retrospective reporting., Journal of Experimental Psychology: Applied, 11 (4), 237.

van Gog, T., H. Jarodzka, K. Scheiter, P. Gerjets, and F. Paas (2009), Attention guid-
ance during example study via the model’s eye movements, Computers in Human
Behavior, 25 (3), 785–791, doi:10.1016/j.chb.2009.02.007.

van Marlen, T., M. van Wermeskerken, H. Jarodzka, and T. van Gog (2016), Showing
a model’s eye movements in examples does not improve learning of problem-solving
tasks, Computers in Human Behavior, 65, 448–459, doi:10.1016/j.chb.2016.08.041.

Visser, I. (2011), Seven things to remember about hidden Markov models: A tutorial
on Markovian models for time series, Journal of Mathematical Psychology, 55 (6),
403–415, doi:10.1016/j.jmp.2011.08.002.

132



Visser, I., M. E. Raijmakers, and P. Molenaar (2002), Fitting hidden markov models
to psychological data, Scientific Programming, 10 (3), 185–199.

Viviani, P. (1990), Eye movements in visual search: Cognitive, perceptual, and motor
control aspects, Eye movements and their role in visual and cognitive processes, pp.
353–383.

Vogt, S., and S. Magnussen (2007), Expertise in pictorial perception: eye-movement
patterns and visual memory in artists and laymen, Perception, 36 (1), 91–100.

Wade, N. J., and B. W. Tatler (2011), Origins and applications of eye movement
research, in The Oxford Handbook of Eye Movements, edited by S. P. Liversedge,
I. D. Gilchrist, and S. Everling, chap. 2, pp. 17–43, Oxford University Press.

Walls, G. (1962), The evolutionary history of eye movements, Vision Research, 2 (1-4),
69–80.

Waters, A. J., G. Underwood, and J. M. Findlay (1997), Studying expertise in music
reading: Use of a pattern-matching paradigm, Perception & psychophysics, 59 (4),
477–488.

Williams, A. M., P. Ward, J. M. Knowles, and N. J. Smeeton (2002), Anticipation
skill in a real-world task: measurement, training, and transfer in tennis., Journal
of Experimental Psychology: Applied, 8 (4), 259.

Wolff, C. E., H. Jarodzka, and H. P. Boshuizen (2017), See and tell: Differ-
ences between expert and novice teachers’ interpretations of problematic class-
room management events, Teaching and Teacher Education, 66, 295–308, doi:
10.1016/j.tate.2017.04.015.

Yamamoto, T., and K. Imai-Matsumura (2013), Teachers’ Gaze and Awareness of Stu-
dents’ Behavior: Using An Eye Tracker, Comprehensive Psychology, 2, 01.IT.2.6,
doi:10.2466/01.IT.2.6.

Yantis, S., and H. E. Egeth (1999), On the distinction between visual salience and
stimulus-driven attentional capture., Journal of Experimental Psychology: Human
Perception and Performance, 25 (3), 661.

Yantis, S., and J. Jonides (1984), Abrupt visual onsets and selective attention: evi-
dence from visual search., Journal of Experimental Psychology: Human perception
and performance, 10 (5), 601.

Yantis, S., and J. Jonides (1996), Attentional capture by abrupt onsets: new per-
ceptual objects or visual masking?, Journal of Experimental Psychology: Human
Perception and Performance, 22 (6), 1505–1513.

Yarbus, A. L. (1967a), Eye movements during perception of complex objects,
in Eye Movements and Vision, pp. 389–390, Springer New York, doi:10.1016/
0028-3932(68)90012-2.

133



Yarbus, A. L. (1967b), Eye movements and vision, Plenum Press New York.

Ylitalo, A.-k. (2017), Statistical Inference for Eye Movement Sequences using Spatial
and Spatio-temporal Point Processes, Ph.D. thesis, University of Jyv askyl a.

Zakaria, E., and N. Musiran (2010), Beliefs about the nature of mathematics, math-
ematics teaching and learning among trainee teachers, Social Sciences, 5 (4), 346–
351.

Zangemeister, W., K. Sherman, and L. Stark (1995), Evidence for a global scan-
path strategy in viewing abstract compared with realistic images, Neuropsychologia,
33 (8), 1009–1025.

134


	ACKNOWLEDGEMENTS
	LIST OF FIGURES
	LIST OF TABLES
	ABSTRACT
	Introduction
	A Brief Review of Eye Movement Research

	Methodology
	Issues of Traditional Eye Movement Methodology
	Scanpath Comparison
	Attention Map
	String Edit Method
	Geometric Method
	Probabilistic Approach
	Bayesian vs. Frequentist Framework
	Examples of Probabilistic Approach: Hidden Markov Models


	Challenges of the Current Data
	General Analysis Framework
	Problem of Classification
	Discriminative vs. Generative Approach
	Classification in Eye Movement Research

	Analysis Plan for Mobile Eye Movement Data
	Data Transformation
	String-based Representation
	Vector-based Representation

	Aggregated Similarity Measure
	Pattern and Classification
	Point Pattern Analysis
	String-based Classification



	Study 1: Teacher Expertise and Eye Movement
	Expertise and Eye Movements
	Method
	Sample
	Apparatus
	Procedure

	Analysis Method
	Results
	Discussion

	Study 2: Subject Matter and Eye Movement
	Task and Eye Movement
	The Current Study
	Method
	Sample
	Apparatus
	Procedure
	Analysis Method

	Results
	Discussion

	Study 3: Showing the Expert's Eye: Eye Movement Modeling Examples
	Looking from the Expert's Perspective
	The Current Study
	Method
	Participants
	Study Design
	Material
	Measurement
	Procedure

	Results
	Discussion

	Discussion
	Main Findings
	Considerations and Future Directions
	Implications

	APPENDIX A
	Configurations of Sally
	Configurations of LIBLINEAR

	BIBLIOGRAPHY

